
A Multi-tiered Recommender System
Architecture for Supporting E-Commerce

Luigi Palopoli, Domenico Rosaci, and Giuseppe M.L. Sarné

Abstract. Nowadays, many e-Commerce tools support customers with automatic
recommendations. Many of them are centralized and lack in efficiency and scalabil-
ity, while other ones are distributed and require a computational overhead excessive
for many devices. Moreover, all the past proposals are not “open” and do not allow
new personalized terms to be introduced into the domain ontology. In this paper, we
present a distributed recommender, based on a multi-tiered agent system, trying to
face the issues outlined above. The proposed system is able to generate very effec-
tive suggestions without a too onerous computational task. We show that our system
introduces significant advantages in terms of openess, privacy and security.

1 Introduction

Nowadays, a large number of Recommender Systems (RSs) is used to promote e-
Commerce (EC) activities [11] but often they fall when transactions occur between
customers and merchants (B2C), mainly for a inadequate exploration of the market
space, ineffective communications between the actors and for lack of security and
privacy in the transactions. To solve such issues, new B2C systems, characterized
by high levels of automation, exploit software agents that, acting on the customers’
behalf, allow a B2C transaction to be carried out without human intervention.

A RS provides his user with potentially useful suggestions for his purchases [14]
based on a representation of his interests and preferences across the phases of a B2C
transaction. Different behavioural models describe such phases, as the well known
Consumer Buying Behaviour (CBB) model [6] base on six stages, namely: i) Need

Luigi Palopoli
Università della Calabria, 87036 Rende (CS) (Italy)
e-mail: palopoli@deis.unical.it

Domenico Rosaci · Giuseppe M.L. Sarné
Università Mediterranea, 89122 Reggio Calabria (Italy)
e-mail: {domenico.rosaci,sarne}@unirc.it

G. Fortino et al. (Eds.): Intelligent Distributed Computing VI, SCI 446, pp. 71–81.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

palopoli@deis.unical.it
{domenico.rosaci,sarne}@unirc.it

72 L. Palopoli, D. Rosaci, and G.M.L. Sarné

Identification; ii) Product Brokering; iii) Merchant Brokering; iv) Negotiation; v)
Purchase and Delivery; vi) Service and Evaluation. Software agents [16] are usu-
ally exploited to monitor a user during these stages for building his profile. The RSs
present in the EC sites can adopt centralized or distributed architecture. The first
generate suggestions only on the server side but their performances are lacking in
terms of efficiency and scalability and customers’ privacy (due to the centralization
of personal information), and this potentially affects the quality of their suggestions.
The alternative approach implies distribution [9, 10] but its complexity could gen-
erate unacceptable computational overheads on the client as, for instance, a mobile
device. Moreover, existing RSs assume homogeneous system components, implying
that it is difficult for the users to add personal knowledge in the system.

In this paper, we present a Distributed Agent Recommender for E-Commerce
(DAREC) based on a multi-tiered agent system. It allows to i) increase the distribu-
tion degree of the RS, ii) generate effective recommendations without any onerous
computational task on the client side, iii) introduce significant advantages in ope-
ness and privacy. The basic idea of this framework (see Figure 1) is that each cus-
tomer is assisted by three software agents, each of which, autonomously of the other
agents, deals with a different CBB stage . Each agent runs on a different thread in
the customer’s client and this improves the efficiency of the overall process being
agent interactions specialized. Each customer’s agent, during its activity, can inter-
act with the DAREC sellers’ sites distributed over the Internet, where each seller site
is assisted by a seller agent provided with both a product catalogue and customers’
profiles encoding the preferences of each customer that visited the site in the past.
This interaction allows the customer agent to generate content-based (CB) recom-
mendations for the customer and also makes the site able to generate personalized
presentations of the products for its visitors to support the site visit. The agents also
interact with the seller agents and reciprocally generate collaborative filtering (CF)
recommendations. This way if a customer c1 needs to interact with a customer c2 for
need identification purposes, his NI-agent simply interacts with the c2’s NI-agent.
The other agents of c1 and c2 are free to perform other activities improving the sys-
tem performances with respect to those systems where a unique customer’s agent
can execute only one activity at time.

