
Chapter 1

Mathematical Modeling

In this chapter we present some of the aspects of the interface between mathematics
and its applications, the so-called mathematical modeling. This is neither mathemat-
ics nor applied mathematics and is usually performed by scientists and engineers.
We do this in the context of linear algebra, which allows easy comparison between
direct and inverse problems. We also show some of the modeling stages and encour-
age the use of a least-squares method. An application to the study of flow in a porous
medium is presented. Some key issues pertaining to the use of models in practical
situations are discussed.

1.1 Models

We want to think about how we may come to understand a phenomenon, process or
physical system. To simulate this endeavor, we make a thought experiment1, under
the assumption of conducting an investigation into the behavior of a hypothetical
system, schematically represented by a black box.

Consider a black box whose inner working mechanisms are unknown and that,
given a stimulus or input, answers with a reaction or output. See Fig. 1.1.
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Fig. 1.1 Black box: the mental prototype

We aim to foretell the box behaviour in several distinct situations. In particular,
we would like to tackle the following problems:

P1: Given an arbitrary stimulus, tell what the corresponding reaction will be;

P2: Given the reaction, tell what stimulus produced it.

However, we are not interested in generic predictions, but only in those based in
scientific descriptions of the behaviour of the black box. To that end, we will

1 Thought experiments have been used by several scientists, as for instance G. Galilei (1564-
1642), R. Descartes (1596-1650), I. Newton (1643-1727), and A. Einstein (1879-1955),
and it turns out to be a good artifact of investigation to keep in mind.
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associate to the real situation a physical model and a corresponding mathematical
model. Predictions will be made from the latter.

We shall call physical model any description of the phenomena involved using
such concepts as, for example, number of items, mass, volume, energy, momentum,
charge and their conservation, exchange, movement, or transference, etc.

By mathematical model we mean any kind of mathematical structure, such as,
for example, a function, an equation, a set with an equivalence relationship, a vector
space, a group, a graph, a probability distribution, a Markov chain, a neural network,
a system of non-linear partial differential equations, an elliptic operator defined on
a fiber space, etc.

Our guiding methodology when choosing a model, which we shall call modeling,
is part of the scientific method, that we present in a somewhat modern language.

In practical situations we try to choose or develop a mathematical model that best
describes the physical model, avoiding contradictions with reality and deviations
from the phenomena of interest. We only keep the model as long as it is not refuted
by experimental data2.

1.2 Observing Reality

The sleuth that is to solve a crime, or, in other words, who is to foretell the behaviour
of a person or group of persons in a given situation, must create a careful profile of
those persons and know, as best he can, the episode and the circumstances. Thus, he
must bear in mind the various elements of the deed, the deeds before it and its con-
sequences. To that end he must search for information where it is available, which,
logically, includes the crime scene. He must observe and carry on the investigation,
questioning persons, in any way, related to the crime, and analyzing their answers3.

Our goal is to be able to guess the behaviour of the black box, Fig. 1.1. Anal-
ogously to the observation of a crime’s trail, we begin the observational and ex-
perimental phase of our project. By applying different stimuli to the black box we
observe and take note of the corresponding reactions.

2 The mathematical model will be accepted as long as its predictions do not contradict ex-
perimental facts. That is a very strong requirement of the scientific discourse. If the model
fails, one does not have any impediment to throw it away, to reject it, no matter for how
long and for how many it has been used. In fact, one is obliged to reject it. This very strong
stance, singles out the scientific method. This is precisely what Johannes Kepler (1571-
1630) did. At a certain point, he believed that the orbits of the planets, around the sun, were
circles. However, the data collected by Tycho Brahe (1546-1601) indicated that the orbit
of Mars could not be fitted by a circle. This difficulty led him to discard the hypothesis
that the orbits were circles, and embrace the more accurate model of elliptical orbits.

3 Obviously, he can also consider the forensic analysis that makes it possible to track the
trajectory of a projectile, a body, or a car, and any kind of materials involved. This consti-
tutes, in foresight, a set of inverse problems, which, naturally, uses knowledge of physics
and mathematics.
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The next step is to organize the experimental data in a way suitable for analysis.
We thus create a database of real or experimental data. This is critical, since the
way data is organized will emphasize certain aspects at the expense of others. Infor-
mation can be presented, for example, as tables, diagrams, graphs and images. Some
possible data structures are sketched in Fig. 1.2. Catalogues of possible stimuli and
conceivable reactions can be created (Fig. 1.2b, first row, second column). Some-
times, these catalogues correspond to the domain and the codomain of appropriate
functions.

Assume we want to answer problems formulated in Section 1.1, page 7, and
some other questions that may arise out of curiosity or by chance. However, we
would want to avoid resorting, everytime, to experimentation. With this is mind, but
still wanting to do it scientifically, we build a mathematical model of the situation.

