
D. Richards and B.H. Kang (Eds.): PKAW 2012, LNAI 7457, pp. 160–174, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Improving Open Information Extraction for Informal
Web Documents with Ripple-Down Rules

Myung Hee Kim and Paul Compton

The University of New South Wales, Sydney, NSW, Australia
{mkim978,compton}@cse.unsw.edu.au

Abstract. The World Wide Web contains a massive amount of information in
unstructured natural language and obtaining valuable information from
informally written Web documents is a major research challenge. One research
focus is Open Information Extraction (OIE) aimed at developing relation-
independent information extraction. Open Information Extraction systems seek
to extract all potential relations from the text rather than extracting a few pre-
defined relations. Existing Open Information Extraction systems have mainly
focused on Web’s heterogeneity rather than the Web’s informality. The
performance of the REVERB system, a state-of-the-art OIE system, drops
dramatically as informality increases in Web documents.

This paper proposes a Hybrid Ripple-Down Rules based Open Information
Extraction (Hybrid RDROIE) system, which uses RDR on top of a conventional
OIE system. The Hybrid RDROIE system applies RDR’s incremental learning
technique as an add-on to the state-of-the-art REVERB OIE system to correct
the performance degradation of REVERB due to the Web’s informality in a
domain of interest. With this wrapper approach, the baseline performance is that
of the REVERB system with RDR correcting errors in a domain of interest. The
Hybrid RDROIE system doubled REVERB’s performance in a domain of
interest after two hours training.

Keywords: Ripple-Down Rules, Open Information Extraction.

1 Introduction

The Web contains a large amount of information mainly in unstructured text and its
quantity keeps increasing exponentially to an almost unlimited size. Web information
extraction (WIE) systems analyze unstructured web documents and identify valuable
information, such as particular named entities or semantic relations between entities.
WIE systems enable effective retrieval of Web information to support various
applications such as Automatic Text Summarization (ATS), Information Retrieval
(IR) and Question-Answering (QA) systems.

The Web IE task has a number of significant differences compared to the
traditional IE task of extracting particular instances from a small range of well-written
documents. Most Web documents are not written under strict supervision and tend to
be written informally. The followings are some characteristics of Web documents
which affect extraction:

 Improving Open Information Extraction for Informal Web Documents 161

Informal Writing Styles. Huge amounts of Web documents are written informally
and do not following strict writing styles like journalistic text [1]. Many NER
techniques as part of a WIE rely on title and trigger words. As these markers are often
absent in Web documents, there can be significant errors.

Spelling Mistakes and Incomplete Sentences. Web documents often include
spelling mistakes and incomplete sentences, which hinder the syntactic analysis and
cause extraction errors, since most of the existing systems are trained with formal
texts with an assumption that the content of texts follows strict writing guidelines.

Large Amount of Newly and Informally Generated Vocabulary. Web documents
contain a large number of newly generated unknown words, informal slang and short
abbreviations which cannot be found in the formal dictionaries that are often utilized.

Web IE seeks to extract a large number of facts from heterogeneous Web
documents while traditional IE has focused on extracting pre-defined relationships
from smaller numbers of domain-specific documents. Open IE differs from previous
IE in that its goal is to avoid using pre-defined target relations and extraction models
for individual target relation. The OIE approach is intended to reduce the amount of
time necessary to find the desired information. The open IE paradigm was proposed
as ‘preemptive IE’ [2]. TextRunner [3] is an example of Open IE applied to Web IE.

Most OIE systems are developed using Machine Learning (ML) approaches and
require a large amount of training data. They use self-supervised learning which
generates a labeled training dataset automatically with some heuristics. For example,
TextRunner uses an NLP tool to label entities and a parser to identify
positive/negative examples with a small set of hand-written heuristic rules. A limit
with this approach is that it cannot handle NLP errors since it relies on prior automatic
labeling from NLP tools. This seriously affects the system performance as mentioned
in [4], for example when a verb is incorrectly tagged as noun. Current OIE systems
tend to use well-written journalistic documents as training data, probably to minimize
errors from the NLP tools they depend on. It is likely that such training data is not the
most appropriate for Web IE.

We have recently demonstrated how we can build an RDR-based OIE system that
outperformed a previous machine-learning OIE system, TEXTRUNNER on Web data
in a narrow range of interest [5]. Although the RDROIE system has not been tested on
data outside the range of interest, necessarily it will perform worse a general OIE
system in general domain. Therefore, we suggest that if we build an RDR-based OIE
system to correct the errors of a more general system then overall it should produce
better results because the minimum performance should be that of the general system
performance.

