
Chapter 4

Image Restoration

Assume we have access to a certain image obtained by means of a device that, in the
process of acquisition, causes a degradation, such as blurring. The objective of this
chapter is to show how to restore the image from the degraded image, considering
specific examples1.

In the image processing literature, the recovery of an original image of an ob-
ject is called restoration or reconstruction, depending on the situation. We shall not
discuss this distinction2.

In any case, in the nomenclature of inverse problems we are using as setforth in
Section 2.8, both of these cases, restoration or reconstruction, are suitably called
reconstruction inverse problems.

We assume here that the image is in grayscale. Every shade of gray will be rep-
resented by a real number between 0 (pure black) and 1 (pure white). The origi-
nal image is represented by a set of pixels (i, j), i = 1, . . . , L and j = 1, . . . ,M,
which are small monochromatic squares in the plane that make up the image. Each
pixel has an associated shade of grey, denoted by Ii j or I(i, j), which constitutes an
L × M matrix (or a vector of LM coordinates). A typical image can be made up
of 256 × 512 = 131 072 pixels. Analogously, we will denote by Yi j, i = 1, . . . , L,
j = 1, . . . ,M the grayscale of the blurring of the original image.

The inverse problems to be solved in this chapter deal with obtaining I, the orig-
inal image, from Y, the blurred image. These problems3 are of Type I, and, most of
them, deal with inverse reconstruction problems, as presented in Section 2.8, which,
properly translated, means that given a degraded image one wants to determine the
original image, or, more realistically, to estimate it.

4.1 Degraded Images

We shall assume that the degraded image is obtained from the original image through
a linear transformation. Let B be the transformation that maps the original image I
to its degraded counterpart Y, Y = B I, explicitly given by [27]

1 The results presented in this chapter were obtained by G. A. G. Cidade [24].
2 We just observe that reconstruction is associated with operators whose singular values are

just 0 and 1 (or some other constant value), whereas when restoration is concerned the
range of singular values is more extense. For understanding what are the consequences of
having just 0 and 1 as singular values see Section A.4.2.

3 See the classification in Table 2.3, page 48.
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Yi j =

L∑

i′=1

M∑

j′=1

Bi′ j′

i j Ii′ j′ , i = 1, . . . ,L, j = 1, . . . ,M . (4.1)

We call Eq. (4.1) the observation equation. We note that Y corresponds to the ex-
perimental data, and we call the linear operator B the blurring matrix4 or, strictly
speaking, blurring operator.

We assume that the blurring matrix has a specific structure

Bi+k j+l
i j = bkl , for − N ≤ k ≤ N and − N ≤ l ≤ N , (4.2a)

and Bmn
i j = 0, otherwise . (4.2b)

Here bkl, for −N ≤ k, l ≤ N, is called the matrix of blurring weights, This means
that blurring is equal for every position of the pixel (homogeneous blurring).

At each pixel (i, j), the blurring takes into consideration the shades of the neigh-
bouring pixels so that the domain of dependence is the square neighbourhood cen-
tered in pixel (i, j) covering N pixels to the left, right, up and down (see Fig. 4.1)
comprising (2N +1)× (2N+1) pixels whose values determine the value of the pixel
(i, j). In particular, (bkl) is a (2N+1)× (2N+1) matrix. Usually, one takes N�L,M.
Moreover, the coefficients are chosen preferably in such a way that

N∑

k=−N

N∑

l=−N

bkl = 1 , (4.3)

with bkl ≥ 0 for −N ≤ k, l ≤ N.
Figure 4.1 illustrates the action of a blurring matrix with N = 1, on the pixel

(i, j)= (7, 3). This pixel belongs to the discrete grid where the image is defined. The
square around it demarcates the domain of dependence of the shade of gray Y73, of
pixel (7,3) of the blurred image, in tones of gray of the pixels of the original image
pixels,

I62, I72, I82, I63, I73, I83, I64, I74, and I84 .

We can assume that bkl admits separation of variables, in the sense that bkl = fk fl,
for some fk, −N ≤ k ≤ N. In this case, fk ≥ 0 for all k, and Eq. (4.3) implies that

N∑

k=−N

fk = 1 . (4.4)

Here, fk can be one of the profiles shown in Fig. 4.2: (a) truncated gaussian, (b)
truncated parabolic, or (c) preferred direction. It could also be a combination of the
previous profiles or some more general weighting function.

