
Network Analysis of Three Twitter Functions:

Favorite, Follow and Mention

Shoko Kato1, Akihiro Koide1, Takayasu Fushimi1,
Kazumi Saito1, and Hiroshi Motoda2

1 School of Management and Information, University of Shizuoka,
52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

{b09032,j11103,j11507,k-saito}@u-shizuoka-ken.ac.jp
2 Institute of Scientific and Industrial Research, Osaka University

8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
motoda@ar.sanken.osaka-u.ac.jp

Abstract. We analyzed three functions of Twitter (Favorite, Follow and
Mention) from network structural point of view. These three functions
are characterized by difference and similarity in various measures de-
fined in directed graphs. Favorite function can be viewed by three differ-
ent graph representations: a simple graph, a multigraph and a bipartite
graph, Follow function by one graph representation: a simple graph, and
Mention function by two graph representations: a simple graph and a
multigraph. We created these graphs from three real world twitter data
and found salient features characterizing these functions. Major findings
are a very large connected component for Favorite and Follow functions,
scale-free property in degree distribution and predominant mutual links
in certain network motifs for all three functions, freaks in Gini coefficient
and two clusters of popular users for Favorites function, and a structure
difference in high degree nodes between Favorite and Mention functions
characterizing that Favorite operation is much easier than Mention op-
eration. These finding will be useful in building a preference model of
Twitter users.

1 Introduction

Grasping and controlling preference, tendency, or trend of the consuming public
is one of the important factors to achieve economic success. Accordingly, it is
vital to collect relevant data, analyze them and model user preference. However,
quantifying preference is very difficult to achieve and finding useful measures
from the network structure is crucial. The final goal of this work is to find such
measures, characterize their relations and build a reliable user preference model
based on these measures from the available data. As the very first step, we focus
on Twitter data and analyze the user behavior of three functions (Favorite,
Follow and Mention) of Twitter1 from the network structural point of view,
i.e., by using various measures that have been known to be useful in the graph

1 http://twitter.com/
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theory and identifying characteristic features (difference and similarity) of these
measures for these functions.

User behavior of these three functions are represented by different directed
graphs. Favorite function can be viewed by three different graph representations:
a simple graph, i.e., single edge from a Favorer to a Favoree, a multigraph, i.e.,
multiple edges from a Favorer to a Favoree, and a bipartite graph, i.e., single edge
from a Favorer to a Favoree treating a user with both a Favorer and a Favoree as
two separate nodes. Likewise, Follow function can be viewed by one graph rep-
resentation: a simple graph, i.e., single edge from a Follower and a Followee, and
Mention function can be viewed by two different graphs: a simple graph, i.e. sin-
gle edge from a Mentioner (sender) to a Mentionee (receiver) and a multigraph,
i.e. multiple edges from a Mentioner to a Mentionee. We have created these net-
works from three different Twitter logs (called ”

¯
Favorites network”, ”

¯
Followers

network”, and ”
¯
Mentions network”) and used several different measures, e.g.

in-degree, out-degree, multiplicity, Gini coefficient, etc. Extensive experiments
were performed and several salient features were found. Major findings are that
1) Favorites and Followers networks have a very large connected component but
Mentions network is not, 2) all the three networks (both simple and multiple)
have the scale-free property in degree distribution, 3) all three networks (simple)
have predominant three-node motifs having mutual links, 4) Favorites network
have freaks in Gini coefficient (one of the measures), 5) Favorites network have
two clusters of popular users, and 6) Favorites and Mentions networks differ in
structure for high degree nodes reflecting that Favorite operation is much easier
than Mentions operation. In this paper, we propose to analyze multigraphs by
using two new measures, i.e., correlation between degree and average multiplic-
ity, and correlation between degree and Gini coefficient. In our experiments, we
show that these measures contribute to clarify a structure difference between
Favorites and Mentions networks.

Twitter, a microblogging service, has attracted a great deal of attention and
various properties have already been obtained [3] [4], but to our knowledge, there
have been no work to analyze the user behavior from network structural point
of view. We believe that the work along this line will be useful in understanding
the user behavior and helps building a preference model of Twitter users.

The paper is organized as follows. We briefly explain the various measures we
adopted in our analysis in 2, three networks ( Favorite, Follow, and Mention) in
3. Then we report the experimental results in 4 and provide some discussions
regarding our observations in 5. We end this paper by summarizing the major
finding and mentioning the future work in 6.

