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Abstract. Measurement of blood glucose levels (BGLs) is a basic procedure that 
diabetic patients need to perform several times a day. The conventional standard 
protocol for on-site measurement, despite several advantages such as portability, 
low cost, fast response time, and ease of operation, is based on the finger-prick 
technique to extract blood samples. This process is invasive and cannot provide 
continuous monitoring.  

Towards the achievement of non-invasive and continuous BGL monitoring, we 
have developed two measurement methods based on the continuous-wave photoac-
oustic (CW-PA) protocol and we performed preliminary in vitro tests with aqueous 
solutions. The first method relies on the measurement of the frequency shift in-
duced by the change in the composition of the propagation medium. This method is 
equivalent to an acoustic velocity measurement and provides high sensitivity but no 
selectivity to glucose compound. The second approach utilizes simultaneous optical 
excitation at two wavelengths for compound-selective measurements. After correct-
ing the frequency shift mentioned previously, this protocol allows measurements 
equivalent to a differential absorption coefficient one at the two wavelengths used. 
It then combines the advantages of absorption spectroscopy without the limitation 
from scattering due to the use of acoustic detection. Furthermore, the combination 
of the two methods can be generalized to systems involving more than one chang-
ing parameter by using not only two optical wavelengths for the excitation se-
quence but also several pairs of wavelength sequentially.  

These methods then represent an important step forward the non-invasive, se-
lective, and continuous measurements of glucose compound concentrations from a 
complex mixture, typically blood.  

Keywords: photoacoustic method, continuous blood glucose level. 

1   Introduction 

Diabetes mellitus, often referred to as diabetes, is a metabolic disorder characte-
rized by hyperglycaemia (raised blood sugar levels) as result of less control of the 
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blood glucose level (BGL). Despite symptoms being first described several hun-
dred years ago, this illness still remains a serious issue for an estimated affected 
population exceeding three-hundred million worldwide in 2011 [1,2], which is 
further increasing yearly. Despite extensive investigations covering a large span of 
expertise, the exact cause of diabetes remains unknown, and a cure has not been 
discovered yet. However, repeated and long-lasting exposure of internal organs to 
abnormally elevated blood glucose levels (i.e. hyperglycaemia) results in multiple 
complications and premature mortality [3,4]. Tremendous efforts have been dedi-
cated to the design of an efficient way to manually monitor and control the pa-
tients' BGL.  

Maintaining the BGL within the range of variation expected from a healthy 
person is the basic way to prevent any impact of diabetes on patient health. Every 
time the BGL exceeds the normal limit value (several standards for diagnosis, 
always in the range of 100-200 mg/dL, have been published by the American Di-
abetes Association [5,6]), adequate actions, which depend on the type of diabetes, 
should be taken to restore its level into the admissible range. However, the efforts 
and actions taken to lower the BGL also expose the patients to hypoglycemia, 
which corresponds to a BGL lower than the limit value in the range of 70 mg/dL. 
Accurate, on-site and real time detection of BGL then represents the first essential 
step for adequate decision making. Several commercially available sensors based 
on blood sample analysis have been developed by numerous companies over the 
past decades. Exhibiting compact size, low cost, good accuracy, and fast response 
[7-9], they have rapidly become popular around the world and have provided huge 
benefits to the diabetic population. However, despite tremendous efforts to reduce 
the blood sample volume and the discomfort of finger-pricking, they are still inva-
sive and cannot provide continuous monitoring, which is the corner-stone for op-
timal BGL control [10,11].  

As one step towards this ultimate goal, minimally invasive (MI) techniques 
have been developed, where the sensor head reduced to its minimum size is in-
serted subcutaneously in direct contact with body fluids, while the signal 
processing and so on are performed outside the body. This approach consequently 
reduces the invasiveness and enables continuous monitoring over several consecu-
tive days [12-15]. Furthermore, systems coupling a MI sensor to a insulin pump 
[16,17] have been developed for automatic delivery based on continuous mea-
surements and a complex algorithm [18].  

