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Abstract. The spectral norm of a Boolean function f : {0,1}n → {−1,1} is the
sum of the absolute values of its Fourier coefficients. This quantity provides use-
ful upper and lower bounds on the complexity of a function in areas such as
learning theory, circuit complexity, and communication complexity. In this pa-
per, we give a combinatorial characterization for the spectral norm of symmetric
functions. We show that the logarithm of the spectral norm is of the same order of
magnitude as r( f ) log(n/r( f )) where r( f ) = max{r0,r1}, and r0 and r1 are the
smallest integers less than n/2 such that f (x) or f (x) · PARITY(x) is constant for
all x with ∑xi ∈ [r0,n− r1]. We mention some applications to the decision tree
and communication complexity of symmetric functions.

1 Introduction

The study of Boolean functions f : {0,1}n → {−1,1} is central to complexity the-
ory and combinatorics as objects of interest in these areas can often be represented as
Boolean functions. Fourier analysis of Boolean functions provides some of the strongest
tools in this study with applications to graph theory, circuit complexity, communication
complexity, hardness of approximation, machine learning, etc.

In many different settings, Boolean functions with “smeared out” Fourier spectrums
have higher “complexity”. There are various useful ways to measure the spreadness of
the spectrum. Some notable ones are the spectral norm ‖̂f‖1 = ∑S |̂f (S)| (i.e., the �1

norm), the �∞ norm ‖̂f‖∞ = maxS |̂f (S)|, and the Shannon entropy of the squares of
the Fourier coefficients H[̂f 2] =−∑S

̂f (S)2 log ̂f (S)2. The focus of this paper is on the
spectral norm.

Spectral Norm of Boolean Functions. As ∑S
̂f (S)2 = 1 for a Boolean function f , it is

often useful to view the squares of the Fourier coefficients as a probability distribution
over the subsets S ⊆ [n]. The spectral norm corresponds to the Rényi entropy of order

1/2 of the squares of the Fourier coefficients, H1/2[̂f
2] = 2log

(

∑S |̂f (S)|
)

= 2log‖̂f ‖1.

It provides useful upper and lower bounds on the complexity of a function in settings
such as learning theory, circuit complexity, and communication complexity. It is partic-
ularly useful in the settings where PARITY is considered a function of low complexity.
We list some of the applications below.

In the setting of learning theory, the spectral norm is used in conjunction with the
Kushilevitz-Mansour Algorithm [12]. This algorithm, using membership queries, learns

� A full version can be found online [1].
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efficiently a concept class C where the Fourier spectrum of every function in C is con-
centrated on a small set of characters (This set can be different for different functions.).
Kushilevitz and Mansour observe that an upper bound on the spectral norm implies
such a concentration, and obtain:

If C = { f : {0,1}n →{−1,1} | ‖̂f ‖1 ≤ s}, then C is learnable with membership
queries in time poly(n,s,1/ε).

Using the above result, they show that functions computable by small size parity deci-
sion trees1 are efficiently learnable with membership queries. This is done by observing
that a function computable by a size s parity decision tree satisfies ‖̂f‖1 ≤ s. This in-
equality is also interesting since it provides a lower bound in terms of the spectral norm
on the size of any parity decision tree computing f .

Threshold circuits (i.e., circuits composed of threshold gates) constitute an important
model of computation (in part due to their resemblance to neural networks), and they
have been studied extensively. A classical result of Bruck and Smolensky [3] states
that a function with small spectral norm can be represented as the sign of a polyno-
mial with few monomials. This in turn implies that functions with small spectral norm
can be computed by depth 2 threshold circuits of small size. The result of Bruck and
Smolensky has found other interesting applications (see for example [22,5,8,14]).

