
Chapter 2

Fundamental Concepts in Inverse Problems

The final answer to several problems can be reduced to evaluating a function—the
solution function or the solution operator—and in the case of inverse problems it
is not different. This is the point of view of a mathematician — insisting in the
use of the notion of function. Not that one can always come about with the solu-
tion operator explicitly, but we can think abstractly on it and deduce its properties.
This justifies the treatment that we present in this chapter of some of the aspects
and complications that arise in the evaluation of functions. Next, we discuss some
general aspects of mathematical models and inverse problems. A few classification
schemes of inverse problems, illuminating different aspects, are presented. These
classifications are used in subsequent chapters.

At times, the functions we are dealing with are quite complex, or are given in an
extremely intricate way (for example, the function happens to be the solution of a
partial differential equation [PDE]). In such a case it is almost always unavoidable
to resort to a computer to produce a numerical value, i.e., a numerical solution. In
this case the knowledge of the properties of the solution operator turns out to be
very useful, even when we do not have the solution operator explicitly. In any case,
the evaluation of the function (solution)—the final result—will be within a certain
range of error, which varies mainly due to the following characteristics:

1. The problem is more complicated, or ill-behaved;

2. The function is more ill-behaved;

3. The way in which the function is evaluated in the computer (the algorithm)
can be better or worse.

Case 1 is related to the need of regularizing the problem and we will present that
concept in Chapter 3. Presently we deal with cases 2 and 3. Once a (small) error is
introduced in a computation —through an experimental datum or due to round-off—
it affects the final outcome. The error in the result can: (i) be reduced; (ii) remain
small; (iii) be amplified.

There are two notions that can help us to understand error dynamics when eval-
uating a function: (a) the condition of the function being evaluated; and (b) the
stability1 of the algorithm used to evaluate it.

Condition will be dealt with in Sections 2.1 to 2.4 and algorithm stability in Sec-
tion 2.5. Section 2.6 covers some questions related to existence and uniqueness. The
notion of well-posed problem in the sense of Hadamard is considered in Section 2.7.
In Section 2.8 a very simple classification of inverse problems is presented.

1 The word stability can have several meanings. It is used even to name the notion of condi-
tion, in the sense that will be defined in this chapter, depending on authors. Caution is to
be exercised as its meaning depends on the context.
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2.1 Condition of Function Evaluation

Evaluation of a function at a given point can be well or ill conditioned. This is an
intrinsic property of the function being evaluated and it does not depend on approx-
imations.

Qualitatively it is said that the evaluation is well-conditioned if a small error in
the point where the function is evaluated does not affect greatly the value of the
function. If, however, a small error in the evaluation point leads to a large error in
the value of the function, the evaluation is ill-conditioned.

It is possible to identify the notion of well-conditioned evaluation with continuity.
Nevertheless, we desire a more restrictive notion, in the sense that well-conditioned
implies continuity, but not the other way around. This shall be important when work-
ing with finite-precision arithmetic, and will allow us to distinguish different be-
haviours among continuous functions. Given a function, its qualitative behaviour
can even depend on the region of the domain, having places where its evaluation is
well-conditioned, and others where it is ill-conditioned. Let us see an example to
illustrate this discussion.

Example 2.1. Evaluation of a rational function. Consider the evaluation of the
function f (x) = 1/(1 − x). The computation of f (x) is:

(a) ill-conditioned, if x lies near 1, (but, of course, x must be different from 1);

(b) well-conditioned, otherwise.

We shall treat these two cases next:

(a) When x is near 1.

Assume x=1.00049 and that in the computation we use an approximate value,
x∗=1.0005. In this case, the absolute error of the evaluation is:

eabs = f (x∗)− f (x)= −103/24.5 .

We remark that an error of 10−5 = x∗ − x in the data led to an evaluation error
of −103/24.5. The error is magnified by the multiplication factor

m =
error in the result (of the evaluation)

error in the point (of the domain)
= −103/24.5

10−5
,

which, in absolute value satisfies c = |m| > 106.

(b) When x is far from 1.

When x is far from 1, the previous magnification phenomenon does not occur.
Let x=1998, and x∗=2000 an approximation of x. Then the absolute error in
the evaluation is

eabs =
1

1 − 2000
− 1

1 − 1998
=

2
1999 ·1997

.

Thus, the amplification factor of the error is (1999 ·1997)−1 < 10−6, effec-
tively reducing the error.
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2.2 Condition as a Derivative Bound

To study how a data error affects the evaluation of a function f , let x be the point of
interest and let x∗ be its approximation, and consider the quotient

m =
error in the result (evaluation)
error in the datum (domain)

=
f (x∗) − f (x)

x∗ − x
. (2.1)

Of course, Eq. (2.1) is Newton’s quotient of f , a preliminary step in the definition
of the derivative of a function. In the limit, x∗→ x, we have m→ f ′(x) and we define
f ′(x) as the error multiplication factor of the evaluation error of f at x. This is a
local quantity, coming from a local operator, d

dx .

Definition 2.1. Given2 f : D ⊂ R→ R of class C1, c f (x) = | f ′(x)| is the condition
number of the (evaluation) of f at x. We also say that the evaluation of f at x is
well-conditioned if c f (x) ≤ 1 and ill-conditioned if c f (x) > 1.

Thus, if the absolute value of the derivative of f is bounded by 1 at all the points
of its domain of definition, i.e., if | f ′(x)| ≤ 1 for all x ∈ D, then the evaluation of
f is always well-conditioned. A simple example is the evaluation of sin x, for any
x ∈ R.

2.3 Other Derivatives and Other Notions of Condition

It is not always convenient to access the sensitivity of the evaluation of a function by
means of Eq. (2.1). As a matter of fact, Eq. (2.1) is written in terms of the quotient
of two absolute errors: the evaluation absolute error and the data absolute error. At
times, it is more interesting to consider relative errors. This leads to other possi-
bilities to define the multiplication factor of the error in the evaluation. We present
several alternatives in Table 2.1.