2 Analysis Methods

According to [1], we define the structure of a network as a graph. A graph
G = (V,E) consists of a set V of nodes (vertices) and a set E of links (edges)
that connect pairs of nodes. Note that in our Favorites, Followers or Men-
tions network, a node corresponds to a Twitter user, and a link corresponds to
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favoring, following, or mentioning between a pair of users. If two nodes are
connected by a link, they are adjacent and we call them neighbors. In directed
graphs, each directed link has an origin (source) and a destination (target). A
link with origin u ∈ V and destination v ∈ V is represented by an ordered
pair (u, v). A directed graph G = (V,E) is called a bipartite graph, if V is
divided into to two parts, Vx and Vy , where V = Vx ∪ Vy , Vx ∩ Vy = ∅, and
E ⊂ {(u, v);u ∈ Vx, v ∈ Vy . In directed graphs, we may allow the link set E to
contain the same link several times, i.e., E can be a multiset. If a link occurs
several times in E, the copies of that link are called parallel links. Graphs with
parallel links are also called multigraphs. A graph is called simple, if each of its
links is contained in E only once, i.e., if the graph does not have parallel links.
In what follows, we describe our analysis methods for each type of graphs.

2.1 Methods for Simple Graph

A graph G′ = (V ′, E′) is a subgraph of the graph G = (V,E) if V ′ ∈ V and E′ ∈
E. It is an induced subgraph if E′ contains all links e ∈ E that connect nodes
in V ′. A directed graph G = (V,E) is strongly connected if there is a directed
path from every node to every other node. A strongly connected component of a
directed graphG is an induced subgraph that is strongly connected and maximal.
A bidirected graph G̃ = (V, Ẽ) is constructed from a directed graph G = (V,E)
by adding counterparts of the unidirected links, i.e., Ẽ = E∪{(v, u); (u, v) ∈ E}.
A weakly connected component of a directed graph G is an induced subgraph
from V ′ obtained as a strongly connected component of the bidirected graph
G̃. We analyze the structure of our networks in terms of the connectivity using
these notions.

In a directed graph G = (V,E), the out-degree of v ∈ V , denoted by d+(v),
is the number of links in E that have origin v. The in-degree of v ∈ V , denoted
by d−(v), is the number of links with destination v. The average degree d is
calculated by

d =
1

|V |
∑

v∈V

d−(v) =
1

|V |
∑

v∈V

d+(v) =
|E|
|V | . (1)

Here | · | stands for the number of elements for a given set. The correlation
between in- and out-degree, denoted by c, is calculated by

c =

∑
v∈V (d

−(v)− d)(d+(v) − d)
√∑

v∈V (d
−(v)− d)2

√∑
v∈V (d

+(v)− d)2
. (2)

On the other hand, the in-degree distribution id(k) and the out-degree distribu-
tion od(k) with respect to degree k are respectively defined by

id(k) = |{v ∈ V ; d−(v) = k}|, od(k) = |{v ∈ V ; d+(v) = k}|. (3)

We analyze the statistical properties of these degree distributions.
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Fig. 1. Network motifs patterns

Network motifs are defined as patterns of interconnections occurring in graphs
at numbers that are significantly higher than those in randomized graphs. In our
analysis, we focus on three-node motifs patterns and Figure 1 shows all thirteen
types of three-node connected subgraphs (motifs patterns). According to [5], we
also use randomized graphs, each node of which has the same in-degree and
out-degree as the corresponding node has in the real network [6]. A significance
level of each motifs pattern i is evaluated by its z-score zi, i.e.,

zi =
fi − J−1

∑J
j=1 gj,i√

J−1
∑J

j=1(fi − J−1
∑J

j=1 gj,i)
2
, (4)

where J is the number of randomized graphs used for evaluation, and fi and
gj,i denote the numbers of occurrences of motifs pattern i in the real graph and
the j-th randomized graph, respectively. By this motifs analysis, we attempt to
uncover the basic building blocks of our networks.

