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Abstract. Rated Multiple Classification Ripple Down Rules (RM) and Ripple 
Down Models (RDM) are two of the successful prudent RDR approaches pub-
lished. To date, there has not been a published, dedicated comparison of the 
two. This paper presents a systematic preliminary evaluation and analysis of the 
two techniques. The tests and results reported in this paper are the first phase of 
direct evaluations of RM and RDM against each other.  
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1 Introduction 

Traditional knowledge based systems (KBS) have been often criticized for ignoring 
Knowledge Acquisition (KA) and maintenance innovations [1], [2]. Consequently, 
Ripple Down Rules (RDR) was introduced as an incremental KA technique whereby 
KA and maintenance are essentially integrated and usually not requiring the addition-
al services of a knowledge engineer. RDR has since been used in commercial applica-
tions including in the Pathology Interpretative Expert Reporting System (PIERS) 
system, which has been described as user maintained and not requiring knowledge 
engineering expertise [3]. Due to RDR’s inability to provide more than a single classi-
fication, Multiple Classification RDR (MCRDR) was introduced with the ability to 
generate multiple classifications [4]. A further advancement in RDR technologies was 
the idea of Prudence Analysis (PA). Prudence was introduced to address KBS brittle-
ness, which occurs when a KBS does not realise when its knowledge is inadequate for 
a particular case [5]. A prudent KBS is one with a mechanism to issue warnings or 
alerts whenever a current case is beyond the system’s expertise. This paper reports on 
a methodical comparison of two PA techniques: RM and RDM. These two methods 
had been independently evaluated before but have never been directly compared. 
Another contribution of this paper is the introduction of a Multiple Classification 
version of RDM.  

2 Rated MCRDR (RM) 

RM is a hybrid approach combining MCRDR with an Artificial Neural Network 
(ANN) [6]. RM is based on [7]’s premise that if captured, a pattern of fired MCRDR 
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rules can provide an additional context about a given domain. A grouping of this pat-
tern can be given a value representing its contribution to a particular task [7]. RM has 
a MCRDR output simplifying mechanism which indexes MCRDR conclusions into a 
set of binary inputs for the ANN. These inputs are assigned a 0 or 1 value depending 
on whether the particular rule was fired for the current case. The following diagram 
illustrates the basic composition of RM.  

 

Fig. 1. A basic RM schematic. The bolded MCRDR outputs represent 1 and 0 for the non 
bolded outputs. 

The indexed binary set is fed into a standard 3 layer perceptron ANN such that 
each firing terminating rule will produce a 1 input for the ANN, and a 0 input for non 
firing terminal rules. For example, in the RM diagram, the terminating rules are in-
dexed into a binary word 01011 which is the input for the ANN. The ANN uses two 
main learning approaches. If there are no new rules added to MCRDR, a standard 
back-propagation algorithm with a sigmoid thresholding function is engaged. If a new 
rule is added in MCRDR, an additional input is created for the ANN. This may be 
problematic to the ANN in terms of erasing the previously learned information. To 
counteract this threat, new shortcut connections are introduced from the newly created 
input to each output node. The shortcut weights are calculated using the single step 
initialization formula [6] (see equation 1 below).          
              log  ..  ∑ ∑ /       (1) 

where A and B are the weighted sums at the hidden and output nodes respectively, ƶ is 
the step distance modifier in the range of 0 to 1. It is the rate of adjustment of for the 
new features and determines how quickly the shortcut weights adjust to the correct 
output. m is the number of newly added inputs and ∂ is the sum of differences be-
tween the network calculated outputs and the target outputs (or error sum value) at an 
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output neuron. As the MCRDR produces different classifications, the ANN learns the 
patterns of the fired rules for each classification. A warning is then given whenever 
the MCRDR and the ANN produce different classifications.      

3 Ripple Down Models (RDM) 

RDM, like RM has two main components, the RDR part and a complementary outlier 
detection mechanism. As in RM, RDM first engages an RDR engine and passes the 
output to the complementary outlier detection component. In RDM, the RDR output 
passed to the outlier detector is a model (hence the acronym RDM) [8]. A model is 
made up of situated profiles. Each situated profile consists of a number of profiles 
corresponding to the number of attributes in a case. RDM has two outlier detection 
functions:  the Outlier Estimation with Backward Adaptation (OEBA) for continuous 
attributes and the Outlier Detection for Categorical Attributes (OECA) for discrete 
attributes [9].  