As a matter of fact, the experimental database allows one to answer some prob-
lems. Many people would be perfectly happy to solve their problems that way. Then,
why should we build a mathematical model of the situation in the first place? Among
the many reasons to do so, we mention two:

• Once a mathematical model has been devised, a natural environment is avail-
able in which several settings and hypothesis can be generated and tested, i.e.
a number of scenarious may be constructed. In the example, it is possible, by
standard deductive reasoning (logic implication), to propose candidates for
reactions due to a wider range of stimuli values;

• A remarkable advantage of a mathematical model is the compression of infor-
mation. Once the model is obtained, additional structures within the database
become apparent. Those perceived structures are enough to render almost use-
less large parts of the database. This results in effective compression4 which,
in turn, leads to comprehension.

1.3 The Art of Idealization: Model Characterization

A class of models is chosen according to the given situation, technological and/or
pratical measuring capabilities, purpose, and so on. Choosing a class of models is
known as model characterization. We remark that this endeavour is not an applica-
tion of mathematics in itself (in the sense that it is not solely the carrying out of an
algorithm); indeed, it is an intelligent activity, a task generally highly complex, an
art that demands an educated sensibility to execute it at its best. As a matter of fact,

4 It is relevant to realize that mathematical models can effectively compress data. To illus-
trate this point, assume that we are dealing with data on the price of photocopies. If one
has a database, then we need to have a table relating the number of copies and its price.
We would have, for example, that one copy costs 10 cents, two copies cost 20 cents, three
copies cost 30 cents and so on up to, say, a hundred copies that cost 10 monetary units
(m.u.), a very long table. And it could be longer! By means of a mathematical model,
using the notion of function, we say that the price of n copies is n× 0.10 m.u., with n ∈ N.
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this is so much true that, at times, in novel situations, the stage of characterization
may require the development of new mathematical structures5.

To characterize the model, for example, we can perform an exploratory data
analysis, in which we contemplate the data and afterwards may point out simple
relationships between them.

Let’s make it concrete by returning to the black box example. Assume that the
stimulus and its corresponding reaction can be quantified/described each of them by
three measurings that we collect in vectors6, the

input signal, x= (x1, x2, x3)T ∈ R3 ,

and the

output signal, y= (y1, y2, y3)T ∈ R3 .

The description of the input/output signals as elements of R3 is evidently part of the
characterization stage7,8. The summing up of the data in a table constitutes one of
the simplest quantitative models, the DB (database) model.

An exploratory analysis of the available data may suggest as reasonable the fol-
lowing additional hypotheses on the black box workings:

H1: Reproducibility — The repetition of the same input signal produces the same
output signal9;

5 An illustration of this is the invention of complex numbers by Tartaglia (1500-1557) and
Cardano (1501-1576) in 1545 to solve equations of the third degree. These equations were
associated with practical problems, which indicated that they had three real roots. How-
ever, the available methods did not allow their solution because they required the square
root of a negative number, which, at that time, had not yet been defined.

6 Here, vectors are vertical, or column vectors, that is, n × 1 matrices. Also, they are repre-
sented using bold letters. The entries of a m×n matrix, A, are denoted by Ai j, i = 1, . . . ,m,
and j = 1, . . . , n. For A, in particular for vertical vectors, AT represents the transpose
of A, that is, the matrix whose entries are given by (AT )i j = Aji, for all i = 1, . . . , n,
j = 1, . . . ,m.

7 We could have chosen R4, as the set of possible inputs if measures were related to three-
dimensional space, and we also had to characterize time. Or, maybe, even higher order
dimensional spaces could be necessary as is the case when, for example, we want to keep
other information such as temperature, pressure, etc in the output signal.

8 Note the non-sequential nature of modeling. Even before acquiring the experimental data
of which we spoke in the previous section, we must start characterizing the model. See
Section 2.8, page 44, and the Afterword, starting on page 177 for further considerations
on modeling.

9 It should be pointed out that the same here subtends within a certain margin of error associ-
ated with the model. The variability could be, for instance, characterized by a probabilistic
random variable, or by an interval. This would require a more complete or detailed model.
The characterization of a model always assumes some idealization. That is, even though
the real phenomena do not strictly satisfy a certain assumption, we assume they satisfy
in order to proceed with modeling. What is important is that conclusions from the model
and from reality do not differ significantly. Sometimes this is a quantitative statement: the
difference between numbers, coming from the model, and data, from reality, should be
bounded by a certain predefined value. Modeling is an art that has to be practiced for one
to have a good grasp on it.
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H2: Proportionality — If the input signal is amplified α times, the output signal
is also amplified by that same factor;

H3: Superposition of effects — If we add up two input signals, the output signal is
the sum of the output signals corresponding to the individual input signals10.