4 Strictly speaking B = (Bi′ j′

i j ) is not a matrix. However, it defines a linear operator.
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Fig. 4.1 The blurring matrix with N = 1 acts on the point (i, j) = (7, 3) of the discrete grid of
the image (pixels)

With respect to the situation depicted in Fig. 4.1, one possibility is to choose
f−1 = 1/4, f0 = 1/2 and f1 = 1/4 which leads to the following matrix of blurring
weights

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b−1−1 b−1 0 b−1 1

b0−1 b0 0 b0 1

b1−1 b1 0 b1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f−1

f0
f1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

( f−1 f0 f1)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

1
16

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1
2 4 2
1 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.5)

Therefore, in this case, for instance,

Y73 =
1

16
(I62 + 2I72 + I82

+2I63 + 4I73 + 2I83 + I64 + 2I74 + I84) . (4.6)

This scheme cannot be taken all the way to the boundaries of the image. At a
boundary point we cannot find enough neighbour pixels to take the weighted aver-
age. we describe two possible approaches for such situations. One simple approach
here is to consider that the required pixels lying outside the image have a constant
value, for example zero or one (or some other intermediate constant value). An-
other approach is to add the weights of the pixels that lie outside of the image to the
weights of the pixels that are in the image, in a symmetric fashion. This is equivalent
to attributing the pixel outside of the image the shade of gray of its symmetric pixel
across the boundary (border) of the image.
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Fig. 4.2 The blurring matrix can represent several kinds of tensorial two-dimensional convo-
lutions: gaussian, parabolic, with preferred direction, or a combination of them

For illustration purposes, say now that (7,3) is a pixel location on the right bound-
ary of the image. The positions (8,4), (8,3), (8,2) are outside the image and do not
correspond to any pixel. We let the weights 1/16, 2/16 and 1/16 of these positions to
be added to the symmetric pixels, with respect to the boundary, respectively, (6,4),
(6,3), and (6,2). The result is

Y73 =
1

16
(2I62 + 2I72 + 4I63 + 4I73 + 2I64 + 2I74) . (4.7)

4.2 Restoring Images

The inverse reconstruction problem to be considered here is to obtain the vector I
when the matrix B and the experimental data Y are known, by solving Eq. (4.1)
for I.
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We can look at this problem as a finite dimension optimization problem. First,
the norm of an image I is taken as the Euclidean norm of I thought of as a vector
in RLM ,

|I| =
⎛
⎜⎜⎜⎜⎜⎜⎝

L∑

i=1

M∑

j=1

I2
i j

⎞
⎟⎟⎟⎟⎟⎟⎠

1
2

,

not the norm in the set of L×M matrices, as defined in Eq. (A5). Next, consider the
discrepancy (or residual) vector Y − B I, and the functional obtained from its norm

R(I) =
1
2
|Y − B I|2 , (4.8)

to which we add a Tikhonov’s regularization term, [81, 26, 27, 70, 86] getting

Q(I) =
1
2
|Y − B I|2 + αS (I)

=
1
2

L∑

i=1

M∑

j=1

⎛
⎜⎜⎜⎜⎜⎝Yi j −

N∑

k=−N

N∑

l=−N

bklIi+k, j+l

⎞
⎟⎟⎟⎟⎟⎠

2

+ αS (I) , (4.9)

where S is the regularization term5 and α is the regularization parameter, with
α > 0. Here, B and Y are given by the problem. Finally, the inverse problem is
formulated as finding the minimum point of Q.

Several regularization terms can be used, and common terms are6 [25, 26, 16]:

Norm S (I) =
1
2
|I − Ī|2 = 1

2

L∑

i=1

M∑

j=1

(
Ii j − Īi j

)2
(4.10a)

Entropy S (I) = −
L∑

i=1

M∑

j=1

(

Ii j − Īi j − Ii j ln
Ii j

Īi j

)

(4.10b)

In both cases, Ī is a reference value (an image as close as possible to the image that
is to be restored), known a priori.

The notion of regularization and its properties are discussed in Chapter 3. The
concept of reference value is introduced in Section 3.4, page 60 and the advantage
of its use is explained in Section 3.6, page 63.

5 To improve readability we insert a comma (,) between the subscripts of I whenever ade-
quate: Ii+k, j+l.

6 Some regularization terms can be interpreted as Bregman’s divergences or distances
[14, 81, 25, 42]. The use of Bregman’s divergences as regularization terms in Tikhonov’s
functional was proposed by N. C. Roberty [27], from the Universidade Federal do Rio
de Janeiro. Bregman’s distance was introduced in [14] and it is not a metric in the usual
sense. Exercise A.14 recalls the notion of metric spaces, while Exercise A.35 presents the
definition of Bregman’s divergences. Some other exercises in Appendix A elucidate the
concept of Bregman’s divergence.
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In the case now under consideration, image restoration, the reference value can
be the given blurred image Ī = Y, or a gray image (i.e., with everywhere constant
intensity),

Īi j = c , for i = 1, . . . , L j = 1, . . . ,M ,

where c is a constant that can be chosen equal to the mean value of the intensities of
the blurred image,

c =
1

LM

⎛
⎜⎜⎜⎜⎜⎜⎝

L∑

i=1

M∑

j=1

Yi j

⎞
⎟⎟⎟⎟⎟⎟⎠ .

