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7 Processing and Displaying Images in Earth Sciences

7.1 Introduction

Computer graphics are stored and processed as either vector or raster data. 
Most of the data types that were encountered in the previous chapter were 
vector data, i.e., points, lines and polygons. Images are generally presented 
as raster data, i.e., as a 2D array of color intensities. Images are everywhere 
in geosciences. Field geologists use aerial photographs and satellite images 
to identify lithologic units, tectonic structures, landslides and other features 
within a study area. Geomorphologists use such images for the analysis of 
drainage networks, river catchments, and vegetation or soil types. The anal-
ysis of images from thin sections, the automated identification of objects, 
and the measurement of varve thicknesses all make use of a great variety of 
image processing methods.

This chapter is concerned with the analysis and display of image data. 
The various ways that raster data can be stored on a computer are explained 
in Section 7.2. The main tools for importing, manipulating and exporting 
image data are presented in Section 7.3. This information is then used to 
process and to georeference satellite images (Sections 7.4 and 7.5). On-screen 
digitization techniques are discussed in Section 7.6. While the MATLAB 
User’s Guide to the Image Processing Toolbox provides an excellent general 
introduction to the analysis of images, this chapter provides an overview of 
typical applications in the earth sciences.

7.2 Storing Images on a Computer

Vector and raster graphics are the two fundamental methods for storing 
images. The typical format for storing vector data has already been intro-
duced in the previous chapters. In the following example, the two columns 
in the file coastline.txt represent the longitudes and latitudes of the points 
of a polygon.

149M. H. Trauth and E. Sillmann, MATLAB� and Design Recipes for Earth Sciences,
DOI: 10.1007/978-3-642-32544-1_7, � Springer-Verlag Berlin Heidelberg 2013
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NaN   NaN
42.892067 0.000000
42.893692 0.001760
NaN   NaN
42.891052 0.001467
42.898093 0.007921
42.904546 0.013201
42.907480 0.016721
42.910414 0.020828
42.913054 0.024642
(cont'd)

The NaNs help to identify break points in the data (Section 6.2).
In contrast, raster data are stored as 2D arrays. The elements of these 

arrays represent variables such as the altitude of a grid point above sea level, 
the annual rainfall or, in the case of an image, the color intensity values.

174 177 180 182 182 182
165 169 170 168 168 170
171 174 173 168 167 170
184 186 183 177 174 176
191 192 190 185 181 181
189 190 190 188 186 183

Raster data can be visualized as a 3D plot. The x and y are the indices of 
the 2D array or any other reference frame, and z is the numerical value of 
the elements of the array (see also Chapter 4). Alternatively, the numerical 
values contained in the 2D array can be displayed as a pseudocolor plot, 
which is a rectangular array of cells with colors determined by a colormap. 
A colormap is an m-by-3 array of real numbers between 0.0 and 1.0. Each 
row defines a red, green, blue (RGB) color. An example is the above array 
that could be interpreted as grayscale intensities ranging from 0 (black) to 
255 (white). More complex examples include satellite images that are stored 
in 3D arrays.

As previously discussed, a computer stores data as bits that have one of 
two states, one and zero (Chapter 4). If the elements of the 2D array repre-
sent the color intensity values of the pixels (short for picture elements) of an 
image, 1-bit arrays contain only ones and zeros.

0   0   1   1   1   1
1   1   0   0   1   1
1   1   1   1   0   0
1   1   1   1   0   1
0   0   0   0   0   0
0   0   0   0   0   0

This 2D array of ones and zeros can be simply interpreted as a black-and-
white image, where the value of one represents white and zero corresponds 
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to black. Alternatively, the 1-bit array could be used to store an image con-
sisting of any two different colors, such as red and blue.

In order to store more complex types of data, the bits are joined together 
to form larger groups, such as bytes consisting of eight bits. Since the earliest 
computers could only process eight bits at a time, early computer code was 
written in sets of eight bits, which came to be called bytes. Hence, each ele-
ment of the 2D array or pixel contains a vector of eight ones or zeros.

