

Lecture Notes in Computer Science 7408
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Anupam Gupta Klaus Jansen
José Rolim Rocco Servedio (Eds.)

Approximation,
Randomization,
and Combinatorial
Optimization
Algorithms and Techniques

15th International Workshop, APPROX 2012
and 16th International Workshop, RANDOM 2012
Cambridge, MA, USA, August 15-17, 2012
Proceedings

13

Volume Editors

Anupam Gupta
Carnegie Mellon University
Department of Computer Science
7203 Gates Building, Pittsburgh, PA 15213, USA
E-mail: anupamg@cs.cmu.edu

Klaus Jansen
University of Kiel
Department of Computer Science
Olshausenstraße 40, 24098 Kiel, Germany
E-mail: kj@informatik.uni-kiel.de

José Rolim
University of Geneva
Centre Universitaire d’Informatique
Battelle Bat A, 7 route de Drize, 1227 Carouge, Switzerland
E-mail: jose.rolim@unige.ch

Rocco Servedio
Columbia University
Department of Computer Science
Foundation School of Engineering and Applied Science
1214 Amsterdam Avenue, 10027-7003 New York, NY, USA
E-mail: rocco@cs.columbia.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-32511-3 e-ISBN 978-3-642-32512-0
DOI 10.1007/978-3-642-32512-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012943609

CR Subject Classification (1998): F.2.2, G.2.2, G.2.1, F.1.2, G.1.0, G.1.2, G.1.6, G.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at the 15th International
Workshop on Approximation Algorithms for Combinatorial Optimization
Problems(APPROX 2012) and the 16th International Workshop on Random-
ization and Computation (RANDOM 2012), which took place concurrently at
the Massachusetts Institute of Technology, USA, during August 15–17, 2012.

APPROX focuses on algorithmic and complexity issues surrounding the de-
velopment of efficient approximate solutions to computationally difficult prob-
lems, and was the 15th in the series after Aalborg (1998), Berkeley (1999),
Saarbrücken (2000), Berkeley (2001), Rome (2002), Princeton (2003), Cambridge
(2004), Berkeley (2005), Barcelona (2006), Princeton (2007), Boston (2008),
Berkeley (2009), Barcelona (2010), and Princeton (2011). RANDOM is con-
cerned with applications of randomness to computational and combinatorial
problems, and was the 16th workshop in the series following Bologna (1997),
Barcelona (1998), Berkeley (1999), Geneva (2000), Berkeley (2001), Harvard
(2002), Princeton (2003), Cambridge (2004), Berkeley (2005), Barcelona (2006),
Princeton (2007), Boston (2008), Berkeley (2009), Barcelona (2010), Princeton
(2011).

Topics of interest for APPROX and RANDOM are: design and analysis of
approximation algorithms, hardness of approximation, small space algorithms,
sub-linear time algorithms, streaming algorithms, embeddings and metric space
methods, mathematical programming methods, combinatorial problems in graphs
and networks, game theory, markets and economic applications, geometric prob-
lems, packing, covering, scheduling, approximate learning, design and analysis
of online algorithms, design and analysis of randomized algorithms, randomized
complexity theory, pseudorandomness and derandomization, random combinato-
rial structures, random walks/Markov chains, expander graphs and randomness
extractors, probabilistic proof systems, random projections and embeddings,
error-correcting codes, average-case analysis, property testing, computational
learning theory, and other applications of approximation and randomness.

The volume contains 28 contributed papers, selected by the APPROX Pro-
gram Committee out of 70 submissions, and 28 contributed papers, selected by
the RANDOM Program Committee out of 67 submissions.

We would like to thank all of the authors who submitted papers, the invited
speakers, the members of the Program Committees, and the external reviewers.

We gratefully acknowledge the support from the Department of Computer
Science at the Carnegie Mellon University, USA, the Department of Computer
Science at the Columbia University, the Institute of Computer Science of the
Christian-Albrechts-Universität zu Kiel, and the Department of Computer Sci-
ence of the University of Geneva.

VI Preface

We warmly thank Joanne Talbot and Ronitt Rubenfeld from the MIT
Computer Science and Artificial Intelligence Laboratory for all the help and
support. We also would like to thank Microsoft Research - New England for the
partial sponsorship of this conference.

Finally, many thanks to Parvaneh Karimi-Massouleh for editing the
proceedings.

August 2012 Anupam Gupta
Rocco Servedio

Klaus Jansen
José D.P. Rolim

Organization

Program Committees

APPROX 2012
Alexandr Andoni Microsoft Research Silicon Valley, USA
Yossi Azar Blavatnik School of Computer Science, Israel
Shuchi Chawla University of Wisconsin, Madison
Anupam Gupta Carnegie Mellon University (Chair), USA
Sariel Har-Peled University of Illinois, USA
Jochen Koenemann University of Waterloo, Canada
Amit Kumar Indian Institute of Technology, India
Lap Chi Lau Chinese University of Hong Kong, Hong Kong
Konstantin Makarychev Microsoft Research, USA
Monaldo Mastrolilli IDSIA, Switzerland
Dana Moshkovitz Massachusetts Institute of Technology, USA
Rene Sitters Vrije Universiteit, The Netherlands
David Steurer Microsoft Research, USA
Kunal Talwar Microsoft Research Silicon Valley, USA
Jan Vondrak IBM Almadan Research Center, USA
Lisa Zhang Bell Laboratories, USA

RANDOM 2012

Eli Ben-Sasson Technion-Israel Institute of Technology, Israel
Andrej Bogdanov Chinese University of Hong Kong, Hong Kong
Mark Braverman University of Toronto, Canada
Colin Cooper King’s College London, UK
Tobias Friedrich Saarland University, Germany
Tali Kaufman Bar Ilan University, Israel
Raghu Meka Institute for Advanced Study, Princeton, USA
Jelani Nelson Princeton University, USA
Ilan Newman University of Haifa, Israel
Ryan O’Donnell Carnegie Mellon University,USA
Konstantinos Panagiotou Max-Planck-Institut für informatik, Germany
Prasad Raghavendra Georgia Institute of Technology, USA
Atri Rudra University of Buffalo, USA
Rocco Servedio (Chair) Columbia University, USA
Alistair Sinclair University of California, USA
Emanuele Viola Northeastern University, USA

VIII Organization

External Reviewers

Mohammed Abdullah
Dimitris Achlioptas
Noga Alon
Hyung-Chan An
Per Austrin
Nikhil Bansal
Siddharth Barman
Avi Ben-Aroya
Arnab Bhattacharyya
Eric Blais
Andrej Bogdanov
Graham Brightwell
Karl Bringmann
Andrei Bulatov
K. Chandrasekaran
Deeparnab Chakrabarty
Tanmoy Chakraborty
Parinya Chalermosook
Ho-Leung Chan
Chandra Chekuri
Joseph Cheriyan
Eden Chlamtac
Sung-Soon Choi
Giorgos Christodoulou
Edith Cohen
Gil Cohen
Ilan Cohen
Marek Cygan
Artur Czumaj
Anindya De
Ilias Diakonikolas
Irit Dinur
Yevgeniy Dodis
Benjamin Doerr
Zeev Dvir
Jeff Edmonds
Amir Epstein
Dan Feldman
Jon Feldman
Cristina Fernandes
David Fernandez-Baca
Eldar Fischer
Fedor Fomin

Zachary Friggstad
Stanley P. Y. Fung
Ariel Gabizon
Iftah Gamzu
Naveen Garg
Luisa Gargano
William Gasarch
Konstantinos Georgiou
Shayan Oveis Gharan
Parikshit Gopalan
Venkat Guruswami
Iftach Haitner
Tobias Harks
Prahladh Harsha
Frank Hellweg
Sungjin Im
Piotr Indyk
Rahul Jain
Klaus Jansen
Mark Jerrum
Lukasz Jez
Michael Kapralov
Mark Keil
Rohit Khandekar
Shiva Kintali
Hartmut Klauck
Lasse Kliemann
Ranganath Kondapally
Michael Krivelevich
Amit Kumar
Tsz Chiu Kwok
Oded Lachish
Huy Le Nguyen
Troy Lee
Johannes Lengler
Stefano Leonardi
Reut Levi
Xin Li
Henry Lin
Shachar Lovett
Mohammad Mahdian
Yury Makarychev
Tal Malkin

Rajsekar Manokaran
Bodo Manthey
Arie Matsliah
Pierre McKenzie
Moti Medina
Or Meir
Julian Mestre
Joel Miller
Carsten Moldenhauer
Ben Moseley
Viswanath Nagarajan
Meghana Nasre
Amir Nayyeri
Chrystopher Nehaniv
Zeev Nutov
Krzysztof Onak
Shayan Oveis Gharan
Renato Paes-Leme
Denis Pankratov
Britta Peis
Eric Price
Prasad Raghavendra
Rajmohan Rajaraman
R. Ravi
Ben Recht
Oded Regev
Dana Ron
Benjamin Rossman
Guy Rothblum
Barna Saha
Rishi Saket
Alex Samorodnitsky
Shubhangi Saraf
Guido Schaefer
Gil Segev
Sandeep Sen
Ronen Shaltiel
Yaoyun Shi
Amir Shpilka
Brad Shutters
Yiannis Siantos
Mohit Singh
Allan Sly

Organization IX

Reto Spohel
Aravind Srinivasan
Rob van Stee
Daniel Stefankovic
Martin Strauss
He Sun
Tami Tamir
Li-Yang Tan
Madhur Tulsiani
Jonathan Ullman
Seeun Umboh

Sergei Vassilvitskii
Laszlo Vegh
Jose’ Verschae
A. Vijayaraghavan
Pascal Vontobel
Andrew Wan
Carol Wang
David Williamson
Karl Wimmer
Carola Winzen
Ning Xie

Dachuan Xu
Li Yan
Qiqi Yan
Grigory Yaroslavtsev
Yuichi Yoshida
Qin Zhang
Yuan Zhou
David Zuckerman

Table of Contents

Contributed Talks of APPROX

A New Point of NP-Hardness for 2-to-1 Label Cover 1
Per Austrin, Ryan O’Donnell, and John Wright

Inapproximability of Treewidth, One-Shot Pebbling, and Related
Layout Problems . 13

Per Austrin, Toniann Pitassi, and Yu Wu

Additive Approximation for Near-Perfect Phylogeny Construction 25
Pranjal Awasthi, Avrim Blum, Jamie Morgenstern, and Or Sheffet

Improved Spectral-Norm Bounds for Clustering . 37
Pranjal Awasthi and Or Sheffet

Primal-Dual Approximation Algorithms for Node-Weighted Network
Design in Planar Graphs . 50

Piotr Berman and Grigory Yaroslavtsev

What’s the Frequency, Kenneth?: Sublinear Fourier Sampling Off
the Grid . 61

Petros Boufounos, Volkan Cevher, Anna C. Gilbert, Yi Li, and
Martin J. Strauss

Improved Hardness Results for Profit Maximization Pricing Problems
with Unlimited Supply . 73

Parinya Chalermsook, Julia Chuzhoy, Sampath Kannan, and
Sanjeev Khanna

Online Flow Time Scheduling in the Presence of Preemption
Overhead . 85

Ho-Leung Chan, Tak-Wah Lam, and Rongbin Li

Prize-Collecting Survivable Network Design in Node-Weighted
Graphs . 98

Chandra Chekuri, Alina Ene, and Ali Vakilian

Approximating Minimum-Cost Connected T -Joins 110
Joseph Cheriyan, Zachary Friggstad, and Zhihan Gao

iBGP and Constrained Connectivity . 122
Michael Dinitz and Gordon Wilfong

XII Table of Contents

Online Scheduling of Jobs with Fixed Start Times on Related
Machines . 134

Leah Epstein, �Lukasz Jeż, Jǐŕı Sgall, and Rob van Stee

A Systematic Approach to Bound Factor Revealing LPs and Its
Application to the Metric and Squared Metric Facility Location
Problems . 146

Cristina G. Fernandes, Lúıs A.A. Meira, Flávio K. Miyazawa, and
Lehilton L.C. Pedrosa

Approximating Bounded Occurrence Ordering CSPs 158
Venkatesan Guruswami and Yuan Zhou

On the NP-Hardness of Max-Not-2 . 170
Johan H̊astad

The Remote Set Problem on Lattices . 182
Ishay Haviv

Approximation Algorithms for Generalized and Variable-Sized Bin
Covering . 194

Matthias Hellwig and Alexander Souza

Approximating Minimum Linear Ordering Problems 206
Satoru Iwata, Prasad Tetali, and Pushkar Tripathi

New Approximation Results for Resource Replication Problems 218
Samir Khuller, Barna Saha, and Kanthi K. Sarpatwar

Maximum Matching in Semi-streaming with Few Passes 231
Christian Konrad, Frédéric Magniez, and Claire Mathieu

Improved Inapproximability for TSP . 243
Michael Lampis

Approximation Algorithm for Non-boolean MAX k-CSP 254
Konstantin Makarychev and Yury Makarychev

Planarizing an Unknown Surface . 266
Yury Makarychev and Anastasios Sidiropoulos

The Projection Games Conjecture and the NP-Hardness
of In n-Approximating Set-Cover . 276

Dana Moshkovitz

New and Improved Bounds for the Minimum Set Cover Problem 288
Rishi Saket and Maxim Sviridenko