Table 2.1 Possible definitions for the multiplication factor of the error

numerator→ absolute error relative error

denominator ↓ in the evaluation in the evaluation

data

absolute error

(a)

f (x∗)− f (x)
x∗−x

∼ f ′(x)

(b)

( f (x∗)− f (x)) / f (x)
x∗−x

∼
f ′(x)
f (x)

data

relative error

(c)

f (x∗)− f (x)
(x∗−x)/x

∼ x f ′(x)

(d)

( f (x∗)− f (x)) / f (x)
(x∗−x)/x

∼ x f ′(x)
f (x)

2 We recall that Rn ⊃ Ω � x �→ f(x) ∈ Rm is called a function of class Ck if the derivatives
of its component functions of order at least k exist and are continuous. A function of class
C0 is just a continuous function.
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As done in the case of Eq. (2.1), we can propose the notion of multiplication
factor by considering the limit x∗ → x, in the quotients of Table 2.1. Thus, we have
the following multiplication factor3, m f (x), at x:

(a) f ′(x): the (usual) derivative of f at x;

(b) f ′(x)/ f (x): the logarithmic derivative of f at x (in fact, the derivative of
ln f (x));

(c) x f ′(x): derivative (differential operator) without a special name;

(d) x f ′(x)/ f (x): the elasticity of f at x (much used in economics).

Likewise, we define the condition number as the absolute value of the multiplica-
tion factor, c f (x) = |m f (x)|. In this case, we can talk about well or ill-conditioned
evaluation for all of the condition numbers presented.

For all cases, from (a) to (d), the notion of well-conditioned evaluation is that the
absolute value of the condition be less than or equal to one.

On the other hand, to be bounded by one can, sometimes, be considered too
restrictive. We opt here for this criterion because in this case there is always a re-
duction of the error. That can be unnecessary, however. It must be pointed out that,
in some applications, it is possible to work with values greater than one: a small am-
plification of the error in the data can be manageable. The transition value between
well and ill-conditioned evaluations depends on the given problem and objectives.

2.4 Condition of Vector-Valued Functions of Several Variables

Consider now a vector-valued function of several variables,

f : Rn ⊃ Ω → Rm

x = (x1, . . . , xn)T �→ f(x) = ( f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))T

where Ω is a subset of Rn. As done previously for functions of a single variable,
we can define different condition numbers (of the evaluation) of function f at x. The
important thing to keep in mind is that the condition is the norm of the multiplier of
the error in the data determining the error in the evaluation.

To begin, let us recall that Taylor’s formula4 gives

f(x∗) − f(x) = Jfx · (x∗ − x) + O
(
|x∗ − x|2

)
, as x∗ → x , (2.2a)

3 When one desires to be more specific, one may say, for example, that f ′(x)/ f (x) is the
multiplication factor (of the evaluation) of the relative error (in the result) with respect to
the absolute error (in the datum).

4 See precise statements of Taylor’s formulae on page 204 of the Appendix A.
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Here, Jfx is the Jacobian matrix of f, the m × n matrix of first-order derivatives of
f, evaluated at x,

Jfx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f1
∂x1

. . . ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

. . .
∂ fm
∂xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣
∣
∣
∣∣
∣
∣∣
∣
∣∣
x

.

Also, O is the usual big-O order symbol, and the norm of a vector v is given by

|v| =
(
v2

1 + . . . + v2
n

) 1
2 .

Equation (2.2a) allows us to write

f(x∗) − f(x)
|f(x)| =

1
|f(x)|Jfx · (x∗ − x) + O

( |x∗ − x|2
|f(x)|

)

, (2.2b)

f(x∗) − f(x) = |x|Jfx ·
(x∗ − x)
|x| + O

(
|x∗ − x|2

)
, (2.2c)

f(x∗) − f(x)
|f(x)| =

|x|
|f(x)|Jfx ·

(x∗ − x)
|x| + O

( |x∗ − x|2
|f(x)|

)

, (2.2d)

as x∗ → x, in all cases.
Due to this result, Eq. (2.2), we define the multiplication matrices (of the

evaluation):

(a) absolute (error in the result) to absolute (error in the datum),

Maa = Jfx ; (2.3a)

(b) relative (error in the result) to absolute (error in the datum),

Mra = Jfx/|f(x)| ; (2.3b)

(c) absolute (error in the result) to relative (error in the datum),

Mar = |x|Jfx ; (2.3c)

(d) relative (error in the result) to relative (error in the datum),

Mrr = |x|Jfx/|f(x)| . (2.3d)

It is worthwhile to compare these matrices with the one dimensional case, as shown
in Table 2.1. These are generalizations, and therefore the notation is slightly more
cumbersome, but the fundamental meaning remains.

Note that, from the definition of the norm of a matrix, Eq. (A5), and its properties,
Eq. (A6), we have that

|Jxf · (x∗ − x)| ≤ |Jxf| · |x∗ − x| .
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The condition number of the evaluation, in these cases, is the norm of the multi-
plication matrix,

c f (x) = |Jfx| , absolute to absolute (2.4a)

c f (x) = |Jfx|/|f(x)| , relative to absolute (2.4b)

c f (x) = |x| · |Jfx| , absolute to relative (2.4c)

c f (x) = |x| · |Jfx/|f(x)|| , relative to relative (2.4d)

Example 2.2. Condition number of a matrix. Given a matrix A, we will analyze
the condition of the function f(x) = Ax.

For the linear function f,

Jfx = A , for all x

The condition number, relative to relative, is given by (see Eq. (2.3d))

|x| |A|/|Ax| .

Now, assume that A is invertible, and let y=Ax. Therefore, x=A−1y, and

|x| |A|
|Ax| =

|A−1y|
|y| |A| ≤ |A

−1| |A| ,

due to Eq. (A6).
Thus, notwithstanding the point where the function f is being evaluated, the con-

dition number is bounded by |A−1| |A|. In this case, it is customary to say that

k(A) = |A−1| |A|

is the condition of matrix A.
In general it is clear that the condition of the evaluation of f(x) = Ax depends on

the point x where such evaluation is to be done, and it can be less than k(A).

Example 2.3. Condition in the resolution of a linear system of equations. Con-
sider the linear problem

Kx = y ,

where y ∈ Rn is a datum and x ∈ Rn is the unknown. Assume that K is invertible so
that x = K−1y. We want to analyze the condition of the solution operator

y �→ K−1y .

