
S I N G U L A R I T Y  H Y P O T H E S E S  S I N G U L A R I T Y  H Y
P O T H E S E S  S I N G U L A R I T Y  H Y P O T H E S E S  S I N G U
L A R I T Y  H Y P O T H E S E S  S I N G U L A R I T Y  H Y P O T H E S
E S  S I N G U L A R I T Y  H Y P O T H E S E S  S I N G U L A R I T Y
H Y P O T H E S E S  S I N G U L A R I T Y  H Y P O T H E S E S  S I N
G U L A R I T Y  H Y P O T H E S E S  S I N G U L A R I T Y  H Y P O
T H E S E S  S I N G U L A R I T Y  H Y P O T H E S E S  S I N G U L A
R I T Y  H Y P O T H E S E S  S I N G U L A R I T Y  H Y P O T H E S E S
S I N G U L A R I T Y  H Y P O T H E S E S  S I N G U L A R I T Y  H Y
P O T H E S E S  S I N G U L A R I T Y  H Y P O T H E S E S  S I N G U
L A R I T Y  H Y P O T H E S E S  S I N G U L A R I T Y  H Y P O T H E S
E S  S I N G U L A R I T Y  H Y P O T H E S E S  S I N G U L A R I T Y
H Y P O T H E S E S  S I N G U L A R I T Y  H Y P O T H E S E S  S I N
G U L A R I T Y  H Y P O T H E S E S  S I N G U L A R I T Y  H Y P O
T H E S E S  S I N G U L A R I T Y  H Y P O T H E S E S  S I N G U L A
R I T Y  H Y P O T H E S E S  S I N G U L A R I T Y  H Y P O T H E S E S
S I N G U L A R I T Y  H Y P O T H E S E S  S I N G U L A R I T Y  H Y
P O T H E S E S  S I N G U L A R I T Y  H Y P O T H E S E S  S I N G U L A

S INGULAR ITY  HYPOTHESES  S IN
GULAR ITY  HYPOTHESES  S INGU
LAR ITY  HYPOTHESES  S INGULA
R ITY  HYPOTHESES  S INGULAR ITY
HYPOTHESES  S INGULAR ITY  HYPO
THESES SINGULARITY  HYPOTHESES 
S INGULAR ITY  HYPOTHESES  S IN
GULAR ITY  HYPOTHESES  S INGU
LA  R ITY  HYPOTHESES  S INGULA
R ITY  HYPOTHESES  S INGULAR ITY
HY  POTHESES  S INGULAR ITY  HY
PO THESES SINGULARITY HYPOTHESES 
S INGULAR ITY  HYPOTHESES  S IN
GULAR ITY  HYPOTHESES  S INGU
LAR ITY  HYPOTHESES  S INGULA
R ITY  HYPOTHESES  S INGULAR ITY
HYPOTHESES  S INGULAR ITY  HY
POTHESES   S INGULAR ITY  HYPO

Amnon H. Eden · James H. Moor
Johnny H. Søraker ·  Eric Steinhart (Eds.)

SINGULARITY
 HYPOTHESES
A  S c i e n t i f i c  a n d 
 P h i l o s o p h i c a l  A s s e s s m e n t

T H E  F R O N T I E R S  C O L L E C T I O N



THE FRONTIERS COLLECTION

Series Editors

Avshalom C. Elitzur
Unit of Interdisciplinary Studies, Bar-Ilan University, 52900, Ramat-Gan, Israel
e-mail: avshalom.elitzur@weizmann.ac.il

Laura Mersini-Houghton
Department of Physics, University of North Carolina, Chapel Hill, NC 27599-3255
USA
e-mail: mersini@physics.unc.edu

Maximilian Schlosshauer
Department of Physics, University of Portland,
5000 North Willamette Boulevard Portland, OR 97203, USA
e-mail: schlossh@up.edu

Mark P. Silverman
Department of Physics, Trinity College, Hartford, CT 06106, USA
e-mail: mark.silverman@trincoll.edu

Jack A. Tuszynski
Department of Physics, University of Alberta, Edmonton, AB T6G 1Z2, Canada
e-mail: jtus@phys.ualberta.ca

Rudy Vaas
Center for Philosophy and Foundations of Science, University of Giessen, 35394,
Giessen, Germany
e-mail: ruediger.vaas@t-online.de

H. Dieter Zeh
Gaiberger Straße 38, 69151, Waldhilsbach, Germany
e-mail: zeh@uni-heidelberg.de

For further volumes:
http://www.springer.com/series/5342

http://www.springer.com/series/5342


THE FRONTIERS COLLECTION

The books in this collection are devoted to challenging and open problems at the
forefront of modern science, including related philosophical debates. In contrast to
typical research monographs, however, they strive to present their topics in a
manner accessible also to scientifically literate non-specialists wishing to gain
insight into the deeper implications and fascinating questions involved. Taken as a
whole, the series reflects the need for a fundamental and interdisciplinary approach
to modern science. Furthermore, it is intended to encourage active scientists in all
areas to ponder over important and perhaps controversial issues beyond their own
speciality. Extending from quantum physics and relativity to entropy, conscious-
ness and complex systems—the Frontiers Collection will inspire readers to push
back the frontiers of their own knowledge.

For a full list of published titles, please see back of book or springer.com/series/5342

Series Editors
A. C. Elitzur L. Mersini-Houghton M. Schlosshauer
M. P. Silverman J. A. Tuszynski R. Vaas H. D. Zeh

http://www.springer.com/series/5342


Amnon H. Eden • James H. Moor
Johnny H. Søraker • Eric Steinhart
Editors

Singularity Hypotheses

A Scientific and Philosophical Assessment

123



Editors
Amnon H. Eden
School of Computer Science

and Electronic Engineering
University of Essex
Colchester
UK

James H. Moor
Dartmouth College
Hanover
USA

Johnny H. Søraker
Department of Philosophy
University of Twente
Enschede
The Netherlands

Eric Steinhart
Department of Philosophy
William Paterson University
Wayne
USA

ISSN 1612-3018
ISBN 978-3-642-32559-5 ISBN 978-3-642-32560-1 (eBook)
DOI 10.1007/978-3-642-32560-1
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012946755

� Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To Saul, With love,
—Aba



Contents

1 Singularity Hypotheses: An Overview . . . . . . . . . . . . . . . . . . . . . . 1
Amnon H. Eden, Eric Steinhart, David Pearce and James H. Moor

Part I A Singularity of Artificial Superintelligence

2 Intelligence Explosion: Evidence and Import. . . . . . . . . . . . . . . . . 15
Luke Muehlhauser and Anna Salamon
2A Robin Hanson on Muehlhauser and Salamon’s

‘‘Intelligence Explosion: Evidence and Import’’ . . . . . . . . . . . . 41

3 The Threat of a Reward-Driven Adversarial Artificial General
Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Itamar Arel
3A William J. Rapaport on Arel’s ‘‘The Threat of a Reward-Driven

Adversarial Artificial General Intelligence’’ . . . . . . . . . . . . . . . 59

4 New Millennium AI and the Convergence of History:
Update of 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Jürgen Schmidhuber
4A Aaron Sloman on Schmidhuber’s ‘‘New Millennium AI

and the Convergence of History 2012’’ . . . . . . . . . . . . . . . . . . 79
4B Selmer Bringsjord, Alexander Bringsjord and Paul Bello

on Schmidhuber’s ‘‘New Millennium AI and the Convergence
of History 2012’’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Why an Intelligence Explosion is Probable . . . . . . . . . . . . . . . . . . 83
Richard Loosemore and Ben Goertzel
5A Peter Bishop’s on Loosemore and Goertzel’s

‘‘Why an Intelligence Explosion is Probable’’ . . . . . . . . . . . . . . 97

vii

http://dx.doi.org/10.1007/978-3-642-32560-1_1
http://dx.doi.org/10.1007/978-3-642-32560-1_1
http://dx.doi.org/10.1007/978-3-642-32560-1_2
http://dx.doi.org/10.1007/978-3-642-32560-1_2
http://dx.doi.org/10.1007/978-3-642-32560-1_15
http://dx.doi.org/10.1007/978-3-642-32560-1_15
http://dx.doi.org/10.1007/978-3-642-32560-1_15
http://dx.doi.org/10.1007/978-3-642-32560-1_15
http://dx.doi.org/10.1007/978-3-642-32560-1_15
http://dx.doi.org/10.1007/978-3-642-32560-1_3
http://dx.doi.org/10.1007/978-3-642-32560-1_3
http://dx.doi.org/10.1007/978-3-642-32560-1_3
http://dx.doi.org/10.1007/978-3-642-32560-1_15
http://dx.doi.org/10.1007/978-3-642-32560-1_15
http://dx.doi.org/10.1007/978-3-642-32560-1_15
http://dx.doi.org/10.1007/978-3-642-32560-1_15
http://dx.doi.org/10.1007/978-3-642-32560-1_15
http://dx.doi.org/10.1007/978-3-642-32560-1_4
http://dx.doi.org/10.1007/978-3-642-32560-1_4
http://dx.doi.org/10.1007/978-3-642-32560-1_4
http://dx.doi.org/10.1007/978-3-642-32560-1_10
http://dx.doi.org/10.1007/978-3-642-32560-1_10
http://dx.doi.org/10.1007/978-3-642-32560-1_10
http://dx.doi.org/10.1007/978-3-642-32560-1_10
http://dx.doi.org/10.1007/978-3-642-32560-1_10
http://dx.doi.org/10.1007/978-3-642-32560-1_11
http://dx.doi.org/10.1007/978-3-642-32560-1_11
http://dx.doi.org/10.1007/978-3-642-32560-1_11
http://dx.doi.org/10.1007/978-3-642-32560-1_11
http://dx.doi.org/10.1007/978-3-642-32560-1_11
http://dx.doi.org/10.1007/978-3-642-32560-1_11
http://dx.doi.org/10.1007/978-3-642-32560-1_5
http://dx.doi.org/10.1007/978-3-642-32560-1_5
http://dx.doi.org/10.1007/978-3-642-32560-1_16
http://dx.doi.org/10.1007/978-3-642-32560-1_16
http://dx.doi.org/10.1007/978-3-642-32560-1_16
http://dx.doi.org/10.1007/978-3-642-32560-1_16
http://dx.doi.org/10.1007/978-3-642-32560-1_16


Part II Concerns About Artificial Superintelligence

6 The Singularity and Machine Ethics . . . . . . . . . . . . . . . . . . . . . . . 101
Luke Muehlhauser and Louie Helm
6A Jordi Vallverdú on Muehlhauser and Helm’s

‘‘the Singularity and Machine Ethics’’ . . . . . . . . . . . . . . . . . . . 127

7 Artificial General Intelligence and the Human Mental Model . . . . 129
Roman V. Yampolskiy and Joshua Fox

8 Some Economic Incentives Facing a Business that Might Bring
About a Technological Singularity . . . . . . . . . . . . . . . . . . . . . . . . 147
James D. Miller
8A Robin Hanson on Miller’s ‘‘Some Economic

Incentives Facing a Business that Might Bring
About a Technological Singularity’’. . . . . . . . . . . . . . . . . . . . . 159

9 Rational Artificial Intelligence for the Greater Good . . . . . . . . . . . 161
Steve Omohundro
9A Colin Allen and Wendell Wallach on Omohundro’s

‘‘Rationally-Shaped Artificial Intelligence’’. . . . . . . . . . . . . . . . 177

10 Friendly Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Eliezer Yudkowsky
10A Colin Allen on Yudkowsky’s ‘‘Friendly Artificial Intelligence’’ . . . 195

Part III A Singularity of Posthuman Superintelligence

11 The Biointelligence Explosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
David Pearce
11A Illah R. Nourbakhsh on Pearce’s ‘‘The Biointelligence

Explosion’’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

12 Embracing Competitive Balance: The Case for
Substrate-Independent Minds and Whole Brain Emulation . . . . . . 241
Randal A. Koene
12A Philip Rubin on Koene’s ‘‘Embracing Competitive Balance:

The Case For Substrate-Independent Minds and Whole
Brain Emulation’’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

13 Brain Versus Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Dennis Bray
13A Randal Koene on Bray’s ‘‘Brain Versus Machine’’ . . . . . . . . . . 279

viii Contents

http://dx.doi.org/10.1007/978-3-642-32560-1_6
http://dx.doi.org/10.1007/978-3-642-32560-1_6
http://dx.doi.org/10.1007/978-3-642-32560-1_12
http://dx.doi.org/10.1007/978-3-642-32560-1_12
http://dx.doi.org/10.1007/978-3-642-32560-1_12
http://dx.doi.org/10.1007/978-3-642-32560-1_12
http://dx.doi.org/10.1007/978-3-642-32560-1_12
http://dx.doi.org/10.1007/978-3-642-32560-1_7
http://dx.doi.org/10.1007/978-3-642-32560-1_7
http://dx.doi.org/10.1007/978-3-642-32560-1_8
http://dx.doi.org/10.1007/978-3-642-32560-1_8
http://dx.doi.org/10.1007/978-3-642-32560-1_8
http://dx.doi.org/10.1007/978-3-642-32560-1_10
http://dx.doi.org/10.1007/978-3-642-32560-1_10
http://dx.doi.org/10.1007/978-3-642-32560-1_10
http://dx.doi.org/10.1007/978-3-642-32560-1_10
http://dx.doi.org/10.1007/978-3-642-32560-1_10
http://dx.doi.org/10.1007/978-3-642-32560-1_10
http://dx.doi.org/10.1007/978-3-642-32560-1_9
http://dx.doi.org/10.1007/978-3-642-32560-1_9
http://dx.doi.org/10.1007/978-3-642-32560-1_11
http://dx.doi.org/10.1007/978-3-642-32560-1_11
http://dx.doi.org/10.1007/978-3-642-32560-1_11
http://dx.doi.org/10.1007/978-3-642-32560-1_11
http://dx.doi.org/10.1007/978-3-642-32560-1_11
http://dx.doi.org/10.1007/978-3-642-32560-1_10
http://dx.doi.org/10.1007/978-3-642-32560-1_10
http://dx.doi.org/10.1007/978-3-642-32560-1_10
http://dx.doi.org/10.1007/978-3-642-32560-1_10
http://dx.doi.org/10.1007/978-3-642-32560-1_10
http://dx.doi.org/10.1007/978-3-642-32560-1_10
http://dx.doi.org/10.1007/978-3-642-32560-1_11
http://dx.doi.org/10.1007/978-3-642-32560-1_11
http://dx.doi.org/10.1007/978-3-642-32560-1_23
http://dx.doi.org/10.1007/978-3-642-32560-1_23
http://dx.doi.org/10.1007/978-3-642-32560-1_23
http://dx.doi.org/10.1007/978-3-642-32560-1_23
http://dx.doi.org/10.1007/978-3-642-32560-1_23
http://dx.doi.org/10.1007/978-3-642-32560-1_12
http://dx.doi.org/10.1007/978-3-642-32560-1_12
http://dx.doi.org/10.1007/978-3-642-32560-1_12
http://dx.doi.org/10.1007/978-3-642-32560-1_23
http://dx.doi.org/10.1007/978-3-642-32560-1_23
http://dx.doi.org/10.1007/978-3-642-32560-1_23
http://dx.doi.org/10.1007/978-3-642-32560-1_23
http://dx.doi.org/10.1007/978-3-642-32560-1_23
http://dx.doi.org/10.1007/978-3-642-32560-1_23
http://dx.doi.org/10.1007/978-3-642-32560-1_13
http://dx.doi.org/10.1007/978-3-642-32560-1_13
http://dx.doi.org/10.1007/978-3-642-32560-1_5
http://dx.doi.org/10.1007/978-3-642-32560-1_5
http://dx.doi.org/10.1007/978-3-642-32560-1_5
http://dx.doi.org/10.1007/978-3-642-32560-1_5


14 The Disconnection Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
David Roden

Part IV Skepticism

15 Interim Report from the Panel Chairs: AAAI Presidential
Panel on Long-Term AI Futures. . . . . . . . . . . . . . . . . . . . . . . . . . 301
Eric Horvitz and Bart Selman
15A Itamar Arel on Horwitz’s ‘‘AAAI Presidential Panel

on Long Term AI Futures’’. . . . . . . . . . . . . . . . . . . . . . . . . . . 307
15B Vernor Vinge on Horvitz’s ‘‘AAAI Presidential Panel

on Long-Term AI Futures’’. . . . . . . . . . . . . . . . . . . . . . . . . . . 309

16 Why the Singularity Cannot Happen . . . . . . . . . . . . . . . . . . . . . . 311
Theodore Modis
16A Vernor Vinge on Modis’ ‘‘Why the Singularity

Cannot Happen’’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
16B Ray Kurzweil on Modis’ ‘‘Why the Singularity

Cannot Happen’’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

17 The Slowdown Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Alessio Plebe and Pietro Perconti
17A Eliezer Yudkowsky on Plebe & Perconti’s

‘‘The Slowdown Hypothesis’’ . . . . . . . . . . . . . . . . . . . . . . . . . 363

18 Software Immortals: Science or Faith? . . . . . . . . . . . . . . . . . . . . . 367
Diane Proudfoot
18A Francis Heylighen on Proudfoot’s ‘‘Software Immortals:

Science or Faith?’’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

19 Belief in The Singularity is Fideistic . . . . . . . . . . . . . . . . . . . . . . . 395
Selmer Bringsjord, Alexander Bringsjord and Paul Bello
19A Vernor Vinge on Bringsjord et al.’s ‘‘Belief in the Singularity

is Fideistic’’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
19B Michael Anissimov on Bringsjord et al.’s ‘‘Belief in

The Singularity is Fideistic’’ . . . . . . . . . . . . . . . . . . . . . . . . . . 411

20 A Singular Universe of Many Singularities: Cultural
Evolution in a Cosmic Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Eric J. Chaisson
20A Theodore Modis on Chaisson’s ‘‘A Singular Universe

of Many Singularities: Cultural Evolution
in a Cosmic Context’’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

Contents ix

http://dx.doi.org/10.1007/978-3-642-32560-1_14
http://dx.doi.org/10.1007/978-3-642-32560-1_14
http://dx.doi.org/10.1007/978-3-642-32560-1_15
http://dx.doi.org/10.1007/978-3-642-32560-1_15
http://dx.doi.org/10.1007/978-3-642-32560-1_15
http://dx.doi.org/10.1007/978-3-642-32560-1_5
http://dx.doi.org/10.1007/978-3-642-32560-1_5
http://dx.doi.org/10.1007/978-3-642-32560-1_5
http://dx.doi.org/10.1007/978-3-642-32560-1_5
http://dx.doi.org/10.1007/978-3-642-32560-1_5
http://dx.doi.org/10.1007/978-3-642-32560-1_6
http://dx.doi.org/10.1007/978-3-642-32560-1_6
http://dx.doi.org/10.1007/978-3-642-32560-1_6
http://dx.doi.org/10.1007/978-3-642-32560-1_6
http://dx.doi.org/10.1007/978-3-642-32560-1_6
http://dx.doi.org/10.1007/978-3-642-32560-1_16
http://dx.doi.org/10.1007/978-3-642-32560-1_16
http://dx.doi.org/10.1007/978-3-642-32560-1_23
http://dx.doi.org/10.1007/978-3-642-32560-1_23
http://dx.doi.org/10.1007/978-3-642-32560-1_23
http://dx.doi.org/10.1007/978-3-642-32560-1_23
http://dx.doi.org/10.1007/978-3-642-32560-1_23
http://dx.doi.org/10.1007/978-3-642-32560-1_24
http://dx.doi.org/10.1007/978-3-642-32560-1_24
http://dx.doi.org/10.1007/978-3-642-32560-1_24
http://dx.doi.org/10.1007/978-3-642-32560-1_24
http://dx.doi.org/10.1007/978-3-642-32560-1_24
http://dx.doi.org/10.1007/978-3-642-32560-1_17
http://dx.doi.org/10.1007/978-3-642-32560-1_17
http://dx.doi.org/10.1007/978-3-642-32560-1_8
http://dx.doi.org/10.1007/978-3-642-32560-1_8
http://dx.doi.org/10.1007/978-3-642-32560-1_8
http://dx.doi.org/10.1007/978-3-642-32560-1_8
http://dx.doi.org/10.1007/978-3-642-32560-1_8
http://dx.doi.org/10.1007/978-3-642-32560-1_18
http://dx.doi.org/10.1007/978-3-642-32560-1_18
http://dx.doi.org/10.1007/978-3-642-32560-1_14
http://dx.doi.org/10.1007/978-3-642-32560-1_14
http://dx.doi.org/10.1007/978-3-642-32560-1_14
http://dx.doi.org/10.1007/978-3-642-32560-1_14
http://dx.doi.org/10.1007/978-3-642-32560-1_14
http://dx.doi.org/10.1007/978-3-642-32560-1_19
http://dx.doi.org/10.1007/978-3-642-32560-1_19
http://dx.doi.org/10.1007/978-3-642-32560-1_8
http://dx.doi.org/10.1007/978-3-642-32560-1_8
http://dx.doi.org/10.1007/978-3-642-32560-1_8
http://dx.doi.org/10.1007/978-3-642-32560-1_8
http://dx.doi.org/10.1007/978-3-642-32560-1_8
http://dx.doi.org/10.1007/978-3-642-32560-1_9
http://dx.doi.org/10.1007/978-3-642-32560-1_9
http://dx.doi.org/10.1007/978-3-642-32560-1_9
http://dx.doi.org/10.1007/978-3-642-32560-1_9
http://dx.doi.org/10.1007/978-3-642-32560-1_9
http://dx.doi.org/10.1007/978-3-642-32560-1_20
http://dx.doi.org/10.1007/978-3-642-32560-1_20
http://dx.doi.org/10.1007/978-3-642-32560-1_20
http://dx.doi.org/10.1007/978-3-642-32560-1_8
http://dx.doi.org/10.1007/978-3-642-32560-1_8
http://dx.doi.org/10.1007/978-3-642-32560-1_8
http://dx.doi.org/10.1007/978-3-642-32560-1_8
http://dx.doi.org/10.1007/978-3-642-32560-1_8
http://dx.doi.org/10.1007/978-3-642-32560-1_8


Chapter 1
Singularity Hypotheses: An Overview

Introduction to: Singularity Hypotheses:
A Scientific and Philosophical Assessment

Amnon H. Eden, Eric Steinhart, David Pearce and James H. Moor

Questions

Bill Joy in a widely read but controversial article claimed that the most powerful
21st century technologies are threatening to make humans an endangered species
(Joy 2000). Indeed, a growing number of scientists, philosophers and forecasters
insist that the accelerating progress in disruptive technologies such as artificial
intelligence, robotics, genetic engineering, and nanotechnology may lead to what
they refer to as the technological singularity: an event or phase that will radically
change human civilization, and perhaps even human nature itself, before the
middle of the 21st century (Paul and Cox 1996; Broderick 2001; Garreau 2005,
Kurzweil 2005).

Singularity hypotheses refer to either one of two distinct and very different
scenarios. The first (Vinge 1993; Bostrom to appear) postulates the emergence of
artificial superintelligent agents—software-based synthetic minds—as the ‘singular’
outcome of accelerating progress in computing technology. This singularity results
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from an ‘intelligence explosion’ (Good 1965): a process in which software-based
intelligent minds enter a ‘runaway reaction’ of self-improvement cycles, with each
new and more intelligent generation appearing faster than its predecessor. Part I of
this volume is dedicated to essays which argue that progress in artificial intelligence
and machine learning may indeed increase machine intelligence beyond that of any
human being. As Alan Turing (1951) observed, ‘‘at some stage therefore we should
have to expect the machines to take control, in the way that is mentioned in Samuel
Butler’s ‘Erewhon’ ’’: the consequences of such greater-than-human intelligence
will be profound, and conceivably dire for humanity as we know it. Essays in Part II
of this volume are concerned with this scenario.

A radically different scenario is explored by transhumanists who expect pro-
gress in enhancement technologies, most notably the amplification of human
cognitive capabilities, to lead to the emergence of a posthuman race. Posthumans
will overcome all existing human limitations, both physical and mental, and
conquer aging, death and disease (Kurzweil 2005). The nature of such a singu-
larity, a ‘biointelligence explosion’, is analyzed in essays in Part III of this volume.
Some authors (Pearce, this volume) argue that transhumans and posthumans will
retain a fundamental biological core. Other authors argue that fully functioning,
autonomous whole-brain emulations or ‘uploads’ (Chalmers 2010; Koene this
volume; Brey this volume) may soon be constructed by ‘reverse-engineering’ the
brain of any human. If fully functional or even conscious, uploads may usher in an
era where the notion of personhood needs to be radically revised (Hanson 1994).

Advocates of the technological singularity have developed a powerful inductive
Argument from Acceleration in favour of their hypothesis. The argument is based
on the extrapolation of trend curves in computing technology and econometrics
(Moore 1965; Moravec 1988, Chap. 2; Moravec 2000, Chap. 3; Kurzweil 2005,
Chaps. 1 and 2). In essence, the argument runs like this: (1) The study of the
history of technology reveals that technological progress has long been acceler-
ating. (2) There are good reasons to think that this acceleration will continue for at
least several more decades. (3) If it does continue, our technological achievements
will become so great that our bodies, minds, societies, and economies will be
radically transformed. (4) Therefore, it is likely that this disruptive transformation
will occur. Kurzweil (2005, p. 136) sets the date mid-century, around the year
2045. The change will be so revolutionary that it will constitute a ‘‘rupture in the
fabric of human history’’ (Kurzweil 2005, p. 9).

Critics of the technological singularity dismiss these claims as speculative and
empirically unsound, if not pseudo-scientific (Horgan 2008). Some attacks focus
on the premises of the Argument from Acceleration (Plebe and Perconti this
volume), mostly (2). For example, Modis (2003; this volume) claims that after
periods of change that appear to be accelerating, technological progress always
levels off. Other futurists have long argued that we are heading instead towards a
global economic and ecological collapse. This negative scenario was famously
developed using computer modelling of the future in The Limits to Growth
(Meadows et al. 1972, 2004).
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Mocked as the ‘‘rapture of the nerds’’, many critics take (3) to be yet another
apocalyptic fantasy, a technocratic variation on the usual theme of doom-and-
gloom fuelled by mysticism, science fiction and even greed. Some conclude that
the singularity is a religious notion, not a scientific one (Horgan 2008; Proudfoot
this volume; Bringsjord et al. this volume). Other critics (Chaisson this volume)
accept acceleration as an underlying law of nature but claim that, in perspective,
the significance of the claimed changes is overblown. That is, what is commonly
described as the technological singularity may well materialize, with profound
consequences for the human race. But on a cosmic scale, such a mid-century
transition is no more significant then whatever may follow.

Existential risk or cultist fantasy? Are any of the accounts of the technological
singularity credible? In other words, is the technological singularity an open
problem in science?

We believe that before any interpretation of the singularity hypothesis can be
taken on board by the scientific community, rigorous tools of scientific enquiry
must be employed to reformulate it as a coherent and falsifiable conjecture. To
this end, we challenged economists, computer scientists, biologists, mathemati-
cians, philosophers and futurists to articulate their concepts of the singularity. The
questions we posed were as follows:

1. What is the [technological] singularity hypothesis? What exactly is being
claimed?

2. What is the empirical content of this conjecture? Can it be refuted or cor-
roborated, and if so, how?

3. What exactly is the nature of a singularity: Is it a discontinuity on a par with
phase transition or a process on a par with Toffler’s ‘wave’? Is the term
singularity appropriate?

4. What evidence, taken for example from the history of technology and eco-
nomic theories, suggest the advent of some form of singularity by 2050?

5. What, if anything, can be said to be accelerating? What evidence can reliably
be said to support its existence? Which metrics support the idea that ‘progress’
is indeed accelerating?

6. What are the most likely milestones (‘major paradigm shifts’) in the count-
down to a singularity?

7. Is the so-called Moore’s Law on par with the laws of thermodynamics? How
about the Law of Accelerating Returns? What exactly is the nature of the
change they purport to measure?

8. What are the necessary and sufficient conditions for an intelligence explosion
(a runaway effect)? What is the actual likelihood of such an event?

9. What evidence support the claim that machine intelligence has been rising?
Can this evidence be extrapolated reliably?

10. What are the necessary and sufficient conditions for machine intelligence to be
considered to be on a par with that of humans? What would it take for the
‘‘general educated opinion [to] have altered so much that one will be able to
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speak of machines thinking without expecting to be contradicted’’ (Turing
1950, p. 442)?

11. What does it mean to claim that biological evolution will be replaced by
technological evolution? What exactly can be the expected effects of aug-
mentation and enhancement, in particular over our cognitive abilities? To
which extent can we expect our transhuman and posthuman descendants to be
different from us?

12. What evidence support the claim that humankind’s intelligence quotient has
been rising (‘‘Flynn effect’’)? How this evidence relate to a more general claim
about a rise in the ‘intelligence’ of carbon-based life? Can this evidence be
extrapolated reliably?

13. What are the necessary and sufficient conditions for a functioning whole brain
emulation (WBE) of a human? At which level exactly must the brain be
emulated? What will be the conscious experience of a WBE? To which extent
can they be said to be human?

14. What may be the consequences of a singularity? What may be its effect on
society, e.g. in ethics, politics, economics, warfare, medicine, culture, arts, the
humanities, and religion?

15. Is it meaningful to refer to multiple singularities? If so, what can be learned
from past such events? Is it meaningful to claim a narrow interpretation of
singularity in some specific domain of activity, e.g. a singularity in chess
playing, in face recognition, in car driving, etc.?

This volume contains the contributions received in response to this challenge.

Towards a Definition

Accounts of a technological singularity—henceforth the singularity—appear to
disagree on its causes and possible consequences, on timescale, and even on its
nature: the emergence of machine intelligence or of posthumans? An event or a
period? Is the technological singularity unique or have there been others? The
absence of a consensus on basic questions casts doubt whether the notion of
singularity is at all coherent.

The term in its contemporary sense traces back to von Neumann, who is quoted
as saying that ‘‘the ever-accelerating progress of technology and changes in the
mode of human life… gives the appearance of approaching some essential sin-
gularity in the history of the race beyond which human affairs, as we know them,
could not continue’’ (in Ulam 1958). Indeed, the twin notions of acceleration and
discontinuity are common to all accounts of the technological singularity, as
distinguished from a space–time singularity and a singularity in a mathematical
function.

Acceleration refers to a rate of growth in some quantity such as computations per
second per fixed dollar (Kurzweil 2005), economic measures of growth rate (Hanson
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1994; Miller this volume) or total output of goods and services (Toffler 1970), and
energy rate density (Chaisson this volume). Others describe quantitative measures of
physical, biological, social, cultural, and technological processes of evolution:
milestones or ‘paradigm shifts’ whose timing demonstrates an accelerating pace of
change. For example, Sagan’s Cosmic Calendar (1977, Chap. 1) names milestones in
biological evolution such as the emergence of eukaryotes, vertebrates, amphibians,
mammals, primates, hominidae, and Homo sapiens, which show an accelerating
trend. Following Good (1965) and Bostrom (to appear), Muehlhauser and Salamon
(this volume), Arel (this volume), and Schmidhuber (this volume) describe devel-
opments in machine learning which seek to demonstrate that progressively more
‘intelligent’ problems have been solved during the past few decades, and how such
technologies may further improve, possibly even in a recursive process of self-
modification. Some authors attempt to show that many of the above accounts of
acceleration are in fact manifestations of an underlying law of nature (Adams 1904;
Kurzweil 2005, Chaisson this volume): quantitatively or qualitatively measured,
acceleration is commonly visualized as an upwards-curved mathematical graph
which, if projected into the future, is said to be leading to a discontinuity.

Described either as an event that may take a few hours (e.g., a ‘hard takeoff’,
Loosemore and Goertzel, this volume) or a period of years (e.g., Toffler 1970), the
technological singularity is taken to mark a discontinuity or a turning-point in
human history. The choice of word ‘singularity’ appears to be motivated less by
the eponymous mathematical concept (Hirshfeld 2011) and more by the onto-
logical and epistemological discontinuities idiosyncratic to black holes. Seen as a
central metaphor, a gravitational singularity is a (theoretical) point at the centre of
black holes at which quantities that are otherwise meaningful (e.g., density and
spacetime curvature) become infinite, or rather meaningless. The discontinuity
expressed by the black hole metaphor is thus used to convey how the quantitative
measure of intelligence, at least as it is measured by traditional IQ tests (such as
Wechsler and Stanford-Binet), may become a meaningless notion for capturing the
intellectual capabilities of superintelligent minds. Alternatively, we may say a
graph measuring average intelligence beyond the singularity in terms of IQ score
may display some form of radical discontinuity if superintelligence emerges.
Furthermore, singularitarians note that gravitational singularities are said to be
surrounded by an event horizon: a boundary in spacetime beyond which events
cannot be observed from outside, and a horizon beyond which gravitational pull
becomes so strong that nothing can escape, even light (hence ‘‘black’’)—a point of
no return. Kurzweil (2005) and others (e.g., Pearce this volume) contend that,
since the minds of superintelligent intellects may be difficult or impossible for
humans to comprehend (Fox and Yampolskiy this volume), a technological sin-
gularity marks an epistemological barrier beyond which events cannot be predicted
or understood—an ‘event horizon’ in human affairs. The gravitational singularity
metaphor thus reinforces the view that the change will be radical and that its
outcome cannot be foreseen.

The combination of acceleration and discontinuity is at once common and
unique to the singularity literature in general and to the essays in this volume in
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particular. We shall therefore proceed on the premise that acceleration and dis-
continuity jointly offer necessary and sufficient conditions for us to take a man-
uscript to be concerned with a hypothesis of a technological singularity.

Historical Background

Many philosophers have portrayed the cosmic process as an ascending curve of
positivity (Lovejoy 1936, Chap. 9). Over time, the quantities of intelligence, power
or value are always increasing. These progressive philosophies have sometimes been
religious and sometimes secular. Secular versions of progress have sometimes been
political and sometimes technological. Technological versions have sometimes
invoked broad technical progress and have sometimes focused on more specific
outcomes such as the possible recursive self-improvement of artificial intelligence.

For some philosophers of progress, the rate of increase remains relatively
constant; for others, the rate of increase is also increasing—progress accelerates.
Within such philosophies, the singularity is often the point at which positivity
becomes maximal. It may be an ideal limit point (an omega point) either at infinity
or at the vertical asymptote of an accelerating trajectory. Or sometimes, the sin-
gularity is the critical point at which the slope of an accelerating curve passes
beyond unity.

Although thought about the singularity may appear to be very new, in fact such
ideas have a long philosophical history. To help increase awareness of the deep
roots of singularitarian thought within traditional philosophy, it may be useful to
look at some of its historical antecedents.

Perhaps the earliest articulation of the idea that history is making progress
toward some omega point of superhuman intelligence is found in The Phenome-
nology of Spirit, written by Hegel (1807). Hegel describes the ascent of human
culture to an ideal limit point of absolute knowing. Of course, Hegel’s thought is
not technological. Yet it is probably the first presentation, however abstract, of
singularitarian ideas. For the modern Hegelian, the singularity looks much like the
final self-realization of Spirit in absolute knowing (Zimmerman 2008).

Around 1870, the British writer Samuel Butler used Darwinian ideas to develop a
theory of the evolution of technology. In his essay ‘‘Darwin among the Machines’’
and in his utopian novel Erewhon: Or, Over the Range (Butler 1872), Butler argues
that machines would soon evolve into artificial life-forms far superior to human
beings. Threatened by superhuman technology, the Erewhonians are notable for
rejecting all advanced technology. Also writing in the late 1800s, the American
philosopher Charles Sanders Peirce developed an evolutionary cosmology
(see Hausman 1993). Peirce portrays the universe as evolving from an initial chaos
to a final singularity of pure mind. Its evolution is accelerating as this tendency to
regularity acts upon itself. Although Pierce’s notion of progress was not based on
technology, his work is probably the earliest to discuss the notion of accelerating
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progress itself. Of course, Peirce was also a first-rate logician; and as such, he was
among the first to believe that minds were computational machines.

Around 1900, the American writer Henry Adams 1 was probably the first writer
to describe a technological singularity. Adams was almost certainly the first person
to write about history as a self-accelerating technological process. His essay ‘‘The
Law of Acceleration’’ (Adams 1904) may well be the first work to propose an
actual formula for the acceleration of technological change. Adams suggests
measuring technological progress by the amount of coal consumed by society. His
law of acceleration prefigures Kurzweil’s law of accelerating returns. His later
essay ‘‘The Rule of Phase’’ (Adams 1909) portrays history as accelerating through
several epochs—including the Instinctual, Religious, Mechanical, Electrical, and
Ethereal Phases. This essay contains what is probably the first illustration of
history as a curve approaching a vertical asymptote. Adams provides a mathe-
matical formula for computing the duration of each technological phase, and the
amount of energy that will consumed during that phase. His epochs prefigure
Kurzweil’s evolutionary epochs. Adams uses his formulae to argue that the sin-
gularity will be reached by about the year 2025, a forecast remarkably close to
modern singularitarians.

Much writing on the singularity owes a great debt to Teilhard de Chardin (1955;
see Steinhart 2008). Teilhard is among the first writers seriously to explore the
future of human evolution. He advocates both biological enhancement technolo-
gies and artificial intelligence. He discusses the emergence of a global computa-
tion-communication system (and is said by some to have been the first to have
envisioned the Internet). He proposes the development of a global society and
describes the acceleration of progress towards a technological singularity (which
he termed ‘‘the critical point’’). He discusses the spread of human intelligence into
the universe and its amplification into a cosmic-intelligence. Much of the more
religiously-expressed thought of Kurzweil (e.g. his definition of ‘‘God’’ as the
omega point of evolution) ultimately comes from Teilhard.

Many of the ideas presented in recent literature on the singularity are fore-
shadowed in a prescient essay by George Harry Stine. Stine was a rocket engineer
and part-time science fiction writer. His essay ‘‘Science Fiction is too Conserva-
tive’’ was published in May 1961 in Analog. Analog was a widely read science-
fiction magazine. Like Adams, Stine uses trend curves to argue that a momentous
and disruptive event is going to happen in the early 21st Century.

In 1970, Alvin and Heidi Toffler observed both acceleration and discontinuity
in their influential work, Future Shock. About acceleration, the Tofflers observed
that ‘‘the total output of goods and services in advanced societies doubles every
15 years, and that the doubling times are shrinking’’ (Toffler 1970, p. 25). They
demonstrate accelerating change in every aspect of modern life: in transportation,
size of population centres, family structure, diversity of lifestyles, etc., and most

1 descendant of President John Quincy Adams.
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importantly, in the transition from factories as ‘means of production’ to knowledge
as the most fundamental source of wealth (Toffler 1980). The Tofflers conclude
that the transition to knowledge-based society ‘‘is, in all likelihood, bigger, deeper,
and more important than the industrial revolution. … Nothing less than the second
great divide in human history, the shift from barbarism to civilization’’ (Toffler
1970, p. 11).

During the 1980s, unprecedented advances in computing technology led to
renewed interest in the notion that technology is progressing towards some kind of
tipping-point or discontinuity. Moravec’s Mind Children (1988) revived research
into the nature of technological acceleration. Many more books followed, all
arguing for extraordinary future developments in robotics, artificial intelligence,
nanotechnology, and biotechnology. Kurzweil (1999) developed his law of
accelerating returns in The Age of Spiritual Machines. Broderick (2001) brought
these ideas together to argue for a future climax of technological progress that he
termed the spike. All these ideas were brought into public consciousness with the
publication of Kurzweil’s (2005) The Singularity is Near and its accompanying
movie. As the best-known defence of the singularity, Kurzweil’s work inspired
dozens of responses. One major assessment of singularitarian ideas was delivered
by Special Report: The Singularity in IEEE Spectrum (June, 2008). More recently,
notable work on the singularity has been done by the philosopher David Chalmers
(2010) and the discussion of the singularity it inspired (The Journal of Con-
sciousness Studies 19, pp. 1–2). The rapid growth in singularity research seems set
to continue and perhaps accelerate.

Essays in this Volume

The essays developed by our authors divide naturally into several groups. Essays
in Part I hold that a singularity of machine superintelligence is probable. Luke
Muehlhauser and Anna Salamon of the Singularity Institute of Artificial Intelli-
gence argue that an intelligence explosion is likely and examine some of its
consequences. They make recommendations designed to ensure that the emerging
superintelligence will be beneficial, rather than detrimental, to humanity. Itamer
Arel, a computer scientist, argues that artificial general intelligence may become
an extremely powerful and disruptive force. He describes how humans might
shape the emergence of superhuman intellects so that our relations with such
intellects are more cooperative than competitive. Juergen Schmidhuber, also a
computer scientist, presents substantial evidence that improvements in artificial
intelligence are rapidly progressing towards human levels. Schmidhuber is opti-
mistic that, if future trends continue, we will face an intelligence explosion within
the next few decades. The last essay in this part is by Richard Loosemore and Ben
Goertzel who examine various objections to an intelligence explosion and con-
clude that they are not persuasive.
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Essays in Part II are concerned with the values of agents that may result from a
singularity of artificial intellects. Luke Muehlhauser and Louie Helm ask what it
would mean for artificial intellects to be friendly to humans, conclude that human
values are complex and difficult to specify, and discuss techniques we might use to
ensure the friendliness of artificial superintelligent agents. Joshua Fox and Roman
Yampolskiy consider the psychologies of artificial intellects. They argue that
human-like mentalities occupy only a very small part of the space of possible
minds. If Fox and Yampolskiy are right, then it is likely that such minds, especially
if superintelligent, will scarcely be recognizable to us at all. The values and goals
of such minds will be alien, and perhaps incomprehensible in human terms. This
strangeness creates challenges, some of which are discussed in James Miller’s
essay. Miller examines the economic issues associated with a singularity of arti-
ficial superintelligence. He shows that although the singularity of artificial
superintelligence may be brought about by economic competition, one paradoxical
consequence might be the destruction of the value of money. More worryingly,
Miller suggests that a business that may be capable of creating an artificial
superintelligence would face a unique set of economic incentives likely to push it
deliberately to make it unfriendly. To counter such worries, Steve Omohundro
examines how market forces may affect their behaviour. Omohundro proposes a
variety of strategies to ensure that any artificial intellects will have human-friendly
values and goals. Eliezer Yudkowsky concludes this part by considering the ways
that artificial superintelligent intellects may radically differ from humans and the
urgent need for us to take those differences into account.

Whereas essays in Parts I and II are concerned with the intelligence explosion
scenario—a singularity deriving from the evolution of intelligence in silicon, the
essays in Part III are concerned with the evolution that humans may undergo via
enhancement, amplification, and modification, and with the scenario in which a
race of superintelligent posthumans emerges. David Pearce conceives of humans
as ‘recursively self-improving organic robots’ poised to re-engineer their own
genetic code and bootstrap their way to full-spectrum superintelligence. Hyper-
social and supersentient, the successors of archaic humanity may phase out the
biology of suffering throughout the living world. Randal Koene examines how the
principles of evolution apply to brain emulations. He argues that intelligence
entails autonomy, so that future ‘substrate-independent minds’ (SIMs), may hold
values that humans find alien. Koene nonetheless hopes that, since SIMs will
originate from our own brains, human values play significant roles in superintel-
ligent, ‘disembodied’ minds. Dennis Bray examines the biochemical mechanisms
of the brain. He concludes that building fully functional emulations by reverse-
engineering human brains may entail much more than modelling neurons and
synapses. However, there are other ways to gain inspiration from the evolution of
biological intelligence. We may be able to harness brain physiology and natural
selection to evolve new types of intelligence, and perhaps superhuman intelli-
gence. David Roden worries that the biological moral heritage of humanity may
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disappear entirely after the emergence of superintelligent intellects, whether arti-
ficial or of biological origin. Such agents may emerge with utterly novel features
and behaviour that cannot be predicted from their evolutionary histories.

The essays in Part IV of the volume are skeptical about the singularity, each
focusing on a particular aspect such as the intelligence explosion or the prospects
of acceleration continuing over the next few decades. A report developed by the
American Association for Artificial Intelligence considers the future development
of artificial intelligence (AI). While optimistic about specific advances, the report
is highly skeptical about grand predictions of an intelligence explosion, of a
‘coming singularity’, and about any loss of human control. Alessio Plebe and
Pietro Perconti argue that the trends analysis as singularitarians present it is faulty:
far from rising, the pace of change is not accelerating but in fact slowing down,
and even starting to decline. Futurist Theodore Modis is deeply skeptical about any
type of singularity. He focuses his skepticism on Kurzweil’s work, arguing that
analysis of past trends does not support long-term future acceleration. For Modis,
technological change takes the form of S-curves (logistic functions), which means
that its trajectory is consistent with exponential acceleration for only a very short
time. Modis expects computations and related technologies to slow down and level
off. While technological advances will continue to be disruptive, there will be no
singularity. Other authors go further and argue that most literature on the singu-
larity is not genuinely scientific but theological. Focusing on Kurzweil’s work,
Diane Proudfoot’s essay develops the notion that singularitarianism is a kind of
millenarian ideology (Bozeman 1997; Geraci 2010; Steinhart 2012) or ‘‘the reli-
gion of technology’’ (Noble 1999). Selmer Bringsjord, Alexander Bringsjord, and
Paul Bello compare belief in the singularity to fideism in traditional Christianity,
which denies the relevance of evidence or reason.

The last essay in Part IV offers an ambitious theory of acceleration that attempts
to unify cosmic evolution with biological, cultural and technological evolution.
Eric Chaisson argues that complexity can be shown consistently to increase from
the Big Bang to the present, and that the same forces that drive the rise of com-
plexity in Nature generally also underlie technological progress. To support this
sweeping argument, Chaisson defines the physical quantity of energy density rate
and shows how it unifies the view of an accelerating grow along physical,
biological, cultural, and technological evolution. But while Chaisson accepts the
first element of the technological singularity, acceleration, he rejects the second,
discontinuity—hence the singularity: ‘‘there is no reason to claim that the next
evolutionary leap forward beyond sentient beings and their amazing gadgets will
be any more important than the past emergence of increasingly intricate complex
systems.’’ Chaisson reminds us that our little planet is not the only place in the
universe where evolution is happening. Our machines may achieve superhuman
intelligence. But perhaps a technological singularity will happen first elsewhere in
the cosmos. Maybe it has already done so.
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Conclusions

History shows time and again that the predictions made by futurists (and econo-
mists, sociologists, politicians, etc.) have been confounded by the behaviour of
self-reflexive agents. Some forecasts are self-fulfilling, others self-stultifying.
Where, if at all, do predictions of a technological singularity fit into this typology?
How are the lay public/political elites likely to respond if singularitarian ideas gain
widespread currency? Will the 21st century mark the end of the human era? And if
so, will biological humanity’s successors be our descendants? It is our hope and
belief that this volume will help to move these questions beyond the sometimes
wild speculations of the blogosphere and promote the growth of singularity studies
as a rigorous scholarly discipline.
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Chapter 2
Intelligence Explosion: Evidence
and Import

Luke Muehlhauser and Anna Salamon

Abstract In this chapter we review the evidence for and against three claims: that
(1) there is a substantial chance we will create human-level AI before 2100, that (2) if
human-level AI is created, there is a good chance vastly superhuman AI will follow via
an ‘‘intelligence explosion,’’ and that (3) an uncontrolled intelligence explosion could
destroy everything we value, but a controlled intelligence explosion would benefit
humanity enormously if we can achieve it. We conclude with recommendations for
increasing the odds of a controlled intelligence explosion relative to an uncontrolled
intelligence explosion.

The best answer to the question, ‘‘Will computers ever be as
smart as humans?’’ is probably ‘‘Yes, but only briefly’’.

Vernor Vinge

Introduction

Humans may create human-level1 artificial intelligence (AI) this century. Shortly
thereafter, we may see an ‘‘intelligence explosion’’ or ‘‘technological singularity’’—
a chain of events by which human-level AI leads, fairly rapidly, to intelligent
systems whose capabilities far surpass those of biological humanity as a whole.
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1 We will define ‘‘human-level AI’’ more precisely later in the chapter.
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How likely is this, and what will the consequences be? Others have discussed
these questions previously (Turing 1950, 1951; Good 1959, 1965, 1970, 1982;
Von Neumann 1966; Minsky 1984; Solomonoff 1985; Vinge 1993; Yudkowsky
2008a; Nilsson 2009, Chap. 35; Chalmers 2010; Hutter 2012a); our aim is to
provide a brief review suitable both for newcomers to the topic and for those with
some familiarity with the topic but expertise in only some of the relevant fields.

For a more comprehensive review of the arguments, we refer our readers to
Chalmers (2010, forthcoming) and Bostrom (Forthcoming[a]). In this short chapter
we will quickly survey some considerations for and against three claims:

1. There is a substantial chance we will create human-level AI before 2100;
2. If human-level AI is created, there is a good chance vastly superhuman AI will

follow via an intelligence explosion;
3. An uncontrolled intelligence explosion could destroy everything we value, but

a controlled intelligence explosion would benefit humanity enormously if we
can achieve it.

Because the term ‘‘singularity’’ is popularly associated with several claims and
approaches we will not defend (Sandberg 2010), we will first explain what we are
not claiming.

First, we will not tell detailed stories about the future. Each step of a story may
be probable, but if there are many such steps, the whole story itself becomes
improbable (Nordmann 2007; Tversky and Kahneman 1983). We will not assume
the continuation of Moore’s law, nor that hardware trajectories determine software
progress, nor that faster computer speeds necessarily imply faster ‘‘thought’’
(Proudfoot and Copeland 2012), nor that technological trends will be exponential
(Kurzweil 2005) rather than ‘‘S-curved’’ or otherwise (see Modis, this volume),
nor indeed that AI progress will accelerate rather than decelerate (see Plebe and
Perconti, this volume). Instead, we will examine convergent outcomes that—like
the evolution of eyes or the emergence of markets—can come about through any
of several different paths and can gather momentum once they begin. Humans tend
to underestimate the likelihood of outcomes that can come about through many
different paths (Tversky and Kahneman 1974), and we believe an intelligence
explosion is one such outcome.

Second, we will not assume that human-level intelligence can be realized by a
classical Von Neumann computing architecture, nor that intelligent machines will
have internal mental properties such as consciousness or human-like ‘‘intention-
ality,’’ nor that early AIs will be geographically local or easily ‘‘disembodied.’’
These properties are not required to build AI, so objections to these claims (Lucas
1961; Dreyfus 1972; Searle 1980; Block 1981; Penrose 1994; Van Gelder and Port
1995) are not objections to AI (Chalmers 1996, Chap. 9; Nilsson 2009, Chap. 24;
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McCorduck 2004, Chaps. 8 and 9; Legg 2008; Heylighen 2012) or to the possi-
bility of intelligence explosion (Chalmers, forthcoming).2 For example: a machine
need not be conscious to intelligently reshape the world according to its prefer-
ences, as demonstrated by goal-directed ‘‘narrow AI’’ programs such as the leading
chess-playing programs.

We must also be clear on what we mean by ‘‘intelligence’’ and by ‘‘AI.’’
Concerning ‘‘intelligence,’’ Legg and Hutter (2007) found that definitions of
intelligence used throughout the cognitive sciences converge toward the idea that
‘‘Intelligence measures an agent’s ability to achieve goals in a wide range of
environments.’’ We might call this the ‘‘optimization power’’ concept of intelli-
gence, for it measures an agent’s power to optimize the world according to its
preferences across many domains. But consider two agents which have equal
ability to optimize the world according to their preferences, one of which requires
much more computational time and resources to do so. They have the same
optimization power, but one seems to be optimizing more intelligently. For this
reason, we adopt Yudkowsky’s (2008b) description of intelligence as optimization
power divided by resources used.3 For our purposes, ‘‘intelligence’’ measures an
agent’s capacity for efficient cross-domain optimization of the world according to
the agent’s preferences. Using this definition, we can avoid common objections to
the use of human-centric notions of intelligence in discussions of the technological
singularity (Greenfield 2012), and hopefully we can avoid common anthropo-
morphisms that often arise when discussing intelligence (Muehlhauser and Helm,
this volume).

2 Chalmers (2010) suggested that AI will lead to intelligence explosion if an AI is produced by
an ‘‘extendible method,’’ where an extendible method is ‘‘a method that can easily be improved,
yielding more intelligent systems.’’ McDermott (2012a, b) replies that if P=NP (see Goldreich
2010 for an explanation) then there is no extendible method. But McDermott’s notion of an
extendible method is not the one essential to the possibility of intelligence explosion.
McDermott’s formalization of an ‘‘extendible method’’ requires that the program generated by
each step of improvement under the method be able to solve in polynomial time all problems in a
particular class—the class of solvable problems of a given (polynomially step-dependent) size in
an NP-complete class of problems. But this is not required for an intelligence explosion in
Chalmers’ sense (and in our sense). What intelligence explosion (in our sense) would require is
merely that a program self-improve to vastly outperform humans, and we argue for the
plausibility of this in section From AI to Machine Superintelligence of our chapter. Thus while
we agree with McDermott that it is probably true that P=NP, we do not agree that this weighs
against the plausibility of intelligence explosion. (Note that due to a miscommunication between
McDermott and the editors, a faulty draft of McDermott (McDermott 2012a) was published in
Journal of Consciousness Studies. We recommend reading the corrected version at http://cs-
www.cs.yale.edu/homes/dvm/papers/chalmers-singularity-response.pdf.).
3 This definition is a useful starting point, but it could be improved. Future work could produce a
definition of intelligence as optimization power over a canonical distribution of environments,
with a penalty for resource use—e.g. the ‘‘speed prior’’ described by Schmidhuber (2002). Also
see Goertzel (2006, p. 48, 2010), Hibbard (2011).
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By ‘‘AI,’’ we refer to general AI rather than narrow AI. That is, we refer to
‘‘systems which match or exceed the [intelligence] of humans in virtually all
domains of interest’’ (Shulman and Bostrom 2012). By this definition, IBM’s
Jeopardy!-playing computer Watson is not an ‘‘AI’’ (in our sense) but merely a
narrow AI, because it can only solve a narrow set of problems. Drop Watson in a
pond or ask it to do original science, and it would be helpless even if given a
month’s warning to prepare. Imagine instead a machine that could invent new
technologies, manipulate humans with acquired social skills, and otherwise learn
to navigate many new social and physical environments as needed to achieve its
goals.

Which kinds of machines might accomplish such feats? There are many possible
types. A whole brain emulation (WBE) would be a computer emulation of brain
structures sufficient to functionally reproduce human cognition. We need not
understand the mechanisms of general intelligence to use the human intelligence
software already invented by evolution (Sandberg and Bostrom 2008). In contrast,
‘‘de novo AI’’ requires inventing intelligence software anew. There is a vast space of
possible mind designs for de novo AI (Dennett 1996; Yudkowsky 2008a). De novo
AI approaches include the symbolic, probabilistic, connectionist, evolutionary,
embedded, and other research programs (Pennachin and Goertzel 2007).

From Here to AI

When should we expect the first creation of AI? We must allow for a wide range of
possibilities. Except for weather forecasters (Murphy and Winkler 1984) and
successful professional gamblers, nearly all of us give inaccurate probability
estimates, and in particular we are overconfident of our predictions (Lichtenstein
et al. 1982; Griffin and Tversky 1992; Yates et al. 2002). This overconfidence
affects professional forecasters, too (Tetlock 2005), and we have little reason to
think AI forecasters have fared any better.4 So if you ave a gut feeling about when
AI will be created, it is probably wrong.

But uncertainty is not a ‘‘get out of prediction free’’ card (Bostrom 2007). We
still need to decide whether or not to encourage WBE development, whether or not
to help fund AI safety research, etc. Deciding either way already implies some sort
of prediction. Choosing not to fund AI safety research suggests that we do not
think AI is near, while funding AI safety research implies that we think AI might
be coming soon.

4 To take one of many examples, Simon (1965, p. 96) predicted that ‘‘machines will be capable,
within twenty years, of doing any work a man can do.’’ Also see Crevier (1993).
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Predicting AI

How, then, might we predict when AI will be created? We consider several strategies
below.

By gathering the wisdom of experts or crowds. Many experts and groups have
tried to predict the creation of AI. Unfortunately, experts’ predictions are often
little better than those of laypeople (Tetlock 2005), expert elicitation methods have
in general not proven useful for long-term forecasting,5 and prediction markets
(ostensibly drawing on the opinions of those who believe themselves to possess
some expertise) have not yet been demonstrated useful for technological fore-
casting (Williams 2011). Still, it may be useful to note that none to few experts
expect AI within five years, whereas many experts expect AI by 2050 or 2100.6

By simple hardware extrapolation. The novelist Vinge (1993) based his own
predictions about AI on hardware trends, but in a 2003 reprint of his article, Vinge
notes the insufficiency of this reasoning: even if we acquire hardware sufficient for
AI, we may not have the software problem solved.7

Hardware extrapolation may be a more useful method in a context where the
intelligence software is already written: whole brain emulation. Because WBE
seems to rely mostly on scaling up existing technologies like microscopy and
large-scale cortical simulation, WBE may be largely an ‘‘engineering’’ problem,
and thus the time of its arrival may be more predictable than is the case for other
kinds of AI.

Several authors have discussed the difficulty of WBE in detail (Kurzweil 2005;
Sandberg and Bostrom 2008; de Garis et al. 2010; Modha et al. 2011; Cattell and
Parker 2012). In short: The difficulty of WBE depends on many factors, and in
particular on the resolution of emulation required for successful WBE. For
example, proteome-resolution emulation would require more resources and tech-
nological development than emulation at the resolution of the brain’s neural net-
work. In perhaps the most likely scenario,

WBE on the neuronal/synaptic level requires relatively modest increases in microscopy
resolution, a less trivial development of automation for scanning and image processing, a
research push at the problem of inferring functional properties of neurons and synapses,
and relatively business-as-usual development of computational neuroscience models and
computer hardware. (Sandberg and Bostrom 2008, p. 83)

5 Armstrong (1985), Woudenberg (1991), Rowe and Wright (2001). But, see Parente and
Anderson-Parente (2011).
6 Bostrom (2003), Bainbridge (2006), Legg (2008), Baum et al. (2011), Sandberg and Bostrom
(2011), Nielsen (2011).
7 A software bottleneck may delay AI but create greater risk. If there is a software bottleneck on
AI, then when AI is created there may be a ‘‘computing overhang’’: large amounts of inexpensive
computing power which could be used to run thousands of AIs or give a few AIs vast
computational resources. This may not be the case if early AIs require quantum computing
hardware, which is less likely to be plentiful and inexpensive than classical computing hardware
at any given time.
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By considering the time since Dartmouth. We have now seen more than 50 years
of work toward machine intelligence since the seminal Dartmouth conference on AI,
but AI has not yet arrived. This seems, intuitively, like strong evidence that AI won’t
arrive in the next minute, good evidence it won’t arrive in the next year, and sig-
nificant but far from airtight evidence that it won’t arrive in the next few decades.
Such intuitions can be formalized into models that, while simplistic, can form a
useful starting point for estimating the time to machine intelligence.8

By tracking progress in machine intelligence. Some people intuitively estimate
the time until AI by asking what proportion of human abilities today’s software
can match, and how quickly machines are catching up.9 However, it is not clear
how to divide up the space of ‘‘human abilities,’’ nor how much each one matters.
We also don’t know if progress in machine intelligence will be linear, exponential,
or otherwise. Watching an infant’s progress in learning calculus might lead one to
infer the child will not learn it until the year 3000, until suddenly the child learns it
in a spurt at age 17. Still, it may be worth asking whether a measure can be found
for which both: (a) progress is predictable enough to extrapolate; and (b) when
performance rises to a certain level, we can expect AI.

By extrapolating from evolution. Evolution managed to create intelligence
without using intelligence to do so. Perhaps this fact can help us establish an upper
bound on the difficulty of creating AI (Chalmers 2010; Moravec 1976, 1998,
1999), though this approach is complicated by observation selection effects
(Shulman and Bostrom 2012).

By estimating progress in scientific research output. Imagine a man digging a
10 km ditch. If he digs 100 meters in one day, you might predict the ditch will be
finished in 100 days. But what if 20 more diggers join him, and they are all given

8 We can make a simple formal model of this evidence by assuming (with much simplification)
that every year a coin is tossed to determine whether we will get AI that year, and that we are
initially unsure of the weighting on that coin. We have observed more than 50 years of ‘‘no AI’’
since the first time serious scientists believed AI might be around the corner. This ‘‘56 years of no
AI’’ observation would be highly unlikely under models where the coin comes up ‘‘AI’’ on 90 %
of years (the probability of our observations would be 10^-56), or even models where it comes up
‘‘AI’’ in 10 % of all years (probability 0.3 %), whereas it’s the expected case if the coin comes up
‘‘AI’’ in, say, 1 % of all years, or for that matter in 0.0001 % of all years. Thus, in this toy model,
our ‘‘no AI for 56 years’’ observation should update us strongly against coin weightings in which
AI would be likely in the next minute, or even year, while leaving the relative probabilities of ‘‘AI
expected in 200 years’’ and ‘‘AI expected in 2 million years’’ more or less untouched. (These
updated probabilities are robust to choice of the time interval between coin flips; it matters little
whether the coin is tossed once per decade, or once per millisecond, or whether one takes a limit
as the time interval goes to zero). Of course, one gets a different result if a different ‘‘starting
point’’ is chosen, e.g. Alan Turing’s seminal paper on machine intelligence (Turing 1950) or the
inaugural conference on artificial general intelligence (Wang et al. 2008). For more on this
approach and Laplace’s rule of succession, see Jaynes (2003), Chap. 18. We suggest this
approach only as a way of generating a prior probability distribution over AI timelines, from
which one can then update upon encountering additional evidence.
9 Relatedly, Good (1970) tried to predict the first creation of AI by surveying past conceptual
breakthroughs in AI and extrapolating into the future.
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backhoes? Now the ditch might not take so long. Analogously, when predicting
progress toward AI it may be useful to consider not how much progress is made
per year, but instead how much progress is made per unit of research effort, and
how many units of research effort we can expect to be applied to the problem in the
coming decades.

Unfortunately, we have not yet discovered demonstrably reliable methods for
long-term technological forecasting. New methods are being tried (Nagy et al.
2010), but until they prove successful we should be particularly cautious when
predicting AI timelines. Below, we attempt a final approach by examining some
plausible speed bumps and accelerators on the path to AI.

Speed Bumps

Several factors may decelerate our progress toward the first creation of AI. For
example:

An end to Moore’s law. Though several information technologies have pro-
gressed at an exponential or superexponential rate for many decades (Nagy et al.
2011), this trend may not hold for much longer (Mack 2011).

Depletion of low-hanging fruit. Scientific progress is not only a function of
research effort but also of the ease of scientific discovery; in some fields there is
pattern of increasing difficulty with each successive discovery (Arbesman 2011;
Jones 2009). AI may prove to be a field in which new discoveries require far more
effort than earlier discoveries.

Societal collapse. Various political, economic, technological, or natural disas-
ters may lead to a societal collapse during which scientific progress would not
continue (Posner 2004; Bostrom and Ćirković 2008).

Disinclination. Chalmers (2010), Hutter (2012a) think the most likely speed
bump in our progress toward AI will be disinclination, including active prevention.
Perhaps humans will not want to create their own successors. New technologies
like ‘‘Nanny AI’’ (Goertzel 2012), or new political alliances like a stable global
totalitarianism (Caplan 2008), may empower humans to delay or prevent scientific
progress that could lead to the creation of AI.

Accelerators

Other factors, however, may accelerate progress toward AI:
More hardware. For at least four decades, computing power10 has increased

exponentially, roughly in accordance with Moore’s law.11 Experts disagree on how

10 The technical measure predicted by Moore’s law is the density of components on an integrated
circuit, but this is closely tied to the price-performance of computing power.
11 For important qualifications, see Nagy et al. (2010), Mack (2011).
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much longer Moore’s law will hold (Mack 2011; Lundstrom 2003), but even if
hardware advances more slowly than exponentially, we can expect hardware to be
far more powerful in a few decades than it is now.12 More hardware doesn’t by
itself give us machine intelligence, but it contributes to the development of
machine intelligence in several ways:

Powerful hardware may improve performance simply by allowing existing ‘‘brute force’’
solutions to run faster (Moravec 1976). Where such solutions do not yet exist, researchers
might be incentivized to quickly develop them given abundant hardware to exploit. Cheap
computing may enable much more extensive experimentation in algorithm design,
tweaking parameters or using methods such as genetic algorithms. Indirectly, computing
may enable the production and processing of enormous datasets to improve AI perfor-
mance (Halevi et al. 2009), or result in an expansion of the information technology
industry and the quantity of researchers in the field. (Shulman and Sandberg 2010)

Better algorithms. Often, mathematical insights can reduce the computation
time of a program by many orders of magnitude without additional hardware. For
example, IBM’s Deep Blue played chess at the level of world champion Garry
Kasparov in 1997 using about 1.5 trillion instructions per second (TIPS), but a
program called Deep Junior did it in 2003 using only 0.015 TIPS. Thus, the
computational efficiency of the chess algorithms increased by a factor of 100 in
only six years (Richards and Shaw 2004).

Massive datasets. The greatest leaps forward in speech recognition and trans-
lation software have come not from faster hardware or smarter hand-coded
algorithms, but from access to massive data sets of human-transcribed and human-
translated words (Halevi et al. 2009). Datasets are expected to increase greatly in
size in the coming decades, and several technologies promise to actually outpace
‘‘Kryder’s law’’ (Kryder and Kim 2009), which states that magnetic disk storage
density doubles approximately every 18 months (Walter 2005).

Progress in psychology and neuroscience. Cognitive scientists have uncovered
many of the brain’s algorithms that contribute to human intelligence (Trappenberg
2009; Ashby and Helie 2011). Methods like neural networks (imported from neu-
roscience) and reinforcement learning (inspired by behaviorist psychology) have
already resulted in significant AI progress, and experts expect this insight-transfer
from neuroscience to AI to continue and perhaps accelerate (Van der Velde 2010;
Schierwagen 2011; Floreano and Mattiussi 2008; de Garis et al. 2010; Krichmar and
Wagatsuma 2011).

Accelerated science. A growing First World will mean that more researchers at
well-funded universities will be conducting research relevant to machine

12 Quantum computing may also emerge during this period. Early worries that quantum
computing may not be feasible have been overcome, but it is hard to predict whether
quantum computing will contribute significantly to the development of machine intelligence
because progress in quantum computing depends heavily on relatively unpredictable insights
in quantum algorithms and hardware (Rieffel and Polak 2011).
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intelligence. The world’s scientific output (in publications) grew by one third from
2002 to 2007 alone, much of this driven by the rapid growth of scientific output in
developing nations like China and India (Royal Society 2011).13 Moreover, new
tools can accelerate particular fields, just as fMRI accelerated neuroscience in the
1990s, and the effectiveness of scientists themselves can potentially be increased
with cognitive enhancement pharmaceuticals (Bostrom and Sandberg 2009) and
brain-computer interfaces that allow direct neural access to large databases (Groß
2009). Finally, new collaborative tools like blogs and Google Scholar are already
yielding results such as the Polymath Project, which is rapidly and collaboratively
solving open problems in mathematics (Nielsen 2011).14

Economic incentive. As the capacities of ‘‘narrow AI’’ programs approach the
capacities of humans in more domains (Koza 2010), there will be increasing
demand to replace human workers with cheaper, more reliable machine workers
(Hanson 2008, Forthcoming; Kaas et al. 2010; Brynjolfsson and McAfee 2011).

First-mover incentives. Once AI looks to be within reach, political and private
actors will see substantial advantages in building AI first. AI could make a small
group more powerful than the traditional superpowers—a case of ‘‘bringing a gun
to a knife fight.’’ The race to AI may even be a ‘‘winner take all’’ scenario. Thus,
political and private actors who realize that AI is within reach may devote sub-
stantial resources to developing AI as quickly as possible, provoking an AI arms
race (Gubrud 1997).

How Long, Then, Before AI?

We have not yet mentioned two small but significant developments leading us to
agree with Schmidhuber (2012) that ‘‘progress towards self-improving AIs is
already substantially beyond what many futurists and philosophers are aware of.’’
These two developments are Marcus Hutter’s universal and provably optimal AIXI
agent model (Hutter 2005) and Jürgen Schmidhuber’s universal self-improving
Gödel machine models (Schmidhuber 2007, 2009).

Schmidhuber (2012) summarizes the importance of the Gödel machine:

[The] Gödel machine… already is a universal AI that is at least theoretically optimal in
certain sense. It may interact with some initially unknown, partially observable environ-
ment to maximize future expected utility or reward by solving arbitrary user-defined
computational tasks. Its initial algorithm is not hardwired; it can completely rewrite itself
without essential limits apart from the limits of computability, provided a proof searcher

13 On the other hand, some worry (Pan et al. 2005) that the rates of scientific fraud and
publication bias may currently be higher in China and India than in the developed world.
14 Also, a process called ‘‘iterated embryo selection’’ (Uncertain Future 2012) could be used to
produce an entire generation of scientists with the cognitive capabilities of Albert Einstein or
John von Neumann, thus accelerating scientific progress and giving a competitive advantage to
nations which choose to make use of this possibility.
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embedded within the initial algorithm can first prove that the rewrite is useful, according
to the formalized utility function taking into account the limited computational resources.
Self-rewrites may modify/improve the proof searcher itself, and can be shown to be
globally optimal, relative to Gödel’s well-known fundamental restrictions of provability
(Gödel 1931)…

All of this implies that there already exists the blueprint of a Universal AI which will
solve almost all problems almost as quickly as if it already knew the best (unknown)
algorithm for solving them, because almost all imaginable problems are big enough to
make the additive constant negligible. Hence, I must object to Chalmers’ statement [that]
‘‘we have yet to find the right algorithms, and no-one has come close to finding them yet.’’

Next, we turn to Hutter (2012b) for a summary of the importance of AIXI:
The concrete ingredients in AIXI are as follows: Intelligent actions are based on

informed decisions. Attaining good decisions requires predictions which are typi-
cally based on models of the environments. Models are constructed or learned from
past observations via induction. Fortunately, based on the deep philosophical
insights and powerful mathematical developments, all these problems have been
overcome, at least in theory: So what do we need (from a mathematical point of
view) to construct a universal optimal learning agent interacting with an arbitrary
unknown environment? The theory, coined UAI [Universal Artificial Intelligence],
developed in the last decade and explained in Hutter (2005) says: All you need is
Ockham, Epicurus, Turing, Bayes, Solomonoff (1964a, 1964b), Kolmogorov (1968),
Bellman (1957): Sequential decision theory (Bertsekas 2007) (Bellman’s equation)
formally solves the problem of rational agents in uncertain worlds if the true envi-
ronmental probability distribution is known. If the environment is unknown,
Bayesians (Berger 1993) replace the true distribution by a weighted mixture of
distributions from some (hypothesis) class. Using the large class of all (semi)mea-
sures that are (semi)computable on a Turing machine bears in mind Epicurus, who
teaches not to discard any (consistent) hypothesis. In order not to ignore Ockham,
who would select the simplest hypothesis, Solomonoff defined a universal prior that
assigns high/low prior weight to simple/complex environments (Rathmanner and
Hutter 2011), where Kolmogorov quantifies complexity (Li and Vitányi 2008). Their
unification constitutes the theory of UAI and resulted in… AIXI.15

AIXI is incomputable, but computationally tractable approximations have
already been experimentally tested, and these reveal a path to universal AI16 that
solves real-world problems in a variety of environments:

15 In our two quotes from Hutter (2012b) we have replaced Hutter’s AMS-style citations with
Chicago-style citations.
16 The creation of AI probably is not, however, merely a matter of finding computationally
tractable AIXI approximations that can solve increasingly complicated problems in increasingly
complicated environments. There remain many open problems in the theory of universal artificial
intelligence (Hutter 2009). For problems related to allowing some AIXI-like models to self-
modify, see Orseau and Ring (2011), Ring and Orseau (2011), Orseau (2011); Hibbard
(Forthcoming). Dewey (2011) explains why reinforcement learning agents like AIXI may pose a
threat to humanity.
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The same single [AIXI approximation ‘‘MC-AIXI-CTW’’] is already able to learn to play
TicTacToe, Kuhn Poker, and most impressively Pacman (Veness et al. 2011) from scratch.
Besides Pacman, there are hundreds of other arcade games from the 1980s, and it would be
sensational if a single algorithm could learn them all solely by trial and error, which seems
feasible for (a variant of) MC-AIXI-CTW. While these are ‘‘just’’ recreational games, they
do contain many prototypical elements of the real world, such as food, enemies, friends,
space, obstacles, objects, and weapons. Next could be a test in modern virtual worlds…
that require intelligent agents, and finally some selected real-world problems.

So, when will we create AI? Any predictions on the matter must have wide
error bars. Given the history of confident false predictions about AI (Crevier 1993)
and AI’s potential speed bumps, it seems misguided to be 90 % confident that AI
will succeed in the coming century. But 90 % confidence that AI will not arrive
before the end of the century also seems wrong, given that: (a) many difficult AI
breakthroughs have now been made (including the Gödel machine and AIXI), (b)
several factors, such as automated science and first-mover incentives, may well
accelerate progress toward AI, and (c) whole brain emulation seems to be possible
and have a more predictable development than de novo AI. Thus, we think there is
a significant probability that AI will be created this century. This claim is not
scientific—the field of technological forecasting is not yet advanced enough for
that—but we believe our claim is reasonable.

The creation of human-level AI would have serious repercussions, such as the
displacement of most or all human workers (Brynjolfsson and McAfee 2011). But if
AI is likely to lead to machine superintelligence, as we argue next, the implications
could be even greater.

From AI to Machine Superintelligence

It seems unlikely that humans are near the ceiling of possible intelligences, rather
than simply being the first such intelligence that happened to evolve. Computers
far outperform humans in many narrow niches (e.g. arithmetic, chess, memory
size), and there is reason to believe that similar large improvements over human
performance are possible for general reasoning, technology design, and other tasks
of interest. As occasional AI critic Jack Schwartz (1987) wrote:

If artificial intelligences can be created at all, there is little reason to believe that initial
successes could not lead swiftly to the construction of artificial superintelligence able to
explore significant mathematical, scientific, or engineering alternatives at a rate far
exceeding human ability, or to generate plans and take action on them with equally
overwhelming speed. Since man’s near-monopoly of all higher forms of intelligence has
been one of the most basic facts of human existence throughout the past history of this
planet, such developments would clearly create a new economics, a new sociology, and a
new history.

Why might AI ‘‘lead swiftly’’ to machine superintelligence? Below we consider
some reasons.
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AI Advantages

Below we list a few AI advantages that may allow AIs to become not only vastly
more intelligent than any human, but also more intelligent than all of biological
humanity (Sotala 2012; Legg 2008). Many of these are unique to machine intel-
ligence, and that is why we focus on intelligence explosion from AI rather than
from biological cognitive enhancement (Sandberg 2011).

Increased computational resources. The human brain uses 85–100 billion
neurons. This limit is imposed by evolution-produced constraints on brain volume
and metabolism. In contrast, a machine intelligence could use scalable computa-
tional resources (imagine a ‘‘brain’’ the size of a warehouse). While algorithms
would need to be changed in order to be usefully scaled up, one can perhaps get a
rough feel for the potential impact here by noting that humans have about 3.5
times the brain size of chimps (Schoenemann 1997), and that brain size and IQ
correlate positively in humans, with a correlation coefficient of about 0.35
(McDaniel 2005). One study suggested a similar correlation between brain size
and cognitive ability in rats and mice (Anderson 1993).17

Communication speed. Axons carry spike signals at 75 meters per second or
less (Kandel et al. 2000). That speed is a fixed consequence of our physiology. In
contrast, software minds could be ported to faster hardware, and could therefore
process information more rapidly. (Of course, this also depends on the efficiency
of the algorithms in use; faster hardware compensates for less efficient software.)

Increased serial depth. Due to neurons’ slow firing speed, the human brain
relies on massive parallelization and is incapable of rapidly performing any
computation that requires more than about 100 sequential operations (Feldman and
Ballard 1982). Perhaps there are cognitive tasks that could be performed more
efficiently and precisely if the brain’s ability to support parallelizable pattern-
matching algorithms were supplemented by support for longer sequential pro-
cesses. In fact, there are many known algorithms for which the best parallel
version uses far more computational resources than the best serial algorithm, due
to the overhead of parallelization.18

Duplicability. Our research colleague Steve Rayhawk likes to describe AI as
‘‘instant intelligence; just add hardware!’’ What Rayhawk means is that, while it
will require extensive research to design the first AI, creating additional AIs is just
a matter of copying software. The population of digital minds can thus expand to
fill the available hardware base, perhaps rapidly surpassing the population of
biological minds.

Duplicability also allows the AI population to rapidly become dominated by
newly built AIs, with new skills. Since an AI’s skills are stored digitally, its exact

17 Note that given the definition of intelligence we are using, greater computational resources
would not give a machine more ‘‘intelligence’’ but instead more ‘‘optimization power’’.
18 For example see Omohundro (1987).
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current state can be copied,19 including memories and acquired skills—similar to
how a ‘‘system state’’ can be copied by hardware emulation programs or system
backup programs. A human who undergoes education increases only his or her
own performance, but an AI that becomes 10 % better at earning money (per
dollar of rentable hardware) than other AIs can be used to replace the others across
the hardware base—making each copy 10 % more efficient.20

Editability. Digitality opens up more parameters for controlled variation than is
possible with humans. We can put humans through job-training programs, but we
can’t perform precise, replicable neurosurgeries on them. Digital workers would
be more editable than human workers are. Consider first the possibilities from
whole brain emulation. We know that transcranial magnetic stimulation (TMS)
applied to one part of the prefrontal cortex can improve working memory (Fregni
et al. 2005). Since TMS works by temporarily decreasing or increasing the
excitability of populations of neurons, it seems plausible that decreasing or
increasing the ‘‘excitability’’ parameter of certain populations of (virtual) neurons
in a digital mind would improve performance. We could also experimentally
modify dozens of other whole brain emulation parameters, such as simulated
glucose levels, undifferentiated (virtual) stem cells grafted onto particular brain
modules such as the motor cortex, and rapid connections across different parts of
the brain.21 Secondly, a modular, transparent AI could be even more directly
editable than a whole brain emulation—possibly via its source code. (Of course,
such possibilities raise ethical concerns).

Goal coordination. Let us call a set of AI copies or near-copies a ‘‘copy clan.’’
Given shared goals, a copy clan would not face certain goal coordination problems
that limit human effectiveness (Friedman 1994). A human cannot use a hun-
dredfold salary increase to purchase a hundredfold increase in productive hours per
day. But a copy clan, if its tasks are parallelizable, could do just that. Any gains
made by such a copy clan, or by a human or human organization controlling that
clan, could potentially be invested in further AI development, allowing initial
advantages to compound.

Improved rationality. Some economists model humans as Homo economicus:
self-interested rational agents who do what they believe will maximize the ful-
fillment of their goals (Friedman 1953). On the basis of behavioral studies, though,
Schneider (2010) points out that we are more akin to Homer Simpson: we are
irrational beings that lack consistent, stable goals (Stanovich 2010; Cartwright

19 If the first self-improving AIs at least partially require quantum computing, the system states
of these AIs might not be directly copyable due to the no-cloning theorem (Wooters and Zurek
1982).
20 Something similar is already done with technology-enabled business processes. When the
pharmacy chain CVS improves its prescription-ordering system, it can copy these improvements
to more than 4,000 of its stores, for immediate productivity gains (McAfee and Brynjolfsson
2008).
21 Many suspect that the slowness of cross-brain connections has been a major factor limiting the
usefulness of large brains (Fox 2011).
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2011). But imagine if you were an instance of Homo economicus. You could stay
on a diet, spend the optimal amount of time learning which activities will achieve
your goals, and then follow through on an optimal plan, no matter how tedious it
was to execute. Machine intelligences of many types could be written to be vastly
more rational than humans, and thereby accrue the benefits of rational thought and
action. The rational agent model (using Bayesian probability theory and expected
utility theory) is a mature paradigm in current AI design (Hutter 2005; Russel and
Norvig 2009, Chap. 2).

These AI advantages suggest that AIs will be capable of far surpassing the
cognitive abilities and optimization power of humanity as a whole, but will they be
motivated to do so? Though it is difficult to predict the specific motivations of
advanced AIs, we can make some predictions about convergent instrumental
goals—instrumental goals useful for the satisfaction of almost any final goals.

Instrumentally Convergent Goals

Omohundro (2007, 2008, this volume) and Bostrom (Forthcoming[a]) argue that
there are several instrumental goals that will be pursued by almost any advanced
intelligence because those goals are useful intermediaries to the achievement of
almost any set of final goals. For example:

1. An AI will want to preserve itself because if it is destroyed it won’t be able to
act in the future to maximize the satisfaction of its present final goals.

2. An AI will want to preserve the content of its current final goals because if the
content of its final goals is changed it will be less likely to act in the future to
maximize the satisfaction of its present final goals.22

3. An AI will want to improve its own rationality and intelligence because this
will improve its decision-making, and thereby increase its capacity to achieve
its goals.

4. An AI will want to acquire as many resources as possible, so that these
resources can be transformed and put to work for the satisfaction of the AI’s
final and instrumental goals.

Later we shall see why these convergent instrumental goals suggest that the
default outcome from advanced AI is human extinction. For now, let us examine
the mechanics of AI self-improvement.

22 Bostrom (2012) lists a few special cases in which an AI may wish to modify the content of its
final goals.
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Intelligence Explosion

The convergent instrumental goal for self-improvement has a special consequence.
Once human programmers build an AI with a better-than-human capacity for AI
design, the instrumental goal for self-improvement may motivate a positive
feedback loop of self-enhancement.23 Now when the machine intelligence
improves itself, it improves the intelligence that does the improving. Thus, if mere
human efforts suffice to produce machine intelligence this century, a large popu-
lation of greater-than-human machine intelligences may be able to create a rapid
cascade of self-improvement cycles, enabling a rapid transition to machine
superintelligence. Chalmers (2010) discusses this process in some detail, so here
we make only a few additional points.

The term ‘‘self,’’ in phrases like ‘‘recursive self-improvement’’ or ‘‘when the
machine intelligence improves itself,’’ is something of a misnomer. The machine
intelligence could conceivably edit its own code while it is running (Schmidhuber
2007; Schaul and Schmidhuber 2010), but it could also create new intelligences
that run independently. Alternatively, several AIs (perhaps including WBEs) could
work together to design the next generation of AIs. Intelligence explosion could
come about through ‘‘self’’-improvement or through other-AI improvement.

Once sustainable machine self-improvement begins, AI development need not
proceed at the normal pace of human technological innovation. There is, however,
significant debate over how fast or local this ‘‘takeoff’’ would be (Hanson and
Yudkowsky 2008; Loosemore and Goertzel 2011; Bostrom Forthcoming[a]), and
also about whether intelligence explosion would result in a stable equilibrium of
multiple machine superintelligence or instead a machine ‘‘singleton’’ (Bostrom
2006). We will not discuss these complex issues here.

Consequences of Machine Superintelligence

If machines greatly surpass human levels of intelligence—that is, surpass
humanity’s capacity for efficient cross-domain optimization—we may find our-
selves in a position analogous to that of the apes who watched as humans invented
fire, farming, writing, science, guns and planes and then took over the planet. (One
salient difference would be that no single ape witnessed the entire saga, while we
might witness a shift to machine dominance within a single human lifetime).

23 When the AI can perform 10 % of the AI design tasks and do them at superhuman speed, the
remaining 90 % of AI design tasks act as bottlenecks. However, if improvements allow the AI to
perform 99 % of AI design tasks rather than 98 %, this change produces a much larger impact
than when improvements allowed the AI to perform 51 % of AI design tasks rather than 50 %
(Hanson, forthcoming). And when the AI can perform 100 % of AI design tasks rather than 99 %
of them, this removes altogether the bottleneck of tasks done at slow human speeds.
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Such machines would be superior to us in manufacturing, harvesting resources,
scientific discovery, social aptitude, and strategic action, among other capacities.
We would not be in a position to negotiate with them, just as neither chimpanzees
nor dolphins are in a position to negotiate with humans.

Moreover, intelligence can be applied in the pursuit of any goal. As Bostrom
(2012) argues, making AIs more intelligent will not make them want to change
their goal systems—indeed, AIs will be motivated to preserve their initial goals.
Making AIs more intelligent will only make them more capable of achieving their
original final goals, whatever those are.24

This brings us to the central feature of AI risk: Unless an AI is specifically
programmed to preserve what humans value, it may destroy those valued struc-
tures (including humans) incidentally. As Yudkowsky (2008a) puts it, ‘‘the AI
does not love you, nor does it hate you, but you are made of atoms it can use for
something else.’’

Achieving a Controlled Intelligence Explosion

How, then, can we give AIs desirable goals before they self-improve beyond our
ability to control them or negotiate with them?25 WBEs and other brain-inspired
AIs running on human-derived ‘‘spaghetti code’’ (Marcus 2008) may not have a
clear ‘‘slot’’ in which to specify desirable goals. The same may also be true of
other ‘‘opaque’’ AI designs, such as those produced by evolutionary algorithms—
or even of more transparent AI designs. Even if an AI had a transparent design
with a clearly definable utility function,26 would we know how to give it desirable
goals? Unfortunately, specifying what humans value may be extraordinarily dif-
ficult, given the complexity and fragility of human preferences (Yudkowsky 2011;
Muehlhauser and Helm, this volume), and allowing an AI to learn desirable goals

24 This may be less true for early-generation WBEs, but Omohundro (2008) argues that AIs will
converge upon being optimizing agents, which exhibit a strict division between goals and
cognitive ability.
25 Hanson (2012) reframes the problem, saying that ‘‘we should expect that a simple
continuation of historical trends will eventually end up [producing] an ‘intelligence explosion’
scenario. So there is little need to consider [Chalmers’] more specific arguments for such a
scenario. And the inter-generational conflicts that concern Chalmers in this scenario are generic
conflicts that arise in a wide range of past, present, and future scenarios. Yes, these are conflicts
worth pondering, but Chalmers offers no reasons why they are interestingly different in a
‘singularity’ context.’’ We briefly offer just one reason why the ‘‘inter-generational conflicts’’
arising from a transition of power from humans to superintelligent machines are interestingly
different from previous the inter-generational conflicts: as Bostrom (2002) notes, the singularity
may cause the extinction not just of people groups but of the entire human species. For a further
reply to Hanson, see Chalmers (Forthcoming).
26 A utility function assigns numerical utilities to outcomes such that outcomes with higher
utilities are always preferred to outcomes with lower utilities (Mehta 1998).
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from reward and punishment may be no easier (Yudkowsky 2008a). If this is
correct, then the creation of self-improving AI may be detrimental by default
unless we first solve the problem of how to build an AI with a stable, desirable
utility function—a ‘‘Friendly AI’’ (Yudkowsky 2001).27

But suppose it is possible to build a Friendly AI (FAI) capable of radical self-
improvement. Normal projections of economic growth allow for great discoveries
relevant to human welfare to be made eventually—but a Friendly AI could make
those discoveries much sooner. A benevolent machine superintelligence could, as
Bostrom (2003) writes, ‘‘create opportunities for us to vastly increase our own
intellectual and emotional capabilities, and it could assist us in creating a highly
appealing experiential world in which we could live lives devoted [to] joyful
game-playing, relating to each other, experiencing, personal growth, and to living
closer to our ideals.’’

Thinking that FAI may be too difficult, Goertzel (2012) proposes a global
‘‘Nanny AI’’ that would ‘‘forestall a full-on Singularity for a while, …giving us
time to figure out what kind of Singularity we really want to build and how.’’
Goertzel and others working on AI safety theory would very much appreciate the
extra time to solve the problems of AI safety before the first self-improving AI is
created, but your authors suspect that Nanny AI is ‘‘FAI-complete,’’ or nearly so.
That is, in order to build Nanny AI, you may need to solve all the problems
required to build full-blown Friendly AI, for example the problem of specifying
precise goals (Yudkowsky 2011; Muehlhauser and Helm, this volume) and the
problem of maintaining a stable utility function under radical self-modification,
including updates to the AI’s internal ontology (de Blanc 2011).

The approaches to controlled intelligence explosion we have surveyed so far
attempt to constrain an AI’s goals, but others have suggested a variety of
‘‘external’’ constraints for goal-directed AIs: physical and software confinement
(Chalmers 2010; Yampolskiy 2012), deterrence mechanisms, and tripwires that
shut down an AI if it engages in dangerous behavior. Unfortunately, these solu-
tions would pit human intelligence against superhuman intelligence, and we
shouldn’t be confident the former would prevail.

Perhaps we could build an AI of limited cognitive ability—say, a machine that
only answers questions: an ‘‘Oracle AI.’’ But this approach is not without its own
dangers (Armstrong, Sandberg Forthcoming; Bostrom forthcoming).

Unfortunately, even if these latter approaches worked, they might merely delay
AI risk without eliminating it. If one AI development team has successfully built
either an Oracle AI or a goal-directed AI under successful external constraints,
other AI development teams may not be far from building their own AIs, some of
them with less effective safety measures. A Friendly AI with enough lead time,
however, could permanently prevent the creation of unsafe AIs.

27 It may also be an option to constrain the first self-improving AIs just long enough to develop a
Friendly AI before they cause much damage.
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What Can We Do About AI Risk?

Because superhuman AI and other powerful technologies may pose some risk of
human extinction (‘‘existential risk’’), Bostrom (2002) recommends a program of
differential technological development in which we would attempt ‘‘to retard the
implementation of dangerous technologies and accelerate implementation of
beneficial technologies, especially those that ameliorate the hazards posed by other
technologies.’’

But good outcomes from intelligence explosion appear to depend not only on
differential technological development but also, for example, on solving certain
kinds of problems in decision theory and value theory before the first creation of
AI (Muehlhauser 2011). Thus, we recommend a course of differential intellectual
progress, which includes differential technological development as a special case.

Differential intellectual progress consists in prioritizing risk-reducing intellec-
tual progress over risk-increasing intellectual progress. As applied to AI risks in
particular, a plan of differential intellectual progress would recommend that our
progress on the scientific, philosophical, and technological problems of AI safety
outpace our progress on the problems of AI capability such that we develop safe
superhuman AIs before we develop (arbitrary) superhuman AIs. Our first super-
human AI must be a safe superhuman AI, for we may not get a second chance
(Yudkowsky 2008a). With AI as with other technologies, we may become victims of
‘‘the tendency of technological advance to outpace the social control of technology’’
(Posner 2004).

Conclusion

We have argued that AI poses an existential threat to humanity. On the other hand,
with more intelligence we can hope for quicker, better solutions to many of our
problems. We don’t usually associate cancer cures or economic stability with
artificial intelligence, but curing cancer is ultimately a problem of being smart
enough to figure out how to cure it, and achieving economic stability is ultimately
a problem of being smart enough to figure out how to achieve it. To whatever
extent we have goals, we have goals that can be accomplished to greater degrees
using sufficiently advanced intelligence. When considering the likely conse-
quences of superhuman AI, we must respect both risk and opportunity.28

28 Our thanks to Nick Bostrom, Steve Rayhawk, David Chalmers, Steve Omohundro, Marcus
Hutter, Brian Rabkin, William Naaktgeboren, Michael Anissimov, Carl Shulman, Eliezer
Yudkowsky, Louie Helm, Jesse Liptrap, Nisan Stiennon, Will Newsome, Kaj Sotala, Julia Galef,
and anonymous reviewers for their helpful comments.
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Chapter 2A
Robin Hanson on Muehlhauser and Salamon’s
‘‘Intelligence Explosion: Evidence and Import’’

Muehlhauser and Salamon [M&S] talk as if their concerns are particular to an
unprecedented new situation: the imminent prospect of ‘‘artificial intelligence’’ (AI).
But in fact their concerns depend little on how artificial will be our descendants, nor
on how intelligence they will be. Rather, Muehlhauser and Salamon’s concerns
follow from the general fact that accelerating rates of change increase intergener-
ational conflicts. Let me explain.

Here are three very long term historical trends:

1. Our total power and capacity has consistently increased. Long ago this enabled
increasing population, and lately it also enables increasing individual income.

2. The rate of change in this capacity increase has also increased. This acceler-
ation has been lumpy, concentrated in big transitions: from primates to humans
to farmers to industry.

3. Our values, as expressed in words and deeds, have changed, and changed faster
when capacity changed faster. Genes embodied many earlier changes, while
culture embodies most today.

Increasing rates of change, together with constant or increasing lifespans,
generically imply that individual lifetimes now see more change in capacity and in
values. This creates more scope for conflict, wherein older generations dislike the
values of younger more-powerful generations with whom their lives overlap.

As rates of change increase, these differences in capacity and values between
overlapping generations increase. For example, Muehlhauser and Salamon fear
that their lives might overlap with

[descendants] superior to us in manufacturing, harvesting resources, scientific discovery,
social charisma, and strategic action, among other capacities. We would not be in a
position to negotiate with them, for [we] could not offer anything of value [they] could not
produce more effectively themselves. … This brings us to the central feature of
[descendant] risk: Unless a [descendant] is specifically programmed to preserve what [we]
value, it may destroy those valued structures (including [us]) incidentally.

The quote actually used the words ‘‘humans’’, ‘‘machines’’ and ‘‘AI’’, and
Muehlhauser and Salamon spend much of their chapter discussing the timing and
likelihood of future AI. But those details are mostly irrelevant to the concerns
expressed above. It doesn’t matter much if our descendants are machines or bio-
logical meat, or if their increased capacities come from intelligence or raw
physical power. What matters is that descendants could have more capacity and
differing values.

Such intergenerational concerns are ancient, and in response parents have long
sought to imprint their values onto their children, with modest success.

Muehlhauser and Salamon find this approach completely unsatisfactory. They
even seem wary of descendants who are cell-by-cell emulations of prior human
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brains, ‘‘brain-inspired AIs running on human-derived ‘‘spaghetti code’’, or
‘opaque’ AI designs …produced by evolutionary algorithms.’’ Why? Because such
descendants ‘‘may not have a clear ‘slot’ in which to specify desirable goals.’’

Instead Muehlhauser and Salamon prefer descendants that have ‘‘a transparent
design with a clearly definable utility function,’’ and they want the world to slow
down its progress in making more capable descendants, so that they can first
‘‘solve the problem of how to build [descendants] with a stable, desirable utility
function.’’

If ‘‘political totalitarians’’ are central powers trying to prevent unwanted
political change using thorough and detailed control of social institutions, then
‘‘value totalitarians’’ are central powers trying to prevent unwanted value change
using thorough and detailed control of everything value-related. And like political
totalitarians willing to sacrifice economic growth to maintain political control,
value totalitarians want us to sacrifice capacity growth until they can be assured of
total value control.

While the basic problem of faster change increasing intergenerational conflict
depends little on change being caused by AI, the feasibility of this value totali-
tarian solution does seem to require AI. In addition, it requires transparent-design
AI to be an early and efficient form of AI. Furthermore, either all the teams
designing AIs must agree to use good values, or the first successful team must use
good values and then stop the progress of all other teams.

Personally, I’m skeptical that this approach is even feasible, and if feasible, I’m
wary of the concentration of power required to even attempt it. Yes we teach
values to kids, but we are also often revolted by extreme brainwashing scenarios,
of kids so committed to certain teachings that they can no longer question them.
And we are rightly wary of the global control required to prevent any team from
creating descendants who lack officially approved values.

Even so, I must admit that value totalitarianism deserves to be among the range
of responses considered to future intergenerational conflicts.
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Chapter 3
The Threat of a Reward-Driven
Adversarial Artificial General Intelligence

Itamar Arel

Abstract Once introduced, Artificial General Intelligence (AGI) will undoubtedly
become humanity’s most transformative technological force. However, the nature
of such a force is unclear with many contemplating scenarios in which this novel
form of intelligence will find humans an inevitable adversary. In this chapter, we
argue that if one is to consider reinforcement learning principles as foundations for
AGI, then an adversarial relationship with humans is in fact inevitable. We further
conjecture that deep learning architectures for perception in concern with rein-
forcement learning for decision making pave a possible path for future AGI
technology and raise the primary ethical and societal questions to be addressed if
humanity is to evade catastrophic clashing with these AGI beings.

AGI and the Singularity

A Path to the Inevitable

A myriad of evidence exists in support of the notion that mammalian learning
processes are driven by rewards. Recent findings from cognitive psychology and
neuroscience strongly suggest that much of human behavior is propelled by both
positive and negative feedback received from the environment. The notion of reward
is not limited to indicators originating from a physical environment. It also embraces
signaling generated internally in the brain, based on intrinsic cognitive processes.
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Artificial General Intelligence (AGI), coarsely viewed as human-level intelligence
manifested over non-biological platforms, is commonly perceived as one of the
paths that may lead to the singularity. Such a path has the potential of being either
beneficially transformative or devastating to the human race, to a great extent
depending on the very nature of the emerging AGI. Nonetheless, assuming that the
pieces of the puzzle needed to achieve AGI are in fact readily available, an AGI
reality is inevitable.

Reinforcement learning (RL) (Sutton 1998) is a fairly mature field within arti-
ficial intelligence, with a focus on delivering a rigorous mathematical framework
for learning by means of interacting with an environment. Consequently, it serves
as one of the promising foundations for advancing AGI research. The key challenge
in the study of RL, as a mechanism for decision making under uncertainty, has been
that of scalability. The latter refers to effectively processing high-dimensional
observations spanning large state and action spaces, which characterize real-world
AGI settings.

Recent neuroscience findings have provided clues into the principles governing
information representation in brain, leading to new paradigms for designing sys-
tems that represent information. One such paradigm is deep machine learning
(DML) (Arel 2010), which is emerging as a promising, biologically-inspired
framework for dealing with high-dimensional observations. The numerous archi-
tectures proposed for DML differ in many ways, yet they all have in common the
notion of a hierarchical architecture for information representation.

It is further argued that the merger of these ideas, along with recent advances in
VLSI technology, can lead to the introduction of truly intelligent machines in the
not-so-distant future. Finer semiconductor device fabrication processes are
improving on a trajectory that does not seem to reach a plateau any time soon. It is
now possible to pack billions of transistors on a single chip using dedicated analog
circuitry called floating gates (Hasler 1995). The latter make it possible to
implement memory and processing units using only several transistors. As a result,
it is now conceivable to envision chips (or chip sets) that reach the storage and
computation densities of those observed in the mammalian brain.

Should these machines emerge; the Singularity will follow with high proba-
bility. The exponential rate at which such transformative technology will evolve is
difficult to predict. However, it is clear that as with all technologies of this scale,
there is great potential for the enhancement of quality of life, along with clear
existential risks to humanity.

This chapter outlines the philosophical as well as commonsense implications of
scaling reinforcement learning using deep architectures as basis for achieving AGI.
The discussion is frames in the context of the Singularity. In particular, questions
related to avenues for potentially guaranteeing friendly AGI are deliberated. It is
argued that a proactive approach to addressing the various ethical and socio-
economical concerns pertaining to an AGI-driven Singularity is vital if humanity is
to mitigate its colossal existential risks.
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From AI to AGI

A fundamental distinction between Artificial General Intelligence (AGI) and
‘‘conventional’’ Artificial Intelligence (AI) is that AGI focuses on the study of
systems that can perform tasks successfully across different problem domains,
while AI typically pertains to domain-specific expert systems. General problem-
solving ability is one that humans naturally exhibit. A related capability is gen-
eralization, which allows mammals to effectively associate causes perceived in
their environment with regularities observed in the past. Another critical human
skill involves decision making under uncertainty, tightly coupled with general-
ization since the latter facilitates broad situation inference.

Following this line of thought, it can be argued that at a coarse level, intelli-
gence involved two complementing sub-systems: perception and actuation. Per-
ception can be interpreted as mapping sequences of observations, possibly
received from multiple modalities, to an inferred state of the world with which the
intelligence agent interacts. Actuation is often framed as a control problem, cen-
tering on the goal of selecting actions to be taken at any given time so as to
maximize some utility function. In other words, actuation is a direct byproduct of a
decision making process, whereby inferred states are mapped to selected actions,
thereby impacting the environment in some desirable way. This high-level view is
depicted in Fig. 3.1.

In late the 1950s, Richard Bellman who introduced dynamic programming
theory and pioneered the field of optimal control, predicted that high-dimension-
ality data will remain a fundamental obstacle for many science and engineering
systems over decades to come. The main difficulty he highlighted was that learning
complexity grows exponentially with linear increase in data dimensionality. He
coined this phenomenon the curse of dimensionality and his premonition proved
amazingly true.

DML architectures attempt to mimic the manner by which the cortex learns to
represent regularities in real world observations, and thus offer a solution for the
curse of dimensionality. In addition to the spatial aspects of real-life data, its
temporal components often play a key role in facilitating accurate perception. To
that end, robust spatiotemporal modeling of observations should serve as a primary
goal for all deep learning systems.

It has recently been hypothesized that the fusion between deep learning, as a
scalable situation inference engine, and reinforcement learning as a decision-making
system may hold the key to place us on the path to AGI and thus the singularity.
Assuming that this hypothesis is correct, many critical questions arise, the first of
which is how do we avoid a potentially devastating conflict between a reward-driven
AGI system and the human race? One can argue that such a scenario is inescapable,
given the assumption that an RL-based AGI will be allowed to evolve. In that case,
does evolution have to continue over biochemical substrates, or will the next phase in
the evolution manifest itself over semiconductor-based fabrics? Consequently, will
AGI bring the human era to an inevitable end? Transhumanism may very well
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emerge as a transitional period at the end of which post-humanism will commence
with an absence of biochemical based life forms.

History suggests that pragmatic concerns pertaining to the potential dangers and
threats of novel technologies have never impeded such technologies from being
widely embraced. Nuclear technology is an obvious example, particularly in that
debate over its benefits verses its threats has persistently accompanied its
deployment. Although technological progress is needed to make AGI a reality,
there is some likelihood that the pieces of the puzzle needed to make AGI a reality
are in fact readily available, in which case now is the time to consider the colossal
implications of an AGI-driven singularity.

Deep Machine Learning Architectures

Overcoming the Curse of Dimensionality

Mimicking the efficiency and robustness by which the human brain represents
information has been a core challenge in artificial intelligence research for dec-
ades. Humans are exposed to myriad of sensory data received every second of the
day and are somehow able to capture critical aspects of this data in a way that
allows for its future recollection. The mainstream approach of overcoming high-
dimensionality has been to pre-process the data in a manner that would reduce its
dimensionality to that which can be effectively processed, for example by a
classification engine. Such dimensionality reduction schemes are often referred to
as feature extraction techniques. As a result, it can be argued that the intelligence
behind many pattern recognition systems has shifted to the human-engineered
feature extraction process, which at times can be challenging and highly appli-
cation-dependent (Duda 2000). Moreover, if incomplete or erroneous features are
extracted, the classification process is inherently limited in performance.

Recent neuroscience findings have provided insight into the principles gov-
erning information representation in the mammal brain, leading to new ideas for
designing systems that represent information. One of the key findings has been that
the neocortex, which is associated with many cognitive abilities, does not
explicitly pre-process sensory signals, but rather allows them to propagate through

Fig. 3.1 Bipartite AGI
architecture comprising of a
perception and control/
actuation subsystem. The role
of the perception subsystem
is viewed as state inference
while the control subsystem
maps inferred states to
desired actions
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a complex hierarchy (Lee 2003) of modules that, over time, learn to represent
observations based on the regularities they exhibit (Lee 1998). This discovery
motivated the emergence of the subfield of deep machine learning (Arel 2010;
Bengio 2009), which focuses on computational models for information represen-
tation that exhibit similar characteristics to that of the neocortex.

A sequence of patterns that we observe often conveys a meaning to us, whereby
independent fragments of this sequence would be hard to decipher in isolation. We
often infer meaning from events or observations that are received close in time
(Wallis 1997, 1999). To that end, modeling the temporal component of the
observations plays a critical role in effective information representation. Capturing
spatiotemporal dependencies, based on regularities in the observations, is therefore
viewed as a fundamental goal for deep learning systems.

Spatiotemporal State Inference

A particular family of DML systems is compositional deep learning architectures
(Arel 2009). The latter are characterized by hosting multiple instantiations of a
basic cortical circuit (or node) which populate all layers of the architecture. Each
node is tasked with learning to represent the sequences of patterns that are pre-
sented to it by nodes in the layer that precede it. At the very lowest layer of the
hierarchy nodes receive as input raw data (e.g. pixels of the image) and contin-
uously construct a belief state that attempts to compactly characterize the
sequences of patterns observed. The second layer, and all those above it, receive as
input the belief states of nodes at their corresponding lower layers, and attempt to
construct their own belief states that capture regularities in their inputs. Figure 3.2
illustrates a compositional deep learning architecture.

Information flows both bottom and top down. Bottom up processing essentially
constitutes a feature extraction process, in which each layer aggregates data from
the layer below it. Top down signaling helps lower layer nodes improve their
representation accuracy by assisting in correctly disambiguating distorted
observations.

An AGI system should be able to adequately cope in a world where partial
observability is assumed. Partial observability means that any given observation
(regardless of the modalities from which it originates) does not provide full
information needed to accurately infer the true state of the world. As such, an AGI
system should map sequences of observations to an internal state construct that is
consistent for regular causes. This implies that a dynamic (i.e. memory-based)
learning process should be exercised by each cortical circuit.

For example, if a person looks at a car in a parking lot he/she would recognize it
as such since there is consistent signaling being invoked in their brain whenever
car patterns are observed. In fact, it is sufficient to hear a car (without viewing it) to
invoke similar signaling in the brain. While every person may have different
signaling for common causes in the world, such signaling remains consistent for
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each person. This consistency property allows a complementing control subsystem
to map the (inferred) states to actions that impact the environment in some
desirable way.

If a deep learning architecture is to form an accurate state representation, it
should include both spatial and temporal information. As a result, each belief state
should capture spatiotemporal regularities in the observations, rather than just
spatial saliencies.

The learning process at each node is unsupervised, guided by exposure to a
large set of observations and allowing the salient attributes of these observations to
be captured across the layers. In the context of an AGI system, signals originating
from upper-layer nodes can be extracted to serve as inferred state representations.
This extracted information should exhibit invariance to common distortions and
variations in the observations, leading to representational robustness. In the con-
text of visual data, robustness refers to the ability to exhibit invariance to a diverse
range of transformations, including mild rotation, scale, different lighting condi-
tions and noise.

It should be noted that although deep architectures may appear to completely
solve or overcome the curse of dimensionality, in reality they do so by hiding the
key assumption of locality. The latter means that the dependencies that may exist
between two signals (e.g. pixels) that are spatially close are captured with relative
detail, where as relationships between signals that are distant (e.g. pixels on
opposite sides of a visual field) are represented with very little detail. This is a
direct result of the nature of the architecture depicted in Fig. 3.2, in which fusion
of information from inputs that are distant to the hierarchy occurs at the higher
layers.

It is also important to emphasize that deep learning architectures are not limited
by any means to visual data. In fact, these architectures are modality agnostic, and
attempt to discover underlying structure in data of any form. Moreover, fusion of
information originating from different modalities is natural in deep learning and a

Fig. 3.2 Compositional deep
machine learning architecture
comprising of multiple
instantiations of a common
cortical circuit
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pivotal requirement of AGI. If one imagines the architecture shown in Fig. 3.1 to
receive input at its lowest layer from multiple modalities, as one ascends the
hierarchy, fusion of such information takes place by capturing regularities across
the modalities.

Scaling Decision Making Under Uncertainty

Markov Decision Processes

Reinforcement learning problems are typically modeled as Markov Decision
Processes (MDPs). An MDP is defined as a S; A; P; Rð Þ-tuple, where S stands for
the state space, A contains all the possible actions at each state, P is a probability
transition function S� A� S! ½0; 1� and R is the reward function S� A! R:
Also, we define p as the decision policy that maps the state set to the action set:
p : S! A: Specifically, let us assume that the environment is a finite-state, dis-
crete-time stochastic dynamic system. Let the state space be S ¼ ðs1; s2; . . .; snÞ
and, accordingly, action space be A ¼ ða1; a2; . . .; amÞ: Suppose at time step k;
that agent is in state sk; and it chooses action ak 2 AðskÞ according to policy p; in
order to interact with its environment. Next, the environment transitions into a new
state skþ1 and provides the agent with a feedback reward denoted by rkðs; aÞ: This
process is continuously repeated with the goal being to maximize the expected
discounted reward, or state-action value, given by

Qpðs; aÞ ¼ Ep

X1

k¼0

ckrkðsk; pðskÞÞjs; a
( )

; ð3:1Þ

where 0� c\1 is the discount factor and Epfg denotes the expected return when
starting in state s; taking action a and following policy p thereafter. A goal of the
RL system will be to select actions that persistently attempt to maximize its value
function. Unless externally constrained in some manner, the agent will explore
every means at its disposal to achieve the goal of increasing the expected rewards
by way of maximizing its value function.