At the time of this writing, three products have received FDA approval for 
commercialization in the US. However, two main issues limit their application: (1) 
the frequent need for calibration and (2) the lack of accuracy in some particular 
cases, so that patients are additionally advised to perform regular tests before tak-
ing any potential life-threatening action. Implanting a device in the body, despite 
the reduced size and minimizing discomfort, also poses the problem of biofouling 
[15]. As a result, the commercially available products claimed to provide accurate 
readings for at least three days, although researchers are developing strategies for 
long-term readings for at least several months [20,21].  
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Though less advanced than the MI protocols, the non-invasive (NI) methods 
remain without question the preferred solution for sensing mechanism [22,23]. 
However, two main issues should be addressed with particular care: sensitivity 
and selectivity.  Among the various alternative techniques that have been exten-
sively studied over the last few decades [24-29], near-infrared (NIR) absorption 
spectroscopy has probably received the most interest because the method takes 
advantage of the finger-print-like absorption coefficient of each compound in this 
wavelength range. Furthermore, recent development of multivariate statistical 
algorithms applied to chemical problems (chemometric-based methods) have fur-
ther extended the scope of the NIR approach by allowing efficient extraction of 
parameters of interest from complex systems involving simultaneous measure-
ments at several wavelengths. However, this method's sensitivity to the scattering 
properties of tissues has prevented, at the time of this writing, any device to reach 
the commercialization stage. In contrast, photoacoustic-based (PA) protocols, 
which use optical excitation and mechanical detection, show great potential, offer-
ing high sensitivity and robustness against the scattering properties of tissue [28]. 
As a result, despite several on-going issues specific to the PA approach, we chose 
to investigate it and have developed two methods that focus on a very specific part 
of the detection scheme.  

This chapter provides an overview of these methodologies, from the basic con-
cept of PA technique to the in vitro characterization of aqueous solutions.  It then 
describes in detail the combination of the two methods, which opens the door to 
multivariate measurements, similar to the popular NIR absorption spectroscopy 
methods (with the possibility of using chemometrics as well) mentioned previous-
ly but without the limitation due to scattering. 

2   Continuous-Wave Photoacoustic (CW-PA) Procedure 

Among the potential techniques, the PA techniques also fulfill all the requirements 
for non-invasive sensing of blood glucose levels. The concept can be briefly de-
scribed as follows. An amplitude-modulated optical source operating at an  
adequate wavelength illuminates an absorbing medium, where optical energy ab-
sorption yields a temperature increase due to the non-radiative relaxation photo-
thermal effect. This temperature increase results in volume expansion that will 
locally generate a pressure disturbance. This pressure perturbation can then propa-
gate as a pressure/acoustic wave through the medium to a mechanical sensor, 
where detection of signal characteristics and its proper post-processing enables 
one to characterize the absorbing medium. This method has been claimed to be 
highly sensitive to glucose because this compound affects several parameters that 
strongly impact the process described above at several stages: i) the optical energy 
absorption, which involves the optical absorption coefficient, thermal expansion 
coefficient, heat capacity, and acoustic velocity; and ii) the acoustic wave propa-
gation until the receiver by the means of the acoustic velocity [30]. 
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Figure 1 (left) shows a schematic view of the minimal setup required to  
perform PA measurements. Light source locally illuminates the sample under 
investigation, and a transducer senses the mechanical wave. On one side, the use 
of optical fibers is very convenient since it allows flexibility (alignment between 
the light source and sample) without impacting the signal properties (low propaga-
tion losses over the wide optical range, robustness, wide range of diameter cores). 
On the other side, several ways of detecting the acoustic waves have been devel-
oped, but the use of transducers, despite requiring a direct mechanical contact with 
the sample, remains the standard technique. 