4.3 Restoration Algorithm

Image restoration can be carried out by Tikhonov’s method, with the regularization
term given by the entropy functional, Eq. (4.10b). The regularized problem corre-
sponds to the minimum point equation of the functional Q, and is a variant of the
one analyzed in Chapter 3. The entropy functional chosen here renders the regular-
ization as non-linear, differing from the one treated in the referred chapter.

Substituting the expression of S (I) given in the right hand side of Eq. (4.10b) in
Eq. (4.9), we obtain

Q(I) =
1
2

L∑

i=1

M∑

j=1

⎛
⎜⎜⎜⎜⎜⎝Yi j −

N∑

k=−N

N∑

l=−N

bklIi+k, j+l

⎞
⎟⎟⎟⎟⎟⎠

2

−α
L∑

i=1

M∑

j=1

(

Ii j − Īi j − Ii j ln
Ii j

Īi j

)

. (4.11)

To minimize this functional, the critical point equation is used

∂Q
∂Irs
= 0 for all r = 1, . . . , L, s = 1, . . . ,M . (4.12)

This is a non-linear system of LM equations and LM unknowns, Ii j, i=1, . . . , L, j=
1, . . . ,M. For notational convenience, let Frs=∂Q/∂Irs, and F the function

RLM �I �→F(I)∈RLM , (4.13)

where, from Eq. (4.11), its (r, s)-th function7 is given by Frs,

Frs = −
L∑

i=1

M∑

j=1

⎛
⎜⎜⎜⎜⎜⎝Yi j −

N∑

k=−N

N∑

l=−N

bklIi+k, j+l

⎞
⎟⎟⎟⎟⎟⎠ br−i,s− j + α ln

Irs

Īrs
. (4.14)

7 When computing Frs , we use that

∂Ii j/∂Irs = δirδ js and
N∑

k=−N

N∑

l=−N

bkl∂Ii+k, j+l/∂Irs = br−i,s− j .
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Using this notation, the system of non-linear critical point equations of Q, Eq.
(4.12), becomes

F(I) = 0 . (4.15)

Therefore, the inverse problem is reduced to solving Eq. (4.15). We will show how
this non-linear system can be solved by the Newton’s method.

4.3.1 Solution of a System of Non-linear Equations Using
Newton’s Method

Consider a system of equations like the one in Eq. (4.15). Newton’s method is it-
erative and, under certain circumstances, converges to the solution. We sketch its
derivation.

An initial estimate of the solution is needed: Io. Then, Ip+1 is defined from Ip,
with p = 0, 1, . . . , using a linearization of Eq. (4.15) by means of a Taylor’s series
expansion of function F around Ip.

Due to the Taylor’s formula8 of F, we have

F(Ĩ) = F(Ip) +
L∑

m=1

M∑

n=1

∂F
∂Imn

∣∣
∣
∣∣
∣
∣
Ip

(
Ĩmn − Ip

mn

)

+ O
(
|Ĩ − Ip|2

)
, as Ĩ → Ip . (4.16)

Here, we should be careful with the dimensions of the mathematical objects. As
stated in Eq. (4.13), F, evaluated at any point, is an element of RLM , i.e., the left
side of Eq. (4.16) has LM elements. This also holds for every term ∂F/∂Imn, for all
m = 1, . . . , L, n = 1, . . . ,M.

For Newton’s method, Ip+1 is defined by keeping only up to the first order term
of Taylor’s expansion of F, right side of Eq. (4.16), setting the left side equal to zero
(we are iteratively looking for a solution of equation F = 0), and substituting Ĩ by
Ip+1. Thus, Newton’s method for solution of Eq. (4.15) is

0 = F(Ip) +
L∑

m=1

M∑

n=1

∂F
∂Imn

∣∣
∣
∣
∣∣
∣
Ip

(
Ip+1
mn − Ip

mn

)
. (4.17)

To determine Ip+1, we assume that Ip is known. Therefore, we see that Eq. (4.17)
is a system of linear equations for Ip+1. This system has LM equations and LM
unknowns, Ip+1

mn , where m = 1, . . . , L, n = 1, . . . ,M.
Newton’s method can be conveniently written in algorithmic form as below. Let

the vector of corrections

ΔIp = Ip+1 − Ip ,

with entries (ΔIp)m,n, m = 1, . . . ,L, j = 1, . . . ,M. Choose an arbitrary tolerance
(threshold) ε > 0.

8 Taylor’s formula is recalled in Section A.5.
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1. Initialization
Choose an initial estimate9 I0.

