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Abstract. The World Wide Web contains a massive amount of information in 
unstructured natural language and obtaining valuable information from 
informally written Web documents is a major research challenge. One research 
focus is Open Information Extraction (OIE) aimed at developing relation-
independent information extraction. Open Information Extraction systems seek 
to extract all potential relations from the text rather than extracting a few pre-
defined relations. Existing Open Information Extraction systems have mainly 
focused on Web’s heterogeneity rather than the Web’s informality. The 
performance of the REVERB system, a state-of-the-art OIE system, drops 
dramatically as informality increases in Web documents. 

This paper proposes a Hybrid Ripple-Down Rules based Open Information 
Extraction (Hybrid RDROIE) system, which uses RDR on top of a conventional 
OIE system. The Hybrid RDROIE system applies RDR’s incremental learning 
technique as an add-on to the state-of-the-art REVERB OIE system to correct 
the performance degradation of REVERB due to the Web’s informality in a 
domain of interest. With this wrapper approach, the baseline performance is that 
of the REVERB system with RDR correcting errors in a domain of interest. The 
Hybrid RDROIE system doubled REVERB’s performance in a domain of 
interest after two hours training. 

Keywords: Ripple-Down Rules, Open Information Extraction.  

1 Introduction 

The Web contains a large amount of information mainly in unstructured text and its 
quantity keeps increasing exponentially to an almost unlimited size. Web information 
extraction (WIE) systems analyze unstructured web documents and identify valuable 
information, such as particular named entities or semantic relations between entities. 
WIE systems enable effective retrieval of Web information to support various 
applications such as Automatic Text Summarization (ATS), Information Retrieval 
(IR) and Question-Answering (QA) systems. 

The Web IE task has a number of significant differences compared to the 
traditional IE task of extracting particular instances from a small range of well-written 
documents. Most Web documents are not written under strict supervision and tend to 
be written informally.  The followings are some characteristics of Web documents 
which affect extraction: 
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Informal Writing Styles. Huge amounts of Web documents are written informally 
and do not following strict writing styles like journalistic text [1]. Many NER 
techniques as part of a WIE rely on title and trigger words. As these markers are often 
absent in Web documents, there can be significant errors.  

Spelling Mistakes and Incomplete Sentences. Web documents often include 
spelling mistakes and incomplete sentences, which hinder the syntactic analysis and 
cause extraction errors, since most of the existing systems are trained with formal 
texts with an assumption that the content of texts follows strict writing guidelines.  

Large Amount of Newly and Informally Generated Vocabulary. Web documents 
contain a large number of newly generated unknown words, informal slang and short 
abbreviations which cannot be found in the formal dictionaries that are often utilized. 

Web IE seeks to extract a large number of facts from heterogeneous Web 
documents while traditional IE has focused on extracting pre-defined relationships 
from smaller numbers of domain-specific documents. Open IE differs from previous 
IE in that its goal is to avoid using pre-defined target relations and extraction models 
for individual target relation. The OIE approach is intended to reduce the amount of 
time necessary to find the desired information. The open IE paradigm was proposed 
as ‘preemptive IE’ [2]. TextRunner [3] is an example of Open IE applied to Web IE.  

Most OIE systems are developed using Machine Learning (ML) approaches and 
require a large amount of training data. They use self-supervised learning which 
generates a labeled training dataset automatically with some heuristics. For example, 
TextRunner uses an NLP tool to label entities and a parser to identify 
positive/negative examples with a small set of hand-written heuristic rules. A limit 
with this approach is that it cannot handle NLP errors since it relies on prior automatic 
labeling from NLP tools. This seriously affects the system performance as mentioned 
in [4], for example when a verb is incorrectly tagged as noun. Current OIE systems 
tend to use well-written journalistic documents as training data, probably to minimize 
errors from the NLP tools they depend on. It is likely that such training data is not the 
most appropriate for Web IE. 

We have recently demonstrated how we can build an RDR-based OIE system that 
outperformed a previous machine-learning OIE system, TEXTRUNNER on Web data 
in a narrow range of interest [5]. Although the RDROIE system has not been tested on 
data outside the range of interest, necessarily it will perform worse a general OIE 
system in general domain. Therefore, we suggest that if we build an RDR-based OIE 
system to correct the errors of a more general system then overall it should produce 
better results because the minimum performance should be that of the general system 
performance.  