In terms of optical wavelengths, the PA technique allows the use of the entire 
infrared spectrum (typically, from 0.8 to 1000 μm) to generate acoustic waves 
through the photothermal effect. However, the mid- and far-infrared (MIR from 
2.5 to 25 μm, and FIR from 25 to 1000 μm, respectively) can excite the funda-
mental vibrations and associated rotational-vibrational structure, while the NIR 
region (from 0.8 to 2.5 μm) is associated with overtone or harmonic vibrations. 
The MIR and FIR wavelength ranges are then more suitable for finger-print-like 
absorption spectroscopy, which is critical when measuring a solution with several 
solutes. However, the absorption coefficient should also be considered from the 
point of view of the PA technique as well as the final application. Water, as the 
main constituent of human tissue, strongly absorbs light in the infrared region. 
However, a minimum absorption is required in order to efficiently generate acous-
tic waves within the tissue (for wavelengths higher than 1300 nm), while a strong 
absorption (typically, for wavelengths in the MIR or FIR range or above 2500 nm) 
strongly limits the depth penetration of optical light to superficial layers of the 
skin. We then chose to use the wavelength range from 1300 to 2500 nm, which is 
also referred to as the tissue optical or the therapeutic window [24,31].  

As shown in Fig. 1, two protocols using different optical excitation patterns 
have been used extensively: the pulse setup (pulse of light, very low duty cycle, 
and frequency (or repetition rate) below 1 kHz), and the CW one (excitation with 
square-wave signal, duty cycle about 50%, frequency up to 1GHz). Both tech-
niques can potentially provide high sensitivity, but one issue remains of particular 
importance in choosing the most appropriate excitation sequence to the target 
application: the dominant origin of noise affecting the measurement [32,33]. The 
pulse setup operates in the time domain with time gating to suppress the noise 
contribution. This technique is particularly suitable when dealing with systemic 
noise. On the other hand, the CW setup operates in the frequency domain (with the 
use of closed-loop and lock-in detection), which allows the use of filters to sup-
press the noise contribution. This technique is particularly suitable when dealing 
with random noise. 

With in vivo environment, where the sample size and properties are difficult to 
control and stabilize along time, the noise source may more likely be assimilated 
to random, which points to CW as the preferable excitation sequence. Moreover, 
CW-PA exhibits other advantages in terms of the potential to facilitate miniaturi-
zation down to a portable size [34-36]. With the recent development of solid-state 
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laser diodes (LDs), compact high-power, high-resolution light sources covering 
this full range have become commercially available at reasonable cost and such 
light sources are particularly suitable components for CW-PA spectroscopy mea-
surements. However, almost exclusively the pulse methodology has been cited in 
the literature dedicated to non-invasive glucose monitoring [27-29]. In fact, CW-
PA methods were disregarded in a very early stage due to their dependence on 
cavity dimensions, which are parameters impossible to control precisely when it 
comes to dealing with real patients.  

In this chapter, we describe, from the basic concept to the first in vitro results, 
two experimental protocols that allow CW-PA-based measurements whatever the 
cavity size and therefore solve the main issue usually associated with the CW-PA 
technique. Despite further optimization required to assess other characteristics 
such as detection limit and selectivity, these methods may represent a major 
breakthrough and initiate the future development of various types of sensors utiliz-
ing the CW-PA technology. 

 

Fig. 1. Schematic view of the PA measurement cell (left), with the two optical excitation 
sequences used to generate the mechanical waves from photothermal effect (right) 

2.1   Frequency Shift (FS) Protocol 

The first protocol developed, called frequency shift (FS), relies on the measure-
ment of the frequency shift at which acoustic resonance occurs when the glucose 
concentration of the sample solution is changed [37,38]. Figure 2 shows a sche-
matic view of the experimental setup required to perform measurements based on 
the FS method.  
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Fig. 2. Schematic view of the experimental setup used to perform FS-based measurements 
of various aqueous sample solutions 

2.1.1   Concept 

As stated above, the CW-PA technique generates standing acoustic waves within 
the cavity (volume with boundaries defined by strong acoustic impedance mis-
match that consequently reflects acoustic energy). At certain frequencies, all the 
contributions will superimpose constructively and enhance the signal amplitude 
significantly. These frequencies depend on two factors: i) the boundary geometry, a 
geometrical factor that directly affects the acoustic wavelength, and ii) the mechan-
ical properties of the sample liquid, all included within the acoustic velocity term. 
As a result, the resonant frequency can be described by the following equation: 

ac

ac
res

vf λ=     (1) 

In some particular cases where the resonant cavity exhibits a simple geometry, 
analytical expressions have been derived to predict the resonant frequencies. With 
a one-dimensional cavity, the acoustic wavelength λac of the mth longitudinal 
mode can be defined as twice the cavity length divided by the integer m. With a 
cylindrical cavity, the analytical expression involves longitudinal as well as azy-
muthal and radial modes [39]. However, Eq. (1) still applies when all the geome-
trical factors within the λac term are included. 