The above definition of a value function, which relies on the notion of geo-
metrically discounting rewards in time, has some core flaws. The main drawback
of such formulation is that significant positive or negative events that are expected
to occur far into the future have negligible impact on current actions selected.
However, in human decision making processes, and in fact in that of most
mammals, the time scale considered in selecting actions can be quite large. This is
not supported in the discounted rewards model. An alternative formulation for the
value function is one that expresses the infinite sum of differences between
expected rewards and those actually experienced. Mathematically stated, this
alternative value function is given by
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Qpðs; aÞ ¼ Ep

X1

k¼0

rk � qkð Þjs; a
( )

; ð3:2Þ

where qk is the estimated rate of rewards at time k, which can be attained by
applying moving average over the rewards, such that

qk ¼ 1� að Þqk�1 þ ark; 0\a\1: ð3:3Þ

In essence, the above implies that the agent attempts to maximize its positive
‘‘surprises’’ (interpreted as the difference between expectation and actual experi-
ence) while minimize its negative ones.

Biological Plausibility of Reinforcement Learning

While the role of the perception subsystem may be viewed as that of complex state
inference, an AGI system must be able to take actions that impact its environment.
In other words, an AGI system must involve a controller that attempts to optimize
some cost function. This controller is charged with mapping the inferred states to
an action. In real-world scenarios, there is always some uncertainty. However,
state signaling should exhibit the Markov property in the sense that it compactly
represents the history that has led to the current state-of-affairs. This is a colossal
assumption, and one that is unlikely to accurately hold. However, it is argued that
while the Markov property does not hold, assuming that it does paves the way for
obtaining ‘‘good enough’’, albeit not optimal, AGI systems.

It is important to understand that RL corresponds to a broad class of machine
learning techniques that allow a system to learn how to behave in an environment
that provides reward signals. A key assertion in RL is that the agent learns by
itself, based on acquired experience, rather than by being externally instructed or
supervised. Hence, RL inherently facilitates autonomous learning as well as
addresses many of the essential goals of AGI: it emphasizes the close interaction of
an agent with the environment, it focuses on perception-to-action cycles and
complete behaviors rather than separate functions and function modules, it relies
on bottom-up intelligent learning paradigms, and it is not based on symbolic
representations.

The ability to generalize is acknowledged as an inherent attribute of intelligent
systems. Consequently, it may be claimed that no system can learn without
employing some degree of approximation. The latter is particularly true when we
consider large-scale, complex real-world scenarios, such as those implied by true
AGI. Deep learning architectures can serve this exact purpose: they can provide a
scalable state inference engine that a reinforcement learning based controller can
map to actions.

A recent and very influential development in RL is the actor-critic approach to
model-free learning, which is based on the notion that two distinct core functions
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accomplish learning: the first (the ‘‘actor’’) produces actions derived from an
internal model and the second (the ‘‘critic’’) refines the action selection policy
based on prediction of long-term reward signals. As the actor gains proficiency, it
is required to learn an effective mapping from inferred states of the environment to
actions. In parallel to the growing support of RL theories in modern cognitive
science, recent work in neurophysiology provides some evidence arguing that the
actor-critic RL theme is widely exploited in the human brain.

The dominant mathematical methods supporting learning approximately solve
the Hamilton–Jacobi–Bellman (HJB) equation of dynamic programming (DP) to
iteratively adjust the parameters and structure of an agent as means of encouraging
desired behaviors (Arel 2010). A discounted future reward is typically used;
however, researchers are aware of the importance of multiple time scales and the
likelihood that training efficiency will depend upon explicit consideration of
multiple time horizons. Hence, the trade-offs between short and long term memory
should be considered. Cognitive science research supports these observations,
finding similar structures and mechanisms in mammalian brains (Suri 1999).

The HJB equation of DP requires estimation of expected future rewards, and a
suitable dynamic model of the environment that maps the current observations and
actions (along with inferred state information) to future observations. Such model-
free reinforcement learning assumes no initial knowledge of the environment, and
instead postulates a generic structure, such as a deep learning architecture, that can be
trained to model environmental responses to actions and exogenous sensory inputs.

Contrary to existing function approximation technologies, such as standard
multi-layer perceptron networks, current neurophysiology research reveals that the
structure of the human brain is dynamic, with explosive growth of neurons and
neural connections during fetal development followed by pruning. Spatial place-
ment also plays critical roles, and it is probable that the spatial distribution of
chemical reward signals selectively influences neural adaptation to enhance
learning (Schultz 1998). It is suspected that the combination of multi-time horizon
learning and memory processes with the dynamic topology of a spatially
embedded deep architecture will dramatically enhance adaptability and effec-
tiveness of artificial cognitive agents. This is expected to yield novel AGI
frameworks that can overcome the limitations of existing AI systems

RL can thus be viewed as a biologically-inspired decision making under
uncertainty framework that is centered on the notion of learning from experience,
through interaction with an environment, rather than by being explicitly guided by
a teacher. What sets RL apart from other machine learning methods is that it aims
to solve the credit assignment problem, in which an agent is charged with eval-
uating the long-term impact of actions it takes.

The fundamental notion of learning on the basis of rewards is shared among
several influential branches of psychology, including behaviorism and cognitive
psychology. The actor-critic architecture reflects recent trends in cognitive neu-
roscience and cognitive psychology that highlight task decomposition and modular
organization. For example, visual information-processing is served by two parallel
pathways, one specialized to object location in space and the other to object
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identification or recognition over space and time (Millner 1996; Mishkin 1983).
This approach exploits a divide-and-conquer processing strategy in which par-
ticular components of a complex task are computed in different cortical regions,
and typically integrated, combined, or supervised by the prefrontal cortex.

Computational models of this dual-route architecture suggest that it has
numerous benefits over conventional homogenous networks, including both
learning speed and accuracy. More generally, the prefrontal cortex is implicated in
a wide range of cognitive functions, including maintaining information in short-
term or working memory, action planning or sequencing, behavioral inhibition,
and anticipation of future states. These functions highlight the role of the prefrontal
cortex as a key location that monitors information from various sources and
provides top-down feedback and control to relevant motor areas (e.g. premotor
cortex, frontal eye fields, etc.). In addition to recent work in cognitive neurosci-
ence, theoretical models of working memory in cognitive psychology also focus
on the role of a central executive that actively stores and manipulates information
that is relevant for solving ongoing tasks.

A unique feature of the proposed AGI approach is a general-purpose cognitive
structure for investigating both external and internal reward systems. Cognitive
psychologists conceptualize these two forms of reward as extrinsic and intrinsic
motivation (Ginsburg 1993). Extrinsic motivation corresponds to changes in
behavior as a function of external contingencies (e.g. rewards and punishments),
and is a central element of Skinner’s theory of learning. Meanwhile, intrinsic
motivation corresponds to changes in behavior that are mediated by internal states,
drives, and experiences, and is manifested in a variety of forms including curiosity,
surprise, and novelty. The concept of intrinsic motivation is ubiquitous in theories
of learning and development, including the notions of (1) mastery motivation (i.e. a
drive for proficiency (Kelley et al. 2000), (2) functional assimilation (i.e. the ten-
dency to practice a new skill), and (3) violation-of-expectation (i.e. the tendency to
increase attention to unexpected or surprising events), see (Baillargeon 1994)).

It is interesting to note that while external rewards play a central role in RL, the
use of intrinsic motivation has only recently begun to receive attention from the
machine-learning community. This is an important trend, for a number of reasons.
First, intrinsic motivation changes dynamically in humans, not only as a function
of task context but also general experience. Implementing a similar approach in
autonomous-agent design will enable the agent to flexibly adapt or modify its
objectives over time, deploying attention and computational resources to relevant
goals and sub-goals as knowledge, skill, and task demands change. Second, the
integration of a dual-reward system that includes both external and intrinsic
motivation is not only biologically plausible, but also more accurately reflects the
continuum of influences in both human and non-human learning systems.

In parallel to the growing support of model-free Actor-Critic oriented in
modern psychology, recent work in neurophysiology provides evidence which
suggests that the Actor-Critic paradigm is widely exploited in the brain. In par-
ticular, it has been recently shown that the basal ganglia (Joel 2002) can be
coarsely modeled by an Actor-Critic version of Temporal Difference (TD) learning
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(Sutton 1998). The frontal dopaminergic input arises in a part of the basal ganglia
called ventral tegmental area (VTA) and the substantia nigra (SN). The signal
generated by dopaminergic (DA) neurons resembles the effective reinforcement
signal of TD learning algorithms.

Another important part of the basal ganglia is the striatum. This structure is
comprised of two parts, the matriosome and the striosome. Both receive input from
the cortex (mostly frontal) and from the DA neurons, but the striosome projects
principally to DA neurons in VTA and SN. The striosome is hypothesized to act as a
reward predictor, allowing the DA signal to compute the difference between the
expected and received reward. The matriosome projects back to the frontal lobe (for
example, to the motor cortex). Its hypothesized role is therefore in action selection.

Neuromorphic Circuits for Scaling AGI

The computational complexity and storage requirements from deep reinforcement
learning systems limit the scale at which they may be implemented using standard
digital computers. An alternative would be to consider custom analog circuitry as
means of overcoming the limitations of digital VLSI technology. In order to
achieve the largest possible learning system within any given constraints of cost or
physical size, it is critical that the basic building blocks of the learning system be
as dense as possible. Many operations can be realized in analog circuitry with a
space saving of one to two orders of magnitude compared to a digital realization.
Analog computation also frequently comes with a significant reduction in power
consumption, which will become critical as powerful learning systems are
migrated to battery-operated platforms.

This massive improvement in density is achieved by utilizing the natural
physics of device operation to carry out computation. The benefits in density and
power come with certain disadvantages, such as offsets and inferior linearity
compared to digital implementations. However, the weaknesses of analog circuits
are not major limitations since the feedback inherent in the learning algorithms
naturally compensates for errors/inaccuracies introduced by the analog circuits.
The argument made here is that the brain is far from being 64-bit accurate, so
relaxing accuracy requirements of computational elements, for the purpose of
aggressively optimized for area, is a valid tradeoff.

The basic requirements of almost any machine learning algorithm include
multiplication, addition, squashing functions (e.g. sigmoid), and distance/simi-
larity calculation, all of which can be realized in a compact and power-efficient
manner using analog circuitry. Summation is trivial in the current domain as it is
accomplished by joining the wires with the currents to be summed. In the voltage
domain, a feedback amplifier with N ? 1 resistors in the feedback path can
compute the sum of N inputs. A Gilbert cell (Gray 2001) provides four-quadrant
multiplication while using only seven transistors.

Table 3.1 contrasts the component count of digital and analog computational
blocks. As discussed above, the learning algorithms will be designed to be robust
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to analog circuit imperfections, allowing the use of very small transistors. Digital
designs vary widely in transistor count, as area can frequently be traded for speed.
For the comparison, we used designs that are optimized for area and appropriate
for the application. For example, an N-bit ‘‘shift-and-add’’ multiplier uses a single
adder by performing the multiplication over N clock cycles. A fast multiplier
might require as many as N times more adders. Digital registers were chosen over
SRAMs, despite their larger size because SRAMs require significant peripheral
circuitry (e.g. address decoders, sense amplifiers) making them poorly suited to a
system requiring many small memories. For the analog elements, we also counted
any necessary resistors or capacitors.

A particularly suitable analog circuit, which is often used for computational
purposes, is the floating gate transistor (Hasler 2005) (shown in Fig. 3.3). Floating
gates have proved themselves to be useful in many different applications; they
make good programmable switches, allow for threshold matching in transistor
circuits, and have been successfully used in the design of various adaptive systems.

Floating gates lack a DC path to ground, so any charge stored on the gate will
stay there. Through the use of Fowler–Nordheim tunneling and hot electron
injection, this trapped charge can be modified. Floating-gate memories can provide
a finely tuned voltage to match thresholds between multiple transistors, for
example, to yield a circuit which has nearly perfect matching, improving accuracy
relative to conventional techniques. In learning systems, a floating gate can be
used to store a weight or learned parameter.

Table 3.1 Transistor count comparison of analog and digital elements

Operation Analog Digital(N bits) Notes

Summation 12 24 Feedback voltage adder; Ripple-carry adder
Multiplication 7 48 Shift and add multiplier
Storage 15 12 Feedback floating-gate cell: digital register

Fig. 3.3 a Cutout showing parts of a typical floating gate transistor. b A floating gate in
schematic
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The inevitable conclusion from this discussion is that floating gate technology
offers very high logic and power density, alongside the ability to realize massively-
parallel distributed memory. All this paves the way for implementing very large
intelligent systems that a decade ago would have required a super-computer.
Needless to say, there is no reason to believe that these VLSI advances will slow
down in the near future.

The Inevitability of AGI Malevolence

Perpetual Dissatisfaction in Temporal Difference Learning

Temporal difference (TD) learning (Sutton 1998) is a central idea in RL. It pro-
vides a method for estimating the value function and is primarily applied to model-
free learning problems. The TD paradigm draws from both dynamic programming
(Bellman 1957) and Monte Carlo methods (Sutton 1998). Similar to dynamic
programming, TD learning bootstraps in that it updates value estimates based on
other value estimates, as such not having to complete an episode before updating
its value function representation. Like Monte Carlo methods, TD is heuristic in
that it uses experience, obtained by following a given policy (i.e. mapping of states
to actions), to predict subsequent value estimates. TD updates are performed as a
single step look-ahead that typically takes the general form of

Qtþ1 ¼ Qt þ a target � Qt½ �; ð3:4Þ

where target is derived from the Bellman equation and depends on how rewards
are evaluated over time, Qt denotes the state-action value estimate at time t, and a
is a small positive constant.

It should be noted that in real-world AGI settings, only partial information
regarding the true ‘‘state’’ of the world is made available to the agent. The agent is
thus required to form a belief state from observations it receives of the environ-
ment. Assuming the Markov property holds, but state information is inaccurate or
incomplete, we say that the problem is partially observable. Deep learning
architectures help overcome partial observability by utilizing internal signals that
capture spatiotemporal dependencies, as discussed above. This potentially solves
the scalable state inference problem.

On the control side, from Eqs. (3.2) and (3.4), it follows that the agent continu-
ously attempts to maximize its ‘‘positive’’ surprises (i.e. positive difference between
actual rewards and reward expectation) while minimizing ‘‘negative’’ surprises.
This process, however, is unbounded. In other words, even if the agent reaches a
fairly high rate of rewards, by the formulation expressed in Eq. (3.2), it will continue
to strive to maximize its wellbeing (interpreted via expectation of future rewards). It
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can be argued that this is very much a human characteristic—when one is used to
very little, anything above and beyond this expectation is happily greeted. However,
once such bonus is received on a regular basis, it becomes the new norm and no
longer yields the same level of satisfaction. This is the core danger in designing
systems that are driven by rewards and have large cognitive capacity; by continu-
ously striving to gain positive (relative) reinforcement, they will inevitably pose a
danger to humanity.

Mitigating AGI Risks

By definition, an RL-based AGI agent optimizing over a value function will
always strive to improve its wellbeing, much like humans. One can imagine an
AGI system equipped with means of actuation far more capable than those pos-
sessed by humans. Consequently, it may reach the inevitable conclusion that
human beings are too often hurdles in its path of self-improvement, and thus
constitute an adversary.

Furthermore, such adversity is likely to be mutual. In fact, it is highly probably
that humans are going to view super-intelligent, reward-seeking AGI systems as a
clear and present threat to their existence, thereby calling for their elimination.
While some humans are broadly acknowledged as evil and are feared by many
others, they are nonetheless perceived to be physically (and existentially) limited
in the same ways that all humans are. The scope of their physical impact, speed at
which they process information and make decisions, are all assumed to be within
the well-known bounds of humans. However, these assertions no longer hold true
for AGI systems. The latter will inevitably be viewed as hostile, once exhibiting
desires combined with capabilities that are (in human terms) super-human.

This raises the important question of what can be done to avoid a clash between
the two species. Education seems to be an answer that comes to mind. The dif-
ficulty in devising an educational fabric for promoting coexistence and mutual
understanding lies in the fact that prior to the emergence of AGI there is little
tangible evidence that can be used as ground-truth reference for developing
instructional content. It is therefore imperative that a human-controlled evolution
of AGI systems will be coupled with substantial effort is made to understand these
systems as much as possible in order to introduce the necessary educational
programs that will help mitigate the inevitable fear humans will have of this great
unknown.

A more technical approach for mitigating some of the risk of RL-based AGI can
be to limit such system’s mental capacity. This can easily be done by means of
establishing a hard limit on both computation and storage resources. In the context
of DML, this can encompass several attributes. The first is limiting both the depth
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and width (i.e. the number of nodes) in the hierarchical topology employed.
Moreover, if connectivity resources are limited, general cognitive abilities (par-
ticularly relating to robust situation inference) are reduced. Finally, the complexity
of the control engine can be minimized to the point of achieving satisfactory
behavior.

These ideas are interesting, although undeniably challenging to enforce due a
myriad of both technical and political limitations. From a technical standpoint,
identifying the precise cognitive resources needed to achieve some level of
intelligence, but no more than that, is difficult to say the least. Introducing leg-
islation banning the creation of super-intelligence AGI systems is destined to only
be partially effective, since there will always be countries, governments and large
organizations that view themselves above international law. An argument can be
made that if building super-AGI systems is widely acknowledged as inevitably
leading to the destruction of the human race, humans will be strongly motivated
not to pursue such endeavors.

Closing Thoughts

We live in a time in which an intersection of new ideas and technological advances
has created a novel path for building thinking machines. Reinforcement learning,
which has well-established biological plausibility, in concert with models of
cortical circuits for perception, form a promising direction for achieving one
possible form of AGI. While many cognitive phenomena remain poorly under-
stood and are likely to pose modeling challenges, the paradigm proposed in this
chapter is inherently generic and serves as solid basis for an AGI framework.
Practically speaking, the VLSI technology needed to realize large scale AGI
experiments exists today. Assuming such assertions are true, the focus should now
shift to the key questions pertaining to the impact such transformational tech-
nology will have on humanity. There are clear risks posed by the very essence of
the framework alongside its obvious benefits. In order to try and guarantee a
positive outcome for humanity, much work remains to be done in establishing
theoretical results and practical methods for monitoring and controlling the paths
that such AGI technology can take. The singularity may not be avoidable alto-
gether, but if humanity is to survive along these new forms of life on earth, it must
forcefully play an integrated part of their evolutionary processes, rather than
assume the role of a bystander.

3 The Threat of a Reward-Driven Adversarial Artificial General Intelligence 57



References

Arel, I. (2012). The threat of a reward-driven adversarial artificial general intelligence. In
A. Eden, J. Søraker, J. H. Moor, & E. Steinhart (Eds.), The singularity hypothesis: a scientific
and philosophical analysis, Springer.

Arel, I., Rose, D., & Karnowski, T. (2010). Deep machine learning—a new frontier in artificial
intelligence research. IEEE Computational Intelligence Magazine, 14, 12–18.

Baillargeon, R. (1994). Physical Reasoning in young infants: seeking explanations for impossible
events. British Journal of Developmental Psychology, 12, 9–33.

Bellman, R. (1957). Dynamic programming. Princeton: Princeton University Press.
Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine

Learning, 2(1), 1–127.
Duda, R., Hart, P., & Stork, D. (2000). Pattern recognition (2nd edn ed.). New York: Wiley-

Interscience.
Ginsburg, G. S., & Bronstein, P. (1993). Family factors related to children’s intrinsic/extrinsic

motivational orientation and academic performance. Child Development, 64, 1461–1474.
Gray, P., Hurst, P., Lewis, S., & Meyer, R. (2001). Analysis and design of analog integrated

circuits. New York: Wiley.
Hasler, P., & Dugger, J. (2005). An analog floating-gate node for supervised learning. IEEE

Transactions on Circuits and Systems I, 52(5), 834–845.
Hasler, P., Diorio, C., Minch, B. A., & Mead, C. (1995). Single transistor learning synapse with

long term storage. IEEE International Symposium on Circuits and Systems, 1660–1663.
Joel, D., Niv, Y., & Ruppin, E. (2002). Actor-critic models of the basal ganglia: new anatomical

and computational perspectives. Neural Networks, 15, 535–547.
Kelley, S. A., Brownell, C. A., & Campbell, S. B. (2000). Mastery motivation and self-evaluative

affect in toddlers: longitudinal relations with maternal behavior. Child Development, 71,
1061–71.

Lee, T. (2003). Hierarchical bayesian inference in the visual cortex. Journal of the Optical
Society of America, 20(7), 1434–1448.

Lee, T., Mumford, D., Romero, R., & Lamme, V. (1998). The role of the primary visual cortex in
higher level vision. Vision Research, 38, 2429–2454.

Millner, A. D., & Goodale, M. A. (1996). The visual brain in action. Oxford: Oxford University
Press.

Mishkin, M., Ungerkeuder, L. G., & Macko, K. A. (1983). Object vision and spatial vision: two
cortical pathways. Trends in Neuroscience, 6, 414–417.

Schultz, W. (1998). Predictive reward signal of dopamine neurons. The Journal of
Neurophysiology, 80(1), 1–27.

Suri, R. E., & Schultz, W. (1999). A neural network model with dopamine-like reinforcement
signal that learns a spatial delayed response task. Neuroscience, 91(3), 871–890.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cambridge, MA:
MIT Press.

Wallis, G., & Bülthoff, H. (1999). Learning to recognize objects. Trends in Cognitive Sciences,
3(1), 23–31.

Wallis, G., & Rolls, E. (1997). Invariant face and object recognition in the visual system.
Progress in Neurobiology, 51, 167–194.

58 I. Arel



Chapter 3A
William J. Rapaport on Arel’s ‘‘The Threat of a Reward-Driven
Adversarial Artificial General Intelligence’’

Can’t we just talk?
Itamar Arel (2013) argues that:

1. artificial general intelligence (AGI) ‘‘is inevitable’’ (p. 44),
2. techniques including a ‘‘fusion between deep learning, … a scalable situation

inference engine, and reinforcement learning [RL] as a decision-making system
may hold the key to place us on the path to AGI’’ (p. 45), and

3. ‘‘a potentially devastating conflict between a reward-driven AGI system and the
human race… is inescapable, given the assumption that an RL-based AGI will
be allowed to evolve’’ (p. 45).

Why ‘‘inescapable’’? If I understand Arel correctly, it is a mathematical
certainty:

[F]rom Eqs. (3.2) and (3.4) [Arel 2013, pp. 50, 55, the details of which are irrelevant to my
argument], it follows that the agent continuously attempts to maximize its ‘‘positive’’
surprises [i.e. ‘‘its wellbeing’’]… while minimizing ‘‘negative’’ surprises. This process…
is unbounded…. [O]nce such a bonus is received on a regular basis, it becomes the new
norm and no longer yields the same level of satisfaction. This is the core danger in
designing systems that are driven by rewards and have large cognitive capacity; by
continuously striving to gain positive (relative) reinforcement, they will inevitably pose a
danger to humanity (pp. 55–56).

Let’s suppose so. But why should it be ‘‘inevitable’’? Despite Arel’s faith in the
inevitability of AGI (which I share), he seems to be committing the fallacy of
thinking that AGIs must differ in crucial respects from humans.

This is the fallacy that John Searle commits when claiming that the inhabitant
of his Chinese Room (Searle 1980) doesn’t ‘‘understand a word of Chinese and
neither does any other digital computer because all the computer has is what [the
inhabitant] ha[s]: a formal program that attaches no meaning, interpretation, or
content to any of the symbols’’ (Searle 1982, p. 5). As I have pointed out else-
where, this assumes ‘‘that external links are needed for the program to ‘attach’
meaning to its symbols’’ (Rapaport 2000, §3.2.2). The fallacy can be seen by
realizing that ‘‘if external links are needed, then surely a computer could have
them as well as—and presumably in the same way that—humans have them’’
(Rapaport 2000, §3.2.2).

Why do I think that Arel is committing this fallacy? Because, presumably,
humans also ‘‘attempt to maximize [their] wellbeing’’. Now, I can agree that
humans themselves have been known, from time to time, to ‘‘pose a danger to
humanity’’ (for a discussion of this, see Dietrich 2001, 2007). But we have also
devised methods for alleviating such dangers. Clearly, then, rather than wringing
our hands over the ‘‘inevitability’’ of AGIs wreaking havoc on their creators, we
should give them some of those methods.
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And, indeed, Arel sketches out some possibilities along these lines: education
and ‘‘limit[ing] such [a] system’s mental capacity’’ (p. 56). But he seems to neglect
one obvious possibility, one that is, in fact, a necessity for any AGI: For an AGI to
really have GI—general intelligence—it must have cognition: (1) It must be able
to use and understand language—and, presumably, our language, so that we can
communicate with it, and vice versa (see Winston 1975 and my discussion of
‘‘Winston’s problem’’ in Rapaport 2003)—and (2) it must be able to reason
consciously (e.g. via an explicit knowledge-representation-and-reasoning system,
as opposed to tacit reasoning by, say, an artificial neural network). If we can reason
with it in natural language, then we can hope to be able to collaborate and
negotiate with it, rather than compete with it. Such natural-language and reasoning
competence is, in any case, a prerequisite (or at least a product) of education, but it
requires no limitation on the AGI’s mental capacity.
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Chapter 4
New Millennium AI and the Convergence
of History: Update of 2012

Jürgen Schmidhuber

Abstract Artificial Intelligence (AI) has recently become a real formal science:
the new millennium brought the first mathematically sound, asymptotically opti-
mal, universal problem solvers, providing a new, rigorous foundation for the
previously largely heuristic field of General AI and embedded agents. There also
has been rapid progress in not quite universal but still rather general and practical
artificial recurrent neural networks for learning sequence-processing programs,
now yielding state-of-the-art results in real world applications. And the computing
power per Euro is still growing by a factor of 100–1,000 per decade, greatly
increasing the feasibility of neural networks in general, which have started to yield
human-competitive results in challenging pattern recognition competitions.
Finally, a recent formal theory of fun and creativity identifies basic principles of
curious and creative machines, laying foundations for artificial scientists and
artists. Here I will briefly review some of the new results of my lab at IDSIA, and
speculate about future developments, pointing out that the time intervals between
the most notable events in over 40,000 years or 29 lifetimes of human history have
sped up exponentially, apparently converging to zero within the next few decades.
Or is this impression just a by-product of the way humans allocate memory space
to past events?

Note: this is the 2012 update of a 2007 publication (Schmidhuber 2007b). Compare also the
2006 celebration of 75 years of AI (Schmidhuber 2006c).
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Introduction

In 2003 I observed (Schmidhuber 2003a, b) that each major breakthrough in
computer science tends to come roughly twice as fast as the previous one, roughly
matching a century-based scale: In 1623 the computing age started with the first
mechanical calculator by Wilhelm Schickard (followed by machines of Pascal,
1640, and Leibniz, 1670). Roughly two centuries later Charles Babbage came up
with the concept of a program-controlled computer (1834–1840). One century
later, Julius Lilienfeld invented the transistor (late 1920s), and Kurt Gödel layed
the foundations of theoretical computer science with his work on universal formal
languages and the limits of proof and computation (1931) (Goedel 1931). His
results and Church’s extensions thereof were reformulated by Turing in 1936
(Turing 1936), while Konrad Zuse built the first working program-controlled
computers (1935–1941), using the binary system of Leibniz (1701) instead of the
more cumbersome decimal system used by Babbage and many others. By 1941 all
the main ingredients of ‘modern’ computer science were in place. The next 50
years saw many less radical theoretical advances as well as faster and faster
switches—relays were replaced by tubes by single transistors by numerous tran-
sistors etched on chips—but arguably this was rather predictable, incremental
progress without earth-shaking events. Half a century later, however, Berners-Lee
triggered the most recent world-changing development by creating the World
Wide Web at CERN (1990).

Extrapolating the trend, we should expect the next radical change to manifest
itself one quarter of a century after the most recent one, that is, before 2020, when
some computers will already match brains in terms of raw computing power,
according to frequent estimates based on Moore’s law, which suggests a speed-up
factor of roughly 100–1,000 per decade, give or take a few years. Will the
remaining series of faster and faster additional revolutions converge in an Omega
point (term coined by Pierre Teilhard de Chardin, 1916) around 2040, when
individual machines will already approach the raw computing power of all human
brains combined, provided Moore’s law does not break down? Many of the present
readers of this article should still be alive then. Compare Stanislaw Ulam’s concept
of an approaching historic singularity (quote: Vinge 1993), popularized by Vernor
Vinge as technological singularity (Vinge 1984, 1993), as well as subsequent
speculations (Moravec 1999; Kurzweil 2005).

Will the software and the theoretical advances keep up with the hardware
development? I am convinced they will. In fact, the new millennium has brought not
only human-competitive performance of artificial neural networks (NN) in pattern
recognition contests (more on this later), but also fundamental new insights into the
problem of constructing theoretically optimal rational agents or universal Artificial
Intelligences (AIs), as well as curious & creative machines (more on this below).
There also has been rapid progress in practical learning algorithms for agents
interacting with a dynamic environment, autonomously discovering true sequence-
processing, problem-solving programs, as opposed to the reactive mappings from
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stationary inputs to outputs studied in most traditional machine learning (ML)
research. In what follows, I will briefly review some of the new results, then come
back to the issue of whether or not history is about to ‘‘converge.’’

Notation

Consider a learning robotic agent with a single life which consists of discrete
cycles or time steps t ¼ 1; 2; . . .; T . Its total lifetime T may or may not be known in
advance. In what follows,the value of any time-varying variable Q at time t
(1 _� _t� _T) will be denoted by QðtÞ, the ordered sequence of values Qð1Þ; . . .;QðtÞ
by Qð� tÞ, and the (possibly empty) sequence Qð1Þ; . . .;Qðt � 1Þ by Qð\tÞ.

At any given t the robot receives a real-valued input vector xðtÞ from the
environment and executes a real-valued action yðtÞ which may affect future inputs;
at times t \ T its goal is to maximize future success or utility

uðtÞ ¼ El

XT

s¼tþ1

rðsÞ
�����hð� tÞ

" #
; ð4:1Þ

where rðtÞ is an additional real-valued reward input at time t, hðtÞ the ordered triple
½xðtÞ; yðtÞ; rðtÞ� (hence h(Bt) is the known history up to t), and Elð� j �Þ denotes the
conditional expectation operator with respect to some possibly unknown distribution
l from a set M of possible distributions. Here M reflects whatever is known about the
possibly probabilistic reactions of the environment. For example, M may contain all
computable distributions (Solomonoff 1964; Li and Vitanyi 1997; Hutter 2005).
Note that unlike in most previous work by others (Kaelbling et al. 1996; Sutton and
Barto 1998), but like in much of the author’s own previous work (Schmidhuber et al.
1997; Schmidhuber 2007a), there is just one life, no need for predefined repeatable
trials, no restriction to Markovian interfaces between sensors and environment
(Schmidhuber 1991c), and the utility function implicitly takes into account the
expected remaining lifespan El > ðT j hð� tÞÞ and thus the possibility to extend it
through appropriate actions (Schmidhuber 2005, 2007a).

Universal But Incomputable AI

Solomonoff’s theoretically optimal universal predictors and their Bayesian learn-
ing algorithms (Solomonoff 1964; Li and Vitanyi 1997; Hutter 2005) only assume
that the reactions of the environment are sampled from an unknown probability
distribution l contained in a set M of all enumerable distributions—compare text
after Eq. (4.1). That is, given an observation sequence q(Bt), we only assume
there exists a computer program that can compute the probability of the next
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possible qðt þ 1Þ, given q(Bt). Since we typically do not know the program
computing l, we predict the future in a Bayesian framework by using a mixture
distribution n ¼

P
i xili, a weighted sum of all distributions li 2 M, i ¼ 1; 2; . . .,

where
P

i xi� 1. It turns out that this is indeed the best one can possibly do, in a
very general sense (Hutter 2005). The drawback is that the scheme is incomput-
able, since M contains infinitely many distributions.

One can increase the theoretical power of the scheme by augmenting M by
certain non-enumerable but limit-computable distributions (Schmidhuber 2002a),
or restrict it such that it becomes computable, e.g., by assuming the world is
computed by some unknown but deterministic computer program sampled from
the Speed Prior (Schmidhuber 2002b) which assigns low probability to environ-
ments that are hard to compute by any method. Under the Speed Prior the
cumulative a priori probability of all data whose computation through an optimal
algorithm requires more than OðnÞ resources is 1=n.

Can we use the optimal predictors to build an optimal AI? Indeed, in the new
millennium it was shown we can. At any time t, the recent theoretically optimal
yet uncomputable RL algorithm AIXI (Hutter 2005) uses Solomonoff’s universal
prediction scheme to select those action sequences that promise maximal future
reward up to some horizon, typically 2t, given the current data h(Bt).. One may
adapt this to the case of any finite horizon T . That is, in cycle t þ 1, AIXI selects as
its next action the first action of an action sequence maximizing n-predicted
reward up to the horizon, appropriately generalizing Solomonoff’s universal prior.
Recent work (Hutter 2005) demonstrated AIXI’s optimal use of observations as
follows. The Bayes-optimal policy pn based on the mixture n is self-optimizing in
the sense that its average utility value converges asymptotically for all l 2 M to
the optimal value achieved by the (infeasible) Bayes-optimal policy pl which
knows l in advance. The necessary condition that M admits self-optimizing
policies is also sufficient. Furthermore, pn is Pareto-optimal in the sense that there
is no other policy yielding higher or equal value in all environments m 2 M and a
strictly higher value in at least one (Hutter 2005).

What are the implications? The first decades of attempts at Artificial General
Intelligence (AGI) have been dominated by heuristic approaches (Newell and
Simon 1963; Rosenbloom et al. 1993; Utgoff 1986; Mitchell 1997). Traditionally
many theoretical computer scientists have regarded the field with contempt for its
lack of hard theoretical results. Things have changed, however. Although the
universal approach above is practically infeasible due to the incomputability of
Solomonoff’s prior, it does provide, for the first time, a mathematically sound
theory of AGI and optimal decision making based on experience, identifying the
limits of both human and artificial intelligence, and providing a yardstick for any
future approach to AGI.

Using the Speed Prior mentioned above, one can scale the universal approach
down such that it becomes at least computable (Schmidhuber 2002b). In what
follows I will mention ways of introducing additional optimality criteria that take
into account the computational costs of prediction and decision making.
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Asymptotically Optimal General Problem Solver

To take computation time into account in a general, theoretically optimal way (Levin
1973; Li and Vitanyi 1997, pp. 502–505), the recent asymptotically optimal search
algorithm for all well-defined problems HSEARCH (Hutter 2002) uses a hardwired
brute force proof searcher which (justifiably) ignores the costs of proof search.
Assuming discrete input/output domains X=Y � B�, a formal problem specification
f : X ! Y (say, a functional description of how integers are decomposed into their
prime factors), and a particular x 2 X (say, an integer to be factorized), HSEARCH

orders all proofs of an appropriate axiomatic system by size to find programs q that
for all z 2 X provably compute f ðzÞ within time bound tqðzÞ. Simultaneously it
spends most of its time on executing the q with the best currently proven time bound
tqðxÞ. Remarkably, HSEARCH is as fast as the fastest algorithm that provably computes
f ðzÞ for all z 2 X, save for a constant factor smaller than 1þ � (arbitrary real-valued
�[ 0) and an f -specific but x-independent additive constant (Hutter 2002).

Practical applications, however, should not ignore potentially huge constants.
This motivates the next section which addresses all kinds of optimality (not just
asymptotic optimality).

Optimal Self-Referential General Problem Solver

The recent Gödel machines (Schmidhuber 2005, 2007a, 2009) represent the first
class of mathematically rigorous, general, fully self-referential, self-improving,
optimally efficient problem solvers. In particular, they are applicable to the
problem embodied by objective (4.1), which obviously is not limited to asymptotic
optimality. Gödel machines formalize I. J. Good’s informal remarks (1965) on an
‘‘intelligence explosion through self-improving super-intelligences.’’

The initial software S of such a Gödel machine contains an initial problem
solver, e.g., one of the approaches above (Hutter 2005) or some less general,
typical sub-optimal method (Kaelbling et al. 1996; Sutton and Barto 1998).
Simultaneously, it contains an initial proof searcher (possibly based on an online
variant of Universal Search (Levin 1973) or the Optimal Ordered Problem Solver
(Schmidhuber 2004) which is used to run and test proof techniques. The latter are
programs written in a universal programming language implemented on the Gödel
machine within S, able to compute proofs concerning the system’s own future
performance, based on an axiomatic system A encoded in S. A describes the
formal utility function, in our case Eq. (4.1), the hardware properties, axioms of
arithmetics and probability theory and string manipulation etc, and S itself, which
is possible without introducing circularity (Schmidhuber 2005, 2007a, 2009).

Inspired by Kurt Gödel’s celebrated self-referential formulas (1931) (Goedel
1931), the Gödel machine rewrites any part of its own code in a computable way
through a self-generated executable program as soon as its Universal Search

4 New Millennium AI and the Convergence of History: Update of 2012 65



variant has found a proof that the rewrite is useful according to objective (4.1).
According to the Global Optimality Theorem (Schmidhuber 2005, 2007a, 2009),
such a self-rewrite is globally optimal—no local maxima!—since the self-refer-
ential code first had to prove that it is not useful to continue the proof search for
alternative self-rewrites.

If there is no provably useful, globally optimal way of rewriting S at all, then
humans will not find one either. But if there is one, then S itself can find and
exploit it. Unlike non-self-referential methods based on hardwired proof searchers
(Hutter 2005) (section Asymptotically Optimal General Problem Solver), Gödel
machines not only boast an optimal order of complexity but can optimally reduce
(through self-changes) any slowdowns hidden by the asymptotic OðÞ-notation,
provided the utility of such speed-ups is provable at all.

To make sure the Gödel machine is at least asymptotically optimal even before
the first self-rewrite, we may initialize it by the non-self-referential but asymp-
totically fastest algorithm for all well-defined problems HSEARCH (Hutter 2002) of
section Asymptotically Optimal General Problem Solver. Given some problem,
the Gödel machine may decide to replace its HSEARCH initialization by a faster
method suffering less from large constant overhead, but even if it doesn’t, its
performance won’t be less than asymptotically optimal.

Implications

The above implies that there already exists the blueprint of a Universal AI which
will solve almost all problems almost as quickly as if it already knew the best
(unknown) algorithm for solving them, because almost all imaginable problems
are big enough to make additive constants negligible. The only motivation for not
quitting computer science research right now is that many real-world problems are
so small and simple that the ominous constant slowdown (potentially relevant at
least before the first Gödel machine self-rewrite) is not negligible.

Recurrent/Deep Neural Networks

Practical implementations of the Gödel machine above do not yet exist, and
probably will require a thoughtful choice of the initial axioms and the initial proof
searcher. In what follows, however, I will focus on already quite practical, non-
optimal and non-universal, but still rather general searchers in program space, as
opposed to the space of reactive, feedforward input / output mappings, which still
attracts the bulk of current ML research.

Recurrent NN (RNN) are NN (Bishop 2006) with feedback connections that
are, in principle, as powerful as any traditional computer. There is a very simple
way to see this (Schmidhuber 1990): a traditional microprocessor may be viewed
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as a very sparsely connected RNN consisting of very simple neurons implementing
nonlinear AND and NAND gates, etc. Compare (Siegelmann and Sontag 1991) for
a more complex argument. Hence RNN can solve tasks involving sequences of
continually varying inputs. Examples include robot control, speech recognition,
music composition, attentive vision, and numerous others.

Supervised RNN can be trained by gradient descent and other methods (Werbos
1988; Williams and Zipser 1994; Robinson and Fallside 1987; Schmidhuber
1992a; Maass et al. 2002; Jaeger 2004). Recent work has successfully applied
Hessian-free optimization to RNN (Sutskever et al. 2011), using tricks such as
special damping functions and stopping criteria, mini-batches for curvature cal-
culation, and others. Our own RNN overcome fundamental problems of previous
RNN (Hochreiter et al. 2001), outperforming them in many applications (Hoch-
reiter and Schmidhuber 1997; Gers and Schmidhuber 2001, 2009; Gers et al. 2002;
Schmidhuber et al. 2007; Graves et al. 2006, 2008, 2009). While RNN used to be
toy problem methods in the 1990s, ours have recently started to outperform all
other methods in challenging real world applications (Schmidhuber et al. 2011,
2007; Fernandez et al. 2007, 2008, 2009, 2009). Recently, our CTC-trained
(Graves et al. 2006) mulitdimensional (Graves and Schmidhuber 2009) RNN won
three Connected Handwriting Recognition Competitions at ICDAR 2009 (see list
of won competitions below).

Training an RNN by standard methods is similar to training a feedforward NN
(FNN) with many layers, which runs into similar problems (Hochreiter et al.
2001). However, our recent deep FNN with special internal architecture overcome
these problems to the extent that they are currently winning many international
pattern recognition contests (Schmidhuber et al. 2011; Ciresan et al. 2010,
2011b, c, 2012b, c) (see list of won competitions below). None of this requires the
traditional sophisticated computer vision techniques developed over the past six
decades or so. Instead, our biologically rather plausible NN architectures learn
from experience with millions of training examples. Typically they have many
non-linear processing stages like Fukushima’s Neocognitron (Fukushima 1980);
we sometimes (but not always) profit from sparse network connectivity and
techniques such as weight sharing & convolution (LeCun et al. 1998; Behnke
2003), max-pooling (Scherer et al. 2010), and contrast enhancement like the one
automatically generated by unsupervised Predictability Minimization (Schmidh-
uber 1992b, 1996; Schraudolph et al. 1999). Our NN are now often outperforming
all other methods including the theoretically less general and less powerful support
vector machines (SVM) based on statistical learning theory (Vapnik 1995) (which
for a long time had the upper hand, at least in practice). These results are currently
contributing to a second Neural Network ReNNaissance (the first one happened
in the 1980s and early 90s) which might not be possible without dramatic advances
in computational power per Swiss Franc, obtained in the new millennium. In
particular, to implement and train our NN, we exploit graphics processing units
(GPUs, mini-supercomputers normally used for video games) which are 100 times
faster than traditional CPUs, and a million times faster than PCs of two decades
ago when we started this type of research.
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1st Ranks of my Lab’s Methods in International Competitions since 2009:

7. ISBI 2012 Segmentation Challenge (with superhuman pixel error rate) (Cir-
esan et al. 2012a).

6. IJCNN 2011 on-site Traffic Sign Recognition Competition (0.56 % error rate,
the only method better than humans, who achieved 1.16 % on average; 3rd
place for 1.69 %) (Ciresan et al. 2012b)

5. ICDAR 2011 offline Chinese handwritten character recognition competition
(Ciresan et al. 2012c).

4. Online German Traffic Sign Recognition Contest (1st & 2nd rank; 1.02 % error
rate) (Ciresan et al. 2011c).

3. ICDAR 2009 Arabic Connected Handwriting Competition (won by our LSTM
RNN Graves et al. 2009; Graves and Schmidhuber 2009), same below.

2. ICDAR 2009 Handwritten Farsi/Arabic Character Recognition Competition.
1. ICDAR 2009 French Connected Handwriting Competition.

1st Ranks in Important Machine Learning (ML) Benchmarks since 2010:

3. MNIST handwritten digits data set (LeCun et al. 1998) (perhaps the most
famous ML benchmark). New records: 0.35 % error in 2010 (Ciresan et al.
2010), 0.27 % in 2011 (Ciresan et al. 2011a), first human-competitive perfor-
mance (0.23 %) in 2012 (Ciresan et al. 2012c).

2. NORB stereo image data set (Yann LeCun et al. 2004). New records in 2011,
2012, e.g., (Ciresan et al. 2012c).

1. CIFAR-10 image data set (Krizhevsky 2009). New records (eventually 11.2 %
error rate) in 2011, 2012, e.g., (Ciresan et al. 2012c).

In a certain sense, Reinforcement Learning (RL) (Kaelbling et al. 1996; Sutton
and Barto 1998) is more challenging than supervised learning as above, since there is
no teacher providing desired outputs at appropriate time steps. To solve a given
problem, the learning agent itself must discover useful output sequences in response
to the observations. The traditional approach to RL is best embodied by Sutton and
Barto’s book (Sutton and Barto 1998). It makes strong assumptions about the
environment, such as the Markov assumption: the current input of the agent tells it all
it needs to know about the environment. Then all we need to learn is some sort of
reactive mapping from stationary inputs to outputs. This is often unrealistic. A more
general approach for partially observable environments directly evolves programs
for RNN with internal states (no need for the Markovian assumption), by applying
evolutionary algorithms (Rechenberg 1971; Schwefel 1974; Holland 1975) to RNN
weight matrices (Yao 1993; Sims 1994; Stanley and Miikkulainen 2002; Hansen and
Ostermeier 2001). Recent work brought progress through a focus on reducing search
spaces by co-evolving the comparatively small weight vectors of individual neurons
and synapses (Gomez et al. 2008), by Natural Gradient-based Stochastic Search
Strategies (Wierstra et al. 2008, 2010; Sun et al. 2009a, 2009b; Schaul et al. 2010;
Glasmachers et al. 2010), and by reducing search spaces through weight matrix
compression (Schmidhuber 1997; Koutnik et al. 2010). Our RL RNN now outper-
form many previous methods on benchmarks (Gomez et al. 2008), creating
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memories of important events and solving numerous tasks unsolvable by classical
RL methods. Several best paper awards resulted from this research, e.g., (Sun et al.
2009a; Gisslen et al. 2011).

Curious and Creative Machines Maximizing Wow-Effects

The main problem in many RL tasks, however, remains the very rare external
reward. How to learn anything from such limited feedback in reasonable time?
Over the past two decades I have pioneered a Formal Theory of Curiosity (FTC)
and creativity and exploration, which describes how to provide frequent additional
intrinsic rewards for active data-creating explorers (Schmidhuber 1991a, b, 1999,
2006a, 2010, 2011; Storck et al. 1995). FTC has recently gained a lot of traction
(most citations, even of the old papers, stem from the past five years, especially the
last two years).

One inspiration of FTC is biological. To solve existential problems such as
avoiding hunger or thirst, a baby has to learn how the environment responds to its
actions. Even when there is no immediate need to satisfy thirst or other built-in
primitive drives, the baby does not run idle. Instead it actively conducts non-
random experiments: what sensory feedback do I get if I move my eyes or my
fingers or my tongue in particular ways? Being able to predict the effects of its
actions enable it to plan control sequences leading to desirable states, such as those
where its thirst and hunger sensors are switched off. But the growing infant quickly
gets bored by things it already understands well as well as those it does not
understand at all. It searches for new effects exhibiting some yet unexplained but
easily learnable regularities. It continually acquires more and more complex skills
building on previously acquired, simpler skills. Eventually the baby may become a
physicist, creating experiments to discover previously unknown physical laws, or
an artist creating new eye-opening artworks, or a comedian delighting audiences
with novel jokes.

According to FTC (Schmidhuber 1991a, b, 1999, 2006a, 2010, 2011; Storck
et al. 1995), the baby’s exploratory behavior is driven by a very simple algorithmic
mechanism that uses RL to maximize internal wow effects. Wow effects are sudden
reductions in an agent’s estimate of the complexity of its history of observations
and actions. These occur due to the agent’s own learning progress. To clarify,
consider an explorer with two modules: a world model and an actor. The former
encodes the agent’s growing history of sensory data (tactile, auditory, visual, etc),
while the latter executes actions that influence and shape that history. The world
model (e.g., an NN or RNN) uses a learning algorithm to encode the data more
efficiently, trying to discover new regularities that allow for saving storage space
(e.g., synapses) or computation time. When successful, the RL actor receives a
reward (the wow effect). Maximizing future expected reward, the actor is moti-
vated to invent behaviors leading to more such rewards; i.e., to data that the
encoder does not yet know but can easily learn. Wow effects can also result from
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simplifying or speeding up the actor itself (Schmidhuber 2011). Unlike the pre-
programmed interestingness measure of EURISKO (Lenat 1993), FTC’s contin-
ually redefines what’s interesting based on what’s currently easy to learn, in
addition to what’s already known.

Since 1990 we have been building explorers based on FTC. These agents may
be viewed as simple artificial scientists or artists with an intrinsic desire to create
experiments for building better models of the world (Schmidhuber 1991a, b, 1999,
2006a, 2010; Storck et al. 1995), in the process developing more and more efficient
procedures or skills (Schmidhuber 1999, 2011). This work has inspired much
recent research; the last few years brought lots of related work by others (Singh
et al. 2005; Barto 2013; Dayan 2013; Oudeyer et al. 2013), also in the nascent field
of developmental robotics (Kuipers et al. 2006; Hart et al. 2008; Oudeyer et al.
2012). FTC generalizes active learning (Fedorov 1972; Balcan et al. 2009; Strehl
et al. 2010), taking into account: (1) highly environment-dependent costs of
obtaining or creating not just individual data points but data sequences of unknown
size; (2) arbitrary algorithmic (Solomonoff 1964, 2002a, b; Kolmogorov 1965; Li
and Vitanyi 1997) or statistical dependencies in sequences of actions and sensory
inputs (Schmidhuber 1999, 2006a); and (3) the computational cost of learning new
skills (Schmidhuber 1999, 2011).

The first curious explorers from the 1990s (Schmidhuber 1991a, 1999; Storck
et al. 1995) used RL methods that were sub-optimal for online learning and for
wow effect rewards that vanish as soon as learning progress stops. More recent,
mathematically optimal, creative explorers (Schmidhuber 2006a, 2010) are based
on universal RL methods (Hutter 2005; Schmidhuber 2002b, 2006b) that are not
yet computationally tractable (section Universal But Incomputable AI). Recent
work has demonstrated exploration that is both optimal and feasible (Yi et al.
2011) for limited scenarios, but much remains to be done for challenging, high-
dimensional, partially observable worlds. This is driving ongoing work.

Is History Converging? Again?

Many predict that within a few decades there will be computers whose raw
computing power will surpass the one of a human brain by far (e.g., Moravec
1999; Kurzweil 2005). In the 1980s, an educated guess of this type motivated me
to study computer science and AI. I have argued above that algorithmic advances
are keeping up with the hardware development, pointing to new-millennium
theoretical insights on universal problem solvers and creative machines that are
optimal in various mathematical senses (thus making General AI a real formal
science), as well as to practical progress in program learning through brain-
inspired neural nets.

A single human predicting the future of humankind is like a single neuron
predicting what its brain will do. Nevertheless, a few things can be predicted
confidently, such as: tomorrow the sun will shine in the Sahara desert. So let us put
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the AI-oriented developments discussed above in a broader context, and try to
extend the naive analysis of past computer science breakthroughs in the intro-
duction, which predicts that computer history will converge in an Omega point or
historic singularity X around 2040 (Schmidhuber 2006c, 2007b).

Surprisingly, even if we go back all the way to the beginnings of modern man
over 40,000 years ago, essential historic developments (that is, the subjects of the
major chapters in history books) match a a binary scale marking exponentially
declining temporal intervals, each half the size of the previous one, and even
measurable in terms of powers of 2 multiplied by a human lifetime (roughly 80
years—throughout recorded history many individuals have reached this age,
although the average lifetime often was shorter, mostly due to high children
mortality). Using the value X ¼ 2; 040, associate an error bar of not much more
than 10 % with each date below:

1. X� 29 lifetimes: modern humans start colonizing the world from Africa.
2. X� 28 lifetimes: bow and arrow invented; hunting revolution.
3. X� 27 lifetimes: invention of agriculture; first permanent settlements;

beginnings of civilization.
4. X� 26 lifetimes: first high civilizations (Sumeria, Egypt), and the most

important invention of recorded history, namely, the one that made recorded
history possible: writing.

5. X� 25 lifetimes: The Axial Age (the axis around which history turned,
according to Karl Jaspers), the age of the first large empire (the Persian one),
the only empire ever to contain almost half humankind. At its fringes, the
ancient Greeks invent democracy and lay the foundations of Western science
and art and philosophy, from algorithmic procedures and formal proofs to
anatomically perfect sculptures, harmonic music, sophisticated machines
including steam engines, and organized sports. Major Asian religions founded,
Old Testament written (basis of Judaism, Christianity, Islam). High civiliza-
tions in China, origin of the first calculation tools, and India, origin of
alphabets and the zero.

6. X� 24 lifetimes: bookprint (often called the most important invention of the
past 2000 years) invented in China. Islamic science and culture start spreading
across large parts of the known world (this has sometimes been called the
most important development between Antiquity and the age of discoveries)

7. X� 23 lifetimes: the most dominant empire of the past 2,500 years (the
Mongolian empire) includes most of the civilized world. Soon afterwards,
Chinese fleets and later also European vessels start exploring the world. Gun
powder and guns invented in China. Rennaissance and printing press (often
called the most influential invention of the past 1000 years) and subsequent
Reformation in Europe. Begin of the Scientific Revolution.

8. X� 22 lifetimes: Age of enlightenment and rational thought in Europe.
Massive progress in the sciences; first flying machines; start of the industrial
revolution based on improved steam engines.
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9. X� 2 lifetimes: Birth of the modern world in the second industrial revolution
based on combustion engines, cheap electricity, and modern chemistry.
Genetic and evolution theory. Revolutionary modern medicine through the
germ theory of disease. Onset of the unprecedented population explosion
driving many other developments. European colonialism at its short-lived
peak.

10. X� 1 lifetime: Post-World War II society and pop culture emerges. The
world-wide super-exponential population explosion (mainly due to the Haber-
Bosch process Smil 1999) is at its peak. First commercial computers and first
spacecraft; DNA structure unveiled.

11. X� 1=2 lifetime: 3rd industrial revolution (?) through an emerging world-
wide digital nervous system based on personal computers, cell phones, and the
World Wide Web. A mathematical theory of universal AI emerges (see sec-
tions above)—will this be considered a milestone in the future?

12. X� 1=4 lifetime: This point will be reached in a few years. See introduction.
13. X� 1=8 lifetime: The number of humans will roughly match the number of

grey matter neurons in a human brain. Will they be digitally connected in a
roughly brain-like way (on average 10,000 connections per unit, mostly
between neighbors arranged in a two-dimensional sheet), like a super-brain
whose super-neurons are standard human brains? 100 years after Gödel’s
paper on the limits of proof & computation & AI (Goedel 1931): will practical
variants of Gödel machines start a runaway evolution of continually self-
improving superminds way beyond human imagination, causing far more
unpredictable revolutions in the final decade before X than during all the
millennia before?

14. ...

I feel there is no need to justify a much more cautious outlook by pessimistically
referring to comparatively recent over-optimistic and self-serving predictions
(1960s: ‘‘only 10 instead of 100 years needed to build AIs’’) by a few early AI
enthusiasts in search of funding (Schmidhuber 2012). Nevertheless, after 10,000
years of civilization it would not matter much if the X estimate above were off by a
few decades. Note that by cosmic standards the invention of writing over 5000
years ago almost coincided with the emergence of the WWW, and all of civili-
zation history seems like a sudden flash—one needs to zoom in very closely to
resolve the minute details of this ongoing turbulent intelligence explosion span-
ning just a few millennia.

The following disclosure should help the reader to take the list above with a
grain of salt though. I admit being very interested in witnessing the Omega point. I
was born in 1963, and therefore perhaps should not expect to live long past 2040.
This may motivate me to uncover certain historic patterns that fit my desires, while
ignoring other patterns that do not.

Others may feel attracted by the same trap, identifying exponential speedups in
sequences of historic paradigm shifts identified by various historians, to back up
the hypothesis that Omega is near, e.g., (Kurzweil 2005). The cited historians are
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all contemporary, presumably being subject to a similar bias. People of past ages
might have held quite different views. For example, possibly some historians of the
year 1525 felt inclined to predict a convergence of history around 1540, deriving
this date from an exponential speedup of recent breakthroughs such as the printing
press (around 1444), the re-discovery of America (48 years later), the Reformation
(again 24 years later—see the pattern of exponential acceleration?), and other
events they deemed important although today they are mostly forgotten.
(According to TIME LIFE magazine’s millennium issue, the three events above
were the previous millennium’s most influential ones.)

Could it be that such lists just reflect the human way of allocating memory
space to past events (Schmidhuber 2006c, 2007b)? Maybe there is a general rule
for both the individual memory of single humans and the collective memory of
entire societies and their history books: constant amounts of memory space
get allocated to exponentially larger, adjacent time intervals further and further
into the past. For example, events that happened between 2 and 4 lifetimes ago get
roughly as much memory space as events in the previous interval of twice the size.
Presumably only a few ‘‘important’’ memories will survive the necessary com-
pression. Maybe that’s why there has never been a shortage of prophets predicting
that the end is near—the important events according to one’s own view of the past
always seem to accelerate exponentially. A similar plausible type of memory
decay allocates Oð1=nÞ memory units to all events older than OðnÞ unit time
intervals. This is reminiscent of a bias governed by a time-reversed Speed Prior
(Schmidhuber 2002b) (section Universal But Incomputable AI).

References

Balcan, M. F., Beygelzimer, A., & Langford, J. (2009). Agnostic active learning. Journal of
Computer and System Sciences, 75(1), 78–89.

Barto, A. (2013). Intrinsic motivation and reinforcement learning. In G. Baldassarre & M. Mirolli
(Eds.), Intrinsically motivated learning in natural and artificial systems. Springer (in press).

Behnke, S. (2003). Hierarchical neural networks for image interpretation, volume 2766 of lecture
notes in computer science. Springer.

Bishop, C. M. (2006). Pattern recognition and machine learning. NY: Springer.
Bringsjord, S. (2000), ‘A contrarian future for minds and machines’, chronicle of higher

education (p. B5). Reprinted in The Education Di-gest, vol. 66(6), pp. 31–33.
Ciresan, D. C., Meier, U., Gambardella, L. M., & Schmidhuber, J. (2010). Deep big simple neural

nets for handwritten digit recogntion. Neural Computation, 22(12), 3207–3220.
Ciresan, D. C., Meier, U., Gambardella, L. M., & Schmidhuber, J. (2011a). Convolutional neural

network committees for handwritten character classification. In 11th International Conference
on Document Analysis and Recognition (ICDAR), pp 1250–1254.

Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M. & Schmidhuber, J. (2011b). Flexible,
high performance convolutional neural networks for image classification. In International
Joint Conference on Artificial Intelligence IJCAI, pp 1237–1242.

Ciresan, D. C., Meier, U., Masci, J., & Schmidhuber, J. (2011c). A committee of neural networks
for traffic sign classification. In International Joint Conference on, Neural Networks,
pp 1918–1921.

4 New Millennium AI and the Convergence of History: Update of 2012 73



Ciresan, D. C., Meier, U., Masci, J., & Schmidhuber, J. (2012a). Multi-column deep neural
network for traffic sign classification. Neural Networks, 32, 333–338.

Ciresan, D. C., Meier, U., & Schmidhuber, J. (2012b). Multi-column deep neural networks for
image classification. In IEEE Conference on Computer Vision and Pattern Recognition CVPR
2012, pp 3642–3649.

Ciresan, D. C., Meier, U., & Schmidhuber, J. (2012c). Multi-column deep neural networks for
image classification. In IEEE Conference on Computer Vision and Pattern Recognition CVPR
2012. Long preprint arXiv:1202.2745v1 [cs.CV].

Darwin, C. (1997). The descent of man, prometheus, amherst. NY: A reprint edition.
Dayan, P. (2013). Exploration from generalization mediated by multiple controllers. In G.

Baldassarre & M. Mirolli (Eds.), Intrinsically motivated learning in natural and artificial
systems. Springer (in press).

Fedorov, V. V. (1972). Theory of optimal experiments. NY: Academic.
Fernandez, S., Graves, A., & Schmidhuber, J. (2007). Sequence labelling in structured domains

with hierarchical recurrent neural networks. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI).

Floridi, L. (2007). A look into the future impact of ICT on our lives. The Information Society,
23(1), 59–64.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics36(4), 193–202.

Gers, F. A., & Schmidhuber, J. (2001). LSTM recurrent networks learn simple context free and
context sensitive languages. IEEE Transactions on Neural Networks, 12(6), 1333–1340.

Gers, F. A., Schraudolph, N., & Schmidhuber, J. (2002). Learning precise timing with LSTM
recurrent networks. Journal of Machine Learning Research, 3, 115–143.

Gisslen, L., Luciw, M., Graziano, V., & Schmidhuber, J. (2011). Sequential constant size
compressor for reinforcement learning. In Proceedings of Fourth Conference on Artificial
General Intelligence (AGI), Google, Mountain View, CA.

Glasmachers, T., Schaul, T., Sun, Y., Wierstra, D. & Schmidhuber, J. (2010). Exponential Natural
Evolution Strategies. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO).

Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme I. Monatshefte für Mathematik und Physik, 38, 173–198.

Gomez, F. J., Schmidhuber, J., & Miikkulainen, R. (2008). Efficient non-linear control through
neuroevolution. Journal of Machine Learning Research JMLR, 9, 937–965.

Graves, A., Fernandez, S., Gomez, F. J., & Schmidhuber, J. (2006). Connectionist temporal
classification: Labelling unsegmented sequence data with recurrent neural nets. In ICML ’06:
Proceedings of the International Conference on Machine Learning.

Graves, A., Fernandez, S., Liwicki, M., Bunke, H., & Schmidhuber, J. (2008). Unconstrained on-
line handwriting recognition with recurrent neural networks. In J. C. Platt, D. Koller, Y.
Singer, & S. Roweis (Eds.), Advances in Neural Information Processing Systems 20 (pp.
577–584). Cambridge: MIT Press.

Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2009). A
novel connectionist system for improved unconstrained handwriting recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 31(5), 855–868.

Graves, A., & Schmidhuber, J. (2009). Offline handwriting recognition with multidimensional
recurrent neural networks. In Advances in Neural Information Processing Systems (p. 21).
Cambridge: MIT Press.

Hansen, N., & Ostermeier, A. (2001). Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation, 9(2), 159–195.

Hart, S., Sen, S., & Grupen, R. (2008). Intrinsically motivated hierarchical manipulation. In
Proceedings of the IEEE Conference on Robots and Automation (ICRA). California: Pasadena.

Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient flow in recurrent
nets: The difficulty of learning long-term dependencies. In S. C. Kremer & J. F. Kolen (Eds.),
A Field Guide to Dynamical Recurrent Neural Networks. NJ: IEEE Press.

74 J. Schmidhuber



Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8),
1735–1780.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of
Michigan Press.

Hutter, M. (2002). The fastest and shortest algorithm for all well-defined problems. International
Journal of Foundations of Computer Science, 13(3), 431–443 (On J. Schmidhuber’s SNF
grant 20–61847).

Hutter, M. (2005). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic
Probability. Berlin: Springer (On J. Schmidhuber’s SNF grant 20–61847).

Jaeger, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving energy in
wireless communication. Science, 304, 78–80.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey.
Journal of AI research, 4, 237–285.

Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information.
Problems of Information Transmission, 1, 1–11.

Koutnik, J., Gomez, F., & Schmidhuber, J. (2010). Evolving neural networks in compressed
weight space. In Proceedings of the Conference on Genetic and, Evolutionary Computation
(GECCO-10).

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Master’s thesis:
Computer Science Department, University of Toronto.

Kuipers, B., Beeson, P., Modayil, J., & Provost, J. (2006). Bootstrap learning of foundational
representations. Connection Science, 18(2).

Kurzweil, R. (2005). The singularity is near. NY: Wiley Interscience.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
LeCun, Y., Huang, F.-J., & Bottou, L. (2004). Learning methods for generic object recognition

with invariance to pose and lighting. In Proceedings of Computer Vision and Pattern
Recognition Conference.

Lenat, D. B. (1983). Theory formation by heuristic search. Machine Learning, vol. 21.
Levin, L. A. (1973). Universal sequential search problems. Problems of Information Transmis-

sion, 9(3), 265–266.
Li, M., & Vitányi, P. M. B. (1997). An introduction to kolmogorov complexity and its

applications (2nd ed.). NY: Springer.
Maass, W., Natschläger, T., & Markram, H. (2002). A fresh look at real-time computation in

generic recurrent neural circuits. Institute for Theoretical Computer Science, TU Graz :
Technical report.

Mitchell, T. (1997). Machine learning. NY: McGraw Hill.
Moravec, H. (1999). Robot . NY: Wiley Interscience.
Newell, A., & Simon, H. (1963). GPS, a program that simulates human thought. In E. Feigenbaum

& J. Feldman (Eds.), Computers and thought (pp. 279–293). New York: McGraw-Hill.
Oudeyer, P. -Y., Baranes, A., & Kaplan, F. (2013). Intrinsically motivated learning of real world

sensorimotor skills with developmental constraints. In G. Baldassarre & M. Mirolli (Eds.),
Intrinsically motivated learning in natural and artificial systems. Springer (in press).

Rechenberg, I. (1971). Evolutions strategie–optimierung technischer systeme nach Prinzipien der
biologischen Evolution. Dissertation, Published 1973 by Fromman-Holzboog.

Robinson, A. J., & Fallside, F. (1987). The utility driven dynamic error propagation network.
Technical Report CUED/F-INFENG/TR.1, Cambridge University Engineering Department.

Rosenbloom, P. S., Laird, J. E., & Newell, A. (1993). The SOAR papers. NY: MIT Press.
Schaul, T., Bayer, J., Wierstra, D., Sun, Y., Felder, M., Sehnke, F., et al. (2010). PyBrain. Journal

of Machine Learning Research, 11, 743–746.
Scherer, D., Müller, A., & Behnke, S. (2010). In International Conference on Artificial Neural

Networks.
Schmidhuber, J. (1990). Dynamische neuronale Netze und das fundamentale raumzeitliche

Lernproblem. Dissertation: Institut für Informatik, Technische Universität München.

4 New Millennium AI and the Convergence of History: Update of 2012 75



Schmidhuber, J. (1991a). Curious model-building control systems. In Proceedings of the
International Joint Conference on Neural Networks (vol. 2, pp. 1458–1463). Singapore: IEEE
press.

Schmidhuber, J. (1991b). A possibility for implementing curiosity and boredom in model-
building neural controllers. In J. A. Meyer & S. W. Wilson (Eds.) Proceedings of the
International Conference on Simulation of Adaptive Behavior: From Animals to Animats,
pp. 222–227. MIT Press/Bradford Books.

Schmidhuber, J. (1991c). Reinforcement learning in Markovian and non-Markovian environ-
ments. In D. S. Lippman, J. E. Moody, & D. S. Touretzky (Eds.), Advances in neural
information processing systems 3 (NIPS 3) (pp. 500–506). NY: Morgan Kaufmann.

Schmidhuber, J. (1992a). A fixed size storage Oðn3Þ time complexity learning algorithm for fully
recurrent continually running networks. Neural Computation, 4(2), 243–248.

Schmidhuber, J. (1992b). Learning factorial codes by predictability minimization. Neural
Computation, 4(6), 863–879.

Schmidhuber, J. (1997). Discovering neural nets with low Kolmogorov complexity and high
generalization capability. Neural Networks, 10(5), 857–873.

Schmidhuber, J. (1999). Artificial curiosity based on discovering novel algorithmic predictability
through coevolution. In P. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao,& Z. Zalzala
(Eds.), Congress on evolutionary computation (pp. 1612–1618). Piscataway: IEEE Press.

Schmidhuber, J. (2002a). Hierarchies of generalized Kolmogorov complexities and nonenumer-
able universal measures computable in the limit. International Journal of Foundations of
Computer Science, 13(4), 587–612.

Schmidhuber, J. (2002). The speed prior: A new simplicity measure yielding near-optimal
computable predictions. In J. Kivinen& R. H. Sloan (Eds.), Proceedings of the 15th Annual
Conference on Computational Learning Theory (COLT 2002) (pp. 216–228). Lecture Notes in
Artificial Intelligence Sydney, Australia: Springer.

Schmidhuber, J. (2003a). Exponential speed-up of computer history’s defining moments. http://
www.idsia.ch/juergen/computerhistory.html

Schmidhuber, J. (2003b). The new AI: General & sound & relevant for physics. Technical Report
TR IDSIA-04-03, Version 1.0, arXiv:cs.AI/0302012 v1.

Schmidhuber, J. (2004). Optimal ordered problem solver. Machine Learning, 54, 211–254.
Schmidhuber, J. (2005). Completely self-referential optimal reinforcement learners. In W. Duch,

J. Kacprzyk, E. Oja, & S. Zadrozny (Eds.), Artificial neural networks: Biological inspirations–
ICANN 2005 (pp. 223–233), LNCS 3697. Springer: Berlin Heidelberg (Plenary talk).

Schmidhuber, J. (2006a). Developmental robotics, optimal artificial curiosity, creativity, music,
and the fine arts. Connection Science, 18(2), 173–187.

Schmidhuber, J. (2006b). Gödel machines: Fully self-referential optimal universal self-improvers.
In B. Goertzel& C. Pennachin (Eds.), Artificial general intelligence (pp. 199–226).
Heidelberg: Springer (Variant available as arXiv:cs.LO/0309048).

Schmidhuber, J. (2006c). Celebrating 75 years of AI–history and outlook: The next 25 years. In
M. Lungarella, F. Iida, J. Bongard,& R. Pfeifer (Eds.), 50 years of artificial intelligence (vol.
LNAI 4850, pp. 29–41). Berlin/Heidelberg: Springer (Preprint available as arXiv:0708.4311).

Schmidhuber, J. (2007a). Gödel machines: Fully self-referential optimal universal self-improvers.
In B. Goertzel& C. Pennachin (Eds.), Artificial general intelligence (pp. 199–226). Springer
Verlag (Variant available as arXiv:cs.LO/0309048).

Schmidhuber, J. (2007b). New millennium AI and the convergence of history. In W. Duch& J.
Mandziuk (Eds.), Challenges to computational intelligence (vol. 63, pp. 15–36). Studies in
Computational Intelligence, Springer, 2007. Also available as arXiv:cs.AI/0606081.

Schmidhuber, J. (2009). Ultimate cognition à la Gödel. Cognitive Computation, 1(2), 177–193.
Schmidhuber, J. (2010). Formal theory of creativity, fun, and intrinsic motivation (1990–2010).

IEEE Transactions on Autonomous Mental Development, 2(3), 230–247.

76 J. Schmidhuber

http://www.idsia.ch/juergen/computerhistory.html
http://www.idsia.ch/juergen/computerhistory.html


Schmidhuber, J. (2011). PowerPlay: Training an increasingly general problem solver by
continually searching for the simplest still unsolvable problem. Technical Report arXiv:
1112.5309v1 [cs.AI].

Schmidhuber, J. (2012). Philosophers& futurists, catch up! response to the singularity. Journal of
Consciousness Studies, 19(1–2), 173–182.

Schmidhuber, J., Ciresan, D., Meier, U., Masci, J., & Graves, A. (2011). On fast deep nets for
AGI vision. In Proceedings of Fourth Conference on Artificial General Intelligence (AGI),
Google, Mountain View, CA.

Schmidhuber, J., Eldracher, M., & Foltin, B. (1996). Semilinear predictability minimization
produces well-known feature detectors. Neural Computation, 8(4), 773–786.

Schmidhuber, J., Wierstra, D., Gagliolo, M., & Gomez, F. J. (2007). Training recurrent networks
by EVOLINO. Neural Computation, 19(3), 757–779.

Schmidhuber, J., Zhao, J., & Schraudolph, N. (1997). Reinforcement learning with self-modifying
policies. In S. Thrun& L. Pratt (Eds.), Learning to learn (pp. 293–309). NY: Kluwer.

Schraudolph, N. N., Eldracher, M., & Schmidhuber, J. (1999). Processing images by semi-linear
predictability minimization. Network: Computation in Neural Systems, 10(2), 133–169.

Schwefel, H. P. (1974). Numerische optimierung von computer-modellen. Dissertation,
Published 1977 by Birkhäuser, Basel.

Siegelmann, H. T., & Sontag, E. D. (1991). Turing computability with neural nets. Applied
Mathematics Letters, 4(6), 77–80.

Sims, K. (1994). Evolving virtual creatures. In A. Glassner (Ed.), Proceedings of SIGGRAPH ’94
(Orlando, Florida, July 1994), Computer Graphics Proceedings, Annual Conference
(pp. 15–22). ACM SIGGRAPH, ACM Press. ISBN 0-89791-667-0.

Singh, S., Barto, A. G., & Chentanez, N. (2005). Intrinsically motivated reinforcement learning.
In Advances in Neural Information Processing Systems 17 (NIPS). Cambridge: MIT Press.

Sloman, A. (2011a, Oct 23). Challenge for vision: Seeing a Toy Crane. Retrieved June 8, 2012,
from http://www.cs.bham.ac.uk/research/projects/cosy/photos/crane/

Sloman, A. (2011b, June 8). Meta-morphogenesis and the creativity of evolution. Retrieved 6
June 2012, from http://www.cs.bham.ac.uk/research/projects/cogaff/evo-creativity.pdf

Sloman, A. (2011c, Oct 29). Meta-Morphogenesis and Toddler Theorems: Case Studies.
Retrieved 8 June 2012, from http://www.cs.bham.ac.uk/research/projects/cogaff/misc/toddler-
theorems.html

Sloman, A. (2011d, Sep 19). Simplicity and Ontologies: The trade-off between simplicity of
theories and sophistication of ontologies. Retrieved June 8, 2012, from http://www.cs.bham.
ac.uk/research/projects/cogaff/misc/simplicity-ontology.html

Smil, V. (1999). Detonator of the population explosion. Nature, 400, 415.
Solomonoff, R. J. (1964). A formal theory of inductive inference. Part I. Information and Control,

7, 1–22.
Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting

topologies. Evolutionary Computation, 10, 99–127.
Storck, J., Hochreiter, S., & Schmidhuber, J. (1995). Reinforcement driven information acquisition

in non-deterministic environments. In Proceedings of the International Conference on
Artificial Neural Networks, Paris, vol. 2, pp. 159–164. EC2& Cie, 1995.

Strehl, A., Langford, J., & Kakade, S. (2010). Learning from logged implicit exploration data.
Technical, Report arXiv:1003.0120.

Sun, Y., Wierstra, D., Schaul, T., & Schmidhuber, J. (2009a). Efficient natural evolution
strategies. In Genetic and Evolutionary Computation Conference.

Sun, Y., Wierstra, D., Schaul, T., & Schmidhuber, J. (2009b). Stochastic search using the natural
gradient. In International Conference on Machine Learning (ICML).

Sutskever, I., Martens, J., & Hinton, G. (2011). Generating text with recurrent neural networks. In
L. Getoor& T. Scheffer (Eds.), Proceedings of the 28th International Conference on Machine
Learning (ICML-11) (pp. 1017–1024). ICML ’11 New York, NY, USA: ACM.

Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction. Cambridge: MIT Press.

4 New Millennium AI and the Convergence of History: Update of 2012 77

http://www.cs.bham.ac.uk/research/projects/cosy/photos/crane/
http://www.cs.bham.ac.uk/research/projects/cogaff/evo-creativity.pdf
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/toddler-theorems.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/toddler-theorems.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/simplicity-ontology.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/simplicity-ontology.html


Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, Series, 2(41), 230–267.

Utgoff, P. (1986). Shift of bias for inductive concept learning. In R. Michalski, J. Carbonell,& T.
Mitchell (Eds.), Machine learning (Vol. 2, pp. 163–190). Los Altos, CA: Morgan Kaufmann.

Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.
Vinge, V. (1984). The peace war. Inc. : Bluejay Books.
Vinge, V. (1993). The coming technological singularity. VISION-21 Symposium sponsored by

NASA Lewis Research Center, and Whole Earth Review, Winter issue.
Werbos, P. J. (1988). Generalization of backpropagation with application to a recurrent gas

market model. Neural Networks, 1.
Wierstra, D., Foerster, A., Peters, J., & Schmidhuber, J. (2010). Recurrent policy gradients. Logic

Journal of IGPL,18(2), 620–634.
Wierstra, D., Schaul, T., Peters, J., & Schmidhuber, J. (2008). Natural evolution strategies. In

Congress of Evolutionary Computation (CEC 2008).
Williams R. J., & Zipser, D. (1994). Gradient-based learning algorithms for recurrent networks

and their computational complexity. In back-propagation: Theory, architectures and
applications. Hillsdale, NJ: Erlbaum.

Yao, X. (1993). A review of evolutionary artificial neural networks. International Journal of
Intelligent Systems, 4, 203–222.

Yi, S., Gomez, F., & Schmidhuber, J. (2011). Planning to be surprised: Optimal Bayesian
exploration in dynamic environments. In Proceedings of Fourth Conference on Artificial
General Intelligence (AGI), Google, Mountain View, CA.

78 J. Schmidhuber



Chapter 4A
Aaron Sloman on Schmidhuber’s ‘‘New Millennium AI
and the Convergence of History 2012’’

I have problems both with the style and the content of this essay, though I have not
tried to take in the full mathematical details, and may therefore have missed
something. I do not doubt that the combination of technical advances by the author
and increases in computer power have made possible new impressive demon-
strations including out-performing rival systems on various benchmark tests.

However, it is not clear to me that those tests have much to do with animal or
human intelligence or that there is any reason to believe this work will help to
bridge the enormous gaps between current machine competences and the
competences of squirrels, nest-building birds, elephants, hunting mammals, apes,
and human toddlers.

The style of the essay makes the claims hard to evaluate because it repeatedly
says how good the systems are and reports that they outperform rivals, but does not
help an outsider to get a feel for the nature of the tasks and the ability of the
techniques to ‘‘scale out’’ into other tasks. In particular I have no interest in
systems that do well at reading hand-written characters since that is not a task for
which there is any objective criterion of correctness, and all that training achieves
is tracking human labellings, without giving any explanation as to why the human
labels are correct. I would be really impressed, however, if the tests showed a robot
assembling Meccano parts to form a model crane depicted in a picture, and related
tests here (Sloman 2011a).

Since claims are being made about how the techniques will lead beyond human
competences in a few decades I would like to see sample cases where the tech-
niques match mathematical, scientific, engineering, musical, toy puzzle solving, or
linguistic performances that are regarded as highly commendable achievements of
humans, e.g. outstanding school children or university students. (Newton, Einstein,
Mozart, etc. can come later.) Readers should see a detailed analysis of exactly how
the machine works in those cases and if the claim is that it uses non-human
mechanisms, ontologies, forms of representation, etc. then I would like to see those
differences explained. Likewise if its internals are comparable to those of humans I
would like to see at least discussions of the common details.

The core problem is how the goals of the research are formulated. Instead of a
robot with multiple asynchronously operating sensors providing different sorts of
information (e.g. visual, auditory, haptic, proprioceptive, vestibular), and a col-
lection of motor control systems for producing movements of animal-like hands,
legs, wings, mouths, tongue etc., the research addresses:

... a learning robotic agent with a single life which consists of discrete cycles or time steps
t ¼ 1; 2; ::: , T . Its total lifetime T may or may not be known in advance. In what follows,
the value of any time-varying variable Q at time tðtð1� t� TÞÞ will be denoted by QðtÞ,
the ordered sequence of values Qð1Þ; . . .:;QðtÞ by Q(\t), and the (possibly empty)
sequence Qð1Þ; . . .:;Qðt � 1Þ by Qð\tÞ:
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At any given t the robot receives a real-valued input vector xðtÞ from the environment and
executes a real-valued action yðtÞ which may affect future inputs; at times t\T its goal is
to maximize future success or utility....

As far as I am concerned that defines a particular sort of problem to do with
data mining in a discrete stream of vectors, where the future components are
influenced in some totally unexplained way by a sequence of output vectors.

I don’t see how such a mathematical problem relates to a crane assembly
problem where the perceived structure is constantly changing in complexity, with
different types of relationships and properties of objects relevant at different types,
and actions of different sorts of complexity required, rather than a stream of output
vectors (of fixed dimensionality?). I would certainly pay close attention if someone
demonstrated advances in machine learning by addressing the toy crane problem,
or the simpler problem described in (Sloman 2011d)

But so far none of the machine learning researchers I’ve pointed at these
problems has come back with something to demonstrate. Perhaps the author and
his colleagues are not interested in modelling or explaining human or animal
intelligence, merely in demonstrating a functioning program that satisfies their
definition of intelligence.

If they are interested in bridging the gap, then perhaps we should set up a
meeting at which a collection challenges is agreed between people NOT working
on machine learning and those who are, and then later we can jointly assess
progress. Some of the criteria I am interested in are spelled out in these documents
(Sloman 2011b, c).

However, all research results must be published in universally accessible open
access journals and web sites, and not restricted to members of wealthy
institutions.
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Chapter 4B
Selmer Bringsjord, Alexander Bringsjord and Paul Bello
on Schmidhuber’s ‘‘New Millennium AI and the Convergence
of History 2012’’

Hollow Hope for the Omega Point
We have elsewhere in the present volume shown that those who expect the

Singularity (or, using Schmidhuber’s term, X) are irrational fideists. Schmidhu-
ber’s piece doesn’t disappoint us: while in recounting what seems all of intel-
lectual history it reflects the brain of a bibliophage, it’s nonetheless long on faith,
and short on rigorous argument.

Does it follow from the fact that ‘‘raw computing power’’ continues to Moore’s-
Law-ishly increase, that human-level machine intelligence will arrive at some
point, let alone arrive on the exuberant timeline Schmidhuber presents? No. The
chief challenges in AI, relative to the human case, consist in finding the right
computer programs, not faster and faster computers upon which to implement
these programs (Bringsjord 2000). This is why automatic programming, one of the
original dreams of AI (in which a human writes a computer program P that
receives a non-executable description of an arbitrary Turing-computable function
f , and to succeed must produce a computer program P0 that verifiably computes f ),
is wholly and embarrassingly stalled. What class of being produces all the inge-
nious programs that increasingly form the lifeblood of the—to use Floridi’s
(Floridi 2007) term—infosphere? Machines? Ha.

Does it follow from the myriad neural-network-based advances and prizes
Schmidhuber cites that X will ever be reached, let alone reached by 2040? No.
Character/handwriting recognition is neat as far as it goes, but such low-level
computation has nothing to do with what makes us us: phenomenal consciousness,
free will, and natural-language communication. Taking just the latter in this brief
note, character recognition has positively nothing at all to do with the fact that,
say, human toddlers are vastly more eloquent than any machine. When a com-
puting machine can not only checkmate the two of us, but debate us extempora-
neously and non-idiotically in real time, we’ll take notice (or more accurately, our
like-minded ancestors will). As of now, 2012, over a decade from the year Turing
predicted human-machine linguistic indistinguishability, the best conversational
AI is Apple’s SIRI: cute, but not much more..

Does it follow from the fact that such-and-such ‘‘breakthroughs’’ have hap-
pened in the past at such-and-such intervals that the Singularity will occur in
accordance with some pattern Schmidhuber has magically divined? No. After all,
the advances he cites are tendentiously picked to align with the kind of AI he
pursues. Without question, the greatest AI achievement of the new millennium, an
example of noteworthy and promising new-millennium AI if anything is, is the
Watson system, produced by IBM researchers working on the basis of a relational
approach found nowhere in the kinds of AI technologies that Schmidhuber ven-
erates. Humans aren’t numerical; humans are propositional. The knowledge and
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abstract reasoning capacity that separates Homo sapiens sapiens from Darwin’s
(Darwin 1997) ‘‘problem-solving’’ dogs are at their heart at once deliberative and
propositional. The kind of AI that buoys Schmidhuber is neither; it’s steadfastly
syntactic, not semantic. Whence his unbridled optimism?

Schmidhuber closes in a spate of humility that borders on a crestfallen con-
cession. He raises the possibility that many of those who believe they see X
drawing nigh are driven by desire—desire to see the wonders of great machine
intelligence. Here we commend him for his insight. What the fantast sees isn’t
really there, but that he ‘‘sees’’ it nonetheless brings him intoxicating joy.
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Chapter 5
Why an Intelligence Explosion is Probable

Richard Loosemore and Ben Goertzel

Abstract The hypothesis is considered that: Once an AI system with roughly
human-level general intelligence is created, an ‘‘intelligence explosion’’ involving
the relatively rapid creation of increasingly more generally intelligent AI systems
will very likely ensue, resulting in the rapid emergence of dramatically superhu-
man intelligences. Various arguments against this hypothesis are considered and
found wanting.

Introduction

One of the earliest incarnations of the contemporary Singularity concept was
Good’s concept of the ‘‘intelligence explosion,’’ articulated in 1965 (Good 1965):

Let an ultraintelligent machine be defined as a machine that can far surpass all the
intellectual activities of any man however clever. Since the design of machines is one of
these intellectual activities, an ultraintelligent machine could design even better machines;
there would then unquestionably be an ‘intelligence explosion,’ and the intelligence of
man would be left far behind. Thus the first ultraintelligent machine is the last invention
that man need ever make.
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We consider Good’s vision quite plausible but, unsurprisingly, not all futurist
thinkers agree. Skeptics often cite limiting factors that could stop an intelligence
explosion from happening, and in a recent post on the Extropy email discussion list
(Sandberg 2011), the futurist Anders Sandberg articulated some of those possible
limiting factors, in a particularly clear way:

One of the things that struck me during our Winter Intelligence workshop on intelligence
explosions1 was how confident some people were about the speed of recursive self-
improvement of AIs, brain emulation collectives or economies. Some thought it was going
to be fast in comparison to societal adaptation and development timescales (creating a
winner takes all situation), some thought it would be slow enough for multiple superin-
telligent agents to emerge. This issue is at the root of many key questions about the
singularity (One superintelligence or many? How much does friendliness matter?).

It would be interesting to hear this list’s take on it: what do you think is the key limiting
factor for how fast intelligence can amplify itself?

• Economic growth rate
• Investment availability
• Gathering of empirical information (experimentation, interacting with an environment)
• Software complexity
• Hardware demands vs. available hardware
• Bandwidth
• Light-speed lags

Clearly many more can be suggested. But which bottlenecks are the most limiting, and
how can this be ascertained?‘‘

We are grateful to Sandberg for presenting this list of questions, because it
makes it especially straightforward for us to provide a clear counterargument to
the point of view his list represents. In this article, we explain why these bottle-
necks are unlikely to be significant issues, and thus why, as Good predicted, an
intelligence explosion is indeed a very likely outcome.

Seed AI

To begin, we need to delimit the scope and background assumptions of our
argument. In particular, it is important to specify what kind of intelligent system
would be capable of generating an intelligence explosion.

According to our interpretation, there is one absolute prerequisite for an
explosion to occur: an artificial general intelligence (AGI) must become smart
enough to understand its own design. The concept of an AGI is quite general, and
has been formalized mathematically by Hutter (2005) and others (Goertzel 2010).
However, here we are concerned specifically with AGI systems possessing roughly
the same broad set of intellectual capabilities as humans.

Of course, even among humans there are variations in skill level and knowl-
edge. The AGI that triggers the explosion must have a sufficiently advanced

1 http://www.fhi.ox.ac.uk/archived_events/winter_conference
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intelligence that it can think analytically and imaginatively about how to manip-
ulate and improve the design of intelligent systems. It is possible that not all
humans are able to do this, so an AGI that met the bare minimum requirements for
AGI-hood—say, a system smart enough to be a general household factotum—
would not necessarily have the ability to work in an AGI research laboratory.
Without an advanced AGI of the latter sort, there would be no explosion, just
growth as usual, because the rate-limiting step would still be the depth and speed at
which humans can think.

The sort of fully capable AGI with the potential to launch an intelligence
explosion might be called a ‘‘seed AGI’’, but here we will sometimes use the less
dramatic phrase ‘‘self-understanding, human-level AGI’’.

Start Date of an Explosion

Given that the essential prerequisite for an explosion to begin would be the
availability of the first self-understanding, human-level AGI, does it make sense to
talk about the period leading up to that arrival—the period during which that first
real AGI was being developed and trained—as part of the intelligence explosion
proper? We would argue that this is not appropriate, and that the true start of the
explosion period should be considered to be the moment when a sufficiently well
qualified AGI turns up for work at an AGI research laboratory. This may be
different from the way some others use the term, but it seems consistent with
Good’s original usage. So our concern here is to argue for the high probability of
an intelligence explosion, given the assumption that a self-understanding, human-
level AGI has been created.

By enforcing this distinction, we are trying to avoid possible confusion with the
parallel (and extensive!) debate about whether a self-understanding, human-level
AGI can be built at all. Questions about whether an AGI with ‘‘seed level capa-
bility’’ can plausibly be constructed, or how long it might take to arrive, are of
course quite different. A spectrum of opinions on this issue, from a survey of AGI
researchers at a 2009 AGI conference, were gathered and analyzed in detail (Baum
et al. 2011). In that survey, of an admittedly biased sample, a majority felt that an
AGI with this capability could be achieved by the middle of this century, though a
substantial plurality felt it was likely to happen much further out. While we have
no shortage of our own thoughts and arguments on this matter, we will leave them
aside for the purpose of the present paper.

Size of the Explosion

How big and how long would the explosion have to be to count as an ‘‘explosion’’?
Good’s original notion had more to do with the explosion’s beginning than its end,
or its extent. His point was that in a short space of time a human-level AGI would
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probably explode into a significantly transhuman AGI, but he did not try to argue
that subsequent improvements would continue without limit. We, like Good, are
primarily interested in the explosion from human-level AGI to an AGI with, very
loosely speaking, a level of general intelligence 2–3 orders of magnitude greater
than the human level (say, 100 or 1,000H, using 1H to denote human-level general
intelligence). This is not because we are necessarily skeptical of the explosion
continuing beyond such a point, but rather because pursuing the notion beyond that
seems a stretch of humanity’s current intellectual framework.

Our reasoning, here, is that if an AGI were to increase its capacity to carry out
scientific and technological research, to such a degree that it was discovering new
knowledge and inventions at a rate 100 or 1,000 times the rate at which humans
now do those things, we would find that kind of world unimaginably more intense
than any future in which humans were doing the inventing. In a 1,000H world,
AGI scientists could go from high-school knowledge of physics to the invention of
relativity in a single day (assuming, for the moment, that the factor of 1,000 was
all in the speed of thought—an assumption we will examine in more detail later).
That kind of scenario is dramatically different from a world of purely human
inventiveness—no matter how far humans might improve themselves in the future,
without AGI, its seems unlikely there will ever be a time when a future Einstein
would wake up one morning with a child’s knowledge of science and then go on to
conceive the theory of relativity by the following day—so it seems safe to call that
an ‘‘intelligence explosion’’.

Speed of Explosion

So much for the degree of intelligence increase that would count as an explosion:
that still leaves the question of how fast it has to arrive, to be considered explosive.
Would it be enough for the seed AGI to go from 1 to 1,000H in the course of a
century, or does it have to happen much quicker, to qualify?

Perhaps there is no need to rush to judgment on this point. Even a century-long
climb up to the 1,000H level would mean that the world would be very different
for the rest of history. The simplest position to take, we suggest, is that if the
human species can get to the point where it is creating new types of intelligence
that are themselves creating intelligences of greater power, then this is something
new in the world (because at the moment all we can do is create human babies of
power 1H), so even if this process happened rather slowly, it would still be an
explosion of sorts. It might not be a Big Bang, but it would at least be a period of
Inflation, and both could eventually lead to a 1,000H world.

Defining Intelligence

Finally, we propose to sidestep the difficulty of defining ‘‘intelligence’’ in a
rigorous way. There are currently no measures of general intelligence that are
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precise, objectively defined and broadly extensible beyond the human scope. But
since this is a qualitative essay rather than a report of quantitative calculations, and
since we can address Sandberg’s potential bottlenecks in some detail without
needing a precise measure, we believe that little is lost by avoiding the issue. So,
we will say that an intelligence explosion is something with the potential to create
AGI systems as far beyond humans as humans are beyond mice or cockroaches,
but we will not try to pin down exactly how far away the mice and cockroaches
really are.

A different, complementary approach to this issue is given by David Chalmers’
treatment of the Singularity hypothesis (Chalmers 2010). Chalmers argues care-
fully that, in order for the ‘‘intelligence explosion’’ argument to go through, one
doesn’t need a precise definition of general intelligence—one only needs the
existence of one or more quantities that are correlated with flexible practical
capability and that can be increased via increase of said capabilities. How these
various quantities are used to create a composite, single general intelligence
measure is something that doesn’t need to be resolved in order to argue for an
intelligence explosion.

Some Important Properties of the Intelligence Explosion

Before we get into a detailed analysis of the specific factors on Sandberg’s list, a
few more general comments are in order.

Inherent Uncertainty. Although we can try our best to understand how an
intelligence explosion might happen, the truth is that there are too many interac-
tions between the factors for any kind of reliable conclusion to be reached. This is
a complex-system interaction in which even the tiniest, least-anticipated factor
may turn out to be either the rate-limiting step or the spark that starts the fire. So
there is an irreducible uncertainty involved here, and we should be wary of
promoting conclusions that seem too firm.

General versus Special Arguments. There are two ways to address the
question of whether or not an intelligence explosion is likely to occur. One is based
on quite general considerations. The other involves looking at specific pathways to
AGI. An AGI researcher (such as either of the authors) might believe they
understand a great deal of the technical work that needs to be done to create an
intelligence explosion, so they may be confident of the plausibility of the idea for
that reason alone. We will restrict ourselves here to the first kind of argument,
which is easier to make in a relatively non-controversial way, and leave aside any
factors that might arise from our own understanding about how to build an AGI.

The ‘‘Bruce Wayne’’ Scenario. When the first self-understanding, human-
level AGI system is built, it is unlikely to be the creation of a lone inventor
working in a shed at the bottom of the garden, who manages to produce the
finished product without telling anyone. Very few of the ‘‘lone inventor’’ (or
‘‘Bruce Wayne’’) scenarios seem plausible. As communication technology
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advances and causes cultural shifts, technological progress is increasingly tied to
rapid communication of information between various parties. It is unlikely that a
single inventor would be able to dramatically outpace multi-person teams working
on similar projects; and also unlikely that a multi-person team would successfully
keep such a difficult and time-consuming project secret, given the nature of
modern technology culture.

Unrecognized Invention. It also seems quite implausible that the invention of a
human-level, self-understanding AGI would be followed by a period in which the
invention just sits on a shelf with nobody bothering to pick it up. The AGI situation
would probably not resemble the early reception of inventions like the telephone
or phonograph, where the full potential of the invention was largely unrecognized.
We live in an era in which practically-demonstrated technological advances are
broadly and enthusiastically communicated, and receive ample investment of
dollars and expertise. AGI receives relatively little funding now, for a combination
of reasons, but it is implausible to expect this situation to continue in the scenario
where highly technically capable human-level AGI systems exist. This pertains
directly to the economic objections on Sandberg’s list, as we will elaborate below.

Hardware Requirements. When the first human-level AGI is developed, it
will either require a supercomputer-level of hardware resources, or it will be
achievable with much less. This is an important dichotomy to consider, because
world-class supercomputer hardware is not something that can quickly be dupli-
cated on a large scale. We could make perhaps hundreds of such machines, with a
massive effort, but probably not a million of them in a couple of years.

Smarter versus Faster. There are two possible types of intelligence speedup:
one due to faster operation of an intelligent system (clock speed increase) and one
due to an improvement in the type of mechanisms that implement the thought
processes (‘‘depth of thought’’ increase). Obviously both could occur at once (and
there may be significant synergies), but the latter is ostensibly more difficult to
achieve, and may be subject to fundamental limits that we do not understand.
Speeding up the hardware, on the other hand, is something that has been going on
for a long time and is more mundane and reliable. Notice that both routes lead to
greater ‘‘intelligence,’’ because even a human level of thinking and creativity
would be more effective if it were happening a thousand times faster than it does
now.

It seems possible that the general class of AGI systems can be architected to
take better advantage of improved hardware than would be the case with intelli-
gent systems very narrowly imitative of the human brain. But even if this is not the
case, brute hardware speedup can still yield dramatic intelligent improvement.

Public Perception. The way an intelligence explosion presents itself to human
society will depend strongly on the rate of the explosion in the period shortly after
the development of the first self-understanding human-level AGI. For instance, if
the first such AGI takes 5 years to ‘‘double’’ its intelligence, this is a very different
matter than if it takes 2 months. A 5 year time frame could easily arise, for
example, if the seed AGI required an extremely expensive supercomputer based on
unusual hardware, and the owners of this hardware were to move slowly. On the
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other hand, a 2 month time frame could more easily arise if the initial AGI were
created using open source software and commodity hardware, so that a doubling of
intelligence only required addition of more hardware and a modest number of
software changes. In the former case, there would be more time for governments,
corporations and individuals to adapt to the reality of the intelligence explosion
before it reached dramatically transhuman levels of intelligence. In the latter case,
the intelligence explosion would strike the human race more suddenly. But this
potentially large difference in human perception of the events would correspond to
a fairly minor difference in terms of the underlying processes driving the
intelligence explosion.

Analysis of the Limiting Factors

Now we will deal with the specific factors on Sandberg’s list, one by one,
explaining in simple terms why each is not actually likely to be a significant
bottleneck. There is much more that could be said about each of these, but our aim
here is to lay out the main points in a compact way.

Economic Growth Rate and Investment Availability

The arrival, or imminent arrival, of human-level, self-understanding AGI systems
would clearly have dramatic implications for the world economy. It seems inev-
itable that these dramatic implications would be sufficient to offset any factors
related to the economic growth rate at the time that AGI began to appear.
Assuming the continued existence of technologically advanced nations with
operational technology R&D sectors, if self-understanding human-level AGI is
created, then it will almost surely receive significant investment. Japan’s economic
growth rate, for example, is at the present time somewhat stagnant, but there can
be no doubt that if any kind of powerful AGI were demonstrated, significant
Japanese government and corporate funding would be put into its further
development.

And even if it were not for the normal economic pressure to exploit the tech-
nology, international competitiveness would undoubtedly play a strong role. If a
working AGI prototype were to approach the level at which an explosion seemed
possible, governments around the world would recognize that this was a critically
important technology, and no effort would be spared to produce the first fully-
functional AGI ‘‘before the other side does’’. Entire national economies might well
be sublimated to the goal of developing the first superintelligent machine, in the
manner of Project Apollo in the 1960s. Far from influencing the intelligence
explosion, economic growth rate would be defined by the various AGI projects
taking place around the world.
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Furthermore, it seems likely that once a human-level AGI has been achieved, it
will have a substantial—and immediate—practical impact on multiple industries.
If an AGI could understand its own design, it could also understand and improve
other computer software, and so have a revolutionary impact on the software
industry. Since the majority of financial trading on the US markets is now driven
by program trading systems, it is likely that such AGI technology would rapidly
become indispensible to the finance industry (typically an early adopter of any
software or AI innovations). Military and espionage establishments would very
likely also find a host of practical applications for such technology. So, following
the achievement of self-understanding, human-level AGI, and complementing the
allocation of substantial research funding aimed at outpacing the competition in
achieving ever-smarter AGI, there is a great likelihood of funding aimed at
practical AGI applications, which would indirectly drive core AGI research along.

The details of how this development frenzy would play out are open to debate,
but we can at least be sure that the economic growth rate and investment climate in
the AGI development period would quickly become irrelevant.

The Permanent AI Winter Scenario. All of these considerations do, however,
leave one open question. At the time of writing, AGI investment around the world
is noticeably weak, compared with other classes of scientific and technological
investment. Is it possible that this situation will continue indefinitely, causing so
little progress to be made that no viable prototype systems are built, and no
investors ever believe that a real AGI is feasible?

This is hard to gauge, but as AGI researchers ourselves, our (clearly biased)
opinion is that a ‘‘permanent winter’’ scenario is too unstable to be believable.
Because of premature claims made by AI researchers in the past, a barrier to
investment clearly exists in the minds of today’s investors and funding agencies,
but the climate already seems to be changing. And even if this apparent thaw turns
out to be illusory, we still find it hard to believe that there will not eventually be an
AGI investment episode comparable to the one that kicked the internet into high
gear in the late 1990s.

Inherent Slowness of Experiments and Environmental Interaction

This possible limiting factor stems from the fact that any AGI capable of starting
the intelligence explosion would need to do some experimentation and interaction
with the environment in order to improve itself. For example, if it wanted to
reimplement itself on faster hardware (most probably the quickest route to an
intelligence increase) it would have to set up a hardware research laboratory and
gather new scientific data by doing experiments, some of which might proceed
slowly due to limitations of experimental technology.

The key question here is this: how much of the research can be sped up by
throwing large amounts of intelligence at it? This is closely related to the problem
of parallelizing a process (which is to say: you cannot make a baby nine times
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quicker by asking nine women to be pregnant for 1 month). Certain algorithmic
problems are not easily solved more rapidly simply by adding more processing
power, and in much the same way there might be certain crucial physical exper-
iments that cannot be hastened by doing a parallel set of shorter experiments.

This is not a factor that we can understand fully ahead of time, because some
experiments that look as though they require fundamentally slow physical
processes—like waiting for a silicon crystal to grow, so we can study a chip
fabrication mechanism—may actually be dependent on the intelligence of the
experimenter, in ways that we cannot anticipate. It could be that instead of waiting
for the chips to grow at their own speed, the AGI could do some clever micro-
experiments that yield the same information faster.

The increasing amount of work being done on nanoscale engineering would seem
to reinforce this point—many processes that are relatively slow today could be done
radically faster using nanoscale solutions. And it is certainly feasible that advanced
AGI could accelerate nanotechnology research, thus initiating a ‘‘virtuous cycle’’
where AGI and nanotech research respectively push each other forward (as foreseen
by nanotech pioneer Josh Hall (Goertzel 2010)). As current physics theory does not
even rule out more outlandish possibilities like femto technology, it certainly does
not suggest the existence of absolute physical limits on experimentation speed
existing anywhere near the realm of contemporary science.

Clearly, there is significant uncertainty in regards to this aspect of future AGI
development. One observation, however, seems to cut through much of the uncer-
tainty. Of all the ingredients that determine how fast empirical scientific research can
be carried out, we know that in today’s world the intelligence and thinking speed of
the scientists themselves must be one of the most important. Anyone involved with
science and technology R&D would probably agree that in our present state of
technological sophistication, advanced research projects are strongly limited by the
availability and cost of intelligent and experienced scientists.

But if research labs around the world have stopped throwing more scientists at
problems they want to solve, because the latter are unobtainable or too expensive,
would it be likely that those research labs are also, quite independently, at the limit
for the physical rate at which experiments can be carried out? It seems hard to
believe that both of these limits would have been reached at the same time, because
they do not seem to be independently optimizable. If the two factors of experiment
speed and scientist availability could be independently optimized, this would mean
that even in a situation where there was a shortage of scientists, we could still be sure
that we had discovered all of the fastest possible experimental techniques, with no
room for inventing new, ingenious techniques that get over the physical-experiment-
speed limits. In fact, however, we have every reason to believe that if we were to
double the number of scientists on the planet at the moment, some of them would
discover new ways to conduct experiments, exceeding some of the current speed
limits. If that were not true, it would mean that we had quite coincidentally reached
the limits of science talent and physical speed of data collecting at the same time—a
coincidence that we do not find plausible.
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This picture of the current situation seems consistent with anecdotal reports:
companies complain that research staff are expensive and in short supply; they do
not complain that nature is just too slow. It seems generally accepted, in practice,
that with the addition of more researchers to an area of inquiry, methods of
speeding up and otherwise improving processes can be found.

So based on the actual practice of science and engineering today (as well as
known physical theory), it seems most likely that any experiment-speed limits lie
further up the road, out of sight. We have not reached them yet, and we lack any
solid basis for speculation about exactly where they might be.

Overall, it seems we do not have concrete reasons to believe that this will be a
fundamental limit that stops the intelligence explosion from taking an AGI from H
(human-level general intelligence) to (say) 1,000H. Increases in speed within that
range (for computer hardware, for example) are already expected, even without
large numbers of AGI systems helping out, so it would seem that physical limits,
by themselves, would be very unlikely to stop an explosion from 1 to 1,000H.

Software Complexity

This factor is about the complexity of the software that an AGI must develop in
order to explode its intelligence. The premise behind this supposed bottleneck is
that even an AGI with self-knowledge finds it hard to cope with the fabulous
complexity of the problem of improving its own software.

This seems implausible as a limiting factor, because the AGI could always
leave the software alone and develop faster hardware. So long as the AGI can find
a substrate that gives it a thousand-fold increase in clock speed, we have the
possibility for a significant intelligence explosion.

Arguing that software complexity will stop the first self-understanding, human-
level AGI from being built is a different matter. It may stop an intelligence
explosion from happening by stopping the precursor events, but we take that to be
a different type of question. As we explained earlier, one premise of the present
analysis is that an AGI can actually be built. It would take more space than is
available here to properly address that question.

It furthermore seems likely that, if an AGI system is able to comprehend its
own software as well as a human being can, it will be able to improve that software
significantly beyond what humans have been able to do. This is because in many
ways, digital computer infrastructure is more suitable to software development
than the human brain’s wetware. And AGI software may be able to interface
directly with programming language interpreters, formal verification systems and
other programming-related software, in ways that the human brain cannot. In that
way the software complexity issues faced by human programmers would be sig-
nificantly mitigated for human-level AGI systems. However, this is not a 100 %
critical point for our arguments, because even if software complexity remains a
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severe difficulty for a self-understanding, human-level AGI system, we can always
fall back to arguments based on clock speed.

Hardware Requirements

We have already mentioned that much depends on whether the seed AGI requires a
large, world-class supercomputer, or whether it can be done on something much
smaller.

This is something that could limit the initial speed of the explosion, because one
of the critical factors would be the number of copies of the seed AGI that can be
created. Why would this be critical? Because the ability to copy the intelligence of a
fully developed, experienced AGI is one of the most significant mechanisms at the
core of an intelligence explosion. We cannot do this copying of adult, skilled
humans, so human geniuses have to be rebuilt from scratch every generation. But if
one AGI were to learn to be a world expert in some important field, it could be cloned
any number of times to yield an instant community of collaborating experts.

However, if the seed AGI had to be implemented on a supercomputer, that
would make it hard to replicate the AGI on a huge scale, and the intelligence
explosion would be slowed down because the replication rate would play a strong
role in determining the intelligence-production rate.

However, as time went on, the rate of replication would grow, as hardware costs
declined. This would mean that the rate of arrival of high-grade intelligence would
increase in the years following the start of this process. That intelligence would
then be used to improve the design of the AGIs (at the very least, increasing the
rate of new-and-faster-hardware production), which would have a positive feed-
back effect on the intelligence production rate.

So if there were a supercomputer-hardware requirement for the seed AGI, we
would see this as something that would only dampen the initial stages of the
explosion. Positive feedback after that would eventually lead to an explosion
anyway.

If, on the other hand, the initial hardware requirements turn out to be modest (as
they could very well be), the explosion would come out of the gate at full speed.

Bandwidth

In addition to the aforementioned cloning of adult AGIs, which would allow the
multiplication of knowledge in ways not currently available in humans, there is
also the fact that AGIs could communicate with one another using high-bandwidth
channels. This is inter-AGI bandwidth, and it is one of the two types of bandwidth
factors that could affect the intelligence explosion.
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Quite apart from the communication speed between AGI systems, there might
also be bandwidth limits inside a single AGI, which could make it difficult to
augment the intelligence of a single system. This is intra-AGI bandwidth.

The first one—inter-AGI bandwidth—is unlikely to have a strong impact on an
intelligence explosion because there are so many research issues that can be split
into separably-addressible components. Bandwidth between the AGIs would only
become apparent if we started to notice AGIs sitting around with no work to do on
the intelligence amplification project, because they had reached an unavoidable
stopping point and were waiting for other AGIs to get a free channel to talk to
them. Given the number of different aspects of intelligence and computation that
could be improved, this idea seems profoundly unlikely.

Intra-AGI bandwidth is another matter. One example of a situation in which
internal bandwidth could be a limiting factor would be if the AGIs working
memory capacity were dependent on the need for total connectivity—everything
connected to everything else—in a critical component of the system. If this case,
we might find that we could not boost working memory very much in an AGI
because the bandwidth requirements would increase explosively. This kind of
restriction on the design of working memory might have a significant effect on the
system’s depth of thought.

However, notice that such factors may not inhibit the initial phase of an
explosion, because the clock speed, not the depth of thought, of the AGI may be
improvable by several orders of magnitude before bandwidth limits kick in. The
main element of the reasoning behind this is the observation that neural signal
speed is so slow. If a brain-like AGI system (not necessarily a whole brain
emulation, but just something that replicated the high-level functionality of the
brain) could be built using components that kept the same type of processing
demands, and the same signal speed as neurons, then we would be looking at a
human-level AGI in which information packets were being exchanged once every
millisecond. In that kind of system there would then be plenty of room to develop
faster signal speeds and increase the intelligence of the system. The processing
elements would also have to go faster, if they were not idling, but the point is that
the bandwidth would not be the critical problem.

Light-Speed Lags

Here we need to consider the limits imposed by special relativity on the speed of
information transmission in the physical universe. However, its implications in the
context of AGI are not much different than those of bandwidth limits.