2. Computation of the increment
For p = 0, 1, . . ., determine ΔIp = (ΔIp)mn ∈ RM2

such that10

L∑

m=1

M∑

n=1

∂F
∂Imn

∣
∣
∣
∣∣
∣
∣
Ip

ΔIp
mn = −F(Ip) . (4.18a)

3. Computation of a new approximation
Compute11

Ip+1 = Ip + ΔIp . (4.18b)

4. Use of the stopping criterion
Compute |ΔIp|= |Ip+1−Ip|. Stop if |ΔIp|<ε. Otherwise, let p= p+1 and go to
step 2.

4.3.2 Modified Newton’s Method with Gain Factor

Newton’s method, as presented in Eq. (4.18), does not always converge. It is conve-
nient to introduce a modification by means of a gain factor γ, changing Eq. (4.18b)
and substituting it by

Ip+1 = Ip + γΔIp , (4.19)

that will lead to the convergence of the method to the solution of Eq. (4.15) in a
wider range of cases, if the gain factor γ is adequately chosen.

4.3.3 Stopping Criterion

The iterative computations, by means of the modified Newton’s method, defined by
Eqs. (4.18a) and (4.19), is interrupted when at least one of the following conditions
is satisfied

|ΔIp| < ε1, |S (Ip+1) − S (Ip)| < ε2 or |Q(Ip+1) − Q(Ip)| < ε3 , (4.20)

where ε1, ε2 and ε3 are values sufficiently small, chosen a priori.

9 For the problems we are aiming at, the initial estimate, I0, can be, for example, Ī, i.e., the
blurred image, or a totally gray image.

10 Compare with Eq. (4.17).
11 Given Ip, by choosing ΔIp and Ip+1 as in Eq. (4.18), it follows that Ip+1 satisfies Eq. (4.17).
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4.3.4 Regularization Strategy

As mentioned in Chapter 3, the regularized problem differs from the original prob-
lem. It is only in the limit (as the regularization parameter approaches zero) that the
solution of the regularized problem approaches the solution of the original problem,
in special circumstances determined by a specific mathematical analysis. On the
other hand, as was also mentioned in the same chapter, in practice the regularization
parameter should not always approach zero, since, in the inevitable presence of mea-
surement noise, the errors in the solution of the inverse problem can be minimized
by correctly choosing the value of the regularization parameter. Thus, it is neces-
sary to find the best regularization parameter, α∗, which lets the original problem
be minimally altered, and yet, that the solution remains stable. The regularization
presented here is non-linear, in contrast with that defined in Section 3.3.

It is possible to develop algorithms to determine the best regularization param-
eter, [84, 85]. However, they are computationally costly. A natural approach is to
perform numerical experiments with the restoration algorithm, to determine a good
approximation for the optimal regularization parameter.

4.3.5 Solving Sparse Linear Systems Using the
Gauss-Seidel Method

We now present an iterative method suitable for solving the system of equations
(4.18a).

From Eq. (4.14), we obtain

Crs
mn =

∂Frs

∂Imn
=

N∑

k=−N

N∑

l=−N

bklbr−m+k,s−n+l +
α

Irs
δrmδsn , (4.21)

for r,m = 1, 2, . . . , L and s, n = 1, 2, . . . ,M. Here, we also use the equations that can
be found in the footnote on page 90.

The linear system of equations given by Eqs. (4.18a) and (4.21) is banded,12 the
length of it (distance from the non-zero elements to the diagonal) varying with the
order of the blurring matrix represented in Eqs. (4.1) and (4.2). The diagonal of
fourth order tensor C is given by the elements Crs

mn, of C, such that r = m and s = n,
i.e., by elements Cmn

mn. For some types of blurring operator, it is guaranteed that the
diagonal is dominant for the matrix C of the linear system of Eq. (4.18a).

Due to the large number of unknowns to be computed (for example, if LM =

256× 512), and the features of matrix C, that we just described, an iterative method

12 Every point of the image is related only to its neighbours, within the reach of the blurring
matrix.
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is better suited to solve the system of Eq. (4.18a), and we choose the Gauss-Seidel
method.13

Putting aside the term of the diagonal in Eq. (4.18a), we obtain the correction
term of a Gauss-Seidel iteration,

ΔIp,q+1
rs = − 1

(∂Frs/∂Irs)|Ip,q

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Frs|Ip,q +

L∑

m=1
m�r

M∑

n=1
n�s

∂Frs

∂Imn

∣
∣
∣∣
∣
Ip,q
ΔIp,q̃

mn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.23)

Here q is the iteration counter of the Gauss-Seidel method and q̃ can be q or q + 1.
This is so because, depending on the form the elements of ΔIp,q are stored in the
vector of unknowns ΔI, for every unknown of the system, characterized by specific
r, s, it will use the previous value of the unknowns (i.e., the value computed in the
previous iteration, ΔIp,q) in some (m,n) positions, or the present values ΔIp,q+1, in
other (m,n) positions, computed in the current iteration, q + 1.

For this problem, we can set the initial estimate to zero, ΔIp,0 = 0.

4.3.6 Restoration Methodology

We summarize here the methodology adopted throughout this chapter:

1. Original problem. Determine vector I that solves the equation
BI = Y;

13 We recall here the Gauss-Seidel method, [35]. Consider the system

Ax = b . (4.22)

Let D be the diagonal matrix whose elements in the diagonal coincide with the diagonal
entries of A. Let L and U denote, respectively, the lower and upper-triangular matrices,
formed by the elements of A. Then,

A = L + D + U ,

and the system can be rewritten as

(L + D)x = −Ux + b .

