
7
 P

RO
CE

SS
IN

G
 A

N
D

 D
IS

PL
AY

IN
G

 IM
A

G
ES

 IN
 E

A
RT

H
 S

CI
EN

CE
S

7 Processing and Displaying Images in Earth Sciences

7.1 Introduction

Computer graphics are stored and processed as either vector or raster data.
Most of the data types that were encountered in the previous chapter were
vector data, i.e., points, lines and polygons. Images are generally presented
as raster data, i.e., as a 2D array of color intensities. Images are everywhere
in geosciences. Field geologists use aerial photographs and satellite images
to identify lithologic units, tectonic structures, landslides and other features
within a study area. Geomorphologists use such images for the analysis of
drainage networks, river catchments, and vegetation or soil types. The anal-
ysis of images from thin sections, the automated identification of objects,
and the measurement of varve thicknesses all make use of a great variety of
image processing methods.

This chapter is concerned with the analysis and display of image data.
The various ways that raster data can be stored on a computer are explained
in Section 7.2. The main tools for importing, manipulating and exporting
image data are presented in Section 7.3. This information is then used to
process and to georeference satellite images (Sections 7.4 and 7.5). On-screen
digitization techniques are discussed in Section 7.6. While the MATLAB
User’s Guide to the Image Processing Toolbox provides an excellent general
introduction to the analysis of images, this chapter provides an overview of
typical applications in the earth sciences.

7.2 Storing Images on a Computer

Vector and raster graphics are the two fundamental methods for storing
images. The typical format for storing vector data has already been intro-
duced in the previous chapters. In the following example, the two columns
in the file coastline.txt represent the longitudes and latitudes of the points
of a polygon.

149M. H. Trauth and E. Sillmann, MATLAB� and Design Recipes for Earth Sciences,
DOI: 10.1007/978-3-642-32544-1_7, � Springer-Verlag Berlin Heidelberg 2013

150 7 PROCESSING AND DISPLAYING IMAGES IN EARTH SCIENCES

NaN NaN
42.892067 0.000000
42.893692 0.001760
NaN NaN
42.891052 0.001467
42.898093 0.007921
42.904546 0.013201
42.907480 0.016721
42.910414 0.020828
42.913054 0.024642
(cont'd)

The NaNs help to identify break points in the data (Section 6.2).
In contrast, raster data are stored as 2D arrays. The elements of these

arrays represent variables such as the altitude of a grid point above sea level,
the annual rainfall or, in the case of an image, the color intensity values.

174 177 180 182 182 182
165 169 170 168 168 170
171 174 173 168 167 170
184 186 183 177 174 176
191 192 190 185 181 181
189 190 190 188 186 183

Raster data can be visualized as a 3D plot. The x and y are the indices of
the 2D array or any other reference frame, and z is the numerical value of
the elements of the array (see also Chapter 4). Alternatively, the numerical
values contained in the 2D array can be displayed as a pseudocolor plot,
which is a rectangular array of cells with colors determined by a colormap.
A colormap is an m-by-3 array of real numbers between 0.0 and 1.0. Each
row defines a red, green, blue (RGB) color. An example is the above array
that could be interpreted as grayscale intensities ranging from 0 (black) to
255 (white). More complex examples include satellite images that are stored
in 3D arrays.

As previously discussed, a computer stores data as bits that have one of
two states, one and zero (Chapter 4). If the elements of the 2D array repre-
sent the color intensity values of the pixels (short for picture elements) of an
image, 1-bit arrays contain only ones and zeros.

0 0 1 1 1 1
1 1 0 0 1 1
1 1 1 1 0 0
1 1 1 1 0 1
0 0 0 0 0 0
0 0 0 0 0 0

This 2D array of ones and zeros can be simply interpreted as a black-and-
white image, where the value of one represents white and zero corresponds

7.2 STORING IMAGES ON A COMPUTER 151

7
 P

RO
CE

SS
IN

G
 A

N
D

 D
IS

PL
AY

IN
G

 IM
A

G
ES

 IN
 E

A
RT

H
 S

CI
EN

CE
S

to black. Alternatively, the 1-bit array could be used to store an image con-
sisting of any two different colors, such as red and blue.

