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Abstract. Nowadays, with a growing use of location-aware, wirelessly connected,
mobile devices, we can easily capture trajectories of mobile objects. To exploit these
raw trajectories, we need to enhance them with semantic information. Several re-
search fields are currently focusing on semantic trajectories to support queries and
inferences to help users for validating and discovering more knowledge about mo-
bile objects. The inference mechanism is needed for queries on semantic trajec-
tories connected to other sources of information. Time and space knowledge are
fundamental sources of information used by the inference operation on semantic
trajectories. This article presents a case study of inference mechanism on semantic
trajectories. We propose a solution based on an ontological approach for modelling
semantic trajectories integrating time information and rules. We give experiments
and evaluations of the proposed approach on generated and real data.

1 Introduction

Over the last few years, there has been a huge collection of real-time data of mo-
bile objects. These data are obtained by satellite based systems like GNSS1, GPS2

or ARGOS, phone location or radio-frequency identification. This opens new per-
spectives for several applications like road traffic supervision and animals tracking.
Therefore, it becomes necessary to provide mechanisms for storage, modelling, ef-
ficient analysis and knowledge extraction from these data. The raw data captured,
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commonly called trajectories, traces moving objects from a departure point to a des-
tination point as sequences of pairs (sample points captured, time of the capture).
In [12], authors give a general definition of a trajectory: “A trajectory is the user de-
fined record of the evolution of the position (perceived as a point) of an object that
is moving in space during a given time interval in order to achieve a given goal”.
Trajectories can be constrained to existing networks [10], or be unconstrained like
in our study. Raw trajectories don’t contain contextual information about moving
objects like goals of travelling nor activities accomplished [3]. To consider these
semantic information, semantic trajectories are defined as a result of the annotation
process of raw data with semantic annotations [12]. This annotation process can be
done automatically or manually. Semantic trajectories can be seen as a high-level
information layer on raw trajectories [14]. In [8], to model semantic trajectories, a
domain ontology is constructed to represent domain concepts and rules. In the con-
tinuation of this paper [8], we discuss strategies for time integration with evaluation
on synthetic and real data. We study seal trajectories and focus on semantic anno-
tations for there activities such as foraging, travelling and resting. The inference
mechanism on semantic trajectories which is connected to time knowledge has time
and space storage complexity problem. This work addresses these two problems and
gives some ideas for improving the complexity of the proposed approach.

This paper is organized as follows: section 2 presents the state of the art on se-
mantic trajectories and some recent related work. Section 3 details our domain ap-
plication and queries we aim to answer. Section 4 gives the two ontologies needed,
seal trajectory and time ontologies. Section 5 presents our domain ontology rules
and the temporal ontology rules. Section 6 defines the connection between trajectory
and time ontologies. Section 8 discusses the evaluation of the proposed approach.
Finally, section 9 concludes this paper and presents ideas for the future work.

2 Related Work

Data management techniques including modelling, indexing and querying large
spatio-temporal data are actively investigated during the last decade [13]. Most
of these techniques are only interested in raw trajectories. Projects like GeoP-
KDD [4] and MODAP3 emphasized the need to address and to use semantic in-
formation about moving objects for efficient trajectories analyses. Recently, new
projects are born like MOVE4 who aims to improve methods for knowledge extrac-
tion from massive amounts of moving objects data. As an example, in birds migra-
tion project [12], trajectories are analysed for better understanding birds behaviours.
Scientists try to answer queries such as: where, why and how long birds stop on their
travels, which activities they do during their stops, and which weather conditions the
birds face during their flight. Considering these new requirements, new researches

3 MODAP: Mobility, Data Mining and Privacy.
4 Move: European Cooperation in Science and Technology - http://move-cost.info/
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have emerged offering data models that can easily be expanded to take into account
semantic data. In [12], the trajectory is seen as a user defined time-space function
from a temporal interval to a space interval. To consider semantics of trajectories, a
conceptual view is defined by three main concepts: stops, moves, and begin-end of
a trajectory. Each part contains a set of semantics data. This model is implemented
and evaluated on a relational database. Most domain and temporal operations are
SQL based and use elementary data comparators. Based on this conceptual model
of trajectories, several works have been proposed such as [3].

