
Chapter 5

Radiative Transfer and Heat Conduction

We show in this chapter how to estimate the value of several material properties,
such as single scattering albedo and thermal conductivity, present in the heating
process of a material with thermal radiation.

The inverse problems considered here deal with the estimation of a finite num-
ber of parameters, related to an infinite dimensional model. These problems are
solved as finite dimensional optimization problems, using the Levenberg-Marquadt
method, which is a variant of Newton’s method for non-linear systems of equations.
In an intermediary step, this method includes a regularization, similar to Tikhonov’s
regularization (Section 3.4).

This chapter deals with inverse identification problems. According to Table 2.3,
page 48, they are classified as Type III inverse problems.

5.1 Mathematical Description

Consider the example depicted in Fig. 5.1, of a material body subjected to heating
due to thermal radiation. Assume we can regulate the intensity and the position of
the heat sources and that we perform temperature measurements in some material
body points, using temperature sensors1.
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Fig. 5.1 Schematic representation of a participating medium (absorbent, emittant, and scat-
terer) being subject to radiation originated in external sources. Here Z represents material
properties, X intensity of external sources of radiation and W = I(Z,X) measurements of
temperature at several positions within the material body.

1 In this example the measurements involve only temperature. Notwithstanding, problems
involving thermal radiation measurements are discussed within this chapter, as well.
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We denote by W a vector representing the output of this physical system, given
by the resulting set of temperature measurements, comprising measurements in sev-
eral specific points. By X we denote values representing levels and types of the
regulation of the system (external sinks or sources), i.e. systems input, and by Z the
physical/material properties of the body which influence the system’s output.

The question is: given temperature measurements, W, and knowing the value of
the regulation, X, obtain an estimate, Z, of the physical properties values.

In a general way, consider the question of obtaining an estimate, Z, for some con-
stants, present in a mathematical model for a physical system’s output. This output is
represented by a physical magnitude, W, obtained from experimental measurements
of the real output of the physical system.

The hypotheses used throughout this chapter are

Z = (Z1, . . . , ZN)T ∈ RN , W = (W1, . . . ,WM)T ∈ RM ,

and X can be an element of RK , or even a function. We represent the dependence of
W in Z and X in a functional form by W = I(Z,X).

The dependence of I = (I1, . . . , IM)T on Z can be explicit —as was the case
considered in Chapter 1, when the relationship between the system inputs, x, and
the system outputs, y, was given by a linear function, R3 � x �→ Ax ∈ R3,— or
implicit, if W and Z satisfy a given, possibly non-linear, system of equations, which
would be written as

G(W,Z,X) = 0 ,

for some known function G : RM ×RN ×RK → RM .
Another possibility is when Z is a parameter of a differential or integro-differential

equation, and W represents some observation of its solution (such as the value of
the solution in some points of the domain, or an average of the solution for some
part of the domain) [68, 81]. In this case, X can be the value of an initial or boundary
condition, or a source. Unless we can find the solution explicitly, we would say that
I is given implicitly (as the solution of the appropriate equation).

In the first two cases the inverse problem is of Type I, while in the last one the in-
verse problem is of Type III, in accordance with the classification given in Table 2.3,
page 48. This is the type with which we will deal in this chapter.

More generally, the relation between W, Z and X implies a relation of cause-
effect (stimulus-reaction), linear or non-linear, that can be explicit or implicit. Here
I represents the solution operator—the abstract object that explicitly renders W
as a function of Z and X. In practice, I may be impossible to obtain explicitly.
Sometimes its existence, or even its uniqueness and smooth dependence on data, can
be abstractly proven. That information may be insufficient for application purposes,
and must be complemented by some numerical solution. Fortunately, the qualitative
theoretical results can bring to light behaviour and properties of the algorithm for
numerical solution.
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Given material properties Z and parameters X the i-th predicted output of the
system is Ii(Z,X). This is compared with the effectively measured quantity (experi-
mental data), Wi, defining the residual,

Ri = Ri(Z,X) = Ii(Z,X) − Wi . (5.1)

Here, Z = (Z1, . . . ,ZN)T ∈ RN is the vector of unknowns of the problem.
The inverse problem is solved as an optimization problem, on a space of finite

dimension, in which we pursue the minimization of the functional representing half
the sum of the squared residuals,

Q = Q(Z) =
1
2
|R|2 = 1

2
RT R =

1
2
|I(Z) − W|2

=
1
2

M∑

i=1

[Ii(Z) − Wi])2 , (5.2)

where R = (R1, . . . ,RM)T ∈ RM represents the residual between computed mag-
nitudes I and measurements (experimental data) W, and M is the total number of
experimental data available.