Hardness of Vertex Deletion and Project Scheduling 301
Ola Svensson

Table of Contents XIII

Approximation Guarantees for the Minimum Linear Arrangement
Problem by Higher Eigenvalues . 313

Suguru Tamaki and Yuichi Yoshida

Circumventing d-to-1 for Approximation Resistance of
Satisfiable Predicates Strictly Containing Parity of Width Four
(Extended Abstract) . 325

Cenny Wenner

Contributed Talks of RANDOM

Spectral Norm of Symmetric Functions . 338
Anil Ada, Omar Fawzi, and Hamed Hatami

Almost K-Wise vs. K-Wise Independent Permutations, and Uniformity
for General Group Actions . 350

Noga Alon and Shachar Lovett

Testing Permanent Oracles – Revisited . 362
Sanjeev Arora, Arnab Bhattacharyya, Rajsekar Manokaran, and
Sushant Sachdeva

Limitations of Local Filters of Lipschitz and Monotone Functions 374
Pranjal Awasthi, Madhav Jha, Marco Molinaro, and
Sofya Raskhodnikova

Testing Lipschitz Functions on Hypergrid Domains 387
Pranjal Awasthi, Madhav Jha, Marco Molinaro, and
Sofya Raskhodnikova

Extractors for Polynomials Sources over Constant-Size Fields of Small
Characteristic . 399

Eli Ben-Sasson and Ariel Gabizon

Multiple-Choice Balanced Allocation in (Almost) Parallel 411
Petra Berenbrink, Artur Czumaj, Matthias Englert,
Tom Friedetzky, and Lars Nagel

Optimal Hitting Sets for Combinatorial Shapes . 423
Aditya Bhaskara, Devendra Desai, and Srikanth Srinivasan

Tight Bounds for Testing k-Linearity . 435
Eric Blais and Daniel Kane

Pseudorandomness for Linear Length Branching Programs and Stack
Machines . 447

Andrej Bogdanov, Periklis A. Papakonstantinou, and Andrew Wan

XIV Table of Contents

A Discrepancy Lower Bound for Information Complexity 459
Mark Braverman and Omri Weinstein

On the Coin Weighing Problem with the Presence of Noise 471
Nader H. Bshouty

Information Complexity versus Corruption and Applications
to Orthogonality and Gap-Hamming . 483

Amit Chakrabarti, Ranganath Kondapally, and Zhenghui Wang

An Explicit VC-Theorem for Low-Degree Polynomials 495
Eshan Chattopadhyay, Adam Klivans, and Pravesh Kothari

Tight Bounds on the Threshold for Permuted k-Colorability 505
Varsha Dani, Cristopher Moore, and Anna Olson

Sparse and Lopsided Set Disjointness via Information Theory 517
Anirban Dasgupta, Ravi Kumar, and D. Sivakumar

Maximal Empty Boxes Amidst Random Points . 529
Adrian Dumitrescu and Minghui Jiang

Rainbow Connectivity of Sparse Random Graphs . 541
Alan Frieze and Charalampos E. Tsourakakis

Invertible Zero-Error Dispersers and Defective Memory with Stuck-At
Errors . 553

Ariel Gabizon and Ronen Shaltiel

Two-Sided Error Proximity Oblivious Testing (Extended Abstract) 565
Oded Goldreich and Igor Shinkar

Mirror Descent Based Database Privacy . 579
Prateek Jain and Abhradeep Thakurta

Analysis of k-Means++ for Separable Data . 591
Ragesh Jaiswal and Nitin Garg

A Sharper Local Lemma with Improved Applications 603
Kashyap Kolipaka, Mario Szegedy, and Yixin Xu

Finding Small Sparse Cuts by Random Walk . 615
Tsz Chiu Kwok and Lap Chi Lau

On Deterministic Sketching and Streaming for Sparse Recovery
and Norm Estimation . 627

Jelani Nelson, Huy L. Nguy˜̂en, and David P. Woodruff

A New Upper Bound on the Query Complexity for Testing Generalized
Reed-Muller Codes . 639

Noga Ron-Zewi and Madhu Sudan

Table of Contents XV

A Combination of Testability and Decodability by Tensor Products 651
Michael Viderman

Extractors for Turing-Machine Sources . 663
Emanuele Viola

Author Index . 673

A New Point of NP-Hardness

for 2-to-1 Label Cover

Per Austrin1,�, Ryan O’Donnell2,��, and John Wright2

1 Department of Computer Science, University of Toronto
2 Department of Computer Science, Carnegie Mellon University

Abstract. We show that given a satisfiable instance of the 2-to-1 Label
Cover problem, it is NP-hard to find a (23

24
+ ε)-satisfying assignment.

1 Introduction

Over the past decade, a significant amount of progress has been made in the
field of hardness of approximation via results based on the conjectured hardness
of certain forms of the Label Cover problem. The Unique Games Conjecture
(UGC) of Khot [15] states that it is NP-hard to distinguish between nearly sat-
isfiable and almost completely unsatisfiable instances of Unique, or 1-to-1, Label
Cover. Using the UGC as a starting point, we now have optimal inapproximabil-
ity results for Vertex Cover [17], Max-Cut [16], and many other basic constraint
satisfaction problems (CSP). Indeed, assuming the UGC we have essentially
optimal inapproximability results for all CSPs [21]. In short, modulo the under-
standing of Unique Label Cover itself, we have an excellent understanding of the
(in-)approximability of a wide range of problems.

Where the UGC’s explanatory powers falter is in pinning down the approx-
imability of satisfiable CSPs. This means the task of finding a good assignment
to a CSP when guaranteed that the CSP is fully satisfiable. For example, we
know from the work of H̊astad [13] that given a fully satisfiable 3Sat instance,
it is NP-hard to satisfy 7

8 + ε of the clauses for any ε > 0. However given a fully
satisfiable 1-to-1 Label Cover instance, it is completely trivial to find a fully
satisfying assignment. Thus the UGC can not be used as the starting point for
hardness results for satisfiable CSPs. Because of this, Khot additionally posed
his d-to-1 Conjectures:

Conjecture 1.1 ([15]). For every integer d ≥ 2 and ε > 0, there is a label set
size q such that it is NP-hard to (1, ε)-decide the d-to-1 Label Cover problem.

Here by (c, s)-deciding a CSP we mean the task of determining whether an
instance is at least c-satisfiable or less than s-satisfiable. It is well known (from
the Parallel Repetition Theorem [6, 22]) that the conjecture is true if d is allowed
to depend on ε. The strength of this conjecture, therefore, is that it is stated for
each fixed d greater than 1.

� Funded by NSERC.
�� Supported by NSF grants CCF-0747250 and CCF-0915893, and by a Sloan fellowship.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 P. Austrin, R. O’Donnell, and J. Wright

The d-to-1 Conjectures have been used to resolve the approximability of sev-
eral basic “satisfiable CSP” problems. The first result along these lines was due
to Dinur, Mossel, and Regev [5] who showed that the 2-to-1 Conjecture implies
that it is NP-hard to C-color a 4-colorable graph for any constant C. (They
also showed hardness for 3-colorable graphs via another Unique Games variant.)
O’Donnell and Wu [20] showed that assuming the d-to-1 Conjecture for any
fixed d implies that it is NP-hard to (1, 58 + ε)-approximate instances a certain
3-bit predicate — the “Not Two” predicate. This is an optimal result among
all 3-bit predicates, since Zwick [25] showed that every satisfiable 3-bit CSP in-
stance can be efficiently 5

8 -approximated. In another example, Guruswami and
Sinop [12] have shown that the 2-to-1 Conjecture implies that given a q-colorable
graph, it is NP-hard to find a q-coloring in which less than a (1q −O(ln qq2)) frac-

tion of the edges are monochromatic. This result would be tight up to the O(·)
by an algorithm of Frieze and Jerrum [7]. It is therefore clear that settling the
d-to-1 Conjectures, especially in the most basic case of d = 2, is an important
open problem.

Regarding the hardness of the 2-to-1 Label Cover problem, the only evidence
we have is a family of integrality gaps for the canonical SDP relaxation of the
problem, in [9]. Regarding algorithms for the problem, an important recent line
of work beginning in [1] (see also [4, 11, 23]) has sought subexponential-time algo-
rithms for Unique Label Cover and related problems. In particular, Steurer [23]
has shown that for any constant β > 0 and label set size, there is an exp(O(nβ))-
time algorithm which, given a satisfiable 2-to-1 Label Cover instance, finds an
assignment satisfying an exp(−O(1/β2))-fraction of the constraints. E.g., there is

a 2O(n.001)-time algorithm which (1, s0)-approximates 2-to-1 Label Cover, where
s0 > 0 is a certain universal constant.

In light of this, it is interesting not only to seek NP-hardness results for cer-
tain approximation thresholds, but to additionally seek evidence that nearly
full exponential time is required for these thresholds. This can done by assum-
ing the Exponential Time Hypothesis (ETH) [14] and by reducing from the
Moshkovitz–Raz Theorem [18], which shows a near-linear size reduction from
3Sat to the standard Label Cover problem with subconstant soundness. In this
work, we show reductions from 3Sat to the problem of (1, s+ ε)-approximating
several CSPs, for certain values of s and for all ε > 0. In fact, though we omit
it in our theorem statements, it can be checked that all of the reductions in this

paper are quasilinear in size for ε = ε(n) = Θ
(

1
(log log n)β

)
, for some β > 0.

1.1 Our Results

In this paper, we focus on proving NP-hardness for the 2-to-1 Label Cover prob-
lem. To the best of our knowledge, no explicit NP-hardness factor has previously
been stated in the literature. However it is “folklore” that one can obtain an
explicit one for label set sizes 3 & 6 by performing the “constraint-variable” re-
duction on anNP-hardness result for 3-coloring (more precisely, Max-3-Colorable-
Subgraph). The best knownhardness for 3-coloring is due toGuruswami and Sinop

A New Point of NP-Hardness for 2-to-1 Label Cover 3

[12], who showed a factor 32
33 -hardness via a somewhat involved gadget reduc-

tion from the 3-query adaptive PCP result of [10]. This yields NP-hardness of
(1, 6566 + ε)-approximating 2-to-1 Label Cover with label set sizes 3 & 6. It is not
known how to take advantage of larger label set sizes. On the other hand, for la-
bel set sizes 2 & 4 it is known that satisfying 2-to-1 Label Cover instances can be
found in polynomial time.

The main result of our paper gives an improved hardness result:

Theorem 1.2. For all ε > 0, (1, 2324+ε)-deciding the 2-to-1 Label Cover problem
with label set sizes 3 & 6 is NP-hard.

By duplicating labels, this result also holds for label set sizes 3k & 6k for any
k ∈ �+.

Let us describe the high-level idea behind our result. The folklore constraint-
variable reduction from 3-coloring to 2-to-1 Label Cover would work just as well
if we started from “3-coloring with literals” instead. By this we mean the CSP
with domain �3 and constraints of the form “vi − vj �= c (mod 3)”. Starting
from this CSP — which we call 2NLin(�3) — has two benefits: first, it is at least
as hard as 3-coloring and hence could yield a stronger hardness result; second, it
is a bit more “symmetrical” for the purposes of designing reductions. We obtain
the following hardness result for 2NLin(�3).

Theorem 1.3. For all ε > 0, it is NP-hard to (1, 1112 + ε)-decide the 2NLin
problem.

As 3-coloring is a special case of 2NLin(�3), [12] also shows that (1, 3233 + ε)-
deciding 2NLin is NP-hard for all ε > 0, and to our knowledge this was previously
the only hardness known for 2NLin(�3). The best current algorithm achieves an
approximation ratio of 0.836 (and does not need the instance to be satisfiable) [8].
To prove Theorem 1.3, we proceed by designing an appropriate “function-in-
the-middle” dictator test, as in the recent framework of [19]. Although the [19]
framework gives a direct translation of certain types of function-in-the-middle
tests into hardness results, we cannot employ it in a black-box fashion. Among
other reasons, [19] assumes that the test has “built-in noise”, but we cannot
afford this as we need our test to have perfect completeness.

Thus, we need a different proof to derive a hardness result from this function-
in-the-middle test. We first were able to accomplish this by an analysis similar
to the Fourier-based proof of 2Lin(�2) hardness given in Appendix F of [19].
Just as that proof “reveals” that the function-in-the-middle 2Lin(�2) test can
be equivalently thought of as H̊astad’s 3Lin(�2) test composed with the 3Lin(�2)-
to-2Lin(�2) gadget of [24], our proof for the 2NLin(�3) function-in-the-middle
test revealed it to be the composition of a function test for a certain four-variable
CSP with a gadget. We have called the particular four-variable CSP 4-Not-All-
There, or 4NAT for short. Because it is a 4-CSP, we are able to prove the following
NP-hardness of approximation result for it using a classic, H̊astad-style Fourier-
analytic proof.

4 P. Austrin, R. O’Donnell, and J. Wright

Theorem 1.4. For all ε > 0, it is NP-hard to (1, 23+ε)-decide the 4NAT problem.

Thus, the final form in which we present our Theorem 1.2 is as a reduction from
Label-Cover to 4NAT using a function test (yielding Theorem 1.4), followed by
a 4NAT-to-2NLin(�3) gadget (yielding Theorem 1.3), followed by the constraint-
variable reduction to 2-to-1 Label Cover. Indeed, all of the technology needed to
carry out this proof was in place for over a decade, but without the function-in-
the-middle framework of [19] it seems that pinpointing the 4NAT predicate as a
good starting point would have been unlikely.