These hypotheses form an example of what we mean by a physical model of the
real situation. Espousing these hypotheses allows us to obtain a model that is more
complete than the DB model, a descriptive model11. This, in principle, contains the
data set, though not necessarily in an explicit manner12.

Mathematically, the first hypothesis means that

H1: The attribution, input → output, is a function.

We shall denote that function by F , and call it the behaviour function of the
black box13. The second and third hypotheses essentially characterize F as a lin-
ear function,

H2: F ’s evaluation commutes with scalar multiplication14,

F (λ u) = λF (u) for all λ ∈ R, u ∈ R3 , (1.2)

10 In a sense, this means that inputs do not interact. Each one goes through the black box in
its own way, ignoring the other.

11 Descriptive models, roughly speaking, try to answer questions like: “What happened?”
(“What”) or “When it happened?” (“When”). Databases try to answer questions of the
same nature. On the other hand, the explanatory model focuses in: “How it happened?”
(“How”). Further discussion on the nature of models is presented in Afterword, page 177.

12 What we mean here is that, for example, the function R � x �→ f (x) = x2 ∈ R contains
the information of the following table,

x -1 0 1 2

y=f(x) 1 0 1 4

We could say that f encapsulates the table.
13 It is worth to remind that, for some functions, different inputs imply different outputs,

whereas for some other functions, certain different inputs can give the same output. The
former case is not the rule and deserves a special name, the function is called injective or
a one-to-one function.

14 F of a multiple is the multiple of F . One may have some restrictions on this way of
stating this property, and rightly so. Let us be more precise. First consider the function
multiplication by scalar λ, given by

Λ : R3 → R3

v �→ Λ(v) = λv .

Hypothesis H2 can be written in terms of a commutation of a composition of functions,

F ◦ Λ = Λ ◦ F , (1.1)

which justifies the assertion at the beginning of this footnote.
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H3: The evaluation of F commutes with vector summation15,

F (u + v) = F (u) + F (v) for all u, v ∈ R3 . (1.4)

Granting the validity of the hypothesis H1, the act of organizing the data as stimuli
or reactions, as suggested in Fig. 1.2b, page 9, would correspond, respectively, to
the construction of the domain and the codomain of the behaviour — characterized
by a function — of the black box.

In our example, the characterization stage reaches its end when we specify the
model, by saying that the black box behaviour is described by a function, which is
linear.

Non-linear models are relevant in many applications and will be dealt with in
other sections within this book. We only considered the linear model so far, to facil-
itate the understanding of the concepts presented here.

1.4 Resolution of the Idealization: Mathematics

We are assuming that the mathematical model of the black box is a linear function,
from R3 to R3. This characterizes the model. However, we do not know which
specific linear function it is. One needs to determine that function, or, at least, to
approximate it, in order to solve the problems posed in Section 1.1. This is the stage

15 F of a sum is the sum of F ’s. Similarly to the previous footnote, we can rewrite hypothesis
H3 as commutation of composition of functions. The idea of preserving the notion of
commutation is a neat one. However, to do that, one sometimes has to work a bit (to adapt
notions). Let S be the function that adds two vectors,

S : R3 ×R3 → R3

(u,v) �→ S(u,v) = u + v .

Also, let F̄ be, essentially, two copies of F , representing the function

F̄ : R3 ×R3 → R3 ×R3

(u,v) �→ F̄ (u,v) = (F (u),F (v)) .

It may seem odd to define such a function, but that is exactly what we need here. In fact,
Eq. (1.4) can be rewritten as

F ◦ S = S ◦ F̄ . (1.3)

Note that if we stick to the computer science notion of overloading a function, we can still
denote F̄ by F . In this case, Eq. (1.3) could be written simply as F ◦ S = S ◦ F .

Simply put, we just want to say that, for a linear function, F of a sum is the sum of the
F ’s, or that F commutes with summation. To make this statement precise, we need to do
what we have just done. When you have to spell it out, before simplicity becomes simple,
it may seem somewhat complex at times. Finally, we are not always blessed with com-
mutation, so when we are, nothing more appropriate than to make an effort to recognize
it.
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Table 1.1 Data set: stimuli × reactions

stimuli x ∈ R3 e1 e2 e3

reactions F (x) ∈ R3 a1 a2 a3

in which the model is determined, where an inverse identification problem is solved
to pinpoint a specific linear function.

Example 1.1. Model identification using an ideal database. In the example we
are considering, it is very easy to determine the model. We will do it first in a par-
ticular case. Let {e1, e2, e3}, be the canonical basis of R3,

e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T .