In order to store more complex types of data, the bits are joined together
to form larger groups, such as bytes consisting of eight bits. Since the earliest
computers could only process eight bits at a time, early computer code was
written in sets of eight bits, which came to be called bytes. Hence, each ele-
ment of the 2D array or pixel contains a vector of eight ones or zeros.

 1 0 1 0 0 0 0 1

These 8 bits (or 1 byte) allow 28 = 256 possible combinations of the eight
ones or zeros. 8 bits are therefore able to represent 256 different intensi-
ties such as grayscales. The 8 bits can be read in the following way reading
from right to left: a single bit represents two numbers, two bits give four
numbers, three bits show eight numbers, and so forth up to a byte, or eight
bits, which represents 256 numbers. Each added bit doubles the count of
numbers. Here is a comparison of binary and decimal representations of
the number 161:

128 64 32 16 8 4 2 1 (value of the bit)
 1 0 1 0 0 0 0 1 (binary)

128 + 0 + 32 + 0 + 0 + 0 + 0 + 1 = 161 (decimal)

The end members of the binary representation of grayscales are

 0 0 0 0 0 0 0 0

which is black, and

 1 1 1 1 1 1 1 1

which is pure white. In contrast to the above 1-bit array, the one-byte array
allows a grayscale image of 256 different levels to be stored. Alternatively, the
256 numbers could be interpreted as 256 discrete colors. In either case, the
display of such an image requires an additional source of information con-
cerning how the 256 intensity values are converted into colors. Numerous
global colormaps for the interpretation of 8-bit color images exist that allow
the cross-platform exchange of raster images, while local colormaps are of-
ten embedded in a graphics file.

The disadvantage of 8-bit color images is that the 256 discrete colorsteps
are not enough to simulate smooth transitions for the human eye. A 24-bit
system is therefore used in many applications, with 8 bits of data for each
RGB channel giving a total of 2563 = 16,777,216 colors. Such a 24-bit image

152 7 PROCESSING AND DISPLAYING IMAGES IN EARTH SCIENCES

is stored in three 2D arrays, or one 3D array, of intensity values between
0 and 255.

195 189 203 217 217 221
218 209 187 192 204 206
207 219 212 198 188 190
203 205 202 202 191 201
190 192 193 191 184 190
186 179 178 182 180 169

209 203 217 232 232 236
234 225 203 208 220 220
224 235 229 214 204 205
223 222 222 219 208 216
209 212 213 211 203 206
206 199 199 203 201 187

174 168 182 199 199 203
198 189 167 172 184 185
188 199 193 178 168 172
186 186 185 183 174 185
177 177 178 176 171 177
179 171 168 170 170 163

Compared to the 1-bit and 8-bit representations of raster data, the 24-bit
storage certainly requires a lot more computer memory. In the case of very
large data sets such as satellite images and digital elevation models the user
should therefore think carefully about the most suitable way to store the
data. The default data type in MATLAB is the 64-bit array, which allows
storage of the sign of a number (first bit), the exponent (bits 2 to 12) and
roughly 16 significant decimal digits in the range of approximately 10–3 0 8
to 10+3 0 8 (bits 13 to 64). However, MATLAB also works with other data
types, such as 1-bit, 8-bit and 24-bit raster data, to save memory.

The memory required for storing a raster image depends on the data
type and the image’s dimension. The dimension of an image can be de-
scribed by the number of pixels, which is the number of rows multiplied
by the number of columns of the 2D array. Let us assume an image of
729 × 713 pixels, such as the one we will use in the following section. If each
pixel needs 8 bits to store a grayscale value, the memory required by the
data is 729 × 713 × 8 = 4,158,216 bits or 4,158,216/8 = 519,777 bytes. This
number is exactly what we obtain by typing whos in the command window.
Common prefixes for bytes are kilo-, mega-, giga- and so forth.

bit = 1 or 0 (b)
8 bits = 1 byte (B)
1024 bytes = 1 kilobyte (KB)
1024 kilobytes = 1 megabyte (MB)
1024 megabytes = 1 gigabyte (GB)
1024 gigabytes = 1 terabyte (TB)