  1    0    1    0    0    0    0    1

These 8 bits (or 1 byte) allow 28 = 256 possible combinations of the eight 
ones or zeros. 8 bits are therefore able to represent 256 different intensi-
ties such as grayscales. The 8 bits can be read in the following way reading 
from right to left: a single bit represents two numbers, two bits give four 
numbers, three bits show eight numbers, and so forth up to a byte, or eight 
bits, which represents 256 numbers. Each added bit doubles the count of 
numbers. Here is a comparison of binary and decimal representations of 
the number 161: 

128   64   32   16    8    4    2    1         (value of the bit)
  1    0    1    0    0    0    0    1         (binary)

128 +  0 + 32  + 0 +  0 +  0 +  0 +  1 = 161   (decimal)

The end members of the binary representation of grayscales are

  0    0    0    0    0    0    0    0

which is black, and

  1    1    1    1    1    1    1    1

which is pure white. In contrast to the above 1-bit array, the one-byte array 
allows a grayscale image of 256 different levels to be stored. Alternatively, the 
256 numbers could be interpreted as 256 discrete colors. In either case, the 
display of such an image requires an additional source of information con-
cerning how the 256 intensity values are converted into colors. Numerous 
global colormaps for the interpretation of 8-bit color images exist that allow 
the cross-platform exchange of raster images, while local colormaps are of-
ten embedded in a graphics file.

The disadvantage of 8-bit color images is that the 256 discrete colorsteps 
are not enough to simulate smooth transitions for the human eye. A 24-bit 
system is therefore used in many applications, with 8 bits of data for each 
RGB channel giving a total of 2563 = 16,777,216 colors. Such a 24-bit image 
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is stored in three 2D arrays, or one 3D array, of intensity values between 
0 and 255.

195  189  203  217  217  221
218  209  187  192  204  206
207  219  212  198  188  190
203  205  202  202  191  201
190  192  193  191  184  190
186  179  178  182  180  169

209  203  217  232  232  236
234  225  203  208  220  220
224  235  229  214  204  205
223  222  222  219  208  216
209  212  213  211  203  206
206  199  199  203  201  187

174  168  182  199  199  203
198  189  167  172  184  185
188  199  193  178  168  172
186  186  185  183  174  185
177  177  178  176  171  177
179  171  168  170  170  163

Compared to the 1-bit and 8-bit representations of raster data, the 24-bit 
storage certainly requires a lot more computer memory. In the case of very 
large data sets such as satellite images and digital elevation models the user 
should therefore think carefully about the most suitable way to store the 
data. The default data type in MATLAB is the 64-bit array, which allows 
storage of the sign of a number (first bit), the exponent (bits 2 to 12) and 
roughly 16 significant decimal digits in the range of approximately 10–3 0 8 
to 10+3 0 8 (bits 13 to 64). However, MATLAB also works with other data 
types, such as 1-bit, 8-bit and 24-bit raster data, to save memory.

The memory required for storing a raster image depends on the data 
type and the image’s dimension. The dimension of an image can be de-
scribed by the number of pixels, which is the number of rows multiplied 
by the number of columns of the 2D array. Let us assume an image of 
729 × 713 pixels, such as the one we will use in the following section. If each 
pixel needs 8 bits to store a grayscale value, the memory required by the 
data is 729 × 713 × 8 = 4,158,216 bits or 4,158,216/8 = 519,777 bytes. This 
number is exactly what we obtain by typing whos in the command window. 
Common prefixes for bytes are kilo-, mega-, giga- and so forth.

bit = 1 or 0 (b)
8 bits = 1 byte (B)
1024 bytes = 1 kilobyte (KB)
1024 kilobytes = 1 megabyte (MB)
1024 megabytes = 1 gigabyte (GB)
1024 gigabytes = 1 terabyte (TB)
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Note that in data communication 1 kilobit = 1,000 bits, while in data storage 
1 kilobyte = 1,024 bytes. A 24-bit or true color image then requires three 
times the memory required to store an 8-bit image, or 1,559,331 bytes = 
1,559,331/1,024  kilobytes (kB) ≈ 1,523 kB ≈ 1,559,331/1,0242=1.487 mega-
bytes (MB).

