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Abstract. Monitoring of posture allocations and activities is important for such 
applications as physical activity management, energy expenditure estimation, 
stroke rehabilitation and others. At present, accurate devices rely on multiple sen-
sors distributed on the body and thus may be too obtrusive for everyday use. This 
chapter presents an overview of a novel wearable footwear sensor (SmartShoe), 
which is capable of very accurate recognition of most common postures and activ-
ities while being minimally intrusive to the subject. SmartShoe relies on capturing 
information from patterns of heel acceleration and plantar pressure to differentiate 
weight-bearing and non-weight-bearing activities (such as for example, sitting and 
standing, walking/jogging and cycling). Validation results obtained in several 
studies demonstrate applicability to widely varying populations such as healthy 
individuals and individuals post-stroke, while achieving high (95%-98%) average 
accuracy of posture and activity classification, high (root-mean-square error of 
0.69 METs) accuracy of energy expenditure prediction,  and reliable (error of 2.6–
18.6%) identification of temporal gait parameters. High accuracy and minimal 
intrusiveness of SmartShoe should enable its use in a wide range of research and 
clinical applications. 

Keywords: smartshoe, energy expenditure prediction, temporal gait parameters. 

1   Introduction 

Monitoring of Physical Activity (PA), Energy Expenditure (EE) and human gait is 
used in a variety of clinical and research applications. For example, measuring of 
daily PA and EE has been widely used in obesity research. Many adults worldwide 
are overweight or obese [1].  Obesity is due to a sustained positive energy balance 
(energy intake > energy expenditure) and is typically coupled with low levels of 
physical activity (i.e. sedentary lifestyles) [2].  Weight management programs 
designed to prevent and treat obesity recommend increased energy expenditure via 
lifestyle alterations that increase physical activity levels.  There is also evidence 
that sedentary posture allocations may be related to obesity.  For example, [3] 
reported that obese individuals spent more time seated and less time ambulating 
than lean individuals. Overall, obesity researchers are constantly looking for better 
ways to quantify PA and EE of individuals in their natural environment.  
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Physical Activity Classification (PAC) and gait monitoring also have direct ap-
plications in post-stroke rehabilitation. People who experience a stroke are less 
active than healthy individuals and many of them require assistance to walk [4].  
Even individuals with relatively good recovery of walking ability are often inac-
tive and may not be able to effectively access their community. This inactivity 
leads to further deconditioning, which in turn plays a role in the development of 
secondary complications and may increase the risk of another stroke and an in-
creased dependence in activities of daily living. Common goals of stroke  
survivors’ are to improve their physical activity level and social participation [5]. 
Monitoring of physical activity of during post-stroke rehabilitation may provide 
important insight into the effectiveness of rehabilitation interventions. Monitoring 
of gait and comparing the performance of the affected limb versus the unaffected 
one during walking provide important information on the symmetry of the per-
son’s walking pattern.  These measures provide an assessment of motor recovery 
after stroke [6]. 

Accelerometry has emerged as one of the most popular approaches to PA moni-
toring and EE prediction [7–10]. Although useful, single accelerometers have one 
major drawback in that they are not very accurate in recognition of static postures 
and thus tend to significantly underestimate the energy cost of such postures (e.g., 
household tasks) and non-weight-bearing activities (e.g. cycling).  As a result, 
they fail to explain a considerable portion of energy expenditure variability in 
daily living tasks. Accelerometers also do not behave well in estimation of gait in 
individuals with neurological disorders due to the disease-related changes in the 
gait patterns. 

One strategy to improve PA, EE and gait estimation has been to use multiple 
sensors. For example, wrist, upper arm, hip, ankle and thigh accelerometers were 
used in [11]; chest and wrist accelerometers were used in [12];  9 different sensor 
locations on the  body were used in [13]. Such multi-sensor systems typically have 
very limited practical applicability due to high intrusiveness and high subject bur-
den. Several attempts have been made to recognize postures and activities using 
multiple sensor modalities concentrated in a single location on the body. In [14] 
authors achieved 90-95% accuracy of recognizing 8-10 various activities from a 
single unit including 8 different sensors: accelerometer, audio, light, high-
frequency light, barometric pressure, humidity, temperature and compass. Howev-
er, not all activities are recognized equally well by the current devices. For  
example, [12] did not differentiate between sitting and standing, grouping these 
postures together. Other studies [13] reported challenges in recognizing such ac-
tivities as cycling and ascending and descending stairs. Overall, reliable recogni-
tion of static postures and typical daily activities, energy expenditure and gait from 
a single location of the body remains a challenge. 

Shoe-based sensors have been used in several studies with the  focus of these 
efforts to detect gait characteristics rather than classify activity or estimate energy 
expenditure [9], [15], [16].  An array of 32 plantar pressure sensors was used in 
[17] to classify locomotion (walking, running and up/down stairs) with reported 
accuracies of ~98%.  A study reported in [18] used a foot-contact pedometer  
to estimate daily energy expenditure but did not attempt to classify postures or 
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specific activities with the device.  These results suggest that shoe-based sensors 
have the potential to accurately classify posture/activity and estimate energy ex-
penditure, while also being minimally obtrusive. 