The remaining of the paper is organized as follows. In Section 2 we introduce
the knowledge representation exploited in DAREC, while Section 3 describes the
agents’ behaviour. Section 4 deals with some related work. Section 5 presents some
experiments to evaluate our proposal and in Section 6 we draw our final conclusions.

MERCHANT

BROKERING

PRODUCT

BROKERING

NEED

IDENTIFICATIONYELLOW PAGES

COMMON

DICTIONARY

E-COMMERCE SITES

Fig. 1 The DAREC Architecture

A Multi-tiered Recommender System Architecture for Supporting E-Commerce 73

2 The DAREC Knowledge Representation

The DAREC community shares a common dictionary storing the names of basic
product categories of interest and their reciprocal relationships. Moreover, each cus-
tomer’s agent profile encodes all the information necessary to manage its CBB stage.
Similarly, each seller’s agent manages a catalogue of offered products organized in
categories. Finally, in order to allow a collaboration between agents the information
stored in a “yellow page” data structure are exploited (see below).

More in detail, a Category Dictionary D contains (i) a set DC of product
categories and (ii) a set of category links DR between categories, denoted by
〈cat1,cat2, t〉 where cat1, cat2 ∈ D and t is the type of the link that can be: i) isa-
linked, denoted 〈cat1,cat2, ISA〉, iff all the products belonging to cat1 also belong
to cat2 ; ii) synonymy-linked, denoted 〈cat1,cat2,SYN〉, iff both all the products
belonging to cat1 also belong to cat2 and vice versa; iii) overlap-linked, denoted
〈cat1,cat2,OVE〉, iff there exist some product of cat1 that also belong to cat2, and
viceversa. Note that if two categories are synonymy-linked, they are also overlap-
linked; iv) commercial-linked, denoted 〈cat1,cat2,COM〉 iff we suppose that the
customers usually purchase both products belonging to cat1 and cat2.

We represent a category dictionary D (called COMMON and publicly available)
as a direct labeled graph G(D) = 〈DC,DR〉, where; for each category cat ∈ DC

there is a node called namecat associated with a label denoted by in f ocat ; for each
arc ∈ DR there is a link 〈cati,cat j, t〉 oriented from cati to cat j and labeled by t.
Nodes represent product categories, which the products offered by the sellers belong
to, and arcs represent existing relationships between categories. Moreover, we say
that cati and cat j belong to a category relationship (ISA(D), SIN(D), OVE(D)
or COM(D)) if they are in the same dictionary and the relationships 〈cati,catk, t〉
and 〈catk,cat j, t〉 belong to a more general (ISA, SIN, OVE or COM)-relationship,
while they are called generally related, denoted by GEN(D), if there is in D a path
between their associated nodes independently of the specific arc-labels.

2.0.1 The Personal and the Site Profiles

In a DAREC community (C), in order to handle the Need Identification (resp. Prod-
uct Brokering, Merchant Brokering) CBB stage, each customer c ∈ C is assisted in
that stage by an agent, called NIc (resp. PBc, MBc). Each agent stores in a profile,
called NI (resp. PB, MB)-profile all the c’s information necessary to handle the as-
sociated CBB stage. The profile is implemented by a category dictionary P(NIc)
(resp. P(PBc), P(MBc)) such that its nodes represent categories of interest (resp.
product categories relative to suitable products or merchants) for c, arcs represent
links between categories and each category (resp. product of interest, merchant) is
associated with a quantitative evaluation of the c’s interest. Moreover, since a prod-
uct (resp. merchant) search could be not activated for each category (resp. product)
of interest for c, the categories belonging to P(PBc) (resp. P(MBc)) are gener-
ally a subset of those in P(NIc) (resp. P(PBc)). As a consequence, each arc of
the PB (resp. MB)-profile, between cati and cat j is a copy of the corresponding arc

74 L. Palopoli, D. Rosaci, and G.M.L. Sarné

belonging to the NI (resp. PB)-profile (included the label). Finally, each category
belongs to either the common dictionary or to a “personal” customer’s category (un-
derstandable to the other agents being in a general relationship with at least another
category of the common dictionary).

