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Abstract. We obtain the first deterministic randomness extractors for
n-bit sources with min-entropy ≥ n1−α generated (or sampled) by single-
tape Turing machines running in time n2−16α, for all sufficiently small
α > 0. We also show that such machines cannot sample a uniform n-bit
input to the Inner Product function together with the output.

The proofs combine a variant of the crossing-sequence technique by
Hennie [SWCT 1965] with extractors for block sources, especially those
by Chor and Goldreich [SICOMP 1988] and by Kamp, Rao, Vadhan, and
Zuckerman [JCSS 2011].

Keywords: turing machine, independent source, deterministic random-
ness extractor, sampling lower bound, complexity of distributions.

1 Introduction

Turing machines may be the most studied model of computation even after
decades of work on circuits. Following a first wave of worst-case lower bounds
starting in the 60’s (cf. [13]) and continuing to this date, researchers in the
90’s have produced a second type of results. Specifically, Impagliazzo, Nisan,
and Wigderson obtain in [14] average-case lower bounds and pseudorandom
generators.

In this work we are interested in what we see as a third type of lower bounds:
sampling lower bounds. We seek to understand what distributions can be sam-
pled by randomized Turing machines (which take no input).

The first work on sampling complexity may be the one by Jerrum, Valiant, and
Vazirani [15] who define sampling complexity classes and prove reductions among
various problems. An unconditional communication complexity lower bound for
sampling disjointness appears in the work [2] by Ambainis, Schulman, Ta-Shma,
Vazirani, and Wigderson. Goldreich, Goldwasser, and Nussboim study the com-
plexity of sampling in [11] as part of a general study of the implementation of
huge random objects. Aaronson proves in [1] a connection between sampling and
searching problems.

The complexity of sampling is being revisited in a series of recent works
[26,19,9,25,6]. These works establish the first unconditional lower bounds for sev-
eral computational models, such as bounded-depth circuits, and draw several new
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connections to problems in data structures, combinatorics, and randomness ex-
tractors. The connection to randomness extractors in particular makes progress
along the research direction initiated by Trevisan and Vadhan in [24], and con-
tinued by Kamp, Rao, Vadhan, and Zuckerman in [16], which aims to construct
deterministic randomness extractors for efficiently-samplable distributions.

1.1 Our Results

Our main result is an extractor for sources samplable by Turing machines
running in subquadratic time. For clarity we first review randomized Turing
machines.

In this work, Turing machines have exactly one read-write tape, infinite to the
right only, with exactly one head on it. One may choose {0, 1} as tape alphabet.
The tape is initially blank, that is, all zeros. In one time step, the machine reads
the content of the cell, tosses a coin, and then writes the cell, updates the state,
and moves the head to an adjacent location. Machines never halt, and we are
only interested in a portion of their computation table. A t × t computation
table is a t × t matrix corresponding to a valid computation according to such
rules, with rows being configurations. Each entry specifies the content of the
corresponding tape cell, whether the head is on that cell, and if so what is
the current state and the current coin toss. Since we store the coin tosses in the
entries, all t× t computation tables have equal probability 2−t.

A Turing machine source on n bits running in time t is sampled as follows.
First sample uniformly the t× t computation table. Then output the bottom left
n tape bits.

Theorem 1 (Extractors for Turing-machine sources). For all sufficiently
small α > 0,
there is an explicit extractor E : {0, 1}n → {0, 1}m with output length m = nΩ(1)

and error 2−nΩ(1)

for n-bit sources with min-entropy ≥ k := n1−α/16 that are

sampled by Turing machines with ≤ 2q := 2n
α/16

states and running in time
≤ t := n2−α.

The above theorem implies sampling lower bounds for somewhat complicated
functions. The next one obtains one for the inner-product function IP .