This chapter presents the SmartShoe – a sensor system integrated into conven-
tional footwear and its applications for monitoring of PA, EE and gait, which has 
been developed in the Laboratory of Ambient and Wearable Systems at the Uni-
versity of Alabama. The chapter is organized as follows. First, the hardware of 
SmartShoe sensor system is presented. Second, two human studies, one on healthy 
and one on individuals recovering after stroke are presented as fundamental data-
sets for development of the classification and estimation models. Third, a method 
for PA classification both in healthy and post-stroke individuals is presented. 
Fourth, a method for measuring gait parameters in post-stroke and healthy indi-
viduals is described. Fifth, a branched approach for accurate prediction of EE  
from SmartShoe data is presented. Finally, the concluding remarks summarize the 
findings. 

2   Sensor System 

SmartShoe sensor system combines a 3D accelerometer and several pressure sen-
sors placed in the insole of conventional footwear. The choice of sensing modali-
ties and placement in the insole serves several purposes.  

First, in most cultures people wear shoes or equivalent footwear throughout the 
day, every day. SmartShoe presents zero additional burden to wear in comparison 
to conventional activity monitors that require additional effort to attach to wrist, 
waist, hips, chest, etc. From research perspective, reducing the wear burden im-
proves compliance and reduces the observation effect where subjects change be-
haviour in response to monitoring. From consumer perspective, reducing wear 
burden enhances usability of the product and improves chances for long-term use. 

Second, the body support in many postures and activities comes fully or partial-
ly through feet. Thus, monitoring plantar pressure can tell volumes about postures 
and activities of a person. Specifically, use of pressure sensors can differentiate 
between weight-bearing and non-weight-bearing postures and activities such as 
sitting and standing, walking and cycling that many accelerometer-based PA mon-
itors fail to distinguish.  

Third, motion of the feet is characteristic to different activities. For example, 
the trajectory of a foot during cycling is substantially different from trajectory 
during walking. Using an accelerometer provides additional information about the 
activity being performed as well as delivers a metric of intensity of motion in a 
given activity. 

Fourth, positioning of the sensor system in footwear enables monitoring of sev-
eral important human characteristics such as gait parameters (for example, very 
important characteristic of rehabilitation progress for stroke patients) or body 
weight. Overall, the sensor system of SmartShoe provides a highly informative 
data stream that is capable of extensive characterization of human PA. 
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Over the years, several variations of the SmartShoe design have been assem-
bled and tested in human studies. The following description refers to one of the 
most recent designs used in [19], [20]. Each shoe incorporates five pressure-
sensitive resistors (0.5” FSR, Interlink Electronics, Camarillo, CA, USA) embed-
ded in a flexible insole and positioned under the critical points of contact: heel, 
1st, 3rd and 5th metatarsal heads and the great toe (hallux) – total of 10 sensors 
from the two shoes. In addition to pressure sensors, a 3-dimensional ±3g MEMS 
accelerometer (ADXL335, Analog Devices, Norwood, MA, USA) was attached to 
the heel of each shoe.  

 

Fig. 1. SmartShoe device: (a) Overall view of the shoe device with attached accelerometer, 
battery and power switch on the back; (b) Pressure-sensitive insole with 5 pressure sensors: 
heel (1), 3rd metatarsal head (2), 1st metatarsal head (3), 5th metatarsal head (4), hallux (5); 
(c) The wireless electronics board 

All sensors were sampled at 400Hz by a microcontroller from MSP430 series 
(MSP430, Texas Instruments, Dallas, TX, USA), averaged to effective rate of 
25Hz and sent to a Windows Mobile smart phone via a Bluetooth link imple-
mented by using a Serial Port Profile communication module (RN-41, Roving 
Networks, Los Gatos, CA, USA). The phone contained custom-designed software 
that performed time synchronization of the data coming from the shoes and log-
ging of the data as text files [21]. 

3   Human Studies 

Since SmartShoe’s primary purpose is monitoring of humans in their everyday 
life, human studies are necessary to develop and validate computer algorithms that 
process sensor information. The methods presented in this chapter have been de-
veloped in two human subject experiments, which were conducted at the Clarkson 
University, Postdam, NY, USA. All studies were approved by the Institutional 
Review Board and informed consent was obtained from all subjects participating 
in the studies. 

In the first human study (Human Study 1, HS1) data collection was performed 
on a group of 16 human subjects, 8 males and 8 females (Table 1) with stable 
weight (<2 kg weight fluctuation) over the previous 6 months [19], [22].  
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Individuals were healthy, non-smokers who were sedentary to moderately active  
(< 2-3 bouts of exercise/wk or participation in any sporting activities < 3 hr/wk). 
Participants reported to the laboratory in a fasted state (>4 hours) for a single three 
hour visit.  Each participant was asked to perform a variety of postures/activities 
while wearing a portable metabolic mask system and the appropriately sized 
SmartShoe.  The postures included sitting and standing and the activities included 
walking, jogging, stair ascent/descent and cycling (Table 2).  Each posture/activity 
trial was six minutes in duration and subjects were allowed five minutes rest be-
tween trials.  Trial order was not randomized.  Metabolic data was not collected 
during stair ascent/descent, as this activity was performed in two-story stairwell 
which did not allow establishment of metabolic steady-state.  Participants were not 
restricted in the way they assumed postures and or performed activities. Standing 
did not require any specialized equipment; a chair with a rigid back was used for 
sitting; walking/jogging was performed on a motorized treadmill (Gait Trainer 1, 
Biodex, Shirley, NY); cycling utilized a bicycle ergometer (Erogomedic 828E, 
Monark, Sweden).  During the fidgeting trials, subjects were allowed to make 
small, normal leg movements (e.g. crossing legs or shifting weight). To determine 
metabolic rate and associated EE during each trial, we measured the rates of oxy-
gen consumption (VO2) and carbon dioxide production (VCO2) using a portable 
open circuit respirometry system (Oxycon Mobile, Viasys, Yorba Linda, CA).  
Before the experimental trials, the system was calibrated with known gas concen-
trations and volumes.  For each trial, the subjects were allowed four minutes to 
reach steady state (no significant increase in VO2 during the final two minutes and 
a respiratory exchange ratio (RER) <1.0) and calculated the average VO2 and 
VCO2 (ml/sec) during minutes 4-6 of each trial.  We calculated gross metabolic 
rate (W/kg) from VO2 and VCO2 using a standard equation [23].  Energy expendi-
ture was then calculated from VO2 and RER. 