In DAREC, each seller s ∈S is associated with a seller agent that stores in its
site profile (SPs) a catalogue of the offered products and some information about the
preferences of its past customers. Also SPs is represented by a category dictionary
whose nodes represent product categories in which s offers products and whose arcs
represent relationships between categories. We introduce the mapping SPs(cat), that
accepts the category cat as input and returns the tuple SPs(cat) = 〈prod,customers〉,
where prod is a list of products that s offers in the category cat. To access the
elements of this list, we use a mapping SPs(cat).prod(p) that accepts as input a
product p and returns the tuple SPs(cat).prod(p) = 〈price, payment, f ormat〉, such
that price is price of p, payment is the set of payment methods available for p and
f ormat is the format available for p. The price mean depends if the price is fixed
or it is the reserved price in an “auction”. Finally, the element customers is a list of
customers interested in products of the category cat that, for each customer, stores
a list of those products of the site which the customer is interested in.

A) B)

Fig. 2 A)An example of a DAREC site; B)The recommendations provided by the personal
agents

2.0.2 The Yellow Pages YP

This data structure allows customers of the DAREC community to publish their in-
terests, in order to facilitate mutual collaboration.Y P is a set of category dictionaries
{YPc}, one for each customer c. In particular, Y Pc is a sub-graph of c’s NI-profile,
containing those categories cat ∈P(NIc) such that NIc(cat).i = public.

3 Agent’s Behaviour in DAREC

The agent running on the client used by the customer c to visit the DAREC EC
sites (i) supports the Web site navigation like a normal browser and (ii) generates

A Multi-tiered Recommender System Architecture for Supporting E-Commerce 75

suggestions for the user. To this purpose, the client interface is provided with the
functionalities Browser and Recommender described below. If c is a newcomer he
should build an initial NI-Profile P(NIc) by adding the categories of his interest,
together their relationships, from the dictionary COMMON. Moreover, c could add
to P(NIc) some personal category cat �∈COMMON, by specifying its name and
path in P(NIc) joining cat with at least a category cat∗ ∈ COMMON. Besides,
for each selected category c should specify his interest degree NIc(cat).i and the
visibility mode NIc(cat).mode.

3.1 The Browser: Agents Working “over the Shoulders”

Each DAREC site allows the customer c i) to “navigate” through the categories by
clicking on the tab “Browser” (the Categories list is on the left in Figure 2-A) or ii)
to use the Search tool to perform a keyword-based search among the products sold
at fixed price (i.e., Buy-It-Now) or with an auction (i.e., Make an Offer). For each
product p, belonging to a category cat, c can perform the actions of: (A1) selecting
the product for examining the offer; (A2) watching the product; (A3) purchasing the
product. Each action A1, A2 or A3 performed by c implies a call to the agents NI,
PB and MB that automatically update their profiles and in particular:

• The NI-agent is called, feeding it the category cat. If cat is absent in its profile,
it is added therein and its interest value NIc(cat) is set to an initial value iniInt.
Then the NI-agent requires to the PB and MB agents to add cat and its interest
value to their profiles. Otherwise, if cat ∈ NI-profile, its interest value is updated
to NIc(cat) = min(1,NIc(cat)+Δa), where Δa ∈ [0,1] (with a = A1,A2,A3) it
is arbitrarily set by c to weight the performed action. The value NIc(cat) is then
passed to the agents PB and MB for updating their profiles.

• The client calls the PB-agent to pass the product p. If p �∈ PB-profile
then it is added to the list PBc(cat).prod with iniInt as interest value and
their insertion in the the list MBc(cat).prod ∈ MB-agent is required. Other-
wise, if p ∈ PB-profile its interest value is updated to PBc(cat).prod(p).i =
min(1,PBc(cat).prod(p).i+Δa) and passed to MB to be copied in MBc(cat).p.i.

• The client calls the MB agent, passing the seller s. If s �∈MB-profile, then it is
added to the list MBc(cat).sellers with numT = 1 and a score of iniInt. Other-
wise, numT increased by 1 and the score is updated to MBc(cat).sellers(s).ev =
min(1,MBc(cat).sellers(s).ev+Δa).