7.3 IMPORTING, PROCESSING AND EXPORTING IMAGES 153

7
 P

RO
CE

SS
IN

G
 A

N
D

 D
IS

PL
AY

IN
G

 IM
A

G
ES

 IN
 E

A
RT

H
 S

CI
EN

CE
S

Note that in data communication 1 kilobit = 1,000 bits, while in data storage
1 kilobyte = 1,024 bytes. A 24-bit or true color image then requires three
times the memory required to store an 8-bit image, or 1,559,331 bytes =
1,559,331/1,024 kilobytes (kB) ≈ 1,523 kB ≈ 1,559,331/1,0242=1.487 mega-
bytes (MB).

However, the dimensions of an image are often given, not by the total
number of pixels, but by its length, height, and resolution. The resolution of
an image is the number of pixels per inch (ppi) or dots per inch (dpi). The
standard resolution of a computer monitor is 72 dpi although modern mon-
itors often have a higher resolution such as 96 dpi. For instance, a 17 inch
monitor with 72 dpi resolution displays 1,024 × 768 pixels. If the monitor
is used to display images at a different (lower, higher) resolution, the im-
age is resampled to match the monitor’s resolution. For scanning and print-
ing, a resolution of 300 or 600 dpi is enough in most applications. However,
scanned images are often scaled for large printouts and therefore have high-
er resolutions such as 2,400 dpi. The image used in the next section has a
width of 25.2 cm (or 9.92 inches) and a height of 25.7 cm (10.12 inches). The
resolution of the image is 72 dpi. The total number of pixels is therefore
72 × 9.92 ≈ 713 in a horizontal direction, and 72 × 10.12 ≈ 729 in a vertical
direction.

7.3 Importing, Processing and Exporting Images

We first need to learn how to read an image from a graphics file into the
workspace. As an example, we use a satellite image showing a 10.5 km by
11 km subarea in northern Chile:

http://asterweb.jpl.nasa.gov/gallery/images/unconform.jpg

The file unconform.jpg is a processed TERRA-ASTER satellite image that
can be downloaded free-of-charge from the NASA web page. We save this
image in the working directory as unconform_image_vs1_original.jpg.
The command

clear

unconform1 = imread('unconform_image_vs1_original.jpg');

reads and decompresses the JPEG file, imports the data as a 24-bit RGB
image array and stores the data in a variable unconform1. The command

whos

154 7 PROCESSING AND DISPLAYING IMAGES IN EARTH SCIENCES

shows how the RGB array is stored in the workspace:

Name Size Bytes Class Attributes
unconform1 729x713x3 1559331 uint8

The details indicate that the image is stored as a 729 × 713 × 3 array rep-
resenting a 729 × 713 array for each of the colors red, green and blue. The
listing of the current variables in the workspace also gives the information
uint8 array, i.e., each array element representing one pixel contains 8-bit
integers. These integers represent intensity values between 0 (minimum in-
tensity) and 255 (maximum). As an example, here is a sector in the upper-
left corner of the data array for red:

unconform1(50:55,50:55,1)

ans =
 174 177 180 182 182 182
 165 169 170 168 168 170
 171 174 173 168 167 170
 184 186 183 177 174 176
 191 192 190 185 181 181
 189 190 190 188 186 183

Next, we can view the image using the command

imshow(unconform1)

which opens a new Figure Window showing an RGB composite of the im-
age.

In contrast to the RGB image, a grayscale image needs only a single
array to store all the necessary information. We therefore convert the RGB
image into a grayscale image using the command rgb2gray (RGB to gray):

unconform2 = rgb2gray(unconform1);

The new workspace listing now reads

Name Size Bytes Class Attributes
ans 6x6 36 uint8
unconform1 729x713x3 1559331 uint8
unconform2 729x713 519777 uint8

in which the difference between the 24-bit RGB and the 8-bit grayscale ar-
rays can be observed. The command

imshow(unconform2)

displays the result. It is easy to see the difference between the two images in

7.3 IMPORTING, PROCESSING AND EXPORTING IMAGES 155

7
 P

RO
CE

SS
IN

G
 A

N
D

 D
IS

PL
AY

IN
G

 IM
A

G
ES

 IN
 E

A
RT

H
 S

CI
EN

CE
S

Fig. 7.1 Grayscale image. After converting the RGB image stored in a 729 × 713 × 3 array
into a grayscale image stored in a 729 × 713 array, the result is displayed using imshow.
Original image courtesy of NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER
Science Team.