We now turn our attention to communication complexity. Arguably the most fa-
mous conjecture in communication complexity is the Log Rank Conjecture which states
that the deterministic communication complexity of a function F : {0,1}n ×{0,1}n →
{−1,1} is upper bounded by logc rankMF where the matrix MF is defined as MF [x,y] =
F(x,y). Grolmusz [7] makes a similar intriguing conjecture for the randomized com-
munication complexity:

There is a constant c such that the public coin randomized communication
complexity of F : {0,1}n×{0,1}n →{−1,1} is upper bounded by logc ‖̂F‖1.

In the same paper, Grolmusz is able to prove a much weaker upper bound of
O(‖̂F‖2

1δ(n)) with exp(−cδ(n)) probability of error. Even this weaker result has in-
teresting applications in circuit complexity and decision tree complexity (see [7] for
more details).

Another major open problem in communication complexity is whether the classi-
cal and quantum communication complexity of total Boolean functions f : X ×Y →
{−1,1} (i.e., functions defined on all of X ×Y ) are polynomially related. It is conjec-
tured that this is so and research has been focused on establishing it for natural large
families of functions. In an important paper [17] Razborov showed that the conjecture
is true for functions of the form F(x,y) = SYM(x∧ y) where SYM denotes a symmet-
ric function, and x∧ y is the bitwise AND of x and y. Shi and Zhang [20] verified the
conjecture for F(x,y) = SYM(x⊕ y) where x⊕ y denotes the bitwise XOR. The next big
targets are F(x,y) = f (x∧y) and F(x,y) = f (x⊕y) for general f , but handling arbitrary
f seems difficult at the moment.

1 Parity decision trees generalize the usual decision tree model: in every node we branch accord-
ing to the parity of a subset of the variables.
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A variant of the spectral norm, the approximate spectral norm, is intimately related
to the communication complexity of “xor functions”. The ε-approximate spectral norm
of f , denoted ‖̂f‖1,ε, is the smallest spectral norm of a function g : {0,1}n → R such
that ‖ f − g‖∞ ≤ ε. It is known (see for example [13]) that log‖̂f‖1,ε lower bounds
the quantum bounded error communication complexity of f (x⊕ y). We expect that the
lower bound log‖̂f ‖1,ε is tight, and that this quantity characterizes the communication
complexity of xor functions. More discussion on the communication complexity of xor
functions, and how it relates to this work is given in Section 4.

This ends our discussion of the use of the spectral norm in learning theory, circuit
complexity and communication complexity. We conclude this subsection by mentioning
a relatively recent result that studies the spectral norm of Boolean functions. Green and
Sanders [6] show that every Boolean function whose spectral norm is bounded by a
constant can be written as a sum of constantly many ± indicators of cosets. This gives
an interesting characterization of Boolean functions with small spectral norm.

Fourier Spectrum of Symmetric Functions. A function f : {0,1}n → {−1,1} is
called symmetric if it is invariant under permutations of the coordinates. In other words
the value of f (x) depends only on ∑xi (i.e., f (x) = f (y) whenever ∑i xi = ∑i yi). Sym-
metric functions are at the heart of complexity theory as natural functions like AND,
OR, MAJORITY, and MODm are all symmetric. They are often the starting point of in-
vestigation because the symmetry of the function can be exploited. On the other hand,
they can also have surprising power. In several settings, functions such as PARITY and
MAJORITY represent “hard” functions. Given their central role, it is of interest to gain
insight into the Fourier spectrum of symmetric functions.

There are various nice results related to the Fourier spectrum of symmetric functions.
We cite a few of them here. A beautiful result of Paturi [16] tightly characterizes the
approximate degree of every symmetric function, and this has found many applications
in theoretical computer science [17,2,18,4,19]. Kolountzakis et al. [11] studied the so
called minimal degree of symmetric functions and applied their result in learning theory.
Shpilka and Tal [21] later simplified and improved the work of Kolountzakis et al.
Recently, O’Donnell, Wright and Zhou [15] verified an important conjecture in the
analysis of Boolean functions, the Fourier Entropy/Influence Conjecture, in the setting
of symmetric functions. In fact we make use of their key lemma in this paper.