1.2 Organization

We leave to Section 2 most of the definitions, including those of the CSPs we use.
The heart of the paper is in Section 3, where we give both the 2NLin(�3) and
4NAT function tests, explain how one is derived from the other, and then perform
the Fourier analysis for the 4NAT test. In Section 4 we discuss the NP-hardness
result for 4NAT. Due to space considerations, several proofs are omitted but can
be found in the full version of the paper [3].

2 Preliminaries

We primarily work with strings x ∈ �
K
3 for some integer K. We write xi to

denote the ith coordinate of x. Oftentimes, our strings y ∈ �dK3 are “blocked”
into K “blocks” of size d. In this case, we write y[i] ∈ �

d
3 for the ith block

of y, and (y[i])j ∈ �3 for the jth coordinate of this block. Define the function
π : [dK] → [K] such that π(k) = i if k falls in the ith block of size d (e.g.,
π(k) = 1 for 1 ≤ k ≤ d, π(k) = 2 for d+ 1 ≤ k ≤ 2d, and so on).

2.1 Definitions of Problems

An instance I of a constraint satisfaction problem (CSP) is a set of variables
V , a set of labels D, and a weighted list of constraints on these variables. We
assume that the weights of the constraints are nonegative and sum to 1. The
weights therefore induce a probability distribution on the constraints. Given an
assignment to the variables f : V → D, the value of f is the probability that f
satisfies a constraint drawn from this probability distribution. The optimum of
I is the highest value of any assignment. We say that an I is s-satisfiable if its
optimum is at least s. If it is 1-satisfiable we simply call it satisfiable.

We define a CSP P to be a set of CSP instances. Typically, these instances will
have similar constraints. We will study the problem of (c, s)-deciding P . This
is the problem of determining whether an instance of P is at least c-satisfiable
or less than s-satisfiable. Related is the problem of (c, s)-approximating P , in
which one is given a c-satisfiable instance of P and asked to find an assignment
of value at least s. It is easy to see that (c, s)-deciding P is at least as easy as
(c, s)-approximating P . Thus, as all our hardness results are for (c, s)-deciding
CSPs, we also prove hardness for (c, s)-approximating these CSPs.

We now state the three CSPs that are the focus of our paper.

A New Point of NP-Hardness for 2-to-1 Label Cover 5

2-NLin(�3): In this CSP the label set is �3 and the constraints are of the form

vi − vj �= a (mod 3), a ∈ �3.

The special case when each RHS is 0 is the 3-coloring problem. We often drop
the (�3) from this notation and simply write 2NLin. The reader may think
of the ‘N’ in 2NLin(�3) as standing for ‘N’on-linear, although we prefer to think
of it as standing for ‘N’early-linear. The reason is that when generalizing to
moduli q > 3, the techniques in this paper generalize to constraints of the form
“vi − vj (mod q) ∈ {a, a + 1}” rather than “vi − vj �= a (mod q)”. For the
ternary version of this constraint, “vi − vj + vk (mod q) ∈ {a, a + 1}”, it is
folklore1 that a simple modification of H̊astad’s work [13] yields NP-hardness of
(1, 2q)-approximation.

4-Not-All-There: For the 4-Not-All-There problem, denoted 4NAT, we define
4NAT : �4

3 → {0, 1} to have output 1 if and only if at least one of the ele-
ments of �3 is not present among the four inputs. The 4NAT CSP has label set
D = �3 and constraints of the form 4NAT(v1 + k1, v2 + k2, v3 + k3, v4 + k4) = 1,
where the ki’s are constants in �3.

We additionally define the “Two Pairs” predicate TwoPair : �4
3 → {0, 1},

which has output 1 if and only if its input contains two distinct elements of �3,
each appearing twice. Note that an input which satisfies TwoPair also satisfies
4NAT.

d-to-1 Label Cover: An instance of the d-to-1 Label Cover problem is a bipartite
graph G = (U ∪ V,E), a label set size K, and a d-to-1 map πe : [dK] → [K]
for each edge e ∈ E. The elements of U are labeled from the set [K], and the
elements of V are labeled from the set [dK]. A labeling f : U∪V → [dK] satisfies
an edge e = (u, v) if πe(f(v)) = f(u). Of particular interest is the d = 2 case,
i.e., 2-to-1 Label Cover.

Label Cover serves as the starting point for most NP-hardness of approxima-
tion results. We use the following theorem of Moshkovitz and Raz:

Theorem 2.1 ([18]). For any ε = ε(n) ≥ n−o(1) there exists K, d ≤ 2poly(1/ε)

such that the problem of deciding a 3Sat instance of size n can be Karp-reduced
in poly(n) time to the problem of (1, ε)-deciding d-to-1 Label Cover instance of
size n1+o(1) with label set size K.

2.2 Gadgets

A typical way of relating two separate CSPs is by constructing a gadget reduction
which translates from one to the other. A gadget reduction from CSP1 to CSP2 is
one which maps any CSP1 constraint into a weighted set of CSP2 constraints. The
CSP2 constraints are over the same set of variables as the CSP1 constraint, plus
some new, auxiliary variables (these auxiliary variables are not shared between

1 Venkatesan Guruswami, Subhash Khot personal communications.

6 P. Austrin, R. O’Donnell, and J. Wright

constraints of CSP1). We require that for every assignment which satisfies the
CSP1 constraint, there is a way to label the auxiliary variables to fully satisfy
the CSP2 constraints. Furthermore, there is some parameter 0 < γ < 1 such that
for every assignment which does not satisfy the CSP1 constraint, the optimum
labeling to the auxiliary variables will satisfy exactly γ fraction of the CSP2

constraints. Such a gadget reduction we call a γ-gadget-reduction from CSP1 to
CSP2. The following proposition is well-known:

Proposition 2.2. Suppose it is NP-hard to (c, s)-decide CSP1. If there exists a
γ-gadget-reduction from CSP1 to CSP2, then it is NP-hard to (c + (1 − c)γ, s+
(1− s)γ)-decide CSP2.

We note that the notation γ-gadget-reduction is similar to a piece of notation
employed by [24], but the two have different (though related) definitions.

2.3 Fourier Analysis on �3

Let ω = e2πi/3 and set U3 = {ω0, ω1, ω2}. For α ∈ �
n
3 , consider the Fourier

character χα : �n3 → U3 defined as χα(x) = ωα·x. Then it is easy to see that
E[χα(x)χβ(x)] = 1[α = β], where here and throughout x has the uniform
probability distribution on �n3 unless otherwise specified.. As a result, the Fourier
characters form an orthonormal basis for the set of functions f : �n3 → U3 under
the inner product 〈f, g〉 = E[f(x)g(x)]; i.e.,

f =
∑
α∈�n

3

f̂(α)χα,

where the f̂(α)’s are complex numbers defined as f̂(α) = E[f(x)χα(x)]. For
α ∈ �n3 , we use the notation |α| to denote

∑
αi and #α to denote the number

of nonzero coordinates in α. When d is clear from context and α ∈ �dK3 , define
π3(α) ∈ �K3 so that (π3(α))i ≡ |α[i]| (mod 3) (recall the notation α[i] from the
beginning of this section).

We have Parseval’s identity: for every f : �
n
3 → U3 it holds that∑

α∈�n
3
|f̂(α)|2 = 1. Note that this implies that |f̂(α)| ≤ 1 for all α, as oth-

erwise f̂(α)2 would be greater than 1. A function f : �n3 → �3 is said to be
folded if for every x ∈ �n3 and c ∈ �3, it holds that f(x + c) = f(x) + c, where
(x+ c)i = xi + c.

Proposition 2.3. Let f : �n3 → U3 be folded. Then f̂(α) �= 0 ⇒ |α| ≡ 1
(mod 3).

3 2-to-1 Hardness

In this section, we give our hardness result for 2-to-1 Label Cover, following the
proof outline described at the end of Section 1.1.

A New Point of NP-Hardness for 2-to-1 Label Cover 7

Theorem 3.1 (Theorem 1.2 (restated)). For all ε > 0, it is NP-hard to
(1, 2324 + ε)-decide the 2-to-1 Label Cover problem.

First, we state a pair of simple gadget reductions:

Lemma 3.2. There is a 3/4-gadget-reduction from 4NAT to 2NLin.

Lemma 3.3. There is a 1/2-gadget-reduction from 2NLin to 2-to-1.

Together with Proposition 2.2, these imply the following corollary:

Corollary 3.4. There is a 7/8-gadget-reduction from 4NAT to 2-to-1. Thus, if
it is NP-hard to (c, s)-decide the 4NAT problem, then it is NP-hard to ((7 +
c)/8, (7 + s)/8)-decide the 2-to-1 Label Cover problem.

The gadget reduction from 4NAT to 2NLin relies on the simple fact that if
a, b, c, d ∈ �3 satisfy the 4NAT predicate, then there is some element of �3

that none of them equal.
The reduction from 2NLin to 2-to-1 Label Cover is the well-known constraint-

variable reduction, and uses the fact that in the equation vi − vj �= a (mod 3),
for any assignment to vj there are two valid assignments to vi, and vice versa.

3.1 A Pair of Tests

Now that we have shown that 2NLin hardness results translate into 2-to-1 Label
Cover hardness results, we present our 2NLin function test. Even though we
don’t directly use it, it helps explain how we were led to consider the 4NAT
CSP. Furthermore, the Fourier analysis that we eventually use for the 4NAT
Test could instead be performed directly on the 2NLin Test without any direct
reference to the 4NAT predicate. The test is:

2NLin Test

Given folded functions f : �K3 → �3, g, h : �dK3 → �3:

– Let x ∈ �K3 and y ∈ �dK3 be independent and uniformly random.
– For each i ∈ [K], j ∈ [d], select (z[i])j independently and uniformly from the

elements of �3 \ {xi, (y[i])j}.
– With probability 1

4 , test f(x) �= h(z); with probability 3
4 , test g(y) �= h(z).

1

0 1 2 1 2

0 1

012

1202001200112

1 2 0 2 1 1 0 2 0 2 0

x

z

y

f

h

g

Fig. 1. An illustration of the 2NLin test distribution; d = 3, K = 5

8 P. Austrin, R. O’Donnell, and J. Wright

Above is an illustration of the test. We remark that for any given block i, z[i]
determines xi (with very high probability), because as soon as z[i] contains two
distinct elements of �3, xi must be the third element of �3. Notice also that in
every column of indices, the input to h always differs from the inputs to both f
and g. Thus, “matching dictator” assignments pass the test with probability 1.
(This is the case in which f(x) = xi and g(y) = (y[i])j for some i ∈ [K],
j ∈ [d].) On the other hand, if f and g are “nonmatching dictators”, then they
succeed with only 11

12 probability. This turns out to be essentially optimal among
functions f and g without “matching influential coordinates/blocks”. We will
obtain the following theorem:

Theorem 3.5 (Theorem 1.3 restated). For all ε > 0, it is NP-hard to
(1, 1112 + ε)-decide the 2NLin problem.

Before proving this, let us further discuss the 2NLin test. Given x, y, and z
from the 2NLin test, consider the following method of generating two additional
strings y′,y′′ ∈ �

dK
3 which represent h’s “uncertainty” about y. For j ∈ [d],

if xi = (y[i])j , then set both (y′[i])j and (y′′[i])j to the lone element of �3 \
{xi, (z[i])j}. Otherwise, set one of (y′[i])j or (y

′′[i])j to xi, and the other one to
(y[i])j . It can be checked that TwoPair(xi, (y[i])j , (y

′[i])j , (y
′′[i])j) = 1, a more

stringent requirement than satisfying 4NAT. In fact, the marginal distribution on
these four variables is a uniformly random assignment that satisfies the TwoPair
predicate. Conditioned on x and z, the distribution on y′ and y′′ is identical to
the distribution on y. To see this, first note that by construction, neither (y′[i])j
nor (y′′[i])j ever equals (z[i])j . Further, because these indices are distributed
as uniformly random satisfying assignments to TwoPair, Pr[(y′[i])j = xi] =
Pr[(y′′[i])j = xi] =

1
3 , which matches the corresponding probability for y. Thus,

as y, y′, and y′′ are distributed identically, we may rewrite the test’s success
probability as:

Pr[f , g, and h pass the test] = 1
4 Pr[f(x) �= h(z)] + 3

4 Pr[g(y) �= h(z)]

= avg

⎧⎪⎪⎨⎪⎪⎩
Pr[f(x) �= h(z)],
Pr[g(y) �= h(z)],
Pr[g(y′) �= h(z)],
Pr[g(y′′) �= h(z)]

⎫⎪⎪⎬⎪⎪⎭
≤ 3

4
+

1

4
E[4NAT(f(x), g(y), g(y′), g(y′′))].

This is because if 4NAT fails to hold on the tuple (f(x), g(y), g(y′), g(y′′)), then
h(z) can disagree with at most 3 of them.

At this point, we have removed h from the test analysis and have uncov-
ered what appears to be a hidden 4NAT test inside the 2NLin Test: simply
generate four strings x, y, y′, and y′′ as described earlier, and test whether
4NAT(f(x), g(y), g(y′), g(y′′)). With some renaming of variables, this is exactly
what our 4NAT Test does:

A New Point of NP-Hardness for 2-to-1 Label Cover 9

4NAT Test

Given folded functions f : �K3 → �3, g : �dK3 → �3:

– Let x ∈ �K3 be uniformly random.
– Select y, z,w as follows: for each i ∈ [K], j ∈ [d], select ((y[i])j , (z[i])j , (w[i])j)

uniformly at random subjec to TwoPair(xi, (y[i])j , (z[i])j , (w[i])j) being
satisfied.