Our contributions are summarized as follows: 

• We propose the Hybrid RDROIE system that employs Ripple-Down Rules’ 
incremental learning technique as an add-on to the state-of-the-art REVERB 
system in order to handle any performance degradation of REVERB due to the 
Web’s informality. 

• We evaluate the state-of-the-art REVERB system on a Web dataset with a fair 
level of Web informality and analysed errors that critically degrade performance. 
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• We demonstrate how the Hybrid RDROIE system handles informally written 
Web documents and doubles the performance of the REVERB system in a 
domain of interest after two hours training. 

The remainder of this paper is structured as follows. Section 2 presents related work 
and section 3 presents an error analysis of the REVERB system on Web data. Section 
4 explains our Hybrid RDROIE system in detail, section 5 presents the experimental 
setting and results and section 6 discusses the results and future work.  

2 Related Work 

2.1 Open Information Extraction 

Sekine [6] introduced a new paradigm “On-Demand Information Extraction (ODIE)” 
which aims to eliminate high customization cost from target domain change. The 
ODIE system automatically discovers patterns and extracts information on new topics 
the user is interested in, using pattern discovery, paraphrase discovery, and extended 
named entity tagging. Shinyama et al. [7] developed the ‘preemptive IE’ framework 
with the idea of avoiding relation specificity. They clustered documents using 
pairwise vector-space clustering, and then they re-clustered documents based on 
named entity types in each document cluster. The system was tested on limited size 
corpora, because the two clustering steps made it difficult to scale the system for Web 
IE. TextRunner is the first open IE system for Web IE [3]. Two versions have been 
developed. The first is called O-NB which treated OIE task as a classification 
problem using a Naïve Bayes classifier [3].  The more recent system is O-CRF, which 
which treated the task as a sequential labeling problem using ‘Conditional Random 
Fields (CRF)’ [4]. O-CRF outperforms O-NB almost doubling recall. StatSnowball 
[8] performs both relation-specific IE and open IE with a bootstrapping technique 
which iteratively generates weighted extraction patterns. It employs shallow features 
only such as part-of-speech tags. In StatSnowball, two different pattern selection 
methods are introduced: l1-norm regularized pattern selection and heuristic-based 
pattern selection. Wu et al. [9] introduced a Wikipedia-based Open Extractor (WOE) 
which used heuristic matches between Wikipedia infobox attribute values and 
corresponding sentences in the document for self-supervised learning. WOE applied 
two types of lexical features: POS tag features and dependency parser features. 
Although with dependency parser features the system ran more slowly, it 
outperformed the system with POS tag features. Fader et al. [10] presented the 
problems of state-of-the-art OIE systems such as the TEXTRUNNER system [4] and 
the WOE system [9] where system outputs often contain uninformative and 
incoherent extractions. To address these problems, they proposed two simple 
syntactic and lexical constraints on binary relations expressed by verbs. Furthermore, 
the REVERB system proposed by Fader et al. is a ‘relation first’ rather than an 
‘arguments first’ system, to try to avoid the errors of previous systems. REVERB 
achieved an AUC1 that is 30% higher than WOEparse and more than double the AUC 
AUC of WOEpos or TEXTRUNNER [10]. 

                                                           
1 Area Under the Curve computed by a precision-recall curve by varying confidence threshold.  
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2.2 Ripple-Down Rules (RDR) 

The basic idea of RDR is that cases are processed by the knowledge based system and 
when the output is not correct or missing one or more new rules are created to provide 
the correct output for that case. The knowledge engineering task in adding rules is 
simply selecting conditions for the rule which is automatically located in the 
knowledge base with new rules placed under the default rule node for newly seen 
cases, and exception rules located under the fired rules. The system also stores 
cornerstone cases, cases that triggered the creation of new rules. If a new rule is fired 
by any cornerstone cases, the cornerstones are presented to the expert to select further 
differentiating features for the rule or to accept that the new conclusions should apply 
to the cornerstone. Experience suggests this whole process takes at most a few 
minutes. A recent study of a large number of RDR knowledge bases used for 
interpreting diagnostic data in chemical pathology, showed from logs that the median 
time to add a rule was less than 2 minutes across 57,626 rules [11]. 