Using ontologies for semantic spatio-temporal data modelling is a new research
field. In [9], authors work on a military application domain with complex queries
that require sophisticated inferences methods. For this application, they present an
upper-level ontology defining a general hierarchy of thematic and spatial entity
classes and associating relationships to connect these entity classes. They intend
for application-specific domain ontologies in the thematic dimension to be inte-
grated into the upper-level ontology through subclassing of appropriate classes and
relationships. Temporal information is integrated into the ontology by labelling re-
lationship instances with their valid times. In this work, the temporal and spatial di-
mensions are included in the global ontology. Moreover, the ontology is formalised
by the RDFS vocabulary and implemented on a relational database. Consequently,
the inference mechanism is based on several domain specific table functions. The
inference mechanism defined uses only the RDFS rules indexes. In [14], authors
design a conceptual model of trajectories based on the approach introduced in [12].
This model represents trajectories from low-level real-life GNSS data to different
semantically abstracted levels. Their application concerns daily trips of employees
from home to work office and coming back. So, they start from basic abstractions
(e.g. stops, moves) to enriched higher-level abstractions (e.g. office, shop). In [6],
Malki et. al define an ontological approach modelling and reasoning on trajecto-
ries. This approach takes into account thematic, temporal and spatial rules. The
ontologies constructed are formalised using both RDFS and OWL vocabulary. The
inference mechanism is based on rules defined as entailments.

Finally, in [12], domain or time inference mechanism are not proposed neither
spatio-temporal data mining are not investigated. However, in this paper, we focus
on time knowledge integration and use inference mechanisms on semantic trajecto-
ries based on the approach introduced in [6]. Nevertheless, authors did not address
the evaluation of the proposed approach. For all of that, this article gives experi-
ments and evaluates the performance problems of time integration on generated and
real data.

3 Domain Application

In this section, we present the seal trajectory modelling approach. We introduce the
seal trajectory data model and its semantic associated layer.
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3.1 Seal Trajectory Data Model

As in [6], this paper considers trajectories of seals. The data comes from the
LIENSS5 (CNRS/University of La Rochelle) in collaboration with SMRU [11].
These laboratories work on marine mammals ecology. Trajectories of seals between
their haulout sites along the coasts of the English Channel or in the Celtic and Irish
seas are captured using GNSS systems provided by SMRU Instrumentation. We use
trajectories data coming from GPS/GSM tags. The captured spatio-temporal data of
seals trajectories can be classified into three main states: haulout, cruise and dive.
The Fig. 1 shows the three states, the transitions and their guard conditions [8].

3.2 Semantic Seal Trajectory

We focus on studying seals’ activities in order to identify their foraging areas. The
main activities of seal, like foraging, resting and travelling, occur in the dive parts
of the trajectory. So we aim at answering queries, such as:

1. foraging activities;
2. foraging activities during a given time interval;
3. foraging activities performed after travelling during a given time interval.

For all queries, we have to define a domain rule called “foraging” on the seal trajec-
tory model. However, for the last two queries, time rules must be defined between
trajectory’s parts. For example, the query 3 needs the two domain rules “foraging,
travelling” and the time rule “during” as illustrated by the Table 1.

4 Modelling Approach

The need of a time model with temporal relationships appears in Table 1. As in [8],
we consider separated and independent data models using an ontological approach.