This formulation is similar to the minimization problems presented in Sections 2.6
and 3.4, and is an instance of the least squares method.

5.2 Modified Newton’s Method

The functional given by Eq. (5.2), is minimized by finding its critical point,∇Q = 0,
that is,

∂Q
∂Zk
= 0 for k = 1, 2, . . . ,N , (5.3)

which constitutes a system of N non-linear equations and N unknowns, Z = (Z1, . . . ,
ZN). From Eqs. (5.1) to (5.3), the critical point equation is rewritten as

M∑

i=1

Ri
∂Ii

∂Zk
= 0 for k = 1, 2, . . . ,N . (5.4)

We solve Eq. (5.4) by means of a modified Newton’s method, that can be deduced
as follows. Using a Taylor’s expansion of R around Zn, where n will be the index
of the iterations in the iterative procedure, and keeping only the zero and first order
terms, we have

Rn+1
i = Rn

i +

N∑

j=1

∂Rn
i

∂Z j
ΔZn

j , for i = 1, 2, . . . ,M . (5.5)

Here, Rn represents the evaluation of R in Zn,

Rn = R(Zn) = I(Zn) −W , (5.6)
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and,

ΔZn = Zn+1 − Zn ,

or, in coordinates, Rn
i =Ri(Zn) and ΔZn

j =Zn+1
j −Zn

j .
Using Eq. (5.5) in the system of equations (5.4), and noticing that ∂Ri/∂Z j =

∂Ii/∂Z j, we obtain,

M∑

i=1

⎛
⎜⎜⎜⎜⎜⎜⎝R

n
i +

N∑

j=1

∂Ii

∂Z j

∣
∣
∣∣
∣
∣
Z=Zn

ΔZn
j

⎞
⎟⎟⎟⎟⎟⎟⎠
∂Ii

∂Zk

∣
∣
∣
∣∣
Z=Zn
= 0 , (5.7)

for k = 1, 2, . . . ,N.
We look at I as a function of Z only, making X constant. By definition, the Jaco-

bian matrix of I with respect to Z, J=JI|Z , has entries

Ji j=∂Ii/∂Z j ,

for i=1, . . . ,M, and j = 1, . . . ,N, that is,

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂I1
∂Z1

· · · ∂I1
∂ZN

...
. . .

...
∂IM
∂Z1

· · · ∂IM
∂ZN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The system of equations (5.7) can, therefore, be rewritten in the form known as
normal equation

(Jn)TJnΔZn = −(Jn)T Rn , (5.8)

where Jn represents JI|Z=Zn .
An iterative procedure can be constructed to determine the vector of unknowns Z

that minimizes the functional Q, knowing the experimental data, W, and computed
values, I, which depend on the unknowns to be determined, Z.

Starting from an initial estimate, Z0 and measurements W, residuals are com-
puted from Eq. (5.6), and corrections are computed sequentially from Eq. (5.8),
where n is the iteration counter. The algorithm can be written as2,

Rn = I(Zn,X) −W (5.9a)

(Jn)TJnΔZn = −(Jn)T Rn (5.9b)

Zn+1 = Zn + ΔZn . (5.9c)

2 The method described here is a modification of Newton’s method (presented in Sec-
tion 4.3, page 92). We remark that the goal is not Newton’s method, but the solution
of Eq. (5.4), that is obtained here by means of the modified Newton’s method, given by
Eq. (5.9). For the problem treated here Newton’s method demands the computation of
second order derivatives of I, while the method based on Eq. (5.8) avoids that. See Exer-
cise 5.1.
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The iterative procedure is interrupted when a convergence criterion defined a priori
is satisfied. For example,

∣∣
∣ΔZn

j /Z
n
j

∣∣
∣<ε , for all j with j=1, 2, . . . ,N .

Here, ε is a sufficiently small value, say 10−5. Another possibility is the use of the
vector of corrections norm, |ΔZn| < ε as considered in Newton’s method.

Observe that in every iteration the values In
i = Ii(Zn), i = 1, 2, . . . ,M, are com-

puted using the estimates for the unknowns, Zn. This involves, in the examples dis-
cussed later in this chapter, the solution of differential or integro-differential equa-
tions. This makes them implicit inverse problems.

Finally, we remark that the solution of Eq. (5.9b) can be written as

ΔZn = −
[
(Jn)TJn

]−1
(Jn)T Rn (5.10)

Equation 5.10 represents explicitly the solution of Eq. (5.8), making use of the in-
verse3 of (Jn)TJn.