2.2 Visualization of Bipartite Graph

A bipartite graph is a graph whose nodes can be divided into two disjoint sets
Vx and Vy such that every links connects a vertex in Vx to one in Vy . We can
construct a bipartite graph from a directed graph by setting Vx = {u; (u, v) ∈ E}
and Vy = {v; (u, v) ∈ E}, and regarding that any element in Vx is different
from any element in Vy . Further, according to [2], we describe a bipartite graph
visualization method for our analysis. For the sake of technical convenience, each
set of the nodes, Vx and Vy, is identified by two different series of positive integers,
i.e., Vx = {1, · · · ,m, · · · ,M} and Vy = {1, · · · , n, · · · , N}. Here M and N are the
numbers of the nodes in Vx and Vy , i.e., |Vx| = M and |Vy| = N , respectively.
Then, the M ×N adjacency matrix A = {am,n} is defined by setting am,n = 1 if
(m,n) ∈ E; am,n = 0 otherwise. The L-dimensional embedding position vectors
are denoted by xm for the node m ∈ Vx and yn for the node n ∈ Vy . Then we
can construct M×L and N×L matrices consisting of these position vectors, i.e.,
X = (x1, · · ·xM )T and Y = (y1, · · ·yN )T . Here XT stands for the transposition
of X. Hereafter, we assume that nodes in subset Vx are located on the inner
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circle with radius rx = 1, while nodes in Vy are located on the outer circle with
radius ry = 2. Note that ‖xm‖ = 1, ‖yn‖ = 2.

The centering (Young-Householder transformation) matrices are defined as
HM = IM − 1

M 1M1T
M , HN = IN − 1

N 1N1T
N where IM and IN stands for

M × M and N × N identity matrices, respectively, and 1M and 1N are M -
and N -dimensional vectors whose elements are all one. By using the double-
centered matrix B = {bm,n} that is calculated from the adjacency matrix A as
B = HMAHN , we can consider the following objective function with respect to
the position vectors X = (x1, · · · ,xM )T and Y = (y1, · · · ,yN )T .

S(X,Y) =
M∑

m=1

N∑

n=1

bm,n
xT
m

rx

yn

ry
+

1

2

M∑

m=1

λm(r2x − xT
mxm) +

1

2

N∑

n=1

μn(r
2
y − yT

nyn),

(5)

where {λm | m = 1, · · · ,M} and {μn | n = 1, · · · , N} correspond to Lagrange
multipliers for the spherical constraints, i.e., xT

mxm = r2A and yT
nyn = r2B for

1 ≤ m ≤ M and 1 ≤ n ≤ N . By maximizing S(X,Y) defined in Equation (5),
we can obtain our visualization results, X and Y for a given bipartite graph.

2.3 Methods for Multigraph

For multigraphs, we denote the number of links from node u to v, i.e., (u, v),
as mu,v. Note that favoring or mentioning between a pair of users may occur
several times during the observed period. We also denote an in-neighbor node
set of node v by A(v) = {u;mu,v 	= 0}, and an out-neighbor node set of node v
by B(v) = {w;mv,w 	= 0}. Then we can consider a node set C(k) = {v; |A(v)| =
k} for which the number of in-neighbor nodes is k, and a node set D(k) =
{v; |B(v)| = k} for which the number of out-neighbor nodes is k. Thus, by using
these notations, with respect to the number of neighbors k, we can define the
in-neighbor distribution id(k) and the out-neighbor distribution od(k) as follows:

in(k) = |C(k)|, on(k) = |D(k)|. (6)

Note that in case of simple directed graphs, the in- and out-neighbor distributions
are simply called the in- and out-degree distributions, respectively.

Now, we define a set of nodes whose in-degree are not zero by V − = {v ∈
V ; deg−(v) > 0}, and a set of nodes whose out-degree are not zero by V + =
{v ∈ V ; deg+(v) > 0}.

Then, we can define the average in-multiplicity m−(v) for v ∈ V − and the
average out-multiplicity m+(v) for v ∈ V + as follow:

m−(v) =
1

|A(v)|
∑

u∈A(v)

mu,v, m+(v) =
1

|B(v)|
∑

w∈B(v)

mv,w. (7)

For a multigraph, we can define the average in-multiplicity m− and the average
out-multiplicity m+ as follow:
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m− =
1

|V −|
∑

v∈V −
m−(v), m+ =

1

|V +|
∑

v∈V +

m+(v). (8)

On the other hand, with respect to number of neighbors k(> 1), we can define
the average link multiplicity im(k) for a node set C(k), and the average link
multiplicity om(k) for a node set D(k) as follows:

im(k) =
1

|C(k)|
∑

v∈C(k)

m−(v), om(k) =
1

|D(k)|
∑

v∈D(k)

m+(v). (9)