The RDR approach has also been applied to a range of NLP applications. For 
example, Pham et al. developed KAFTIE, an incremental knowledge acquisition 
framework to extract positive attributions from scientific papers [15] and temporal 
relations that outperformed machine learning [16]. Relevant to the work here, RDR 
Case Explorer (RDRCE) [17] combined Machine Learning and manual Knowledge 
Acquisition. It generated an initial RDR tree using transformation-based learning, but 
then allowed for corrections to be made. They applied RDRCE to POS tagging and 
achieved a slight improvement over state-of-the-art POS tagging after 60 hours of 
KA.  The idea of using an RDR system as a wrapper around a more general system 
was suggested by work on detecting duplicate invoices where the RDR system was 
used to clean up false positive duplicates from the general system [12]. 

3 Error Analysis of REVERB on a Web Dataset 

In this section, we analyse the performance of the REVERB system on a Web dataset, 
Sent500 and categorise the types of errors. The experiment is conducted on the Web 
dataset referred to as ‘Sent500’ and the detail of it is explained in section 5.1. 
Originally, in this dataset, each sentence has one pair of entities manually identified 
for the relation extraction task, but tags are removed for this evaluation. That is, there 
are no pre-defined tags in the Sent500 dataset used here.  

Extractions are judged by the following: Entities should be proper nouns; pronouns 
such as he/she/it etc. are not treated as appropriate entities. In a tuple, entity1, relation 
and entity2 should be located in the appropriate section. For example, if entity1 and 
relation are both in entity1 section and the relation section is filled by noise then, it is 
treated as an incorrect extraction. On the other hand, if entity1, relation and entity2 
are properly located, then some extra tokens or noise are allowed as long as they do 
not affect the meaning of extraction. For example, the tuple extraction (Another 
example of a statutory merger , is , software maker Adobe Systems acquisition of 
Macromedia) is incorrect but the tuple extraction (Adobe , has announced the 
acquisition of , Macromedia) is correct. N-ary relations such as (Google , has 
officially acquired YouTube for , $ 1.65 bil) are treated as a correct extraction. 
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Table 1. The performance of the REVERB system on the Sent500 

 Total VERB NOUN+PREP VERB+PREP INFINITIVE 
P 41.32% 69.72% 42.03% 69.86% 50.00% 
R 45.25% 55.62% 26.13% 54.26% 20.45% 
F1 43.20% 61.88% 32.22% 61.08% 29.03% 

Table 1 shows the performance of the REVERB system overall and on four 
different classes. The overall result is evaluated based on all extractions from Sent500 
using REVERB, while the four category results are evaluated based on extraction of 
the pre-tagged entities and relations in Sent500. The results show that overall REVEB 
performance on Sent500 is quite poor at around 40%. The VERB and VERB+PREP 
categories show higher precision than the NOUN+PREP and INFINITIVE categories. 
Especially, the recall of NOUN+PREP and INFINITIVE categories is very low, 
26.13% and 20.45%, respectively. This is because that the REVERB system aims to 
extraction binary relations expressed by verbs. 

Table 2. Incorrect extraction errors analysis on each category 

 VERB NOUN+PRE
P 

VERB+PRE
P 

INFINITIVE 

Correct relation but 
incorrect entities 

84% 18% 91% 33% 

Correct relation and 
entities but incorrect 
position with noise 

4% 27% 0% 0% 

Incorrect relation and 
entities 

12% 55% 9% 67% 

Table 2 summaries the types of incorrect extraction errors on four categories. For 
VERB and VERB+PREP categories, most of false positive errors, 84% and 91% 
respectively, are due to incorrect entity detection while relation detection is correct. 
As REVERB extracts entities using noun phrases, which are located nearest to the 
detected relation, it often recognizes an inappropriate noun phrase as an entity.  

For example, in a sentence ‘Google has acquired the video sharing website 
YouTube for $ 1.65billion ( 883million ) in shares after a large amount of speculation 
over whether __ was talking about a deal with __ .’, (Google, has acquired, the 
Video) is extracted instead of (Google, has acquired, YouTube).  