5.3 Levenberg-Marquardt’s Method

The methods presented in Section 4.3 and the algorithm presented in the previous
section, are Newton-like, and can encounter convergence difficulties if the initial
estimate for the vector of unknowns, Z0, is not adequately selected. Choosing an
adequate initial estimate can prove extremely difficult.

In 1963, Marquardt [54] designed the algorithm that will be described presently,
with the objective of reaching convergence with a wider range of initial estimates.
One of the referees of his work noticed that, in 1944, Levenberg had made a similar
proposal: adding a term in the diagonal of matrix JTJ . The method came to be
known as the Levenberg-Marquardt method.

Based on Eq. (5.8), the Levenberg-Marquardt method considers the determina-
tion of the corrections ΔZn by means of the following equation,

[
(Jn)TJn + λnI

]
ΔZn = −(Jn)T Rn . (5.11)

Here λ = λn is the damping factor and I represents the identity matrix. Observe
that this formulation is similar to the Tikhonov’s regularization, Eq. (3.22).

Similar to the developments in the previous section, an iterative algorithm is built
to determine the vector of unknowns Z that should minimize the functional Q. The
procedure is based on Eq. (5.11). From an initial estimate, Z0, corrections are se-
quentially computed,

ΔZn = −
[
(Jn)TJn + λnI

]−1
(Jn)T Rn , for n = 0, 1, . . . , (5.12)

3 In computations, one rarely inverts a matrix due to its high computational cost. It is prefer-
able to solve the system of equations. Therefore, the corrections ΔZn are computed by
solving the linear algebraic system of equations (5.8). For theoretical considerations it is
sometimes useful to have closed form solutions, that is, to have the solution written in
terms of a solution operator.
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where n is an iteration counter, and the new estimates for the vector of unknowns are
computed by Eq. (5.9c). The iterations are interrupted when a convergence criterion
established a priori is satisfied.

It should be noticed that the solution of the problem described by Eq. (5.11)
differs from the one given by Eq. (5.8). On the other hand, our aim is to solve
Eq. (5.4). To guarantee the convergence, at the beginning of the iterative process,
a relatively high value is assigned to λ, λ0, thus emphasizing the importance of
the diagonal of matrix (JTJ + λI) relative to the information contained in the
elements outside the diagonal. Through the iterative procedure, the value of the
damping factor λ is to be reduced, in such a way that its value approaches zero as
the procedure approaches its conclusion. In the light of the notion of regularization,
described in Chapter 3, Eq. (5.11) is a kind of regularization of Eq. (5.8).

An algorithm to control the value of the damping factor will be described shortly,
[54]. Let c > 1, d > 1 and ξ > 1. Let also Qn = Q(Zn). When Qn+1 ≤ Qn/c, the
reduction λn+1 = λn/d is performed. Otherwise, λn = ξλn−1 is taken, and a new
estimate for the vector of unknowns Zn+1 is computed for the same value of the
iteration counter n, using again the previous estimate Zn. Silva Neto and Özişik,
[74, 75, 79], used c = d = ξ = 2 in the applications in heat transfer by means of
thermal radiation.

5.4 Confidence Intervals for Parameter Estimates

Folowing Gallant [34, 38, 59], the confidence intervals of the estimates of the param-
eters Z are computed using the sensitivity coefficients,

∂Ii/∂Z j , i = 1, . . . ,M and j = 1, . . . ,N ,

and the standard deviation, σ, of the error present in the experimental data.
Let ∇I be the M×N matrix whose entries are given by the sensitivity coefficients,

(∇I)i j =
∂Ii

∂Z j

∣
∣∣
∣
∣∣
Z

.

In this case, the square of the standard deviation of the estimators of the parameters
are given by

σ2
Z =

(
σ2

Z1
, . . . , σ2

ZN

)T
= σ2

{

diag
[
(∇I)T ∇I

]−1
}

(5.13a)

where diag(A) represents the vector whose elements are the elements of the diagonal
of a matrix A.

Assuming a normal distribution for the experimental errors, with zero mean, the
99 % confidence intervals for the estimates Zj are [33]

]
Z j − 2.576σZj , Z j + 2.576σZj

[
for j = 1, . . . ,N . (5.13b)

In general, smaller confidence intervals are associated with larger sensitivity coeffi-
cients and smaller experimental errors, thus producing better estimates.
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Fig. 5.2 Radiative transfer in a participating medium. Optical variable τ is related (sometimes
linearly) to the spatial variable x.

5.5 Phase Function, Albedo and Optical Thickness

Different types of radiation, like neutral particles, gamma rays and photons have
been used to identify objects in industry (through non-destructive tests) and also in
medicine (for diagnosis and therapy).