Periodically, the NIc(cat).i (resp. PBc(cat).prod(p).i, MBc(cat).sellers(s).ev)
value associated with the NI (resp. PB, MB)-profile, after a τNI (resp. τPB, τMB) time
period passed from its last update, is decreased of ρNI (resp. ρPB, ρMB), a c’s param-
eter ranging in [0,1]. Also the seller agent of s updates its list SPs(cat).customers ∈
SPs after each customer’s action that involves a product p ∈ cat. In particular, if c �∈
SPs(cat).customers a new element SPs(cat).customers(c) is added to it. Moreover,
p is added to the list SPs(cat).customers(c).prod and the number of transactions
SPs(cat).customers(c).numT is increased. Otherwise, if c∈ SPs(cat).customers, the

76 L. Palopoli, D. Rosaci, and G.M.L. Sarné

seller agent updates the element SPs(cat).customers(c) by increasing the number of
transactions SPs(cat).customers(c).numT and inserting p in SPs(cat).customers(c).
prod if it is absent.

3.2 The Recommender: Exploiting Customer’s Profiles

When c selects the tab “Recommender” in his client, then some suggestions are
generated for him and visualized in a page having a section for each supported stage
(Figure 2-B). Suggestions are generated by the each agent in a “cascade” mode,
i.e. firstly the customer chooses a category from those in section “Recommended
Categories”, then a set of products is suggested in section “Recommended Products”
and chosen a product, a set of merchants selling that product is suggested in section
“Recommended Merchants”.

The NI-agent suggests to c a set of categories visualized in the client section
“Recommended Categories” in the three distinct list-boxes (Figure 2-B):

• Visited Categories contains categories selected with a CB approach from the NI-
profile P(NIc) built by monitoring the c’s activity (see Section 3).
• Unvisited Categories lists categories unknown to c, but considered interesting
for him by his NI-agent. This agent uses a relationship-based mechanism to exploit
the interaction between the c’s NI-agent and the agent of each site that he visited in
the past. In particular, the agent of a seller s, for each category cat visited by c (i.e.
c ∈ SPs(cat).customers), determines all the categories cat∗ ∈ SPs such that cat∗ is
unvisited by c and there exists a path in SPs between cat and cat∗; these categories
are sent to the c’s NI-agent, to be added to this list.
• Suggested by Similar Customers, where the categories are determined,
with a CF technique, on the whole EC customer’s navigation history by
the c’s NI-agent collaborating with the NI-agents of customers similar to c
for interests. To this aim, it is exploited the public repository YP (see Sec-
tion 2) storing, for each DAREC customer x his public interest profile Y Px.
The c’s NI-agent computes the similarity degree s(c,x) between its profile
P(NIc) and each Y Px by using the Jaccard measure of the set of nodes of
P(NIc) and YPx for n customers (a parameter set by c), that is s(c,x) =
|NODES(P(NIc))

⋂
NODES(YPx)|/|NODES(P(NIc))

⋃
NODES(YPx)|, where

NODES(G) returns the set of nodes of its input graph. Then, the c’s NI-agent
determines, for each similar customer x, those categories stored in the public profile
Y Px �∈P(NIc), and adds them to this list.

The PB-agent (resp. MB-agent) suggests, in the section “product recommen-
dations” (resp. “merchant recommendations”) a set of products (resp. sellers) be-
longing to a category cat selected by c from the recommended categories (resp.
‘products) on his client. These products are visualized in the listboxes:
•Visited Products (resp. Merchants), it contains products (resp. merchants) of the
category cat ∈ PB-profile P(PBc) (resp. MB-profile P(MBc)), ordered by score.
• Unvisited Products (resp. Merchants), this list is built by exploiting a collabo-
ration between the c’s PB (resp. MB)-agent and the seller agent of each site s the