However, the dimensions of an image are often given, not by the total 
number of pixels, but by its length, height, and resolution. The resolution of 
an image is the number of pixels per inch (ppi) or dots per inch (dpi). The 
standard resolution of a computer monitor is 72 dpi although modern mon-
itors often have a higher resolution such as 96 dpi. For instance, a 17 inch 
monitor with 72 dpi resolution displays 1,024 × 768 pixels. If the monitor 
is used to display images at a different (lower, higher) resolution, the im-
age is resampled to match the monitor’s resolution. For scanning and print-
ing, a resolution of 300 or 600 dpi is enough in most applications. However, 
scanned images are often scaled for large printouts and therefore have high-
er resolutions such as 2,400 dpi. The image used in the next section has a 
width of 25.2 cm (or 9.92 inches) and a height of 25.7 cm (10.12 inches). The 
resolution of the image is 72  dpi. The total number of pixels is therefore 
72 × 9.92 ≈ 713 in a horizontal direction, and 72 × 10.12 ≈ 729 in a vertical 
direction.

7.3 Importing, Processing and Exporting Images

We first need to learn how to read an image from a graphics file into the 
workspace. As an example, we use a satellite image showing a 10.5 km by 
11 km subarea in northern Chile:

http://asterweb.jpl.nasa.gov/gallery/images/unconform.jpg

The file unconform.jpg is a processed TERRA-ASTER satellite image that 
can be downloaded free-of-charge from the NASA web page. We save this 
image in the working directory as unconform_image_vs1_original.jpg. 
The command

clear

unconform1 = imread('unconform_image_vs1_original.jpg');

reads and decompresses the JPEG file, imports the data as a 24-bit RGB 
image array and stores the data in a variable unconform1. The command

whos
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shows how the RGB array is stored in the workspace:

Name              Size                 Bytes  Class    Attributes
unconform1      729x713x3            1559331  uint8

The details indicate that the image is stored as a 729 × 713 × 3 array rep-
resenting a 729 × 713 array for each of the colors red, green and blue. The 
listing of the current variables in the workspace also gives the information 
uint8 array, i.e., each array element representing one pixel contains 8-bit 
integers. These integers represent intensity values between 0 (minimum in-
tensity) and 255 (maximum). As an example, here is a sector in the upper-
left corner of the data array for red:

unconform1(50:55,50:55,1)

ans =
   174 177 180 182 182 182
   165 169 170 168 168 170
   171 174 173 168 167 170
   184 186 183 177 174 176
   191 192 190 185 181 181
   189 190 190 188 186 183

Next, we can view the image using the command

imshow(unconform1)

which opens a new Figure Window showing an RGB composite of the im-
age.

In contrast to the RGB image, a grayscale image needs only a single 
array to store all the necessary information. We therefore convert the RGB 
image into a grayscale image using the command rgb2gray (RGB to gray):

unconform2 = rgb2gray(unconform1);

The new workspace listing now reads

Name              Size                 Bytes  Class    Attributes
ans               6x6                     36  uint8
unconform1      729x713x3            1559331  uint8
unconform2      729x713               519777  uint8

in which the difference between the 24-bit RGB and the 8-bit grayscale ar-
rays can be observed. The command

imshow(unconform2)

displays the result. It is easy to see the difference between the two images in 
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Fig. 7.1 Grayscale image. After converting the RGB image stored in a 729 × 713 × 3 array 
into a grayscale image stored in a 729 × 713 array, the result is displayed using imshow. 
Original image courtesy of NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER 
Science Team.

separate Figure Windows (Fig 7.1). Let us now process the grayscale image. 
First, we compute a histogram of the distribution of intensity values.

imhist(unconform2)

A simple technique to enhance the contrast of such an image is to transform 
this histogram to obtain an equal distribution of grayscales.

unconform3 = histeq(unconform2);
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We can view the difference again using

imshow(unconform3)

and save the results in a new file.

imwrite(unconform3,'unconform_image_vs2_matlab.jpg')

We can read the header of the new file by typing

imfinfo('unconform_image_vs2_matlab.jpg')

which yields

           Filename: 'unconform_image_vs2_matlab.jpg'
        FileModDate: '26-Oct-2011 22:54:36'
           FileSize: 138419
             Format: 'jpg'
      FormatVersion: ''
              Width: 713
             Height: 729
           BitDepth: 8
          ColorType: 'grayscale'
    FormatSignature: ''
    NumberOfSamples: 1
       CodingMethod: 'Huffman'
      CodingProcess: 'Sequential'
            Comment: {}

Hence, the command imfinfo can be used to obtain useful information 
(name, size, format and color type) concerning the newly-created image file.