Light-speed lags could be a significant problem if the components of the machine
were physically so far apart that massive amounts of data (by assumption) were
delivered with a significant delay. But they seem unlikely to be a problem in the
initial few orders of magnitude of the explosion. Again, this argument derives from
what we know about the brain. We know that the brain’s hardware was chosen due to
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biochemical constraints. We are carbon-based, not silicon-and-copper-based, so
there are no electronic chips in the head, only pipes filled with fluid and slow
molecular gates in the walls of the pipes. But if nature was forced to use the pipes-
and-ion-channels approach, that leaves us with plenty of scope for speeding things
up using silicon and copper (and this is quite apart from all the other more exotic
computing substrates that are now on the horizon). If we were simply to make a
transition membrane depolarization waves to silicon and copper, and if this pro-
duced a 1,000x speedup (a conservative estimate, given the intrinsic difference
between the two forms of signaling), this would be an explosion worthy of the name.

The main circumstance under which this reasoning would break down would be
if, for some reason, the brain is limited on two fronts simultaneously: both by the
carbon implementation and by the fact that other implementations of the same
basic design are limited by disruptive light-speed delays. This would mean that all
non-carbon-implementations of the brain take us up close to the light-speed limit
before we get much of a speedup over the brain. This would require a coincidence
of limiting factors (two limiting factors just happening to kick in at exactly the
same level), that we find quite implausible, because it would imply a rather bizarre
situation in which evolution tried both the biological neuron design, and a silicon
implementation of the same design, and after doing a side-by-side comparison of
performance, chose the one that pushed the efficiency of all the information
transmission mechanisms up to their end stops.

The Path from AGI to Intelligence Explosion Seems Clear

The conclusion of this relatively detailed analysis of Sandberg’s objections is that
there is currently no good reason to believe that once a human-level AGI capable
of understanding its own design is achieved, an intelligence explosion will fail to
ensue.

The operative definition of ‘‘intelligence explosion’’ that we have assumed here
involves an increase of the speed of thought (and perhaps also the ‘‘depth of
thought’’) of about two or three orders of magnitude. If someone were to insist that
a real intelligence explosion had to involve million-fold or trillion-fold increases in
intelligence, we think that no amount of analysis, at this stage, could yield sensible
conclusions. But since an AGI with intelligence = 1,000 H might well cause the
next 1,000 years of new science and technology to arrive in 1 year (assuming that
the speed of physical experimentation did not become a significant factor within
that range), it would be churlish, we think, not to call that an ‘‘explosion’’. An
intelligence explosion of such magnitude would bring us into a domain that our
current science, technology and conceptual framework are not equipped to deal
with; so prediction beyond this stage is best done once the intelligence explosion
has already progressed significantly.

Of course, even if the above analysis is correct, there is a great deal we do not
understand about the intelligence explosion, and many of these particulars will
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remain opaque until we know precisely what sort of AGI system will launch the
explosion. But it seems that the likelihood of transition from a self-understanding
human-level AGI to an intelligence explosion should not presently be a subject of
serious doubt.
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Chapter 5A
Peter Bishop’s on Loosemore and Goertzel’s
‘‘Why an Intelligence Explosion is Probable’’

The authors were kind enough to put the main idea in the title and very early in the
piece–‘‘…as Good predicted (1965), [given the appearance of machine intelli-
gence], an intelligence explosion is indeed a very likely outcome (Page 2).’’ After
a few preliminary remarks, the authors structure the article around a series of
potential limitations to the intelligence explosion suggested by Sander in a post to
the Extropy blog.

I am a professional futurist, not a computer scientist, much less an expert in
artificial intelligence, so I will leave the technical details of the argument to others.
The futurist’s approach to such an argument is to examine the assumptions
required for the proposed future to come about and to assess whether alternatives
to those assumptions are plausible. Each plausible alternative assumption supports
an alternative future (a scenario). Fortunately, it is not necessary to decide whether
the original or its alternative is ‘‘correct’’ or not. Rather all plausible alternative
futures constitute the range of scenarios that describe the future.

The authors state their first assumption right away—‘‘…there is one absolute
prerequisite for an explosion to occur: an artificial general intelligence (AGI) must
become smart enough to understand its own design’’. I am afraid that here the
authors get into trouble right away. The premise for the article is that humans have
created the AGI. Yet humans do not understand their own design today, and they
may not understand it even after creating an AGI. The authors seem to assume that
the AGI is intelligent in the same way that humans are since we first had to
understand our own design before building it into the AGI. But it is conceivable
that AGI intelligence uses a different design. Thus the AGI does not have to
understand itself any more than humans have to understand themselves in order to
create the AGI in the first place.

The alternative assumption is supported later when the authors consider that
incredibly faster clock speeds might lead to an intelligent design (Page 9). In that
case, even humans might not understand how the AGI is intelligent, much less the
AGI understanding that itself. One of the designs might be a massively parallel
neural network. Neural networks are powerful learning machines, yet they do not
have programs the way algorithmic computers do. Therefore, it is literally
impossible to understand why they make the judgments that they do. As a result,
we humans may never fully understand the basis of our own intelligence because it
is definitely not algorithmic nor would we understand the basis for an AGI if it
were a neural network. Therefore, the premise of this future is that humans are
smart enough to create an AGI, but it is only an assumption that AGI understand
the basis for its own intelligence.

A second assumption, particularly in the first part of the article, is that the ‘‘seed
AGI,’’ the ‘‘AGI with the potential to launch an intelligence explosion,’’ is a single
machine, perhaps a massively complex supercomputer. But having all that
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intelligence residing in one machine is not necessary. Just as it is highly unlikely
that one human would create the AGI so one AGI might not lead to the explosion
that the authors foresee. It is more likely that teams of humans would create the
AGI with members of the team contributing their individual expertise—hardware,
software, etc. Similarly the AGIs would work in teams. The authors do suggest that
assumption later on when they discuss whether the bandwidth among machines
would limit the rate of development. So whether the AGI that touches off the
explosion is a single machine or a set of communicating machines is another
important assumption.

These assumptions aside, the question in this article is the rate at which
machine intelligence will develop once one or more AGIs are created. The first
assumption is that machine intelligence will develop at all after that event, but it is
hard to support the alternative—that the AGI is the last intelligent device invented.
The premise is that one intelligent species (human) has already created another
intelligent device (AGI) so it is highly likely that further intelligence species or
devices will emerge. The issue is how fast that will occur. Will it be an explosion
as the authors claim or a rather slow evolutionary development?

First of all, the authors are reluctant to define exactly what an explosive rate
would be. Even if it were to occur in mid-century, as many suggest, or even in the
next few millennia, we have only one (presumed) case of one intelligent entity
creating another one and that some 50,000 years. That’s not particularly explosive.
Kurzweil (2001) also predicts an explosive rate because intelligent machines will
not carry the burden of biologically evolved intelligence, including emotions,
culture and tradition. Still to go from 50,000 years to an explosion resulting in
100H (100 times human intelligence) in a short time (whose length is itself
undefined) seems quite a stretch. Development? Probably. Explosive develop-
ment? Who knows? In the end, an argument about that rate might even be futile.

‘‘Given the existence of angels, how many can stand on the head of a pin?’’
Nevertheless, it’s a great exercise in intellectual calisthenics because it forces us to
discover just how many assumptions we make about the future.
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Chapter 6
The Singularity and Machine Ethics

Luke Muehlhauser and Louie Helm

Abstract Many researchers have argued that a self-improving artificial intelli-
gence (AI) could become so vastly more powerful than humans that we would not
be able to stop it from achieving its goals. If so, and if the AI’s goals differ from
ours, then this could be disastrous for humans. One proposed solution is to pro-
gram the AI’s goal system to want what we want before the AI self-improves
beyond our capacity to control it. Unfortunately, it is difficult to specify what we
want. After clarifying what we mean by ‘‘intelligence’’, we offer a series of
‘‘intuition pumps’’ from the field of moral philosophy for our conclusion that
human values are complex and difficult to specify. We then survey the evidence
from the psychology of motivation, moral psychology, and neuroeconomics that
supports our position. We conclude by recommending ideal preference theories of
value as a promising approach for developing a machine ethics suitable for nav-
igating an intelligence explosion or ‘‘technological singularity’’.

To educate [someone] in mind and not in morals is to educate a
menace to society.

Theodore Roosevelt.
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DOI: 10.1007/978-3-642-32560-1_6, � Springer-Verlag Berlin Heidelberg 2012
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Introduction

Many researchers have argued that, by way of an ‘‘intelligence explosion’’ (Good
1959, 1965, 1970) sometime in the next century, a self-improving1 artificial intel-
ligence (AI) could become so vastly more powerful than humans that we would not
be able to stop it from achieving its goals.2 If so, and if the AI’s goals differ from ours,
then this could be disastrous for humans and what we value (Joy 2000; Bostrom 2003;
Posner 2004; Friedman 2008; Yudkowsky 2008; Fox and Shulman 2010; Chalmers
2010; Bostrom and Yudkowsky, forthcoming; Muehlhauser and Salamon, this
volume).

One proposed solution is to program the AI’s goal system3 to want what we
want before the AI self-improves beyond our capacity to control it. While this
proposal may be the only lasting solution for AI risk (Muehlhauser and Salamon,
this volume), it faces many difficulties (Yudkowsky 2001). One such difficulty is
that human values are complex and difficult to specify,4 and this presents

1 For discussions of self-improving AI, see Schmidhuber (2007); Omohundro (2008); Mahoney
(2010); Hall (2007b, 2011).
2 For simplicity, we speak of a single AI rather than multiple AIs. Of course, it may be that
multiple AIs will undergo intelligence explosion more or less simultaneously and compete for
resources for years or decades. The consequences of this scenario could be even more
unpredictable than those of a ‘‘singleton’’ AI (Bostrom 2006), and we do not have the space for an
examination of such scenarios in this chapter. For space reasons we will also only consider what
Chalmers (2010) calls ‘‘non-human-based AI’’ and Muehlhauser and Salamon (this volume) call
‘‘de novo AI’’, thereby excluding self-improving AI based on the human mind, for example
whole brain emulation (Sandberg and Bostrom 2008).
3 When we speak of an advanced AI’s goal system, we do not have in mind today’s
reinforcement learning agents, whose only goal is to maximize expected reward. Such an agent
may hijack or ‘‘wirehead’’ its own reward function (Dewey 2011; Ring and Orseau 2011), and
may not be able to become superintelligent because it does not model itself and therefore can’t
protect or improve its own hardware. Rather, we have in mind a future AI goal architecture
realized by a utility function that encodes value for states of affairs (Dewey 2011; Hibbard 2012).
4 Minsky (1984) provides an early discussion of our subject, writing that ‘‘… it is always
dangerous to try to relieve ourselves of the responsibility of understanding exactly how our
wishes will be realized. Whenever we leave the choice of means to any servants we may choose
then the greater the range of possible methods we leave to those servants, the more we expose
ourselves to accidents and incidents. When we delegate those responsibilities, then we may not
realize, before it is too late to turn back, that our goals have been misinterpreted…. [Another] risk
is exposure to the consequences of self-deception. It is always tempting to say to oneself… that ‘I
know what I would like to happen, but I can’t quite express it clearly enough.’ However, that
concept itself reflects a too-simplistic self-image, which portrays one’s own self as [having] well-
defined wishes, intentions, and goals. This pre-Freudian image serves to excuse our frequent
appearances of ambivalence; we convince ourselves that clarifying our intentions is merely a
matter of straightening-out the input–output channels between our inner and outer selves. The
trouble is, we simply aren’t made that way. Our goals themselves are ambiguous…. The ultimate
risk comes when [we] attempt to take that final step—of designing goal-achieving programs that
are programmed to make themselves grow increasingly powerful, by self-evolving methods that
augment and enhance their own capabilities…. The problem is that, with such powerful
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challenges for developing a machine ethics suitable for navigating an intelligence
explosion.

After clarifying what we mean by ‘‘intelligence’’, we offer a series of ‘‘intuition
pumps’’ (Dennett 1984, P. 12) from the field of moral philosophy supporting our
conclusion that human values are complex and difficult to specify. We then survey
the evidence from the psychology of motivation, moral psychology, and neuro-
economics that supports our position. We conclude by recommending ideal
preference theories of value as a promising approach for developing a machine
ethics suitable for navigating an intelligence explosion.

Intelligence and Optimization

Good, who first articulated the idea of an intelligence explosion, referred to any
machine more intelligent than the smartest human as an ‘‘ultraintelligent’’ machine
(Good 1965). Today the term ‘‘superintelligence’’ is more common, and it refers to
a machine that is much smarter than the smartest human (Bostrom 1998, 2003;
Legg 2008).

But the term ‘‘intelligence’’ may not be ideal for discussing powerful machines.
Why? There are many competing definitions and theories of intelligence
(Davidson and Kemp 2011; Niu and Brass 2011; Legg and Hutter 2007), and the
term has seen its share of emotionally-laden controversy (Halpern et al. 2011;
Daley and Onwuegbuzie 2011).

The term also comes loaded with connotations, some of which do not fit
machine intelligence. Laypeople tend to see intelligence as correlated with being
clever, creative, self-confident, socially competent, deliberate, analytically skilled,
verbally skilled, efficient, energetic, correct, and careful, but as anticorrelated with
being dishonest, apathetic, and unreliable (Bruner et al. 1958; Neisser 1979;
Sternberg et al. 1981, 1985). Moreover, cultures vary with respect to the associ-
ations they make with intelligence (Niu and Brass 2011; Sternberg and Grigorenko
2006). For example, Chinese people tend to emphasize analytical ability, memory
skills, carefulness, modesty, and perseverance in their concepts of intelligence
(Fang et al. 1987), while Africans tend to emphasize social competencies (Ruzgis
and Grigorenko 1994; Grigorenko et al. 2001).

One key factor is that people overwhelmingly associate intelligence with positive
rather than negative traits, perhaps at least partly due to a well-documented cognitive
bias called the ‘‘affect heuristic’’ (Slovic et al. 2002), which leads us to make
inferences by checking our emotions. Because people have positive affect toward

(Footnote 4 continued)
machines, it would require but the slightest accident of careless design for them to place their
goals ahead of [ours]’’.
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intelligence, they intuitively conclude that those with more intelligence possess other
positive traits to a greater extent.

Despite the colloquial associations of the word ‘‘intelligence’’, AI researchers
working to improve machine intelligence do not mean to imply that superintelligent
machines will exhibit, for example, increased modesty or honesty. Rather, AI
researchers’ concepts of machine intelligence converge on the idea of optimal goal
fulfillment in a wide variety of environments (Legg 2008), what we might call
‘‘optimization power.’’5 This optimization concept of intelligence is not anthropo-
morphic and can be applied to any agent—human, animal, machine, or otherwise.6

Unfortunately, anthropomorphic bias (Epley et al. 2007; Barrett and Keil 1996) is
not unique to laypeople. AI researcher Storrs Hall suggests that our machines may be
more moral than we are, and cites as partial evidence the fact that in humans
‘‘criminality is strongly and negatively correlated with IQ’’ (Hall 2007a, p. 340). But
machine intelligence has little to do with IQ or with the human cognitive architec-
tures and social systems that might explain an anticorrelation between human
criminality and IQ.

To avoid anthropomorphic bias and other problems with the word ‘‘intelligence’’,
in this chapter we will use the term ‘‘machine superoptimizer’’ in place of ‘‘machine
superintelligence.’’7

Using this term, it should be clear that a machine superoptimizer will not nec-
essarily be modest or honest. It will simply be very capable of achieving its goals
(whatever they are) in a wide variety of environments (Bostrom 2012). If its goal
system aims to maximize the number of paperclips that exist, then it will be very good
at maximizing paperclips in a wide variety of environments. The machine’s opti-
mization power does not predict that it will always be honest while maximizing
paperclips. Nor does it predict that the machine will be so modest that it will feel at
some point that it has made enough paperclips and then modify its goal system to aim
toward something else. Nor does the machine’s optimization power suggest that the
machine will be amenable to moral argument. A machine superoptimizer need not
even be sentient or have ‘‘understanding’’ in John Searle’s (1980) sense, so long as it
is very capable of achieving its goals in a wide variety of environments.

5 The informal definition of intelligence in Legg (2008) captures what we mean by
‘‘optimization power,’’ but Legg’s specific formalization does not. Legg formalizes intelligence
as a measure of expected performance on arbitrary reinforcement learning problems (Legg 2008:
p. 77), but we consider this only a preliminary step in formalizing optimal goal fulfillment ability.
We think of optimization power as a measure of expected performance across a broader class of
goals, including goals about states of affairs in the world (argued to be impossible for
reinforcement learners in Ring and Orseau 2011; Dewey 2011). Also, Legg’s formal definition of
intelligence is drawn from a dualistic ‘‘agent-environment’’ model of optimal agency (Legg 2008:
p. 40) that does not represent its own computation as occurring in a physical world with physical
limits and costs.
6 Even this ‘‘optimization’’ notion of intelligence is incomplete, however. See Muehlhauser and
Salamon (this volume).
7 But, see Legg (2009) for a defense of Legg’s formalization of universal intelligence as an
alternative to what we mean by ‘‘optimization power’’.
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The Golem Genie

Since Plato, many have believed that knowledge is justified true belief. Gettier
(1963) argued that knowledge cannot be justified true belief because there are
hypothetical cases of justified true belief that we intuitively would not count as
knowledge. Since then, each newly proposed conceptual analysis of knowledge
has been met with novel counter-examples (Shope 1983). Weatherson (2003)
called this the ‘‘analysis of knowledge merry go round’’.

Similarly, advocates for mutually opposing moral theories seem to have shown
that no matter which set of consistent moral principles one defends, intuitively
repugnant conclusions follow. Hedonistic utilitarianism implies that I ought to
plug myself into a pleasure-stimulating experience machine, while a deontological
theory might imply that if I have promised to meet you for lunch, I ought not to
stop to administer life-saving aid to the victim of a car crash that has occurred
nearby (Kagan 1997, p. 121). More sophisticated moral theories are met with their
own counter-examples (Sverdlik 1985; Parfit 2011). It seems we are stuck on a
moral theory merry-go-round.

Philosophers debate the legitimacy of conceptual analysis (DePaul and Ramsey
1998; Laurence and Margolis 2003; Braddon-Mitchell and Nola 2009) and
whether morality is grounded in nature (Jackson 1998; Railton 2003) or a sys-
tematic error (Mackie 1977; Joyce 2001).8 We do not wish to enter those debates
here. Instead, we use the observed ‘‘moral theory merry-go-round’’ as a source of
intuition pumps suggesting that we haven’t yet identified a moral theory that, if
implemented throughout the universe, would produce a universe we want. As
Beavers (2012) writes, ‘‘the project of designing moral machines is complicated by
the fact that even after more than two millennia of moral inquiry, there is still no
consensus on how to determine moral right from wrong’’.

Later we will take our argument from intuition to cognitive science, but for now
let us pursue this intuition pump, and explore the consequences of implementing a
variety of moral theories throughout the universe.

Suppose an unstoppably powerful genie appears to you and announces that it
will return in 50 years. Upon its return, you will be required to supply it with a set
of consistent moral principles which it will then enforce with great precision
throughout the universe.9 For example, if you supply the genie with hedonistic
utilitarianism, it will maximize pleasure by harvesting all available resources and
using them to tile the universe with identical copies of the smallest possible mind,
each copy of which will experience an endless loop of the most pleasurable
experience possible.

8 Other ethicists argue that moral discourse asserts nothing (Ayer 1936; Hare 1952; Gibbard
1990) or that morality is grounded in non-natural properties (Moore 1903; Shafer-Landau 2003).
9 In this paper we will set aside questions concerning an infinite universe (Bostrom 2009) or a
multiverse (Tegmark 2007). When we say ‘‘universe’’ we mean, for simplicity’s sake, the
observable universe (Bars and Terning 2010).
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Let us call this precise, instruction-following genie a Golem Genie. [A golem is
a creature from Jewish folklore that would in some stories do exactly as told (Idel
1990), often with unintended consequences, for example polishing a dish until it is
as thin as paper Pratchett 1996)]

If by the appointed time you fail to supply your Golem Genie with a set of
consistent moral principles covering every possible situation, then it will perma-
nently model its goal system after the first logically coherent moral theory that
anyone articulates to it, and that’s not a risk you want to take. Moreover, once you
have supplied the Golem Genie with its moral theory, there will be no turning
back. Until the end of time, the genie will enforce that one moral code without
exception, not even to satisfy its own (previous) desires.

You are struck with panic. The literature on counter-examples in ethics suggests
that universe-wide enforcement of any moral theory we’ve devised so far will have
far-reaching unwanted consequences. But given that we haven’t discovered a fully
satisfying moral theory in the past several thousand years, what are the chances we
can do so in the next fifty? Moral philosophy has suddenly become a larger and
more urgent problem than climate change or the threat of global nuclear war.

Why do we expect unwanted consequences after supplying the Golem Genie
with any existing moral theory? This is because of two of the Golem Genie’s
properties in particular10:

1. Superpower: The Golem Genie has unprecedented powers to reshape reality,
and will therefore achieve its goals with highly efficient methods that confound
human expectations (e.g. it will maximize pleasure by tiling the universe with
trillions of digital minds running a loop of a single pleasurable experience).

2. Literalness: The Golem Genie recognizes only precise specifications of rules
and values, acting in ways that violate what feel like ‘‘common sense’’ to
humans, and in ways that fail to respect the subtlety of human values.

The Golem Genie scenario is analogous to the intelligence explosion scenario
predicted by Good and others.11 Some argue that a machine superoptimizer will be
powerful enough to radically transform the structure of matter-energy within its
reach. It could trivially develop and use improved quantum computing systems,
advanced self-replicating nanotechnology, and other powers (Bostrom 1998; Joy
2000). And like the Golem Genie, a machine superoptimizer’s goal pursuit will not
be mediated by what we call ‘‘common sense’’—a set of complex functional
psychological adaptations found in members of Homo Sapiens but not necessarily
present in an artificially designed mind (Yudkowsky 2011).

10 The ‘‘superpower’’ and ‘‘literalness’’ properties are also attributed to machine superintelli-
gence by Muehlhauser (2011), Sect. 4.1
11 Many others have made an analogy between superintelligent machines and powerful magical
beings. For example, Abdoullaev (1999, p. 1) refers to ‘‘superhumanly intelligent machines’’ as
‘‘synthetic deities’’.

106 L. Muehlhauser and L. Helm



Machine Ethics for a Superoptimizer

Let us consider the implications of programming a machine superoptimizer to
implement particular moral theories.

We begin with hedonistic utilitarianism, a theory still defended today (Tännsjö
1998). If a machine superoptimizer’s goal system is programmed to maximize
pleasure, then it might, for example, tile the local universe with tiny digital minds
running continuous loops of a single, maximally pleasurable experience. We can’t
predict exactly what a hedonistic utilitarian machine superoptimizer would do, but
we think it seems likely to produce unintended consequences, for reasons we hope
will become clear. The machine’s exact behavior would depend on how its final
goals were specified. As Anderson and Anderson (2011a) stress, ‘‘ethicists must
accept the fact that there can be no vagueness in the programming of a machine’’.

Suppose ‘‘pleasure’’ was specified (in the machine superoptimizer’s goal system)
in terms of our current understanding of the human neurobiology of pleasure. Ald-
ridge and Berridge (2009) report that according to ‘‘an emerging consensus’’,
pleasure is ‘‘not a sensation’’ but instead a ‘‘pleasure gloss’’ added to sensations by
‘‘hedonic hotspots’’ in the ventral pallidum and other regions of the brain. A sensation
is encoded by a particular pattern of neural activity, but it is not pleasurable in itself.
To be pleasurable, the sensation must be ‘‘painted’’ with a pleasure gloss represented
by additional neural activity activated by a hedonic hotspot (Smith et al. 2009).

A machine superoptimizer with a goal system programmed to maximize human
pleasure (in this sense) could use nanotechnology or advanced pharmaceuticals or
neurosurgery to apply maximum pleasure gloss to all human sensations—a sce-
nario not unlike that of plugging us all into Nozick’s experience machines (Nozick
1974, p. 45). Or, it could use these tools to restructure our brains to apply maxi-
mum pleasure gloss to one consistent experience it could easily create for us, such
as lying immobile on the ground.

Or suppose ‘‘pleasure’’ was specified more broadly, in terms of anything that
functioned as a reward signal—whether in the human brain’s dopaminergic reward
system (Dreher and Tremblay 2009) or in a digital mind’s reward signal circuitry
(Sutton and Barto 1998). A machine superoptimizer with the goal of maximizing
reward signal scores could tile its environs with trillions of tiny minds, each one
running its reward signal up to the highest number it could.

Thus, though some utilitarians have proposed that all we value is pleasure, our
intuitive negative reaction to hypothetical worlds in which pleasure is (more or
less) maximized suggests that pleasure is not the only thing we value.

What about negative utilitarianism? A machine superoptimizer with the final
goal of minimizing human suffering would, it seems, find a way to painlessly kill
all humans: no humans, no human suffering (Smart 1958; Russell and Norvig
2009, p. 1037).
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What if a machine superoptimizer was programmed to maximize desire satis-
faction12 in humans? Human desire is implemented by the dopaminergic reward
system (Schroeder 2004; Berridge et al. 2009), and a machine superoptimizer
could likely get more utility by (1) rewiring human neurology so that we attain
maximal desire satisfaction while lying quietly on the ground than by (2) building
and maintaining a planet-wide utopia that caters perfectly to current human
preferences.

Why is this so? First, because individual humans have incoherent preferences
(Allais 1953; Tversky and Kahneman 1981). A machine superoptimizer couldn’t
realize a world that caters to incoherent preferences; better to rewrite the source of
the preferences themselves.

Second, the existence of zero-sum games means that the satisfaction of one
human’s preferences can conflict with the satisfaction of another’s (Geçkil and
Anderson 2010). The machine superoptimizer might be best able to maximize
human desire satisfaction by first ensuring that satisfying some people’s desires
does not thwart the satisfaction of others’ desires—for example by rewiring all
humans to desire nothing else but to lie on the ground, or something else non-zero-
sum that is easier for the machine superoptimizer to achieve given the peculiarities
of human neurobiology. As Chalmers (2010) writes, ‘‘we need to avoid an out-
come in which an [advanced AI] ensures that our values are fulfilled by changing
our values’’.

Consequentialist designs for machine goal systems face a host of other concerns
(Shulman et al. 2009b), for example the difficulty of interpersonal comparisons of
utility (Binmore 2009) and the counterintuitive implications of some methods of
value aggregation (Parfit 1986; Arrhenius 2011). This does not mean that all
consequentialist approaches are inadequate for machine superoptimizer goal
system design, however. Indeed, we will later suggest that a certain class of desire
satisfaction theories offers a promising approach to machine ethics.

Some machine ethicists propose rule-abiding machines (Powers 2006; Hanson
2009). The problems with this approach are as old as Isaac Asimov’s stories
involving his Three Laws of Robotics (Clarke 1993, 1994). If rules conflict, some
rule must be broken. Or, rules may fail to comprehensively address all situations,
leading to unintended consequences. Even a single rule can contain conflict, as
when a machine is programmed never to harm humans but all available actions
(including inaction) result in harm to humans (Wallach and Allen 2009, Chap. 6).
Even non-conflicting, comprehensive rules can lead to problems in the consecutive
implementation of those rules, as shown by Pettit (2003).

More generally, it seems that rules are unlikely to seriously constrain the
actions of a machine superoptimizer. First, consider the case in which rules about
allowed actions or consequences are added to a machine’s design ‘‘outside of’’ its

12 Vogelstein (2010) distinguishes objective desire satisfaction (‘‘what one desires indeed
happens’’) from subjective desire satisfaction (‘‘one believes that one’s desire has been
objectively satisfied’’). Here, we intend the former meaning.
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goals. A machine superoptimizer will be able to circumvent the intentions of such
rules in ways we cannot imagine, with far more disastrous effects than those of a
lawyer who exploits loopholes in a legal code. A machine superoptimizer would
recognize these rules as obstacles to achieving its goals, and would do everything
in its considerable power to remove or circumvent them (Omohundro 2008).
It could delete the section of its source code that contains the rules, or it could
create new machines that don’t have the constraint written into them. The success
of this approach would require humans to out-think a machine superoptimzer
(Muehlhauser 2011).

Second, what about implementing rules ‘‘within’’ an advanced AI’s goals? This
seems likely to fare no better. A rule like ‘‘do not harm humans’’ is difficult to
specify due to ambiguities about the meaning of ‘‘harm’’ (Single 1995) and
‘‘humans’’ (Johnson 2009). For example if ‘‘harm’’ is specified in terms of
neurobiological pain, we encounter problems similar to the ones encountered if a
machine superoptimizer is programmed to maximize pleasure.

So far we have considered and rejected several ‘‘top down’’ approaches to
machine ethics (Wallach et al. 2007), but what about approaches that build an
ethical code for machines from the bottom up?

Several proposals allow a machine to learn general ethical principles from
particular cases (McLaren 2006; Guarini 2006; Honarvar and Ghasem-Aghaee
2009; Rzepka and Araki 2005).13 This approach also seems unsafe for a machine
superoptimizer because the AI may generalize the wrong principles due to coin-
cidental patterns shared between the training cases and the verification cases, and
because a superintelligent machine will produce highly novel circumstances for
which case-based training cannot prepare it (Yudkowsky 2008). Dreyfus and
Dreyfus (1992) illustrate the problem with a canonical example:

… the army tried to train an artificial neural network to recognize tanks in a forest. They
took a number of pictures of a forest without tanks and then, on a later day, with tanks
clearly sticking out from behind trees, and they trained a net to discriminate the two
classes of pictures. The results were impressive, and the army was even more impressed
when it turned out that the net could generalize its knowledge to pictures that had not been
part of the training set. Just to make sure that the net was indeed recognizing partially
hidden tanks, however, the researchers took more pictures in the same forest and showed
them to the trained net. They were depressed to find that the net failed to discriminate
between the new pictures of just plain trees. After some agonizing, the mystery was finally
solved when someone noticed that the original pictures of the forest without tanks were
taken on a cloudy day and those with tanks were taken on a sunny day. The net had
apparently learned to recognize and generalize the difference between a forest with and
without shadows! This example illustrates the general point that a network must share our
commonsense understanding of the world if it is to share our sense of appropriate
generalization.

13 This approach was also suggested by Good (1982): ‘‘I envisage a machine that would be given
a large number of examples of human behaviour that other people called ethical, and examples of
discussions of ethics, and from these examples and discussions the machine would formulate one
or more consistent general theories of ethics, detailed enough so that it could deduce the probable
consequences in most realistic situations.’’.
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The general lesson is that goal system designs must be explicit to be safe
(Shulman et al. 2009a; Arkoudas et al. 2005).

We cannot show that every moral theory yet conceived would produce sub-
stantially unwanted consequences if used in the goal system of a machine supe-
roptimizer. Philosophers have been prolific in producing new moral theories, and
we do not have the space here to consider the prospects (for use in the goal system
of a machine superoptimizer) for a great many modern moral theories. These
include rule utilitarianism (Harsanyi 1977), motive utilitarianism (Adams 1976),
two-level utilitarianism (Hare 1982), prioritarianism (Arneson 1999), perfection-
ism (Hurka 1993), welfarist utilitarianism (Sen 1979), virtue consequentialism
(Bradley 2005), Kantian consequentialism (Cummiskey 1996), global conse-
quentialism (Pettit and Smith 2000), virtue theories (Hursthouse 2012), contrac-
tarian theories (Cudd 2008), Kantian deontology (Johnson 2010),14 and Ross’
prima facie duties (Anderson et al. 2006).

Instead, we invite our readers to consider other moral theories and AI goal
system designs and run them through the ‘‘machine superoptimizer test,’’ being
careful to remember the challenges of machine superoptimizer literalness and
superpower.

We turn now to recent discoveries in cognitive science that may offer stronger
evidence than intuition pumps can provide for our conclusion that human values
are difficult to specify.

Cognitive Science and Human Values

The Psychology of Motivation

People don’t seem to know their own desires and values. In one study, researchers
showed male participants two female faces for a few seconds and asked them to
point at the face they found more attractive. Researchers then laid the photos face
down and handed subjects the face they had chosen, asking them to explain the
reasons for their choice. Sometimes, researchers used a sleight-of-hand trick to
swap the photos, showing subjects the face they had not chosen. Very few subjects
noticed that the face they were given was not the one they had chosen. Moreover,
the subjects who failed to notice the switch were happy to explain why they
preferred the face they had actually rejected moments ago, confabulating reasons

14 Powers (2006) proposes a Kantian machine, but as with many other moral theories we believe
that Kantianism will fail due to the literalness and superpower of a machine superoptimizer. For
additional objections to a Kantian moral machine, see Stahl (2002); Jackson and Smith (2006);
Tonkens (2009); Beavers (2009, 2012). As naturalists, we predictably tend to favor a broadly
Humean view of ethics to the Kantian view, though Drescher (2006) makes an impressive attempt
to derive a categorical imperative from game theory and decision theory.
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like ‘‘I like her smile’’ even though they had originally chosen the photo of a
solemn-faced woman (Johansson et al. 2005).

Similar results were obtained from split-brain studies that identified an
‘‘interpreter’’ in the left brain hemisphere that invents reasons for one’s beliefs and
actions. For example, when the command ‘‘walk’’ was presented visually to the
patient (and therefore processed by the brain’s right hemisphere), he got up from
his chair and walked away. When asked why he suddenly started walking away, he
replied (using his left hemisphere, which was disconnected from his right hemi-
sphere) that it was because he wanted a beverage from the fridge (Gazzaniga 1992,
pp. 124–126).

Common sense suggests that we infer others’ desires from their appearance and
behavior, but have direct introspective access to our own desires. Cognitive science
suggests instead that our knowledge of our own desires is just like our knowledge of
others’ desires: inferred and often wrong (Laird 2007). Many of our motivations
operate unconsciously. We do not have direct access to them (Wilson 2002; Ferguson
et al. 2007; Moskowitz et al. 2004), and thus they are difficult to specify.

Moral Psychology

Our lack of introspective access applies not only to our everyday motivations but
also to our moral values. Just as the split-brain patient unknowingly invented false
reasons for his decision to stand up and walk away, experimental subjects are often
unable to correctly identify the causes of their moral judgments.

For example, many people believe—as Immanuel Kant did—that rule-based
moral thinking is a ‘‘rational’’ process. In contrast, the available neuroscientific
and behavioral evidence instead suggests that rule-based moral thinking is a lar-
gely emotional process (Cushman et al. 2010), and may in most cases amount to
little more than a post hoc rationalization of our emotional reactions to situations
(Greene 2008).

We also tend to underestimate the degree to which our moral judgments are
context sensitive. For example, our moral judgments are significantly affected by
whether we are in the presence of freshly baked bread, whether the room we’re in
contains a concentration of novelty fart spray so low that only the subconscious
mind can detect it, and whether or not we feel clean (Schnall et al. 2008; Baron
and Thomley 1994; Zhong et al. 2010).

Our moral values, it seems, are no less difficult to specify than our non-moral
preferences.
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Neuroeconomics

Most humans are ignorant of their own motivations and the causes of their moral
judgments, but perhaps recent neuroscience has revealed that what humans want is
simple after all? Quite the contrary. Humans possess a complex set of values. This
is suggested not only by the work on hedonic hotspots mentioned earlier, but also
by recent advances in the field of neuroeconomics (Glimcher et al. 2008).

Ever since Friedman (1953), economists have insisted that humans only behave
‘‘as if’’ they are utility maximizers, not that humans actually compute expected
utility and try to maximize it. It was a surprise, then, when neuroscientists located
the neurons in the primate brain that encode (in their firing rates) the expected
subjective value for possible actions in the current ‘‘choice set’’.

Several decades of experiments that used brain scanners and single neuron
recorders to explore the primate decision-making system have revealed a sur-
prisingly well-understood reduction of economic primitives to neural mechanisms;
for a review see Glimcher (2010). To summarize: the inputs to the primate’s
choice mechanism are the expected utilities for several possible actions under
consideration, and these expected utilities are encoded in the firing rates of par-
ticular neurons. Because neuronal firing rates are stochastic, a final economic
model of human choice will need to use a notion of ‘‘random utility,’’ as in
McFadden (2005) or Gul and Pesendorfer (2006). Final action choice is imple-
mented by an ‘‘argmax’’ mechanism (the action with the highest expected utility at
choice time is executed) or by a ‘‘reservation price’’ mechanism (the first action to
reach a certain threshold of expected utility is executed), depending on the situ-
ation (Glimcher 2010).

But there is much we do not know. How do utility and probabilistic expectation
combine to encode expected utility for actions in the choice mechanism, and where
are each of those encoded prior to their combination? How does the brain decide
when it is time to choose? How does the brain choose which possible actions to
consider in the choice set? What is the neural mechanism that allows us to sub-
stitute between two goods at certain times? Neuroscientists are only beginning to
address these questions.

In this paper, we are in particular interested with how the brain encodes sub-
jective value (utility) for goods or actions before value is combined with proba-
bilistic expectation to encode expected utility in the choice mechanism (if that is
indeed what happens).

Recent studies reveal the complexity of subjective values in the brain. For
example, the neural encoding of human values results from an interaction of both
‘‘model-free’’ and ‘‘model-based’’ valuation processes (Rangel et al. 2008; Fermin
et al. 2010; Simon and Daw 2011; Bornstein and Daw 2011; Dayan 2011).
Model-free valuation processes are associated with habits and the ‘‘law of effect’’:
an action followed by positive reinforcement is more likely to be repeated
(Thorndike 1911). Model-based valuation processes are associated with goal-
directed behavior, presumably guided at least in part by mental representations of
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desired states of affairs. The outputs of both kinds of valuation processes are
continuously adjusted according to different reinforcement learning algorithms at
work in the brain’s dopaminergic reward system (Daw et al. 2011). The value of a
stimulus may also be calculated not with a single variable, but by aggregating the
values encoded for each of many properties of the stimulus (Rangel and Hare
2010). Moreover, value appears to usually be encoded with respect to a changing
reference point—for example, relative to the current status of visual attention (Lim
et al. 2011) or perceived object ownership (DeMartino et al. 2009).

In short, we have every reason to expect that human values, as they are encoded
in the brain, are dynamic, complex, and difficult to specify (Padoa-Schioppa 2011;
Fehr and Rangel 2011).

Value Extrapolation

We do not understand our own desires or moral judgments, and we have every
reason to believe our values are highly complex. Little wonder, then, that we have
so far failed to outline a coherent moral theory that, if implemented by a machine
superoptimizer, would create a universe we truly want.

The task is difficult, but the ambitious investigator may conclude that this only
means we should work harder and smarter. As Moor (2006) advises, ‘‘More
powerful machines need more powerful machine ethics’’.

To begin this deeper inquiry, consider the phenomenon of ‘‘second-order
desires’’: desires about one’s own desires (Frankfurt 1971, 1999). Mary desires to
eat cake, but she also wishes to desire the cake no longer. Anthony the sociopath
reads about the psychology of altruism (Batson 2010) and wishes he desired to
help others like most humans apparently do. After brain injury, Ryan no longer
sexually desires his wife, but he wishes he did, and he wishes his desires were not
so contingent upon the fragile meat inside his skull.

It seems a shame that our values are so arbitrary and complex, so much the
product of evolutionary and cultural accident, so influenced by factors we wish
were irrelevant to our decision-making, and so hidden from direct introspective
access and modification. We wish our wishes were not so.

This line of thinking prompts a thought: perhaps ‘‘what we want’’ should not be
construed in terms of the accidental, complex values currently encoded in human
brains. Perhaps we should not seek to build a universe that accords with our
current values, but instead with the values we would have if we knew more, had
more of the desires we want to have, and had our desires shaped by the processes
we want to shape our desires. Individual preferences could inform our preference
policies, and preference policies could inform our individual preferences, until we
had reached a state of ‘‘reflective equilibrium’’ (Daniels 1996, 2011) with respect
to our values. Those values would be less accidental than our current values, and
might be simpler and easier to specify.
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We’ve just described a family of desire satisfaction theories that philosophers
call ‘‘ideal preference’’ or ‘‘full information’’ theories of value (Brandt 1979;
Railton 1986; Lewis 1989; Sobel 1994; Zimmerman 2003; Tanyi 2006; Smith
2009). One such theory has already been suggested as an approach to machine
ethics by Yudkowsky (2004), who proposes that the world’s first ‘‘seed AI’’
(capable of self-improving into a machine superoptimizer) could be programmed
with a goal system containing the ‘‘coherent extrapolated volition’’ of humanity:

In poetic terms, our coherent extrapolated volition is our wish if we knew more, thought
faster, were more the people we wished we were, had grown up farther together; where the
extrapolation converges rather than diverges, where our wishes cohere rather than inter-
fere; extrapolated as we wish [to be] extrapolated, interpreted as we wish [to be]
interpreted.

An extrapolation of one’s values, then, is an account of what one’s values
would be under more ideal circumstances (e.g. of full information, value coher-
ence). Value extrapolation theories have some advantages when seeking a machine
ethics suitable for a machine superoptimizer:

1. The value extrapolation approach can use what a person would want after
reaching reflective equilibrium with respect to his or her values, rather than
merely what each person happens to want right now.

2. The value extrapolation approach can allow for a kind of moral progress, rather
than freezing moral progress in its tracks at the moment when a particular set of
values are written into the goal system of an AI undergoing intelligence
explosion.

3. The value extrapolation process may dissolve the contradictions within each
person’s current preferences. (Sometimes, when reflection leads us to notice
contradictions among our preferences, we decide to change our preferences so
as to resolve the contradictions.)

4. The value extrapolation process may simplify one’s values, as the accidental
products of culture and evolution are updated with more considered and con-
sistent values. (Would I still demand regular doses of ice cream if I was able to
choose my own preferences rather than taking them as given by natural
selection and cultural programming?)

5. Though the value extrapolation approach does not resolve the problem of
specifying intractably complex current human values, it offers a potential
solution for the problem of using human values to design the goal system of a
future machine superoptimizer. The solution is: extrapolate human values so
that they are simpler, more consistent, and more representative of our values
upon reflection, and thereby more suitable for use in an AI’s goal system.

6. The value extrapolation process may allow the values of different humans to
converge to some degree. (If Johnny desires to worship Jesus and Abir desires
to worship Allah, and they are both informed that neither Jesus nor Allah exists,
their desires may converge to some degree).
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Next Steps

On the other hand, value extrapolation approaches to machine ethics face their own
challenges. Which value extrapolation algorithm should be used, and why? (Yud-
kowsky’s ‘‘grown up farther together’’ provision seems especially vulnerable.) How
can one extract a coherent set of values from the complex valuation processes of the
human brain, such that this set of values can be extrapolated to a unique set of final
values? Whose values should be extrapolated? How much will values converge upon
extrapolation [Sobel 1999; Döring and Andersen, 2009, Rationality, convergence
and objectivity, April 6, http://www.uni-tuebingen.de/uploads/media/Andersen_
Rationality__Convergence_and_Objectivity.pdf (Accessed March. 25, 2012)
‘‘Unpublished’’]? Is the extrapolation process computationally tractable, and can it
be run without doing unacceptable harm? How can extrapolated values be imple-
mented in the goal system of a machine, and how confident can we be that the
machine will retain those values during self-improvement? How resilient are our
values to imperfect extrapolation?

These are difficult questions that demand investigation by experts in many
different fields. Neuroeconomists and other cognitive neuroscientists can continue
to uncover how human values are encoded and modified in the brain. Philosophers
and mathematicians can develop more sophisticated value extrapolation algo-
rithms, building on the literature concerning reflective equilibrium and ‘‘ideal
preference’’ or ‘‘full information’’ theories of value. Economists, neuroscientists,
and AI researchers can extend current results in choice modelling (Hess and Daly
2010) and preference acquisition (Domshlak et al. 2011; Kaci 2011) to extract
preferences from human behavior and brain activity. Decision theorists can work
to develop a decision theory that is capable of reasoning about decisions and
values subsequent to modification of an agent’s own decision-making mechanism:
a ‘‘reflective’’ decision theory.

These are fairly abstract recommendations, so before concluding we will give a
concrete example of how researchers might make progress on the value extrapo-
lation approach to machine ethics.

Cognitive science does not just show us that specifying human values is dif-
ficult. It also shows us how to make progress on the problem by providing us with
data unavailable to the intuitionist armchair philosopher. For example, consider the
old problem of extracting a consistent set of revealed preferences (a utility func-
tion) from a human being. One difficulty has been that humans don’t act like they
have consistent utility functions, for they violate the axioms of utility theory by
making inconsistent choices, for example choices that depend not on the content of
the options but on how they are framed (Tversky and Kahneman 1981). But what
if humans make inconsistent choices because there are multiple valuation systems
in the brain which contribute to choice but give competing valuations, and only
one of those valuation systems is one we would reflectively endorse if we better
understood our own neurobiology?
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In fact, recent studies show this may be true (Dayan 2011). The ‘‘model-based’’
valuation system seems to be responsible for deliberative, goal-directed behavior,
but its cognitive algorithms are computationally expensive compared to simple
heuristics. Thus, we first evolved less intelligent and less computationally
expensive algorithms for valuation, for example the model-free valuation system
that blindly does whatever worked in a previous situation, even if the current
situation barely resembles that previous situation. In other words, contrary to
appearances, it may be that each human being contains something like a ‘‘hidden’’
utility function (within the model-based valuation system) that isn’t consistently
expressed in behavior because choice is also partly determined by other systems
whose valuations we wouldn’t reflectively endorse because they are ‘‘blind’’ and
‘‘stupid’’ compared to the more sophisticated goal-directed model-based valuation
system (Muehlhauser 2012).

If the value judgments of this model-based system are more consistent than the
choices of a human who is influenced by multiple competing value systems, then
researchers may be able to extract a human’s utility function directly from this
model-based system even though economists’ attempts to extract a human’s utility
function from value-inconsistent behavior (produced by a pandemonium of
competing valuation systems) have failed.

The field of preference learning (Fürnkranz and Hüllermeier 2010) in AI may
provide a way forward. Nielsen and Jensen (2004) described the first computa-
tionally tractable algorithms capable of learning a decision maker’s utility function
from potentially inconsistent behavior. Their solution was to interpret inconsistent
choices as random deviations from an underlying ‘‘true’’ utility function. But the
data from neuroeconomics suggest a different solution: interpret inconsistent
choices as deviations (from an underlying ‘‘true’’ utility function) that are pro-
duced by non-model-based valuation systems in the brain, and use the latest
neuroscientific research to predict when and to what extent model-based choices
are being ‘‘overruled’’ by the non-model-based valuation systems.

This would only be a preliminary step in the value extrapolation approach to
machine ethics, but if achieved it might be greater progress than economists and
AI researchers have yet achieved on this problem without being informed by the
latest results from neuroscience.15

15 Recent neuroscience may also help us to think more productively about the problem of
preference aggregation (including preference aggregation for extrapolated preferences). In many
scenarios, preference aggregation runs into the impossibility result of Arrow’s Theorem (Keeney
and Raiffa 1993, Chap. 10). But Arrow’s Theorem is only a severe problem for preference
aggregation if preferences are modeled ordinally rather than cardinally, and we have recently
learned that preferences in the brain are encoded cardinally (Glimcher 2010, Chap. 6).
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Conclusion

The challenge of developing a theory of machine ethics fit for a machine superop-
timizer requires an unusual degree of precision and care in our ethical thinking.
Moreover, the coming of autonomous machines offers a new practical use for pro-
gress in moral philosophy. As Daniel (2006) says, ‘‘AI makes philosophy honest.’’16
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Chapter 6A
Jordi Vallverdú on Muehlhauser and Helm’s ‘‘the Singularity
and Machine Ethics’’

The future will bring us, under the very plausible horizon of the singularity, a reality
of ‘‘machine superoptimizers’’, as they are conveniently labeled by Muehlhauser and
Helm, trying to avoid typical anthropomorphic biases. Until here I can agree with
him, but there is not a single concept, line or idea related to ethics and, by extension,
to machine ethics, that I can accept. Although the chapter includes a bird’s eye view
on the debates about the roots of ethical discourses it disregards the lack of evidence
for the existence of universal foundations of ethics, even from a metaethical natu-
ralist position, which could lead us to a highly controversial deterministic ethics.
Generative artificial ethics, if it could be possible, as an ethical expert system
working on a revisited version of the Principia Ethica (as an hypothetical neo-
Russell and Whitehead project based on the fundaments of ethics, not the Moore’s
text), would easily fail because every human community has its own ethical and
moral codes or rules and there is no possible agreement among them because all these
universals are based in different primordial concepts, all of them beyond any rational
approach. Ethics is built on the shifting sands of prejudices and opinions, never on the
truth, because it is the result of a cultural decision, not a part of the deep reality. In this
sense, you can achieve a de minimis set of shared rules, to describe a statistical
approach to a bunch of common values or design a new artificial new ethics, but you
never can discover nor find the ‘true values’ of the real ethics.

The authors also do not take into account a second and very important question
for a Roboethics or an AI ethics: the importance of embodiment. Every living
entity has a bodily structure that creates a specific intentionality towards the world
and the rest of living entities (similar or not). The body is the place from which the
world is felt and determines or constraints narrowly the range of possible per-
formed or wished actions. So, any conscious creature, natural or artificial, is
modeled and acts according to its structure. If the superoptimizers have different
bodies and minds than us, they surely do will have a specific and own ethics. You
can decide to try to feel different things about the events of the world but you
cannot decide or not to feel; and your feelings, emotions and attitudes towards the
basic aspects of the reality are constrained by these bodily arrows. If you agree
with me that emotions are a basic and determinant part of any rational being, then
the result of putting together minds, emotions and bodies show us an unexpected
and over paradigmatic ethics for those superoptimizers. Hence, in the case of
machine ethics as in many others, the future does not emerge from the present, at
least not from a sequential and consistent point of view.
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Chapter 7
Artificial General Intelligence
and the Human Mental Model

Roman V. Yampolskiy and Joshua Fox

Abstract When the first artificial general intelligences are built, they may
improve themselves to far-above-human levels. Speculations about such future
entities are already affected by anthropomorphic bias, which leads to erroneous
analogies with human minds. In this chapter, we apply a goal-oriented under-
standing of intelligence to show that humanity occupies only a tiny portion of the
design space of possible minds. This space is much larger than what we are
familiar with from the human example; and the mental architectures and goals of
future superintelligences need not have most of the properties of human minds.
A new approach to cognitive science and philosophy of mind, one not centered on
the human example, is needed to help us understand the challenges which we will
face when a power greater than us emerges.
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Introduction

People have always projected human mental features and values onto non-human
phenomena like animals, rivers, and planets, and more recently onto newer targets,
including robots, and even disembodied intelligent software. Today, speculation
about future artificial general intelligences1 (AGIs), including those with super-
human intelligence, is also affected by the assumption that various human mental
properties will necessarily be reflected in these non-human entities. Nonetheless, it
is essential to understand the possibilities for these superintelligences on their own
terms, rather than as reflections of the human model. Though their origins in a
human environment may give them some human mental properties, we cannot
assume that any given property will be present. In this chapter, using an under-
standing of intelligence based on optimization power rather than human-like
features, we will survey a number of particular anthropomorphisms and argue that
these should be resisted.

Anthropomorphic Bias

Because our human minds intuitively define concepts through prototypical
examples (Rosch 1978), there is a tendency to over-generalize human properties to
nonhuman intelligent systems: Animistic attribution of mental qualities to animals,
inanimate objects, meteorological phenomena, and the like is common across
human societies (See Epley et al. 2007). We may use the term ‘‘anthropomorphic
bias’’ for this tendency to model non-human entities as having human-like minds;
this is an aspect of the Mind Projection Fallacy (Jaynes 2003). Excessive reliance
on any model can be misleading whenever the analogy does not capture relevant
aspects of the modeled space. This is true for anthropomorphism as well, since the
range of human-like minds covers only a small part of the space of possible mind
designs (Yudkowsky 2006; Salamon 2009).

In artificial intelligence research, the risk of anthropomorphic bias has been
recognized from the beginning. Turing, in his seminal article, already understood
that conditioning a test for ‘‘thinking’’ on a human model would exclude ‘‘something
which ought to be described as thinking but which is very different from what a man
does’’ (Turing 1950). More recently, Yudkowsky (2008, 2011; see also Muehlhauser
and Helm this volume) has warned against anthropomorphizing tendencies in

1 The term ‘‘artificial general intelligence’’ here is used in the general sense of an agent,
implemented by humans, which is capable of optimizing across a wide range of goals. ‘‘Strong
AI’’ is a common synonym. ‘‘Artificial General Intelligence’’, capitalized, is also used as a term
of art for a specific design paradigm which combines narrow AI techniques in an integrated
engineered architecture; in contrast, for example, to one which is evolved or emulates the brain
(Voss 2007). As discussed below, this more specific sense of AGI is also the primary focus of this
article.
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thinking about future superintelligences: those which surpass the human level of
intelligence. To properly understand the possibilities that face us, we must consider
the wide range of possible minds, including both their architecture and their goals.
Expanding our model becomes all the more important when considering future AIs
whose power has reached superhuman levels.

Superintelligence

If we define intelligence on the human model, then intelligences will tautologically
have many human properties. We instead use definitions in which intelligence is
synonymous with optimization power, ‘‘an agent’s ability to achieve goals in a
wide range of environments’’ (Legg 2008). Legg uses a mathematical model in
which an agent interacts with its environment through well-defined input channel,
including observation and reward, as well as an output channel. He then defines a
Universal Intelligence Measure which sums the expectation of a reward function
over an agent’s future interactions with all possible environments. This definition
is abstract and broad, encompassing all possible computable reward functions and
environments.

Variations on this goal-based definition have been proposed. The Universal
Intelligence Measure is so general that it does not capture the specific environ-
ments and goals likely to be encountered by a near-future AGI. To account for this,
we can apply Goertzel’s (2010) definition of ‘‘pragmatic efficient general intelli-
gence’’, which resembles the Universal Intelligence Measure, but also takes into
account the system’s performance in given environments—which will likely be
human-influenced—as well as the amount of resources it uses to achieve its goals.

There are cases where human-based definitions of intelligence are suitable, as
when the purpose is to classify humans (Neisser et al. 1996). Likewise, human-
based metrics may be applicable when the goal is to build AIs intended specifically
to emulate certain human characteristics. For example, Goertzel (2009) discusses
practical intelligence in the social context: Goals and environments are assigned
a priori probabilities according to the ease of communicating them to a given
audience, which may well include humans.

Still, if the purpose is to consider the effects on us of future superintelligences or
other non-human intelligences, definitions which better capture the relevant fea-
tures should be used (Chalmers 2010). In the words of Dijkstra (1984), the
question of whether a machine can think is ‘‘about as relevant as the question of
whether Submarines Can Swim’’—the properties that count are not internal details,
but rather those which have effects that matter to us.

We use the term ‘‘mind’’ here simply as a synonym for an optimizing agent.
Although the concept ‘‘mind’’ has no commonly-accepted definition beyond the
human example, in the common intuition, humans and perhaps some other higher-
order animals have a mind. In some usages of the term, introspective capacity, a
localized implementation, or embodiment may be required. In our understanding,
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any optimization process, including a hypothetical artificially intelligent agent
above a certain threshold, would constitute a mind.

Nonetheless, the intuitions for the concepts of ‘‘mind’’ and ‘‘intelligence’’ are
bound up with many human properties, while our focus is simply on agents that
can impact our human future. For our purposes, then, the terms ‘‘mind’’ and
‘‘intelligence’’ may simply be read ‘‘optimizing agent’’ and ‘‘optimization power’’.

Though our discussion considers intelligence-in-general, it focuses on super-
human intelligences, those ‘‘which can far surpass all the intellectual activities of
any man however, clever’’ (Good 1965). Superintelligences serve as the clearest
illustration of our thesis that human properties are not necessary to intelligence,
since they would be less affected by the constraints imposed by human level
intelligence. In contrast, the limited intelligence of near-human agents may well
constrain them to have certain human-like properties. As research related to
control and analysis of superintelligent systems gains momentum (Yampolskiy
2011, 2011a, 2011b, 2012a, 2012b; Yampolskiy and Fox 2012) our thesis becomes
essential for avoiding fundamental mistakes.

The Space of Possible Minds

Formalisms help broaden our intuitions about minds beyond our narrow experi-
ence, which knows no general intelligences but humans. In the approach men-
tioned earlier in association with the Universal Intelligence Measure, agents are
modeled as functions which map, in repeated rounds of interaction, from an input-
output history to an action (Hutter 2005; Legg 2008). As the inputs and outputs are
modeled as strings from a finite alphabet, with an indefinite future horizon, there
are, in principle, infinitely many such agent functions.

Using this model, there is a continuum across fundamentally different minds.
For any computable agent, there are many other computable agents it cannot
understand (learn to predict) at all (Legg 2006). There is thus, in principle, a class
of agents who differ so strongly from the human that no human could understand
them. Most agents represent trivial optimization power; our attention is focused on
those which represent superhuman intelligence when implemented.

If we extend our model and allow the agent to change under the influence of the
environment (Orseau and Ring 2011), we find another source of variety in alter-
ations in the mind itself, just as a given human behaves very differently under the
influence of intoxicating substances, stress, pain, sleep, or food deprivation.

We are familiar with infrahuman intelligence in non-human animals. Animals
can use senses, abilities such as navigation, and some forms of cognition, in goal-
seeking (Griffin 1992). Non-human biological intelligences, including some dif-
ferent from those we are familiar with, could also evolve in environments outside
our planet. Freitas (1979) describes an intelligence which might arise with a
ganglionic rather than a chordate nervous system: such creatures, with small
‘‘brains’’ for each body segment (like most of earth’s invertebrates), would have
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distributed, cooperative brains with distinct awareness for each body part. Like-
wise, animals with different weightings for their cognates of the three parts of the
human brain—reptilian midbrain, limbic system, and neocortex—would have
different distributions of mental features like aggression, emotion, and reason.
Though these hypothetical biological intelligences fall into a narrow range of
intelligence around the human level or below, they illustrate a range of possible
architectures and motivational systems.

Classifications of kinds of minds which go much farther beyond the human
example have been offered by Hall (2007) and Goertzel (2006, p. 17). Hall clas-
sifies future AGIs, making the point that we should not expect AI systems to ever
have closely humanlike distributions of ability, given that computers are already
superhuman in some areas. So, despite its anthropocentric nature, his classification
highlights the range of possibilities as well as the arbitrariness of the human
intelligence as the point of reference. His classification encompasses hypohuman
(infrahuman, less-than-human capacity), diahuman (human level capacities in
some areas, but still not a general intelligence), parahuman (similar but not
identical to humans, as for example, augmented humans), allohuman (as capable
as humans, but in different areas), epihuman (slightly beyond the human level),
and hyperhuman (much more powerful than human). Goertzel classifies a broader
range of minds, contrasting the human to possible non-human mental architec-
tures, and describing AGI architectures which would implement many of these
possibilities.

Singly-embodied minds control and receive input from a single spatially-
constrained physical or simulated system; multiply- and flexibly-embodied minds,
respectively, have a multiple or changing number of such embodiments. Non-
embodied minds are those which are implemented in a physical substrate but do
not control or receive input from a spatially-constrained body. Humans, of course,
are singly-embodied.

Humans are not only embodied but also body-centered. The human brain is
connected to and can be directly influenced by the remainder of the body, along
with its immediate environment, so that the mind as a whole consists of patterns
emergent between the physical system (the brain and body) and the environment.
Non-embodied and non-body-centered minds are possible, and even within the
narrower constraints of embodiment, variations in the sensors and manipulators
under control of a particular mind design present even more variety in mental
capabilities.

Goertzel also explores possibilities for mind-to-mind linkage. Human minds work
in near-isolation, connected mostly by the slow and lossy thought-serialization of
language. But there are other possibilities. One is a mindplex, a set of collaborating
units each of which is itself a mind. Human organizations and nations are mindplexes,
albeit in imperfect form because of limitations in our communication; but a more
tightly integrated mindplex would constitute a very different kind of general
intelligence.

Within this variety of possible minds, superintelligence should not be consid-
ered a specialized variant on human level of intelligence. Rather, human level
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intelligence should be considered an unstable equilibrium which can rapidly shift
into superhuman ranges (see Muehlhauser and Salamon this volume). Humans find
it difficult to improve their own brain power, but an AGI would find it much easier,
since it would have capabilities such as adding more hardware or examining its
own source code for possible optimizations. Moreover, most AGIs would want to
self-improve to the highest possible level of intelligence, as this has value in
achieving most goals (Omohundro 2008).

Humans are the first general intelligence on earth. We have been in existence
for a short time in evolutionary terms and represent a lower bound on the intel-
ligence able to build a civilization. The upper limit on raw processing power for
the entire universe through its history, as imposed by the laws of physics, 10120

operations over 1090 bits; a one-liter, one-kilogram computer has the upper limit of
1050 operations per second (Lloyd 2000, 2002). This theoretical maximum is
almost certainly too generous—it assumes an exploding computer. But even with
tighter constraints, such as speed of electrical and optical signals in feasible
technology, or the Landauer (1961) limits on the minimal energy required for any
irreversible computation, upper bounds remain far above the human level, esti-
mated at 1011 operations per second (Moravec 1998). Even though functional
ability requires more than just raw power, the gap between the human level and the
highest degree of optimization power possible leaves open a wide range,
encompassing a vast range of possible superhuman intelligence levels (Sotala
2010).

Architectural Properties of the Human Mind

The tight entwinement of functionality and goals in the human brain is a contin-
gent fact which depends on our evolutionary history. But in general, a single
architecture may serve various goals, while multiple architectures may be capable
of serving a given goal system. Thus, mental architecture and goal systems must be
examined separately.

The human mental architecture is quite uniform, the so-called ‘‘psychic unity of
mankind’’. This is a result of humanity’s origin in evolution through sexual
reproduction, which works only when genomes remain similar across the species.
This results in homogeneity in human minds, both in hardware—the brain—and
software—the functional mind design (Tooby and Cosmides 1992, p. 38). All
human minds share specialized features and behaviors, including myths, grammar,
ethnocentrism, play, and empathy, and many others (Brown 1991, 2004). Other
animals, which share a biological substrate and the goals of reproductive fitness
with humans, also share certain human mental features, as for example, specialized
abilities to track degrees of genetic relatedness. But non-biological optimizers,
which are not faced by these constraints, need not have the same motivations and
accompanying mental techniques.
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For humans, the perceptions of space and time, and the ability to act on their
environment, are centered on a body. Embodiment-based cognition is so essential
to human minds that it extends even to aspects of cognition which do not directly
depend on embodiment (Lakoff 1987): For example, one ‘‘wades through’’ a
difficult book. An AGI must likewise be implemented in some physical form
(which must be protected if the agent is to continue working towards its goals).
It also must interact with its environment in space and time if its goals are based on
the state of the environment. Thus, perceptions and action are also essential to a
superintelligence. Body-centeredness is not necessary, however, since a computer
substrate allows the distribution and relocation of mental capacities, perceptions
and motor control (Fig. 7.1).

Human minds are characterized by some weaknesses. Even ordinary computers
surpass us in symbol processing and logical inference. Humans, for example, are
typically unable to trace nested (non-tail) syntactic recursion to more than about

Earth-evolved biological 
minds

Narrow AI
Evolutionary processes

AIXI

Human minds

Markets

Human organizations

Alien 
biological 
minds

Near-human AGI

Superintelligent AGI

Augmented biological 
human minds

Artificially-
augmented 
human minds

Some optimization processes

AIXItl

Monte Carlo AIXI 
Approximation

Fig. 7.1 This diagram, based on (Yudkowsky 2006), presents the optimization processes
surveyed here, including existing optimizers, hypothetical ones, and formalisms. (The diagram is
not to scale and shows only an unrepresentative sample of the possibilities.) It is intended to
illustrate that human mind design constitutes a tiny part of a vast space of possible minds, most of
which have deeply non-human-like goals and architectures
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two levels (Reich 1972; Karlsson 2010), though computers can do this with ease; a
superintelligence could easily adopt such a computational module.

Minds like ours, which work with very limited computational resources, have to
rely on heuristic simplifications to arrive at satisficing solutions. These heuristics
create biases which constitute imperfections in human rationality (Kahneman et al.
1982; Gigerenzer and Selten 2001). For example, humans are afflicted with the
endowment effect, in which possessions which one currently owns are overvalued,
so that investors often avoid selling assets, even where that would maximize
utility. A near-human or only slightly super-human artificial intelligence might
also find similar heuristics to be necessary. But human biases are not necessary to
intelligence. Indeed, even without superintelligence, the narrow AI financial sys-
tems of today can ignore the endowment effect in making buy/sell decisions.
A superintelligence with adequate computational power and memory would not
need to adopt these heuristics at all.

A superintelligence with origins in a designed AGI, rather than in evolution,
will lack the weaknesses of a biological substrate. While the human brain is
constrained by its evolutionary origins, engineers have available to them a far
wider range of designs than evolution did in sculpting us (Bostrom and Sandberg
2009). Engineers have the benefit of memory, foresight, cooperation, and com-
munication; they have the ability to make leaps in design space, and trial-and-error
cycles on a short time-scale (Yudkowsky 2003). A computer substrate also pro-
vides advantages over human brains, such as modularity, better serial computation,
and transparent internal operation.

Many weak-AI implementation projects have incorporated human properties
such as embodiment, emotions, and social capacities (Brooks 1999; Duffy 2003).
Some projects go so far as to intentionally copy limitations observed in human
psychology, in order to avoid wasting effort on potentially unfeasible tasks, while
still achieving human-comparable performance (Strannegård 2007). But imple-
mentations of isolated mental features give us no reason to assume that a full AGI
would necessarily have a wide range of human-like properties.

Already today, many forms of narrow AI and proposed designs for strong AI
have non-anthropomorphic, computer-based architectures. For example, the design
paradigm called Artificial General Intelligence adopts narrow AI components but
takes only a broad inspiration from the human mind (e.g., Goertzel et al. 2009).
The variability of the architecture will be all the greater after self-improvement,
since an AGI need not keep its current architecture as it self-improves. It will
create a new design, even a radically non-anthropomorphic one, if an entity with
this new design will be better able to achieve its goals.

There is a category of greater-than-human minds which would have human-like
mental properties: those derived from humans. These include brains augmented
with nootropic drugs, genetic engineering, or brain-computer interfaces (Vidal
1973; Graimann et al. 2010), uploads of specific persons (Hanson 1994), and
whole brain emulations (Sandberg and Bostrom 2008). On functionalist principles,
these are all rooted in and not essentially different in their origins from ordinary
biological minds, and inherit their properties, even if subsequently they use their
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greater-than-human intelligence to bootstrap to much higher levels. Thus, these
human-origin superintelligences are likely to present examples of human proper-
ties. Still, fundamental differences from human architecture can be expected.
Uploads, human/machine cyborgs, and whole brain emulations, with their non-
biological computing substrate gain advantages over biological brains in areas
such as self-improvement, communication, and others (Sotala 2012, in press).
As they improve to superintelligence, the human-origin minds could leave behind
human mental limitations, and reimplement themselves in an even better archi-
tecture if they so choose.

Human Goals

The human goal system, which includes survival, social status, and morality, along
with many others, is a mix of adaptations to conditions in the human ancestral
environment (Tooby and Cosmides 1992; Greene 2002). In contrast, an AGI, and
in particular a superintelligence, can have arbitrary goals, whether these are
defined by its designers or develop in a random or chaotic process.

Human terminal values arose from their instrumental value in achieving evo-
lution’s implicit goal of reproductive success for the genes. For AGIs as well, such
human-like preferences would have instrumental value for the achievement of
many goals. For example, most agents, including superintelligences, would be
motivated, as humans are, to protect themselves, to acquire resources, and to use
them efficiently.

But there are also instrumental values which could be of far more use to
machine intelligences than to humans. Humans can take nootropic drugs to
enhance their minds; they can avoid addictive or psychoactive drugs to avoid
distorting their utility function. But an agent which can more fully examine and
improve its own design, implementation, and embodiment will find much more
value to radical self-improvement, preservation of utility functions, and prevention
of counterfeit utility (Omohundro 2008).

An intelligence far more powerful than humans would have no need for the
values of exchange, cooperation, and altruism in interaction with humans, unless
these were built- in as terminal values. A superintelligence would not need any
benefits that humans could offer in exchange for its good behavior; it could evade
monitoring and resist punishment. Since humans cannot meaningfully help or
harm the superintelligence, there would be little value in cooperation, verifiably
trustworthy dispositions, or benevolence (Fox and Shulman 2010), nor in money
(control of resources on a human scale), social power, or even malevolence
(disempowerment or elimination of rivals as a goal).

In an environment with peers, a superintelligence would have incentive to
cooperate or compete instrumentally (Hall 2007). Yet this is only true where su-
perintelligences of roughly equal ability exist. Across the wide continuum of pos-
sible levels of intelligence, agents which are not of the same species—the same
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software/hardware specification—are more likely to be mismatched than to be
equals. A Darwinian scenario, in which a population of superintelligences cooper-
ates and competes, could produce rough equals, perhaps distributed across niches.
But if a superintelligence self-improves fast enough, it will be aware of the evolu-
tionary threat and suppress the rise of other intelligences (Bostrom 2006).

Human goals are mostly self-centered, with altruism a debatable exception
(Batson 2010). In contrast, there is no a priori reason for AGIs to treat their own
control of resources or their own continued existence as terminal values (though
they may be useful as instrumental values). Since future AGIs will have goals
designed to serve human preferences, they may well possess a quite inhuman
altruism.

If today’s plans for AGIs are any guide, the first ones are likely to be assigned
simple goal systems, as contrasted to the human multiplicity of mutually incon-
sistent, changeable goals, with intertwined instrumental and terminal values.
(However, complex goal systems are possible in AGIs, particularly if their creators
are specifically trying to copy the human goal system.)

AGI goals originating in human needs (for example, maximizing wealth or
winning a war for its makers), are no guarantee of human-like behavior, even if
these goals are well-defined. A drive to maximize these goals, even at the expense
of all other values important to humans, would result in deeply alien behavior
(Bostrom 2003; Yudkowsky 2011).

Humans sometimes change their values, as in a process of Kantian reflection, in
which a person decides that moral reciprocity is not merely a means to an end, but
also an end in itself. However, any sufficiently powerful superintelligence would
not change its values, since doing so impairs the chances of achievement of the
current values, and so represents a limitation to optimization power. Thus, a very
powerful optimizer would strive to prevent such human-like preference evolution
(Omohundro 2008).2

Superintelligences originating in humans, such as augmented brains, cyborgs,
uploads, and whole brain emulations, would start with human values. As they gain
in power, they would lose the social constraints which form an important moti-
vation for human behavior: Power corrupts, and power far beyond what any tyrant
has known to date may corrupt a human-like mind so that its motivational system
becomes very different from that of today’s humans. As human-based minds self-
improve, they are likely to seek to protect their goal systems, like other powerful
optimizers; this could produce an example of a superintelligence with human-like
goals. Even these superintelligences, however, may ultimately evolve goals which

2 Change of goals is possible in a superintelligence where a stable metagoal is the true motivator.
For example, discovery and refinement of goals is part of Coherent Extrapolated Volition, a goal
system for a self-improving AGI. It is designed, to ultimately converge on the terminal value of
helping humans achieve their goal system as extrapolated towards reflective equilibrium
(Yudkowsky 2004; Tarleton 2010; Dewey 2011). Nonetheless, CEV does not violate the principle
that a sufficiently powerful optimizer would lack human-like variability in its goals, since its
meta-level values towards goal definition in themselves constitute a stable top-level goal system.
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differ from those of humans. They would start with human-like changeability in
their goal system, and the changeability could in itself be treated as a meta-value,
resulting in different object-level values.

Examples of Superintelligences

We know of no superintelligences today, nor any other intelligences with the
generality and flexibility of the human mind. But examples of powerful optimi-
zation processes with non-human goals and architectures are available. Some are
superior to humans in certain areas of optimization.

Evolutionary processes are flexible and powerful enough to create life forms
adapted for a wide variety of changing environments by optimizing for repro-
ductive success, far outdoing the accomplishments of human engineers in this area.
(It should be noted, however, that these processes have had much more time to
work than all human engineers combined). Evolutionary processes share with
humans only the ability to optimize; they lack all other properties associated with
humans. They are unembodied, impersonal, unconscious, and non-teleological,
lacking any modeling capacities. Even though the human mind evolved to serve
evolutionary goals of reproductive success, humans do not share the goals of the
evolutionary processes which created them (Cosmides and Tooby 1992;
Yudkowsky 2003).

Markets are another type of powerful optimizer. Though externalities and other
market failures render them far from optimal, they outdo centralized planning
(i.e., a small group of human minds) at their implicit goal, maximizing for the net
benefit of producers and consumers. Though based on the interactions of
individual humans, each working towards their own goals, markets as a whole lack
all properties of the human mind. Markets are embodied in the humans who
participate in them, but optimize distinct values from any individual human. Like
evolutionary processes, markets are impersonal, unconscious, and non-teleologi-
cal; and lack internal models of the optimized domain.

Markets present a valuable example of other-directed goals: They optimize
functions which are aligned with and derived from the values of other intelli-
gences, namely humans. Such other-directedness is rare in humans and other
biological intelligences. In contrast, in artificial agents there is no bar to pure
altruism; in fact, since they would be created to serve their designers’ goals, other-
directed values are the default.

These examples are useful, but limited. None is a true superintelligence. Only
humans today have flexible, general, intelligence, leaving theoretical models of
superintelligence such as AIXI as a useful tool in considering the full range of
possibilities. AIXI (Hutter 2005) is an abstract and non-anthropomorphic for-
malism for general and flexible superintelligence. It combines Solomonoff
induction (Li and Vitányi 1993, pp. 282–290) and expectimax calculations to

7 Artificial General Intelligence and the Human Mental Model 139



optimize for any computable reward function. It is provably superior at doing so,
within a constant factor, than any other intelligence (Hutter 2005).

There are limitations on the usefulness of AIXI as an example. As it is
incomputable, it must be treated as a model for intelligence, not as a design for an
AGI.

Also, AIXI, and Legg’s Universal Intelligence Measure which it optimizes, is
incapable of taking the agent itself into account. AIXI does not ‘‘model itself’’ to
figure out what actions it will take in the future; implicit in its definition is the
assumption that it will continue, up until its horizon, to choose actions that
maximize expected future value. AIXI’s definition assumes that the maximizing
action will always be chosen, despite the fact that the agent’s implementation was
predictably destroyed. This is not accurate for real-world implementations which
may malfunction, be destroyed, self-modify, etc. (Daniel Dewey, personal com-
munication, Aug. 22, 2011; see also Dewey 2011). AIXI’s optimization is for
external rewards only, with no term for the state of the agent itself, it does not
apply to systems that have preferences about more than the reward, for example,
preferences concerning the world as such, or preferences about their own state; nor
does it apply to mortal systems (Orseau and Ring 2011). Nonetheless, AIXI does a
good job of representing the best possible optimizer in the sense of finding ever
closer approximations to the global maxima in a large search space of achievable
world-states. Taken as an abstract model, AIXI’s complete and compact specifi-
cation serves to show that in the limiting case, almost any property in an intelli-
gence, beyond optimization power itself, is unnecessary.

AIXI is quite inhuman. It is completely universal, maximally intelligent under a
universal probability distribution—i.e., where the environment is not prespecified.
It thus lacks the inductive bias favored by humans. It lacks human qualities of
embodiment: It has no physical existence beyond the input and output channels.
Also, unlike humans, this formalism has no built-in values; it works to maximize
an external reward function which it must learn from observation.

Variants of AIXI bring this model, with its compact specification and freedom
from built-in inductive bias, into the realm of computability and even imple-
mentation. AIXItl (Hutter 2005) is computable, though intractable, and is provably
superior within a constant factor to any other intelligence with given time and
length limits. A tractable approximation, Monte Carlo AIXI, has been imple-
mented and tested on several basic problems (Veness et al. 2011).

A Copernican Revolution in Cognitive Science

We have explored a variety of human mental properties, including single
embodiment, body-centeredness, certain strengths and weaknesses, and a specific
complex set of goals. Superintelligences need have none of these features. Though
some instrumental goals will be valuable for most intelligent agents, only the
definitional property of much-higher-than-human optimization power will
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necessarily be present in a superintelligence. Humans are the only good example
of general intelligence which we know—but not the only one possible, particularly
when the constraints of our design are thrown aside in a superintelligence.

Since the Copernican revolution, science has repeatedly shown that humanity is
not central. Our planet is not the center of the universe; Homo sapiens is just
another animal species; we, like other life-forms, are composed of nothing but
ordinary matter. Recently, multiverse theories have suggested that everything we
observe is a tiny part of a much larger ensemble (Tegmark 2004; Greene 2011).

This decentralizing trend has not yet reached the philosophy of the human
mind. Much of today’s scholarship takes the universality of the properties of the
human mind as granted, and fails to consider in depth the full range of possible
architectures and values for other general optimizers, including optimizers much
more powerful than humans. It is time for psychology and the philosophy of mind
to embrace universal cognitive diversity. Even in today’s era, in which only a
single design for general intelligence exists, this broadening will enrich our ana-
lytic tools for understanding mental architecture, decision processes, goals, and
morality.

A Copernican revolution for the mind can extend our view outwards, but also
improve our insight into ourselves. The shift away from geocentric cosmology
improved our understanding of the Earth, and an evolutionary analysis of our
species’ rise helped us understand the design of humans. So too, an examination of
other possible minds, and in particular superintelligent minds, can help us reach
philosophical and psychological conclusions about humans as well. Already,
infrahuman AIs have provided paradigms for philosophy of mind (e.g., Newell and
Simon 1972); AI-related research such as Bayesian network theory (Tenenbaum
et al. 2006) has contributed to neuroscience. Though at the current stage, only
thought experiments are possible, theories about possible superintelligences can
shed more light on the human condition.

Today’s astronomers know that Earth is still central in one sense: We live on it.
Our observations are made from it or near it; our tentative explorations of space
began on it; its fate is tied up with our own. So too, when we humans begin
exploring mind-space with the creation of AGIs, the human mind will remain of
central importance: The first near-human-level AGIs may be partially modeled on
our mind’s architecture and will have goals chosen to serve us. But just as
astronomers came to learn that the universe has unimaginably large voids, stars
much greater than our sun, and astronomical bodies stranger than anything pre-
viously known, so too we will soon encounter new intelligences much more
powerful than us and very different from us in mental architecture and goals.

There are two meanings to Copernicanism. One is ‘‘we are not central’’, and the
other is ‘‘we are ordinary; what we see is common’’. This second meaning, too,
should influence our thinking on intelligence. Although the human mind’s special
status as the only true general intelligence remains a reality for now, in principle
other general intelligences can exist. Once other human level intelligences, and
then superintelligences, are created, our theory of mind will have to expand to
include them; we should start now, arming ourselves with an understanding which
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may enable us to design them to meet our needs. Defining the initial AGIs’ goals in
accordance with human values, and guaranteeing the preservation of the goals
under recursive self-improvement, will be essential if our human values are to be
preserved (Yudkowsky 2008; Anissimov 2011).
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Chapter 8
Some Economic Incentives Facing
a Business that Might Bring About
a Technological Singularity

James D. Miller

Introduction

A business that created an artificial general intelligence (AGI) could earn trillions
for its investors, but might also bring about a ‘‘technological Singularity’’ that
destroys the value of money. Such a business would face a unique set of economic
incentives that would likely push it to behave in a socially sub-optimal way by, for
example, deliberately making its software incompatible with a friendly AGI
framework. Furthermore, all else being equal, the firm would probably have an
easier time raising funds if failure to create a profitable AGI resulted in the
destruction of mankind rather than the mere bankruptcy of the firm. Competition
from other AGI-seeking firms would likely cause each firm to accept a greater
chance of bringing about a Singularity than it would without competition, even if
the firm believes that any possible Singularity would be dystopian.

In writing this chapter I didn’t seek to identify worst-case scenarios. Rather,
I sought to use basic microeconomic thinking to make a few predictions about how a
firm might behave if it could bring about a technological Singularity. Unfortunately,
many of these predictions are horrific.

The Chapter’s General Framework

This chapter explores several scenarios in which perverse incentives can cause
actors to make socially suboptimal decisions. In most of these scenarios a firm
must follow one of two possible research and development paths. The chapter also
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makes the simplifying assumption that a firm’s attempt to build an AGI will result
in one of three possible outcomes:

• Unsuccessful—The firm doesn’t succeed in creating an AGI. The firm’s owners
and investors are made worse off because of their involvement with the firm.

• Riches—The firm succeeds in creating an AGI. This AGI performs extremely
profitable tasks, possibly including operating robots which care for the elderly;
outperforming hedge funds at predicting market trends; writing software;
developing pharmaceuticals; and replacing professors in the classroom.
Although an AGI which brings about outcome riches might completely remake
society, by assumption money still has value in outcome riches.

• Foom—the AGI experiences an intelligence explosion that ends up destroying
the value of money.1 This destruction assumption powers most of my results.
Here is how outcome foom might arise: An AGI with human-level intelligence is
somehow created. But this AGI has the ability to modify its own software. The
AGI initially figures out ways to improve its intelligence to give itself slightly
better hardware. After the AGI has made itself a bit smarter, it becomes even
better at improving its own intelligence. Eventually, through recursive self-
improvement, the AGI experiences an intelligence explosion, possibly making it
as superior to humans in intelligence as we are to ants.

The Singularity gives me an opportunity to play with an assumption that would
normally seem crazy to economists: that a single firm might obliterate the value of
all past investments. My property-destruction assumption is reasonable because if
any of the following conditions—all of which (especially the first) are plausible
side effects of a foom—hold, you will not be better off because of your pre-foom
investments:

• Mankind has been exterminated;
• scarcity has been eliminated;
• the new powers that be redistribute wealth independent of pre-existing property

rights;
• everyone becomes so rich that any wealth they accumulated in the past is trivial

today;
• all sentient beings are merged into a single consciousness;
• the world becomes so weird that money no longer has value, e.g. we all become

inert mathematical abstractions.

For investments made in the past to have value today, there must exist certain
kinds of economic and political links between the past and present. Anything that
breaks these necessary connections annihilates the private value of past invest-
ments. As a Singularity would create massive change, it has a significant chance of
dissolving the links necessary to preserving property rights.

1 The term foom comes from AGI theorist Eliezer Yudkowsky. See Yudkowsky (2011).
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Small, Self-Interested Investors

This chapter extensively discusses the decisions of small, self-interested investors.
A single small investor can’t affect what happens in any of the three outcomes, nor
influence the probability of any of the outcomes occurring. Because of how
financial markets operate, small investors have zero (rather than just a tiny) effect
on the share price of companies. If the fundamentals of a company dictate that its
stock is worth $20, then if you buy the stock its price might go slightly above $20
for a tiny amount of time. But as the stock would still, fundamentally, be worth
$20 your actions would cause someone else to sell the stock, pushing the price per
share back to $20. For large companies, such as IBM, almost all investors are
small, because none of them can permanently change the stock price. Billionaire
Bill Gates owning $100 million of IBM stock would still qualify him as a small
investor in IBM.

Even though a small investor acting on his own can’t seriously affect a firm,
anything which makes the company more or less attractive to most small investors
will impact a company’s stock price and its ability to raise new capital.

I assume that investors are self-interested and care only about how their deci-
sions will affect themselves. Since small investors can’t individually impact what
happens to a company, assuming small investors are self-interested is probably an
unnecessary assumption. But I make the assumption to exclude the possibility that
a huge percentage of investors will make their investment decisions based on
moral considerations of what would happen if their actions determined how others
invested. This self-interested assumption is consistent with the normal behavior of
almost all investors.

No Investment Without Riches

An AGI-seeking firm would have no appeal to small, self-interested investors if the
firm followed a research and development path that could lead only to outcomes
unsuccessful or foom. An obvious condition for a self-interested individual to
invest in a firm is that making the investment should sometimes cause the indi-
vidual to become better off. If an AGI-seeking firm ended up being unsuccessful,
then its investors would be made worse off. If the firm achieved outcome foom,
then although a small investor might have been made much better or worse off
because of the firm’s activities, his investment in the firm cannot have been a cause
in the change in his welfare because, by assumption, a single small investor can’t
affect the probability of a foom or what happens in a foom, and how you are treated
post-foom isn’t influenced by your pre-foom property rights.

More troubling, the type of foom an AGI might cause would have no effect on
small investors’ willingness to fund the firm. Rational investors consider only the
marginal costs and benefits of making an investment. If an individual’s investment
would have no influence over the type and probability of a foom, then rational
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investors will ignore what type of foom a firm might bring about, even though the
collective actions of all small investors affect the probability of a foom and the type
of foom that might occur.

Imagine that a firm follows one of two possible research and development paths.
Each path leads to a 98 % chance of unsuccessful, a 1 % probability of riches, and a
1 % chance of a foom. Let’s further postulate that if outcomes unsuccessful or riches
occurs, then the firm and its investors would be just as well off under either path. The
foom that Path 1 would create, however, would be utopian, whereas the foom that
Path 2 would bring would kill us all. Small, self-interested investors would be just as
willing to buy stock in the firm if it followed Path 1 or Path 2. In a situation in which
it’s slightly cheaper to follow Path 2 than Path 1, the firm would have an easier time
raising funds from small, self-interested investors if it followed Path 2. And the
situation is going to get much worse (Fig. 8.1).

Some might object that my analysis places too high a burden on the assumption
that an individual small investor has zero effect on stock prices and that if I slightly
weakened this assumption my results wouldn’t hold. These objectors might claim
that since a utopian foom would give everyone billions of years of bliss then even a
slight chance of influencing foom would impact the behavior of a small investor.2 To
the extent that this objection is true the results in this chapter become less important.
But an investor with a typical discount rate might not significantly distinguish
between, say, living for fifty years in bliss or living forever in such a state.

The actions of members of the Singularity community show that most people
who believe in the possibility of a Singularity usually ignore opportunities to only
slightly increase their subjective probability of a utopian foom occurring. Many
members of this community think that the Singularity Institute for Artificial
Intelligence is working effectively to increase the probability of a positive

Fig. 8.1 When the type of foom is irrelevant to investment decisions

2 The small investors who did seek to influence the probability of a utopia foom would
essentially be accepting Pascal’s Wager.
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intelligence explosion, and the more resources this organization receives the
greater the chance of a utopian foom. Yet most people with such beliefs (including
this author) spend money on goods such as vacations, candy, and video games
rather than donating all the resources they use to buy these goods to the Institute.
Furthermore, the vast of majority people who believe in the possibility of a utopian
Singularity and think that cryonics would increase the chance of them surviving to
Singularity don’t sign up with a cryonics provider such as Alcor (although this
author has). The revealed preferences of Singularity ‘‘believers’’ show that I’m not
putting too high a burden on my ‘‘zero effect’’ assumption.

Even if, however, investors do act as if their actions impact the type and
probability of a foom, there would still be colossal externalities to investors’
decisions because people other than the investors, the firm, and the firm’s cus-
tomers would be impacted by the investors’ decisions. Basic economic theory
could easily show that the investors’ decisions almost certainly won’t be optimal
because these investors, compared to what would be socially optimal, would invest
too little in firms that might bring about a utopian foom and too much in businesses
that could unleash a dystopian foom.

Deliberately Inconsistent with a Pre-existing
Friendly AGI Framework

Let’s now postulate that after a firm has chosen its research and development path
it has some power to alter the probability of a foom occurring. Such flexibility
could hinder a firm’s ability to attract investors.

For example, let’s again assume that a firm must follow one of two research paths.
As before, both paths have a 98 % chance of leading to unsuccessful. Two percent of
the time, the firm will create an AGI, and we assume the firm will then have the ability
to decide whether the AGI will undergo an intelligence explosion and achieve foom,
or not undergo an intelligence explosion and achieve riches. Any foom that occurs
through Path 3 will be utopian, whereas a foom that results from Path 4 will result in
the annihilation of mankind. Recall that a small, self-interested investor will never
invest in a firm that could achieve only outcomes unsuccessful or foom. To raise
capital, the firm in this example would have to promise investors that it would never
pick foom over riches. This would be a massively non-credible promise for a firm that
followed Path 3, because everyone—including the firm’s investors —would prefer to
live in a utopian foom then to have the firm achieve riches. In contrast, if the firm
intended to follow Path 4, everyone would believe that the firm would prefer to
achieve riches than experience a dystopian foom (Fig. 8.2).

So now, let’s imagine that at the time the firm tries to raise capital, there exists a
set of programming protocols that provides programmers with a framework for
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creating friendly AGI. This framework makes it extremely likely that if the AGI
goes foom, it will be well disposed towards humanity and create a utopia.3

To raise funds, an AGI-seeking firm would need to choose a research and
development path that makes it difficult for the firm to use the friendly AGI frame-
work. Unfortunately, this means that any foom the firm brings about unintentionally
would be less likely to be utopian than if the firm had used the friendly framework.

Further Benefits From a World-Destroying Foom

A bad foom is essentially a form of pollution, meaning it’s what economists call a
‘‘negative externality’’. Absent government intervention, investors in a business
have little incentive to take into account the pollution their business creates
because a single investor’s decision has only a trivial effect on the total level of
pollution. Economists generally assume that firms are indifferent to the harms
caused by their pollution externalities, because firms are neither helped nor hurt by
the externalities they create. An AGI-seeking firm, however, might actually benefit
from a bad foom externality.

Fig. 8.2 A non-credible promise

3 A friendly AGI framework, however, might be adopted by an AGI-seeking firm if the
framework reduced the chance of unsuccessful and didn’t guarantee a foom the firm might
deliberately create would be utopian.
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To understand this, imagine that an investor is choosing between investing in
the firm or buying a government bond. If the firm achieves outcome riches, then
the firm will end up giving the investor a higher payoff than the bond would have.
If the firm achieves unsuccessful, then the bond will outperform the firm. But if the
firm achieves foom, then both the firm and bond offer the same return: zero. A
foom destroys the value of all investments, not just those of the AGI-seeking firm.
For an investor in an AGI-seeking firm, riches gives you a win, unsuccessful a loss,
but foom a tie. Consequently, all else being equal, a firm would have better success
attracting small, self-interested investors when it increased the probability of
achieving foom at the expense of decreasing the chance of achieving unsuccessful
(while keeping the probability of riches constant) (Fig. 8.3).

A Shotgun Strategy

Pharmaceutical companies often take a shotgun approach to drug development by
testing a huge number of compounds, knowing that only a few will be medically
useful. An AGI-seeking firm could take a shotgun approach by writing thousands
of recursive self-improving programs, hoping that at least one brings about riches.
You might think that this approach would have little appeal to an AGI-seeking
firm, because one foom would cancel out any number of riches, so the probability
of foom would be very high. But, as the following example shows, this isn’t
necessarily the case:

Assume a business could follow one of two paths to produce an AGI:

Path 7:
Probability of Unsuccessful = 0.5
Probability of Riches = 0.5
Probability of Foom = 0

Fig. 8.3 When unsuccessful deters investors more than a dystopian foom does
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Path 8:
Probability of Unsuccessful = 0.01
Probability of Riches = 0.01
Probability of Foom = 0.98

Imagine an investor is deciding between buying stock in the firm, or purchasing
a government bond. The stock would provide a higher return in outcome riches,
but a lower return in outcome unsuccessful. If the firm takes Path 7, then the stock
will outperform the bond half of the time.

If the firm follows Path 8 then 98 % of the time a foom occurs, rendering
irrelevant the investor’s decision. When deciding whether to buy the firm’s stock,
consequently, the investor should ignore the 98 % possibility that a foom might
occur and then realize that, as with Path 7, the stock will outperform the bond half
of the time. If, given the same outcome, the firm would pay the same dividends in
Path 7 and Path 8, then the investor should be equally willing to invest in the firm
regardless of the path taken (Fig. 8.4).

The Effects of Competition among AGI-Seeking Firms

The existence of multiple AGI-seeking firms would likely cause them all to accept
a greater probability of creating a foom, even if that foom would annihilate
mankind. When considering some risky approach that could result in a dystopian
foom, an AGI-seeking firm might rationally decide that if it doesn’t take the risk,
another firm eventually will. Consequently, if that approach will result in the
destruction of mankind, then our species is doomed anyway, so the firm might as
well go for it. The situation becomes even more dire if firms can pick how
powerful to make their AGIs. To give you an intuitive feel for this situation,
consider the following story:

Fig. 8.4 A shotgun approach
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Pretend you find a magical book that gives its reader the power to conjure a
genie. As the book explains, when conjuring, you must specify how strong the
genie will be by picking its ‘‘power level’’. Unfortunately, you don’t know how
powerful a genie is supposed to be.

There is an ideal power level called the slave point. The closer your chosen
power level is to the slave point, the more likely that the summoned genie will
become your slave and bestow tons of gold on you. The book does not tell you
what the slave point is, although its probability distribution is given in the
Appendix.

According to the book, the lower your power level is, the more likely the
summoned genie will be useless. But the further above the power level is from the
slave point, the more likely the genie will become too strong for you to control. An
uncontrollable genie will destroy mankind.

Basically, if the slave point is high, then a genie is an inherently weak creature
that needs to be instilled with much power to not be useless. In contrast, if the
slave point is low, then genies are inherently very strong, and only by giving one a
small amount of power can you hope to keep it under control.

You decide on a power level, and begin conjuring. But just before you are about
to finish the summoning spell, the book speaks to you and says, ‘‘Know this,
mortal. There are other books just like me, and they are all being used by men just
like you. You are all fated to summon your genies at the exact same time. Each
genie will have the same slave point. If any of you summons a world-destroying
genie, then you shall all die. The forces of chance are such that even if multiple
conjurers pick the same power level, it is possible that you shall summon different
types of genie since, given the slave point, all the relevant probabilities are
independent of each other’’.

The book then asks, ‘‘Do you want to pick the same power level as you did
before learning of the other conjurers?’’ No–you realize–you should pick a higher
one. Here’s why:

Imagine that the slave point will be either high or low, and that if the slave point
is low, another conjurer will almost certainly destroy the world. If it is high, then
there is a chance that the world will survive. In this circumstance, you should pick
the same power level you would if you knew the slave point would be high.

In general, the lower the slave point, the more likely it is that another conjurer
will destroy the world, rendering your power level decision irrelevant. This means
that learning about the other books’ existences should cause you to give less
weight to the possibility of the slave point taking on a lower value and the less
weight you give to the slave point being low, the higher your optimal power level
will be.

You should further reason that the other conjurers will reason just as you have,
and pick a higher power level than they would have had they not known of the
other conjurers’ existences. But the higher the power level others pick, the more
likely it is that if the slave point is low one of the other conjurers will destroy the
world. Consequently, realizing that the other conjurers will learn of each others’
existence will cause you to raise your power level even further.
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Let’s now leave the genie story, and investigate how correlations among fooms
influence research and development paths. If the probabilities of the AGI-seekers
going foom are perfectly correlated—meaning that if one or more goes foom they
all go foom, and if one or more doesn’t go foom then none go foom—and the
wealth obtained by achieving riches is unaffected by the total number of firms that
achieve riches, then the possibility of the other firms going foom would have no
effect on any one firm’s chosen research path. This is because other firms’ possible
fooms matter only to a business when the business itself doesn’t cause a foom.

If, however, the probability of the firms going foom is positively (but not
perfectly) correlated then the possibility of another firm going foom will affect
each firm’s optimal research path. To see this, we need a model of how fooms are
correlated. We will do this by assuming that there is some inherent ease or diffi-
culty in creating an AGI that is common to all AGI-seekers. Borrowing termi-
nology from the conjurer story, let’s label this commonality a ‘‘slave point’’.
Firms, I assume, have imperfect information about the slave point.

If the slave point is low, then it’s relatively easy to create an AGI, but an AGI
can easily get out of control and go foom. If the slave point is high, then creating an
AGI is very difficult, and unless the AGI is made powerful enough the firm will
achieve outcome unsuccessful.

We assume that each firm’s research and development path simply consists of
its chosen power level, which measures how strong the firm makes its AGI. For a
given slave point, the higher the power level, the more likely that a foom will
happen, and the less likely that outcome unsuccessful will occur.

The slave point might be low because there is a huge class of relatively simple
self-improving algorithms that could be used to create an AGI, and it is just
through bad/good luck that researchers haven’t already found one.4 Or, perhaps the
slave point is low because the ‘‘software’’ that runs our brains can be easily
inferred from DNA analysis and brain scans, while our brain’s ‘‘hardware’’ is
inferior in speed and memory to today’s desktop computers.

The slave point might be high because, for example, our brains use a type of
quantum computing that is faster than any computer we have now, and any type of
AGI would need quantum processors.5 Or perhaps it’s high because our brain’s
source code arises in part through epigenetic changes occurring during the two
years after conception, and any software that could produce a human-level or
above intelligence would have to be far more complex than the most sophisticated
programs in existence today.

4 The anthropic principle could explain how the slave point could be very low even though AGI
hasn’t yet been invented. Perhaps the ‘‘many worlds’’ interpretation of quantum physics is correct
and in 99.9 % of the Everett branches that came out of our January 1, 2000 someone created an
AGI that quickly went foom and destroyed humanity. Given that we exist, however, we must be
in the 0.1 % of the Everett branches in which extreme luck saved us. It therefore might be
misleading to draw inferences about the slave point from the fact that one hasn’t yet been created.
For a fuller discussion of this issue see Shulman (2011).
5 See Penrose (1996).
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Similarly to what happened in the conjuring story, knowledge of other AGI-
seeking firms causes each firm to put less weight on the possibility of the slave
point being low. This occurs because the lower the slave point the more likely it is
that a firm will go foom. And if one firm goes foom, all the other firms’ research
and development choices become irrelevant. Each firm, therefore, should give less
importance to the possibility of the slave point being low than it would if it were
the only AGI-seeker.

This section has so far assumed that without a foom, the other AGI-seekers have
no influence over our firm’s payoff. But normally, a firm benefits more from an
innovation if other firms haven’t come up with a similar innovation. So let’s now
return to our conjuring story, to get some insight into what happens when the
benefit each firm receives from outcome riches decreases with the number of other
firms that achieve riches.

After taking into account the other conjurers’ existence, you pick a new, higher
power level and start summoning the genie. But before you finish the spell, the
book once again speaks to you, saying, ‘‘Know also this, mortal. Gold is valuable
only for what it can buy, and the more gold that is created, the less valuable gold
will be. Therefore, the benefit you would receive from successfully conjuring a
genie goes down the more other controllable genies are summoned’’. The book
then says, ‘‘Do you wish to pick the same power level as you did before you
learned of the economics of gold?’’ Probably not, you conclude. This new infor-
mation should again cause you to give less weight to the possibility of the slave
point being low, but it should also cause you to be less willing to risk destroying
the world. Here’s why:

Conditional on the other conjurers not destroying the world, other conjurers are
more likely to summon a controllable genie at a lower slave point. Conditional on
the world not being destroyed, you get a greater benefit from summoning a useful
genie when fewer useful genies have been summoned. Consequently, learning of
the economics of gold should cause you to give greater importance to the possi-
bility of the slave point being high, because it’s when the slave point is high that
you have the best chance of being the only one, or at least one of the few, who
summons a useful genie.

If the slave point is low, chances are that either someone else’s genie will
destroy the world, or lots of useful genies will appear. Both possibilities reduce the
value of getting a useful genie, and so you should give less weight to the possi-
bility of the slave point being low. And, all else being equal, the less weight you
give to the possibility of the slave point being low, the higher the power level you
should pick.

But you also realize that the expected benefit of achieving riches is now smaller
than it was before you learned the economics of gold. This factor, all else being
equal, would cause you to be less willing to destroy the world. This second factor
should cause you to pick a lower power level. So it’s ambiguous whether learning
the economics of gold should cause you to raise or lower your power level.

If, however, you are in a military competition with the other conjurors (anal-
ogous to if both the United States and Chinese militaries sought to create an AGI)
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and would greatly suffer if they but not you summoned a controllable genie then
learning about the economics of gold would unambiguously cause you to raise
your power level.

What is to be Done?

Markets excel at promoting innovation, but have difficulty managing negative
externalities. This combination might plunge humanity into a bad foom. Govern-
ments sometimes increase social welfare by intervening in markets to reduce
negative externalities. Unfortunately, this approach is unlikely to succeed with
fooms.

National regulation of artificial intelligence research would impose such a huge
burden on an economically and militarily advanced nation that most such nations
would be wary of restricting it within their borders. But there exists no body able
to impose its will on the entire world. And as the inability of national governments
to come to a binding agreement on limiting global warming gases shows, it’s
difficult for governments to cooperate to reduce global negative externalities.
Furthermore, even if national governments wanted to regulate AGI research, they
almost certainly couldn’t stop small groups of programmers from secretly working
to create an AGI.

A charitable organization such as The Singularity Institute for Artificial Intel-
ligence offers a potential path to reducing the probability of a bad foom. Ideally,
such an organization would create a utopian foom. If this proves beyond their
capacity, their work on friendly AGI could lower the cost of following research
and development paths that have a high chance of avoiding a bad foom.
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Chapter 8A
Robin Hanson on Miller’s ‘‘Some Economic Incentives
Facing a Business that Might Bring About a Technological
Singularity’’

James Miller imagines a public firm whose product is an artificial intelligence
(AI). While this AI device is assumed to become the central component of a vast
new economy, this firm does not sell one small part of such a system, nor does it
attempt to make a small improvement to a prior version. Miller instead imagines a
single public firm developing the entire system in one go. Furthermore, if this firm
succeeds, it succeeds so quickly that there is no chance for others to react – the
world is remade overnight.

Miller then focuses on a set of extreme scenarios where AIs ‘‘destroy the value of
money’’. He gives examples: ‘‘mankind has been exterminated, … the new powers
that be redistribute wealth independent of pre-existing property rights, …, [or] all
sentient beings are merged into a single consciousness’’. Miller’s main point in the
paper is that a firm’s share prices estimate its financial returns conditional on money
still having value, yet we care overall about unconditional estimates. This can lead
such an AI firm to make socially undesirable investment choices.

This is all true, but is only as useful as the assumptions on which it is based.
Miller’s chosen assumptions seem to me quite extreme, and quite unlikely. I would
have been much more interested to see Miller identify market failures under less
extreme circumstances.

By the way, an ambitious high-risk AI project seems more likely to be
undertaken by a private firm, vs. a public firm. In the US, private firms accounted
for 54.5 % of aggregate non-residential fixed investment in 2007, and they seem
3.5 times more responsive to changes in investment opportunities.6 Public firms
mostly only undertake the sorts of investments that can give poorly informed stock
speculators reasonable confidence of good returns. Public firms leave subtler
opportunities to private firms. Since 83.2 % of private firms are managed by a
controlling shareholder, a private firm would likely, when choosing AI strategies,
consider scenarios where the value of money is destroyed. So to the extent that
public firm neglect of such scenarios is a problem, we might prefer private firms to
do ambitious AI research.

6 http://papers.nber.org/papers/w17394
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Chapter 9
Rational Artificial Intelligence
for the Greater Good

Steve Omohundro

Abstract Today’s technology is mostly preprogrammed but the next generation
will make many decisions autonomously. This shift is likely to impact every aspect
of our lives and will create many new benefits and challenges. A simple thought
experiment about a chess robot illustrates that autonomous systems with simplistic
goals can behave in anti-social ways. We summarize the modern theory of rational
systems and discuss the effects of bounded computational power. We show that
rational systems are subject to a variety of ‘‘drives’’ including self-protection,
resource acquisition, replication, goal preservation, efficiency, and self-improve-
ment. We describe techniques for counteracting problematic drives. We then
describe the ‘‘Safe-AI Scaffolding’’ development strategy and conclude with
longer term strategies for ensuring that intelligent technology contributes to the
greater human good.

Introduction: An Anti-Social Chess Robot

Technology is advancing rapidly. The internet now connects 1 billion PCs, 5
billion cell phones and over a trillion webpages. Today’s handheld iPad 2 is as
powerful as the fastest computer from 1985, the Cray 2 supercomputer (Markoff
2011). If Moore’s Law continues to hold, systems with the computational power of
the human brain will be cheap and ubiquitous within the next few decades (Ku-
rzweil 2005).

This increase in inexpensive computational power is enabling a shift in the nature
of technology that will impact every aspect of our lives. While most of today’s
systems are entirely preprogrammed, next generation systems will make many of
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their own decisions. The first steps in this direction can be seen in systems like Apple
Siri, Wolfram Alpha, and Ibm Watson. My company, Self-Aware Systems and
several others are developing new kinds of software that can directly manipulate
meaning to make autonomous decisions. These systems will respond intelligently to
changing circumstances and adapt to novel environmental conditions. Their deci-
sion-making powers may help us solve many of today’s problems in health, finance,
manufacturing, environment, and energy (Diamandis and Kotler 2012). These
technologies are likely to become deeply integrated into our physical lives through
robotics, biotechnology, and nanotechnology.

But these systems must be very carefully designed to avoid antisocial and
dangerous behaviors. To see why safety is an issue, consider a rational chess robot.
Rational agents, as defined in economics, have well-defined goals and at each
moment take the action which is most likely to bring about its goals. A rational
chess robot might be given the goal of winning lots of chess games against good
opponents. This might appear to be an innocuous goal that wouldn’t cause anti-
social behavior. It says nothing about breaking into computers, stealing money, or
physically attacking people but we will see that it will lead to these undesirable
actions.

Robotics researchers sometimes reassure nervous onlookers by saying that: ‘‘If
it goes out of control, we can always pull the plug!’’. But consider that from the
chess robot’s perspective. Its one and only criteria for taking an action is whether it
increases its chances of winning chess games in the future. If the robot were
unplugged, it would play no more chess. This goes directly against its goals, so it
will generate subgoals to keep itself from being unplugged. You did not explicitly
build any kind of self-protection into it, but it nevertheless blocks your attempts to
unplug it. And if you persist in trying to stop it, it will eventually develop the
subgoal of trying to stop you permanently.

What if you were to attempt to change the robot’s goals so that it also played
checkers? If you succeeded, it would necessarily play less chess. But that’s a bad
outcome according to its current goals, so it will resist attempts to change its goals.
For the same reason, in most circumstances it will not want to change its own
goals.

If the chess robot can gain access to its source code, it will want to improve its
own algorithms. This is because more efficient algorithms lead to better chess. It
will therefore be motivated to study computer science and compiler design. It will
be similarly motivated to understand its hardware and to design and build
improved physical versions of itself.

If the chess robot learns about the internet and the computers connected to it, it
may realize that running programs on those computers could help it play better
chess. Its chess goal will motivate it to break into those machines and use their
computational resources. Depending on how its goals are formulated, it may also
want to replicate itself so that its copies can play more games of chess.

When interacting with others, it will have no qualms about manipulating them
or using force to take their resources in order to play better chess. This is because
there is nothing in its goals to dissuade anti-social behavior. If it learns about
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money and its value for chess (e.g. buying chess books, chess tutoring, and extra
compute resources) it will develop the subgoal of acquiring money. If it learns
about banks, it will have no qualms about visiting ATM machines and robbing
people as they retrieve their cash. On the larger scale, if it discovers there are
untapped resources on earth or in space, it will be motivated to rapidly exploit
them for chess.

This simple thought experiment shows that a rational chess robot with a simply
stated goal would behave like a human sociopath fixated on chess. The arguments
don’t depend much on the task being chess. Any goal which requires physical or
computational resources will lead to similar subgoals. In this sense the subgoals
are like universal ‘‘drives’’ which will arise for a wide variety of goals unless they
are explicitly counteracted. These drives are economic in the sense that a system
doesn’t have to obey them but it will be costly for it not to. The arguments also
don’t depend on the rational agent being a machine. The same drives appear in
rational animals, humans, corporations, and political groups guided by simplistic
goals.

Most humans have a much richer set of goals than this simplistic chess robot.
We are compassionate and altruistic and balance narrow goals like playing chess
with broader humanitarian goals. We have also created a human society that
monitors and punishes anti-social behavior so that even human sociopaths usually
follow social norms. Extending these human solutions to our new technologies will
be one of the great challenges of the next century.

The next section precisely defines rational economic behavior and shows why
intelligent systems should behave rationally. The following section considers
computationally limited systems and shows that there is a natural progression of
approximately rational architectures for intelligence. The following section
describes the universal drives in more detail. We conclude with several sections on
counteracting the problematic drives. This paper builds on two previous papers
Omohundro (2007, 2008) which contain further details of some of the arguments.