Heat transfer by thermal radiation in a participating medium, that is, one that
emits, absorbs and scatters radiation, schematically represented in Figs. 5.1 and 5.2,
is modeled according to the linear version of the Boltzmann equation [60, 80, 69, 57].

It is worthwhile to mention that the physical phenomena relevant to neutron trans-
port in nuclear reactors, or to tomography with scattering (NIROT—Near Infrared
Optical Tomography) can also be represented mathematically by the linear Boltz-
mann equation.

Consider the situation depicted in Fig. 5.2 representing a flat plate made of a
scattering anisotropic, gray material with transparent boundary surfaces, subject to
external isotropic radiation on its left surface, in a permanent regimen (steady-state
— it does not depend on time).

A material is anisotropically scattering when the scattering depends on angle and
it is gray if the properties do not depend on the radiation’s wavelength. A material
has a transparent surface when this surface does not reflect radiation.

In this case, and also considering azimuthal symmetry and a cold medium (no
emission), the linear Boltzmann equation is written as [60] (see Fig. 5.2)

μ
∂I
∂τ

(τ, μ) + I(τ, μ) =
ω

2

∫ 1

−1
p(μ, μ′)I(τ, μ′)dμ′ , (5.14a)

in 0<τ<τ0 , −1≤μ≤1, and

I(0, μ) = 1, μ > 0, and I(τ0, μ) = 0, for μ < 0 . (5.14b)

In this equation, I(τ,μ) is the radiation intensity in position τ, following direction
represented by μ. Here, τ is the spatial optical variable, and μ is the cosine of the po-
lar angle θ formed between the direction of the radiation beam and the τ axis. Also,
ω is the single scattering albedo (the ratio between the scattering and the extinc-
tion coefficients, σs and β, respectively, with β = σs + ka, and ka is the absorption
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coefficient), τ0 is the medium’s optical thickness (related to the geometrical thick-
ness of the medium) and p(μ, μ′) is the anisotropic scattering phase function.

We remark that 1
2 p(μ, μ′) represents the probability density of an incident beam

with direction μ′ to be scattered following the direction represented by μ. More
explicitly, the probability that the scattered direction μ is between μ1 and μ2 given
that the incident direction is μ′ is given in terms of p(μ,μ′) by

P(μ1 ≤ μ ≤ μ2 | μ′) =
1
2

∫ μ2

μ1

p(μ,μ′) dμ .

The medium is isotropic when the scattering is uniform in all directions, i.e., when
p(μ, μ′) = c, for all μ,μ′ ∈ [−1,1], where c is a constant value. Since

P(−1 ≤ μ ≤ 1 | μ′) = 1 , (5.15)

it is then necessary that c = 1.
The second term in the left hand side of Eq. (5.14a) represents the absorption

and scattering of radiation by the medium away from the direction represented by μ
(out scattering) and the right hand side represents the way the radiation is scattered
by the medium into such direction (in scattering). The emission of radiation by the
medium can be neglected if compared to the incident radiation in τ = 0. We recall
that we are considering here a steady state problem (it does not depend on time).

When the operator, the medium’s geometry (in this case, the optical thickness τ0

for the plane-parallel medium), the material properties (here, ω and p = p(μ, μ′))
and the boundary conditions (given in this example by Eq. (5.14b)) we say that the
model is characterized. That is, it is modeled by steady state linear Boltzmann equa-
tion, with specific type Dirichlet boundary conditions and identified (all constants
and auxiliary functions are given). In this case we deal with a direct problem, and
the radiation intensity I(τ, μ) can be computed in all of the spatial domain 0 ≤ τ ≤ τo

and the angular domain −1 ≤ μ ≤ 1.
Different analytic and numerical techniques have been developed to solve the lin-

ear radiative transport equation, Eq. (5.14). Wick [93] and Chandrasekhar [20, 21]
created the discrete-ordinates method, by replacing the right-side term of Eq. (5.14a)
by a Gaussian quadrature term. This leads to a system of ordinary differential equa-
tions with as many equations as points used in the quadrature. Silva Neto and
Roberty [80] presented a comparison between spherical harmonics expansion meth-
ods, PN , Galerkin, global base and discrete-ordinates (i.e., finite differences+ Gaus-
sian quadrature), S N , for the case of isotropic scattering. Chalhout et al. [19] consid-
ered three variations of the discrete ordinates method and performed a comparison
with the Monte Carlo method. Moura Neto and Silva Neto [57, 63] presented solu-
tions using methods with integrating factor and operator splitting.

