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Abstract. Recent advances in pervasive sensing, mobile, and pervasive computing 
technologies have led to deployment of new smart sensors and smart sensor net-
works architectures that can be worn or integrated within the living environment 
without affecting a person’s daily activities. These sensors promise to change vital 
signs and motor activity monitoring from snapshot mode to continuous monitoring 
mode, enabling clinicians, therapists but also accompanying persons of elderly or 
people with chronic diseases or disabilities to provide healthcare services based on 
remote continuous monitoring of the patient, pervasive health monitoring or per-
vasive healthcare. Using computer resources expressed by networks of servers, 
storage applications and Web services health monitoring and healthcare might be 
rapidly provisioned and released with minimal management effort or service pro-
vider interaction by using computational intelligence and Semantic Web.   

A brief literature review on healthcare challenges, the deployment of unobtru-
sive sensors that may be used as part of pervasive sensing systems for vital signs 
and daily motor activity monitoring, mobile health applications and pervasive 
computing for pervasive health monitoring and pervasive healthcare are presented 
in this chapter. The chapter encompasses examples of unobtrusive sensors for 
health and motor activity monitoring as well as Android OS and iPhone mobile 
applications from Apps Store for vital and sensory function test, emergency, stress 
management, brain activity management, nutrition, and physical exercises. Mobile 
healthcare architectures developed with the contribution of the authors for vital 
signs and motor activity remote monitoring as well as for indoor air quality moni-
toring and alert on respiratory distress, which includes wearable devices (wrist 
worn device) and sensors integrated in objects such as walker and wheelchair are 
also presented in this chapter.  

The presented pervasive sensing and pervasive computing approaches for 
health monitoring and care underscore the capabilities of this kind of systems to 
assure more closely coordinated forms of health and social care provision as well 
as personalized healthcare for better quality of life. 

Keywords: pervasive sensing, mHealth, cardiorespiratory assessment, motor ac-
tivity, pervasive computing. 
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1   Introduction 

The combination of reducing birth rate with increasing life expectancy has raised 
the need to urgently address aging population pressure on healthcare systems. This 
healthcare “time bomb” has accelerated the growth in pervasive distributed 
healthcare technologies that should reduce health interventions costs and improve 
quality of care for elderly. Strong evidences exist now showing that declining the 
disability among the elderly for the past several decades [1] was mainly related 
with improved medical technology and behavioural changes. As is known, disabil-
ity is closely tied to medical spending, so that reductions in disability can lead to 
an offset in public and private medical costs. For instance, the United State of 
America spends $250 billion annually, or 2.5 per cent of the gross domestic prod-
uct (GDP), on medical care for the elderly [1]. Furthermore, the new health infor-
mation technology (HIT) for elderly enables a paradigm shift from the established 
centralized healthcare model to a pervasive, user-centred and preventive overall 
health management.  

Across the developed world, we are witnessing the healthcare environment 
changing towards integrated and shared care, in which besides the responsibility 
of  health professionals and other caregivers, each individual has the responsibility 
in managing the issues related with their health. This vision of the future  
healthcare system may be mainly achieved by deployment of pervasive health 
monitoring and pervasive healthcare technologies that may allow more closely 
coordinated forms of  health and social care provision as well as personalized 
medicine. Pervasive healthcare (PH) is an emerging field with considerable tech-
nological breadth that is expected to have a strong impact for the quality and  
efficiency of healthcare. This field is still a nascent one, with a good deal of ex-
ploratory research [2]. Pervasive healthcare may be defined from two perspec-
tives: i) as the application of pervasive computing technologies for health care, 
and ii) as making health care available everywhere, anytime and to anyone [3]. 
The pervasive healthcare applications include pervasive health monitoring, intelli-
gent emergency management system, pervasive healthcare data access, and ubiq-
uitous mobile telemedicine. Pervasive health monitoring and pervasive healthcare 
combine various type of health information technologies as: mobile health (see 
section 4. mHealth), personal health records (PHRs), patient centered medical 
home (PCMH), e-Patient (health consumer who uses the Internet to gather infor-
mation about a medical condition of particular interest to him, and who uses elec-
tronic communication tools - including Web 2.0 tools - in coping with medical 
conditions, see http://en.wikipedia.org/wiki/E-patient), eHealth Collaborative 
(community wide health information exchanges, e.g. www.maehc.org). For large 
adoption of these technologies, researches and pilot deployment should emphasize 
the added value to health and social care, the cost-effectiveness of implementa-
tion, the security and the privacy of patient health data storage and communica-
tion, as well as ‘clinical proof-of-concept’. 

Sensor-enhanced health information systems may provide subject-centered  
services in a semantically interoperable environment (see section 5. Pervasive 
Computing). Smart sensors technology has been identified as a strong asset for 
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achieving the vision of pervasive healthcare. Using unobtrusive smart sensors 
based on inexpensive, unobtrusive low-power sensors and embedded processors 
with large-scale storage and reasoning for semantic data as well as communication 
network combined with cloud computing, the pervasive healthcare may improve 
overall quality of  life, increase independence, prevent emergencies, and motivate 
healthy behaviour and disease prevention.  

We present in this chapter a brief literature review on healthcare challenges, the 
deployment of unobtrusive sensors that may be used as part of pervasive sensing 
systems for cardiorespiratory and daily motor activity monitoring, mHealth appli-
cations and pervasive computing for pervasive health monitoring. 

2   Healthcare Challenges 

Demographic developments, social changes, increasing cost of healthcare services  
(the cost of healthcare services has reaching values between 10% to 15% of the 
Gross National Product in USA or EU [4,5]), and an exponential increase in the 
elderly population in developed countries [6] have created major challenges for 
society, policy makers, healthcare providers, hospitals, insurance companies, etc. 
According to Population Division, DESA, United Nations report [7], the life ex-
pectancy in the 21st Century will increase, by important increasing of the 60 or 
over age group. The report underscores the increasing in developed regions of the 
60 or over age group from 21.4% in 2009 to 27.4% in 2025, and referring to the 
whole world population from 8.5% to 12.5%. This tendency means also the in-
creasing of healthcare demands, which can be solved by increasing the home-
telecare services using pervasive sensing and pervasive computing technologies. 
Moreover, despite the growing complexity in healthcare, there is limited online 
support at the bedside to help healthcare professionals deliver the best standard of 
care for each patient. In addition, while controlled clinical trials remain the staple 
of progress in biomedical science, the additional wealth of information that might 
be reaped from millions of encounters in day-to-day medical practice remains 
untapped [8]. This need for effective individualized health monitoring and deliv-
ery has resulted in the new concepts - ‘personalized healthcare’ and ‘personalized 
medicine’. Personalized medicine is a medical model that proposes the customiza-
tion of  healthcare, with all decisions and practices being tailored to the individual 
patient by use of genetic or other information. Michael O. Leavitt defined Person-
alized Healthcare [8]  as a model that may: predict our individual susceptibility to 
disease, based on genetic and other factors; provide more useful and Personalized  
tools for preventing disease, based on that knowledge of individual susceptibility; 
detect the onset of disease at the earliest moments, based on newly discovered 
chemical markers that arise from changes at the molecular level; pre-empt  
the progression of disease, as a result of early detection; and  target medicines  
and dosages more precisely and safely to each patient, on the basis of genetic  
and other personal factors in individual response to drugs. A more holistic  
definition for personalized healthcare was proposed at  ISPOR International Meet-
ing in 2011 [9]  where it was stated that it should extend beyond genetic profiles 
and incorporate what is known about each patient/person in order to know which 
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interventions are most effective for which patients under what conditions. Person-
alize healthcare should also incorporate personal needs, preferences, healthcare 
access, and adherence attribute [9]. Personalized healthcare is envisioned as a 
system in which doctors, pharmacists, and other healthcare providers customize 
treatment and management plans for individuals. It will be founded upon vast 
amounts of information that will be readily accessible at clinics and hospital bed-
sides. The driver are the many applications of information technology that have 
blossomed during the biomedical revolution. For example, tools related to elec-
tronic health record may allow easy dissemination and flow of data about medical 
history, genetic variability, and even patient preferences. Patients will ultimately 
receive this information, specifically as it applies to them [8]. Personalized health-
care could help address difficulties associated with the public health promotion 
and care delivery by using broader and deeper patient information and applying 
more complete clinical knowledge to help promote patient-centered health and 
predict, prevent, aid in early detection of diseases, treat and manage diseases. 
Through scientific progress, personalized healthcare has great potential to improve 
quality and reduce overall costs of health promotion and care delivery [10]. 

Environmental conditions, mainly the indoor air quality, are key factors in 
wellbeing of the persons that stay for long periods inside buildings. Moreover, 
changes in climatic conditions and increases in weather variability affect human 
wellbeing, safety, health and survival in many ways [11]. Although some vector-
borne diseases will expand their range and seasonality, and death tolls will in-
crease because of heat waves, also the indirect effects of climate change on basic 
human needs such as food, water and shelter will be likely to have a big effect on 
global health [12]. The health of millions of people will be compromised through 
an increase in the frequency of intense hurricanes, cyclones, and storm surges 
causing flooding and direct injury, increasing the health risk among those living in 
urban slums and where shelter and human settlements are poor [13]. With this will 
come unemployment, homelessness, dislocation, migration, and conflicts. All of 
these may substantially increase levels of stress, anxiety and depression, impairing 
mental as well as physical health [14]. Although the World Health Organization 
(WHO) has identified climate change as an issue to be addressed, funding for 
rigorous vulnerability assessments that focus on the health effects of climate 
change remains minimal [14]. Environmental factors are a priority now in the 
research of complex non-communicable diseases (such as asthma, heart disease, 
cancer, diabetes and obesity), with the purpose of assessing the impact of the envi-
ronment on human diseases, in what constitutes the environmental exposure sci-
ence, today [15].  

The importance to fuse the information regarding vital signs, daily motor activ-
ity and environment conditions is mainly related to the fact that daily variations in 
ambient air pollution have been consistently associated with variations in daily 
mortality, and cardiopulmonary and cardiovascular morbidity [16,17]. This sce-
nario was also stimulated by the realization that Genome Wide Association studies 
(GWAS) failed to explain most of the variability and heritability in human dis-
eases [18]. Due to this fact, a new concept emerged, the notion of the Exposome 
[19]. In the Exposome, we ideally have a characterization of the entire lifetime 
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exposure history in a person’s life, including lifestyle factors and social habits, 
external sources of pollution, diet and internal sources (such as inflammation, 
infection and microbiome – defined by the totality of microbes, their genetic ele-
ments and environmental interactions in a particular environment). Therefore, 
remote-sensing, personalized health monitoring, geographical information systems 
(GIS), and spatial analysis may be used as tools for standardized programs surveil-
lance and implementation [20,21]. This is important, taking into account that un-
derstanding which group of population and where at-risk population is becomes 
fundamental for implementing any control program and appropriate geographical 
targeting of resources and cost-effective control. 