Our contributions are summarized as follows:

• We propose the Hybrid RDROIE system that employs Ripple-Down Rules’
incremental learning technique as an add-on to the state-of-the-art REVERB
system in order to handle any performance degradation of REVERB due to the
Web’s informality.

• We evaluate the state-of-the-art REVERB system on a Web dataset with a fair
level of Web informality and analysed errors that critically degrade performance.

162 M.H. Kim and P. Compton

• We demonstrate how the Hybrid RDROIE system handles informally written
Web documents and doubles the performance of the REVERB system in a
domain of interest after two hours training.

The remainder of this paper is structured as follows. Section 2 presents related work
and section 3 presents an error analysis of the REVERB system on Web data. Section
4 explains our Hybrid RDROIE system in detail, section 5 presents the experimental
setting and results and section 6 discusses the results and future work.

2 Related Work

2.1 Open Information Extraction

Sekine [6] introduced a new paradigm “On-Demand Information Extraction (ODIE)”
which aims to eliminate high customization cost from target domain change. The
ODIE system automatically discovers patterns and extracts information on new topics
the user is interested in, using pattern discovery, paraphrase discovery, and extended
named entity tagging. Shinyama et al. [7] developed the ‘preemptive IE’ framework
with the idea of avoiding relation specificity. They clustered documents using
pairwise vector-space clustering, and then they re-clustered documents based on
named entity types in each document cluster. The system was tested on limited size
corpora, because the two clustering steps made it difficult to scale the system for Web
IE. TextRunner is the first open IE system for Web IE [3]. Two versions have been
developed. The first is called O-NB which treated OIE task as a classification
problem using a Naïve Bayes classifier [3]. The more recent system is O-CRF, which
which treated the task as a sequential labeling problem using ‘Conditional Random
Fields (CRF)’ [4]. O-CRF outperforms O-NB almost doubling recall. StatSnowball
[8] performs both relation-specific IE and open IE with a bootstrapping technique
which iteratively generates weighted extraction patterns. It employs shallow features
only such as part-of-speech tags. In StatSnowball, two different pattern selection
methods are introduced: l1-norm regularized pattern selection and heuristic-based
pattern selection. Wu et al. [9] introduced a Wikipedia-based Open Extractor (WOE)
which used heuristic matches between Wikipedia infobox attribute values and
corresponding sentences in the document for self-supervised learning. WOE applied
two types of lexical features: POS tag features and dependency parser features.
Although with dependency parser features the system ran more slowly, it
outperformed the system with POS tag features. Fader et al. [10] presented the
problems of state-of-the-art OIE systems such as the TEXTRUNNER system [4] and
the WOE system [9] where system outputs often contain uninformative and
incoherent extractions. To address these problems, they proposed two simple
syntactic and lexical constraints on binary relations expressed by verbs. Furthermore,
the REVERB system proposed by Fader et al. is a ‘relation first’ rather than an
‘arguments first’ system, to try to avoid the errors of previous systems. REVERB
achieved an AUC1 that is 30% higher than WOEparse and more than double the AUC
AUC of WOEpos or TEXTRUNNER [10].

1 Area Under the Curve computed by a precision-recall curve by varying confidence threshold.

 Improving Open Information Extraction for Informal Web Documents 163

2.2 Ripple-Down Rules (RDR)

The basic idea of RDR is that cases are processed by the knowledge based system and
when the output is not correct or missing one or more new rules are created to provide
the correct output for that case. The knowledge engineering task in adding rules is
simply selecting conditions for the rule which is automatically located in the
knowledge base with new rules placed under the default rule node for newly seen
cases, and exception rules located under the fired rules. The system also stores
cornerstone cases, cases that triggered the creation of new rules. If a new rule is fired
by any cornerstone cases, the cornerstones are presented to the expert to select further
differentiating features for the rule or to accept that the new conclusions should apply
to the cornerstone. Experience suggests this whole process takes at most a few
minutes. A recent study of a large number of RDR knowledge bases used for
interpreting diagnostic data in chemical pathology, showed from logs that the median
time to add a rule was less than 2 minutes across 57,626 rules [11].

The RDR approach has also been applied to a range of NLP applications. For
example, Pham et al. developed KAFTIE, an incremental knowledge acquisition
framework to extract positive attributions from scientific papers [15] and temporal
relations that outperformed machine learning [16]. Relevant to the work here, RDR
Case Explorer (RDRCE) [17] combined Machine Learning and manual Knowledge
Acquisition. It generated an initial RDR tree using transformation-based learning, but
then allowed for corrections to be made. They applied RDRCE to POS tagging and
achieved a slight improvement over state-of-the-art POS tagging after 60 hours of
KA. The idea of using an RDR system as a wrapper around a more general system
was suggested by work on detecting duplicate invoices where the RDR system was
used to clean up false positive duplicates from the general system [12].