Assume that we know the reaction of the black box when stimuli e1, e2 and e3 are
applied. That is, let us say we have the information contained in the ideal database

e1
F�→ F (e1) = a1 , e2

F�→ F (e2) = a2 , e3
F�→ F (e3) = a3 , (1.5)

where a1, a2, a3 ∈ R3. This dataset could also be represent by Table 1.1.
Now, construct the 3 × 3 matrix A whose columns are formed by the images of

the vectors e j, F (e j), for j = 1, 2, 3, i.e.:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

| | |
F (e1) F (e2) F (e3)
| | |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

| | |
a1 a2 a3

| | |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.6)

Then, if a generic stimulus is denoted by x = (x1, x2, x3)T ∈R3, the reaction F (x)
will be given by the product Ax∈R3. In fact, by F ’s linearity,

F (x) = F (x1e1 + x2e2 + x3e3)

= x1F (e1) + x2F (e2) + x3F (e3)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

| | |
F (e1) F (e2) F (e3)
| | |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

or, simply put, the reaction F (x) is given by the product Ax ∈ R3,

F (x) = Ax . (1.7)

In the previous example, determining the model, that is, choosing a specific linear
function F , boils down to finding A, as can be seen immediately from Eq. (1.7).
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We are now in a good position to define a third general problem. Although it is not
as fundamental as the two presented in Section 1.1, even so it is equally important,
and it is instrumental in the resolution of the former,

P3: From a structured data set, determine matrix A.

If, as we assume, Eq. (1.5) is known to us, i.e., we have the information contained
in that equation, or equivalently in Table 1.1, we can see that, based on Eq. (1.6), it
is more than automatic to obtain A.

Now, let us consider the more general situation when we know F in some given
basis of R3, not necessarily the canonical one.

Example 1.2. Identification using more general ideal data. Assume the values of
F in a basis {u1, u2, u3} of R3 are known16. That is, let us say that the ideal database

u1
F�→ F (u1) = v1 , u2

F�→ F (u2) = v2 , u3
F�→ F (u3) = v3 , (1.8)

is available to us. Clearly, this information could be organized in a table similar to
Table 1.1.

This is motivated by the fact that, for practical experimental17, economical, or
even ethical reasons, it is not always possible to apply the rather special choice of
stimuli e1, e2, and e3, but maybe it is possible to apply stimuli u1, u2, and u3.

Since the columns of matrix A in Eq. (1.6) are given by the images of the canon-
ical vectors by F , and since we have to determine them from the information in
Eq. (1.8), we must, in the first place, write the canonical vectors in terms of the el-
ements of the basis {u1, u2, u3}. We will use e1 as an example. Let c1, c2 and c3 be
the only scalars such that

e1 = c1u1 + c2u2 + c3u3 .

Let U be the matrix whose columns are the vectors ui, i = 1,2,3 and let V be the
matrix such that its columns are vi, i.e.,

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

| | |
u1 u2 u3

| | |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

| | |
v1 v2 v3

| | |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.9)

Also, let c= (c1, c2, c3)T . With this notation,

e1 = c1u1 + c2u2 + c3u3

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

| | |
u1 u2 u3

| | |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

c3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

or, simply,

e1 = U c . (1.10)

16 See page 189 in the Appendix A, to recall the definition of a basis of a vector space.
17 This issue is exemplified in the last paragraph of Section 0.2, page 2.
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Now, multiplying both sides of Eq. (1.10) by the inverse of matrix U, U−1, and since
U−1U=I is the 3 × 3 identity matrix, we have

c = U−1e1 . (1.11)

Notice that to obtain c explicitly corresponds to finding the solution of a system of
linear equations (see Eq. (1.10), where the unknown is c). Determination of the first
column of A results now from the linearity of F , and Eqs. (1.8), (1.9), and (1.11),

F (e1) = F (c1u1 + c2u2 + c3u3)

= c1F (u1) + c2F (u2) + c3F (u3)

= c1v1 + c2v2 + c3v3 = Vc

= VU−1e1 .

If we do the same for e2 and e3, we can see that F (x) = Ax with

A = VU−1 . (1.12)

Thus, from Eq. (1.7) and the dataset, Eq. (1.8), we have just determined the model
in this case,

F (x) = VU−1x .

It is worthwhile to pay attention to this result. Equation (1.12) justifies the following
assertion18:

knowing a linear transformation in a basis19 leads to the full knowledge of it20.