4.1 Seal Trajectory Ontology

The seal trajectory ontology, owlSealTrajectory, is a result of a transforma-
tion model of the semantic seal trajectory. An extract of this ontology is in Fig. 2.
This ontology defines the main following concepts:

- Seal: represents the animal equipped with a tag;
- Sequence: captures in the form of temporal intervals with a spatial part called
GeoSequence and can be Haulout, Cruise or Dive. The other parts are
metadata called Summary and CTD (Conductivity-Temperature-Depth);

5 http://lienss.univ-larochelle.fr

http://lienss.univ-larochelle.fr
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Seal states

Haulout

Cruise

Dive

[continously wet for 40 sec]

[continously dry for 10 mins]

[shallower than 1.5m]

[deeper than 1.5 m for 8 secs]Sensor deployment end 
date time is known

Sensor deployment start 
date time is known

Fig. 1 The three states of seal trajectory

Table 1 Domain and time concepts and rules needed by the query 3

Concepts and rules Description

Concepts Domain Dive specific part of the seal trajectory
Time Temporal-interval the given temporal interval

Rules
Domain Travelling seal activity

Foraging seal activity

Time After temporal relationship between the two ac-
tivities

During temporal relationship between activity and
time interval

- Trajectory: is the logical form to represent a set of sequences;
- Activity: is the seal activity for a sequence or for a trajectory.

Besides these concepts, owlSealTrajectory defines these relationships:

- seqHasActivity: is the object property between an activity and a sequence;
- TAD (Time Allocation at Depth): is the data property calculated to define the shape

of a seal’s dive, as mentioned in [7].

4.2 Time Ontology

Table 1 clearly highlights the need for temporal concepts as well as temporal rela-
tionships between these concepts. In our approach, we choseowlTime ontology [5]
developed by the World Wide Web Consortium (W3C) thanks to the definition of
the temporal concepts and relationships as defined by Allen algebra [1]. An extract
of the declarative part of this ontology6 is given in Fig. 3.

6 http://www.w3.org/2006/time

http://www.w3.org/2006/time
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Fig. 2 An extract of the ontology owlSealTrajectory

TimeZone Instant

TemporalEntity ProperIntervalInterval

January

DurationDescription

DateTimeDescription

Thing

TemporalUnit

DateTimeInterval

DayOfWeek

Year

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

Fig. 3 A view of the owlTime ontology

5 Ontological Rules

5.1 Seal Trajectory Ontology Rules

We define four seals’ activities during dives: resting; travelling; foraging; travelling-
foraging. In our approach, each seal activity is defined in the ontology and has both
a declarative and an imperative corresponding parts. The Fig. 4 shows the declara-
tive parts. The imperative parts are based on the decision Table 2 which determines
the maximum dive depth, the dive’s shape (TAD) and the surface ratio dividing
the surface duration by the dive duration. We implement the imperative parts us-
ing the Oracle database supporting semantic technologies. We create the rule base
sealActivities rb to hold the activities’ implementation as domain rules. The
Code 1 gives the implementation of foraging rule (line 3) in the rule base
sealActivities rb. In this code, the line 6 checks the maximum dive depth d
to be more than 3 meters, the TAD t to be 0.9 and the surface duration s divided by
the dive duration v, to be smaller than 0.5.
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Activity

Resting Travelling Travelling-ForagingForaging

is a is a is a is a

Fig. 4 Declarative part of seal activities

Table 2 Decision table associated to seal activities

Rules Maximum Dive shape Surface ratio =
dive depth or TAD surface duration/dive dura-

tion

Resting < 10 all > 0.5
Travelling > 3 > 0 & < 0.7 < 0.5
Foraging > 3 > 0.9 & < 1 < 0.5
Travelling Foraging > 3 > 0.7 & < 0.9 < 0.5

1 EXECUTE SEM_APIS.CREATE_RULEBASE(’sealActivities_rb’);
2 INSERT INTO mdsys.semr_sealActivities_rb
3 VALUES( ’foraging_rule’,
4 ’(?x rdf:type ost:Dive)
5 (?x ost:tad ?t)(?x ost:max_depth ?d)(?x ost:surf_dur ?s)(?x ost:dive_dur ?v)’,
6 ’(d > 3) and (t > 0.9) and (s/v < 0.5)’,
7 ’(?x ost:seqHasActivity ?activiteJ) (?activiteJ rdf:type ost:Foraging)’,
8 SEM_ALIASES(SEM_ALIAS(’ost’, ’http://l3i.univ-larochelle.fr/Sido/

owlSealTrajectory#’)));