The subjects also performed two experiments where they were asked to walk 
over a GAITRite® commercial test system (CIR Systems, Inc.). This commercial 
system provides reliable automated means of measuring spatial and temporal pa-
rameters of gait consisting on an electronic walkway with a useful area of 61x366 
cm (24x144 inches) connected to a Windows based PC. 

Table 1. Subject characteristics of HS1 

 Men (N=8) Women (N=8) 
Mean ± SD Range Mean ± SD Range 

Weight, kg 
Height, in. 
BMI, kg·m-2 

Age, yr 
Shoe size, US 

86.8 ± 20.0 
69.3 ± 1.8 
28.0 ± 5.9 
25.6 ± 8.6 

     10.3 ± 0.6 

59.0-119.8 
67.0-72.0 
18.9-35.8 

    18-44 
     9.5-11.0 

66.9 ± 16.8 
64.3 ± 2.8 
25.4 ± 7.3 
24.4 ± 3.9 

      7.9 ± 0.7 

48.6-100.9 
61.0-70.0 
18.1-39.4 
18-29 

      7.0-9.0 
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Table 2. Protocol of HS1 

Trial Description Assigned Posture/Activity Group 
1 
2 

Sit quietly
Stand quietly 

Sit 
Stand 

 
3 
4 
5 
6 

Level Treadmill Walking/Jogging 
0.67 m/s (1.5 mph) 
1.11 m/s (2.5 mph) 
1.56 m/s (3.5 mph) 
2.00 m/s (4.5 mph) - jogging 

 
Walk/Jog 
Walk/Jog 
Walk/Jog 
Walk/Jog 

7 Ascend/Descend stairs*  
8 
9 

Sit with fidgeting 
Stand with fidgeting 

Sit 
Stand 

 
10 
11 
12 

Treadmill Walking 
1.11 m/s +1.5% grade  
1.11 m/s -1.5% grade 
1.11 m/s with 10% of body weight held in 

bags (5% held by each hand) 

 
Walk/Jog 
Walk/Jog 
Walk/Jog 

 

 
13 
14 

Cycling:  
50W, 50 rpm 

      100W, 75rpm 

 
Cycle 
Cycle 

* Metabolic data not collected during stair ascent/descent 

In the second human study (Human Study 2, HS2) data was collected from sub-
jects with stroke who had completed their rehabilitation [20]. Inclusion criteria 
were: at least three months post stroke, able to walk in their home and/or communi-
ty without physical assistance, able to stand without physical assistance for >60 
seconds, able to transition from sitting to standing from a standard height chair 
without physical assistance, and Mini Mental State Exam score >=24.  Subjects 
were excluded if they had some other health condition, which affected their ability 
to stand or walk independently.  Subject characteristics are listed in Table 3. All 
subjects wore appropriately sized SmartShoe during the experiment. Sensor data 
were collected in three main postures: sitting, standing, and walking.  Within the 
sitting posture there were four positions that the subjects assumed: self-selected 
comfortable position, sitting with both feet on the floor, sitting with legs crossed so 
that one foot was on the floor and one foot off the floor, and reaching forward 
while sitting.  In standing there were also four positions the subjects assumed: static 
standing in a comfortable position, standing while reaching towards the unaffected 
side, standing while reaching towards the affected side, and standing while  
reaching forward.  Data was collected in four different positions within sitting and 
standing in order to better mimic real life conditions. Subjects walked under two 
conditions: self-selected, comfortable pace and fastest, safe pace.  Subjects walked 
continuously over a level surface for 1 minute.  Each position and walking condi-
tion was performed 4 times.  During the data collection process all subjects were 
supervised by a physical therapist for safety.  The order in which each position trial 
was performed was randomized. The degree of motor and mobility function of the 
subjects was tested by the following clinical tests: Berg Balance Scale, lower ex-
tremity motor section of the Fugl Meyer, and Stroke Impact Scale 16. 
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Table 3. Subject characteristics of HS2 

Age (years) 60.1 (9.9) 

Time since stroke (months) 51.7 (45.1) 

Berg Balance Scale 44.3 (11.7) 

Fugl Meyer LE motor score 25.8 (5.9) 

Self-selected gait speed (m/s) 0.69 (0.35) 

Stroke Impact Scale 16  65.4 (22.0) 

Mini Mental State Exam  28.7 (2.1) 

Ankle Foot Orthotic Use (yes:no) 2:6 

 
Post-stroke subjects were also asked to walk over GAITRite® in two different 

manners: walking comfortably and walking as fast as they could. Both of these 
experiments were repeated four times.  