When the glucose concentration of the sample solution is changed, the frequen-
cy at which the resonant occur shifts by a certain quantity Δfres. However, from 
Eq. (1), as long as the geometry remains constant and the same mode is considered 
(peak in the closest vicinity of the previous one), the term λac is constant, whereas 
adding glucose induces a change of the acoustic velocity. The shift of the frequen-
cy then comes exclusively from the acoustic velocity variation: 
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v
f

f Δ=Δ
    (2) 

This protocol then enables one to measure the glucose concentration through its 
effect on the acoustic velocity whatever the cavity geometry, since Eq. (2) doesn't 
involve the acoustic wavelength anymore. 
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impossible from the FS measurement, which is a scalar parameter, to separate the 
effect of glucose concentration change from temperature variations or albumin 
concentration changes. For example, a variation of 1ºC may be misinterpreted as 
an increase of glucose concentration by 0.84 g/dL from the FS measurement only.  
Therefore, the FS method is not sufficient to measure BGLs with satisfactory ac-
curacy without the assumption that only one parameter is changing at a time. 

2.2   Optical Power Balance Shift (OPBS) Protocol 

The FS method relies on the measurement of the frequency shift of the phase sig-
nal. However, as shown in Figs. 4 and 6, the level of amplitude signals also varies 
in a irregular manner, depending on the glucose concentration. This non-trivial 
dependence results from the concomitant effects of several parameters (acoustic 
velocity, heat capacity, thermal expansion coefficient, optical absorption). The 
amplitude signal therefore contains valuable information about the sample solu-
tion characteristics that requires a specific measurement scheme. We then  
proposed the so-called optical power balance shift (OPBS) methodology in  
order to achieve a measurement that depends exclusively on the optical absorption 
coefficients.  

2.2.1   Concept of Dual Differential Wavelength Excitation  

From theoretical considerations, the pressure wave generated by illuminating the 
absorbing medium with an amplitude-modulated light beam depends on many 
parameters, such as the thermal expansion coefficient, acoustic velocity, heat ca-
pacity, optical absorption, and optical power [32,33]. Among these parameters, 
optical absorption is of particular interest because it provides a specific signature 
for every compound,  and selection of the optical wavelength enables one to op-
timize the sensor response to a specific solute (the concept extensively used in 
NIR [42,43] and MIR spectroscopy [44,45] protocols). In the NIR region, water 
provides strong absorption that allows efficient generation of pressure waves by 
means of the photothermal effect. However, despite a concentration in the gram 
per deciliter range, consequently higher than the expected in vivo levels, the rela-
tive absorption of glucose and albumin compounds are several orders of magni-
tude lower than that of water. As a consequence, diluted compounds act as a  
perturbation to the huge background level provided by water solvent. Furthermore, 
glucose and albumin exhibit similar overall absorption spectra with slight differ-
ences at certain wavelengths (Fig. 7(a)). To overcome these two issues, we then 
used an excitation sequence with two optical beams at different wavelengths and 
devised a protocol that provides results equivalent to differential absorption coef-
ficient measurements [Fig. 7(b)]. 

The concept of utilizing two optical wavelengths amplitude-modulated with 
two square waves operating at the same frequency but in opposite phase, was first 
introduced for aqueous glucose measurements based on absorption spectroscopy 
measurements [31]. This technique enables one to perform differential absorption  
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(a) 

 

 
(b) 

 

Fig. 9. Two-step process of the OPBS procedure: (a) measurement of a standard sample 
solution at known concentration, followed by (b) the measurement of sample solution at 
unknown concentration level 
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According to this experimental procedure, only and exclusively the term be-
tween brackets in Eq. (3) plays a role. Unlike the process described elsewhere, 
where the signal level at one fixed DV balance was used [46], the effect of all the 
other parameters such as heat capacity and thermal expansion doesn't interfere 
with OPBS measurements.  