3 Error Analysis of REVERB on a Web Dataset

In this section, we analyse the performance of the REVERB system on a Web dataset,
Sent500 and categorise the types of errors. The experiment is conducted on the Web
dataset referred to as ‘Sent500’ and the detail of it is explained in section 5.1.
Originally, in this dataset, each sentence has one pair of entities manually identified
for the relation extraction task, but tags are removed for this evaluation. That is, there
are no pre-defined tags in the Sent500 dataset used here.

Extractions are judged by the following: Entities should be proper nouns; pronouns
such as he/she/it etc. are not treated as appropriate entities. In a tuple, entity1, relation
and entity2 should be located in the appropriate section. For example, if entity1 and
relation are both in entity1 section and the relation section is filled by noise then, it is
treated as an incorrect extraction. On the other hand, if entity1, relation and entity2
are properly located, then some extra tokens or noise are allowed as long as they do
not affect the meaning of extraction. For example, the tuple extraction (Another
example of a statutory merger , is , software maker Adobe Systems acquisition of
Macromedia) is incorrect but the tuple extraction (Adobe , has announced the
acquisition of , Macromedia) is correct. N-ary relations such as (Google , has
officially acquired YouTube for , $ 1.65 bil) are treated as a correct extraction.

164 M.H. Kim and P. Compton

Table 1. The performance of the REVERB system on the Sent500

 Total VERB NOUN+PREP VERB+PREP INFINITIVE
P 41.32% 69.72% 42.03% 69.86% 50.00%
R 45.25% 55.62% 26.13% 54.26% 20.45%
F1 43.20% 61.88% 32.22% 61.08% 29.03%

Table 1 shows the performance of the REVERB system overall and on four
different classes. The overall result is evaluated based on all extractions from Sent500
using REVERB, while the four category results are evaluated based on extraction of
the pre-tagged entities and relations in Sent500. The results show that overall REVEB
performance on Sent500 is quite poor at around 40%. The VERB and VERB+PREP
categories show higher precision than the NOUN+PREP and INFINITIVE categories.
Especially, the recall of NOUN+PREP and INFINITIVE categories is very low,
26.13% and 20.45%, respectively. This is because that the REVERB system aims to
extraction binary relations expressed by verbs.

Table 2. Incorrect extraction errors analysis on each category

 VERB NOUN+PRE
P

VERB+PRE
P

INFINITIVE

Correct relation but
incorrect entities

84% 18% 91% 33%

Correct relation and
entities but incorrect
position with noise

4% 27% 0% 0%

Incorrect relation and
entities

12% 55% 9% 67%

Table 2 summaries the types of incorrect extraction errors on four categories. For
VERB and VERB+PREP categories, most of false positive errors, 84% and 91%
respectively, are due to incorrect entity detection while relation detection is correct.
As REVERB extracts entities using noun phrases, which are located nearest to the
detected relation, it often recognizes an inappropriate noun phrase as an entity.

For example, in a sentence ‘Google has acquired the video sharing website
YouTube for $ 1.65billion (883million) in shares after a large amount of speculation
over whether __ was talking about a deal with __ .’, (Google, has acquired, the
Video) is extracted instead of (Google, has acquired, YouTube).

Some of entities have boundary detection errors due to noise or symbols used
within an entity. For instance, REVERB only extracted ‘Lee’ for an entity ‘Tim
Berners – Lee’. On the other hand, in the NOUN+PREP and INFINITIVE categories,
most of false positive errors, 55% and 67% respectively, are due to incorrect detection
of both relations and entities.

 Improving Open Information Extraction for Informal Web Documents 165

Table 3. Missed extraction errors analysis on each category

 VERB NOUN+PREP VERB+PREP INFINITIVE
NLP error 72% 7% 14% 0%
Non-verb-based relation 11% 93% 5% 100%
Noise 11% 0% 0% 0%
Unusual expression 6% 0% 81% 0%

Table 3 presents the types of missed extraction errors on the four categories. In the
VERB category, 72% of errors are caused by NLP errors. For example, in ‘Google
Buys YouTube.’, REVERB misses an extraction because ‘Buys’ is tagged as a noun.