– Test 4NAT(f(x), g(y), g(z), g(w)).

1

0 1 2 1 2

0121 2 0 2 1 1 0 2 0 2 0

x

y

f

g

2 2100 2 2 2 2 0 0 1 0 2 0z g

1 0201 0 2 1 2 0 2 1 1 1 1w g

Fig. 2. An illustration of the 4NAT test distribution; d = 3, K = 5

Above is an illustration of this test. In this illustration, the strings z and w
were derived from the strings in Figure 1 using the process detailed above for
generating y′ and y′′. Note that each column is missing one of the elements of �3,
and that each column satisfies the TwoPair predicate. Because satisfying TwoPair
implies satisfying 4NAT, matching dictators pass this test with probability 1.
On the other hand, it can be seen that nonmatching dictators pass the test with
probability 2

3 . In the next section we show that this is optimal among functions
f and g without “matching influential coordinates/blocks”.

(As one additional remark, our 2NLin Test is basically the composition of
the 4NAT Test with the gadget from Lemma 3.2. In this test, if we instead
performed the f(x) �= h(z) test with probability 1

3 and the g(y) �= h(z) test
with probability 2

3 , then the resulting test would basically be the composition of
a 3NLin test with a suitable 3NLin-to-2NLin gadget.)

3.2 Analysis of 4NAT Test

Let ω = e2πi/3, and set U3 = {ω0, ω1, ω2}. In what follows, we identify f and g
with the functions ωf and ωg, respectively, whose range is U3 rather than �3. Set
L = dK. The remainder of this section is devoted to the proof of the following
lemma:

Lemma 3.6. Let f : �K3 → U3 and g : �dK3 → U3. Then

E[4NAT(f(x), g(y), g(z), g(w))] ≤ 2
3 + 2

3

∑
α∈�L

3

|f̂(π3(α))| · |ĝ(α)|2 · (1/2)#α

10 P. Austrin, R. O’Donnell, and J. Wright

The first step is to “arithmetize” the 4NAT predicate. One can check that

4NAT(a1, a2, a3, a4) =

=
5

9
+

1

9

∑
i�=j

ωaiωaj − 1

9

∑
i<j<k

ωaiωajωak − 1

9

∑
i<j<k

ωaiωajωak

=
5

9
+

2

9

∑
i<j

�[ωaiωaj]− 2

9

∑
i<j<k

�[ωaiωajωak].

Using the symmetry between y, z, and w, we deduce

E[4NAT(f(x), g(y), g(z), g(w))] =

5
9 + 2

3�E[f(x)g(y)] + 2
3�E[g(y)g(z)]

− 2
3�E[f(x)g(y)g(z)]− 2

9�E[g(y)g(z)g(w)]. (1)

In the second term in the RHS of (1) we in fact have E[f(x)g(y)] = 0. This is
because x and y are independent, and hence E[f(x)g(y)] = E[f(x)]E[g(y)] =
0 · 0 since f and g are folded. Regarding the third term of the RHS in (1), this
also turns out to be 0 by virtue of g being folded.

Lemma 3.7. E[g(y)g(z)] = 0.

This can be proven using a Fourier-analytic argument; in the full version of the
paper [3] we present an alternate combinatorial argument.

Equation (1) has now been reduced to

(1) = 5
9 − 2

3�E[f(x)g(y)g(z)]− 2
9�E[g(y)g(z)g(w)]. (2)

As g(y)g(z)g(w) is always in U3, �E[g(y)g(z)g(w)] is always at least − 1
2 .

Therefore,
(2) ≤ 2

3 − 2
3�E[f(x)g(y)g(z)]. (3)

It remains to handle the E[f(x)g(y)g(z)] term, which is the subject of our next
lemma. The proof, which appears in the full version of the paper [3], is a standard
argument in the style of H̊astad [13].

Lemma 3.8. E[f(x)g(y)g(z)] =
∑

α∈�L
3
f̂(π3(α))ĝ(α)

2
(
− 1

2

)#α
.

Substituting this result into (3) we obtain Lemma 3.6.

4 Hardness of 4NAT

In this section, we show the following theorem:

Theorem 4.1. Theorem 1.4 (detailed) For all ε > 0, it is NP-hard to (1, 23 + ε)-
decide the 4NAT problem. In fact, in the “yes case”, all 4NAT constraints can
be satisfied by TwoPair assignments.

A New Point of NP-Hardness for 2-to-1 Label Cover 11

Combining this with Lemma 3.2 yields Theorem 1.3, and combining this with
Corollary 3.4 yields Theorem 1.2. It is not clear whether this gives optimal
hardness assuming perfect completeness. The 4NAT predicate is satisfied by a
uniformly random input with probability 5

9 , and by the method of conditional
expectation this gives a deterministic algorithm which (1, 59)-approximates the
4NAT CSP. This leaves a gap of 1

9 in the soundness, and to our knowledge there
are no better known algorithms.

On the hardness side, consider a uniformly random satisfying assignment to
the TwoPair predicate. It is easy to see that each of the four variables is assigned
a uniformly random value from �3, and also that the variables are pairwise
independent. As any satisfying assignment to the TwoPair predicate also satisfies
the 4NAT predicate, the work of Austrin and Mossel [2] immediately implies that
(1 − ε, 59 + ε)-approximating the 4NAT problem is NP-hard under the Unique
Games conjecture. Thus, if we are willing to sacrifice a small amount in the
completeness, we can improve the soundness parameter in Theorem 1.4. Whether
we can improve upon the soundness without sacrificing perfect completeness is
open.

The proof of Theorem 1.4, which appears in the full version [3], is entirely
standard, and proceeds by reduction from d-to-1 Label Cover. It makes use of
our analysis of the 4NAT Test, which is presented in Section 3.2.

References

[1] Arora, S., Barak, B., Steurer, D.: Subexponential algorithms for Unique Games
and related problems. In: Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science, pp. 563–572 (2010)

[2] Austrin, P., Mossel, E.: Approximation resistant predicates from pairwise inde-
pendence. Computational Complexity 18(2), 249–271 (2009)

[3] Austrin, P., O’Donnell, R., Wright, J.: A new point of NP-hardness for 2-to-1
Label Cover. CoRR, abs/1204.5666 (2012)

[4] Barak, B., Raghavendra, P., Steurer, D.: Rounding semidefinite programming hi-
erarchies via global correlation. In: Proceedings of the 52nd Annual IEEE Sym-
posium on Foundations of Computer Science (2011)

[5] Dinur, I., Mossel, E., Regev, O.: Conditional hardness for approximate coloring.
SIAM Journal on Computing 39(3), 843–873 (2009)

[6] Feige, U., Kilian, J.: Two prover protocols: low error at affordable rates. In:
Proceedings of the 26th Annual ACM Symposium on Theory of Computing,
pp. 172–183 (1994)

[7] Frieze, A., Jerrum, M.: Improved approximation algorithms for MAX k-CUT and
MAX BISECTION. Algorithmica 18(1), 67–81 (1997)

[8] Goemans, M., Williamson, D.: Approximation algorithms for MAX-3-CUT and
other problems via complex semidefinite programming. Journal of Computer &
System Sciences 68(2), 442–470 (2004)

[9] Guruswami, V., Khot, S., O’Donnell, R., Popat, P., Tulsiani, M., Wu, Y.: SDP
Gaps for 2-to-1 and Other Label-Cover Variants. In: Abramsky, S., Gavoille, C.,
Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6198, pp. 617–628. Springer, Heidelberg (2010)

12 P. Austrin, R. O’Donnell, and J. Wright

[10] Guruswami, V., Lewin, D., Sudan, M., Trevisan, L.: A tight characterization of
NP with 3 query PCPs. In: Proceedings of the 39th Annual IEEE Symposium on
Foundations of Computer Science, pp. 8–17 (1998)

[11] Guruswami, V., Sinop, A.: Lasserre hierarchy, higher eigenvalues, and approxima-
tion schemes for quadratic integer programming with PSD objectives. In: Proceed-
ings of the 52nd Annual IEEE Symposium on Foundations of Computer Science
(2011)

[12] Guruswami, V., Sinop, A.K.: Improved inapproximability results for Maximum
k-Colorable Subgraph. In: Proceedings of the 12th Annual International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems,
pp. 163–176 (2009)

[13] H̊astad, J.: Some optimal inapproximability results. Journal of the ACM 48(4),
798–859 (2001)

[14] Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. Journal of Computer
and System Sciences 62(2), 367–375 (2001)

[15] Khot, S.: On the power of unique 2-prover 1-round games. In: Proc. 34th ACM
Symposium on Theory of Computing, pp. 767–775 (2002)

[16] Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results
for Max-Cut and other 2-variable CSPs? SIAM Journal on Computing 37(1),
319–357 (2007)

[17] Khot, S., Regev, O.: Vertex Cover might be hard to approximate to within 2−ε. In:
Proc. 18th IEEE Conference on Computational Complexity, pp. 379–386 (2003)

[18] Moshkovitz, D., Roz, R.: Two-query PCP with subconstant error. Journal of the
ACM 57(5), 29 (2010)

[19] O’Donnell, R., Wright, J.: A new point of NP-hardness for Unique-Games. In:
Proceedings of the 44th Annual ACM Symposium on Theory of Computing,
pp. 289–306 (2012)

[20] O’Donnell, R., Wu, Y.: Conditional hardness for satisfiable 3-CSPs. In: Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing, pp. 493–502
(2009)

[21] Raghavendra, P.: Optimal algorithms and inapproximability results for every
CSP? In: Proceedings of the 40th Annual ACM Symposium on Theory of Com-
puting, pp. 245–254 (2008)

[22] Raz, R.: A parallel repetition theorem. In: Proceedings of the 27th Annual ACM
Symposium on Theory of Computing, pp. 447–456 (1995)

[23] Steurer, D.: Subexponential algorithms for d-to-1 two-prover games and for certi-
fying almost perfect expansion. Available at the author’s website (2010)

[24] Trevisan, L., Sorkin, G., Sudan, M., Williamson, D.: Gadgets, approximation, and
linear programming. SIAM J. Comput. 29(6), 2074–2097 (2000)

[25] Zwick, U.: Approximation algorithms for constraint satisfaction problems involv-
ing at most three variables per constraint. In: Proceedings of the 9th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 201–210 (1998)

Inapproximability of Treewidth,

One-Shot Pebbling, and Related Layout
Problems�

Per Austrin, Toniann Pitassi, and Yu Wu

Department of Computer Science
University of Toronto

{austrin,toni,wuyu}@cs.toronto.edu

Abstract. We study the approximability of a number of graph problems:
treewidth and pathwidth of graphs, one-shot black (and black-white) peb-
bling costs of directed acyclic graphs, and a variety of different graph lay-
out problems such as minimum cut linear arrangement and interval graph
completion. We show that, assuming the recently introduced Small Set
Expansion Conjecture, all of these problems are hard to approximate within
any constant factor.

1 Introduction

One of the great accomplishments in the last twenty years in complexity theory
has been the development of ideas that has led to a deep understanding of the ap-
proximability of an astonishing number of NP-hard optimization problems. More
recently, in the last ten years, the formulation of the Unique Games Conjecture
(UGC) due to Khot [15] has inspired a remarkable body of work, clarifying
the complexity of many optimization problems, and exposing the central role of
semidefinite programming in the development of approximation algorithms.

Despite this tremendous progress, for certain expansion problems such as the
c-Balanced Separator problem, and graph layout problems such as the Minimum
Linear Arrangement (MLA) problem, their approximation status remained un-
resolved. That is, even assuming the UGC is not known to be sufficient to obtain
hardness of approximation for either of these problems. Moreover, the approx-
imability of many other graph layout problems is similarly unresolved, even
under the UGC. Intuitively this is because the hard instances for these problems
seem to require a certain global structure such as expansion. Typical reductions
for these problems are gadget reductions which preserve global properties of the
unique games instance, such as the lack of expansion. Therefore, barring rad-
ically new types of reductions that do not preserve global properties, proving
hardness for c-Balanced Separator seems to require a stronger version of UGC,
where the instance is guaranteed to have good expansion.

In [21], the Small Set Expansion (SSE) Conjecture was introduced, and it
was shown that it implies the UGC, and that the SSE Conjecture follows if

� Research supported by NSERC.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 13–24, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

14 P. Austrin, T. Pitassi, and Y. Wu

one assumes that the UGC is true for somewhat expanding graphs. In follow-
up work by Raghavendra et al. [22], it was shown that the SSE Conjecture is
in fact equivalent to the UGC on somewhat expanding graphs, and that the
SSE Conjecture implies hardness of approximation for c-Balanced Separator
and MLA. In this light, the Small Set Expansion conjecture serves as a natural
unified conjecture that yields all of the implications of UGC and also hardness
for expansion-like problems that appear to be beyond the reach of the UGC.

In this paper, we study the approximability of a host of such graph layout
problems, including: treewidth and pathwidth of graphs, one-shot black and
black-white pebbling, Minimum Cut Linear Arrangement (MCLA) and Interval
Graph Completion (IGC). We prove that all of these problems are SSE-hard
to approximate to within any constant factor. Our main contributions, giving
SSE-hardness of approximation for all of the graph layout problems mentioned
above, are described in the following subsections. For all of these problems, no
evidence of hardness of approximation was known prior to our results.