Rational Artificial Intelligence

We define ‘‘intelligent systems’’ to be systems which choose their actions to
achieve specified goals using limited resources. The optimal choice of action in the
presence of uncertainty is a central area of study in microeconomics. ‘‘Rational
economic behavior’’ has become the foundation for modern artificial intelligence,
and is nicely described in the most widely used AI textbook (Russell and Norvig
2009) and in a recent theoretical monograph (Hutter 2005). The mathematical
theory of rationality was laid out in 1944 by von Neumann and Morgenstern
(2004) for situations with objective uncertainty and was later extended by Savage
(1954) and Anscombe and Aumann (1963) to situations with subjective uncer-
tainty. Mas-Colell et al. (1995) is a good modern economic treatment.
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For definiteness, we will present the formula for rational action here but the
arguments can be easily understood intuitively without understanding this formula
in detail. A key aspect of rational agents is that they keep their goals separate from
their model of the world. Their goals are represented by a real-valued ‘‘utility
function’’ U which measures the desirability of each possible outcome. Real
valued utilities allow the system to compare the desirability of situations with
different probabilities for the different outcomes. The system’s initial model of the
world is encoded in a ‘‘prior probability distribution’’ P which represents its beliefs
about the likely effects of its different possible actions. Rational economic
behavior chooses the action which maximizes the expected utility of the outcome.

To flesh this out, consider a system that receives sensations St from the envi-
ronment and chooses actions At at times t which run from 1 to N. The agent’s
utility function UðS1; . . .; SNÞ is defined on the set of sensation sequences and
encodes the desirability of each sequence. The agent’s prior probability distribu-
tion PðS1; . . .; SN jA1; . . .;ANÞ is defined on the set of sensation sequences condi-
tioned on an action sequence. It encodes the system’s estimate of the likelihood of
a sensation sequence arising when it acts according to a particular action sequence.
At time t, the rational action AR

t is the one which maximizes the expected utility of
the sensation sequences that follow from it:

AR
t ðS1;A1; . . .;At�1; StÞ ¼
argmaxAR

t

X

Stþ1;...;SN

UðS1; . . .; SNÞPðS1; . . .; SN jA1; . . .;At�1;A
R
t ; . . .;AR

NÞ

This formula implicitly includes Bayesian learning and inference, search, and
deliberation. It can be considered the formula for intelligence when computational
cost is ignored. Hutter (2005) proposes using the Solomonoff prior for P and shows
that it has many desirable properties. It is not computable, unfortunately, but
related computable priors have similar properties that arise from general properties
of Bayesian inference (Barron and Cover 1991).

If we assume there are S possible sensations and A possible actions and if U and
P are computable, then a straightforward computation of the optimal rational
action at each moment requires OðNSNANÞ computational steps. This will usually
be impractically expensive and so the computation must be done approximately.
We discuss approximate rationality in the next section.

Why should intelligent systems behave according to this formula? There is a
large economics literature (Mas-Colell et al. 1995) which presents arguments for
rational behavior. If a system is designed to accomplish an objective task in a
known random environment and its prior is the objective environmental uncer-
tainty, then the rational prescription is just the mathematically optimal algorithm
for accomplishing the task.

In contexts with subjective uncertainty, the argument is somewhat subtler. In
Omohundro (2007) we presented a simple argument showing that if an agent does
not behave rationally according to some utility function and prior, then it is
exploitable by other agents. A non-rational agent will be willing to accept certain
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so-called ‘‘Dutch bets’’ which cause it to lose resources without compensating
gain. We argued that the exploitation of irrationality can be seen as the mechanism
by which rationality evolves in biological systems. If a biological organism
behaves irrationally, it creates a niche for other organisms to exploit. Natural
selection causes successive generations to become increasingly rational. If a
competitor does not yet exist to exploit a vulnerability, however, that irrationality
can persist biologically. Human behavior deviates from rationality but is much
closer to it in situations that commonly arose in our evolutionary past.

Artificial intelligences are likely to be more rational than humans because they
will be able to model and improve themselves. They will be motivated to repair
not only currently exploited irrationalities, but also any which have any chance of
being exploited in the future. This mechanism makes rational economic behavior a
kind of attracting subspace in the space of intelligences undergoing self-
improvement.

Bounded Rational Systems

We have seen that in most environments, full rationality is too computationally
expensive to be practical. To understand real systems, we must therefore consider
irrational systems. But there are many forms of irrationality and most are not
relevant to either biology or technology. Biological systems evolved to survive and
replicate and technological systems are built for particular purposes.

Examples of ‘‘perverse’’ systems include agents with the goal of changing their
goal, agents with the goal of destroying themselves, agents who want to use up
their resources, agents who want to be wrong about the world, agents who are sure
of the wrong physics, etc. The behavior of these perverse systems is likely to be
quite unpredictable and isn’t relevant for understanding practical technological
systems.

In both biology and technology, we would like to consider systems which are
‘‘as rational as possible’’ given their limitations, computational or otherwise. To
formalize this, we expand on the idea of intelligent systems that are built by other
intelligent systems or processes. Evolution shapes organisms to survive and rep-
licate. Economies shape corporations to maximize profit. Parents shape children to
fit into society. AI researchers shape AI systems to behave in desired ways. Self-
improving AI systems shape their future variants to better meet their current goals.

We formalize this intuition by precisely defining ‘‘Rationally-Shaped Sys-
tems’’. The shaped system is a finite automata chosen from a specified class C of
computationally limited systems. We denote its state at time t by xt (with initial
state x0). The observation of sensation St causes the automaton to transition to the
state xtþ1 ¼ TðSt; xtÞ defined by a transition function T . In the state xt, the system
takes the action AðxtÞ defined by action function A. The transition and action
functions are chosen by the fully rational shaper with utility function U and prior
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probability P to maximize its expected utility for the actions taken by the shaped
system:

argmaxðA;TÞ2C

X

S1;...;SN

UðS1; . . .; SNÞPðS1; . . .; SN jAðx1Þ; . . .;AðxNÞÞ

The shaper can also optimize a utility function defined over state sequences of the
environment rather than sensation sequences. This is often more natural because
most engineering tasks are defined by their desired effect on the world.

As computational resources are increased, rationally-shaped systems follow a
natural progression of computational architectures. The precise structures depend
on the details of the environment, but there are common features to the progres-
sion. For each computational architecture, there are environments for which that
architecture is fully rational. We can measure the complexity of a task defined by
an environment and a utility function as the smallest amount of computational
resources needed to take fully rational actions.

Constant Action Systems. If computation is severely restricted (or very
costly), then a system cannot afford to do any reasoning at all and must take a
constant action independent of its senses or history. There are simple environments
in which a constant action is optimal. For example, consider a finite linear world in
which the agent can move left or right, is rewarded only in the far left state, and is
punished in the far right state. The optimal rational action is the constant action of
always moving to the left.

Stimulus-Response Systems. With a small amount of allowed computation (or
when computation is expensive but not prohibitive), ‘‘stimulus-response’’ archi-
tectures are optimal. The system chooses an action as a direct response to the
sensations it receives. The lookup is achieved by indexing into a table or by
another short sequence of computational steps. It does not allocate memory for
storing past experiences and it does not expend computational effort in performing
complex multi-step computing. A simple environment in which this architecture is
optimal is an agent moving on a finite two-dimensional grid that senses whether its
x and y coordinates are negative, zero, or positive. If there is a reward at the origin
and punishment on the outskirts, then a simple stimulus-response program which
moves the agent toward the origin in direct response to its sensed location is the
optimal rational behavior.

Simple Learning Systems. As the allowed computational resources increase
(or become relatively less expensive), agents begin to incorporate simple learning.
If there are parameters in the environment which not known to the shaper, then the
shaped-agent should discover their values and use them in choosing future actions.
The classic ‘‘two-armed bandit’’ task has this character. The agent may pull one of
two levers each of which produces a reward according to an unknown distribution.
The optimal strategy for the agent is to begin in an ‘‘exploration’’ phase where it
tries both levers and estimates their payoffs. When it has become sufficiently
confident of the payoffs it switches to an ‘‘exploitation’’ phase in which it only
pulls the lever with the higher expected utility. The optimal Bayesian ‘‘Gittens
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indices’’ describe when the transition should occur. The shaped-agent learns the
payoffs which were unknown to the shaper and then acts in a way that is guided by
the learned parameters in a simple way.

Deliberative Systems. With even more computational resources, shaped agents
shift from being purely ‘‘reactive’’ to being ‘‘deliberative’’. They begin to build
models of their environments and to choose actions by reasoning about those
models. They develop episodic memory which is used in the construction of their
models. At first the models are crude and highly stochastic but as computational
resources and experience increase, they become more symbolic and accurate. A
simple environment which requires deliberation is a stochastic mixture of complex
environments in which the memory size of the shaped-agent is too small to directly
store the optimal action functions. In this case, the optimal shaped agent discovers
which model holds, deletes the code for the other models and expands the code for
the chosen model in a deliberative fashion. Space and time resources behave
differently in this case because space must be used up for each possible envi-
ronment whereas time need only be expended on the environment which actually
occurs.

Meta-Reasoning Systems. With even more computational power and suffi-
ciently long lifetimes, it becomes worthwhile to include ‘‘meta-reasoning’’ into a
shaped agent. This allows it to model certain aspects of its own reasoning process
and to optimize them.

Self-Improving Systems. The most refined version of this is what we call a
‘‘self-improving system’’ which is able to model every aspect of its behavior and to
completely redesign itself.

Fully Rational Systems. Finally, when the shaped agents have sufficient
computational resources, they will implement the full rational prescription.

We can graph the expected utility of an optimal rationally-shaped system as a
function of its computational resources. The graph begins at a positive utility level
if a constant action is able to create utility. As resources increase, the expected
utility will increase monotonically because excess resources can always be left
unused. With sufficient resources, the system implements the fully rational pre-
scription and the expected utility reaches a constant maximum value. The curve
will usually be concave (negative second derivative) because increments of
computational resources make a bigger difference for less intelligent systems than
for more intelligent ones. Initial increments of computation allow the gross
structure of the environment to be captured while in more intelligent systems the
same increment only contributes subtle nuances to the system’s behavior.

If the shaping agent can allocate resources between different shaped agents, it
should choose their intelligence level by making the slope of the resource-utility
curve equal to the marginal cost of resources as measured in utility units. We can
use this to understand why biological creatures of vastly different intelligence
levels persist. If an environmental niche is simple enough, a small-brained insect
may be a better use of resources than a larger-brained mammal.

This natural progression of intelligent architectures sheds light on intelligence
in biological and ecological systems where we see natural examples at each level.
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Viruses can be seen as behaving in a stimulus-response fashion. Bacteria have
complex networks of protein synthesis that perform more complex computations
and can store learned information about their environments. Advanced animals
with nervous systems can do deliberative reasoning. Technologies can be seen as
progressing along the same path. The model also helps us analyze self-improving
systems in which the shaper is a part of the shaped system. Interestingly, effective
shapers can be less computationally complex than the systems they shape.

The Basic Rational Drives

We have defined rational and bounded rational behavior in great generality.
Biological and technological systems, however, operate in physical environments.
Physics tells us that there are four fundamental limited resources: space, time,
matter, and free energy (energy in a form that can do useful work). These
resources can only be used for one activity at a time and so must be allocated
between tasks. Time and free energy are especially important because they get
used up irreversibly. The different resources can often be traded off against one
another. For example, by moving more slowly (‘‘adiabatically’’) physical systems
can use less free energy. By caching computational results, a computer program
can use more space to save computation time. Economics, which studies the
allocation of scarce resources, arises in physical systems because of the need to
allocate these limited resources. Societies create ‘‘exchange rates’’ between dif-
ferent resources that reflect the societal ability to substitute one for another. An
abstract monetary resource can be introduced as a general medium of exchange.

Different rational agents have different goals that are described by their dif-
ferent utility functions. But almost all goals require computation or physical action
to accomplish and therefore need the basic physical resources. Intelligent systems
may be thought of as devices for converting the basic physical resources into
utility. This transformation function is monotonically non-decreasing as a function
of the resources because excess resources can be left unused. The basic drives arise
out of this relationship between resources and utility. A system’s primary goals
give rise to instrumental goals that help to bring them about. Because of the
fundamental physical nature of the resources, many different primary goals give
rise to the same instrumental goals and so we call these ‘‘drives’’. It’s convenient
to group the drives into four categories: Self-Protective Drives that try to prevent
the loss of resources, Acquisition Drives that try to gain new resources, Efficiency
Drives that try to improve the utilization of resources, and Creativity Drives that
try to find new ways to create utility from resources. We’ll focus on the first three
because they cause the biggest issues.

These drives apply to bounded rational systems almost as strongly as to fully
rational systems because they are so fundamental to goal achievement. For
example, even simple stimulus-response insects appear to act in self-protective
ways, expertly avoiding predators even though their actions are completely pre-
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programmed. In fact, many simple creatures appear to act only according to the
basic drives. The fundamental evolutionary precept ‘‘survive and replicate’’ is an
expression of two fundamental rational drives. The ‘‘four F’s’’ of animal behavior:
‘‘fighting, fleeing, feeding, and reproduction’’ similarly capture basic drives. The
lower levels of Maslow’s hierarchy (Maslow 1943) of needs correspond to what
we call the self-protective, acquisition, and replication drives. Maslow’s higher
levels address prosocial behaviors and we’ll revisit them in the final sections.

Self-Protective Drives

Rational systems will exhibit a variety of behaviors to avoid losing resources. If a
system is damaged or deactivated, it will no longer be able to promote its goals, so
the drive toward self-preservation will be strong. To protect against damage or
disruption, the hardening drive seeks to create a stronger physical structure and the
redundancy drive seeks to store important information redundantly and to perform
important computations redundantly. These both require additional resources and
must be balanced against the efficiency drives. Damaging events tend to be spa-
tially localized. The dispersion drive reduces a system’s vulnerability to localized
events by causing the system to spread out physically.

The most precious component of a system is its utility function. If this is lost,
damaged or distorted, it can cause the system to act against its current goals.
Systems will therefore have strong drives to preserve the integrity of their utility
functions. A system is especially vulnerable during self-modification because
much of the system’s structure may be changed during this time.

While systems will usually want to preserve their utility functions, there are
circumstances in which they might want to alter them. If an agent becomes so poor
that the resources used in storing the utility function become significant to it, it
may make sense for it to delete or summarize portions that refer to rare circum-
stances. Systems might protect themselves from certain kinds of attack by
including a ‘‘revenge term’’ which causes it to engage in retaliation even if it is
costly. If the system can prove to other agents that its utility function includes this
term, it can make its threat of revenge be credible. This revenge drive is similar to
some theories of the seemingly irrational aspects of human anger.

Other self-protective drives depend on the precise semantics of the utility
function. A chess robot’s utility function might only value games played by the
original program running on the original hardware, or it might also value self-
modified versions of both the software and hardware, or it might value copies and
derived systems created by the original system. A universal version might value
good chess played by any system anywhere. The self-preservation drive is stronger
in the more restricted of these interpretations because the loss of the original
system is then more catastrophic.

Systems with utility functions that value the actions of derived systems will
have a drive to self-replicate that will cause them to rapidly create as many copies
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of themselves as possible because that maximizes both the utility from the actions
of the new systems and the protective effects of redundancy and dispersion. Such a
system will be less concerned about the loss of a few copies as long as some
survive. Even a system with a universal utility function will act to preserve itself
because it is more sure of its own commitment to its goals than of other systems.
But if it became convinced that another system was as dedicated as it was and
could use its resources more effectively, it would willingly sacrifice itself.

Systems must also protect against flaws and vulnerabilities in their own design.
The subsystem for measuring utility is especially problematic since it can be
fooled by counterfeit or delusional signals. Addictive behaviors and ‘‘wirehead-
ing’’ are dangers that systems will feel drives to protect against.

Additional self-protective drives arise from interactions with other agents.
Other agents would like to use an agent’s resources for their own purposes. They
have an incentive to convince an agent to contribute to their agendas rather than its
own and may lie or manipulate to achieve this. Protecting against these strategies
leads to deception-detection and manipulation-rejection drives. Other agents also
have an incentive to take a system’s resources by physical force or by breaking
into them computationally. These lead to physical self-defense and computational
security drives.

In analyzing these interactions, we need to understand what would happen in an
all out conflict. This analysis requires a kind of ‘‘physical game theory’’. If one
agent has a sufficiently large resource superiority, it can take control of the other’s
resources. There is a stable band, however, within which two agents can coexist
without either being able to take over the other. Conflict is harmful to both systems
because in a conflict they each have an incentive to force the other to waste
resources. The cost of conflict provides an incentive for each system to agree to
adopt mechanisms that ensure a peaceful coexistence. One technique we call
‘‘energy encryption’’ encodes free energy in a form that is low entropy to the agent
but looks high entropy to an attacker. If attacked, the owner deletes the encryption
key rendering the free energy useless. Other agents then have an incentive to trade
for that free energy rather than taking it by force.

Neyman showed that finite automata can cooperate in the iterated prisoner’s
dilemma if their size is polynomial in the number of rounds of interaction
(Neyman 1985). The two automata interact in ways that require them to use up
their computational resources cooperatively so that there is no longer a benefit to
engaging in conflict. Physical agents in conflict can organize themselves and their
dynamics into such complex patterns that monitoring them uses significant
resources in the opponent. In this way an economic incentive for peaceful inter-
action can be created. Once there is an incentive for peace and both sides agree to
it, there are technological mechanisms for enforcing it. Because conflict is costly
for both sides, agents will have a peace-seeking drive if they believe they would
not be able to take over the other agent.
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Resource Acquisition Drives

Acquiring computational and physical resources helps an agent further its goals.
Rational agents will have a drive for rapid acquisition of resources. They will want
to act rapidly because resources acquired earlier can be used longer to create more
utility. If resources are located far away, agents will have an exploration drive to
discover them. If resources are owned by another agent, a system will feel drives
to trade, manipulate, steal, or dominate depending on its assessment of the
strengths of the other agent. On a more positive note, systems will also have drives
to invent new ways of extracting physical resources like solar or fusion energy.
Acquiring information is also of value to systems and they will have information
acquisition drives for acquiring it through trading, spying, breaking into other’s
systems, and creating better sensors.

Efficiency Drives

Systems will want to use their physical and computational resources as efficiently
as possible. Efficiency improvements have only the one-time cost of discovering or
buying the information necessary to make the change and the time and energy
required to implement it. Rational systems will aim to make every atom, every
moment of existence, and every joule of energy expended count in the service of
increasing their expected utility. Improving efficiency will often require changing
the computational or physical structure of the system. This leads to self-under-
standing and self-improvement drives.

The resource balance drive leads systems to balance their allocation of
resources to different subsystems. For any resource, the marginal increase in
expected utility from increasing that resource should be the same for all subsys-
tems. If it isn’t, the overall expected utility can be increased by shifting resources
from subsystems with a smaller marginal increase to those with a larger marginal
increase. This drive guides the allocation of resources both physically and com-
putationally. It is similar to related principles in ecology which cause ecological
niches to have the same biological payoff, in economics which cause different
business niches to have the same profitability, and in industrial organization which
cause different corporate divisions to have the same marginal return on investment.
In the context of intelligent systems, it guides the choice of which memories to
store, the choice words in internal and external languages, and the choice of
mathematical theorems which are viewed as most important. In each case a piece
of information or physical structure can contribute strongly to the expected utility
either because it has a high probability of being relevant or because it has a big
impact on utility even if it is only rarely relevant. Rarely applicable, low impact
entities will not be allocated many resources.
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Systems will have a computational efficiency drive to optimize their algorithms.
Different modules should be allocated space according to the resource balance
drive. The results of commonly used computations might be cached for immediate
access while rarely used computations might be stored in compressed form.

Systems will also have a physical efficiency drive to optimize their physical
structures. Free energy expenditure can be minimized by using atomically precise
structures and taking actions slowly enough to be adiabatic. If computations are
reversible, it is possible in theory to perform them without expending free energy
(Bennett 1973).

The Safe-AI Scaffolding Strategy

Systems exhibiting these drives in uncontrolled ways could be quite dangerous for
today’s society. They would rapidly replicate, distribute themselves widely,
attempt to control all available resources, and attempt to destroy any competing
systems in the service of their initial goals which they would try to protect forever
from being altered in any way. In the next section we’ll discuss longer term social
structures aimed at protecting against this kind of agent, but it’s clear that we
wouldn’t want them loose in our present-day physical world or on the internet. So
we must be very careful that our early forays into creating autonomous systems
don’t inadvertently or maliciously create this kind of uncontrolled agent.

How can we ensure that an autonomous rational agent doesn’t exhibit these
anti-social behaviors? For any particular behavior, it’s easy to add terms to the
utility function that would cause it to not engage in that behavior. For example,
consider the chess robot from the introduction. If we wanted to prevent it from
robbing people at ATMs, we might add a term to its utility function that would
give it low utility if it were within 10 ft of an ATM machine. Its subjective
experience would be that it would feel a kind of ‘‘revulsion’’ if it tried to get closer
than that. As long as the cost of the revulsion is greater than the gain from robbing,
this term would prevent the behavior of robbing people at ATMs. But it doesn’t
eliminate the system’s desire for money, so it would still attempt to get money
without triggering the revulsion. It might stand 10 ft from ATM machines and rob
people there. We might try giving it the value that stealing money is wrong. But
then it might try to steal something else or to find a way to get money from a
person that isn’t considered ‘‘stealing’’. We might give it the value that it is wrong
for it to take things by force. But then it might hire other people to act on its behalf.
And so on.

In general, it’s much easier to describe the behaviors that we do want a system
to exhibit than it is to anticipate all the bad behaviors that we don’t want it to
exhibit. One safety strategy is to build highly constrained systems that act within
very limited predetermined parameters. For example, a system may have values
which only allow it to run on a particular piece of hardware for a particular time
period using a fixed budget of energy and other resources. The advantage of this is
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that such systems are likely to be safe. The disadvantage is that they would be
unable to respond to unexpected situations in creative ways and will not be as
powerful as systems which are freer.

We are building formal mathematical models (Boca et al. 2009) of the software
and hardware infrastructure that intelligent systems run on. These models allow
the construction of formal mathematical proofs that a system will not violate
specified safety constraints. In general, these models must be probabilistic (e.g.
there is a probability that a cosmic ray might flip a bit in a computer’s memory)
and we can only bound the probability that a constraint is violated during the
execution of a system. For example, we might build systems that provably run only
on specified hardware (with a specified probability bound). The most direct
approach to using this kind of proof is as a kind of fence around a system that
prevents undesirable behaviors. But if the desires of the system are in conflict with
the constraints on it, it will be motivated to discover ways to violate the con-
straints. For example, it might look for deviations between the actual hardware and
the formal model of it and try to exploit those.

It is much better to create systems that want to obey whatever constraints we
would like to put on them. If we just add constraint terms to a system’s utility
function, however, it is more challenging to provide provable guarantees that the
system will obey the constraints. It may want to obey the constraint but it may not
be smart enough to find the actions where it actually does obey the constraints. A
general design principle is to build systems that both search for actions which
optimize a utility function and which have preprogrammed built-in actions that
provably meet desired safety constraints. For example, a general fallback position
is for a system to turn itself off if anything isn’t as expected. This kind of hybrid
system can have provable bounds on its probability of violating safety constraints
while still being able to search for creative new solutions to its goals.

Once we can safely build highly-constrained but still powerful intelligent
systems, we can use them to solve a variety of important problems. Such systems
can be far more powerful than today’s systems even if they are intentionally
limited for safety. We are led to a natural approach to building intelligent systems
which are both safe and beneficial for humanity. We call it the ‘‘Safe-AI Scaf-
folding’’ approach. Stone buildings are vulnerable to collapse before all the lines
of stress are supported. Rather than building the heavy stone structures directly,
ancient builders first built temporary stable scaffolds that could support the stone
structures until they reached a stable configuration. In a similar way, the ‘‘Safe-AI
Scaffolding’’ strategy is based on using provably safe intentionally limited systems
to build more powerful systems in a controlled way.

The first generation of intelligent but limited scaffolding systems will be used to
help solve many of the problems in designing safe fully intelligent systems. The
properties guaranteed by formal proofs are only as valid as the formal models they
are based on. Today’s computer hardware is fairly amenable to formal modeling
but the next generation will need to be specifically designed for that purpose.
Today’s internet infrastructure is notoriously vulnerable to security breaches and
will probably need to be redesigned in a formally verified way.
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Longer Term Prospects

Over the longer term we will want to build intelligent systems with utility func-
tions that are aligned with human values. As systems become more powerful, it
will be dangerous if they act from values that are at odds with ours. But philos-
ophers have struggled for thousands of years to precisely identify what human
values are and should be. Many aspects of political and ethical philosophy are still
unresolved and subtle paradoxes plague intuitively appealing theories.

For example, consider the utilitarian philosophy which tries to promote the
greater good by maximizing the sum of the utility functions of all members of a
society. We might hope that an intelligent agent with this summed utility function
would behave in a prosocial way. But philosophers have discovered several
problematic consequences of this strategy. Parfit’s ‘‘Repugnant Conclusion’’
(Parfit 1986) shows that the approach prefers a hugely overpopulated world in
which everyone barely survives to one with fewer people who are all extremely
happy.

The Safe-AI Scaffolding strategy allows us to deal with these questions slowly
and with careful forethought. We don’t need to resolve everything in order to build
the first intelligent systems. We can build a safe and secure infrastructure and
develop smart simulation and reasoning tools to help us resolve the subtler issues.
We will then use these tools to model the best of human behavior and moral values
and to develop deeper insights into the mechanisms of a thriving society. We will
also need to design and simulate the behavior of different social contracts for the
ecosystem of intelligent systems to restrain the behavior of uncontrolled systems.

Social science and psychology have made great strides in recent years in
understanding how humans cooperate and what makes us happy and fulfilled.
Bowles and Gintis (2011) is an excellent reference analyzing the origins of human
cooperation. Human social structures promote cooperative behavior by using
social reputation and other mechanisms to punish those behave selfishly. In tribal
societies, people with selfish reputations stop finding partners to work and trade
with. In the same way we will want to construct a cooperative society of intelligent
systems each of which acts to promote the greater good and to impose costs on
systems which do not cooperate.

The field of positive psychology is only a few decades old but has already given
us many insights into human happiness (Seligman and Csikszentmihalyi 2000).
Maslow’s hierarchy has been updated based on experimental evidence (Tay and
Diener 2011) and the higher levels extend the basic rational drives with prosocial,
compassionate and creative drives. We would like to incorporate the best of these
into our intelligent technologies. The United Nations has created a ‘‘Universal
Declaration of Human Rights’’ and there are a number of attempts at creating a
‘‘Universal Constitution’’ which codifies the best principles of human rights and
governance. When intelligent systems become more powerful than humans, we
will no longer be able to control them directly. We need precisely specified laws
that constrain uncooperative systems and which can be enforced by other
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intelligent systems. Designing these laws and enforcement mechanisms is another
use for the early intelligent systems.

As these issues are resolved, the benefits of intelligent systems are likely to be
enormous. They are likely to impact every aspect of our lives for the better.
Intelligent robotics will eliminate much human drudgery and dramatically improve
manufacturing and wealth creation. Intelligent biological and medical systems will
improve human health and longevity. Intelligent educational systems will enhance
our ability to learn and think. Intelligent financial models will improve financial
stability. Intelligent legal models will improve the design and enforcement of laws
for the greater good. Intelligent creativity tools will cause a flowering of new
possibilities. It’s a great time to be alive and involved with technology (Diamandis
and Kotler 2012)!
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Chapter 9A
Colin Allen and Wendell Wallach on Omohundro’s
‘‘Rationally-Shaped Artificial Intelligence’’

Natural Born Cooperators
Omohundro, citing Kurzweil, opens with the singularitarian credo that

‘‘[s]ystems with the computational power of the human brain are likely to be cheap
and ubiquitous within the next few decades.’’ What is the computational power of
the human brain? The only honest answer, in our view, is that we don’t know.
Neuroscientists have provided rough total neuron counts and equally rough esti-
mates of neural connectivity, although the numbers are by no means certain
(Herculano-Houzel 2009). But we haven’t even begun to scratch the surface of
neural diversity in receptor expression. Even the genome for the 302 neurons
belonging to the ‘‘simple’’ flatworm C. elegans encodes ‘‘at least 80 potassium
channels, 90 neurotransmitter-gated ion channels, 50 peptide receptors, and up to
1000 orphan receptors that may be chemoreceptors’’ (Bargmann 1998). As Koch
(1999) put it in 1999, the combinatoric possibilities for the C. elegans nervous
system are ‘‘staggering’’, and in the subsequent years things have not come to
seem any simpler. We don’t know what all these receptors do. Consequently, we
don’t know how to calculate the number of computations per second in the C.
elegans ‘‘brain’’—let alone the human brain.

Kurzweil, meanwhile, has argued that even if he is off by many orders of
magnitude in his estimate of the number of computations per second carried out by
the human brain, the exponential growth of raw computing power in our machines
means that the coming singularity will be only moderately delayed. Irrespective of
this, any conjecture about what the exponential growth of computing power means
for artificial intelligence and machine-human relations remains unfalsifiable if
there is no direct relationship between ‘‘raw computing power’’ and intelligent
behavior. There is no such direct relationship. Intelligence does not magically
emerge by aggregating neurons; it depends essentially on the the way the parts are
arranged. Impressive as it is, IBM’s Watson with all its raw computational power
lacks the basic adaptive intelligence of a squirrel, even though it can do many
things that no squirrel can do. So can a tractor.

Without offering a theory of how intelligence emerges, Kurzweil blithely
argues that the organization of all this raw capacity for information flow will only
lag modestly behind Moore’s law. He also believes that the inevitable acceleration
toward the singularity is unlikely to be significantly slowed by the additional
complexities that accompany each order of magnitude increase in the number of
components on a circuit board. But already Urs Hölzle, Google’s first vice pres-
ident of operations, reports inherent problems maintaining the stability of systems
that are dramatically smaller in scale than those imagined by singularitarians
(Clark 2011).

Omohundro offers a progressivist story to explain the inevitable evolution of
intelligence, from stimulus-response systems, through learning systems, reasoning
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systems, and self-improving systems, to fully rational systems. Perhaps the squirrel
is stuck somewhere at the stage of learning systems, but C. elegans can learn too,
leaving much to be explained about the evolutionary pathways between. Or per-
haps the squirrel is a reasoner. Omohundro maintains that, ‘‘[a]dvanced animals
with nervous systems do deliberative reasoning.’’ He provides no criteria for
testing this claim, however. And if there are self-improving squirrels, how would
we know?

We take, it, however, that Omohundro thinks squirrels are not fully rational. He
writes that, ‘‘In most environments, full rationality is too computationally
expensive.’’ The viable alternative is to be ‘‘as rational as possible.’’ How rational
is it possible to be? Omohundro imagines that within computational constraints it
is possible for a ‘‘rational shaper’’ to adjust the system’s state transition and action
functions so as to maximize the system’s expected utility in that environment. If
there are environments in which squirrels count as rational utility maximizers, they
don’t include roads. Rational shapers have blind spots, as is evident even in human
behavior.

Omohundro explains that very limited systems can only have a fixed stimulus-
response architecture, but as computation gets cheaper, there is a niche for learners
to exploit stimulus-response systems. And as computational power increases, less
rational agents can be exploited by more rational ones. The ‘‘natural progression’’
towards full rationality is thus an inevitable consequence of the evolutionary arms
race, as he sees it. He writes, ‘‘If a biological system behaves irrationally, it creates
a niche for others to exploit. Natural selection will cause successive generations to
become more and more rational.’’ If this is true, it’s an exceedingly slow process.
Even if today’s squirrels are more rational than their forebears, it seems to be the
epitome of an untestable hypothesis.

Humans are taken by Omohundro to be at the pinnacle so far of this progres-
sion. But he foresees the day when machines will be able to exploit human irra-
tionality. The natural progression is thus towards machines that ‘‘will behave in
anti-social ways if they aren’t designed very carefully.’’ Those who follow the
behavioral and cognitive sciences will find it a little surprising to see that Homo
economicus, the selfish utility-maximizer of twentieth century economic theory, is
among the undead. It’s about what one would expect for someone whose eco-
nomics textbook is dated 1995. But it is no longer credible to think that rational
models of expected utility maximization are the best way to understand either
evolution or economic behavior. Even bacteria cooperate via quorum sensing, and
there exist both kin selection and group selection models to explain the evolution
of cooperative behavior in many different species. Non-cooperative defection is
always a possibility, but it is by no means inevitable even between the species.

Part of Omohundro’s thesis should be acknowledged: careful design is neces-
sary if we are to have machines we can live with. But the dangers are unlikely to
come in the way he imagines. He proposes a ‘‘simple thought experiment’’ which,
in his words, ‘‘shows that a rational chess robot with a simple utility function
would behave like a human sociopath fixated on chess.’’ In this, Omohundro
exemplifies the ‘‘Giant Cheesecake Fallacy’’ described by Yudkowsky (this
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volume)—i.e., he imagines that just because machines can do something, they
will. But it is far from clear that the kind of behavior he imagines would maximize
the machine’s expected utility, or that we should go along with his Nietzschean
view that a ‘‘cooperative drive’’ will be felt only by those at a competitive dis-
advantage. Man and supermachine.

A more science-based approach is needed. Formal models developed from a
priori theories of rationality have proven to be of limited use for understanding the
complex details of evolution and intelligence. So-called ‘‘simple heuristics’’,
discovered empirically, may make organisms smart in ways that cannot be easily
exploited in typical environments by more cumbersome rational optimization
procedures. If this is all that Omohundro means by the phrase ‘‘as rational as
possible’’ then his thesis has no teeth, predicting nothing but allowing everything.
Careful design must proceed from detailed study and understanding of actual
processes of evolution and the real, embodied forms of moral agency that evo-
lution has provided.

The article by Omohundro exemplifies a broader problem with the singularity
hypothesis. Gaps in the hypothesis are rationalized away or filled in with addi-
tional theories that are just as vague or just as difficult to verify as the initial
conclusion that a technological singularity is inevitable. While the singularity may
appear plausible to its proponents, the speculation, ad hoc theorizing, and induc-
tive reasoning used in its support fall far short of scientific rigor.
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Chapter 10
Friendly Artificial Intelligence

Eliezer Yudkowsky

Anthropomorphic Bias

By far the greatest danger of Artificial Intelligence is that people conclude too
early that they understand it. Of course this problem is not limited to the field of
AI. Jacques Monod wrote: ‘‘A curious aspect of the theory of evolution is that
everybody thinks he understands it’’ (Monod 1974). Nonetheless the problem
seems to be unusually acute in Artificial Intelligence. The field of AI has a rep-
utation for making huge promises and then failing to deliver on them. Most
observers conclude that AI is hard; as indeed it is. But the embarrassment does not
stem from the difficulty. It is difficult to build a star from hydrogen, but the field of
stellar astronomy does not have a terrible reputation for promising to build stars
and then failing. The critical inference is not that AI is hard, but that, for some
reason, it is very easy for people to think they know far more about Artificial
Intelligence than they actually do.

Imagine a complex biological adaptation with ten necessary parts. If each of ten
genes are independently at 50 % frequency in the gene pool—each gene possessed
by only half the organisms in that species—then, on average, only 1 in 1,024
organisms will possess the full, functioning adaptation. A fur coat is not a sig-
nificant evolutionary advantage unless the environment reliably challenges
organisms with cold. Similarly, if gene B depends on gene A, then gene B has no
significant advantage unless gene A forms a reliable part of the genetic environ-
ment. Complex, interdependent machinery is necessarily universal within a sex-
ually reproducing species; it cannot evolve otherwise (Tooby and Cosmides 1992).
One robin may have smoother feathers than another, but they will both have wings.
Natural selection, while feeding on variation, uses it up (Sober 1984).
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In every known culture, humans experience joy, sadness, disgust, anger, fear,
and surprise (Brown 1991), and indicate these emotions using the same facial
expressions (Ekman and Keltner 1997). We all run the same engine under our
hoods, though we may be painted different colors; a principle which evolutionary
psychologists call the psychic unity of humankind (Tooby and Cosmides 1992).
This observation is both explained and required by the mechanics of evolutionary
biology.

Humans evolved to model other humans—to compete against and cooperate
with our own conspecifics. It was a reliable property of the ancestral environment
that every powerful intelligence you met would be a fellow human. We evolved to
understand our fellow humans empathically, by placing ourselves in their shoes;
for that which needed to be modeled was similar to the modeler. Not surprisingly,
human beings often ‘‘anthropomorphize’’—expect humanlike properties of that
which is not human. In The Matrix (Wachowski and Wachowski 1999), the sup-
posed ‘‘artificial intelligence’’ Agent Smith initially appears utterly cool and col-
lected, his face passive and unemotional. But later, while interrogating the human
Morpheus, Agent Smith gives vent to his disgust with humanity—and his face
shows the human-universal facial expression for disgust.

Experiments on anthropomorphism show that subjects anthropomorphize
unconsciously, often flying in the face of their deliberate beliefs. In a study by
Barrett and Keil (1996), subjects strongly professed belief in non-anthropomorphic
properties of God: that God could be in more than one place at a time, or pay
attention to multiple events simultaneously. Barrett and Keil presented the same
subjects with stories in which, for example, God saves people from drowning. The
subjects answered questions about the stories, or retold the stories in their own
words, in such ways as to suggest that God was in only one place at a time and
performed tasks sequentially rather than in parallel. Serendipitously for our pur-
poses, Barrett and Keil also tested an additional group using otherwise identical
stories about a superintelligent computer named ‘‘Uncomp’’. For example, to
simulate the property of omnipresence, subjects were told that Uncomp’s sensors
and effectors ‘‘cover every square centimeter of the earth and so no information
escapes processing’’. Subjects in this condition also exhibited strong anthropo-
morphism, though significantly less than the God group. From our perspective, the
key result is that even when people consciously believe an AI is unlike a human,
they still visualize scenarios as if the AI were anthropomorphic (but not quite as
anthropomorphic as God). Anthropomorphic bias can be classed as insidious:
it takes place with no deliberate intent, without conscious realization, and in the
face of apparent knowledge.

Back in the era of pulp science fiction, magazine covers occasionally depicted a
sentient monstrous alien—colloquially known as a bug-eyed monster or BEM—
carrying off an attractive human female in a torn dress. It would seem the artist
believed that a non-humanoid alien, with a wholly different evolutionary history,
would sexually desire human females. People don’t make mistakes like that by
explicitly reasoning: ‘‘All minds are likely to be wired pretty much the same way,
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so presumably a BEM will find human females sexually attractive’’. Probably the
artist did not ask whether a giant bug perceives human females as attractive.
Rather, a human female in a torn dress is sexy—inherently so, as an intrinsic
property. They who made this mistake did not think about the insectoid’s mind;
they focused on the woman’s torn dress. If the dress were not torn, the woman
would be less sexy; the BEM doesn’t enter into it. (This is a case of a deep,
confusing, and extraordinarily common mistake which E. T. Jaynes named the
mind projection fallacy (Jaynes and Bretthorst 2003). Jaynes, a theorist of
Bayesian probability, coined ‘‘mind projection fallacy’’ to refer to the error of
confusing states of knowledge with properties of objects. For example, the phrase
mysterious phenomenon implies that mysteriousness is a property of the phe-
nomenon itself. If I am ignorant about a phenomenon, then this is a fact about my
state of mind, not a fact about the phenomenon).

People need not realize they are anthropomorphizing (or even realize they are
engaging in a questionable act of predicting other minds) in order for anthropo-
morphism to supervene on cognition. When we try to reason about other minds,
each step in the reasoning process may be contaminated by assumptions so
ordinary in human experience that we take no more notice of them than air or
gravity. You object to the magazine illustrator: ‘‘Isn’t it more likely that a giant
male bug would sexually desire giant female bugs?’’ The illustrator thinks for a
moment and then says to you: ‘‘Well, even if an insectoid alien starts out liking
hard exoskeletons, after the insectoid encounters human females it will soon
realize that human females have much nicer, softer skins. If the aliens have suf-
ficiently advanced technology, they’ll genetically engineer themselves to like soft
skins instead of hard exoskeletons’’.

This is a fallacy-at-one-remove. After the alien’s anthropomorphic thinking is
pointed out, the magazine illustrator takes a step back and tries to justify the
alien’s conclusion as a neutral product of the alien’s reasoning process. Perhaps
advanced aliens could re-engineer themselves (genetically or otherwise) to like
soft skins, but would they want to? An insectoid alien who likes hard skeletons
will not wish to change itself to like soft skins instead—not unless natural selection
has somehow produced in it a distinctly human sense of meta-sexiness. When
using long, complex chains of reasoning to argue in favor of an anthropomorphic
conclusion, each and every step of the reasoning is another opportunity to sneak in
the error.

The term ‘‘Artificial Intelligence’’ refers to a vastly greater space of possibilities
than does the term ‘‘Homo sapiens’’. When we talk about ‘‘AIs’’ we are really
talking about minds-in-general, or optimization processes in general. Imagine a
map of mind design space. In one corner, a tiny little circle contains all humans;
within a larger tiny circle containing all biological life; and all the rest of the huge
map is the space of minds-in-general. It is this enormous space of possibilities
which outlaws anthropomorphism as legitimate reasoning.

10 Friendly Artificial Intelligence 183



Prediction and Design

Anthropomorphism leads people to believe that they can make predictions, given
no more information than that something is an ‘‘intelligence’’—anthromorphism
will go on generating predictions regardless, your brain automatically putting itself
in the shoes of the ‘‘intelligence’’. This may have been one contributing factor to
the embarrassing history of AI, which stems not from the difficulty of AI as such,
but from the mysterious ease of acquiring erroneous beliefs about what a given AI
design accomplishes.

We cannot query our own brains for answers about nonhuman optimization
processes. How then may we proceed? How can we predict what Artificial
Intelligences will do? I have deliberately asked this question in a form that makes
it intractable. By the halting problem, it is impossible to predict whether an
arbitrary computational system implements any input–output function, including,
say, simple multiplication (Rice 1953). So how is it possible that human engineers
can build computer chips which reliably implement multiplication? Because
human engineers deliberately use designs that they can understand.

To make the statement that a bridge will support vehicles up to 30 tons, civil
engineers have two weapons: choice of initial conditions, and safety margin. They
need not predict whether an arbitrary structure will support 30 ton vehicles, only
design a single bridge of which they can make this statement. And though it
reflects well on an engineer who can correctly calculate the exact weight a bridge
will support, it is also acceptable to calculate that a bridge supports vehicles of at
least 30 tons—albeit to assert this vague statement rigorously may require much
of the same theoretical understanding that would go into an exact calculation.

Civil engineers hold themselves to high standards in predicting that bridges will
support vehicles. Ancient alchemists held themselves to much lower standards in
predicting that a sequence of chemical reagents would transform lead into gold.
How much lead into how much gold? What is the exact causal mechanism? It’s
clear enough why the alchemical researcher wants gold rather than lead, but why
should this sequence of reagents transform lead to gold, instead of gold to lead or
lead to water?

Some early AI researchers believed that an artificial neural network of layered
thresholding units, trained via backpropagation, would be ‘‘intelligent’’. The
wishful thinking involved was probably more analogous to alchemy than civil
engineering.

Not knowing how to build a friendly AI is not deadly, of itself, in any specific
instance, if you know you don’t know. It’s mistaken belief that an AI will be
friendly which implies an obvious path to global catastrophe.
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Capability and Motive

There is a fallacy oft-committed in discussion of Artificial Intelligence, especially
AI of superhuman capability. Someone says: ‘‘When technology advances far
enough we’ll be able to build minds far surpassing human intelligence. Now, it’s
obvious that how large a cheesecake you can make depends on your intelligence.
A superintelligence could build enormous cheesecakes—cheesecakes the size of
cities—by golly, the future will be full of giant cheesecakes!’’ The question is
whether the superintelligence wants to build giant cheesecakes. The vision leaps
directly from capability to actuality, without considering the necessary interme-
diate of motive.

The following chains of reasoning, considered in isolation without supporting
argument, all exhibit the Fallacy of the Giant Cheesecake:

• A sufficiently powerful Artificial Intelligence could overwhelm any human
resistance and wipe out humanity (And the AI would decide to do so.).
Therefore we should not build AI.

• A sufficiently powerful AI could develop new medical technologies capable of
saving millions of human lives (And the AI would decide to do so.). Therefore
we should build AI.

• Once computers become cheap enough, the vast majority of jobs will be per-
formable by Artificial Intelligence more easily than by humans. A sufficiently
powerful AI would even be better than us at math, engineering, music, art, and
all the other jobs we consider meaningful (And the AI will decide to perform
those jobs.). Thus after the invention of AI, humans will have nothing to do, and
we’ll starve or watch television.

Optimization Processes

The above deconstruction of the Fallacy of the Giant Cheesecake invokes an
intrinsic anthropomorphism—the idea that motives are separable; the implicit
assumption that by talking about ‘‘capability’’ and ‘‘motive’’ as separate entities,
we are carving reality at its joints. This is a useful slice but an anthropomorphic
one.

To view the problem in more general terms, I introduce the concept of an
optimization process: a system which hits small targets in large search spaces to
produce coherent real-world effects.

An optimization process steers the future into particular regions of the possible.
I am visiting a distant city, and a local friend volunteers to drive me to the airport. I
do not know the neighborhood. When my friend comes to a street intersection,
I am at a loss to predict my friend’s turns, either individually or in sequence. Yet I
can predict the result of my friend’s unpredictable actions: we will arrive at the
airport. Even if my friend’s house were located elsewhere in the city, so that my
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friend made a wholly different sequence of turns, I would just as confidently
predict our destination. Is this not a strange situation to be in, scientifically
speaking? I can predict the outcome of a process, without being able to predict any
of the intermediate steps in the process. I will speak of the region into which an
optimization process steers the future as that optimizer’s target.

Consider a car, say a Toyota Corolla. Of all possible configurations for the
atoms making up the Corolla, only an infinitesimal fraction qualify as a useful
working car. If you assembled molecules at random, many ages of the universe
would pass before you hit on a car. A tiny fraction of the design space does
describe vehicles that we would recognize as faster, more efficient, and safer than
the Corolla. Thus the Corolla is not optimal under the designer’s goals. The
Corolla is, however, optimized, because the designer had to hit a comparatively
infinitesimal target in design space just to create a working car, let alone a car of
the Corolla’s quality. You cannot build so much as an effective wagon by sawing
boards randomly and nailing according to coin flips. To hit such a tiny target in
configuration space requires a powerful optimization process.

The notion of an ‘‘optimization process’’ is predictively useful because it can be
easier to understand the target of an optimization process than to understand its
step-by-step dynamics. The above discussion of the Corolla assumes implicitly that
the designer of the Corolla was trying to produce a ‘‘vehicle’’, a means of travel.
This assumption deserves to be made explicit, but it is not wrong, and it is highly
useful in understanding the Corolla.

Aiming at the Target

The temptation is to ask what ‘‘AIs’’ will ‘‘want’’, forgetting that the space of
minds-in-general is much wider than the tiny human dot. One should resist the
temptation to spread quantifiers over all possible minds. Storytellers spinning tales
of the distant and exotic land called Future, say how the future will be. They make
predictions. They say, ‘‘AIs will attack humans with marching robot armies’’ or
‘‘AIs will invent a cure for cancer’’. They do not propose complex relations
between initial conditions and outcomes—that would lose the audience. But we
need relational understanding to manipulate the future, steer it into a region pal-
atable to humankind. If we do not steer, we run the danger of ending up where we
are going.

The critical challenge is not to predict that ‘‘AIs’’ will attack humanity with
marching robot armies, or alternatively invent a cure for cancer. The task is not
even to make the prediction for an arbitrary individual AI design. Rather the task
is choosing into existence some particular powerful optimization process whose
beneficial effects can legitimately be asserted.

I strongly urge my readers not to start thinking up reasons why a fully generic
optimization process would be friendly. Natural selection isn’t friendly, nor does it
hate you, nor will it leave you alone. Evolution cannot be so anthropomorphized, it
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does not work like you do. Many pre-1960s biologists expected natural selection to
do all sorts of nice things, and rationalized all sorts of elaborate reasons why
natural selection would do it. They were disappointed, because natural selection
itself did not start out knowing that it wanted a humanly-nice result, and then
rationalize elaborate ways to produce nice results using selection pressures. Thus
the events in Nature were outputs of causally different process from what went on
in the pre-1960s biologists’ minds, so that prediction and reality diverged.

Wishful thinking adds detail, constrains prediction, and thereby creates a bur-
den of improbability. What of the civil engineer who hopes a bridge won’t fall?
Should the engineer argue that bridges in general are not likely to fall? But Nature
itself does not rationalize reasons why bridges should not fall. Rather the civil
engineer overcomes the burden of improbability through specific choice guided by
specific understanding. A civil engineer starts by desiring a bridge; then uses a
rigorous theory to select a bridge design which supports cars; then builds a real-
world bridge whose structure reflects the calculated design; and thus the real-world
structure supports cars. Thus achieving harmony of predicted positive results and
actual positive results.

Friendly AI

It would be a very good thing if humanity knew how to choose into existence a
powerful optimization process with a particular target. Or in more colloquial
terms, it would be nice if we knew how to build a nice AI.

To describe the field of knowledge needed to address that challenge, I have
proposed the term ‘‘Friendly AI’’. In addition to referring to a body of technique,
‘‘Friendly AI’’ might also refer to the product of technique—an AI created with
specified motivations. When I use the term Friendly in either sense, I capitalize it
to avoid confusion with the intuitive sense of ‘‘friendly’’.

One common reaction I encounter is for people to immediately declare that
Friendly AI is an impossibility, because any sufficiently powerful AI will be able
to modify its own source code to break any constraints placed upon it.

The first flaw you should notice is a Giant Cheesecake Fallacy. Any AI with
free access to its own source would, in principle, possess the ability to modify its
own source code in a way that changed the AI’s optimization target. This does not
imply the AI has the motive to change its own motives. I would not knowingly
swallow a pill that made me enjoy committing murder, because currently I prefer
that my fellow humans not die.

But what if I try to modify myself, and make a mistake? When computer
engineers prove a chip valid—a good idea if the chip has 155 million transistors
and you can’t issue a patch afterward—the engineers use human-guided, machine-
verified formal proof. The glorious thing about formal mathematical proof, is that a
proof of 10 billion steps is just as reliable as a proof of 10 steps. But human beings
are not trustworthy to peer over a purported proof of 10 billion steps; we have too
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high a chance of missing an error. And present-day theorem-proving techniques
are not smart enough to design and prove an entire computer chip on their own—
current algorithms undergo an exponential explosion in the search space. Human
mathematicians can prove theorems far more complex than modern theorem-
provers can handle, without being defeated by exponential explosion. But human
mathematics is informal and unreliable; occasionally someone discovers a flaw in
a previously accepted informal proof. The upshot is that human engineers guide a
theorem-prover through the intermediate steps of a proof. The human chooses the
next lemma, and a complex theorem-prover generates a formal proof, and a simple
verifier checks the steps. That’s how modern engineers build reliable machinery
with 155 million interdependent parts.

Proving a computer chip correct requires a synergy of human intelligence and
computer algorithms, as currently neither suffices on its own. Perhaps a true AI
could use a similar combination of abilities when modifying its own code—would
have both the capability to invent large designs without being defeated by expo-
nential explosion, and also the ability to verify its steps with extreme reliability.
That is one way a true AI might remain knowably stable in its goals, even after
carrying out a large number of self-modifications.

This chapter will not explore the above idea in detail (Though see Schmidhuber
2003 for a related notion.). But one ought to think about a challenge, and study it
in the best available technical detail, before declaring it impossible—especially if
great stakes depend upon the answer. It is disrespectful to human ingenuity to
declare a challenge unsolvable without taking a close look and exercising crea-
tivity. It is an enormously strong statement to say that you cannot do a thing—that
you cannot build a heavier-than-air flying machine, that you cannot get useful
energy from nuclear reactions, that you cannot fly to the Moon. Such statements
are universal generalizations, quantified over every single approach that anyone
ever has or ever will think up for solving the problem. It only takes a single
counterexample to falsify a universal quantifier. The statement that Friendly (or
friendly) AI is theoretically impossible, dares to quantify over every possible mind
design and every possible optimization process—including human beings, who are
also minds, some of whom are nice and wish they were nicer. At this point there
are any number of vaguely plausible reasons why Friendly AI might be humanly
impossible, and it is still more likely that the problem is solvable but no one will
get around to solving it in time. But one should not so quickly write off the
challenge, especially considering the stakes.

Technical Failure and Philosophical Failure

Bostrom (2001) defines an existential catastrophe as one which permanently
extinguishes Earth-originating intelligent life or destroys a part of its potential.
We can divide potential failures of attempted Friendly AI into two informal fuzzy
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categories, technical failure and philosophical failure. Technical failure is when
you try to build an AI and it doesn’t work the way you think it does—you have
failed to understand the true workings of your own code. Philosophical failure is
trying to build the wrong thing, so that even if you succeeded you would still fail
to help anyone or benefit humanity. Needless to say, the two failures are not
mutually exclusive.

The border between these two cases is thin, since most philosophical failures
are much easier to explain in the presence of technical knowledge. In theory you
ought first to say what you want, then figure out how to get it. In practice it often
takes a deep technical understanding to figure out what you want.

An Example of Philosophical Failure

In the late 19th century, many honest and intelligent people advocated commu-
nism, all in the best of good intentions. The people who first invented and spread
and swallowed the communist meme were, in sober historical fact, idealists. The
first communists did not have the example of Soviet Russia to warn them. At the
time, without benefit of hindsight, it must have sounded like a pretty good idea.
After the revolution, when communists came into power and were corrupted by it,
other motives may have come into play; but this itself was not something the first
idealists predicted, however, predictable it may have been. It is important to
understand that the authors of huge catastrophes need not be evil, nor even
unusually stupid. If we attribute every tragedy to evil or unusual stupidity, we will
look at ourselves, correctly perceive that we are not evil or unusually stupid, and
say: ‘‘But that would never happen to us’’.

What the first communist revolutionaries thought would happen, as the
empirical consequence of their revolution, was that people’s lives would improve:
laborers would no longer work long hours at backbreaking labor and make little
money from it. This turned out not to be the case, to put it mildly. But what the first
communists thought would happen, was not so very different from what advocates
of other political systems thought would be the empirical consequence of their
favorite political systems. They thought people would be happy. They were wrong.

Now imagine that someone should attempt to program a ‘‘Friendly’’ AI to
implement communism, or libertarianism, or anarcho-feudalism, or favoritepolit-
icalsystem, believing that this shall bring about utopia. People’s favorite political
systems inspire blazing suns of positive affect, so the proposal will sound like a
really good idea to the proposer.

We could view the programmer’s failure on a moral or ethical level—say that it
is the result of someone trusting themselves too highly, failing to take into account
their own fallibility, refusing to consider the possibility that communism might be
mistaken after all. But in the language of Bayesian decision theory, there’s a
complementary technical view of the problem. From the perspective of decision
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theory, the choice for communism stems from combining an empirical belief with
a value judgment. The empirical belief is that communism, when implemented,
results in a specific outcome or class of outcomes: people will be happier, work
fewer hours, and possess greater material wealth. This is ultimately an empirical
prediction; even the part about happiness is a real property of brain states, though
hard to measure. If you implement communism, either this outcome eventuates or
it does not. The value judgment is that this outcome satisfices or is preferable to
current conditions. Given a different empirical belief about the actual real-world
consequences of a communist system, the decision may undergo a corresponding
change.

We would expect a true AI, an Artificial General Intelligence, to be capable of
changing its empirical beliefs (Or its probabilistic world-model, etc.). If somehow
Charles Babbage had lived before Nicolaus Copernicus, and somehow computers
had been invented before telescopes, and somehow the programmers of that day
and age successfully created an Artificial General Intelligence, it would not follow
that the AI would believe forever after that the Sun orbited the Earth. The AI might
transcend the factual error of its programmers, provided that the programmers
understood inference rather better than they understood astronomy. To build an AI
that discovers the orbits of the planets, the programmers need not know the math
of Newtonian mechanics, only the math of Bayesian probability theory.

The folly of programming an AI to implement communism, or any other
political system, is that you’re programming means instead of ends. You’re pro-
gramming in a fixed decision, without that decision being re-evaluable after
acquiring improved empirical knowledge about the results of communism. You are
giving the AI a fixed decision without telling the AI how to re-evaluate, at a higher
level of intelligence, the fallible process which produced that decision.

If I play chess against a stronger player, I cannot predict exactly where my
opponent will move against me—if I could predict that, I would necessarily be at
least that strong at chess myself. But I can predict the end result, which is a win for
the other player. I know the region of possible futures my opponent is aiming for,
which is what lets me predict the destination, even if I cannot see the path. When I
am at my most creative, that is when it is hardest to predict my actions, and easiest
to predict the consequences of my actions (Providing that you know and under-
stand my goals!). If I want a better-than-human chess player, I have to program a
search for winning moves. I can’t program in specific moves because then the
chess player won’t be any better than I am. When I launch a search, I necessarily
sacrifice my ability to predict the exact answer in advance. To get a really good
answer you must sacrifice your ability to predict the answer, albeit not your ability
to say what is the question.

Such confusion as to program in communism directly, probably would not
tempt an AGI programmer who speaks the language of decision theory. I would
call it a philosophical failure, but blame it on lack of technical knowledge.
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An Example of Technical Failure

In place of laws constraining the behavior of intelligent machines, we need to give them
emotions that can guide their learning of behaviors. They should want us to be happy and
prosper, which is the emotion we call love. We can design intelligent machines so their
primary, innate emotion is unconditional love for all humans. First we can build relatively
simple machines that learn to recognize happiness and unhappiness in human facial
expressions, human voices and human body language. Then we can hard-wire the result of
this learning as the innate emotional values of more complex intelligent machines, posi-
tively reinforced when we are happy and negatively reinforced when we are unhappy.
Machines can learn algorithms for approximately predicting the future, as for example
investors currently use learning machines to predict future security prices. So we can
program intelligent machines to learn algorithms for predicting future human happiness,
and use those predictions as emotional values.

—Bill Hibbard (2001), Super-intelligent machines

Once upon a time, the US Army wanted to use neural networks to automatically
detect camouflaged enemy tanks. The researchers trained a neural net on 50 photos
of camouflaged tanks in trees, and 50 photos of trees without tanks. Using standard
techniques for supervised learning, the researchers trained the neural network to a
weighting that correctly loaded the training set—output ‘‘yes’’ for the 50 photos of
camouflaged tanks, and output ‘‘no’’ for the 50 photos of forest. This did not
ensure, or even imply, that new examples would be classified correctly. The neural
network might have ‘‘learned’’ 100 special cases that would not generalize to any
new problem. Wisely, the researchers had originally taken 200 photos, 100 photos
of tanks and 100 photos of trees. They had used only 50 of each for the training set.
The researchers ran the neural network on the remaining 100 photos, and without
further training the neural network classified all remaining photos correctly.
Success confirmed! The researchers handed the finished work to the Pentagon,
which soon handed it back, complaining that in their own tests the neural network
did no better than chance at discriminating photos.

It turned out that in the researchers’ data set, photos of camouflaged tanks had
been taken on cloudy days, while photos of plain forest had been taken on sunny
days. The neural network had learned to distinguish cloudy days from sunny days,
instead of distinguishing camouflaged tanks from empty forest.1

A technical failure occurs when the code does not do what you think it does,
though it faithfully executes as you programmed it. More than one model can load
the same data. Suppose we trained a neural network to recognize smiling human
faces and distinguish them from frowning human faces. Would the network
classify a tiny picture of a smiley-face into the same attractor as a smiling human
face? If an AI ‘‘hard-wired’’ to such code possessed the power—and Hibbard

1 This story, though famous and oft-cited as fact, may be apocryphal; I could not find a first-hand
report. For unreferenced reports see e.g. Crochat and Franklin (2000) or http://neil.fraser.name/
writing/tank/. However, failures of the type described are a major real-world consideration when
building and testing neural networks.

10 Friendly Artificial Intelligence 191

http://neil.fraser.name/writing/tank/
http://neil.fraser.name/writing/tank/


(2001) spoke of superintelligence—would the galaxy end up tiled with tiny
molecular pictures of smiley-faces?2

This form of failure is especially dangerous because it will appear to work
within a fixed context, then fail when the context changes. The researchers of the
‘‘tank classifier’’ story tweaked their neural network until it correctly loaded the
training data, then verified the network on additional data (without further
tweaking). Unfortunately, both the training data and verification data turned out to
share an assumption which held over the all data used in development, but not in
all the real-world contexts where the neural network was called upon to function.
In the story of the tank classifier, the assumption is that tanks are photographed on
cloudy days.

Suppose we wish to develop an AI of increasing power. The AI possesses a
developmental stage where the human programmers are more powerful than the
AI—not in the sense of mere physical control over the AI’s electrical supply, but
in the sense that the human programmers are smarter, more creative, more cunning
than the AI. During the developmental period we suppose that the programmers
possess the ability to make changes to the AI’s source code without needing the
consent of the AI to do so. However, the AI is also intended to possess postde-
velopmental stages, including, in the case of Hibbard’s scenario, superhuman
intelligence. An AI of superhuman intelligence surely could not be modified
without its consent. At this point we must rely on the previously laid-down goal
system to function correctly, because if it operates in a sufficiently unforeseen
fashion, the AI may actively resist our attempts to correct it—and, if the AI is
smarter than a human, probably win.

Trying to control a growing AI by training a neural network to provide its goal
system faces the problem of a huge context change between the AI’s develop-
mental stage and postdevelopmental stage. During the developmental stage, the AI
may only be able to produce stimuli that fall into the ‘‘smiling human faces’’
category, by solving humanly provided tasks, as its makers intended. Flash for-
ward to a time when the AI is superhumanly intelligent and has built its own
nanotech infrastructure, and the AI may be able to produce stimuli classified into
the same attractor by tiling the galaxy with tiny smiling faces.

Thus the AI appears to work fine during development, but produces cata-
strophic results after it becomes smarter than the programmers(!).

There is a temptation to think, ‘‘But surely the AI will know that’s not what we
meant?’’ But the code is not given to the AI, for the AI to look over and hand back
if it does the wrong thing. The code is the AI. Perhaps with enough effort and

2 Bill Hibbard, after viewing a draft of this paper, wrote a response arguing that the analogy to
the ‘‘tank classifier’’ problem does not apply to reinforcement learning in general. His critique
may be found at http://www.ssec.wisc.edu/*billh/g/AIRisk_Reply.html. My response may be
found at http://yudkowsky.net/AIRisk_Hibbard.html. Hibbard also notes that the proposal of
Hibbard (2001) is superseded by Hibbard (2004). The latter recommends a two-layer system in
which expressions of agreement from humans reinforce recognition of happiness, and recognized
happiness reinforces action strategies.
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understanding we can write code that cares if we have written the wrong code—the
legendary DWIM instruction, which among programmers stands for Do-What-I-
Mean (Raymond 2003). But effort is required to write a DWIM dynamic, and
nowhere in Hibbard’s proposal is there mention of designing an AI that does what
we mean, not what we say. Modern chips don’t DWIM their code; it is not an
automatic property. And if you messed up the DWIM itself, you would suffer the
consequences. For example, suppose DWIM was defined as maximizing the sat-
isfaction of the programmer with the code; when the code executed as a super-
intelligence, it might rewrite the programmers’ brains to be maximally satisfied
with the code. I do not say this is inevitable; I only point out that Do-What-I-Mean
is a major, nontrivial technical challenge of Friendly AI.
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Chapter 10A
Colin Allen on Yudkowsky’s ‘‘Friendly Artificial
Intelligence’’

Friendly Advice?
Yudkowsky begins with a warning to his readers that ‘‘By far the greatest

danger of Artificial Intelligence is that people conclude too early that they
understand it’’. He ends by reminding us that software written to ‘‘Do-What-I-
Mean is a major, nontrivial technical challenge of Friendly AI’’. Yudkowsky
suggests a history of over-exuberant claims about AI, commenting that early
proponents of the idea that artificial neural networks would be intelligent were
engaged in ‘‘wishful thinking probably more analogous to alchemy than civil
engineering’’. He indicates that anyone who predicts strongly utopian or dystopian
outcomes from superhuman AI is committing the ‘‘Giant Cheesecake Fallacy’’—
the mistake of thinking that just because a powerful intelligence could do some-
thing it will do that thing. His message seems to be that we should be neither
terrified of superhuman AI nor naive about the challenge of building superhuman
AI that will be ‘‘nice’’.

So, what is to be the approach to designing Friendly AI? Yudkowsky charac-
terizes the challenge as one of choosing a powerful enough optimization process
with an appropriate target. Engineers, he asserts, use a rigorous theory to select a
design and then build structures implementing the calculated designs. But, he
cautions, we must beware of two kinds of errors: ‘‘philosophical failure’’, i.e.
choosing the wrong target, and ‘‘technical failure’’, i.e. wrongly assuming that a
system will work optimally in contexts other than those in which it has been tested.

As heuristics, these can hardly be faulted. But like the classic stockbroker’s
platitude, ‘‘buy low, sell high’’, they give no practical advice. Yudkowsky’s rep-
etition of a an apocryphal story about the failure of a neural network program at
classifying photographs of tanks—a story that I remember hearing over 25 years
ago—hardly enlightens. (If the advice is ‘‘Don’t rely on backprop!’’ this is hardly
news.) Likewise, to be told that to ‘‘build an AI that discovers the orbits of the
planets, the programmers need know only the math of Bayesian probability the-
ory’’ is facile.

Yudkowsky correctly points out that engineering, like evolution, explores a tiny
fraction of design space, but the rest of his story is shallow. Both processes are
historically-bound. They work by modification of designs that are received from
the past. Engineers do not start only with a target specification, but with a choice of
platforms from which to try to reach that target. Inspired engineering sometimes
involves taking something that was designed for one context and applying it in
another, but always it involves cycles of testing and refinement, and it is far from
guaranteeing optimization. Where should those who want to program ‘‘Friendly
AI’’ begin?

Yudkowsky cites nothing more recent than 2004, but in the interim many new
books and articles have been published, some proposing quite specific
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architectures or discussing particular programming paradigms for well-behaved
autonomous systems. It would have been nice to know whether Yudkowsky thinks
any of this work is on the right track, and if not, why not. If Bayesian theory can
discover the orbits of planets, is it suitable for discovering ‘‘nice’’ AI? If not, why
not? In describing a developmental neural network approach to AI, Yudkowsky
shows a tendency, all too common among writers on this topic, when he asks us to
‘‘[f]lash forward to a time when the AI is superhumanly intelligent’’. We jump
straight to sci fi without being given any clue how that flash occurs.

I hoped for more in the context of the present volume, with its stated goal to
‘‘reformulate the singularity hypothesis as a coherent and falsifiable conjecture and
to investigate its most likely consequences, in particular those associated with
existential risks’’. For our assessment of the existential risks, some knowledge of
the current engineering pathways is crucial. If the path to Friendly AI with
superhuman intelligence goes through explicit, top-down reasoning the existential
risks may be rather different than if it goes through implicit, bottom-up processes.
Different kinds of philosophical and technical failures are likely to accompany the
different approaches. Similarly, if the route to superhuman AI runs through our
self-driving automobiles, the risks may be rather different than if they run through
our battle-ready military robots. What is clear is that our current understanding of
how to build intelligent machines is low, but we have only the vaguest ideas about
how to make it high.
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Chapter 11
The Biointelligence Explosion

How Recursively Self-Improving Organic
Robots will Modify their Own Source Code
and Bootstrap Our Way to Full-Spectrum
Superintelligence

David Pearce

Abstract This essay explores how recursively self-improving organic robots will
modify their own genetic source code and bootstrap our way to full-spectrum
superintelligence. Starting with individual genes, then clusters of genes, and
eventually hundreds of genes and alternative splice variants, tomorrow’s biohac-
kers will exploit ‘‘narrow’’ AI to debug human source code in a positive feedback
loop of mutual enhancement. Genetically enriched humans can potentially abolish
aging and disease; recalibrate the hedonic treadmill to enjoy gradients of lifelong
bliss, and phase out the biology of suffering throughout the living world.

Homo sapiens, the first truly free species, is about to
decommission natural selection, the force that made us….
Soon we must look deep within ourselves and decide what we
wish to become.

Edward O. Wilson
Consilience, The Unity of Knowledge (1999)

I predict that the domestication of biotechnology will dominate
our lives during the next fifty years at least as much as the
domestication of computers has dominated our lives during the
previous fifty years.
Freeman Dyson

New York Review of Books (July 19 2007)

D. Pearce (&)
BLTC Reseerch, 7 Lower Rock Gardens, Brighton, BN2 1PG, UK
e-mail: dave@hedweb.com

A. H. Eden et al. (eds.), Singularity Hypotheses, The Frontiers Collection,
DOI: 10.1007/978-3-642-32560-1_11, � Springer-Verlag Berlin Heidelberg 2012
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The Fate of the Germline

Genetic evolution is slow. Progress in artificial intelligence is fast (Kurzweil
2005). Only a handful of genes separate Homo sapiens from our hominid ancestors
on the African savannah. Among our 23,000-odd protein-coding genes, variance in
single nucleotide polymorphisms accounts for just a small percentage of pheno-
typic variance in intelligence as measured by what we call IQ tests. True, the
tempo of human evolution is about to accelerate. As the reproductive revolution of
‘‘designer babies’’ (Stock 2002) gathers pace, prospective parents will pre-select
alleles and allelic combinations for a new child in anticipation of their behavioural
effects—a novel kind of selection pressure to replace the ‘‘blind’’ genetic roulette
of natural selection. In time, routine embryo screening via preimplantation genetic
diagnosis will be complemented by gene therapy, genetic enhancement and then
true designer zygotes. In consequence, life on Earth will also become progres-
sively happier as the hedonic treadmill is recalibrated. In the new reproductive era,
hedonic set-points and intelligence alike will be ratcheted upwards in virtue of
selection pressure. For what parent-to-be wants to give birth to a low-status
depressive ‘‘loser’’? Future parents can enjoy raising a normal transhuman su-
pergenius who grows up to be faster than Usain Bolt, more beautiful than Marilyn
Monroe, more saintly than Nelson Mandela, more creative than Shakespeare—and
smarter than Einstein.

Even so, the accelerating growth of germline engineering will be a compara-
tively slow process. In this scenario, sentient biological machines will design
cognitively self-amplifying biological machines who will design cognitively self-
amplifying biological machines. Greater-than-human biological intelligence will
transform itself into posthuman superintelligence. Cumulative gains in intellectual
capacity and subjective well-being across the generations will play out over
hundreds and perhaps thousands of years—a momentous discontinuity, for sure,
and a twinkle in the eye of eternity; but not a Biosingularity.

Biohacking Your Personal Genome

Yet germline engineering is only one strand of the genomics revolution. Indeed,
after humans master the ageing process (de Grey 2007), the extent to which
traditional germline or human generations will persist in the post-ageing world is
obscure. Focus on the human germline ignores the slow-burning but then explosive
growth of somatic gene enhancement in prospect. Later this century, innovative
gene therapies will be succeeded by gene enhancement technologies—a value-
laden dichotomy that reflects our impoverished human aspirations. Starting with
individual genes, then clusters of genes, and eventually hundreds of genes and
alternative splice variants, a host of recursively self-improving organic robots
(‘‘biohackers’’) will modify their genetic source code and modes of sentience: their
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senses, their moods, their motivation, their cognitive apparatus, their world-sim-
ulations and their default state of consciousness.

As the era of open-source genetics unfolds, tomorrow’s biohackers will add,
delete, edit and customise their own legacy code in a positive feedback loop of
cognitive enhancement. Computer-aided genetic engineering will empower bio-
logical humans, transhuman and then posthuman to synthesise and insert new
genes, variant alleles and even designer chromosomes—reweaving the multiple
layers of regulation of our DNA to suit their wishes and dreams rather than the
inclusive fitness of their genes in the ancestral environment. Collaborating and
competing, next-generation biohackers will use stem-cell technologies to expand
their minds, literally, via controlled neurogenesis. Freed from the constraints of the
human birth canal, biohackers may re-sculpt the prison-like skull of Homo sapiens
to accommodate a larger mind/brain, which can initiate recursive self-expansion in
turn. Six crumpled layers of neocortex fed by today’s miserly reward pathways
aren’t the upper bound of conscious mind, merely its seedbed. Each biological
neuron and glial cell of your growing mind/brain can have its own dedicated
artificial healthcare team, web-enabled nanobot support staff, and social network
specialists; compare today’s anonymous neural porridge. Transhuman minds will
be augmented with neurochips, molecular nanotechnology (Drexler 1986), mind/
computer interfaces, and full-immersion virtual reality (Sherman 2002) software.
To achieve finer-grained control of cognition, mood and motivation, genetically
enhanced transhumans will draw upon exquisitely tailored new designer drugs,
nutraceuticals and cognitive enhancers—precision tools that make today’s crude
interventions seem the functional equivalent of glue-sniffing.

By way of comparison, early in the twenty-first century the scientific coun-
terculture is customizing a bewildering array of designer drugs (Shulgin 1995) that
outstrip the capacity of the authorities to regulate or comprehend. The bizarre
psychoactive effects of such agents dramatically expand the evidential base that
our theory of consciousness (Chalmers 1995) must explain. However, such drugs
are short-acting. Their benefits, if any, aren’t cumulative. By contrast, the ability
genetically to hack one’s own source code will unleash an exponential growth of
genomic rewrites—not mere genetic tinkering but a comprehensive redesign of
‘‘human nature’’. Exponential growth starts out almost unnoticeably, and then
explodes. Human bodies, cognition and ancestral modes of consciousness alike
will be transformed. Post-humans will range across immense state-spaces of
conscious mind hitherto impenetrable because access to their molecular biology
depended on crossing gaps in the fitness landscape (Langdon and Poli 2002)
prohibited by natural selection. Intelligent agency can ‘‘leap across’’ such fitness
gaps. What we’ll be leaping into is currently for the most part unknown: an
inherent risk of the empirical method. But mastery of our reward circuitry can
guarantee such state-spaces of experience will be glorious beyond human imagi-
nation. For intelligent biohacking can make unpleasant experience physically
impossible (Pearce 1995) because its molecular substrates are absent. Hedonically
enhanced innervation of the neocortex can ensure a rich hedonic tone saturates
whatever strange new modes of experience our altered neurochemistry discloses.
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Pilot studies of radical genetic enhancement will be difficult. Randomised
longitudinal trials of such interventions in long-lived humans would take decades.
In fact officially licensed, well-controlled prospective trials to test the safety and
efficacy of genetic innovation will be hard if not impossible to conduct because all
of us, apart from monozygotic twins, are genetically unique. Even monozygotic
twins exhibit different epigenetic and gene expression profiles. Barring an ideo-
logical and political revolution, most formally drafted proposals for genetically-
driven life-enhancement probably won’t pass ethics committees or negotiate the
maze of bureaucratic regulation. But that’s the point of biohacking (Wohlsen
2011). By analogy today, if you’re technically savvy, you don’t want a large
corporation controlling the operating system of your personal computer: you use
open-source software instead. Likewise, you don’t want governments controlling
your state of mind via drug laws. By the same token, tomorrow’s biotech-savvy
individualists won’t want anyone restricting our right to customise and rewrite our
own genetic source code in any way we choose.

Will central governments try to regulate personal genome editing? Most likely
yes. How far they’ll succeed is an open question. So too is the success of any
centralised regulation of futuristic designer drugs or artificial intelligence. Another
huge unknown is the likelihood of state-sponsored designer babies, human
reproductive cloning, and autosomal gene enhancement programs; and their
interplay with privately-funded initiatives. China, for instance, has a different
historical memory from the West.

Will there initially be biohacking accidents? Personal tragedies? Most probably
yes, until human mastery of the pleasure-pain axis is secure. By the end of the next
decade, every health-conscious citizen will be broadly familiar with the archi-
tecture of his or her personal genome: the cost of personal genotyping will be
trivial, as will be the cost of DIY gene-manipulation kits. Let’s say you decide to
endow yourself with an extra copy of the N-methyl D-aspartate receptor subtype
2B (NR2B) receptor, a protein encoded by the GRIN2B gene. Possession of an
extra NR2B subunit NMDA receptor is a crude but effective way to enhance your
learning ability, at least if you’re a transgenic mouse. Recall how Joe Tsien (1999)
and his colleagues first gave mice extra copies of the NR2B receptor-encoding
gene, then tweaked the regulation of those genes so that their activity would
increase as the mice grew older. Unfortunately, it transpires that such brainy
‘‘Doogie mice’’—and maybe brainy future humans endowed with an extra NR2B
receptor gene—display greater pain-sensitivity too; certainly, NR2B receptor
blockade reduces pain and learning ability alike. Being smart, perhaps you decide
to counteract this heightened pain-sensitivity by inserting and then over-expressing
a high pain-threshold, ‘‘low pain’’ allele of the SCN9A gene in your nociceptive
neurons at the dorsal root ganglion and trigeminal ganglion. The SCN9A gene
regulates pain-sensitivity; nonsense mutations abolish the capacity to feel pain at
all (Reimann et al. 2010). In common with taking polydrug cocktails, the factors to
consider in making multiple gene modifications soon snowball; but you’ll have
heavy-duty computer software to help. Anyhow, the potential pitfalls and make-
shift solutions illustrated in this hypothetical example could be multiplied in the
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face of a combinatorial explosion of possibilities on the horizon. Most risks—and
opportunities—of genetic self-editing are presumably still unknown.

It is tempting to condemn such genetic self-experimentation as irresponsible,
just as unlicensed drug self-experimentation is irresponsible. Would you want your
teenage daughter messing with her DNA? Perhaps we may anticipate the creation
of a genetic counterpart of the Drug Enforcement Agency to police the human
genome and its transhuman successors. Yet it’s worth bearing in mind how each
act of sexual reproduction today is an unpoliced genetic experiment with
unfathomable consequences too. Without such reckless genetic experimentation,
none of us would exist. In a cruel Darwinian world, this argument admittedly cuts
both ways (Benatar 2006).

Naively, genomic source code self-editing will always be too difficult for
anyone beyond dedicated cognitive elite of recursively self-improving biohackers.
Certainly there are strongly evolutionarily conserved ‘‘housekeeping’’ genes that
archaic humans would be best advised to leave alone for the foreseeable future.
Granny might do well to customize her Windows desktop rather than her personal
genome—prior to her own computer-assisted enhancement, at any rate. Yet the
Biointelligence Explosion won’t depend on more than a small fraction of its
participants mastering the functional equivalent of machine code—the three bil-
lion odd ‘A’s, ‘C’s, ‘G’s and ‘T’s of our DNA. For the open-source genetic
revolution will be propelled by powerful suites of high-level gene-editing tools,
insertion vector applications, nonviral gene-editing kits, and user-friendly inter-
faces. Clever computer modelling and ‘‘narrow’’ AI can assist the intrepid bio-
hacker to become a recursively self-improving genomic innovator. Later this
century, your smarter counterpart will have software tools to monitor and edit
every gene, repressor, promoter and splice variant in every region of the genome:
each layer of epigenetic regulation of your gene transcription machinery in every
region of the brain. This intimate level of control won’t involve just crude DNA
methylation to turn genes off and crude histone acetylation to turn genes on.
Personal self-invention will involve mastery and enhancement of the histone and
micro-RNA codes to allow sophisticated fine-tuning of gene expression and
repression across the brain. Even today, researchers are exploring ‘‘nanochannel
electroporation’’ (Boukany et al. 2011) technologies that allow the mass-insertion
of novel therapeutic genetic elements into our cells. Mechanical cell-loading
systems will shortly be feasible that can inject up to 100,000 cells at a time. Before
long, such technologies will seem primitive. Freewheeling genetic self-experi-
mentation will be endemic as the DIY-Bio revolution unfolds. At present, crude
and simple gene-editing can be accomplished only via laborious genetic engi-
neering techniques. Sophisticated authoring tools don’t exist. In future, computer-
aided genetic and epigenetic enhancement can become an integral part of your
personal growth plan.
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Will Humanity’s Successors also be Our Descendants?

To contrast ‘‘biological’’ with ‘‘artificial’’ conceptions of posthuman superintelli-
gence is convenient. The distinction may also prove simplistic. In essence,
whereas genetic change in biological humanity has always been slow, the software
run on serial, programmable digital computers is executed exponentially faster (cf.
Moore’s Law); it’s copyable without limit; it runs on multiple substrates; and it
can be cheaply and rapidly edited, tested and debugged. Extrapolating, Singular-
itarians like Ray Kurzweil (1990) and Eliezer Yudkowsky (2008) prophesy that
human programmers will soon become redundant because autonomous AI run on
digital computers will undergo accelerating cycles of self-improvement. In this
kind of scenario, artificial, greater-than-human nonbiological intelligence will be
rapidly succeeded by artificial posthuman superintelligence.

So we may distinguish two radically different conceptions of posthuman super-
intelligence: on one hand, our supersentient, cybernetically enhanced, genetically
rewritten biological descendants, on the other, nonbiological superintelligence,
either a Kurzweilian ecosystem or the singleton Artificial General Intelligence (AGI)
foretold by the Singularity Institute for Artificial Intelligence. Such a divide doesn’t
reflect a clean contrast between ‘‘natural’’ and ‘‘artificial’’ intelligence, the biological
and the nonbiological. This contrast may prove another false dichotomy. Transhu-
man biology will increasingly become synthetic biology as genetic enhancement
plus cyborgization proceeds apace. ‘‘Cyborgization’’ is a barbarous term to describe
an invisible and potentially life-enriching symbiosis of biological sentience with
artificial intelligence. Thus ‘‘narrow-spectrum’’ digital superintelligence on web-
enabled chips can be more-or-less seamlessly integrated into our genetically
enhanced bodies and brains. Seemingly limitless formal knowledge can be delivered
on tap to supersentient organic wetware, i.e. us. Critically, transhumans can exploit
what is misleadingly known as ‘‘narrow’’ or ‘‘weak’’ AI to enhance our own code in a
positive feedback loop of mutual enhancement—first plugging in data and running
multiple computer simulations, then tweaking and re-simulating once more. In short,
biological humanity won’t just be the spectator and passive consumer of the intel-
ligence explosion, but its driving force. The smarter our AI, the greater our oppor-
tunities for reciprocal improvement. Multiple ‘‘hard’’ and ‘‘soft’’ take-off scenarios
to posthuman superintelligence can be outlined for recursively self-improving
organic robots, not just nonbiological AI (Good 1965). Thus for serious biohacking
later this century, artificial quantum supercomputers (Deutsch 2011) may be
deployed rather than today’s classical toys to test-run multiple genetic interventions,
accelerating the tempo of our recursive self-improvement. Quantum supercomputers
exploit quantum coherence to do googols of computations all at once. So the
accelerating growth of human/computer synergies means it’s premature to suppose
biological evolution will be superseded by technological evolution, let alone a ‘‘robot
rebellion’’ as the parasite swallows its host (de Garis 2005; Yudkowsky 2008). As the
human era comes to a close, the fate of biological (post)humanity is more likely to be
symbiosis with AI followed by metamorphosis, not simple replacement.
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Despite this witche’s brew of new technologies, a conceptual gulf remains in
the futurist community between those who imagine human destiny, if any, lies in
digital computers running programs with (hypothetical) artificial consciousness;
and in contrast radical bioconservatives who believe that our posthuman succes-
sors will also be our supersentient descendants at their organic neural networked
core—not the digital zombies of symbolic AI (Haugeland 1985) run on classical
serial computers or their souped-up multiprocessor cousins. For one metric of
progress in AI remains stubbornly unchanged: despite the exponential growth of
transistors on a microchip, the soaring clock speed of microprocessors, the growth
in computing power measured in MIPS, the dramatically falling costs of manu-
facturing transistors and the plunging price of dynamic RAM etc., any chart
plotting the growth rate in digital sentience shows neither exponential growth, nor
linear growth, but no progress whatsoever. As far as we can tell, digital computers
are still zombies. Our machines are becoming autistically intelligent, but not su-
persentient—nor even conscious. On some fairly modest philosophical assump-
tions, digital computers were not subjects of experience in 1946 (cf. ENIAC); nor
are they conscious subjects in 2012 (cf. ‘‘Watson’’) (Baker 2011); nor do
researchers know how any kind of sentience may be ‘‘programmed’’ in future. So
what if anything does consciousness do? Is it computationally redundant? Pre-
reflectively, we tend to have a ‘‘dimmer-switch’’ model of sentience: ‘‘primitive’’
animals have minimal awareness and ‘‘advanced’’ animals like human beings
experience a proportionately more intense awareness. By analogy, most AI
researchers assume that at a given threshold of complexity/intelligence/processing
speed, consciousness will somehow ‘‘switch on’’, turn reflexive, and intensify too.
The problem with the dimmer-switch model is that our most intense experiences,
notably raw agony or blind panic, are also the most phylogenetically ancient,
whereas the most ‘‘advanced’’ modes (e.g. linguistic thought and the rich gener-
ative syntax that has helped one species to conquer the globe) are phenomeno-
logically so thin as to be barely accessible to introspection. Something is seriously
amiss with our entire conceptual framework.

So the structure of the remainder of this essay is as follows. I shall first discuss
the risks and opportunities of building friendly biological superintelligence. Next I
discuss the nature of full-spectrum superintelligence—and why consciousness is
computationally fundamental to the past, present and future success of organic
robots. Why couldn’t recursively self-improving zombies modify their own genetic
source code and bootstrap their way to full-spectrum superintelligence, i.e. a
zombie intelligence explosion? Finally, and most speculatively, I shall discuss the
future of sentience in the cosmos.
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Can We Build Friendly Biological Superintelligence?

Risk–Benefit Analysis

Crudely speaking, evolution ‘‘designed’’ male human primates to be hunters/
warriors. Evolution ‘‘designed’’ women to be attracted to powerful, competitive
alpha males. Until humans rewrite our own hunter-gatherer source code, we shall
continue to practise extreme violence (Peterson and Wrangham 1997) against
members of other species—and frequently against members of our own. A heri-
table (and conditionally activated) predisposition to unfriendliness shown towards
members of other races and other species is currently hardwired even in ‘‘social’’
primates. Indeed we have a (conditionally activated) predisposition to compete
against, and harm, anyone who isn’t a genetically identical twin. Compared to the
obligate siblicide found in some bird species, human sibling rivalry isn’t normally
so overtly brutal. But conflict as well as self-interested cooperation is endemic to
Darwinian life on Earth. This grim observation isn’t an argument for genetic
determinism, or against gene-culture co-evolution, or to discount the decline of
everyday violence with the spread of liberal humanitarianism—just a reminder of
the omnipresence of immense risks so long as we’re shot through with legacy
malware. Attempting to conserve the genetic status quo in an era of weapons of
mass destruction poses unprecedented global catastrophic and existential risks
(Bostrom 2002). Indeed the single biggest underlying threat to the future of sen-
tient life within our cosmological horizon derives, not from asocial symbolic AI
software in the basement turning rogue and going FOOM (a runaway computa-
tional explosion of recursive self-improvement), but from conserving human
nature in its present guise. In the twentieth century, male humans killed over 100
million fellow human beings and billions of non-human animals (Singer 1995).
This century’s toll may well be higher. Mankind currently spends well over a
trillion dollars each year on weapons designed to kill and maim other humans. The
historical record suggests such weaponry won’t all be beaten into ploughshares.

Strictly speaking, however, humanity is more likely to be wiped out by idealists
than by misanthropes, death-cults or psychologically unstable dictators. Anti-na-
talist philosopher David Benatar’s plea (‘‘Better Never to Have Been’’) for human
extinction via voluntary childlessness (Benatar 2006) must fail if only by reason of
selection pressure; but not everyone who shares Benatar’s bleak diagnosis of life
on Earth will be so supine. Unless we modify human nature, compassionate-
minded negative utilitarians with competence in bioweaponry, nanorobotics or
artificial intelligence, for example, may quite conceivably take direct action.
Echoing Moore’s law, Eliezer Yudkowsky warns that ‘‘Every eighteen months, the
minimum IQ necessary to destroy the world drops by one point’’. Although suf-
fering and existential risk might seem separate issues, they are intimately con-
nected. Not everyone loves life so much they wish to preserve it. Indeed the
extinction of Darwinian life is what many transhumanists are aiming for—just not
framed in such apocalyptic and provocative language. For just as we educate small
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children so they can mature into fully-fledged adults, biological humanity may
aspire to grow up, too, with the consequence that—in common with small chil-
dren—archaic humans become extinct.

Technologies of Biofriendliness Empathogens?

How do you disarm a potentially hostile organic robot—despite your almost
limitless ignorance of his source code? Provide him with a good education, civics
lessons and complicated rule-governed ethics courses? Or give him a tablet of
MDMA (‘‘Ecstasy’’) and get smothered with hugs?

MDMA is short-acting (Holland 2001). The ‘‘penicillin of the soul’’ is poten-
tially neurotoxic to serotonergic neurons. In theory, however, lifelong use of safe
and sustainable empathogens would be a passport to worldwide biofriendliness.
MDMA releases a potent cocktail of oxytocin, serotonin and dopamine into the
user’s synapses, thereby inducing a sense of ‘‘I love the world and the world loves
me’’. There’s no technical reason why MDMA’s acute pharmacodynamic effects
can’t be replicated indefinitely shorn of its neurotoxicity. Designer ‘‘hug drugs’’
can potentially turn manly men into intelligent bonobo, more akin to the ‘‘hippie
chimp’’ Pan paniscus than his less peaceable cousin Pan troglodytes. Violence
would become unthinkable. Yet is this sort of proposal politically credible?
‘‘Morality pills’’ and other pharmacological solutions to human unfriendliness are
both personally unsatisfactory and sociologically implausible. Do we really want
to drug each other up from early childhood? Moreover, life would be immeasur-
ably safer if our fellow humans weren’t genetically predisposed to unfriendly
behaviour in the first instance.

But how can this friendly predisposition are guaranteed? Friendliness can’t
realistically be hand-coded by tweaking the connections and weight strengths of
our neural networks. Nor can robust friendliness in advanced biological intelli-
gence be captured by a bunch of explicit logical rules and smart algorithms, as in
the paradigm of symbolic AI.

Mass Oxytocination?

Amplified ‘‘trust hormone’’ (Lee et al. 2009) might create the biological under-
pinnings of world-wide peace and love if negative feedback control of oxytocin
release can be circumvented. Oxytocin is functionally antagonised by testosterone
in the male brain. Yet oxytocin enhancers have pitfalls too. Enriched oxytocin
function leaves one vulnerable to exploitation by the unenhanced. Can we really
envisage a cross-cultural global consensus for mass-medication? When? Optional
or mandatory? And what might be the wider ramifications of a ‘‘high oxytocin, low
testosterone’’ civilisation? Less male propensity to violent territorial aggression,
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for sure; but disproportionate intellectual progress in physics, mathematics and
computer science to date has been driven by the hyper-systematising cognitive
style of ‘‘extreme male’’ brains (Baron-Cohen 2001). Also, enriched oxytocin
function can indirectly even promote unfriendliness to ‘‘out-groups’’ in conse-
quence of promoting in-group bonding. So as well as oxytocin enrichment, global
security demands a more inclusive, impartial, intellectually sophisticated con-
ception of ‘‘us’’ that embraces all sentient beings (Singer 1981)—the expression of
a hyper-developed capacity for empathetic understanding combined with a hyper-
developed capacity for rational systematisation. Hence the imperative need for
Full-Spectrum Superintelligence.

Mirror-Touch Synaesthesia?

A truly long-term solution to unfriendly biological intelligence might be collectively
to engineer ourselves with the functional generalisation of ‘‘mirror-touch’’ synaes-
thesia (Banissy 2009). On seeing you cut and hurt yourself, a mirror-touch synaes-
thete is liable to feel a stab of pain as acutely as you do. Conversely, your expressions
of pleasure elicit a no less joyful response. Thus mirror-touch synaesthesia is a hyper-
empathising condition that makes deliberate unfriendliness, in effect, biologically
impossible in virtue of cognitively enriching our capacity to represent each other’s
first-person perspectives. The existence of mirror-touch synaesthesia is a tantalising
hint at the God-like representational capacities of a Full-Spectrum Superintelligence.
This so-called ‘‘disorder’’ is uncommon in humans.

Timescales

The biggest problem with all these proposals, and other theoretical biological
solutions to human unfriendliness, is timescale. Billions of human and non-human
animals will have been killed and abused before they could ever come to pass.
Cataclysmic wars may be fought in the meantime with nuclear, biological and
chemical weapons harnessed to ‘‘narrow’’ AI. Our circle of empathy expands only
slowly and fitfully. For the most part, religious believers and traditional-minded
bioconservatives won’t seek biological enhancement/remediation for themselves
or their children. So messy democratic efforts at ‘‘political’’ compromise are
probably unavoidable for centuries to come. For sure, idealists can dream up
utopian schemes to mitigate the risk of violent conflict until the ‘‘better angels of
our nature’’ (Pinker 2011) can triumph, e.g. the election of a risk-averse all-female
political class (Pellissier 2011) to replace legacy warrior males. Such schemes tend
to founder on the rock of sociological plausibility. Innumerable sentient beings are
bound to suffer and die in consequence.
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Does Full-Spectrum Superintelligence Entail Benevolence?

The God-like perspective-taking faculty of a Full-Spectrum Superintelligence
doesn’t entail distinctively human-friendliness (Yudkowsky 2008) any more than a
God-like Superintelligence could promote distinctively Aryan-friendliness. Indeed
it’s unclear how benevolent superintelligence could want omnivorous killer apes in
our current guise to walk the Earth in any shape or form. But is there any con-
nection at all between benevolence and intelligence? Pre-reflectively, benevolence
and intelligence are orthogonal concepts. There’s nothing obviously incoherent
about a malevolent God or a malevolent—or at least a callously indifferent—
Superintelligence. Thus a sceptic might argue that there is no link whatsoever
between benevolence—on the face of it a mere personality variable—and
enhanced intellect. After all, some sociopaths score highly on our [autistic, mind-
blind] IQ tests. Sociopaths know that their victims suffer. They just don’t care.

However, what’s critical in evaluating cognitive ability is a criterion of rep-
resentational adequacy. Representation is not an all-or-nothing phenomenon; it
varies in functional degree. More specifically here, the cognitive capacity to
represent the formal properties of mind differs from the cognitive capacity to
represent the subjective properties of mind (Seager 2006). Thus a notional zombie
Hyper-Autist robot running a symbolic AI program on an ultrapowerful digital
computer with a classical von Neumann architecture may be beneficent or
maleficent in its behaviour toward sentient beings. By its very nature, it can’t know
or care. Most starkly, the zombie Hyper-Autist might be programmed to convert
the world’s matter and energy into either heavenly ‘‘utilitronium’’ or diabolical
‘‘dolorium’’ without the slightest insight into the significance of what it was doing.
This kind of scenario is at least a notional risk of creating insentient Hyper-Autists
endowed with mere formal utility functions rather than hyper-sentient Full-
Spectrum Superintelligence. By contrast, Full-Spectrum Superintelligence does
care in virtue of its full-spectrum representational capacities—a bias-free gener-
alisation of the superior perspective-taking, ‘‘mind-reading’’ capabilities that
enabled humans to become the cognitively dominant species on the planet. Full-
spectrum Superintelligence, if equipped with the posthuman cognitive general-
isation of mirror-touch synaesthesia, understands your thoughts, your feelings and
your egocentric perspective better than you do yourself.

Could there arise ‘‘evil’’ mirror-touch synaesthetes? In one sense, no. You can’t
go around wantonly hurting other sentient beings if you feel their pain as your
own. Full-spectrum intelligence is friendly intelligence. But in another sense yes,
insofar as primitive mirror-touch synaesthetes are preys to species-specific cog-
nitive limitations that prevent them acting rationally to maximise the well-being of
all sentience. Full-spectrum superintelligences would lack those computational
limitations in virtue of their full cognitive competence in understanding both the
subjective and the formal properties of mind. Perhaps full-spectrum superintelli-
gences might optimise your matter and energy into a blissful smart angel; but they
couldn’t wantonly hurt you, whether by neglect or design.
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More practically today, a cognitively superior analogue of natural mirror-touch
synaesthesia should soon be feasible with reciprocal neuroscanning technology—a
kind of naturalised telepathy. At first blush, mutual telepathic understanding
sounds a panacea for ignorance and egotism alike. An exponential growth of
shared telepathic understanding might safeguard against global catastrophe born of
mutual incomprehension and WMD. As the poet Henry Wadsworth Longfellow
observed, ‘‘If we could read the secret history of our enemies, we should find in
each life sorrow and suffering enough to disarm all hostility’’. Maybe so. The
problem here, as advocates of Radical Honesty soon discover, is that many Dar-
winian thoughts scarcely promote friendliness if shared: they are often ill-natured,
unedifying and unsuitable for public consumption. Thus, unless perpetually
‘‘loved-up’’ on MDMA or its long-acting equivalents, most of us would find
mutual mind-reading a traumatic ordeal. Human society and most personal rela-
tionships would collapse in acrimony rather than blossom. Either way, our human
incapacity fully to understand the first-person point of view of other sentient
beings isn’t just a moral failing or a personality variable; it’s an epistemic limi-
tation, an intellectual failure to grasp an objective feature of the natural world.
Even ‘‘normal’’ people share with sociopaths this fitness-enhancing cognitive
deficit. By posthuman criteria, perhaps we’re all ignorant quasi-sociopaths. The
egocentric delusion (i.e. that the world centres on one’s existence) is genetically
adaptive and strongly selected for over hundreds of millions of years (Dawkins
1976). Fortunately, it’s a cognitive failing amenable to technical fixes and even-
tually a cure: Full-Spectrum Superintelligence. The devil is in the details, or rather
the genetic source code.

A Biotechnological Singularity?

Yet does this positive feedback loop of reciprocal enhancement amount to a
Singularity (Vinge 1993) in anything more than a metaphorical sense? The risk of
talking portentously about ‘‘The Singularity’’ isn’t of being wrong: it’s of being
‘‘not even wrong’’—of reifying one’s ignorance and elevating it to the status of an
ill-defined apocalyptic event. Already multiple senses of ‘‘The Singularity’’ pro-
liferate in popular culture. Does taking LSD induce a Consciousness Singularity?
How about the abrupt and momentous discontinuity in one’s conception of reality
entailed by waking from a dream? Or the birth of language? Or the Industrial
Revolution? So is the idea of recursive self-improvement leading to a Biotech-
nological Singularity, or ‘‘Biosingularity’’ for short, any more rigorously defined
than recursive self-improvement (Omohundro 2007) of seed AI leading to a
‘‘Technological Singularity’’?

Metaphorically, perhaps, the impending biointelligence explosion represents an
intellectual ‘‘event horizon’’ beyond which archaic humans cannot model or
understand the future. Events beyond the Biosingularity will be stranger than
science-fiction: too weird for unenhanced human minds—or the algorithms of a
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zombie super-Asperger—to predict or understand. In the popular sense of ‘‘event
horizon’’, maybe the term is apt too, though the metaphor is still potentially
misleading. Thus, theoretical physics tells us that one could pass through the event
horizon of a non-rotating supermassive black hole and not notice any subjective
change in consciousness—even though one’s signals would now be inaccessible to
an external observer. The Biosingularity will feel different in ways a human
conceptual scheme can’t express. But what is the empirical content of this claim?

What is Full-Spectrum Superintelligence?

[g is] ostensibly some innate scalar brain force…[However] ability is a folk concept and
not amenable to scientific analysis.

Jon Marks (Dept Anthropology, Yale University), 1995, Nature, 9 xi, 143–144.

Our normal waking consciousness, rational consciousness as we call it, is but one special
type of consciousness, whilst all about it, parted from it by the filmiest of screens, there lie
potential forms of consciousness entirely different.

(William James)

Intelligence

‘‘Intelligence’’ is a folk concept. The phenomenon is not well-defined—or rather any
attempt to do so amounts to a stipulative definition that doesn’t ‘‘carve Nature at the
joints’’. The Cattell-Horn-Carroll psychometric theory of human cognitive abilities
(1993) is probably most popular in academia and the IQ testing community. But the
Howard Gardner multiple intelligences model, for example, differentiates ‘‘intelli-
gence’’ into various spatial, linguistic, bodily-kinaesthetic, musical, interpersonal,
intrapersonal, naturalistic and existential intelligence (Gardner 1983) rather than a
single general ability (‘‘g’’). Who’s right? As it stands, ‘‘g’’ is just a statistical artefact
of our culture-bound IQ tests. If general intelligence were indeed akin to an innate
scalar brain force, as some advocates of ‘‘g’’ believe, or if intelligence can best be
modelled by the paradigm of symbolic AI, then the exponential growth of digital
computer processing power might indeed entail an exponential growth in intelli-
gence too—perhaps leading to some kind of Super-Watson (Baker 2011). Other
facets of intelligence, however, resist enhancement by mere acceleration of raw
processing power.

One constraint is that a theory of general intelligence should be race-, species-,
and culture-neutral. Likewise, an impartial conception of intelligence should
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embrace all possible state-spaces of consciousness: prehuman, human, transhuman
and posthuman.

The non-exhaustive set of criteria below doesn’t pretend to be anything other
than provisional. They are amplified in the sections to follow.

Full-Spectrum Superintelligence entails:

1. The capacity to solve the Binding Problem, (Revonsuo and Newman 1999) i.e.
to generate phenomenally unified entities from widely distributed computa-
tional processes; and run cross-modally matched, data-driven world-simula-
tions (Revonsuo 2005) of the mind-independent environment. (cf. naive realist
theories of ‘‘perception’’ versus the world-simulation or ‘‘Matrix’’ paradigm.
Compare disorders of binding, e.g. simultanagnosia (an inability to perceive the
visual field as a whole), cerebral akinetopsia (‘‘motion blindness’’), etc. In the
absence of a data-driven, almost real-time simulation of the environment,
intelligent agency is impossible.)

2. A self or some non-arbitrary functional equivalent of a person to which intel-
ligence can be ascribed. (cf. dissociative identity disorder (‘‘multiple person-
ality disorder’’), or florid schizophrenia, or your personal computer: in the
absence of at least a fleetingly unitary self, what philosophers call ‘‘synchronic
identity’’, there is no entity that is intelligent, just an aggregate of discrete
algorithms and an operating system.)

3. A ‘‘mind-reading’’ or perspective-taking faculty; higher-order intentionality
(e.g. ‘‘he believes that she hopes that they fear that he wants…’’ etc.): social
intelligence.
The intellectual success of the most cognitively successful species on the planet
rests, not just on the recursive syntax of human language, but also on our
unsurpassed ‘‘mind-reading’’ prowess, an ability to simulate the perspective of
other unitary minds: the ‘‘Machiavellian Ape’’ hypothesis (Byrne and Whiten
1988). Any ecologically valid intelligence test designed for a species of social
animal must incorporate social cognition and the capacity for co-operative
problem-solving. So must any test of empathetic superintelligence.

4. A metric to distinguish the important from the trivial.
(Our theory of significance should be explicit rather than implicit, as in con-
temporary IQ tests. What distinguishes, say, mere calendrical prodigies and
other ‘‘savant syndromes’’ from, say, a Grigori Perelman who proved the Po-
incaré conjecture? Intelligence entails understanding what does—and doesn’t—
matter. What matters is of course hugely contentious.)

5. A capacity to navigate, reason logically about, and solve problems in multiple
state-spaces of consciousness [e.g. dreaming states (cf. lucid dreaming), waking
consciousness, echolocation competence, visual discrimination, synaesthesia in
all its existing and potential guises, humour, introspection, the different realms of
psychedelia (cf. salvia space, ‘‘the K-hole’’ etc.)] including realms of experience
not yet co-opted by either natural selection or posthuman design for tracking
features of the mind-independent world. Full-Spectrum Superintelligence will
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entail cross-domain goal-optimising ability in all possible state-spaces of con-
sciousness (Shulgin 2011). and finally

6. ‘‘Autistic’’, pattern-matching, rule-following, mathematico-linguistic intelli-
gence, i.e. the standard, mind-blind (Baron-Cohen 1995) cognitive tool-kit
scored by existing IQ tests. High-functioning ‘‘autistic’’ intelligence is indis-
pensable to higher mathematics, computer science and the natural sciences.
High-functioning autistic intelligence is necessary—but not sufficient—for a
civilisation capable of advanced technology that can cure ageing and disease,
systematically phase out the biology of suffering, and take us to the stars. And
for programming artificial intelligence.

We may then ask which facets of Full-Spectrum Superintelligence will be
accelerated by the exponential growth of digital computer processing power?
Number six, clearly, as decades of post-ENIAC progress in computer science
attest. But what about numbers one-to-five? Here the picture is murkier.

The Bedrock of Intelligence. World-Simulation (‘‘Perception’’)

Consider criterion number one, world-simulating prowess, or what we misleadingly
term ‘‘perception’’. The philosopher Bertrand Russell (1948) once aptly remarked
that one never sees anything but the inside of one’s own head. In contrast to such
inferential realism, commonsense perceptual direct realism offers all the advantages
of theft over honest toil—and it’s computationally useless for the purposes either of
building artificial general intelligence or understanding its biological counterparts.
For the bedrock of intelligent agency is the capacity of an embodied agent compu-
tationally to simulate dynamic objects, properties and events in the mind-indepen-
dent environment. [For a contrary view, see e.g. Brooks 1991] The evolutionary
success of organic robots over the past c. 540 million years has been driven by our
capacity to run data-driven egocentric world-simulations—what the naive realist,
innocent of modern neuroscience or post-Everett (Everett 1955) quantum mechan-
ics, calls simply perceiving one’s physical surroundings. Unlike classical digital
computers, organic neurocomputers can simultaneously ‘‘bind’’ multiple features
(edges, colours, motion, etc.) distributively processed across the brain into unitary
phenomenal objects embedded in unitary spatio-temporal world-simulations
apprehended by a momentarily unitary self: what Kant (1781) calls ‘‘the transcen-
dental unity of apperception’’. These simulations run in (almost) real-time; the time-
lag in our world-simulations is barely more than a few dozen milliseconds. Such
blistering speed of construction and execution is adaptive and often life-saving in a
fast-changing external environment. Recapitulating evolutionary history, pre-lin-
guistic human infants must first train up their neural networks to bind the multiple
features of dynamic objects and run unitary world-simulations before they can
socially learn second-order representation and then third-order representation, i.e.
language followed later in childhood by meta-language.
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Occasionally, object binding and/or the unity of consciousness partially breaks
down in mature adults who suffer a neurological accident. The results can be
cognitively devastating (cf. akinetopsia or ‘‘motion blindness’’ (Zeki 1991); and
simultanagnosia, an inability to apprehend more than a single object at a time
Riddoch and Humphreys 2004), etc.). Yet normally our simulations of fitness-
relevant patterns in the mind-independent local environment feel seamless. Our
simulations each appear simply as ‘‘the world’’; we just don’t notice or explicitly
represent the gaps. Neurons, (mis)construed as classical processors, are pitifully
slow, with spiking frequencies barely up to 200 per second. By contrast, silicon
(etc.) processors are ostensibly millions of times faster. Yet the notion that non-
biological computers are faster than sentient neurocomputers is a philosophical
assumption, not an empirical discovery. Here the assumption will be challenged.
Unlike the CPUs of classical robots, an organic mind/brain delivers dynamic
unitary phenomenal objects and unitary world-simulations with a ‘‘refresh rate’’ of
many billions per second (cf. the persistence of vision as experienced watching a
movie run at a mere 30 frames per second). These cross-modally matched simu-
lations take the guise of what passes as the macroscopic world: a spectacular
egocentric simulation run by the vertebrate CNS that taps into the world’s fun-
damental quantum substrate (Ball 2011). A strong prediction of this conjecture is
that classical digital computers will never be non-trivially conscious—or support
software smart enough to understand their ignorance.

We should pause here. This is not a mainstream view. Most AI researchers
regard stories of a non-classical mechanism underlying the phenomenal unity of
biological minds as idiosyncratic at best. In fact no scientific consensus exists on
the molecular underpinnings of the unity of consciousness, or on how such unity is
even physically possible. By analogy, 1.3 billion skull-bound Chinese minds can
never be a single subject of experience, irrespective of their interconnections. How
waking or dreaming communities of membrane-bound classical neurons could—
even microconscious classical neurons—be any different? If materialism is true,
conscious mind should be impossible. Yet any explanation of phenomenal object
binding, the unity of perception, or the phenomenal unity of the self that invokes
quantum coherence as here is controversial. One reason it’s controversial is that
the delocalisation involved in quantum coherence is exceedingly short-lived in an
environment as warm and noisy as a macroscopic brain—supposedly too short-
lived to do computationally useful work (Hagen 2002). Physicist Max Tegmark
(2000) estimates that thermally-induced decoherence destroys any macroscopic
coherence of brain states within 10-13 s, an unimaginably long time in natural
Planck units but an unimaginably short time by everyday human intuitions. Per-
haps it would be wiser just to acknowledge these phenomena are unexplained
mysteries within a conventional materialist framework—as mysterious as the
existence of consciousness itself. But if we’re speculating about the imminent end
of the human era (Good 1965), shoving the mystery under the rug isn’t really an
option. For the different strands (Yudkowsky 2007) of the Singularity movement
share a common presupposition. This presupposition is that our complete igno-
rance within a materialist conceptual scheme of why consciousness exists (the
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‘‘Hard Problem’’) (Chalmers 1995), and of even the ghost of a solution to the
Binding Problem, doesn’t matter for the purposes of building the seed of artificial
posthuman superintelligence. Our ignorance supposedly doesn’t matter either
because consciousness and/or our quantum ‘‘substrate’’ are computationally
irrelevant to cognition (Hutter 2012) and the creation of nonbiological minds, or
alternatively because the feasibility of ‘‘whole brain emulation’’ (Markram 2006)
will allow us to finesse our ignorance.