Denoting by xq the q-th iteration (approximation of the solution), the Gauss-Seidel method
is: given x0 = x0, arbitrarily chosen, let

(L + D)xq+1 = −Uxq + b ,

for q = 0,1,2 . . ., until convergence is reached. Using index notation, we have

xq+1
i = a−1

ii

⎧
⎪⎪⎨
⎪⎪⎩

bi −
⎛
⎜⎜⎜⎜⎜⎜⎝

∑

j<i

ai j x
q+1
j +

∑

j>i

ai j x
q
j

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎬
⎪⎪⎭
.

It is expected that limq→+∞ xq = x, where x denotes the solution of Eq. (4.22). This can be
guaranteed under special circumstances.
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2. Alternative formulation. Minimize the function
R(I) = 1

2 |Y − BI|2;

3. Regularized problem. Minimize the function
Q(I) = R(I) + αS (I);

4. Critical point. Determine the critical point equation
∇Q(I) = 0;

5. Critical point equation solution. use modified Newton’s method, to solve the
non-linear critical point system of equations;

6. Linear system solution. use Gauss-Seidel method to solve the linear system
of equations which appears in Newton’s method

C(Ip+1 − Ip) = −F(Ip), where C is from Eq. (4.21).

In the following sections, we will present three examples of the application of this
methodology to the restoration of a photograph, a text and a biological image.

4.4 Photo Restoration

In Fig. 4.3b, it is shown the blurring of the original 256 × 256 pixels image, pre-
sented in Fig. 4.3a, due to a blurring matrix consisting on a Gaussian weight, with a
dependence domain of 3 × 3 points, that is, bkl satisfies Eq. (4.3) and

bkl ∝ exp

⎛
⎜⎜⎜⎜⎝−

r2
k + r2

l

2σ2

⎞
⎟⎟⎟⎟⎠ , (4.24)

where σ is related14 to the bandwidth and rk = |k|.
The space of shades of gray, [0,1], is discretized and coded with 256 integer

values, between 0 and 255, where 0 corresponds to black and 255 to white15. The
histograms in Fig. 4.3, present the frequency distribution of occurrence of every
(discrete) shade in the image. For example, if in 143 (horizontal axis) the frequency
is 1003 (vertical axis), it means that there are 1003 pixels in the image with shade
143.

Figure 4.3c exhibits the photograph’s restoration, done without regularization,
stopped in the 200-th iteration of the Newton’s method, and in Fig. 4.3d the regular-
ized restoration (α=0.06).

The histogram of the image restored with regularization is, qualitatively, the one
closer to the histogram of the original image. This corroborates the evident improve-
ment in the image restored with regularization.

The behaviour of functionals Q, R and S defined in Eqs. (4.8)–(4.10) is recorded
in Fig. 4.4. The minimization of functional Q is related to the maximization of the
entropy functional, S.

14 The symbol ∝ means that the quantities are proportional, that is, if a ∝ b, then there is a
constant c such that a = cb.

15 The discretization of the shade space is known as quantization.
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Fig. 4.3 Restoration of an artificially modified image, from a Gaussian with 3×3 points and
σ2=1. Images are on the left and their shade of gray histograms are on the right. (a) original
image; (b) blurred image. (Author: G. A. G. Cidade from the Universidade Federal do Rio de
Janeiro).
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Fig. 4.3 (Cont.) Restoration of an artificially modified image, from a Gaussian with 3×3
points and σ2 = 1. (c) restored image without regularization (α = 0, γ = 0.1); (d) restored
image with regularization (α=0.06, γ=0.1). (Author: G. A. G. Cidade).
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iterations iterations

iterations iterations

Fig. 4.4 Behaviour of the functionals Q, S and R during the iterative process. (a) α = 0 and
γ= 0.3; (b) α= 0 and γ= 0.1; (c) α= 0.06 and γ= 0.1; (d) α= 0.06 and γ= 0.05. (Author: G.
A. G. Cidade).
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When the regularization parameter is not present, α = 0, it is observed that
the proposed algorithm diverges, even when one uses a gain factor in the correc-
tions of the intensity in Newton’s iterative procedure, Eq. (4.19), as can be seen in
Figs. 4.4a,b.

Figures 4.4c,d show the convergence of the algorithm, that naturally is achieved
faster for the largest gain factor, γ=0.1. In this case, approximately 20 iterations are
needed. On the other hand, 40 iterations will be necessary if γ=0.05. Functional R,
shown in these figures, corresponds to half the square of the norm of the residuals,
defined as the difference between original blurred image, Y, and restored blurred
image, BI, given by

R(I) =
1
2
|Y − BI|2 .