There are many ways of transforming the original satellite image into 
a practical file format. The image data could, for instance, be stored as an 
indexed color image, which consists of two parts: a colormap array and a 
data array. The colormap array is an m-by-3 array containing floating-point 
values between 0 and 1. Each column specifies the intensity of the red, green 
and blue colors. The data array is an x-by-y array containing integer ele-
ments corresponding to the lines m of the colormap array, i.e., the specific 
RGB representation of a certain color. Let us transfer the above RGB image 
into an indexed image. The colormap of the image should contain 16 differ-
ent colors. The result of

[x,map] = rgb2ind(unconform1,16);
imshow(unconform1), figure, imshow(x,map)

clearly shows the difference between the original 24-bit RGB image (2563 
or about 16.7 million different colors) and a color image of only 16 different 
colors.
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7.4 Processing and Printing Satellite Images

In the previous section, we used a processed ASTER image that we down-
loaded from the ASTER web page. The original ASTER raw data contain 
a lot more information and higher resolution than the free-of-charge im-
age stored in unconform.jpg. The ASTER instrument produces two types 
of data, Level-1A and Level-1B. Whereas the L1A data are reconstructed, 
unprocessed instrument data, L1B data are radiometrically and geometri-
cally corrected. Each ASTER data set contains 15 data arrays representing 
the intensity values from 15 spectral bands (see the ASTER-web page for 
more detailed information) and various other items of information such as 
location, date and time. The raw satellite data can be purchased from the 
USGS online store:

https://wist.echo.nasa.gov/wist-bin/api/ims.cgi

On this webpage we can select a discipline/topic (e.g., Land: ASTER), and 
then choose from the list of data sets (e.g., DEM, Level 1A or 1B data), define 
the search area, and click Start Search. The system now needs a few min-
utes to list all relevant data sets. A list of data sets, including various types 
of additional information (cloud coverage, exposure date, latitude and lon-
gitude), can be obtained by clicking on List Data Granules. Furthermore, 
a low resolution preview can be accessed by selecting Image. Having pur-
chased a particular data set, the raw image can be downloaded using a tem-
porary FTP-access. As an example, we process an image from an area in 
Kenya showing Lake Naivasha. The data are stored in two files

naivasha_data.hdf
naivasha_data.hdf.met

The first file, which has a size of 111 MB, contains the actual raw data, 
whereas the second file, which has a size of 100 KB, contains the header, to-
gether with all sorts of information about the data. We save both files in our 
working directory. The Image Processing Toolbox contains various tools for 
importing and processing files stored in the hierarchical data format (HDF). 
The graphical user interface (GUI) based import tool for importing certain 
parts of the raw data is

hdftool('naivasha_data.hdf')

This command opens a GUI that allows us to browse the content of the 
HDF-file naivasha_data.hdf, obtains all information on the contents, and 
imports certain frequency bands of the satellite image. Alternatively, the 
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command hdfread can be used as a quicker way of accessing image data. 
An image such as that used in the previous section is typically achieved by 
computing an RGB composite from the vnir_Band3n, 2 and 1 in the data 
file. We first read the data, as follows:

clear

I1 = hdfread('naivasha_data.hdf','VNIR_Band3N',...
 'Fields','ImageData');
I2 = hdfread('naivasha_data.hdf','VNIR_Band2',...
 'Fields','ImageData');
I3 = hdfread('naivasha_data.hdf','VNIR_Band1',...
 'Fields','ImageData');

These commands generate three 8-bit image arrays each representing the in-
tensity within a certain infrared (IR) frequency band of a 4200 × 4100  pixel 
image. The vnir_Band3n, 2 and 1 typically contain much information 
about lithology (including soils), vegetation and water on the Earth’s sur-
face. These bands are therefore usually combined into 24-bit RGB images

naivasha_rgb = cat(3,I1,I2,I3);

As with the previous examples, the 4200 × 4100 × 3 array can now be dis-
played using

imshow(naivasha_rgb);

MATLAB scales the images to fit the computer screen. Exporting the pro-
cessed image from the Figure Window, we only save the image at the moni-
tor’s resolution. To obtain an image at a higher resolution (Fig. 7.2), we use 
the command

imwrite(naivasha_rgb,'naivasha_image_vs1_matlab.tif','tif')

This command saves the RGB composite as a TIFF-file of about 50 MB in 
the working directory, which can then be processed with other software 
such as Adobe Photoshop.