The condition number in this case, when considering the relation of the absolute
error in the evaluation to the absolute error in the datum, Eq. (2.3a), is |K−1|.
The previous example is used in Chapters 3 and 4.
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Example 2.4. Difference between close numbers. It is known that the difference
between two numbers that are close is ill-behaved when finite-precision arithmetic
is used, as is usually the case with digital computers.

This fact is not directly related to finite-precision arithmetic, but to the intrinsic
nature of the difference function, and to the fact that it is ill-conditioned for close
numbers.

At the beginning, consider the function

R ×R � (x, y) �→ m(x, y) = x − y ∈ R ,

that calculates the difference between two numbers and let us compute its elastic-
ity as defined in the following equation (compare with Eq. (2.3d) and verify their
dissimilarity). We have

E m(x,y) =

(
x
m
∂m
∂x
,

y
m
∂m
∂y

)

=

(
x

x − y
, −

y
x − y

)

,

from whence

|E m(x, y)| =

√

x2 + y2

(x − y)2
. (2.5)

Now, |Em(x, y)| cannot be less than or equal to 1 (unless x and y have opposite signs,
but then m would not be a difference, it would be a sum). Verify. Yet, it is possible
to obtain regions of R2 in which the difference has a moderate elasticity, say, less
than 2. Although there is an amplification of the error, it is a “small” amplification.
On the other hand, if we choose y near x, y = x + ε, with ε small, then the elasticity,

|E m(x, x + ε)| =
√

(x2 + (x + ε)2)/ε2 ,

can be arbitrarily large subject to ε being sufficiently small and x � 0.
Summing up, the problem of computing the difference between two numbers can

be: (a) well-conditioned, if the numbers are far apart; (b) ill-conditioned if the num-
bers are close. Notice that this is not related to the use of finite-precision arithmetic,
but will be observed in the presence of round-off errors when using such arithmetic.

Finally, it would be more correct to use the norm of the multiplication factor —
the condition number of m — as obtained from Eq. (2.3d), instead of the norm of
the elasticity, Eq. (2.4d). However, in this case, these two notions coincide.

2.5 Stability of Algorithms of Function Evaluation

As mentioned before, the notions of condition and stability are important in un-
derstanding how the errors alter the final outcome of a computation. The notion of
condition of the evaluation of a function is intrinsic to the function whose outcome
(image value) is to be computed, so it is unavoidable to deal with it as long as we
work with that particular function. On the other hand, the notion of stability depends
on the algorithm that is used to compute the value of the function.
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Since there are several ways to evaluate a function, it is possible to select one
that best fits our needs. An algorithm to compute the value of a function is unstable
when the errors occurring through the intermediate steps (of the computation) are
amplified. If this is not the case, the algorithm is stable.

An algorithm to compute the value of a function is constituted of several ele-
mentary steps. To study its stability every step must be analyzed separately, and the
effect of the introduction of an error must be tracked.

Example 2.5. Evaluation of an algebraic function. The evaluation of f (x) =√
x + 1−

√
x is well-conditioned, for all x ≥ 0. We will show two algorithms for

this evaluation: the more natural one is unstable, the other one is stable.
The evaluation of f is always well-conditioned, since the absolute value of its

elasticity,

|E f (x)| = 1
2

∣∣
∣
∣
∣∣

x
√

x + 1
√

x

∣∣
∣
∣
∣∣
≤ 1

2
,

is always bounded by 1
2 .

We will consider two algorithms to evaluate f . The first one corresponds to the
direct computation of

√
x+1−

√
x ,

and the second one is based on the algebraic expression,

1
√

x+1+
√

x
.

The two expressions are algebraically equivalent. In fact,

√
x+1−

√
x =

1
√

x+1+
√

x
,

for all x > 0.
To analyze the stability of the natural algorithms streaming from these two equiv-

alent algebraic expressions, we depict in Fig. 2.1 the steps that make up each algo-
rithm. The schemes in the figure help to prove that the second algorithm is prefer-
able, as we shall see.

Each algorithm is assembled with the intermediate steps defined by the following
functions,

p1(x) =
√

x , p2(x) = x + 1 ,

p3(x) =
√

x , p4(y,z) = z − y ,

p5(y,z) = y + z , p6(x) = 1/x .

The steps of each one of the two algorithms correspond to some of these functions
and the algorithms can be interpreted as compositions of these functions.
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First algorithm

Second algorithm

√
x + 1 −

√
x

p1

p2

√
x

x + 1
√

x + 1
p3

p4x

p1

p2

√
x

x + 1
√

x + 1
p3

x
p5

1
√

x + 1 +
√

x

√
x + 1 +

√
x

p6

Fig. 2.1 Diagrams of the algorithms

Since the elasticity of the composition of functions is the product of the elasticity
of the functions5,

E (p1 ◦ p2 ◦ . . . ◦ pn) = E (p1) × E (p2) × . . . × E (pn) , (2.6)

it suffices to analyze each step. We have that

|Ep1(y)|=1/2 , |Ep2(y)|= |y/(y + 1)|≤1 , Ep3(y)=Ep1(y) ,

and, finally, we recall that the elasticity of the difference function, p4, has already
been analyzed in example 2.4.

Now, we see that step p4 is crucial to decide if the first algorithm is stable or not.
It will be stable if

y=
√

x and z=
√

x + 1

are not too close. However, due to the elasticity of p4, we see that, if they are close,
the multiplication factor will be large. Therefore, this algorithm will only work well

5 We recall that the composition of two functions, p1 and p2, denoted by p1 ◦ p2, is the
function,

(p1 ◦ p2)(x) = p1(p2(x)) .
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if x is very close to zero. For x far from zero, y and z will be close, and the algorithm
will behave inadequately (it will be unstable).

Now let us check the second algorithm. Steps p1, p2 and p3 are common to the
first algorithm. Besides,

|Ep5(y,z)| =
√

(y2 + z2)/(y + z)2 ≤ 1 ,

since we are dealing only with non-negative values of y and z. Also, |Ep6(y)| = 1.
Thus, we see that all the multiplication factors in the various steps of the second
algorithm are less than or equal to 1, rendering it stable.