18 This is an interesting result. We have a function defined in R3. The set of all functions
from R3 to R3 is a huge set. In principle, we have an enormous variety of possibilities to
build a function whose domain and codomain are R3. Our task is simply this: we have to
choose where to send through this function a very large number of points of the domain,
having an equally large number of possibilities on the codomain from where to choose.
Because it is a linear function, that is, because it satisfies a few simple algebraic rules, Eqs.
(1.2) and (1.4), the number of possibilities to define the function is drastically reduced. In
fact, knowing the value of the function in three randomly chosen points of R3 virtually
determines the value of the function in all the other points. Of course, it is not just any
three points that can be used, since, in particular, the origin cannot be chosen as one of
those points. Technically, those three points must form a basis of R3. But, anyway, the
limitation imposed by linearity is awesome: it reduces an uncountable set of information
to a finite set with three data.

19 In this example, to know a linear transformation on a basis is to have Eq. (1.8) or Eq. (1.9),
(since both have the same structured information content).

20 In the example, to know F is, by Eq. (1.7), to know Eq. (1.12).
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1.5 Idealized Data Processing: Solution Operator

Notice that questions P1 to P3 are of different nature. Questions P1 and P2 are
natural questions which can be posed by anyone who has devoted attention to the
behaviour of the black box. However, question P3 can only be asked by a modeler,
that is, someone who tries to create a mathematical model to describe the behaviour
of the black box.

After having characterized a model, problems P1 to P3 can be solved from the
point of view of the mathematical model. This is very simple in this case, and that
is what we will do next.

For the first one, given x, an input signal, the solution is simply the product Ax.
The second one is solved by means of the inverse of A. If y is the output, the input
that generates it is A−1y.

Moreover, the third problem, determining A itself, can also be presented in math-
ematical terms. The determination of A was given in Eq. (1.12), A = VU−1.

Schematically, we show in Table 1.2 the information required to answer each
problem and the number crushing procedure that needs to be performed in these
elementary linear algebra problems. It is customary to say that P1 is a direct prob-
lem while P2 and P3 are inverse problems. This terminology is not in contradiction21

with the kind of mathematical tasks involved to solve each one, see Table 1.2. More-
over, P2 is an example of a so-called reconstruction problem and P3 an identification
problem.

It is now plain to see that, since the solutions to problems P1 and P2 depend on
A, we need, in principle, to solve problem P3 and only then deal with the other two.

On the other hand, as we will see in Section 1.8, knowing how to solve direct
problems can be used for inverse problems resolution, if the notion of solving is
made flexible.

In some applications, problems P2 and P3 can appear combined. One such exam-
ple will be discussed in Chapter 4. There, one wants to recover a real image from a
distorted one obtained from an experimental device. However, the distortion caused
by the experimental technique is not known in advance.

1.6 Mind the Gap: Least Squares

We remark that, in the previous section, the solutions to problems P1 to P3 were
constructed with, virtually, no contact with experiments, only in the realm of the
mathematical model. In particular, it is assumed that the information in Eq. (1.8),
which could come from an experiment, is ideally known, i.e., without errors.

In this section we will bring the mathematical model in contact with reality, using
the physical model and the experimental data as a bridge. The criterion chosen to
make such a contact possible is not a part of mathematics. However, its application
is mathematical (or algorithmic).

21 See, however, Exercise 1.3.
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The introduction of reality in the model begins with the answer to question P3,
basing it not on an ideal database, Eq. (1.8), but from a real database, made up
of measurements with all the ambiguity thereof, that is, with all the contradictions
between the experimental data and the hypotheses H1 to H3, listed on page 11, that
may exist by chance (compare with Fig. 1.3, page 19).

In this case, the estimation of model parameters or the identification of the model
corresponds to the determination of A, from experimental data22.

Summing up, in the characterization stage, we choose a class of models. In the
stage of estimation or identification, we pick, based on real data, one of the models
within that class.

Example 1.3. Identification using experimental data. Let
{
(xk, yk) ∈ R3 ×R3, for k = 1, . . . , n

}
(1.13)

be the experimental data set, formed by ordered pairs (couples) of input and output
signals. We say that the data is perfectly representable (or that it can be interpolated)
by a linear function if there exists a matrix A such that

Axk = yk for all k = 1, . . . , n . (1.14)

Otherwise we say that the data is not perfectly representable by a linear function.
The one dimensional case is illustrated in Fig.1.3.

x

x

x
x

x

x
x

x
x

x

x

a) b)

x

x x
xxx

xx x

x

Fig. 1.3 Here are represented two data sets consisting of several pairs of real numbers, i.e.,
elements of R2. The first one may be viewed as related to an ideal data set and the second
to a real, experimental, data set. (a) A set of input and output signals perfectly representable
by a linear function. (b) The set of input and output signals displayed here is not perfectly
representable by a linear function. However, we can choose a linear model to represent it, by
means, for example, of the least squares method.