A Multi-tiered Recommender System Architecture for Supporting E-Commerce 77

customer c visited in the past. In particular, for a PB-agent each listed p ∈ cat is
unvisited by c and belongs to each site profile, while for the MB-agent the set is
formed by those sellers having cat in their profiles and are unvisited by c in the past.
• Suggested by Similar Customers, these suggestions are based on the collabo-
ration between the PB (resp. MB)-agents of c and of other customers similar to
him for interests (their list is provided by the c’s NI-agent). Each of the PB (resp.
MB)-agent of these customers sends to c’s PB (resp. MB)-agent its set of products
PBx(cat).prod (resp. merchants MBx(cat).sellers) that is added to this list. The
PB (resp. MB)-agent shows the products (resp. merchants) belonging to the listbox
“Visited Products” (resp. “Visited Merchants”), ordered by value, and the products
(resp. merchants) belonging to the listboxes “Unvisited Products” (resp. “Unvisited
Merchants”) and “Suggested by Similar Customers”, ordered alphabetically.

Each seller agent SAs associated with a seller s exploits its profile SPs to personalize
the site presentation for the each customer c that is visiting it. When c returns to visit
the site, the element SPs(cat).customers(c) already exists in the SAs profile. Using
such information, SAs personalizes its home page for c by visualizing in a “Shop
Window” all the p ∈ SPs(cat).customers(c).prod, ordered by interest value. SAs

uses this list as a sort of local profile related to c and at the same time, it increments
the value SPs(cat).customers(c).numV to consider his current visit. Otherwise, for
the first time c’s visit the default home page is visualized.

4 Related Work

Centralized RSs are widely used in EC Web sites, for example, the Amazon site
[1] adopts some recommender tools based on the customer’s browsing history, past
purchases and purchases of other customers. The system drives a customer to buy
something because this is related to something that he purchased before, or because
this is popular with other customers. Another case is that of the RSs embedded in
auction sites [4], as in eBay [5], that generates recommendations using its feed-
back profile features. Among the centralized approaches in [9] the authors propose
a system which stresses on freshness, novelty, popularity and limitedness in product
recommendations. All these centralized approaches generate, similarly to DAREC,
both CB and CF recommendations and store all the private information about cus-
tomers and sellers necessary to generate recommendations. Differently to DAREC
is that they are not open and use pre-defined dictionaries of terms for defining the
product categories while DAREC allows the users to define new terms in their per-
sonal ontologies. Distributed recommender systems (DRSs), increased in diffusion
in these later years, share information and computation tasks among more entities.
DRSs are more critical in design and performances optimization [8] than central-
ized RSs but (1) promise scalability in time and space complexities, (2) avoid the
failure risks due to a central database running on a unique server and (3) preserve
privacy and security. DSRs often adopt peer-to-peer (P2P) and agents technologies
to easily i) exchange data locally stored on each peer (e.g., Chord [13]) reducing the
task to locate a specific resource and ii) provide communication, cooperation and

78 L. Palopoli, D. Rosaci, and G.M.L. Sarné

negotiation rules, respectively. In a mall, adaptive learning agents associated with
each shop in CASy [3] process shop transactions and analyze information about
interests of customers entering the shop that are derived by his profile, keywords,
product queries and by other shop agents for proposing to the consumer suitable
suggestions in an efficient and adaptive way. A multi-agent system (MAS) imple-
menting a knowledge-based DSR applied to the tourism domain is discussed in [7].
Agents cooperate to suggest travel packages to a user. They are expert in specific
domains (hotel, flights, interchanges, etc) and autonomously select the most suit-
able sub-task of a recommendation request to deal with their competence. Their
suggestions are then composed in a final recommendation. All the referred DRSs
take advantage of the distributed architectures in terms of scalability, risks failure,
privacy and security. Differently from DAREC, none of them deal with the Need
Identification, Product or Merchant Brockering phases based on a description of the
consumer’s interests and preferences (with the partial exception of [2] that can also
avoid the use of such a profile). All the described recommenders and DAREC adopt
(or can easily adopt, as [12, 15]) agent-based and/or P2P systems to find similar
neighbors, resources and exploit predefined services. Agent specialization is intro-
duced in [7] but it is relative just to the item typology, while DAREC is based on
agent communities, where each agent is specialized in a different EC phase (as de-
scribed in the CBB model). A similar concept is also present in [15] but it involves
a set of recommenders, each one linked to a different organizations and having a
particular point of view in generating suggestions.