We use the customary representation of the scattering phase function by expan-
sion in Legendre polynomials [60, 79, 47],

p(μ, μ′) =
L∑

l=0

(2l + 1) flPl(μ)Pl(μ′) , (5.16)

where fl, l=0, 1, . . . , L are the coefficients of expansion with f0=1.
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In the example presented here, we consider the inverse problem of estimating si-
multaneously the medium’s optical thickness, τ0, the single scattering albedo,ω, and
the scattering phase function, p(μ,μ′), by means of its coefficients, fl, l=1, 2, . . . , L,
in the expansion in Legendre polynomials, Eq. (5.16) [79, 47].

The vector of unknowns is made up of the following elements

Z = (τ0, ω, f1, . . . , fL)T ,

to be determined using the experimental measurements of the radiation that leaves
the medium, Wi , i = 1, 2, . . . ,M, by minimizing the functional

Q = Q(τ0, ω, f1, . . . , fL)

=
1
2
|R|2 = 1

2

M∑

i=1

[Ii[Z] −Wi]2 .

Here Ii[Z], i = 1,2, . . . ,M are the values of the radiation intensities computed by
the solution of the direct problem described by Eq. (5.14) and evaluated in the same
directions in which the radiation leaving the medium is measured, μi, i = 1,2, . . . ,M
which are pre-defined directions, assuming the parameters Z = (τ0, ω, f1, f2, . . . , fL)
are known,

Ii[Z] = I[τ0, ω, f1, f2, . . . , fL](μi) , for i = 1, 2, . . . ,M .

The Levenberg-Marquardt method, described in Section 5.3, is used to solve this
optimization problem in finite dimension.

Since we do not have experimental data on this problem, we use synthetic or
artificial data. For that we mean data generated from solving the direct problem with
known parameters and adding random values to simulate experimental errors. In the
example we are considering, we assume that the parameters Z = (τ0, ω, f1, . . . , fL)T

are known in advance and we use them to solve the direct problem, Eq. (5.14). The
synthetic data is then determined by

Wi = Ii[τ0, ω, f1, . . . , fL](μi) + cεi ,

where εi is a realization of a uniform random variable in the interval [−1,1],

c = γmax
i

I(τ0,μi), for i = 1, . . . ,M ,

and γ is a maximum percentage error parameter.
It should be remarked that the solution of inverse problems with synthetic data

makes it possible to verify that the computational procedure is correct, before ap-
plying it to real problems.

The value of the phase function is related to the angle subtended between the
directions of the incident radiation and the scattered radiation [22]. The results pre-
sented in Figs. 5.3 and 5.4 where computed assuming the incident radiation to be
exclusively in the direction of vector (1, 0). A representation in polar coordinates is
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Fig. 5.3 Estimation of an anisotropic scattering phase function, with L = 7, characterizing
forward scattering, ω = 0.5 and τ0 = 2.0. For forward scattering, the phase function repre-
sentation is restricted to the 1st and 4th quadrant. The experimental error reached 6.2 % of the
highest intensity value that was measured. Here, M∗ is the number of coefficients of the phase
function that were considered in the estimations. Solid line represents the exact phase func-
tion, and dashed line represents the estimates for the phase function obtained with different
values for M∗. The best result occurs with M∗ = 4.



5.5 Phase Function, Albedo and Optical Thickness 119

Fig. 5.4 Estimation of a phase function with L = 5, with preferential backward scattering,

ω = 0.1 and τ0 = 10.0. In a preferred backward scattering, one should have
∫ 0

−1
p(μ,1) dμ >

∫ 1

0
p(μ,1) dμ, which is the case if p(μ,1) < p(−μ,1), for μ > 0, as shown in the graph of

the phase function. The experimental error reached 4.1 % of the highest intensity measured
value. The number of coefficients of the phase function, M∗, were chosen as 1 to 4. Solid line
represents the exact phase function, and dashed line represents the phase function obtained
estimate with different values for M∗. Fairly good results were obtained with M∗ = 2 and
M∗ = 3.
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(a)

run run

confidence intervals confidence intervals

(b)

run run

confidence intervals confidence intervals

Fig. 5.5 Confidence intervals for the single scattering albedo (ω), optical thickness (τ0), and
first two coefficients of the anisotropic scattering phase function expansion ( f1 and f2) esti-
mates when the phase function has L = 7 terms.
– exact values, - - - confidence intervals, -•-•- estimates. Experimental error in the highest
mean value of the measured intensities: (a) 6.2 %, and (b) 2.1 %.
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given in which the distance from the point on the graph to the origin provides the
probability density for the radiation to be scattered according to that direction.