Similarly, for each node v ∈ V , we can define the in-Gini coefficient g−(v) for
v ∈ V − and the out-Gini coefficient g+(v) for v ∈ V + as follow:

g−(v) =

∑
(u,x)∈A(v)×A(v) |mu,v −mx,v|
2(|A(v)| − 1)

∑
u∈A(v) mu,v

, g+(v) =

∑
(w,x)∈B(v)×B(v) |mv,w −mv,x|
2(|B(v)| − 1)

∑
w∈B(v) mv,w

.

(10)

For a multigraph, we can define the average in-multiplicity m− and the average
out-multiplicity m+ as follow:

g− =
1

|V −|
∑

v∈V −
g−(v), g+ =

1

|V +|
∑

v∈V +

g+(v). (11)

With respect to number of neighbors k(> 1), we can define the average Gini
coefficient ig(k) for a node set C(k), and the average Gini coefficient og(k) for a
node set D(k) as follows:

ig(k) =
1

|C(k)|
∑

v∈C(k)

g−(v), og(k) =
1

|D(k)|
∑

v∈D(k)

g+(v). (12)

Here note that the gini coefficient has been widely used for evaluating inequality
in a market [7]. We use this index to evaluate inequality between favoring and
mentioning.

3 Summary of Data

We briefly explain the data we used in our analysis. These data are retrieved
from Favorite, Follow, and Mention of Twitter.

”Favorites” is a function which enables users to bookmark tweets, or to browse
them anytime. We constructed a network with the users as nodes, and the
Favorer/Favoree relations as links. These data are retrieved from Favotter’s ”To-
day’s best.”2 during the period from May 1st 2011 to February 12th 2012. Be-
cause of Favotter’s specification, the retrieved tweets are bookmarked by more

2 http://favotter.net/
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than or equal to 5 users. This directed network has 189,717 nodes, 7,077,070
simple links, and 33,456,690 multiple links3.

”Follow” is the most basic function of Twitter. Users can get the new tweets
posted by persons they are interested in by specifying whom to follow. We con-
structed a network with users who posted more than or equal to 200 tweets
as nodes, and the follower/followee [3] relations as links. These data are re-
trieved from Twitter search4 as of January 31st 2011. This directed network
has 1,088,040 nodes and 157,371,628 simple links. Follow network does not have
multiple links because users specify their respective followers only once.

”Mentions” are tweets which has the user’s names of the form ”@Screen name”
in the text. We constructed a network with users as nodes, and send/receive re-
lations as links. These data are retrieved from Toriumi’s data [8] for the period
from March 7th 2011 to March 23rd 2011. This directed network has 4,565,085
nodes, 58,514,337 simple links and 193,913,339 multiple links.

Statistics of these networks are described for Tables 1 and 2. Here, WCC1 in
Table 1 means the maximal weakly connected components, Em in table 2 means
the number of multiple links. Others are defined in section 2.

Table 1 shows that Mentions network has a smaller WCC1 fraction than the
other two networks. This is understandable in view of the communication aspect
of Mentions because users do not send @-messages to people whom they do not
well. Table 2 shows that Favorites network has smaller m−, m+, g−, and g+

(see equations 8 and 11) than Mentions. This is understandable because only a
few users are heavy favorers and the majorities have much less favorees whereas
in Mentions the distribution of the number of mentions of each user is less
distorted, which makes the average degree of Mentions network larger than that
of Favorites network.

Table 1. Statistics of simple directed networks

|V | |E| |V |WCC1 (|V |WCC1/|V |) d c

Favorites 189,717 7,077,070 189,626 (99.9%) 37.3 0.2109
Follow 1,088,040 157,371,628 1,079,986 (99.3%) 144.6 0.7354

Mentions 4,565,085 58,514,337 1,839,189 (40.3%) 3.2 0.0387

Table 2. statistics of multi directed networks

|V | |Em| d m− m+ g− g+

Favorites 189,717 33,456,690 176.3505 2.1211 1.5024 0.2054 0.0851
Mentions 4,565,085 193,913,339 38.2894 3.6977 3.6574 0.3985 0.2138

3 The number of simple links means that we count the multiple links between a pair
of nodes as a single link.

4 http://yats-data.com/yats/
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4 Results

In this section, we report the results of analysis using various measures explained
in 2.