Code 1 The imperative part of the seal activity foraging

5.2 Time Ontology Rules

The owlTime ontology declares 13 relationships based on Allen algebra [1].
These are: intervalEquals, intervalBefore, intervalMeets, intervalOverlaps, in-
tervalStarts, intervalDuring, intervalFinishes, intervalAfter, intervalMetBy, inter-
valOverlappedBy, intervalStartedBy, intervalContains, intervalFinishedBy. Allen
temporal relationships are implemented inside the rule base owlTime rb. For
example, the Code 2 presents the implementation of the intervalAfter rule.

1 EXECUTE SEM_APIS.CREATE_RULEBASE(’owlTime_rb’)
2 INSERT INTO mdsys.semr_owltime_rb
3 VALUES(’intervalAfter_rule’,
4 ’(?x rdf:type owltime:ProperInterval)(?y rdf:type owltime:ProperInterval)
5 (?x owltime:hasEnd ?xEnd)(?xEnd :inXSDDateTime ?xEndDateTime) (?y owltime:

hasBeginning ?yBegin)(?yBegin :inXSDDateTime ?yBeginDateTime)’,
6 ’(yBeginDateTime > xEndDateTime)’,
7 ’(?y owltime:intervalAfter ?x)’,
8 SEM_ALIASES(SEM_ALIAS(’owltime’,’http://www.w3.org/2006/time#’)));

Code 2 The imperative part of Allen temporal relationship intervalAfter



194 R. Wannous et al.

6 Semantic Integration by Ontological Mapping

The need of a semantic integration clearly appears while considering separated
and independent sources of information, like seal trajectory and time ontologies.
This ontological mapping may lead to discover more semantic trajectory patterns.
The property rdfs:subClassOf is not appropriate in separated ontologies. Even
more the property owl:sameAs means that the two connected classes have the
same intention meaning, however it does not go further for their properties. Con-
sequently the property owl:equivalentClass is the most appropriate connection in
our case. The mapping process is shown in Fig. 5 following these steps:

1. owlSealTrajectory:Sequence is the mapping concept by OWL con-
struct owl:equivalentClass to time:ProperInterval;

2. owlSealTrajectory:s date is the mapping object property by OWL
construct owl:equivalentProperty to owlTime:hasBeginning;

3. owlSealTrajectory:e date is the mapping object property by the
OWL construct owl:equivalentProperty to owlTime:hasEnd.

In particular, the reasoner considers the owl property “owl:equivalentClass”
which allows the inference of a “Sequence” instance as a “ProperInterval” in-
stance. Therefore, the interval temporal rules are also valid for sequences of
trajectories, which means valid for dives also.

7 Temporal Rule Extension

The inference mechanism is needed for queries on the semantic trajectory
owlSealTrajectory mapped to the time ontology owlTime. Calculating
the inference between all sequences of trajectories considering all time rules
takes a huge amount of time and space storage capacity. To enhance the infer-
ence mechanism, we define a refinement called temporal neighbour inference:
“A temporal neighbour is when a sequence happened within a conceptual distance
to another”. The goal of this refinement, algorithm 1, is to consider the dis-
tance between two sequences in order to calculate the corresponding temporal
relationships. The temporal rules must comply with this refinement. It is still
difficult to determine the best candidate for the temporal neighbour distance,
and even then, there is uncertainty on its usefulness.