The proposed approach then exhibits the advantages of optical absorption-
based protocols (versatility from the optical wavelengths choice) and differential 
measurement (suppression of background), without the limitation inherent to pure-
ly optical measurement (scattering, light path length extended for improved accu-
racy, but limited by penetration depth).    

2.2.3   Results for the 1382- and 1610-nm Combination 

At the present time, only two LDs are available, leading to only one wavelength 
combination. Figure 10 shows the experimental raw results for glucose aqueous 
solution with concentrations ranging from 0 to 18.6 g/dL. The DV difference on 
the x-axis is arbitrarily defined as DV2-DV1. From a practical point of view, an 
LD's DV cannot exceed a certain threshold in order to operate within the linear 
range. For instance, once DV1 has reached its maximum value, DV2 is decreased 
instead of further increasing DV1. Furthermore, a phase offset of 90 deg. was set 
on the lock-in amplifier so that the phase varied from -90 to 90 deg. with an in-
flexion point at 0 deg. Figure 10(a) exhibits an overall shape consistent with Fig. 
9, and Fig. 10(b) only focuses around the inflexion point of the phase at the vari-
ous concentration. 

The phase exhibits linear behavior locally and enables easy and fast determina-
tion of  the DV balance that corresponds to a 0-phase. On the contrary, the ampli-
tude shows a minimum point, but the higher noise level makes the data processing 
difficult. Despite a remaining shift between the 0-phase and amplitude minimum 
point (unexplained at the present time), we chose to use exclusively the 0-phase 
point for the next results. Figure 11 then gathers all the Δ(DV)|phase=0 for each glu-
cose solution, as well as equivalent results for albumin aqueous solutions at vari-
ous concentration levels, all normalized to water.  

The dependence is more pronounced for glucose. Despite our changing only the 
concentration of one compound at a time, the results are not perfectly aligned and 
the error-bars remain large. In terms of sensor response, we could then evaluate 
the slope between -20 and -27 mV/g/dL for glucose, and between -6 and -12 
mV/g/dL for albumin (solid lines in Fig. 11 for both compounds). However, this 
behavior confirms the tendency expected from Fig. 7(a) with the two optical wa-
velengths used here (response to glucose about 2.41 times higher than the  
response to albumin). Furthermore, both uncertainties resulted from the same ex-
perimental issue about controlling the temperature during the measurement. The 
OPBS approach is also sensitive to temperature due to the temperature depen-
dence of the absorption coefficient [47]. The detection cell containing the liquid  
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medium through acoustic velocity measurements, while the OPBS method senses 
any change of the absorption coefficients at the two optical wavelengths. There-
fore, the two methods exhibit very different characteristics. Table 1 shows the FS 
and OPBS dependence versus three of the main parameters regarding the issue of 
a non-invasive blood glucose sensor: glucose and albumin concentrations, and 
temperature.  

Table 1. Comparison of the FS and OPBS dependence versus glucose concentration, albu-
min concentration, and sample temperature 

 FS method OPBS method 

Glucose 0.19 %/g/dL -20 ~ -27 mV/g/dL 

Albumin 0.15 %/g/dL -6 ~ -12 mV/g/dL 

Temperature 0.16 %/degC 25 mV/degC 

 

With the FS method, the sensitivity to the three parameters is about the same 
order of magnitude and no optimization is possible, since the results directly and 
exclusively depend on the acoustic velocity dependence versus these three pa-
rameters. However, the FS relies on a frequency measurement, which also pro-
vides high sensitivity and accuracy.  

The combination of the two protocols may then be the best solution by bringing 
together the high sensitivity of the FS approach and the high selectivity to glucose 
compound of the OPBS method. 

Regarding the OPBS protocol, the dependence versus the three parameters var-
ies consequently. Furthermore, the method's response can be tuned by changing 
the optical wavelengths so that further optimization towards high sensitivity to one 
specific compound is possible. As a result, OPBS enables compound-selective 
measurements. However, the method relies on amplitude-based measurements, 
which limits its sensitivity due to noise and instability. 