1.1 Our Results and Proof Overview

We give a combinatorial characterization of the spectral norm of symmetric functions.

For x ∈ {0,1}n, define |x| def
= ∑xi. For a function f : {0,1}n →{−1,1}, let r0 and r1 be

the minimum integers less than n/2 such that f (x) or f (x) · PARITY(x) is constant for x

with |x| ∈ [r0,n− r1]. Define r( f )
def
= max{r0,r1}. We show that log‖̂f ‖1 is of the same

order of magnitude as r( f ) log(n/r( f )):

Theorem 1 (Main Theorem). For any symmetric function f : {0,1}n → {−1,1}, we
have



Spectral Norm of Symmetric Functions 341

log‖̂f‖1 = Θ
(

r( f ) log

(

n
r( f )

))

whenever r( f )> 1. If r( f )≤ 1, then ‖̂f‖1 = Θ(1).

As an application, we give a characterization of the parity decision tree size of sym-
metric functions. As mentioned in Section 1, a parity decision tree computes a boolean
function by querying the parities of subsets of the variables. The size of the tree is
simply the number of leaves in the tree.

Corollary 1. Let f : {0,1}n → {−1,1} be a symmetric function. Then the parity deci-
sion tree size of f is 2Θ(r( f ) log(n/r( f ))).

We present the proof of this corollary in the full version. Note that the lower bound also
applies in the case of the usual decision tree size (where one is restricted to query only
variables). Decision tree size is an important measure in learning theory; algorithms
for learning decision trees efficiently is of great interest both for practical and theoret-
ical reasons. One of the most well-known and studied problems is whether small size
decision trees are efficiently learnable from uniformly random examples.

As a second application, using the protocol of Shi and Zhang [20, Proposition 3.4],
and the observation that ‖̂F‖1 = ‖̂f‖1 when F(x,y) = f (x⊕ y), we verify Grolmusz’s
conjecture mentioned earlier in Section 1 in the setting of symmetric xor functions.

Corollary 2. Let f : {0,1}n → {−1,1} be a symmetric function and let F : {0,1}n ×
{0,1}n →{−1,1} be defined as F(x,y) = f (x⊕y). Then the public coin constant error
randomized communication complexity of F is upper bounded by O(log2 ‖̂F‖1).

We now give an outline for the proof of Theorem 1. The upper bound is quite straight-
forward and is given in Lemma 2. The lower bound is handled in two different cases:
when r( f ) is bounded away from n/2 (Lemma 4) and when r( f ) is close to n/2
(Lemma 6).

We refer to the Fourier spectrum of f restricted to the sets S ⊆ [n] of size k as the
k-th level of the Fourier spectrum. Note that for a symmetric f , we have ̂f (S) = ̂f (T )
whenever |S| = |T |. Therefore the Fourier spectrum is maximally spread out in each
level. The overall strategy for the lower bound is to show an appropriate lower bound on
the �2 mass of the Fourier spectrum on a middle level. Middle levels have many Fourier
coefficients, and therefore contribute significantly to the spectral norm provided there is
enough �2 mass on them. An important tool in our analysis is the use of certain discrete
derivatives of f . Indentify {0,1}n with F

n
2 and let e1, . . . ,en denote the standard vectors

in F
n
2. For i 
= j, define fi j(x)

def
= f (x+ ei + e j)− f (x). We observe that

∑
i
= j

E
[

f 2
i j

]

= 8∑
S

|S|(n−|S|)̂f (S)2.