For OEBA, profiles of each attribute in a case are grouped as a Situated Profile and 
organised according to the conclusions generated by RDR. For example, an OEBA 
Situated Profile may contain minimum and maximum values for each attribute for the 
corresponding RDR classification. For each classification produced by RDR, a Model 
comprising the Situated Profile(s) is returned to the outlier detection component. 
Ideally, OEBA should flag an anomaly for incorrect classifications by RDR. If an 
outlier was flagged incorrectly, then Backward Adaptability adjusts the appropriate 
profiles’ minimum and maximum values. In OECA, each profile keeps a set of an 
attribute’s values, a corresponding M value and a New Value Ratio (NVR. The NVR 
is the ratio of the current attribute’s M value and the M value for the last updated val-
ue in the profile [8].  An anomaly is flagged when the NVR of a case is greater than a 
set threshold.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. RDM schematic 
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Originally, RDM was designed with models passed from a single class RDR  
engine [8]. This research developed a multiple classification version of RDM where 
models were passed from a MCRDR rule base. The primary difference between the 
two versions is that the MCRDR alternative has the ability to generate multiple mod-
els from a single case if need be. As in RM, the prudence of RDM is in how well the 
warning system works. Figure 2 shows the general architecture of RDM. 

4 Evaluation Methodology 

4.1 Simulated Expert 

Evaluating KA methods is an important but difficult task mainly because it is hard 
and expensive to get a readily available expert for controlled tests [10]. A common 
solution to this problem has been the use of simulated experts. Simulated experts have 
been used extensively in testing RDR methodologies [7], [6], [10]. For this research, 
the simulated expert uses a ruleset file (for each dataset) generated from the See5 tool. 
For each dataset, only cases that could be matched to a rule (or condition) were used 
such that the resultant simulated expert was faultless and missed no cases. 

4.2 Test Data 

Three simple UCI datasets were used for these tests mainly because developing per-
fect simulated experts for such data is less time consuming. The tests reported in this 
paper are a preliminary part of a wider research project. Table 1 describes the three 
datasets used. The last column of the table shows the ratio of each dataset’s rules to 
the total number of cases.   

Table 1. Description of datasets 

Name Type Instances Rules in SE Rules Ratio 

Iris Plants  Numerical  146 5 3% 

Car Evaluation  Categorical  288 15 5% 

Physical Action Numerical  250 60 24% 

4.3 Evaluation Metrics 

The comparison of the two PA systems, RM and RDM was based on two metrics: 
Balanced accuracy and prudence. Balanced accuracy is based on the system’s True 
Positives (TP), True Negatives (TN), False Negatives (FN) and False Positives (FP). 
The TP in this case is when a warning was issued correctly. TN is when a warning 
was not issued correctly. FN includes instances when a warning was not issued but 
should have. When a warning was issued incorrectly, then this is a FP [8]. Balanced 
accuracy combines these metrics to prevent a scenario where a system can warn on 
every case and still get an accuracy of 100%. The following formula is used for ba-
lanced accuracy: 
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                    / / / /           (2) 

where α = TN + FP, β= TP+ FN and Τ= TN + TP + FN + FP. 
The prudence of a system will be determined by the effectiveness of its warning 

mechanism. This will be the rate of correct warnings minus the rate of incorrect warn-
ings. For example, given a dataset of 40 cases in which 10 are TP’s and 30 are TN’s, a 
system with 8 TP’s and 3 FP’s will have a prudence measure of (8/10)% - (3/40)% 
which is 72.5%. Formula 3 is used to calculate the prudence measure.                                             / % / %    (3) 

where TPs is the number of correct warnings issued by the system, TP is the total 
number of warnings that should have been issued. In this study, the total number of 
warnings expected is the number of rules in the simulated expert. FPs is the incorrect 
warnings issued by the system and T is the total number of cases in a dataset. 

Incorrect warnings and the proportion of the TP in the data also affect the overall 
prudence measure of a system. In cases where a dataset has a large proportion of 
TP’s, it may be better to lower the warning threshold so that the system issues more 
warnings. As the dataset grows and fewer rules are added to the system, there might 
be a need to raise the warning threshold effectively increasing the system’s prudence. 
This is because as the system acquires knowledge and sees fewer new cases, the fre-
quency of warnings is likely to decline.  

5 Results and Analysis 

Table 2 displays the two PA systems’ corresponding TP, TN, FP and FN metrics on 
the three datasets. For the Physical Action dataset, RM was tested with two different ƶ 
values, 0.01 and 0.9. In the other datasets, RM’s ƶ value was set at 0.5.Table 2 shows 
the two systems’ balance accuracy (calculated using formula 2) and prudence meas-
ures computed from formula 3. 