If the data is perfectly representable by a linear function we choose some input
signals, u1, u2, u3, that form a basis of R3 with the corresponding output signals,
v1, v2, v3, and Eqs. (1.9) and (1.12) define A.

22 There are lots of ways to call this. Statisticians prefer, perhaps, estimation. You would
calibrate the model, were you an engineer. Electrical engineers may prefer to speak of
identification. Those which investigate artificial intelligence may train the model. Some
call it determination of parameters, fitting the model to the data, or model selection.
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If we want to keep the linear model even when the data is not perfectly rep-
resentable by a linear function23, we must relax the condition in Eq. (1.14). We
consider now a way we can do it. Let

|v| =(
3∑

j=1

v2
j
) 1

2 =
(
(v1)2 + (v2)2 + (v3)2) 1

2 ,

be the Euclidean norm of

v =(v1, v2, v3)T ∈R3 .

Also, let xk
j be the jth coordinate of xk, that is,

xk =(xk
1, x

k
2, x

k
3)T .

Denote by M(3,3) the set of real 3 × 3 matrices. For B∈M(3,3), we define half the
quadratic error function24,

E(B) =
1
2

n∑

k=1

|Bxk − yk|2

=
1
2

n∑

k=1

3∑

i=1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

3∑

j=1

Bi jx
k
j

⎞
⎟⎟⎟⎟⎟⎟⎠ − yk

i

⎤
⎥⎥⎥⎥⎥⎥⎦

2

. (1.15)

Note that the data is perfectly representable by A if and only if E(A) = 0.
We choose A, the matrix defining the linear model, as the one, within all B ∈

M(3,3), that minimizes E,

A = argminB∈M(3,3)E(B) ,

that is,

E(A) = min
B∈M(3,3)

E(B) .

This criterion is known as the least squares method. It bridges the gap between the
mathematical model and the experimental data. We stress that the determination
of A satisfying the aforementioned criterion is, strictly speaking, a mathematical
problem.

23 One reason to want to keep the linear model is its simplicity which is a value that is worth
to strive for.

24 Here, and elsewhere in this book, we use 1 / 2 for a slight simplification in the critical
point equation. There is no need for it.
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1.7 Optimal Solution

To obtain the optimal solution, the minimum point of E in Eq. (1.15) must be deter-
mined. We search for this minimum by means of the critical point equation,

∂E
∂Blm

= 0 , for l,m = 1, 2, 3 .

We have
∂Bi j

∂Blm
= δilδ jm ,

where δil, the Krönecker’s delta, is a notation25 for the elements of the identity
matrix, I, i.e.,

δil =

{
1, if i= l
0, if i� l

.

Thus,

∂E
∂Blm

=

n∑

k=1

3∑

i=1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

3∑

j=1

Bi jx
k
j

⎞
⎟⎟⎟⎟⎟⎟⎠ − yk

i

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

3∑

j=1

∂Bi j

∂Blm
xk

j

⎞
⎟⎟⎟⎟⎟⎟⎠

=

n∑

k=1

3∑

i=1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

3∑

j=1

Bi jx
k
j

⎞
⎟⎟⎟⎟⎟⎟⎠ − yk

i

⎤
⎥⎥⎥⎥⎥⎥⎦ δilx

k
m

=

n∑

k=1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

3∑

j=1

Bl jx
k
j

⎞
⎟⎟⎟⎟⎟⎟⎠ − yk

l

⎤
⎥⎥⎥⎥⎥⎥⎦ xk

m

=

3∑

j=1

Bl j

⎛
⎜⎜⎜⎜⎜⎝

n∑

k=1

xk
j x

k
m

⎞
⎟⎟⎟⎟⎟⎠ −

n∑

k=1

yk
l xk

m

=

⎛
⎜⎜⎜⎜⎜⎜⎝

3∑

j=1

Bl jC jm

⎞
⎟⎟⎟⎟⎟⎟⎠ − Dlm , (1.16)

where

C jm=

n∑

k=1

xk
j x

k
m , and Dlm=

n∑

k=1

yk
l xk

m . (1.17)

The critical point equation for the critical point B (a matrix) is rewritten as

BC = D ,

where C and D are known matrices, Eq.(1.17), determined from the data. The solu-
tion is then given by

B = DC−1 . (1.18)

The expression for B looks like Eq. (1.12).
25 Using this notation, the product of I by a matrix A, IA that, evidently, equals A, yields

the strange looking expression:
∑3

j=1 δi jA jk = Aik.
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1.8 A Suboptimal Solution

A strategy that can be used at times when solving inverse problem P3 involves solv-
ing the direct problem P1 several times. One guesses or estimates values of the
parameters (comprising the entries of matrix A in the example), a successive num-
ber of times, and solve P1 for those values, selecting the value of A that best fits the
data, in a previously established sense. In other words, the estimation (which cor-
responds to the minimization of E) can be performed by a net search, or sampling,
that we describe briefly here.