Example 2.6. Evaluation of a polynomial. Given the cubic polynomial

p(x) = (x − 99π)(x − 100π)(x − 101π) ,

where π is given by the value of a pocket calculator, we will present two algorithms
to evaluate p in xo = 314.15 . The first one will use directly the previous expres-
sion, the second one will be based in the power form of p(x) and will use Horner’s
method.

Let us start by analyzing the condition of the evaluation. Since the elasticity of
the product is the sum of the elasticities,

E( f · g) = E f + Eg , (2.7)

we see that the elasticity of the evaluation of p(x) is given by

Ep(x) =
x

x − 99π
+

x
x − 100π

+
x

x − 101π
.

Thus, this evaluation is ill-conditioned at xo =314.15 due to the necessity of evalu-
ating (x − 100π) in this point. In fact,

Ep(314.15) =
314.15

314.15 − 99π
+

314.15
314.15− 100π

+
314.15

314.15 − 101π
≈ 100.2928− 33905.86− 99.7030 ≈ −33905 .

Notwithstanding, the first algorithm is superior to the second one. In fact, in the first
case, we obtain

p(xo) = (xo − 99π)(xo − 100π)(xo − 101π) = 0.091446 ,

while using Horner’s method (starting the algorithm by the innermost expression,
x0 − 300π and proceeding outwards), we obtain:

p(xo) = ((xo − 300π)xo − 29999π2)xo − 999900π3 = − 0.229 .

Evidently, this result contains numerical errors, since the answer should be
positive.

The fact that a problem is ill-conditioned does not prevent us from computing its
result. We must choose carefully the algorithm to be used, no matter if it is an ill or
well-conditioned problem.
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2.6 Questions on Existence and Uniqueness

Some of the difficulties in solving inverse problems are related to the available in-
formation: quantity (not sufficient data or seemingly overabundance thereof) and
quality of information. We will illustrate these points by means of simple examples.

Let us suppose that the function that truly generates the phenomenon is

f (x) = 2x+1 .

In the inverse identification problem we assume that such function is unknown to
us. We do assume, however, that we can determine to which class of functions the
phenomenon, f (x)=2x+1, belongs, i.e., we characterize the model. The observation
of the phenomenon allows us to characterize it as, say, belonging to the class of
functions of the form

fa,b(x) = ax + b ,

where a and b are arbitrary constants. From the available data we must then de-
termine a and b, i.e., we must identify or select the model. We shall consider two
situations, when one has exact data, or, otherwise, has real (noisy) data.

2.6.1 Exact Data

For the sake of the present analysis, we assume that the available data are exact. We
then have three possibilities:

(a) Not sufficient data. The basic unit of information in this example corresponds
to a point in the graph of the model. Assume known that the point (1, 3) be-
longs to the graph of f . It is obvious that this datum is not sufficient for us to
determine a and b. As a matter of fact we only know that

f (1)=3 or a + b=3 ,

It is then impossible to determine the model (find the values of a and b
uniquely).

(b) Sufficient data. We know data (1, 3) and (2, 5). Thus, a+b = 3 and 2a+b = 5,
from whence we can determine that a = 2 and b = 1, and select the model
f (x) = 2x + 1.

(c) Too much data. Assume now that it is known that the points (0, 1), (1, 3), and
also (2, 5) belong to the graph of f . Then

a=2 and b=1 .

It is plain to see that we have too much data, since we could determine a and
b without knowing the three ordered pairs, being for that matter sufficient to
know any two of such pairs. We point out that too much data does not cause
problems in the determination of the model when exact data is used.
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2.6.2 Real Data

In practice we do not have exact data, so it is best to have too much data, even if some
repetition occurs. In spite of it, in many occasions, we only have a sufficient number
of (non-repeated) data due, for example, to costs of acquiring data. Sometimes, real
data will be called noisy data. We still have three possibilities, discussed below:

(a) Insufficient data. Datum (1, 3.1) has an error—as we know, for our “phe-
nomenon,” f (1)=3 and not 3.1. Moreover, this datum is insufficient, because
we obtain only one relation between a and b,

a + b = 3.1 ,

but cannot determine them individually, not even approximately. Another re-
striction must be imposed so the inverse problem has a unique solution. A
concrete and unexpected example of how this can be achieved in real prob-
lems can be seen in Section 4.6.

(b) Sufficient data. Consider that we have the following approximate data: (1,
3.1) and (2, 4.9). Then, an approximation for a and b is obtained by substitut-
ing the data in a class of models,

{
a + b = 3.1

2a + b = 4.9
, (2.8)

which gives a = 1.8 and b = 1.3 .

However, even with sufficient (but with errors, i.e., noisy) data, it is not always
possible to estimate the parameters by imposing that the model fits or interpolates
the data. Later, we will see on example 2.7 that clarifies this remark.

Alternatively, in these cases, we try to minimize a certain measure of discrepancy
between the model and the data. In the example, for every proposed model within
the characterized class, that is, for every pair (a, b), we would compute the difference
between the data and what is established by the model and combine these differences
in some way and minimize it.

For example, if the pair (a, b) is known, the model is given by fa,b, and the point

(1, fa,b(1))

should belong to the graph. This would be what the model establishes, the so-
called prediction6 of the model. The data however indicates that the point should
be (1, 3.1), so

fa,b(1) − 3.1

6 Here the word prediction means not only “foretelling the future” as is usual; it is foretelling
in regions where data is not available. In models involving time, however, it carries the for-
mer meaning. In any case, we search for scientific predictions, as discussed in Chapter 1.
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is a measure of the error due to the difference between what the model foretells and
what actually happens. This must be done with all the experimental data. The results
may be combined to create a discrepancy measure between what the model foretells
with (a, b) and what the real data shows. Finally, we must find the value of the pair
(a, b) that minimizes that measure.

As an example, let us consider the discrepancy (or error) measure given by

E(a, b) =
1
2

[(
fa,b(1) − 3.1

)2
+

(
fa,b(2) − 4.9

)2
]

=
1
2

[
(a + b − 3.1)2 + (2a + b − 4.9)2

]
.