4.1 Simple Directed Graph

As seen from Table 1, Favorites and Follow networks have each a large weakly
connected component which includes almost all nodes but Mentions network is
not so. Since Mentions network is too large to analyze for all nodes, we use
WCC1 in the following analysis for Mentions network.

Degree Distribution. Figures 2, 3, 4, 5, 6, and 7 are the results of degree
distribution of the three networks. Blue and red diamond marks indicate id and
od (see equation (3)), respectively. The vertical axis indicates the number of
nodes in logarithmic scale. From these pictures, we see that all the networks can
be said to have a scale-free property for both in-degree or out-degree.

Network Motif. Figures 8 and 9 are the results of network motif analysis. The
horizontal axis indicates the motif number explained in 4. In Figure 8 the vertical
axis indicates the frequency of appearance in logarithmic scale, and in Figure 9
the vertical axis indicates z-score (see equation (4)) in logarithmic scale. Red
and cyan bars mean positive score and negative score respectively. From these
figures, we see that there are three predominant motifs: patterns 13, 12, and 8,
which are all characterized by having mutual links, The results of Follow and
Mentions networks are similar to these figures, so we omit showing these results.

4.2 Visualization of Bipartite Graph

Figure 10 is the result of visualization of bipartite graph of Favorites. In this
analysis we used the data retrieved from only July 1st to 7th 2011 because so
many links obscure the graph. Nodes on the outer circle are Favorers, and nodes
on the inner circle are Favorees. Blue and Red nodes are users who are ranked
Favorer/Favoree’s top 10. Only links with more than or equal to 10 multiplicity
are shown by gray lines.

NHK_PR is the official account of NHK’s PR section5, and sasakitoshinao
is the account of freelance journalist. His tweets are on serious and impor-
tant topics, for instance, current news or opinions about it. On the other hand,
kaiten_keiku and Satomii_Opera are regular users of Twitter, and their tweets
are often negative and/or ”geeky”.

From this figure, we see there are two clusters of popular users which are
characterized by their content of tweets, one with serious and important tweets
and the other with negative and/or geeky tweets.

5 Japan Broadcasting Corporation.
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Fig. 2. Favorites network in-degree
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Fig. 3. Favorites network out-degree
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Fig. 4. Follow network in-degree
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Fig. 5. Follow network out-degree
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Fig. 6. Mentions network in-degree
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Fig. 7. Mentions network out-degree



Network Analysis of Three Twitter Functions 307

1 2 3 4 5 6 7 8 9 10 11 12 13
10

0

10
2

10
4

10
6

10
8

10
10

motif pattern

fr
eq

ue
nc

y

Fig. 8. Favorites network motif (fre-
quency)

1 2 3 4 5 6 7 8 9 10 11 12 13
10

0

10
1

10
2

10
3

10
4

10
5

motif pattern

Z
 s

co
re

Fig. 9. Favorites network motif (z-score)

Fig. 10. Bipartite Graph Visualization

4.3 Multiple Directed Graph

In this subsection, we show the results of analysis using the measures explained
in 2.3. In all the figures below (Figures 11 to 22), plots in blue squares are for
in-degree, plots in red squares are for out-degree and plots in green circles are
for randomized networks. Horizontal axes are all in logarithmic scale.



308 S. Kato et al.

Degree Distribution. Figures 11, 12, 13 and 14 are the results of degree
distribution (see equation (6)) for Favorites and Mentions networks. The vertical
axes are frequency (the number of nodes) in logarithmic scale. From these figures,
we see that both networks have a scale-free property, same as the simple directed
networks 4.1. We notice that the distributions for the randomized Mentions
network are shifted right to the real Mentions network, but this is not so for
Favorites network.

Average Multiplicity. Figures 15, 16, 17 and 18 are the average multiplicity
(see equation (7)) for the both networks. The vertical axes are in logarithmic
scale. We notice the difference in correlation between the two networks. On the
average, there are positive correlations between the average multiplicity and the
degree for Favorites network (Figures 15 and 16), but the correlations change
from positive to negative as the degree increases for Mentions network (Figures
17 and 18). Furthermore, the average multiplicity of randomized Favorites net-
work behaves similarly to the real Favorites network, but that of randomized
Mentions network is almost flat across all the range of degree.