The quantity on the LHS, and therefore the RHS, can be lower bounded using r( f )
(Lemma 3). As the coefficient |S|(n−|S|) increases as |S| approaches n/2, we are able
to give a lower bound on the �2 mass of the Fourier spectrum on the middle levels. This
approach gives tight bounds for r( f ) bounded away from n/2, but not for a function
such as MAJORITY.
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To handle functions f with r( f ) close to n/2, we use ideas from [15]. The main
lemma of [15] states that the first derivatives of a symmetric function are noise sensitive.
We observe that this is also true for the derivatives fi j . This allows us to derive the
inequality

∑
S

|S|(n−|S|)̂f(S)2(ρ|S|+ρn−|S|)≤ 8√
πc

·∑
S

|S|(n−|S|)̂f (S)2,

where ρ = (1 − c/n). The quantity ρ|S| + ρn−|S| is decreasing in |S| for |S| ≤ n/2.
Thinking of c as a large constant, we see that the dampening of the middle levels with
ρ|S|+ρn−|S| decreases the value of the sum significantly. From this, we can lower bound
the �2 mass of the middle levels. Note that if ∑S |S|(n−|S|)̂f (S)2 is small to begin with
(r( f ) is small), the above inequality is not useful. On the other hand if r( f ) is large,
∑S |S|(n−|S|)̂f(S)2 is large, and the strategy just described gives good bounds.

2 Preliminaries

We view Boolean functions f : {0,1}n → {−1,1} as residing in the vector space { f :
{0,1}n →C}. If we view the domain as the group F

n
2, we can appeal to Fourier analysis,

and express every f : {0,1}n → C (uniquely) as a linear combination of the characters
of Fn

2. That is every function f : Fn
2 →C can be written as f = ∑S⊆[n]

̂f (S)χS, where the

characters χS are defined as χS : x �→ (−1)∑i∈S xi , and ̂f (S) ∈ C are their corresponding
Fourier coefficients. Since the characters form an orthonormal basis for { f : {0,1}n →
C}, we have ̂f (S) = 〈 f ,χS〉= Ex [ f (x)χS(x)] .

For a Boolean function f , we define Wk[ f ] = ∑|S|=k |̂f (S)|2. We simply use Wk when
f is clear from the context. For a symmetric function, we often write f (k) for f (x)
with ∑i xi = k and k ∈ [n]. We use h to denote the binary entropy function h(α) =
−α log(α)− (1−α) log(1−α).

Definition 1. For any f : {0,1}n → R, we define R( f )
def
= ∑S⊆[n] |S|(n−|S|)̂f (S)2.

For a ∈ F
n
2, we define the derivative of f : Fn

2 → R in the direction a as Δa f : x �→
f (x+a)− f (x). Let e1, . . . ,en denote the standard vectors in F

n
2, and let f : {0,1}n →R.

For all i 
= j, define

fi j
def
= Δei+e j f . (1)

Lemma 1. For every f : {0,1}n → R, we have ∑i
= j E
[

f 2
i j

]

= 8R( f ).

For a proof, we refer the reader to the full version.

3 Proof of Theorem 1

As mentioned earlier the upper bound is proved in Lemma 2. The proof of the lower
bound is divided into two parts: Lemma 4 handles the case where r is bounded away
from n/2 and Lemma 6 the case when r is close to n/2.
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3.1 Upper Bound

Lemma 2. For all n ≥ 1 and every symmetric function f : {0,1}n → {−1,1},

log‖̂f‖1 ≤ 2 · r( f ) log(n/r( f ))+ 3.

The proof can be found in the full version.

3.2 Lower Bound

We start by proving some simple observations.

Lemma 3. Let f : {0,1}n → {−1,1} be a symmetric function, and define r0 = r0( f )
and r1 = r1( f ). Then

R( f ) ≥
(

(n− r0 + 1)(n− r0)

(

n
r0 − 1

)

+(n− r1+ 1)(n− r1)

(

n
r1 − 1

))

2−n. (2)

Moreover, assuming that f (s) = 1 for all s ∈ {r0, . . . ,n− r1}, we have

∑
S 
= /0

̂f (S)2 ≤ 4

(

∑
s<r0

(

n
s

)

+ ∑
s<r1

(

n
s

)

)

2−n. (3)

Lower Bound: r � n/2.