Table 2. RM and RDM’s confusion metrics, Balanced Accuracy (BA) and Prudence (P)  

Dataset System TP TN FP FN BA 
(%) 

Pr (%) 

Iris RM 4 142 0 0 100 100 

RDM 4 135 7 0 99.86 95 

Car Evaluation RM 115 48 73 52 52 40 

RDM 160 102 23 3 89 42 

Physical Action RM 
( 0.01) 

146 8 89 7 42 30 

RM  
( 0.9) 

119 47 50 34 60 56 

RDM 160 29 40 21 54 44 
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5.1 Analysis  

The RM method seems to have a slightly better balanced accuracy and prudence over 
RDM in the Iris dataset. In the Car Evaluation dataset, RDM outperformed RM by a 
vast margin in terms of BA but was just slightly better in Pr. However, [7] advises 
that RM’s accuracy and prudence is not preset and can be controlled by altering the  ƶ value. For the dataset that RM was tested with different  ƶ values, it is clear that a 
high ƶ  value (0.9) produces a higher BA and Pr than RDM and a low  ƶ value con-
versely resulted in a BA and Pr much less than RDM’s. Based on the results in  
Table 2, there does not seem to be an obvious correlation between balanced accuracy 
and prudence. However there seems to be a consistency in that the system with the 
higher BA also had a higher PA. The ratio of rules to the total number of cases a data-
set has does not seem to affect the prudence of either system. The prudence results 
were expected to be lower for the Physical Action dataset since each rule covers very 
few cases. The likelihood of a misclassification in such a setting is compounded by 
the fact that the differences between the rules may be minute. So when a system has 
proportionally many, almost similar rules, it is likely that some rule may overlap with 
another, resulting in a lot more misclassifications. For these tests however, this claim 
was not affirmed.   

6 Conclusion  

RDM and RM are two PA systems whose accuracy and viability have been demon-
strated in different domains [8,11]. These two approaches have not been directly 
compared previously. This paper presented a preliminary comparison of the two sys-
tems using three relatively small datasets. For the smallest and simplest dataset, RM 
appears to have a higher accuracy and prudence, albeit by a small margin. RDM out-
performed RM in the categorical dataset and in the Physical Action dataset, RDM’s 
performance was almost midpoint between RM’s optimal setting ( ƶ 0.9) and worst 
setting ( ƶ 0.01). The tests conducted for this paper are part of a bigger research 
project whose aim is to integrate RM and RDM into a single, prudent anomaly detec-
tion system. Future tests will use bigger, complex datasets and will use optimal confi-
gurations for the two systems.   

References 

[1] Richards, D.: Two decades of Ripple Down Rules research. The Knowledge Engineering 
Review 24(2), 159–184 (2009) 

[2] Compton, P., Peters, L., Edwards, G., Lavers, T.G.: Experience with Ripple-Down Rules. 
In: AI 2005, Cambridge (2005) 

[3] Edwards, G., Compton, P., Malor, R., Srinivasan, A., Lazarus, L.: PEIRS: a pathologist 
maintained expert system for the interpretation of chemical pathology reports. Patholo-
gy 25(1), 27–34 (1993) 



194 O. Maruatona, P. Vamplew, and R. Dazeley 

[4] Kang, B., Compton, P., Preston, P.: Multiple Classification Ripple Down Rules: Evalua-
tion and Possibilities. In: 9th Banff Knowledge Acquisition for Knowledge Based Sys-
tems Workshop, Banff (1995) 

[5] Compton, P., Preston, P., Edwards, G., Kang, B.: Knowledge based systems that have 
some idea of their limits. CIO 15, 57–63 (1996) 

[6] Dazeley, R., Kang, B.: Detecting the Knowledge Boundary with Prudence Analysis. In: 
Wobcke, W., Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 482–488. Springer, 
Heidelberg (2008) 

[7] Dazeley, R.: To the Knowledge Frontier and Beyond: A Hybrid System for Incremental 
Contextual-Learning and Prudence Analysis. University of Tasmania, PhD Thesis (2007) 

[8] Prayote, A.: Knowledge Based Anomaly Detection, University of New Soth Wales, PhD 
Thesis (2007) 

[9] Prayote, A., Compton, P.: Detecting Anomalies and Intruders. In: Sattar, A., Kang, B.-H. 
(eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1084–1088. Springer, Heidelberg (2006) 

[10] Compton, P., Preston, P., Kang, B.: The Use of Simulated Experts in Evaluating Know-
ledge Acquisition. In: Knowledge Acquisition for Knowldge Based Systems Workshop, 
Banff (1995) 

[11] Dazeley, R., Kang, B.: The Viability of Prudence Analysis. In: The Pacific Rim Know-
ledge Acquisition Workshop, Hanoi (2008) 

[12] Dazeley, R., Kang, B.: Detecting the Knowledge Frontier: An Error Predicting Know-
ledge Based System. In: Knowledge Acquisition Workshop, Auckland (2004) 

 


	RM and RDM, a Preliminary Evaluation of Two Prudent RDR Techniques
	Introduction
	Rated MCRDR (RM)
	Ripple Down Models (RDM)
	Evaluation Methodology
	Simulated Expert
	Test Data
	Evaluation Metrics

	Results and Analysis
	Analysis

	Conclusion
	References