Although the major area of public concern and government policy, in terms of 
the impact of air pollution on human health, continues to be the outdoor air, in the 
last two decades indoor air quality has caused increasing concern due to the ad-
verse effects that it may have on human health. The term "indoors" is used in rela-
tive literature to refer to a variety of environments, including homes, workplaces, 
and buildings used as offices or for recreational purposes. Indoor  air quality  
pollution represents one of the factors associated with the etiology of respiratory 
distress, the second most common symptom of adults that request emergency 
transportation to the hospital, associated with a relatively high overall mortality 
before hospital discharge [22,23].   

Summarizing, the achievement of personalized healthcare rests on a dual foun-
dation: the growing base of knowledge on public health and the adoption of inter-
operable health information technologies. To this foundation must be added the 
development of clinically useful products [8]. Based on sensors miniaturization, 
embedded signal processing, and networking technology combined with active 
research in smart materials and nanotechnology, the implemented systems may 
provide long-term monitoring of health status and healthier lifestyle.  In order  
to achieve that goal, appropriate infrastructures might be necessary to support 
innovation and adoption of safe and effective diagnostic and therapeutic and  
procedures.  

3   Is Pervasive Health Monitoring Possible? 

Various studies emphasize the need for a new healthcare model [24,25,26], that 
uses unobtrusive smart systems for vital signs and physical activity monitoring 
[27,28,29,30] in many applications of mHealth technologies [31] for pervasive 
health monitoring and pervasive healthcare. These technologies may reduce the 
long-term monitoring cost of  healthcare services and improve quality of life. The 
design, implementation and testing of  smart objects for physiological parameters 
and motor activity measurement channels, as part of pervasive sensing and com-
puting systems for healthcare interventions represent an important challenge con-
sidering the particular interaction between the assisted person and the objects, but 
also the personalized response provided by the systems for different users (as-
sisted person, observer, caregiver).  
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Several systems for physiological parameters sensing in unobtrusive way are 
referred in the literature. For instance, various wearable solutions for vital signs 
monitoring have been described and commercialized in the last years. Some ex-
amples are: SmartLife (UK, 2003); ECG shirt GEOView and FALKE KG (Ger-
many, 2004); VTAM (France, 2004); WEALTHY (FP6 EU project); ECG Shirt 
(Finland, 2006); Sensatex (USA, 2007); MyHeart (FP6 EU project); Philips ECG 
body vest (2009); SMART VEST (India, 2008), Proetex (FP5 EU project, 2008); 
VitalJacket, Biodevices (Portugal, 2009); Smartex ECG (Italy, 2009); ECG, EMG, 
breathing rate and muscular activity (Swedish hi-tech clothing, 2009). The smart 
T-shirt  [32] for electrocardiogram  (ECG) and electromiogram (EMG) monitoring 
use textile electrodes located on the chest for ECG recording, and additional dry 
electrodes (Roessingh Research and Development) for EMG acquisition. How-
ever, wearable systems based on e-textile, characterized by high degree of mobil-
ity, continue to have some drawbacks such as the discomfort, which can cause 
when these are daily used. Moreover, washing to clean the used T-shirt can 
change the characteristics of the conductive textile fibre, and in this case, the con-
ditioning system associated to the dry electrodes will require adjustments or even 
major changes. 

In the last decade, the deployment of technology for unobtrusive sensing of  
vital signs and daily activities monitoring is focused on networks of sensors  
embedded in furniture, appliances, floor, etc. For instance, a non-contact ECG 
measurement system for cardiac activity monitoring using capacitive coupled 
electrocardiogram device embedded in the bed was presented [33,34]. Junnila et al 
[35] developed a ballistocardiographic (BCG) chair that uses an EMFi-film sensor 
[36] to measure the health status in unobtrusive way. The authors also developed 
an EMFI based vital signs monitoring system, embedded in an office chair, includ-
ing advanced processing of cardiac information using wavelets transform [37]. 
The EMFi sensor was also used for smart wheelchair implementations. Our team 
have developed a set of smart wheelchair prototypes characterized by various 
unobtrusive sensors that provide vital signs and motor activity accurate informa-
tion and also different methods for artefact removal techniques [38,39]. Unobtru-
sive solutions for simultaneous measurement and transmission to a remote medical 
server of  bio-signals (ECG, BCG) and kinetic signals (acceleration) were also 
presented [40,41].  The video camera of  the smartphone was used to extract in-
formation on cardiac activity through the ability to record  and analyse the varying 
color signals of a fingertip placed in contact with its optical sensor [42]. This type 
of imaging can be described as reflection photoplethysmographic (PPG) imaging 
and used to extract heart rate (HR), respiration rate, and oxygen saturation based 
on the dynamics of a pulse oximetry signal [42]. This solution for short-time as-
sessment of cardiac and respiration function is non-invasive and requires special 
attention concerning the measurement procedure. However, the level of accuracy 
and reproducibility of this method may be low for long term measurement. Other 
implemented sensor for unobtrusive measurement of the vital signs is based  
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on microwave radar.  Important development of  this kind of system was presented 
by the Lubecke groups [43,44]. For instance, the Doppler radar sensor is used to  
monitor both the heart rate and the respiration. An interesting application of  the 
microwave radar was reported by Matsui et al [45]. They propose a system for 
non-contact measurement of  heart rate that prevents secondary exposure of medi-
cal personnel to toxic materials under biochemical hazard conditions using a 1215 
MHz microwave radar, a high-pass filter, and a personal computer.  

Other option being explored is the integration of the sensor for unobtrusive 
sensing into non-clothing items that patients already wear. A ring sensor devel-
oped at the Massachusetts Institute of Technology (MIT), for example, might act 
as an ambulatory telemetric continuous health monitoring device [46]. This wear-
able biosensor uses photoplethysmographic techniques to acquire data on the pa-
tient’s heart rate and oxygen saturation. This ring sensor contains an optical sensor 
unit, an RF transmitter and a battery connected to a microcomputer in the ring 
itself. This ensures onsite data acquisition, filtering, low-level signal processing, 
and bidirectional RF communication with a cellular phone that can access a web-
site for data acquisition and clinical diagnosis. Shoes that measure plantar pres-
sure between the foot and shoe during dynamic movement in real-time, which can 
be used in clinical gait analysis and user’s behaviour monitoring were also pro-
posed [47,48].  Moreover, the Wyss Institute at Harvard University has been de-
veloping shoes that can sense and ward off an acute medical crisis. The gentle 
vibrations delivered by the insoles in these shoes have been shown to improve gait 
and reduce the risk of falls among elderly users. Users could realize numerous 
benefits including: improved efficiency for performance athletes with less vari-
ability in gait and stride length, improved tactile sensation for diabetics to reduce 
the risk of ulcerations which often lead to amputations, and a clinically proven 
improvement in balance for both healthy wearers and the elderly who are at a 
much higher risk of falls [49].  

The motor activity sensing and the user identification and localization tracking 
for healthcare are important requirements for pervasive sensing. In Ambient As-
sisted Living applications the indoor localization is done mainly using remote 
sensing technologies (non-mechanical contact technologies) expressed by ultra-
sound [50] and RF [51,52,53]. Several solutions were presented for smart floor 
system. RFID technology represents one of the options. Thus, a set of  RFID 
transponders (usually LF RFID passive tags) were integrated in the floor typically 
in a regular grid. The RFID reader attached to daily used objects (e.g. wheelchair) 
reads the memory contents of the detected tag that stores the (x,y) coordinates 
which correspond to the objects position. These kinds of implementations were 
reported for robot position estimation [54].  The technique was applied by the 
authors particularly for wheelchair localization [55]. Indoor localization with a 
footwear system based on RFID and smart floor and an RFID glove for activity 
monitoring in house was also proposed [56]. Smart floor solutions based on load 
cells, steel plate sensors and data acquisition modules have been also reported 
[57,58,59]. However, the associated costs made this kind of solution less attrac-
tive. The use of large area proximity sensor arrays embedded in carpets to  
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perform localization and identification tasks, as the latest technology promoted by 
Future-Shape GmbH [60] presents advantages such as low costs, reliability and  
flexibility. The use of a smartphone camera for indoor localization was also pre-
sented [61]. It combines the image recognition system with a distance estimation 
algorithm to gain a high-quality positioning service independent from any infra-
structure. Stone and Skubic [62] evaluated the accuracy and feasibility of using 
the depth data obtained from the Kinect (movement sensing system from Micro-
soft) for passive fall risk assessment. Results showed good agreement between 
gait measurements computed using the Kinect, those computed using an existing  
Web-camera based system, and those from a Vicon motion capture system. Fur-
thermore, the depth image from the Kinect not only addresses a major issue in 
foreground extraction from color imagery (changing lighting conditions), but sig-
nificantly reduces the computational requirements necessary for robust foreground 
extraction for fall risk assessment. 

Despite important advances in unobtrusive sensing, there are several challenges 
for pervasive health monitoring: cost reduction; small sensor size; MEMS integra-
tion; power source miniaturization and efficiency; low-power wireless transmis-
sion; context awareness; data mining; secure data transfer and integration with 
therapeutic system.  

The authors have developing various smart sensors for unobtrusive vital signs 
and activity monitoring. These smart objects might be used to assist three catego-
ries of users: 1) with no or low limitation of motor activity; 2) with moderate and 
medium limitations of motor activity; 3) with severe limitations of motor activity. 
We design and implemented a smart wheelchair, a smart walker, smart crutches 
and a wrist-worn vital signs monitoring device. These objects are augmented with 
health status and motion sensing by using particular sensors (e.g. radar based bal-
listocardiography sensor, optical photoplethismography sensors, and accelerome-
ters). Additional functionalities such as user identification (RFID technology, real 
time data processing (based on microcontroller or DSP platforms), wireless data 
communication (Wi-Fi, ZigBee data communication protocol) characterize these 
designed and implemented smart objects. The RFID technology was employed in 
these systems for the detection and identification of system users, which allows 
the computation of co-presence to be embodied within the real–world.  The sys-
tem architecture follows as much as possible, the requirements and the characteris-
tics of ambient information systems (AIS) [63]. Therefore, the main goal of our 
implemented systems was to present the information from the smart sensing mod-
ules associated with smart objects such that minimum distraction of the users from 
their usual tasks may be achieved. The architecture specification is based on the 
detection of persons involved, mostly in their everyday life activities, with passive 
interactions, which can be considered as natural and “incidental”, with sensing 
augmented objects (e.g., wheelchair, walker) and the computational platforms 
(e.g. smartphone, tablet computer) (see Figure 1).  
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Fig. 1. Diagram of ambient intelligent based on our implemented smart objects 

The notion of "incidental interactions" describes actions that are co-opted by 
the system to serve a purpose other than the one initially thought [64]. An inciden-
tal interaction can be seen as a situation where actions, executed for another  
purpose, are interpreted to improve future interactions in everyday life. In the 
pretended scenario of application, the basic aim was to ensure that only the detec-
tion of the user’s co-presence near (or using) the smart object will activate the 
presentation of healthcare information on the smartphone or tablet computer.  