Due to the Web’s informality such as informally used capital letters, NLP tools
often incorrectly annotate Web datasets. In the VERB+PREP category, 81% of the
errors are due to unusual expressions. REVERB includes approximately 1.7 million
distinct normalized relation phrases, which are derived from 500 million Web
sentences. As REVERB uses this set of relation phrases to detect relations, it tends to
miss relations not expressed in the system. For example, in the sentence ‘Kafka born
in Prague’, the relation ‘born in’ is not detected while in the sentence ‘Kafka was
born in Prague’, the relation ‘was born in’ is correctly detected. Moreover, in the
sentence ‘Google acquire YouTube’, the relation ‘acquire’ is not detected while in the
sentence ‘Google acquires YouTube’, the relation ‘acquires’ is correctly detected.

In the NOUN+PREP and INFINITIVE categories errors are mostly due to non-
verb-based relation extraction. As REVERB aims to extract binary relations expressed
by verbs, it only can extract NOUN+PREP and INFINITIVE type relations when
there is verb before a NOUN+PREP and INFINITIVE relation phrase. That is, when
there exist tuples like (entity1, verb NOUN+PREP, entity2) and (entity1, verb TO
VB, entity2), REVERB can extract NOUN+PREP and INFINITIVE type relations in
the Sent500 dataset. For example, a tuple (Novartis , completes acquisition of 98%
of , Eon Labs) is successfully extracted from the sentence ‘Novartis completes
acquisition of 98 % of Eon Labs , substantially strengthening the leading position of
its Sandoz generics unit (Basel , July 21 , 2005)’ while no tuple is extracted from the
sentence ‘Here is the video of the two _ founders talking about the Google acquisition
in their YouTube Way !’ because there is no verb between two entities ‘Google’ and
‘YouTube’. In the INFINITIVE case, for instance, a tuple (Paramount Pictures ,
agreed to buy , DreamWorks SKG) is correctly extracted from the sentence ‘-
Viacom s Paramount Pictures agreed to buy DreamWorks SKG for $ 1.6 billion in
cash and debt , wresting the movie studio away from NBC Universal and securing the
talents of Steven Spielberg .’, while no tuple is extracted from ‘Adobe About to Buy
Macromedia .’ because there is no verb between ‘Adobe’ and ‘Macromedia’.

The REVERB system has shown very poor recall on Sent500. 89% and 95% of the
false negative errors (which affects recall) on VERB and VERB+PERP are due to the
Web’s informality (NLP error, noise and unusual expression). Also, 93% and 100%
of false negative errors on NOUN+PERP and INFINITIVE are due to non-verb
relations. The aim of Hybrid RDROIE is to correct REVERB’s.

166 M.H. Kim and P. Compton

4 Hybrid RDROIE System Architecture

The Hybrid RDR-based Open Information Extraction (Hybrid RDROIE) system
shown in Fig. 1 consists of four main components: preprocessor, NLPRDR KB
learner, REVERB system and TupleRDR KB learner. We considered that it was more
efficient to clean up NLP errors before using REVERB rather than just fixing errors
after. This is because as shown above, REVERB’s recall is very poor and one of main
reasons is NLP error. If we use REVERB first before NLPRDR KB, then we cannot
improve REVERB’s recall. In section 4.1, the implementation details of the three
components are explained; the RDR rule syntax is described in section 4.2 and RDR
KB construction demonstrated in section 4.3 and finally the user interface is shown in
section 4.4.

Fig. 1. Architecture of the Hybrid RDROIE system

4.1 Implementation

Preprocessor. The preprocessor converts raw Web documents into a sequence of
sentences, and annotates each token for part of speech (POS) and noun and verb
phrase chunk using the OpenNLP system. It also annotates named entity (NE) tags
using the Stanford NER system. Annotated NLP features are used when creating rules.

NLPRDR KB Learner. The NLPRDR KB is built incrementally while the Hybrid
RDROIE system is in use. The systems takes a preprocessed sentence as a case and
the NLPRDR KB returns the NLP classification result. When the NLP classification
result is not correct, the user adds exception rules to correct it. There are three steps:

Step1: NLP Classification. The NLPRDR KB takes each preprocessed sentence
from the preprocessor and returns the classification results. If RDR rules are fired and
the fired rules deliver correct the classification results, then the system saves the case
(a sentence) under the fired rules. The system also saves the refined sentence based on

 Improving Open Information Extraction for Informal Web Documents 167

the fired rule’s conclusion action and sets the current case sentence as the refined
sentence and passes it to the REVERB system for tuple extraction. If the root rule is
fired and the sentence is correct, then the current case sentence is kept as is.

Step2: Create RDR Rule. Whenever the NLPRDR KB gives incorrect classification
results, the user adds rules to correct the classification results.