separate Figure Windows (Fig 7.1). Let us now process the grayscale image.
First, we compute a histogram of the distribution of intensity values.

imhist(unconform2)

A simple technique to enhance the contrast of such an image is to transform
this histogram to obtain an equal distribution of grayscales.

unconform3 = histeq(unconform2);

156 7 PROCESSING AND DISPLAYING IMAGES IN EARTH SCIENCES

We can view the difference again using

imshow(unconform3)

and save the results in a new file.

imwrite(unconform3,'unconform_image_vs2_matlab.jpg')

We can read the header of the new file by typing

imfinfo('unconform_image_vs2_matlab.jpg')

which yields

 Filename: 'unconform_image_vs2_matlab.jpg'
 FileModDate: '26-Oct-2011 22:54:36'
 FileSize: 138419
 Format: 'jpg'
 FormatVersion: ''
 Width: 713
 Height: 729
 BitDepth: 8
 ColorType: 'grayscale'
 FormatSignature: ''
 NumberOfSamples: 1
 CodingMethod: 'Huffman'
 CodingProcess: 'Sequential'
 Comment: {}

Hence, the command imfinfo can be used to obtain useful information
(name, size, format and color type) concerning the newly-created image file.

There are many ways of transforming the original satellite image into
a practical file format. The image data could, for instance, be stored as an
indexed color image, which consists of two parts: a colormap array and a
data array. The colormap array is an m-by-3 array containing floating-point
values between 0 and 1. Each column specifies the intensity of the red, green
and blue colors. The data array is an x-by-y array containing integer ele-
ments corresponding to the lines m of the colormap array, i.e., the specific
RGB representation of a certain color. Let us transfer the above RGB image
into an indexed image. The colormap of the image should contain 16 differ-
ent colors. The result of

[x,map] = rgb2ind(unconform1,16);
imshow(unconform1), figure, imshow(x,map)

clearly shows the difference between the original 24-bit RGB image (2563
or about 16.7 million different colors) and a color image of only 16 different
colors.

7.4 PROCESSING AND PRINTING SATELLITE IMAGES 157

7
 P

RO
CE

SS
IN

G
 A

N
D

 D
IS

PL
AY

IN
G

 IM
A

G
ES

 IN
 E

A
RT

H
 S

CI
EN

CE
S

7.4 Processing and Printing Satellite Images

In the previous section, we used a processed ASTER image that we down-
loaded from the ASTER web page. The original ASTER raw data contain
a lot more information and higher resolution than the free-of-charge im-
age stored in unconform.jpg. The ASTER instrument produces two types
of data, Level-1A and Level-1B. Whereas the L1A data are reconstructed,
unprocessed instrument data, L1B data are radiometrically and geometri-
cally corrected. Each ASTER data set contains 15 data arrays representing
the intensity values from 15 spectral bands (see the ASTER-web page for
more detailed information) and various other items of information such as
location, date and time. The raw satellite data can be purchased from the
USGS online store:

https://wist.echo.nasa.gov/wist-bin/api/ims.cgi

On this webpage we can select a discipline/topic (e.g., Land: ASTER), and
then choose from the list of data sets (e.g., DEM, Level 1A or 1B data), define
the search area, and click Start Search. The system now needs a few min-
utes to list all relevant data sets. A list of data sets, including various types
of additional information (cloud coverage, exposure date, latitude and lon-
gitude), can be obtained by clicking on List Data Granules. Furthermore,
a low resolution preview can be accessed by selecting Image. Having pur-
chased a particular data set, the raw image can be downloaded using a tem-
porary FTP-access. As an example, we process an image from an area in
Kenya showing Lake Naivasha. The data are stored in two files

naivasha_data.hdf
naivasha_data.hdf.met

The first file, which has a size of 111 MB, contains the actual raw data,
whereas the second file, which has a size of 100 KB, contains the header, to-
gether with all sorts of information about the data. We save both files in our
working directory. The Image Processing Toolbox contains various tools for
importing and processing files stored in the hierarchical data format (HDF).
The graphical user interface (GUI) based import tool for importing certain
parts of the raw data is

hdftool('naivasha_data.hdf')