Several values of the parameters, i.e., several matrices, will be chosen in succes-
sion which we shall denote by A1, A2, . . . , Am. They define a grid or net in M(3,3).
With them, the direct problem P1 is solved successive times. That is, A j xk is com-
puted, for k=1, . . . , n, j = 1, . . . ,m. We use that information to compute

E(A j), j = 1, . . . ,m ,

with E defined by Eq. (1.15).
The strategy to choose the next matrix in the sequence, Am+1, or decide to stop

the search, and to keep Am, or any other of the previous matrices, A1, A2, . . . ,Am−1,
as solving the identification problem, is the defining step in several modern, non-
gradient based, optimization methods. Nowadays, several methods employ different
strategies in choosing the grid, as for instance in simulated annealing, [46, 50, 71],
and others, so-called, metaheuristics, [69]. This is a suboptimal strategy, due to the
fact that, since

{A1, . . . , Am} ⊂ M ,

we have

minB∈{A1,...,Am} E(B) ≥ min
B∈M

E(B) . (1.19)

Sure enough some limit theorem, when m → +∞, can be pursued. This is too far
from our goal in this book.

1.9 Application to Darcy’s Law

Here, we present an application of the model we have been discussing in this chapter.
We trade the general black box model by the study of the flow of a fluid in a saturated
porous medium. In such a medium, the flux, u, and the gradient of the pressure, ∇p,
satisfy Darcy’s law ([28], [56]),

u = −1
μ

K∇p , for x ∈ Ω ,

where K is the permeability tensor of the medium, μ > 0 is the viscosity of the
fluid, and Ω ⊂ R3 is the porous region. Also, p : Ω → R and u : Ω → R3. In
general, the permeability K = K(x) is a matrix-valued function,

K : Ω→ M(3,3) ,
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where, we recall, M(3,3) represents the set of 3×3 real matrices. In simple words, the
permeability measures the easiness for the fluid to go through the porous medium.
If K is a constant function, the porous medium is called homogeneous, otherwise it
is a heterogeneous porous medium. If the medium is heterogeneous, the easiness of
flow varies along the medium. If K is a scalar multiple of the identity matrix, K =
kI, then the medium is said to be isotropic. Otherwise, it is an anisotropic porous
medium (in which case, the easiness of flow differs depending on the direction of
the pressure gradient). Just to practice the terminology, we can have an isotropic
medium, with k changing in space, in which case it is also heterogeneous.

Assume that we are investigating the permeability of a homogeneous anisotropic
porous medium, and that we have a table containing several measurements of (vec-
tor) fluid flows, uk for given applied pressure gradient, ξk = −∇p,

ξk ∈ R3 , uk ∈ R3 , k = 1, . . . , n .

Assume also that the fluid viscosity, μ, is known. Then, following Eq. (1.15), we
define half the quadratic error function,

E(K) =
1
2

n∑

k=1

|1
μ

Kξk + uk|2

=
1
2

n∑

k=1

3∑

i=1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

3∑

j=1

1
μ

Ki jξ
k
j

⎞
⎟⎟⎟⎟⎟⎟⎠ + uk

i

⎤
⎥⎥⎥⎥⎥⎥⎦

2

. (1.20)

This function is to be minimized to obtain the permeability tensor of the porous
medium, i.e., the permeability tensor K∗ satisfies

K∗ = argminK∈M(3,3)E(K) .

Exercises

1.1. Show that: (a) Eq. (1.1) is equivalent to Eq. (1.2); (b) Eq. (1.3) is equivalent to
Eq. (1.4).

1.2. Verify the validity of Eq. (1.12).

1.3. Assume that the mathematical model relating stimuli x ∈ R3 and reactions
y ∈ R3 is given by By = x, where B is a 3 × 3 matrix. Construct a table similar to
Table 1.2 in this case. Read critically the paragraph where the footnote 21 is called,
page 17.

1.4. (a) Verify the assertion in the sentence following Eq. (1.15). (b) Give conditions
on the data, Eq. (1.13), such that there is only one solution to E(A) = 0.

1.5. (a) Compute
∑3

j=1 δi jA jk.

(b) Check the details on the derivation of Eq. (1.16).
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(c) From data, Eq. (1.13), define matrices X = (x1, . . . , xn) and Y = (y1, . . . , yn).
Show that C=XXT and D=YXT , where C and D are defined in Eq. (1.17).