3.2   Creation of Linear System 

From the results in Fig. 11, one can see that temperature fluctuation during the 
measurements makes quite difficult to estimate precisely the sensor response to 
the two compounds. However, the experimental protocol requires an evaluation of 
the frequency shift (FS) prior to any OPBS measurements. For the two FS and 
OPBS measurements performed within minutes from each other (Fig. 12), we can 
then reasonably assume a constant temperature and compound concentration. 
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simultaneously, the results do not really look intuitive when considering exclu-
sively the OPBS method. However, we can compare those results with the spec-
troscopic data from Fig. 7(a): if we consider the slope ratio defined as the response 
to glucose divided by the response to albumin, we get 2.40 compared to the 2.41 
value expected from optical absorbance measurement by calculating (relative 
absorption(λ1) - relative absorption(λ2))Glucose / (relative absorption(λ1) - relative 
absorption(λ2))Albumin). 

3.3   Solution to Multi-parameter Problem 

However, the previously described process is just a demonstration of the concept. 
In real experiments, glucose is the target molecule, and the issue of the increasing 
the number of linearly independent equations will then be resolved by using sev-
eral optical wavelengths combinations in parallel. 

Similarly to the pulse oximetry protocol [48,49], we can extend the approach to 
N optical wavelengths to specifically measure the glucose concentration from an 
environment featuring several parameters varying simultaneously. With N LD 
operating at N different optical wavelengths, it is then possible to obtain N(N-1)/2 
combinations of two optical wavelengths for OPBS measurements. Since the sen-
sitivity to compounds varies as a function of the optical wavelengths, we can now 
get N(N-1)/2 equations versus the identified M unknown parameters. However, all 
these equations are not independent, and only (N-1) can be used to solve the prob-
lem. With the FS measurement at one optical wavelength (any wavelength can be 
used for this measurement), we then have a system including N independent equa-
tions and M unknown parameters. The M unknown parameters, already including 
the glucose and albumin concentrations, as well as temperature, can also be ex-
tended to take into account other compounds or parameters that may vary and 
influence the sensor responses in a detectable way. After fixing M, N can be ad-
justed freely with N ≥ M in order to get a complete system. Nevertheless, while 
the measurement accuracy increases proportionally to N, the sensor response time 
and cost will also increase as a consequence, so that a compromise may be found 
depending on the requirements in terms of accuracy and response time.  

4   Conclusions 

We proposed a novel concept of non-invasive glucose concentration measurement 
based on the CW-PA principle. One the one hand, the FS method provides a 
measurement equivalent to acoustic velocity monitoring, thus taking into account 
several different parameters (such glucose and albumin concentrations, and tem-
perature). Despite having no selectivity to one compound in particular, it also 
enables to correct the frequency shift induced by the change of the acoustic prop-
erties of the medium and therefore provides a system that works with equal  
efficiency whatever the cavity size. On the other hand, the OPBS method is 
equivalent to a differential relative absorption coefficient measurement at the two 
wavelengths used and thus opens the door to optimization/customization based on 
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the excitation wavelength choice. Finally, by combining the FS and OPBS proto-
cols, which rely on different properties of the PA technique, we designed a tunable 
system that can potentially solve complex problems involving many parameters. 
Moreover, the PA detection scheme provides robustness against scattering proper-
ties of tissues. This method then appears suitable for in vivo BGL monitoring, 
where several compounds can bias the measurement of glucose, the primary target 
molecule, and the scattering of tissue cannot be neglected. 

Furthermore, the properties demonstrated by the FS+OPBS method can poten-
tially fulfill the requirements of numerous applications, where the noninvasive 
term may be replaced by other terms such as inline monitoring or contactless 
evaluation. In all cases, the basic idea remains the same: while the sample solution 
is inside a close container that does not allow direct access or contact with the 
liquid, FS+OPBS may provide a viable alternative for remote characterization by 
adapting the wavelengths to the solute/solvent considered, especially when scatter-
ing from the sample solution cannot be neglected. 
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