Theorem 2 (Sampling lower bound for Turing machines). For every
α ∈ (0, 1] and all sufficiently large even n

no Turing machine with ≤ 2q := 2n
α/2

states and running in time ≤ t := n2−α

can sample the distribution

(X1, X2, IP (X1, X2))

where X1 and X2 are uniform and independent over {0, 1}n/2.
Note that this result depends on the ordering of the input bits – if the bits of
X1 and X2 are interleaved then a Turing machine can sample the distribution
in linear time.
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1.2 Overview of the Proofs

To prove our results we show that any Turing-machine source contains an inde-
pendent source. More specifically, divide the n bits of the source into r blocks
(or runs) of length � separated by blocks of length b, as in Figure 1. We show
that any Turing-machine source running in subquadratic time is a convex com-
bination of sources Y1Y2 · · ·Yr where the Yi are independent, and each Yi covers
exactly one of the �-bit blocks:

� b � b �
︸ ︷︷ ︸

Y1

︸ ︷︷ ︸

Y2

︸ ︷︷ ︸

Y3

Fig. 1. Decomposition of Turing-machine source in r = 3 blocks (or runs) or � bits
separated by blocks of b bits

Lemma 1 (Turing-machine sources contain independent sources). Let
X be a Turing machine source on n bits running in time t ≥ n with 2q states
and min-entropy k.

For any �, b such that (r − 1)(� + b) + � = n, X is a convex combination of
J ≤ 2r·O(q(lg t)t/b) n-bit sources Sj where each Sj is

Sj = Y1Y2 . . . Yr,

where the Yi are independent, and for every i < r we have �i + b(i − 1) ≤
|Y1Y2 . . . Yi| ≤ �i+ bi.

One can then extract using extractors for independent sources, developed in
an exciting, ongoing line of research; see e.g. [22,8,3,4,21,16,20,7,5,18]. One gets
different results depending on which extractors one uses. However, many of the
available extractors for independent sources require a guarantee on the min-
entropy of each source. By contrast, our given guarantee on the min-entropy of
the Turing-machine source only translates into a guarantee on the total min-
entropy of the independent sources. Thus for our extractor in Theorem 1 we use
the extractors by Kamp, Rao, Vadhan, and Zuckerman [16] which only require
that.

The sampling lower bound for IP in Theorem 2 is obtained by using instead
the result by Chor and Goldreich that the inner product function IP : {0, 1}�×
{0, 1}� → {0, 1} is a two-source extractor with error ε if the sum of the entropies
of the two sources is > �+ 2 lg(1/ε).[8]

We now elaborate on how we prove that any Turing-machine source contains
an independent source. First, we introduce a variant of the classical crossing-
sequence technique due to Hennie [12] that is suitable for sampling tasks. This
allows us to sample the Turing-machine source by a one-way low-communication
protocol among r players. This is explained in more detail below. Compared
to previous simulations [17, §12] ours has the advantage of incurring no error.
Another difference is that in our setting it is advantageous to have a large number



666 E. Viola

of players. (This is because the number of players corresponds to the number of
independent blocks, and in general the more the independent blocks the easier
the extraction.)

We then use the fact that a source sampled by a one-way low-communication
protocol is a convex combination of independent sources. For 2 players, this fact
originates from the work [2, §7] of Ambainis, Schulman, Ta-Shma, Vazirani, and
Wigderson. Alternatively, one may view the sources sampled by such protocols
as the extension of the source model in [16] where we output blocks instead of
bits.

This concludes the high-level view of the proof. In the next paragraph we
elaborate on how to sample a Turing-machine source by a low-communication
protocol.

From Turing’s Machines to Yao’s Protocols. Let T := (C1, C2, . . . , Ct) be a
distribution on t× t computation tables, where Ci represents the ith column of
the table. We first describe an alternative way to sample T ; then we explain how
this alternative way can be implemented as a low-communication protocol.

The alternative way to sample T comes from the observation that the random
variables C1, C2, . . . are a markov process (or chain). That is, conditioned on Ci,
the random variable C<i of the columns before the ith is independent from the
random variable C>i of the columns after the ith. The alternative way proceeds
by sampling T from left to right one column at the time, each time conditioning
only on the previous column (as opposed to the entire prefix). For example,
one first samples C1 = c1, then samples C2 = c2|C1 = c1, then samples C3 =
c3|C2 = c2, and so on. Let us call the resulting distribution T ?. To see that
T and T ? are the same distribution, note that after conditioning on a column
Ci = ci, T becomes a product distribution: the columns before i are independent
from those after i. This holds because T |Ci = ci is uniform on its support (since
each computation table has probability 2−t), and by locality of computation: if
c<i ci c>i and c′<i ci c

′
>i are in the support of T |Ci = ci, then so is c<i ci c

′
>i.

It is now an exercise to show that for any transcript t = (c1, c2, . . . , ct) we have
Pr[T = t] = Pr[T ? = t]. The solution to the exercise follows.