Lemma 4. For every symmetric function f : {0,1}n → {−1,1} with r = r( f ),

log‖̂f‖1 ≥ Ω
((

1− 2r− 2
n

)

· r log(n/r)

)

.

Proof. Observe that we can assume without loss of generality that f (s) = 1 for all
s ∈ {r0, . . . ,n− r1}. In fact, to handle the case f = −1 or f = ±PARITY in [r0,n− r1],
it suffices to multiply the function by −1 or by ±PARITY, respectively. This does not
affect the spectral norm of the function.

We prove the statement by showing that a significant portion of the �2 mass of ̂f sits
in the middle levels from m to n−m for a well-chosen m depending on r( f ).

Define α0 = r0−1
n < 1/2 and α1 = r1−1

n . We also let for i ∈ {0,1},

mi =

⌊

n/2 · (1−
√

4αi − 6α2
i + 4α3

i )

⌋

. By Lemma 3, we have ∑k>0 Wk ≤ 4 ·
(

∑s<r0

(n
s

)

+∑s<r1

(n
s

))

2−n. Let Uk and Vk be so that Wk = Uk +Vk and ∑k>0 Uk ≤ 4 ·
2−n ∑s<r0

(n
s

)

and ∑k>0 Vk ≤ 4 ·2−n ∑s<r1

(n
s

)

. Recall that our strategy is to obtain a lower
bound on the �2 mass of the Fourier transform on the middle levels. More precisely, our
objective will be to derive a lower bound on ∑n−m0

k=m0
k(n−k)Uk +∑n−m1

k=m1
k(n−k)Vk using

Lemma 3.
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n−m0

∑
k=m0

k(n− k)Uk +
n−m1

∑
k=m1

k(n− k)Vk

= R( f )− ∑
k/∈[m0,n−m0]

k(n− k)Uk − ∑
k/∈[m1,n−m1]

k(n− k)Vk

≥ (n− r0)(n− r0 + 1)

(

n
r0 − 1

)

2−n − (m0 − 1)(n−m0+ 1)4 ·2−n ∑
s<r0

(

n
s

)

+(n− r1)(n− r1 + 1)

(

n
r1 − 1

)

2−n − (m1 − 1)(n−m1+ 1)4 ·2−n ∑
s<r1

(

n
s

)

. (4)

Define A0
def
= (n− r0)(n− r0 +1)

( n
r0−1

)

2−n− (m0 −1)(n−m0 +1)4 ·2−n ∑s<r0

(n
s

)

, and
let A1 be its analogue for r1 so that the right hand side of (4) equals A0 +A1.

Observe that
(n

s

)

= s+1
n−s

( n
s+1

)

, and s+1
n−s ≤ r0−1

n−(r0−1) =
α0

1−α0
for s < r0 − 1. Thus

A0≥
(

n
r0 − 1

)

2−n
(

(n−α0n− 1)(n−α0n)− 4(m0 − 1)(n−m0+ 1)
1

1−α0/(1−α0)

)

≥
(

n
r0 − 1

)

2−n
(

n2
(

(1−α0)
2 − (1− (4α0− 6α2

0 + 4α3
0))

1−α0

1− 2α0

)

− (1−α0)n

)

=

(

n
r0 − 1

)

2−n(1−α0)
(

α0(1− 2α0)n
2 − n

)

. (5)

An analogous inequality also holds for A1. We now assume that r0 ≥ r1. Observe that
we then have m0 ≤ m1. Combining (4) and (5), we get

n2
n−m0

∑
k=m0

Wk ≥
n−m0

∑
k=m0

k(n− k)Wk ≥
(

n
r0 − 1

)

2−n(1−α0)
(

α0(1− 2α0)n
2 − n

)

.