Step3: Evaluate and Refine RDR Rule. Once the new rule is created, the system
automatically checks whether the new rule affects KB consistency by evaluating all
the previously stored cornerstone cases that may fire the new rule. To assist the
expert, the user interface displays not only the rule conditions of previously stored
cases but also the features differentiating the current case and any previously stored
cases, which also satisfy the new rule condition but have a different conclusion. The
expert must select at least one differentiating feature, unless they decide that the new
conclusion should apply to the previous case.

As the NLPRDR KB corrects NLP errors on the sentence, more tuples can be
extracted from the REVERB system.

TupleRDR KB Learner. The TupleRDR KB is used to correct errors on REVERB’s
tuple extractions, whereas the NLPRDR KB described above was used to tidy up NLP
errors on the given sentence before using REVERB.

The TupleRDR KB is built incrementally while the system is in use. In the Hybrid
RDROIE system, the user gets the tuple extractions in the form of binary relation
(entity1, relation, entity2) from the REVERB system. The TupleRDR KB returns the
tuple classification result and if the tuple classification result is incorrect, the user
adds exception rules to correct it. There are following three steps:

Step1: Tuple Classification. The TupleRDR KB takes each tuple extraction from the
REVERB system and returns the classification results. If the RDR rules fire and the
fired rules deliver the correct classification results, then the system saves the case (a
tuple extraction) under the fired rules and also saves the corrected tuple based on the
fired rules’ conclusion action. If the root rule is fired and the tuple is correct, then
only action is to save the correct extraction in the database.

Step2: Create RDR Rule. Whenever incorrect classifications results are given (by
the REVERB system or the TupleRDR KB add-on), the user adds rules to correct the
classification results.

Step3: Evaluate and Refine RDR Rule. Same as step3 in NLPRDR KB.

4.2 Hybrid RDROIE’s Rule Description

An RDR rule has a condition part and a conclusion part: ‘IF (condition) THEN
(conclusion)’ where condition may indicate more than one condition. A condition
consists of three components: (ATTRIBUTE, OPERATOR, VALUE). In the
NLPRDR KB, the ATTRIBUTE refers to the given sentence and in the TupleRDR
KB, ATTRIBUTE refers to the given sentence and each element of the given tuple,
ENTITY1, RELATION and ENTITY2. Both the NLPRDR KB and the TupleRDR
KB provide 9 types of OPERATOR as follows:

168 M.H. Kim and P. Compton

• hasToken: whether a certain token matches
• hasPOS: whether a certain part of speech matches
• hasChunk: whether a certain chunk matches
• hasNE: whether a certain named entity matches
• hasGap: skip a certain number of tokens or spaces to match the pattern
• notHasPOS: whether a certain part of speech does not match
• notHasNE: whether a certain named entity does not match
• beforeWD(+a): checks tokens located before the given attribute token by +a
• afterWD(+a): checks tokens located after the given attribute token by +a

VALUE is derived automatically from the given sentence corresponding to the
ATTRIBUTE and OPERATOR chosen by the user in the user interface.

In both NLPRDR KB and TupleRDR KB, conditions are connected with an ‘AND’
operator. A sequence of conditions begins with the ‘SEQ’ keyword and it is used to
identify a group of words in sequence order, so patterns can be detected. For instance,
the sequence condition: ‘SEQ((RELATION hasToken ‘born’) & (RELATION
hasToken ‘in’))’ detects ‘born in’ in the RELATION element of the tuple.

In NLPRDR KB, a rule’s CONCLUSION part has the following form:

(fixTarget, --- target element
 fixType, --- refinement type, default is token
 fixFrom, --- classification result before refinement
 fixTo) --- classification result after refinement
In TupleRDR KB, a rule’s CONCLUSION part has the following form:
(relDetection, --- relation existence detection
 fixTarget, --- target element
 fixFrom, --- classification result before refinement
 fixTo) --- classification result after refinement

4.3 Examples of Hybrid RDROIE Rules

The Hybrid RDROIE system is based on Multiple Classification RDR (MCRDR)
[13]. Fig. 2 demonstrates MCRDR-based KB construction as the NLPRDR KB
system processes the following three cases starting with an empty KB (with a default
rule R1 which is always true and returns the NULL classification).

Fig. 2. MCRDR structure of the NLPRDR KB system

 Improving Open Information Extraction for Informal Web Documents 169

Case1: A sentence ‘Google Buys YouTube.’