Pr[T = t] =
∏

i

Pr[Ci = ci|C<i = c<i];

Pr[T ? = t] =
∏

i

Pr[Ci = ci|Ci−1 = ci−1]

=
∏

i

Pr[Ci = ci ∧C<i−1 = c<i−1|Ci−1 = ci−1]

Pr[C<i−1 = c<i−1|Ci−1 = ci−1]

(Since T |Ci−1 = ci−1 is product)

= Pr[T = t].

We then exploit the above alternative way to sample T efficiently by a low-
communication protocol among r players. Refer to Figure 1 for the parameters.
The first player samples one column at a time. After an appropriate number �
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of columns, it looks for the first column that has a short description. By locality
of computation, among b columns there must be one that corresponds to a tape
cell that the Turing-machine head scans ≤ t/b times. Since modifications of a
column only occur when the head scans it, this column can be described with
about t/b bits, which is < n for t = n2−α and b = n1−α/2. The player can send
this description to the next player, who can then continue the process.

2 Proofs

Proof (of Lemma 1). We prove this in two stages. In the first, more substan-
tial stage we show how to sample the entire source X using a one-way low-
communication protocol in which Player i outputs a sample covering Yi but
touching no Yj for j �= i. In the second stage we condition on the protocol’s
transcript.

We now proceed to the first stage. Let T = (C1, C2, . . . , Ct) be the uniform
distribution over t× t computation tables.

P1 starts sampling T from left to right, one column at the time. It stops at
the first tape-cell index s1 such that � < s1 ≤ � + b and such that the sample
cs1 of Cs1 contains ≤ t/b states. Since each row only has the state in one cell,
such an s1 is guaranteed to exist. Because changes to tape contents only happen
when the head is on that cell, this column can be described with

O(q(lg t)t/b)

bits. The lg t term arises from specifying the times where the head is on that
cell.

P1 outputs the first s1 output bits of the computation table. It then sends
both the description of cs1 and s1 to P2. This takes O(q(lg t)t/b) + O(lg t) =
O(q(lg t)t/b) bits.

P2 will then continue sampling the computation table from left to right one
column at the time. It stops at the smallest tape-cell index s2 such that (� +
b) + � < s2 ≤ 2(�+ b) and such that the sample cs2 of Cs2 contains ≤ t/b states.
And so on.

This is the end of stage 1.
By conditioning on the communication, we can write the output distribution

as a convex combination of J ≤ 2r·O(q(lg t)t/b) distributions Sj . After conditioning
on the communication, the players’ output are independent and have a fixed
length. Hence each Sj is a product distribution Sj = Y1Y2 . . . Yr where Yi is the
output of Pi. The bounds on the lengths of Y1Y2 . . . Yi follow by inspection.

The following standard claim bounds the entropy loss when selecting a distribu-
tion from a convex combination.

Claim (Entropy Loss in Convex Combo). Let D be a distribution with min-
entropy k that is a convex combination of J = 2j distributions D1, D2, . . . , DJ .
Consider sampling D by first appropriately selecting an index h ≤ J , and then
sampling Dh. For every ε, the probability over the choice of h that Dh has
min-entropy ≤ k − j − lg(1/ε) is ≤ ε.
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Proof. Suppose the probability is > ε. There is a h ≤ J that is picked with
probability > ε/J such that Dh has min-entropy ≤ k − j − lg(1/ε). This means
that there is some a such that Pr[Dh = a] ≥ 1/2k−j−lg(1/ε). But then Pr[D =
a] > ε/J · 1/2k−j−lg(1/ε) > 1/2k.

We use the following extractor.

Theorem 3 (Theorem 5.1 in [16]). There is a constant β > 0 such that
for every � and δ ≥ 1/�β there is an explicit extractor for min-entropy ≥ δr�
sources over

({0, 1}�)r such that the r blocks of � bits are independent and with

r ≥ 1/(βδ2), with output length m = �Ω(1), and error ε = 2−�Ω(1)

.

Using the techniques in [10,23] one can derive a similar extractor where almost
all the entropy is output, cf. [16, §7]. However we do not pursue this here.

We now prove our main extractor result.

Proof (of Theorem 1). For an α to be determined later, set b := n1−α/2 and
� := n1−α/4. We assume w.l.o.g. that �+b divides n+b. Note r := (n+b)/(�+b) =
Θ(nα/4).