4.5 Text Restoration

Figures 4.5a and b present an original text (256 × 256 pixels) and the result of its
blurring by means of a Gaussian blurring matrix with 5 × 5 points and σ2 = 10.

Text restoration is shown in Fig. 4.5c. There are border effects, that is, structures
along the border that are not present neither in the original text nor in the blurred
image. These occur due to inadequate treatment of pixels near the border (boundary)
of the image. This effect can be minimized by considering reflexive conditions at the
borders, or simply by considering null the intensity of elements outside the image.
See Exercises 4.2, 4.4.

A simple text has, essentially, but two shades: black and white. This is reflected
by the histograms of the original and restored texts (Fig. 4.5). However, the blurred
text exhibits gray pixels, as shown by its histogram Fig. 4.5b. Notice that the original
and restored texts can be easily read, unlike the blurred text.

4.6 Biological Image Restoration

In this section we consider a biological image restoration, which consists of an ex-
ample of an inverse problem involving a combination of identification and recon-
struction problems (problems P2 and P3, Section 2.8).

Results of applying the methodology described in this chapter to a real biolog-
ical image of 600 nm × 600 nm are presented in Fig. 4.6. The image represents an
erythroblast being formed, under a leukemic pathology. This image has been ac-
quired by means of an atomic force microscope at the Institute of Biophysics Carlos
Chagas Filho, of the Universidade Federal do Rio de Janeiro [25].

In the inverse problem presented here, the original image, I, is being restored to-
gether with the choice of the blurring operator given by matrix B. This is an ill-posed
problem to determine I, since neither the blurring matrix B is known, in contrast with
the problems treated in the previous sections, nor the original image is known.
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Fig. 4.5 Restoration of a text blurred by means of a Gaussian. (a) original text; (b) blurred
text; (c) restored text with regularization parameter α= 0.2, and gain factor γ= 0.1. (Author:
G. A. G. Cidade).
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Fig. 4.6 Restorarion of an image obtained by means of an atomic force microscope, together
with the blurring matrix identification . (a) original image; (b) restored image with α= 0.03,
γ = 0.2, Gaussian with 9×9 points and σ2=10; (c) restored image with α = 0.03, γ = 0.2,
and Gaussians with 15×15 points and σ2 = 20, 40 and 60. (Author: G. A. G. Cidade. Images
acquired with an Atomic Force Microscope at the Instituto de Biofísica Carlos Chagas Filho
of the Universidade Federal do Rio de Janeiro.)
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If we knew the original image, or if we knew several images and their blurred
counterparts, we could adapt the methodology employed to solve the model problem
considered in Chapter 1 to identify the blurring matrix.

In the absence of a more quantitative criterion, the blurring matrix identifica-
tion is performed qualitatively, taking into consideration the perception of medical
specialists, in relation to the best informative content, due to different restorations,
obtained from assumed blurring matrices.

To find the blurring matrix in a less conjectural way, one can use Gaussian to-
pographies (see Fig. 4.6) to represent, as much as possible, the geometric aspect of
the tip of the microscope, which is the main cause for the degradation that the image
undergoes. In other words, we assume that the class of blurring operators is known,
i.e., we characterize the model, being the specific model identified simultaneously
with the restoration of the image.

We used blurring matrices of 9 × 9, 15 × 15 and 21 × 21 points, with different
values for σ2: 10, 20, 40 and 60.

From Fig. 4.6, it can be concluded that we gain more information with Gaussian
topographies of 15 × 15 than with those of 9 × 9. For the tests with 21 × 21 points
the results were not substantially better.

Figure 4.6c, resulting from the procedure, is considerably better than the blurred
image. As in the previous section, the border effects here present are also due to
inadequately considering the outside neighbour elements of the border of the image.

Exercises

4.1. Show that Eq. (4.4) is valid.

4.2. Assume that pixel (7,3) is located at the upper right corner of the image. Fol-
lowing the deduction of Eq. (4.7), and assuming symmetry, show that we should
take

Y73 =
1

16
(4I62 + 4I72 + 4I63 + 4I73) =

1
4

(I62 + I72 + I63 + I73) .

4.3. Consider a 3 × 3 blurring weight matrix16

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b−1−1 b−1 0 b−1 1

b0−1 b0 0 b0 1

b1−1 b1 0 b1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let I be an image and Y its blurred counterpart. Assume we use symmetric condi-
tions on the boundary. Work out explicit formulae for the blurred image Y tone of
grays, Yi j, if

(a) pixel (i, j) is in the interior of the image;

16 Working with indices is sometimes very cumbersome. Several of the following exercises
proposes practicing a little ‘indices mechanics’...
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(b) pixel (i, j) is in the image’s lower boundary;

(c) pixel (i, j) is in the image’s lower left corner.

4.4. Do a similar problem as Exercise (4.3), however, instead of using a symmetric
condition at boundaries and corners, assume that outside the image, pixels have a
uniform value, denoted by Iext .