This command opens a GUI that allows us to browse the content of the
HDF-file naivasha_data.hdf, obtains all information on the contents, and
imports certain frequency bands of the satellite image. Alternatively, the

158 7 PROCESSING AND DISPLAYING IMAGES IN EARTH SCIENCES

command hdfread can be used as a quicker way of accessing image data.
An image such as that used in the previous section is typically achieved by
computing an RGB composite from the vnir_Band3n, 2 and 1 in the data
file. We first read the data, as follows:

clear

I1 = hdfread('naivasha_data.hdf','VNIR_Band3N',...
 'Fields','ImageData');
I2 = hdfread('naivasha_data.hdf','VNIR_Band2',...
 'Fields','ImageData');
I3 = hdfread('naivasha_data.hdf','VNIR_Band1',...
 'Fields','ImageData');

These commands generate three 8-bit image arrays each representing the in-
tensity within a certain infrared (IR) frequency band of a 4200 × 4100 pixel
image. The vnir_Band3n, 2 and 1 typically contain much information
about lithology (including soils), vegetation and water on the Earth’s sur-
face. These bands are therefore usually combined into 24-bit RGB images

naivasha_rgb = cat(3,I1,I2,I3);

As with the previous examples, the 4200 × 4100 × 3 array can now be dis-
played using

imshow(naivasha_rgb);

MATLAB scales the images to fit the computer screen. Exporting the pro-
cessed image from the Figure Window, we only save the image at the moni-
tor’s resolution. To obtain an image at a higher resolution (Fig. 7.2), we use
the command

imwrite(naivasha_rgb,'naivasha_image_vs1_matlab.tif','tif')

This command saves the RGB composite as a TIFF-file of about 50 MB in
the working directory, which can then be processed with other software
such as Adobe Photoshop.

7.5 Georeferencing Satellite Images

The processed ASTER image does not yet have a coordinate system, and the
image therefore needs to be tied to a geographical reference frame (georef-
erencing). The raw data can be loaded and transformed into an RGB com-
posite by typing

clear

7.5 GEOREFERENCING SATELLITE IMAGES 159

7
 P

RO
CE

SS
IN

G
 A

N
D

 D
IS

PL
AY

IN
G

 IM
A

G
ES

 IN
 E

A
RT

H
 S

CI
EN

CE
S

Fig. 7.2 RGB composite of a TERRA-ASTER image using the spectral infrared bands vnir_
Band3n, 2 and 1. The result is displayed using imshow. Original image courtesy of NASA/
GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

I1 = hdfread('naivasha_data.hdf','VNIR_Band3N',...
 'Fields','ImageData');
I2 = hdfread('naivasha_data.hdf','VNIR_Band2',...
 'Fields','ImageData');
I3 = hdfread('naivasha_data.hdf','VNIR_Band1',...
 'Fields','ImageData');

naivasha_rgb = cat(3,I1,I2,I3);

The HDF browser

hdftool('naivasha_data.hdf')

160 7 PROCESSING AND DISPLAYING IMAGES IN EARTH SCIENCES

can be used to extract the geodetic coordinates of the four corners of the
image. This information is contained in the header of the HDF file. Having
launched the HDF tool, we select on the uppermost directory called naiva-
sha_data.hdf and find a long list of file attributes in the upper right panel of
the GUI, one of which is productmetadata.0, which includes the attribute
scenefourcorners that contains the following information:

upperleft = [-0.319922, 36.214332];
upperright = [-0.400443, 36.770406];
lowerleft = [-0.878267, 36.096003];
lowerright = [-0.958743, 36.652213];

These two-element vectors can be collected into a single array input-
points. Subsequently, the left and right columns can be flipped in order to
have x=longitudes and y=latitudes.