The minimum point of E is given by its critical point, i.e., the point where the
gradient of E is null,

0 =
∂E
∂a
= (a + b − 3.1) + 2(2a + b − 4.9)

0 =
∂E
∂b
= (a + b − 3.1) + (2a + b − 4.9) .

We thus conclude that

a + b=3.1 and 2a + b=4.9 .

It is a coincidence that, due to the form of the function fa,b, the system in Eq. (2.8),
and the one just obtained, are the same. At times the problem obtained by interpola-
tion as in Eq. (2.8) does not have a solution, while the one obtained by least squares,
like the one we just deduced, is solvable. This is a way to reach a solution in real
inverse problems. This subject is addressed in example 2.7.

(c) Too much data. Assume that

(x1, y1), (x2, y2), . . . , (xn, yn), with n ≥ 3 ,

are several experimental points associated with the “phenomenon” f (x) =
2x + 1.

It is unavoidable that these experimental data are contaminated by errors and impre-
cisions intrinsic to the measuring process. Thus, the data are usually incompatible,
i.e., it is impossible to solve for a and b the system

y1 − fa,b(x1) = y1 − (ax1 + b) = 0

y2 − fa,b(x2) = y2 − (ax2 + b) = 0

...

yn − fa,b(xn) = yn − (axn + b) = 0 .

Usually we say that, since the system has n equations and only two unknown vari-
ables, it possibly has no solution.
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In general we would say that there is no model in the characterized class of mod-
els that interpolates the data, i.e., the data cannot be fitted by the model.

We deal with this question from a geometrical point of view, in the context we
are discussing. Note that the system can be rewritten as

a

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ b

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2
...

yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We introduce the notation x = (x1, . . . , xn)T , 1 = (1, . . . , 1)T and y = (y1, . . . , yn)T .
This notation allows the vector equation above to be written as

ax + b1 = y .

Thus, the solution of the system of equations can be rephrased as the problem of
finding a linear combination of the vectors x and 1 to obtain y. These vectors, x and
1, belong to Rn, and they are only two. It is necessary n linearly independent vectors
to represent an arbitrary vector of Rn as a linear combination of them. Therefore, it
is very rare for one to be able to choose a and b in order that y = ax + b1. That this
is the case is easily visualized by means of a simple figure, see Fig. 2.2.
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Fig. 2.2 Plane (2-dimensional subspace) in Rn. Vector y does not belong to the plane spanned
by x and 1, span {x,1} = {ax + b1, for all a, b ∈ R}.

Let us consider the method of least squares. Define the error or residual vector,

r = y − (ax + b1) ,

given as the vector of differences between the experimental measurements, y, and
the predictions of the model with coefficients a and b, ax + b1.

Effectively, what can be done is to choose a linear combination between x and 1

(i.e., choose a and b), in such a way that the functional error,

E(a,b) =
1
2
|r|2 = 1

2
|y − ax − b1|2 = 1

2

n∑

i=1

(yi − (axi + b))2 ,

is minimized. Since the sum stands for the error vector’s squared norm, |y−ax−b1|2,
a look at Fig. 2.2 suggests that it is equivalent to requiring that the error vector be
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orthogonal to the plane spanned by x and 1. Or, else,7

〈x, y − ax − b1〉 = 0 and 〈1, y − ax − b1〉 = 0 .

This can be written as

xT (y − ax − b1) = 0 , and 1T (y − ax − b1) = 0 ,

which leads to,

axT x + bxT1 = xT y

a1T x + b1T1 = 1T y ,

whence,
(

xT x xT1

1T x 1T1

) (
a
b

)

=

(
xT y
1T y

)

. (2.9)

Defining A = (x,1), an n × 2 matrix, Eq. (2.9) can be rewritten as

AT A

(
a
b

)

= AT y (2.10)

which is usually called normal equation. Therefore, the determination of the model
reduces to solving the linear system, Eq. (2.10).

We remark that, even though matrix AT A may not be invertible, Eq. (2.10) will
always have a solution. We shall treat this question later on. Assume, however, that
AT A is invertible. Then, the solution to the inverse problem can be represented by

(
a
b

)

=
(
AT A

)−1
AT y . (2.11)

This is the solution of the inverse problem given by the least squares method, which
corresponds to the evaluation of the function,

y �→
(
AT A

)−1
AT y .

It is pertinent here to recall the discussion of Section 2.5, regarding the stability
of function evaluation algorithms. As a matter of fact, the algorithm suggested by

the expression,
(
AT A

)−1
AT y is not the best way to evaluate it; it can be unstable

(depending on matrix A) and even inefficient from a computational point of view8,

7 The notation of inner product is recalled on page 189, Appendix A.
8 The question of the inefficiency of the algorithms must be considered. Non-efficient meth-

ods can render impractical the use of a given algorithm. In the present case, depending on
the size of AT A, it may be very time consuming to find its inverse. Recall however that one
wants to find (a,b)T satisfying Eq. (2.10).
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because it presumes that the inverse of AT A will be computed. The geometric in-
terpretation of the problem at hand is the basis for the construction of alternative
algorithms, stable and more efficient, see [35].

Assume now that A is invertible. Then AT is also invertible, since

(AT )−1 = (A−1)T .

Therefore,
(

a
b

)

= A−1
(
AT

)−1
AT y=A−1y . (2.12)

This result, Eq. (2.12), is valid whether the data are exact or not.

Example 2.7. Sufficient data and the least squares method. We consider now an
example in which, although there are sufficient data, it is impossible to identify the
model due to the existence of experimental errors.

Assume a phenomenon is given precisely by

g(x)=
1

1 + x2/99
.

Thus, in particular, g(1)=0.99 . Again, assume that g is unknown and that, after the
model has been characterized, the following class of models is obtained,

C =
{

gc for all c ∈ R where gc(x) =
1

1 + (x − c)2/99

}

.

Finally, let (1, 1.1) be the only experimental datum.
Well the given datum is, in principle, sufficient to select the model, since only one

parameter, c, is to be determined. However, if we try to determine c by interpolation,
i.e., by means of the equation

gc(1) =
1

1 + (1 − c)2/99
=1.1 ,

we see that it is impossible. In fact, for every value of c, gc(1) will be less than
one. An adequate approach is to use the approximation of least squares previously
presented.