4.5. Given two pixels (i, j) and (i′, j′), we define their distance by

d
(
(i, j), (i′, j′)

)
= max{|i − i′|, | j − j′|} ,

where max of a finite set of real numbers denotes the largest one in the set.

(a) Give explicitly the pixels that comprise the circle centered at (i, j) and radius
1,

C(i, j)(1) =
{
(i′, j′) | d

(
(i, j), (i′, j′)

)
= 1

}
.

(b) Determine the disk B(i, j)(2), centered at (i, j) and radius 2,

B(i, j)(2) =
{
(i′, j′) | d

(
(i, j), (i′, j′)

)
≤ 2

}
.

(c) Sketch the sets C(i, j)(1) and B(i, j)(2).

(d) Give, in the same way, the circle with center (i, j) and radius N.

4.6. (a) Let

P =
{
(i′, j′), i′, j′ = 1, . . . ,M

}
= {i, i = 1, . . . ,M}2 ,

be the set of pixels of a square image. Given a set of pixels S ⊂ P, define the
distance of pixel (i, j) to set S by

d ((i, j),S) = min
{
d

(
(i, j), (i′, j′)

)
, (i′, j′) ∈ S

}
,

where min of a finite set of real numbers denotes the smallest one in the set.
The right boundary of the image is

R =
{
(i′, j′) ∈ P, | i′ = M

}
=

{
(M, j′), j′ = 1, . . . ,M

}
.

Determine d ((i, j),R).

(b) Likewise, define respectively, L, the left, U, the top, and D, the bottom image
boundaries, and compute d ((i, j),L), d ((i, j),U), and d ((i, j),D).

(c) The boundary of the image is defined by B = L ∪ T ∪ R ∪ D. Compute
d ((i, j),B).
Hint. Use functions max and/or min to express your answer.
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4.7. Assume that B is a blurring operator with form given by Eq. (4.2).

(a) Let (i, j) be a fixed interior pixel (not on the boundary of the image), and at a
distance at least N from the boundary of the image. In particular, B(i, j)(N) ⊂
P. Show that

Yi j =

N∑

k=−N

N∑

l=−N

bklIi+k, j+l . (4.25)

Hint. Change, for instance, the index of summation i′, by k, with i′ = i+ k, in
Eq. (4.1), that is ‘center’ the summation around i.

(b) The structure of the blurring operator cannot be taken all the way to the
boundary of the image. This is why in (a), the pixel (i, j) is restricted to the
pixels of distance N or more from the boundary. Verify this. If (i, j) has dis-
tance less than N, we cannot compute Yi j using Eq. (4.25).

4.8. Given a blurring operator B, as in Eq. (4.1), define the domain of dependence
of pixel (i, j) as the set of pixels of the image I that contribute to the value of the
pixel in the blurred image, Yi j, that is,

D(i, j) =
{
(i′, j′) such that Bi′ j′

i j � 0
}
.

Assume that the blurring operator B has the structure specified in Eq. (4.2). Deter-
mine for which pixels (i, j) ∈ P, one has

D(i, j) = B(i, j)(N) .

4.9. The blurring operator B has the structure presented in Eq. (4.2). Let β be the
(2N + 1) × (2N + 1) matrix given by

β =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b−N,−N · · · · · · · · · b−N,N
...

. . .
...

...
b0,−N b0,0 b0,N
...

...
. . .

...
bN,−N · · · · · · · · · bN,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(a) Give an expression for the entries of β, βi′ j′ , in terms of bkl. That is, determine
k(i′) and l( j′) such that

βi′ j′ = bk(i′)bl( j′), for i′, j′ = 1, . . . , 2N + 1 .

(b) For pixel (i, j), define the (2N + 1) × (2N + 1) matrix I = I(i, j), given by

I = I(i, j) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ii−N, j−N · · · Ii−N, j · · · Ii−N, j+N
...

. . .
...

...
Ii, j−N Ii, j Ii, j+N
...

...
. . .

...
Ii+N, j−N · · · Ii+N, j · · · Ii+N, j+N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.26)
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Give an expression for the entries of I = I(i, j), I(i, j)
i′ , j′ , in terms of the entries

Ikl of the image I, similar to what was done in (a).

4.10. (a) Given m × n matrices, A and B, define the following pointwise matrix
product, giving rise to a m × n matrix, C = A : B where Ci j = Ai j · Bi j.
Compute β : I, where β is defined in Exercise 4.9, and I is an image.

(b) Compute the pointwise matrix product, β̃ : I(7,3), between matrix given by
Eq. (4.5), denoted here by β̃, and I(7,3), defined in Eq. (4.26), when N = 1,
and (i, j) = (7,3).

(c) Let S (A) be the sum of all elements of matrix A,

S (A) =
m∑

i=1

n∑

j=1

Ai, j .

Compute S (β̃ : I(7,3)) and compare with Eq. (4.6).

(d) Show that Eq. (4.25) can be written as

Yi j = S
(
β̃ : I(i, j

)
.