It should be noted that the sensor hardware on SmartShoe devices in HS1 and 
HS2 was slightly different. Specifically, the shoes in HS1 were equipped with 
currently discontinued accelerometer LIS3L02AS4 and the wireless connection 
was performed over WISAN link [24] rather than Bluetooth. The difference in 
type of used accelerometer does not interfere with general principle of operation 
of SmartShoe, but due to differences in calibration does allow use of models de-
veloped in HS1 for subjects in HS2. 

4   Models for Posture and Activity Recognition 

Posture and activity recognition models were developed for subjects participating 
in HS1 and HS2. In both cases the developed models were group models that 
could be applied to any subject without individual calibration. The goal was de-
velop PAC models for healthy individuals and for individuals post-stroke and 
show that SmartShoe can reliably perform classification in healthy individuals and 
individuals with neurological impairment affecting lower extremity. 

Before training of classification models, minimal pre-processing consisting of 
feature vector forming and normalization was applied to the sensor data. Feature 
vectors were formed to represent a time period (epoch) of two seconds in duration. 
Time histories of pressure and acceleration from both shoes were used as follows. 
A single sample of data from a shoe is represented by vector  S AAP, AML, ASI, PH, P M, P M, P M, PHX , 

where AAP is anterior-posterior acceleration, AML is medial-lateral acceleration, ASI is superior-inferior acceleration, PH is heel pressure, PM , PM , PM  are pressures 
from 5th, 3rd and 1st metatarsal head sensors, respectively, and PHX is pressure 
from the hallux sensor. The time series of data from both shoes were combined as 
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where SL, SR are the data samples from the left and right shoe, respectively, and M 
is the length of time series. Depending on sensor configuration, the data samples 
either included all or just some of the sensor signals from f .The size of the feature 
vectors with all sensors included consisted of 800 values (2 shoes x 8 sensors x 25 
samples per second x 2 seconds = 800 samples). The features vectors from all 
epochs in the experiment were combined in a feature matrix ,  and all columns 
of the matrix were normalized to the scale of [0,1]. Normalization used max val-
ues of acceleration and pressure acquired over all subjects and experiments. 

The pairs of feature vectors and class labels { , , } were presented to a su-
pervised classification algorithm for training and validation. The labels  represented a distinct class {1-sitting, 2-standing, 3-walk/jog, 4-ascending 
stairs, 5-descending stairs, 6-cycling}. The selected classifier was a variation of 
Support Vector Machine (SVM) implemented as a Matlab package (libSVM, 
[25]). The SVM classifier utilized Gaussian kernel (exp .) The 
best values of parameter C=10 (cost of misclassification) and 0.0156 (width 
of Gaussian kernel) were found in grid search procedure varying C as 10 , 1, … ,3  and  as 2 , 8, … , 2 . 

A four-fold holdout cross-validation procedure was used to develop six-class 
(‘sit’, ’stand’, ‘walk/jog’, ‘cycle’, ‘ascend stairs’, ‘descend stairs’) prediction 
models for HS1. In this procedure three quarters of the data was used to train the 
SVM classifier.  The remaining one-quarter of the data was tested against the 
SVM classifier to determine accuracy. The folds were organized by including the 
full dataset from each individual subject that belonged to a fold. Data from the 
same subject were never split between training and validation sets.  

Due to a smaller dataset, a leave-one-out cross validation procedure was used to 
develop three-class (‘sit’, ‘stand’, ‘walk’) PAC models for HS2.  All the data in 
one posture for all the subjects except one were used to train the group SVM clas-
sifier.  The data from the one subject that was not used to create the SVM classifi-
er was validated for accuracy using the group SVM classifier created by the data 
from the other subjects.  This process was repeated such that the acceleration and 
pressure data from each subject was validated for accuracy against the group SVM 
classifiers created from all the other subjects combined.   

Accuracy of PAC models in both cases were estimated by building cumulative 
confusion matrices that combine validation results from all subjects in the popula-
tion. Postures predicted by the SVM classifier were compared against actual post-
ures.  The rows of the table correspond to actual postures/activities assumed by 
subjects and columns correspond to predicted postures/activities made by the clas-
sifier from the sensor data.  Results from four folds or leave-one-out validation 
were averaged for reporting. The average classification precision was defined as 
the ratio of the sum of diagonal elements of the confusion matrix (True Positives) 
to the sum of all elements of the confusion matrix (True Positives + False  
Positives). 

Figure 2 shows 6-class average validation accuracy obtained by the group mod-
el obtained for healthy individuals in HS1. The population average accuracy for a 
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Fig. 4. Population-cumulative confusion matrix for 3-class PA recognition for individuals 
post-stroke (HS2) 

SmartShoe accurately classify PA both of healthy and individuals with neurologi-
cal disorders. 

Overall, SmartShoe in these experiments achieved greater recognition rates 
than previous experiments that used similar postures and activities in healthy indi-
viduals. For example, [26] demonstrated 88% percent accuracy with 6 postures 
and activities and [7] reported accuracies of 87% (cycling) to 100% (running) 
using a single hip-mounted accelerometer. SmartShoe also matched or outper-
formed other single-location methodologies such as [14] which reported a 95% 
accuracy across 8 postures and activities. SmartShoe also demonstrated excellent 
recognition rates for identifying basic postures (sitting, standing, and walking) in 
people with stroke. SmartShoe is unique compared to other accelerometer-based 
sensors that have been studied in people with stroke to detect movement as they 
required multiple sensor placements that may not be comfortable or convenient  
for patients to wear [10], [27], [28]. While further tests and development of 
SmartShoe system are needed for large-scale validation, these results show high 
accuracy of PA monitoring across different population indicating robustness of the 
proposed approach. 