8 Evaluation and Analysis

The experiments aim at checking the usefulness of the temporal neighbour
refinement. We create a synthetic temporal interval data and examine the va-
lidity of our proposal. Then we evaluate it’s efficiency on real GPS-GSM seal
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Fig. 5 Integration of owlSealTrajectory with owlTime ontology

input : Two sequences: a referent Sr and an argument Sa
input : A neighbour of Sr
output: Temporal rule between Sr and Sa
if Sa ∈ to the neighbour of Sr then

calculate the temporal rule between Sr and Sa;
go the next sequence Sa

else
go the next sequence Sa

end

Algorithm 1. Temporal neighbour inference algorithm

trajectory data. We use Oracle 11g Release 2. For the experiments, we consider
the query 3 (§3.2). The Code 3 gives the SQL code of this query.

1 SELECT D1, D2
2 FROM TABLE ( SEM_MATCH(
3 ’(?D1 rdf:type ost:Dive) (?D1 ost:sequenceHasActivity ?activiteD1) (?

activiteD1 rdf:type ost:Travelling)
4 (?D2 rdf:type ost:Dive) (?D2 ost:sequenceHasActivity ?activiteD2) (?

activiteD2 rdf:type ost:Foraging)
5 (?D1 ot:intervalBefore ?D2)
6 (?I rdf:type ot:ProperInterval) (?I ot:hasBeginning ?beginI) (?beginI ot:

inXSDDateTime "2003-08-02T00:00:00"ˆˆxsd:datetime) (?I ot:hasEnd ?endI
)(?endI ot:inXSDDateTime"2003-08-09T23:59:00"ˆˆxsd:datetime)

7 (?D1 ot:intervalDuring ?I) (?D2 ot:intervalDuring ?I)’,
8 SEM_Models(’owlSealTrajectory’,’owlTime’),
9 SEM_Rulebases(’OWLPRIME’,’sealActivities_rb’,’owlTime_rb’),

10 SEM_ALIASES(SEM_ALIAS(’ost’, ’http://l3i.univ-larochelle.fr/Sido/
owlSealTrajectory#’),

11 SEM_ALIAS(’ot’,’http://www.w3.org/2006/time#’)),
12 null));

Code 3 The SQL code of the query 3

In Fig. 6, the inference mechanism is done on semantic seal trajectory before and
after the mapping. The experiment is done for different numbers of dives shown
in the horizontal axis multiple by 100. In Fig. 6(a), the vectorial axis shows the
time multiple by 10 000 needed for the inference mechanism. In Fig. 6(b), the
vectorial axis shows the number of triples multiple by 100 000 related to the
space storage. From analysing Fig. 6, the problem is obvious comparing the time
and the space storage needed from the inference mechanism. In other words,
after using temporal rules, calculating the inference becomes very expensive
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in terms of time and the space storage. In our point of view, this problem is
related to the temporal rules integration without any constraints. With biological
feedback, we define the temporal neighbour distance for seal trajectories to five
minutes (300 seconds). Then we modify the implementation of temporal rules
considering the temporal neighbour refinement. For instance, the modification of
the temporal intervalAfter rule with the temporal neighbour refinement,
called intervalAfterRefined rule, is given by the Code 4.

Fig. 6 Compare the time and space storage taken from the inference mechanism on the se-
mantic seal trajectory integrated with/without the temporal rules

1 EXECUTE SEM_APIS.CREATE_RULEBASE(’owlTime_rb’)
2 INSERT INTO mdsys.semr_owltime_rb VALUES(
3 ’intervalAfterRefined_rule’,
4 ’(?x rdf:type owltime:ProperInterval)(?x owltime:hasEnd ?xEnd)(?xEnd :

inXSDDateTime ?xEndDateTime)(?y rdf:type owltime:ProperInterval)(?y
owltime:hasBeginning ?yBegin)(?yBegin :inXSDDateTime ?yBeginDateTime)’
,

5 ’(yBeginDateTime > xEndDateTime) and ((timeIntervalLengthInSeconds(
dateTime2TimeStamp(xEndDateTime),dateTime2TimeStamp(yBeginDateTime))
<300)’,