Figure 5.3 represents the phase function estimation of an anisotropic scattering,
with preferential forward scattering with L= 7, (see Eq. (5.16)). Due to the experi-
mental error occurring in the measurements, W, of γ =6.2 % of the highest value of
the measured intensity (where, 6.2 % is, therefore, the lowest percentage of experi-
mental error in the measurements being considered), it is not possible to recover all
the coefficients. The highest-order coefficients, with relatively low numerical val-
ues, are more rapidly affected, causing the estimation to deteriorate. However, the
relevant information for the design of thermal equipments is the shape of the phase
function, and not necessarily the value of each coefficient separately.

As a matter of fact, the number of coefficients, L, of the anisotropic scattering
phase function represented in Eq. (5.16) is also an unknown of the problem. Silva
Neto and Özişik [79] developed a criterion to choose the number of coefficients in
the expansion M∗ in such a way to obtain the best possible estimated phase function,
considering the available experimental data.

In the test case represented in Fig. 5.3, M∗ = 3 or 4 values would be chosen. It
must be pointed out that, in the absence of experimental errors (an ideal situation that
does not happen in practice) all seven coefficients, i.e., M∗ = L= 7, were estimated
within the precision established a priori in the stopping criterion.

Figures 5.5a and b show the estimates for ω, τ0, and for the first two coefficients,
f1 and f2, of the phase function represented in Fig. 5.3. The different executions of
the computational code correspond to estimates due to different sets of experimental
data. Figure 5.5a presents the results when the lowest experimental error reaches
6.2 % and, in Fig. 5.5b, the lowest experimental error reaches 2.1 %.

Figure 5.4 presents the results on the estimation of a phase function with L =
5, corresponding to a medium with preferential backward scattering. The lowest
experimental error here considered is 4.1 %. In this example we would choose M∗ =

2 or 3.
Using the expression for the confidence intervals, Eq. (5.13), we are able to com-

pute them for the various parameters being estimated, and we represent them in
graphical form in Fig. 5.5. As expected, the estimates, in the examples given here,
have narrower confidence intervals, when the experimental data presents lower lev-
els of noise.

5.6 Thermal Conductivity, Optical Thickness and Albedo

Silva Neto and Özişik [74] solved an inverse problem involving heat transfer due
to conduction and radiation in a participating medium, considering only isotropic
scattering (not depending on the polar angle). Lobato et al. [48] dealt with a simi-
lar problem, but using stochastic methods [69] for the minimization of the squared
residues functional.

Consider the situation illustrated in Fig. 5.6. A plane-parallel, gray, isotropically
scattering medium with transparent boundary surfaces, is subject to incident external
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Fig. 5.6 Heat transfer by thermal conduction and radiation in a participating medium

isotropic radiation that reaches surface τ = 0. The surfaces at τ = 0 and τ = τ0 are
kept at constant temperatures T1 and T2, respectively.

The mathematical formulation of the heat transfer problem due to one dimen-
sional, steady-state heat conduction, in which the coupling with the transfer due to
radiation in the participating medium is achieved by the source term, is given, in a
dimensionless formulation, by a boundary value problem of an ordinary differential
equation (Poisson’s equation, with a non-linear source term and Dirichlet boundary
conditions) [60]

d2Θ

dτ2
−

(1 − ω)
N

[
Θ4(τ) −G∗[I](τ)

]
= 0 , in 0 < τ < τ0 , (5.17a)

with boundary conditions,

Θ(0) = 1 and Θ(τ0) = T2/T1 . (5.17b)

Here

G∗[I](τ) =
1
2

∫ 1

−1
I(τ, μ) dμ , N =

k β

4 n2 σT 3
1

, Θ =
T
T1
, (5.17c)

where Θ is the dimensionless temperature, N is the conduction-radiation parameter,
ω is the simple scattering albedo, k is the thermal conductivity, β is the extinction
coefficient (absorption+ scattering), n is the medium’s refractive index, and σ is the
Stefan-Boltzmann’s constant.

Modeling of the radiative transfer in the participating medium is achieved by
means of the linear Boltzmann’s equation [60],

μ
∂I
∂τ

(τ, μ) + I(τ, μ) = H(Θ(τ)) +
ω

2

∫ 1

−1
I(τ, μ′) dμ′ , (5.17d)

in 0<τ<τ0 and − 1≤μ≤1, and

I(0, μ) = 1 , for μ > 0, and I(τ0, μ) = 0 , for μ < 0 , (5.17e)
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where the source term, H(Θ), is related to the medium’s temperature distribution,

H(Θ) = (1 − ω) Θ4 , (5.17f)

and the remaining symbols have already been defined. We observe that since the
medium is an isotropic scatterer, the phase function of scattering is

1
2

p(μ, μ′)=
1
2

for all μ, μ′ .