5   Detection of Temporal Gait Parameters 

Algorithms for extracting gait parameters were developed to show that SmartShoe 
is capable of accurate estimation of temporal gait parameters both in healthy and 
in individuals post-stroke and thus can be used in place of a stationary gait lab that 
is typically used to assess gait of individuals. 

Data obtained from the pressure sensors was used to estimate the following 
temporal gait parameters: cadence, step time, cycle time, percentage of gait cycle 
in swing for each lower extremity, percentage of gait cycle in stance for each low-
er extremity, percentage of gait cycle in single limb support for each lower  
extremity, and percentage of gait cycle in double limb support for each lower ex-
tremity. The algorithm for estimation of gait parameters was based purely on pres-
sure signals as methods based on inertial sensors may present significant  
differences between unaffected and affected limb in subjects with gait abnormali-
ties due to stroke and significant individual traits [27]. 
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The first step in estimation of gait parameters is detection of Heel-Strike (H) 
and Toe-Off (T) events as these events define contact of the foot with the ground. 
To detect H and T events, for each foot the sum of all 5 pressure sensors was cal-
culated as: ∑   

Next, an adaptive threshold τ was calculated by defining the average maxima and 
minima of the sumFSR signal. For the sumFSR signal, all the local maxima and 
local minima were obtained. The average of this data points defined maxima and 
minima thresholds as: 

  ∑ ;  ∑ ,  
where , for a=1,2,…,k, are the local maxima data points found and , 
b=1,2,…,l are the local minima data points found. The difference between   and  defined the threshold used to obtain the H and T: 

 ,  

where α=0.1725 was a free parameter that resulted in the highest accuracy of rec-
ognition of temporal gait parameters. The intersection points of the threshold τ 
with the sumFSR signal correspond to H and T events (Figure 5).  

 

Fig. 5. Heel-strike and Toe-off detection for unaffected (top) and affected (bottom) lower 
extremity of a post-stroke subject from HS2 

To discriminate detection of H from T, a simple criterion was met: immediate 
points located before a local minima were considered T and those located imme-
diately after a local minima were considered H. After all H and T points were 
identified for both feet, they were used to obtain the corresponding temporal gait 
parameters (Table 4). 
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Table 4. Temporal gait parameters calculation from detected H and T events. The second 
letter indicates the foot (L for left and R for right). 

Parameter Left Right 

Gait cycle 
time iii HLHLGTL −= +1

 jjj HRHRGTR −= +1
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Sensor data from SmartShoe collected in HS1 and HS2 (healthy and post-stroke 

subjects, respectively), were collected and processed by the algorithm described 
above. The temporal gait parameters computed from SmartShoe sensors were 
compared to the data collected with the GAITRite® system. These results are 
shown in the Tables 5 and 6. 

For healthy subjects,  the statistical t-test using a confidence value of 95% was 
performed to compare data recorded with the GAITRite® system and the shoe-
based wearable sensor; no significant difference in the mean across all subjects for 
cadence (p>0.35) and for parameters calculated for each lower extremity (p>0.18) 
was observed. 

Results from the t-test statistical test with a 95% confidence for post-stroke 
subjects also did not show significant difference between GAITRite® and the 
shoe-based wearable sensor for cadence (p>0.29) and for parameters calculated 
for each lower extremity (p>0.51). 

The relative difference between SmartShoe estimates related to the GAITRite® 
results was calculated for both types of subjects as:  

Difference %= |Shoe– Gaitrite| / Gaitrite x 100, 

where ‘Gaitrite’ represents the GAITRite® reported gait parameters used as the 
gold standard and ‘Shoe’ represents the gait parameters obtained from the shoe-
based wearable sensor.  Table 7 shows the relative error obtained for the healthy 
subjects. Table 8 shows relative error obtained for subjects post-stroke, separated 
by type of experiment, e.g. walking comfortable and walking fast. 
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Table 5. Comparison of temporal gait parameters measured by SmartShoe and GAITRite® 
system for the healthy individuals in HS1 