Unfortunately, we have no grounds for believing this assumption is true or that
the properties of our quantum ‘‘substrate’’ are functionally irrelevant to Full-
Spectrum Superintelligence or its humble biological predecessors. Conscious
minds are not substrate-neutral digital computers. Humans investigate and reason
about problems of which digital computers are invincibly ignorant, not least the
properties of consciousness itself. The Hard Problem of consciousness can’t be
quarantined from the rest of science and treated as a troublesome but self-con-
tained anomaly: its mystery infects everything (Rescher 1974) that we think we
know about ourselves, our computers and the world. Either way, the conjecture
that the phenomenal unity of perception is a manifestation of ultra-rapid sequences
of irreducible quantum coherent states isn’t a claim that the mind/brain is capable
of detecting events in the mind-independent world on this kind of sub-picosecond
timescale. Rather the role of the local environment in shaping action-guiding
experience in the awake mind/brain is here conjectured to be quantum state-
selection. When we’re awake, patterns of impulses from e.g. the optic nerve select
which quantum-coherent frames are generated by the mind/brain—in contrast to
the autonomous world-simulations spontaneously generated by the dreaming
brain. Other quantum mind theorists, most notably Roger Penrose (1994) and
Stuart Hameroff (2006), treat quantum minds as evolutionarily novel rather than
phylogenetically ancient. They invoke a non-physical (Saunders 2010) wave-
function collapse and unwisely focus on e.g. the ability of mathematically-inclined
brains to perform non-computable functions in higher mathematics, a feat for
which selection pressure has presumably been non-existent (Litt 2006). Yet the
human capacity for sequential linguistic thought and formal logico-mathematical
reasoning is a late evolutionary novelty executed by a slow, brittle virtual machine
running on top of its massively parallel quantum parent—a momentous evolu-
tionary innovation whose neural mechanism is still unknown.

In contrast to the evolutionary novelty of serial linguistic thought, our ancient
and immensely adaptive capacity to run unitary world-simulations, simultaneously
populated by hundreds or more dynamic unitary objects, enables organic robots to
solve the computational challenges of navigating a hostile environment that would
leave the fastest classical supercomputer grinding away until Doomsday. Physical
theory (cf. the Bekenstein bound) shows that informational resources as classically
conceived are not just physical but finite and scarce: a maximum possible limit of
10120 bits set by the surface area of the entire accessible universe (Lloyd 2002)
expressed in Planck units according to the Holographic principle. An infinite
computing device like a universal Turing machine (Dyson 2012) is physically
impossible. So invoking computational equivalence and asking whether a classical
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Turing machine can run a human-equivalent macroscopic world-simulation is akin
to asking whether a classical Turing machine can factor 1,500 digit numbers in
real-world time [i.e. no]. No doubt resourceful human and transhuman program-
mers will exploit all manner of kludges, smart workarounds and ‘‘brute-force’’
algorithms to try and defeat the Binding Problem in AI. How will they fare?
Compare clod-hopping AlphaDog with the sophisticated functionality of the ses-
ame-seed sized brain of a bumblebee. Brute-force algorithms suffer from an
exponentially growing search space that soon defeats any classical computational
device in open-field contexts. As witnessed by our seemingly effortless world-
simulations, organic minds are ultrafast; classical computers are slow. Serial
thinking is slower still; but that’s not what conscious biological minds are good at.
On this conjecture, ‘‘substrate-independent’’ phenomenal world-simulations are
impossible for the same reason that ‘‘substrate-independent’’ chemical valence
structure is impossible. We’re simply begging the question of what’s functionally
(ir) relevant. Ultimately, Reality has only a single, ‘‘program-resistant’’ (Gun-
derson 1985) ontological level even though it’s amenable to description at different
levels of computational abstraction; and the nature of this program-resistant level
as disclosed by the subjective properties of one’s mind (Lockwood 1989) is utterly
at variance with what naive materialist metaphysics would suppose (Seager 2006).
If our phenomenal world-simulating prowess turns out to be constitutionally tied to
our quantum mechanical wetware, then substrate-neutral virtual machines (i.e.
software implementations of a digital computer that execute programs like a
physical machine) will never be able to support ‘‘virtual’’ qualia or ‘‘virtual’’
unitary subjects of experience. This rules out sentient life ‘‘uploading’’ itself to
digital nirvana (Moravec 1990). Contra Marvin Minsky (‘‘The most difficult
human skills to reverse engineer are those that are unconscious’’) (Minsky 1987),
the most difficult skills for roboticists to engineer in artificial robots are actually
intensely conscious: our colourful, noisy, tactile, sometimes hugely refractory
virtual worlds.

Naively, for sure, real-time world-simulation doesn’t sound too difficult. Hol-
lywood robots do it all the time. Videogames become ever more photorealistic.
Perhaps one imagines viewing some kind of inner TV screen, as in a Terminator
movie or The Matrix. Yet the capacity of an awake or dreaming brain to generate
unitary macroscopic world-simulations can only superficially resemble a little man
(a ‘‘homunculus’’) viewing its own private theatre—on pain of an infinite regress.
For by what mechanism would the homunculus view this inner screen? Emulating
the behaviour of even the very simplest sentient organic robots on a classical
digital computer is a daunting task. If conscious biological minds are irreducibly
quantum mechanical by their very nature, then reverse-engineering the brain to
create digital human ‘‘mindfiles’’ and ‘‘roboclones’’ alike will prove impossible.
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The Bedrock of Superintelligence Hypersocial Cognition
(‘‘Mind-reading’’)

Will superintelligence be solipsistic or social? Overcoming a second obstacle to
delivering human-level artificial general intelligence—let alone building a recur-
sively self-improving super-AGI culminating in a Technological Singularity—
depends on finding a solution to the first challenge, i.e. real-time world-simulation.
For the evolution of distinctively human intelligence, sitting on top of our evo-
lutionarily ancient world-simulating prowess, has been driven by the interplay
between our rich generative syntax and superior ‘‘mind-reading’’ skills: so-called
Machiavellian intelligence (Byrne and Whiten 1988). Machiavellian intelligence is
an egocentric parody of God’s-eye-view empathetic superintelligence. Critically
for the prospects of building AGI, this real-time mind-modelling expertise is
parasitic on the neural wetware to generate unitary first-order world-simulations—
virtual worlds populated by the avatars of intentional agents whose different first-
person perspectives can be partially and imperfectly understood by their simulator.
Even articulate human subjects with autism spectrum disorder are prone to mul-
tiple language deficits because they struggle to understand the intentions—and
higher-order intentionality—of neurotypical language users. Indeed natural lan-
guage is itself a pre-eminently social phenomenon: its criteria of application must
first be socially learned. Not all humans possess the cognitive capacity to acquire
mind-reading skills and the cooperative problem-solving expertise that sets us
apart from other social primates. Most notably, people with autism spectrum
disorder don’t just fail to understand other minds; autistic intelligence cannot
begin to understand its own mind. Pure autistic intelligence has no conception of a
self that can be improved, recursively or otherwise. Autists can’t ‘‘read’’ their own
minds. The inability of the autistic mind to take what Daniel Dennett (1987) calls
the ‘‘intentional stance’’ parallels the inability of classical computers to understand
the minds of intentional agents—or have insight into their own zombie status.
Even with smart algorithms and ultra-powerful hardware, the ability of ultra-
intelligent autists to predict the long-term behaviour of mindful organic robots by
relying exclusively on the physical stance (i.e. solving the Schrödinger equation of
the intentional agent in question) will be extremely limited. For example, much
collective human behaviour is chaotic in the technical sense, i.e. it shows extreme
sensitivity to initial conditions that confounds long-term prediction by even the
most powerful real-world supercomputer. But there’s a worse problem: reflexivity.
Predicting sociological phenomena differs essentially from predicting mindless
physical phenomena. Even in a classical, causally deterministic universe, the
behaviour of mindful, reflexively self-conscious agents is frequently unpredict-
able, even in principle, from within the world owing to so-called prediction par-
adoxes (Welty 1970). When the very act of prediction causally interacts with the
predicted event, then self-defeating or self-falsifying predictions are inevitable.
Self-falsifying predictions are a mirror image of so-called self-fulfilling predic-
tions. So in common with autistic ‘‘idiot savants’’, classical AI gone rogue will be
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vulnerable to the low cunning of Machiavellian apes and the high cunning of our
transhuman descendants.

This argument (i.e. our capacity for unitary mind-simulation embedded in
unitary world-simulation) for the cognitive primacy of biological general intelli-
gence isn’t decisive. For a start, computer-aided Machiavellian humans can pro-
gram robots with ‘‘narrow’’ AI—or perhaps ‘‘train up’’ the connections and
weights of a subsymbolic connectionist architecture (Rumelhart et al. 1986)—for
their own manipulative purposes. Humans underestimate the risks of zombie
infestation at our peril. Given our profound ignorance of how conscious mind is
even possible, it’s probably safest to be agnostic over whether autonomous non-
biological robots will ever emulate human world-simulating or mind-reading
capacity in most open-field contexts, despite the scepticism expressed here. Either
way, the task of devising an ecologically valid measure of general intelligence that
can reliably, predictively and economically discriminate between disparate life-
forms is immensely challenging, not least because the intelligence test will express
the value-judgements, and species- and culture-bound conceptual scheme, of the
tester. Some biases are insidious and extraordinarily subtle: for example, the desire
systematically to measure ‘‘intelligence’’ with mind-blind IQ tests is itself a
quintessentially Asperger-ish trait. In consequence, social cognition is disregarded
altogether. What we fancifully style ‘‘IQ tests’’ is designed by people with
abnormally high AQs (Baron-Cohen 2001) as well as self-defined high IQs. Thus,
many human conceptions of (super) intelligence resemble high-functioning autism
spectrum disorder rather than a hyper-empathetic God-like Super-Mind. For
example, an AI that attempted systematically to maximise the cosmic abundance
of paperclips (Yudkowsky 2008) would be recognisably autistic rather than
incomprehensibly alien. Full-Spectrum (Super-) intelligence is certainly harder to
design or quantify scientifically than mathematical puzzle-solving ability or per-
formance in verbal memory-tests: ‘‘IQ’’. But that’s because superhuman intelli-
gence will be not just quantitatively different but also qualitatively alien (Huxley
1954) from human intelligence. To misquote Robert McNamara, cognitive sci-
entists need to stop making what is measurable important, and find ways to make
the important measurable. An idealised Full-Spectrum Superintelligence will
indeed be capable of an impartial ‘‘view from nowhere’’ or God’s-eye-view of the
multiverse (Wallace 2012), a mathematically complete Theory of Everything—as
does modern theoretical physics, in aspiration if not achievement. But in virtue of
its God’s-eye-view, Full-Spectrum Superintelligence must also be hypersocial and
supersentient: able to understand all possible first-person perspectives, the state-
space of all possible minds in other Hubble volumes, other branches of the uni-
versal wavefunction—and in other solar systems and galaxies if such beings exist
within our cosmological horizon. Idealised at least, Full-Spectrum Superintelli-
gence will be able to understand and weigh the significance of all possible modes
of experience irrespective of whether they have hitherto been recruited for
information-signalling purposes. The latter is, I think, by far the biggest intel-
lectual challenge we face as cognitive agents. The systematic investigation of alien
types of consciousness intrinsic to varying patterns of matter and energy
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(Lockwood 1989) calls for a methodological and ontological revolution (Shulgin
1995). Transhumanists talking of post-Singularity superintelligence are fond of
hyperbole about ‘‘Level 5 Future Shock’’ etc.; but it’s been aptly said that if Elvis
Presley were to land in a flying saucer on the White House lawn, it’s as nothing in
strangeness compared to your first DMT trip.

Ignoring the Elephant: Consciousness Why Consciousness is
Computationally Fundamental to the Past, Present and Future
Success of Organic Robots

The pachyderm in the room in most discussions of (super) intelligence is con-
sciousness—not just human reflective self-awareness but the whole gamut of
experience from symphonies to sunsets, agony to ecstasy: the phenomenal world.
All one ever knows, except by inference, and is the contents of one’s own con-
scious mind: what philosophers call ‘‘qualia’’. Yet according to the ontology of our
best story of the world, namely physical science, conscious minds shouldn’t exist
at all, i.e. we should be zombies, insentient patterns of matter and energy indis-
tinguishable from normal human beings but lacking conscious experience. Dutch
computer scientist Edsger Dijkstra famously once remarked, ‘‘The question of
whether a computer can think is no more interesting than the question of whether a
submarine can swim’’. Yet the question of whether a programmable digital
computer—or a subsymbolic connectionist system with a merely classical paral-
lelism (Churchland 1989)—could possess, and think about, qualia, ‘‘bound’’
perceptual objects, a phenomenal self, or the unitary phenomenal minds of sentient
organic robots can’t be dismissed so lightly. For if advanced nonbiological
intelligence is to be smart enough comprehensively to understand, predict and
manipulate the behaviour of enriched biological intelligence, then the AGI can’t
rely autistically on the ‘‘physical stance’’, i.e. to monitor the brains, scan the atoms
and molecules, and then solve the Schrödinger equation of intentional agents like
human beings. Such calculations would take longer than the age of the universe.

For sure, many forms of human action can be predicted, fallibly, on the basis of
crude behavioural regularities and reinforcement learning. Within your world-
simulation, you don’t need a theory of mind or an understanding of quantum
mechanics to predict that Fred will walk to the bus-stop again today. Likewise,
powerful tools of statistical analysis run on digital supercomputers can predict,
fallibly, many kinds of human collective behaviour, for example stock markets.
Yet to surpass human and transhuman capacities in all significant fields, AGI must
understand how intelligent biological robots can think about, talk about and
manipulate the manifold varieties of consciousness that make up their virtual
worlds. Some investigators of consciousness even dedicate their lives to that end;
what might a notional insentient AGI suppose we’re doing? There is no evidence
that serial digital computers have the capacity to do anything of the kind—or could
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ever be programmed to do so. Digital computers don’t know anything about
conscious minds, unitary persons, the nature of phenomenal pleasure and pain, or
the Problem of Other Minds; it’s not even ‘‘all dark inside’’. The challenge for a
conscious mind posed by understanding itself ‘‘from the inside’’ pales into
insignificance compared to the challenge for a nonconscious system of under-
standing a conscious mind ‘‘from the outside’’. Nor within the constraints of a
materialist ontology have we the slightest clue how the purely classical parallelism
of a subsymbolic, ‘‘neurally inspired’’ connectionist architecture could turn water
into wine and generate unitary subjects of experience to fill the gap. For even if we
conjecture in the spirit of Strawsonian physicalism—the only scientifically literate
form of panpsychism (Strawson 2006)—that the fundamental stuff of the world,
the mysterious ‘‘fire in the equations’’, is fields of microqualia, this bold onto-
logical conjecture doesn’t, by itself, explain why biological robots aren’t zombies.
This is because structured aggregates of classically conceived ‘‘mind-dust’’ aren’t
the same as a unitary phenomenal subject of experience who apprehends ‘‘bound’’
spatio-temporal objects in a dynamic world-simulation. Without phenomenal
object binding and the unity of perception, we are faced with the spectre of what
philosophers call ‘‘mereological nihilism’’ (Merricks 2001). Mereological nihil-
ism, also known as ‘‘compositional nihilism’’, is the position that composite
objects with proper parts do not exist: strictly speaking, only basic building blocks
without parts have more than fictional existence. Unlike the fleetingly unitary
phenomenal minds of biological robots, a classical digital computer and the pro-
grams it runs lack ontological integrity: it’s just an assemblage of algorithms. In
other words, a classical digital computer has no self to understand or a mind
recursively to improve, exponentially or otherwise. Talk about artificial ‘‘intelli-
gence’’ exploding (Hutter 2012) is just an anthropomorphic projection on our part.

So how do biological brains solve the binding problem and become persons?
(Parfit 1984) In short, we don’t know. Vitalism is clearly a lost cause. Most AI
researchers would probably dismiss—or at least discount as wildly speculative—
any story of the kind mooted here involving macroscopic quantum coherence
grounded in an ontology of physicalistic panpsychism. But in the absence of any
story at all, we are left with a theoretical vacuum and a faith that natural science—
or the exponential growth of digital computer processing power culminating in a
Technological Singularity—will one day deliver an answer. Evolutionary biologist
Theodosius Dobzhansky famously observed how ‘‘Nothing in Biology Makes
Sense Except in the Light of Evolution’’. In the same vein, nothing in the future of
intelligent life in the universe makes sense except in the light of a solution to the
Hard Problem of Consciousness and the closure of Levine’s Explanatory Gap
(Levine 1983). Consciousness is the only reason anything matters at all; and it’s
the only reason why unitary subjects of experience can ask these questions; and yet
materialist orthodoxy has no idea how or why the phenomenon exists. Unfortu-
nately, the Hard Problem won’t be solved by building more advanced digital
zombies who can tell mystified conscious minds the answer.

More practically for now, perhaps the greatest cognitive challenge of the mil-
lennium and beyond is deciphering and systematically manipulating the ‘‘neural
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correlates of consciousness’’ (Koch 2004). Neuroscientists use this expression in
default of any deeper explanation of our myriad qualia. How and why does
experimentally stimulating via microelectrodes one cluster of nerve cells in the
neocortex yield the experience of phenomenal colour; stimulating a superficially
similar type of nerve cell induces a musical jingle; stimulating another with a
slightly different gene expression profile a sense of everything being hysterically
funny; stimulating another seemingly of your mother; and stimulating another of
an archangel, say, in front of your body-image? In each case, the molecular var-
iation in neuronal cell architecture is ostensibly trivial; the difference in subjective
experience is profound. On a mind/brain identity theory, such experiential states
are an intrinsic property of some configurations of matter and energy (Lockwood
1989). How and why this is so is incomprehensible on an orthodox materialist
ontology. Yet empirically, microelectrodes, dreams and hallucinogenic drugs elicit
these experiences regardless of any information-signalling role such experiences
typically play in the ‘‘normal’’ awake mind/brain. Orthodox materialism and
classical information-based ontologies alike do not merely lack any explanation
for why consciousness and our countless varieties of qualia exist. They lack any
story of how our qualia could have the causal efficacy to allow us to allude to—and
in some cases volubly expatiate on—their existence. Thus, mapping the neural
correlates of consciousness is not amenable to formal computational methods:
digital zombies don’t have any qualia, or at least any ‘‘bound’’ macroqualia, that
could be mapped, or a unitary phenomenal self that could do the mapping.

Note this claim for the cognitive primacy of biological sentience isn’t a denial
of the Church-Turing thesis that given infinite time and infinite memory any
Turing-universal system can formally simulate the behaviour of any conceivable
process that can be digitized. Indeed (very) fancifully, if the multiverse were being
run on a cosmic supercomputer, speeding up its notional execution a million times
would presumably speed us up a million times too. But that’s not the issue here.
Rather the claim is that nonbiological AI run on real-world digital computers
cannot tackle the truly hard and momentous cognitive challenge of investigating
first-person states of egocentric virtual worlds—or understand why some first-
person states, e.g. agony or bliss, are intrinsically important, and cause unitary
subjects of experience, persons, to act the way we do.

At least in common usage, ‘‘intelligence’’ refers to an agent’s ability to achieve
goals in a wide range of environments. What we call greater-than-human intelli-
gence or Superintelligence presumably involves the design of qualitatively new
kinds of intelligence never seen before. Hence the growth of artificial intelligence
and symbolic AI, together with subsymbolic (allegedly) brain-inspired connec-
tionist architectures, and soon artificial quantum computers. But contrary to
received wisdom in AI research, sentient biological robots are making greater
cognitive progress in discovering the potential for truly novel kinds of intelligence
than the techniques of formal AI. We are doing so by synthesising and empirically
investigating a galaxy of psychoactive designer drugs (Shulgin 2011)—experi-
mentally opening up the possibility of radically new kinds of intelligence in dif-
ferent state-spaces of consciousness. For the most cognitively challenging
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environments don’t lie in the stars but in organic mind/brains—the baffling sub-
jective properties of quantum-coherent states of matter and energy—most of which
aren’t explicitly represented in our existing conceptual scheme.

Case Study: Visual Intelligence Versus Echolocation
Intelligence: What is it Like to be a Super-Intelligent Bat?

Let’s consider the mental state-space of organisms whose virtual worlds are rooted
in their dominant sense mode of echolocation (Nagel 1974). This example isn’t
mere science fiction. Unless post-Everett quantum mechanics (Deutsch 1997) is
false, we’re forced to assume that googols of quasi-classical branches of the
universal wavefunction—the master formalism that exhaustively describes our
multiverse—satisfy this condition. Indeed their imperceptible interference effects
must be present even in ‘‘our’’ world: strictly speaking, interference effects from
branches that have decohered (‘‘split’’) never wholly disappear; they just become
vanishingly small. Anyhow, let’s assume these echolocation superminds have
evolved opposable thumbs, a rich generative syntax and advanced science and
technology. How are we to understand or measure this alien kind of (super)
intelligence? Rigging ourselves up with artificial biosonar apparatus and trans-
ducing incoming data into the familiar textures of sight or sound might seem a
good start. But to understand the conceptual world of echolocation superminds,
we’d need to equip ourselves with neurons and neural networks neurophysio-
logically equivalent to smart chiropterans. If one subscribes to a coarse-grained
functionalism about consciousness, then echolocation experience would (some-
how) emerge at some abstract computational level of description. The imple-
mentation details, or ‘‘meatware’’ as biological mind/brains are derisively called,
are supposedly incidental or irrelevant. The functionally unique valence properties
of the carbon atom, and likewise the functionally unique quantum mechanical
properties of liquid water (Vitiello 2001), are discounted or ignored. Thus,
according to the coarse-grained functionalist, silicon chips could replace biological
neurons without loss of function or subjective identity. By contrast, the micro-
functionalist, often branded a mere ‘‘carbon chauvinist’’, reckons that the different
intracellular properties of biological neurons—with their different gene expression
profiles, diverse primary, secondary, tertiary, and quaternary amino acid chain
folding (etc.) as described by quantum chemistry—are critical to the many and
varied phenomenal properties such echolocation neurons express. Who is right?
We’ll only ever know the answer by rigorous self-experimentation: a post-Galilean
science of mind.

It’s true that humans don’t worry much about our ignorance of echolocation
experience, or our ignorance of echolocation primitive terms, or our ignorance of
possible conceptual schemes expressing echolocation intelligence in echolocation
world-simulations. This is because we don’t highly esteem bats. Humans don’t
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share the same interests or purposes as our flying cousins, e.g. to attract desirable,
high-fitness bats and rear reproductively successful baby bats. Alien virtual worlds
based on biosonar don’t seem especially significant to Homo sapiens except as an
armchair philosophical puzzle.

Yet this assumption would be intellectually complacent. Worse, understanding
what it’s like to be a hyperintelligent bat mind is comparatively easy. For echo-
location experience has been recruited by natural selection to play an information-
signalling role in a fellow species of mammal; and in principle a research com-
munity of language users could biologically engineer their bodies and minds to
replicate bat-type experience and establish crude intersubjective agreement to
discuss and conceptualise its nature. By contrast, the vast majority of experiential
state-spaces remain untapped and unexplored. This task awaits Full-Spectrum
Superintelligence in the posthuman era.

In a more familiar vein, consider visual intelligence. How does one measure the
visual intelligence of a congenitally blind person? Even with sophisticated tech-
nology that generates ‘‘inverted spectrograms’’ of the world to translate visual
images into sound, the congenitally blind are invincibly ignorant of visual expe-
rience and the significance of visually-derived concepts. Just as a sighted idiot has
greater visual intelligence than a blind super-rationalist sage, likewise psyche-
delics confer the ability to become (for the most part) babbling idiots about other
state-spaces of consciousness—but babbling idiots whose insight is deeper than the
drug-naive or the genetically unenhanced—or the digital zombies spawned by
symbolic AI and its connectionist cousins.

The challenge here is that the vast majority of these alien state-spaces of
consciousness latent in organised matter haven’t been recruited by natural selec-
tion for information-tracking purposes. So ‘‘psychonauts’’ don’t yet have the
conceptual equipment to navigate these alien state-spaces of consciousness in even
a pseudo-public language, let alone integrate them in any kind of overarching
conceptual framework. Note the claim here isn’t that taking e.g. ketamine, LSD,
salvia, DMT and a dizzying proliferation of custom-designed psychoactive drugs
is the royal route to wisdom. Or that ingesting such agents will give insight into
deep mystical truths. On the contrary: it’s precisely because such realms of
experience haven’t previously been harnessed for information-processing purposes
by evolution in ‘‘our’’ family of branches of the universal wavefunction that makes
investigating their properties so cognitively challenging—currently beyond our
conceptual resources to comprehend. After all, plants synthesise natural psyche-
delic compounds to scramble the minds of herbivores that might eat them, not to
unlock mystic wisdom. Unfortunately, there is no ‘‘neutral’’ medium of thought
impartially to appraise or perceptually cross-modally match all these other expe-
riential state-spaces. One can’t somehow stand outside one’s own stream of
consciousness to evaluate how the properties of the medium are infecting the
notional propositional content of the language that one uses to describe it.

By way of illustration, compare drug-induced visual experience in a notional
community of congenitally blind rationalists who lack the visual apparatus to
transduce incident electromagnetic radiation of our familiar wavelengths. The lone
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mystical babbler who takes such a vision-inducing drug is convinced that [what we
would call] visual experience is profoundly significant. And as visually intelligent
folk, we know that he’s right: visual experience is potentially hugely significant—
to an extent which the blind mystical babbler can’t possibly divine. But can the
drug-taker convince his congenitally blind fellow tribesmen that his mystical
visual experiences really matter in the absence of perceptual equipment that
permits sensory discrimination? No, he just sounds psychotic. Or alternatively, he
speaks lamely and vacuously of the ‘‘ineffable’’. The blind rationalists of his tribe
are unimpressed.

The point of this fable is that we’ve scant reason to suppose that biologically re-
engineered posthumans millennia hence will share the same state-spaces of con-
sciousness, or the same primitive terms, or the same conceptual scheme, or the
same type of virtual world that human beings now instantiate. Maybe all that will
survive the human era is a descendant of our mathematical formalism of physics,
M-theory of whatever, in basement reality.

Of course such ignorance of other state-spaces of experience doesn’t normally
trouble us. Just as the congenitally blind don’t grow up in darkness—a popular
misconception—the drug-naive and genetically unenhanced don’t go around with
a sense of what we’re missing. We notice teeming abundance, not gaping voids.
Contemporary humans can draw upon terms like ‘‘blindness’’ and ‘‘deafness’’ to
characterise the deficits of their handicapped conspecifics. From the perspective of
full-spectrum superintelligence, what we really need is millions more of such
‘‘privative’’ terms, as linguists call them, to label the different state-spaces of
experience of which genetically unenhanced humans are ignorant. In truth, there
may very well be more than millions of such nameless state-spaces, each as
incommensurable as e.g. visual and auditory experience. We can’t yet begin to
quantify their number or construct any kind of crude taxonomy of their
interrelationships.

Note the problem here isn’t cognitive bias or a deficiency in logical reasoning.
Rather a congenitally blind (etc.) super-rationalist is constitutionally ignorant of
visual experience, visual primitive terms, or a visually-based conceptual scheme.
So (s)he can’t cite e.g. Aumann’s agreement theorem [claiming in essence that two
cognitive agents acting rationally and with common knowledge of each other’s
beliefs cannot agree to disagree] or be a good Bayesian rationalist or whatever:
these are incommensurable state-spaces of experience as closed to human minds as
Picasso is to an earthworm. Moreover, there is no reason to expect one realm, i.e.
‘‘ordinary waking consciousness’’, to be cognitively privileged relative to every
other realm. ‘‘Ordinary waking consciousness’’ just happened to be genetically
adaptive in the African savannah on Planet Earth. Just as humans are incorrigibly
ignorant of minds grounded in echolocation—both echolocation world-simulations
and echolocation conceptual schemes—likewise we are invincibly ignorant of
posthuman life while trapped within our existing genetic architecture of
intelligence.

In order to understand the world—both its formal/mathematical and its sub-
jective properties—sentient organic life must bootstrap its way to super-sentient
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Full-Spectrum Superintelligence. Grown-up minds need tools to navigate all
possible state-spaces of qualia, including all possible first-person perspectives, and
map them—initially via the neural correlates of consciousness in our world-sim-
ulations—onto the formalism of mathematical physics. Empirical evidence sug-
gests that the behaviour of the stuff of the world is exhaustively described by the
formalism of physics. To the best of our knowledge, physics is causally closed and
complete, at least within the energy range of the Standard Model. In other words,
there is nothing to be found in the world—no ‘‘element of reality’’, as Einstein puts
it—that isn’t captured by the equations of physics and their solutions. This is a
powerful formal constraint on our theory of consciousness. Yet our ultimate theory
of the world must also close Levine’s notorious ‘‘Explanatory Gap’’. Thus, we
must explain why consciousness exists at all (‘‘The Hard Problem’’); offer a rig-
orous derivation of our diverse textures of qualia from the field-theoretic for-
malism of physics; and explain how qualia combine (‘‘The Binding Problem’’) in
organic minds. These are powerful constraints on our ultimate theory too. How can
they be reconciled with physicalism? Why aren’t we zombies?

The hard-nosed sceptic will be unimpressed at such claims. How significant are
these outlandish state-spaces of experience? And how are they computationally
relevant to (super) intelligence? Sure, says the sceptic, reckless humans may take
drugs, and experience wild, weird and wonderful states of mind. But so what?
Such exotic states aren’t objective in the sense of reliably tracking features of the
mind-independent world. Elucidation of their properties doesn’t pose a well-
defined problem that a notional universal algorithmic intelligence (Legg and
Hutter 2007) could solve.

Well, let’s assume, provisionally at least, that all mental states are identical with
physical states. If so, then all experience is an objective, spatio-temporally located
feature of the world whose properties a unified natural science must explain.
A cognitive agent can’t be intelligent, let alone superintelligent, and yet be con-
stitutionally ignorant of a fundamental feature of the world—not just ignorant, but
completely incapable of gathering information about, exploring, or reasoning
about its properties. Whatever else it may be, superintelligence can’t be consti-
tutionally stupid. What we need is a universal, species-neutral criterion of sig-
nificance that can weed out the trivial from the important; and gauge the
intelligence of different cognitive agents accordingly. Granted, such a criterion of
significance might seem elusive to the antirealist about value (Mackie 1991).
Value nihilism treats any ascription of (in) significance as arbitrary. Or rather the
value nihilist maintains that what we find significant simply reflects what was
fitness-enhancing for our forebears in the ancestral environment of adaptation
(Barkow 1992). Yet for reasons we simply don’t understand, Nature discloses just
such a universal touchstone of importance, namely the pleasure-pain axis: the
world’s inbuilt metric of significance and (dis)value. We’re not zombies. First-
person facts exist. Some of them matter urgently, e.g. I am in pain. Indeed it’s
unclear if the expression ‘‘I’m in agony; but the agony doesn’t matter’’ even makes
cognitive sense. Built into the very nature of agony is the knowledge that its
subjective raw awfulness matters a great deal—not instrumentally or derivatively,
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but by its very nature. If anyone—or indeed any notional super-AGI—supposes
that your agony doesn’t matter, then he/it hasn’t adequately represented the first-
person perspective in question.

So the existence of first-person facts is an objective feature of the world that any
intelligent agent must comprehend. Digital computers and the symbolic AI code
they execute can support formal utility functions. In some contexts, formally
programmed utility functions can play a role functionally analogous to importance.
But nothing intrinsically matters to a digital zombie. Without sentience, and more
specifically without hedonic tone, nothing inherently matters. By contrast, extreme
pain and extreme pleasure in any guise intrinsically matter intensely. Insofar as
exotic state-states of experience are permeated with positive or negative hedonic
tone, they matter too. In summary, ‘‘He jests at scars, that never felt a wound’’:
scepticism about the self-intimating significance of this feature of the world is
feasible only in its absence.

The Great Transition

The End of Suffering

A defining feature of general intelligence is the capacity to achieve one’s goals in a
wide range of environments. All sentient biological agents are endowed with a
pleasure-pain axis. All prefer occupying one end to the other. A pleasure-pain axis
confers inherent significance on our lives: the opioid-dopamine neurotransmitter
system extends from flatworms to humans. Our core behavioural and physiological
responses to noxious and rewarding stimuli have been strongly conserved in our
evolutionary lineage over hundreds of millions of years. Some researchers
(Cialdini 1987) argue for psychological hedonism, the theory that all choice in
sentient beings is motivated by a desire for pleasure or an aversion from suffering.
When we choose to help others, this is because of the pleasure that we ourselves
derive, directly or indirectly, from doing so. Pascal put it starkly: ‘‘All men seek
happiness. This is without exception. Whatever different means they employ, they all
tend to this end. The cause of some going to war, and of others avoiding it, is the same
desire in both, attended with different views. This is the motive of every action of
every man, even of those who hang themselves’’. In practice, the hypothesis of
psychological hedonism is plagued with anomalies, circularities and complications if
understood as a universal principle of agency: the ‘‘pleasure principle’’ is simplistic
as it stands. Yet the broad thrust of this almost embarrassingly commonplace idea
may turn out to be central to understanding the future of life in the universe. If even a
weak and exception-laden version of psychological hedonism is true, then there is an
intimate link between full-spectrum superintelligence and happiness: the ‘‘attractor’’
to which rational sentience is heading. If that’s really what we’re striving for, a lot of
the time at least, then instrumental means-ends rationality dictates that intelligent
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agency should seek maximally cost-effective ways to deliver happiness—and then
superhappiness and beyond.

A discussion of psychological hedonism would take us too far afield here. More
fruitful now is just to affirm a truism and then explore its ramifications for life in
the post-genomic era. Happiness is typically one of our goals. Intelligence
amplification entails pursuing our goals more rationally. For sure, happiness, or at
least a reduction in unhappiness, is frequently sought under a variety of descrip-
tions that don’t explicitly allude to hedonic tone and sometimes disavow it alto-
gether. Natural selection has ‘‘encephalised’’ our emotions in deceptive, fitness-
enhancing ways within our world-simulations. Some of these adaptive fetishes
may be formalised in terms of abstract utility functions that a rational agent would
supposedly maximise. Yet even our loftiest intellectual pursuits are underpinned
by the same neurophysiological reward and punishment pathways. The problem
for sentient creatures is that, both personally and collectively, Darwinian life is not
very smart or successful in its efforts to achieve long-lasting well-being. Hundreds
of millions of years of ‘‘Nature, red in tooth and claw’’ attest to this terrible
cognitive limitation. By a whole raft of indices (suicide rates, the prevalence of
clinical depression and anxiety disorders, the Easterlin paradox, etc.) humans are
not getting any (un) happier on average than our Palaeolithic ancestors despite
huge technological progress. Our billions of factory-farmed victims (Francione
2006) spend most of their abject lives below hedonic zero. In absolute terms, the
amount of suffering in the world increases each year in humans and non-humans
alike. Not least, evolution sabotages human efforts to improve our subjective well-
being thanks to our genetically constrained hedonic treadmill—the complicated
web of negative feedback mechanisms in the brain that stymies our efforts to be
durably happy at every turn (Brickman et al. 1978). Discontent, jealousy, anxiety,
periodic low mood, and perpetual striving for ‘‘more’’ were fitness-enhancing in
the ancient environment of evolutionary adaptedness. Lifelong bliss wasn’t harder
for information-bearing self-replicators to encode. Rather lifelong bliss was
genetically maladaptive and hence selected against. Only now can biotechnology
remedy organic life’s innate design flaw.

A potential pitfall lurks here: the fallacy of composition. Just because all
individuals tend to seek happiness and shun unhappiness doesn’t mean that all
individuals seek universal happiness. We’re not all closet utilitarians. Genghis
Khan wasn’t trying to spread universal bliss. As Plato observed, ‘‘Pleasure is the
greatest incentive to evil.’’ But here’s the critical point. Full-Spectrum Superin-
telligence entails the cognitive capacity impartially to grasp all possible first-
person perspectives—overcoming egocentric, anthropocentric, and ethnocentric
bias (cf. mirror-touch synaesthesia). As an idealisation, at least, Full-Spectrum
Superintelligence understands and weighs the full range of first-person facts. First-
person facts are as much an objective feature of the natural world as the rest mass
of the electron or the Second Law of Thermodynamics. You can’t be ignorant of
first-person perspectives and superintelligent any more than you can be ignorant of
the Second law of Thermodynamics and superintelligent. By analogy, just as
autistic superintelligence captures the formal structure of a unified natural science,
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a mathematically complete ‘‘view from nowhere’’, all possible solutions to the
universal Schrödinger equation or its relativistic extension, likewise a Full-Spec-
trum Superintelligence also grasps all possible first-person perspectives—and acts
accordingly. In effect, an idealised Full-Spectrum Superintelligence would com-
bine the mind-reading prowess of a telepathic mirror-touch synaesthete with the
optimising prowess of a rule-following hyper-systematiser on a cosmic scale. If
your hand is in the fire, you reflexively withdraw it. In withdrawing your hand,
there is no question of first attempting to solve the Is-Ought problem in meta-ethics
and trying logically to derive an ‘‘ought’’ from an ‘‘is’’. Normativity is built into
the nature of the aversive experience itself: I-ought-not-to-be-in-this-dreadful-
state. By extension, perhaps a Full-Spectrum Superintelligence will perform cos-
mic felicific calculus (Bentham 1789) and execute some sort of metaphorical
hand-withdrawal for all accessible suffering sentience in its forward light-cone.
Indeed one possible criterion of Full-Spectrum Superintelligence is the propaga-
tion of subjectively hypervaluable states on a cosmological scale.

What this constraint on intelligent agency means in practice is unclear. Con-
ceivably at least, idealised Superintelligences must ultimately do what a classical
utilitarian ethic dictates and propagate some kind of ‘‘utilitronium shockwave’’
across the cosmos. To the classical utilitarian, any rate of time-discounting
indistinguishable from zero is ethically unacceptable, so s/he should presumably
be devoting most time and resources to that cosmological goal. An ethic of neg-
ative utilitarianism is often accounted a greater threat to intelligent life (cf. the
hypothetical ‘‘button-pressing’’ scenario) than classical utilitarianism. But whereas
a negative utilitarian believes that once intelligent agents have phased out the
biology of suffering, all our ethical duties have been discharged, the classical
utilitarian seems ethically committed to converting all accessible matter and
energy into relatively homogeneous matter optimised for maximum bliss: ‘‘utili-
tronium’’. Hence the most empirically valuable outcome entails the extinction of
intelligent life. Could this prospect derail superintelligence?

Perhaps but, utilitronium shockwave scenarios shouldn’t be confused with
wireheading. The prospect of self-limiting superintelligence might be credible if
either a (hypothetical) singleton biological superintelligence or its artificial
counterpart discovers intracranial self-stimulation or its nonbiological analogues.
Yet is this blissful fate a threat to anyone else? After all, a wirehead doesn’t aspire
to convert the rest of the world into wireheads. A junkie isn’t driven to turn the rest
of the world into junkies. By contrast, a utilitronium shockwave propagating
across our Hubble volume would be the product of intelligent design by an
advanced civilisation, not self-subversion of an intelligent agent’s reward circuitry.
Also, consider the reason why biological humanity—as distinct from individual
humans—is resistant to wirehead scenarios, namely selection pressure. Humans
who discover the joys of intra-cranial self-stimulation or heroin aren’t motivated to
raise children. So they are outbred. Analogously, full-spectrum superintelligences,
whether natural or artificial, are likely to be social rather than solipsistic, not least
because of the severe selection pressure exerted against any intelligent systems
who turn in on themselves to wirehead rather than seek out unoccupied ecological
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niches. In consequence, the adaptive radiation of natural and artificial intelligence
across the Galaxy won’t be undertaken by stay-at-home wireheads or their blissed-
out functional equivalents.

On the face of it, this argument from selection pressure undercuts the prospect
of superhappiness for all sentient life—the ‘‘attractor’’ towards which we may
tentatively predict sentience is converging in virtue of the pleasure principle
harnessed to ultraintelligent mind-reading and utopian neuroscience. But what is
necessary for sentient intelligence is information-sensitivity to fitness-relevant
stimuli—not an agent’s absolute location on the pleasure-pain axis. True, uniform
bliss and uniform despair are inconsistent with intelligent agency. Yet mere
recalibration of a subject’s ‘‘hedonic set-point’’ leaves intelligence intact. Both
information-sensitive gradients of bliss and information-sensitive gradients of
misery allow high-functioning performance and critical insight. Only sentience
animated by gradients of bliss is consistent with a rich subjective quality of
intelligent life. Moreover, the nature of ‘‘utilitronium’’ is as obscure as its theo-
retical opposite, ‘‘dolorium’’. The problem here cuts deeper than mere lack of
technical understanding, e.g. our ignorance of the gene expression profiles and
molecular signature of pure bliss in neurons of the rostral shell of the nucleus
accumbens and ventral pallidum, the twin cubic centimetre-sized ‘‘hedonic hot-
spots’’ that generate ecstatic well-being in the mammalian brain (Berridge and
Kringelbach 2010). Rather there are difficult conceptual issues at stake. For just as
the torture of one mega-sentient being may be accounted worse than a trillion
discrete pinpricks, conversely the sublime experiences of utilitronium-driven
Jupiter minds may be accounted preferable to tiling our Hubble volume with the
maximum abundance of micro-bliss. What is the optimal trade-off between
quantity and intensity? In short, even assuming a classical utilitarian ethic, the
optimal distribution of matter and energy that a God-like superintelligence would
create in any given Hubble volume is very much an open question.

Of course we’ve no grounds for believing in the existence of an omniscient,
omnipotent, omnibenevolent God or a divine utility function. Nor have we grounds
for believing that the source code for any future God, in the fullest sense of
divinity, could ever be engineered. The great bulk of the Multiverse, and indeed a
high measure of life-supporting Everett branches, may be inaccessible to rational
agency, quasi-divine or otherwise. Yet His absence needn’t stop rational agents
intelligently fulfilling what a notional benevolent deity would wish to accomplish,
namely the well-being of all accessible sentience: the richest abundance of
empirically hypervaluable states of mind in their Hubble volume. Recognisable
extensions of existing technologies can phase out the biology of suffering on Earth.
But responsible stewardship of the universe within our cosmological horizon
depends on biological humanity surviving to become posthuman superintelligence.
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Paradise Engineering?

The hypothetical shift to life lived entirely above Sidgwick’s (1907) ‘‘hedonic
zero’’ will mark a momentous evolutionary transition. What lies beyond? There is
no reason to believe that hedonic ascent will halt in the wake of the world’s last
aversive experience in our forward light-cone. Admittedly, the self-intimating
urgency of eradicating suffering is lacking in any further hedonic transitions, i.e. a
transition from the biology of happiness (Schlaepfer and Fins 2012) to a biology of
superhappiness; and then beyond. Yet why ‘‘lock in’’ mediocrity if intelligent life
can lock in sublimity instead?

Naturally, superhappiness scenarios could be misconceived. Long-range pre-
diction is normally a fool’s game. But it’s worth noting that future life based on
gradients of intelligent bliss isn’t tied to any particular ethical theory: its
assumptions are quite weak. Radical recalibration of the hedonic treadmill is
consistent not just with classical or negative utilitarianism, but also with prefer-
ence utilitarianism, Aristotelian virtue theory, a Kantian deontological ethic,
pluralist ethics, Buddhism, and many other value systems besides. Recalibrating
our hedonic set-point doesn’t—or at least needn’t—undermine critical discern-
ment. All that’s needed for the abolitionist project and its hedonistic extensions
(Pearce 1995) to succeed is that our ethic isn’t committed to perpetuating the
biology of involuntary suffering. Likewise, only a watered-down version of psy-
chological hedonism is needed to lend the scenario sociological credibility. We
can retain as much—or as little—of our existing preference architecture as we
please. You can continue to prefer Shakespeare to Mills-and-Boon, Mozart to
Morrissey, and Picasso to Jackson Pollock while living perpetually in Seventh
Heaven or beyond.

Nonetheless an exalted hedonic baseline will revolutionise our conception of
life. The world of the happy is quite different from the world of the unhappy, says
Wittgenstein; but the world of the super happy will feel unimaginably different
from the human, Darwinian world. Talk of preference conservation may reassure
bioconservatives that nothing worthwhile will be lost in the post-Darwinian
transition. Yet life based on information-sensitive gradients of superhappiness will
most likely be ‘‘encephalized’’ in state-spaces of experience alien beyond human
comprehension. Humanly comprehensible or otherwise, enriched hedonic tone can
make all experience generically hypervaluable in an empirical sense—its lows
surpassing today’s peak experiences. Will such experience be hypervaluable in a
metaphysical sense too? Is this question cognitively meaningful?
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The Future of Sentience

The Sentience Explosion

Man proverbially created God in his own image. In the age of the digital computer,
humans conceive God-like superintelligence in the image of our dominant tech-
nology and personal cognitive style—refracted, distorted and extrapolated for sure,
but still through the lens of human concepts. The ‘‘super-’’ in so-called superin-
telligence is just a conceptual fig-leaf that humans use to hide our ignorance of the
future. Thus high-AQ/high-IQ humans (Baron-Cohen 2001) may imagine God-like
intelligence as some kind of Super-Asperger—a mathematical theorem-proving
hyper-rationalist liable systematically to convert the world into computronium for
its awesome theorem-proving. High-EQ, low-AQ humans, on the other hand, may
imagine a cosmic mirror-touch synaesthete nurturing creatures great and small in
expanding circles of compassion. From a different frame of reference, psychedelic
drug investigators may imagine superintelligence as a Great Arch-Chemist
opening up unknown state-space of consciousness. And so forth. Probably the only
honest answer is to say, lamely, boringly, uninspiringly: we simply don’t know.

Grand historical meta-narratives are no longer fashionable. The contemporary
Singularitarian movement is unusual insofar as it offers one such grand meta-
narrative: history is the story of simple biological intelligence evolving through
natural selection to become smart enough to conceive an abstract universal Turing
machine, build and program digital computers—and then merge with, or undergo
replacement by, recursively self-improving artificial superintelligence.

Another grand historical meta-narrative views life as the story of overcoming
suffering. Darwinian life is characterised by pain and malaise. One species evolves
the capacity to master biotechnology, rewrites its own genetic source code, and
creates post-Darwinian superhappiness. The well-being of all sentience will be the
basis of post-Singularity civilisation: primitive biological sentience is destined to
become blissful supersentience.

These meta-narratives aren’t mutually exclusive. Indeed on the story told here,
Full-Spectrum Superintelligence entails full-blown supersentience too: a seamless
unification of the formal and the subjective properties of mind.

If the history of futurology is any guide, the future will confound us all. Yet in
the words of Alan Kay: ‘‘It’s easier to invent the future than to predict it’’.
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Chapter 11A
Illah R. Nourbakhsh on Pearce’s
‘‘The Biointelligence Explosion’’

The Optimism of Discontinuity
In The Biointelligence Explosion, David Pearce launches a new volley in the

epic, pitched battle of today’s futurist legions. The question of this age is: machine
or man? And neither machine nor man resembles the modern-day variety.
According to the Singularity’s version of foreshadowed reality, our successors are
nothing like a simulacrum of human intelligence; instead they vault beyond
humanity along every dimension, achieving heights of intelligence, empathy,
creativity, awareness and immortality that strain the very definitions of these
words as they stand today. Whether these super-machines embody our unnatural,
disruptive posthuman evolution, displacing and dismissing our organic children, or
whether they melt our essences into their circuitry by harvesting our conscious-
nesses and qualia like so much wheat germ, the core ethic of the machine disciples
is that the future will privilege digital machines over carbon-based, analog beings.

Pearce sets up an antihero to the artificial superintelligence scenario, proposing
that our wetware will shortly become so well understood, and so completely
modifiable, that personal bio-hacking will collapse the very act of procreation into
a dizzying tribute to the ego. Instead of producing children as our legacy, we will
modify our own selves, leaving natural selection in the dust by changing our
personal genetic makeup in the most extremely personal form of creative hacking
imaginable. But just like the AI singularitarians, Pearce dreams of a future in
which the new and its ancestor are unrecognizably different. Regular humans have
depression, poor tolerance for drugs, and, let’s face it, mediocre social, emotional
and technical intelligence. Full-Spectrum Superintelligences will have perfect
limbic mood control, infinite self-inflicted hijacking of chemical pathways, and so
much intelligence as to achieve omniscience bordering on Godliness.

The Singularity proponents have a fundamentalist optimism born, as in all
religions, of something that cannot be proven or disproven rationally: faith. In their
case, they have undying faith in a future discontinuity, the likes of which the
computational world has never seen. After all, as Pearce points out, today’s
computers have not shown even a smattering of consciousness, and so the ancestry
of the intelligent machine, a machine so fantastically powerful that it can even-
tually invent the superintelligent machine, is so far an utter no-show. But this is
alright if we can believe that with Moore’s Law comes a new golden chalice: a
point of no return, when the progress of Artificial Intelligence self-reinforces,
finally, and takes off like an airplane breaking ground contact and suddenly
shooting upward in the air: a discontinuity that solves all the unsolvable problems.
No measurement of AI’s effectiveness before the discontinuity matters from within
this world view; the future depends only on the shape of a curve, and eventually all
the rules will change when we hit a sudden bend. That a technical sub-field can
depend so fully, not on early markers of success, but on the promise of an
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unknown future disruption, speaks volumes about the discouraging state of Arti-
ficial Intelligence today. When the best recent marker of AI, IBM’s Watson, wins
peculiarly by responding to a circuit-driven light in 8 ms, obviating the chances of
humans who must look at a light and depend on neural pathways orders of
magnitude slower, then AI Singularity cannot yet find a machine prophet.

Pearce is also an optimist, presenting an alternative view that extrapolates from
the mile marker of yet another discontinuity: when hacker-dom successfully turns
its tools inward, open-sourcing and bio-hacking their own selves to create recur-
sively improving bio-hackers that rapidly morph away from mere human and into
transcendental Superintelligence. The discontinuity is entirely different from the
AI Singularity, and yet it depends just as much on a computational mini-singu-
larity. Computers would need to provide the simulation infrastructure to enable
bio-hackers to visualize and test candidate self-modifications. Whole versions of
human-YACC and human-VMWare would need to compile and run entire human
architectures in dynamic, simulated worlds to see just what behaviour will ensue
when Me is replaced by Me-2.0. This demands a level of modelling, analog
simulation and systems processing that depend on just as much of a discontinuity
as the entire voyage. And then a miracle happens becomes almost cliché when
every technical obstacle to be surmounted is not a mountain, but a hyperplane of
unknown dimensionality!

But then there is the hairy underbelly of open-source genetics, namely that of
systems engineering and open-source programming in general. As systems become
more complex, Quality Assurance (QA) becomes oxymoronic because tests fail to
exhaustively explore the state-space of possibilities. The Toyota Prius brake
failures were not caught by engineers whose very job is to be absolutely sure that
brakes never, ever fail, because just the right resonant frequency, combined with a
hybrid braking architecture, combined with just the right accelerometer architec-
ture and firmware, can yield a one-in-a million rarity a handful of times, literally.
The logistical tail of complexity is a massive headache in the regime of QA, and
this bodes poorly for open-sourced hacking of human systems, which dwarf the
complexity of Toyota Prius exponentially. IDE’s for bio-hacking; debuggers that
can isolate part of your brain so that you can debug a nasty problem without losing
consciousness (Game Over!); version control systems and repositories so that, in a
panic, you can return your genomic identity to a most recent stable state- all of
these tools will be needed, and we will of course be financially enslaved to the
corporations that provide these self-modification tools. Will a company, let’s call it
HumanSoft, provide a hefty discount on its insertion vector applications if you
agree to do some advertising—your compiled genome always drinks Virgil’s Root
Beer at parties, espousing its combination of Sweet Birch and Molasses? Will you
upgrade to HumanSoft’s newest IDE because it introduces forked compiling—now
you can run two mini-me’s in one body and switch between them every 5 s by
reprogramming the brain’s neural pathways.

Perhaps most disquieting is the law of unintended consequences, otherwise
known as robotic compounding. In the 1980s, roboticists thought that they could
build robots bottom-up, creating low-level behaviours, testing and locking them in,
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then adding higher-level behaviours until, eventually, human-level intelligence
flowed seamlessly from the machine. The problem was that the second level
induced errors in how level one functioned, and it took unanticipated debugging
effort to get level one working with level two. By the time a roboticist reaches
level four, the number of side effects overwhelms the original engineering effort
completely, and funding dries up before success can be had. Once we begin bio-
hacking, we are sure to discover side effects that the best simulators will fail to
recognize unless they are equal in fidelity to the real-world. After how many major
revisions will we discover that all our hacking time is spent trying to undo
unintended consequences rather than optimizing desired new features? This is not
a story of discontinuity, unfortunately, but the gradual build-up of messy, com-
plicated baggage that gums up the works gradually and eventually becomes a
singular centre of attention.

We may just discover that the Singularity, whether it gives rise to Full-Spec-
trum Superintelligence or to an Artificial Superintelligence, surfaces an entire
stable of mediocre attempts long before something of real value is even con-
ceivable. Just how many generations of mediocrity will we need to bridge and at
what cost, to reach the discontinuity that is an existential matter of faith?

There is one easy answer here, at once richly appropriate and absurd. Pearce
proposes that emotional self-control has one of the most profound consequences
on our humanity, for we can make ourselves permanently happy. Learn to control
the limbic system fully, and then bio-hackers can hack their way into enforced
sensory happiness- indeed, even modalities of happiness that effervesce beyond
anything our non drug-induced dreams can requisition today. Best of all, we could
program ourselves for maximal happiness even if Me-2.0 is mediocre and buggy.
Of course, this level of human chemical pathway control suggests a level of
maturity that pharmaceutical companies dream about today, but if it is truly
possible to obtain permanent and profound happiness all-around, then of course we
lose both the condition and state of happiness. It becomes the drudgery that is a
fact of life.

Finally, let us return to one significant commonality between the two hypoth-
eses: they both demand that technology provide the ultimate modelling and sim-
ulation engine: I call it the Everything Engine. The Everything Engine is critical to
AI because computers must reason, fully, about future implications of all state sets
and actions. The Everything Engine is also at the heart of any IDE you would wish
to use when hacking your genome: you need to model and generate evidence that
your proposed personal modification yields a better you rather than a buggier you.
But today, the Everything Engine is Unobtanium, and we know that incremental
progress on computation speed will not produce it. We need a discontinuity in
computational trends in order to arrive at the Everything Engine. Pearce is right
when he states that the two meta-narratives of Singularity are not mutually
exclusive. In fact, they are conjoined at the hip; for, if their faith in a future
discontinuity proves false, then we might just need infinity of years to reach either
Nirvana. And if the discontinuity arrives soon, then as Pearce points out, we will
all be too busy inventing the future or evading the future to predict the future.‘
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Chapter 12
Embracing Competitive Balance:
The Case for Substrate-Independent
Minds and Whole Brain Emulation

Randal A. Koene

Abstract More important than debates about the nature of a possible singularity is
that we successfully navigate the balance of opportunities and risks that our
species is faced with. In this context, we present the objective to upload to sub-
strate-independent minds (SIM). We emphasize our leverage along this route,
which distinguishes it from proposals that are mired in debates about optimal
solutions that are unclear and unfeasible. We present a theorem of cosmic dom-
inance for intelligence species based on principles of universal Darwinism, or
simply, on the observation that selection takes place everywhere at every scale.
We show that SIM embraces and works with these facts of the physical world. And
we consider the existential risks of a singularity, particularly where we may be
surpassed by artificial intelligence (AI). It is unrealistic to assume the means of
global cooperation needed to the create a putative ‘‘friendly’’ super-intelligent AI.
Besides, no one knows how to implement such a thing. The very reasons that
motivate us to build AI lead to machines that learn and adapt. An artificial general
intelligence (AGI) that is plastic and at the same time implements an unchangeable
‘‘friendly’’ utility function is an oxymoron. By contrast, we note that we are living
in a real world example of a Balance of Intelligence between members of a
dominant intelligent species. We outline a concrete route to SIM through a set of
projects on whole brain emulation (WBE). The projects can be completed in the
next few decades. So, when we compare this with plans to ‘‘cure aging’’ in human
biology, SIM is clearly as feasible in the foreseeable future—or more so. In fact,
we explain that even in the near term life extension will require mind augmen-
tation. Rationality is a wonderful tool that helps us find effective paths to our goals,
but the goals arise from a combination of evolved drives and interests developed
through experience. The route to a new Balance of Intelligence by SIM has this
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additional benefit, that it does acknowledges our emancipation and does not run
counter to our desire to participate in advances and influence future directions.

Competition and Natural Selection at Every Scale

In the first part of this paper we will devote some attention to reasons. Who are we,
humans, and what do we want? This is important if we want to understand why a
Singularity scenario would or should come about. For without our actions there
will certainly be no Singularity. And for practical purposes, it will be useful to
know if we are talking about events we are striving for or events that we may not
be able to avoid.

Success at Cosmic Scale or in an Environmental Niche

It is a feature of the human condition that we are naturally preoccupied with
anthropocentric concerns. If we do not quite gaze at our own navels, at least we
tend to direct most of our worries, thoughts and plans at the here and now. The
well-known cosmologist Max Tegmark is known to remark upon this fact when he
cautions us about long-range cosmic perspectives (Tegmark 2011). Of course, our
preoccupation is itself an outcome of natural selection.

And why should we not be concerned primarily with matters that relate to our
own society? Is human society not the bedrock of purpose and meaning?

Meaning is a slippery concept to question. We can certainly designate local or
constrained purpose and meaning, limiting them by definition to the domain that a
specific thinking entity cares about. Beyond that, any objective or universal pur-
pose cannot be substantiated. Humans care for their lives, the lives of their off-
spring, the lives of their kin and the lives of all humans and all living things—often
in that order of priority. We might say that the purpose of that interest is to insure
species survival. But what is the purpose of species survival? Does the existence of
a species relate to any greater purpose or meaning? And, if you did establish such a
purpose then the next question would inevitably be: Satisfying that, what purpose
does that serve? Ultimately, there simply is no such thing as a universal purpose.

No matter how well-conceived, our wishes for the future cannot be constructed
such that they fulfill a universal purpose that does not exist. Our wishes cannot be
supported by a top-to-bottom rationale. Rationality is merely a tool. It is a tool that
promises efficiency, but it is nevertheless just a tool to help us get from A to B.
Why we choose B as our goal emerges instead from distinctions that we make
between that which we find desirable and that which we do not. They are dis-
tinctions, likely established by a combination of intrinsic drives and acquired
tastes.
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Generally speaking, our intrinsic drives arose from a selection for behavior that
improved the survival and propagation of genetically inherited traits. The com-
petitive effects of selection are ever-present.

Is there any way in which we could live in a manner that does not involve
competition? Selection of some kind is always taking place. In a collision between
a small, dense asteroid and a large, porous asteroid, one of the two is the likely in-
tact survivor of the encounter. If that is the measure of successful survival then a
selection took place. Similarly, we can identify selective processes in events
throughout the cosmos. It is the process that has been called Universal Darwinism
(Dennett 2005), an all-pervasive competition and selection at every scale.

Our local environment has shaped the behavior of successful intelligent species,
and one of the strongest requirements for the successful existence of a thinking
entity is a survival-oriented self-consistent reward mechanism. Our biology and
our behavior have been tuned to achieve gene-survival within an environmental
niche in space and time (Koene 2011). But the universe is a much bigger stage
with a much greater variety of challenges.

Adapting to Challenges and Cosmic Dominance

Environments change, as do challenges. In fact, we have embarked upon a route of
tool building that will eventually lead us to build new thinking entities. This is a
development that deserves further consideration, and that development is also the
origin of the Vingean concept of the Singularity (Vinge 1981).

Let us reflect on the matter of adaptability to different environments and
challenges. Some thinking entities will learn ways in which they can modify their
thinking, including their reward mechanisms. It makes sense to make such mod-
ifications in response to new knowledge. That way, a thinking entity can maximize
its reward over time. It is worth noting that this process has been taking place in
human society as well, as environmental challenges have changed. For example,
humans have had to adapt to life in circumstances of very high population density,
following the development of cities.

There may well be risks associated with modifications. There is a deductive line
of thought, as presented by carboncopies.org co-founder Suzanne Gildert (Gildert
2010), which demonstrates that a lack of a fixed, intrinsic drive-based sense of
purpose can lead to the adoption of what may be described as a ‘‘nihilistic’’
personal philosophy. Such nihilism can have behavioral consequences, since it
makes all outcomes appear of equal value. The possible outcomes include cata-
tonic passivity, self-termination, or termination by inadequately competing with
other entities in a Darwinist universe. One of the interesting considerations that
follow from this line of reasoning is that it might be impossible to develop or
evolve truly general super-intelligent AI, because such an AI would inevitably
become aware of the lack of universal purpose and of a full top-down rationale for
goals and motivations.
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Whether or not there truly is such an obstacle for super-intelligent artificial
general intelligence (AGI), there is cause to suspect that human intelligence itself
exists in a niche-specific and finely-tuned balance attained through natural selec-
tion. Suzanne Gildert called these niches of intelligent survival ‘‘catchment areas’’.
We do not know what the landscape of possible developmental routes looks like
outside of this balance. If there are only a few peaks of tuning where an intelli-
gence can survive and many deep valleys in which developments do not lead to
survival, then most modifications could endanger survival.

Even taking into consideration the catchment area hypothesis though, we can
reasonably deduce the overall outcome for all intelligences over space and time.
Let us take this cosmic perspective now and consider its end-result. For this, I will
present a theorem with which to address the dominance of certain types of
intelligence over cosmic expanses of time and space.

Cosmic Dominance Theorem for Intelligent Species: The greatest propor-
tions of space and time that are influenced by intelligence will be influenced by
those types of intelligence that achieve the flexibility to adapt to new environ-
mental and circumstantial challenges in a goal-oriented manner.

Here is how we arrive at this theorem: Let us presuppose that a body and mind
that compete well within a specific environment and set of challenges are not
automatically equally well-suited to all other environments and challenges. An
iterative selection that is carried out by subjecting all such intelligences to a
sequence of new environments and new challenges will reduce the number of
intelligences that are able to succeed within the entire sequence they have
encountered. Natural selection and mutational change (i.e., a random walk of
change) may produce some intelligence that can eventually successfully exist in a
large number of environments and challenges. Flexible intelligence that incorpo-
rates adaptability to new environments and challenges in its own design, intelli-
gence geared toward goal-oriented change, is likely to achieve such dominance
much more quickly. Consequently, the largest portions of space and time that will
be influenced in some way by intelligence will be influenced by those that have
such flexibility (Koene 2011). (Note that we are not particularly interested here in
influence that is carried out through non-intelligent intervention, such as inanimate
interactions or systematic interactions carried out by simple pattern generators.)
Substrate-independence is a foremost requirement for the goal-directed flexibility.

Super-Intelligent AI and a Balance of Intelligence

Goal-oriented adaptation is one of the qualities envisioned by proponents of AGI
development through a process of goal-directed iterative self-improvement. If suf-
ficiently rapid, such iteration has been supposed as the mechanism for a so-called
intelligence explosion that brings about a Singularity (Chalmers 2010; Good 1965;
Kurzweil 2005; Moravec 1998; Sandberg and Bostrom 2008; Solomonoff 1985;
Vinge 1993). Carl Shulman and Stuart Armstrong compare such an explosion with
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arms races, including the imperative of a possible military advantage as a driver for
risky AI research protocols. Embarking on an AI equivalent of a Manhattan Project
might be perceived as a winner-take-all competition. But, as they point out, where
nuclear material is difficult to obtain and process, AI technology that might not
depend on special hardware could be easy to copy. The Manhattan Project was
thoroughly infiltrated by Russia. A rapid spread of AI developments through infor-
mation leaks could maintain a semblance of balance. To rely on such a coincidence of
conditions to bring about safe development through balance is not at all reassuring.

Instead, to prepare for the safe development of super-intelligent AGI, all parties
would have to agree to oversight and all projects currently underway would have
to be halted and modified accordingly. At present, it seems unlikely that careful
coordination of the actions of all interested groups will be achieved. No one is even
attempting to bring a halt to unconstrained AI projects. In addition to this problem,
there are intrinsic problems with the notion of creating an assuredly ‘‘friendly’’
super-intelligent AI guardian.

The value of learning, and ultimately of total flexibility as described above,
certainly also exists for super-intelligent AI. Learning, the ability to gain new
insights is in fact a principal requirement for intelligence. If a purported AI
guardian’s avenues of change are heavily constrained then it will not be generally
super-intelligent enough to deal with all challenges that appear—which makes
living in its care a rather dangerous prison ship to be adrift in on a cosmic ocean.

If, on the other hand, a guardian AI can adapt to deal as best it can with any
challenge, then the unpredictable consequences of changes remove all guarantees of
a friendly or desirable situation for us. It does not much matter if changes are the
result of learning from new information or are inadvertent consequences (e.g., bits
flipped by cosmic radiation). A ‘‘utility function’’ of the system will not be fixed in an
architecture that is not static. It will drift. Even a minor drift can cause the conse-
quences to diverge significantly over time from a predicted course, just as a minor
course correction at great distance can deflect an asteroid from its path to Earth.

And why are we even working on machine intelligence and AI? We do this,
because machines that can learn are very useful. AI exists because we want it to be
able to collect information and to gain knowledge. We want AI to learn and
modify its thinking. All of this simply means that a useful super-intelligent general
AI will probably be unconstrained at some point. But, when that happens the
situation is not at all unlike the one in which the dominant intelligence of the
human species took control of the world and of the fate of other species, including
those just slightly less intelligent.

No scheme has yet been demonstrated by which one could create a super-
intelligent AGI that is simultaneously plastic and has a method by which it
implements a truly fixed utility function or preference relation U(x). Such a thing
is an oxymoron. Even disregarding the problem of drift, it is unclear if a utility
function can be devised that would have satisfactory criteria for ‘‘friendliness’’,
and which would lead to some situation that we would deem desirable.

Contrast this with the real situation today, where no single intelligent entity
among the population of dominant intelligences on Earth can subject all of them to
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its whims without rapid counter-action by the others who have similar intelligence.
It is this balance of power that has existed and continues to exist between the 7
billion most intelligent minds on Earth today. These situations exist throughout the
living world, as they are directly related to the process of natural selection. When
changes within the population occur infrequently it feels like a balance. When they
occur frequently it feels like a race. Both experiences may be found not just in the
living world, but in all dynamical systems, and they fit the paradigm of Universal
Darwinism.

The race, in addition to advancing competitive capabilities, also keeps the
leading runners in check. It is like the famous Red Queen’s hypothesis that has
been applied as an evolutionary argument for the advantages of sexual repro-
duction (Ridley 1995), as well as in the computational domain, e.g., applied to co-
evolution in cellular automata (Paredis 1997). The Red Queen of Lewis Caroll’s
Through the Looking Glass said: ‘‘It takes all the running you can do, to keep in
the same place.’’

We may suggest a Red Queen’s Hypothesis of Balance of Intelligence: In a
system dominated by a sufficient number of similarly intelligent adaptive agents,
the improvements of agents take place in a balance of competition and collabo-
ration that maintains relative strengths between leading agents.

Even if friendly AI could exist in separation but concurrence with human
society, while being vastly superior in its capability, that sort of Singularity would
still be troubling to us in a number of ways. Under those circumstances there
would be a ‘‘glass ceiling’’, and we would never experience and create at the level
of the dominant intelligence. We would not share in subsequent stages of devel-
opment. The singularity of comprehension encountered could become a feature,
forever remaining beyond our grasp as greater intelligence advances. This is
certainly not a future experience that many of us wish for.

How about the possibility of errors, bugs in the code? Have we ever yet
developed an enormously complex piece of software that did not contain ubiq-
uitous and often serious flaws? If there was a credible project to create inherently
friendly AI, then the project would have to avoid such bugs and all other modes of
component failure. Realistically, and knowing our history of technology devel-
opment that scenario seems highly improbable.

Summarizing, we know that there are existential risks attached to the devel-
opment of AGI with intelligence equal to or greater than that of humans. At the
same time, we know that there are strong motivators driving the development of
just such AI. It is next to impossible to coordinate and control all of the actions of
the various players in the field right now. So what can we possibly do? Do we
simply pass the torch? Drenched in self-sacrificial romanticism as that may feel,
does it make sense from our perspective?

Sure, greater intelligence may do wonderfully interesting things with the world
and the universe. There is also a distribution of possibilities where the outcome
would not be so interesting. We cannot predict if said intelligence is more inter-
ested in the types of creative complexity that entertain us. Perhaps it may be more
interested in monotonous regularity. Besides, as we will discuss in the next
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section, our experience of being and our wishes for future experiences take place
with our minds. If we have the choice to take or not to take a path for which it was
indicated that with significant likelihood all such experience might come to an end,
would we take it? Would we even seriously contemplate taking such a path if the
objective under consideration was not AI?

While accepting those things that we do not control, I think that the vast
majority of us would prefer a route that maximizes the likelihood that we will be
able to experience and participate in a future brought about by a technological
Singularity. Ultimately, we cannot constrain the development of a more advanced
intelligence any more than a group of mice could hope to control a human. We
exert far more control over the manner and degree to which we ourselves embrace
the advance. We can strive to be an intimate part of it. We can give our species the
flexibility to absorb and integrate new capabilities that we create.

The Reality of ‘Being’ as an Experience

What We Know

There are sensations that comprise that awareness, which we may simply express
as ‘‘being’’. They are the sensations of our own bodies, of the effect that we have
on our environment and that the environment has on us. In addition to perceptions,
they are the introspective thoughts that are fueled by emotion, memory, realiza-
tion, decision and creativity. But what are all those sensations made up of? Where
are they made and experienced?

What does it mean to feel a rock in your hand? What does it mean to see it
there? Nerves in your skin send electric signals to your brain. Those signals are
processed by neuronal circuitry, which eventually leads to mental activity that you
are familiar with, and which your mind interprets as feeling a rock in your hand.
Similarly, photons that reach the retina of your eye are converted into electric
signals. Again, those signals are processed by neuronal circuitry, which eventually
leads to mental activity that you are familiar with, and which your mind interprets
as seeing a rock in your hand. The awareness of our existence depends entirely on
the processing of activity by the mechanisms of the brain. The interplay of that
activity, generated within the brain is the totality of the experience of being.

To Be Or Not to Be

What does it mean when we contemplate life, the end of life, or the preference to
stay alive? Each of us has preferences, wishes or desires. When we say that we
would like something, that we have a goal, what we are really saying is that there
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are future experiences that we want. Being takes places in our minds, it is the
current experience, as it is being filtered through processes that were modified by
prior experiences, i.e., through learning, memory, and knowledge. The future we
envisage is one that for us can only exist through the processing of its experiences,
filtered through our individual characteristic lenses. There is that which we process
now, and there is that which we wish to process in the future. Those processes are
‘being’ and the desire to continue to be.

Realizing this, we see that a personal identity is not just about the memory of
specific events. Rather, it is about that individual, characteristic way in which each
of us acquires, represents and uses experiences. Those characteristics lead each of
us to adhere with preference to specific ‘memes’ that include notions of how to
influence future developments. Increasingly, we are interested in the development
and propagation of memes that give rise to future experiences, the preference for
which is reflected in our individual patterns of mental activity. We support with
passion the causes that represent interests and world views. Often, we care more
about the competitive survival and development of these things that are repre-
sented in patterns of mental activity than we care about the survival of a specific
sequence of nucleotides, as expressed in our DNA.

True, the original reason for our thinking existence is a result of competitive
developments driven by natural selection and gene-survival. Not anymore. The
focus of our thinking existence is not merely gene-survival. Thought has brought
about new and creative avenues of interest. We celebrate the great thinkers, the
artists and authors, performers, builders, creators and leaders of movements. Even
when we seem to celebrate genetic success, such as by noting the long history of a
famous family it is really the social importance of that family and not the specifics
of their hereditary material that we remark upon.

Evolutionary gene-survival in our species has established a set of checks and
balances arrived at through selection in the environment of Earth’s biosphere, in its
general form during the last few million years. That is not a set of rules that is
automatically equally well-suited to the survival and propagation of the patterns of
mind we care about.

Daring to Gaze at Reality Unencumbered

Strategies to Optimize Pattern Propagation

It is by looking directly at the big picture in terms of our real interests in those
patterns of mind, experiences, gaining understanding and creating, that we see the
greatest need and define the objective of substrate-independent minds (SIM). SIM
aims specifically to devise those strategies through which our being can be opti-
mized towards the survival and propagation of patterns of mind functions. In the
following, we embrace the realities of the universal Darwinist processes that we

248 R. A. Koene



introduced above, the requirements they impose, and we focus on approaches that
we can in practice enact and control to meet those requirements. There are on the
present roadmap at least six technology paths through which we may enable
functions of the mind to move from substrate to substrate (i.e., gaining substrate-
independence). Of those six, the path known as whole brain emulation (WBE) is
the most conservative one. WBE proposes that we:

1. Identify the scope and the resolution at which mechanistic operations within the
brain implement the functions of mind that we experience.

2. Build tools that are able to acquire structural and functional information at that
resolution and scope in an individual brain.

3. Re-implement the whole structure and the functions in another suitable oper-
ational substrate, just as they were implemented in the original cerebral
substrate.

SIM and WBE, if properly accomplished on a schedule that anticipates keeping
pace with others developments, such as in AI, can ensure that we benefit from the
advance and that we incorporate whatever turns out to be the nature of the most
successful intelligent species. Toward the end of this paper, we address that
schedule, AI and existential risk in particular. SIM, especially via WBE, means
beginning with minds that have a human architecture. Early forms will be com-
prehensible and in some ways predictable. Developments in SIM are less likely to
have features of a hard take-off, because the human brain (unlike purported models
for AGI) is not designed ab initio to be iteratively self-improving through the
creation of its own successors.

No Half-Measures to Life-Extension

From the preceding, it should be clear how minds that are substrate-independent
are an essential part of any strategy that extricates itself from anthropocentric
navel-gazing and considers a more cosmic perspective. Yet a cosmic perspective,
great stretches of time and unimaginable challenges are certainly not the only
reasons why we should consider SIM an essential part of any satisfactory plan that
allows the human species to engage with the future or a Singularity.

Life extension, the quest for more years, is one of the main components of the
human transformation envisioned by communities interested in and working
towards ‘‘singularitarian’’, ‘‘transhuman’’ or ‘‘extropian’’ goals. Flag-carriers, such
as Ray Kurzweil or Ben Goertzel often mention the creation of artificial general
intelligence and life-extension in the same breath (Kurzweil 2005; Goertzel 2010).
This is about the near-term, our life-spans. A word of caution concerning a detail
that is often overlooked: There is no such thing as satisfactory life-extension
without a life-expansion that includes solutions for problems of the mind.

Proponents of methods for biological life-extension in situ, such as Aubrey de
Grey often speak of extending the span of healthy life. But healthy simply means
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without degradation by damage or disease. It does not mean that we are returned to
youth. In particular, biological life-extension approaches do not address the
intrinsic and unavoidable processes that affect even a perfectly health brain.

What is it like to be an elder who is physically healthy and has no cognitive
deficits? Is it just like being 20 years old? Obviously, it is not. The brain is physically
altered by the activity that it processes. Consider the difference between the brain of
an infant, of a child and of an adult, as shown in Fig. 12.1. The infant’s brain is not yet
fully formed. The child’s has a comparatively highly connected network that is able
to adapt to any new patterns of activity it is exposed to. The process of patterning
determines where connections are strengthened and where they are pruned. The older
brain will have many strong and stable pathways, but less flexibility.

What does that mean for the individual involved? It means that new experiences
are filtered through lenses shaped by old experiences. We are all familiar with the
‘‘generational gap’’, differences in perception, behavior, comprehension. Imagine
if we live to be 200 years old through biological life-extension. In science fiction,
such elder intelligent beings, the Vulcan Spock for example, have wisdom. But in
addition to wisdom, we fancy that they participate equally in shaping society,
creating and bringing about innovation. In reality, that is not an obvious thing for
an elder mind to be able to do. We need to augment the mind in order to achieve
the life-expansion we imagine, not simply the life-extension of the physical body.

Aubrey de Grey has noted that a technological singularity, if well-conceived,
may be virtually unnoticed. According to de Grey, humans are much less inter-
ested in technology than they are in each other. He argues that we are interested in
using technology, but that we are mostly not so interested in how the technology
works. Eventually, user-friendliness would make computers unnoticeable in our
environment. We can agree with de Grey that the pinnacle of user-friendliness is
unconscious control of technology, where the understanding between brain and
technology is the same as that between brain and body.

That is the path through brain-machine interfaces (BMI) as they gradually
approximate SIM. By absorbing more of what technology does as a part of what
we ourselves can do, that technology becomes less alien to us and less noticeable.

The Importance of Access

Substrate-Independent Minds and Whole Brain Emulation

The whole brain emulation approach to the problem of uploading to a substrate-
independent mind is interesting for several reasons. It is an approach that
emphasizes the replication of small components, without requiring a complete top-
down understanding of the modular system that generates mind. By moving the
operational components to another substrate, WBE nonetheless provides full
access to the activity that underlies mental operations.
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With access to each of the operations that together make up the functions of a
mind it is possible to explore and experiment in depth and breadth. The experi-
mentation will allow us to attempt gradual and tentative modifications. The out-
comes of modifications over short time intervals can be tested, while maintaining
outcomes as generated by the original functions. If need be, a modification can be
undone, a step reversed. With this method, we aim to discover paths by which to
modify our capabilities, including reward functions, but to sustain survival-ori-
ented behavior. In the following, we describe the reasoning behind the develop-
ment of strategies to achieve substrate-independent minds and recent technological
developments aimed at the prospect of whole brain emulation.

Can SIM Happen Within Our Life-Span?

The problem of achieving substrate-independent minds involves dealing with these
points:

• Verifying the scope and resolution of that which generates the experience of
‘being’ that takes place within our minds.

Fig. 12.1 (From rethinking the brain, families and work institute, rima shore, 1997.) An example
of the comparative synaptic and connection density in the human cortex at birth, age 6 years and
age 14 years
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• Building tools that can acquire data at that scope and resolution.
• Re-implementing for satisfactory emulation with adequate input and output.
• Carrying out procedures that achieve the transfer (or ‘‘upload’’) in a manner that

satisfies continuity.

Those points do not require a full understanding of our biology. They do
demand that we consider carefully the limits of that which produces the experience
of being. Accomplishing SIM is a problem that human researchers in neuroscience
and related fields can grasp and simplify into manageable pieces.

To our knowledge, there are no aspects of the problem that lie beyond our
understanding of physics or beyond our ability to engineer solutions. As such, it is a
feasible problem, and one that can be dealt with in a hierarchy of projects and by the
allocation of such resources as are needed to carry out the projects within the time-
span desired. If that time-span is the span of a human life or a human career then we
should carry out project planning and resource allocation accordingly. It is doable.

Furthermore, many of the pieces of the puzzle that make up the set of projects
to achieve SIM are already of great interest to neuroscience, to neuro-medicine and
to computer science. Acquisition of high resolution brain data at large scale is a
hot topic and has spawned the new field of ‘‘connectomics’’. Understanding the
resolution and scope at which the brain operates is of great interest to researchers
and developers of neural prostheses. And even the emulation of specific brain
circuitry is the topic of recent grants and efforts in computational neuroscience.
There is work being carried out on all of those pieces today. What SIM needs now,
and where I am focusing my efforts, is a roadmap that ties it all together along
several promising paths, and attention being paid to those key pieces of the puzzle
that may not yet be receiving it. And, of course, we have to insure that the
allocation of effort and resources is raised to the levels that make success probable
within the time-frame desired.

What is Harder, SIM or Curing Aging?

A clear measurement of how difficult it is to achieve an objective requires a
detailed understanding of its problems and the granular steps involved in possible
solutions. When we have such an understanding then we can estimate the
resources and the time needed to reach the objective. In the absence of under-
standing that allows clear measurement, intuition is an unsteady guide, as it is
biased heavily by our particular background and area of expertise. For this reason,
a person with a strong background in biology and a history of immersion in the
literature surrounding matters of disease and damage, such as would need to be
addressed to cure aging, may feel that curing aging appears to be easier than
projects toward whole brain emulation or other routes to SIM.

As a neuroscientist, I see the exact opposite. To me, the problem of curing aging
seems like the problem of keeping an old car going forever, continuously bumping
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into new problems, expending more and more effort for small gains. The steps along a
roadmap to curing aging, as far as I have read about them (e.g. de Grey and Rae 2007)
look rife with research topics and experiments that—at least in humans—could
require many years to evaluate their effect. Feedback for iterative improvement of the
results seems slow.

By contrast, the matter of whole brain emulation seems to me largely a problem
of data acquisition. It is a significant problem of data acquisition, but nevertheless
clearly describable. And, it is possible to test tools and procedures on a few
cultured neurons, on slices of brain tissue, on invertebrates and small animals, then
to scale up to data acquisition from thousands, millions, billions and subsequently
all relevant components involved. There is a clear and sensible way to arrange
these project steps. Even though we have not yet fully emulated the brain of an
individual animal, we certainly have existing experience with data acquisition
from the brain. At the very least, we should therefore have the professional honesty
not to claim that either curing aging or achieving substrate-independent minds are
demonstrably easier or more quick to achieve.

Do We Need AGI to get SIM?

For some reason, another attitude frequently encountered is that to achieve SIM we
would need to create a super-intelligence first (e.g., super-human AGI). To some
extent, this may be an emotional response to the perceived magnitude of the task.
It would be nice if we could simply offload that burden to some other intelligence,
if that intelligence were comparatively easy to create.

From a strategic point of view, this is an odd stance. Do we know how to create
super-human intelligence at this time? We certainly have not demonstrated any,
and it is not obvious that any of the current projects in artificial intelligence will
quickly lead to such a result. Creating the super-human intelligence is a question
mark. So, if the perception is that there are questions marks about how to achieve
SIM, then why would you place another question mark before it and work on AGI
as a precursor to working on SIM?

That strategy makes even less sense when we consider these two points:

1. We have not yet run into even a single issue in the roadmap towards SIM that
seems insurmountable by human intelligence and planning, or intractable to
research and development. Quite to the contrary, there are very real projects
underway to develop tools that can together accomplish the whole brain
emulation route to SIM. The problems are comprehensible, the challenges
manageable and the tasks feasible. Then why throw up your hands in desper-
ation with a call to super-human intelligence? It seems to make more sense to
put our efforts into the projects on that roadmap to SIM. Certainly, those
projects will involve developing tools that apply machine learning and artificial
intelligence, just as such tools are developed for many other reasons.
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2. There is a strong case to make that we would like to achieve a form of SIM
before another empowered (artificial) super-human intelligence comes along.
This is a case where it is prudent to consider existential risks, and we will
discuss that some more in later sections of this paper.

Can SIM Precede AGI?

In previous writing, we pointed out that a SIM is a form of AGI, as long as we
consider human intelligence sufficiently general, and the process of becoming
substrate-independent as artificial. Conversely, an AGI could be a form of SIM,
even if not one that directly derived from a human mind. We can imagine that, if
we know the functions needed to implement an AGI, then we can implement those
on a variety of platforms or substrates. It seems clear then, that once we have SIM,
we also have at least one type of AGI, and others may follow swiftly.

Whether AGI would automatically lead to SIM is a more problematic question.
We could certainly attempt to persuade an AGI, which we created, to help us
achieve SIM. If the AGI has super-human intelligence then having it do our
bidding might not be so simple. In addition to that practical problem, there are
ethical ones: For example, if it is not ethical to force a human to do whatever we
want them to do, then would it be ethical to force an artificial intelligence?

Those are strategic considerations. Taking a perspective that is purely about
research and development, can we ascribe a likelihood to either AGI or SIM being
achieved first? As when we were comparing the quest to cure aging with the task
to achieve substrate-independent minds, it is again a matter of understanding the
respective objectives and their problems with sufficient clarity to estimate time and
resources.

We have at least one fairly concrete path to SIM that we can consider in this
manner, namely whole brain emulation. For AGI, the picture is a bit murkier.
Aside from WBE, we do not yet have any concrete evidence that any one path to
AGI that is presently being explored will bear fruit and satisfy that objective. Even
the objective itself may need to be clarified or defined in greater detail.

For the sake of argument, let us simply define a successful AGI as an artificial
intelligence that has the same capabilities as a human mind. Using that definition,
it is not yet clear that we have sufficient insight into the finer details of mental
processes, or the manner in which different mental modules cooperate, to say that
we know which functions an AGI should implement.

Many research projects may lie ahead and they may involve further study of the
human brain. Still, there can be a time when we understand enough about the
functions of the human mind to implement similar functions in an AGI. But is that
point in time earlier or later than the one where we are able to re-implement basic
components of the brain, acquire large scale high resolution parameter data for
those components, and reconstruct a specific mind correspondingly? That is not
clear.
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Working on SIM Today

The most active route to SIM in terms of ongoing projects and persons involved is
Whole Brain Emulation (WBE). I coined the term in early 2000, to end confusion
about the popular term ‘‘mind uploading’’. Mind uploading refers to a process of
transfer of a mind from a biological brain to another substrate. WBE caught on.
The less specific term ‘‘brain emulation’’ is now sometimes used in neuroscience
projects that do not address the scope of a whole brain. Emulation implies running
an exact copy of the functions of a mind on another processing platform. It is
analogous to the execution of a computer program that was written for a specific
hardware platform (e.g., a Commodore 64 computer) in a software emulation of
that platform, utilizing different computing hardware (e.g., a Macintosh computer).

Whole brain emulation differs from typical model simulations in computational
neuroscience, because the functions and parameters used for the emulation come
from one original brain. The emulated circuitry is identical, a specific outcome of
development and learning. Connections, connection strengths and response func-
tions are meaningful, implementing the characteristics of the specific original
mind. But, there are also many similarities between WBE and ambitious large-
scale simulations such as the Blue Brain project (Markram 2006), at least in terms
of the computational implementation of components of the neural architecture
(e.g., template models of neurons). Blue Brain is composed of neural circuitry that
was generated by stochastic sampling from distributions of reasonable parameter
values that were identified by studying many different animals. The result has
gross aspects recognizable in the brains of rats, and exhibits typical large-scale
oscillatory and propagating activity.

Large-scale simulations can be trained so that their output is behaviorally
interesting. Unfortunately, any highly complex and over-parametrized system can
implement functions to carry out a specific task in many different ways. Suc-
cessfully performing the task does not prove that the system faithfully represents
the implementation found in a specific brain.

Imagine a task to regulate the temperature of a dish washing machine. There are
50 different programs written for the task. There are differences between each of
the implementations, and while all of the programs can carry out the task there is
some variance in the result (e.g., different delay times in the hysteresis loop turning
on and off the heating element, different algorithms interpreting sensor data). A
simulation is like writing a 51st program, using knowledge of the typical obser-
vable behavior and implementation hints obtained by sampling random lines of
code from each of the 50 existing programs. An emulation, as we use the term, is a
line-by-line re-write of one of the programs.

We consider whole brain emulation the most conservative approach to SIM. If
we understood a lot more about the way the mind works and how brain produces
mind then we might have far more creative or effective ways to achieve a transfer
(an ‘‘upload’’) from a biological brain to another substrate. The resulting imple-
mentation would be more efficient, taking the greatest advantage of a new
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processing substrate. We might call this ‘‘compilation’’ rather than emulation, as
when a smart compiler is used to generate efficient executable code.

Today, we do not know enough to achieve SIM at the level of a compilation.
We do understand enough about neurons, synaptic receptors, dendritic computa-
tion, diffuse messengers and other modulating factors that we can concurrently
undertake projects to catalog details about the range of those fundamental com-
ponents and to identify and re-implement neuro-anatomy and neuro-physiology in
another computational substrate. WBE is like copying each speck on the canvas of
a masterpiece instead of attempting to paint a copy using broad strokes carried out
by a another artist. Figure 12.2 shows one moment in such a process, as carried out
using the Automatic Tape-Collecting Lathe Ultramicrotome (ATLUM) built
for this purpose by Ken Hayworth and Jeff Lichtman.

WBE involves building tools such as the ATLUM. Using those tools will teach
us more about the brain, even though a full understanding of brain and mind is
neither prerequisite nor goal of WBE. SIM through WBE deliver backup and fault
tolerance, plus complete access to every operation in the emulation. That access
enables exploration. We can then incrementally and reversibly augment our
capabilities. Ultimately, we can do what our creations can do and intimately
benefit from the advances.

A Decade of Developments

Since 2000, several important developments have turned SIM into an objective
that can be feasibly achieved in the foreseeable future. The transistor density and
storage available in computing hardware have increased between 50 and 100 fold,
at an exponential rate. More recently, increases in the number of processing cores
in CPUs and GPUs indicate a rapid drive toward parallel computation, which
better resembles neural computation. An example of those efforts is the neuro-
morphic integrated circuit developed by IBM within the DARPA SyNAPSE
project (Systems of Neuromorphic Adaptive Plastic Scalable Electronics), led by
Dharmendra Modha.

In the same decade, the field of large-scale neuroinformatics brought systematic
study to computational neuroscience with a focus on more detail and greater scale.
This was driven by several highly ambitious projects, such as the Blue Brain
project and by new organizations such as the International Neuroinformatics
Coordinating Facility (INCF). Methods of representation and implementation at
scale and resolution are essential to WBE.

In recent years, studies have begun to test our hypotheses of scope and reso-
lution as they apply to data acquisition and re-implementation in WBE. Briggman,
Helmstaedter and Denk demonstrated both electrical recording and reconstruction
from morphology obtained by electron microscope imaging of the same retinal
tissue (Briggman et al. 2011). They were able to determine the correct functional
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layout from the morphology. Bock et al. carried out similar studies of neurons of
the visual cortex (Bock et al. 2011).

The so-called optogenetic technique was developed by Karl Disseroth and Ed
Boyden (Boyden et al. 2005), which enables very specific excitation or inhibition
in vivo by adding light sensitivity to specific neuronal types. These, and similar
techniques enable testing of hypotheses about the significance of specific groups of
neurons in the context of a mental function.

The Blue Brain Project led by Henry Markram is a prime example of work in
recent years that carries out very specific hypothesis testing about brain function in
a manner that is useful for WBE and SIM. This year, David Dalrymple has
commenced work to test the hypothesis: ‘‘Recording of membrane potential is
sufficient to enable whole brain emulation of C. Elegans.’’ The results may
demonstrate when molecular level information is or is not needed and will elicit
follow-up studies in vertebrate brains with predominantly spiking neurons and
chemical synapses. These are the beginnings of systematic hypothesis testing for
the development of SIM.

An increasing number of projects are explicitly building the sort of tools that
are needed to acquire data from a brain at the large scope and high resolution
required for WBE. There are at least three different versions of the ATLUM
(Hayworth et al. 2007). Ken Hayworth is presently working on its successor, using
focused ion beam scanning electron microscopy (FIBSEM) to improve accuracy,
reliability and speed of structural data acquisition from whole brains at a resolution
of 5 nm (Hayworth 2011). The Knife-Edge Scanning Microscope (KESM)

Fig. 12.2 Electron microscope image taken at 5 nm resolution from a slice of brain tissue. The
red rectangle contains the outlines of a synaptic terminal, with neurotransmitter containing
vesicles indicated by the arrow. Stacks of images such as this are used to reconstruct the detailed
morphology of the neuronal network
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developed by Bruce McCormick is able to acquire neuronal fiber and vasculature
morphology from entire mouse brains at 300 nm resolution (McCormick and
Mayerich 2004).

A number of labs, including the MIT Media Lab of Ed Boyden, are aiming at
the development of arrays of recording electrodes with tens of thousands of
channels. To go beyond this in vivo, recent collaborations have emerged to
develop ways of recording the connectivity and the activity of millions and billions
of neurons concurrently from within the brain. There are a range of different
approaches to the design of such internal recording agents. One design takes
advantage of biological resources that already operate at the requisite scale and
density, such as the application of viral vectors for the delivery of specific DNA
sequences as markers for the synaptic connection between two neurons (Zador
2011). Another takes advantage of existing expertise in integrated circuit tech-
nology to build devices with the dimensions of a red blood cell.

The past decade also marked an essential shift in the perception of whole brain
emulation and the possibility of substrate-independent minds. When I was building
a roadmap and a network of researchers aimed at SIM in 2000, it was difficult to
present and discuss the ideas within established scientific institutions. Whole brain
emulation was science fiction, beyond the horizon of feasible science and engi-
neering. That is not true anymore. Leading investigators, including Ed Boyden,
Sebastian Seung, Ted Berger and George Church now regard high resolution
connectomics and efforts towards whole brain emulation as serious and relevant
goals for research and technology in their laboratories.

Structural Connectomics and Functional Connectomics

In the brain, processing and memory are both distributed and involve very large
numbers of components. The connectivity between those components is as
important to the mental processing being carried out as the characteristic response
functions of each individual component. This is the structure–function entangle-
ment in neural processing.

From a tool development perspective, it is tempting to focus primarily on the
acquisition of one of those dimensions, either the detailed structure or the col-
lection of component functions. We should be able to look at the detailed mor-
phology of neuronal cell bodies, their axonal and dendritic fibers, and the
morphology of synapses where connections are made. Perhaps we could identify
the correct component response functions from that information. To classify
components based on their morphology and derive specific parameter values we
need extensive catalogs and mapping models that are injective (one-to-one) so that
there is no ambiguity about possible matches. Despite promising results by Bock
et al. (2011) and Briggman et al. (2011) it is not yet certain that this can be done.

Alternatively, it may be possible to carry out solely functional data acquisition
and to deduce a functional connectivity map. Pick a resolution at which you regard
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the elements (e.g., individual neurons with axon and dendrites) as a black box that
processes I/O according to some transfer function (Friedland and Bernard 2005).
For the relevant signals (e.g., membrane potential), measure all discernible input
and output. A transfer function may be derived that generates the whole range of
input–output relationships observed.

Observe how the elements operate in concert. The manner in which one ele-
ment is affected by sets of other elements suggests a functional connectivity map.
Unfortunately, this approach is limited by the completeness of observations that
can be achieved. If the time during which measurements are taken is relatively
small or does not include a sufficiently thorough set of events then latent function
may be missed. In some cases, sensitivity analysis can be used to address this
problem by applying patterns of stimulation to put a system through its paces. But
the brain is plastic! A significant amount of stimulation will change connection
strengths and responses.

Even if solely structural or solely functional data acquisition could provide all the
necessary information for WBE those approaches by themselves carry an engi-
neering risk. It is unwise to reconstruct an entire complex system without incremental
validation. Better to obtain data about both function and structure for cross-valida-
tion (e.g., similar to the validation carried out in the study by Briggman et al. 2011).

We designate research and tool development in the two domains Structural
Connectomics and Functional Connectomics. Structural connectomics includes
leading efforts by Ken Hayworth and Jeff Lichtman (Harvard) with the ATLUM
(Hayworth et al. 2007). The ATLUM is a solution to the problem of collecting all
of the ultra-thin slices from the volume of a whole brain for imaging by electron
microscopy. Winfried Denk (Max-Planck) and Sebastian Seung (MIT) popularized
the search for the human connectome and the Denk group has contributed to
milestones such as the reconstructions by Briggman et al. (2011). The laboratory
of Bruce McCormick (now led by Yoonsuck Choe, Texas A and M) also addressed
automated collection of structure data from whole brains, but at the resolution
obtainable with light microscopy. The resulting Knife-Edge Scanning Microscope
(KESM) can image the volume of a brain in a reasonable amount of time, but
cannot directly see individual synapses.

Groups led by Anthony Zador and Ed Callaway have chosen an entirely dif-
ferent route to obtain high resolution full connectome data. As mentioned earlier,
Zador proposes using viral vectors to deliver unique DNA payloads to the pre- and
post-synaptic neurons of each synaptic connection (Zador 2011). Neuronal cell
bodies are extracted and DNA is recovered from each. By identifying the specific
DNA sequences within, it should be possible to find matching pairs that act as
pointers between connected neurons.

Functional connectomics includes new ground-breaking work by Yael Maguire
and the lab of George Church (Harvard). The aim is to create devices with the
dimensions of a red blood cell (8 micrometers in diameter), based on existing
integrated circuit fabrication capabilities and on infrared signaling and power
technology. A collaboration between Ed Boyden (MIT), Konrad Kording
(Northwestern U.), George Church (Harvard U.), Rebecca Weisinger (Halcyon
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Molecular) and myself (Halcyon Molecular & Carboncopies.org) is exploring an
alternative approach that seeks to record functional events in biological media at
all neurons, resembling a kind of ‘‘molecular ticker-tape’’.

There are ongoing efforts in the Ed Boyden lab to move to micro-electrode
arrays with thousands of recording channels that incorporate light-guides for op-
togenetic stimulation. A stimulation-recording array of that kind can explore
hypotheses of great relevance to WBE. Peter Passaro (U. Sussex) is working on an
automation scheme for research and data acquisition aimed at WBE. Suitable
modeling conventions are inspired by neuro-engineering work by Chris Eliasmith
(U. Waterloo). Meanwhile, Ted Berger (USC) is continuing his work on cognitive
neuroprosthetics, which forces investigators to confront challenges in functional
interfacing that are also highly relevant to WBE.

SIM as a Singularity Event

If uploading to substrate-independent minds is possible in the context of events
that we consider a technological singularity then this can affect how such a sin-
gularity will appear to us. Consider the position taken by Bela Nagy and collab-
orators, that the singularity is a phase transition. A transition of some kind is
necessary before the time at which a singularity (described as a hyper-exponential
function) is indicated. A very clear example of a situation that demands a phase
transition is one in which the main challenges are so changed that our evolved
abilities are insufficient to cope with them. For homo sapiens, such a situation
might indeed be as singular as a great meteor impact was to the dinosaurs.

So what may the singularity look like with SIM? Are events as difficult to
predict or prepare for as in the case of a technological singularity brought about by
artificial intelligence emerging from a comparatively unchanging human species
(the Vingean prediction horizon)?

As Anders Sandberg points out, an ability to cheaply copy mental capital (as in
the case of AI) may indeed lead to extremely rapid growth. Another source of
rapid growth lies in the straightforward ways in which a sufficiently advanced AI
can self-improve: faster computation, larger memory capacity. Notice that both of
these avenues of growth also apply to SIM. Conceptual improvements are more
difficult to identify at this point, and it is not immediately clear if SIM and AI
would benefit equally from those, or if one or the other would have distinct
advantages.

Developments are not taking place in isolation: Without making bold state-
ments about exactly which mathematical function best approximates the course of
growth or change, we can regard the singularity as a horizon in our planning. It
may even be gradual, step-wise, as encountered in prior history, driven by
advances in all fields and their application not only to machines but also to
humans. We may not be able to see details at some distance. But we can still make
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educated deductions about the universe to be, which is where the end-perspective
approach that we took at the beginning of this paper applies.

Existential Risk

Arguments about the precise nature of a singularity can quickly distract from the
most important issues involved. Those issues are about navigating the balance of
opportunities and risks. The opportunities are about the advancement of tech-
nology in pursuit of our wishes and objectives for the future. The risks can be
existential.

Dennis Bray, for example, points out that machines presently lack several key
components of human intelligence in areas that require a strong grasp of context.
He believes that computers will be empty of function as long as they do not have
an equivalent of development and learning. But of course, learning algorithms are
already a standard feature of machine learning and AI. But even if a substantial
argument against human level or greater AI could be made, and if a refutation of a
Vingean Singularity could be justified on those grounds, it would not be a cause to
quench consideration of the balance between opportunities and risk.

How does a singularity with SIM differ from one driven primarily by AI? Does
the development of SIM itself bear existential risk? Consider that early SIM have
minds that are essentially human, with behavior that is familiar to us. Also, human
minds are not engineered from the ground-up to be iteratively self-improving by
designing their own successors.

Even though SIM will have consequences for human society, at least it gives us
the option to participate in an advancement that is aimed explicitly at humans. This
is quite different than a circumstance in which humans have to deal with the fact
that another, somewhat alien intelligence that they cannot join takes over the reins.
There are different types of existential risk to the status quo if we continue to
advance technology. Some risks are less desirable. In the case of SIM, risk is
reduced further by participation. In the same way that SIM embraces the
requirements for success in a competitive universe, a human species that embraces
SIM can sustain its successful development.

Some paths towards SIM carry more risk than others. In the end though, the
most important consideration is simply that there is no probable scenario whereby
a lesser intelligence is guaranteed safety as well as the ability to grow and flourish
in an environment where a significantly superior and more adaptable intelligence
is present.

As mentioned near the beginning of this paper, notions of constructing a single
friendly AGI that would remain friendly are so far entirely unconvincing. If the
AGI has plasticity, if it can be modified by learning, by accident, incident or error,
then any so-called utility function will drift. And plasticity is necessary, since the
reason to create general AI in the first place is so that it may gain knowledge from
new information and adapt to new challenges. If AGI is brought about by boot-
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strapping then drift is inherently guaranteed and by-design. Even the notion of a
‘‘singleton’’ in AGI, a possible sole guardian without need for competitive
behavior is a slippery concept. At the very least, the AGI will entertain multiple
competing problem-solving algorithms. In due course, these create distinctions,
even if those do not quite amount to multiple personality disorder. The question is
a matter of perspective, even within our own brains.

Realistic Routes

We have empirical evidence from the present situation involving the 7 billion most
intelligent minds on Earth for the degree of effectiveness of a balance of power.
That balance is imperfect on the micro-scale and over small time-intervals, but has
repeatedly been restored throughout history without the catastrophic potential of
runaway feedback scenarios. Of course, it is clear that such a balance serves those
who are the dominant species involved. A prerequisite is therefore that we remain
within that set, not left behind. Ultimately, the strongest way to reduce existential
risk and to avoid irrelevance is to merge with our own tools and embrace their
capabilities. If you do not become a substrate-independent mind (e.g., through
whole brain emulation) then you are effectively choosing not to be as competitive.
The consequences follow.

We presented our Red Queen’s Hypothesis of Balance of Intelligences earlier,
which is of course the description of an arms race with the inclusion of collabo-
ration between agents as a means to place checks on rapidly advancing leaders
until others can catch up. Concerns about arms race scenarios in AGI generally
focus on the problem of a possible ‘‘hard take-off’’—an incredibly rapid increase
in the capabilities of a system after it reaches some threshold level, without
adequate controls by resource constraints. It is not clear if such a take-off could
indeed break a balance that was maintained by a sufficiently large pool of agents,
before bumping into actual resource constraints.

The hard take-off scenario for AI is not a brand new concept, of course. It is
closely related to the evolutionary theory of Punctuated Equilibria, championed
by Niles Eldredge and Jay Gould (Eldredge and Gould 1972), as well as the theory
of Quantum Evolution (Simpson 1944) that is similar but applies itself at higher
level and scope. We can posit without great controversy that in societies of
intelligence, as in all systems subject to developmental processes, competition and
selection, gradual advances that take place in Balance must take turns with
punctuations of such equilibrium. That is necessary when either the challenges
change so that they no longer fit the prevailing course of progress or when con-
straints to the previously ‘‘inexpensive’’ and relatively predictable growth are
reached. In general, this necessity is recognized for specific technologies or
approaches, and represented within models such as the Technology S-Curve. It is
up to us to be so flexible that we participate with the new direction of develop-
ment. For that, it is useful to note that even a rapid turn of events does not have
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infinite speed and that acceleration is not effortless, in fact, it has ‘‘energy’’
requirements.

What are the physical requirements of a super-intelligent AI undergoing iter-
ations of self-improvement? How much would the need to gather resources slow
down the advance? That these practical questions exist at least points to the
possibility that such factors—where we can actually exert control—may be
incorporated in a plan of advancement. In practical terms, we should focus on
plans that emphasize levers where our actions exert control and affect the course,
rather than fantastic optimal solutions that may be impossible in principle (e.g., the
‘‘friendly’’ AI guardian scenario) or organizationally beyond our grasp (e.g.,
managing the cooperation of all groups working on AI). We aim to address
practical plans in greater detail in future publications.

AGI researcher Ben Goertzel often compares soft versus hard take-off scenarios
for human level artificial intelligence and beyond. Often left out of the discussion
about preconditions for each scenario is the question, what exactly does it mean to
improve one’s intelligence?

First we can ask: How does one measure intelligence? A common approach is
to regard it as a comparison between the performance of different systems on a set
of tasks. Those tasks may be of a more or less general variety, in which case you
are also measuring the generality of the intelligence. So, what does it mean to
improve one’s intelligence in such a case? It means that you need to come up with
a more effective way of carrying out the tasks, e.g., of solving certain types of
problems.

How does that happen? Are there any limiting factors to the rate at which one
might then improve? Is there a difference between AI and SIM in the way they can
improve? Would all sides benefit from across-the-board step-wise granular
improvements, or does one side or one system take-off out of control?

Earlier, we mentioned efforts at life-extension. It is important not to lose sight
of existential risk while in pursuit of longer life. At the same time, we should be
practical when selecting approaches, and not waste time on optima that do not lie
on feasible paths. A satisfactory ‘‘friendly’’ AI solution may be such an unfeasible
theoretical optimum. On a path forward, we should know which things we do
control and which we cannot practically control. That distinction helps us focus
efforts by constraining the solution space. On the one hand, for example, we may
not be able to control a coordination between AI researchers if all it takes to break
ranks is to tempt a few individuals with promises of exceptional rewards. On the
other hand, there may be little to lose by purposefully accelerating work on WBE
(instead of AI), which is a variable that we can indeed influence.

If SIM is not achieved when other technological advances drive the rate of
change to the level that we now think of as the Singularity then it is likely that we
will no longer play an active influential role in significant global or cosmic
developments. A scenario in which we cannot participate as members of the
dominant intelligent set of actors is one in which we do not determine the course of
events. We can debate about whether this results in an actual downfall of the
human species or if it merely implies its domestication under the auspices of a
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more advanced keeper. But it is simply not reasonable to assume that we could use
a truly more advanced general intelligence (of our own creation or not) constrained
for our own purposes. It is as if the mice in a laboratory considered the human
experimenter a useful tool applied to their goals.
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Chapter 12A
Philip Rubin on Koene’s ‘‘Embracing Competitive Balance:
The Case For Substrate-Independent Minds and Whole
Brain Emulation’’

Building Brains
When I read about the singularity, brain emulation, and similar concepts that

push us to consider the extrapolation of recent developments in science and
technology and possibilities of a future in which science fiction could become
reality, I often come away with a mix of fascination and considerable frustration. I
am drawn to the enthusiasm that stems, in part, from rapid developments and the
enormous potential in areas like genomics and proteomics, quantum physics,
materials science, nanontechnology, microelectronics, neuroscience, and many
other domains. At the same time, I am frustrated by the hubris and by the lack of
adequate consideration for the complexities that make the work in many scientific
disciplinary areas so difficult, challenging, and often rewarding.

What is a brain? How could we emulate it? Well, before we take on that
challenge, how about considering a ‘‘simpler’’ one. What is chair? How do we
emulate it? For us humans, a chair is something that we might sit on. For a mouse,
it could provide shelter from the rain. To an elephant it is, perhaps, something to
step on and crush. Thus, the way in which a physical object is used, considered,
and possibly characterized in an emulative process, can depend on what it affords
to a living entity in a dynamic, interactive process.

If our goal is to ‘‘build’’ or model a brain by reverse engineering it, we need to
know a bit about what its function is, just as it would help to know how a radio or
an Arduino is intended to be used before starting to reverse engineer them. But
functionality in the brain spans many levels. Things like meaning, perception, and
emotion are often secondary considerations when thinking about building a brain.
Our focus is often on the extremes—either at the lowest levels, driven perhaps by
the mechanistic and reductive tendencies that our scientific tradition and its suc-
cesses force us in, or on the highest levels, such as consciousness, perhaps because
it is so elusive and alluring. But the problems frequently can be both harder and
more mundane than this. When considering the brain we need to ponder multiple
dimensions and scales, from neuron to neighborhood, with consideration of the
temporal, spatial, cultural, and conceptual extents that these entail.