 The default rule R1 is fired and the KB system returns a NULL classification and
the user considers this is an incorrect classification result because ‘Buys’ should be
refined as ‘buys’.
 A user adds a new rule R2 under the default rule R1.
Case2: A sentence ‘Google Buys YOUTUBE.’
 Rule R2 is fired but the user considers the result is incorrect because ‘YOUTUBE’
should be refined to ‘YouTube’ to be correctly tagged by NLP tools and extracted by
REVERB.
 A user adds an exception rule R3 under the parent rule R2.
Case3: A sentence ‘Adobe system Acquire Macromedia.’
 Default rule R1 fires and the KB system returns a NULL classification, which the
user considers as an incorrect result because ‘Acquire’ should be refined to ‘acquires’
to be extracted correctly by the REVERB system.
 A user adds a new rule R4 under the default rule R1.

Fig. 3 shows an MCRDR based KB construction as the TupleRDR KB system
processes the following three cases (tuples) starting with en empty KB.

Fig. 3. MCRDR Structure of the TupleRDR KB System

Case1: Tuple (Prague July 3, 1883 , died near , Vienna June 3, 1924) from the
given sentence ‘Franz Kafka (born Prague July , 1883 died near Vienna June 3,
1924) was a famous Czech - born , German - speaking writer .’

 The default rule R1 is fired and the KB system returns a NULL classification,
which the user considers as an incorrect classification result because ENTITY1
contains ‘Prague July 3, 1883’ instead of ‘Franz Kafka’.
 A user adds a new rule R2 under the default rule R1.
Case2: Tuple (Wolfgang Amadeus Mozart , died , 5 December 1791) from the
given sentence ‘Wolfgang Amadeus Mozart died 5 December 1791.’
 Rule R2 fires and classifies the given tuple as ‘no relation tuple’ and the user
considers it as an incorrect result because the tuple contains a correct relation. This
happens since the NE tagger has not tagged the token ‘Mozart’ as PERSON NE.
 The user adds an exception rule R3 under the parent rule R2.

170 M.H. Kim and P. Compton

Case3: Tuple (Google , has acquired , the Video) from the given sentence ‘Google
has acquired the Video sharing website YouTube for $ 1.65billion (883million).’
 The default rule R1 fires and the KB system returns a NULL classification, which
the user considers as an incorrect result because ENTITY2 contains ‘the Video’
instead of ‘YouTube’.
 A user adds new rule R4 under the default rule R1.

4.4 Hybrid RDROIE User Interface

The Hybrid RDROIE system provides a graphic interface that aids in creating and
adding RDR rules and maintaining the KB system by end-users. Because most of the
relevant values are displayed automatically and the system is built based on the
normal human process of identifying distinguishing features when justifying a
different conclusion, a user should be able to manage the system after few hours
training. Industrial experience in complex domains supports this [11]. Fig. 4 presents
the Hybrid RDROIE user interface. The Hybrid RDROIE system is written in Java
(Java 1.6) and adopted the OpenNLP system (version 1.5), the Stanford NER system
(version 1.5) and the REVERB OIE system (version 1.1).

Fig. 4. User Interface of the Hybrid RDROIE system

5 Experiments

Section 5.1 describes the Web dataset used. Section 5.2 shows the initial knowledge
base construction of the Hybrid RDROIE system and the section 5.3 presents the

 Improving Open Information Extraction for Informal Web Documents 171

results achieved by the Hybrid RDROIE system and discusses how our system
improved the existing performance of the REVERB system on the Web data

5.1 Web Datasets

The experiments were conducted on the two Web datasets, Sent500 and Sent300,
which were also used in experiments for the RDROIE system [5]. Sent300 was used
as training dataset to construct the RDR KB and Sent500 was used as test dataset to
test the performance of the overall Hybrid RDROIE system. Sent300 is derived from
the MIL dataset developed by Bunescu and Mooney [14]. The MIL dataset contains a
bag of sentences from the Google search engine by submitting a query string ‘a1
******* a2’ containing seven wildcard symbols between the given pair of arguments.
Sent500 was developed by Banko and Etzioni [4]. It contains some randomly selected
sentences from the MIL dataset and some more sentences for ‘inventors of product’
and ‘award winners’ relations using the same technique as used for MIL datasets. In
Sent300 and Sent500, each sentence has one pair of entities manually tagged for the
relation extraction task, but those entity tags were removed in this experiment. That
is, there are no pre-defined tags in our training and test dataset.

5.2 RDR Initial KB Constructions

This section presents the analysis of the initial KB construction using the Hybrid
RDROIE system. In processing the Sent300 training set, 119 NLP errors were
identified and rules were added as each error occurred. For the NLPRDR KB, 28 new
rules were added under the default rule R1 and 6 exception rules were added for the
cases which received incorrect classification results from earlier rules. Secondly, 98
tuples extracted from the REVERB system, which could not be corrected by fixing
NLP errors with the NLPRDR KB were identified as incorrect relation extractions
and rules were added for each incorrect tuple extraction. For the TupleRDR KB, in
total, 14 new rules were added under the default rule R1 and 5 exception rules were
added for the cases which received incorrect classification results from earlier rules.