inputpoints(1,:) = upperleft;
inputpoints(2,:) = lowerleft;
inputpoints(3,:) = upperright;
inputpoints(4,:) = lowerright;
inputpoints = fliplr(inputpoints);

The four corners of the image correspond to the pixels in the four corners of
the image, which we store in a variable named basepoints.

basepoints(1,:) = [1,4200];
basepoints(2,:) = [1,1];
basepoints(3,:) = [4100,4200];
basepoints(4,:) = [4100,1];

The function cp2tform now takes the pairs of control points, input-
points and basepoints, and uses them to infer a spatial transformation
matrix tform.

tform = cp2tform(inputpoints,basepoints,'affine');

This transformation can be applied to the original RGB composite naiva-
sha_rgb in order to obtain a georeferenced version of the satellite image
newnaivasha_rgb.

[newnaivasha_rgb,x,y] = imtransform(naivasha_rgb,tform);

An appropriate grid for the image can now be computed. The grid is typi-
cally defined by the minimum and maximum values for the longitude and
latitude. The vector increments are then obtained by dividing the longitude
and latitude range by the array dimension and by subtracting one from the
result. Note the difference between the MATLAB numbering convention

7.5 GEOREFERENCING SATELLITE IMAGES 161

7
 P

RO
CE

SS
IN

G
 A

N
D

 D
IS

PL
AY

IN
G

 IM
A

G
ES

 IN
 E

A
RT

H
 S

CI
EN

CE
S

Fig. 7.3 Geoferenced RGB composite of a TERRA-ASTER image using the infrared bands
vnir_Band3n, 2 and 1. The result is displayed using imshow. Original image courtesy of
NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

and the common coding of maps used in the literature. The north/south
suffix is generally replaced by a negative sign for south, whereas MATLAB
coding conventions require negative signs for north.

X = 36.096003 : (36.770406-36.096003)/8569 : 36.770406;
Y = 0.319922 : (0.958743- 0.319922)/8400 : 0.958743;

The georeferenced image is displayed with coordinates on the axes and a
superimposed grid (Fig. 7.3).

imshow(newnaivasha_rgb,'XData',X,'YData',Y), axis on, grid on
xlabel('Longitude'), ylabel('Latitude')
title('Georeferenced ASTER Image')

162 7 PROCESSING AND DISPLAYING IMAGES IN EARTH SCIENCES

Exporting the image is possible in many different ways, for example using

print -djpeg70 -r600 naivasha_georef_vs1_matlab.jpg

to export it as a 1 MB JPEG file compressed to 70 %, with a resolution of
600 dpi. Alternatively, we can save it as a TIFF file with a resolution of
600 dpi

print -dtiff -r600 naivasha_georef_vs1_matlab.tif

which has a size of about 25 MB.

7.6 Digitizing from the Screen: From Pixel to Vector

On-screen digitizing is a widely-used image processing technique. While
practical digitizer tablets exist in all formats and sizes, most people prefer
digitizing vector data from the screen. Examples for this type of applica-
tion include digitizing river networks and catchment areas on topographic
maps, the outlines of lithologic units on geological maps, the distribution
of landslides on satellite images, and the distribution of mineral grains in a
microscope image. The digitizing procedure consists of the following steps.
Firstly, the image is imported into the workspace. A coordinate system is
then defined, allowing the objects of interest to be entered by moving a cur-
sor or cross hair and clicking the mouse button. The result is a two-dimen-
sional array of xy data, such as longitudes and latitudes of the corner points
of a polygon or the coordinates of the objects of interest in a particular area.