 Healthy Subjects 

 GAITRite® SmartShoe 

 Mean 95% CI Mean  95% CI 

Cadente (Step/sec) 1.31 1.20 1.42 1.24 1.13 1.35 

 Left foot 

 GAITRite® SmartShoe 

 Mean        95% CI Mean        95% CI 

Step time (Sec) 0.59 0.56 0.63 0.63 0.58 0.69 

Cycle time (Sec) 1.17 1.06 1.28 1.17 1.07 1.28 

Swing % 35.65 32.81 38.49 37.58 34.52 40.64 

Stance % 60.77 56.07 65.47 59.17 54.54 63.80 

Single support % 35.77 32.90 38.64 36.27 33.37 39.17 

Double support % 24.75 22.32 27.18 22.58 20.11 25.05 

 Right foot 

  GAITRite®        SmartShoe 

 Mean        95% CI Mean  95% CI 

Step time (Sec) 0.61 0.58 0.64 0.61 0.58 0.65 

Cycle time (Sec) 1.16 1.06 1.27 1.21 1.14 1.28 

Swing % 36.01 33.10 38.92 37.18 36.18 38.18 

Stance % 60.43 55.73 65.12 62.82 61.83 63.82 

Single support % 35.89 33.00 38.77 37.07 36.13 38.02 

Double support % 25.10 22.68 27.52 26.06 24.53 27.59 

 
These results indicate that SmartShoe sensors were able to accurately identify 

temporal aspects of the gait cycle in both healthy people and individuals post-
stroke. The relative difference from GAITRite® for these temporal aspects of the 
gait cycle, except for step time, were comparable to the error in other acceleration 
and pressure based methods of determining gait parameters [27]. Computation of 
temporal gait parameters using only pressure signals was used since pressure mea-
surements from the insole of a shoe involve a more direct representation of  
the walking behavior. When using accelerometers the signal tends to be noisy 
since acceleration is the derivative of velocity and involves higher frequency 
components [9].  
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Table 6. Comparison of temporal gait parameters measured by SmartShoe and GAITRite® 
system for the individuals post-stroke (HS2) 

 Subjects post-stroke 

 GAITRite® SmartShoe 

 Mean    95% CI Mean       95% CI 

Cadente (Step/sec) 1.07 0.95 1.18 1.00 0.92 1.07 

 Affected Lower Extremity 

 GAITRite® SmartShoe 

 Mean 95% CI Mean  95% CI 

Step time (Sec) 0.67 0.59 0.74 0.65 0.59 0.71 

Cycle time (Sec) 1.34 1.25 1.44 1.37 1.26 1.48 

Swing % 32.80 30.58 35.02 33.73 31.67 35.80 

Stance % 67.20 64.98 69.42 66.88 64.79 68.98 

Single support % 34.17 32.36 35.97 34.66 32.74 36.59 

Double support % 32.82 29.94 35.71 31.60 29.17 34.03 

 Unaffected Lower Extremity 

 GAITRite® SmartShoe 

 Mean 95% CI Mean  95% CI 

Step time (Sec) 0.68 0.61 0.74 0.69 0.62 0.76 

Cycle time (Sec) 1.34 1.24 1.44 1.37 1.25 1.48 

Swing % 34.22 32.38 36.06 34.26 32.18 36.35 

Stance % 65.79 63.95 67.62 65.75 63.66 67.84 

Single support % 32.88 30.61 35.14 32.08 29.85 34.31 

Double support % 33.26 30.42 36.11 33.99 30.78 37.21 

Table 7. Relative difference between SmartShoe and GAITRite® estimates (healthy sub-
jects, HS1) 

 Healthy subjects  

Parameter 
Relative Difference 

% 95% CI 

Cadence 10.4 8.4 12.5 

Step time (Sec) 18.4 14.8 22.1 

Cycle time (Sec) 3.1 2.4 3.9 

Swing % 6.4 5.3 7.4 

Stance % 3.6 2.9 4.4 

Single support % 5.5 4.3 6.7 

Double support % 10.9 8.3 13.6 
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Table 8. Relative difference between SmartShoe and GAITRite® estimates (post-stroke 
subjects, HS2) 

 Comfortable Walking Fast Walking 

Parameter 
Relative Difference 

% 95% CI 
Relative 

Difference % 
95% CI 

Cadence 9.5 5.2 13.8 8.8 4.8 12.8 

Step time 18.67 10.2 27.2 15.4 11.1 19.7 

cycle time 2.70 1.6 3.8 2.6 1.7 3.4 

swing % 8.56 5.9 11.2 10.7 7.8 13.7 

stance % 3.37 2.7 4.0 5.2 3.7 6.8 

S support % 7.78 5.3 10.3 9.9 7.1 12.6 

D support % 10.3 8.3 12.2 12.4 9.5 15.3 

As discussed in the literature, with the use of gyroscopes it is possible to esti-
mate spatial gait parameters in addition to temporal parameters as long as its axis 
is parallel to the mediolateral axis [29]. However, it is important to notice that the 
use of gyroscopes require more sophisticated techniques for Heel-strike and Toe-
off detection, i.e., wavelet transform, finite-impulse response, etc.,  since gait 
events are transitory signals that cannot be properly enhanced by simple tradition-
al signal processing. Also, gyroscopes are more sensitive to temperature and me-
chanical shock that may be significant in non-laboratory conditions. Thus, use of 
pressure information in SmartShoe provides a simple and reliable way to estimate 
gait parameters.  

6   Estimation of Caloric Energy Expernditure 

Being capable of differentiating between weight-bearing and non-weight bearing 
activities, SmartShoe is capable of accurate energy expenditure estimation by 
reducing prediction error in sedentary postures (for example, sitting vs standing) 
and some activities (walking/jogging vs cycling). Presented below is a methodol-
ogy for estimating EE of healthy individuals from HS1.  