Divide the n bits of the source into r runs of � bits separated by r− 1 runs of
b bits. We apply the extractor from Theorem 3 to the r runs of � bits.

By Lemma 1 we view the source as a convex combination of J ≤ 2O(rq(lg t)t/b)

product sources Sj. By Claim 2 with ε := 2−k/2, if we choose a distribution in
the combination, except with probability ε we obtain a distribution with min-
entropy at least

k −O(rq(lg t)t/b)− lg(1/ε) ≥ k/2−O(rq(lg t)t/b)

=n1−α/16/2−O(nα/4+α/16+1−α/2 lgn) = n1−α/16/2−O(n1−3α/16 lg n)

≥Ω(k).

We assume this is the case and proceed.
By ignoring the r − 1 runs of b bits, we drop (r − 1)b ≤ O(nα/4n1−α/2) =

O(n1−α/4) bits. Since k ≥ n1−α/16, the extractor is applied to a distribution of
entropy that is still Ω(k).

Also, since we ignore the r− 1 runs of b bits, the r runs of � bits to which the
extractor is applied are independent.

The parameter δ in theorem 3 is

δ = Θ(k/r�) = Θ(k/n) = Θ(1/nα/16).

We must have
δ ≥ 1/�β = 1/n(1−α/4)β

for the constant β in the statement of Theorem 3. This is the case for α
sufficiently small.

We also must have
r ≥ 1/(βδ2) = Θ(nα/8/β)
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which is true because r = Θ(nα/4) as observed above.

The output length ism = �Ω(1) = nΩ(1). The error of the extractor is 2−�Ω(1)

=

2−nΩ(1)

.
Combined with the above error of 2−k/2 arising from the convex combination,

we obtain a total error of again 2−nΩ(1)

.

For the lower bound for sampling inner product we make use of the following
theorem.

Theorem 4 ([8]). Let X1 and X2 be two independent sources on � bits. Suppose
the sum of the min-entropies is ≥ � + 2 lg(1/ε). Then |Pr[IP (X1, X2) = 1] −
1/2| ≤ ε.

We now prove our sampling lower bound for inner product.

Proof (of Theorem 2). Suppose there was such a Turing machine. Consider the
Turing machineM ′ that first samples (X1, X2, IP (X1, X2)) then if IP (X1, X2) =
1 it outputs (X1, X2), otherwise it outputs a uniform n-bit string. M ′ can be
implemented, say, in time O(t) with O(2q) states.

The machine M ′ samples a distribution (X ′
1, X

′
2) with min-entropy k ≥ n−1.

Moreover, because Pr[IP (X1, X2) = 1] approaches 1/2 for large n, we see that
Pr[IP (X ′

1, X
′
2) = 1] approaches 3/4 for large n.

Set b := 0.01n. By Lemma 1, (X ′
1, X

′
2) is a convex combination of sources Sj

such that except with probability 0.01 over the choice of an independent source
from this combination, Sj has min-entropy

≥n−O(1)−O(q(lg t)t/b)− lg(1/0.01)

≥n−O(nα/2(lg n)n1−α −O(1)

≥0.99n.

Moreover, each Sj is Sj = Y1Y2 for independent Y1, Y2 and � ≤ |Y1| ≤ �+b, where
n = 2�+ b. Assume without loss of generality that |Y1| ≥ |Y2|. By conditioning
on the b = 0.01n middle bits (each of which depends on exclusively Y1 or Y2),
we can further write (Y1, Y2) as a convex combination of ≤ 2b sources S′

j where
each S′

j is S′
j = Y ′

1Y
′
2 where |Y ′

1 | = |Y ′
2 | = n/2 and Y ′

1 , Y
′
2 are independent. Y ′

1Y
′
2

has min-entropy ≥ 0.99n− 0.01n = 0.98n.
This min-entropy is larger than n/2+ 2 lg(100). Hence by Theorem 4 IP will

successfully extract one bit with error 0.01.
Overall, the error of the extracted bit is ≤ 0.01+0.01 = 0.02. This contradicts

the above remark that Pr[IP (X ′
1, X

′
2) = 1] approaches 3/4 for large n.

In this proof the extractor is applied to the whole sample, whereas in the proof
of Theorem 1 it is applied to a projection of it. That was only for convenience.
One could have applied the extractor to the whole sample and then condition
on the values of the runs of b bits.
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