4.11. The entropy regularization, Eq. (4.10b), makes use of the function s(x) =
x0 − x + x ln x

x0
, with x0 = Īi j and x = Ii j. Take, for concreteness, x0 = 1/2.

(a) Compute and sketch s′.

(b) Compute and sketch s′′. Show that s′′(x) > 0 for all x. Conclude that s is
strictly convex17.

(c) Sketch s.

4.12. Let f = ( fp) be a vector in Rn with entries fp, and m a constant in R. Consider
Csiszár measure, [42],

Θq =
1

1 + q

∑

p

fp
f q
p − mq

q
, (4.27)

and Bregman divergence, [14],

BΘq

(
f , f

)
= Θq( f ) − Θq( f ) − 〈∇Θq( f ), f − f 〉 .

(a) Show that θq(x) = x xq−mq

q , is strictly convex.

(b) Show that the family of Bregman divergence, parametrized by q, is

BΘq =
1

q + 1

∑

p

⎡
⎢⎢⎢⎢⎢⎢⎣ fp

f q
p − f

q
p

q
− f

q
p( fp − f p)

⎤
⎥⎥⎥⎥⎥⎥⎦ .

17 The concept of convexity of functions is recalled in Exercise A.34, page 216.
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(c) Derive the following family of regularization terms, parametrized by q

S (I) = BΘq (I,Ī)

=

L∑

i=1

M∑

j=1

⎡
⎢⎢⎢⎢⎢⎣I

q
i j

Iq
i j − Īq

i j

q
− Īq

i j(Ii j − Īi j)

⎤
⎥⎥⎥⎥⎥⎦ . (4.28)

Here, each value of q yields different regularization terms such as the ones
defined in Eq. (4.10). These regularization terms may be used in the last term
of Eq. (4.9), [27].
Hint. Define fp = Ii j as the estimated value of the shade of gray for the image
at the pixel (i, j), and Īi j its corresponding reference value. Observe that the
term mq in Eq. (4.27) cancels out in the derivation steps of Eq. (4.28).

(b) Setting q = 1, derive Eq. (4.10a), from the family of regularization terms
given by Eq. (4.28).

(c) Considering the limit q → 0, in Eq. (4.28), check that

lim
q→0

BΘq(I,I) = S (I) ,

where S (I) is given by Eq. (4.10b).
Hint. Recall that limq→0 (xq − 1)/q = ln x.

4.13. Use the same notation as in Exercise 4.12.

(a) Show that θq(x) = xq−mq

q , when q > 1, and θq(x) = − xq−mq

q , when 0 < q < 1,
are strictly convex functions.

(b) Show that the family of Bregman divergence, parametrized by q, is

BΘq =
∑

p

⎡
⎢⎢⎢⎢⎢⎢⎣

f q
p − f

q
p

q
− f

q−1
p ( fp − f p)

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

when q > 1, and determine the corresponding expression when 0 < q < 1.

(c) Derive the following family of regularization terms, parametrized by q

S (I) = BΘq(I,Ī)

=

L∑

i=1

M∑

j=1

⎡
⎢⎢⎢⎢⎢⎣

Iq
i j − Īq

i j

q
− Īq−1

i j (Ii j − Īi j)

⎫
⎪⎪⎬
⎪⎪⎭
. (4.29)

when q > 1. Derive also the expression when 0 < q < 1.

(b) Setting q = 2, derive Eq. (4.10a), from the family of regularization terms
given by Eq. (4.29).
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(c) Considering the limit q → 0, in Eq. (4.29), check the relation between

lim
q→0

BΘq (I,I) ,

and S (I) given by Eq. (4.10b).

4.14. (a) Derive Eq. (4.14), from Eq. (4.11).

(b) Derive Eq. (4.21), from Eq. (4.14).

4.15. (a) Show that for a general value q > 0, Eq. (4.14) is written as

Frs = −
M∑

i=1

M∑

j=1

⎛
⎜⎜⎜⎜⎜⎝Yi j −

N∑

k=−N

N∑

l=−N

bklIi+k, j+l

⎞
⎟⎟⎟⎟⎟⎠ br−i,s− j

+
α

q

(
Iq
rs − Īq

rs

)
. (4.30)

(b) Considering the limit q → 0, derive Eq. (4.14) from Eq. (4.30).

4.16. Show that for a general value q > 0 Eq. (4.21) is written as

Crs
mn =

∂Frs

∂Imn
=

N∑

k=−N

N∑

l=−N

bklbr−m+k,s−n+l + αIq−1
rs δrmδsn .

4.17. Equation (4.24) states a proportionality that bkl has to satisfy.

(a) Let c denote the constant of proportionality for a 3× 3 blurring matrix. Deter-
mine it.

(b) Show that bkl in Eq. (4.24) admits a separation of variables structure.

(c) Let c denote the constant of proportionality for a N×N blurring matrix. Obtain
an expression for it.
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