The EE estimation model was constructed as a group model: the data used for 
training were pooled from several subjects and such model was then tested on the 
validation set which included data from subject(s) that were not in the training set. 
The EE model was by branched activity (“Sit”, “Stand”, “Walk”, “Cycle”) where 
activity prediction was performed using the SVM classifier from Section 4 and 
each activity (branch) had its own regression for predicting EE (Figure 6). To 
match time resolution of the system used measure EE during the experiments, EE 
estimation was based on the sensor data collected during 1 minute intervals in 
which subjects were in metabolic steady state (minutes 4-6 of each trial of HS1). 
Each one minute recording resulted in approximately 1500 (25Hz·60s) points of 
pressure and acceleration data per channel. For the 16 subjects who participated in 
the study there were a total of 208 such recordings. 
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Fig. 6. Branched approach to EE estimation from SmartShoe sensors 

The following data were available for each recording: 

• response variable: energy expenditure, EE, kcal·min-1; 
• anthropometric measurements (weight, height, BMI, age, gender, shoe 

size); 
• triaxial accelerometer signals: superior-inferior acceleration (ASI), medi-

al-lateral acceleration (AML), anterior-posterior acceleration(AAP);   
• pressure sensors signals: heel (PH), 3rd meta (PM3), 1

st meta (PM1), 5
th meta 

(PM5), and hallux (PHL); 

Accelerometer and pressure sensors signals expressed in ADC units (as digitized 
by a 12-bit analog-to-digital converter) were preprocessed to extract meaningful 
metrics to be used as predictors for the model. For each sensor all of the  
following metrics were extracted and tested for the inclusion into each model as 
predictors:  

• coefficient of variation (cv);  
• standard deviation (std);  
• number of “zero crossings” (zc), i.e. number of times the signal crosses 

its median normalized by the signal's length;  
• entropy H of the distribution X of signal values (ent) computed as:  

H(X) = – Σ pk log pk , where pk is the relative frequency of values fallen 
into the k-th interval (out of 20 equally sized intervals) in the sample dis-
tribution of signal values.  

These metrics were selected for the following reasons. Coefficient of variation and 
standard deviation of a signal should indicate the amount of motion produced 
during recording. Number of median crossings is an indicator of the frequency of 
changes in the signal, which is important to identify the intensity of motion (like  
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speed of walking). Entropy reflects the distribution of the signal across the range  
of its values and is a valuable predictor for walking due to the fact that as speed of  
walking increases the time of feet ground contact decreases relative to the swing 
time and, thus, signal values become more uniformly distributed across the range, 
leading to an increased entropy. These metrics were used as possible predictors for 
the ordinary least squares linear regression. The transformed predictors (log, in-
verse and square root) and interactions (as products of 2 or more candidate predic-
tors) were also considered as separate linear terms within regression. A separate 
model was constructed for each type posture/activity: “Sit”, “Stand”, “Walk” and 
“Cycle”. The selection of the most significant set of predictors was performed 
using the forward selection procedure. “Leave-one-out” approach was used for 
cross-validation when training and predicting the EE for each type of activity for 
every subject. For every left out subject all of the data related to this subject were 
removed from the training set for each model. Model (coefficients) computed 
using the rest of the subjects was then used to predict the EE for all trials of the 
left out subject. The best set of predictors had to provide the best fit (by producing 
the maximum adjusted coefficient of determination, R2

adj and the minimum 
Akaike Information Criterion, AIC) in the training step and the best predictive 
performance (the minimum Mean Squared Error, MSE and the minimum Mean 
Absolute Error, MAE ) in the validation step. 

Two models were built using the described approach. First model, BACC-PS 
included metrics derived from signals from all shoe sensors. The second model, 
BACC did not include metrics derived from pressure sensors in the forward selec-
tion process. Comparison of BACC-PS and BACC models is performed to eva-
luate impact of pressure sensors on accuracy of EE estimation in SmartShoe.  

Measured and predicted energy expenditure values in kcal·min-1 for each expe-
riment were then converted to METs by representing the energy expenditure for 
any given epoch as a multiple of resting energy expenditure. Energy expenditure 
during quiet sitting was used as a valid estimate of resting metabolic rate for each 
subject. This conversion was performed to enable direct comparison of results 
obtained by SmartShoe with those that have been recently published [8], [30], 
[31]. Tables 9 and 10 show the regression coefficients obtained for EE estimation 
model for BACC-PS and BACC models, respectively. Per-minute error (Root-
Mean-Square Error, RMSE) for BACC-PS and BACC models is shown in Table 
11. Aggregated error of 0.69 METS for BACC-PS model that includes pressure 
sensor data is lower than 0.78 METS error for BACC model that uses only accele-
rometer signals. Figure 7 shows Bland-Altman plots constructed for both EE, 
kcal•min-1 and EE, METs prediction) for both models. The common characteristic 
for both models is that the accuracy of prediction is slightly better for small than 
for large EE values (i.e. better accuracy for sitting and standing). 
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Table 9. Regression coefficients in the BACC-PS model 

Branch model Predictors, units Average values of 
coefficients 

CV of  
coefficients 

Sit <Intercept> 
Weight, kg 

log(BMI), log(kg·m-2) 
log(ASI.CV)  

 

   5.2862 
    0.0352 
   -1.7594 
    0.1331 

   0.0687 
    0.0504 
   -0.0854 
    0.0550 

Stand <Intercept> 
Weight, kg 

log(BMI), log(kg·m-2) 
PH.STD ·PM3.STD ·PM1.STD·PM5.STD, (ADC units) 

 

   4.5758 
    0.0364 
   -1.8339 
2.04·10-12 

   0.1148 
    0.0580 
   -0.1147 
    0.0452 

Walk <Intercept> 
Weight, kg 

log(BMI), log(kg·m-2) 
PM1.ZC·PM5.ZC   

AAP.STD, ADC units  
ASI.ENT·AML.ENT·AAP.ENT 

 