Equation (5.17) provides a complete mathematical formulation for the one dimen-
sional heat transfer problem, in steady state regime, by the combined mode of con-
duction and radiation. The problem of conduction, Eqs. (5.17a)–(5.17c), and the
radiation problem, Eqs. (5.17d)–(5.17f), are coupled by means of the source terms,
given respectively by

G∗ = G∗[I] and H = H(Θ) .

To solve Eq. (5.17), we use an iterative procedure. Starting with a first estimate of
I, we solve Eqs. (5.17a)–(5.17c) to obtain an estimate of Θ. From this estimate of
Θ, we solve Eqs. (5.17d)–(5.17f) to obtain a new estimate of I. This is done until
convergence is reached.

In the solution of the direct problem, Silva Neto and Özişik [74] used the iterative
procedure described with the Galerkin method, global basis for the part of the prob-
lem related to heat transfer due to radiation in a participating medium, Eqs. (5.17d)–
(5.17f), and the finite difference method for the part of the problem related to heat
transfer by conduction, Eqs. (5.17a)–(5.17c).

In the inverse problem just presented, we consider the simultaneous estimation
of the optical thickness, τ0 , the single scattering albedo, ω, and the conduction-
radiation parameter, N. We use synthetic experimental measurements of the radia-
tion, Wi , i = 1, 2, . . . ,M, and of temperature inside the medium, represented by X j ,
j = 1, 2, . . . ,K. The vector of unknowns Z= (τ0, ω,N)T is determined — the model
is identified — as the minimum point by minimization of the functional

Q=Q(τ0,ω,N) =
1
2

M∑

i=1

[Ii (τ0, ω,N) − Wi]2

+
1
2

K∑

j=1

[
Θ j (τ0, ω,N) − X j

]2
, (5.18)

where Ii(τ0, ω,N), i = 1, 2, . . . ,M, are the radiation intensities computed in the
same surface and in the same directions in which the radiation is measured, Wi ,
i = 1, 2, . . . ,M. Here, Θ j(τ0, ω,N), j = 1, 2, . . . ,K, are temperatures computed in
the same positions where the temperatures are measured, X j , j = 1, 2, . . . ,K. The
radiation and temperature intensities are computed by solving Eq. (5.17), following
the procedure already described.
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run

Fig. 5.7 Confidence intervals for the optical thickness (τ0), single scattering albedo (ω),
and conduction-radiation parameter (N) estimates in the combined conduction-radiation heat
transfer model.
– exact values, - - - confidence intervals, -•-•- estimates. Experimental error of 4 % of the
largest value of the magnitudes that were measured.
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Figure 5.7 presents the results of the parameters (τ0, ω,N) estimation, for a test
case in which the exact values,

(τ0, ω,N) = (1.0, 0.9, 0.05) ,

were known a priori. The different results considered represent, as before, estimates,
obtained with the execution of the computational code with different sets of syn-
thetic experimental data. The artificially generated experimental error is set to 4 %
of the value of the largest measured magnitude.

Conduction-radiation parameter, N, is relatively small, which indicates a domi-
nance of the radiative heat transfer mechanism. This fact is proved by the relatively
large size of confidence intervals4 of the estimates of N (N depends on the medium’s
thermal conductivity, k), when compared to those obtained for the parameters τ0

and ω.

5.7 Refractive Index and Optical Thickness

Consider a gray flat plate in radiative equilibrium, with two gray boundary surfaces,
opaque —diffuse emittant and reflector (non-specular),— with emissivity ε and re-
flectivity ρ, which are kept at constant temperatures T0 and TL (see Fig. 5.8).

T o

τ

LT 
ρ
ε
=0τ thermocouples iX

ρ
ε

τ =τo

Fig. 5.8 Schematic representation of a one dimensional medium in radiative thermal equilib-
rium

The temperature distribution inside the medium, T (τ) satisfies [75],

T 4(τ) − T 4
L

T 4
0 − T 4

L

=
θ(τ) +

[
1
ε − 1

]
S

1 + 2
[

1
ε
− 1

]
S
, (5.19)

where the function θ(τ) satisfies the integral equation

θ(τ) =
1
2

[

E2(τ) +
∫ τ0

0
θ(τ′) E1(|τ − τ′|) dτ′

]

. (5.20)

Here, Em(τ) represents the m-th integral exponential function, given by

Em(τ) =
∫ 1

0
ηm−2 e−

τ
η dη , (5.21a)

4 The confidence intervals are related to the sensitivity coefficients ∂I/∂τ0, ∂I/∂ω, ∂I/∂N,
∂Θ/∂τ0, ∂Θ/∂ω, and ∂Θ/∂N.
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and the constant S is given by

S = 1 − 2
∫ τ0

0
θ(τ′) E2(τ′) dτ′ . (5.21b)

Given the optical thickness of the medium, τ0, function θ(τ) is computed by Eq. -
(5.20). If θ(τ) is known, parameter S is computed using Eq. (5.21b). The tempera-
ture distribution inside the medium is then computed by Eq. (5.19).