7.5 Georeferencing Satellite Images

The processed ASTER image does not yet have a coordinate system, and the 
image therefore needs to be tied to a geographical reference frame (georef-
erencing). The raw data can be loaded and transformed into an RGB com-
posite by typing

clear
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Fig. 7.2 RGB composite of a TERRA-ASTER image using the spectral infrared bands vnir_
Band3n, 2 and 1. The result is displayed using imshow. Original image courtesy of NASA/
GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

I1 = hdfread('naivasha_data.hdf','VNIR_Band3N',...
 'Fields','ImageData');
I2 = hdfread('naivasha_data.hdf','VNIR_Band2',...
 'Fields','ImageData');
I3 = hdfread('naivasha_data.hdf','VNIR_Band1',...
 'Fields','ImageData');

naivasha_rgb = cat(3,I1,I2,I3);

The HDF browser

hdftool('naivasha_data.hdf')



160  7 PROCESSING AND DISPLAYING IMAGES IN EARTH SCIENCES

can be used to extract the geodetic coordinates of the four corners of the 
image. This information is contained in the header of the HDF file. Having 
launched the HDF tool, we select on the uppermost directory called naiva-
sha_data.hdf and find a long list of file attributes in the upper right panel of 
the GUI, one of which is productmetadata.0, which includes the attribute 
scenefourcorners that contains the following information:

upperleft  = [-0.319922, 36.214332];
upperright = [-0.400443, 36.770406];
lowerleft  = [-0.878267, 36.096003];
lowerright = [-0.958743, 36.652213];

These two-element vectors can be collected into a single array input-
points. Subsequently, the left and right columns can be flipped in order to 
have x=longitudes and y=latitudes.

inputpoints(1,:) = upperleft;
inputpoints(2,:) = lowerleft;
inputpoints(3,:) = upperright;
inputpoints(4,:) = lowerright;
inputpoints = fliplr(inputpoints);

The four corners of the image correspond to the pixels in the four corners of 
the image, which we store in a variable named basepoints.

basepoints(1,:) = [1,4200];
basepoints(2,:) = [1,1];
basepoints(3,:) = [4100,4200];
basepoints(4,:) = [4100,1];

The function cp2tform now takes the pairs of control points, input-
points and basepoints, and uses them to infer a spatial transformation 
matrix tform.

tform = cp2tform(inputpoints,basepoints,'affine');

This transformation can be applied to the original RGB composite naiva-
sha_rgb in order to obtain a georeferenced version of the satellite image 
newnaivasha_rgb.

[newnaivasha_rgb,x,y] = imtransform(naivasha_rgb,tform);

An appropriate grid for the image can now be computed. The grid is typi-
cally defined by the minimum and maximum values for the longitude and 
latitude. The vector increments are then obtained by dividing the longitude 
and latitude range by the array dimension and by subtracting one from the 
result. Note the difference between the MATLAB numbering convention 
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Fig. 7.3 Geoferenced RGB composite of a TERRA-ASTER image using the infrared bands 
vnir_Band3n, 2 and 1. The result is displayed using imshow. Original image courtesy of 
NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

and the common coding of maps used in the literature. The north/south 
suffix is generally replaced by a negative sign for south, whereas MATLAB 
coding conventions require negative signs for north.

X = 36.096003 : (36.770406-36.096003)/8569 : 36.770406;
Y =  0.319922 : ( 0.958743- 0.319922)/8400 :  0.958743;

The georeferenced image is displayed with coordinates on the axes and a 
superimposed grid (Fig. 7.3).

imshow(newnaivasha_rgb,'XData',X,'YData',Y), axis on, grid on
xlabel('Longitude'), ylabel('Latitude')
title('Georeferenced ASTER Image')
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Exporting the image is possible in many different ways, for example using

print -djpeg70 -r600 naivasha_georef_vs1_matlab.jpg

to export it as a 1 MB JPEG file compressed to 70 %, with a resolution of 
600  dpi. Alternatively, we can save it as a TIFF file with a resolution of 
600 dpi

print -dtiff -r600 naivasha_georef_vs1_matlab.tif

which has a size of about 25 MB.