It should be noted that the status of the SSE Conjecture is very open at
this point. In particular, by the recent result of Arora et al. [3] (see also sub-
sequent work [5, 14]), it has algorithms running in subexponential time. Still,
despite this recent progress providing negative evidence against the SSE Con-
jecture, it remains open, and we think that investigating what open problems in
approximability we can show SSE-hardness for is a worthwhile venture.

1.1 Width Parameters of Graphs

The treewidth of a graph, introduced by Robertson and Seymour [24, 25], is a
fundamental parameter of a graph that measures how close a graph is to being
a tree. The concept is very important since problems of small treewidth can
usually be solved efficiently by dynamic programming. Indeed, a large body of
NP-hard problems (including all problems definable in monadic second-order
logic [11]) are solvable in polynomial time and often even linear time on graphs
of bounded treewidth. Examples of such optimization problems include finding
a maximum independent set or a Hamiltonian cycle in a graph. In machine
learning, tree decompositions play a key role in the development of efficient
algorithms for fundamental problems such as probabilistic inference, constraint
satisfaction and query optimization. (See the excellent survey [8] for motivation,
including theoretical as well as practical applications of treewidth.)

The complexity of approximating treewidth is a longstanding open problem.
Determining the exact treewidth of a graph and producing an associated op-
timal tree decomposition (see Definition 2.3) is known to be NP-hard [2]. A
central open problem is to determine whether or not there exists a polynomial
time constant factor approximation algorithm for treewidth (see e.g., [9, 13, 8]).
The current best polynomial time approximation algortihm for treewidth [13],
computes the treewidth tw(G) within a factor O(

√
log tw(G)). On the other

hand, the only hardness result to date for treewidth shows that it is NP-hard to
compute treewidth within an additive error of nε for some ε > 0 [9]. No hard-
ness of approximation is known and not even the possibility of a polynomial-time

Inapproximability of Treewidth 15

approximation scheme for treewidth has been ruled out. In many important spe-
cial classes of graphs, such as planar graphs [27] and H-minor-free graphs [13],
constant factor approximations are known, but the general case has remained
elusive.

On the positive side, there is a large body of literature developing fixed-
parameter algorithms for treewidth. In particular, when the runtime is allowed
to be exponential in the tw(G) there are constant factor approximations. Fur-
thermore, even exactly determining the treewidth is fixed-parameter tractable:
there is a linear time algorithm for computing the (exact) treewidth for graphs
of constant treewidth [7].

A related graph parameter is the so-called pathwidth, which can be viewed
as measuring how close G is to a path. The pathwidth pw(G) is always at least
tw(G), but can be much larger. The current state of affairs here is similar as
for treewidth; though the current best approximation algorithm only has an
approximation ratio of O(

√
log pw(G) log n) [13], the best hardness result is NP-

hardness of additive nε error approximation.
Using the recently proposed Small Set Expansion (SSE) Conjecture [21] dis-

cussed earlier, we show that both tw(G) and pw(G) are hard to approximate
within any constant factor. In fact, we show something stronger: it is hard to
distinguish graphs with small pathwidth from graphs with large treewidth.

Theorem 1.1. For every α > 1 there is a c > 0 such that given a graph G =
(V,E) it is SSE-hard to distinguish between the case when pw(G) ≤ c · |V | and
the case when tw(G) ≥ α · c · |V |. In particular, both treewidth and pathwidth are
SSE-hard to approximate within any constant factor.

This is the first result giving hardness of (relative) approximation for these prob-
lems, and gives evidence that no constant factor approximation algorithm exists
for either of them.

1.2 Pebbling Problems

Graph pebbling is a rich and relatively mature topic in theoretical computer
science. Pebbling is a game defined on a directed acyclic graph (DAG), where
the goal is to pebble the sink nodes of the DAG according to certain rules, using
the minimum number of pebbles. The rules for pebbling are as follows. A black
pebble can be placed on a node if all of the node’s immediate predecessors contain
pebbles, and can always be removed. A white pebble can always be placed on
a node, but can only be removed if all of the node’s immediate predecessors
contain pebbles. A pebbling strategy is a process of pebbling the sink nodes in a
graph according to the above rules. The pebbling cost of a pebbling strategy is
the maximum number of pebbles used in the strategy. The black-white pebbling
cost of a DAG is the minimum pebbling cost of all possible pebbling strategies.
The black pebbling cost is the minimum pebbling cost over all pebbling strategies
that only use black pebbles.

Pebbling games were originally devised for studying programming languages
and compiler construction, but have later found a broad range of applications

16 P. Austrin, T. Pitassi, and Y. Wu

in computational complexity theory. Pebbling is a tool for studying the rela-
tionship between computation time and space by means of a game played on
directed acyclic graphs. It was employed to model register allocation, and to
analyze the relative power of time and space as Turing machine resources. For
a comprehensive recent survey on graph pebbling, see [20].

Apart from the cost of a pebbling, another important measure is the pebbling
time, which is the number of steps (pebble placements/removals) performed.
In the context of measuring memory used by computations, this corresponds
to computation time, and hence keeping the pebbling time small is a natural
priority. The extreme case of this is what we refer to as one-shot pebbling, also
known as progressive pebbling (see e.g., [26, 18, 17]). In one-shot pebbling, we
have the restriction that each node can be pebbled only once. Note that this
restriction can cause a huge increase in the pebbling cost of the graph [19].

The one-shot pebbling problem is easier to analyze for the following reasons.
In the original pebbling problem, in order to achieve the minimum pebbling
number, the pebbling time might be required to be exponentially long, which
becomes impractical when n is large. On the other hand, the one-shot pebbling
problem is more amenable to complexity theoretic analysis as it minimizes the
space used in a computation subject to the execution time being minimum. In
particular, the decision problem for one-shot pebbling is in NP (whereas the
unrestricted pebbling problems are PSPACE-complete).

The one-shot black/black-white pebbling problems admit O(
√
logn logn) ap-

proximation ratios. We show that they are SSE-hard to approximate to within
any constant factor. For black pebbling we show that this holds for single sink
DAGs with in-degree 2, which is the canonical setting for pebbling games (it
seems plausible that the black-white hardness can be shown to hold for this case
as well, though we have not attempted to prove this).

Theorem 1.2. It is SSE-hard to approximate the one-shot black pebbling prob-
lem within any constant factor, even in DAGs with a single sink and maximum
in-degree 2.

Theorem 1.3. It is SSE-hard to approximate the one-shot black-white pebbling
problem within any constant factor.

No hardness of approximation result of any form was known for one-shot peb-
bling problems. We believe that these results can be extended to obtain hardness
for more relaxed versions of bounded time pebbling costs as well. We are cur-
rently working on this, and have some preliminary results.

1.3 The Connection: Layout Problems

The graph width and one-shot pebbling problems discussed in the previous sec-
tions may at first glance appear to be unrelated. However, both sets of problems
are instances of a general family of problems, known as graph layout problems.
In a graph layout problem (also known as an arrangement problem, or a vertex
ordering problem), the goal is to find an ordering of the vertices, optimizing some

Inapproximability of Treewidth 17

condition on the edges, such as adjacent pairs being close. Layout problems are
an important class of problems that have applications in many areas such as
VLSI circuit design.

A classic example is the Minimum Cut Linear Arrangement (MCLA) Prob-
lem. In this problem, the objective is to find a permutation π of the vertices V of
an undirected graph G = (V,E), such that the largest number of edges crossing
any point,

max
i

|{(u, v) ∈ E|π(u) ≤ i < π(v)}|, (1)

is minimized. MCLA is closely related to the Minimum Linear Arrangement
Problem (MLA), in which the max in (1) is replaced by a sum.

The MCLA problem can be approximated to within a factor O(log n
√
logn).

To the best of our knowledge, there is no hardness of approximation for MCLA
in the literature. Its cousin MLA was recently proved SSE-hard to approximate
within any constant factor [22], and we observe that the same hardness applies
to the MCLA problem.

Theorem 1.4. Assuming the SSE Conjecture, Minimum Cut Linear Arrange-
ment is hard to approximate within any constant factor.

Another example of graph layout is the Interval Graph Completion Problem
(IGC). In this problem, the objective is to find a supergraph G′ = (V,E′) of G
such that G′ is an interval graph (i.e., the intersection graph of a set of intervals
on the real line) and of minimum size. While not immediately appearing to be
a layout problem, using a simple structural characterization of interval graphs
[23] one can show that IGC can be reformulated as finding a permutation of
the vertices that minimizes the sum over the longest edges going out from each
vertex, i.e., minimizing ∑

u∈V
max

(u,v)∈E
max{π(v)− π(u), 0}. (2)

See e.g., [10]. The current best approximation algorithm for IGC achieves a ratio
of O(

√
logn log logn) [10]. It turns out that the SSE Conjecture can be used to

prove super-constant hardness for this problem as well.

Theorem 1.5. Assuming the SSE Conjecture, Interval Graph Completion is
hard to approximate within any constant factor.

There is a distinction in IGC of whether one counts the number of edges in the
final interval graph – this is the most common definition – or whether one only
counts the number of edges added to make G an interval graph (which makes
the problem harder from an approximability viewpoint). Our result holds for the
common definition and therefore applies also to the harder version.

Theorems 1.4 and 1.5 are just two examples of layout problems that we prove
hardness of approximation for. By varying the precise objective function and
also considering directed acyclic graphs, in which case the permutation π must
be a topological ordering of the graph, one can obtain a wide variety of graph

18 P. Austrin, T. Pitassi, and Y. Wu

layout problems. We consider a set of eight such problems, generated by three
natural variations (see Section 2.1 for precise details), and show super-constant
SSE-based hardness for all of them in a unified way. This set of problems includes
MLA, MCLA, and IGC, but not problems such as Bandwidth (but on the other
hand, strong NP-hardness inapproximability results for Bandwidth are already
known [12]). See Table 1 in Section 2.1 for a complete list of problems covered.

Theorem 1.6. Assuming the SSE Conjecture, all problems listed in Table 1 (see
page 20) are hard to approximate to within any constant factor.

Let us now return to the problems discussed in the previous sections. It should
not be surprising that the one-shot black pebbling problem is equivalent to a
graph layout problem: the one-shot constraint reduces the problem to determin-
ing in which order to pebble the vertices; such an ordering induces a pebbling
strategy in an obvious way. For the black-white case, it is known that the one-
shot black-white pebbling cost of D is interreducible with a layout problem on
an undirected graph G. Both of these layout problems are included in the set
of problems we show hardness for, so Theorems 1.2 and 1.3 follow immediately
from Theorem 1.6.

Turning to the width parameters, treewidth is equivalent to a graph layout
problem called elimination width. Here the objective function is somewhat more
intricate than in the set of basic layout problems we consider in Theorem 1.6, but
we are able to extend those results to hold also for elimination width. Pathwidth
is also known to be equivalent to a certain graph layout problem, and in fact is
equivalent to the layout problem which one-shot black-white pebbling reduces
to. We use these connections to prove the hardness of approximation for both
treewidth and pathwidth, thereby obtaining Theorem 1.1.

1.4 Previous Work

As the reader may have noticed, for all the problems mentioned, the best current
algorithms achieve similar poly-logarithmic approximation ratios. Given their
close relation, this is of course not surprising. Most of the algorithms are obtained
by recursively applying some algorithm for the c-balanced separator problem, An
improved algorithm for c-balanced separator will also improve the approximation
algorithms for the various layout problems. On the other hand, hardness of
approximating c-balanced separator [22] does not necessarily imply hardness of
approximating layout problems.

On the hardness side, our work builds upon the work of [22], which showed
that the SSE Conjecture implies superconstant hardness of approximation for
MLA (and for c-balanced separator). The only other hardness of relative ap-
proximation that we are aware of for these problems is a result of Ambühl et
al. [1], showing that MLA does not have a PTAS unless NP has randomized
subexponential time algorithms.

Inapproximability of Treewidth 19

1.5 Organization

The outline for the rest of the paper is as follows. In Section 2, we formally define
the layout problems studied as well as treewidth and pathwidth. Section 3 gives
a high level overview of the reductions used, and some concluding remarks and
open problems are given in Section 4. Full proofs can be found in the full version
of the paper [4].

2 Definitions and Preliminaries

2.1 Graph Layout Problems

In this section, we describe the set of graph layout problems that we consider.
A problem from the set is described by three parameters, giving rise to several
different problems. These three parameters are by no means the only interesting
graph layout problems (and some of the settings give rise to more or less unin-
teresting layout problems). However, they are sufficient to capture the problems
we are interested in except treewidth, which in principle could be incorporated
as well though we refrain from doing so in order to keep the definitions simple
(see Section 2.2 for more details).

First a word on notation. Throughout the paper, G = (V,E) denotes an
undirected graph, and D = (V,E) denotes a directed (acyclic) graph. Letting
n denote the number of vertices of the graph, we are interested in bijective
mappings π : V → [n]. We say that an edge (u, v) ∈ E crosses point i ∈ [n]
(with respect to the permutation π, which will always be clear from context), if
π(u) ≤ i < π(v).

We consider the following variations:

1. Undirected or directed acyclic: In the case of an undirected graph G,
any ordering π of the vertices is a feasible solution. In the case of a DAG D,
only the topological orderings of D are feasible solutions.