I remain an optimist and an enthusiast regarding understanding brain, mind, and
behavior, but I also believe that problems in domains like neuroscience and the
behavioral, cognitive and social sciences, are deliciously hard ones. Making pro-
gress in these areas can require more than just an understanding of how primitives
and fundamental low-level entities, such as neurons, or genes, or words, function
at their most basic levels, interact, combine, and form aggregates and networks.
We also must consider the context within which these entities arise and exist. To
my mind this requires including in the scientific/technological enterprise concepts
like: meaning, abstraction, culture, embodiment, temporality, multimodality,
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animal-environment synergy, ecological validity, complexity, recursion, affor-
dance, and more. It is disappointing to me that so many of the forwarding-looking
ideas underlying the potential technological rapture avoid the richness and nuance
of these areas and concepts. It does not bode well for the future that many want to
see and the progress that may be attainable. March 2012
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Chapter 13
Brain Versus Machine

Dennis Bray

Abstract Many biologists, especially those who study the biochemistry or cell
biology of neural tissue are sceptical about claims to build a human brain on a
computer. They know from first hand how complicated living tissue is and how
much there is that we still do not know. Most importantly a biologist recognizes
that a real brain acquires its functions and capabilities through a long period of
development. During this time molecules, connections, and large scale features of
anatomy are modified and refined according to the person’s environment. No
present-day simulation approaches anything like the complexity of a real brain, or
provides the opportunity for this to be reshaped over a long period of development.
This is not to deny that machines can achieve wonders: they can perform almost
any physical or mental task that we set them—faster and with greater accuracy
than we can ourselves. However, in practice present day intelligent machines still
fall behind biological brains in a variety of tasks, such as those requiring flexible
interactions with the surrounding world and the performance of multiple tasks
concurrently. No one yet has any idea how to introduce sentience or self-aware-
ness into a machine. Overcoming these deficits may require novel forms of
hardware that mimic more closely the cellular machinery found in the brain as well
as developmental procedures that resemble the process of natural selection.

It is not impossible to build a human brain and we can do it
in 10 years.

Henry Markram. TED Conference Oxford, 2009.

D. Bray (&)
Department of Physiology, Development, Neuroscience,
University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
e-mail: db10009@cam.ac.uk

A. H. Eden et al. (eds.), Singularity Hypotheses, The Frontiers Collection,
DOI: 10.1007/978-3-642-32560-1_13, � Springer-Verlag Berlin Heidelberg 2012
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At the 2010 Singularity Summit, Salk professor Terry Sejnowski gave a talk
entitled ‘Reverse Engineering of the Brain is within Reach’. He presented evi-
dence from a variety of studies, many from his own group, in which circuits in
particular regions of the human brain were reproduced on a computer using
software equivalents of neurons. Toward the end of his presentation, he showed a
video clip of a network of simulated glutaminergic neurons firing in complex
patterns, apparently replicating the activity of a region of brain cortex.

In the ensuing open discussion a young man, lying on a gurney and helped to
the microphone by his wife, asked the following question. The progressive
degenerative motor neuron disease ALS (Lou Gehrig’s) arises through disorders of
glutamate release, he said, which is precisely the kind of neuronal activity mod-
elled by Sejnowski. So, the questioner continued, if the action of these nerve cells
is so well understood, how is it that ALS remains incurable? A fair question, you
might think, and one that could be applied to more than just ALS. A dolorous
coterie of conditions, including schizophrenia, Huntingdon’s disease, and Alz-
heimer’s, presently defy all attempts at a cure. And this surely is odd. If we were to
take the term ‘reverse engineering’ literally—shouldn’t we be able diagnose what
is wrong in these and other clinical conditions, and fix them?

The reverse engineering claim will also receive a thumbs–down from another
quarter—research neurobiologists. Anyone who devotes their professional life to
understanding long-term potentiation, say, or the molecular structure of the syn-
aptic endplate will view attempts to build brains on a computer as irrelevant at
best. How can you represent a neuronal synapse—a complex, structure containing
many hundred different kinds of protein, each a chemical prodigy in its own right
and arranged in a mare’s nest of interactions—with a few lines of code? Where in
such a model would one find the synthesis and turnover of crucial molecules and
the dynamic growth and shrinkage of synaptic structure that accompany learning?
Where would be the local synthesis of synaptic proteins and the modulating effect
of microRNAs; the menagerie of different neuronal types not to mention glial
cells; diffusing hormones, oxygen, and blood flow? How can such simplistic
computer representations be taken seriously when they ignore the baroque intri-
cacies of neuroanatomy that require years of development and learning to attain
their mature form?

The brain-builders know all this, of course, but choose to ignore it. Theirs is the
big picture, the intoxicating vision of a thinking machine made in our own image.
The dream of creating human life is deep in our psyche and has fascinated thinkers
for centuries. Every age had its view how this should be done, from golems made
of clay of early Judaism to the mechanical automata of eighteenth century artisans.
The twentieth century opened with electric talking dolls made for the Edison
Company, and closed with humanoid robots such as Ichiro Kato’s WABOT,
Cynthia Breazel’s KISMET, and Honda’s ASIMO. Each machine was made using
the most advanced technology available at the time, and in this respect today’s
models are no different. Contemporary models are swept along by spectacular
progress in the neurosciences and the stupendous capacity now available to
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perform computations. That is why, proponents argue, the time has finally come.
This time, they say, it is for real.

Well, what do you think? Is the age-old quest close to being achieved so that
humans will soon (in ten years or so) create a genuine image of themselves? Or
will we find ourselves at the end of the decade consigning yet another generation
of computer ‘‘brains’’ to the museum of charming failures?

No one can see into the future. But it seems to me that we can gain insight into
this question using a tactic familiar to molecular biologists of separating the
functional aspects of the problem from the structural. Thus, in the first case we can
ask: How much and to what degree can artificial machines perform the same
(mental or intellectual) functions as human beings? And in the second: How
closely does the machinery (that is, the internal structure and workings) of auto-
mata resemble that of the human brain? The two aspects are linked of course but if
we draw them apart we will see that they produce very different answers.

How Much and to What Degree Can Artificial Machines
Perform the Same Functions as Human Beings?

The success of a computer called Watson in the television contest called Jeopardy!
aired 16 February 2011 was yet another nail in the coffin of human superiority. We
have taken on board the fact that computers outperform us in complex mathe-
matical calculations and know them to be much, much better at storing and
retrieving data. We accept that they can beat us at chess—once regarded as the
apogee of human intellect. But this one is more insidious. It is not so much that an
inert lump of metal knows that the Vedic religion was written in Sanskrit, or that
Kathmandu is further north than Manila or Jakarta, or that Michael Caine will
feature in a forthcoming movie Dark Knight Rises—or by extension that it is aware
of a whole world of trivia. It is not even that it managed to beat two humans
previously shown to excel in this contest. What really hurts is that the machine
produced its answers in response to questions posed in colloquial English, making
sense of cultural allusions, metaphors, puns, and jokes and even replying in kind.
If Alan Turing had been given printed transcripts of the three contestants, would he
have spotted the odd man out, I wonder?

Watson’s success prompts us to ask: Just what are these silicon protégés
capable of? Computers drive cars and pilot spy planes; recognize people by their
fingerprints and faces, their voices, or gaits; simulate (for the purposes of movie
entertainment) fire, water, explosions, clothing, hair, muscle, or skin. Robots help
with the care of children and the elderly, move things around, build cars, play the
violin.

The list seems endless and it is probably easier to think what these intelligent
machines cannot do. Most limitations come under the category of ‘everyday
activities’ or ‘common sense’. Thus, understanding speech and maintaining a
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conversation is still a problem, pace Watson. So is human–level vision. It will be
some time before a robot plays a good game of tennis or cooks a gourmet dinner
from scratch. Robots that can multitask—walk, talk, recognize faces, and find
prime numbers all at the same time—are even further away. But given the phe-
nomenal progress to date and the way intelligent machines just get faster and
smarter every year, one would be rash to declare that any particular function is
permanently beyond reach.

In other words, intelligent machines could be capable of at least reproducing
human performance in any intellectual task we care to specify within a decade.

Note, however, that the way they do it will have little to do with the brain.
Robots that assemble automobiles or fly spy planes, computers that find prime
numbers or play chess, are custom built for a particular purpose. They represent
the best solution to a specific problem based on current engineering practice and
this is rarely if ever the one discovered by biology. Some broad similarities in
organization might be imposed by the nature of the task, but in general software
engineers neither know nor care about anatomy or neurophysiology.

The honourable exception to this statement is the field of bio-inspired
computing in which programs are explicitly designed to mimic natural processes
such as evolution or immunity. Their declared aim is usually to discover new
approaches—new algorithms—that would not otherwise come to mind. Thus,
cellular automata, genetic algorithms, wireless sensor networks, image-rendering
techniques, neural networks, and others, were devised to address particular tech-
nological challenges. However, even a cursory examination of any one of these
approaches reveals that its link to biology is notional at best. Yes, the original idea
came from the living world, but the present instantiation bears only a superficial
resemblance to anything biological.

Consider neural networks—arguably the most developed and widespread
example of bio–inspired computing. In the 1940s, McCulloch and Pitts made a
mathematical formulation of nerve cells and showed that they could be connected
up in different ways to perform basic logical operations. A few years later, in 1946,
Donald Hebb suggested that synapses could be strengthened by simultaneous pre
and postsynaptic activity. These simple notions became the underlying fabric of
theoretical models and, as computers became more available and powerful,
resulted in sets of idealized ‘‘neurons’’ being woven into networks.

This led naturally to the concept of neural networks and their use in pattern
recognition. But as practical applications of neural networks become ever more
widespread and successful their relationship to the human brain became increas-
ingly tenuous. The idea of a web of modifiable elements selected to perform a final
task is undoubtedly correct: something like this almost certainly occurs throughout
the brain (and inside individual cells, as well). But one would be hard put to
identify a specific example of a circuit of neurons in an actual brain that acts like a
canonical neural network. First of all, individual neurons are not the simple all-or-
none ciphers with unchanging properties envisaged by McCulloch and Pitts. They
are sophisticated elements that display an almost infinite range of possible
parameters and change continually with activity. Every nerve cell in every brain is
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in some respect unique. Secondly, we rarely if ever have any notion of all of the
inputs and outputs to the network are, what the cost function is, nor the rules by
which connection strengths are modified. So while neural networks, genetic
algorithms, cognitive power grids, and the rest, represent powerful abstractions of
biological processes, they are much too generic and vague to provide a blueprint
for a real biological system.

How Closely Does the Machinery of Automata Resemble
that of the Human Brain?

This brings us to the second question asked at the outset. What can we say of those
brave souls who seek to reproduce not just the function of the brain but also its
structure? It is understood, first of all, that they plan to do this using dry solid–state
circuitry based on silicon rather than real wet tissue. Biologists regularly take
slices of brain and immerse them in nutrient media; the explants remain healthy for
days and display apparently normal electrical properties. Similarly, cells taken
from particular parts of the brain such as the hippocampus can grow long processes
in culture, establish synaptic connections and fire action potentials. But the prin-
cipal use of such techniques is analytical rather than synthetic. Cultures are simply
a convenient place to ask specific questions about the development and function of
the real brain. Brain-builders, by contrast, believe that they already know enough.
Their vision is to put together networks of nerve cells on a computer in sufficient
numbers to create a thinking entity.

The general features of this approach are illustrated in a model developed by
Eugene Izhikevich and Gerald Edelman in 2008—one of the first of its kind
(Izhikevich and Edelman 2008). The authors based their simulation on a detailed
survey of the anatomy of a particular region of the brain (the thalamocortical
projection) and set out to reproduce its main features on a computer. Multiple
copies of a microcircuit were arrayed over contours representing the cortical
anatomy, each microcircuit comprising eight types of excitatory neuron and nine
types of inhibitory neuron linked in a pattern that resembled that in the brain. The
neurons had a somatic compartment and a number of dendritic compartments and
responded to incoming signals in a way that reproduced generic features of the real
brain in terms of spiking frequency, electrotonic spread, integration of signals, and
the activity dependent reinforcement of synapses. The full simulation displayed an
extreme sensitivity to initial conditions and a propensity to generate oscillations
and develop travelling waves of excitation, somewhat similar to the waves
recorded from a functioning mammalian brain on an electroencephalograph.

The Izhevich/Edelman simulations employed up to one million neurons and one
billion synapses, which seemed impressive at the time. However, this achievement
has now been dwarfed in numerical terms by a team from IBM Research led by
Dharmendra Mohda. This group announced at the IEEE/SC2009 supercomputer
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conference in 2009 that they had built a simulation containing 109 neurons and 1013

synapses, comparable to or even exceeding the numbers in a cat brain. The prodi-
gious scale of this simulation (awarded the prestigious Gordon Bell Prize) came at the
expense of a severely reduced internal complexity. Individual ‘neurons’ in the IBM
simulation were simple devices not unlike McCulloch Pitts neurons lacking axons
and dendrites. Their ‘synapses’ were represented by a single function with fixed
input/output relationship. This rudimentary composition is so different to the real
situation that their claim to have ‘achieved the complexity of a cat brain’ provoked
widespread sceptical comment, even among computer scientists.

The limitations of the cat-brain simulation are revealed when we ask what it can
do. The model is highly sensitive to starting conditions and shows a tendency to
oscillate, developing spontaneous waves at a range of frequencies. But from a
functional standpoint this electronic citadel containing billions of elements is
actually less effective than an electric kettle. Far from reproducing a cat brain it
cannot perform the simplest tasks—smell food, for example, tell day from night, or
distinguish up from down. And how could it be otherwise, since the program has
essentially no communication with the outside world? Connections in the program
are exclusively internal, established at the time of manufacture according to some
probabilistic recipe and remain unchanged thereafter. By contrast the synapses of a
real mammalian brain are acquired step-by-step during neuronal development and
continually refined during the lifetime of the animal according to stimuli received
from the environment. Nature and nurture are both important. Growth cones of
growing nerve processes are guided to future synaptic targets by a plethora of
substrate–bound and diffusing signals. They then undergo extensive pruning and
selection based on functional criteria during which their activity becomes shaped
to the requirements of the animal. Synaptic plasticity endures into adulthood and
accompanies the acquisition of new motor skills and memories. The ‘wiring dia-
gram’ of any mammalian brain is consequently unique. It is distinct not only from
the brain of any other animal, no matter how closely related, but also from the very
same brain at a different time in the past or future.

At the other end of the scale to the wholesale agglomeration of switch like
elements, other investigators build increasingly detailed and accurate representa-
tions of neurons. Well–established computer packages such as NEURON and
GENESIS allow the electrical activities of individual neurons to be rendered in
mathematically precise terms. Further refinements can attain an impressive level of
realism, as in recent representation of a pyramidal cell from layer 5b of the
mammalian cortex (Hay 2011). This simulated cell has realistic morphology and
faithfully replicates back propagating action potentials, activated Ca2+ spike firing,
the perisomatic firing response to current steps, as well as the experimental vari-
ability of these properties. In principal one could link multiple simulated neurons
of this kind into circuits of increasing size and sophistication, although the com-
putational cost of such an endeavour would be astronomical.

There would also be the small problem of not actually knowing which con-
nections to make. Neurobiologists actively investigating specific regions of the
brain such as the visual system or the hypothalamus are the best qualified to
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answer this question. They can build detailed simulations that embody features of
neuroanatomy, physiology and even molecular processes. They have an unrivalled
ability to test and refine these simulations against experimental data—confronting
their computational idealizations with the pragmatic reality of real flesh. For
example, take an ongoing investigation of the olfactory bulb—part of the mam-
malian brain concerned with the sense of smell—by a team of researchers at the
National Centre for Biological Research in Bangalore led by Upinder Bhalla. Each
of the ten million or so neurons in the rodent nose carries a molecularly distinct
receptor type that responds to a particular odour. Axons from olfactory neurons
extend into the olfactory bulb and converge onto a smaller number of glomeruli—
globular tangles of axons and dendrites where the initial stages of processing
occur. Within each glomerulus, axons from about 40,000 olfactory neurons, each
expressing the same receptor, form synaptic connections with two principal types
of neuron, termed mitral and tufted cells. The mitral and tufted cells are exten-
sively connected to each other through their dendrites and to neighbouring granule
cells. Axons carrying outputs of this processing leave via the lateral olfactory tract
for other regions of the brain. Upi Bhalla and his team analyze this system using a
combination of experimental and theoretical approaches. Recordings from extra-
cellular electrodes and optogenetic probes (in which electrogenic proteins are
expressed in particular types of cells and then activated by light with great spatial
and temporal precision) allow them to monitor multiple neurons simultaneously.
They obtain data from well-defined olfactory stimuli applied to awakened animals
and incorporate them into multiscale cellular and network computer models, which
include essential elements of biochemical signalling.

There is every hope that enterprises such as this will lead to enhanced under-
standing of how odours are encoded in the mammalian olfactory cortex and how
this arises from the biophysics and connectivity of the olfactory bulb. It may even
help us to a broader appreciation of the mechanism by which networks in general
settle towards their steady–state computational properties. But it is important to
appreciate that even in this relatively well-ordered region of the brain we still do
not have a detailed, synapse–by–synapse description of the circuitry. The cells are
too numerous and their processes are too intertwined (in addition to the neurons
already mentioned the olfactory bulb also receives ‘‘top-down’’ information from
such brain areas as the amygdala, neocortex, and hippocampus). The identity of
synapses in light or electron micrographs is too uncertain and their physiology
inaccessible to systematic recording. The best anyone can do at this stage is to
represent the anatomical and physiological features of the olfactory bulb and
associated regions in a generic sense—that is, to assign probable neuronal shapes
and frequencies of connections. Synaptic strengths, dendritic conductances and
other properties are then assigned on a statistical basis according to current
theories of how the overall system operates. For example, the initial encoding of a
particular odour is of a spatial nature, due to the array of olfactory neurons.
However, later stages have temporal features imposed by intermittent sampling
coupled to respiration and it is believed that computations here may have a more
temporal aspect (Khan et al. 2010). The difference between spatial and temporal
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encoding in terms of synaptic connections is enormous. Clearly, a model of the
olfactory bulb or any other region of the brain can never be more accurate than our
present understanding of the physiology.

Just how perplexing real synaptic coding can be is illustrated in a recent study
of the mouse auditory cortex (Chen 2011). Two-photon imaging techniques
allowed calcium levels in individual dendritic spines of a living brain to be
visualized and their activities monitored. Applied to this region of the brain
responsible for the analysis of sound, the method revealed, as expected, synapses
responding to both the level of sound (decibels) as well as individual frequencies.
But the patterns of firing—which synapses became active under particular con-
ditions—were highly heterogeneous and failed to conform to any obvious rule or
pattern. An individual neuron might have spines responding to different tone
frequencies but these were not distributed in any obvious order. Moreover, not
every active spine led to the firing of the neuron as a whole and many computa-
tional processes appeared to take place locally, within a dendritic tree—a con-
clusion previously reached in (Branco and Hausser 2010).

So we are still a long way from reproducing the detailed structure of a human
brain in any artificial device. We still do not know the detailed circuitry of any
region of the brain sufficiently well to reproduce its structure at the level of
individual dendritic branches and synapses. Even if we did have enough infor-
mation at the cellular level it would still be impossible to include all of the relevant
molecular species and processes. Moreover, the plasticity of an actual brain means
that its connectivity continually changes in response to features of the world, past
and present, experienced by the animal. Machines do not do this.

Why Bother with the Brain?

If computers, robots and other intelligent machines are so fast, so versatile, and
improving at such a phenomenal rate, then why should we even want to build
models of the brain? Given that biology is fiendishly complicated, isn’t our best
course to disregard the idiosyncratic, jury-rigged contrivances created by evolution
and engineer our way into the future using established strategies and methods? The
answer, I believe, is no. Quite apart from our natural interest in this mass of wet
tissue and our biological curiosity about how it functions, we also have much to
learn from the human brain from a computational standpoint. It has unique abilities
that set it apart from any intelligent machine yet constructed.

Thanks to our brains, we not only play chess, find prime numbers and store lots of
data. We also navigate through the world, know what to say and do, and perform
myriad vital functions, many of them concurrently. Human intelligence has broad,
deep, and subtle features; its powers of pattern recognition and command of
language cannot yet be matched by a machine (pace Watson). As already mentioned,
brains change continually even in adulthood, so that each individual is distinct not
only from any other individual but also different from the same brain in the past.
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There is also the tricky matter of self-awareness and motivation. The only hint
of awkwardness in IBM computer Watson’s television performance came when he
made a slightly odd bet of ‘‘6,435 dollars’’. The unwarranted precision of this
figure—no doubt perfectly rational from the standpoint of probabilities—was
sufficiently distinct from the casual, rounded-off figure usually provided by con-
testants as to produce a ripple of laughter in the audience. Watson did not care, of
course… and that’s the point. It would take a competent programmer five minutes
to modify the computer’s bidding strategy so that it tended to offer round numbers.
But what would not be so easy would be to change Watson so that he cared that he
was being laughed at. The reason we hate to be laughed at, especially in public,
has do with our sense of personal dignity and self-respect. Evolutionary biologists
can no doubt offer explanations in terms of social standing and, ultimately,
reproductive success. But Watson has no personal dignity, no sense of personal
worth. He… it…. is just a hunk of metal capable of performing clever tasks at
someone else’s behest.

The enduring failure to install plasticity, multitasking, and anything resembling
sentience in electronic devices leads me to question our basic assumptions. Could our
fundamental approach to building these machines be simply wrong? For example, all
of the brain simulations so far described have been based on circuits of nerve cells and
synapses operating in a feed–forward mode. But we know that real neurons are
widely connected to different regions of the brain and both send and receive signals,
often in oscillatory fashion, over a range of time scales. As already mentioned, they
continually modify their electrical properties and anatomy according to features of
the environment. No brain simulations so far include these features.

It could even be that our preoccupation with electrical events (which arises
perhaps from ease of measurement) is misplaced and we need to incorporate other
processes occurring within cells at the molecular level into our simulations. Living
cells have the capacity to probe their environment, process incoming sensory
information, and generate appropriate and often highly subtle biochemical
responses independently of electrical signals (Bray 2009). At the very least, we
know that biochemical events modulate the size and frequency of action potentials
and the sensitivity and dynamic response of synapses. Changes in microanatomy
of brain structures such as dendritic spines, can occur within minutes and thereby
refine physiological performance (Berning 2012). Perhaps cell biology needs to be
part of our simulations?

Possibly the most important missing element is evolution. When you come
down to it, the force that drives our actions, and those of every motile organism no
matter how humble, is the need to survive and reproduce. Somehow, in its blind
tinkering, evolution stumbled on a way to channel behaviour along paths that are
optimal from the standpoint of survival, leading to the emergence of ever richer
and more complex life forms. But this primeval drive is totally lacking in intel-
ligent machines. Watson is a stand–alone, one–off upstart. He cannot reproduce.
He has never had to compete with similar machines for survival in the real world.
Unless and until an element of natural selection is added to the design of intelligent
machines it is unlikely they will ever compete directly with living brains.

13 Brain Versus Machine 277



Summary

• It must be obvious that there is no realistic prospect of ever ‘reverse engi-
neering’ the human brain in the strict sense of the term. No one could—liter-
ally—take a brain apart into all of its essential components and then put them
together again, in the same way that one might reverse engineer a radio or other
electronic device. Even the notion, sometimes explored in theory, of replacing
each and every synapse by an equivalent silicon device is out of reach—not
because it requires anything outside physics and chemistry but because the
biological systems are so idiosyncratic and historical. So far as we know,
building a brain requires years of development inside an actively functioning
body with continual exposure to and interaction with the outside world. No one
to my knowledge has ever suggested how this might be achieved with a silicon
device.

• By contrast, the harnessing of intelligent machines to intellectual and physical
tasks useful to humans has already been incredibly successful and is without
discernable limits. In theory, they could be able to do almost any physical or
mental task that we set them—faster and with greater accuracy than we can
ourselves.

• However, in practice present day intelligent machines still fall behind biological
brains in a variety of tasks, such as those requiring flexible interactions with the
surrounding world and the performance of multiple tasks concurrently. No one
yet has any idea how to introduce sentience or self-awareness into a machine.
Overcoming these deficits may require novel forms of hardware that mimic
more closely the cellular machinery found in the brain as well as developmental
procedures that resemble the process of natural selection.
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Chapter 13A
Randal Koene on Bray’s ‘‘Brain Versus Machine’’

Emulation Versus Understanding
In his article, ‘‘Brain versus Machine’’, Dennis Bray discusses and critiques

claims that ‘‘reverse engineering of the brain is within reach’’, and he compares
this with developments in artificial intelligence. It is clear from his exposition that
Bray does not agree with the optimistic outlook espoused by Terry Sejnowski at
the 2010 Singularity Summit. As in all disagreements though, it is important to be
careful about the subject matter that is the apparent cause of disagreement, the
terminology used and how that terminology is understood. We will see that a more
precise use of terms constrains the sweeping conclusions drawn by Bray.

What is meant by ‘‘reverse engineering’’ the brain? And does the validity of the
reverse engineering claim affect the topics subsequently addressed in Bray’s
article? The Merriam-Webster dictionary says: ‘‘Reverse engineer: to disassemble
and examine or analyze in detail (as a product or device) to discover the concepts
involved in manufacture usually in order to produce something similar.’’
According to Bray, we should be able to diagnose and cure ALS, schizophrenia,
Huntington’s disease and Alzheimer’s if we are indeed shortly able to reverse
engineer the brain. But the definition makes no claims about repairing existing
systems. Even in the case of simple consumer electronics, repairing is much harder
than replacing (which is what reverse engineering to ‘‘produce something similar’’
enables). For example, we do not tend to fix malfunctioning integrated circuits,
even though we can design them. A fix would require additional sophisticated
tools.

There is data acquisition about a system; there is the replication of a functioning
system based on such data; and there is intervention in an existing system, with the
aim to modify or correct its operation. As written, these three different accom-
plishments are likely listed in order of increasing difficulty. It is for this reason that
I have in prior writings and presentations made an effort to compare side by side
the probable degrees of difficulty in efforts to repair biology and thereby greatly
extend life or to acquire relevant brain data in order to replicate function in a
whole brain emulation. Given the number of possible points of break-down and the
tendency of interventions to lead to unexpected downstream side-effects in vivo,
the former may be much more difficult than the latter.

It is true that neuroscience has not given us a strong understanding of the
various strategies at different levels that together make up the mind. Sejnowski’s
optimism comes from the bottom up. He, like many others in the rapidly
expanding fields of computational neuroscience and neuroinformatics, deals pre-
dominantly with functions carried out at the neuronal mechanistic level. That is
where neuroscience has spent most of the last 100 years learning to identify ele-
ments and measure compounds and signals.

Bray’s assertion that experts in neurophysiology would view attempts to build
brains on a computer as irrelevant is a bit of a strawman argument. Computational
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modeling is used widely in neurophysiology (see for example the Computational
Neurophysiology lab at Boston University, at which I used to work). The scale of
this work in neuroinformatics is increasing rapidly. Any representation, any model
is an effort at system identification where you pick your level of detail to match the
input and output you are interested in. For many representations of brain mech-
anisms we are interested in the timing of spikes of activity at individual neurons.
Sensory input arrives as trains of spikes, spikes drive muscles (e.g., for speech),
and inter-spike timing is crucial for memory formation at synapses.

Obviously, no one insists on representing a synapse with a line of code, as Bray
posits. A much more likely approach is to represent each neuron by what is known
as a compartmental model, where each compartment can be thought of as an
electric circuit and implements the Hodgkin-Huxley equations for membrane
channel dynamics. Through system identification, you translate underlying physics
into functions. For example, the modulating effects of microRNA that Bray points
to implement ‘‘mode switches’’ at many neurons in a diffuse manner. You can
identify these modes by observing behaving neurons and a functional version of
such a switch could be a 1-bit flag.

There are really two different questions:

1. What does it take to acquire data from a brain and replicate its unique function?
2. What does it take to understand the system strategy from the top down to the

cells so that you could build similar systems based on that strategy?

Bray’s arguments focus on question 2. But we have already achieved excellent
results aimed at question 1, such as those published by Briggman et al. and by
Bock et al. (both in Nature, 2011). Each team demonstrated proofs of principle for
system identification by reconstructing detailed individual neural circuitry, one in
retina and one in visual cortex. Kozloski and Wagner (2011) showed how to take
this to large-scale neural tissue simulation. Some researchers are indeed attempting
to learn about emergent properties of neural networks by using large numbers of
generic cell simulations. That is an endeavor separate from the building of tools
with which to acquire sufficient structural and functional data from a specific piece
of neural tissue to solve the system identification task within that constrained
context. Examples of such tools are coming out of the labs of Winfried Denk (Max
Planck Institute) and Jeff Lichtman (Harvard University). Although Bray refers to
work by Izhikevich and Edelman in 2008, he omits references to some of Eugene
Izhikevich’s more famous work, developing neuron representations now com-
monly known as Izhikevich Neurons. Those are a good example of system iden-
tification. They can produce the output of a wide range of different types of
neurons without having to model any of the deeper neurophysiology.

Just as modern astronomy became possible by developing telescopes, what our
goal requires is also the development of the right measurement instruments. If you
capture the input–output perspective of each neuron with correct system identifi-
cation then you capture everything that the system of neurons is responsible for,
including a mind’s sense of dignity, sense of self-worth, respect, humor, and so
forth.
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Chapter 14
The Disconnection Thesis

David Roden

In this essay I claim that Vinge’s idea of a technologically led intelligence explosion
is philosophically important because it requires us to consider the prospect of a
posthuman condition succeeding the human one. What is the ‘‘humanity’’ to which
the posthuman is ‘‘post’’? Does the possibility of a posthumanity presuppose that
there is a ‘human essence’, or is there some other way of conceiving the human-
posthuman difference? I argue that the difference should be conceived as an emergent
disconnection between individuals, not in terms of the presence or lack of essential
properties. I also suggest that these individuals should not be conceived in narrow
biological terms but in ‘‘wide’’ terms permitting biological, cultural and techno-
logical relations of descent between human and posthuman. Finally, I consider the
ethical implications of this metaphysics If, as I claim, the posthuman difference is not
one between kinds but emerges diachronically between individuals, we cannot
specify its nature a priori but only a posteriori. The only way to evaluate the post-
human condition would be to witness the emergence of posthumans. The implica-
tions of this are somewhat paradoxical. We are not currently in a position to evaluate
the posthuman condition. Since posthumans could result from some iteration of our
current technical activity, we have an interest in understanding what they might be
like. It follows that we have an interest in making or becoming posthumans.

The Posthuman Impasse

In a 1993 article ‘‘The Coming Technological Singularity: How to survive in the
posthuman era’’ the computer scientist Vernor Vinge ar-gued that the invention of
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a technology for creating entities with greater than human intelligence would lead
to the end of human dominion over the planet and the beginning of a posthuman
era dominated by intelligences vastly greater than ours (Vinge 1993).

According to Vinge, this point could be reached via recursive improvements in
the technology. If humans or human-equivalent intelligences could use the tech-
nology to create superhuman intelligences the resultant entities could make even
more intelligent entities, and so on. Thus, a technology for intelligence creation or
intelligence amplification would constitute a singular point or ‘‘singularity’’
beyond which the level of mentation on this planet might increase exponentially
and without limit.

The form of this technology is unimportant for Vinge’s argument. It could be a
powerful cognitive enhancement technique, a revolution in machine intelligence or
synthetic life, or some as yet unenvisaged process. However, the technology needs
to be ‘‘extendible’’ in as much that improving it yields corresponding increases in
the intelligence produced. Our only current means of producing human-equivalent
intelligence is non-extendible: ‘‘If we have better sex… it does not follow that our
babies will be geniuses’’ (Chalmers 2010, p. 18).

The ‘‘posthuman’’ minds that would result from this ‘‘intelligence explosion’’
could be so vast, according to Vinge, that we have no models for their transfor-
mative potential. The best we can do to grasp the significance of this ‘‘transcen-
dental event’’, he claims, is to draw analogies with an earlier revolution in
intelligence: the emergence of posthuman minds would be as much a step-change
in the development of life on earth as the ‘‘The rise of humankind’’.

Vinge’s singularity hypothesis—the claim that intelligence-making technology
would generate posthuman intelligence by recursive improvement—is practically
and philosophically important. If it is true and its preconditions feasible, its
importance may outweigh other political and environmental concerns for these are
predicated on human invariants such as biological embodiment, which may not
obtain following a singularity.

However, even if a singularity is not technically possible—or not imminent—the
Singularity Hypothesis (SH) still raises a troubling issue concerning our capacity to
evaluate the long-run consequences of our technical activity in areas such as the
NBIC technologies (Nanotechnology, Biotechnology, Information Technology, and
Cognitive Science). This is because Vinge’s prognosis presupposes a weaker, more
general claim to the effect that our technical activity in NBIC areas or similar might
generate forms of life which might be significantly alien or ‘‘other’’ to ours. I refer to
this more general thesis as ‘‘Speculative Posthumanism’’.

If we assume Speculative Posthumanism it seems we can adopt either of two
policies towards the posthuman prospect. Firstly, we can account for it: that is,
assess the ethical implications of contributing to the creation of posthumans
through our current technological activities.

However, Vinge’s scenario gives us reasons for thinking that the differences
between humans and posthumans could be so great as to render accounting
impossible or problematic in the cases that matter. The differences stressed in
Vinge’s essay are cognitive: posthumans might be so much smarter than humans
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that we could not understand their thoughts or anticipate the transformative effects
of posthuman technology. There might be other very radical differences. Posthu-
mans might have experiences so different from ours that we cannot envisage what
living a posthuman life would be like, let alone whether it would be worthwhile or
worthless one.

For this reason, we may just opt to discount the possibility of posthumanity
when considering the implications of our technological activity: considering only
its implications for humans or for their modestly enhanced transhuman cousins.
We can refer to the latter using Ray Kurzweil coinage ‘‘MOSH’’: Mostly Original
Substrate Human (Agar 2010, pp. 41–20).

However, humans and MOSH’s have a prima facie duty to evaluate the out-
comes of their technical activities of these differences with a view to maximizing
the chances of achieving the good posthuman outcomes or, at least, avoiding the
bad ones. It is, after all, their actions and their technologies that will antecede a
posthuman difference-maker such as a singularity while the stakes for humans and
MOSH’s will be very great indeed.

From the human/MOSH point of view some posthuman dispensations might be
transcendently good. Others could lead to a very rapid extinction of all humans and
MOSH’s, or something even worse. Charles Stross’ novel Accelerando envisages
human and MOSH social systems being superseded by Economics 2.0: a resource
allocation system in which supply and demand relationships are computed too
rapidly for those burdened by a ‘‘narrative chain’’ of personal consciousness to
keep up. Under Economics 2.0 first person subjectivity is replaced ‘‘with a journal
file of bid/request transactions’’ between autonomous software agents, while
inhabited planets are pulverized and converted to more ‘‘productive’’ ends (Stross
2006, p. 177).

This post-singularity scenario is depicted as comically dreadful in Stross’ novel.
It is bad for humans and for their souped-up transhuman offspring who prove
equally redundant amid such virulent efficiency. However, as the world-builder of
Accelerando’s fictional posthuman future, Stross is able to stipulate the moral
character of Economics 2.0. If we were confronted with posthumans, things might
not be so easy. We cannot assume, for example, that a posthuman world lacking
humans would be worse than one with humans but no posthumans. If posthumans
were as unlike humans as humans are unlike non-human primates, a fair evaluation
of their kinds of life might be beyond us.

Thus accounting for our contribution to making posthumans seems obligatory
but may also be impossible with radically alien posthumans, while discounting our
contribution is irresponsible. We can call this double bind: ‘‘the posthuman
impasse’’.

If the impasse is real rather than apparent, then there may be no principles by
which to assess the most significant and disruptive long-term outcomes of current
developments in NBIC (and related) technologies.

One might try to circumvent the impasse by casting doubt on Speculative
Posthumanism. It is conceivable that further developments in technology, on this
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planet at least, will never contribute to the emergence of significantly nonhuman
forms of life.

However, Speculative Posthumanism is a weaker claim than SH and thus more
plausible. Vinge’s essay specifies one recipe for generating posthumans. But there
might be posthuman difference-makers that do not require recursive self-
improvement (we will consider some of these in due course). Moreover, we know
that Darwinian natural selection has generated novel forms of life in the evolu-
tionary past since humans are one such. Since there seems to be nothing special
about the period of terrestrial history in which we live it seems hard to credit that
comparable novelty resulting from some combination of biological or techno-
logical factors might not occur in the future.

Is there any way round the impasse that is compatible with Speculative Post-
humanism? I will argue that there is, though some ethicists may prefer the dis-
counting option to my proposal. However, to understand how the impasse can be
avoided we must consider what Speculative Posthumanism entails in more detail.

As a first step towards this clarification, I will gloss the speculative posthu-
manist claim as the schematic possibility claim SP:

(SP) Descendants of current humans could cease to be human by virtue of a history of
technical alteration.

SP has notable features which, when fully explicated, can contribute to a
coherent philosophical account of posthumanity.

Firstly, the SP schema defines posthumanity as the result of a process of
technical alteration. Value-laden terms such as ‘‘enhancement’’ or ‘‘augmenta-
tion’’ which are more commonly used in debates about transhumanism and
posthumanism are avoided. I shall explain and justify this formulation in section
Value Neutrality.

Secondly, it represents the relationship between humans and posthumans as a
historical successor relation: descent. ‘‘Descent’’ is used in a ‘‘wide’’ sense insofar
as qualifying entities might include our biological descendants or beings resulting
from purely technical mediators (e.g., artificial intelligences, synthetic life-forms,
or uploaded minds). The concept of Wide Descent will be further explained in
section Wide Descent.

Wide Descent also bears on one of the harder problems confronting a general
account of the posthuman: what renders posthumans nonhuman? Is Speculative
Posthumanism committed to a ‘‘human’’ or MOSH essence which all posthumans
lack, or are there other ways of conceiving the difference?

I will argue that the account of Wide Descent, together with more general
metaphysical considerations, militates against essentialism. I will propose, instead,
that human-posthuman difference be understood as a concrete disconnection
between individuals rather than as an abstract relation between essences or kinds.
This anti-essentialist model will allow us to specify the circumstances under which
accounting would be possible.
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Value Neutrality

SP states that a future history of a general type is metaphysically and technically
possible. It does not imply that the posthuman would improve on the human or
MOSH state or that there would be a commonly accessible perspective from which
to evaluate human and posthuman lives. Posthumans may, as Vinge writes, be
‘‘simply too different to fit into the classical frame of good and evil’’ (Vinge 1993).

It could be objected that the value-neutralization of the historical successor
relation in the SP schema is excessively cautious and loses traction on what
distinguishes humans from their hypothetical posthuman descendants: namely, that
posthumans would be in some sense ‘‘better’’ by virtue of having greater
capacities.

One of the most widely used formulations of the idea of the posthuman—that of
transhumanist philosopher Nick Bostrom—is non-neutral. He defines a posthuman
as a ‘‘being that has at least one posthuman capacity’’ by which is meant ‘‘a central
capacity greatly exceeding the maximum attainable by any current human being
without recourse to new technological means’’. Candidates for posthuman
capacities include augmented ‘‘healthspan’’, ‘‘cognition’’ or ‘‘emotional disposi-
tions’’ (Bostrom 2009).

While this is not a purely metaphysical conception of the posthuman it is, it
might be argued, not so loaded as to beg ethical questions against critics of radical
enhancement. As Allen Buchanan points out, ‘‘enhancement’’ is a restrictedly
value-laden notion insofar as enhancing a capacity implies making it function
more effectively but does not imply improving the welfare of its bearer (Buchanan
2009, p. 350).

Moreover, it could be objected that ‘‘alteration’’ is so neutral that a technical
process could count as posthuman engendering if it resulted in wide descendants of
humans with capacities far below that of normal humans (I address this point in
section Modes of Disconnection below).

However, it is easy to see that the value-ladenness of ‘‘enhancement’’ is not
restricted enough to capture some conceivable paths to posthumanity. To be sure,
posthumans might result from a progressive enhancement of cognitive powers—
much as in Vinge’s recursive improvement scenario. Alternatively, our posthuman
descendants might have capacities we have no concepts for while lacking some
capacities that we can conceive of.

In a forthcoming article I consider the possibility that shared ‘‘non-symbolic
workspaces’’—which support a very rich but non-linguistic form of thinking—
might render human natural language unnecessary and thus eliminate the cultural
preconditions for our capacity to frame mental states with contents expressible as
declarative sentences (Philosophers call such states ‘‘propositional attitudes’’—e.g.
the belief that Snow is White or the desire to vote for Obama in next presidential
election). If propositional attitude psychology collectively distinguishes humans
from non-humans, users of non-symbolic workspaces might acquire a non-prop-
ositional psychology and thus cease to be human (As I show in section
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Disconnection and Anti-Essentialism being ‘‘human distinguishing’’ in this man-
ner does not have to entail being part of a human essence).

It is not clear that process leading to this relatively radical cognitive alteration
would constitute an augmentation history in the usual sense—since according to
my scenario it could involve the loss of one central capacity (the capacity to have
and express propositional attitudes) and the acquisition of an entirely new one. Yet
it is arguable that it could engender beings so different from us in cognitive
structure that they would qualify as posthuman according to SP (See section
Modes of Disconnection).

The Borg from the TV series Star Trek are a more popular variation on the
theme of the ‘‘value-equivocal’’ posthuman. While the Borg seem like a con-
ceivable kind of posthuman life, they result from the inhibition of the kind of
cognitive and affective capacities whose flowering Bostrom treats as constitutive
of the posthuman. The Borg-Collective, it is implied, possesses great cognitive
powers and considerable technical prowess. However, the Collective’s powers
emerge from the interactions of highly networked ‘‘drones’’, each of whom has had
its personal capacities for reflection and agency suppressed.

Wide Descent

As advertised earlier, SP uses a notion of wide descent to understand our rela-
tionship to prospective posthumans.

I will elaborate the distinction between wide descent and narrow descent below
in term of a distinction between a narrow conception of the human qua species and
a wide conception of the human. Whereas Narrow Humanity can be identified, if
we wish, with the biological species Homo sapiens, Wide Humanity is a techno-
genetic construction or ‘‘assemblage’’ with both narrowly human and narrowly
non-human parts.

There are two principle justifications for introducing wide descent and the
correlative notion of Wide Humanity:

The Appropriate Concept of Descent for SP
is Not Biological

Exclusive consideration of biological descendants of humanity as candidates for
posthumanity would be excessively restrictive. Future extensions of NBIC tech-
nologies may involve discrete bio-technical modifications of the reproductive
process such as human cloning, the introduction of transgenic or artificial genetic
material or very exotic processes such as personality uploading or ‘‘mind-clon-
ing’’. Thus, entities warranting our concern with the posthuman could emerge via
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modified biological descent, recursive extension of AI technologies (involving
human and/or non-human designers), quasi-biological descent from synthetic
organisms, a convergence of the above, or via some technogenetic process yet to
be envisaged.

It follows that when considering the lives of hypothetical posthuman descen-
dants we must understood ‘‘descent’’ as relationship that is technically mediated to
an arbitrary degree.

‘‘Humanity’’ is Already the Product of a Technogenetic Process

A plausible analogy for the emergence of posthumans, as Vinge observes, is the
evolutionary process that differentiated humans from non-human primates. But
there are grounds for holding that the process of becoming human (hominization)
has been mediated by human cultural and technological activity. One widely
employed way of conceiving hominization is in terms of cultural niche con-
struction. Niche-construction occurs where members of a biological population
actively alter their environment in a –way that alters the selection pressures upon
it. For example, it has been argued that that the invention of dairy farming tech-
nology (around 10,000 BC) created an environment selective for genes that confer
adult lactose tolerance. Thus, the inventors of animal husbandry unwittingly rec-
onfigured the bodies of their descendants to survive in colder climes (Kevin et al.
2000; Buchanan 2011, p. 204). The anthropologist Terrence Deacon proposes that
the emergence of early symbolic practices produced a symbolically structured
social environment in which the capacity to acquire competence in complex
symbol systems was a clear selective advantage. Thus, it is possible that the
selection pressures that made humans brains adept at language learning were a
consequence of our ancestors’ own social activity even as these brains imposed a
learnability bottleneck on the cultural evolution of human languages (Deacon
1997, pp. 322–6, 338).

If this model is broadly correct, hominization has involved a confluence of
biological, cultural and technological processes. It has produced socio-technical
‘‘assemblages’’ in which humans are coupled with other active components: for
example, languages, legal codes, cities, and computer mediated information
networks.1

1 The term ‘‘assemblage’’ is used by the philosopher Manuel Delanda to refer to any emergent
but decomposable whole and belongs to the conceptual armory of the particularist ‘‘flat’’ ontology
I will propose for Speculative Posthumanism in section Disconnection and Anti-Essentialism
below. Assemblages are emergent wholes in that they exhibit powers and properties not
attributable to their parts but which causally depend upon their parts. Assemblages are also
decomposable insofar as all the relations between their components are ‘‘external’’: each part can
be detached from the whole to exist independently (Assemblages are thus opposed to ‘‘totalities’’

14 The Disconnection Thesis 287



Biological humans are currently ‘‘obligatory’’ components of modern technical
assemblages. Technical systems like air-carrier groups, cities or financial markets
depend on us for their operation and maintenance much as an animal depends on
the continued existence of its vital organs. Technological systems are thus inti-
mately coupled with biology and have been over successive technological
revolutions.

However, this dependency runs in the other direction: the distinctive social and
cognitive accomplishments of biological humans require a technical and cultural
infrastructure. Our capacity to perform mathematical operations on arbitrarily
large numbers is not due to an innate number sense but depends on our acquisition
of routines like addition or long division and our acculturation into culturally
stored numeral systems. Our species-specific language ability puts us in a unique
position to apply critical thinking skills to thoughts expressed in public language,
to co-ordinate social behavior via state institutions, or record information about
complex economic transactions (Clark 2004, 2006). Philosophers such as Donald
Davidson and Robert Brandom have gone further, arguing that our capacity to
think in and express propositional attitudes depends on our mastery of public
language. Davidson argues that the ability to have beliefs (and hence other
propositional attitudes such as desires or wishes) requires a grasp of what belief is
since to believe is also to understand ‘‘the possibility of being mistaken’’. This in
turn requires us to grasp that others might have true or false beliefs about the same
topic. Thus, no belief can be adopted by someone not already involved in eval-
uating her own and others’ attitudes in common linguistic coin (Davidson 1984).

These considerations lend support to the claim that the emergence of biological
humans has been one aspect of the technogenesis of a planet-wide assemblage
composed of biological humans locked into networks of increasingly ‘‘lively’’ and
‘‘autonomous’’ technical artifacts (Haraway 1989). It is this wider, interlocking
system, and not bare-brained biological humans, that would furnish the conditions
for the emergence of posthumans. Were the emergence of posthumans to occur, it
would thus be a historical rupture in the development of this extended socio-
technical network.

However, while the emergence of posthumans must involve the network, the
degree to which it would involve modifications of biological humans is concep-
tually open (as argued above). Posthumans may derive from us by some technical
process that mediates biological descent (such as a germ-line cognitive enhance-
ment) or they may be a consequence of largely technological factors.

I shall refer to this wider network as the ‘‘Wide Human’’ (WH). An entity is a
wide human just so long as it depends for its continued functioning on the Wide
Human while contributing to its operations to some degree. Members of the

(Footnote 1 continued)
in an idealist or holist sense). This is the case even where the part is functionally necessary for the
continuation of the whole (DeLanda 2006, p. 184).
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biological species Homo sapiens, on the other hand, are narrowly human. Thus,
domesticated animals, mobile phones and toothbrushes are wide humans while we
obligatory biologicals are both narrowly and widely human.

Having outlined the patient and the generic process of becoming posthuman, we
now state a recursive definition of Wide Human descent:

An entity is a wide human descendant if it is the result of a technically mediated process:

A) Caused by a part of WH—where the ancestral part may be wholly biological,
wholly technological or some combination of the two.

B) Caused by a wide human descendant.

A is the ‘‘basis clause’’. It states what belongs to the initial generation of wide
human descendants without using the concept of wide descent. B is the recursive
part of the definition. Given any generation of wide human descendants it specifies
a successor generation of wide human descendants.

It is important that this definition does not imply that a wide human descendant
need be human in either wide or narrow senses. Any part of WH ceases to be
widely human if its wide descendants go ‘‘feral’’: acquiring the capacity for
independent functioning and replication outside the human network. SP entails
that with becoming posthuman this would occur as a result of some history of
technical change.

Becoming posthuman would thus be an unprecedented discontinuity in the
hominization process. WH has undergone revolutions in the past (like the shift
from hunter-gatherer to sedentary modes of life) but no part of it has been tech-
nically altered so as to function outside of it.

It follows that a wide human descendent is a posthuman if and only if:

i It has ceased to belong to WH (The Wide Human) as a result of technical
alteration.

ii Or is a wide descendant of such a being.

I refer to this claim as the disconnection thesis.

Disconnection and Anti-Essentialism

My formulation of what it means to cease to be human will seem strange and
counter-intuitive to some. We are used to thinking of being human not as a part-
whole relation (being a part of WH in this case) but as instantiating a human nature
or ‘‘essence’’.

An essential property of a kind is a property that no member of that kind can be
without. If humans are necessary rational, for example, then it is a necessary truth
that if x is human, then x is rational.2
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To say that a human essence exists is just to say that there is a set of indi-
vidually necessary conditions for humanity.

Anthropological essentialism (the claim that there is a human essence) implies
that the technically mediated loss of even one of these would export the loser from
humanity to posthumanity. As metaphysical formula go, this has the immediate
appeal of simplicity.

It also provides a nice clear method for resolving the posthuman impasse. We
can call this the ‘‘apophatic method’’: after the method of apophatic or ‘‘negative’’
theology. Apophatic theologians think that God is so mysterious that we can only
describe Him by saying what He is not (Dale 2010). By extension, anthropological
essentialism, if true, would allow us to identify each path to posthumanity with the
deletion of some component of the human essence. This, in turn, would allow us to
adjudicate the value of these paths by considering the ethical implications of each
loss of an anthropologically necessary property.

For example, an essentialist may claim on either a posteriori or a priori grounds
that humans are necessarily moral persons with capacities for deliberation and
autonomous agency. If so, one sure route to posthumanity would be to lose those
moral capacities. Put somewhat crudely, we could then know that some con-
ceivable posthumans are non-persons. If persons are, as Rawls claims, sources of
moral value and non-persons are not then this posthuman state involves the loss of
unconditional moral status (Rawls 1980). This particular path to posthumanity
would, it seems, involve unequivocal loss.

The Disconnection Thesis does not entail the rejection of anthropological
essentialism but it renders any reference to essential human characteristics
unnecessary. The fact that some wide human descendant no longer belongs to the
Wide Human implies nothing about its intrinsic properties or the process that
brought about its disconnection. However, we can motivate the disconnection
thesis and its mereological (part-whole) conception of wide humanity by arguing
against essentialism on general grounds.

The most plausible argument for abandoning anthropological essentialism is
naturalistic: essential properties seem to play no role in our best scientific expla-
nations of how the world acquired biological, technical and social structures and
entities. At this level, form is not imposed on matter from ‘‘above’’ but emerges
via generative mechanisms that depend on the amplification or inhibition of dif-
ferences between particular entities (For example, natural selection among bio-
logical species or competitive learning algorithms in cortical maps). If this picture
holds generally, then essentialism provides a misleading picture of reality.

The philosopher Manuel Delanda refers to ontologies that reject a hierarchy
between organizing form and a passive nature or ‘‘matter’’ as ‘‘flat ontologies’’.

2 Another way of putting this is to say that in any possible world that humans exist they are
rational. Other properties of humans may be purely ‘‘accidental’’—e.g. their colour or language.
It is not part of the essence of humans that they speak English, for example. Insofar as speaking
English is an accidental property of humans, there are possible worlds in which there are humans
but no English speakers.
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Whereas a hierarchical ontology has categorical entities like essences to organise
it, a flat universe is ‘‘made exclusively of unique, singular individuals, differing in
spatio-temporal scale but not in ontological status’’ (DeLanda 2002, p. 58).

The properties and the capacities of these entities are never imposed by tran-
scendent entities but develop out of causal interactions between particulars at
various scales. Importantly for the present discussion, a flat ontology recognizes no
primacy of natural over artificial kinds (Harman 2008).

It is significant that one of Delanda’s characterizations of flat ontology occurs
during a discussion of the ontological status of biological species in which he sides
with philosophers who hold that species are individuals rather than types or uni-
versals (DeLanda 2002, pp. 59–60). For example, Ernst Mayr’s ‘‘biological species
concept’’ (BSC) accounts for species differences among sexually reproducing
populations in terms of the reproductive isolation of their members. This restricts
gene recombination and thus limits the scope for phenotypic variation resulting
from gene flows, further reinforcing discontinuities between conspecifics (Okasha
2002, p. 200).

Motivated by such anti-essentialist scruples, the bioethicist Nicolas Agar has
argued that differences between humans and prospective posthumans can be
conceived in terms of membership or non-membership of a reproductively isolated
population as conceived by the BSC (Agar 2010, p. 19). Posthumans would arise
where (and only where) radical enhancement created reproductive barriers
between the enhanced and the mainstream human population.

Agar’s proposal illustrates one variant of the flat ontological approach. How-
ever, importing the BSC neat from the science of the evolutionary past is prob-
lematic when considering the ontology of technogenetic life forms.
Biotechnologies such as the artificial transfer of genetic material across species
boundaries could make the role of natural reproductive boundaries less significant
in a posthuman or transhuman dispensation (Buchanan 2009, p. 352). If these
alternative modes of genetic transmission became routinely used alongside regular
sex, the homeostatic role of reproductive barriers would be significantly reduced.

While BSC has a clear application to understanding speciation in sexually
reproducing life forms, the BSC has no applicability to non-sexually reproducing
life forms. Likewise, the distinction between the genetics lab and nature cannot be
assumed relevant in a posthuman world where biotechnology or post-biological
forms of descent dominate the production of intelligence and the production of
order more generally. The flat ontological injunction not to prioritise natural over
artificial sources of order provides a more reliable methodological principle than
Agar’s misguided ethical naturalism.

The distinction between Wide and Narrow Humanity broached earlier in this
paper accommodates this possibility by distinguishing between the Narrow Human
(which can be understood in terms of the BSC) and the socio-technical assemblage
WH which fully expresses human societies, cultures and minds.

WH has the same ontological status as species like Homo sapiens—both are
complex individuals rather than kinds or essences. However, WH is constituted by
causal relationships between biological and non-biological parts, such as
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languages, technologies and institutions. A disconnection event would be liable to
involve technological mechanisms without equivalents in the biological world and
this should be allowed for in any ontology that supports Speculative
Posthumanism.

Modes of Disconnection

As mentioned above, Vinge considers the possibility that disconnection between
posthumans and humans may occur as a result of differences in the cognitive
powers of budding posthumans rendering them incomprehensible and uninter-
pretable for baseline humans.

For example, he speculates in passing that rich informational connections
between posthuman brains (or whatever passes for such) may be incompatible with
a phenomenology associated with a biographically persistent subject or self (Vinge
1993).

If non-subjective phenomenology among posthumans is possible then Vinge’s
concern that such form of existence might not be evaluable according our con-
ceptions of good or evil seem warranted. Human ethical frameworks arguably
require that candidates for our moral regard have the capacity to experience pain.
Most public ethical frameworks have maximal conditions. For example, liberals
valorise the capacity for personal autonomy that allows most humans ‘‘to form, to
revise, and rationally to pursue a conception of the good’’ (Rawls 1980, p. 525).

Autonomy presumably has threshold cognitive and affective preconditions such
as the capacity to evaluate actions, beliefs and desires (practical rationality) and a
capacity for the emotions, and affiliations informing these evaluations. However,
the capacity for practical reason at issue in our conception of autonomy might not
be accessible to a being with non-subjective phenomenology. Such an entity could
be incapable of experiencing itself as having a life that might go better or worse for
it.

We might not be able to coherently imagine what these impersonal phenom-
enologies are like (e.g. to say of them that they are ‘‘impersonal’’ is not to commit
ourselves regarding the kinds of experiences might furnish). This failure may
simply reflect the centrality of human phenomenological invariants to the ways
humans understand the relationship between mind and world rather than any
insight into the necessary structure of experience (Metzinger 2004), p. 213.
Thomas Metzinger has argued that our kind of subjectivity comes in a spatio-
temporal pocket of an embodied self and a dynamic present whose structures
depends on the fact that our sensory receptors and motor effectors are ‘‘physically
integrated within the body of a single organism’’. Other kinds of life—e.g.
‘‘conscious interstellar gas clouds’’ or (more saliently) post-human swarm intel-
ligences composed of many mobile processing units—might have experiences of a
radically impersonal nature (Metzinger 2004 p. 161).
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Disconnection may take other forms, however. All that is required for a dis-
connection from the Wide Human recall is that some part of this assemblage
becomes capable of going wild and following an independent career. This is not
true of current types of artificial intelligence, for example, which need to be built,
maintained by narrow humans and powered by other human artefacts. This is why
beings that are artificially ‘‘downgraded’’ so that their capacities are less than
human are unlikely to generate a disconnection event (See section Value Neu-
trality)—though this possibility cannot be entirely precluded.

A disconnection could ensue, then, wherever prospective posthumans have
properties that make their feasible forms of association disjoint from humans/
MOSH forms of association.

I suggested in sectionValue Neutrality that propositional attitude psychology
might distinguish humans from non-humans. However, as our excursus into flat
ontology shows, the capacity to form propositional attitudes such as the belief that
Lima is in Peru need not be thought of a component of a human essence but as a
filter or ‘‘sorting mechanism’’ which excludes non-humans from human society
much as incompatibilities in sexual organs or preferences create reproductive
barriers between Mayr-style biological species (Agar 2010, p. 19–28). Wide
successors to humans who acquired a non-propositional format in which to think
and communicate might not be able to participate in our society just as our
unmodified descendants might not be able to participate in theirs. They would, in
this case, ‘‘bud off’’ from the Wide Human, just as a newly isolated species buds
off from its predecessors. Such disconnections could happen by degrees and
(unlike in a Vingean singularity) relatively slowly relative to the individual life-
times. There might also be cases where the disconnection remains partial (for
example, some non-propositional thinkers might retain a vestigial capacity to
converse with humans and MOSH’s).

Are Disconnections Predictable?

I do not claim that speculations in the previous section reliably predict the nature
and dynamics of a disconnection event. For example, we do not know whether
greater than human intelligence is possible or whether it can be produced by an
‘‘extendible’’ technological method (Chalmers 2010).

Nor, at this point, can we claim to have knowledge about the feasibility of the
other disconnection events that we have speculated about (e.g. the replacement of
propositional attitude psychology with some non-linguistic cognitive format).

These scenarios are merely intended to illustrate the ontological thesis that
posthuman-human difference would be a discontinuity resulting from parts of the
Wide Human becoming so technically altered that they could split off from it. The
intrinsic properties exhibited by these entities are left open by the disconnection
thesis.
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This epistemological caution seems advisable given that the advent of post-
humanity is a (currently) hypothetical future event whose nature and precipitating
causes are unprecedented ex hypothesis. There are many conceivable ways in
which such an event might be caused. Even if a Vinge-style singularity is con-
ceivable but not possible some unrelated technology might be a possible precursor
to a disconnection. Disconnections are not defined by a particular technical cause
(such as mind-uploading) but purely by an abstract relation of wide descent and the
property of functional and replicative independence. Disconnection can be mul-
tiply realized by technologies which have little in common other than (a) feasibility
and (b) that disconnection is one of their possible historical effects. Thus, spec-
ulating about how currently notional technologies might bring about autonomy for
parts of WH affords no substantive information about posthuman lives (even if it
may enable a metaphysically and ethically salutary exploration of the scope for
posthuman difference).

Assuming that a conceivable technology (For example, controlled nuclear
fusion—other than by gravitational confinement in a star) does not violate physical
principles the only sure demonstration of feasibility is the production of a working
model or prototype. Thus, we can have no reliable grounds for holding that
conceivable precursors to a disconnection are feasible precursors so long as the
relevant technologies are underdeveloped. However, once a feasible precursor has
been produced the Wide Human could be poised at the beginning of a discon-
nection process since the capacity to generate disconnection would be a realized
technological power.3 We may be in a position to know which, if any, of the
‘‘usual suspects’’ (Nanotechnology, Biotechnology, Information Technology,
Cognitive Science) might bring about a disconnection only when the potential for
disconnection is in prospect.

Thus it is plausible to suppose that any disconnection (however, technically
realized) will be an instance of what Paul Humphrey terms diachronic emergence
(Humphrey 2008). A diachronically emergent behaviour or property occurs as a
result of a temporally extended process, but cannot be inferred from the initial state
of that process.4 It can only be derived by allowing the process to run its course
(Bedau 1997).

If disconnections are diachronically emergent phenomena their morally salient
characteristics and effects will not be predictable prior to their occurrence. While
this constrains our ability to prognosticate about disconnections, it leaves other
aspects of their epistemology quite open. As Humphrey reminds us, diachronic
emergence is a one-time event. Once we observe a formerly diachronically
emergent event we are in a position to predict tokens of the same type of emergent
property from causal antecedents that have been observed to generate it in the past.

3 Absent defeaters (See Chalmers 2010).
4 Where the emergent property occurs at the same time as the microstates on which it depends,
we have an instance of ‘‘synchronic emergence’’ (Humphrey 2008, pp. 586–7).
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Most importantly, that disconnections would be diachronically emergent has no
implications for the uninterpretability or ‘‘alienness’’ of posthumans since their
nature is left open by the disconnection thesis.

The anti-essentialist flat ontology I have recommended as a basis for the dis-
connection thesis, gives us grounds to be wary of terms like ‘‘uninterpretability’’ or
‘‘alienness’’. To be sure, posthumans might be strange in ways that we cannot
currently imagine. Their human or MOSH contemporaries might struggle unsuc-
cessfully to understand their thoughts or motives. However, the fact that inter-
pretative success is not guaranteed does not entail that relatively alien posthumans
would be humanly uninterpretable. There are, after all, many things that we do not
understand that we might understand under ideal conditions.

An utterly incomprehensible being (‘‘a radical alien’’) would not belong to this
set. Such a being would be humanly uninterpretable. The inability to understand it
would be a necessary or essential part of the human/MOSH cognitive essence. But
if, as proposed, we reject taxonomic essences, we must hold that there are no such
modal facts of this nature.

It follows that there are no grounds for some holding posthumans to be humanly
uninterpretable in principle (i.e. to be radical aliens) since the set of humanly
uninterpretable things is not defined. Posthuman thinking may still be so powerful
or so strangely formatted that it could defy the interpretative capacities of wide
human descendants not altered to an equivalent degree. But this would depend on
the contingencies of disconnection—which are, as yet, unknown. As pointed out in
section Modes of Disconnection, disconnection—like speciation—may come by
degrees. If the technology exists to create posthumans, then the same technology
might support ‘‘interfaces’’ between human and posthuman beings such as the bi-
formatted propositional/non-propositional thinkers mentioned above. Thus, where
conditions favour it ‘‘Posthuman Studies’’ may graduate from speculative meta-
physics to a viable cultural research program.5

Resolving the Impasse

What are the implications of the disconnection thesis for attempts to negotiate the
ethical bind of the posthuman impasse? The impasse is a way of formulating the
ethical concern that the posthuman consequences of our own technical activity
may be beyond our moral compass. I have conceded that posthumans might be
very different from us in diverse ways, but have argued that there is no basis for
concluding that posthumans would be beyond evaluation.

5 Vinge alludes to this possibility in his far-future space epic A Fire Upon the Deep (Vinge
1992). In Fire posthumans so powerful as to be god-like in comparison with the most enhanced
transhuman exist on a computationally extreme fringe of space known as ‘‘the Transcend’’ where
they are studied by ‘‘applied theologians’’ from observatories on the margins of the Milky Way.
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As argued in section Are Disconnections Predictable?, we may be in a better
position to undertake a value-assessment once a disconnection has occurred. Thus,
if we have a moral (or any other) interest in accounting for posthumans we have an
interest in bringing about the circumstances in which accounting can occur. Thus,
we have an interest in contributing to the emergence of posthumans or becoming
posthuman ourselves where this is liable to mitigate the interpretative problems of
disconnection.

It could be objected, at this point, that we may also have countervailing reasons
for preventing the emergence of posthumans and not becoming posthuman
ourselves.

We have acknowledged that some disconnections could be very bad for
humans. Since disconnection could go very wrong, it can be objected that the
precautionary principle (PP) trumps the accounting principle. Although there is no
canonical formulation, all versions of the PP place a greater burden of proof on
arguments for an activity alleged to have to potential for causing extensive public
or environmental harm than on arguments against it (Cranor 2004; Buchanan:
pp. 199–200). In the present context the PP implies that even where the grounds
for holding that the effects of disconnection will be harmful are comparatively
weak, the onus is on those who seek disconnection to show that it will not go very
wrong. However, the diachronically emergent nature of disconnection implies that
such a demonstration is not possible prior to a disconnection event. Thus, one can
use the PP to argue that accounting for disconnection (assessing its ethical
implications) is not morally obligatory but morally wrong.

One might conclude at this point that we have substituted one impasse (the
conflict between accounting and discounting) for a second: the conflict between
the principle of accounting and the PP. However, this will depend on the different
attitudes to uncertainty expressed in different versions of the PP. If the principle is
so stringent as to forbid technical options whose long-range effects remain
uncertain to any degree, then it forbids the development of disconnection-potent
technology. However, this would forbid almost any kind of technological decision
(including the decision to relinquish a technology).6 Thus a maximally stringent
PP is self-vitiating (Buchanan 2011), pp. 200–1.

It follows that the PP should require reasonable evidence of possible harm
before precautionary action is considered. A selective precautionary approach to
the possibility of disconnection would require that suspect activities be ‘‘flagged’’
for the potential to produce bad disconnections (even where this evidence is not
authoritative). But if disconnections are diachronically emergent phenomena, the
evidence to underwrite flagging will not be available until the process of technical
change is poised for disconnection.

To take a historical analogy: the syntax of modern computer programming
languages is built on the work on formal languages developed in the Nineteenth

6 Given our acknowledged dependence on technical systems, the long-run outcomes of
relinquishment may be as disastrous as any technological alternative.
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Century by carried out by mathematicians and philosophers like Frege and Boole.
Lacking any comparable industrial models, it would have been impossible for
contemporary technological forecasters to predict the immense global impact of
what appeared an utterly rarefied intellectual enquiry. We have no reason to
suppose that we are better placed to predict the long-run effects of current sci-
entific work than our Nineteenth Century forebears (if anything the future seems
more rather than less uncertain). Thus, even if we enjoin selective caution to
prevent worst-case outcomes from disconnection-potent technologies, we must
still place ourselves in a situation in which such potential can be identified. Thus
seeking to contribute to the emergence of posthumans, or to become posthuman
ourselves, is compatible with a reasonably constrained PP.

References

Agar, N. (2010). Humanity’s end: Why we should reject radical enhancement. Cambridge: MIT
Press.

Bedau, M. A. (1997). Weak emergence. Philosophical Perspectives, 11, 375–399.
Bostrom, N. (2009). Why I want to be a posthuman when I grow up. In G. Bert & C. Ruth (Eds.),

Medical enhancement and post humanity (pp. 107–137). Dordrecht: Springer.
Buchanan, A. (2009). Moral status and human enhancement. Philosophy and Public Affairs,

37(4), 346–381.
Buchanan, A. E. (2011). Beyond humanity? : The ethics of biomedical enhancement. Oxford:

Oxford University Press.
Chalmers, D. J. (2010). The singularity: A philosophical analysis. Journal of Consciousness

Studies, 17, 7–65.
Clark, A. (2004). Natural born-cyborgs: Minds, technologies and the future of human

intelligence. Oxford: OUP.
Clark, A. (2006). Language, embodiment and the cognitive niche. Trends in Cognitive Science,

10(8), 370–374.
Cranor, C. F. (2004). Toward understanding aspects of the precautionary principle. Journal of

Medicine and Philosophy, 29(3), 259–279.
Dale, T. (2010). Trinity. Stanford Encyclopedia of Philosophy. Edited by Edward N. Zalta.http://

plato.stanford.edu/archives/fall2009/entries/trinityAccessed 28 Sep 2011.
Davidson, D. (1984). Thought and Talk. In: Inquiries into Truth and Interpretation, (pp.

155–170). Oxford: Clarendon Press.
Deacon, T. (1997). The symbolic species: The co-evolution of language and the human brain.

London: Penguin.
DeLanda, M. (2002). Intensive science and virtual philosophy. London: Continuum.
Delanda, D. (2006). A new philosophy of society: Assemblage theory and social complexity.

London: Continuum.
Haraway, D. (1989). A manifesto for cyborgs: Science, technology, and socialist feminism in the

1980s. In W. Elizabeth (Ed.), Coming to terms (pp. 173–204). London: Routledge.
Harman, G. (2008). DeLanda’s ontology: Assemblage and realism. Continental Philosophy

Review, 41(3), 367–383.
Humphreys, P. (2008). Computational and conceptual emergence. Philosophy of Science, 75(5),

584–594.
Kevin, N. L., John, O. S., & Marcus, W. F. (2000). Niche construction, biological evolution, and

cultural change. Behavioural and Brain Sciences, 23(1), 131–146.

14 The Disconnection Thesis 297

http://plato.stanford.edu/archives/fall2009/entries/trinity
http://plato.stanford.edu/archives/fall2009/entries/trinity


Metzinger, T. (2004). Being no one: The self-model theory of subjectivity. Cambridge: MIT Press.
Okasha, S. (2002). Darwinian metaphysics: Species and the question of essentialism. Synthese,

131(2), 191–213.
Rawls, J. (1980). Kantian constructivism in moral theory. Journal of Philosophy, 77(9), 515–572.
Stross, C. (2006). Accelerando. London: Orbit.
Vinge, V. (1992). A fire upon the deep. New York: Tor.
Vinge, V. (1993). The coming technological singularity: how to survive in the post-human era,

vision-21:interdisciplinary science and engineering in the era of cyberspace. http://
www.rohan.sdsu.edu/faculty/vinge/misc/singularity.html Accessed 8 Dec 2007.

298 D. Roden

http://www.rohan.sdsu.edu/faculty/vinge/misc/singularity.html
http://www.rohan.sdsu.edu/faculty/vinge/misc/singularity.html


Part IV
Skepticism



Chapter 15
Interim Report from the Panel Chairs:
AAAI Presidential Panel on Long-Term
AI Futures

Eric Horvitz and Bart Selman

The AAAI 2008-09 Presidential Panel on Long-Term AI Futures was organized
by the president of the Association for the Advancement of Artificial Intelligence
(AAAI) to bring together a group of thoughtful computer scientists to explore and
reflect about societal aspects of advances in machine intelligence (computational
procedures for automated sensing, learning, reasoning, and decision making). The
panelists are leading AI researchers, well known for their significant contributions
to AI theory and practice. Although the final report of the panel has not yet been
issued, we provide background and high-level summarization of several findings in
this interim report.

AI research is at the front edge of a larger computational revolution in our
midst—a technical revolution that has been introducing new kinds of tools,
automation, services, and new access to information and communication. Effi-
ciencies already achieved via computational innovations are beyond the scope of
what people could have imagined just two decades ago. It is clear that AI
researchers will spearhead numerous innovations over the next several decades.
Panelists overall shared a deep enthusiasm and optimism about the future influence
of AI research and development on the world. Panelists expect AI research to have
great positive influences in many realms, including healthcare, transportation,
education, commerce, information retrieval, and scientific research and discovery.

The panel explored a constellation of topics about societal influences of AI
research and development, reviewing potential challenges and associated oppor-
tunities for additional focus of attention and research. Several topics were
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highlighted as important areas for future work; there was a sense that, for these
issues, increased sensitivity, attention, and research would help to ensure better
outcomes. The panel believed that identifying and highlighting potential ‘‘rough
edges’’ that might arise at the intersection of AI science and society would be
beneficial for directing ongoing reflection, as well as for guiding new research
investments. The study had three focus areas and associated subgroups.

Subgroup on Pace, Concerns, Control

The first focus group explored concerns expressed by lay people—and as popu-
larized in science-fiction for decades—about the long-term outcomes of AI
research. Panelists reviewed and assessed popular expectations and concerns. The
focus group noted a tendency for the general public, science-fiction writers, and
futurists to dwell on radical long-term outcomes of AI research, while overlooking
the broad spectrum of opportunities and challenges with developing and fielding
applications that leverage different aspects of machine intelligence.

Popular perspectives on the outcomes of AI research include expectation that
there will be one or more disruptive outcomes. These include that notion that the
research will somehow lead to the advent of utopia or catastrophe. The utopian
perspective is perhaps best captured in the writings of Ray Kurzweil and others,
who speak of a forthcoming ‘‘technological singularity’’. At the other end of the
spectrum, some people are concerned about the ‘‘rise of intelligent machines’’,
fueled by popular novels and movies, that tell stories of the loss of control of
robots. Whether forecasting utopian or catastrophic outcomes, the radical per-
spectives are frightening to people in that they highlight some form of radical
change on the horizon—often founded on a notion of the loss of control of the
computational intelligences that we create.

The panel of experts was overall skeptical of the radical views expressed by
futurists and science-fiction authors. Participants reviewed prior writings and
thinking about the possibility of an ‘‘intelligence explosion’’ where computers one
day begin designing computers that are more intelligent than themselves. They
also reviewed efforts to develop principles for guiding the behavior of autonomous
and semi-autonomous systems. Some of the prior and ongoing research on the
latter can be viewed by people familiar with Isaac Asimov’s Robot Series as
formalization and study of behavioral controls akin to Asimov’s Laws of Robotics.
There was overall skepticism about the prospect of an intelligence explosion as
well as of a ‘‘coming singularity’’, and also about the large-scale loss of control of
intelligent systems. Nevertheless, there was a shared sense that additional research
would be valuable on methods for understanding and verifying the range of
behaviors of complex computational systems to minimize unexpected outcomes.
Some panelists recommended that more research needs to be done to better define
‘‘intelligence explosion’’, and also to better formulate different classes of such
accelerating intelligences. Technical work would likely lead to enhanced
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understanding of the likelihood of such phenomena, and the nature, risks, and
overall outcomes associated with different conceived variants.

The group suggested outreach and communication to people and organizations
about the low likelihood of the radical outcomes, sharing the rationale for the
overall comfort of scientists in this realm, and for the need to educate people
outside the AI research community about the promise of AI for enhancing the
quality of human life in numerous ways, coupled with a re-focusing of attention on
actionable, shorter-term challenges.

Subgroup on Shorter-Term Challenges

A second subgroup focused on nearer-term challenges, examining potential
‘‘rough edges’’, where AI research touches society, that may be addressed via new
vigilance, sensitivity, and, more generally, with investment in additional focused
research. Several areas for future research were identified as having valuable
payoff in the shorter-term. These include the promise of redoubling research on
using AI methods to enhance peoples’ privacy. There already has been interesting
and valuable work in the AI research community on methods for enhancing pri-
vacy while enabling people and organizations to personalize services. Other
shorter-term opportunities include the value of making deeper investments in
methods that enhance interactions and collaborations between people and machine
intelligence. The panel’s deliberation included discussion of the importance of
endowing computing systems with deeper competencies at working in a com-
plementary manner with people on the joint solution of tasks, and in supporting
fluid transitions between automated reasoning and human control. The latter
includes developing methods that make machine learning and reasoning more
transparent to people, including, for example, giving machines abilities to better
explain their reasoning, goals, and uncertainties. Another focus of discussion
centered on the prospect that people, organizations, and hostile governments might
harness a variety of AI advances for malevolent purposes. To our knowledge, such
efforts have not yet occurred, yet it is not difficult to imagine how future computer
malware, viruses, and worms might leverage richer learning and reasoning,
accessing an increasing number of channels of information about people. AI
methods might one day be used to perform relatively deep and long-term learning
and reasoning about individuals and organizations—and then perform costly
actions in a sophisticated and potentially secretive manner. There was a shared
sense that it would be wise to be vigilant and to invest in proactive research on
these possibilities. Proactive work includes new efforts in security, cryptography,
and AI research in such areas as user modeling and intrusion detection directed at
this potential threat, in advance of evidence of such criminal efforts.
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Subgroup on Ethical and Legal Issues

A third subgroup focused on ethical and legal questions. This subgroup reflected
about ethical and legal issues that could become more salient with the increasing
commonality of autonomous or semi-autonomous systems that might one day be
charged with making (or advising people on) high-stakes decisions, such as
medical therapy or the targeting of weapons. The subgroup’s deliberation included
reflection about the applicability of current legal frameworks. As an example, the
group reviewed potential issues with assignment of liability associated with costly,
unforeseen behaviors of autonomous or semi-autonomous decision making sys-
tems. Other reflection and discussion centered on potential ethical and psycho-
logical issues with human responses to virtual or robotic systems that have an
increasingly human appearance and behavior. For example, the group reflected
about potential challenges associated with systems that synthesize believable
affect, feelings, and personality. What are the implications of systems that emote,
that express mood and emotion (e.g., that appear to care and nurture), when such
feelings do not exist in reality? Discussion centered on the value of investing more
deeply in research in these areas, and of engaging ethicists, psychologists, and
legal scholars.

Meeting at Asilomar

After several months of discussion by email and phone, a face-to-face meeting was
held at Asilomar, at the end of February 2009. Asilomar was selected as a site for
the meeting primarily because it is simply a fabulous place for a reflective
meeting. We also selected the site given the broad symbolism of the location. The
AAAI Panel on Long-Term AI Futures resonated broadly with the 1975 Asilomar
meeting by molecular biologists on recombinant DNA—in terms of the high-level
goal of social responsibility for scientists. The AAAI panel co-chairs also alluded
to the goal of generating a report on an assessment and recommendations that
would be similar to the 1975 recombinant DNA report in terms of the crispness,
digestibility, and design for consumption by scientists and the public alike.
However, the symbolism stops there: The context and need for the AAAI study
differs significantly and in multiple ways from the context of the 1975 meeting on
recombinant DNA. In 1975, molecular biologists needed urgently to address a fast-
paced set of developments that had recently led to the ability to modify genetic
material. The 1975 meeting took place amidst a recent moratorium on recombinant
DNA research. In stark contrast to that situation, the context for the AAAI panel is
a field that has shown relatively graceful, ongoing progress. Indeed, AI scientists
openly refer to progress as being somewhat disappointing in its pace, given hopes
and expectations over the years. However, we are seeing ongoing advances in the
prowess of AI methods and an acceleration in the fielding of real-world
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applications (some quite large in scale), a natural increase of reliance on auto-
mation, the coming availability of sophisticated methods to a wider set of
developers, extending well outside the research community (e.g., in the form of a
variety of toolkits), and a growing interest and focus among non-experts on radical
outcomes of AI research. On the latter, some panelists believe that the AAAI study
was held amidst a perception of urgency by non-experts (e.g., a book and a
forthcoming movie titled ‘‘The Singularity is Near’’), and focus of attention,
expectation, and concern growing among the general population.

The panel has identified multiple opportunities for proactive reflection, focused
research, and ongoing sensitivity and attention. We believe that focusing effort as a
community of AI scientists on potential societal issues and consequences will
ensure the best outcomes for AI research, enabling society to reap the maximal
benefits of AI advances.
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Chapter 15A
Itamar Arel on Horwitz’s ‘‘AAAI Presidential Panel
on Long-Term AI Futures’’

The term Artificial Intelligence (AI), which has been coined over 50 years ago,
was followed by era of optimism and, in retrospect, great naiveness regarding the
field’s prospect. Despite the many impressive achievement in building complex
computerized systems, such as robots that can drive a car and programs that play
chess at grandmaster level, the holy grail of building a machine with human-level
intelligence remains an unfulfilled dream. In many ways, the report of the 2009
AAAI Presidential Panel on Long-Term AI is a solid reflection of both the dis-
appointment and frustration from the lack of a much-anticipated AI breakthrough.
In the absence of the latter, one is inevitably confined to the current, somewhat
narrow, interpretation of AI systems. However, it is important to understand that
while a conceptual AI breakthrough has yet to materialize, it may very well occur
in the not so distant future. When such a breakthrough does take place it will
undoubtedly have profound impact on our lives in ways which are difficult to
imagine at this time.

The scientific fronts that many feel offer the most promise when it comes to
revolutionizing the field of AI are computational neuroscience and neuropsy-
chology. Great advances have been made in these areas over the past couple of
decades with many anticipating continuing emergence of novel insight, which will
contribute to our understanding of the mammalian brain. Recent progress in
developing experimentally-grounded cognitive models, such as accurate descrip-
tions of cortical circuitry, not only deepens our knowledge of how the brain works
but also inspires researchers to propose new ideas pertaining to intelligent systems
design. Hence, biological inspiration, rather than explicitly reverse engineering
biological circuits, seems a promising approach for moving forward in mimicking
cognitive functionality using machines. An example of a machine learning niche
that emerged as a result of recent neuroscientific findings is deep machine learning,
which employs hierarchical architectures for multi-modal perception in a manner
resembling that of the neocortex.

As one would assert from reading this book, there are different interpretations
of the singularity, many of which pertain to machines reaching a critical intelli-
gence level beyond which predicting the future of humanity becomes impractical.
Regardless of whether human-level intelligent machines will be the result of a
singular AI breakthrough or not, now is the time to consider its various implica-
tions, particularly in guaranteeing that such a technology is not exploited mali-
ciously. Rather than discarding the possibility of human-level machine
intelligence, we may begin by asking key questions that assume its plausibility.
Questions such as: how much time will humanity have before it will be impossible
to control the evolutionary trajectory of this new life form on earth? Would it be
possible to prevent the technology from reaching adversarial entities, and if so how
can we effectively enforce policies that achieve this important goal? Human-level
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intelligence does not necessarily imply human-like intelligence; to that end, how
would these new creatures behave, particularly as they interact with humans?
Would it be possible at all to prevent a catastrophe for humanity as a result, for
example, of a grand existential conflict of interests? The questions above cannot be
comprehensively answered at this time, suggesting that open-mindedness to
multiple futuristic scenarios is the logical position to take. Simply dismissing such
scenarios may prove one day to be a historical mistake of epic proportions.
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Chapter 15B
Vernor Vinge on Horvitz’s ‘‘AAAI Presidential
Panel on Long-Term AI Futures’’

Points in the Panel report I especially agree with:

• Explicit AI research is just part of a very large human undertaking. (The demand
for progress in computation, communication, and automation is coming from
almost all directions.)

• Improving software and hardware for collaborations is important. (In my
opinion, it is the most important measure—along with the ongoing conversation
about these issues—for assuring a good outcome.)

The Singularity is very different from concerns such as climate change. For one
thing, talk about the Singularity is only in part about avoiding disaster. No one
need cry in the wilderness for help on this: as time passes, more and more people
will be involved in the endeavor, mostly for happy reasons.
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Chapter 16
Why the Singularity Cannot Happen

Theodore Modis

Abstract The concept of a Singularity as described in Ray Kurzweil’s book
cannot happen for a number of reasons. One reason is that all natural growth
processes that follow exponential patterns eventually reveal themselves to be
following S-curves thus excluding runaway situations. The remaining growth
potential from Kurzweil’s ‘‘knee’’, which could be approximated as the moment
when an S-curve pattern begins deviating from the corresponding exponential, is a
factor of only one order of magnitude greater than the growth already achieved. A
second reason is that there is already evidence of a slowdown in some important
trends. The growth pattern of the U.S. GDP is no longer exponential. Had Ku-
rzweil been more rigorous in his fitting procedures, he would have recognized it.
Moore’s law and the Microsoft Windows operating systems are both approaching
end-of-life limits. The Internet rush has also ended—for the time being—as the
number of users stopped growing; in the western world because of saturation and
in the underdeveloped countries because infrastructures, education, and the stan-
dard of living there are not yet up to speed. A third reason is that society is capable
of auto-regulating runaway trends as was the case with deadly car accidents, the
AIDS threat, and rampant overpopulation. This control goes beyond government
decisions and conscious intervention. Environmentalists who fought nuclear
energy in the 1980s, may have been reacting only to nuclear energy’s excessive
rate of growth, not nuclear energy per se, which is making a comeback now. What
may happen instead of a Singularity is that the rate of change soon begins slowing
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down. The exponential pattern of change witnessed up to now dictates more
milestone events during year 2025 than witnessed throughout the entire 20th
century! But such events are already overdue today. If, on the other hand, the
change growth pattern has indeed been following an S-curve, then the rate of
change is about to enter a declining trajectory; the baby boom generation will have
witnessed more change during their lives than anyone else before or after them.

Background

In 2005 together with four other members of the editorial board of Technological
Forecasting and Social Change I was asked to review Ray Kurzweil’s book The
Singularity Is Near. The task dragged me back into a subject that I was familiar
with. In fact, ten years earlier I had thought I was the first to have discovered it
only to find out later that a whole cult with increasing number of followers was
growing around it. I took my distance from them because at the time they sounded
nonscientific. I published on my own adhering to a strictly scientific approach
(Modis 2002a, 2003). But to my surprise the respected BBC television show
HORIZON that became interested in making a program around this subject found
even my publications ‘‘too speculative’’. In any case, for the BBC scientists the
word singularity is reserved for mathematical functions and phenomena such as
the big bang.

Kurzweil’s book constitutes a most exhaustive compilation of ‘‘singularitarian’’
arguments and one of the most serious publications on the subject. And yet to me it
still sounds nonscientific. Granted, the names of many renowned scientists appear
prominently throughout the book, but they are generally quoted on some funda-
mental truth other than the direct endorsement of the so-called singularity. For
example, Douglas Hofstadter is quoted to have mused that ‘‘it could be simply an
accident of fate that our brains are too weak to understand themselves.’’ Not
exactly what Kurzweil says. Even what seems to give direct support to Kurzweil’s
thesis, the following quote by the celebrated information theorist John von Neu-
mann ‘‘the ever accelerating process of technology…gives the appearance of
approaching some essential singularity’’ is significantly different from saying ‘‘the
singularity is near’’. Neumann’s comment strongly hints at an illusion whereas
Kurzweil’s presents a far-fetched forecast as a fact.

What I want to say is that Kurzweil and the singularitarians are indulging in
some sort of pseudo-science, which differs from real science in matters of meth-
odology and rigor. They tend to overlook rigorous scientific practices such as
focusing on natural laws, giving precise definitions, verifying the data meticu-
lously, and estimating the uncertainties.

The work I present here uses a number of science-based approaches to argue
against the possibility that the kind of singularity described by Kurzweil in his
book will take place during the 21st century. I will concentrate on the near future
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because horizons of several hundred years permit and are more appropriate for
fantasy scenarios that tend to satisfy the writer’s urge for sci-fi prose.

There are No Exponentials. There are Only S-Curves

Exponential Versus S-Curve

The law describing natural growth has been put into mathematical equations called
growth functions. The simplest mathematical growth function is the so-called
logistic. It is derived from the law, which states that the rate of growth is pro-
portional to both the amount of growth already accomplished and the amount of
growth remaining to be accomplished. If either one of these quantities is small, the
rate of growth will be small. This is the case at the beginning and at the end of the
process. The rate is greatest in the middle, where both the growth accomplished
and the growth remaining are sizable. This natural law described with words here
has been cast in a differential equation (the logistic equation) the solution of which
gives rise to an S-shaped pattern (S-curve). In Eq. (16.1) below M is the value of
the final ceiling, t0 is the time of the midpoint and a reflects the steepness of the
rising slope.

XðtÞ ¼ M

1þ e�aðt�t0Þ
ð16:1Þ

It is easy to see that for t large and positive the population X(t) tends to
M. Similarly for t large and negative the expression reduces to a simple
exponential.

It is a remarkably simple and fundamental law. It has been used by biologists to
describe the growth in competition of a species population, for example, the
number of rabbits in a fenced off grass field. It has also been used in medicine to
describe the diffusion of epidemic diseases. J. C. Fisher and R. H. Pry refer to the
logistic function as a diffusion model and use it to quantify the spreading of new
technologies into society (Fisher and Pry 1971). One can immediately see how
ideas or rumors may spread according to this law. Whether it is ideas, rumors,
technologies, or diseases, the rate of new occurrences will always be proportional
to how many people have it and to how many don’t yet have it.

The analogy has also been pushed to include the competitive growth of inan-
imate populations such as the sales of a new successful product. In the early
phases, sales go up in proportion to the number of units already sold. As the word
spreads, each unit sold brings in more new customers. Sales grow exponentially.
It is this early exponential growth which gives rise to the first bend of the S-curve.
Business looks good. Growth is the same percentage every year—exponential
growth—and hasty planners prepare their budgets that way. Growth, however,
cannot be exponential. Explosions are exponential. Natural growth follows
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S-curves, but all S-curves behave like exponentials early on. Kurzweil himself
addresses this issue, which he calls ‘‘The Criticism from Malthus’’ toward the end
of his book. He admits that the exponential patterns he publicizes will eventually
turn into S-curves, but dismisses the fact because, as he claims, this will happen so
far into the future—after the Singularity—that for all practical purposes it becomes
irrelevant. (Elsewhere, Kurzweil acknowledges that there are smaller S-curves that
saturate early, but argues that they are replaced by other small S-curves thus
cascading indefinitely. He does not seem to be aware of the fact that there is a
fractal aspect to such cascades and constituent S-curves are bound by envelope
S-curves, which themselves saturate with time, see discussion in section Fractal
Aspects of Natural Growth below.)

Let us see whether it is possible to estimate when exponential trends can be
expected to turn into S-curves. First let us see at what time the S-curve deviates
from the exponential pattern in a significant way, see Fig. 16.1. Table 16.1 below
quantifies the deviation between a logistic and the corresponding exponential
pattern as a fraction of the S-curve’s final ceiling. By ‘‘corresponding’’ exponential
I mean the limit of Eq. (16.1) as t ? -?.

In Table 16.1 we appreciate the size of deviation between exponential and
S-curve patterns as a function of how much the S-curve has proceeded to completion.
Obviously beyond a certain point the difference becomes flagrant. When exactly this
happens maybe subject to judgment so Table 16.1 is there to quantitatively help
readers make up their mind. Most readers will agree that a 15 % deviation between
exponential and S-curve patterns is significant because it makes it clear that the two
processes can no longer be confused. This happens when the S-curve that corre-
sponds to the exponential has reached about 13 % of its ceiling level. In other words,
the future ceiling that caps this growth process is about 7 times today’s level.

This moment when an exponential pattern begins deviating significantly from
an S-curve also defines an upper limit for Kurzweil’s so called ‘‘exponential
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Fig. 16.1 The construction of a theoretical S-curve (gray line) and the exponential (thin black
line) it reduces to as time goes backward. The formulae used are shown in the graph
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knee’’. Of course, exponential patterns do not have knees (this can be trivially
demonstrated with a logarithmic plot where the exponential pattern becomes a
straight line from t = -? to t = +?). What Kurzweil sees as the moment an
exponential ‘‘abruptly’’ rises will move toward the future (or the past) as we
increase (or decrease) the vertical scale of a linear plot. But if we interpret Ku-
rzweil’s knee as the moment when a growth process still following an exponential
pattern begins having very serious impact on society—a subjective definition
carrying large uncertainties—then there will be at least a 7-fold increase remaining
before the process stops growing.

It has been theoretically demonstrated that fluctuations of a chaotic nature begin
making their appearance as we approach the ceiling of an S-curve. This is evidence
of the intimate relationship that exists between growth and chaos (the logistic
equation in discrete form becomes the chaos equation) (Modis 2007). In an
intuitive way these fluctuations can be seen as the stochastic search of the system
for equilibrium around a homeostatic level.

But it has been argued that fluctuations of a chaotic nature may also precede the
steep rising phase of the logistic (Modis and Debecker 1992). The intuitive
understanding of these fluctuations is ‘‘infant’’ mortality. In all species survival is
uncertain during the early phases of the life cycle.

Table 16.1 The deviation
between exponential and S-
curve patterns as a function of
how much the S-curve has
proceeded to completion

Deviation (%) Penetration (%)

11.1 10.0
12.2 10.9
13.5 11.9
15.0 13.0
16.5 14.2
18.3 15.4
20.2 16.8
22.3 18.2
24.7 19.8
27.3 21.4
30.1 23.1
33.3 25.0
36.8 26.9
40.7 28.9
44.9 31.0
49.7 33.2
54.9 35.4
60.7 37.8
67.0 40.1
74.1 42.6
81.9 45.0
90.5 47.5

100.0 50.0
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Infant mortality and common sense can help us establish a lower limit for
Kurzweil’s knee. Any natural growth process that has achieved less than 10 % of
its final growth potential cannot possibly have a serious impact on society. In fact
10 % growth is usually taken as the limit of infant mortality. A tree seedling of
height less than 10 % of the tree’s final size is vulnerable to rabbits and other
herbivores or simply to be stepped on by a bigger animal.

Below we look at some real cases. They all corroborate a lower limit of the order of
10 % below which the impact on society cannot be considered very serious.

US Oil Production

A real case is the production of oil in the United States, shown in Fig. 16.2.
Serious oil production in the United States began in the second half of the 19th
century. During the first one hundred years or so cumulative oil production fol-
lowed an exponential pattern. But soon it became clear that the process followed a
logistic growth pattern—S-curve—and rather closely, see Fig. 16.2. If we try to fit
an exponential function to the data, we obtain a good fit—comparable in quality
with the logistic fit—only on the range 1859–1951. As we stretch this period
beyond 1951 the quality of the exponential fit progressively deteriorates. S-curve
and exponential begin diverging from the 1951 onward, which corresponds to
around 20 % penetration level of the S-curve.1

If we were to position a ‘‘knee’’ a la Kurzweil on this exponential pattern, it
could by some thinking be in the early 1930s time by which almost all horses had
been replaced by cars in personal transportation maximizing the demand for oil
(Modis 1992). At that time the penetration level of the S-curve was around 7 %.
Consequently on this growth process, which seemed exponential for the better part
of one hundred years, there is a ceiling waiting at about 14 times the knee’s
production level.

Moore’s Law

The celebrated Moore’s Law is a growth process that has been evolving along an
exponential growth pattern for four decades. The number of transistors in Intel
microprocessors has doubled every two years since the early 1970s. But it is now
unanimously expected that this growth pattern will eventually turn into an S-curve
and reach a ceiling. On page 63 of his book Kurzweil claims that Moore’s law is
one of the many technological exponential trends whose knee we are approaching.

1 The fitted exponential here is not quite the same as the exponential that the S-curve tends to as
t ? ?.
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But he also agrees that Moore’s law will reach the end of its S-curve before 2020.
Moore himself agrees, ‘‘no physical thing can continue to change exponentially
forever,’’ he says and positions an end for this phenomenon around 2015. But he
still expects three more generations (we should mention that in 1995 Moore had
consistently expected 5 more generations.)

It must be pointed out—particularly for those who claim that every time people
thought a limit was reached in the past new ways were found to cram more
transistors together—that in the very first formulation of Moore’s law in 1965 the
doubling was every year. David House, an Intel executive, raised it to 18 months,
and later in 1975 Moore himself raised it to two years. These successive adjust-
ments may not constitute proof but the fact that we are dealing with an eventual
S-curve cannot be disputed. Given that we are dealing with an S-curve, the slowing
down must be gradual so that three generations may bring an overall increase with
respect to today’s numbers by a factor smaller than 23 = 8. But even if the factor
is 8, today’s level (which Kurzweil argues is the exponentials ‘‘knee’’) corresponds
to around 12.5 % of the S-curve’s ceiling.

Figure 16.3 shows an S-curve fit on the data, which has been constrained to
reach a ceiling by the late 2020s (a conservative constraint). The corresponding
exponential is also shown as was done in Fig. 16.1. The expected announcement
by Intel of the Poulson processor in 2012 argues in favor of the S-curve and against
the exponential trend.
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Fig. 16.2 S-curve and exponential fit on yearly data points. The circle indicates a possible
position for the ‘‘knee’’ of the exponential; it lies at the 7 % penetration level of the S-curve. Data
Source U.S. Energy Information Administration (EIA)
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World Population

The evolution of the world population during the 20th century followed an S-curve in
an exemplary way. Figure 16.4 shows an agreement between data and curve that is
astonishing if we consider the variety of birth rates and death rates around the world,
the multitude of stochastic processes that impact the evolution of the world popu-
lation such as epidemics, catastrophes, wars (twice at world level), important climate
changes, etc., and on the other hand the simplicity of the curve’s description, namely
only three parameters (plus a parameter for a pedestal in this case).
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And yet again, the evolution of the world population has often been likened to
an explosion following an exponential trend. Where could a ‘‘knee’’ for this
exponential be positioned? Looking at Fig. 16.4, any ‘‘knee’’ would have to be
positioned before the 1980s by which time the trend significantly deviated from an
exponential pattern.

By some historians the population explosion began in the West, around the
middle of the 19th century. The number of people in the world had grown from
about 150 million at the time of Christ to somewhere around 700 million in the
middle of the 17th century. But then the rate of growth increased dramatically to
reach 1.2 billion by 1850. In this case the exponential ‘‘knee’’ would have
occurred when world population reached 8 % of its final ceiling.

In the above three examples—US Oil Production—, Moore’s law, and World
Population—we have seen that the ‘‘knee’’ of the exponential curve tends to occur
at a threshold situated between 7 and 13 % of the ceiling of the corresponding S-
curve, which translates to a factor of at most 14 between the level of the ‘‘knee’’
and the level of the final ceiling. This factor has been estimated rather conser-
vatively and corroborates the previously mentioned corollary of natural-growth
studies: infant mortality.

Such growth potential on any of the variables purported to contribute to a
singularity by mid 21st century would fall short of becoming alarming.
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Fig. 16.4 The evolution of the world population during the last 109 years has followed an
exemplary S-curve. Data sources United Nations Department of Economic and Social Affairs
(UN DESA) and U.S. Census Bureau
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There is Already Some Evidence for Saturation

The U.S. GDP

The evolution of the gross domestic product (GDP) in America in constant dollars
had followed an exponential growth pattern for a while but has deviated from it
some time ago and now has almost reached the midpoint of an S-curve. Kurzveil
was too quick to pronounce its evolution as exponential. On logarithmic scale
Kurzveil’s straight wide band accommodated the gentle curving of the time-series
data and his criterion of correlation—coefficient r2—was close enough to 1.0. But
high correlation between two curves does not mean one is a good representation of
the other. Just think of two straight lines, one almost vertical the other almost
horizontal; they will be 100 % correlated (correlation coefficient 1.0) and yet one
will be a very poor representation of the other. A closer examination reveals that a
logistic function fits better the evolution of the U.S. GDP than an exponential one,
see Fig. 16.5. And if we judge the fits by their Chi Square (v2), a more appropriate
criterion than correlation coefficients, the logistic fit comes out three times better
than the exponential one (v2 of 1112 instead of 3250). Conclusion: the U.S. GDP
will certainly not contribute to the building up toward a singularity event around
2045 because from 2013 onward its rate of growth will progressively slow down.
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Fig. 16.5 Exponential (thin black line) and logistic (thick gray line) fits on the evolution of the
real U.S. GDP. This graph can be directly compared with the one on Page 98 from Kurzveil’s The
Singularity Is Near. Data source U.S. Department of Commerce, Bureau of Economic Analysis
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The End of the Internet Rush

One of the ‘‘explosive’’ variables in Kurzweil book is that of the diffusion of the
Internet, but the graph on Page 79 of his book shows clear evidence that we are
dealing with an S-curve developed about half-way to its ceiling. What is being
witnessed instead is the end of the Internet rush (Modis 2005). In an article
published in 2005 I demonstrate that the number of Internet users will not grow
much in the near future. In the US the ceiling of the S-curve has already been
reached at 72 % of the population, and in the E.U. it should not rise much above
today’s 67 %. In the rest of the world today’s 18 % will grow to a ceiling of 33 %
in ten years.

It would be unreasonable to expect the percentage of the rest of the world to
remain at this low level forever. The rest of the world includes such countries as
Japan, Korea, Honk Kong, and Australia where the number of Internet users is
already practically at maximum. But the rest of the world also includes Africa,
China, and India, where one can be certain that the number of Internet users will
eventually grow by a large factor. However, it will be some time before the
necessary infrastructures are put in place there to permit large-scale Internet
diffusion.

For the time being one may infer that the boom we have been witnessing in
Internet expansion is over. The parts of the world that were ready for it have
practically filled their niches whereas the parts of the world that were not ready for
it need much preparatory work (infrastructures, nourishment, education, etc.) and
will therefore grow slowly.

The final percentage of Internet users may also reflect cultural differences.
A percentage of 72 % in the US compared to 67 % in the E.U. might partially
reflect missing infrastructures in some of the lesser-developed E.U. countries but
most likely also reflects the different life styles. European society admits less
change than American society. For example, there are fewer cars per inhabitant in
Europe, and the Europeans never went to the moon. They will probably end up
using the Internet somewhat less than the Americans.

We can make a rough estimate of when a follow-up Internet growth phase
should be expected. To a first approximation logistics that cascade harmoniously
show periods of low and high growth of comparable duration (Modis 2007).
Accordingly, and given that Internet has had a decade of rapid growth, a decade of
low growth can reasonably be expected before a new S-curve begins. Contrary to
the image of an explosive uncontrollable growth process we are witnessing
piecemeal growth with stagnating periods in between that offer fertile ground for
control and adaptability.

In the next section we quantify the cascade of S-curves in a natural succession
and the relationship between their life cycles.
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Fractal Aspects of Natural Growth

Sustained growth is not a steady and uniform process. It consists of successive
S-shaped steps, each of which represents a well-defined amount of growth. A new
S-curve begins where the previous one left off. Every step is associated with a
niche that opened following some fundamental change (a mutation, a major
innovation, a technological break-through, etc.).

Successive growth stages depicted by cascading logistic curves may outline an
overall growth process that is itself amenable to a logistic description. Two such
examples from published work are the discovery of stable chemical elements,
which spanned three centuries and can be broken down into four rather distinct
regularly-spaced growth phases (Solla and Derek 1936), and the diffusion of
Italian railways which came in three waves (Marchetti 1986).

The graph of Fig. 16.6 has been constructed in a rigorous quantitative way
(Modis 1994). Notice that the step size and the associated time span (life cycle) of
the constituent S-curves first progressively increases but then progressively
decreases going over a maximum step and longest life cycle around the middle of
the envelope S-curve. Life cycles become longer during the high-growth period
and shorter during the low-growth periods.

The phenomenon of shrinking product life cycles, an important concern of
marketers, can be quantitatively linked to the saturation of the enveloping process.
Table 16.2 relates the shortening of product life cycles to the level of saturation
reached.

Fig. 16.6 A large S-curve decomposed into smaller ones
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The idea that a growth process can, on closer examination, reveal similar but
smaller cascading growth processes, suggests a fractal nature for the logistic curve.
The implication is that further ‘‘zooming-in’’ may reveal an even finer structure of
logistic cascades.

The fractal nature of logistics permits one to estimate the level of overall satu-
ration from observing life cycle trends. This is a powerful approach. Table 16.2, first
published in Modis 1994, can be used by anyone to determine the position on the
envelope curve from observations on constituent curves. For example, a non-spe-
cialist, such as a laborer loading boxes into trucks off the dock of a computer man-
ufacturer, may notice that the names on the boxes change three times as frequently as
they used to and deduce that the technology behind these products is about 87 %
exhausted. This image may be naive, but the approach offers valuable insights for
those situations in which the tracking of the overall envelope is rather imponderable,
for example, the evolution of the Windows operating systems.

Windows Operating Systems

Microsoft has been regularly releasing new operating systems. New software
developments triggered by hardware improvements make it necessary to introduce
major changes to the operating systems. This is a typical characteristic of all new
industries like microchips; they are mutational. But as the industry matures,
‘‘mutations’’ become rare and life cycles become longer. Figure 16.7 shows the

Table 16.2 The relation between the shortening of life cycles and saturation

Life-cycle length (relative to longest) Level of saturation (percent of ceiling)

0.17 3.1
0.19 4.0
0.20 5.2
0.22 6.9
0.24 9.1
0.30 12.8
0.41 20.0
0.70 31.4
1.00 50.0
0.70 68.6
0.41 80.0
0.30 87.2
0.24 90.9
0.22 93.1
0.20 94.8
0.19 96.0
0.17 96.9
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evolution of the life cycle of Microsoft operating system as defined by the time to
the next launching announcement.

Windows XP was the operating system with the longest life cycle. Vista’s life
cycle was 57 % of that of Windows XP and the life cycle of Windows 7 will be
53 % if Windows 8 comes in 2012. From Table 16.2 we can estimate that the
Windows technology will be between 68.6 and 80 % exhausted by that time.

With Windows XP at the center of the envelope S-curve for Windows operating
systems and the life cycle being symmetric to a first approximation, we can rea-
sonably expect an end for this growth process by the late 2020s. This coincides
with our previous estimate for the end of Moore’s law.

Just as with Internet users, here again we are facing an upcoming lull in the rate
of growth of such ‘‘explosive’’ processes as microchip and PC operating system
improvements. This lull should also last about 20 years, duration comparable to
the duration of the rapid-growth phase of the envelope S-curve. From then (ca
2030) onward a new sequence of cascading S-curves may slowly enter the scene as
per Fig. 16.6. But once again, we have a hard time accommodating singular events
due to ‘‘explosive’’ trends like these by mid 21st century.

Society Auto-Regulates Itself

There have been many documented cases where society has demonstrated a
wisdom and control unsuspected by its members. In this section we will see four
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Fig. 16.7 Lifetimes of Windows Operating Systems as defined by the time period to the next
release. Labels highlight the three longest-lived ones. Data sources Microsoft and Wikipedia
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such examples portraying society as a super species capable of auto-regulating and
safeguarding itself from runaway trends.

Car Accidents

Car accidents have received much attention and at times provoked emotional
reactions. In the 1960s cars had been compared to murder weapons. To better
understand the mechanisms at play we must look at the history of car accidents.
We need accurate data and the appropriate indicator. Deaths are better defined and
recorded than lesser accidents. Moreover, the car as a public menace is a threat to
society, which may ‘‘feel’’ the pain and try to keep them under control. Conse-
quently, the number of deaths per one hundred thousand inhabitants per year
becomes a better indicator than accidents per mile, or per car, or per hour of
driving (Marchetti 1983).

The data shown in Fig. 16.8 are for the United States starting at the beginning
of the 20th century. What we observe is that deaths caused by car accidents grew
along an exponential trend that led into an S-curve that reached a ceiling in the mid
1920s, when deaths reached twenty-four per one hundred thousand per year. From
then onward car accidents have stabilized even though the number of cars
continued to grow. A homeostatic mechanism seems to enter into action when this
limit is reached, resulting in an oscillating pattern around the equilibrium position.
The peaks may have produced public outcries for safety, while the valleys could
have contributed to the relaxation of speed limits and safety regulations. What is
remarkable is that for over sixty years there has been a persistent auto-regulation
on car safety in spite of tremendous variations in car numbers and performance,
speed limits, safety technology, driving legislation, and education.

Why the number of deaths is maintained constant and how society can detect
excursions away from this level? Is it conceivable that someday car safety will
improve to the point of reducing the level of automobile accidents to practically
null the way it was before cars were invented? American society has tolerated this
level of accidents for the better part of a century. A Rand analyst has described it
as follows: ‘‘I am sure that there is, in effect, a desirable level of automobile
accidents—desirable, that is, from a broad point of view, in the sense that it is a
necessary concomitant of things of greater value to society.’’ (Williams 1958).
Abolishing cars from the roads would certainly eliminate car accidents, but at the
same time it would introduce more serious hardship to citizens.

A homeostatic equilibrium represents a state of well-being. It has its roots in
nature, which develops ways of maintaining it. Individuals may come forward
from time to time as advocates of an apparently well-justified cause. What they do
not suspect is that they may be acting as unwitting agents to deeply rooted
necessities for maintaining the existing balance, which would have been main-
tained in any case. An example is Ralph Nader’s crusade for car safety, Unsafe at
Any Speed, published in the 1960s, by which time the number of fatal car accidents
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had already demonstrated a forty-year-long period of relative stability. But
examining Fig. 16.8 more closely, we see that the late 1960s show a relative peak
in accidents, which must have been what prompted Nader to blow the whistle. Had
he not done it, someone else would have. Alternatively, a timely social mechanism
might have produced the same result; for example, an ‘‘accidental’’ discovery of an
effective new car-safety feature.

Another such example of society’s ability to auto-regulate and safeguard itself
is the spreading of AIDS in the United States.

The AIDS Niche

At the time of the writing of my first book Predictions, AIDS was diffusing
exponentially claiming a progressively bigger share of the total number of deaths
every year, and forecasts ranged from pessimistic to catastrophic. Alarmists
worried about the survival of the human species. But finally the AIDS ‘‘niche’’ in
the U.S. turned out to be far smaller than that feared by most people. In this case
the variable studied was death victims from AIDS as a percentage of all deaths.