As the Hybrid RDROIE system handles for both NLP error and tuple error, all
rules are used together within a single process flow. In total 53 rules were added
within two hours. KB construction time covers from when a case is called up until a
rule is accepted as complete. This time is logged automatically.

5.3 Hybrid RDROIE Performance

The Hybrid RDROIE system was tested on the Sent500 dataset. Table 4 presents the
performance of the Hybrid RDROIE system on total extractions and on four category
extractions. The REVERB system extracts multiple tuples from a sentence without
using pre-defined entity tags. The performance on total extractions is evaluated on all
tuple extractions of the REVERB system. The performance on four extraction types is
calculated based on the explicit tuples when the pre-defined entity tags exist.

172 M.H. Kim and P. Compton

Table 4. The performance of the Hybrid RDROIE system on total extraction and on four
categories of extraction on the Sent500 dataset

 Total VERB NOUN+PREP VERB+PREP INFINITIVE
P 90.00% 90.24% 74.00% 90.00% 85.00%
R 81.45% 83.15% 66.67% 86.17% 77.27%
F1 85.51% 86.55% 70.14% 88.04% 80.95%

On total extractions, overall the Hybrid RDROIE system achieved 90% precision,

81.45% recall and an F1 score of 85.51%, while the REVERB system by itself
achieved 41.32% precision, 45.25% recall and a 43.20% F1 score on the same dataset
(see table 1). That is, the Hybrid RDROIE system improved the performance of the
REVERB system by almost double. Precision improved as the TupleRDR KB
reduced false positive errors by filtering incorrect extractions and recall improved as
the NLPRDR KB reduced false negative errors by amending informal sentences.

Across the four category extractions, on average the Hybrid RDROIE system
improved around 30% on precision, recall and F1 score over all four categories.
VERB and VERB+PREP categories achieved high precision and NOUN+PREP and
INFINITIVE categories also achieved reasonably good precision. In particular the
recall of NOUN+PREP and INFINITIVE categories improved dramatically from
26.13% and 20.45% to 66.67% and 77.27%, respectively. This improvement suggests
that the Hybrid RDROIE system supports relation extractions on non-verb expression
while the REVERB system mainly extracts relation expressed by verbs.

Fig. 5. Performance improvement of the Hybrid RDROIE system from the REVERB system on
F1 score over four categories

Fig. 5 presents the performance improvement of the Hybrid RDROIE system over
the REVERB system on F1 score over four categories. For all categories the Hybrid
RDROIE system improved REVERB performance. In particular, NOUN+PREP and
INFINITIVE category had the biggest improvement.

 Improving Open Information Extraction for Informal Web Documents 173

6 Discussion

Table 4 shows that the Hybrid RDROIE system achieves high precision and recall
after only two hours initial KB construction by a user on a small training dataset.
Given the very rapid training time we suggest that rather than simply having to accept
an insufficient level of performance delivered by the REVERB system in a particular
application area, it is a worthwhile and practical alternative to very rapidly add rules
to specifically cover the REVERB system’s performance drop in that application area.

In the Hybrid RDROIE system, lexical features are mainly utilized when creating
RDR rules. Because it is difficult to handle the Web’s informality using NLP features
such as part-of-speech, chunk phrase and named entity most of errors for the
REVERB system occurred because of NLP errors on the Web dataset.

The advantage of utilising lexical features directly was demonstrated by the
REVERB system’s performance compared to previous OIE systems such as the
TEXTRUNNER and WOE systems [4, 9], but we note that this was for data without a
high level of informality. The REVERB system primarily utilises direct lexical
feature matching techniques using the relation phrase dictionary, collected from 500
million Web sentences. Previous OIE systems such as the TEXTRUNNER system
and the WOE system utilised more NLP features such as part-of-speech and chunk
phrase and used machine learning techniques on a large volume of heuristically
labelled training data (e.g. 200,000 sentences used for TEXTRUNNER and 300,000
sentences for WOE). The Hybrid RDROIE system, similarly utilises lexical features
to handle the Web’s informality and improve the REVERB system’s performance
further. In consequence, as shown in table 4, the Hybrid RDROIE system
outperformed the REVERB system and achieved a good balanced overall result
compared to other OIE systems. Section 4.3 showed examples of the Hybrid RDROIE
system using lexical features in rule creation. We note that other systems focusing
more on NLP issues outperformed REVERB on this data set, but we also note that as
shown in [5] a pure RDR approach did even better.