The computing platform is used to update the acquired values on a server 
through database synchronization procedures between the mobile device database 
and the server’s database.  As it is presented in Figure 1, the implemented archi-
tecture may contain a public situated display for general usage and smart mobile 
devices, including touch screens, casually available to the users of the space, dis-
tributed closely to the smart objects (e.g., wheelchair). A RFID reader attached to 
the situated display is used to identify a user, or a wheelchair, and, afterwards, it 
requests the server personalized information. The application for the presentation 
of information and interaction with the user in the smart wheelchair was designed 
for a touch panel, while for the other smart objects, such as the walker, the walk-
ing stick or even the wrist-worn vital sign and motor activity monitor device was 
done using a smartphone.  The situated displays are used to provide contextual 
information at decision points. It is presented information about the smart object 
identification and localization, the last verification of the smart object measure-
ment channel, the smart object registered, statistics of  the measured data during 
the latest measurement session (e.g. maximum heart rate, minimum heart rate, 
number of detected impacts between the smart object and other objects), the time 
of the latest utilization session. The software components are associated with two 
main layers: the ambient intelligence healthcare layer (AIH-L) and the user layer 
(U-L) (Figure 2).  
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Fig. 2. Software component architecture 

The AIH-L includes the software components that serve the smart objects (e.g. 
wheelchair, wrist-worn device) used by elderly or persons with motor disabilities, 
the touch panels, situated display or other pervasive computing devices such as 
smartphone or tablet computers. Regarding the AIH-L implementation, one of the 
main requirement is the pro-activity  [65] in relation to the users, which means to 
understand the intent of the user in order to predict his/her future behaviour. Thus 
a tracking software component is implemented for identification and localization 
of  the user of  a smart object that delivers appropriate information (e.g. fall warn-
ing, time for medication) through the available HMI (human machine interfaces) 
associated to the system, in order to minimize the user’s administrative overheads 
and assist  the user to achieve his/her goals. The display interfaces are expressed 
by computing devices such as laptops, tablet computers or situated displays. As 
components associated with the user layer are mentioned the smartphone (the 
main interaction device), RFID tag or reader, wireless LAN and near field com-
munication capabilities. The application core component performs analysis of the 
information given by the tracking component, and the data fusion with contextual 
information related to the object, the user profile, the processed data associated 
with vital signs and motor activity monitoring. According to the above-mentioned 
functionalities the application core includes: 

• database server,  
• signal processing unit, 
• contextual interpreter,  
• information compositor module, 
• Web server.  
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3.1   Smart Wrist Worn Device for Vital Signs and Motor Activity 
Monitoring 

The smart wrist-worn device that was designed  to enable multi-parametric moni-
toring, in non-invasive and unobtrusive way, includes vital signs measurement 
channel (cardiac activity through photopletismography) and body-kinematics 
measurement channel associated with daily motor activities assessment.  A set of 
warning digital outputs connected to LEDs signalise the low quality of the signals, 
battery low charge and critical values of measured parameters (e.g. values of heart 
rate higher than 95bpm when the user is resting). The computing of the signal in 
the implemented smart wrist device is made by a PIC24F microcontroller platform 
that is also responsible for signal acquisition, primary processing, data storage, 
and data communication. The signals provided by the sensors are Analogue proc-
essed before they are acquired. 

3.1.1   Sensing and Signal Conditioning 

The vital signs are sensed using a reflective photoplethysmography sensor based 
architecture. It includes two infra-red IR (940nm) - Red (660nm) LEDs and a light 
to voltage converter (Figure 3). A switching and current driver module was imple-
mented using bipolar transistors to assure optimal control of two bicolour LEDs 
(Infrared- λIR=940nm, Red- λRed=660nm). The control signals (PULSES, 
N_PULSES, CTRL_RED, CTRL_IR) are provided by a microcontroller using the 
appropriate digital output lines and PWM output followed by low pass filter char-
acterized by fc=0.5Hz.  Alternating between “1” and “0” as values of PULSES and 
N_PULSES, the RED and IR LEDs paths are activated allowing the measurement 
of  light absorption by blood  during the cardiac cycle. A broadband radiation light 
to voltage converter (LVC) from Nelcor is included between the two LEDs deliver-
ing a photoplethysmography (PPG) voltage signal during the IR and Red light exci-
tation. The use of two bi-colour LEDs increases the repeatability, robustness and 
PPG signal quality independently of the position of PPG sensor on the wrist. 

 

Fig. 3. Reflective photoplethismography sensor 

The PPG signals from the light to voltage converter are filtered using a low 
pass filter (LPF) and high pass filter (HPF). LPF and HPF based on LM324 opera-
tional amplifier are used to diminish the influence of signals base-line wondering 
and to increase the signal to noise ratio (SNR). Some of the characteristics of the 



12 O. Postolache, P.S. Girão, and G. Postolache
 

implemented filters are: LPF- 2-poles Butterworth, cut-off frequency of 20Hz; 
HPF- 2-poles Butterworth, cut-off frequency of 0.05 Hz. Considering the PPG 
dynamic range, an automatic gain control scheme (AGC) was implemented using 
a digital potentiometer (CAT5114 from Catalyst) and an instrumentation amplifier 
(INA122). Based on the implemented scheme, PPG amplitude values are in the 
0.4 to 2V interval. An inertial sensor (MEMS accelerometer MMA7260) is used 
both to sense the daily motor activity - expressed by the activity index of the per-
son , and for fall detection. It provides information on patient motion as Vax, Vay 
and Vaz voltage signals. These signals are low pass filtered and applied to ana-
logue inputs of the microcontroller (Figure 4). 

3.1.2   Microcontroller Platform 

In figure 4 are presented the sensing and signal conditioning components of the 
microcontroller platform that were previously described. Important tasks such as 
signal acquisition, primary processing, LEDs user interface control, and data stor-
age and data communication are performed by the PIC24F microcontroller based 
on an implemented firmware developed in MPLAB C30 compiler from Microchip.  
The LEDs switching and digital potentiometer control are done using a set of digi-
tal lines (RA3, RA4 for LED on/off function, RA5, RA6, RA7 digital potentiome-
ter adjustment through the CS, UD, INC of DPOT). Regarding the light intensity 
control, a two channel current driver is implemented using the microcontroller RD1 
and RD2 PWM outputs. The AC and DC components of the PPG signal are ac-
quired using the AN3 and AN2 analogue input channels of the microcontroller. The 
acquisition rate is 200S/s and the programming recurs to TIMER2 of the microcon-
troller. The voltage signals delivered by the MEMS accelerometer through the Vax, 
Vay, Vaz outputs are acquired using the AN9, AN10 and AN11 analogue inputs 
and the same sampling rate that is used in the PPG acquisition case.  
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Fig. 4. Smart wrist worn - Microcontroller platform and conditioning circuits block dia-
gram (AI – analog input, MCU-PIC24F microcontroller, SPI – serial peripheral interface, 
UART – universal asynchronous receive-transmit interface, DIO – digital input output port) 
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The implemented embedded primary processing software uses the PPG ac-
quired samples to extract the HR value and blood oxygen level (SpO2 values). An 
adaptive threshold peak detection algorithm was used to obtain more accurate 
values of  HR. The main steps of the implemented algorithms are:  

i) computation of the average value of 2.5s PPG acquired data, 
mean(V_ppg(t));  

ii) calculation of the maximum value of the 2.5s PPG data, 
max(V_ppg(t));  

iii) adaptive threshold tha calculation: 

( ))(_max())(_(
2

1
tppgVtppgVmeanth

ta +=
Δ                            (1) 

iv) determination of peak locations that exceed the threshold level for 
2.5s time interval; 

v) peak localization calculation and average time interval calculation 
between two successive detected peaks for Δt=5s time interval;  

vi) HR calculation. 

The SpO2 calculation procedure uses the “normalized ratio”, R, and a polynomial 
model of SpO2=SpO2(R) empirical characteristic. The microcontroller data, in-
cluding the PPG samples (wave), the time interval between two successive PPG 
peaks (DELTA), the HR, the SpO2 value, and the 3D accelerometer voltage values 
digital codes (ACCEL_X, ACCEL_Y and ACCEL_Z) are stored in an 8 bytes 
data array as shown in Figure 5. 

 

Fig. 5. Smart wrist-worn device data array format  

The INFO byte is used to store additional information regarding the smart 
bracelet functioning (e.g. battery low). Two data synchronization bytes (00 and 
FF) constitute the preamble joining the data bytes assuring the data reading ro-
bustness at the smartphone side.  The formatted  data is radio transmitted to the 
smartphone using an ARF32 Bluetooth module connected to the USART port of 
the PIC24F microcontroller. The update rate used in the preliminary tests was 
higher than 20 updates/s and lower than 200 updates/s for a programmed USART 
baud rate up to 19200bps. The robustness of  the implemented solution was tested 
for different positions of the optical sensing device on the wrist.  Example of sig-
nals obtained by implemented wrist-worn is presented in figure 6. 
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a) 

b) 
 

Fig. 6. The PPG signals for two positions of the sensing module on the wrist: a) PPG pos1  
b) PPG pos2 

Activities of  Daily Living (ADLs) that refer to daily self-care activities within 
an individual's place of  residence are sensed using the 3D programmable acceler-
ometer embedded on the wrist-worn device. Thus, for a normal activity when the 
patient is holding an object (e.g. book) the evolution of acceleration for the X,Y,Z 
axis are presented in Figure 7.  Based on statistics calculation additional informa-
tion regarding the performed activity can be extracted. In this application the stan-
dard deviation was used. Particular information about standard deviation (SD) 
evolution calculated for time intervals of Δt =5s is presented in Figure 8. 

 

Fig. 7. The evolution of ax, ay, az acceleration during ADL 

 

Fig. 8. The evolution of std x, std y, std z  standard deviations of the measured accelerations 
during ADL 

Imposing an activity standard deviation threshold, the activity and non-activity 
intervals for x, y and z axis are calculated and graphical represented in Figure 9. 
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Fig. 9. Activity and non –activity  associated with the x, y and z axis expressed by boolean 
activity indexes    

Considering the whole time and the time intervals characterized by activx,  
activy or activz=1 the activity index expressed in percentage is calculated. Thus, 
for the particular case of normal activity presented in Figure 9 the activities values 
are activx=28.85%, activy=1.92% and activz=46.15%. 