Some of entities have boundary detection errors due to noise or symbols used 
within an entity. For instance, REVERB only extracted ‘Lee’ for an entity ‘Tim 
Berners – Lee’. On the other hand, in the NOUN+PREP and INFINITIVE categories, 
most of false positive errors, 55% and 67% respectively, are due to incorrect detection 
of both relations and entities.  
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Table 3. Missed extraction errors analysis on each category 

 VERB NOUN+PREP VERB+PREP INFINITIVE 
NLP error 72% 7% 14% 0% 
Non-verb-based relation 11% 93% 5% 100% 
Noise 11% 0% 0% 0% 
Unusual expression 6% 0% 81% 0% 

Table 3 presents the types of missed extraction errors on the four categories. In the 
VERB category, 72% of errors are caused by NLP errors. For example, in ‘Google 
Buys YouTube.’, REVERB misses an extraction because ‘Buys’ is tagged as a noun.  

Due to the Web’s informality such as informally used capital letters, NLP tools 
often incorrectly annotate Web datasets. In the VERB+PREP category, 81% of the 
errors are due to unusual expressions. REVERB includes approximately 1.7 million 
distinct normalized relation phrases, which are derived from 500 million Web 
sentences. As REVERB uses this set of relation phrases to detect relations, it tends to 
miss relations not expressed in the system. For example, in the sentence ‘Kafka born 
in Prague’, the relation ‘born in’ is not detected while in the sentence ‘Kafka was 
born in Prague’, the relation ‘was born in’ is correctly detected. Moreover, in the 
sentence ‘Google acquire YouTube’, the relation ‘acquire’ is not detected while in the 
sentence ‘Google acquires YouTube’, the relation ‘acquires’ is correctly detected.  

In the NOUN+PREP and INFINITIVE categories errors are mostly due to non-
verb-based relation extraction. As REVERB aims to extract binary relations expressed 
by verbs, it only can extract NOUN+PREP and INFINITIVE type relations when 
there is verb before a NOUN+PREP and INFINITIVE relation phrase. That is, when 
there exist tuples like (entity1, verb NOUN+PREP, entity2) and (entity1, verb TO 
VB, entity2), REVERB can extract NOUN+PREP and INFINITIVE type relations in 
the Sent500 dataset. For example, a tuple (Novartis , completes acquisition of 98% 
of , Eon Labs) is successfully extracted from the sentence ‘Novartis completes 
acquisition of 98 % of Eon Labs , substantially strengthening the leading position of 
its Sandoz generics unit ( Basel , July 21 , 2005 )’ while no tuple is extracted from the 
sentence ‘Here is the video of the two _ founders talking about the Google acquisition 
in their YouTube Way !’ because there is no verb between two entities ‘Google’ and 
‘YouTube’. In the INFINITIVE case, for instance, a tuple (Paramount Pictures , 
agreed to buy , DreamWorks SKG) is correctly extracted from the sentence ‘- 
Viacom s Paramount Pictures agreed to buy DreamWorks SKG for $ 1.6 billion in 
cash and debt , wresting the movie studio away from NBC Universal and securing the 
talents of Steven Spielberg .’, while no tuple is extracted from ‘Adobe About to Buy 
Macromedia .’ because there is no verb between ‘Adobe’ and ‘Macromedia’. 

The REVERB system has shown very poor recall on Sent500. 89% and 95% of the 
false negative errors (which affects recall) on VERB and VERB+PERP are due to the 
Web’s informality (NLP error, noise and unusual expression). Also, 93% and 100% 
of false negative errors on NOUN+PERP and INFINITIVE are due to non-verb 
relations. The aim of Hybrid RDROIE is to correct REVERB’s. 



166 M.H. Kim and P. Compton 

4 Hybrid RDROIE System Architecture 

The Hybrid RDR-based Open Information Extraction (Hybrid RDROIE) system 
shown in Fig. 1 consists of four main components: preprocessor, NLPRDR KB 
learner, REVERB system and TupleRDR KB learner. We considered that it was more 
efficient to clean up NLP errors before using REVERB rather than just fixing errors 
after. This is because as shown above, REVERB’s recall is very poor and one of main 
reasons is NLP error. If we use REVERB first before NLPRDR KB, then we cannot 
improve REVERB’s recall. In section 4.1, the implementation details of the three 
components are explained; the RDR rule syntax is described in section 4.2 and RDR 
KB construction demonstrated in section 4.3 and finally the user interface is shown in 
section 4.4. 