Let

E(c) =
1
2

(1.1 − gc(1))2 =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎝1.1 −

1

1 + (1−c)2

99

⎞
⎟⎟⎟⎟⎟⎟⎠

2

.

The minimum of E is reached when dE/dc = 0, thus c = 1, (see Fig. 2.3).

It must be noted that, in the case of inexact data, it is certainly better to use “too
much” data. In the example just discussed, if we have access to more data points,
even if they contain errors, we may be able to estimate a model more symmetric
with relation to the y-axis, like the phenomenon that is being modeled.
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y

a)

x

y

b)

x

Fig. 2.3 a) The graph of a phenomenon: g(x) = 1
1+x2/99

. b) Estimated graph: g1(x) =
1

1+(x−1)2/99
.

2.7 Well-Posed Problems

Hadamard defined the notion of a well-posed problem as being one that:

(i) has a solution (existence);

(ii) the solution is unique (uniqueness);

(iii) the solution depends “smoothly” on the data (regularity).

When any of these properties is not satisfied, we say that the problem is ill-posed.
As we have already seen, inverse problems do not always satisfy properties (i)–(iii).

Sometimes, property (i) is not satisfied because it is impossible, once the class
of models is characterized, to interpolate the data with any model within the class.
This has been exemplified in the previous section. We may surpass this by relaxing
the notion of solution — an approximation instead of an interpolation, for example
in a least squares sense.

If property (ii) is not satisfied, additional restrictions must be found to force the
solution to be unique. It is not possible to obtain a unique solution if information
is lacking—there are no mathematical tricks to circumvent lack of knowledge. The
difficulty here steams from the modelization of the phenomenon.

It is said implicitly that the problem involves data. In this case we can talk about
the set of data and properties (i) and (ii) implies that the attribution

data −→ solution

is a function called solution operator, since for any data there is a solution and it is
unique. Property (iii) asks for additional features of the solution operator.
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Property (iii) is more complex from a technical point of view. The notion of
smoothness has to be specified for each problem and, sometimes, can be trans-
lated as continuity or differentiability. It is common for inverse problems in infinite
dimension spaces to be discontinuous. These problems must be rendered
discrete to be solved by means of a computer. It is almost certain that a discrete prob-
lem, coming from the discretization of a differential equation model, is continuous.
Even in this case it may be difficult to obtain the solution, since it can, still, be ill
conditioned.

Thus, in practice, if “well-posed” is to mean a reasonable behaviour in the nu-
merical solution to problems, property (iii) may be substituted by well-conditioned
when we deal with finite dimension spaces. The goal of regularization techniques is
to move around the difficulties associated with the lack of smooth dependence be-
tween the input data and the solution. In some texts this is called a stability problem.

2.8 Classification of Inverse Problems

We give a brief overview of general classes of mathematical models and a discussion
of several ways to classify inverse problems.

2.8.1 Classes of Mathematical Models

When investigating a phenomenon or a physical system, one of the first things to
do is to characterize a mathematical model, i.e., to select a class of models. This
question, which is of the utmost importance, was considered very superficially in
Chapter 1.

For several purposes, the characterization of the system leads to choosing a set of
functions or equations (algebraic, ordinary and/or partial differential equations, inte-
gral equations, integro-differential, algebraic-differential equations, etc), containing
certain unknown constant parameters and/or functions. Of course, other classes of
models can be considered, expressing, nonetheless, basic relations satisfied by the
system or phenomenon under investigation, but we shall only consider the previous
ones.

Taking a somewhat more general point of view, we remark that models can be
either discrete or continuous, either deterministic or stochastic, and either given by
a function (kinematic) or by an equation (dynamic). Each pair of these concepts,
although not exaustive, are exclusive.

Even though each kind of model set forth previously distinguishes itself by its
own technical tools of the trade, we just focus in their conceptual differences, as far
as modeling is concerned. We may also split most of the problems between linear
and nonlinear types. So, when characterizing a model, one possible first thing to
do is deciding that it will be, say, a linear, discrete, stochastic, dynamic model. See
Table 2.2.

From a standpoint of knowledge level, the ‘dynamic’ or equation model is more
fundamental than the ‘kinematic’ or function model. The distinction between
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Table 2.2 Mathematical models

categories values

information content full: deterministic lacking: stochastic
nature of variables discrete continuous

nature of modelization descriptive (kinematic) explanatory (dynamic)
mathematical structure function equation
mathematical property linear non-linear

models, that are given by a function or by an equation, is best understood through
examples. One such example is given by summing integers.

Example 2.8. Sum of integers. Consider the ‘phenomenon’ resulting from pro-
gressively adding integers,

1, 1 + 2 = 3, 1 + 2 + 3 = 6, 10, 15, 21, . . .

This phenomenon can be modeled by the function F : N→ N such that

F(n) = Fn =
n(n + 1)

2
, for all n ∈ N .

This is a ‘kinematic’ or descriptive model. The corresponding recurrence relation

Fn+1 = Fn + (n + 1), for n ≥ 1 ,

together with initial condition F1 = 1, is a ‘dynamic’ or explanatory model of the
same ‘phenomenon’, the sum of the first n integers. Both are discrete, deterministic
models. The kinematic model is nonlinear and the dynamic is (nonhomogeneous)
linear.

In the same line a simple classical example from mechanics is, perhaps, the best.
We shall consider it next.

Example 2.9. Uniform motion. For uniform motion of a pointwise particle in a
straight line, the kinematic model (a function) is

[0,∞[� t �→ x(t) = x0 + v0t ∈ R ,

where x(t) represents the position at a given time t, v0 is the constant velocity, and
x0 is the initial position (position at time t = 0). Clearly, this is a continuous, deter-
ministic, linear (better, affine function), kinematic model.
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The corresponding dynamic model is given by Newton’s second law (differential
equation),

m
d2x
dt2
= F, for t > 0, with F = 0 ,

subjected to the following initial conditions,

x(0) = x0, and
dx
dt

∣
∣
∣∣
∣
t=0
= v(0) = v0 .