2. Counting edges or vertices: for a point i ∈ [n] of the ordering, we are
interested in the set Ei(π) of edges crossing this point. When counting edges,
we use the cardinality of Ei as our basic measure. When counting vertices,
we only count the set of vertices Vi to the left of i that are incident upon
some edge crossing i. In other words, Vi is the projection of Ei(π) to the
left-hand side vertices. Formally:

Ei(π) = {e ∈ E |π(u) ≤ i < π(v) where e = (u, v)}
Vi(π) = {u ∈ V |π(u) ≤ i < π(v) for some (u, v) ∈ E}

We refer to |Ei(π)| or |Vi(π)| (depending on whether we are counting edges
or vertices) as the cost of π at i.

3. Aggregation by sum or max: given an ordering π, we aggregate the costs
of each point i ∈ [n], by either summation or by taking the maximum cost.

Given these choices, the objective is to find a feasible ordering π that minimizes
the aggregated cost.

20 P. Austrin, T. Pitassi, and Y. Wu

Definition 2.1 (Layout value). For a graph H (either an undirected graph G
or a DAG D), a cost function C (either E or V), and an aggregation function
agg : R∗ → R (either Σ or max), we define Layout(H ;C, agg) as the minimum
aggregated cost over all feasible orderings of H. Formally:

Layout(H ;C, agg) = min
feasible π

agg
i∈[n]

|Ci(π)|.

Example 2.2. Layout(G;E,max) = minπmaxi∈[n] |Ei(π)|, where π ranges over
all orderings of V (G). This we recognize from Section 1.3 as the Minimum Cut
Linear Arrangement value of G.

Combining the different choices gives rise to a total of eight layout problems
(some more natural than others). Several of these appear in the literature under
one or more names, and some turn out to be equivalent1 to problems that at first
sight appear to be different. We summarize some of these names in Table 1 (in
some cases the standard definitions of these problems look somewhat different
than the unified definition given here, e.g., for pathwidth, one-shot pebblings,
and interval graph completion).

Table 1. Taxonomy of Layout Problems

Problem Also known as / Equivalent with

undir. edge sum Minimum/Optimal Linear Arrangement

undir. edge max Minimum Cut Linear Arrangement
CutWidth

undir. vertex sum Interval Graph Completion
SumCut

undir. vertex max Pathwidth
One-shot Black-White Pebbling
Vertex Separation

DAG edge sum Minimum Storage-Time Sequencing
Directed MLA/OLA

DAG edge max

DAG vertex sum

DAG vertex max One-shot Black Pebbling
Register Sufficiency

2.2 Treewidth and Pathwidth

Definition 2.3 (Tree decomposition, Treewidth). Let G = (V,E) be a
graph, T a tree, and let V = (Vt)t∈T be a family of vertex sets Vt ⊆ V indexed
by the vertices t of T . The pair (T,V) is called a tree decomposition of G if it
satisfies the following three conditions:

1 Here, we consider two optimization problems equivalent if there are reductions be-
tween them that change the objective values by at most an additive constant.

Inapproximability of Treewidth 21

(T1) V = ∪t∈TVt;
(T2) for every edge e ∈ E, there exists a t ∈ T such that both endpoints of e lie

in Vt;
(T3) for every vertex v ∈ V , {t ∈ T | v ∈ Vt} is a subtree of T ’.

The width of (T,V) is the number max{|Vt|− 1 | t ∈ T }, and the treewidth of G,
denoted tw(G), is the minimum width of any tree decomposition of G.

Treewidth can be characterized in terms of elimination width, which is another
example of a layout problem (see e.g., [6]). In principle this layout problem can
be formulated in the framework of Section 2.1, but the choice of cost function is
now more involved than the vertex- and edge-counting considered there.

Definition 2.4 (Path decomposition, Pathwidth). Given a graph G, we
say that (T,V) is a path decomposition of G if it is a tree decomposition of G
and T is a path. The pathwidth of G, denoted pw(G), is the minimum width of
any path decomposition of G.

As claimed earlier, pathwidth is in fact equivalent with a graph layout problem:

Theorem 2.5 ([16]). For every graph G, pw(G) = Layout(G;V,max), also
known (among many other names) as the “vertex separation” number of G.

2.3 Small Set Expansion Conjecture

In this section we define the SSE Conjecture. Let G = (V,E) be an undirected
d-regular graph. For a set S ⊆ V of vertices, we write ΦG(S) for the (normalized)
edge expansion of S,

ΦG(S) =
|E(S, V \ S)|

d|S|
The Small Set Expansion Problem with parameters η and δ, denoted SSE(η, δ),
asks if G has a small set S which does not expand or whether all small sets are
highly expanding.

Definition 2.6 (SSE(η, δ)). Given a d-regular graph G = (V,E), SSE(η, δ) is
the problem of distinguishing between the following two cases:

Yes There is an S ⊆ V with |S| = δ|V | and ΦG(S) ≤ η.
No For every S ⊆ V with |S| = δ|V | it holds that ΦG(S) ≥ 1− η.

This problem was introduced by Raghavendra and Steurer [21], who conjectured
that the problem is hard.

Conjecture 2.7 (Small Set Expansion Conjecture). For every η > 0, there
is a δ > 0 such that SSE(η, δ) is NP-hard.

As has become common for a conjecture like this (such as the Unique Games
Conjecture), we say that a problem is SSE-hard if it is as hard to solve as
the SSE problem. Formally, a decision problem P (e.g., a gap version of some
optimization problem) is SSE-hard if there is some η > 0 such that for every
δ > 0, SSE(η, δ) polynomially reduces to P .

22 P. Austrin, T. Pitassi, and Y. Wu

3 Brief Overview of Reductions

We now give a very brief overview of the reductions used to prove that the layout
problems of Table 1 are SSE-hard to approximate within any constant factor.
The details of these reductions can be found in the full version of the paper [4].

For the two undirected edge problems (i.e., MLA and MCLA), the hardness
follows immediately from the strong form of the SSE Conjecture – for the case
of MLA this was proved in [22] and the proof for MCLA is similar. This is
our starting point for the remaining problems. Unfortunately, the results do not
follow from hardness for MLA/MCLA in a black-box way; for the soundness
analyses we end up having to use the expansion properties of the original SSE
instance.

We then give a reduction from MLA/MCLA with expansion, to the four
directed problems. This reduction simply creates the bipartite graph where the
vertex set is the union of the edges and vertices of the original graph G, with
directed arcs from an edge e to the vertices incident upon e in G. The use of
direction here is crucial: it essentially ensures that both the vertex and edge
counts of any feasible ordering corresponds very closely to the number of edges
crossing the point in the induced ordering of G.

To obtain hardness for the remaining two undirected problems, we perform a
similar reduction as for the directed case, creating the bipartite graph of edge-
vertex incidences. However, since we are now creating an undirected graph, we
can no longer force the edges to be chosen before the vertices upon which they
are incident, which was a key property in the reduction for the directed case.
In order to overcome this, we duplicate each original vertex a large number of
times. This gives huge penalties to orderings which do not “essentially” obey the
desired direction of the edges, and makes the reduction work out.

The results for treewidth follows from an additional analysis of the instances
produced by the reduction for undirected vertex problems. Finally, the reduction
for directed problems, implying hardness for one-shot black pebbling, does not
produce the kind of “nice” instances promised by Theorem 1.2. We give some
additional transformation to achieve these properties in the full version as well.

Figure 1 gives a high-level overview of these reductions.

Fig. 1. Overview of Reductions. Dashed arrows indicate that the reduction is obtained
by the identity mapping, whereas solid arrows indicate a nontrivial transformation
from one problem to the other.

Inapproximability of Treewidth 23

4 Conclusion and Open Problems

We proved SSE-hardness of approximation for a variety of graph problems. Most
importantly we obtained the first inapproximability result for the treewidth
problem. Some remarks are in order. The status of the SSE conjecture is, at
this point in time, very uncertain, and our results should therefore not be taken
as absolute evidence that there is no polynomial time approximation for (e.g.)
treewidth. However, at the very least, our results do give an indication of the
difficulty involved in obtaining such an algorithm for treewidth, and builds a
connection between these two important problems. We also find it remarkable
how simple our reductions and proofs are. We leave the choice of whether to
view this as a healthy sign of strength of the SSE Conjecture, or whether to
view it as an indication that the conjecture is too strong, to the reader.

There are many important open questions and natural avenues for further
work, including:

1. It seems plausible that these results can be extended to a wider range of
graph layout problems. For instance, our two choices of aggregators max
and Σ can be viewed as taking �∞ and �1 norms, and it seems likely that
the results would apply for any �p norm (though we are not aware of any
previous literature studying such variants).

2. It would be nice to obtain hardness of approximation result for our problems
based on a weaker hardness assumption such as UGC. It is conjectured in
[22] that the SSE conjecture is equivalent to UGC. Alternatively, it would
be nice to show that hardness of some of our problems imply hardness for
the SSE Problem.

3. For pebbling, it would be very interesting to obtain results for the unre-
stricted pebbling problems (for which finding the exact pebbling cost is even
PSPACE-hard). As far as we are aware, nothing is known for these problems,
not even, say, whether one can obtain a non-trivial approximation in NP. As
mentioned in the introduction, we are currently working on extending our
one-shot pebbling results to bounded time pebblings. We have some prelim-
inary progress there and are hopeful that we can relax the pebbling results
to a much larger class of pebblings.

References

[1] Ambuhl, C., Mastrolilli, M., Svensson, O.: Inapproximability Results for Spars-
est Cut, Optimal Linear Arrangement, and Precedence Constrained Scheduling.
In: Proceedings of the IEEE Symposium on Foundations of Computer Science,
pp. 329–337 (2007)

[2] Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete Methods 8, 277–284 (1987)

[3] Arora, S., Barak, B., Steurer, D.: Subexponential Algorithms for Unique Games
and Related Problems. In: FOCS, pp. 563–572 (2010)

[4] Austrin, P., Pitassi, T., Wu, Y.: Inapproximability of treewidth, one-shot pebbling,
and related layout problems. CoRR, abs/1109.4910 (2011)

24 P. Austrin, T. Pitassi, and Y. Wu

[5] Barak, B., Raghavendra, P., Steurer, D.: Rounding Semidefinite Programming
Hierarchies via Global Correlation. In: FOCS, pp. 472–481 (2011)

[6] Bodlaender, H.L.: Treewidth: Structure and Algorithms. In: Prencipe, G., Zaks,
S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 11–25. Springer, Heidelberg (2007)

[7] Bodlaender, H.L.: A Linear-Time Algorithm for Finding Tree-Decompositions of
Small Treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

[8] Bodlaender, H.L.: Discovering Treewidth. In: Vojtáš, P., Bieliková, M., Charron-
Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer,
Heidelberg (2005)

[9] Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algo-
rithms 18(2), 238–255 (1995)

[10] Charikar, M., Hajiaghayi, M., Karloff, H., Rao, S.: l22 spreading metrics for vertex
ordering problems. Algorithmica 56, 577–604 (2010)

[11] Courcelle, B.: Graph Rewriting: An Algebraic and Logic Approach. In: Handbook
of Theoretical Computer Science, Volume B: Formal Models and Sematics (B),
pp. 193–242 (1990)

[12] Dubey, C.K., Feige, U., Unger, W.: Hardness results for approximating the band-
width. J. Comput. Syst. Sci. 77(1), 62–90 (2011)

[13] Feige, U., Hajiaghayi, M., Lee, J.R.: Improved approximation algorithms for
minimum-weight vertex separators. In: Proceedings of the Thirty-Seventh Annual
ACM Symposium on Theory of Computing, pp. 563–572 (2005)

[14] Guruswami, V., Sinop, A.K.: Lasserre Hierarchy, Higher Eigenvalues, and Approx-
imation Schemes for Graph Partitioning and Quadratic Integer Programming with
PSD Objectives. In: FOCS, pp. 482–491 (2011)

[15] Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the
ACM Symposium on Theory of Computing, STOC 2002, pp. 767–775 (2002)

[16] Kinnersley, N.G.: The vertex separation number of a graph equals its path-width.
Information Processing Letters 42(6), 345–350 (1992)

[17] Kirousis, L.M., Papadimitriou, C.H.: Searching and pebbling. Theor. Comput.
Sci. 47, 205–218 (1986)

[18] Lengauer, T.: Black-white pebbles and graph separation. Acta Informatica 16,
465–475 (1981), doi:10.1007/BF00264496

[19] Lengauer, T., Tarjan, R.E.: Asymptotically tight bounds on time-space trade-offs
in a pebble game. J. ACM 29, 1087–1130 (1982)

[20] Nordström, J.: New wine into old wineskins: A survey of some pebbling classics
with supplemental results. Draft manuscript (November 2010)

[21] Raghavendra, P., Steurer, D.: Graph expansion and the unique games conjec-
ture. In: Proceedings of the 42nd ACM Symposium on Theory of Computing,
pp. 755–764. ACM, New York (2010)

[22] Raghavendra, P., Steurer, D., Tulsiani, M.: Reductions Between Expansion Prob-
lems. To appear in CCC (2012)

[23] Ramalingam, G., Rangan, C.P.: A unified approach to domination problems on
interval graphs. Inf. Process. Lett. 27, 271–274 (1988)

[24] Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory, Ser. B 36(1), 49–64 (1984)

[25] Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-
width. Journal of Algorithms 7(3), 309–322 (1986)

[26] Sethi, R.: Complete register allocation problems. In: Proceedings of the Fifth An-
nual ACM Symposium on Theory of Computing, STOC 1973, pp. 182–195 (1973)

[27] Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),
217–241 (1994)

Additive Approximation

for Near-Perfect Phylogeny Construction�

Pranjal Awasthi, Avrim Blum, Jamie Morgenstern, and Or Sheffet

Carnegie Mellon University, Pittsburgh,
5000 Forbes Ave., Pittsburgh PA 15213, USA

{pawasthi,avrim,jamiemmt,osheffet}@cs.cmu.edu

Abstract. We study the problem of constructing phylogenetic trees for
a given set of species. The problem is formulated as that of finding a
minimum Steiner tree on n points over the Boolean hypercube of dimen-
sion d. It is known that an optimal tree can be found in linear time [1]
if the given dataset has a perfect phylogeny, i.e. cost of the optimal phy-
logeny is exactly d. Moreover, if the data has a near-perfect phylogeny,
i.e. the cost of the optimal Steiner tree is d + q, it is known [2] that an
exact solution can be found in running time which is polynomial in the
number of species and d, yet exponential in q. In this work, we give a
polynomial-time algorithm (in both d and q) that finds a phylogenetic
tree of cost d+O(q2). This provides the best guarantees known—namely,
a (1 + o(1))-approximation—for the case log(d) � q � √

d, broadening
the range of settings for which near-optimal solutions can be efficiently
found. We also discuss the motivation and reasoning for studying such
additive approximations.