 

 

Fig. 1. Architecture of the Hybrid RDROIE system 

4.1 Implementation 

Preprocessor. The preprocessor converts raw Web documents into a sequence of 
sentences, and annotates each token for part of speech (POS) and noun and verb 
phrase chunk using the OpenNLP system. It also annotates named entity (NE) tags 
using the Stanford NER system. Annotated NLP features are used when creating rules.  

NLPRDR KB Learner. The NLPRDR KB is built incrementally while the Hybrid 
RDROIE system is in use. The systems takes a preprocessed sentence as a case and 
the NLPRDR KB returns the NLP classification result. When the NLP classification 
result is not correct, the user adds exception rules to correct it.  There are three steps: 

Step1: NLP Classification. The NLPRDR KB takes each preprocessed sentence 
from the preprocessor and returns the classification results. If RDR rules are fired and 
the fired rules deliver correct the classification results, then the system saves the case 
(a sentence) under the fired rules. The system also saves the refined sentence based on 
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the fired rule’s conclusion action and sets the current case sentence as the refined 
sentence and passes it to the REVERB system for tuple extraction. If the root rule is 
fired and the sentence is correct, then the current case sentence is kept as is. 

Step2: Create RDR Rule. Whenever the NLPRDR KB gives incorrect classification 
results, the user adds rules to correct the classification results.  

Step3: Evaluate and Refine RDR Rule. Once the new rule is created, the system 
automatically checks whether the new rule affects KB consistency by evaluating all 
the previously stored cornerstone cases that may fire the new rule. To assist the 
expert, the user interface displays not only the rule conditions of previously stored 
cases but also the features differentiating the current case and any previously stored 
cases, which also satisfy the new rule condition but have a different conclusion. The 
expert must select at least one differentiating feature, unless they decide that the new 
conclusion should apply to the previous case.   

As the NLPRDR KB corrects NLP errors on the sentence, more tuples can be 
extracted from the REVERB system. 

TupleRDR KB Learner. The TupleRDR KB is used to correct errors on REVERB’s 
tuple extractions, whereas the NLPRDR KB described above was used to tidy up NLP 
errors on the given sentence before using REVERB. 

The TupleRDR KB is built incrementally while the system is in use. In the Hybrid 
RDROIE system, the user gets the tuple extractions in the form of binary relation 
(entity1, relation, entity2) from the REVERB system. The TupleRDR KB returns the 
tuple classification result and if the tuple classification result is incorrect, the user 
adds exception rules to correct it. There are following three steps: 

Step1: Tuple Classification. The TupleRDR KB takes each tuple extraction from the 
REVERB system and returns the classification results. If the RDR rules fire and the 
fired rules deliver the correct classification results, then the system saves the case (a 
tuple extraction) under the fired rules and also saves the corrected tuple based on the 
fired rules’ conclusion action. If the root rule is fired and the tuple is correct, then 
only action is to save the correct extraction in the database. 

Step2: Create RDR Rule. Whenever incorrect classifications results are given (by 
the REVERB system or the TupleRDR KB add-on), the user adds rules to correct the 
classification results.  

Step3: Evaluate and Refine RDR Rule. Same as step3 in NLPRDR KB. 

4.2 Hybrid RDROIE’s Rule Description 

An RDR rule has a condition part and a conclusion part: ‘IF (condition) THEN 
(conclusion)’ where condition may indicate more than one condition. A condition 
consists of three components: (ATTRIBUTE, OPERATOR, VALUE). In the 
NLPRDR KB, the ATTRIBUTE refers to the given sentence and in the TupleRDR 
KB, ATTRIBUTE refers to the given sentence and each element of the given tuple, 
ENTITY1, RELATION and ENTITY2. Both the NLPRDR KB and the TupleRDR 
KB provide 9 types of OPERATOR as follows: 
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• hasToken: whether a certain token matches  
• hasPOS: whether a certain part of speech matches  
• hasChunk: whether a certain chunk matches 
• hasNE: whether a certain named entity matches  
• hasGap: skip a certain number of tokens or spaces to match the pattern 
• notHasPOS: whether a certain part of speech does not match  
• notHasNE: whether a certain named entity does not match 
• beforeWD(+a): checks tokens located before the given attribute token by +a 
• afterWD(+a): checks tokens located after the given attribute token by +a 

VALUE is derived automatically from the given sentence corresponding to the 
ATTRIBUTE and OPERATOR chosen by the user in the user interface.  