Here m represents the mass of the particle, and F the resultant of forces acting on it.
This is a continuous, deterministic, linear, dynamic model.

We shall not consider here the characterization of models any further. See, however,
Afterword, page 177.

2.8.2 Classes of Inverse Problems

A classification scheme of inverse problems arises from the process point of view,
represented by the black box (see Fig. 1.1 on page 7). There, the black box set-
up could represent the interaction between an external observer (researcher) and a
physical system, where the observer could interact with the system by stimulating it
and collecting information about its behaviour or reaction9.

In line with what was said in Chapter 1, we can consider three general classes of
problems:

P1: Direct problem — Given an arbitrary stimulus, tell what the corresponding
reaction will be;

P2: Inverse reconstruction problem — Given the reaction, tell what stimulus
produced it;

P3: Inverse identification problem — From a data set, determine the parameters
and/or functions that specify the system.

This book emphasizes the solution of inverse problems, either reconstruction or
identification of models, and we shall only consider problems related to classes of
models represented by:

• linear or non-linear equations in spaces of finite dimension,

A(x) = y ,

where A is a linear or non-linear function,

Rn ⊃ Ω � x �→ A(x) ∈ Rm

9 Of course, it is not always possible to have such clear cut separation between observer and
physical systems. However, we shall only consider these.
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and y ∈ Rm;

• initial and/or boundary value problems for differential or integro-differential
equations.

Once a particular class of models is selected, we solve the inverse problem by ap-
proximately determining the value of the unknown model’s constants or functions,
using experimental data.

When dealing with differential equation models, we classify the inverse problem
with respect to the role, in the differential equation, of the object to be estimated,
which can be:

(i) initial conditions;

(ii) boundary conditions;

(iii) forcing terms;

(iv) coefficients of the equation, ie. properties of the system10.

Here, (i) to (iii) are reconstruction problems and (iv) is an identification problem.
Moreover, we have a natural splitting of inverse problems to be considered, ei-

ther the models are of finite dimension (such as a system of n equations and m
unknowns) or of infinite dimension (such as an initial value problem for a partial
differential equation), and if the object being estimated is of finite dimension (some
parameters or constants of the model) or of infinite dimension (such as a function,
or an infinite number of parameters). Problems are then classified as belonging to
one of the following types:

Type I: Estimation of a finite number of parameters in a model of finite dimension;

Type II: Estimation of an infinite number of parameters or a function in a model of
finite dimension;

Type III: Estimation of a finite number of parameters in a model of infinite
dimension;

Type IV: Estimation of an infinite number of parameters or a function in a model
of infinite dimension.

10 Just to mention a few, the coefficients could represent material or geometrical properties
as the viscosity of a fluid, the thermal conductivity of a solid material, the permeability
of a porous medium, and so on. If the coefficient varies throughout the space (it would
be a function, not just a constant number) one says that the medium is heterogeneous,
otherwise, if it is constant everywhere in space, one says that the medium is homogeneous.
If the coefficients vary with respect to the direction in space, then the medium is said to be
anisotropic, otherwise it is said isotropic.
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Table 2.3 Classification of inverse problems according to the dimension of the model and of
the object being estimated

Estimation of quantity→ Finite Infinite

Dimension of the model ↓
Finite Type I Type II

Infinite Type III Type IV

This is summed up in Table 2.3. Inverse problems of Type I are considered in
Chapters 1–4; Chapters 5–8 deal mainly with inverse problems of Types III and
IV. In this book we do not consider Type II inverse problems. Section 8.1 further
elaborates on this classification.

Beck [11, 10] proposed the classification of inverse problems with respect to the
type of the unknown of the inverse problem, either parameters or functions. Our
classification is just an extension of his, in the sense that we split his classification
taking into account the dimension of the model, essentially, either finite when, typ-
ically, the model is given by an algebraic function/equation, or infinite when, most
of the times, the model is a differential/integral equation. Therefore, Beck’s estima-
tion of parameters corresponds to Type I or III problems, and Beck’s estimation of
functions corresponds to Type II or IV inverse problems. This further splitting is
justified by the increased level of mathematical complexity of going from a model
of finite dimension to one of infinite dimension.

Exercises

2.1. Let f be a real function of one variable, f : R→ R. It is worthwhile to see what
is the consequence of the fact that the different multiplication factors are constant.
Determine the functions such that:

(a) f ′(x)=c. What can you say about its graph?

(b) f ′(x)/ f (x)=c;

(c) x f ′(x)=c;

(d) x f ′(x)/ f (x)=c.

Verify that the graph of a function satisfying (b), when plotted in a log-normal scale,
is a straight line. Analogously, verify that the graphs of a function satisfying (c), in
a normal-log scale, and of a function satisfying (d), in a log-log scale, are straight
lines.

2.2. For functions f (x) = ln x, g(x) = eαx, h(x) = xβ, l(x) = 1
x−a discuss the regions

of well and ill-conditioning, for the four types of condition numbers defined, in
general, in Eq. (2.4), or on page 30, for a scalar function of one real variable.
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2.3. (a) Since I = AA−1 use Eq. (A6) to show that

k(A) ≥ 1 ,

that is, the condition of any matrix is greater than or equal to 1.

(b) Show that

k(A) = k(A−1) ,

that is, the condition of a matrix and of its inverse are equal.

2.4. Let p j : R→ R, j = 1, . . . ,N, be differentiable functions that do not vanish at
any point, i.e.,

p j(x) � 0 for all x ∈ R j = 1, . . . ,N .

(a) Show that the elasticity of the composition is the product of the elasticities,
that is,

E(p1 ◦ p2) = Ep1 · Ep2 .

(b) Show, by induction, that

E(p1 ◦ p2 ◦ . . . ◦ pN) = Ep1 · Ep2 · . . .EpN .

(c) Show that the elasticity of the product is the sum of the elasticities, that is,

E(p1 · p2) = Ep1 + Ep2 .

(d) Show, therefore, that

E(p1 · p2 · . . . · pN) = Ep1 + Ep2 + . . . + EpN .

2.5. The difference function between non-negative numbers is given by

[0,+∞[ × [0,+∞[ � (x,y) �→ m(x,y) = x − y ∈ R .