Note that for symmetric functions ‖̂f‖1 = ∑n
k=0

√

(n
k

)

Wk, and thus

‖̂f‖1 ≥
n−m0

∑
k=m0

√

(

n
k

)

Wk ≥
√

√

√

√

(

n
m0

)n−m0

∑
k=m0

Wk

≥
√

(

n
m0

)(

n
r0 − 1

)

2−n (1−α0)(α0(1− 2α0)n2 − n)
n2

≥
√

√

√

√

( n
⌊

n/2(1−
√

4α0 − 6α2
0 + 4α3

0)

⌋

)(

n
α0n

)

2−n (1−α0)(α0(1− 2α0)n2 − n)
n2 .

(6)

Using standard estimates for binomial coefficients, we obtain

‖̂f‖2
1 ≥

2
n

(

h

(

1
2− 1

2

√

4α0−6α2
0+4α3

0

)

+h(α0)−1

)

n(n+ 1)2 · (1−α0)
(

α0(1− 2α0)n2 − n
)

n2 .
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As a result

log‖̂f‖1 ≥ n
2

(

h

(

1
2
− 1

2

√

4α0 − 6α2
0 + 4α3

0

)

+ h(α0)− 1

)

+
1
2

log
(1−α0)

(

α0(1− 2α0)n2 − n
)

n3(n+ 1)2 .

Claim. There exists a constant c > 0 such that for all α0 ∈ (0,1/2),

h

(

1
2
− 1

2

√

4α0 − 6α2
0 + 4α3

0

)

+ h(α0)− 1 ≥ c · (1− 2α0) ·α0 · log(1/α0).

Using the claim, which is proved in the full version, we get

log‖̂f‖1 ≥ c(1− 2α0) ·α0 log(1/α0) · n
2
+

1
2

log
(1−α0)

(

α0(1− 2α0)n2 − n
)

n3(n+ 1)2 .

This proves the desired result provided r( f ) is larger than some constant. To handle
small values of r( f ), we refer the reader to the full version.

Lower Bound: r ≈ n/2. For the case r ≈ n/2, we use a result of [15] that states that the
derivative of a symmetric Boolean function is noise sensitive. Here, we use the noise
sensitivity of the derivative fi j . The following lemma is an analogue of [15, Theorem
6] and is proved in the full version [1].

Lemma 5. Let f be a symmetric Boolean function and fi j be defined as in (1). Then
for ρ = 1− c/n, we have

∑
S

̂fi j(S)
2ρ|S| ≤ 4√

πc
·∑

S

̂fi j(S)
2, (7)

for any c ∈ [1,n]. Summing over all i, j with i 
= j, we get

8∑
S

|S|(n−|S|)̂f (S)2ρ|S| ≤ 4√
πc

·8R( f ). (8)

We are now ready to prove the following result.

Lemma 6. There exists a constant γ < 1/2 such that for any symmetric Boolean func-
tion f with r( f ) ≥ γn, we have log‖̂f‖1 = Ω(n).

Proof. Let ρ = 1− c/n where c is a constant chosen later, and let n be large enough so

that ρ ≥ 1/2. We apply (8) to g
def
= f · PARITY:

∑
S

|S|(n−|S|)ĝ(S)2ρ|S| ≤ 4√
πc

·R(g).

Note that PARITY = χ[n] which shows ̂f ([n]\S)= ĝ(S) for all S, and in particular R(g)=
R( f ). So we can rewrite the above inequality as

∑
S

|S|(n−|S|)̂f (S)2ρn−|S| ≤ 4√
πc

·R( f ). (9)
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Summing (8) and (9), we get

∑
S

|S|(n−|S|)̂f (S)2(1−ρ|S| −ρn−|S|)≥
(

1− 8√
πc

)

R( f ). (10)

Let β < 1/2 be a positive constant to be chosen later. We have

∑
|S|≤βn

|S|(n−|S|)̂f (S)2(ρ|S|+ρn−|S|)≥ ∑
|S|≤βn

|S|(n−|S|)̂f(S)2(ρβn +ρ(1−β)n)

≥ ∑
|S|≤βn

|S|(n−|S|)̂f(S)2(1/2 · e−cβ+ 1/2 · e−c(1−β)).