3.2   Smart Wheelchair for Vital Signs and Daily Activity 
Monitoring 

The necessity to obtain the information on health status and motor activity for 
people with severe motor disabilities has been leading to various smart wheel-
chairs prototypes developed by the authors’ research group - important results 
related with hardware and software implementation being published.  One of the 
implementation is presented in Figure 10. Various types of sensors  for cardiores-
piratory and motor activity assessment were used in smart wheelchair architec-
tures implemented solutions: sensors for photoplethysmography (PPG) [66];  
EMFit based ballistocardiography (BCG) [67]; capacitive coupled electrocardi-
ography (ccECG) [68]; contact electrocardiography (ETX-ECG) and skin conduc-
tivity based on e-textile electrodes [69]. Taking into account that a way to increase 
the flexibility, modularity and the reliability of a system is to reduce the size and 
number of  sensors without diminishing significantly the number of measured 
parameters, we developed a smart wheelchair and smart walker based on use of 
microwave Doppler radar sensors as non-electrical and non-mechanical contact 
sensors for cardiorespiratory but also for motor activity monitoring [39]. Measur-
ing in an unobtrusive way the respiration and cardiac activity represents a chal-
lenging issue taking into account that non-invasive but obtrusive methods interfere 
with normal cardiorespiratory pattern at an unconscious level when a subject is 
aware of  their vital signs monitoring [70]. There are approaches for non-invasive 
respiratory assessment as the use of smart spirometer with Bluetooth communica-
tion capabilities [71] or by processing the signal from plethysmography, electro-
cardiography (ECG) [72] or photoplethysmography [73]. The used Doppler radar 
is able to perform unobtrusive measurement both of respiratory rate and heart rate. 
The smart wheelchair includes a set of measurement channels related with two  
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microwave Doppler radar sensors (DRS1, DRS2). The intermediary frequency 
signals are filtered and acquired by an acquisition and communication module (see 
Figure 12). The Doppler radar sensor is positioned back to the wheelchair backrest 
for user cardiorespiratory function assessment and wheelchair motion monitoring. 
Thus, DRS1 radar sensor is fixed in a plastic base mounted back to the backrest of 
the wheelchair (5 to 15 cm distance to the backrest) and 40 cm over the wheel-
chair seat (see the Figure 10) and it is oriented to capture the heart and the chest 
motion, while DRS2 is fixed on a plastic base parallel to one of the wheels, 30 cm 
apart from the wheel centre capturing the information about the wheels motion. To 
assure modularity and portability, various implemented smart objects (smart 
wheelchair, smart walker) use the same acquisition and Bluetooth communication 
solution expressed by a microcontroller based on ACM (Acquisition and Commu-
nication Module). After signal acquisition and data coding, the data is transmitted 
to a mobile pervasive computer platform that runs a mobile operating system (An-
droid OS in our system prototype). The embedded software application performs 
graphical user interface functionalities but also assure the data storage in a local 
database.  

The information related to cardio-respiratory activity and physical activity of 
the wheelchair user is stored in a smartphone or tablet computer database and is 
synchronized from time to time with the Web based healthcare information system 
database. Additionally, the remote database provides electronic health record in-
formation regarding the user profile (e.g. name, age, diseases, medication) and 
also hardware and software specifications regarding the use of the smart object 
(e.g. wheelchair in this case). 

 

Fig. 10. System architecture based on a smart wheelchair (CC – conditioning circuit, DRS1, 
DRS2 - Doppler radar sensors, ACM – acquisition and communication module) 

A brief description of the microwave Doppler radar of the conditioning circuit 
(CC), and of the acquisition and data communication module is presented in the 
following paragraphs. 
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3.2.1   Microwave Doppler Radar Sensor 

A Frequency Modulated Continuous Doppler radar sensor (DRS1) was embedded 
in the wheelchair to perform the non-contact measurement of chest motion caused 
by the respiratory and cardiac activity. The requirement of small motion ampli-
tudes detection associated with cardiac and respiration motions (cardiac amplitude 
motion are less than 0.15mm, respiration amplitude motion are less than 2mm), 
and also the necessity to minimize the size of the used Doppler radar device in-
cluding the antenna for easily integration in daily used objects, make from the 
24GHz FMCW Doppler Radar (IVS-162 DRS) an appropriate solution [39]. 
Moreover, the 24GHz microwave Doppler radar assures better resolution of low 
amplitude motion comparing with 2.4GHz - 10.5GHz which are mainly used for 
remote respiration monitoring in rescue scenarios [74]. The block diagram of the 
used radar is presented in Figure 11.  The main components of the FMCW radar 
are: transmit TX and receive RX antennas; a low noise amplifier LNA connected 
to the RX antenna; two mixers (direct mixer M1 and quadrature M2) that are used 
to extract the direct or in-phase (I(t)) and quadrature (Q(t)) signals that are used to 
estimate the direction of the target motion (e.g. body motion). 
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VCO 

Vtune 

coupler 
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Fig. 11.  FSK/FMCW Doppler radar sensor block diagram: M1, M2-mixers, TX, RX- 
transmit and receive antenna, VCO - voltage controlled oscillator, LNA-low noise amplifier 

According to Choi et al. [75], the cardiac small motions, which correspond to 
blood pumping on the vessels, and the respiration motion are modulating the re-
flected RF signal that is acquired by the RX antenna. Thus the VRX voltages asso-
ciated with RX antenna is given by:  

                  
( ))(2 0Re)( ttfj

RX eAtV
VRX
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(1)
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where AVRX represents the amplitude of the reflected wave and Φ(t) represents the 
time varying phase caused by the periodic displacement due to breathing and car-
diac activity. In this case, Φ(t) can be expressed by: 

 t 2  


2


                        (2) 

where d(t) is the distance between the radar antenna plane and the body of the user 
seated on the wheelchair, λ0 is the wavelength of the Doppler radar wave - 
λ0=12,5mm for 24GHz , xresp(t) represents the motion associated with respiratory 
activity, xcardio(t)  represents the small motion associated with cardiac activity. 
Since the change of the respiration and cardiac motion amplitudes (less than 2mm) 
are small compared with wavelength, the demodulated signal, Vout(t), depends on 
respiration and cardiac motion: 
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where xresp(t), xcardio(t) being extracted from the Vout by analogue filtering. The 
ballistocardiography signal, xcardio(t), [39], is originated by small movements of the 
body, induced by ballistic forces (recoil and impact) associated with cardiac con-
traction and ejection of blood.  

3.2.2   Signal Conditioning, Acquisition and Wireless Communication 

The conditioning circuits associated with the radar system encompass a set of 
analog active filters that perform the respiration and the cardiac signal extraction. 
In the respiration case a 2nd order active low pass filter, Butterworth type, charac-
terized by fc=0.3Hz cut-off frequency was designed and implemented. To extract 
the cardiac signal a 2nd order, band pass active filter, Butterworth type character-
ized by fc1=0.7Hz and fc2=15Hz was implemented. To adapt the signals to the 
acquisition module voltage input range a set of programmable gain amplifiers 
(PGA1 and PGA2) were also implemented. It includes INA122 instrumentation 
amplifier and CD4051 that perform the switching actions under the control ACM 
through the digital lines.  In the particular case of microwave Doppler radar sensor 
(DRS2) system, which measures the distances travelled by the wheelchair during a 
specified period (hours, day, week), the I2(t) output signal provided by the radar is 
filtered using a 1st order high pass filter HPF2 (1st order fc=0.3Hz) and amplified 
by the A3 amplifier. In order to sense the motion the Q2(t) signal can be used and 
the phase difference between two signals, ΔϕI2,Q2 indicate the motion sense (mov-
ing in front, moving back).The block diagram of the implemented conditioning, 
acquisition and data communication module is presented in Figure 12. The ACM 
performs an analogue to digital conversion using a 16bit ADC (ADS8344) that 
communicates through the SPI bus with the MCU (16F673 PIC). The digital val-
ues of the acquired samples are delivered in hexadecimal form to the mobile  
device using Bluetooth communication. Additional processing of the signals de-
livered by the DRS1 microwave Doppler radar is done mainly at the mobile de-
vice level (smartphone, tablet computer) in order to extract the respiration rate, the 
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heart rate and the activity index. The activity index is calculated based on the evo-
lution of the VRX signal amplitude and frequency variance in time, when the car-
diac activity is not estimated due to large movement artefacts. The acquired I2 
signals delivered by DRS2 microwave Doppler radar are also used for activity 
index (e.g. wheelchair motion and the related parameters such as the distance and 
the average velocity). 

 

Fig. 12.  Signal conditioning, acquisition block and wireless communication block diagram 
(HPF1, HPF2 – high pass filters, LPF1 – low pass filter, PGA1, PGA2 – programmable 
gain amplifier, A – instrumentation amplifier, ACM-BS- acquisition and data communica-
tion module Bluesentry Architecture) 

 

Fig. 13. Cardiac signals provided by the Doppler radar sensor module (dark-red) and stan-
dard PPG (magenta) and ECG (blue) standard cardiac activity measurement devices 
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A graphical representation of cardiac signals obtained using references equip-
ment for ECG, and implemented radar based device is presented in figure 13. In 
the Figure may also be observed correlation of the shape and time of the peak 
changes in amplitude of the radar signal with PPG signal that underlines the ca-
pacity of the radar device to be used in mechanocardiography. 

3.3   Smart Walker for Motor Activity Analysis 

As part of the ambient intelligent for healthcare a smart walker was implemented. 
Based on the sensors such as microwave Doppler radar, force sensors, acceler-
ometers the rehabilitation process is assisted in order to highlight the progress 
during the physiotherapy sessions by using the smart walker. Thus the gait recov-
ery might be evaluated based on data processing of the signals acquired from the 
sensors that are wirelessly transmitted to a host computer or a mobile device. The 
sensors, the conditioning circuits and the acquisition and communication module 
are integrated in the walker which measures, through the radar, the kinematic of 
the body in unobtrusive way, without mechanical and electrical contact. The me-
chanical coupling between the user and the walker during the training session 
made possible extraction of  information on applied force related with walker 
usage, acceleration imposed to the walker that can be associated with gait cadence 
and gait velocity, and also impact force. The walker velocity and the travelled 
distance are obtained using a radar that is positioned near one of the walker wheel. 
Measuring the motion of a metallic target fixed on the wheel the number of turns 
is measured. The distribution of  the sensors and the smart prototype implementa-
tion is presented in Figure 14. The contact forces applied by the user on the walker 
hand supports are measured using a set of four piezoresistive sensors (Flexiforce 
A201-100 from Tekscan) [76], while the acceleration imposed to the walker dur-
ing usage is measured by a 3D MEMS accelerometer ADXL335 from Analog 
Device.  