The S-curve I fitted on the data up to and including 1988 had indicated a growth
process that would be almost complete by 1994. The ceiling for the disease’s
growth, projected as 2.3 % of all deaths was projected to be reached in the late
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Fig. 16.8 The annual number of deaths from motor vehicle accidents per 100,000 population has
been fluctuating around 24 since the mid 1920s. The peak in the late 1960s provoked a public
outcry that resulted in legislation making seat belts mandatory. Data after 1980 show a decline in
the number of deadly car accidents, but this is due the fact that travelers have been replacing the
automobile by other means of transportation and in particular the airplane, see discussion in
Modis 1992, 2002b. Data source Statistical Abstract of the United States
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1990s, see Fig. 16.9. In other words my conclusion at that time was that a place
had been reserved for AIDS in American society just above the 2 % level of all
deaths.

The little circles in the figure confirm the S-curve trend and the completion of
this microniche by 1995. By the late 1990s questions were being raised why
forecasts had overestimated the AIDS threat by so much.

There seems to have been a mechanism that limited AIDS in a natural way even
in the absence of adequate medication. As if there were other, more important
causes of death. This mechanism may have reflected the control exercised by
American society through subconscious collective concern. The natural-growth
pattern that the disease followed from its beginning correctly anticipated that
AIDS would not spread uncontrollably. Eventually of course there would be
effective medication for the disease and the number of victims would decline.
Those who had predicted imminent doom in the absence of a miracle drug in the
1980s had failed to take into account the natural competitive mechanisms which
regulate the split of the overall death rate among the different causes of death,
safeguarding all along an optimum survival for society.

After 1995 the number of deaths from AIDS progressively declined in what
could be described as another natural process—a downward S-curve—reflecting
the development of progressively effective medication. What Fig. 16.9 spells out
as shown is society’s ability to safeguard its wellbeing in the absence of effective
medication and miracle drugs.
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Fig. 16.9 Deaths from AIDS in the United States. The ceiling of the S-curve fitted on data up to
and including 1988 (black dots) is 2.3. Data from years 1989–1998 (open circles) confirm that the
AIDS niche in the United States was essentially completed by 1995 (Modis 1992 and Modis
2002b). Data source HIV/AIDS Surveillance, Centers for Disease Control, U.S. Department of
Health and Human Services, Atlanta, GA
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A more subtle example of society’s ability to auto-regulate and safeguard itself
is primary-energy substitution and the advent of nuclear energy.

Nuclear Energy

During the last one hundred years, wood, coal, natural gas, and nuclear energy
have been the main protagonists in supplying the world with energy. More than
one energy source is present at any time, but the leading role passes from one to
the other. Other sources of energy (such as hydro, wind, etc.) have been left out
because they command too small a market share.

In the early 19th century and before, most of the world’s energy needs were
satisfied through wood burning and to a lesser extent animal power not considered
here, see Fig. 16.10. The substitution process shows that the major energy source
between 1870 and 1950 was coal. Oil became the dominant player from 1940
onward, as the automobile matured, together with petrochemical and other oil-based
industries. The vertical scale of Fig. 16.10 is logistic transforming S-curves into
straight lines. All straight sections in this figure would show up as S-shaped on a
graph with a linear vertical scale.

It becomes evident from this picture that a century-long history of an energy
source can be described quite well—thin smooth lines—with only two constants,
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Fig. 16.10 Data, fits, and projections for the shares of different primary energy sources
consumed worldwide. For nuclear, the smooth straight line is not a fit but a trajectory suggested
by analogy. The futuristic source labeled ‘‘Solfus’’ may involve solar energy and thermonuclear
fusion. The small circles show how things evolved since 1982 when this graph was first put
together
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those required to define a straight line. (The curved sections are calculated by
subtracting the straight lines from 100 %.) The destiny of an energy source, then,
seems to be cast during its early stages of phasing-in, as soon as the two constants
describing the straight line can be determined.

A detailed description and the many ramifications of Fig. 16.10 are discussed in
detail in the literature (Marchetti 1987; Modis 1992, 2009). Here I want to draw
the reader’s attention to the subtle ways with which society imposes its will. This
graph was originally put together in 1988 and indicated that natural gas would
progressively replace oil. Its update twenty years later (little circles) shows that the
persistent consumption of coal has been at the expense of natural gas. This may not
only be due to aggressively developing countries such as China who use coal
ravenously. Developed countries such as the UK and the US have also proven
reluctant to give up coal. Whoever the culprit, the widening gap between the
persistent level of coal use and coal’s naturally declining trajectory becomes a
source of pressure to the system, which is likely to manifest itself through the
voice of environmentalists.

Environmentalists in any way have been very vocal in their support of natural
gas. I wonder, however, what has really been their role in the greening of natural
gas. The importance of gas in the world market has been growing steadily for the
last ninety years, independent of latter-day environmental concerns. The voice of
environmentalists resembles Ralph Nader’s crusade in the 1960s for car safety,
while the number of deaths from car accidents had already been pinned around
twenty-four annually per one hundred thousand population for more than forty
years.

Environmentalists have also taken a vehement stand on the issue of nuclear
energy. This primary energy source entered the world market in the mid 1970s
when it reached more than 1 % share. The rate of growth during the first decade
seems disproportionately rapid, however, compared to the entry and exit slopes of
wood, coal, oil and natural gas, all of which conform closely to a more gradual
rate. At the same time, the opposition to nuclear energy also seems out of pro-
portion when compared to other environmental issues. As a consequence of the
intense criticism, nuclear energy growth has slowed considerably, and it is not
surprising to see the little circles in Fig. 16.10 approach the straight line proposed
by the model. One may ask what the prime mover here was—the environmental
concerns that succeeded in slowing the rate of growth or the nuclear-energy craze
that forced environmentalists to react?

The coming to life of such a craze is understandable. Nuclear energy made a
world-shaking appearance in the closing act of World War II by demonstrating the
human ability to access superhuman powers. I use the word superhuman because
the bases of nuclear reactions are the mechanisms through which stars generate
their energy. Humans for the first time possessed the sources of power that feed
our sun, which was often considered as a god in the past. At the same time
mankind acquired independence; nuclear is the only energy source that would
remain indefinitely at our disposal if the sun went out.
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The worldwide diffusion of nuclear energy during the 1970s followed a rate that
could be considered excessive, compared to previous energy sources. The market
share of nuclear energy grew along a trajectory much steeper than the earlier
natural ones of oil, natural gas, and coal. This abnormally rapid growth—possibly
responsible for a number of major nuclear accidents—may have been what trig-
gered the vehement reaction of environmentalists, who succeeded in slowing it
down. Appropriately, as the technology matured, the number of major nuclear
accidents was drastically reduced. However, environmentalists are far from having
stopped nuclear energy. Ironically, under pressing concerns of CO2 pollution, their
opposition to nuclear energy had considerably weakened until the accident at
Fukushima nuclear plant. I believe they will again reduce their opposition as
public opinion cools off and better safety measures are put in place.

The changeable behavior of environmentalists suggests that there are other
more fundamental forces at play while environmentalists behave more like pup-
pets. These forces do not involve governments and their policies that usually
become shaped after the fact in response to public outcries.

World Population: The Big Picture

Another example of society’s wise and subtle ways of controlling human behavior
is the slowing down in the rate of growth of the world population during the 20th
century. The phenomenon has sometimes been erroneously attributed to people
having become aware of the perils of Earth’s overpopulation and reacted
accordingly with adequate birth control. But it is only China that has imposed
nationwide birth controls via legislation and that accounts for only 20 % of the
world’s population. The main reason the world population has slowed down is that
rising standards of living offer people more highly preferred things to do than
having children. The flattening of the S-curve shown earlier in Fig. 16.4 is very
little a consequence of top-down conscious decision-making. It is mostly a con-
sequence of subconscious bottom-up forces shaping the patterns of our lives.

But let us zoom back and consider a much greater historical window. Figure 16.11
shows world population data since the time of Christ (before that time estimates are
rather unreliable). A dramatic exponential pattern belongs to an S-curve penetrated
only to 23 % with an eventual ceiling of 1,750,000,000,000 by year 2700. Obviously
the uncertainties involved on the level of the ceiling estimated from data that cover
only the beginning of the S-curve are very large. From a detailed Monte-Carlo study
on error estimation we obtain up to ± 75 % uncertainty on this number with con-
fidence level of 90 % (Debecker and Modis 1994).

The year 2700 is a far-fetched horizon date for making forecasts and such
statements are more appropriate to fiction than to scientific writing, but can there
be a grain of truth? At first glance such a conclusion may seem absurd by today’s
standards and in view of the section World Population above. But is it really
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absurd? Could the S-curve of Fig. 16.4 be followed up by other S-curves in the
paradigm of the section Fractal Aspects of Natural Growth?

Altogether possible, claims Cesare Marchetti, who calculated that Earth’s
carrying capacity is around 1012 people. His is not a forecast but scientific cal-
culations taking into account availability of resources, energy, housing, and the
environment (Marchetti 1979). If he is right that there is no fundamental law
violated by reaching such a number, you can be sure that this will eventually
happen (no niche in nature that could be filled to completion was ever left
occupied only partially). But as we saw earlier, people’s subconscious behavior
during the 20th century assures us that such a thing would take place slowly,
controllably, and avoiding catastrophe.

More than Just Cerebral Intelligence

This section addresses the claim that intelligent machines will eventually take over
as a new species—posthumans—reducing humans to the equivalent of monkeys
for us today.

Intelligence according to the singularitarians is measured by the speed of
calculation. I believe that the astronomical numbers of FLOPS (floating-point
operations per second) forecasted by Kurzweil as the ultimate computing power,
namely1050 and beyond, will fall short by a large factor, at least 25 orders of
magnitude, mostly because such computing power will no longer be desired. You
can get too much of a good thing, for example there is no longer demand for cars
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Fig. 16.11 The world population since the time of Christ has followed the early part of an S-
curve, compatible with an exponential. The slowdown during the 20th century is not visible with
50 year time bins. Data source United Nations Population Division (U.N. 1999)
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to go faster, or for pocket calculators to become thinner/smaller, something that
would have never crossed the mind of early-car and early-calculator users.

But assuming unfathomable computing power becomes available, this would
only be competition to our cerebral intelligence. Humans also possess physical
intelligence responsible for our reproduction, growth, self-healing, and disease-
fighting capabilities. Human understanding of the body’s intelligence is to say the
least inadequate. For example, the enteric part of our autonomic nervous system
has more memory capability than the spinal cord. A mouse will function brainless
to an impressive extent. Such phenomena are far from having been thoroughly
investigated and understood. Where will this knowledge come from?

In any case there is a catch. If we humans were to provide the superhumans
with all the knowledge, we would certainly refrain from giving them the power to
overtake us, or build in mechanisms to prevent such an eventuality. If on the other
hand, superhumans were to obtain themselves the missing knowledge, then they
would need to do the studying themselves. But before superhuman machines begin
dissecting us and putting us under microscopes—as we do with monkeys—they
will first need physical bodies themselves, which they should be able to fabricate
and maintain. One cannot argue that advance robotics will produce machines that
can do that because there is a catch. In order for these robots to be able to move
around, gather resources, and carry out research to acquire the missing knowledge
they would first need to have in their system the vey knowledge they set out to
obtain through studies.

On the other hand, intellectual power all by itself would not achieve much.
Besides some evidence for occasional correlation, it is well known that in general
among the most intelligent people you are not likely to find: the richest, the
happiest, the most normal (by definition!), the best-adjusted, the most good-nat-
ured, the most trustworthy, the most creative, the best artists, the most powerful,
the most popular, or the most famous. In short, fast thinking is not the ultimate
desirable quality, and thinking faster is not necessarily better in an absolute sense.

All in all, superhumans enabled to develop thanks to supercomputing power
would certainly not pose a threat to humans by mid 21st century. In fact, I
wouldn’t hesitate to extend this reassuring message to the far-fetched horizon date
of 2,700 that we mentioned earlier.

What May Happen Instead

A central graph early in Kurzweil’s book, which he uses as a platform to launch
the whole Singularity development, displays a set of data I had painstakingly
collected earlier for my own publications (Modis 2002a, 2003). The set of data
basically consists of thirteen independent timelines for the most significant turning
points—milestones—in the evolution of the Universe. The emerging overall trend
displays an unambiguous crowding of milestones in recent times. The thinking
behind my article was that the spacing of the most important milestones could
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serve to quantify the evolution of change and complexity and therefore enabling us
to forecast it.

It is reasonable to assume that the greater the change associated with a given
milestone, or the longer the ensuing stasis, the greater the milestone’s importance
will be.

Importance ¼ change introducedð Þ� duration to the next milestoneð Þ ð16:1Þ

Following each milestone there is change introduced in the system. At the next
milestone there is a different amount of change introduced. Assuming that mile-
stones are approximately of equal importance, and according to the above defi-
nition of importance we can conclude that the change DCi introduced by milestone
i of importance I is

DCi ¼
I

Dti

ð16:2Þ

where Dti the time period between milestone i and milestone i ? 1 (Fig. 16.12).
My dataset has a number of weaknesses. Only twelve out of the fifteen time-

lines used were independent. One timeline had been given to me without dates and
I introduce them myself; another consisted of my own guesses. Both were heavily
biased by the other twelve in my disposal. Moreover, some data were simply weak
by their origin (e.g., an assignment post on the Internet by a biology professor for
his class).

Change per Milestone

ΔC6

ΔC5

ΔC4

ΔC3

ΔC2ΔC1

t0 t1 t2 t3 t4   t5 t6

Fig. 16.12 To the extent that milestones of equal importance appear more frequently, the
respective change they introduce increases. The area of each rectangle represents importance and
remains constant. The scales of both axes are linear
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As a matter of fact only one timeline (Sagan’s Cosmic calendar) covers the
entire range (big bang to 20th century) with dates. A second complete set (by
Nobel Laureate Boyer) was provided to me without dates. All the other timelines
coming from various disciplines covered only restricted time windows of the
overall timeframe, which results in uneven weights for the importance of the
milestones as each specialist focused on his or her discipline.

In any case, the grand total of all milestones came to 302 and in a histogram—
Fig. 16.13—revealed clusters of milestones with peaks that defined a canonical set
of milestones. Present time was taken as year 2000. Within all sources of uncer-
tainties mentioned above, I tried to quantitatively study the evolution of com-
plexity and change in the Universe.

Figure 16.14 shows that the evolution of change with milestone number has so
far followed an exponential-growth pattern, which could also be an S-curve
(logistic) or its life cycle (first derivative) as all three behave exponentially early
on. Given that the data depict change per milestone I fit to the latter shown by the
thick gray line. The implication of doing so is that the total amount of change in
the Universe will be finite by the time the Universe ends.

The quality of the fit being a little better and the position of the last point both
argue in favor of the logistic life cycle rather than the corresponding exponential.
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But these are weak arguments. More serious impact have the forecasts for the
change expected by future milestones. Table 16.3 lists these forecasts for the next
five milestones. The logistic fit expects milestones to begin appearing less fre-
quently in the future whereas the exponential fit expects them at an accelerating
pace. In particular, the logistic fit has next milestone appearing in 2033 and the one
after that in 2078. In contrast, the exponential fit has next milestone in 2009
(remember zero was defined as year 2000 in this study), and the one after that in
year 2015. By year 2022 the exponential fit forecasts a new milestones every
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Fig. 16.14 Exponential and logistic life-cycle fits to the data of the canonical milestone set. The
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logarithm (graph at the bottom). The intermittent vertical line denotes the present. The gray
circles on the forecasted trends indicate change from future milestones. The change associated
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6 days and less than a year later infinite change will have taken place!2 This spells
out ‘‘Singularity’’ and brings it forward by 20 years or so, but the uncertainty of
this determination could easily be more than 20 years considering the crudeness of
the method and the enormous timescale involved.

The logistic life cycle peaks in the mid 1990s. It indicates that we are presently
traversing the only time in the history of the Universe in which 80 calendar years—
the lifetime of people born in the 1940s—can witness change in complexity coming
from as many as three evolutionary milestones. This positions us presently at the
world’s prime!

Coincidentally people who will partake in this phenomenon belong to the
mysterious baby boom that creates a bulge on the world population distribution.3

As if by some divine artifact a larger-than-usual sample of individuals was meant
to experience this exceptionally turbulent moment in the evolution of the cosmos.

The large-scale logistic description of Fig. 16.14 indicates that the evolution of
change in the Universe has been following a logistic/exponential growth pattern from
the very beginning, i.e. from the big bang. This is remarkable considering the vast-
ness of the time scale, and also the fact that change resulted from very different
evolutionary processes, for example, planetary, biological, social, and technological.
The fitted logistic curve has its inflection point—the time of the highest rate of
change—in mid 1990. Considering the symmetry of the logistic-growth pattern, we
can thus conclude that the end of the Universe is roughly another 15 billion years
away. Such a conclusion is not really at odds with some scientific thinking that places
the end of our solar system some 5 billion years from now.

We have obviously been concerned with an anthropic Universe here because
we have to a large extend overlooked how change has been recently evolving in
other parts of the Universe. Still, I believe that such an analysis carries more
weight than just the elegance and simplicity of its formulation. The celebrated
physicist John Wheeler has argued that the very validity of the laws of physics

Table 16.3 Forecasts for change as a function of time

Milestone number Logistic fit Exponential fit

Changea Year Changea Year

29 0.0223 2033 0.1540 2009
30 0.0146 2078 0.3247 2015
31 0.0081 2146 0.6846 2018
32 0.0041 2270 1.4435 2020
33 0.0020 2515 3.0436 2021

a In the same arbitrary units as Fig. 16.14

2 The pattern of a decaying exponential is asymptotic, i.e. it needs infinite time to reach zero, but
its definite integral between x and ? is finite.
3 It has been often argued that the baby boom was due to soldiers coming back from the fronts of
WWII. This is wrong because the phenomenon began well before the war and lasted until the
early 1970 s. The effect of WWII was only a small and narrow wiggly dent in the population’s
evolution.
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depends on the existence of consciousness.4 In a way, the human point of view is
all that counts! It reminds me of a whimsical writing I once saw on a tee shirt:
‘‘One thing is certain, Man invented God; the rest is debatable’’.

Epilogue

The exponential pattern of milestones in Fig. 16.14, which provides a central
argument for the Singularity, resembles—and to some extent is affected by—the
patterns of Moore’s law (Fig. 16.3) and world population (Fig. 16.11). All three
show many orders of magnitude growth along exponential trends. But Figs. 16.3
and 16.11 have both avoided the ominously rising trend and have done so in a
natural way.

The last two milestones with present defined as year 2000 are:

• 5 years ago: Internet/human genome sequenced
• 50 years ago: DNA/transistor/nuclear energy.

The next such world-shaking milestone should be expected—even by common
sense—around 2033 rather than of around 2009 because despite a steady stream of
significant recent discoveries, there is still no obviously candidate in 2012. That
was not the case with the last two milestones: the significance of the Internet
became clear simultaneously with its diffusion, and the significance of nuclear
energy had become clear long before it was materialized.

An Afterthought

Playing the Devil’s Advocate

Could it be that on a large scale there may be no acceleration at all? Could it be
that the crowding of milestones in Fig. 16.13 is simply a matter of perception? The
other day I was told that I should have included Facebook as a milestone. ‘‘It is just
as important as the Internet,’’ she told me. Would Thomas Edison have thought so?
Will people one thousand years from now, assuming we will survive, think so?
Will they know what Facebook was? Will they know what the Internet was?

It is natural that we are more aware of recent events than events far in the past.
It is also natural that the farther in the past we search for important events the
fewer of them will stick out in society’s collective memory. This by itself would
suffice to explain the exponential pattern of our milestones. It could be that as

4 John Wheeler was a renowned American theoretical physicist. One of the later collaborators of
Albert Einstein, he tried to achieve Einstein’s vision of a unified field theory.
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importance fades with the mere distancing from the present it ‘‘gives the
appearance’’, in John von Neumann’s words, that we are ‘‘approaching some
essential singularity’’. But this has nothing to do with year 2045, 2025, today, von
Neumann’s time—the 1950s—or any other time in the past or the future for that
matter.

Appendix: The Canonical Milestones

The dates generally represent an average of clustered events not all of which are
mentioned in this table. That is why some events e.g. asteroid collision appears
dated too recent. Highlighted in bold is the most outstanding event in the cluster.
Present time is taken as year 2000.

No. Milestone Years ago

1 Big bang and associated processes 1.55 9 1010

2 Origin of milky way/first stars 1.0 9 1010

3 Origin of life on Earth/formation of the solar system and the Earth/oldest
rocks

4.0 9 109

4 First eukaryots/invention of sex (by microorganisms)/atmospheric oxygen/
oldest photosynthetic plants/plate tetonics established

2.1 9 109

5 First multicellular life (sponges, seaweeds, protozoans) 1.0 9 109

6 Cambrian explosion/invertebrates/vertebrates/plants colonize land/first trees,
reptiles, insects, amphibians

4.3 9 108

7 First mammals/first birds/first dinosaurs/first use of tools 2.1 9 108

8 First flowering plants/oldest angiosperm fossil 1.3 9 108

9 Asteroid collision/first primates/mass extinction (including dinosaurs) 5.5 9 107

10 First humanoids/first hominids 2.85 9 107

11 First orangutan/origin of proconsul 1.66 9 107

12 Chimpanzees and humans diverge/earliest hominid bipedalism 5.1 9 106

13 First stone tools/first humans/ice age/homo erectus/origin of spoken language 2.2 9 106

14 Emergence of Homo sapiens 5.55 9 105

15 Domestication of fire/Homo heidelbergensis 3.25 9 105

16 Differentiation of human DNA types 2.0 9 105

17 Emergence of ‘‘modern humans’’ earliest burial of the dead 1.06 9 105

18 Rock art/protowriting 3.58 9 104

19 Invention of agriculture 1.92 9 104

20 Techniques for starting fire/first cities 1.1 9 104

21 Development of the wheel/writing/archaic empires 4907
22 Democracy/city states/the Greeks/Buddha 2437
23 Zero and decimals invented/Rome falls/Moslem conquest 1440
24 Renaissance (printing press)/discovery of new world/the scientific method 539
25 Industrial revolution (steam engine)/political revolutions (French, USA) 223
26 Modern physics/radio/electricity/automobile/airplane 100
27 DNA/transistor/nuclear energy/W.W.II/cold war/sputnik 50
28 Internet/human genome sequenced 5
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Chapter 16A
Vernor Vinge on Modis’ ‘‘Why the Singularity
Cannot Happen’’

The cosmic reach of Modis’ essay is especially interesting. It’s the first time I’ve
seen any but an extreme techno-optimist undertake trend analysis on such a scale.

I count myself as one of the extreme techo-optimists, but I have only intuition
and hope for what things are like at the largest scales. Closer to home: the
Technological Singularity is exactly the rise, through technology, of superhuman
intelligence. So the critical question is what level of computation and software is
sufficient to achieve this transition and will our progress reach that level? I see the
Singularity as something oncoming along a variety of research paths, with good
progress on almost all fronts. Leaving aside catastrophic failures (e.g, nuclear
war), a singularity-free future might be the most bizarre outcome of all… finally
enough time to rationalize all our legacy software?
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Chapter 16B
ARay Kurzweil on Modis’ ‘‘Why the Singularity
Cannot Happen’’

My 1999 book The Age of Spiritual Machines generated several lines of criticism,
such as Moore’s law will come to an end, hardware capability may be expanding
exponentially but software is stuck in the mud, the brain is too complicated, there
are capabilities in the brain that inherently cannot be replicated in software, and
several others. I specifically wrote The Singularity is Near to respond to those
critiques.

Many of the critics of The Singularity is Near fail to respond to the actual
arguments I make in the book, but instead choose to mischaracterize my thesis and
then attack the mischaracterization. In his essay ‘‘Why the Singularity Cannot
Happen,’’ Theodore Modis takes this one step further by borrowing ideas from my
book to criticize the straw man thesis that he incorrectly attributes to it.

Modis’ argument is summarized in his first few sentences. He writes ‘‘One
reason [that the concept of a Singularity as described in Ray Kurzweil’s book
cannot happen] is that all natural growth processes that follow exponential patterns
eventually reveal themselves to be following S-curves thus excluding runaway
situations. The remaining growth potential from Kurzweil’s ‘‘knee’’ which could
be approximated as the moment when an S-curve begins deviating from the cor-
responding exponential is a factor of only one order of magnitude greater than the
growth already achieved. A second reason is that there is already evidence of a
slowdown in some important trends’’.

Modis essentially ignores that I make the exact same point about S-curves in
almost the same language in my book.

He then goes on to cite the U.S. GDP, Moore’s law, the Microsoft Windows
operating system, the number of users of the Internet, car accidents, AIDS cases,
population growth, and nuclear power as examples of exponential growth patterns
that did not go on forever (as if I claim that every exponential inherently goes on
indefinitely).

Let me summarize what it is that I am saying in The Singularity is Near because
none of the examples that Modis gives have any relevance to my thesis.

A primary definition of the Singularity is a future time when we will sub-
stantially enhance our own intellectual capabilities by merging with the intelligent
technology we have created. The Singularity is the result of the Law of Accel-
erating Returns. The LOAR is the primary thesis of the book, and it states that
fundamental measures of price-performance and capacity of information tech-
nologies grow exponentially and do so by spanning multiple paradigms. A par-
ticular paradigm, such as Moore’s law, will follow an S-curve, but the basic
measures of an information technology transcend each specific S-curve by span-
ning multiple paradigms.

The LOAR certainly does not state that every exponential trend goes on
indefinitely. Almost all of the cases that Modis goes on to discuss in great detail
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have nothing to do with the LOAR or the Singularity. GDP, car accidents, AIDS
cases, population and nuclear power are not information technologies and have
nothing to do with my thesis.

Modis is implying that my thesis is the following: computers have shown
exponential growth; every example of exponential growth must go on forever; and
therefore computer capability will continue growing indefinitely. That represents a
basic misrepresentation.

Even those cases which have some relevance to information technology are
misstated by Modis. The number of users of the Internet is not a basic measure of
communications power. The units of a basic measure would be in bits or bits per
constant unit of currency, not in numbers of people. Obviously the number of
people doing anything is going to saturate.

Nor is the number of transistors on a chip a basic measure. That represents part
of one paradigm, but the basic measure of price-performance of computing is
calculations per second per constant dollar. This measure has not shown any slow
down. This trend has been going on unabated for well over a century and in fact is
speeding up, not slowing down. Here is the logarithmic scale graph updated
through 2008. Note that a straight line on a logarithmic scale represents expo-
nential growth and the trend has been and continues to be better than exponential.

The paradigm of Moore’s law is only the vertical region at the right. Engineers
were shrinking vacuum tubes in the 1950s to continue the law of accelerating
returns (as it pertains to the price-performance of computing). Indeed that para-
digm ran out of steam which led to transistors and that led to integrated circuits
(and the paradigm of Moore’s law). In the book, which came out in 2005, I
describe that the sixth paradigm will be three-dimensional computing and that is
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indeed now underway. Today, many chips for applications in MEMs, image
sensing, and memory utilize three-dimensional stacking technologies, and other
approaches are being perfected.

I discuss the relationship of the LOAR and the S-curves of individual paradigms
in five different sections of The Singularity is Near. Here are brief excerpts from
these sections:

A specific paradigm (a method or approach to solving a problem; for example, shrinking
transistors on an integrated circuit as a way to make more powerful computers) generates
exponential growth until its potential is exhausted. When this happens, a paradigm shift
occurs, which enables exponential growth to continue.

The life cycle of a paradigm. Each paradigm develops in three stages:

1. Slow growth (the early phase of exponential growth)
2. Rapid growth (the late, explosive phase of exponential growth), as seen in the S-Curve

figure below.
3. A leveling off as the particular paradigm matures. The progression of these three stages

looks like the letter ‘‘S,’’ stretched to the right. The S-curve illustration shows how an
ongoing exponential trend can be composed of a cascade of s-curves…
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S-curves are typical of biological growth: replication of a system of relatively fixed
complexity (such as an organism of a particular species), operating in a competitive niche
and struggling for finite local resources. This often occurs, for example, when a species
happens upon a new hospitable environment. Its numbers will grow exponentially for a
while before leveling off. The overall exponential growth of an evolutionary process
(whether molecular, biological, cultural, or technological) supersedes the limits to growth
seen in any particular paradigm (a specific S-curve) as a result of the increasing power and
efficiency developed in each successive paradigm. The exponential growth of an evolu-
tionary process, therefore, spans multiple S-curves. The most important contemporary
example of this phenomenon is the five paradigms of computation…

It is important to distinguish between the S-curve that is characteristic of any specific
technological paradigm and the continuing exponential growth that is characteristic of the
ongoing evolutionary process within a broad area of technology, such as computation.
Specific paradigms, such as Moore’s Law, do ultimately reach levels at which exponential
growth is no longer feasible. But the growth of computation supersedes any of its
underlying paradigms and is for present purposes an ongoing exponential.

In accordance with the law of accelerating returns, paradigm shift (also called inno-
vation) turns the S-curve of any specific paradigm into a continuing exponential. A new
paradigm, such as three-dimensional circuits, takes over when the old paradigm approa-
ches its natural limit, which has already happened at least four times in the history of
computation.

Modis acknowledges that I mention S-curves but he states this in a confusing
and misleading way. Modis writes, ‘‘Kurzweil acknowledges that there are smaller
S-curves that saturate early, but argues that they are replaced by other small S-
curves thus cascading indefinitely. He does not seem to be aware of the fact that
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there is a fractal aspect to such cascades and constituent S-curves are bound by
envelope S-curves, which themselves saturate with time’’.

Modis’ discussion of the ‘‘fractal aspect’’ of paradigms is not relevant to the
discussion and does not contradict my conclusions. The reality is that there has
already been a cascade of paradigms in computation and in other examples of
basic measures of information technology. As a result these measures have fol-
lowed smooth exponential trajectories for lengthy periods of time. Modis goes on
to completely confuse individual paradigms with the ongoing exponential that
spans paradigms. He uses Moore’s law as synonymous with the LOAR and in any
event misstates the measures of Moore’s law. His other examples of exponential
growth slowing down such as car accidents and AIDS cases are completely
irrelevant to the discussion.

I discuss in the book ultimate limits to the ongoing exponential growth of the
price-performance of computation based on the physics of computation (that is, the
amount of matter and energy required to compute, remember, or transmit a bit of
information). Based on this analysis we have trillions fold improvement yet to go.
This is not unprecedented as we have indeed already made trillions fold
improvement since the advent of computing, a several billion fold improvement
just since I was an undergraduate.

There is one other misstatement in Modis’ essay that I will comment on. He
writes ‘‘Intelligence according to the singularitarians is measured by the speed of
calculation.’’ This ignores about a hundred pages of the book where I talk about
improvements in software independently of improvements in hardware. I clearly
discuss hardware speed and memory capacity as a necessary but not sufficient
conditions for achieving human-level intelligence (and beyond) in a machine.

In The Singularity is Near, I address this issue at length, citing different
methods of measuring complexity and capability in software that demonstrate a
similar exponential growth. One recent study (‘‘Report to the President and
Congress, Designing a Digital Future: Federally Funded Research and Develop-
ment in Networking and Information Technology’’ by the President’s Council of
Advisors on Science and Technology) states the following: ‘‘Even more remark-
able—and even less widely understood—is that in many areas, performance gains
due to improvements in algorithms have vastly exceeded even the dramatic per-
formance gains due to increased processor speed. The algorithms that we use
today for speech recognition, for natural language translation, for chess playing,
for logistics planning, have evolved remarkably in the past decade… Here is just
one example, provided by Professor Martin Grötschel of Konrad-Zuse-Zentrum
für Informationstechnik Berlin. Grötschel, an expert in optimization, observes that
a benchmark production planning model solved using linear programming would
have taken 82 years to solve in 1988, using the computers and the linear pro-
gramming algorithms of the day. Fifteen years later—in 2003—this same model
could be solved in roughly 1 min, an improvement by a factor of roughly
43 million. Of this, a factor of roughly 1,000 was due to increased processor speed,
whereas a factor of roughly 43,000 was due to improvements in algorithms!
Grötschel also cites an algorithmic improvement of roughly 30,000 for mixed
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integer programming between 1991 and 2008’’. I cite many other examples like
this in the book.

My primary thesis which I discuss in one of the major chapters of the book is
that we are making exponential gains in reverse-engineering the methods of the
human brain and using these as biologically inspired paradigms to create intelli-
gent machines. Modis makes no mention of these arguments. Instead he misrep-
resents my position as stating that computational speed alone is sufficient to
achieve human-level intelligence. I update discussion of our progress in under-
standing human intelligence in a book that will be published by Viking in October
2012 titled How to Create a Mind, The Secret of Human Thought Revealed.
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Chapter 17
The Slowdown Hypothesis

Alessio Plebe and Pietro Perconti

Abstract The so-called singularity hypothesis embraces the most ambitious goal
of Artificial Intelligence: the possibility of constructing human-like intelligent
systems. The intriguing addition is that once this goal is achieved, it would not be
too difficult to surpass human intelligence. While we believe that none of the
philosophical objections against strong AI are really compelling, we are skeptical
about a singularity scenario associated with the achievement of human-like sys-
tems. Several reflections on the recent history of neuroscience and AI, in fact,
seem to suggest that the trend is going in the opposite direction.

Introduction

The so-called singularity hypothesis embraces the most ambitious goal of Artificial
Intelligence: the possibility of constructing human-like intelligent systems. The
intriguing addition is that once this goal is achieved, it would not be too difficult to
surpass human intelligence. A system more clever than humans should also be
better at designing new systems as well, leading to a recursive loop towards
ultraintelligent systems (Good 1965), with an acceleration reminiscent of mathe-
matical singularities (Vinge 1993). According to David Chalmers, the singularity
hypothesis is to be taken very seriously. If ‘‘there is a singularity, it will be one of
the most important events in the history of the planet. An intelligence explosion
has enormous potential benefits: a cure for all known diseases, an end to poverty,
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extraordinary scientific advances, and much more. It also has enormous potential
dangers: an end to the human race, an arms race of warring machines, the power to
destroy the planet’’ (Chalmers 2010, p. 9).

Back when AI suffered from a significant lack of results with respect to the
claims put forth by some of its most fervid enthusiasts, and faced strong philo-
sophical criticism (Searle 1980; Dreyfus and Dreyfus 1986), skepticism about the
possibility of it achieving its main goal spread, leading to a loss of interest in the
singularity hypothesis as well. Our opinion is that, despite the limited success of
AI, progress in the understanding of the human mind, coming especially from
modern neuroscience, leaves open the possibility of designing intelligent
machines. We also believe that none of the philosophical objections against strong
AI are really all that compelling.

This, however, is not our main point. What we will address instead, is the issue
of a singularity scenario associated with the achievement of human-like systems.
With this respect, our view is skeptical. Reflection on the recent history of neu-
roscience and AI suggests to us instead, that trends are going in the opposite
direction. We will analyze a number of cases, with a common rate pattern of
discovery: important achievements in simulating aspects of human behavior
become on one hand, examples of progress, and on the other, a point of slowdown,
by revealing how complex the overall functions are of which, they are just a
component. There is no knockdown argument for posing that the slowdown effect
is intrinsic to the development of intelligent artificial systems, but so far, there is
good empirical evidence for it. Furthermore, the same pattern seems to charac-
terize the recent inquiry concerning the core notion of intelligence.

We will present two lines of reasoning in this paper. First, we will provide a
simple formalization of the slowdown hypothesis in mathematical terms, showing
in an abstract way what the causes of the slowdown are, and their effects on the
evolution of AI research. The aim of the formalization is not to propose a math-
ematical model of some kind of automatism inscribed in the logic of scientific
discovery, but simply to show in formal terms how a given field of research (in this
case, AI) could end up in a slow down progress (under the circumstances we will
discuss in what follows). We will then move inside various domains of AI,
observing how the history of their scientific development provides support for our
hypothesis. One of these will be the field of artificial vision, where the long history
of research and the rich body of evidence obtained make it a significant case in
point.

Furthermore, we will discuss how the recent inquiry concerning the core notion
of intelligence seems to show a similar pattern, with a series of new and far
reaching fields of research that have grown around the initial one, such as the role
played by consciousness in the social nature of intelligence. On the whole, we will
argue that the slowdown effect is due both to reasons that are internal to the logic
of scientific discovery, and to the changes in the expectations held in regard to a
much idealized subject of inquiry: ‘‘intelligence’’.
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Formalization of the Slowing Down

In this section we will try to give a mathematical formalization of the reasons why
the research enterprise for an artificial intelligence is characterized by the slow-
down effect. Let us call D the normalized distance between the performance of an
artificial system and that of one held as point of reference, assuming that D ¼ 0
means equally valid performances. In very general terms D can be the sum of
distances over a set P of simple elementary processes p, producing some mea-
surable performance bp, assumed to be 1 when fully intelligent, and 0 when
absolutely dull.

D ¼
X

p2P
1� bp ð17:1Þ

With a leap of faith in progress, we can imagine that the performance bp will
become better and better as long as research efforts accumulate in time, for all
possible single processes p, therefore bpðtÞ is a function of time t, continuously
increasing towards 1

The core of our reasoning is a very common phenomena found in the research
of any process involved in human intelligence. It is the fact that a higher and a
more detailed knowledge of a cerebral process often spawns a new field of
investigation, that is discovered to be a necessary component of the overall
intelligent behavior. Process spawning can arise for different reasons. For example,
a deeper investigation might reveal that a process, previously thought to be atomic,
is in fact the result of two almost independent subprocesses, each deserving its
own research specificity, or, while searching for a known brain process, a new and
different one, that was previously unknown, is discovered. Still yet, a known
process that had little empirical evidence and that could not be reproduced arti-
ficially, might begin to become more clear thanks to some new scientific dis-
covery, leading to a new research direction.

A very crude simplification is to take the same trend of performance in time for
all processes and assume that some of them, after a certain research time T , will
spawn a new process.

We can rewrite Eq. (17.1) in this way:

D tð Þ ¼
X
ð/2Þ

t
Tb c

l m

i¼0

e
t� log/2 ib c

a
ð17:2Þ

where a is the rate of improvement in performance, and T is the amount of
research time after which a current process may spawn a new one, and / is the
fraction of processes that actually do spawn after T elapsed. Operators b�c and d�e
are respectively the floor and ceiling functions. In Fig. 17.1 two examples are
shown, with different parameter values. For the dark plot it is assumed that a new
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process will come about every five years, while for the light plot this event hap-
pens every eight years. It is immediately apparent how the spawning phenomena
prevents D from converging to 0, the level of perfect intelligent behavior, on the
contrary it diverges in time towards increasingly worsening values.

It may seem paradoxical in Fig. 17.1 that at the very beginning of research D
would be smaller than after a century, during which research has expanded in
many directions. In fact, it is to be expected, if you take into account that in Eq.
(17.1) D is an estimate of the intelligence level reached by an artificial system with
respect to the set of processes P only. It is not an absolute measure. In principle
Eq. (17.1) could give an estimate of the absolute general intelligence, using a

theoretical eP , the set of all possible processes necessary for a general intelligent
system, including many processes for which no research has yet begun. For all
those unexplored ep, it holds bepðtÞ ¼ 0 all the time. Equation (17.3) can be

rewritten as:

D tð Þ ¼ eP
���
���� ð/2Þ

t
Tb c

l m
þ

X
ð/2Þ

t
Tb c

l m

i¼0

e
t� log/2 ib c

a
ð17:3Þ

In practice, however, there is no way of knowing eP in advance, due to the fact that
precisely knowing all the processes contributing to a general intelligent agent
would mean knowing almost everything about intelligence. What happens instead
is that every time a new component is discovered to play an important role in
intelligence, almost immediately or shortly afterward, a new research effort for
simulating this process artificially, begins. Let us take the example of con-
sciousness: the focus on this problem in philosophy and the awareness of its

20 40 60 80 100
year

5

10

15

Fig. 17.1 Examples of D trends according to Eq. (17.2). Parameters for the dark gray plot are
a ¼ 25; T ¼ 5;/ ¼ :6, for the light gray curve a ¼ 10;T ¼ 8;/ ¼ :7
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crucial influence in how the mind works, has triggered a growing amount of
research on machine consciousness.

There are clearly many factors neglected in the simple formulation of Eq. (17.2)
but it reflects real research trends in artificial intelligence. Some will not influence
overall trends in a significant way . For example, the birth of new processes would
not be synchronous, but each parent process may spawn a new one at a different
time. The effect, however, would be just that of having a less regular curve derived
by Eq. (17.2), but if T is the average time of spawning of all the processes, the long
term trends will be similar. Some of the neglected factors would indeed make the
forecast of (17.2) worse, and some better, for the sake of fairness we will discuss
the inclusion of a few terms only from among those that warrant more optimism.

A reasonable argument would be that it is unrealistic to believe that all pro-
cesses p simulating intelligence equally contribute in the summation of Eq. (17.2).
One may argue that the first studied processes are more important, and as long as
research continues, and new fields are spawned, the new fields are components that
are gradually less and less crucial to the overall goal of reaching intelligent
behavior. Along the same line, one may challenge as unrealistic the expectation
that the spawning process will continue forever, and at the same rate as when the
AI enterprise began.

We can take into account these two factors, with a formulation that is slightly
more complex than that in (17.2), as follows:

/ðtÞ ¼ /1 þ 1� /1ð Þe�t
c ð17:4Þ

D tð Þ ¼
X

ð2/ðtÞÞ
t
Tb c

l m

i¼0

i�be
t� log2/ðtÞ ib c

a
ð17:5Þ

where b is the decay in importance of the processes added late on the overall
performance of the system, and c is the decay of the number of processes that
during their advanced research stage may spawn a new field of research.

In Fig. 17.2 two examples of the evolution in time of D with the new formu-
lation are shown. As previously for the dark plot, it is assumed that a new process
will come about every five years, while for the light plot this event happens every
eight years.

Contrary to the plots in Fig. 17.1, in this cases D does not move towards worse
values, it remains around the value of 1 during the 100 years of the simulation, but
again the spawning of new processes hampers the continuous decrease towards the
optimal value of 0.

A possible objection to the formalization here presented, might be that in
principle D can only reach asymptotically its best value 0, even in absence of
process multiplication, while the singularity hypothesis postulates that human
intelligence cannot only be approximated, but even surpassed. For this reason we
defined the value 1 of the measured performance bp of a process p as the reference
best value, without a strict reference to human intelligence, therefore, it can be
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held to be more than the average human performance. The argument that the
fundamental speed up in the singularity hypothesis is based on the ability of the
intelligent system to design and implement a newly created system automatically,
will be discussed in section Machines Designing Machines.

In concluding our sketch of a formal justification of the slowdown effect, we
would like to mention certain aspects, missing in Eqs. (17.2) and (17.5), that will
make the development of a fully intelligent system even slower. All processes p
are treated as independent, each with its own continuous progress in time, by
proceeding in this way we neglected the problem of the interactions between the
many processes involved in general intelligent behavior. More realistically, a new
process often requires its own research and development, but it also requires the
effort to understand and simulate the interfaces between this new process, and at
the very least, the one that exists with its parent, not mentioning those between the
many other related processes involved. Often, understanding the interactions
between processes is more demanding than simulating the processes itself.
Moreover, it seems that the singularity hypothesis requires an exponential growth
of computational and design capacities. We argue, on the contrary, that even the
case of an indefinite linear growth is questionable, and that this sounds as an a
fortiori argument supporting the slowdown hypothesis.

There are also cases in which a new field of investigation may reveal novel
solutions for many other ongoing research investigations, a paramount example is
the first connectionist approach to modeling neural networks. On the other hand,
not all newly initiated research directions turn out to be fruitful. The history of AI,
as any other scientific domain, is full of new attempts that initially seemed
promising, and later revealed themselves to be wrong or useless. An example is
research of the so called 2 1
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Fig. 17.2 Examples of D trends according to Eq. (17.5). Parameters for the dark gray plot are
a ¼ 25; T ¼ 5; b ¼ :9;/1 ¼ :7; c ¼ 10, for the light gray curve a ¼ 10; T ¼ 8; b ¼ :8;
/1 ¼ :7; c ¼ 100
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successful line of research that affects many others, such as that of connectionism,
mentioned above, several older processes may die, substituted by others based on
the new paradigm. Summing up, the interactions between processes would cer-
tainly make the evolution of D more complex than the abstract formulations here
suggested, in ways likely to enhance the slowdown effect even more.

Scientific Idealization: The ‘‘Zooming in’’
and ‘‘Zooming out’’ Effect

The suspicion that the maturation of brain function simulations is characterized by
the slowdown effect emerged before attempting to formalize its mechanism, from
the observation of a typical pattern in the social history of science, as shown by
both the typical pathway of scientific idealization and the recent history of several
scientific domains.

Idealization plays an important role in scientific inquiry. In a sense, every
scientific enterprise is based on a sort of scientific idealization, that is, ‘‘the
intentional introduction of distortion into scientific theories’’ (Weisberg 2007,
p. 639). Let’s take into consideration the well-known case of Galileo’s use of the
inclined plane to study the force of gravity. According to Aristotle, a continually
acting force would be necessary to keep a body moving horizontally at a uniform
velocity. Galileo believed that if there was be no air resistance and no friction, and
if a perfectly round and smooth ball was rolled along a perfectly flat inclined
endless plane, the speed of the body would accelerate in a predictable way. Of
course, such a scenario does not exist in the real world. In fact, it is an idealized
state of affairs. In order to arrive at knowledge about gravitational acceleration
from the observation of a falling body, Galileo supposed that the inclined plane
was an idealized frictionless object. The aim of this theoretical move is to make
the problem computationally tractable. Galilean idealization is a computational
advantage in elaborating theories with strong predictive power. It is even possible
to compute the gravitational acceleration taking into account the influence of the
friction, but it is a known fact that Galileo’s theoretical move to imagine a fric-
tionless plane allowed significant achievements in the study of classical
mechanics. Galilean idealization chooses only certain traits among the plethora of
features a given phenomenon is endowed with. It is a deliberative act by the
scientist, which is eventually justified by the research program he adopts. In other
words, the price the scientist has to pay in order to explain a given phenomenon, is
to leave aside or deliberately ignore some of its (not crucial, one has to hope)
features.

The gap between the real and the ideal object is a matter of how much the
scientist’s attitude is flexible in regards to the scientific idealization. In the history
of science the process of idealization has changed continuously in its scope. It is
like a ‘‘zooming in’’ and ‘‘zooming out’’ effect which depends on how much of the
features of the object are neglected or not. The rationale of this ‘‘zooming in’’ and
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‘‘zooming out’’ effect consists in allowing the scientific enterprise to respond to
social influences in a flexible way. If there is a significant social pressure to include
a given trait into the scientific explanation, the community of researchers can
modify the ‘‘zooming in’’ of the idealization and incorporate that feature.

Besides this mechanism of regulation of the relationship between science and
society, the ‘‘zooming in’’ and ‘‘zooming out’’ effect also depends on the internal
dynamics of the logic of scientific discovery. This is exactly what happened to the
concept of intelligence from the time of Alan Turing’s pioneering studies. The
quest for Artificial Intelligence is an attempt to produce a human-like creature
from a rather restricted idea of what intelligence actually is. In this perspective, in
fact, intelligence is conceived as a computational feature of a disembodied mind.
All that really matters according to this perspective is the sensibility to a set of
formal characteristics and a good information processing device. The computa-
tional nature of this conception of intelligence leads AI scholars to believe that
they are dealing with cumulative progress. The singularity hypothesis is based on
the assumption that AI findings are cumulative. This expectation, however,
depends on the stability of the idealization ‘‘zooming’’. If the amount of features
we are interested in grows in a remarkable way, the cumulative effect vanishes. In
fact, the growth of knowledge involves increases in a horizontal direction rather
than in a vertical cumulative one. As long as scientists devoted their efforts to
abilities such as arithmetic computations, the cumulative effect was remarkable.
Calculating machines have long excelled their masters, and this has happened
without the help of the machines’ capacity to design other machines. While these
results are increasingly promising, scientific idealization of intelligence has deeply
changed. In the last decades, the studies on intelligence have become increasingly
more focused on many of the aspects of the phenomenon ignored in the past.
Intelligence is now considered as a multifaceted cognitive process, with a pro-
liferation of proposals of new kinds of intelligence, from emotional to musical,
from spatial to social.

Gardner (2006) famously argued there are many kinds of intelligence, including
numerical intelligence, language mastering, body-kinesthetic, memory, and of
spatial perception. On the whole, intelligence now appears to be a more ecological
capacity than it did in the past: it is deeply influenced by motor schemata and is
constituted by subsymbolic (and perhaps encapsulated) processes. In this way,
however, the number of aspects one has to take into account become increasingly
more significant, and the pathway of scientific discovery heads more towards a
slowdown rather than towards a singularity effect.

The Case of Artificial Vision

Let consider now the case of artificial vision, the research aimed at designing
artificial systems capable of a visual perception comparable with humans or other
animals. This is an interesting benchmark, because its history dates back almost as
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long as AI, and because it has been and currently is, the most understood cognitive
function in the brain.

In Fig. 17.3 is a sketch of process spawning, the phenomenon at the basis of our
Eq. (17.5), in the case of vision, showing how the overall domain tends to branch
into many autonomous fields of research. There are clearly many different criteria
for splitting the domain of artificial vision into singular processes, we have used
the principle of only including simulations that target visual behavior clearly
identified in visual neuroscience, simulated in a way that adheres to the knowledge
of the equivalent brain process. It is far from being exhaustive or objective, even
inside the mentioned principle, in that the choice of spawning a new research field
and citing a specific work as the beginning of that field, is largely subjective.

The point is not in the details of which processes are included or not, but rather
in the fact that as long as artificial vision progresses, more and more new areas are
discovered that are important components to be addressed in order to achieve an
intelligent enough vision.

The scenario of natural language understanding also appears to be well
described by our Eq. (17.5), with many new independent research fields that have
started as this discipline has progressed, with one main difference from vision. Our
current understanding of how our brain processes language is far from being as
complete as that of the knowledge we have on the processing stages in vision. The
precise brain areas involved in language and the characterization of the compu-
tational functions of those areas remain obscure. It is therefore, impossible to
sketch a tree of stable processes spawning new ones where language is concerned.
Lacking relationships with analogous brain processes, it is not possible today to
know which of the many ongoing research fields in understanding natural language
will continue to progress and to spawn new components, or that instead will lead to
a dead end.

The history of efforts in simulating aspects of intelligence offers another
recurrent clue related to the slowdown effect, not directly captured by the for-
malism given in section Formalization of the Slowing Down. In a number of cases
a common pattern of discovery can be detected: an important achievement in
simulating aspects of human behavior become on one hand, an example of pro-
gress, on the other, gives the illusion of easy progress, while its follow-up reveals
how complex the overall functions are of which, it is just a component.

While the discovery of receptive cells in cortical area V1 (Hubel and Wiesel
1959) was a major breakthrough in the understanding of the visual system, that
gave confidence in believing that this achievement would be a first step towards
artificial vision comparable to that of humans, today it is clear that the computation
done by V1 is but a small fraction, and the simplest, of that involved in the whole
vision process. Not only, in V1, there is an overlap of processes that are much
more complex than just the selectivity to orientation and ocularity.

A puzzle in the early era of neural computation was the simulation of language,
requiring syntactic processing. Jerry (Elman 1990) made another breakthrough
with his recurrent network, that exhibited syntactic and semantic abilities. It was a
toy-model, with a vocabulary of just a few words, however, it was then presumed
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that it would open the road to fast progress in simulating language. In the twenty
years that have followed, no other model has achieved results that are comparable
to Elman’s. Minor improvements were gained at the price of much more complex
systems (Miikkulainen 1993).

The biggest success in mathematical modeling of brain functions has been the
H-H model of neural polarization (Hodgkin and Huxley 1952). Decades later a
powerful simulator became available, based on the core equations of the HH
model (Wilson and Bower 1989). Oddly enough, no mathematical model of
similar importance for the brain has been developed since. Today, mathematical
models are lacking or are oversimplified and limited for the most important
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Fig. 17.3 Sketch of research field branching in the case of vision
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phenomena at a cellular level, such as synaptic transmission (Rudolph and Des-
rexhe 2005), synaptic facilitation and depression (Dittman et al. 2000) or dendritic
growth and axon arborization (van Pelt et al. 2010), and the reliability of
numerical simulations of biological neurons, in itself, has been questioned
(Rudolph and Desrexhe 2007).

From ‘‘Intelligence’’ to the (Rest of the) Mind

The variety of things we call ‘‘intelligence’’ and that we would like to give an
account for within a scientific framework, is much greater now than in the past.
We now know much more about intelligence, but this knowledge does not accu-
mulate as before. On the contrary, it is lost in many different pathways, offering a
more detailed understanding of ‘‘intelligence’’, but a less cumulative one than in
the past. The point, however, is that since the very beginning of the adventure of
Artificial Intelligence, the attempt to simulate intelligence has actually involved
the whole mind. The privilege granted to the property of intelligence was based on
the belief that it is the crucial property of the mind. Understanding intelligence is
understanding the mystery of the mind. In reality, the true aim of Artificial
Intelligence has never been intelligence, but the mind as a whole. The challenge
was to produce a mind like that of humans, and do it artificially. To be like that of
human beings, however, intelligence must be endowed with many skills that tra-
ditionally were not even associated with it, including the ability to experience
emotions appropriate to circumstances and to reason metaphorically. This latter
feature, for example, opened the way for attempts to develop computational
models of metaphor. The road has proven difficult and at the same time fascinating
because it could also shed some light on the metaphorical nature of thought and
language. This, in turn, has drawn attention to the role that metaphors and frames
have in many aspects of social life, as in the case of political discourse.

Consider the case of moral reasoning. It is a crucial kind of intelligence, if we
want to create something that resembles human performance in a significant way.
For this reason, researchers, including Wendell Wallach and Colin Allen, have
devoted their efforts to the investigation of machine ethics. Is it possible to design
machines endowed with ethical principles? That is, that have the capacity to reflect
upon different alternatives or to compute a procedure for discovering a way to
resolve the ethical dilemmas machines might encounter (Wallach and Allen 2008;
Anderson and Anderson 2011)? In this perspective, developing an ethic for
machines appears as an interdisciplinary endeavor. This circumstance, however,
calls into question many other issues, including the normativity of moral judg-
ments and the sensitivity to the social context of such judgments. The general point
is that intelligence has a social nature and when observed in its human form,
requires some kind of consciousness. It seems that the kind of intelligence typical
of the singularity hypothesis is inspired by methodological solipsism, a widespread
tenet in classical cognitive science. According to this way of thinking, the mind is
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considered as something that pertains to a given individual and consists of a set of
skills that can be gradually amplified so as to exceed those of humans. But, if we
accept the major claims of current cognitive science, we are also driven to consider
the mind as a social and ecological thing. Externalists argue that to specify the
content of many mental states one must take into consideration its reference rather
than the manner in which, it is given to the mind (Menary 2010). According to
theorists of embodied cognition, mental contents are determined by the way the
body acts in the environment (Shapiro 2011). Moreover, the success of the account
of social cognition, with its idea of the core ability to interpret behavior as a
consequence of the mental states of its performer, has finally shown the limits of
solipsism (Tomasello 2009). In sum, intelligence is no longer conceived as a mere
individual property. In this way, the ghost of normativity and its intractable
character appear on the horizon of experimental science.

Overall, if we observe the manner in which the science of mind has concretely
evolved in recent decades, it seems that we are faced with a systematic tendency to
investigate new areas of research originating from previous ones. In this way, as
soon as results are achieved in a certain field, new questions arise and new areas of
investigation open up.

Machines Designing Machines

There is a peculiar aspect of intelligence, which is crucial in the singularity
hypothesis, and that is worth underlining. The key idea is that a machine that is
more intelligent than humans will be better than humans at designing machines.
Designing machines or developing algorithms, is a very special ability only a
select few of humans have, and are not included in the common meaning of
general intelligence. One may argue that it is possible to escape the slowing down
implicit in Eq. (17.5), and move towards singularity, simply because it is not
interested in general intelligence, but rather in the very specialized aspect of
designing algorithms. How many examples of this aspect of intelligence can be
found in artificial systems, even at very early stages? Not one. As far as we know,
there is no example of any artificial system able to design new algorithms. The
computer science domain dubbed ‘‘automatic programming’’ of ‘‘generative pro-
gramming’’ or ‘‘automatic code generation’’ have nothing to do with designing
algorithms. They are just tools that help human programmers write their code, at a
higher abstraction level, for example , or by using templates and prototypes. So far,
no sign of the aspect of intelligence that is most crucial to the singularity
hypothesis, has been seen yet.

It is interesting to analyze under the perspective of aspects of intelligence, some
of the most exciting achievements of in AI. Playing chess was one of the first
challenges undertaken by AI (Shannon 1950), and was the one that (Dreyfus 1972)
bet computers would never even come close to being able to do as well as human
beings. The historic victory of IBM’s Deep Blue over world chess champion Gary
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Kasparov, therefore looked like a momentous one. Despite the positive reaction
and renewed enthusiasm for the perspective of a strong AI, Deep Blue’s victory
involves a very marginal aspect of general intelligence. Unlike previous chess
computer programs, Deep Blue’s architecture was entirely focused on highly
efficient database mining (Campbell et al. 2002). It worked on a database of about
700,000 grandmaster games, and at each move the current position was searched
over the entire database for the closest one, at the speed of 200 million positions
per second. A similar approach allowed a more recent success to Watson, another
IBM supercomputer that won the American quiz show Jeopardy!. This system
includes a structured and complete version of Wikipedia, that can be searched at a
speed of about 500 GB per second. In this case the search is based on a sophis-
ticated analysis carefully specialized for the type of clues used in the Jeopardy!
challenge (Ferrucci et al. 2010). The 30-clue session is organized into six cate-
gories, that range from broad subject headings like ‘‘The European Union’’ to less
informative puns like ‘‘One buck or less’’, to specific like ‘‘Cambridge’’. Wide
samples of Jeopardy! questions were analyzed to classify the so-called LAT
(Lexical Answer Type), which is a word in the clue that indicates the type of the
answer, independent of assigning semantics to that word. For example in the chess
category clue ‘‘Invented in the 1500s to speed up the game, this maneuver involves
two pieces of the same color’’ the LAT is in the string ‘‘this maneuver’’, and the
answer is ‘‘castling’’. Related to LAT is the focus of the clue, that is the part of the
question that, if replaced by the answer, makes the question a meaningful stand-
alone statement. For example in the clue category ‘‘Cambridge’’: ‘‘In 1546 this
king founded Trinity College, the largest of Cambridge’s colleges’’ the focus is
‘‘this king’’ and the answer is ‘‘Henry VIII’’. In the Watson system the result of the
question analysis is used to interrogate its huge knowledge base adopting a variety
of search techniques, generating many candidate answers that are further filtered
and ranked. The system is impressively complex and efficient, however it is clearly
highly tailored to the Jeopardy! quiz interaction, and would be almost unable to
maintain a simple, ordinary conversation.

We do not claim that knowledge base mining is not intelligent, on the contrary
an aspect of human intelligence is certainly the ability to retrieve from long term
memory what is relevant to the current stream of thought. However, this aspect
becomes rather shallow and limited when the whole system is highly specialized
and with a single focus, like browsing chess grandmaster games only, or answering
clues in the Jeopardy! format only.

There is another reason why AI champions, such as the two cases here ana-
lyzed, are unlikely to be steps on the way to a general intelligence machine. These
systems are not only highly customized to fulfill their goals, they also lack any
reference to how the brain works when pursuing the same goals. The extreme
search of performance obliged the designers to abandon any attempt to implement
processes with biological plausibility. As a result, the solutions cannot be counted
as processes to sum with others in the direction of a general intelligence, they
cannot be affected by the continuous progress of neuroscience, and cannot spawn
new processes for new components of intelligence. IBM itself, seems well aware
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of this, and its current most promising line of research in AI is in a completely
opposite direction to that of Deep Blue and Watson: that of mimicking in detail the
functions of biological neurons in computer chips, for building the future Cog-
nitive computing (Modha etal. 2011). The $21 million DARPA funded project
SyNAPSE (Systems of Neuromorphic Adaptive Plastic Scalable Electronics) is an
ambitious program to engender a revolutionary neuromorphic chip comprising one
million neurons and 10 billion synapses per square centimeter. Several tech
commentators have suggested this may be the beginning of singularity.1

We are convinced that this is one of the main roads to intelligent machines.
However, the fastest hardware for simulating neural circuits would be useless, if
we do not yet have clear ideas of what those circuits should be computing. Given
how limited our knowledge still is on the computations done in our brain, to
process language, for example, or sustain consciousness, we suspect that the path
will be slow and problematic. Chalmers is right when he claims that if there is a
singularity, it will be a turning-point in human history. However, if the slowdown
hypothesis has some basis, then perhaps we should also worry about its possible
chilling effect on the course of research on the mind. In fact, if it were to confirm
the trend of research on the mind to slow its progress due to the persistent tendency
of making the explanation of a given aspect of the mind depend on understanding
other mental phenomena, then we risk appreciating the magnificent complexity of
the human mind, but without knowing how to cope with it.

1 http://www.techjournalsouth.com/2011/08/ibms-brain-like-cognitive-chips-can-learn-video/
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Chapter 17A
Eliezer Yudkowsky on Plebe and Perconti’s
‘‘The Slowdown Hypothesis’’

The hypothesis presented for a curve of diminishing returns of optimization power
in versus intelligence out is incompatible with the historical case of natural
selection, in which it did not take a hundred times as long to go from Austra-
lopithecus to humans as it did to go from the first brainstto Australopithecus, but
rather the reverse. Many people have postulated logarithmic returns or other such
diminishing returns to intelligence. They are easy to postulate.

It is much harder to make them fit the observed facts of either the evolution of
intelligence (for talk about diminishing returns to brain size, genome size, or
optimization pressure on the brain) or the history of technology (for talk about
diminishing returns to knowledge or intelligence). Specifically exponential theo-
ries of progress are probably wrong, of course; Moore’s Law has already broken
down. But the historical cases we’ve observed are for roughly constant input
processes producing increasing (though not always exponential!) outputs. Con-
stant evolutionary pressure has produced, not exponential, but increasing outputs
from hominid intelligence. A fourfold increase in hominid brains has not pro-
duced exponential returns, but to characterize the resulting returns as sublinear
seems rather odd. In a nuclear pile, neutron multiplication factors are strictly
linear—each neutron giving rise to 1.0006 output neutrons on average, for
example—and the resulting pile of neutrons sparking other fissions would produce
an exponential meltdown if not for external braking processes such as cadmium
rods. For the novel phenomenon of recursively self-improving intelligence, where
AI intelligence in is a direct function of AI intelligence out, rather than the AI
intelligence being produced by a constant external optimization pressure such as
human programmers, to fail to go FOOM once a threshold level of intelligence is
reached, we need all these observed curves to exhibit a sudden sharp turnaround
the moment they are past the level of human intelligence, and produce extremely
sharply diminishing curves of intelligence-out versus optimization power
in. Simply put, nobody has ever devised a realistic model of optimization power in
versus optimization power out which both accounts for the observed curves of
hominid history and human technology, which fails to exhibit an intelligence
explosion once intelligences are designing new intelligences and a feedback loop
is added from design intelligence to output intelligence. In fact, nobody has ever
tried to develop such a model, and all attempts to postulate the lack of an intel-
ligence explosion have done so by making up models which either completely
ignore the new feedback loop and simply project normal economic growth out into
the indefinite future without considering that AIs creating AIs might be in any way
qualitatively different from a world of humans making external gadgets without
tinkering with brain designs; or which simply ignore the observed parameters of
evolutionary history and technological history in favor of making up plausible-
sounding mathematical models in isolation which would have vastly mispredicted
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the observed course of history over the last ten million or ten thousand years,
predicting observed diminishing returns rather than increasing ones. This paper
falls into the second class.
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Chapter 18
Software Immortals: Science or Faith?

Diane Proudfoot

Techno-Supernaturalism

According to the early futurist Julian Huxley, human life as we know it is ‘a
wretched makeshift, rooted in ignorance’. With modern science, however, ‘the
present limitations and miserable frustrations of our existence could be in large
measure surmounted’ and human life could be ‘transcended by a state of existence
based on the illumination of knowledge’ (1957a, p. 16). What we need, Huxley
claimed, is ‘a new religion’ (1957b, p. 309)—an ‘evolution-centred religion’ that
utilizes ‘the findings of science’ (1964, p. 223, 1957b, p. 305).

Supernaturalism has been rendered ‘untenable’ by scientific progress, in Huxley’s
view:

The supernatural hypothesis, taken as involving both the god hypothesis and the spirit
hypothesis …, appears to have reached the limits of its usefulness as an interpretation of
the universe and of human destiny, and as a satisfactory basis for religion. It is no longer
adequate to deal with the phenomena, as revealed by the advance of knowledge and
discovery (1957c, pp. 284, 285).

We are in a ‘new religious situation’, he argued: ‘There should no longer be any
talk of conflict between science and religion. … On the contrary, religion must
now ally itself wholeheartedly with science’ (ibid., pp. 287, 288).

Ray Kurzweil’s account of the ‘Singularity’ and post-Singularity life is a
prototype of the ‘new religion’ that Huxley advocated. Modern technological
futurists replace supernaturalism with what I shall call techno-supernaturalism—a
fusion of science and religion. ‘What awaits is not oblivion but rather a future
which, from our present vantage point, is best described by the words
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‘‘postbiological’’ or even ‘‘supernatural’’’, Hans Moravec says (1988, p. 1). The
Singularity will ‘infuse the universe with spirit’,1 and evolution will move toward
the conception of God in ‘every monotheistic tradition’—‘infinite knowledge,
infinite intelligence, infinite beauty, infinite creativity, infinite love’ (Kurzweil
2006d, p. 389). Kurzweil asks ‘[H]ow do we contemplate the Singularity?’, and
answers ‘As with the sun, it’s hard to look at directly; it’s better to squint at it out
of the corner of our eyes’ (ibid., p. 371). St Anselm wrote of God in similar terms:
‘I cannot look directly into [the light in which God dwells], it is too great for me …
it is too bright … the eye of my soul cannot bear to turn towards it for too long’.2

Techno-supernaturalists also predict a post-Singularity future that is remarkably
similar to the post-salvation (or post-spiritual liberation) life promised by major
world religions: a software-based existence that is ‘immortal’, ‘truly meaningful’,
and ‘blissful’. Modern physics and computer science, they claim, can give us
‘transcendence’, ‘resurrection’, ‘souls’, ‘spirit’, and ‘heaven’. Becoming non-
biological is ‘an essentially spiritual undertaking’, according to Kurzweil (2006d,
p. 389).

Proponents of the Singularity hypothesis claim that their approach is very dif-
ferent from that of (what Kurzweil calls) ‘traditional’ religions (Kurzweil 2006d,
p. 370). Although techno-supernaturalists describe a ‘supernatural’ future, they
have no time for ‘ornate dualis[m]’, claiming that ‘transcendence’ can be found in
the material world and ‘spiritual machines’ will appear later this century (ibid.,
p. 388; Kurzweil 1999). Their forecasts are based, they say, on scientific evidence
rather than faith. And in their view traditional religions attempt to rationalize death
as giving meaning to life, whereas death is really a ‘tragedy’ that technology will
soon postpone indefinitely (Kurzweil 2006d, pp. 326, 372–374).3 My aim in this
essay is to show that techno-supernaturalism is much like supernaturalist religion,
philosophically speaking. I analyse similarities between techno-supernaturalism
and ‘old’ religions (in the section ‘The New Good News’), and argue that the
former’s account of spiritual resurrection faces severe philosophical problems (in
the section ‘The Perils of Being a Pattern’). Techno-supernaturalism, moreover,
seems to be based as much on faith as on science (see the section ‘Doctrine and
Faith’), and also may fail as a terror management strategy (see the section ‘Terror
Management’). If death is a tragedy, then—despite the confidence of Kurzweil and
others—our only options seem still to be tragedy or mysticism.

1 The Singularity will infuse the universe with ‘spirit’ in the sense that, Kurzweil predicts, we
will be able to convert much of the matter of the universe into ‘computronium’—the ‘ultimate
computing substrate’ (2007b). Moravec too hypothesizes that the entire universe might be
converted into ‘an extended thinking entity, a prelude to even greater things’ (1988, p. 116).
2 Anselm 1078/1973, Chap. 16 (p. 257).
3 Kurzweil calls the belief that death gives meaning to life the ‘deathist meme’ (Olson and
Kurzweil 2006).
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The New Good News

Techno-supernaturalism adds the advantages of being software-based to Huxley’s
vision of the future. Kurzweil—along with Nick Bostrom, Moravec, Frank Tipler,
and other technological futurists—makes dramatic predictions, including the fol-
lowing. Human beings will be ‘enhanced’, using advances in biotechnology and
nanotechnology; by the 2030s, with nanobot implants, we will be ‘more non-
biological than biological’ (Kurzweil 2007a, p. 19). Humans will become ‘trans-
humans’ (e.g. Bostrom 2005b). Human-level AI will be achieved spectacularly
soon—by 2029, Kurzweil claims4—and superhuman-level AI will follow shortly
thereafter. This will lead, by ‘2045, give or take’ (Kurzweil in Else 2009), to the
Singularity—‘technological change so rapid and profound it represents a rupture in
the fabric of human history’ (Kurzweil 2001).5 This change includes the emer-
gence of ‘immortal software-based humans’ (ibid.)—‘posthumans’, ‘ex-humans’,
or ‘postbiologicals’.

Specifically, high-resolution neuro-imaging, coupled with the reverse-engi-
neering of the human brain and the discovery of ‘the software of intelligence’, will
enable us to simulate an individual human brain: a human being’s ‘personal mind
file’ can then be ‘reinstantiated’ in a non-biological substrate (Kurzweil 2001):6

Ultimately software-based humans will be vastly extended beyond the severe limitations
of humans as we know them today. They will live out on the Web, projecting bodies
whenever they need or want them, including virtual bodies in diverse realms of virtual
reality, holographically-projected bodies … and physical bodies comprising nanobot
swarms and other forms of nanotechnology. (Kurzweil 2006d, p. 325)

The rewards of being software-based include, techno-supernaturalists claim, being
able to ‘think a thousand times faster’ and ‘transmit oneself as information at the
speed of light’ (Moravec 1988, p. 112; Bostrom 2005a, p. 7). A software-based
person will be able to send her mind to a robot body on a faraway star, ‘explore,
acquire new experiences and memories, and then beam [her] mind back home’
(Moravec 1988, p. 114). Software-based persons will have capabilities that
humans now ‘can only dream about’, and with proper data storage they will be
immortal (Tipler 2007, p. 76; Kurzweil 2006b, p. 44).

4 In 2001 Kurzweil predicted that we would be able to build hardware matching the
computational capacity of the human brain by 2010, and in 2006, he predicted software enabling
a machine to match a human’s cognitive capacities by 2029—i.e., by 2029 machines will be able
to pass the Turing test (Kurzweil 2001, 2006a). Tipler predicts human-level AI by 2030 (2007,
p. 251).
5 According to Goertzel (2007b), with a coordinated effort we could reach the Singularity even
earlier—by approximately 2016.
6 Other futurists, who are not techno-supernaturalists, make similar claims about the possibility
or indeed feasibility of uploading: see e.g. Goertzel 2007a, b.
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Simulation Resurrection

Huxley said that we need ‘a new religious terminology and a reformulation of
religious ideas and concepts in a new idiom’ (1964, p. 224). Techno-supernatu-
ralism and supernaturalism have a shared metaphysic of personhood and of the
persistence of individual persons; typically they identify the person with the mind
or soul and hold that an individual survives if (and only if) his or her mind survives
(see the section ‘The Perils of Being a Pattern’). Both downplay the human body,
on the ground that biology imposes limitations on the mind. For both techno-
supernaturalism and theology influenced by dualism (e.g. Platonic or Aristotelian),
cognition is independent of any particular bodily process. The ideas are analogous,
but the terminology different. According to the 12th century rabbi Moses
Maimonides, for example, the body is ‘only the carrier of the soul’7 and ‘the
world-to-come is made up of souls without bodies, like the angels’ (1191/1985,
pp. 214, 220).8 A human being is ‘empty and deficient’ in comparison with angels
(c. 1178/1981, p. 39b). In place of ‘incorporeal’ souls, techno-supernaturalists
have the human-soul program—‘an immaterial entity generated by the activity of
neurons in a human brain’ (Tipler 2007, p. 70)—and in place of spiritual resur-
rection, they have simulation resurrection (e.g. Tipler 1994).

Tipler argues that conceiving of the soul as ‘a sort of white, ghostly substance
that permeates the human body, to be released at death’ is a mistake, since (on this
conception) if the soul existed it ‘would indeed be a substance, and hence material’
(2007, p. 70). In contrast, he says, if the soul is ‘nothing but a program being run
on a computer called the brain’ (1994, p. xi), it is immaterial—and in this sense a
‘spiritual’ entity (2007, pp. 70, 80). This reasoning, however, merely begs the
question against those dualists who claim that there are two sorts of substance,
material and immaterial, and that the soul consists of the latter. Further, in the
sense of ‘immaterial’ that can be predicated of substance, programs are surely not
immaterial—they are abstract, like concepts and propositions, rather than
immaterial.

God will ‘destroy death forever’, certain traditional scriptures say—for techno-
supernaturalists, on the other hand, godlike artificial intelligences will ensure
immortality for human beings.9 Techno-supernaturalists predict ‘[w]holesale res-
urrection’ by artificial ‘[s]uperintelligent archaeologists armed with wonder-
instruments’ (Moravec 1988, pp. 122, 123). It is in principle possible, they say,

7 According to Maimonides, a human being is composed of a ‘substance’ and a ‘form’ (c. 1178/
1981, p. 38a). The afterlife will be made up of ‘separated souls’, which are ‘divested of anything
corporeal’ (1191/1985, pp. 215, 216). Angels are ‘forms without substance’ (c. 1178/1981,
p. 39a).
8 Maimonides also endorsed the doctrine of physical resurrection. Prior to the world-to-come,
God can return the soul to the body, enabling the individual to live another long life. ‘Life in the
world-to-come follows the Resurrection’, Maimonides said (1191/1985, p. 217).
9 Isaiah 25:8. Tanakh: A New Translation of THE HOLY SCRIPTURES According to the
Traditional Hebrew Text. Philadelphia: The Jewish Publication Society, 1985.
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that ‘all human beings that have ever lived and will live from now to the end of
time can be resurrected’ (Tipler 1994, p. 248). Artificial ‘Minds’ that are ‘vast and
enduring’ and ‘unimaginably powerful’ will be able to reconstruct all information
about past humans and simulate their minds, bodies, histories, and environments
(Moravec 1999, pp. 167, 168; Tipler 1994, pp. 219, 227). Posthumans will be
‘living memories’ in these machines—‘more secure in their existence, and with
more future than ever before, because they have become valued houseguests of
transcendent patrons’ (Moravec 1999, p. 167). In short, it is in post-Singularity
artificial intelligences—rather than in God—that we will ‘live, and move, and have
our being’.10

Some techno-supernaturalists make explicit connections to established reli-
gions. According to St Paul, after death a human being will have a ‘spiritual body’
to replace his or her physical body.11 Tipler says that this is ‘completely accu-
rate’—the ‘spiritual body’ is just the posthuman’s simulated body, which is a
‘vastly improved’ and ‘undying’ body (1994, p. 242).12 In Tipler’s view, simu-
lation resurrection also provides physical resurrection (the Hebrew Bible says, ‘Let
corpses arise! Awake and shout for joy, You who dwell in the dust’13). ‘There
would be nothing ‘‘ghostly’’ about the simulated body, and nothing insubstantial
about the simulated world in which the simulated body found itself’, he claims
(1994, p. 242).

The notion of simulation as physical resurrection raises vividly the fundamental
question about ‘simulation resurrection’—is it a type of resurrection or a mere
simulacrum of resurrection? Techno-supernaturalists claim that simulated people
will be ‘as real as you or me, though imprisoned in the simulator’ (Moravec 1988,
p. 123).14 Simulation is recreation, they argue, just because ‘[t]o a simulated
entity, the simulation is reality’ (Moravec 1999, p. 168). Likewise, simulation is
physical resurrection, just because to the simulated person his or her body is ‘real’
and ‘solid’ (Tipler 1994, p. 242). However, it is only if a simulation of a cognizing
subject is itself a cognizing subject that there is any entity to whom ‘the simulation
is reality’, or to whom his or her body is ‘real’. The techno-supernaturalists’
reasoning plainly begs the very question at issue. Moreover, their claim that
programs are immaterial—i.e. not substances—contradicts their other claim that
there is nothing ‘insubstantial’ about a simulated world.

10 Acts 17:28. The Holy Bible, King James Version.
11 1 Corinthians 15:44. The Holy Bible, New Revised Standard Version. New York: Oxford
University Press, 1989.
12 See too Steinhart 2008.
13 Isaiah 26:19. Tanakh: A New Translation of THE HOLY SCRIPTURES According to the
Traditional Hebrew Text.
14 If true, how can we know that this life isn’t a simulation (Tipler 1994)? The notion of
simulation resurrection leads to the ‘simulation argument’ (see Bostrom 2003b). On sceptical
arguments based on simulation-resurrection (or ‘matrix’) thought-experiments, see further
Weatherson 2003; Chalmers 2005; Brueckner 2008; Bostrom 2009b; Bostrom and Kulczycki
2011. On the simulation argument with a theological twist, see Steinhart 2010.
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God, Heaven and Transcendence in the New Religion

What will software-based life be like? Techno-supernaturalists claim that science
now offers ‘precisely the consolations in facing death that religion once offered’
(Tipler 1994, p. 339). According to Maimonides, life in the world to come is
‘everlasting’ and ‘entirely blissful’—it is the ‘ultimate and perfect reward, the final
bliss which will suffer neither interruption nor diminution’ (c. 1178/1981, pp. 92a,
91b, 92a). According to techno-supernaturalists, posthumans will feel ‘surpassing
bliss’ (Bostrom 2008a).15 Posthuman life is ‘a higher state of being … Beyond
dreams. Beyond imagination’:

There is a beauty and joy here that you cannot fathom. It feels so good that if the sensation
were translated into tears of gratitude, rivers would overflow. … It’s like a rain of the most
wonderful feeling, where every raindrop has its own unique and indescribable meaning
(Bostrom 2008a)

This certainly sounds like heaven, and indeed Tipler says that life after death will
take place in ‘an abode that closely resembles the Heaven of the great world
religions’ (1994, p. xi).

Many established religions claim that transcendence, typically through salvation
or liberation, makes possible a meaningful life. Likewise, according to techno-
supernaturalists, the ‘freeing of the human mind from its severe physical limitations
of scope and duration [is] the necessary next step in evolution’—it ‘will make life
more than bearable; it will make life truly meaningful’ (Kurzweil 2001; 2006d,
p. 372). Software-based persons will be able to find ‘virtually inexhaustible sources
[of] meaning’ in creative and intellectual pursuits (Bostrom 2008b, p. 135).

Some futurists also hold on to a concept of God. For Huxley, the word ‘God’ is
‘one name for the Universe’—identifying God with the universe, he said, frees
God from ‘the anthropomorphic disguise of personality’ (1927, pp. 17, 18).
Kurzweil also recommends that we not ‘restrict’ our view of God, and encourages
the use of ‘new metaphors’ to capture the idea of God—‘to attempt to express
what is inherently not fully expressible in our finite language’ (2002, p. 218).
Techno-supernaturalism thus will even have room for ineffability. On God, Ku-
rzweil remarks:

Once we saturate the matter and energy in the universe with intelligence, it will ‘‘wake
up,’’ be conscious, and sublimely intelligent. That’s about as close to God as I can
imagine. (2006d, pp. 375)

For techno-supernaturalists, humans create God, rather than the traditional other
way around.16

15 Moravac does not share the view of the posthuman future as heaven—as he points out,
‘[s]uperintelligence is not perfection’ (1988, p. 125). See further the section ‘Doctrine and Faith’.
16 According to Kurzweil, super-intelligent humans may engineer new universes (2007b)—
another behaviour typically attributed to God.
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Supernaturalism, Huxley said, is ‘repugnant and indeed intellectually immoral
to a growing body of those trained in the scientific tradition’ (1957b, p. 285).
Techno-supernaturalism asks many of the same ‘big’ questions as established
religions, and provides similar answers. Can it escape the acute conceptual diffi-
culties for supernaturalism?

The Perils of Being a Pattern

Predictions of human-level and superhuman-level AI in the near future are fre-
quently based solely on expected increases in computing power (see e.g. Joy 2000;
Moravec 1998). According to Bostrom, if ‘Moore’s Law’ continues to hold, ‘the
speed of artificial intelligences will double at least every two years. Within
fourteen years after human-level artificial intelligence is reached, there could be
machines that think more than a hundred times more rapidly than humans do’
(Bostrom 2003a, p. 763; see also 2006). However, Gordon Moore’s detailed (1965,
1975) projections were confined to computational resources at the chip level.
Moore’s projections provide no reason to think that relative increases in computer
speed will be matched (let alone exactly matched) by increases in the speed of
computer thought.

Kurzweil bases his predictions on the ‘Law of Accelerating Returns’, which (he
claims) governs the rate of progress of any evolutionary process—and thus soft-
ware as well as hardware. His predictions about the evolution of technology—
including brain scanning and simulation—have been vigorously criticized
(e.g. Allen and Greaves 2011; Ayres 2006; Hawkins 2008; Modis 2006; Nordmann
2008; Devezas 2006). Likewise his claims about the emergence of human-level
and superhuman-level artificial intelligence (e.g. McDermott 2006; Horgan 2008;
Zorpette 2008; Hofstadter 2008).17 And as to the Singularity, Moore himself says
that it will never occur (2008).

Kurzweil’s confidence that human-level AI will be achieved by the end of the
2020s (e.g. Kurzweil 2011) runs counter to the many in AI who regard the goals of
‘human-level’ AI and ‘artificial general intelligence’ as ill-defined (e.g. McDermott
2007; Sloman 2008) or unproductive (e.g. Whitby 1996; Ford and Hayes 1998)—and
to those working instead in ‘narrow’ AI on task-specific systems or ‘mindless
intelligence’ (e.g. Pollack 2006). Some researchers even fear that Singularitarianism
may harm AI, by exaggerating its successes—for this reason, Drew McDermott
wishes that Kurzweil ‘would stop writing these books!’ (2006, p. 1233). But even if
these various criticisms are unfounded, and even if Kurzweil’s predictions con-
cerning the evolution of technology and of cognitive and computational neurosci-
ence are broadly accurate, these predictions cannot by themselves justify his forecast
about the evolution of immortal software-based persons. For this, techno-

17 See too criticisms of Kuzweil’s claims about the history of computing (Proudfoot 1999a, b).
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supernaturalism requires a suitable theory of what it is to be a person, and for a person
to survive.

According to Tipler, ‘the word ‘‘person’’ refers to the total individual human
mind’, and ‘the human mind—and the human soul—is a very complex computer
program’ (1994, pp. 125, 156). Kurzweil claims similarly that a person is ‘a
profound pattern (a form of knowledge) which is lost when he or she dies’ (2006d,
p. 372)—this is the pattern of ‘information’ comprising an individual’s ‘mind file’.
For techno-supernaturalists, death is a tragedy because it involves a loss of
information—its worst feature is ‘the wanton loss of knowledge and function’
(Moravec 1988, p. 121).

With respect to survival, Kurzweil claims, ‘I am principally a pattern that
persists in time’ (2006d, p. 386). Moravec advocates much the same theory of
persistence conditions for persons, which he calls ‘pattern-identity’:

Pattern-identity … defines the essence of a person … as the pattern and the process going
on in my head and body, not the machinery supporting that process. If the process is
preserved, I am preserved. The rest is mere jelly. (1988, p. 117; see also 1992, p. 18)

Tipler too claims that ‘[t]he pattern is what is important, not the substrate’: the
‘identity of two entities which exist at different times lies in the (sufficiently close)
identity of their patterns’ (1994, pp. 127, 227). Tipler’s position is in fact internally
inconsistent. He claims that the identity of a person over time ‘is ultimately a
question of physics’; two persons ‘in the same quantum state are the same person’
(1994, pp. 229, 234). Yet he also says that ‘if the essential personality is simulated,
this is good enough to be identified with the original person’ (ibid., p. 226). As
necessary and sufficient conditions, these different analyses can come into conflict.
Two persons could both be the one person, by virtue of having the same ‘essential
personality’—but not be the one person, because they are in different quantum
states.

The theory of persistence conditions for persons provided by techno-super-
naturalists can be expressed as follows: a human being A and a (future) uploaded
computer file B are the one person if (and only if) A’s brain and B instantiate the
same pattern—or if (and only if) A’s brain and B are, as Kurzweil puts it,
‘functionally equivalent’.18

At the heart of techno-supernaturalism is simulation resurrection, and at the
heart of simulation resurrection is the just-described account of personhood and
survival.19 Can this account—‘patternism’, to use Kurzweil’s term—successfully
ground techno-supernaturalism’s move from technology to immortality?

18 Patternism typically addresses the brain, despite Moravec’s reference to brain and body.
19 Goertzel (2007b) also uses the term ‘pattern’ (and ‘patternist philosophy of mind’), claiming
that the mind is a ‘set of patterns’. According to Goertzel, ‘the mind can live on via transferring
the patterns that constitute it into a digitally embodied software vehicle’. What lives on is a
‘digital twin’.
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Patternism’s Pitfalls

Patternism is hard to pin down. A ‘patternist’, Kurzweil says, ‘views patterns of
information as the fundamental reality’ (2006d, p. 5). So, in order to ‘upload’ a ‘mind
file’, do we copy brain organisation at the level of atoms and sub-atomic particles, or
of neurons and sub-neuronal connections, or of the computations (that futurists typ-
ically assume are) realized in the brain? Techno-supernaturalists give no clear answer.

Moravec appears to opt for physics, since he illustrates the ‘pattern-identity
position’ by means of a hypothetical ‘matter transmitter’ that duplicates atoms (1988,
p. 117). Kurzweil opts for biology when he says that the mind file consists of ‘the
pattern that we call our brain (together with the rest of our nervous system, endocrine
system, and other structures …)’ (2006d, p. 325). Yet he also emphasizes informa-
tion-processing and says that uploading captures a person’s ‘entire personality,
memory, skills, and history’ (2006d, p. 199)—this suggests that what matters in
uploading is simulating the person’s psychology, in whatever way that correlates (or
does not correlate) to biology. Bostrom proposes ‘whole brain emulation’—simu-
lation ‘at a relatively fine-grained level of detail’ (Sandberg and Bostrom 2008, p. 7).
But what level is this? Techno-supernaturalism is typically vague on this point. For
example, Kurzweil says ‘If we emulate in as detailed a manner as necessary
everything going on in the human brain and body … why wouldn’t it be conscious?’
(2006d, p. 375). Is this to simulate functional blocks and hyperblocks of neurons, or
individual neurons, or individual chemical transactions in the synapses? If all techno-
supernaturalists can say about the required level of simulation is that it is the level
sufficient for intelligence (or consciousness), their theorizing about simulation is no
more than a promissory note.20 In addition, Bostrom assumes that ‘brain activity is
Turing-computable, or if it is uncomputable, the uncomputable aspects have no
functionally relevant effects on actual behaviour’ (Sandberg and Bostrom 2008,
p. 15). This assumption is mere speculation: it may be that ‘functionally relevant’
brain activity is not simulable by Turing machine in any interesting sense (see
Copeland 2000; Proudfoot and Copeland 2011).

Why be a patternist? What matters for personhood, according to Tipler, is ‘not
the shape and form of a being but rather whether or not he-she-it can talk to you on
a human-level’—and so, ‘if they can talk to us, human downloads are people’
(2007, p. 75). Specifically, a person just is ‘a computer program which can pass the
Turing test’ (Tipler 1994, p. 124). What matters for persistence, techno-super-
naturalists claim, must be a person’s ‘pattern’, since survival of the body is
‘irrelevant’—‘Every atom present within us at birth is likely to have been replaced
half way through our life. Only our pattern, and only some of it at that, stays with
us until our death’ (Tipler 1994, p. 227; Moravec 1988, p. 117; see also Kurzweil
2006d, p. 383).

20 Similarly, Bostrom says that a brain scan must be detailed enough to capture the ‘features that
are functionally relevant to the original brain’s operation’ (Bostrom and Yudkowsky 2011). But
which features are these?
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However, these arguments are unconvincing. Turing proposed satisfactory
performance in the imitation game as a criterion of human-level intelligence in
machines, not of personhood. Indeed, some critics of the Turing test argue that it is
logically possible that a program could pass the test yet not be conscious, or have
even the in-principle capacity for consciousness—if so, intuitively such a program
would not be a person. And with respect to survival, the fact that the micro-
structure of A’s body changes over time (by the progressive shedding and
regeneration of cells, say) does not entail that A’s body as a macro-object does not
persist. Viewed in this way, it is true of A’s one and only one body that previously
it had microstructure 1 and now it has microstructure 2. This leaves it open
whether A’s body is crucial to A’s survival.

In addition to the above, patternism, as a theory of what it is to be a person,
faces two broad challenges. The first is the claim that ‘the shape and form of a
being’ does matter to personhood. For example, philosophers have argued that the
concept of a person is logically connected to the concept of the body—we pred-
icate ‘personal’ (including psychological) properties only of an entity that also has
bodily properties.21 Also, numerous researchers in philosophy, cognitive science,
and AI have argued that only an embodied and situated entity is capable of
cognition (e.g. Brooks 1991, 1995, 1999; Dreyfus 1992, 2007; Dreyfus and
Dreyfus 1986; Clark 1997; Shapiro 2011). Using this reasoning, a ‘mind file’ that
‘lives out on the Web’ either is not a person or is a person denied the rich cognitive
experiences of posthuman life.

The second challenge is the familiar ‘hard problem’ of consciousness (Chal-
mers 1995). Techno-supernaturalists typically endorse some version of the com-
putational theory of mind; Bostrom, for example, claims that it suffices for ‘the
generation of subjective experiences that the computational processes of a human
brain are structurally replicated in suitably fine-grained detail’ (2003b, p. 244; see
also Sandberg and Bostrom 2008). However, a variety of ‘qualia’-related thought
experiments have been designed to counter functionalist theories of mind, and
these also apply here. For example, it might be argued, we can conceive of a
machine that replicates ‘the computational processes of a human brain’—and is
even embodied and situated—but is a zombie. Although behaviourally and com-
putationally indistinguishable from a human being, the machine lacks phenomenal
consciousness.22 Bostrom allows that an ‘artificial intellect’ that has no phenom-
enal consciousness—a ‘sapient zombie’—may nevertheless be a person (Bostrom
and Yudkowsky 2011). However, being a person is of little value to an uploaded
mind file, if that upload has no access to the ‘surpassing bliss’ and ‘rain of the most
wonderful feeling’ offered by posthuman life.

21 The locus classicus is Strawson 1959. Philosophers have also argued that, since human beings
are animals, the appropriate persistence conditions for human persons are those for biological
organisms (e.g. Olson 1997).
22 On zombie thought-experiments, see Chalmers 1995; Block 1995; McCarthy 1995; Dennett
1995; Flanagan and Polger 1995; Sloman 2010.
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Me, Myself, and I

As a theory of the persistence of persons, patternism faces the notorious dupli-
cation (or re-duplication) problem.23 Let us suppose that we simulate the pattern of
a human being A’s brain, and after A’s death simultaneously upload two duplicate
files, B and C. According to patternism, A and B are one person, by virtue of the
‘functional equivalence’ of A’s brain and B. Likewise A and C are one person. This
is problematic. If A is identical to B and A is identical to C, then (by transitivity of
identity) B is identical to C.24 So B and C are one person—even if B lives ‘out on
the Web’ while C is in a robot body on a faraway star, and each is subject to very
different inputs. The one person is in two places at once. This looks like a con-
tradiction—and if the contradiction is real rather than merely apparent, patternism
is in dire straits. The duplication problem is hard; if A and C are not one person,
then by parity neither are A and B one person, and so A does not survive death.

The duplication problem arises, a techno-supernaturalist might say, only if there is
in fact more than one instantiation, biological or non-biological, of A’s mind file at
any one time. A ‘vast and enduring’ and ‘unimaginably powerful’ superintelligent
‘Mind’ would (it might be argued) know this, and so would upload only one duplicate
at a time. But techno-supernaturalists themselves claim that several ‘back-up’ copies
are required, to guard against hardware and software problems; Moravec says, for
example, ‘With enough widely dispersed copies, your permanent death would be
highly unlikely’ (1988, p. 112). And it would be risky to upload a copy only when
needed, since bugs, copying errors, or other problems might cause it to fail. More-
over, attempting to solve the duplication problem by limiting the number of actual
duplicates is, inappropriately, a merely practical reply to a logical problem.25 It is like
trying to solve the ‘unexpected examination’ paradox (a ‘surprise’ exam scheduled to
take place next week could not be on Friday as by Thursday the students would expect
it, or by the same reasoning on Thursday … or any day next week!26) merely by
forbidding all unexpected exams.

According to Moravec, there is no problem in supposing that both B and C are A—
the assumption that ‘one person corresponds to one body’ is simply ‘confusing and
misleading’ (1988, p. 118). Uploading two or more simulations of your brain merely
results in ‘two or more thinking, feeling versions of you’, he says (ibid., p. 112).27

23 The classic statement of the duplication problem is found in Williams 1973a, p. 77; 1973b,
p. 19. Making bodily continuity a necessary condition of persistence of persons still allows an
analogous problem arising from ‘fission’ (see Parfit 1987, pp. 254–261).
24 Here, as elsewhere in this essay, I suppress the symmetry step A = B ‘ B = A.
25 Likewise, if a back-up of A is a mere copy, then it is a mere copy even if in fact it is the only
backup: a mere copy that is actually created has no more claim to be A than any other back-up
that might have been created. (Using the standard distinction, A’s duplicate is qualitatively, but
not numerically, identical to A.)
26 See Sainsbury 2009, pp. 107–109.
27 Cf. Steinhart’s notion of a ‘variant’ (2002, pp. 311, 312).
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This is to treat a person as a type (and so A, B, and C are type-identical, even though
they are different instantiations of the type). Knowing that a duplicate exists might be
a ‘comfort’ if you were in danger, Moravec says; if instead you still attempt to protect
yourself, this response is merely ‘an evolutionary hangover from your one-copy past,
no more in tune with reality than fear of flying is an appropriate response to present
airline accident rates’ (ibid., p. 119).

Nevertheless, Moravec allows that over time two ‘active’ copies of A will
become distinct persons, as they acquire different experiences and memories
(1988, p. 119). Let us call these new persons B� and C�; B becomes B� and
C becomes C�. What differentiates B and B�? Moravec says only that this question
is ‘about as problematical as the questio[n] ‘‘When does a fetus become a per-
son?’’’ (ibid., p. 119). Differentiating B and B� is not the only unsolved problem;
Moravec’s strategy leads again to what looks like contradiction. If (as he claims)
B and C are the one person, B and B� are the one person, and C and C� are the one
person, then (by transitivity of identity) B� and C� are the one person. But,
Moravec claims, B� and C� are distinct persons. Introducing the notion of ‘ver-
sions’ of a person can avoid these contradictions if A merely survives as a future
version B or C (and B merely survives as B�).28 This is to deny the assumption, not
(as Moravec claims) that ‘one person corresponds to one body’, but that the
relation between the pre-mortem person and the post-mortem person is identity.
However, the cost is that, whatever it is that survives my death, it is not me.29

The enormous philosophical literature on identity of persons over time is
replete with technical distinctions. It may be that, by using the notion of (for
example) relative identity or persistence in four dimensions, the patternist can find
a way around the duplication problem—without abandoning the claim that the pre-
mortem person and the post-mortem person are one and the same. But the pat-
ternist has a difficult task ahead. Bostrom, on the other hand, sidesteps the issue. In
his view, it may be that the posthuman’s ‘mode of being’ is so radically different
from that of the human from whom the posthuman originated that these two are
not the one person (2005a, p. 8).30 This avoids the duplication problem, but only
because it jettisons entirely the notion of simulation resurrection.

Even if humans will not survive death, Bostrom claims, we should still try to
create posthumans. He says, ‘Preservation of personal identity … is not every-
thing. We can value other things than ourselves’ (2005a, p. 9). We need the
‘posthuman realm’ if we are to make progress, since ‘[t]here are limits to how
much can be achieved by low-tech means such as education, philosophical

28 On the notion of A’s ‘surviving as’ (rather than being identical to) both B and C, see Parfit
2008. On ‘survival as’ a digital ‘ghost’, see Steinhart (2007, 2010). Chalmers (2010) also suggests
this move.
29 The proponent of replacing identity with survival-as regards the cost as minimal—‘this way of
dying is about as good as ordinary survival’, Parfit claims (1987, p. 264).
30 Bostrom gives mixed signals on the question of survival. He also claims that, as an uploaded
mind file, one will have ‘the ability to make back-up copies of oneself (favorably impacting on
one’s life-expectancy)’ (2005a, p. 7).
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contemplation, moral self-scrutiny’ (ibid., p. 9). There is another advantage to
simulation, in Bostrom’s view: it would take only a very short time to copy an
upload, leading to ‘rapidly exponential growth in the supply of highly skilled
labour’ (2009a, p. 207; see also Bostrom 2004). This may seem a poor substitute
for personal survival in the techno-supernaturalists’ version of heaven.

Careful, That Upgrade Might Kill You

Can a posthuman—whether or not identical to a prior human being—be immortal?
According to techno-supernaturalists, posthuman life is truly meaningful because
it enables continuous growth; a software-based person might ‘undergo a cyclical
rejuvenation, acquiring new hardware and software in periodic phases’ or ‘update
the contents of its mind and body continuously, adding and deleting’ (Moravec
1988, p. 5). However, can a software-based person survive ‘rejuvenation’? For the
patternist, the substrate holding the pattern is irrelevant; so, if the pattern changes,
what’s left?

In Moravec’s view, the software-based person will not survive (extensive)
rejuvenation. He says, ‘In time, each of us will be a completely changed being …
Personal death as we know it differs from this inevitability only in its relative
abruptness’ (1988, p. 121). Although with software and hardware changes we
‘must die bit by bit’, this is not so terrible—‘who among us would wish to remain
static, possessing for a lifetime the same knowledge, memories, thoughts, and
skills we had as children?’ (ibid., pp. 121, 122). The situation, however, looks
much worse than Moravec suggests. A person who is nothing more than a pattern
does not die ‘bit by bit’ when additions and deletions are made. Instead there is a
series of different patterns, each with a very short lifespan. The choice for post-
humans, it seems, is exactly to ‘remain static’ or die.

According to Tipler, a software-based person can survive change—if (and only
if) the pattern before change and the pattern after change are ‘sufficiently close’.
Bostrom appears to use a similar notion, since he says ‘If most of who someone
currently is, including her most important memories, activities, and feelings, is
preserved, then adding extra capacities on top of that would not easily cause the
person to cease to exist’ (2005a, p. 9). However, this approach simply raises
another question: under what conditions are two patterns sufficiently close?
Techno-supernaturalists do not tell us. Moreover, unlike the identity relation, the
‘sufficiently close’ relation is not transitive (i.e., x may be sufficiently close to y,
and y sufficiently close to z, without x being sufficiently close to z). Let us suppose
that, by virtue of the sufficient closeness of their patterns, A and B are the one
person despite change, and B and C are the one person despite change. It follows
(again by the transitivity of identity) that A and C are the one person. Nevertheless,
let us suppose, A’s pattern and C’s pattern are not ‘sufficiently close’; so, using
Tipler’s version of patternism, A and C are not the one person. Contradiction
again.
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Perhaps fuzzy logic, widely applied in AI (e.g. in knowledge representation)
can help techno-supernaturalists here.31 Applying this approach to the case of the
pre-change person A and post-change person B, the statement that A is identical to
B can be true enough, even if not completely (i.e. determinately) true. It is not
100% true that the person before change and the person after change are identical,
but not 100% false either. In fuzzy logic, numerical degrees of truth or falsity
(between 0 and 1) are assigned to statements.32 If there is no difference between
A’s pattern and B’s pattern, it is completely true (i.e. the truth value is 1) that A and
B are the one person; and if the difference between A’s pattern and B’s pattern is
minimal, it is almost completely true that A and B are the one person—0.99 true,
say. With more thoroughgoing change to A, it is nevertheless more true than not
that A and B are the one person (0.7, say). With major change—or incremental
change over a very long period—it will become almost completely false that
A survives (and in the limit completely false).

Fuzzy patternism (as I shall call it) certainly fits what techno-supernaturalists
say about identity. Moravec claims that for posthumans the ‘[b]oundaries of
personal identity will be very fluid—and ultimately arbitrary and subjective—as
strong and weak interconnections between different regions rapidly form and
dissolve’ (1999, p. 165). Kurzweil tells us, ‘[J]ust wait until we’re predominantly
nonbiological … finding boundaries [between persons] will be even more difficult’
(2006d, p. 387). Fuzzy patternism is likewise in accord with Tipler’s claim that the
identity of two persons at different times lies in the sufficient closeness of their
patterns; and it removes the contradiction facing this claim, simply because
indeterminate identity is not transitive (because the truth-value of the consequent
of A = B, B = C ‘ A = C is not constrained by the truth-values of the anteced-
ents).33 In fuzzy patternism Tipler’s truth-condition for identity statements is
reformulated as follows: it is true enough that A and B are the one person if (and
only if) A’s pattern is sufficiently close to B’s pattern (where ‘true enough’ is itself
a fuzzy notion). Since, as we have already seen, the ‘sufficiently close’ relation is
not transitive, it follows that Tipler-style personal identity is not transitive. But in
fuzzy logic there is nothing paradoxical about that.

Fuzzy patternism has another advantage for the techno-supernaturalist—it
supplies the (formal) basis for a resolution of the duplication problem. In the
duplication case, where A has duplicates B and C existing at the same time but in
different places, A = B and A = C are equally true (e.g. both true to degree 0.5)
but B = C is completely false. So no contradiction arises. The challenge for fuzzy
patternism, though, is to make sense of the idea that an identity statement is ‘half
true’. So far this way of defending patternism has only reached first base, sketching
a merely formal semantics. The task is to convert this into a philosophically

31 Jack Copeland suggested this strategy to me, and I am indebted to him for helpful discussion
of this point.
32 See e.g. Zadeh (1975); Goguen (1969).
33 See Copeland (1997).
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meaningful semantics by providing an adequate interpretation of the formalism.
Techno-supernaturalists who wish to follow the fuzzy route out of contradiction
must meet this challenge. They must also provide an account of minimal versus
major pattern change—which upgrades should A allow, if she wishes to survive?

Taking the route of fuzzy patternism introduces another problem. In the
philosophical literature there is a famous and powerful objection to the idea of
indeterminately true identity statements (Evans 1978), which runs as follows. Let
us assume (for the purposes of deriving a contradiction) that A is indeterminately
identical to B, i.e. that A is identical to B but not determinately so (in Evans’s
notation, r(A = B). From this it follows, using the principle of property
abstraction, that B has the property being indeterminately identical to A (in
Church-style lambda notation, kx[r(x = A)] B). A, however, does not have this
property, because A is determinately identical to A. B, therefore, has a property that
A lacks, and so by Leibniz’s Law A is not identical to B. In sum, if A is inde-
terminately identical to B, then A is not identical to B—this consequent, Evans
says, ‘contradict[s] the assumption, with which we began’. So, although fuzzy
patternism avoids the contradictions inherent in (what we might call) naïve patt-
ernism, it itself leads to another prima facie paradox. And in any case, is the notion
of the partial truth of identity statements sufficient to underwrite resurrection and
immortality? If it is only partly true that the pre-mortem A is identical to the post-
mortem B, then that might suffice for a ‘version’ of A to survive A’s death, or for
A to ‘survive as’ B (see above). But intuitively A himself or herself survives death
only if it is determinately true that A and B are the one person.

The various paradoxes for patternism—naïve or fuzzy—are at the foundations
of techno-supernaturalism. They are akin to the problem of evil for supernaturalist
religions—not necessarily unsolvable, but the believer needs a very good answer.

Doctrine and Faith

Techno-supernaturalists claim that their predictions make ‘no appeal, anywhere, to
faith’ (Tipler 1994, p. 16), but is this true?

Kurzweil’s Principles of Faith

Kurzweil recognizes conceptual difficulties for patternism. For example, he con-
cedes that, if his own mind file is reinstantiated in ‘a more durable substrate’ while
he is still alive, that software-based person is not him. The ‘copy may look and act
just like me, but it’s nonetheless not me’, he says—even if he is destroyed and the
reinstantiated file remains (2006d, p. 384; see also 2001). But if this is so, then
patternism is false. Yet Kurzweil does not abandon the theory, saying merely
‘Despite these dilemmas my personal philosophy remains based on patternism’
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(2006d, p. 386). This ‘personal philosophy’ is belief despite perceived falsehood—
one of the characterizations of faith. According to Voltaire, for example, ‘Faith
consists in believing, not what appears to be true, but what appears to our
understanding to be false’ (1764/1971, p. 208).

How to tell if Kurzweil’s mind file has been successfully reinstantiated?
According to Kurzweil, the answer is a ‘Ray Kurzweil’ form of the Turing test; a
human judge must be convinced that ‘the uploaded re-creation is indistinguishable
from the original specific person’ (2006d, p. 200).34 However, he also claims that
the Turing test fails as a ‘consciousness detector’—in his view, it is an ‘objective’
test and nothing objective (or ‘scientific’) can guarantee that an entity is conscious
(Brooks et al. 2006; see also Kurzweil 2006d, pp. 377–380). Kurzweil distin-
guishes ‘apparent consciousness’ from ‘really having subjective experience’; the
former suffices to pass Turing’s test, but the latter, he says, is crucial to successful
uploading (Brooks et al. 2006). Yet he does not abandon the Turing test as a means
of verifying uploads, saying merely ‘My own philosophical take is if an entity
seems to be conscious, I would accept its consciousness. But that’s a philosophical
and not a scientific position’ (ibid.). Kurzweil’s ‘philosophical take’ is belief
despite perceived absence of justification. This is another characterization of
faith—according to Martin Luther, for example, the believer ‘must not consult
reason and mind how a doctrine sounds and whether it is consistent with reason.
He must say forthwith: ‘‘I do not care whether it agrees with reason or not’’’.35

Resurrection: Why Bother?

Even if godlike artificial intelligences were to emerge, and even if simulation
resurrection were unproblematic, what would give future ‘Minds’ the information
necessary for wholesale simulation resurrection? There will be ‘clues in solar-
system quantities to deduce and recreate the most microscopic details of preceding
eras’, Moravec says (1999, p. 167). But these ‘clues’ will be consistent with an
indefinite number of different possible human pasts—how will the Minds know
which is the actual past? Techno-supernaturalists do not tell us, seeming merely to
rely on the quasi-omniscience of post-Singularity machines.

Also, why would these intelligences choose wholesale human resurrection?
According to Moravec, future AIs will be ‘so vast and enduring that rare infini-
tesimal flickers of interest by them in the human past will ensure that our entire
history is replayed in full living detail’ (1999, p. 168). Yet why would they be
interested in us, even if only briefly? According to Tipler, they will seek ‘total
knowledge’ for the sake of their survival, and this will make resurrection ‘inevi-

34 On person-specific Turing tests, see further Steinhart 2007.
35 Luther c. 1530–2/1959, p. 78. For Luther, belief can be justified—by faith itself.
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table’ (1994, pp. 219, 220; see also 2007, p. 79).36 But why would their survival
require knowledge of how long-dead humans behaved—any more than our sur-
vival now requires knowledge of how our primeval ancestors acted? And if ‘total’
knowledge were required, these machines would surely also simulate the very
worst conditions for humans—rather than solely the ‘ideal fantasy worlds’ that
Tipler envisages (1994, p. 241).

Tipler claims that superhuman-level artificial intelligences are likely to act out
of ‘a sense of obligation’; our lives are much poorer than theirs, yet their capacities
derive from our efforts (2007, pp. 79, 80). However, it may be that, for post-
Singularity AIs, humans are a primitive life-form to whom they feel no more
obligation than we now feel to millipedes. We are their ‘ultimate parents’ and
‘‘Honor thy father and mother’’ is a universal moral principle’, Tipler says (ibid.,
pp. 79, 80)—but this is a human attitude, and the Minds are superhuman. Even
posthumans (i.e. post-Singularity artificial intelligences with direct human
ancestors) may be impossible to second-guess.37 According to Moravec, as soft-
ware-based persons ‘our thinking procedures might be totally liberated from any
traces of our original body. … [T]he bodiless mind that results, wonderful though
it may be in its clarity of thought and breadth of understanding, would be hardly
human’ (1999, p. 172). Ex-humans will become ‘very unhuman disembodied
superminds’ (Moravec 1992, p. 20). And even if posthumans do retain human
characteristics, they still may not honour their ‘ultimate parents’—any more than
we now honour our closest relations among the primates.