In both NLPRDR KB and TupleRDR KB, conditions are connected with an ‘AND’ 
operator. A sequence of conditions begins with the  ‘SEQ’ keyword and it is used to 
identify a group of words in sequence order, so patterns can be detected. For instance, 
the sequence condition: ‘SEQ((RELATION hasToken ‘born’) & (RELATION 
hasToken ‘in’))’ detects ‘born in’ in the RELATION element of the tuple. 

In NLPRDR KB, a rule’s CONCLUSION part has the following form:  

(fixTarget,   --- target element 
 fixType,   --- refinement type, default is token 
 fixFrom,   --- classification result before refinement 
 fixTo)  --- classification result after refinement 
In TupleRDR KB, a rule’s CONCLUSION part has the following form:  
(relDetection,  --- relation existence detection 
 fixTarget,   --- target element  
 fixFrom,   --- classification result before refinement 
 fixTo)  --- classification result after refinement 

4.3 Examples of Hybrid RDROIE Rules 

The Hybrid RDROIE system is based on Multiple Classification RDR (MCRDR) 
[13]. Fig. 2 demonstrates MCRDR-based KB construction as the NLPRDR KB 
system processes the following three cases starting with an empty KB (with a default 
rule R1 which is always true and returns the NULL classification).  

 

Fig. 2. MCRDR structure of the NLPRDR KB system 
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Case1: A sentence ‘Google Buys YouTube.’ 

 The default rule R1 is fired and the KB system returns a NULL classification and 
the user considers this is an incorrect classification result because ‘Buys’ should be 
refined as ‘buys’. 
 A user adds a new rule R2 under the default rule R1. 
Case2: A sentence ‘Google Buys YOUTUBE.’ 
 Rule R2 is fired but the user considers the result is incorrect because ‘YOUTUBE’ 
should be refined to ‘YouTube’ to be correctly tagged by NLP tools and extracted by 
REVERB. 
 A user adds an exception rule R3 under the parent rule R2. 
Case3: A sentence ‘Adobe system Acquire Macromedia.’ 
 Default rule R1 fires and the KB system returns a NULL classification, which the 
user considers as an incorrect result because ‘Acquire’ should be refined to ‘acquires’ 
to be extracted correctly by the REVERB system.  
 A user adds a new rule R4 under the default rule R1. 

Fig. 3 shows an MCRDR based KB construction as the TupleRDR KB system 
processes the following three cases (tuples) starting with en empty KB. 

 

Fig. 3. MCRDR Structure of the TupleRDR KB System 

Case1: Tuple (Prague July 3, 1883 , died near , Vienna June 3, 1924 ) from the 
given sentence ‘Franz Kafka ( born Prague July  , 1883 died near Vienna June 3, 
1924 ) was a famous Czech - born , German - speaking writer .’ 

 The default rule R1 is fired and the KB system returns a NULL classification, 
which the user considers as an incorrect classification result because ENTITY1 
contains ‘Prague July 3, 1883’ instead of ‘Franz Kafka’. 
 A user adds a new rule R2 under the default rule R1. 
Case2: Tuple (Wolfgang Amadeus Mozart , died , 5 December 1791) from the 
given sentence ‘Wolfgang Amadeus Mozart died 5 December 1791.’ 
 Rule R2 fires and classifies the given tuple as ‘no relation tuple’ and the user 
considers it as an incorrect result because the tuple contains a correct relation. This 
happens since the NE tagger has not tagged the token ‘Mozart’ as PERSON NE.  
 The user adds an exception rule R3 under the parent rule R2.  
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Case3: Tuple (Google , has acquired , the Video) from the given sentence ‘Google 
has acquired the Video sharing website YouTube for $ 1.65billion ( 883million ).’ 
 The default rule R1 fires and the KB system returns a NULL classification, which 
the user considers as an incorrect result because ENTITY2 contains ‘the Video’ 
instead of ‘YouTube’. 
 A user adds new rule R4 under the default rule R1. 