For opaque and gray surfaces, ε=1−ρ. When the refractive index of the medium,
nm , is higher than that of its environment, ne , the reflectivity ρ is related to the
relative refractive index n=nm/ne as follows,

ρ(n) = 1 − 1
n2

{
1
2
− (3n + 1)(n − 1)

6(n + 1)2
− n2(n2 − 1)2

(n2 + 1)3
ln

(
n − 1
n + 1

)

+
2n3(n2 + 2n − 1)
(n2 + 1)(n4 − 1)

− 8n4(n4 + 1)
(n2 + 1)(n4 − 1)2

ln(n)

}

. (5.22)

In the inverse problem presented here, the simultaneous estimation of the relative
refractive index, n, and the medium’s optical thickness, τ0, is considered. The vector
of unknowns Z = (n, τ0)T , is to be determined from the experimental measurements
inside the medium, Xi, i = 1, 2, . . . ,M, by minimizing the functional

Q(n, τ0) =
1
2
|R|2 = 1

2

M∑

i=1

[Ti (n, τ0) − Xi]2 ,

where Ti(n, τ0), i = 1, 2, . . . ,M are the temperatures computed in the same positions
in which the experimental data are measured, Xi , using the problem described by
Eqs. (5.19) through (5.22).

(a)

run

(b)

run

Fig. 5.9 Confidence intervals for the estimates.
– exact values, - - - confidence intervals, -•-•- estimates. Experimental error of the highest
temperature measurement: (a) 5 %; (b) 2.5 %.
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Results of the estimates of (n, τ0) are presented in Fig. 5.9, in which the exact
values for the test case, (2.0, 3.0), were known a priori. The results correspond to
estimates obtained by means of different sets of experimental synthetic data. Two
levels of experimental errors corresponding to 5 % and 2.5 % are used, and the re-
sults are presented, respectively, in Figs. 5.9a and b.

As expected, these estimates are better (smaller confidence intervals for the same
confidence level) when the experimental data present lower noise levels.

Exercises

5.1. We recall that Newton’s method, presented in Section 4.3, for the system of
equations G(Z) = 0, where G : RN → RN is a vector-valued function, is given by
the iterative scheme,

JGnΔZn = −Gn

Zn+1 = Zn + ΔZn ,

where JGn represents the Jacobian matrix of G, evaluated at Zn

JGn=JG|Z=Zn ,

and Gn=G(Zn). We remark that ΔZn satisfies a linear system of equations.
In the case of Eq. (5.4), the function G has the following structure,

Gk(Z)=
M∑

i=1

Ri ∂Ii/∂Zk ,

where, for simplicity, we are omitting the dependency of G in X.
Show that the equation for ΔZn reads

[(Jn)TJn + An]ΔZn=−(Jn)T Rn ,

where

An
jk=

n∑

i=1

Ri(Zn)
(
∂2Ii/∂Z j∂Zk

)
.

(Compare this procedure with Eq. (5.8) and note that here, second order derivatives
of I are needed in order to compute matrices An, which make this algorithm more
expensive and more prone to numerical errors than the other.)

5.2. Deduce the Levenberg-Marquardt method considering the functional given by
Eq. (3.20).

5.3. Assume that the participant medium is isotropic, i.e., p(μ,μ′) = c is a constant.

(a) Use Eq. (5.15) to determine the value of constant c.



128 Exercises

(b) Obtain the simplified version of the Boltzmann equation, Eq. (5.14), for I =
I(τ, μ).

(c) Show that there is not a solution of the integro-differential equation for the
isotropic medium, with the prescribed boundary conditions, depending only
on τ, i.e, I = I(τ).

(d) Obtain a solution I = I(τ) if only the first requirement in Eq. (5.14b) is asked
for.

5.4. An alternative approach for the solution of Eq. (5.14a) uses an integrating fac-
tor. Define a new dependent variable as

J(τ,μ) = e
τ
μ I(τ,μ)

and show that Eq. (5.14a) may be written as

μ
∂J
∂τ

(τ,μ) =
ω

2

∫ 1

−1
p(μ,μ′)eτ

(
1
μ−

1
μ′

)

J(τ,μ′) dμ′

Write the boundary conditions given by Eq. (5.14b) in terms of the new dependent
variable, [57].
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