1 Introduction

Phylogenetics, a subfield of computational biology, aims to construct simple and
accurate descriptions of evolutionary history. These descriptions are represented
as evolutionary trees for a given set of species, each of which is represented
by some set of features ([3, 4]). A typical choice for these features are single
nucleotide polymorphisms (SNPs), binary indicator variables for common muta-
tions found in DNA[5, 6]; see, for example, [2, 1, 7–10]. This challenging problem
has attracted much attention in recent years, with progress in studying various
computational formulations of this problem ([3, 11, 2, 1, 12, 7]). The problem is
often posed as that of constructing the most parsimonious tree induced by the
set of species.

Formally, a phylogeny or a phylogenetic tree for a set C of n species, each
represented by a string (called taxa) of length d over a finite alphabet Σ, is an
unrooted tree T = (V,E) such that C ⊆ V ⊆ Σd. Given a distance metric μ over

� This work was supported in part by the National Science Foundation under grant
CCF-1116892, by an NSF Graduate Fellowship, and by the MSR-CMU Center for
Computational Thinking.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 25–36, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

26 P. Awasthi et al.

Σd, we define the cost of T as
∑

(u,v)∈E μ(u, v). The tree of maximum parsimony
for a dataset is the tree which minimizes this cost with respect to the Hamming
metric; i.e., it is the optimum Steiner tree for the set C under this metric.

The Steiner tree problem is known to be NP-hard in general [13], and re-
mains NP-hard even in the case of a binary alphabet with the metric induced
by the Hamming distance [14]. Extensive recent work, both experimental and
theoretical, has focused on the binary character set with the Hamming metric
([3, 2, 1, 12, 7, 4, 15, 16]). This version of the phylogeny problem will also be
the focus of this paper.

A phylogeny is called perfect if each coordinate i ∈ [d] flips exactly once in the
tree (representing a single mutation of i amongst the set of species)1. If a dataset
admits a perfect phylogeny, an optimal tree can be constructed in polynomial
time [17] (even linear time, in the case where the alphabet is binary [3]). In
this work, we investigate near perfect phylogenies – instances whose optimal
phylogenetic tree has cost d + q, where q � d. Near perfect phylogenies have
been studied in theoretical ([11, 2, 12, 16]) and experimental settings ([15]). The
work of [11, 2, 12, 16] has given a series of randomized algorithms which find
the optimal phylogeny in running time polynomial in n and d but exponential
in q. Clearly, when q = ω(log d), these algorithms are not tractable.

An alternative approach for finding a phylogenetic tree of low cost is to use a
generic Steiner tree approximation algorithm. The best current such algorithm
yields a tree of cost at most 1.39(d+q) [18] (we comment that the exponential size
of the explicit hypercube with respect to its small representation size requires
one implement such an algorithm using techniques devised especially for the
hypercube, e.g. Alon et al. [7].) However, notice that for moderate q (e.g., for
q = polylog(d)), the excess of this tree—meaning the difference between its cost
and d—may be extremely large compared to the excess q of the optimal tree. In
such cases, one would much prefer an algorithm whose excess could be written
as a function of q only.

In this work, we present a randomized poly(n, d, q)-time algorithm that finds
a phylogenetic tree of cost d+O(q2).

Theorem 1. Given a set C ⊆ {0, 1}d of n terminals, such that the optimal phy-
logeny of C has cost d+ q, there exists a randomized poly(n, d, q)-time algorithm
that finds a phylogenetic tree of cost d+O(q2) w.p. ≥ 1/2.

Note that Theorem 1 provides a substantial improvement over prior work for
the case that log d � q �

√
d. In this range, the exact algorithms are no

longer tractable, and the multiplicative approximations yield significantly worse
bounds. Alternatively, viewed as a multiplicative guarantee, in this range our tree
is within a 1 + o(1) factor of optimal. To the best of our knowledge, this is the
first work to give an additive poly-time approximation to either the phylogeny
problem or any (non-trivial) setting the Steiner tree problem. One immediate

1 Without loss of generality, we may assume each coordinate flips at least once, since
all coordinates on which all species agree may be discarded up front.

Additive Approximation for Near-Perfect Phylogeny Construction 27

question, which remains open, is whether our results can be improved to d+o(q2)
or perhaps even to d+O(q).

The rest of the paper is organized as follows. After surveying related work in
Section 1.1, we detail notation and preliminaries in Section 2. The presentation
of our algorithm is partitioned into two parts. In Section 3, we present the
algorithm for the case where no pair of coordinates is identical over all terminals
(formal definition there). In Section 4, we alter the algorithm for the simple case,
in a nontrivial way, so that the modified algorithm finds a low-cost phylogeny
for any dataset. We conclude in Section 5 with a discussion, motivating the
problem of near-perfect phylogeny tree from a different perspective, and present
open problems for future research.

1.1 Related Work

As mentioned in the introduction, the problem of constructing an optimal phy-
logeny is NP-complete even when restricted to binary alphabets [14]. Schwartz
et al. [11] give an algorithm based on an Integer Linear Programming (ILP)
formulation to solve the multi-state problem optimally, and show experimen-
tally the algorithm is efficient on small instances. Perfect phylogenies (datasets
which admit a tree in which any coordinate changes exactly once) have optimal
parsimony trees which can be constructed in linear time in the binary case [1]
and in polynomial time for a fixed alphabet [12]. Unfortunately, finding the per-
fect phylogeny for arbitrary alphabets is NP-hard [19]. Recent work [2] gives an
algorithm to construct optimal phylogenetic trees for binary, near-perfect phy-
logenies (where only a small number of coordinates mutate more than once in
the optimal tree). However, the running time of the algorithm presented in their
work [2] is exponential in the number of additional mutations.

There has also been a lot of work on computing multiplicative approximations
to the Steiner tree problem. A Minimum Spanning Tree (MST) over the set of
terminals achieves an approximation ratio of 2 and a long line of work has led to
the current best bound of 1.39 [20–24, 8, 25, 9, 10, 18]. The more recent of these
papers use a result due to Borchers and Du [26] showing that an optimal Steiner
tree can be approximated to arbitrary precision using k-restricted Steiner trees.

Some of these approximations to the Steiner tree problem are not immediately
extendable to the problem of constructing phylogenetic trees. This is because the
size of the vertex set for the phylogeny problem is exponential in d (there are 2d

vertices in the hypercube). If an algorithm works on an explicit representation
of the graph G defined by the hypercube, then it does not solve the phylogeny
problem in polynomial time. However, the line of work started by Robins and
Zelikovsky [9, 10] used the notion of k-restricted Steiner trees, which can be effi-
ciently implemented on the hypercube. In particular, Alon et al. [7] showed that
in finding the optimal k-restricted component for a given set of k terminals, it
is sufficient to only consider topologies with the given k terminals at the leaves.
Using this, they were able to extend that work to achieve a 1.55 approxima-
tion ratio for the maximum parsimony problem, and a 16/9 approximation for
maximum likelihood. Byrka et al. [18] considered a new LP relaxation to the

28 P. Awasthi et al.

k-restricted Steiner tree problem and achieved an approximation ratio of 1.39,
which can be combined with the topological argument from Alon et al. [7] to
achieve the same ratio for phylogenies.

2 Notation and Preliminaries

Our dataset C ⊆ {0, 1}d consists of n terminals over d binary coordinates. A
Steiner tree (or phylogeny) over C consists of a tree T on the hypercube that
spans C (plus possibly additional Steiner nodes), where we label each edge e in
T with the index i ∈ {1, . . . , d} of the coordinate flipped on edge e. The cost
of such a Steiner tree is the number of edges in the tree. Given a collection of
datasets P = {P1, P2, . . . , Pk} ⊆ C we define the Steiner forest problem as the
problem of finding a minimal Steiner tree on every P ∈ P separately. We refer to
such collection as a partition from now on, even though it may contain a subset
of the original terminal set C.

In this work, we consider instances C whose minimum Steiner tree has cost
d+q, and think of q = o(

√
d) (otherwise, any off-the-shelf constant approximation

algorithm for the Steiner problem gives a solution of cost ≤ d+O(q2)). We fix T
to be some optimal Steiner tree. By optimality, all leaves in T must be terminals,
whereas the internal nodes of T may be either terminals or non-terminals (non-
terminals are called Steiner nodes). We define a coordinate i to be good if exactly
one edge in T is labeled i, and bad if two or more edges in T are labeled with i.
We may assume all d coordinates appear in the tree, otherwise, some coordinates
in C are fixed and so the dimensionality of the problem is less than d. Therefore,
at most q coordinates are bad (each bad coordinate flips at least twice and thus
adds a cost of at least 2 to the tree).

Given a coordinate i of a set of terminals P , we define an i-cut as the partition
P0 = {x ∈ P : xi = 0} and P1 = {x ∈ P : xi = 1}. We call two coordinates
i �= j interchangeable if they define the same cut. We now present the following
basic facts which are easy to verify (see [2] for proofs).

Fact 1

1. Let S be a set of interchangeable coordinates. Then all coordinates in S
appear together in the optimal tree T , adjacent to one another. That is, in T
there are paths s.t. for each path: all of its edges are labeled by some i ∈ S,
all coordinates in S have an edge on the path, and all internal nodes on the
paths aren’t terminals and have degree 2. On these paths, any reordering the
S-labeled edges yields an equivalent optimal tree.

2. For any two good coordinates, i �= j, one side of the i-cut is contained within
one side of the j-cut. Equivalently, there exist values bj such that all termi-
nals on one side of the i-cut have their jth coordinate set to bj.

3. Fix any good coordinate i and let j be a good coordinate such that all ter-
minals on one side of the i-cut have their j coordinate set to bj. Then both
endpoints of the edge labeled i have their jth coordinate set to bj.

4. A good coordinate i and a bad coordinate i′ cannot define the same cut.

Additive Approximation for Near-Perfect Phylogeny Construction 29

It immediately follows from Fact 1 that for a given good coordinate i one can
efficiently reconstruct the endpoints of the edge on which imutates, except for at
most q coordinates. This leads us to the following definition. Given i, we denote
Di as the set of all coordinates that are fixed to a constant value vi on at least one
side of the i-cut (different coordinates may be fixed on different sides), and we
denote bi as the vector of the corresponding values, i.e. vi’s, of the coordinates in
Di. The pair (Di,bi) is called the pattern of coordinate i. That set of terminals
that match the pattern of i is the set Pbi = {x ∈ P : ∀j ∈ Di, xj = bij}.

3 A Simple Case: Each Coordinate Determines a Distinct
Cut

To show the main ideas behind our algorithm, we first discuss a special case
in which no two coordinates i and j define the same cut on the terminal set
C. Algorithms for constructing phylogenetic trees often make this assumption
as they preprocess C by contracting any pair of interchangeable coordinates.
However, in our case such contractions are problematic, as we discuss in the
next section. So in Section 4, when we deal with the general case, we deal with
interchangeable coordinates in a non-trivial fashion.

3.1 Basic Building Blocks

We now turn to the description of our algorithm. On a high level it is motivated
by the notion of maintaining a proper partition of the terminals.

Definition 1. Call a partition P proper if the forest produced by restricting the
optimal tree T to the components P ∈ P is composed of edge disjoint trees.

Equivalently, the path in T between two nodes x and y in the same component
P of P does not pass through any node x′ in any different component P ′ of
P . Clearly, our initial partition, P = {C}, is proper. Our goal is to maintain a
proper partition of the current terminals while decreasing the dimensionality of
the problem in each step. This is implemented by the two subroutines we now
detail.

Pluck a Leaf and Paste a Leaf. The first subroutine works by building the
optimal phylogeny bottom-up, finding a good coordinate i adjacent to a leaf
terminal t in the tree, and replacing t with its parent (t with i flipped) in the set
of terminals. Observe that if i is a good coordinate, then this removes the only
occurrence of i, leaving all terminals in our new dataset with a fixed i coordinate,
thus reducing the dimensionality of the problem by 1.