The function ginput included in the standard MATLAB toolbox al-
lows graphical input using a mouse on the screen. It is generally used to
select points, such as specific data points, from a figure created by an arbi-
trary graphics function such as plot. The function ginput is often used
for interactive plotting, i.e., the digitized points appear on the screen after
they have been selected. The disadvantage of the function is that it does not
provide coordinate referencing on an image. We therefore use a modified
version of the function, which allows an image to be referenced to an arbi-
trary rectangular coordinate system. Save the following code for this modi-
fied version of the function ginput in a text file minput.m.

function data = minput(imagefile)
% Specify the limits of the image
xmin = input('Specify xmin! ');
xmax = input('Specify xmax! ');
ymin = input('Specify ymin! ');
ymax = input('Specify ymax! ');

7.6 DIGITIZING FROM THE SCREEN: FROM PIXEL TO VECTOR 163

7
 P

RO
CE

SS
IN

G
 A

N
D

 D
IS

PL
AY

IN
G

 IM
A

G
ES

 IN
 E

A
RT

H
 S

CI
EN

CE
S

% Read image and display
B = imread(imagefile);
a = size(B,2); b = size(B,1);
imshow(B);

% Define lower left and upper right corner of image
disp('Click on lower left and upper right corner, then <return>')
[xcr,ycr] = ginput;
XMIN = xmin-((xmax-xmin)*xcr(1,1)/(xcr(2,1)-xcr(1,1)));
XMAX = xmax+((xmax-xmin)*(a-xcr(2,1))/(xcr(2,1)-xcr(1,1)));
YMIN = ymin-((ymax-ymin)*ycr(1,1)/(ycr(2,1)-ycr(1,1)));
YMAX = ymax+((ymax-ymin)*(b-ycr(2,1))/(ycr(2,1)-ycr(1,1)));

% Digitize data points
disp('Click on data points to digitize, then <return>')
[xdata,ydata] = ginput;
XDATA = XMIN + ((XMAX-XMIN)*xdata/size(B,2));
YDATA = YMIN + ((YMAX-YMIN)*ydata/size(B,1));
data(:,1) = XDATA; data(:,2) = YDATA;

The function minput has four stages. In the first stage, the user enters the
limits of the coordinate axes as reference points for the image. Next, the im-
age is imported into the workspace and displayed on the screen. The third
stage uses ginput to define the upper left and lower right corners of the
image. In the fourth stage the relationship between the coordinates of the
two corners on the figure window and the reference coordinate system is
then used to compute the transformation for all of the digitized points.

As an example, we use the image stored in the file naivasha_georef.
jpg and digitize the outline of Lake Naivasha in the center of the image. We
activate the new function minput from the Command Window using the
commands

clear

data = minput('naivasha_georef_vs1_matlab.jpg')

The function first asks for the coordinates for the limits of the x- and y-axis
for the reference frame. We enter the corresponding numbers and press re-
turn after each input.

Specify xmin! 36.1
Specify xmax! 36.7
Specify ymin! -1
Specify ymax! -0.3

The function then reads the file naivasha_georef_vs1_matlab.jpg and dis-
plays the image. We ignore the warning

Warning: Image is too big to fit on screen; displaying at 33%

164 7 PROCESSING AND DISPLAYING IMAGES IN EARTH SCIENCES

and wait for the next response

Click on lower left and upper right corner, then <return>

The image window can be scaled according to user preference. Clicking on
the lower left and upper right corners defines the dimension of the image.
These changes are registered by pressing return. The routine then references
the image to the coordinate system and waits for the input of the points we
wish to digitize from the image.

Click on data points to digitize, then <return>

We finish the input by again pressing return. The xy coordinates of our
digitized points are now stored in the variable data. We can now use these
vector data for other applications.

Recommended Reading
Abrams M, Hook S (2002) ASTER User Handbook - Version 2. Jet Propulsion Laboratory

and EROS Data Center, Sioux Falls
Campbell JB (2002) Introduction to Remote Sensing. Taylor & Francis, London
Gonzalez RC, Woods RE, Eddins SL (2009) Digital Image Processing Using MATLAB –

2nd Edition. Gatesmark Publishing, LLC
The Mathworks (2010) Image Processing Toolbox – User’s Guide. The MathWorks, Natick,

MA

	7 Processing and Displaying Images in Earth Sciences
	7.1 Introduction
	7.2 Storing Images on a Computer
	7.3 Importing, Processing and Exporting Images
	7.4 Processing and Printing Satellite Images
	7.5 Georeferencing Satellite Images
	7.6 Digitizing from the Screen: From Pixel to Vector
	Recommended Reading