For the first equality, we used the fact that ρ|S|+ρn−|S| is decreasing in |S| for |S| ≤ n/2.
For the second inequality, we used the inequality (1−c/n)βn ≥ e−cβ/2 when 1−c/n≥
1/2. Summing this inequality with an analogous one for |S| ≥ (1 − β)n, we obtain
Summing the two inequalities, we obtain

∑
|S|
∈(βn,(1−β)n)

|S|(n−|S|)̂f(S)2(ρ|S|+ρn−|S|)

≥ e−cβ + e−c(1−β)

2 ∑
|S|
∈(βn,(1−β)n)

|S|(n−|S|)̂f (S)2.

Combining this with (10), we obtain

∑
βn≤|S|≤(1−β)n

|S|(n−|S|)̂f (S)2(1−ρ|S| −ρn−|S|)

= ∑
S

|S|(n−|S|)̂f (S)2(1−ρ|S| −ρn−|S|)− ∑
|S|
∈(βn,(1−β)n)

|S|(n−|S|)̂f (S)2(1−ρ|S| −ρn−|S|)

≥ (1− 8√
πc

)R( f )− (1−e−cβ/2−e−c(1−β)/2) ∑
|S|
∈(βn,(1−β)n)

|S|(n−|S|)̂f (S)2.

As e−cβ/2+ e−c(1−β)/2 < 1, this leads to

∑
βn≤|S|≤(1−β)n

|S|(n−|S|)̂f (S)2(1−ρ|S| −ρn−|S|)≥
(

e−cβ + e−c(1−β)

2
− 8√

πc

)

R( f ).

Consequently,

n2

4 ∑
βn≤|S|≤(1−β)n

̂f (S)2 ≥ R( f )

(

e−cβ + e−c(1−β)

2
− 8√

πc

)

.

By picking c = 104 and β = 10−4 ln2, we have e−cβ+e−c(1−β)

2 − 8√
πc

≥ 1
10 . We conclude

that ∑βn≤k≤(1−β)nWk ≥ 4R( f )
10n2 , and thus

‖̂f‖1 =
n

∑
k=0

√

(

n
k

)

Wk ≥
√

(

n
βn

)

R( f )
4

10n2 .
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Using (2), it follows that

‖̂f‖1 = Ω

(√

(

n
βn

)(

n
r− 1

)

2−n

)

= Ω
(

2(h(β)+h(α)−1) n
2 (n+ 1)−1

)

,

where α = (r− 1)/n. If α is such that h(α)≥ 1− h(β)/2, we obtain the desired bound
log‖̂f‖1 = Ω(n).

4 Conclusion and Future Work

A natural next step is to extend Theorem 1 to approximate spectral norm. Indeed this
would have interesting implications. Recall that the ε-approximate spectral norm of a
Boolean function f is the smallest spectral norm of a function g with ‖ f −g‖∞ ≤ ε, i.e.,
for all x, | f (x)− g(x)| ≤ ε. Trivially ‖̂f‖1,ε is smaller than ‖̂f ‖1. We conjecture that it
cannot be much smaller.

Conjecture 1. For all symmetric functions f : {0,1}n → {±1},

log‖̂f‖1 = Θ∗(log‖̂f ‖1,1/3)

where Θ∗ suppresses O(logn) factors.

We now discuss some of the applications of the above conjecture in conjunction with
Theorem 1.

Analog of Paturi’s Result for Monomial Complexity. A famous result of Paturi [16]
characterizes the approximate degree of all symmetric functions. Recall that the degree
of a function f is the largest |S| such that ̂f (S) is non-zero. Let t0 and t1 be the minimum
integers such that f (i) = f (i+ 1) for all i ∈ [t0,n− t1].