5 Efficiency and Effectiveness of DAREC

In this Section, we discuss efficiency and some experimental results about the ad-
vantages of our approach. In terms of efficiency, for a community of n customers
and m sellers, a unique centralized agent managing all the three phases has compu-
tational cost of NC = Σ3

i=1ni · ki, where ki and ni are the number of contemporary
sessions activated and of operations needed for a user to manage the Need Identifi-
cation, Product and Merchant Brokering phases, respectively. Instead, in DAREC,
for a given CBB stage, each user’s agent can deal with more different issues run-
ning on different threads. Let αi, be the multi-threading degrees for a specific CBB
stage and let β = k1 + k2 be the computational overhead due to the communica-
tions between the local agents (i.e., the Need Identification agent calls the Product
Broker agent, that in its turn can call the Merchant Broker agent that does not run
any additional operation). In this way the computational cost for a CPU will be
ND = β +Σ3

i=1αi · ni · ki and the computational advantage (ρ), due to the distribu-
tion in DAREC, is equal to ρ = (β +Σ3

i=1αi ·ni ·ki)/Σ3
i=1ni ·ki where if, for simplic-

ity, α = α1 = α2 = α3, k = k1 = k2 = k3 and N = n1 + n2 + n3, the above formula
becomes ρ = α + 2/N. Therefore, the advantage of using DAREC is perceivable
with a small multi-threading contribution (i.e. high values of α) in presence of a
reasonably high number of operations (i.e. an intense EC activity), while for a high
multi-threading activity the advantage shows up also for small N values.

A Multi-tiered Recommender System Architecture for Supporting E-Commerce 79

In terms of effectiveness, the time exploited to perform B2C processes in serial
and multi-threading way has been compared by means of a software appositively de-
signed. To this aim, we considered a period of 2 hours where a set of 500 customers
finalize all their B2C processes with a purchase dealing with a merchant popula-
tion (M) of 10 units. Moreover, the merchant has to satisfy also the requests due
to other customers that could absorb significant merchants’ servers resources. This
is taken into account by means of an overhead (O) of 1÷ 100 requests for second,
randomly shared among the merchants. Finally, a lot of different of communication,
computational and behavioural parameters have been tuned to model realistic B2C
processes. Obviously, in order to compute in average the time (in seconds) needed
to perform a purchase process in a multi-threading (Tm) and in a serial (Ts) modal-
ity the same values for the parameters have been used. More in detail, Tm (i.e. Ts)
has been computed as Tm = ∑NP

i=1 Tm/NP, where NP is the number of purchases,
randomly fixed, performed in the considered test session.

Fig. 3 The average serial (Ts) and multi-threading (Tm) times (in sec.) needed to carry out a
B2C process depending on the Overhead by considering 500 Customers and 10 Merchants

The experimental results shown in Fig. 3 confirm that the DAREC approach con-
sumes in average about the 25% of time less then the serial approach in performing
a purchase in absence of overhead and when the overhead grows also Ts grows with
it while Tm is almost uniform. In Table 1 are reported the average gain (G) in per-
centage of Tm with respect to Ts for different values of the overhead. This behavior is
due to the fact that changes in the number of merchants, overheads and so on, have
a minimal impact on Tm and very high impact on Ts. This because, in average, each
merchant’s server is busy to satisfy the customers’ requests and Ts grows with the
level of “saturation” of the merchants’ servers worsening the quality of their service.

Table 1 The average gain (G = Ts/Tm) to carry out a B2C process depending on the number
of Overhead by considering 500 Customers and 10 Merchants

O 0 5 10 20 30 40 50 60 70 80 90 100
G 24.61 36.12 44.63 56.43 63.98 69,19 73,05 76,39 78,39 80,75 82,28 83,61

80 L. Palopoli, D. Rosaci, and G.M.L. Sarné

6 Conclusions

In this paper, we have presented advantages and limitations of the DAREC dis-
tributed architecture that introduces novel, original characteristics with respect to
other recommenders. DAREC allows to the different CBB stages of an EC process
to be assigned to a different agent creating a tier of specialized agents. This architec-
ture reduces the computational cost for the device on which the local agents run and
the presence of specialized agents improves the users’ knowledge representations,
the openness of the system and the privacy degree.