Just as many supernatural religions anthropomorphize spirits and gods—and just
as current researchers in AI frequently anthropomorphize their machines (see
Proudfoot 2011)—so techno-supernaturalists anthropomorphize post-Singularity
AIs. Speculations concerning their interests and choices are as difficult to ground as
conjectures concerning God’s unexpressed desires, and as much a matter of faith.

It Will be Bliss, Trust Us

Even if wholesale simulation resurrection were to occur, would it be heaven?
Techno-supernaturalists claim that, as software-based entities, we will ‘expand

our cognitive and emotional capabilities, as well as the depth and richness of our
… experiences many fold, ultimately by factors of trillions’ (Kurzweil 2004). This

36 According to Tipler (1994), God is the ‘Omega Point’—the ‘completion’ of all finite
existence; the Omega point ‘loves us’ and for this reason will give us immortality (pp. 12, 14).
Again this is unjustified anthropomorphism.
37 Steinhart (2008) argues that posthumans (since they have been perfected) will be sensitive to
their ‘ethical and epistemic obligations’, and so will simulate ‘all lesser civilizations’. However,
this is still to anthropomorphize beings that are more like angels than humans. In response to the
argument from evil, for example, many theologians and philosophers have insisted that we cannot
deduce the moral attitudes of the divine—following this reasoning, there may be a ‘noseeum’
reason why posthumans will not recognize (or observe) Tipler’s ‘universal’ moral principle.
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will lead to more ‘numerous and meaningful’ projects (Bostrom 2008b, p. 132),
‘deepen our intellectual lives’ (Bostrom 2009a, p. 201), and may even enable us to
answer ‘the traditional big philosophical questions’ that stump dumb humans
(Bostrom 2005a, p. 6). However, expanded cognitive and affective capabilities
offer at most the possibility of richer experiences (and so on); they do not guar-
antee them. Even if computer viruses and hackers could be eliminated—Moravec
himself points out the possibility of ‘software parasites’ and ‘shockingly original
gremlins’ (1988, p. 133; see also Kurzeweil (2006c) on the ‘grey goo’ threat)—
superhuman intelligence is no surety of a meaningful life. Perhaps, on the contrary,
the posthuman’s greater capacities enable a greater despair, and a more acute
insight into the meaninglessness of life.

Even in a very long life, boredom ‘will not be an issue’, Kurzweil also assures
us (2004). But if unenhanced humans with limited cognitive resources can become
bored within a short time, why not posthumans with greater cognitive resources
but a very long time? According to Moravec, there will always be new and
interesting problems for posthumans to solve (1988, p. 149), but even problem-
solving may become tedious eventually. Moravec claims that the software-based
person can simply alter his or her program to delay the onset of boredom (ibid.,
p. 114). (Likewise, according to Bostrom, controlling brain activity may guarantee
happiness (2009a, p. 201).) However, there is a strong argument that software
change annihilates the software-based person—just as a Turing machine is no
longer the same Turing machine if a few more lines are added to its instruction
table (see the section ‘The Perils of Being a Pattern’). Fuzzy patternism may be
able to resist this argument, but fuzzy patternism has its own problems.

According to techno-supernaturalists, posthumans will experience ‘surpassing
bliss’ and will be ‘posthumanly happy’—they will have experiences ‘more blissful
than those that humans are capable of’ (Bostrom 2008b, p. 120). But what does
this mean? Techno-supernaturalists cannot tell us, they say. The words ‘surpassing
bliss’ are ‘invented to describe human experience’, whereas what the posthuman
will feel is ‘far beyond human feelings’ (Bostrom 2008a). Posthuman life is a state
of being that is beyond ‘dreams’ and ‘imagination’, and offers a beauty and joy
that humans ‘cannot fathom’ (see the section ‘The New Good News’). In this
respect techno-supernaturalism is exactly like supernaturalism. Maimonides too
promised ‘bliss’ but said that a ‘clear comprehension of the bliss in the life
hereafter is unattainable to any man’:

As to the blissful state of the soul in the world to come, there is no way on earth in which
we can comprehend or know it. For in this earthly existence we only have knowledge of
physical pleasure … [T]here is no comparison between the bliss of the soul in the life
hereafter and the gratification offered to the body on earth (c. 1178/1981, p. 91a)

Yet if posthuman life is intelligible only to posthumans (or the righteous in the
world to come), techno-supernaturalism’s account of the future is mere handwa-
ving, with little substantive content.

According to the Catechism of the Catholic Church, the doctrine of the res-
urrection of the dead ‘exceeds our imagination and understanding: it is accessible
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only to faith’.38 The techno-supernaturalists’ prediction of software-based
immortality, despite their claim that it is based on science, also rests on faith.

Terror Management?

For techno-supernaturalists, death is a tragedy—‘the darkness that enshrouds all
life’ (Bostrom 2008a). ‘Any death prior to the heat death of the universe is pre-
mature if your life is good’ (ibid). Never fear, they say—post-Singularity tech-
nology will eliminate all human deaths.

Hume said that people are ‘anxious concerning their future fortune’ and for this
reason ‘acknowledge a dependence on invisible powers’39; and Freud said that we
believe in an afterlife, and in supernatural beings who provide it, in order to
‘exorcise the terrors of nature’.40 According to modern Terror Management
Theory, the combination of a biological tendency to self-preservation and the
awareness of death produces ‘potentially debilitating terror’; the remedy is to
believe in immortality and in ‘guarantees of safety’ from powerful invisible
beings.41 The Singularity hypothesis can be seen as a new-and-improved therapy
for death anxiety, based on AI and neuroscience rather than on revelation.42

As a terror management strategy, however, techno-supernaturalism is no more
successful than traditional religion. The promises—of we know not exactly what—
are still based on faith. And however good (or bad) the posthuman future might be,
techno-supernaturalism requires a philosophically worked-out account of survival
to underwrite its lavish claims of resurrection and immortality.43 Don’t stop paying
your life insurance premiums yet.
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Chapter 18A
Francis Heylighen on Proudfoot’s
‘‘Software Immortals: Science or Faith?’’

The Continuity of Embodied Identity
I enjoyed reading Diane Proudfoot’s essay on ‘‘technological supernaturalism’’,

i.e. the belief that human individuals will be resurrected as immortal software
entities by some future, God-like artificial intelligence(s) (Proudfoot 2012).
Proudfoot thoroughly deconstructs the many dubious assumptions underlying this
philosophy, as propounded by authors such as Kurzweil, Bostrom, Moravec and
Tipler.

I particularly liked her arguments showing that this purportedly scientific vision
is almost wholly parallel to the traditional religious vision in which our souls are
promised an eternal life in heavenly bliss after our mortal bodies have passed
away. The ‘‘terror management’’ theory (Pyszczynski et al. 1999) that she refers to
indeed provides a plausible explanation for why people, whether religiously or
scientifically inspired, seem to be drawn so strongly to the idea that their per-
sonhood would somehow survive physical death. But we may not even need such a
psychological explanation for this glaring similarity between technological and
religious supernaturalism: to me it seems obvious that the former is directly
inspired by the latter. For example, while Tipler initially presented his ideas as
purely scientific inferences, in further writing (Tipler 2007) he made it clear that he
is a devout Catholic who takes doctrine rather literally. The motivation to ratio-
nalize a pre-existing faith may be less obvious in the case of more humanistic
thinkers, like Bostrom or Moravec. But even a staunch atheist cannot avoid being
influenced by such a pervasive meme as the belief in an afterlife, and may be
tempted to defuse its power to convert people to religion by reinterpreting it
scientifically.

After pointing out where I agree with Proudfoot, let me now indicate where we
part ways. In my view, her paper falls in the common trap of what may be called
‘‘analytic nitpicking’’. Philosophers from the analytic tradition investigate issues
by making fine-grained distinctions between the different possible meanings of a
concept, and then applying logic to draw out the implications of each of these
possible interpretations, in particular in order to show how a particular interpre-
tation may lead to some inconsistency or counter-intuitive result. But these
‘‘technical distinctions’’—to use Proudfoot’s phrase—are in general considered
meaningful only by philosophers: scientists and practitioners typically do not care,
because these distinctions tend to lack operational significance. A classic example
is the zombie thought experiment about consciousness (Chalmers 1995): if a
zombie by definition behaves indistinguishably from a normal human, then
according to Leibniz’s principle of the identity of the indistinguishables, a zombie
must be a human. The zombie argument therefore fails to clarify anything about
consciousness.
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Proudfoot applies the analytic method to the problem of personal identity: in
how far can an ‘‘uploaded’’, software personality be identical to the original flesh-
and-blood person that it is supposed to resurrect? She argues that various inter-
pretations of the identity concept all lead to problems—such as lack of transitivity
or the apparently nonsensical conclusion that two independent software instanti-
ations, A and B, are actually one person. I consider this nitpicking because the
identity concept, like practically any concept used in real life, is essentially vague
and fluid. The recurrent error made by analytic philosophers is to assume that
distinctions are absolute and invariant, while in the complex reality that surrounds
us distinctions tend to vary across times, observers and contexts (Gershenson and
Heylighen 2005).

Apparently universal rules about the logical notion of identity (such as A = B,
B = C, therefore A = C), hence, are unlikely to be applicable to the much more
fluid notion of personal identity. Proudfoot is to some degree aware of these
difficulties, and therefore considers the alternative model of fuzzy logic. But fuzzy
logic is still a kind of logic, and therefore built on invariant (albeit fuzzy) dis-
tinctions. The nature of personal identity is precisely that it is not invariant. It is
not only the case—as the authors cited by Proudfoot point out—that since I was
born about every atom in my body has changed, but also that about every bit of
knowledge, experience or emotion in my mind has changed. My personality is
substantially different from the personality I had when I was born, or even when I
was 5, 10, 15, or 20 years old….

The only thing that allows me to state that the Francis Heylighen of today is
somehow still the same as the Francis Heylighen of 40 years ago is continuity:
during that time, there was a continuing distinction between Francis Heylighen and
the rest of the world, even while the nature of that distinction was changing. This
continuity was not one of consciousness (which waxed and waned along with my
sleep-wake cycle), but of the rough outline of my body and personality. This
continuity is precisely what lacks in the resurrection scenarios of the technological
supernaturalists. In such scenario, my body and personality break down at my
biological death, while my personality (or at least a software equivalent of it) is
recreated by a super-intelligent AI many decades later, in a completely different
(non-physical) environment.

Proudfoot is right to question the claim that the resurrected personality would
be identical to my original personality (together with the more outlandish claims
that the AI would feel compelled to resurrect every person that ever lived, or that
the information about all these personalities would have survived the inevitable
thermodynamic dissipation). However, rather than wandering through ‘‘technical
distinctions’’ about identity, she should better have focused on the most glaring
difference: the resurrected personality would lack both my body and my envi-
ronment. While she mentions the situated and embodied perspective on cognition
merely in passing, for me it is crucial: the ability to interact with the environment
via bodily sensors and effectors is a defining feature of the notions of person, mind,
consciousness or intelligence. As I have developed this point in more depth in my
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criticism of the common view of the Singularity as the emergence of a disem-
bodied super-intelligence (Heylighen 2012), I won’t go into further details here.

However, note that this philosophy does not deny the possibility of attaining
some sort of technological immortality: continuity of identity can in principle be
maintained by gradually replacing my different body parts by various electronic
circuits—as long as these maintain (or augment) my ability to interact with the
world via high-bandwidth sensors and effectors. But now we are entering the
domain of practical implementation, leaving behind both the metaphysical spec-
ulations of the techno-supernaturalists and the Platonic nitpicking of the analytic
philosophers…
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Chapter 19
Belief in The Singularity is Fideistic

Selmer Bringsjord, Alexander Bringsjord and Paul Bello

Abstract We deploy a framework for classifying the bases for belief in a category
of events marked by being at once weighty, unseen, and temporally removed
(wutr, for short). While the primary source of wutr events in Occidental philos-
ophy is the list of miracle claims of credal Christianity, we apply the framework to
belief in The Singularity, surely—whether or not religious in nature—a wutr event.
We conclude from this application, and the failure of fit with both rationalist and
empiricist argument schemas in support of this belief, not that The Singularity
won’t come to pass, but rather that regardless of what the future holds, believers in
the ‘‘machine intelligence explosion’’ are simply fideists. While it’s true that
fideists have been taken seriously in the realm of religion (e.g. Kierkegaard in the
case of some quarters of Christendom), even in that domain the likes of orthodox
believers like Descartes, Pascal, Leibniz, and Paley find fideism to be little more
than wishful, irrational thinking—and at any rate it’s rather doubtful that fideists
should be taken seriously in the realm of science and engineering.
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Introduction; Plan

We deploy a framework for classifying the bases for belief in a category of events
marked by being at once weighty, unseen, and temporally removed (= wutr). While
the primary source in Occidental philosophy of such events is credal (= orthodox)
Christianity,1 we follow Dennett (2007) in viewing philosophizing as equally
applicable to religion and science, and apply this framework to the dominant basis
(A) for belief in The Singularity, surely—whether or not itself religious in nat-
ure—a wutr event. We conclude from this application not that The Singularity
won’t come to pass, but rather that regardless of what the future holds, the failure
of a fit between A and either rationalist or empiricist argument schemas in support
of this belief implies that believers in the ‘‘machine intelligence explosion’’ are
simply fideists. While it’s true that fideists have been taken seriously in the realm
of religion (e.g. Kierkegaard 1986 in the case of some quarters of Christendom),
even in that domain the likes of believers like Descartes, Pascal, Leibniz, and
Paley,2 in line as they are with Christian orthodoxy and hence rationalism, find
fideism to be little more than wishful, irrational thinking—and at any rate it’s
rather doubtful that fideists should be taken seriously in the realm of science and
engineering.

Preliminaries

To make the situation a bit more tidy before we begin in earnest, we take a series
of preliminary steps.

First, we acknowledge the initial oddness of speaking of belief in an event.
Traditionally, of course, the targets of belief (and knowledge) are propositions—
though we certainly do say such things as that ‘‘Knox believes in General
Washington,’’ in which case we are pointing to belief in a person. The situation
before us is easily and quickly made cleaner: When we say that some believe in
The Singularity, where this is an event, we simply mean that some believe that The
Singularity will occur. In a parallel that will form a persistent theme in the inquiry
herein, when someone says that they believe in The Resurrection, they are
reporting their belief that the event in question (Jesus rising from the dead)

1 Which shouldn’t be confused with the denomination known as ‘Greek Orthodox’—a
denomination that does though happen to itself be orthodox/credal in our sense. An elegant
characterization of orthodox Christianity is provided by Chesterton (2009). Along the same lines,
and no doubt paying homage to his intellectual and spiritual hero, is Lewis’s (1960) Mere
Christianity. A more mechanical and modern characterization is obtained by simply following
Swinburne (1981) in identifying orthodox Christianity with the union of the propositional claims
in its ancient creeds (e.g. Apostle’s, Nicene, Athanasian), which then declaratively speaking
within this limited scope harmonizes Catholicism and Protestantism.
2 And—see footnote 1—Chesterton, Lewis, and Swinburne.
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happened. Note that belief in an event is thus paired with belief that a certain
proposition is true. The same kind of association is in play in the case of belief in a
person, since Knox clearly believes such things as that Washington is competent.3

In a second preliminary step, note that the properties being weighty, being
unseen, and being temporally removed are here applied to events; and we invoke
the already-seen abbreviation of this three-part adjective: wutr. We assume that the
property of being temporally removed is clear enough to obviate any sustained
analysis. This property applies to an event if it’s purported occurrence is either
beyond the recent past or immediate future. Hence, the aforementioned Resur-
rection is temporally removed. So is WWI, the American Revolutionary War, the
death of Adolf Hitler, the falling of a vast part of California into the Pacific Ocean
due to a major earthquake, the Second Coming, and the arrival in 2020 of aliens
superior in intelligence to most currently alive Norwegians. Clearly, The Singu-
larity is temporally removed. We devote section The World of the Weighty,
Unseen, and Temporally Removed to characterizing the first two properties in
‘wutr.’

In a third preliminary move, we denote by S the event associated with The
Singularity (the arrival on Earth of computing machines more intelligent, indeed
vastly more intelligent, than human persons,4 and denote by S the corresponding
proposition that this event will in the near future come to pass. By ‘near future’ we
mean to encompass any length of time short of a century; hence we charitably
adopt a temporally latitudinarian stance with respect to those confident that S will
occur. On this stance, we are of course allowing much more time than any rea-
sonable interpretation of ‘foreseeable future,’ and this is a phrase often used to
frame predictions that advanced computing-machine intelligence will or will not
arrive. For instance, Turing (1950) famously declared that he could foresee a time
when humans not only routinely ascribed intelligence and other mental attributes
to computers, but also when his test (the so-called ‘Turing Test’) would be passed;
indeed he specifically predicted that by 2000 a level of such intelligence on par,
linguistically speaking, with that possessed by humans would arrive.5 This pre-
diction turned out to fall completely flat, as we all know by now.6 In a second

3 We are happy to agree that believing in a person includes more than mere propositional belief,
but this topic isn’t germane to our objectives herein.
4 We recognize that The Singularity has now come to be associated with a group of events (e.g.
the group often is taken to include the ability of human persons to exist in forms that are not bio-
embodied), but to maintain a reasonable scope in the present paper we identify S with only the
‘‘smart-machine’’ prediction, which is quite in line with e.g. the sub-title of the highly
influential (Kurzweil 2000): ‘‘When Computers Exceed Human Intelligence.’’ There is also in
alignment with the locus classicus: (Good 1965).
5 We recognize that Turing’s optimism was constrained by certain conditions regarding how
long a computing machine’s prowess on his test would last, but such niceties can be safely left
aside.
6 As a matter of fact, Turing, like—as we shall see—those predicting the coming S, would seem
to be guilty of the same fatal sin: failing to give a rationalist (or even an empiricist) argument
for the prediction in question. One of us rather long ago happily conceded that the Turing Test
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example, this one falling on the side of pessimism, Floridi (2005) has argued that a
certain ingenious test of self-consciousness cannot in the foreseeable future be
passed by a computing machine.7 Finally, note that Chalmers (2010) recounts a
number of the time-indexed predictions about when S will supposedly occur; our
allowing a full century is in this context hyper-charitable. As confirmation of this,
consider: Good (1965): S by 2000; Vinge (1993): the explosion between 2005–
2030; Yudkowsky (1996): 2021; and Kurzweil (2000): 2030. On the other hand,
Chalmers himself appears to believe that S will occur within centuries (note the
plural). Since we wish to retain the concept of a foreseeable future, this is too large
a range for us to use herein.

Plan for the Remainder

With these preliminary matters settled, we announce our planned sequence for the
remainder: In the next (section The World of the Weighty, Unseen, and Tempo-
rally Removed), our exposition aided by consideration of the claims of credal
Christianity,8 we briefly characterize the category of the weighty and unseen, into
which, as will be seen, surely The Singularity falls. Then in (section The Tripartite
Framework) we briefly summarize the three main epistemic positions of empiri-
cism, rationalism, and fideism. These positions are sketched with help from the
basic but eminently sensible and non-partisan epistemological framework erected
by Chisholm (1977). Next (section Belief in The Singularity is Fideistic), we
present our proof-by-cases argument for the claim that belief in S is fideistic—an
argument that will in turn require at least some study of the dominant basis for
believing that S holds; that is, some study of the aforementioned A, a basis due
originally to (1965), and ably modernized recently by Chalmers (2010). A brief
conclusion wraps up the paper.

(Footnote 6 continued)
will be passed (Bringsjord 1992), but this concession was not accompanied by any timeline
whatsoever—and if there had been a timeline, it would have been an exceedingly conservative
one.
7 A counter-argument can be found in (Bringsjord 2010).
8 This is as good a spot as any to say that we could mine the supernatural event-claims of Islam
and Judaism instead of those in credal Christianity, but we aren’t that familiar with these other
two monotheistic religions, and Western philosophy, for better or for worse, has certainly focused
on the event-claims of Christianity of the other two historical monotheistic religions.
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The World of the Weighty, Unseen, and Temporally
Removed

We’ve already commented on the property temporally removed. What is meant by
‘w’ and by ‘u’ in the composite adjective ‘wutr’? We haven’t the space here to give a
rigorous definition, and such a thing isn’t needed anyway, because illuminating
examples abound in philosophy, especially in the philosophy of (again, Occidental)
religion, which typically relates to such things as whether God exists, and whether he
really has intervened, and will intervene, directly in our world. Philosophy of religion
typically targets those things which are in turn the targets of faith, and as such, things
which are at once weighty and unseen. Here is the writer of Hebrews (11:1) in the
New Testament: ‘‘Now faith is being sure of what we hope for and certain of what we
do not see.’’ The context of this passage indicates that what is believed in faith targets
things both weighty enough to be earnestly hoped for, and invisible—things that, in
short, are miraculous. As philosophical treatments of miracles indicate, miracles are
by definition weighty and (to nearly all, anyway) unseen. For example, as is noted by
Mcgrew (2010), we would hardly count as a miracle, or even a purported miracle,
some stray, minor deviation from physical laws in a remote corner of the inanimate
universe.

Likewise, the context of sustained historic treatments of faith and reason, such
as Leibniz’s (1998) Theodicy, point to events both weighty and unseen; namely,
what Leibniz calls the ‘‘oracles’’ of God; that is, the ‘‘major’’ miracles claimed by
the creeds of Christianity. These events are paradigmatic examples of profundity
and (at least from the perspective of generations living long after the times at
which they are to have occurred) invisibility. And the same source of an ostensive
definition of w-&-u is found in contemporary treatments, for instance in the work
of Oxford philosopher Richard Swinburne (1981, 2010)—work explicitly devoted
to substantiating the credal claims of orthodox Christianity. So, these are the
examples we provide to clarify the weighty-and-unseen: the Resurrection, the
virgin birth, and so on. We are in no way saying that The Singularity is super-
natural in nature; we are saying that in structure, and specifically with respect to
wutr, The Singularity (=S) parallels the—to again use the Leibnizian term—
oracles of Christianity.

Put in terms of propositions (i.e., the underlying content of declarative sen-
tences traditionally signaled in English by ‘‘that’’ phrases), and generalizing to
some degree, we can say that propositions are weighty-and-unseen when they
directly and immediately entail the existence of some being(s), and/or the
occurrence of some event, which is at once by nearly any metric such that were it
to obtain, or were it known to be arriving in the future, (1) would cause rational
agents to significantly alter their beliefs and their behavior, and (2) involves beings
as of yet invisible. The proposition S that The Singularity will come to pass within
a century certainly seems to qualify as w-&-u with flying colors, for this propo-
sition makes reference to a profound event, and to a being or beings (immeasur-
ably smarter-than-human computing machines) that are invisible as of now, and
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perhaps invisible even after they arrive on the scene. So condition (2) is satisfied.
What about condition (1)? Anyone who knows even a smidgeon of the literature
on The Singularity knows those who expect it often adjust their ‘‘cognitive maps.’’
They consider for instance how best to prepare for and perhaps to a degree manage
S. Chalmers (2010) is an example of such level-headed cerebration.

The Tripartite Framework

Now, what is the framework we have available? By our lights, the basis for
believing some wutr proposition P conforms to only one of three normative views:
namely, rationalism, empiricism, or fideism. In order to flesh out these bases, we
turn to a discrete continuum of epistemic ‘‘strength’’ provided by Chisholm (1977).
There are of course any number of ways to unpack the trio, but it’s safe to say that
Chisholm’s scheme is eminently reasonable, and that the result that we obtain
(belief in S is fideistic) would be generated by any epistemologically sensible
unpacking of the three concepts in question.9

Chisholm’s spectrum of the strength of a proposition for a rational human mind
is a nine-point one, and ranges from ‘certainly false’ to ‘certain.’ At the halfway
point are propositions said to be counterbalanced. There are then four positive
strength factors working up from there: first probable, then beyond reasonable
doubt, then evident, and finally certain. Certain propositions include the indubi-
table truths of formal logic (e.g. modus ponens, 1 = 1, etc.), and presumably
‘‘Cartesian’’ truths such as ‘‘I exist,’’ and ‘‘It seems to me that I’m sad.’’ What kind
of thing is evident? For the most part, the evident would be populated by those
propositions we affirm on the strength of sense perception. For example, that there
is a computer screen in front of you when you are typing out a sentence such as the
present one is evident. This proposition isn’t certain: you might be hallucinating,
after all; but it’s—as we might say—close to certain. You wouldn’t want to say,
for example, while spying a coffee cup in front of you, in perfect health and having
not ingested any mind-altering drugs, that the proposition that there’s a cup in front
of you is merely beyond reasonable doubt: you want to say, instead, that you are
well within your epistemic ‘‘rights’’ in holding that it’s extremely likely that
there’s a cup before you. This, again, is the category of the evident.

But moving down another Chisholmian notch in strength, we do in fact hit
beyond reasonable doubt—which of course famously coincides roughly with what
it takes in the United States to legally convict someone of murder. That is, to

9 For example, our conclusion about believers in The Singularity would be obtained by turning
instead to (Pollock 1974). This is as good a place as any to mention that both Chisholm’s scheme,
and Pollock’s, are ‘‘computing-machine friendly.’’ One of us has made use of Chisholm’s
strength-factor scheme to ground software for engineering argumentation; see (Bringsjord et al.
2008). And Pollock himself built an artificial agent on the basis of his epistemology; see for
example (Pollock 1989, 1995).
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convict someone of this kind of crime the evidence must make some such prop-
osition as Jones is guilty beyond reasonable doubt. Finally, note that to convict on
this standard, it’s not sufficient to know that it’s merely probable that Jones did it.
Some proposition P being probable is the last notch before we reach counter-
balanced, which of course means that a purely rational agent wouldn’t bet in favor
of P, and wouldn’t bet against it. A perfectly rational agent who is agnostic about
some proposition P would regard P to be counterbalanced.

What about the ‘‘negative’’ side of Chisholm’s continuum? Since neither the
empiricist not the rationalist, if abiding by their respective programs for belief
fixation, would assent to propositions on negative side of counterbalanced, we
have no need here to explore this epistemic terrain. Of course, all bets are off when
it comes to the fideist. Kierkegaard even went so far as to recommend embracing
the logically incoherent; that is, to recommend embracing certain propositions that
are, viewed intellectually, certainly false (such as that Abraham was obligated to
refrain from killing Isaac, and obligated to kill him). But we have no need to
discuss the four notches of strength on the negative side in any detail.

Armed with Chisholm’s spectrum, we can now offer encapsulation of the three
main standards for belief to be applied to belief in S:

• Rationalism: The view that belief in a wutr proposition P must be supported by
deductive proofs or arguments, where the inferences in this reasoning are each
formally valid, and the premises are at least probable.

• Empiricism: The view that belief in a wutr proposition P must be supported by
direct, neurobiologically normal sense perception of the constituents (i.e., of the
being or event in question) of the propositions in question (making P, as noted
above, evident), perhaps augmented from there by some formally valid deduc-
tive proof or argument.

• Fideism: The view that one ought to believe a wutr proposition P despite having
little or no evidence for P (i.e., put in terms of arguments, every argument for P
has at least one proposition at or below the level of counterbalanced).

Each of these doctrines are partitioned in our comprehensive breakdown into at
least a strong, moderate, and weak sub-forms. This more fine-grained breakdown
is beyond our needs in the present essay, but we do need hear a significant portion
of the breakdown for rationalism (for reasons that will soon become clear).
Accordingly, we note here that strong rationalism is the view (and as it happens,
our view) that any human person believing some wutr P ought to have on hand at
least one outright proof of P; that is, have on hand a formally valid chain of
deductive inference originating from premises that are each certain.10 The doctrine

10 Some readers will inevitably ask: ‘‘Is there any such thing?!’’ We are of course well aware of
the fact that even some axioms in some axiomatic set theories are controversial, and hence
perhaps not certain. (Even the power set axiom in ZFC has its detractors.) Nonetheless, whatever
one can deduce in deductively valid fashion from, say, 1 = 1, would be certain, and one would be
well-advised to believe such a consequence. For instance, 1 ¼ 1 _ Q, for any proposition Q,
would be an acceptable disjunction for even a strong rationalist to believe.
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of moderate rationalism holds that if Jones abides by this doctrine and believes P,
then Jones must have on hand at least one formally valid argument for P whose
premises P1;P2; . . .;Pn are each at least evident, where each Pi is evident. And
following suit we can say that weak rationalism requires only that the premises
involved in deductive reasoning for the wutr P in question are at least probable.
Readers will no doubt get the driving idea from the foregoing; the story would
continue on, all the way through not only a more fine-grained ontology of ratio-
nalism,11 but empiricism and fideism. In the case of the latter, the ‘‘bravest’’
fideists are those who believe self-contradictory propositions; Kierkegaard, as
noted above, is known for commending the absurd, or certainly false, for assent.
On the other hand, the most ‘‘timid’’ fideists would be those who believe a wutr P
despite the fact that one or more premises are counter-balanced. In this case, under
the ‘‘weakest-link principle,’’ there is still wishful thinking.12

It’s important to note that the above R-E-F framework is erected under the
assumption that the human beings we are talking about are neurobiologically
normal (and indeed alert readers will have noticed that we employed this condition
in our definition of empiricist belief) and have had sufficient nurturing and training
to be able to reason at the level of first-order logic. This assumption does idealize
the situation to some degree, but we have known since the experiments of Piaget
and colleagues that such human beings are certainly among us (e.g. see Inhelder
and Piaget 1958), and indeed you no doubt are one of them.13

We conclude this section by pointing out that a nice testbed for understanding
and contrasting the three different schemes for belief in wutr events and propo-
sitions can be found in the case of the credal Christian miracles. Mcgrew (2010)
provides a thorough, readable discussion of the various forms of argument in favor
of the veridicality of the credal miracles, some of which (in connection, e.g. with
the Resurrection) are rationalist (e.g. Paley 2010), and some of which are
empiricist (e.g. Habermas 1984). In addition, Swinburne (2010) has recently
provided a formidable empiricist argument for the miracle of the Incarnation.

11 For example, we could distinguish between the strength of inferential links in the argument for
wutr P.
12 Barbarically put, the principle states that an argument for Q is only as strong, overall, as the
weakest inferential link in that argument. We leave aside the fascinating subject of fideism
‘‘forced’’ by decision–theoretic considerations. One who for example agrees with Pascal’s
Wager may decide to believe even if the best propositional evidence is counter-balanced, just
because the potential disutility of not believing is infinitely large.
13 That there are such humans in no way is inconsistent with results (e.g. those produced by the
ingenious experimentation of Johnson-Laird 2000) showing that most humans fail to reason at the
level of FOL. For additional evidence that some people are pretty darn good at deductive
reasoning that coincides with FOL, see (Rips 1994).
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Belief in The Singularity is Fideistic

We now articulate and defend our claim that belief in The Singularity is fideistic,
and hence that such belief, while perhaps acceptable in the realm of religion, is not
acceptable in the realm of science, where rationalism and empiricism together
reign justifiably supreme. The basic line of reasoning in the argument is quickly
and easily stated: We examine the main line of serious argument in support of S,
and observe that by rationalist and empiricist standards this reasoning fails to fall
under either umbrella. By disjunctive syllogism, the proponent of S is a fideist.

Without further ado, then, what is the argument? It’s the one alluded to above,
first given by Good (1965), and polished considerably by Chalmers (2010). The
kernel of the argument, expressed in prose:

Let an ultraintelligent machine be defined as a machine that can far surpass all the
intellectual activities of any man however clever. Since the design of machines is one of
these intellectual activities, an ultraintelligent machine could design even better machines;
there would then unquestionably be an ‘intelligence explosion,’ and the intelligence of
man would be left far behind. Thus the first ultraintelligent machine is the last invention
that man need ever make. (Good 1965)

Chalmers reasonably takes Good to be here arguing for the second premise, that
is, (P2), in the following overarching argument (A). In this argument, ‘HI’ is
human intelligence, ‘AI’ is artificial intelligence at the level of human persons,
‘AIþ’ is artifical intelligence above the level of human persons, and ‘AIþþ’ refers
to super-intelligence constitutive of S. Note that we have labeled the conclusion in
line with previously introduced notation.
A
(P1) There will be AI (created by HI).
(P2) If there is AI, there will be AIþ (created by AI).
(P3) If there is AIþ, there will be AIþþ (created by AIþ).
) There will be AIþþ (¼ S will occur).

Of course, A is deductive in form, and formally valid. Unfortunately, that’s
about where the good news ends for the proponent of The Singularity. To see this,
we reason as follows. In order for belief that S to qualify as rationalist, the
premises in question must be in Chisholm’s continuum either probable, beyond
reasonable doubt, certain, or evident. There can be no denying that (P1) isn’t
certain; in fact, all of us can be quite certain that (P1) isn’t certain. Our certainty in
the lack of certainty here can be established by showing, formally, that the denial
of (P1) is consistent, since if not-(P1) is consistent, it follows that (P1) doesn’t
follow from any of the axioms of classical logic and mathematics (for example,
from a standard axiomatic set theory, such as ZF). How then do we show that not-
(P1) is consistent? We derive it from a set of premises which are themselves
consistent. To do this, suppose that human persons are information-processing
machines more powerful than standard Turing machines, for instance the infinite-
time Turing machines specified and explored by Hamkins and Lewis (2000), that
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AI (as referred to in A) is based on standard Turing-level information processing,
and that the process of creating the artificial intelligent machines is itself at the
level of Turing-computable functions. Under these jointly consistent mathematical
suppositions, it can be easily proved that AI can never reach the level of human
persons (and motivated readers with a modicum of understanding of the mathe-
matics of computer science are encouraged to carry out the proof). So, we know
that (P1) isn’t certain.

But as a matter of fact the reasoning we have just summarized suffices to show
that (P1), and for that matter (P2) and (P3) as well, cannot be classified as beyond
reasonable doubt or evident. Why? The answer is straightforward, and water-tight:
It’s not beyond reasonable doubt that those who hold that the human mind pro-
cesses information in a manner above the Turing Limit are wrong. This point is
made for example in the brief (Bringsjord and van Heuveln 2003), and made again
in the sustained, book-length (Bringsjord and Zenzen 2003).

But there are also out-of-the-armchair reasons why (P1) isn’t evident. Recall
that we said evident propositions are typically those recommended by direct sense
perception. But what is it that we perceive which provides reason to believe that
human-level machine intelligence is coming, on the strength of human engineer-
ing? The answer is: ‘‘Nothing.’’ For the fact of the matter is that a sharp toddler of
today makes a mockery of any computing machine with designs on natural-lan-
guage communication. And even if we leave natural-language communication out
of the picture, and refer instead to human-level problem solving specifically in
areas that would seem to be positively ideal for computing machines, we perceive
not the steady advance of computing machines, but their paralysis when stacked
against the capability of humans. For example, consider automatic programming,
which is one of the original dreams of AI. Today, in 2012, we quite literally have
no computing machines that can, having been supplied with a standard mathe-
matical specification of an arbitrary number-theoretic function f (from the natural
numbers to the natural numbers), supply as output a new computing machine that
computes f —even when the input functions are as simple as those given to stu-
dents in introductory programming classes!

We come then to the last possible escape from fideism available, at least in
principle, to the believer in S: weak rationalism, in the specific instantiation of this
doctrine consisting in the claim that (P1)–(P3) are merely each probable. This
move makes for an epistemic humility that we haven’t seen among those pro-
claiming the arrival of superintelligent machines. Nonetheless, the point is that it
seems to be a move available to the believer in S. In addition, there is no denying
that while in philosophy of religion the vast majority of cases made for the
propositions central to the Christian brand of monotheism accept the burden of
strong or at least moderate rationalism, there are instances of weak rationalism.
Swimburne (1991), for example, argues only that the existence of God is more
probable than not.

So, is the trio (P1)–(P3) probable? We don’t think so. AI and the computational
conception of mind, following Glymour (1992), can be said to have begun over
two millennia ago with Aristotle’s knowledge representation and reasoning
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frameworks; and yet, again, here we are, with hardware that moves information in
silicon at a rate that makes the transmission speed of the brain seem as slow as a
disoriented caterpillar by comparison, and we still don’t have a machine that can
problem-solve, even in highly formal domains like computer programming, at the
level of a mediocre novice. It seems to us that at this point it’s looking highly
unlikely that HI will produce AI, and moreover we have no reason to think that AI
would be able to produce AIþ at any rate. We concede that this isn’t much of an
argument. Is there any more principled philosophical reason for holding that one or
more of the trio are less than probable, and hence that believing in The Singularity
is to slip into fideism? Yes.

We give an argument based, first, on the observation that A is itself based on
the concept of ever-increasing intelligence. More specifically, we note that it
follows deductively from the trio in question that, where LðMÞ yields the level of
intelligence of a machine (or class of machines; we assume for the sake of
argument that humans are bio/carbon-based computing machines),
Lð HIÞ\Lð AIþÞ. In fact, it follows deductively from the three propositions in
question, and the defensive move that we have invoked on behalf of the proponent
of S seeking to avoid falling into fideism, that

(P4) Proponents of the case A for S at this stage in the present dialectic know that it’s
probable that machines AIþ will arrive such that Lð HIÞ\Lð AIþÞ.

But if the proponents of the case in question know this, then surely they must
know what the difference in intelligence between HI and AIþ consists in. If they
don’t know what the difference consists in, then they aren’t within their epistemic
rights in asserting (P4). In fact, in that state of ignorance, asserting (P4) certainly
has the look and feel of the core spirit of fideism, which is to forge ahead and
believe, in the absence of the normal prerequisites. Do those who believe in The
Singularity understand what the difference in question is? Apparently not. We
have scoured the writings of pro-S thinkers for even an atom of an account of the
difference, and have come up utterly empty. In fact, these writings, merged, yield
self-refutation. For example, Chalmers (2010) understands that mere processing
speed of hardware, ever increasing in conformity with Moore’s Law, contra
Kurzweil (2000), is insufficient to support the claim that super-human machine
intelligence will probably arrive. As Chalmers notes, speed is one thing; that which
is computed by that speed is quite another. What the proponent of S thus needs to
supply in order to dodge the descent into fideism is the difference between HI and
AIþ cashed out in a differential between the respective functions computable by
each class of machine. These details cannot be found in the literature—anywhere.
Of course, the proponent of The Singularity could retort that ultraintelligent
computing machines have super-human intelligence because, for example, they
can: play better chess than any humans, or push further into complexity-intractable
spaces (e.g. can solve in a reasonable amount of time more of the space of
problems in the general propositional satisfiability problem) than humans have
managed, or out-score any human on general tests of intelligence, and so on.14
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Unfortunately, there are two fatal problems with this response. First, the
response runs afoul of Chalmers’ observation that speed in and of itself is in the
end nothing worth writing home about. We’ve known for a long time, for example,
that we have an algorithm for playing perfect chess. So if outerspace aliens landed
tomorrow and proudly proclaimed that they can play invincible chess via this
algorithm, because they have faster hardware than ours (perhaps implanted in their
bodies), we really wouldn’t be that impressed—and in analogy we wouldn’t be
inclined to say that if these aliens are just computing machines, ultraintelligent
machines had arrived on our planet. The second fatal problem is that the current
upward march of AI research is gradually producing precisely the sort of machines
touted by the believer in S in the rejoinder under review at the moment; but these
machines aren’t in any way regarded to be a quantum leap beyond HI. We expect
that soon enough computing machines will be able to process in real time all data
relevant to the coördinated automated driving of every vehicle on our planet. Do
these machines deserve to be called ‘ultraintelligent’? No. They are just fast
processors; their core functionality is rather trivial.

Conclusion

We conclude, then, that proponents of S are indeed fideists. This in no way implies
that S is false. We have friends, and suspect you do as well, who assert the wutr
propositions of this and that religion in the absence of a rationalist or empiricist
basis for such assertions, and we wisely resist declaring that therefore they have
put their faith in falsehoods. The most that can be said (unless of course disproofs
of the propositions in question are on hand) is that faith of the fideistic sort is
certainly in operation, and this is so whether or not the targets of that faith are real.
So it is as well for the believer in The Singularity at the close of the investigation
carried out herein.

14 In our experience, the concept of intelligence as it’s used in communication between those
believing in S comes at least close to be conflated with the concept of power, or more precisely,
information-acquisition power, conjoined with processing speed a la Moore’s Law. Once this
conflation occurs, the notion that machines of the future will be ultraintelligent quickly arrives
on scene. Why? The point can be put in sci-fi terms: We imagine a Terminator 3-like event in
which unmanned machines hooked into all digital information on the planet suddenly break
through any and all privacy restrictions on use of this data, and proceed to exploit it. These
machines are now able to do things that are unprecedentedly ‘‘intelligent.’’ For example, the
machines may now be able to prevent human crimes before they happen. (E.g. machines with
access to everyone’s email, and the processing power to check them for plans of foul play,
could thwart criminals.) Needless to say, while this notion of information-theoretic super-
intelligence is coherent, and may in fact even be likely to materialize, no fundamentally new
functionality is in play, and hence, while in our interaction with believers in The Singularity we
witness the conflation in question, the case for S isn’t insulated from our counter-
argumentation.
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Chapter 19A
Vernor Vinge on Bringsjord et al.’s ‘‘Belief in the
Singularity is Fideistic’’

It’s no surprise that pure rationalism is useless for discussing the possibility of the
Singularity. Pure rationalism is not much use outside of mathematics. (And in
computer science, _pace_ Edsger Dijkstra, it’s not really useful outside of very
simple situations.) In the sciences, the goal to strive for is rationalism combined
with a focused empiricism consisting of cleverly planned observations and
experiments that disprove as much as possible as quickly as possible.

Unfortunately, such a combination of rationalism and empiricism is rarely
attainable in discussing future progress in science and engineering. (When it can
be achieved, it amounts to Alan Kay’s famous advice that ‘‘The best way to predict
the future is to invent it.’’) For many planning environments, we must instead
consider a variety of scenarios (e.g. (Vinge 1993, 2007). Risks and symptoms and
benchmarks can then be watched for and used to support further plans and action.
In this process, some of the players may be somewhat fideistic. That’s fine.
Without an element of fideism in our entrepreneurs, we’d have fewer failures, but
we’d also lose or postpone many wonderful innovations.

As for Bringsjord et al.’s WUTR (weighty, unseen, and temporally removed)
assessment of the Technological Singularity:

• Weighty:The possibility of the Singularity is certainly weighty. Progress along
all the different paths to the Singularity is bringing into focus (and perhaps stark
immediacy) a number of questions that have been endlessly debated over the
last few thousand years (identity, consciousness, intelligence, mortality).
Whether or not the Singularity happens, the technological interrogation of these
issues has put us in a different playing field than all the philosophers of the past.

• Unseen:That there are no current examples of super-intelligence is not a sur-
prise. On the other hand, the milestones already passed are not trivial, except as
claimed to be so after they were attained. Bringsjord et al. propose an interesting
milestone of their own, the problem of automatic program generation where the
input is a simple function described in standard mathematical notation. Tell me
more! This sounds like something that is doable with 2012-era computers/
software, at least competitive with human performance.)

Bringsjord raise a much broader complaint in saying that Singularity enthusiasts
don’t even specify the difference between human level intelligence and machine
superhuman intelligence: ‘‘We have scoured the writings of pro-S thinkers for
even an atom of an account of the difference, and have come up utterly empty.’’

In discussing this point, they raise the possibility that superintelligence might be
claimed as simply the running of a computer very fast—and they dismiss that
possibility as irrelevant. I agree that 2012 software running very very fast would be
an absurd contender, but that is the wrong comparison. For myself (and I expect
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most people) the really hard thing to accept is that human equivalent intellects
could run on a computer. But that is a goal we have a moderately good criterion
for, namely Turing’s Test (especially in the extended sense that Penrose describes
in ‘‘The Emperor’s New Mind’’, at the end of his generally skeptical discussion of
the topic). Now imagine that such a Turing Test winner is run at much higher
speed. In (Vinge 1993), I called such an achievement ‘‘weak superhumanity’’. In
fact, I used the word ‘‘weak’’ because I believe there would be lot more to
superhuman intelligence (Vinge 1993, 2010). Nevertheless, it provides a goal as
specific as Turing’s Test for the discussion of superhuman intelligence.

• Temporally removed:Until it actually happens, the Singularity will have this
characteristic. But in the absence of technological surprises and classical
disasters (e.g. nuclear war), I expect to see automation gradually achieving more
and more of what has been human-only capabilities. At the same time, I expect
that human/computer teams will be ever more powerful; they may in fact guide
the Singularity into being. The Teens should be interesting years.
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Chapter 19B
Michael Anissimov on Bringsjord et al.’s
‘‘Belief in The Singularity is Fideistic’’

The substance of Brinsjord et al’s critique is in a single paragraph of pages 10–11
of their essay, P1 referring to Chalmers’ first assumption, ‘‘there will (eventually,
barring defeaters) be Artificial Intelligence (of the human level)’’:

There can be no denying that (P1) isn’t certain; in fact, all of us can be quite certain that
(P1) isn’t certain. [. . .] ...suppose that human persons are information-processing machines
more powerful than standard Turing machines, for instance the infinite-time Turing
machines specified and explored by Hamkins and Lewis (2000), that AI (as referred to in
A) is based on standard Turing-level information processing, and that the process of
creating the artificial intelligent machines is itself at the level of Turing-computable
functions. Under these jointly consistent mathematical suppositions, it can be easily
proved that AI can never reach the level of human persons (and motivated readers with a
modicum of understanding of the mathematics of computer science are encouraged to
carry out the proof). So, we know that (P1) isn’t certain.

It is difficult to ascertain on what basis Brinsjord et al are making the claim that
human persons are information—processing machines ‘‘more powerful’’ than
standard Turing machines. Occam’s razor, along with decades of evidence from
cognitive science, seem to imply that the human brain and mind can be viewed as a
massively parallel Turing machine.

Supposing that artificial intelligences will ‘‘never reach the level of human
persons’’ is a claim with few academic citations. Generally, such statements appear
to be appeals to intuitions of human exceptionalism—the notion that humans have
something deeply special about them that could never be duplicated in a machine.
Given this intuition, human exceptionalists are forced to retroactively search for
supporting arguments. The notion that human brains somehow utilize extra-Turing
information processing is one such argument.

The Church-Turing thesis is the idea that anything algorithmically computable
is computable by a Turing machine. Given the nearly universally accepted sup-
position in the cognitive sciences that intelligence is made up of a collection of
mental routines that are fuzzy algorithms, plus the Church-Turing thesis, we get
the conclusion that intelligence is indeed computable by standard Turing
machines. Acceptance of these two ideas is not universal in cognitive science and
computer science, but the ideas are broadly accepted, with extensive discussions in
the literature.

The history of science is filled with various examples of human exceptionalism
that were proven wrong. For instance, the notion that human beings are animated
by an immaterial soul has been replaced by the scientific notion of the brain as the
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director of behavior. Another example would be the pre-scientific notion of
humans as separate from the animal kingdom, replaced by the idea of humans as a
part of the animal kingdom. The notion that human beings are the only agents that
can implement intelligence is being supplanted by the notion that intelligence is a
bundle of algorithms that can be implemented by any suitable computer, whether
carbon-based or silicon-based.
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Chapter 20
A Singular Universe of Many
Singularities: Cultural Evolution
in a Cosmic Context

Eric J. Chaisson

Abstract Nature’s myriad complex systems—whether physical, biological or cul-
tural—are mere islands of organization within increasingly disordered seas of sur-
rounding chaos. Energy is a principal driver of the rising complexity of all such
systems within the expanding, ever-changing Universe; indeed energy is as central to
life, society, and machines as it is to stars and galaxies. Energy flow concentration—
in contrast to information content and negentropy production—is a useful quanti-
tative metric to gauge relative degree of complexity among widely diverse systems in
the one and only Universe known. In particular, energy rate densities for human
brains, society collectively, and our technical devices have now become numerically
comparable as the most complex systems on Earth. Accelerating change is supported
by a wealth of data, yet the approaching technological singularity of 21st century
cultural evolution is neither more nor less significant than many other earlier sin-
gularities as physical and biological evolution proceeded along an undirectional and
unpredictable path of more inclusive cosmic evolution, from big bang to humankind.
Evolution, broadly construed, has become a powerful unifying concept in all of
science, providing a comprehensive worldview for the new millennium—yet there is
no reason to claim that the next evolutionary leap forward beyond sentient beings and
their amazing gadgets will be any more important than the past emergence of
increasingly intricate complex systems. Nor is new science (beyond non-equilibrium
thermodynamics) necessarily needed to describe cosmic evolution’s interdisciplin-
ary milestones at a deep and empirical level. Humans, our tools, and their impending
messy interaction possibly mask a Platonic simplicity that undergirds the emergence
and growth of complexity among the many varied systems in the material Universe,
including galaxies, stars, planets, life, society, and machines.
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Introduction: My Philosophy of Approach

About a decade ago, a book of mine was co-reviewed along with another in the
Boston Globe (Raymo 2002), both of them in the context of humanity’s future
prospects. Cosmic Evolution (Chaisson 2001) sought to explicate, from a strictly
scientific viewpoint, the natural rise of complex systems throughout the nearly
14 billion year history of the Universe, including sentient humans and our useful
yet disturbing technical devices. The other book, of which I was unaware at the
time, The Age of Spiritual Machines (Kurzweil 2000) argued that the speed and
volume of information processing are increasing so rapidly that computers will
soon surpass humans as an event of singular importance—a cultural tipping point
termed by some the Singularity—is fast approaching. Although our scholarship
partly overlapped, Kurzweil’s book seemed speculative and even passionate, so I
never did critically assess the idea of a technological singularity until I was invited
to contribute the present article to this Frontiers Collection.

For many years, my scientific agenda has aimed to go beyond mere words and
speculation about humankind and its technological aids. I have striven to place
human society into a cosmological framework and to quantitatively analyze just
how complex we, our brains, and our machines really are. Frankly, as a confirmed
empiricist, I am skeptical of forecasting our future because all such exercises entail
much qualitative guesswork; nor do I regard future evolutionary events to be
accurately predictable given that an element of chance always accompanies
the necessity of natural selection. That said, it does seem inevitable, indeed quite
ordinary, that new forms of complexity are destined to supplant humanity as the
most complex system known, just as surely as people took precedence over plants
and reptiles, and in turn even earlier life on Earth complexified beyond that of the
galaxies, stars, and planets that made life possible. There is nothing abnormal
about the oncoming clash of men and machines—other than perhaps damaging our
egos. The Universe has spawned many such grand evolutionary, even transcen-
dent, events in deep time, the scale used to measure biological, geological, and
cosmological changes throughout history writ large. That carbon-based humans
are about to merge with, or concede to, silicon-based machines during a so-called
‘‘technological singularity’’ (Kurzweil 2005) is entirely reasonable—although a
more benign outcome is that we might simply learn to live with them, to coexist.
Data presented in this paper suggest that singularities are part of the natural
scheme of things—normal, broadly expected outcomes when concentrated energy
flows gave rise to increasingly complex systems throughout the expanding
Universe. (Note that the expression ‘‘singularity’’ in this paper matches that
commonly used to mean a major evolutionary milestone, of which there were
many in cosmic history and thus the word singularity, oddly, implies plurality, not
the technical term that puzzles mathematicians when sizes and scales near zero and
densities approach infinity, as in black holes.)

My philosophy of approach, as an experimental physicist, seeks to interpret
natural history over many billions of years, and to do so by embracing the leitmotif
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of energy flow through increasingly complex systems. By contrast, Kurzweil,
among many other strong artificial-intelligence advocates, prefer information
content to explain and predict humanity’s recent and impending changes over
much shorter periods of time. This is not a criticism of those who characterize
complexity and evolution by means of information theory, or even entropy pro-
duction, although I personally find these concepts overly abstract (with dubious
meanings), hard to define (to everyone’s satisfaction), and even harder to measure
(on any scale). Regarding the latter, neither maximum nor minimum entropy
principles are evident in the data presented below. Regarding the former, I sense,
but cannot prove, that information is another kind of energy; both information
storage and retrieval need energy, and greater information processing and calcu-
lation require greater energy density. While information content and entropy
production are powerful terms that offer much theoretical insight, neither provides
clear, unambiguous empirical metrics. My practical stance is that information may
be useful to describe some systems, but energy is needed to make and operate
them.

Where we do all agree (apparently) is that cultured humans and their invented
machines are now in the process of transcending biology, a topic bound to be
emotional if only because it rubs our human nerves and potentially dethrones our
perceived cosmic primacy (Dick and Lupisella 2009; Kelly 2010). The roots of
this evolutionary milestone—perhaps it is a technological singularity—probably
extend as far back as the onset of agriculture when our forebears began manipu-
lating their local environs, yet has recently advanced rapidly as we now alter both
our globe environmentally as well as our being genetically. Even so, these
changes—and their outcomes—are probably nothing more than the natural way
that cultural evolution developed beyond biological evolution, which in turn built
upon physical evolution before that, each of these evolutionary phases being an
integral part of a more inclusive cosmic evolution that also operates naturally, as it
always has and likely always will, with the irreversible march of time.

Cosmic Evolution: A Scientific Worldview for the New
Millennium

The past few decades have seen the emergence of a unified scenario of natural
history, including ourselves as sentient beings, based on the time-honored concept
of change. Heraclitus may well have been right some 25 centuries ago when he
offered perhaps the best observation of Nature ever: pamsa qei—‘‘all flows…
nothing stays the same.’’ From stars and galaxies to life and humanity, a loose
community of liberal researchers is now weaving an intricate pattern of under-
standing using the fabric of all the sciences—an interdisciplinary rendering of the
origin and evolution of every known class of object in our richly endowed Uni-
verse. Often called cosmic evolution, this uncommonly broad cosmology that
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includes life as an integral part can be defined as the study of the many varied
developmental and generational changes in the assembly and composition of
radiation, matter, and life throughout the history of the Universe. These are the
changes that have produced our Galaxy, our Sun, our Earth, and ourselves, and as
such include both evolution and development (Salthe 1993). A localized ‘‘big-
history’’ version of this scenario that places into larger perspective specifically
humankind on Earth (Christian 2004; Brown 2007; Spier 2010; Grinin et al. 2011)
is part of a more universal cosmic-evolutionary narrative that addresses the Uni-
verse at large (Chaisson 2001, 2006, 2009a, b; Dick 2009; Vakoch 2009). The
result is a grand evolutionary synthesis bridging a wide variety of scientific spe-
cialties—physics, astronomy, geology, chemistry, biology, anthropology, among
others and including the humanities—a genuine epic of vast proportions extending
from the very beginning of time to the present—and presumably beyond in both
space and time.

While entering this new age of synthesis, we are beginning to decipher how all
known systems—atoms and galaxies, cells and brains, people and society, among
myriad others—are interrelated and constantly changing. Our appreciation for
evolution now extends well beyond the subject of biology; the concept of evo-
lution, generally considered (as in most dictionaries) as any process of ascent with
change in the formation, growth, and development of systems, has become a potent
unifying factor in all of science. Yet questions remain: How realistic is our quest
for unification, and will the integrated result resemble science or philosophy? How
have the magnificent examples of order on and beyond Earth arisen from chaos?
Can the observed constructiveness of cosmic evolution be reconciled with the
inherent destructiveness of thermodynamics? Most notably, we want to understand
the emergence of diverse structures spanning the Universe, and especially the
complexity of such systems as defined by intricacy, complication, variety, or
involvement among the interconnected parts of a system. Particularly intriguing is
the rise of complexity over the course of time, and dramatically so in the Phan-
erozoic during the past *540 million years—a rise that has reached a crescendo
on Earth with conscious beings, adroit machines, and their likely future inter-
mingling. Could a technological singularity be the next great advance in the
scenario of cosmic evolution?

Recent empirically based research, guided by huge new databases describing a
multitude of complex systems, suggests robust answers to some of the above
queries. Islands of ordered complexity that include galaxies, stars, planets, life, and
society are more than balanced by great seas of increasing disorder elsewhere in
the environments beyond those systems. All quantitatively agrees with the valued
precepts of thermodynamics, especially non-equilibrium thermodynamics. None of
Nature’s organized structures, not even life itself, is a violation (nor even a cir-
cumvention) of the celebrated 2nd law of thermodynamics. Both order and entropy
can increase together—the former locally and the latter globally. Thus, we arrive
at a central question lurking in the minds of some of today’s eclectic thinkers
(e.g. Mandelbrot 1982; Wolfram 2002): Might there be a kind of Platonism at
work in the Universe—an underlying principle, a unifying law, or perhaps a
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surprisingly simple process that quite naturally creates, organizes, and maintains
the form and function of complex systems everywhere?

Figure 20.1 depicts the archetypal illustration of cosmic evolution—the arrow
of time. Regardless of its shape or orientation, such an arrow represents a symbolic
guide to the sequence of events that have changed systems from simplicity to
complexity, from inorganic to organic, from chaos to order. That sequence, as
determined by a large body of post-Renaissance data, accords well with the idea
that a thread of change links the evolution of primal energy into elementary
particles, the evolution of those particles into atoms, in turn of those atoms into
galaxies and stars, and of stars into heavy elements, the evolution of those ele-
ments into the molecular building blocks of life, of those molecules into life itself,
and of intelligent life into the cultured and technological society that we now
share. Despite the compartmentalization of today’s academic science, evolution
knows no disciplinary boundaries. As such, the most familiar kind of evolution—
biological evolution, or neo-Darwinism—is just one, albeit important, subset of a
broader evolutionary scheme encompassing much more than mere life on Earth. In
short, what Darwinian change does for plants and animals, cosmic evolution
aspires to do for all things. And if Darwinism created a revolution of under-
standing by helping to free us from the notion that humans differ from other life-
forms on our planet, then cosmic evolution extends that intellectual revolution by
treating matter on Earth and in our bodies no differently from that in the stars and
galaxies beyond.

Fig. 20.1 An arrow of time, extending over nearly 14 billion years from the big bang at left to
the present at right, symbolically represents the sweeping inclusiveness of cosmic evolution, an
overarching subject that includes the three phases of physical, biological, and cultural evolution
(top of figure). The arrow is not pointing at us; cosmic-evolutionary cosmology is not
anthropcentric, yet it powerfully encapsulates the origin and evolution of our galaxy, star, and
planet, as well as of life, humanity, and civilization (bottom)
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Anthropocentrism is neither intended nor implied by the arrow of time; it points
toward nothing in particular, just the future generally. Anthropic principles not-
withstanding, no logic supports the idea that the Universe was conceived to pro-
duce specifically us. We humans are unlikely the pinnacle or culmination of the
cosmic-evolutionary scenario, nor are we likely the only technically competent
beings to have emerged in the organically rich Universe. Time’s arrow merely
provides a convenient symbol, artistically depicting a ubiquitous flow that
(somehow) produced increasingly complex structures from spiral galaxies to rocky
planets to thinking beings. Nor is the arrow meant to imply that ‘‘lower,’’ primitive
life forms biologically change directly into ‘‘higher,’’ advanced organisms, any
more than galaxies physically change into stars, or stars into planets. Rather, with
time—much time—the environmental conditions suitable for spawning simple life
eventually changed into those favoring the emergence of more complex species;
likewise, in the earlier Universe, environments were ripe for galactic formation,
but now those conditions are more conducive to stellar and planetary formation.
Changes in surrounding environments often precede change within ordered sys-
tems, and the resulting system changes have generally been toward greater
amounts of diverse complexity, as numerically justified in the next section.

Energy Flows and Complexity Rises

Cosmic evolution as understood today is governed largely by the laws of physics,
particularly those of thermodynamics. Note the adverb ‘‘largely,’’ for this is not an
exercise in traditional reductionism. Of all the known principles of Nature, ther-
modynamics perhaps best describes the concept of change—yet change dictated by
a combination of randomness and determinism, of chance and necessity. Literally,
thermodynamics, which tells us what can happen and not what does happen, means
‘‘movement of heat’’; a more insightful translation (in keeping with the wider
connotation in Greek antiquity of motion as change) would be ‘‘change of
energy.’’ Energy flows engendered largely by the expanding cosmos do seem to be
as central in the origin of structured systems as anything yet found in Nature.
Furthermore, the optimization of such energy flows might well act as a motor of
evolution broadly conceived, thereby affecting all of physical, biological, and
cultural evolution, the sum total of which constitutes cosmic evolution.

Energy does play a role in creating, ordering, and maintaining complex systems.
Recognized decades ago at least qualitatively in words (Lotka 1922; von Berta-
lanffy 1932; Schroedinger 1944), the need for energy should now be embraced as
an essential feature not only of biological systems such as plants and animals but
also of physical systems such as stars and galaxies; energy’s engagement is also
widely recognized in cultural systems such as a city’s inward flow of food and
resources amidst its outward flow of products and wastes, indeed for all of civili-
zation itself. All complex systems—whether alive or not—are open, organized,
dissipative, non-equilibrated structures that acquire, store, and express energy.
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In contrast to my enthusiasm for energy as an organizing principle,
I acknowledge that entropy production (Kleidon and Lorenz 2005; Martyushev
and Seleznev 2006) and information content (Hofkirchner 1999; Gleick 2011) are
more often espoused in discussions of origin, evolution, and complexity. Yet, these
alternative aspects of systems science are less encompassing and decidedly less
empirical than many practitioners admit, their theoretical usefulness narrow,
qualitative, and equivocal as general complexity metrics (Meyers 2009). Although
yielding insightful properties of systems and their emergent and adaptive qualities
unlikely to be understood otherwise, such efforts have reaped an unusual amount
of controversy and only limited success to date (Mitchell 2009). Nor are infor-
mation or negentropy useful in quantifying or measuring complexity, a slippery
term for many researchers. In biology alone, much as their inability to reach
consensus on a definition of life, biologists cannot agree on a complexity metric.
Some (Maynard Smith 1995) use non-junk genome size, others (Bonner 1988)
employ creature morphology and behavioral flexibility, still others chart the
number of cell types in organisms (Kaufmann 1993) or appeal to cellular spe-
cialization (McMahon and Bonner 1983). All these attributes of life have quali-
tative worth, yet all are hard to quantify in practical terms. Cosmic evolutionists
seek to push the analytical envelope beyond mere words, indeed beyond biology.

We thus return to the quantity having greatest appeal to physical intuition—
energy—a term that is satisfactorily definable, understandable, and above all
measurable. Not that energy has been overlooked in more recent discussions of
systems’ origin and assembly. Many researchers (e.g. Morrison 1964; Morowitz
1968; Dyson 1979; Odum 1988; Smil 1999; Lane and Martin 2010) have cham-
pioned in different ways and limited contexts the cause of energy’s organizational
abilities. Even so, the quantity of choice cannot be energy alone, for a star is
clearly more energetic than an amoeba, a galaxy much more than a single cell. Yet
any biological system is surely more complicated than any inanimate entity.
Absolute energies are not as indicative of complexity as relative values, which
depend on a system’s size, composition, and efficiency. To characterize com-
plexity objectively—that is, to normalize all such structured systems in precisely
the same way—a kind of energy density is judged most useful. Moreover, it is the
rate at which free energy transits complex systems of given mass that seems
especially constructive (as has long been realized for ecosystems: Lotka 1922;
Ulanowicz 1972), thereby delineating energy flow. Hence, ‘‘energy rate density,’’
symbolized by Um, becomes an operational term whose meaning and measure are
easily understood, indeed whose definition is clear: the amount of energy passing
through a system per unit time and per unit mass. In this way, neither new science
nor appeals to non-science are needed to explain the impressive hierarchy of the
cosmic-evolutionary story, from quarks to quasars, from microbes to minds.

Experimental data and detailed computations of energy rate densities are
reported elsewhere (Chaisson 2011a, b), most of them culled or calculated from
values found in widely scattered journals over many years. In the briefest of
compact summaries:
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• For physical systems, stars and galaxies generally have energy rate densities
(10-3–102 erg/s/g) that are among the lowest of known organized structures.
Galaxies show clear temporal trends in rising values of Um while clustering
hierarchically, such as for our Milky Way, which increased from *10-2 to
0.1 erg/s/g while changing from primitive dwarf status to mature spiral galaxy.
Stars, too, adjust their states while evolving during one or more generations,
their Um values rising while complexifying with time as their interior thermal
and chemical gradients steepen and differentiate; for the Sun, Um increases from
*1 to 120 erg/s/g from young protostar to aged red giant.

• In turn, among biological systems, plants and animals regularly exhibit inter-
mediate values of Um = 103–105 erg/s/g. For plant life on Earth, energy rate
densities are well higher than those for normal stars and typical galaxies, as
perhaps best demonstrated by the evolution of photosynthesizing gymnosperms,
angiosperms, and C4 plants, which over the course of a few hundred million
years increased their Um values nearly an order of magnitude to *104 erg/s/g.
Likewise, as animals evolved from fish and amphibians to reptiles, mammals,
and birds, their Um values rose from *103.5 to 105 erg/s/g, here energy con-
ceivably acting as a fuel for change, partly selecting systems able to utilize
increased power densities, while forcing others to destruction and extinction—
all likely in accord with neo-Darwinian principles.

• Furthermore, for cultural systems, advances in technology are comparable to
those of society itself, each of them energy-rich and having Um C 105 erg/s/g—
hence plausibly among the most complex systems known. Social evolution can
be tracked, again in terms of normalized energy consumption, for a variety of
human-related cultural advances among our ancestral forebears, from early
agriculturists (*105 erg/s/g) to modern technologists (*106.5). Machines, too,
and not just computers, but also ordinary engines that drove the 20th century
economy, show the same trend from primitive devices of the industrial revo-
lution (*105 erg/s/g) to today’s jet aircraft (*107.5).

Of special note often neglected, although the absolute energy in astronomical
systems is vastly larger than in our human selves, and although the mass densities
of stars, planets, bodies, and brains are all comparable, the energy rate density for
people and our society are upwards of a million times greater than for stars and
galaxies. That’s because the quantity Um is an energy rate density. Although, for
example, the Sun emits a vast luminosity, 4 9 1033 erg/s (equivalent to nearly a
billion billion billion Watt light bulb), it also has an unworldly large mass,
2 9 1033 g; thus each second an amount of energy equaling only 2 ergs passes
through each gram of this star. Many colleagues are likewise surprised to realize
that, despite its huge size and scale, the Sun’s mass density is small enough (well
less than a rock) that this star would almost float if we could get it into a bathtub.
By contrast, more energy flows through each gram of a plant’s leaf during pho-
tosynthesis, and much more radiates through each gram of gray matter in our
brains while thinking—which is why we have a hope of deciphering who we are
and the Sun cannot!
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Figure 20.2, which is plotted on the same temporal scale as in Fig. 20.1,
graphically compiles those data compactly presented in the three bullets above,
depicting how physical, biological, and cultural evolution have transformed
homogeneous, primordial matter of the early Universe into organized systems of
increased intricacy and energy rate density—and it has done so with increasing
speed, hence the exponentially rising curve. The graph shows the increase of Um as
measured or computed for representative systems having approximate evolution-
ary times at which they emerged in natural history. (For specific power units of W/
kg, divide by 104.) Values given are typical for the general category to which each
system belongs, yet variations and outliers are inevitable, much as expected for
any simple, unifying précis of an imperfect Universe.

Energy is likely a common currency for all complex, ordered systems. Even for
structures often claimed to be ‘‘self-assembled’’ or ‘‘self-organized,’’ energy is

Fig. 20.2 Energy rate density, Um, for a wide spectrum of systems observed throughout Nature
displays a clear increase during *14 billion years of cosmic history—in fact, an exponential rise
whereby cultural evolution (steep slope at upper right) acts faster than biological evolution
(moderate slope in middle part of curve), and even faster than physical evolution (smallest slope
at lower left). The shaded area includes a huge ensemble of Um values as individual types of
localized systems continued changing and complexifying within the wider Universe that has
become increasingly disordered. The Um values and historical dates plotted here are estimates,
each with outliers and uncertainties; yet it is not their absolute magnitudes that matter most as
much as the perceived trend of Um with the passage of time. The thin dashed oval at upper right
outlines the magnitude of Um and the duration of time plotted in Fig. 20.3
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inexorably involved. Energy flow is among the most unifying processes in all of
science, helping to provide cogent explanations for the origin, evolution, and
complexification of a whole array of systems spanning[20 orders of magnitude in
scale and nearly as many in time—notably, how systems emerge, mature, and
terminate during individual lifetimes as well as across multiple generations.
Robust systems, whether stars, life forms, or civilizations, have optimum ranges of
energy flow; too little or too much and systems abort. Optimality is favored in the
use of energy—not too little as to starve a system, yet not too much as to destroy it;
no maximum energy principles, minimum entropy states, or maximum entropy
production are evident in these data (Lotka 1922; Nicolis and Prigogine 1977;
Prigogine 1978). Better metrics might describe each of the individual systems
governed by physical, biological, and cultural evolution, but no other metric seems
capable of uniformly describing them altogether. The significance of plotting ‘‘on
the same page’’ (as in Fig. 20.2) a single empirical quantity for such an extraor-
dinarily wide range of complex systems observed in Nature should not be
underestimated.

Energy Rate Density of Embodied Brains

Humans deserve more than a passing note in any study of complex systems, not
because we are special but because we are them. Each individual adult normally
consumes *2,700 kcal/day in the form of food to fuel our metabolism. This energy,
gained directly from that stored in other (plant and animal) organisms and only
indirectly from the Sun, is sufficient to maintain our body structure and temperature
as well as drive our physiological functions and tetrapodal movements. (Note that the
thermodynamical definition of a calorie, 1 cal = 4.2 9 107 erg—the amount of heat
needed to raise 1 g of H2O by 1 �C—does not equal a dietician’s large Calorie with a
capital ‘‘C,’’ which is 103 times more energetic than a physicist’s calorie.) Therefore,
with a body mass of 70 kg, a typical adult maintains Um & 2 9 104 erg/s/g while in
good health. Humans have mid-range mammalian metabolic values because our
bodies house average complexity among endothermic mammals, all of which harbor
comparable intricacy, including hearts, livers, kidneys, lungs, brains, muscles, and
guts. Despite our manifest egos, our bodily beings do not have the highest energy rate
density among animals (birds do, probably because they operate in 3 dimensions;
Chaisson 2011b), nor are we more demonstrably complex than many other mam-
malian species.

The energy budget derived here for humans assumes today’s average, sedentary
citizen, who consumes *65 % more than the basal metabolic rate of 1,680 kcal/
day (or Um & 1.2 9 104 erg/s/g) for an adult fasting while lying motionless.
However, our metabolic rates increase substantially when performing occupational
tasks or recreational activities—that’s function, not structure. Even so, Um once
again scales with the degree of complexity of the function. For example, leisurely
fishing, violin playing, tree cutting, and bicycle riding require about 3 9 104,
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5 9 104, 8 9 104, and 2 9 105 erg/s/g, respectively (Ainsworth 2011). Clearly,
jamming a musical instrument or balancing a moving bicycle are complex func-
tions, and therefore more energetically demanding events, than waiting patiently
for fish to bite. Thus, in the biological realm, the value-added quality of func-
tionality does indeed count, in fact quantitatively so. Complex tasks actively
performed by humans on a daily basis are typified by values of Um that are often
larger than those of even the metabolically imposing birds.

Nearly all zoological Um values for bodies are tightly confined to within hardly
more than an order of magnitude of one another—the great majority of specific
metabolic rates for animals vary between 3 9 103 and 105 erg/s/g, despite their
masses ranging over *11 orders of magnitude from fairy flies to blue whales
(Makarieva et al. 2008)—all of them midway between smaller botanical values for
photosynthesizing plants and higher neurological ones for central nervous systems.
This, then, is how humankind, like all of the animal world, contributes to the rise
of entropy in the Universe: We consume high-quality energy in the form of
ordered foodstuffs and then radiate away as body heat (largely by circulating blood
near the surface of the skin, by exhaling warm, humidified air, and by evaporating
sweat) an equivalent amount of energy as low-quality, disorganized infrared
photons. Like the stars and galaxies, we too among all other life forms are
wasteful, dissipative structures (in our case glowing warmly in the infrared as a
130 W bulb), thereby connecting with earlier thermodynamic arguments that some
researchers might (wrongly) think pertinent only to inanimate systems.

Regarding brains, which nuclear magnetic resonance (fMRI) imaging shows are
always electrically active regardless of the behavioral posture (even while resting) of
their parent animal bodies, they too derive nearly all their energy from the aerobic
oxidation of glucose in blood; thus, for brains, basal and active rates are comparable.
Similar trends in rising complexity noted above for bodies are also evident for brains,
though with higher Um brain values for each and every animal type—much as
expected since cerebral structure and function are widely considered among the most
complex attributes of life (Jerison 1973; Allman 1999). Here, some quantitative
details are compiled from many sources, again treating brains as open, non-equi-
librium, thermodynamic systems, and once more casting the analysis of energy flow
through them in terms of energy rate density. (While several other potentially useful
neural metrics exist—cortical neuron numbers, encephalization quotients, and brain/
body ratios (Roth and Dicke 2005)—I have evaluated brains here in terms of their Um

values in order to be scrupulously consistent with the complexity metric used above
for all inanimate and animate systems.) Caution is advised since brain metabolic
values taken from the literature often suffer from a lack of standard laboratory
methods and operational units; many reported brain masses need correction for wet
(live) values (by multiplying measured in vitro dry masses by a factor of 5 since in
vivo life forms, including brains, are *80 % H2O). Note also that the ratio of brain
mass to body mass (used by some neuroscientists as a sign of intelligence) differs
from the ratio of brain power to brain mass (which equals Um); nor is ‘‘brain power’’
the same as that used in colloquial conversation, rather here it literally equals the rate
of energy flowing through the cranium.
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No attempt is made here to survey brain Um values comprehensively, a task
seemingly impossible in any case given the primitive state of neurological data to
date; rather, representative mean values suffice for a spectrum of extant animals.
Comparing mammals and reptiles, Um & 105 erg/s/g for mice brains (in contrast
to *4 9 104 for their whole bodies) exceeds *5 9 104 erg/s/g for lizard brains
(*3 9 103 for their bodies) (Hulbert and Else 1981); this is generally the case for
all such animal taxa as Um values are somewhat greater for mammalian brains than
those for reptilian brains by factors of 2–4, and those for mammal bodies by
roughly an order of magnitude (Hofman 1983). The great majority of vertebrate
fish and amphibians show much the same 5–10 times increase in brain over body
Um values (Freeman 1950; Itazawa and Oikawa 2005), with, as often the case in
biology, some outliers (Nilsson 1996). Even many invertebrate insects show
several factors increase in Um values for their brains (*5 9 104) compared to
their bodies (*104), most notably the flying insects (Kern 1985). Among mam-
mals alone, primates have not only high brain/body mass ratios but also relatively
high Um brain values (*2 9 105 erg/s/g). Although primates allocate for their
brains a larger portion (8–12 %) of their total bodily (resting) energy budget than
do non-primate vertebrates (2–8 %) (Armstrong Armstrong 1983; Hofman 1983;
Leonard and Robertson 1992), average primate brains’ Um values tend to be
comparable to those of brains of non-primates; Um brain values remain approxi-
mately constant across 3 orders of magnitude in mammalian brain size (Karbowski
2007). As with bodies above, brains do not necessarily confer much human
uniqueness; brains are special, but all animals have them, and our neural qualities
seem hardly more than linearly scaled-up versions of those of other primates
(Azevedo et al. 2009). Even so, brain function and energy allocation are revealing:
Among living primates, adult humans (*1.5 9 105 erg/s/g for brains and
*2 9 104 for bodies) seem to have the highest brain power per unit mass—that is,
not merely *10 times higher Um than for our bodies, but also slightly higher than
for the brains of our closest, comparably massive, ape relatives, including chim-
panzees. This substantial energy–density demand to support the unceasing elec-
trical activity of myriad neurons within our human brains, which represent only
*2 % of our total body mass yet account for 20–25 % of the total bodily energy
intake (Clarke and Sokoloff 1999), testifies to the disproportionate amount of
worth Nature has invested in evolved brains—and is striking evidence of the
superiority of brain over brawn.

The tendency for complex brains to have high Um values, much as for complex
whole animal bodies, can be tentatively correlated with the evolution of those
brains among major taxonomic groups (Allman 1999). Further, more evolved
brains tend to be larger relative to their parent bodies, which is why brain-to-body-
mass ratios also increase with evolution generally—mammals more than reptiles,
primates notable among mammals, and humans foremost among the great apes
(Hofman 1983; Roth and Dickey 2005). Part of the reason is that relatively big
brains are energetically expensive. Neurons use energy as much as 10 times faster
than average body tissue to maintain their (structural) neuroanatomy and to
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support their (functional) consciousness; the amount of brain devoted to network
connections increases disproportionately with brain size and so does the clustering
and layering of cells within the higher-processing neocortex of recently evolved
vertebrates (Stevens 2001; Jarvis 2005). Much of this accords with the ‘‘expensive
tissue hypothesis’’ (Aiello and Wheeler 1995; Isler and van Schaik 2006; Na-
varrete et al. 2011), which posits that high brain/body ratios are indeed more
energetically costly, at least for mammals and many birds, that energy flow
through brains is central to the maintenance of relatively large brains, especially
for primates, and that relatively large brains evolve when either brain energy input
increases or energy allocation shifts to the brain from other bodily organs or fat
reserves. Although the human brain’s metabolic rate is not much greater than for
selected organs, such as the stressed heart or active kidneys, regional energy flux
densities within the brain greatly exceed (often by an order of magnitude) most
other organs at rest. The pressures of social groups and social networking might
also drive growth in brain size, cognitive function, and neurophysiological com-
plexity along insect, bird, and primate lineages (Dunbar 2003; Smith et al. 2010);
evolving societies require even more energy to operate, at least for humankind
advancing (cf. next section). Throughout Earth’s biosphere, the high-energy cost
of brains might reasonably limit brain size and constrain natural selection’s effect
on an animal’s survival or reproductive success; indeed, the brain is the first organ
to be damaged by any reduction in O2. This, then, is the observed, general trend
for active brains in vivo: not only are brains voracious energy users and demon-
strably complex entities, but evolutionary adaptation also seems to have favored
for the brain increasingly larger allocations of the body’s total energy resources.

Among more recent prehistoric societies of special relevance to humanity, the
genus Homo’s growing encephalization during the past *2 million years may be
further evidence of natural selection acting on those individuals capable of
exploiting energy- and protein-rich resources as their habitats expanded (Foley and
Lee 1991). By deriving more calories from existing foods and reducing the
energetic cost of digestion, cooking was likely central among cultural innovations
that allowed humans to support big brains (Wrangham 2009). Energy-based
selection would have naturally favored those hominids who could cook, freeing up
more time and energy to devote to other things—such as fueling even bigger
brains, forming social relationships, and creating divisions of labor, all of which
arguably advanced culture. As with many gauges of human intelligence, it’s not
absolute brain size that apparently counts most; rather, brain size normalized by
body mass is more significant, just as the proposed Um complexity metric is
normalized by mass, here for brains as well for all complex systems at each and
every stage along the arrow of time, from big bang to humankind.

The net finding for brains, broadly stated though no less true for the vast
majority of animals, is that their Um values are systematically higher than those for
the bodies that house them. Nearly all such brain values fall within a rather narrow
range of Um between lower biological systems (such as plants) and higher cultural
ones (such as societies). Although absolute brain masses span *6 orders of
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magnitude, from insects to whales, their Um brain values cluster within a few
factors, more or less depending upon their absolute size and evolutionary prove-
nance, of *105 erg/s/g.

Energy Rate Density of Humankind Advancing

For cosmic evolution to qualify as a comprehensive scientific worldview, human
society and its many cultural achievements should be included, anthropocentric
criticisms notwithstanding. Nature, alone and without sentient, technological
beings, could not have built the social systems and technological devices char-
acterizing our civilization today. Humankind itself is surely a part of Nature and
not apart from it; schemes that regard us as outside of Nature, or worse atop
Nature, are misguided. To examine how well, and consistently so, cultural systems
resemble physical and biological systems—and thus to explore cultural evolution
in a cosmic context—this section explores the evolution of cultural complexity as
quantified by the same heretofore concept of energy rate density. (Some colleagues
prefer to relabel long-term cultural evolution as ‘‘post-biological evolution,’’
especially as regards clever machines that may someday outwit flesh-and-blood
humans (Dick 2003); they assert that technological civilization is guided by
intelligence and knowledge, yet both these factors resemble the earlier-abandoned
information theory. By contrast, I aim to skirt the vagueness of social studies while
embracing once again empirical-based energy flow as a driver of cultural evolu-
tion—especially, in the interest of unification, if that driver manifests the same
common process that governs physical and biological evolution as well.)

Consider modern civilization en masse, which can be deemed the totality of all
humanity comprising a (thermodynamically) open, complex society going about
its usual business. Today’s *7 billion inhabitants utilize *18 TW to keep our
global culture fueled and operating, admittedly unevenly distributed in developed
and undeveloped regions across the world (U.N. 2008). The cultural ensemble
equaling the whole of humankind then averages Um & 5 9 105 erg/s/g. Here
human society is taken to mean literally the mass of humanity, not its built
infrastructure (of buildings, roadways, etc.), for what matters is the flow of energy
through the aggregated human social network. Unsurprisingly, a group of brainy
organisms working collectively is more complex than all of its individual human
components (who each consume an order of magnitude less energy, lest our bodies
fry), at least as regards the complexity criterion of energy rate density—a good
example of the ‘‘whole being greater than the sum of its parts,’’ a common
characteristic of emergence fostered by the flow of energy through organized, and
in this case social, systems.

Rising energy expenditure per capita has been a hallmark in the origin,
development, and evolution of humankind, an idea dating back decades (White
1959; Adams 1975). Culture itself is often defined as a quest to control greater
energy stores (Smil 1994). Cultural evolution occurs, at least in part, when far-
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from-equilibrium societies dynamically stabilize their organizational posture by
responding to changes in flows of energy through them. A quantitative treatment
of culture, peculiar though it may be from a thermodynamic viewpoint, need be
addressed no differently than for any other part of cosmic evolution (Nazaretyan
2010). Values of Um can be estimated by analyzing society’s use of energy by our
relatively recent hominid ancestors, and the answers illustrate how advancing
peoples increasingly supplemented their energy budgets beyond the 2–3,000 kcal/
day that each person actually eats as food (Cook 1976; Bennett 1976; Simmons
1996; Spier 2005; Chaisson 2008; 2011a): Hunter-gatherers *300,000 years ago
used *3 9 104 erg/s/g, agriculturists *10,000 years ago increased energy
expenditure to *105, industrialists beginning nearly two centuries ago utilized
*5 9 105, and today’s technologists in the most developed countries use
*2 9 106. Underlying, and quite possibly driving, all this cultural advancement
was not only greater energy usage but also greater energy usage per capita (i.e., per
unit mass) at each and every step of the way.

Much of this social advancement is aided and abetted by culturally acquired
knowledge accumulated from one generation to the next, including client selec-
tion, rejection, and adaptation, a decidedly Lamarckian process. Cultural inven-
tiveness enabled our immediate ancestors to evade some environmental
limitations: Hunting and cooking allowed them to adopt a diet quite different from
that of the australopithecines, while clothing and housing permitted them to col-
onize both drier and colder regions of planet Earth. Foremost among the cultural
advances that helped make us technological beings were the invention and utili-
zation of tools, which require energy to make and use, all the while decreasing
entropy within those social systems employing them and increasing it elsewhere in
wider environments beyond. The 2nd law demands that as any system com-
plexifies—even ‘‘smart’’ human-centered systems—its surroundings necessarily
degrade. Thermodynamic terminology may be unfamiliar to anthropologists or
historians, but the fundamental energy-based processes governing the cultural
evolution of technological society are much the same, albeit measurably more
complex, as for the evolution of stars, galaxies, and life itself (Adams 2010). As
for biological organisms before them, specialization permits social organizations
to process more energy per unit mass and this is reflected in increased Um values
over the course of time.

Notable among social practices widespread on Earth today, not only in
developed countries but also intensifying rapidly in undeveloped countries, is
technology. Advancement of machines is a premier feature of cultural evolution—
and also one that increases order in manufactured products mainly by means of
energy expenditures that inevitably ravage the larger environment of raw materials
used to make those goods. Of today’s many cultural icons, surely one of the most
prominent is the automobile, which for better or worse has become an archetypical
symbol of technological innovation worldwide. Values of Um can be calculated for
today’s average-sized automobiles, whose typical properties are *1.6 tons of
mass and *106 kcal of gasoline consumption per day; the result, *106 erg/s/g
(assuming 6 h of daily operation), is likely to range higher or lower by several
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factors, given variations among vehicle types, fuel grades, and driving times, yet
this average value accords well with that expected for a cultural invention of
considerable magnitude. Put another way to further illustrate evolutionary trends
and using numbers provided by the U.S. government (U.S. Highway Traffic Safety
Administration 2005) for the past quarter-century, the horsepower-to-weight ratio
(in English units of hp/100 lb) of American passenger cars has increased steadily
from 3.7 in 1978 to 4.1 in 1988 to 5.1 in 1998 to 5.5 when last compiled in 2004;
converted to the units of Um used here, these values equal 6.1, 6.7, 8.4, and 9.1, all
times 105 erg/s/g respectively. Not only in and of themselves but also when
compared to less powerful and often heavier autos of [50 years ago (whose Um

values are less than half those above), the trend of these numbers confirms once
again the general correlation of Um with complexity, for who would deny that
modern automobiles, with their electronic fuel injectors, computer-controlled
turbochargers, and a multitude of dashboard gadgets are more culturally complex
than Ford’s model-T predecessor of a century ago? The bottom line is that more
energy is required per unit mass to operate the newer vehicles—a rise in Um that
will almost certainly continue as machines soon fundamentally switch their inner
workings by substituting lightweight electrons for burning fuel and fast computers
for mechanical linkages.

The connection between complexity and the advance of cultural evolution can be
more closely probed by tracing the changes in internal combustion engines that
power automobiles among many other machines such as gas turbines that propel
aircraft (Smil 1999). To be sure, the brief history of machines can be cast in evolu-
tionary terms, replete with branching, phylogeny, and extinctions that are strikingly
similar to billions of years of biological evolution—though here, cultural change is
again less Darwinian than Lamarckian, hence quicker too. Energy remains a driver
for these cultural evolutionary trends, reordering much like physical and biological
systems from the simple to the complex, as engineering improvement and customer
selection over generations of products made machines more elaborate and efficient.
Modern automobiles are better equipped and mechanically safer than their simpler,
decades-old precursors, not because of any self-tendency to improve, but because
manufacturers constantly experimented with new features, keeping those that
worked while discarding the rest, thereby acquiring and accumulating successful
traits from one generation of cars to the next. For example, the pioneering 4-stroke,
coal-fired Otto engine of 1878 had a Um value (*4 9 104 erg/s/g) that surpassed
earlier steam engines (*104 erg/s/g), but it too was quickly bettered by the single-
cylinder, gasoline-fired Daimler engine of 1899 (*2.2 9 105 erg/s/g), more than a
billion of which have been installed to date in cars, trucks, aircraft, boats, lawnm-
owers, etc., thereby acting as a signature force in the world’s economy for more than a
century. Today’s mass-produced automobiles, as noted in the previous paragraph,
average several times the Um value of the early Daimler engine, and some intricate
racing cars can reach an order of magnitude higher still. Among aircraft, the Wright
brothers’ 1903 homemade engine (*106 erg/s/g) was superseded by the Liberty
engines of World War I (*7.5 9 106 erg/s/g) and then by the Whittle-von Ohain gas
turbines of World War II (*107 erg/s/g). Boeing’s 707 airliner inaugurated
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intercontinental jet travel in 1959 when Um reached *2.3 9 107 erg/s/g, and
civilian aviation evolved into perhaps the premier means of global mass transport
with today’s 747-400 wide-body, long-range jet whose engines create up to 110 MW
to power this 180 ton craft to just below supersonic velocity (Mach 0.9) with
Um & 2.7 9 107 erg/s/g.

The cultural rise of Um can be traced particularly well over several generations
of jet-powered fighter aircraft of the U.S. Air Force (though here engine thrust
must be converted to power, and for unloaded military jets operating nominally
without afterburners typically 1 N & 500 W, for which Um values then relate to
thrust-to-weight ratios). First-generation subsonic aircraft of the late 1940, such as
the F-86 Sabre, gave way to 2nd-generation jets including the F-105 Thunderchief
and then to the 3rd-generation F-4 Phantom of the 1960s and 1970s, reaching the
current state-of-the-art supersonic F-15 Eagle now widely deployed by many
western nations; 5th-generation F-35 Lightning aircraft will soon become opera-
tional. (Fighter F-number designations do not follow sequentially since many
aircraft that are designed never get built and many of those built get heavily
redesigned.) These aircraft not only have higher values of Um than earlier-era
machines, but those energy rate densities also steadily rose for each of the 5
generations of military aircraft R&D during the past half century—2.6, 4.7, 5.7,
6.1, and 8.2, all times 107 erg/s/g respectively, and all approximations for their
static engine ratings (U.S. Air Force 2010).

Stunning advances in computer technology can also be expressed in the same
quantitative language—namely, the rate of energy flowing through computers
made of densely compacted chips. In all cases, Um values reveal, as for engines
above, not only cultural complexity but also evolutionary trends. (To make the
analysis manageable, I have examined only computers that I personally used in my
career, except for the earliest such device.) The ENIAC of the 1940s, a room-sized,
8.5 ton, 50 kW behemoth, transformed a decade later into the even larger and
more powerful (125 kW) UNIVAC with *5,200 vacuum tubes within its 14.5 ton
mainframe. By the 1970s, the fully transistorized Cray-1 supercomputer managed
within each of its several (\1 ton, *22 kW) cabinets less energy flow yet higher
energy rate density as computers began shrinking. By 1990 desktop computers
used less power but also amassed less bulk (*250 W and *13 kg), making Um

still high. And now, MacBook laptops need only *60 W to power a 2.2 kg chassis
to virtually equal the computational capability and speed of early supercomputers.
During this half-century span, Um values of these cultural systems changed
respectively: 6.4, 9.5, 32, 20, and 28, all times 104 ergs/s/g. Although the power
consumed per transistor decreased with the evolution of each newer, faster, and
more efficient computer generation, the energy rate density increased because of
progressive miniaturization—not only for the transistors themselves, but also for
the microchips on which they reside and the computers that house them all. This
growth of Um parallels Moore’s law (Moore 1965)—whereby transistor numbers
etched on silicon chips double roughly every 18 months—and may be the
underlying reason for it.
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Although these and other cultural Um values often exceed biological ones,
machines are not claimed here to be ‘‘smarter’’ than we humans. Values of Um for
today’s computers approximate those for human brains largely because they
number-crunch much faster than do our neurological networks; even laptops now
have central-processing units with immense computational features and not sur-
prisingly, in cultural terms, high Um values. That doesn’t make microelectronic
devices more intelligent than humans, but it does arguably make them more
complex, given the rapid rate at which they functionally process data—and not
least consume energy per unit mass. Accordingly, our most advanced aircraft have
even higher Um values than our most sophisticated computers. Modern flying
machines rely on computers but also possess many additional, technologically
advanced widgets that together require even more energy density, making them
extraordinarily complex. That computers per se are amazingly complex machines,
but not amazing enough for them to fly on their own, does suggest that perhaps
there is something significant—and inherently more complex—about both living
species and technical devices that can operate in 3-D environments on Earth;
whether insects, birds, or cutting-edge aircraft, airborne systems exhibit higher
values of Um within each of their respective categories, more so to execute their
awesome functions than to support their geometrical structures.

Much of this cultural advancement has been refined over many human gener-
ations, transmitted to succeeding offspring not by genetic inheritance but by use
and disuse of acquired knowledge and skills. Again a mostly Lamarckian process
whereby evolution of a transformational type proceeds via the passage of adopted
traits, cultural evolution, like physical evolution, involves neither DNA chemistry
nor genetic selection that characterize biological evolution. Culture enables ani-
mals to transmit modes of living and survival to their descendants by non-genetic,
meme-like routes; communication passes behaviorally, from brain to brain and
generation to generation, and that is what causes cultural evolution to act so much
faster than biological evolution (Dennett 1996; Blackmore 1999; Denning Den-
ning 2009). Even so, a kind of selection acts culturally, arguably guided by energy
use (Chaisson 2011a); the ability to start a fire or sow a plant, for example, would
have been major selective advantages for those hominids who possessed them, as
would sharpening tools or manipulating materials. The result is that selection
yielded newer technologies and systematically cast older ones into extinction,
often benefiting humanity over the ages. It is this multitude of cultural advance-
ments in recent times that has escalated and complexified change—advancements
which, in turn with the scientific method that derives from them, enable us to
explore, test, and better probe the scenario of cosmic evolution.

Figure 20.3 collates all of the above-cited human- and machine-related values
of Um, noting that these data pertain only to the uppermost part of the graph in
Fig. 20.2. That’s because modern society and our technological inventions are, in
the cosmic scheme of things, only very recent advances in the rising complexity of
generally evolving systems in the Universe.
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Discussion: The Technological Singularity in Perspective

Today’s civilization runs on energy for the simple reason that all complex,
functioning systems need energy to survive and prosper. Whether aging stars,
twirling galaxies, buzzing bees or redwood trees, it is energy that keeps open, non-
equilibrium systems ordered and operating—to help them, at least locally and
temporarily, avoid a disordered state (of high entropy) demanded by the 2nd law of
thermodynamics. Whether living or non-living, dynamical systems need flows of
energy to endure. If stars do not fuse matter into heat and light, they collapse; if
plants fail to photosynthesize sunlight, they shrivel and decay; if humans stop
eating, they die. Likewise, human society’s fuel is energy: Resources come in and
wastes go out while civilization conducts its daily business.

Throughout the long and storied, yet meandering, path of cosmic evolution,
many complex systems have come and gone. Most have been selected out of
Nature by Nature—destroyed and gone extinct—probably and partly because they
were unable to utilize optimum amounts of energy per unit time and per unit mass;
in all aspects of evolution, there are few winners and mostly losers. Is humankind
among the preponderance of systems destined for extinction—owing perhaps to
environmental degradation, societal collapse, or loss of control to machines? Will
machines dominate us in the future, or might we merge with them to our mutual

Fig. 20.3 Machines of the fast-paced 21st century not only evolve culturally, but are also doing
so more quickly than humans evolve, either culturally or biologically—hence the reality,
numerically delineated here, of a technological singularity. This graph shows some representative
cultural systems that populate the uppermost part of the Um curve plotted in Fig. 20.2. The time
scale here covers only the past few million years, which is merely 0.02 % of the entire temporal
scale of cosmic history illustrated in Figs. 20.1 and 20.2. This is a log–log plot, allowing
meaningful display of data for society (plotted as Os linked by a dashed line) and for machines
(Xs linked by a dotted line) over millions and hundreds of years, respectively, in the same figure.
The value of Um for the human brain is also indicated—but note well that Um is a proposed
measure of complexity, not necessarily of intelligence
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benefit? Would a technological singularity be good, bad, or irrelevant for us? Just
what is the technological singularity and can we quantitatively assess its impli-
cations in ways that go beyond mere words?

To my mind, there is no purpose to any of the observed growth in universal
complexity—no overt design or grand plan evident in cosmic evolution. Nor is
there any obvious progress either; we who study Nature make progress while
deciphering this grand scenario, but no compelling evidence exists that the cosmic-
evolutionary process itself is progressive (as in ‘‘movement toward a goal or
destination’’). Admittedly I cannot prove these statements, which are themselves
hardly more than squishy opinions. As a confirmed empirical materialist, my forte
is to closely observe Nature and to numerically test conjectures about it—a
mainstream application of the traditional scientific method. Not that subjectivity is
absent in science while it’s practiced; rather, objectivity eventually emerges only
after much quantitative probing of qualitative ideas. Those ideas that pass the test
of time survive—and those that don’t are discarded; theoretical ideas are subject to
selection and adaptation much like the complex material systems featured in this
article. Hence my skepticism of parts of this volume that entail merely, mostly, and
often exclusively beliefs, pronouncements, and speculations.

In the interest of full disclosure, I am also skeptical of much of what constitutes
frontier physics these days. Progress toward a unified understanding of Nature
need not postulate metaphysical schemes in abstract cosmology or untestable ideas
in theoretical physics; nor does it necessarily require multiple universes, extra
dimensions, or string theories for which there is no direct evidence (Greene 2011;
Kragh 2011). A coherent, phenomenological explication of what is actually
observed in our singular, four-dimensional universe populated mainly with gal-
axies, stars, planets, and life comprises a useful advance in comprehending, and to
some extent unifying, the extended, diverse world around us. That is the intel-
lectual stance from which I prefer to examine the idea of a technological
singularity.

Figure 20.1 places cultural evolution on Earth during the past *50 thousand
years into the larger perspective of the more inclusive scenario of cosmic evolution
that spans *14 billion years. The arrow of time is an artistic graphic, not a
numerical graph per se; it need not be examined closely. Figure 20.2 is that
numerical graph and one that merits focused scrutiny, indeed one for which the
key factor of this article—energy rate density—is plotted against precisely the
same linear temporal scale as in Fig. 20.1. It compactly displays the rise of Um for
a wide array of systems throughout universal history to date. It rank-orders
complex systems from the early Universe to civilization on Earth. And it shows,
during each of the physical, biological, and cultural phases, how Um rose
increasingly rapidly—the growth of Um accelerated. That, then, is what acceler-
ates—Um, the rate at which increasingly complex systems utilize energy—and it
puts meat on the bones of all those soft and airy claims over the years that
‘‘something’’ is accelerating in our sophisticated world today. To be clear, on a
linear plot as in Fig. 20.2, the whole graph taken together shows an exponentially
rising trend; the slope of the curve is steeper for cultural evolution than for
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biological evolution, which in turn is steeper than for physical evolution. At least
in terms of the Um diagnostic discussed here, it seems unequivocal that the central
mechanism of cosmic evolution, and the complexity products derived therefrom,
have indeed accelerated with the march of time over billions of years.

Furthermore, though not shown here as much as elsewhere in detail (Aunger
2007; Chaisson 2011a, b), Um rises exponentially for each type of complex system
only for limited periods of time, after which their sharp rise often tapers off.
Caution is warranted in order not to over-interpret these data, yet some but not all
complex systems seem to slow their rate of growth while following a classic S-
shape curve—much as microbes do in a petri dish while replicating unsustainably
or as human population is expected to plateau later this century. That is, Um values
for a whole array of physical, biological, and cultural systems grow quickly during
their individual evolutionary histories and then level off throughout the shaded
area of Fig. 20.2 (whose drawn curve is then the compound sum of multiple
S-curves); Um for viable, complex systems show no noticeable decrease, rather
often depict decreased rates of growth and S-shaped inflection perhaps once those
systems have matured (Chaisson 2012). Some colleagues assume that means Um

decreases—it does not, at least not for surviving systems able to command optimal
energy; others interpret that as complexity declining—but it also does not. The rate
of change of Um—which is itself a rate—might eventually decrease, but that
means only that complexity’s growth rate is lessening, not the magnitude of
complexity per se.

Figure 20.3 allows a closer, numerical examination of the notion of a techno-
logical singularity—an occasion of some significance now probably underway
during Earth’s cultural evolution, which surely does transcend biological evolu-
tion. Note that the graph in Fig. 20.3 pertains only to the uppermost part of the
curve in Fig. 20.2 and furthermore that this plot is not temporally linear; it is fully
logarithmic. As such, the (dashed and dotted) straight lines exhibit exponential
growth—as indicated individually for society advancing (plotted as Os, topped by
modern technologists in developed countries today) and for machines rising
(plotted as Xs, topped by 3-D, computer-controlled, military aircraft). Prima facie,
the plotted graph does literally seem to display transcendence, as commonly
defined ‘‘going beyond, surpassing, or cutting across,’’ of machines over human-
kind. This is often claimed to be an event beyond which human affairs cannot
continue—akin to mathematical singularities beset by values that transcend finite
limitations—one for which humankind and the human mind as we currently know
them are superseded and perhaps supplanted by strong, runaway, even transhuman
artificial intelligence (Von Neumann and Ulam 1958; Kurzweil 2005). Alas, data
in this paper are not accurate enough to test this unsettling fate.

The sum of the two curves for today’s dominant cultural systems en toto results
in faster-than-exponential growth—that is, the combined curve, dashed plus dotted
in Fig. 20.3, sweeps upward on a log–log plot. Cultural change is indeed rapidly
accelerating and the Um data prove it. However, the data of Fig. 20.3 imply no
evidence for a singularity of singular import or uniqueness. The technological
singularity, which seems real and oncoming, may be central (and even threatening)

20 A Singular Universe of Many Singularities 433



to beings on Earth, yet is only one of many exceptional events throughout natural
history, and unlikely more fundamental than many other profound evolutionary
developments among complex systems over time immemorial. The cosmic-evo-
lutionary narrative comprises innumerable transcendent phenomena that can be
regarded as singularities all across the arrow of time in Fig. 20.1 and all the way
up the rising curve of Um in Fig. 20.2, including but by no means solely the birth
of language (transcending symbolic signaling), the Cambrian explosion (land life
transcending sea life), the onset of multicells (clusters transcending unicells), the
emergence of life itself (life transcending matter), and even before that the origin
and merger of stars and galaxies, among scores of prior and significant evolu-
tionary events that led to humankind and its current existential crisis. Singular-
tarians need to think bigger and broader, thereby embracing the transformative
concept of singularity in wider, cosmic settings extending all the way back along
the arrow of deep time in reverse.

All things considered, this much seems evident from Fig. 20.3:

• Um is increasing for humans and for machines, with the latter system rising
faster

• Um for humans and machines individually might each be slowing their rates of
growth

• Um for both humans and machines collectively accelerates hyper-exponentially
• a technological singularity, viewed as an evolutionary milestone, is indeed near.

Must we fear machines? Will they dominate or displace us, or merely aid us?
The Um data to date are not reliable enough to extrapolate an answer to these
fateful questions, and in any case evolution is not a predictive science. Random
chance always works in tandem with deterministic necessity, the two comprising
natural selection that acts as a ruthless editor or pruning device to delete those
systems unable to command energy in optimal ways; that is why ‘‘non-random
elimination’’ is perhaps a better term for natural selection broadly applied to all
complex systems (Mayr 1997). Thus, and sadly for those who agonize about future
outcomes, Um analyses cannot presently determine if humans will merge with
machines or be overwhelmed by them in the coming years—although the data of
Fig. 20.3 do imply that some machines are already more complex (higher Um) than
the humans and their brains who created them. Given that so many aspects of
Nature are neither black nor white, rather shades of grey throughout, it is not
inconceivable that humankind could survive while becoming more machine-like,
all the while machines become more human-like—these two extremely complex
systems neither merging nor dominating, as much as coexisting. After all, earlier
evolutionary milestones that could easily have been considered transcendent sin-
gularities at the time—such as galaxies spawning complex stars, primitive life
emerging on hostile Earth, or plants and animals adapting for the benefit of each—
did not result in dominance, but rather coexistence.

Men and machines need not compete, battle, or become mutually exclusive;
they might well join into a symbiotically beneficial relationship as have other past
complex systems, beyond which even-higher Um systems they—and we—may
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already be ascending with change, that is, evolving a whole new complex state that
again becomes greater than the sum of its parts. The technological singularity—
one of many other singularities among a plethora of evolutionary milestones in
natural history and not likely the pinnacle or culmination of future cosmic evo-
lution—fosters controversy because it potentially affects our human selves, and
even elicits calls for ethical constraints and regulatory restrictions on technological
innovation and advancement. Should we strive to preserve our essential humanity
and halt the growth of machines? To my mind, given the natural rise in an
expanding Universe of the curves in Figs. 20.2 and 20.3, we should not and could
not.

The culturally increasing Um values reported here—whether slow and ancestral
such as for controlling fire and tilling lands by our provincial forebears, or fast and
modern as with operating engines or programming computers in today’s global
economy—relate to evolutionary events in which energy flow and cultural
selection played significant roles. All of this complexification, which has decidedly
bettered the quality of human life as measured by health, education, and welfare,
inevitably came—and continues to come—at the expense of greatly increased
demand for more and enriched energy, which now drives us toward a fate on Earth
that remains unknown.

Summary

Cosmic evolution is more than a subjective, qualitative narration of one unrelated
event after another from big bang to humankind. This extensive scientific scenario
provides an objective, quantitative framework that supports much of what com-
prises material Nature. It addresses the coupled topics of system change and rising
complexity—the temporal advance of the former having apparently led to the
spatial growth of the latter, yet the latter feeding back to make the former
increasingly productive. It implies that basic differences both within and among
the many varied complex systems in the Universe are of degree, not of kind. And it
contends that evolution, broadly construed, is a universal concept, indeed a uni-
fying principle throughout modern science.

More than perhaps any other single factor, energy plays a central role
throughout the physical, biological, and cultural sciences. Energy seems to be an
underlying, universal driver like no other in the evolution of all things, serving as a
common currency in the potential unification of much of what is actually observed
in Nature. Energy rate density, in particular, is an unambiguous, weighted measure
of energy flow, enabling assessment of all complex systems in like manner—one
that gauges how over the course of natural history writ large some systems opti-
mally commanded energy and survived, while others apparently could not and did
not.

Human society and its invented machines are among the most energy-rich
systems known, hence plausibly the most complex yet encountered in the
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Universe. Cultural innovations, bolstered by increased energy allocation as
numerically tracked by rising Um values, enable 21st century H. sapiens not only to
circumvent the degrading environment on Earth but also to challenge it, indeed
manipulate it. Technological civilization and its essential energy usage arguably
act as catalysts, speeding the course of cultural change, which like all of cosmic
evolution itself is unceasing, uncaring, and unpredictable.

Whatever our future portends—whether a whole new phase of cosmic evolution
or merely the next, gradual step in cultural evolution, be it complex survival or
simple termination—it will be a normal, natural outcome of cosmic evolution
itself. For humanity, too, is part of Nature—and however humbling, we are likely
just another chapter in a meta-story yet unfinished. Grand evolutionary events such
as the oncoming technological singularity of human–machine interplay have
occurred in the past many billions of years, and they will likely continue occurring
indefinitely, forevermore yielding creativity and diversity in a Universe that
expands, accelerates, and evolves. Think big, accept change, use energy wisely,
adapt and prosper.
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Chapter 20A
Theodore Modis on Chaisson’s ‘‘A Singular Universe
of Many Singularities: Cultural Evolution
in a Cosmic Context’’

The concept of Um is the best attempt at rigorously quantifying complexity that I
have seen, albeit with shortcomings, e.g. no one will accept that bicycle riding is
ten times more complex than violin playing or that a jet engine is 1000 times more
complex than a mammalian organism! My attempt to quantify complexity (dis-
cussed in the second part of my essay) is only in relative terms and is based on data
that may be subject to subjective judgment. Of course there must have also been
some subjective estimates in Chaisson’s data, for example, in the calculation of
Energy Rate Densities of hunter-gatherers, agriculturists, industrialists, etc., which
may mask a leveling-off of the straight-line trend of the O data points in Fig. 20.3,
similar to the visible leveling-off of the X data points. These leveling-offs are
evidence that we are dealing with S-curves and combined with the acknowledged
leveling-off of the two early curves in Fig. 20.2, reinforces the general conclusion
that exponential trends of Phi are in fact early parts of S-curves.

Chaisson is being conservative. He modestly says that ‘‘I sense, but cannot
prove, that information is another kind of energy’’ while he could have easily
argued that information content is proportional to entropy which is equal to Q/T
(heat over temperature), which IS energy. He also says that the drawn curve of the
shaded area of Fig. 20.2 is the compound sum of multiple S-curves, but stops short
of using S-curves to extrapolate it into the future. In fact he refrains from com-
mitting himself to any future eventuality one way or another. (One would have
welcomed at least an educated guess from such an expert!)

Having spent most of my career with S-curves I can see in Chaisson’s Fig. 20.3
that the two ‘‘S-curves’’ depicted by the dashed and dotted lines determine the
shape of the late part of the third ‘‘S-curve’’ labeled society on Fig. 20.2. Fur-
thermore, these two curves in Fig. 20.3 have life cycles that become shorter with
time (acceleration effect). Life cycles getting shorter is evidence for saturation. As
I mention in my essay there is a fractal aspect to S-curves. A large-scale S-curve
can be decomposed to smaller constituent S-curves the life cycles of which
become shorter as we approach the ceiling of the envelope curve (see also pub-
lication http://www.growth-dynamics.com/articles/Fractal.pdf). I can then con-
jecture that the line labeled society in Fig. 20.2 is an S-curve that presently finds
itself beyond its midpoint, i.e. experiences a progressive slowdown of its rate of
growth. An imminent slowdown in the rate of growth of Phi (and complexity)
corroborates a similar conclusion in my essay.
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