(a) Show that

| Em(x,y) | ≥ 1 .

(b) Determine and sketch the region in [0,+∞[ × [0,+∞[ satisfying

| Em(x,y) | ≤ 2 .

Hint. Example A.1, on page 192, can be useful here.

(c) Do the same for

| Em(x,y) | ≥ 4 .
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2.6. (a) Check the assertion on the last paragraph of Section 2.4 on page 33.

(b) Let f : Rn → R and define the elasticity of f ,

E f (x) =

(
x1

f
∂ f
∂x1
,
x2

f
∂ f
∂x2
, . . . ,

xn

f
∂ f
∂xn

)

.

Let c f (x) denote the relative to relative condition number of f . Show that
|E f (x)| ≤ c f (x).

(c) Conclude that if |E f (x)| ≤ 1 then f is well-conditioned with respect to the
relative to relative condition number.

2.7. Let m be the difference function as in Exercise 2.5. Compute the condition
number of m, for each notion of condition number set forth in Eq. (2.4).

2.8. We should have not used the elasticity in Example 2.5. Compute the relative to
relative condition number of function p5 in that example.

2.9. Let c f (x) denote either one of the condition numbers of f as defined by Eq. (2.4).
Let h = f ◦ g. Show that

ch(x) ≤ c f (g(x)) cg(x) .

Hint. Recall chain’s rule, Jhx = Jfg(x)Jgx.

2.10. Write down the algorithms discussed in Example 2.5 as composition of func-
tions.

2.11. Relate normal equation (2.10) and its solution, Eq. (2.11), with the results of
Exercise 1.7. (Pay attention: the roles of constants a and b are interchanged.)

2.12. QR method for the solution of least squares. From Eq. (2.11) and recalling
that A = (x,1) the solution of the least squares problem,

(â,b̂)T = argmin(a,b)E(a,b) = argmin(a,b)
1
2
|y − ax − b|2 ,

is given by

(
â
b̂

)

=
(
AT A

)−1
AT y =

(
xT x xT1

1T x 1T1

)−1 (
xT

1

)

y . (2.13a)

Consider the function

Rn ×Rn � (x,y)
G�→

(
â(x,y)
b̂(x,y)

)

. (2.13b)
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The condition of the algorithm to compute (â,b̂)T suggested by Eq. (2.13) is very

high since it depends on the computation of the triple product
(
AT A

)−1
AT . This

undermines the stability of the algorithm.
This exercise proposes an alternative algorithm based on the method QR, [35].

Consider the vector

v = âx + b̂1 = (x 1)

(
â
b̂

)

= A
(
AT A

)−1
AT y

which represents the vector, in the plane generated by x and 1, closer to y, repre-
senting its orthogonal projection11.

(a) Consider the function

x �→ Λ(x) = A
(
AT A

)−1
AT

which represents the projection matrix from Rn to the space generated by
the vectors x and 1. Show that Λ(x − λ1) = Λ(x), for all λ ∈ R. (From a
geometrical point of view this result is expected since the space generated by
x and 1 is the same as the space generated by x−λ1 and 1. Of course, we are
assuming that x and 1 are independent, i.e., that x is not a multiple of 1.)

(b) In particular, choose λ� such that x − λ�1 ⊥ 1. Check how the quadruple
product present in Λ(x − λ�1) simplifies.
Hint. AT A is diagonal, therefore easily invertible.

(c) In this case, obtain a simpler expression for v.

(d) Determine α, β such that

α(x − λ�1) + β1 = v .

Hint. Use item (b) and Fourier-Pythagoras trick, page 209.

(e) From the result in item (d), determine an expression for (â,b̂), where

v = âx + b̂1 ,

obtaining a more stable algorithm for least squares.

2.13. Using the concepts introduced in Sections 2.1 and 2.5 study the evaluation
and algorithms to compute

f (x) = sin x − x .

Hint. You may consider using a truncated Taylor’s series of sin x.

11 Further discussion on orthogonal projections can be seen in Section A.4.1.
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2.14. Heat conduction problem. Consider a one-dimensional bar, isolated in its
lateral surface, being heated in one extremity, and in contact with the ambient at the
temperature Tamb in the other extremity. Assume also that heat is being transferred
to its interior. Let T = T (x,t) denote its temperature on position x, at time t . Then
T satisfies the following initial and boundary value problem for a partial differential
equation,

ρcp
∂T
∂t

(x,t) =
∂

∂x

(

k(T,x)
∂T
∂x

)

+ g(x,t) ,

for x ∈ [0,L], t > 0,

−k
∂T
∂x

∣∣
∣
∣
∣
x=0
= q′′(t) , for t > 0 ,

(left boundary: prescribed heat flux),

−k
∂T
∂x

∣
∣
∣∣
∣
x=L
= h [T (L,t) − Tamb] , for t > 0 ,

(right boundary: contact with ambient),

T (x,0) = T0(x), for t > 0 ,

(initial condition). Here, ρ = ρ(x) is the specific mass of the material, cp = cp(x) is
the specific heat of the material, k = k(T,x) is the thermal conductivity, g = g(x,t)
is an internal heat source/sink, q′′ is the interfacial heat flux, h is the convection
coefficient, and T0 = T0(x) is the initial temperature of the bar.

Classify the following problems with respect to being direct, inverse identifica-
tion, or inverse reconstruction problems:

(a) Given k, g, ρ, cp, q′′, h, and T0, determine T = T (x,t);

(b) Given k, g, ρ, cp, h, T0, and measurements of temperature at certain times, on
some locations of the bar, determine q′′;

(c) Given k, ρ, cp, q′′, h, T0, and measurements of temperature at certain times,
on some locations of the bar, determine g;

(d) Given k, ρ, g, cp, q′′, h, and measurements of temperature at certain times, on
some locations of the bar, determine T0;

(e) Given ρ, g, cp, q′′, h, T0, and measurements of temperature at certain times,
on some locations of the bar, determine k;

(f) Given ρ, g, cp, q′′, T0, and measurements of temperature at certain times, on
some locations of the bar, determine k and h;

(g) Given ρ, g, cp, h, T0, and measurements of temperature at certain times, on
some locations of the bar, determine k and q′′.
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