Theorem 2 ([16]). Let f : {0,1}n →{±1} be a symmetric function and let t0 and t1 be
defined as above. Then, deg1/3( f ) = Θ(

√

n(t0 + t1)).

Paturi’s result has found numerous applications in theoretical computer science
[17,2,18,4,19].

The monomial complexity of a Boolean function f , denoted mon( f ), is the number
of non-zero Fourier coefficients of f . The monomial complexity appears naturally in
various areas of complexity theory, and it is desirable to obtain simple characterizations
for natural classes of functions. With some additional observations, the combination of
Conjecture 1 with Theorem 1 shows that r( f ) characterizes the approximate monomial
complexity of f :

Conjecture 2 (Consequence of Conjecture 1). For a symmetric function f : {0,1}n →
{±1}, logmon1/3( f ) = Θ∗(r( f )).
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Communication Complexity of Xor Functions. Recall the Log Rank Conjecture
mentioned in the introduction. This conjecture has an analogous version for the ran-
domized communication complexity model: “Log Approximation Rank Conjecture”.
The ε-approximate rank of a matrix M is denoted by rankε(M), and is the minimum
rank of a matrix that ε approximates M. Denote by Rε(F) the ε-error randomized com-
munication complexity of F . It is known that Rε(F) ≥ logrankε′(MF), where ε′ is a
constant that depends on ε and MF is the matrix representation of F . Log Approxima-
tion Rank Conjecture states that this lower bound is tight:

Conjecture 3 (Log Approximation Rank Conjecture). There is a universal constant c
such that for any 2 party communication problem F ,

logrankε′(MF)≤ Rε(F)≤ logc rankε′(MF).

The important paper of Razborov [17] established this conjecture for the functions
F(x,y) = f (x∧ y) where f is symmetric. In fact, Razborov showed that the quantum
and classical randomized communication complexities of such functions are polyno-
mially related. Later, Shi and Zhang [20], via a reduction to the case f (x∧ y), showed
the quantum/classical equivalence for symmetric xor functions F(x,y) = f (x⊕y). They
show that the randomized and quantum bounded error communication complexities of
F are both Θ(r( f )), up to polylog factor. However, their result does not verify the Log
Approximation Rank Conjecture for symmetric xor functions.

Conjecture 1 along with Theorem 1 would verify the Log Approximation Rank Con-
jecture for symmetric xor functions. Furthermore, we would obtain a direct proof of
the result of Shi and Zhang. This is very desirable since a major open problem is to
understand the communication complexity of f (x⊕y) for general f (with no symmetry
condition on f ). There is a sentiment that this should be easier to tackle than f (x∧y) as
xor functions seem more amenable to Fourier analytic techniques. A direct proof of the
result of Shi and Zhang gives more insight into the communication complexity of xor
functions.

Agnostically Learning Symmetric Functions. Let C be a concept class and gi :
{−1,1}n → R be functions for 1 ≤ i ≤ s such that every f : {−1,1}n → {−1,1} in
C satisfies ‖ f −∑s

i=1 cigi‖∞ ≤ ε, for some reals ci. The smallest s for which such gi’s
exist corresponds to the ε-approximate rank of C . If each gi(x) is computable in polyno-
mial time, then C can be agnostically learned under any distribution in time poly(n,s)
and with accuracy ε [9].

Klivans and Sherstov [10] proved lower bounds on the approximate rank
of the concept class of disjunctions {∨i∈S xi : S ⊆ [n]} and majority functions
{MAJ(±x1,±x2, . . . ,±xn)} thereby ruled out the possibility of applying the algorithm
of [9] to agnostically learning these concept classes.

Theorem 1 together with Conjecture 1 provides additional negative results and gives
strong lower bounds on the approximate rank of the concept class consisting of sym-
metric functions f with large r( f ).
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