4.4 Hybrid RDROIE User Interface 

The Hybrid RDROIE system provides a graphic interface that aids in creating and 
adding RDR rules and maintaining the KB system by end-users. Because most of the 
relevant values are displayed automatically and the system is built based on the 
normal human process of identifying distinguishing features when justifying a 
different conclusion, a user should be able to manage the system after few hours 
training. Industrial experience in complex domains supports this [11]. Fig. 4 presents 
the Hybrid RDROIE user interface. The Hybrid RDROIE system is written in Java 
(Java 1.6) and adopted the OpenNLP system (version 1.5), the Stanford NER system 
(version 1.5) and the REVERB OIE system (version 1.1). 

 

 

Fig. 4. User Interface of the Hybrid RDROIE system 

5 Experiments 

Section 5.1 describes the Web dataset used. Section 5.2 shows the initial knowledge 
base construction of the Hybrid RDROIE system and the section 5.3 presents the 
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results achieved by the Hybrid RDROIE system and discusses how our system 
improved the existing performance of the REVERB system on the Web data 

5.1 Web Datasets 

The experiments were conducted on the two Web datasets, Sent500 and Sent300, 
which were also used in experiments for the RDROIE system [5]. Sent300 was used 
as training dataset to construct the RDR KB and Sent500 was used as test dataset to 
test the performance of the overall Hybrid RDROIE system. Sent300 is derived from 
the MIL dataset developed by Bunescu and Mooney [14]. The MIL dataset contains a 
bag of sentences from the Google search engine by submitting a query string ‘a1 
******* a2’ containing seven wildcard symbols between the given pair of arguments. 
Sent500 was developed by Banko and Etzioni [4]. It contains some randomly selected 
sentences from the MIL dataset and some more sentences for ‘inventors of product’ 
and ‘award winners’ relations using the same technique as used for MIL datasets. In 
Sent300 and Sent500, each sentence has one pair of entities manually tagged for the 
relation extraction task, but those entity tags were removed in this experiment. That 
is, there are no pre-defined tags in our training and test dataset.  

5.2 RDR Initial KB Constructions 

This section presents the analysis of the initial KB construction using the Hybrid 
RDROIE system. In processing the Sent300 training set, 119 NLP errors were 
identified and rules were added as each error occurred. For the NLPRDR KB, 28 new 
rules were added under the default rule R1 and 6 exception rules were added for the 
cases which received incorrect classification results from earlier rules. Secondly, 98 
tuples extracted from the REVERB system, which could not be corrected by fixing 
NLP errors with the NLPRDR KB were identified as incorrect relation extractions 
and rules were added for each incorrect tuple extraction. For the TupleRDR KB, in 
total, 14 new rules were added under the default rule R1 and 5 exception rules were 
added for the cases which received incorrect classification results from earlier rules. 

As the Hybrid RDROIE system handles for both NLP error and tuple error, all 
rules are used together within a single process flow. In total 53 rules were added 
within two hours. KB construction time covers from when a case is called up until a 
rule is accepted as complete.  This time is logged automatically. 

5.3 Hybrid RDROIE Performance 

The Hybrid RDROIE system was tested on the Sent500 dataset. Table 4 presents the 
performance of the Hybrid RDROIE system on total extractions and on four category 
extractions. The REVERB system extracts multiple tuples from a sentence without 
using pre-defined entity tags. The performance on total extractions is evaluated on all 
tuple extractions of the REVERB system. The performance on four extraction types is 
calculated based on the explicit tuples when the pre-defined entity tags exist.  
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Table 4. The performance of the Hybrid RDROIE system on total extraction and on four 
categories of extraction on the Sent500 dataset 

 Total VERB NOUN+PREP VERB+PREP INFINITIVE 
P 90.00% 90.24% 74.00% 90.00% 85.00% 
R 81.45% 83.15% 66.67% 86.17% 77.27% 
F1 85.51% 86.55% 70.14% 88.04% 80.95% 

 
On total extractions, overall the Hybrid RDROIE system achieved 90% precision, 

81.45% recall and an F1 score of 85.51%, while the REVERB system by itself 
achieved 41.32% precision, 45.25% recall and a 43.20% F1 score on the same dataset 
(see table 1). That is, the Hybrid RDROIE system improved the performance of the 
REVERB system by almost double. Precision improved as the TupleRDR KB 
reduced false positive errors by filtering incorrect extractions and recall improved as 
the NLPRDR KB reduced false negative errors by amending informal sentences. 