(d) If X is invertible (in particular, X must be a 3 × 3 matrix), show that the
expression for B, Eq. (1.18), reduces to Eq. (1.12).

1.6. Determine the critical point equation for function E = E(K) given by Eq. (1.20).

1.7. Simple regression model. Consider the simple regression model

y = a + bx , (1.21)

where a and b are called regression coefficients, a is the intercept and b is the slope,
x is called regressor, predictor or independent variable, and y is the response or
dependent variable. Assume that you have pairs of measurements (xi, yi) ∈ R2,
i = 1, . . . , n, of regressor and response variables. The residual equation is

ri = yi − (a + bxi) ,

and half the quadratic error function is

E(a,b) =
1
2

n∑

i=1

r2
i =

1
2

n∑

i=1

[
yi − (a + bxi)

]2 .

(a) Obtain the critical point equation

∇E =

(
∂E
∂a
,
∂E
∂b

)

= (0, 0) . (1.22)

(b) Denote the solution of Eq. (1.22) by (â, b̂), and show that

â =

(∑n
i=1 x2

i

) (∑n
i=1 yi

)
−

(∑n
i=1 xi

) (∑n
i=1 xiyi

)

n
∑n

i=1 x2
i −

(∑n
i=1 xi

)2
, (1.23a)

b̂ =
n
∑n

i=1 xiyi −
(∑n

i=1 xi

) (∑n
i=1 yi

)

n
∑n

i=1 x2
i −

(∑n
i=1 xi

)2
. (1.23b)

Hint. Write the equations in matrix form and make use of the expression for
the inverse of a 2 × 2 matrix,

(
A B
C D

)−1

=
1

AD − BC

(
D −B
−C A

)

.

(c) It is worthwhile to verify the dimensional correctness of Eq. (1.23). Check
this.
Hint. Let the units of a variable x be denoted by [x]. Typical values of [x]
would be L for length, M for mass, and T for time. Then, if [x] = X and
[y] = Y, one can check from Eq. (1.23) that [â] = Y and [b̂] = Y/X. This
is compatible with Eq. (1.21) since b is multiplied by x to, partly, produce y,
[b][x] = [y], and then, [b] = [y]/[x] = Y/X.
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(d) In the setting of statistics, the following notations are usual,

x̄ =
1
n

n∑

i=1

xi , ȳ =
1
n

n∑

i=1

yi ,

S xx =

n∑

i=1

x2
i −

1
n

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

xi

⎞
⎟⎟⎟⎟⎟⎠

2

, and

S xy =

n∑

i=1

xiyi −
1
n

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

xi

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

yi

⎞
⎟⎟⎟⎟⎟⎠ .

Show that

S xx =

n∑

i=1

(xi − x̄)2 , and S xy =

n∑

i=1

yi(xi − x̄) .

(e) Show that

â = ȳ − b̂x̄ ,

b̂ =

∑n
i=1 xiyi − (∑n

i=1 xi)(
∑n

i=1 yi)
n

∑n
i=1 x2

i −
(∑n

i=1 xi)2

n

=

∑n
i=1 xiyi − nx̄ȳ

∑n
i=1 x2

i − n (x̄)2
=

S xy

S xx
.

(f) Let H(E) denote the Hessian of E, that is, the matrix of the second order
derivatives of E,

H(E) =

⎛
⎜⎜⎜⎜⎝

∂2E
∂a2

∂2E
∂a∂b

∂2E
∂b∂a

∂2E
∂b2

⎞
⎟⎟⎟⎟⎠ .

Compute H(E) |(â,b̂).

(g) Determine an expression for the eigenvalues26 of H(E).

(h) Show that the eigenvalues of H(E) are positive, whenever n ≥ 2.
Hint. Show that α ±

√
α2 − β > 0 whenever α > 0 and α2 ≥ β.

(i) Use the spectral theorem to show that (â, b̂) is a minimum point of E since
H(E) is a positive-definite matrix27.

26 For a reminder on how to compute eigenvalues in simple cases, see Example A.1,
page 192.

27 Further information about regression models can be seen in [55]. In particular, the mod-
eling of residues as a probabilistic distribution is discussed. Usually, the normal distribu-
tion is used, which amounts to introducing another parameter, σ, in the model present in
Eq. (1.21), corresponding to the standard deviation of the normal, leading to the model
y = a + bx + ε, where ε ∼ N(0,σ2) stands for the normal distribution with zero mean and
variance σ2.
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1.8. Consider Darcy’s law for a homogeneous, isotropic porous medium, in one di-
mension. Use previous exercise with a = 0 in Eq. (1.21), to model the relationship
between flux and pressure gradient. Determine an appropriate expression for an es-
timator of the scalar permeability, by mimicking the steps proposed in Exercise 1.7.
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