6 ’(?y owltime:intervalAfterTime ?x)’,
7 SEM_ALIASES(SEM_ALIAS(’owltime’,’http://www.w3.org/2006/time#’)));

Code 4 Create the temporal intervalAfterRefined rule

Then we validate the usefulness of the temporal neighbour on the synthetic data
integrated first with the temporal rules and later with the extended temporal rules,
as shown in Fig. 7. The vectorial axis, Fig. 7(a) shows the time and Fig. 7(b)
shows the number of triples, where both time and space needed for the inference
mechanism. Figure 7 shows the useful impact of applying the refined temporal
rules in reducing the time and the space storage.Finally we apply the experiment
on a real GPS/GSM data integrated first with the temporal rules and then with
the refined temporal rules, as shown in Fig. 8. In Fig. 8(a), the vectorial axis
shows the time (multiple by 10 000) needed for the inference mechanism for
each number of dive. In Fig. 8(b), the vectorial axis shows the number of triples
(multiple by 100 000) related to the space storage taken from the inference
mechanism for each number of dive. Figure 8 shows the improvement made
on calculating the inference after applying the temporal neighbour concept. In
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Fig. 7 The contribution of using temporal neighbour reduced the time and space storage
taken form the inference mechanism on the synthetic data

Fig. 8 The impact of using temporal neighbour refinement in the time and space storage
taken by the inference mechanism on the GPS/GSM data

other words, the temporal neighbour is efficient in reducing the complexity of
the inference mechanism on the GPS/GSM data.

9 Conclusion and Future Work

Trajectory data are usually available as sample points, and lake of semantic
information, which is of fundamental importance for the efficient use of these
data [2]. In this paper, we present a case study on the use of an ontological
based approach for modeling semantic trajectories integrated with time rules.
The main goal is to apply the inference mechanisms on semantic trajectories
and to present a solution to reduce the complexity reasoning and querying on
these semantic trajectories. We define a new condition on temporal rules which
is temporal neighbour refinement. Then, we evaluate our approach on synthetic
data as well as on real GPS/GSM data. The experiment’s results verify the pos-
itive impact of the temporal neighbour refinement on reducing the complexity
of the inference mechanism. The influence of one condition positively appears
nevertheless the reasoning complexity still exists. So applying more domain con-
ditions on rules is therefore very important for reducing time and space storage
inference complexity. As future work, we aim at applying more conditions on
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temporal and spatial rules. We also intend to assess the impact of using in-
cremental inference to improve the inference mechanism complexity and the
contribution of temporal and spatial relationships composition.
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incar, F., Houben, G.-J., Thiran, P. (eds.) ER Workshops 2008. LNCS, vol. 5232, pp.
344–353. Springer, Heidelberg (2008)

4. GeoPKDD. Geographic Privacy-aware Knowledge Discovery and Delivery. Coordinator:
KDDLAB, Knowledge Discovery and Delivery Laboratory, ISTI-CNR and University of
Pisa, http://www.geopkdd.eu

5. Hobbs, J.R., Pan, F.: An Ontology of Time for the Semantic Web. ACM Transactions on
Asian Language Information Processing 3, 66–85 (2004)

6. Malki, J., Bouju, A., Mefteh, W.: An Ontological Approach Modeling and Reasoning
on Trajectories. Taking into account Thematic, Temporal and Spatial Rules. Revue des
Sciences et Technologies de l’information 31(1), 71–96 (2012), doi:10.3166/tso.31.71-
96

7. Jonsen, I.D., Myers, R.A., James, M.C.: Identifying Leatherback Turtle Foraging Be-
haviour from Satellite Telemetry using a switching State-space Model. Marine Ecology
Progress Series 337, 255–264 (2007)

8. Malki, J., Mefteh, W., Bouju, A.: Une Approche Ontologique pour la Modélisation et
le Raisonnement sur les Trajectoires. Prise en compte des règles métiers, spatiales et
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