7.6 Digitizing from the Screen: From Pixel to Vector

On-screen digitizing is a widely-used image processing technique. While 
practical digitizer tablets exist in all formats and sizes, most people prefer 
digitizing vector data from the screen. Examples for this type of applica-
tion include digitizing river networks and catchment areas on topographic 
maps, the outlines of lithologic units on geological maps, the distribution 
of landslides on satellite images, and the distribution of mineral grains in a 
microscope image. The digitizing procedure consists of the following steps. 
Firstly, the image is imported into the workspace. A coordinate system is 
then defined, allowing the objects of interest to be entered by moving a cur-
sor or cross hair and clicking the mouse button. The result is a two-dimen-
sional array of xy data, such as longitudes and latitudes of the corner points 
of a polygon or the coordinates of the objects of interest in a particular area.

The function ginput included in the standard MATLAB toolbox al-
lows graphical input using a mouse on the screen. It is generally used to 
select points, such as specific data points, from a figure created by an arbi-
trary graphics function such as plot. The function ginput is often used 
for interactive plotting, i.e., the digitized points appear on the screen after 
they have been selected. The disadvantage of the function is that it does not 
provide coordinate referencing on an image. We therefore use a modified 
version of the function, which allows an image to be referenced to an arbi-
trary rectangular coordinate system. Save the following code for this modi-
fied version of the function ginput in a text file minput.m.

function data = minput(imagefile)
% Specify the limits of the image
xmin = input('Specify xmin! ');
xmax = input('Specify xmax! ');
ymin = input('Specify ymin! ');
ymax = input('Specify ymax! ');
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% Read image and display
B = imread(imagefile);
a = size(B,2); b = size(B,1);
imshow(B); 

% Define lower left and upper right corner of image
disp('Click on lower left and upper right corner, then <return>')
[xcr,ycr] = ginput;
XMIN = xmin-((xmax-xmin)*xcr(1,1)/(xcr(2,1)-xcr(1,1)));
XMAX = xmax+((xmax-xmin)*(a-xcr(2,1))/(xcr(2,1)-xcr(1,1)));
YMIN = ymin-((ymax-ymin)*ycr(1,1)/(ycr(2,1)-ycr(1,1)));
YMAX = ymax+((ymax-ymin)*(b-ycr(2,1))/(ycr(2,1)-ycr(1,1)));

% Digitize data points
disp('Click on data points to digitize, then <return>')
[xdata,ydata] = ginput;
XDATA = XMIN + ((XMAX-XMIN)*xdata/size(B,2));
YDATA = YMIN + ((YMAX-YMIN)*ydata/size(B,1));
data(:,1) = XDATA; data(:,2) = YDATA;

The function minput has four stages. In the first stage, the user enters the 
limits of the coordinate axes as reference points for the image. Next, the im-
age is imported into the workspace and displayed on the screen. The third 
stage uses ginput to define the upper left and lower right corners of the 
image. In the fourth stage the relationship between the coordinates of the 
two corners on the figure window and the reference coordinate system is 
then used to compute the transformation for all of the digitized points.

As an example, we use the image stored in the file naivasha_georef.
jpg and digitize the outline of Lake Naivasha in the center of the image. We 
activate the new function minput from the Command Window using the 
commands

clear

data = minput('naivasha_georef_vs1_matlab.jpg')

The function first asks for the coordinates for the limits of the x- and y-axis 
for the reference frame. We enter the corresponding numbers and press re-
turn after each input.

Specify xmin! 36.1
Specify xmax! 36.7
Specify ymin! -1
Specify ymax! -0.3

The function then reads the file naivasha_georef_vs1_matlab.jpg and dis-
plays the image. We ignore the warning

Warning: Image is too big to fit on screen; displaying at 33%
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and wait for the next response

Click on lower left and upper right corner, then <return>

The image window can be scaled according to user preference. Clicking on 
the lower left and upper right corners defines the dimension of the image. 
These changes are registered by pressing return. The routine then references 
the image to the coordinate system and waits for the input of the points we 
wish to digitize from the image.

Click on data points to digitize, then <return>

We finish the input by again pressing return. The xy coordinates of our 
digitized points are now stored in the variable data. We can now use these 
vector data for other applications.

Recommended Reading
Abrams M, Hook S (2002) ASTER User Handbook - Version 2. Jet Propulsion Laboratory 

and EROS Data Center, Sioux Falls
Campbell JB (2002) Introduction to Remote Sensing. Taylor & Francis, London
Gonzalez RC, Woods RE, Eddins SL (2009) Digital Image Processing Using MATLAB – 

2nd Edition. Gatesmark Publishing, LLC
The Mathworks (2010) Image Processing Toolbox – User’s Guide. The MathWorks, Natick, 
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