 

Fig. 14. Smart Walker implementation: DRS1, DRS2 – Doppler radar sensor, accelerome-
ter sensor, F1, F2 – force sensors 
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The use of four force sensors - two for each hand support - is justified both by 
reduced active region of a disk (9.53mm), making necessary the extension of ac-
tive contact region joining the surfaces from multiple piezoresistive sensors, as 
well as the necessity to obtain differential signal input associated with differences 
in hand region forces applied by the walker’s user. The correlations between ap-
plied force, gait (measured by using the same type of Doppler radar sensor, al-
ready used in wheelchair prototype) and walker acceleration are captured. In the 
implemented architecture only the direct intermediary frequency signal was used 
to extract the kinematics and kinetics of legs. The forces applied on the walker 
hand support are different during the training gait according with the user rehabili-
tation stage (the force is up to an imposed threshold - Fth>150N when the user 
strongly grabs the walker, and is less 150N when user lightly grabs the walker). 
Taking into account the piezoresistive characteristics of  the sensors, a condition-
ing circuit including a four channel non-inverter amplification scheme based on 
LM324 and a reference voltage was designed. The dependence between VFij (i,j 
={1,2}) output voltage signal and the applied force was obtained using a calibra-
tion scheme base on a load cell (DDE 500N from Applied Measurements  
Limited). Taking into accountthe analogue input requirements of the analogue to 
digital converter, an amplification/attenuation scheme based on INA 122 was 
designed and implemented for the I1(t) output channel of DRS1. Taking into ac-
count the intermediary frequency signals I2(t) associated with DRS2 a Schmitt 
Trigger scheme was implemented  and obtained pulse are acquired by one of ana-
logue inputs of the acquisition and data communication module (ACM). Consider-
ing the uniformity of the solution the ACM architecture is the same that was used 
for the smart wheelchair implementation, the frequency acquisition rate being up 
to 200S/s and the communication rate through Bluetooth is up to 115200bits/s. A 
set of remote control commands are used on the mobile device or the host com-
puter side to configure the number of channels and the sampling rate. Thus to start 
the acquisition, the microcontroller receives through the wireless communication 
(Bluetooth communication protocol) a command from the host unit. The digital 
values of the acquired samples from different measurement channels are delivered 
in hexadecimal form to the mobile device or computer that performs hexadecimal 
- to decimal voltage values conversion, normalization, voltage - to- force conver-
sion, voltage  - to- acceleration conversion.  Referring the gait signal sensed by the 
Doppler radar (DRS1) a set of statistical parameters such as variance or kurtosis, 
are calculated as features that are used together with the values provided by force, 
acceleration and motion channel (DRS2) for gait type recognition that is per-
formed at a server level. The physical activity is also estimated through the values 
of the travelled distance and velocity of the walker during the training session. 

3.4   Pervasive Sensing of Environmental Impact Factor on Health 

Smart sensors and pervasive computer technology may enable new model of 
healthcare delivery that can use information obtained through pervasive sensing  
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on physiological parameters, motor activity but also information about monitored 
patient localization, or about environment conditions (e.g. air quality parameters).  

Human exposure to indoor  air pollution is difficult to quantify due to the fact 
that it is largely determined by micro-environmental characteristics. Pollution 
levels in one home may be quite different from those in another, depending on the 
presence and usage of sources of pollutants and on the ventilation habits. Many 
different methods can be used to measure the level of gaseous air pollutants by 
mobile or portable device. For example, gas chromatography (GC) and mass spec-
troscopy (MS) devices provide a high degree of data accuracy, but require some 
kind of sample preparation that limits its utilization in field measurement scenar-
ios. However, most of these above mentioned techniques measure average concen-
trations over several hours or even days, at one sampling location, which limits 
their use in studies of pollutants with acute effects. As is reported in the recent 
approved European project SYNPHONIE www.synphonie.eu, no reference meth-
ods for indoor monitoring presently exists. In their proposal, indoor air quality will 
be monitored mainly using diffusive sampler, techniques routinely used for meas-
uring ambient air pollution, but that are not suitable for large scale indoor surveys 
because of cost, bulk, noise or amount of air displaced.  Different measurement 
systems has been developed recently for indoor use [22,23,77]. Laser-inducted 
breakdown spectroscopy (LIBS) offers real-time response and high accuracy and 
does not require sample preparation. Recent LIBS devices are small enough to be 
used as mobile units. Semiconductor sensors are not as accurate as spectroscopy-
based devices but they are much smaller and easy to integrate with a data collect-
ing unit. A distributed architecture including smart sensor network that deliver 
data to a Web server for air quality monitoring and advanced data processing 
software modules was described by authors [22]. The data from the sensors may 
be visualized on the smartphone display. The graphical user interface imple-
mented in a smart phone permits the selection of relative humidity and respiration 
graphs Figure 15.  

 

Fig. 15. The graphical user interface implemented in the smart phone for chest belt sensor 
case a) relative humidity selected graph, b) respiration selected graph 
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Analysing Figure 15.a) can be observed the evolution of the relative humidity 
in time while Figure 15.b) presents the evolution of the respiration wave (for a 
moving time window of  20 s).  The numerical values of the calculated respiration 
rate as well as the air quality condition expressed by temperature and relative hu-
midity values are also included on the application dashboard developed based on 
Android SDK. Additionally, an audio alarm was implemented for critical air qual-
ity conditions and anomalous respiration behaviour (e.g. asthma attack). 

4   mHEALTH 

Mobile eHealth or mHealth broadly includes the use of mobile telecommunication 
and multimedia technologies in health care delivery. The term mHealth was 
coined by Professor Robert Istepanian as use of "emerging mobile communica-
tions and network technologies for healthcare" [78]. mHealth: includes the use of 
mobile devices for collecting and summarizing subject’s health data, providing 
healthcare information to practitioners, researchers, and patients, real-time moni-
toring of patient vital signs, and direct provision of care (via mobile telemedicine) 
[79]. A definition used at the 2010 mHealth Summit of the Foundation for the 
National Institutes of  Health (FNIH) was "the delivery of healthcare services via 
mobile communication devices" [80].  

Are included in mHealth technologies the use for health services and informa-
tion, of the  fixed line telephone, cell phone, tablet computer, MP3 or MP4 play-
ers, microcomputers, laptop  computers, PDAs as well as mobile operating system 
technologies. Technologies relates to the Operating Systems that orchestrate mo-
bile device hardware while maintaining confidentiality, integrity and availability 
are required to build trust. This may foster greater adoption of mHealth Technolo-
gies and Services, by exploiting lower cost multipurpose mobile devices such as 
tablets PCs and smartphones. Operating Systems that control these emerging 
classes of devices include Google's Android, Apple's iPhone OS, Microsoft's 
Windows Mobile, Nokia Symbian OS and RIM's BlackBerry OS. Advances in 
capabilities such as integrating voice, video and Web 2.0 collaboration tools into 
mobile devices, may significantly benefits the delivery of healthcare services.  
Smartphones or tablet computers, as pervasive computing component, provide 
interesting HMI for user, accompanying person or health professionals.  Applica-
tion software running on smartphones, which supports different type of mobile OS 
(e.g. iOS, AndroidOS, Windows Phone) may provide clinical information on pa-
tient state but also may give tools to the patients to take better care of themselves. 
Biofeedback procedure based on data from the sensors might be processed on the 
mobile platform or can be sent to the Cloud [31] that might perform advanced data 
processing, data storage and integrate the feedback on biofeedback system. There 
are open issues on Cloud Computing acceptability related with his availability and 
security of data. It is discussed the necessity to create a ‘Healthcare-specific 
Cloud’ [81] that specifically addresses the security and availability requirements 
for healthcare system.  
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The mHealth field operates on the premise that technology integration within 
the health sector has the great potential to promote a better health communication 
to achieve healthier lifestyles, improve decision-making by health professionals 
(and patients), enhance healthcare quality by improving access to medical and 
health information, and facilitate instantaneous communication in places where 
this was not previously possible [82,83]. It follows the hypothesis that the in-
creased use of technology can help to reduce healthcare costs by improving effi-
ciencies in the healthcare system and promoting prevention through behaviour 
change communication [98]. With greater access to mobile phones to all segments 
of a country, including rural areas, the mHealth has potential of lowering health-
care costs. Mobile phones have made a recent and rapid entrance into many parts 
of the low- and middle-income world, with the global mobile phone penetration 
rate drastically increasing over the last decade. Moreover, the mHealth approach 
that is rapidly gaining ground in many developing countries, allow real time data 
access and management in locations with no infrastructure other than a cell phone 
tower [84]. Moreover, countries with relatively poor infrastructure are utilizing 
mobile phones as "leapfrog technology" to bypass 20th century fixed-line technol-
ogy and jump to modern healthcare technology. Mobile phones are spreading in 
low- and middle-income nations because the cost of mobile technology deploy-
ment is dropping and people are, on average, getting wealthier [85]. At the end of 
2011, there were 6 billion mobile subscriptions, estimates The International Tele-
communication Union (2011) [86]. That is equivalent to 87 per cent of the world 
population. And it is a huge increase from 5.4 billion in 2010 and 4.7 billion mo-
bile subscriptions in 2009. Mobile subscribers in the developed world has reached 
saturation point with one or two cell phone subscription per person. This means 
market growth is being driven by demand developing world, led by rapid mobile 
adoption in China and India, the world's most populous nations. These two coun-
tries collectively added 300 million new mobile subscriptions in 2010 - that’s 
more than the total mobile subscribers in the US. At the end of 2011 there were 
4.5 billion mobile subscriptions in the developing world (76 per cent of global 
subscriptions). Mobile penetration in the developing world now is 79 per cent, 
with Africa being the lowest region worldwide at 53 per cent. Mobile subscrip-
tions outnumber fixed lines 5:1 (more so in developing nations); Mobile broad-
band outnumbers fixed broadband 2:1. With stats like this, it is easy to see why 
the experts predict that mobile Web usage will overtake PC-based Web usage. 
This will happen more quickly in developing nations (if it isn’t happening already) 
where fixed Web penetration remains low. In developed nations, this will happen 
more slowly [87]. International Data Group (www.idc.com) believes that mobile 
Web usage will not overtake PC Web usage in the US until 2015. Regardless of 
the timescale, this inevitability makes mobile Web strategy more important than 
PC Web strategy in the long term. Smartphone technologies are now in the hands 
of a large number of physicians and other healthcare workers in many countries. 
Adoption of smartphone for mHealth in low and middle income countries  is con-
ditioned by deployment of the infrastructure that enables web browsing, GPS 
navigation, email, availability and efficiency in both voice and data-transfer sys-
tems in addition to rapid deployment of wireless infrastructure. 
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Within the mHealth space, projects operate with a variety of objectives, includ-
ing: increased access to healthcare and health-related information (particularly for 
hard-to-reach populations); improved ability to diagnose and track diseases; time-
lier, more actionable public health information; and expanded access to on-going 
medical education and training for health workers. Although far from ubiquitous, 
the spread of smartphone technologies opens up doors for mHealth projects such 
as technology-based diagnosis support, remote diagnostics and telemedicine, Web 
browsing, GPS navigation, access to Web-based patient information, and decen-
tralized health management information systems. The mHealth field houses the 
idea that there exists a powerful potential to advance clinical care and public 
health services by facilitating health professional practice and communication and 
reducing health disparities through the use of mobile technology. Overall, mobile 
communication technologies are tools that can be leveraged to support existing 
workflows within the health sector and between the health sector and the general 
public [88]. For instance, education and awareness programs within the mHealth 
field are largely about the spreading of mass information from source to recipient 
through short message services (SMS). In education and awareness applications, 
SMS messages are sent directly to users' phones to offer information about various 
subjects, including availability of health services, lifestyle management, testing 
and treatment methods, and disease management. For instance, Text4baby Russia 
(SMSmame in Russian) is a public health information service for new and expec-
tant mothers intended to improve maternal and child health indicators. Subscribers 
to the free service, available throughout the Russian Federation, receive health 
information tailored to their baby's due date/birth date about nutrition, exercise, 
smoking prevention, mental health, government benefit packages, etc. This  
program is implemented by a Russian NGO, the Health and Development Founda-
tion, and was developed under the auspices of the U.S.-Russia Bilateral Presiden-
tial Commission [89] on the basis of the U.S. text4baby program and sponsored by 
Johnson & Johnson (see more project in http://en.wikipedia.org/wiki/MHealth). 
SMSs has also the advantage of being relatively unobtrusive, offering patients 
confidentiality in environments where disease (especially HIV/AIDS) is often 
taboo. Additionally, SMSs provide an avenue to reach far-reaching areas - such as 
rural areas - which may have limited access to public health information and edu-
cation, health clinics, and a deficit of healthcare workers [90].  