Acknowledgements. This work was partially funded by the Italian Ministry of Research
through the PRIN Project “Entity Aware Search Engines” and by the DEIS (Università della
Calabria).

References

1. Amazon (2011), http://www.amazon.com
2. Awerbuch, B., Patt-Shamir, B., Peleg, D., Tuttle, M.R.: Improved Recommendation Sys-

tems. In: Proc. of 16th ACM-SIAM Symp. on Discrete Algorithms, pp. 1174–1183.
SIAM (2005)

3. Bohte, S.M., Gerding, E., La Poutré, J.A.: Market-based Recommendation: Agents that
Compete for Consumer Attention. ACM Trans. Internet Techn. 4(4), 420–448 (2004)

4. Culver, B.: Recommender System for Auction Sites. J. Comput. Small Coll. 19(4),
355–355 (2004)

5. eBay (2011), http://www.ebay.com
6. Guttman, R.H., Moukas, A., Maes, P.: Agents as Mediators in Electronic Commerce.

Electronic Markets 8(1), 22–27 (1998)
7. Lorenzi, F., Correa, F.A.C., Bazzan, A.L.C., Abel, M., Ricci, F.: A Multiagent Recom-

mender System with Task-Based Agent Specialization. In: Ketter, W., La Poutré, H.,
Sadeh, N., Shehory, O., Walsh, W. (eds.) AMEC 2008. LNBIP, vol. 44, pp. 103–116.
Springer, Heidelberg (2010)

8. Olson, T.: Bootstrapping and Decentralizing Recommender Systems. Ph.D. Thesis, Dept.
of Information Technology. Uppsala Univ. (2003)

9. Parikh, N., Sundaresan, N.: Buzz-based Recommender System. In: Proc. of 18th Int.
Conf. on World Wide Web (WWW 2009), pp. 1231–1232. ACM (2009)

10. Rosaci, D., Sarné, G.M.L., Garruzzo, S.: MUADDIB: A Distributed Recommender Sys-
tem Supporting Device Adaptivity. ACM Trans. Inf. Syst. 27(4) (2009)

11. Schafer, J.B., Konstan, J.A., Riedl, J.: E-Commerce Recommendation Applications. Data
Min. Knowl. Discov. 5(1-2), 115–153 (2001)

12. Schifanella, R., Panisson, A., Gena, C., Ruffo, G.: MobHinter: Epidemic Collaborative
Filtering and Self-Organization in Mobile Ad-Hoc Networks. In: Proc. of ACM Conf. on
Recommender Systems (RecSys 2008), pp. 27–34. ACM (2008)

13. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications. In: Proc. of SIGCOMM 2001,
pp. 149–160 (2001)

http://www.amazon.com
http://www.ebay.com

A Multi-tiered Recommender System Architecture for Supporting E-Commerce 81

14. Wei, K., Huang, J., Fu, S.: A Survey of E-Commerce Recommender Systems. In: Proc.
of 13th Int. Conf. on Service Systems and Service Management, pp. 1–5. IEEE (2007)

15. Weng, L.-T., Xu, Y., Li, Y., Nayak, R.: A Fair Peer Selection Algorithm for an e-
Commerce-Oriented Distributed Recommender System. In: Proc. of 2006 Conf. on Adv.
in Intell. IT, pp. 31–37. IOS (2006)

16. Wooldridge, M., Jennings, N.R.: Agent Theories, Architectures, and Languages: A Sur-
vey. In: Wooldridge, M.J., Jennings, N.R. (eds.) ECAI 1994 and ATAL 1994. LNCS,
vol. 890, pp. 1–39. Springer, Heidelberg (1995)

	A Multi-tiered Recommender System Architecture for Supporting E-Commerce
	Introduction
	The DAREC Knowledge Representation
	Agent’s Behaviour in DAREC
	The Browser: Agents Working “over the Shoulders”
	The Recommender: Exploiting Customer’s Profiles

	Related Work
	Efficiency and Effectiveness of DAREC
	Conclusions
	References