The Hybrid RDROIE system is designed to be trained on a specific domain of
interest. One might also comment that the rules added are simple fixes of lexical
errors, and to produce a large system would need a large number of rules. This is
really the same type of approach as REVERB with its vast relation phase dictionary.
If the Hybrid RDROIE system is to be used for a particular domain, which we believe
would be the normal real world application, we see little problem in adding the rules
required and keeping on doing this as new errors are identified and we note that in
pathology people have developed systems with over 10,000 rules [11]. The Hybrid
RDROIE system required very little effort and the study here it took about two
minutes on average to build a rule. Experience suggests that knowledge acquisition
with RDR remains very rapid even for large knowledge bases [11]. On the other
hand, if the aim was a very broad system, it would also be interesting to see if it was
possible to extend domain coverage by some type of crowd sourcing, with large
numbers of people on the web contributing rules.

174 M.H. Kim and P. Compton

References

1. Collot, M., Belmore, N.: Electronic Language: A New Variety of English. In: Computer-
Mediated Communications: Linguistic, Social and Cross-Cultural Perspectives (1996)

2. Shinyama, Y., Sekine, S.: Preemptive information extraction using unrestricted relation
discovery. In: Proceedings of the HLT/NAACL (2006)

3. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information
extraction from the web. In: Proceedings of the 20th International Joint Conference on
Artifical Intelligence (2007)

4. Banko, M., Etzioni, O.: The Tradeoffs Between Open and Traditional Relation Extraction.
Paper Presented at the Proceedings of ACL 2008: HLT (2008)

5. Kim, M.H., Compton, P., Kim, Y.-s.: RDR-based Open IE for the Web Document. In: 6th
International Conference on Knowledge Capture, Banff, Alberta, Canada (2011)

6. Sekine, S.: On-demand information extraction. In: Proceedings of the COLING/ACL
(2006)

7. Shinyama, Y., Sekine, S.: Preemptive information extraction using unrestricted relation
discovery. In: Proceedings of the HLT/NAACL (2006)

8. Zhu, J., Nie, Z., Liu, X., Zhang, B., Wen, J.-R.: StatSnowball: a statistical approach to
extracting entity relationships. In: Proceedings of the 18th WWW (2009)

9. Wu, F., Weld, D.S.: Open Information Extraction using Wikipedia. In: The 48th Annual
Meeting of the Association for Computational Linguistics, Uppsala, Sweden (2010)

10. Fader, A., Soderland, S., Etzioni, O.: Identifying Relations for Open Information
Extraction. In: EMNLP, Scotland, UK (2011)

11. Compton, P., Peters, L., Lavers, T., Kim, Y.-S.: Experience with long-term knowledge
acquisition. In: 6th International Conference on Knowledge Capture, pp. 49–56. ACM,
Banff (2011)

12. Ho, V.H., Compton, P., Benatallah, B., Vayssiere, J., Menzel, L., Vogler, H.: An
incremental knowledge acquisition method for improving duplicate invoices detection. In:
Proceedings of the International Conference on Data Engineering (2009)

13. Kang, B., Compton, P., Preston, P.: Multiple classification ripple down rules: evaluation
and possibilities. In: Proceedings of the 9th Banff Knowledge Acquisition for Knowledge
Based Systems Workshop, Banff, February 26-March 3, vol. 1, pp. 17.1 – 17.20 (1995)

14. Bunescu, R.C., Mooney, R.J.: Learning to Extract Relations from the Web using Minimal
Supervision. In: Proceedings of the 45th ACL (2007)

15. Pham, S.B., Hoffmann, A.: Extracting Positive Attributions from Scientific Papers. In:
Discovery Science Conference (2004)

16. Pham, S.B., Hoffmann, A.: Efficient Knowledge Acquisition for Extracting Temporal
Relations. In: 17th European Conference on Artificial Intelligence, Italy (2006)

17. Xu, H., Hoffmann, A.: RDRCE: Combining Machine Learning and Knowledge
Acquisition. In: Kang, B.-H., Richards, D. (eds.) PKAW 2010. LNCS, vol. 6232, pp.
165–179. Springer, Heidelberg (2010)

	Improving Open Information Extraction for Informal Web Documents with Ripple-Down Rules
	Introduction
	Related Work
	Open Information Extraction
	Ripple-Down Rules (RDR)

	Error Analysis of REVERB on a Web Dataset
	Hybrid RDROIE System Architecture
	Implementation
	Hybrid RDROIE’s Rule Description
	Examples of Hybrid RDROIE Rules
	Hybrid RDROIE User Interface

	Experiments
	Web Datasets
	RDR Initial KB Constructions
	Hybrid RDROIE Performance

	Discussion
	References