The potential of mHealth lies also in its ability to offer opportunities for direct 
voice communication (of particular value in areas of poor literacy rates and lim-
ited local language-enable phones) and information transfer capabilities that pre-
vious technologies did not have. That is, there is evidence that the existence of a 
so-called “digital divide” along the socio-economic gradient is less pronounced in 
mobile phones than in other communication technologies such as the Internet [91]. 
There are applications related with the use of in-built smartphone sensors (e.g. 
phone camera, accelerometer, etc) that already have thousands of users. In the 
table 1 and 2 are presented application that we identified in App Stores, which 
focus in various health issue, based on technological capacity of smartphone. 
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Table 1. Android OS applications for health monitoring and care 

Android OS 
Name Developed by Role 
Vital and Sensory Function Test 
Instant Heart Rate Azumio Inc heart rate meter. 
Cardiograph Macro Pinch heart rate meter. 
Handy Logs Heart Handy Logs heart rate meter. 
iBP Leading Edge Apps 

LLc 
is a blood pressure tracking and analysis 
tool. iBP uses color icons to indicate 
when BP values are normal, high, or 
hypertension. 

Breath  
Biofeedback 

Android Research respiration biofeedback. 

Breath Pacer Lite 
by Android  
Research 

Android Research respiration. 

MT Health Test   MT DevTeam includes color blindness test, hearing 
test, stress test, psychological test. 

Vision Test 3 Sides Cube Eye allows brief tests to measure visual  
acuity, test for astigmatism and ability to 
distinguish colors. 

Test Your Hearing EpsilonZero easy hearing  tests are presented to test 
frequency range and frequency  
differentiation. 

NHS Direct NHS Direct facilitates an assessment, information on 
health condition and give advices for 
health preservation. 

Emergency 
BHF Pocket CPR Zoll Medical Bio-

Detek 
teaches Hands-only CPR skills according 
to the latest American Heart Association 
and European Resuscitation Council 
CPR and ILCOR Guidelines. 

ICE: In case  
of Emergency 

Appventive store important information about user 
medical needs in case of an emergency. 

ICE Sera-Apps the first helper is able to see who to call 
and which person he deals with in only a 
few clicks. 

First Aid Health Team first aids is designed for helping to  
follow the right procedures in an  
emergency. 

Stress Management 
Stress Check Azumio quantify level of stress, determine the 

effects of different stressors, allow con-
trol of stress. 

My Calm Beat Brain Solutions training respiration for relaxation. 
Cardiac Coherence  Haraweb training on how breathing can reduce 

stress. 
Respiroguide Pro Vital-EQ training respiration for better  

concentration, stress anxiety, ADHD  
and trauma healing. 
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Table 1. (Continued) 

Stress  
Management 
Guide 

Bigo stress management. 

Buddhify 21awakeLtd. it’s a introduction to meditation and the 
techniques involved. 

Sleep Deeply Hypnotherapists  
Direct Ltd 

helps to relax and drift to sleep quickly 
and easily. 

Brain Activity Management 
Brain Booster- 
Mind Refresher 

Imoblife Inc brain wave stimulation 

Brainwave Tuner 
Lite 

Imoblife Inc brain wave stimulation application that 
generates tones with binaural beats, 
which can change brain frequency to-
wards the desired state, allow relaxation 
or enhance attention. 

Sleep Talk Re-
corder 

MadINSweeden offers a window into the subconscious, 
“those mumbling you can never quite 
remember the morning after could be 
your inner genius coming out. By plac-
ing the smartphone near the bed it will 
automatically turn on and begin record-
ing when it senses sound during the 
night.”   

Nutrition 
WWDiary Canofsleep.com   food tracker and weight tracker. 
Carbs&Cals   Chello Publishing encompasses over 1400 foods with im-

ages. This enable to determine visually 
the number of calories and carbs by 
selecting the appropriate food type and 
portion size in the application. 

Calory Calculator Benjamin Lochmann 
New Media GmbH 

calories calculation. 

E Numbers Cal TappyTaps: Food 
Additives 

information on E numbers and artificial 
additives, including side effects, and 
rates over 500 additives on a scale of 1-5 
based on how bad they are for health. It 
also explains why they’re used, what 
they do, where they come from and 
more.  

Additives v3 Lyubozar Dimitrov  provide quick reference to simplified 
information about food additives labeled 
on foods. 

DietPoint.Weight 
Loss 

SimpLabs Ins weight loss assistant with largest collec-
tion of diet plan and community support. 

BMI Calculator Androidcrowd body mass index calculation. 
BMI Calculator Zileex Media body mass index calculation. 
BMI Calculator You Droid body mass index calculator that supports 

both English and Metric measurement 
units. 
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Table 1. (Continued) 

Easy Weight Loss Hypnotherapist Direct 
Ltd 

help users to relax and feel comfortable 
with the decision to loose weight. 

Weight Loss Tips aap_swap weight loss tips from the expert in diet, 
exercices, beauty, health, 
food&nutrition. 

Physical Exercices 
Fitness Buddy: 
1700 exercise 

AppOneCause by selecting the area of the body that 
user want to work is possible to select 
from a variety of exercices and all come 
with pictures and animations to ensure 
that are executed correctly. Performing 
exercises incorrectly can often do more 
harm than good and there are more than 
3000 images and animations to makes 
sure this does’nt happen. The apps allow 
to add new exercices and to save the 
preferred ones to a favorite list. There 
are also exercices designed specifically 
for men and women. 

Streth Exercices Imoblife Inc exercices for users with constant back-
aches and waist pains. 

MapMyWalk+ MapMyFitness measures how far a subject walk (based 
on GPS) on a daily basis, and how many 
calories are burning. 

Table 2. iPhone applications for health monitoring and care 

iPhone OS 
Name Developed by Role 
Instant Heart Rate Azumio Inc heart rate meter. 
iTriage Heathhagen the application make Microsoft 

HealthVault (Microsoft Personal Health 
Records) data viewable via an iPhone 
app. Empower consumer with control 
and convenience to effectively manage 
their personal health care, and improve 
health care delivery for provider and 
payers. 

Kaiser Permanente 
 

Kaiser Permanente 
 

the KP app gives Kaiser Permanente 
health plan members the tools to access 
their medical records, make appoint-
ments, refill prescriptions, view most 
lab test results, send non-urgent mes-
sages to their doctors, and more. 

Cure A-Z Plum Amazing Soft-
ware LLC 

 

shows how to combine the best of 
natural and prescription therapies to 
live in optimal health. 

Heath4Me United Health Group health services management. 
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Table 2. (Continued) 

Meal Planning by 
Food on the Table, 
Fast Food Calories 

Abs Workout 
 

calories calculation, meal planning. 

Calories counter & 
Diet Tracker 

My Fitness Pal calories calculation. 

DrinkTracker - 
The Breathalyzer 
Simulator & BAC 
Calculator, Outta 
Here! 

Drink Traker Zazzle keeps a record of what the user have 
been drinking with the fully editable 
one-tap drinks list. Apps automatically 
compares alcohol intake and metabolic 
removal rate and updates current Blood 
Alcohol Content every 60 seconds. Use 
Google Maps to get travelling direc-
tions (home or to the next pub), find a 
taxi in immediate vicinity of user, or 
email a friend with current location for 
a pickup. It also allows for phone or 
SMS contact via Contacts list from 
within the application. 

Pedometer Free 
GPS+ 

 

Arawella Corporation physical exercices meter. 

Fitness  
Buddy:1700+ 
Exercices 

 

AppOneCause by selecting the area of the body that 
user want to work is possible to select 
from a variety of exercices and all 
come with pictures and animations to 
ensure that are executed correctly. 
Performing exercices incorrectly can 
often do more harm than good and 
there are more than 3000 images and 
animations to makes sure this does’nt 
happen. The apps allow to add new 
exercices and to save the preferred ones 
to a favorite list. There are also exercic-
es designed specifically for men and 
women. 

 

Apple AppStore, Android Market, Microsoft Mobile Marketplace, Nokia Ovi 
have made possible not only for start-ups but small research Laboratories and even 
individual developers to quickly attract a very large number of users. Also, the 
Apps Store allows developers to deliver new applications to large populations of 
users across the globe leading to the deployment of new applications and the  
collection and the analysis of data far beyond the scale of what was previously 
possible. 

New included sensor in smartphone such as HD video and audio capabilities, 
accelerometers, GPS, ambient light detectors, barometers and gyroscopes enhance 
the methods of describing and studying cases, close to the patient or consumer of 
the health care service. In participatory sensing the user actively engages in the 
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data collection activity (i.e., the user manually determines how, when, what, and 
where to sample). In opportunistic sensing, the data collection stage is fully auto-
mated with no user involvement. The benefit of opportunistic sensing is that it 
lowers the burden placed on the users mainly when the application is complex or 
not personally appealing [92]. Personal sensing applications are designed for sin-
gle individual, and are often focused on data collection and analysis [92]. This 
could include diagnosis, education, treatment and monitoring. For instance Scully 
et al. [42] recently have shown that the technology available in a standard mobile 
phone camera has the potential to be used as an accurate multi-parameter physio-
logical monitor – heart rate, breathing rate, oxygen saturation.  However, various 
open issue exist in designing application for health monitoring and health care 
related with technologies that can support the continuous sensing on mobile 
phones, the programmability of the phones and the limitation of the operating 
systems that run on them, the dynamic environment presented by user mobility, 
persuasive user feedback.  