Gini Coefficient. Figures 19, 20, 21 and 22 are the results of Gini coefficient
(see equation (10) for the both networks. The vertical axes are in linear scale.
Correlations between the Gini coefficient and the degree and the relation be-
tween the real and the randomized networks are similar to those for the average
multiplicity, i.e., positive correlations for Favorites network ( Figures 19 and
20), positive to negative correlations for Mentions network (Figures 21 and 22)
and more positive correlations for the randomized Favorites network than the
randomized Mentions network.

5 Discussion

The results in subsections 4.1 and 4.3 revealed that all the three networks have
the scale-free property, but we notice that the variance in the degree distribu-
tions for Mentions network is smaller in high out-degree nodes than others. We
conjecture that this is due to the communication aspect of Mention function, i.e.
users do not send many @-messages to people they do not know well and, thus,
there are probably no big hub nodes in Mentions network. Further, this also
explains that the fraction of the maximal weakly connected component (defined
in subsection 3) is smaller than the other networks.

The results in subsection 4.1 revealed that there are a few numbers of pre-
dominant motifs that are characteristic of having mutual links. This accounts
for the fact that, taking Favorites as example, mutual links are easily created
between users who have similar tastes because Favorites network is driven by
preference.
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Fig. 11. Favorites in-degree
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Fig. 12. Favorites out-degree
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Fig. 13. Mentions in-degree
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Fig. 14. Mentions out-degree

The results in subsection 4.2 that there are two clusters of popular users each
corresponding to a particular type of tweets are quite natural and understand-
able. Whether these two are the unique tweets and there are no other such tweets
remains to be explored.

The results in subsection 4.3 indicate that there are substantial difference
in the distributions of multiplicity and Gini coefficient for high degree nodes
between Favorites and Mentions networks. This is explainable considering the
difference in nature of the two functions, Mentions network is driven by commu-
nications between users. Sending/receiving of @-message to/from many people
become less practical, thus less frequent for high degree nodes. Favorites network
is driven by preference. Expressing preference (bookmarking Favorees’ tweets)
is much easier than sending/receiving message, thus relatively more frequent for
high degree nodes.
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Fig. 15. Favorites in-degree
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Fig. 16. Favorites out-degree
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Fig. 17. Mentions in-degree
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Fig. 18. Mentions out-degree

The results in subsection 4.3 revealed that there are positive correlations be-
tween the Gini coefficient and the degree for all the range of degree for Favorites
network, but not so for Mentions network. This may suggest that Favorers in
high out-degree tends to preferentially bookmark specific Favorees’ tweets, and
vice versa for Favorees in high in-degree.

6 Conclusion

With the final goal of constructing a new user preference model in daily activi-
ties in mind, we analyzed, from the network structure perspective, the similarity
and difference in the user behavior of the three functions of Twitter: Favorite,
Follow and Mention. User behavior is embedded in the logs that users carried
out these functions, which are represented by directed graphs. Favorite func-
tion was analyzed using three different graph representations: a simple graph, a
multigraph and a bipartite graph, Follow function by one graph representation:
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Fig. 19. Favorites in-degree
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Fig. 20. Favorites out-degree
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Fig. 21. Mentions in-degree
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Fig. 22. Mentions out-degree

a simple graph, and Mention function by two graph representations: a simple
graph and a multigraph. We used three real world Twitter logs to create these
directed graphs and performed various kinds of analysis using several represen-
tative measures for characterizing structural properties of graphs, and obtained
several salient features.

Major findings are that 1) Favorites and Followers networks have a very large
connected component but Mentions network is not, 2) all the three networks
(both simple and multiple) have the scale-free property in degree distribution,
3) all three networks (simple) have predominant three-node motifs having mutual
links, 4) Favorites networks have freaks in Gini coefficient (one of the measures),
5) Favorites networks have two clusters of popular users, and 6) Favorites and
Mentions networks differ in structure for high degree nodes in case of multigraph
representation reflecting that Favorite operation is much easier than Mention
operation although they are similar in case of simple graph representation.
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As an immediate future work, we plan to obtain betweenness centrality, close-
ness centrality, or k-core percolation of Favorites network represented as a multi-
graph to further characterize use behavior and hopefully to extract enough reg-
ularity to model user preference, and pursue the literature review and usefulness
of the model.
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