Across the four category extractions, on average the Hybrid RDROIE system 
improved around 30% on precision, recall and F1 score over all four categories. 
VERB and VERB+PREP categories achieved high precision and NOUN+PREP and 
INFINITIVE categories also achieved reasonably good precision. In particular the 
recall of NOUN+PREP and INFINITIVE categories improved dramatically from 
26.13% and 20.45% to 66.67% and 77.27%, respectively. This improvement suggests 
that the Hybrid RDROIE system supports relation extractions on non-verb expression 
while the REVERB system mainly extracts relation expressed by verbs. 

 

 

Fig. 5. Performance improvement of the Hybrid RDROIE system from the REVERB system on 
F1 score over four categories 

Fig. 5 presents the performance improvement of the Hybrid RDROIE system over 
the REVERB system on F1 score over four categories. For all categories the Hybrid 
RDROIE system improved REVERB performance. In particular, NOUN+PREP and 
INFINITIVE category had the biggest improvement.  
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6 Discussion 

Table 4 shows that the Hybrid RDROIE system achieves high precision and recall 
after only two hours initial KB construction by a user on a small training dataset. 
Given the very rapid training time we suggest that rather than simply having to accept 
an insufficient level of performance delivered by the REVERB system in a particular 
application area, it is a worthwhile and practical alternative to very rapidly add rules 
to specifically cover the REVERB system’s performance drop in that application area. 

In the Hybrid RDROIE system, lexical features are mainly utilized when creating 
RDR rules. Because it is difficult to handle the Web’s informality using NLP features 
such as part-of-speech, chunk phrase and named entity most of errors for the 
REVERB system occurred because of NLP errors on the Web dataset. 

The advantage of utilising lexical features directly was demonstrated by the 
REVERB system’s performance compared to previous OIE systems such as the 
TEXTRUNNER and WOE systems [4, 9], but we note that this was for data without a 
high level of informality.  The REVERB system primarily utilises direct lexical 
feature matching techniques using the relation phrase dictionary, collected from 500 
million Web sentences. Previous OIE systems such as the TEXTRUNNER system 
and the WOE system utilised more NLP features such as part-of-speech and chunk 
phrase and used machine learning techniques on a large volume of heuristically 
labelled training data (e.g. 200,000 sentences used for TEXTRUNNER and 300,000 
sentences for WOE). The Hybrid RDROIE system, similarly utilises lexical features 
to handle the Web’s informality and improve the REVERB system’s performance 
further. In consequence, as shown in table 4, the Hybrid RDROIE system 
outperformed the REVERB system and achieved a good balanced overall result 
compared to other OIE systems. Section 4.3 showed examples of the Hybrid RDROIE 
system using lexical features in rule creation.  We note that other systems focusing 
more on NLP issues outperformed REVERB on this data set, but we also note that as 
shown in [5] a pure RDR approach did even better. 

The Hybrid RDROIE system is designed to be trained on a specific domain of 
interest. One might also comment that the rules added are simple fixes of lexical 
errors, and to produce a large system would need a large number of rules.  This is 
really the same type of approach as REVERB with its vast relation phase dictionary.  
If the Hybrid RDROIE system is to be used for a particular domain, which we believe 
would be the normal real world application, we see little problem in adding the rules 
required and keeping on doing this as new errors are identified and we note that in 
pathology people have developed systems with over 10,000 rules [11].  The Hybrid 
RDROIE system required very little effort and the study here it took about two 
minutes on average to build a rule. Experience suggests that knowledge acquisition 
with RDR remains very rapid even for large knowledge bases [11].  On the other 
hand, if the aim was a very broad system, it would also be interesting to see if it was 
possible to extend domain coverage by some type of crowd sourcing, with large 
numbers of people on the web contributing rules.  
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