Although mHealth application is still considered in its infancy is very important 
to focus more our research on testing the efficacy and reliability of the proposed 
application in order to diminish the possibility to reinforce entrenched knowledge 
gaps. The research should try to respond to questions as: What are the added value 
of mHealth application for person health and healthcare system? What break-
throughs are needed in order to perform robust and accurate classification of  
health state and subject behaviour using continuous sensing data? How can be 
performed privacy-sensitive and resource-sensitive reasoning and to provide use-
ful and effective feedback to users in applications when noisy data and noisy la-
bels are part of the information? What are the designing that may motivate more a 
change of  behaviour or habit? How the privacy and security of  data can be better 
protected? For instance the heart rate, respiration rate or hemoglobin oxygen satu-
ration  measured performed by smartphone using embedded camera can be ac-
quired at least 5-10 time more cheaply using the commercial devices (pulse oxi-
meters). Moreover, commercial devices have better sensitivity and specificity in 
acquiring these values because hardware and software include function for reduc-
tion of movement and skin color artefact during measurement. The added value 
that can be obtained towards heart rate and respiration function measurement us-
ing smartphone is continuously, pervasive monitoring of person for long time as 
we deployed with our applications.  While smarphones continue to provide more 
sensing and communication bandwidth, computation, memory, storage, the cell 
phone is still a resource-limited device if complex signal processing and inference 
are required.  The need of continuous sensing when using smartphone for perva-
sive health monitoring  raises considerable challenges in comparison to sensing 
applications that require a short time window of  data or  a single snapshot (e.g. a 
single image or short sound clip). There is also an energy tax and resources asso-
ciated with continuously sensing. Various solutions for this problem are presented 
in recently works [93,94,95]. However, more research is needed to exceed limita-
tion of continuous sensing, to diminish the communication overhead and for pri-
vacy and security of stored and communicated data.  
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Fig. 17. The graphical interface of the pervasive computing device (Android OS smart 
phone) a) main menu, b) 0vital signs interface, c) motor activity interface 

The acquired and processed data are transmitted through the communication inter-
faces (e.g. Bluetooth, ZigBee or Wi-Fi) to the HMI, generally expressed by smart-
phone or tablet computer (e.g. HTC Desire and a Toshiba Folio were already used).  

Appropriate software was implemented on the mobile computing platform in 
order to process and display the data from the smart object sensors. In the smart 
wrist-worn device case the formatted data transmitted using a Bluetooth interface 
to a smartphone, which includes the application for communication, intermediary 
data processing and user interface developed under Android OS. A dashboard and 
a general menu board of the smartphone embedded software application are pre-
sented in Figure 17.  In Figure 17.a. is presented the Android OS application main 
menu that is used to select the vital signs and motor activity monitoring interfaces. 
Figure 17.b presents the implementation of vital signs monitor graphical interface 
that includes the heart rate and SpO2 digital display the PPG wave being visualized 
in a graphical display while the Figure 17.c includes the acceleration values evolu-
tion during the daily motor activity. For the particular case of smart wheelchair the 
graphical user interface was implemented on the tablet computer level and pre-
sents the evolution of cardiac signal (radar ballistocardiography), the respiration 
and the values of the heart rate and respiration rate (Figure 18).  

The general graphical user interface of the application embedded in the smart-
phone is presented in Figure 19. As can be observed, the main menu of the Blue-
Sentry 1.0.2 application embedded on the smartphone level, includes different 
categories such as smart object (e.g. smart walker) measuring channel  control, 
data synchronization, user profile and preferences. The smart object measurement 
channel control permits to select the visualization of one single or multiple meas-
uring channels according to the user or health professional necessity. Thus, “sin-
gle” selection permit to visualize the evolution in time of only one measurement 
parameter with higher resolution, while for “multiple” selection two of the meas-
ured channel can be selected and the evolution of measured quantities is presented 
in a set of comparative graphs. 
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Fig. 18. Cardiac, respiratory and motor activity graphical interface implemented on the 
Android OS Tablet computer 

 

Fig. 19. The dashboard of the implemented AndroidOS software for walker user 

In Figure 20 are presented a set of two BlueSentry application panels that are 
obtained after the selection of “Multiple” button. In Figure 20.a is presented si-
multaneously the evolution of  the left arm support applied force and the detected 
legs motion using the radar sensor while Figure 20.b is presented the evolution of 
detected legs motion together the counter signal evolution, and  Figure 20.c the 
applied force and the walker acceleration during normal usage are presented.  
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Fig. 20. The BlueSentry application GUI  a) radar motion sensor – force  wave visualiza-
tion, b) radar motion sensor – radar counter visualization c) radar motion sensor – accelera-
tion wave visualization 

The preferences are used to set-up particular parameters associated with par-
ticular walker’ user training or to the particular physiotherapy exercises associated 
with smart walker use. The data obtained from the smart walker measurement 
channel is transferred automatically (from time to time e.g. 2 min) or manually by 
direct command to the HealthCare Web IS database for advanced processing (e.g. 
gait pattern recognition). The synchronization permits to actualize the information 
on the smartphone side concerning measurement data processing algorithms, 
thresholds, alarms, user profile and preferences. 

The Android SDK and the Java programming language were used in our work 
as software technologies to implement data communication, data processing and 
representation on the smartphone display as well as the data management. A set of 
Activity Classes were considered:  ServerSync that permits to manage all the in-
formation regarding the application; SingleChannel that assures the graphical 
representation of individual wave associated with smart object measurement 
channels (e.g gait wave from smart walker radar channel); MultipleChannel that 
assures multiple graphical representation of clinical status. A flowchart associated 
to the SingleChannel activities classes interaction with Java methods of  Bluetooth 
Service is presented in Figure 21.  
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Fig. 21. DashBoard.java flowchart 

Activity classes that also were implemented in the smartphone: Main that 
shows a menu associated with the selection of the main application classes; Pro-
file, related to the patient profile, includes personal information and clinical data 
such as medical exams, registered illnesses, and indicated medication; Data-
baseList that presents a list of particular elements for each patient shown on the 
smartphone display; BluetoothService that is related with Bluetooth data  commu-
nication; BluetoothDebug that permits to display the data that  is received from the 
acquisition and  communication module in numerical format. If a set of smart 
objects with Bluetooth communication compatibility are present in our designed 
ambient intelligent for healthcare, a list of available devices is shown to the care-
giver using the touch panel computer.  The user is able to choose the smart object 
according to the ID of the person that is associated with the smart object. The 
selection can be done automatically according to the healthcare assessment sched-
ule that is daily updated on the computing device (PC) of health professional (e.g. 
nurse, physician) or accompanying person mobile platform (e.g. tablet PC or 
smartphone). 

The identification of smart objects is done in the present scenario using the 
MAC address of the Bluetooth device. Using the aiCharts graphical library, a 
graphical representation of the signals acquired by the acquisition and communi-
cation module integrated in the smart objects is carried out. Thus in the wrist worn 
case, the evolution of  PPG wave as so as the acceleration values are presented  
 



36 O. Postolache, P.S. Girão, and G. Postolache
 

while in the walker case gait wave (obtained through the radar), force wave and 
acceleration waves are presented on the display. The mobile device software also 
includes a database that was developed using the SQLite library, while the bidirec-
tional data synchronization with a server database was done using a set of methods 
included in a synchronization class. The contextual interpreter developed as a 
server application manages the data coming from wireless acquisition and com-
munication modules, or from RFID tag making all the needed associations be-
tween the user, corresponding profile and the values of vital signs  and motor ac-
tivity parameters for a given smart object assigned (e.g. smart walker) to the user. 
The data from the contextual interpreter is transmitted to the information composi-
tor module using XML format that will provide complete information (users, 
smart object localization, and adapted HMI needed for a given context). The in-
formation obtained on the compositor side is provided to the Web server that will 
provide the information according with the human machine interface and re-
freshed every time when the user is detected for the first time using a smart device 
(e.g. smart wheelchair), or when a specific sensor make a measurement. It also 
happens every time when an observer is detected in front of a situated display. A 
simplified materialization of above presented hardware and software architecture 
is presented in Figure 16. Thus the user is using a smart walker which communi-
cates the data through Bluetooth to a smartphone (which software can be consid-
ered on the user layer too). The data received on the smartphone from the walker 
(values measured by the walker sensors) is delivered through the Wi-Fi/3G-UMTS 
Internet to the server side (ambient layer) where the data is processed and sent to 
the contextual interpreter and information compositor software modules. The Web 
server receives the appropriate information to be presented to the patient or care-
giver when using the elements of the display layer. Tests on reliability were real-
ized through the progress of design and deployment of the system and we are go-
ing to publishe the results. 

A smartphone application for indoor air quality and respiratory function moni-
toring was also implemented by the authors (see Figure 15). By utilizing commu-
nity sensing technologies with mobile telephone, public health research can  
exploit the wide penetration of mobile devices to collect data that can give infor-
mation on impact of environment on health. For instance, projects such as the 
PEIR project from the University of California (UCLA) used sensors in phone to 
build a system that enables personalized environmental impact reports, which 
track how the actions of individuals affect both their exposure and their contribu-
tion to problem such as carbon emission [96].  By aggregating the data from mo-
bile phone of different users, from personal sensing and from distributed sensing 
nodes for indoor air quality, more insight on environmental impact on human 
health can be obtained and public health policy shall be able to craft initiatives to 
mitigate risk associated with indoor and outdoor air pollution. Integrating use of 
GIS and GPS with mobile technologies adds a geographical mapping component 
[97] that is able to "tag" voice and data communication to a particular location or 
series of locations. These combined capabilities have been used for emergency 
health services as well as for disease surveillance, health facilities and services 
mapping, and other health-related data collection. 
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There is a paucity of studies that evaluate effectiveness of mHealth application. 
Gurman et al. [98] analysing the evidences on effectiveness of mHealth behaviour 
change communication (BCC) interventions in developing countries have shown 
that studies did not consistently demonstrate significant effects of exposure to 
BCC mHealth interventions on the intended audience. Although most publications 
described interventions that used two-way communication in their message deliv-
ery design, less than half described tailoring the content or targeting [99]. More-
over, evaluation of efficacy of a mHealth campaign using SMS as a platform to 
disseminate and measure HIV/AIDS knowledge and to promote HIV/AIDS testing 
at clinics in rural Uganda has shown that only one fifth of the mobile subscribers 
responded to any of the questions. The campaign had proportionately limited suc-
cess in increasing knowledge levels on a mass scale [99].  A variety of techniques 
are designed recently for mHealth that can motivate a change of behaviour or a 
habit as: the use of games, competitions among groups of people, sharing informa-
tion within a social network, or goal setting accompanied by feedback. We are 
working on design and deployment of a serious games model, taking into account 
elements such as the use of RFID for game playing, tablets for interaction and 
patient’s physiological vital signals monitoring, personalization and adaptation 
issues. The first prototype is a type of a memory and mahjong based game de-
signed for a tablet PC attached to the wheelchair. It is directed to address thera-
peutics activities in aphasia and alexia, the most common speech and language 
disturbance in stroke and head trauma [55].  