0.8406 
    0.0745 
   -2.0513 
  277.0277 
    0.0001 
    0.3542 

0.9662 
    0.0387 
   -0.1431 
    0.1246 
    2.3021 
    0.0805 

Cycle <Intercept> 
Weight, kg 

log(BMI), log(kg·m-2) 
ASI.STD, ADC units 

PM1.STD·PM5.STD, (ADC units) 
AAP.ENT 

-2.7295 
    0.0770 
   -1.4837 
    0.0014 
    8.7·10-6 
    1.9431 

-0.6184 
    0.1067 
   -0.4172 
    0.3445 
    0.1069 
    0.1685 

 

Fig. 7. Bland-Altman plots for BACC-PS (a) and BACC (b) models 
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Table 10. Regression coefficients in the BACC model 

Branch model Predictors, units Average values 
of coefficients CV of coefficients 

Sit <Intercept> 
Weight, kg 

log(BMI), log(kg·m-2) 
log(ASI.CV) 

 

5.2862 
    0.0352 
   -1.7594 
    0.1331 

  0.0687 
    0.0504 
   -0.0854 
    0.0550 

Stand <Intercept> 
Weight, kg 

log(BMI), log(kg·m-2) 
log(AML.CV), ADC units 

 

   6.5636 
    0.0418 
   -2.2433 
    0.1530 

    0.0713 
    0.0525 
   -0.0875 
    0.0513 

Walk <Intercept> 
Weight, kg 

log(BMI), log(kg·m-2) 
AAP.STD, ADC units  

AAP.ENT·AML.ENT·ASI.ENT 
 

  1.4050 
    0.0798 
   -2.7433 
    0.0012 
    0.5812 

   0.5644 
    0.0364 
   -0.1086 
    0.1661 
    0.0248 

Cycle <Intercept> 
Weight, kg 

log(BMI), log(kg·m-2) 
ASI.STD, ADC units 

   11.4745 
    0.1220 
   -5.4759 
    0.0058 

   0.2013 
    0.0703 
   -0.1583 
    0.0746 

Table 11. Per-minute error (Root-Mean-Square Error, RMSE) for BACC-PS and BACC 
models 

Model Branch 
model 

Number of
1-min re-

cordings 
RMSEMET Bias, METs 

BACC-PS Sit 31 0.26 0.0276 
Stand 32 0.32 0.0323 
Walk 103 0.76 0.0466 
Cycle 31 0.97 0.0617 

Aggregated 197 0.69 0.0437 
BACC Sit 31 0.26 0.0276 

Stand 32 0.33 0.0408 
Walk 103 0.75 0.0385 
Cycle 31 1.30 0.1517 

Aggregated 197 0.77 0.0550 

These results suggest that SmartShoe can be used to accurately predict energy 
expenditure during typical postures/physical activities.  The EE prediction accura-
cy of SmartShoe with activity-branched EE prediction models is similar to recent 
studies that have used single accelerometers, multiple accelerometers and heart 
rate/accelerometer combinations.  Choi et al. [32] used Actigraph accelerometers 
placed at the hip, wrist and/or ankle and distributed lag and spline modeling to 
predict EE and reported RMSE of ~0.6 kcal/min (0.5 METs) across a range of 
activities with the accelerometer mounted at the ankle.  Staudenmayer et al. [30] 
used a single hip-mounted accelerometer (Actigraph) and an artificial neural net-
work to estimate EE of a variety of activites and reported an RMSE of 0.75 and 



108 E. Sazonov
 

1.22 METs using activity and minute-by-minute estimates of EE, respectively. 
Brage et al. [8] used a device that measured heart rate and accelerometry (Acti-
heart) to estimate EE and found that the RMSE was within [0.87, 1.11] METs 
during walking/running activities.  Thus, the results obtained from SmartShoe are 
at least as accurate or better compared to other recently proposed methodologies.  
These results also support use of plantar pressure as a way to improve EE predic-
tion compared to a single accelerometer.  As shown in Table 11, inclusion of pres-
sure sensor metrics (BACC-PS model) reduced RMSE approximately 10% (from 
0.77 to 0.69 METs). Inclusion of pressure metrics also improves EE estimation 
within an activity branch.  In particular, there was a significant decrease in error 
rate in estimating cycling EE.  This likely due to the changes in plantar pressure 
that are associated with changes in the intensity of cycling, something difficult to 
detect using an accelerometer.  Overall, results of this experiment suggest that 
signals arising from acceleration and insole pressure of shoes can be used to accu-
rately estimate the EE associated with common daily postures and activities. 

7   Conclusions 

The results from SmartShoe testing in various applications demonstrate its high 
accuracy and minimal intrusiveness. From the point of view of PA classification, 
SmartShoe was able to differentiate postures and activities that remain a challenge 
to other monitors (walking vs. cycling, sitting vs. standing, ascending stairs vs. 
descending stairs). SmartShoe demonstrated comparable accuracy of PAC both 
healthy and post-stroke individuals thus demonstrating applicability to various 
populations without a need for individual calibration. Temporal gait parameter 
estimation was reliable both in healthy and neurologically impaired individuals, 
justifying use of plantar pressure sensors for gait event detection. Branched  
approach to energy expenditure estimation resulted in accurate measurement  
comparable to the best methodologies available today. Again, use of pressure 
information improved the accuracy of EE estimation. Overall, SmartShoe is versa-
tile multi-sensor system that is minimally intrusive through incorporation into 
everyday wear (shoes) and that can provide accurate monitoring of postures, activ-
ities, energy expenditure and gait of individuals in daily life. 
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