Understanding which types of metaphors and feedback are most effective for 
various persuasion goals is still an open issue. Building mobile phone sensing 
systems that integrate persuasion requires interdisciplinary research that combines 
behavioral and social psychology theories with computer science, sensors and 
communication network engineering.  

Withal privacy and security of data stored and transmitted through mobile 
phone will remain a significant problem in the foreseeable future. Although there 
are approaches that can help with these problems (e.g. cryptography, privacy-
preserving data mining) they are now insufficient [100,101]. While this research 
field can leverage evidence and insight from data mining, machine learning, stan-
dard on communication of data, best clinical practice and ethical issue, health 
information system policy it present challenges is not addressed by this present 
work.   

5   Pervasive Computing 

Over the past decade, miniaturization and  cost reduction in semiconductors have 
led to computers smaller in size than a pinhead with powerful processing abilities 
that are affordable enough to be disposable. Similar advances in wireless commu-
nication, sensor design and energy storage have meant that the concept of a truly 
pervasive ‘wireless sensor network’, used to monitor environments and objects 
within them, has become a reality. Ubiquitous computing means network connec-
tivity everywhere, linking devices and systems as small as a drawing pin and as 
large as a worldwide product distribution chain [102]. Pervasive computing (the 
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term used in some recent literature with the same meaning of ubiquitous compu-
ting) relies on the convergence of wireless technologies, advanced electronics and 
the Internet. The pervasive computing abilities may allow continuous monitoring 
of  human health in any environment, be it home, hospital, outdoors or the 
workplace.  

Pervasive computing shares many application fields in common with mobile 
computing such as mobile networking, mobile information access, adaptive appli-
cations, location sensitivity. However it addresses four key issues expressed by 
smart spaces, invisibility, localized scalability and masking uneven conditioning 
[103]:   

• Smart Spaces: embedding computing infrastructure in building infra-
structure brings together two worlds that have been disjoint until now. 
The fusion of these worlds enables mutual sensing and control of these 
worlds.  

• Invisibility: the ideal expressed by Weiser is complete disappearance of 
pervasive computing technology from a user’s conciousness. In practice, 
a reasonable approximation to this ideal is minimal user distraction. If a 
pervasive computing environment continuously meets user expectations 
and rarely presents him with surprises, it allows him to interact almost at 
a subconcious level.  

• Localized Scalability: as smart spaces grow in sophistication, the intensi-
ty of  interactions between a user’s personal computing space and its sur-
roundings increases. This has severe bandwidth, energy and distraction 
implications for a wireless mobile user. Scalability, in the broadest sense, 
is thus a critical problem in pervasive computing. Like the inverse square 
laws of nature, good system design has to achieve scalability by severely 
reducing interactions between distant entities. This directly contradicts 
the current ethos of the Internet, which many believe heralds the “death 
of distance.”  

• Masking Uneven Conditioning: uniform penetration, if it is ever 
achieved, is many years or decades away. In the interim, there will persist 
huge differences in the “smartness” of different environments – what is 
available in a well-equipped conference room. This large dynamic range 
of “smartness” can be jarring to a user, detracting from the goal of mak-
ing pervasive computing technology invisible. One way to reduce the 
amount of variation seen by a user is to have his personal computing 
space compensate for “dumb” environments. As a trivial example, a sys-
tem that is capable of disconnected operation is able to mask the absence 
of wireless coverage in its environment. 

Pervasive computing devices should be completely connected and constantly 
available. Hence, pervasive computing stimulates and reinforces deployment of 
smart products that communicate unobtrusively. The smart sensors for pervasive 
heath monitoring and care may be connected to the Internet and the generated data 
may be easily available.  Therefore pervasive health monitoring and pervasive 
healthcare systems may generate a wealth of information for the healthcare  
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provider above and beyond what is currently available. How this information will 
be acquired, stored and interpreted, and how healthcare systems will respond to 
adverse events and to improve quality of care must all be considered. It is impor-
tant to appreciate that at present while much patient information is collected by 
continuous monitoring, for example during hospital admission, most of this infor-
mation is lost. As pervasive health monitoring systems will collect a vast amount 
of information, separating this into ‘important’ and ‘non-important’ is going to 
require very accurate context sensing and data mining.  Reacting to this informa-
tion is going to require major process automation and structural change to existing 
healthcare systems. Traditional approaches for handling data are often based on 
large dedicated computer systems which store all required data at one single loca-
tion and handle all incoming requests from applications and their users. While this 
is a valid approach for limited amounts of data, it is no longer functionally and 
economically viable for large scale pervasive health monitoring and care. The 
apparent solution is to distribute both data and requests onto multiple computers. 
In this case, a method to create coherence between computers is required, de-
signed to make the distributed appear like a single large units to its users [104]. 
The Cloud Computing [31] that is a specialized form of distributed computing that 
introduces utilization models for remotely provisioning scalable and measured 
information technology resources. Analyzing the main characteristics of the cloud 
computing such as on-demand self-service, broad network access, resource pool-
ing and rapid elasticity can be underlined that the usage of this kind of technology 
fit well with the pervasive healthcare. Thus smart object as patient assistants can 
access to the cloud computing capabilities in order to obtain the processed metrics 
associated with the values measured by the sensors that can used to generate warn-
ing up message translated in audio and/or video signaling forms. Based on cloud 
computing models the computing resource are pooled to serve multiple consumers 
using multi-tenant model [105] with different physical and virtual resource dy-
namically assigned and reassigned according with smart object demand or mobile 
platform demand. Taking into account the reliability requirements for the health-
care systems the cloud computing provides increased reliability through the use of 
multiple redundant sites, which makes Cloud Computing suitable for health sys-
tem  continuity and disaster recovery. The first steps in Cloud Computing technol-
ogy application for healthcare are already done especially related to the usage of 
cloud storage facility; however fewer steps were done in the healthcare data analy-
sis side where the usage of computational intelligence and semantic Web technol-
ogies represent the next step in the future of  healthcare system. Computational 
Intelligence (CI) [106] is a set of nature-inspired computational approaches that 
primarily includes Fuzzy Logic Systems (FLS) [107], Evolutionary Computation 
(EC) [108] and Artificial Neural Networks (ANN) [109]. The Evolutionary Com-
putation may deal with the vastness and tractability issues in storing, querying, 
reasoning and mapping semantic data in pervasive health monitoring, Fuzzy Logic 
may effective for management of vagueness and uncertainty in pervasive health-
care while Artificial Neural Network may improve the learning capacity of the 
pervasive health system and solve inconsistent issues with regards to data map-
ping and the data alignments in pervasive health monitoring and care. 
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In the early sixties, the concept of Semantic Network was firstly introduced as a 

knowledge representation model by cognitive scientists Allan M. Collins, linguist 
M. Ross Quillian and psychologist Elizabet F. Loftus [110]. In 1998, the term 
Semantic Web (SW) was coined by Web inventor Tim Berners-Lee as an exten-
sion of the current Web [111]. It was described as a giant global semantic network 
of data that is directly consumable and understandable to machines. In contrast to 
a hypertext Web that indicates texts linked to other texts in other places by hyper-
links, the Semantic Web projects a hyperdata Web that indicates data objects 
linked with other data objects across the Web through formal semantics and ontol-
ogies [112].  It enables the formation of a global web of data or open linked data 
[113] that interlinks distributed data at a Web-scale. The Semantic Web is led by 
the World Wide Consortium (W3C) as an international collaborative movement 
[114]. According to Tim Berners-Lee et al. [111] the Semantic Web will bring 
structure to the meaningful content of Web pages, creating an environment where 
software agents roaming from page to page can readily carry out sophisticated 
tasks for users  as clinical diagnosis advice. Regarding the principle of “how” 
Semantic Web is defined [115] a layered architecture expressed in Figure 22 was 
proposed by Tim Berners-Lee.  

In Figure 22 Unicode  represents the standard for computer character represen-
tation, and URIs, the standard for identifying and locating resources (such as pages 
on the Web); XML form a common means for structuring data on the Web but 
without communicating the meaning of the data; RDF (Resource Description 
Framework) represents a simple metadata representation framework; Ontologies 
represents a richer language for providing more complex constraints  on the types 
of resources and their properties; Logic and Proof represents  an (automatic) rea-
soning system provided on top of the ontology structure to make new inferences ; 
Trust represents the final layer of the stack addresses issues of trust that the Se-
mantic Web can support.  

 

Fig. 22. Semantic Web layered architecture 

Like the Web architecture, the pervasive healthcare is going to be decentra-
lized, vast, uncertain, and incomplete. Generally, manually configuring and oper-
ating large-scale distributed systems that potentially comprise thousands of  
nodes is no longer feasible. Self-organizing distributed systems are able to operate 
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autonomously [116]. The approaches developed for handling vast Web data may 
be adapted for pervasive health monitoring and care taking into account the speci-
ficity of data store and communicated. For instance, new approaches are recently 
proposed for handing with vast data: the eRDF (electronic Resource Description 
Framework)  that provides the evolutionary algorithms for querying, and a swarm 
algorithm for logical entailment computation [117];   swarm intelligence model to 
store and analyze the massive amounts of semantic data and collective behavior of 
swarm individuals for reasoning over a fully decentralized and self-organized 
storage system [118]; tractable reasoning services for ontology application using 
tractable profiles in OWL2 (Web Ontology Language) and some of their fuzzy 
extension and reusable reasoning infrastructure called TrOWL for mashup, 
process refinements validation, software engineering guidance for tractable  
applications of fuzzy and crisp ontologies [119];  use of cloud infrastructure for 
scalable reasoning on top of semantic data under fuzzy pD* semantics (i.e. an 
extension of OWL pD* semantics with fuzzy vagueness) [120]. 

6   Conclusion  

Driven by quality and cost metrics, the healthcare systems will change radically in 
the near future from current healthcare professional-centric systems to distributed 
networked and mobile healthcare systems. In this movement, the leading part is 
attributed to the pervasive technologies. Pervasive healthcare tries to change the 
healthcare delivery model: from doctor-centric to patient-centric, from acute reac-
tive to continuous preventive, from sampling to monitoring. 

The pervasive or ubiquitous access to healthcare data is essential for diagnosis 
and treatment procedure in healthcare system of the future. It requires unobtrusive 
sensing and convenient on-demand network access to a shared group of configur-
able computing resource. We describe in this chapter unobtrusive sensing solu-
tions based on optical sensors, microwave Doppler radar, or MEMS technologies 
as well as Android OS software applications. The smart objects, characterized by 
the unobtrusiveness of sensing and computing in a pervasive system for health 
monitoring may deliver information to mobile platforms such as smartphone or 
tablet computers programmed to locally process the received data and to perform 
data synchronization with Web healthcare servers as Cloud computers compo-
nents. These computer resources expressed by networks servers, storage applica-
tions and Web services might be rapidly provisioned and released with minimal 
management effort or service provider interaction, by using computational intelli-
gence and Semantic Web.  
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