The matching subroutine to Pluck-a-leaf is Paste-a-leaf: if Pluck-a-leaf
succeeds and returns some (x,P ′), and we have found a Steiner forest for the ter-
minals in P ′. Then Paste-a-leafmerely connects x with x̄i by an edge labeled
i, then returns the resulting forest. (We omit formal description.)

30 P. Awasthi et al.

Pluck-a-leaf

input: A partition P of current terminals.
if there exists P ∈ P and x ∈ P s.t. some coordinate i is non-constant on P , but only
the terminal x has xi = 0 (or xi = 1), then:

– Set P ′ = P \ {x} ∪ {x̄i}, where x̄i is identical to x except for flipping i.
– Return x and P ′ = P \ {P} ∪ {P ′}.

else fail.

Lemma 1. If P is a proper partition and Pluck-a-leaf succeeds, then P ′ is a
proper partition.

Proof (Sketch). Let T [P] be the subtree in which x resides. We claim that x is
a leaf in T [P], attached by an edge labeled i to the rest of the terminals. If this
indeed is the case, then removing i means removing a leaf-adjacent edge from
T [P] which clearly leaves all components in the forest edge-disjoint.

Wlog x lies on the i = 0 side of the cut. If x isn’t a leaf, then at least two
disjoint paths connect x to two other terminals. Since P is proper, both these
terminals are in P . This means T [P] crosses the i-cut twice, but then we can
replace T [P] with an even less costly tree in which i is flipped once, by projecting
the path between the two occurrences of i onto the i = 1 side. ��

Observe that lemma 1 holds only when the underlying alphabet of the problem
is binary. In particular, for a non-binary alphabet, such x can be a non-leaf.

Split and Merge. When Pluck-a-leaf can no longer find leaves to pluck,
we switch to the second subroutine, one that works by splitting the set of termi-
nals into two disjoint sets, based on the value of the i-th coordinate. We would
like to split our set of terminals according to the i-cut, and recurse on each side
separately. But, in order to properly reconnect the two subproblems, we need
to introduce the two endpoints of the i-labeled edge to their respective sides of
the i-cut. Our Split subroutine deals with one particular case in which these
endpoints are easily identified.

Split(i)
input: A partition P of current terminals, a coordinate i that is not constant on every
component of P .

– Find a component P on which i isn’t constant. Denote the i-cut of P as (P0, P1).
– Find Pbi , the set of terminals that match the pattern of i.
– if exists some x which is the unique terminal that matches the pattern of i in one

side of the cut (that is, if for some x we have Pbi ∩ P0 = {x} or Pbi ∩ P1 = {x})
• Flip the i-th coordinate of x, and let x̄i be the resulting node.
• Add x to its side of the i-cut, add x̄i to the other side of the cut.
• Return x, x̄i and P ′ = P \ {P} ∪ {P0, P1}.

else fail.

Additive Approximation for Near-Perfect Phylogeny Construction 31

The matching subroutine to Split is Merge: Assume Split succeeds and
returns some (x, x̄i,P ′), and assume we have found a Steiner forest for the ter-
minals in P ′. Then Merge merely connects x with x̄i by an edge labeled i, then
returns the resulting forest. (Again, formal description is omitted.)

Lemma 2. Assume P is a proper partition. Assume Split is called on a good
coordinate i s.t. the edge labeled i in T has at least one endpoint which is a
terminal. Then the returned partition P ′ is proper.

Proof (Sketch). Since P is proper, then the induced tree T [P] is the only tree in
the forest that contains the i-labeled edge. The lemma then follows from showing
that x and x̄i are the two endpoints of i-labeled edge in T [P]. This follows from
the observation that the endpoints of the i-labeled edge must both match the
pattern of i. Let u be an endpoint and wlog u belongs to the (i = 0)-side of the
cut. On all coordinates that are fixed on the (i = 0)-side, u obviously has the
right values. All coordinates that are fixed on the (i = 1)-side can only flip on
the (i = 0)-side, but only after traversing u, so u has them set to the value fixed
on the (i = 1)-side. ��

3.2 The Algorithm

We can now introduce our algorithm.

input: A partition P of current terminals. Initially, P is the singleton set P = {C}.
1. if Pluck-a-leaf succeeds and returns (x,P ′)

– recurse on P ’, then Paste-a-leaf x back and return the resulting forest.
2. else-if the number of non-constant coordinates on P is at least 40q2

– Pick a non-constant coordinate i u.a.r and invoke Split(i) .
– if Split succeeds: recurse on P ′, then Merge x and x̄i, and return the

resulting forest; otherwise fail.
3. else

– For every P ∈ P find its MST, T (P), and return the forest {T (P)}.

Fig. 1. Algorithm for the simple case

Theorem 2. With probability ≥ 1/2, the algorithm in Figure 1 returns a tree
whose cost is at most d+O(q2).

In order to prove Theorem 2, fix an optimal phylogeny T over our initial set
of terminals, and for any partition P our algorithm creates, denote T [P] as the
forest induced by T on this partition. The proof of the theorem relies on the
following lemma.

Lemma 3. If P is a proper partition, then with probability ≥ 1− (8q)−1, Split
is called on a good coordinate and succeeds. Furthermore, Split is executed at
most 4q times.

32 P. Awasthi et al.

Proof (of Theorem 2). The proof follows from lemmas 1 and 3. Since we start
with a proper partition, then with probability at least 1− (4q)(8q)−1 ≥ 1/2 we
keep recursing on proper partitions, until reaching the base of the recursion. By
the time the algorithm reaches the base of the recursion, the dimensionality of
the problem was reduced to d′ ≤ 40q2, so the cost of the optimal Steiner forest
is at most d′ + q. As MSTs give a 2-approximation to the optimal Steiner tree
problem, our forest is of cost ≤ 2(d′ + q). Then, the algorithm reconnects the
forest, adding the coordinates (edges) the algorithm as removed in the first two
steps of the algorithm. Since the algorithm removed at most d − d′ edges, the
tree it outputs is of overall cost at most d− d′ + 2(d′ + q) = d+ 40q2 + 2q. ��

Proof (of Lemma 3). Let P be the partition in the first iteration of the algorithm
for which Split was invoked, and assume P is proper. Thus, the forest T [P]
contains disjoint components. We call any vertex in this forest of degree ≥ 3
an internal split. Suppose we replace each internal split v with deg(v) many
new vertices, each adjacent to one edge. This breaks the forest into a collections
of paths we call the path decomposition of the tree. In addition, remove from
this path decomposition all edges that are labeled with a bad coordinate to
obtain the good path decomposition. Denote the number of paths in the good
path decomposition as t.

First, we claim that any call to Split (on P or any partition succeeding P),
on a coordinate i which lies on a path of length ≥ 2 in the abovementioned
decomposition, does not fail.

Assume Split was called on i and denote its adjacent coordinate on the path
as j (choose one arbitrarily if i has two adjacent coordinates on its path), and
both are non-constant on P ∈ P . Observe that our decomposition leaves only
good coordinates, so both i and j are good. Therefore, j is fixed on one side of
the i-cut and i is fixed on one side of the j-cut. It follows that there exist binary
values bi, bj s.t. for every x ∈ P , if xi = bi then xj = bj; and if xj = 1− bj then
xi = 1 − bi. In fact, the only node on the entire tree for which xi = 1 − bi and
xj = bj is the node connecting the i-edge and the j-edge. Recall that we assume
for the special case i and j do not define the same cut. It follows that the node
between i and j has to be a terminal, so now we can use Lemma 2 and deduce
Split succeeds.

So, Split can either fail or return a non-proper partition only if it was invoked
either on a bad coordinate or on a good coordinate that lies on a path of length
1 in our path decomposition. There are at most q bad coordinates and at most
t paths of length 1, so each call to Split fails w.p. ≤ q+t

40q2 . Furthermore, calling
Split on a good edge i lying on a path of length at least 2 results in both
i’s endpoints as new leaves in their respective sides of the i-cut. As a result,
Pluck-a-leaf then completely unravels the path on which i lies. Therefore, in
a successful run of the algorithm, Split is called no more than t times. All that
remains is to bound t.
t is the number of paths on the path decomposition of P , a partition for which

Pluck-a-leaf failed to execute. Observe that if the forest T [P] had even a single
leaf connected to the rest of its tree by a good coordinate, then Pluck-a-leaf

Additive Approximation for Near-Perfect Phylogeny Construction 33

would continue – such a leaf, by definition, is the only terminal on which the
good coordinate takes a certain value. It follows that l, the number of leaves in
T [P] is bounded by 2q, the number of bad edges in T . Removing the internal
splits then leaves us with at most 2l paths; removing the bad coordinates’ edges
adds at most 2q − l new paths (for every bad coordinate k adjacent to a leaf,
removing k does not create a new path). All in all, t ≤ 2l+2q−l ≤ 4q. Therefore,
each call to Split has success probability ≥ 1 − 4q+q

40q2 = 1 − 1
8q , and Split is

called at most 4q times. ��

4 The General Case: Interchangeable Coordinates May
Exist

Before describing the general case, let us briefly discuss why the conventional
way of initially contracting all interchangeable coordinates and applying the
algorithm from the Section 3 might result in a tree of cost d+ω(q2). The analysis
of the first two steps of the algorithm still holds. The problem lies in the base
of the recursion, where the algorithm runs the MST-based 2-approximation.
Indeed, the MST algorithm is invoked on < 40q2 contracted coordinates, but
they correspond to d̃ original coordinates, and it is possible that d̃ � q2. So by
using any constant approximation on this entire forest, we may end with a tree
of cost d+ 2d̃ which isn’t d+O(q2).

Our revised algorithm does not contract edges initially. Instead, let us define a
simple coordinate as one for which Split(i) succeeds. So, the first alteration we
make to the algorithm is to call Split as long as the set of simple coordinates
is sufficiently big. However, most alterations lie in the base of the recursion.
Below we detail the algorithm and analyze its correctness. In the algorithm’s
description, for any coordinate i we denote the set of coordinates interchangeable
with i by Wi, and their number as w(i) = |W (i)|.

Theorem 3. With probability ≥ 1/2, the algorithm in Figure 2 returns a tree
of cost d+O(q2).

The proof of Theorem 3 follows the same outline as the proof of Theorem 2.
Observe that Lemmas 1 and 3 still hold2. Therefore, with probability ≥ 1/2, the
algorithm enters the base of the recursion with a proper partition. Thus, by the
following lemma, the algorithm outputs a tree of cost d+O(q2).

Lemma 4. Assume that the base of the recursion (i.e., Step 3) is called on a
proper partition P of the terminals over d′ non-constant coordinates. Then the
algorithm returns a forest of cost d′ +O(q2).

The full proof of Lemma 4 is deferred to the full version of the paper. However,
let us sketch the main outline of the proof. Recall the good path decomposition
we used in the proof of Lemma 3. We partition its paths in the following way.

2 Clearly, Split cannot abort now, but it might be the case that the algorithm picks
i which is a bad coordinate. This can happen with probability ≤ q/8q2 = 1/8q.

34 P. Awasthi et al.

input: A partition P of current terminals. Initially, P is the singleton set P = {C}.
1. if Pluck-a-leaf succeeds and returns (x,P ′)

– recurse on P ’, then Paste-a-leaf x and return the resulting forest.
2. else-if the number of simple coordinates on P is at least 8q2

– Pick a simple coordinate i u.a.r and invoke Split(i) .
– if Split succeeds: recurse on P ′, then Merge x and x̄i, and return the

resulting forest; otherwise fail.
3. else

– Contract all Wi into ī
– For every ī with w(i) > q and the (unique) component P in which the i-cut

resides,
• Apply pattern matching to (P, i). Let (Di,bi) be the pattern of i.
• if i is simple, split P into P0 ∪ {xi} and P1 ∪ {xi}.
• else

∗ Define the node y(i) as the node where yi = 0, every coordinate
j ∈ Di is set to bij , and every coordinate j /∈ Di is set to 0.

∗ Define y(i) to be y(i) with coordinate i flipped.
∗ P = P \ {P} ∪ {P0 ∪ {y(i)}} ∪ {P1 ∪ {y(i)}}.

– For every P ∈ P find its MST T (P), and retrieve the forest {T (P)}.
– For every i with w(i) > q:

if i was simple, add an edge labeled i between xi and xi

else add an edge labeled i between y(i) and y(i).
– Expand all contracted coordinates to their original set of coordinates by

replacing i with a path of length w(i). Return the resulting forest.

Fig. 2. Algorithm for the general case

– Paths with at least one terminal on them. On such paths, because all inter-
changeable coordinates may appear in T in any order, then all coordinates
on such paths are simple. So, when we enter the base of the recursion, there
are at most 8q2 edges on such paths.

– Paths with no terminal on them, with length > q. Such paths are composed
of interchangeable coordinates, and since there are more than q of those, we
deduce all of them are good. Therefore, the endpoints of such paths are fixed
up to at most q (bad) coordinates. We therefore contract these edges, split
on them, and introduce into each side of the cut an arbitrary endpoint, by
replacing non-fixed coordinates with zeros. So on each side of the cut the
cost of the subtree increases by at most q, and since there are at most 4q such
paths, our overall cost for introducing these artificial endpoints is O(q2).

– Paths with no terminal on them, with length ≤ q. Such paths are composed
of interchangeable coordinates, but we do not contract them. Since there are
at most 4q ·q edges on such paths, we run the MST approximation, and incur
a cost of O(q2) for edges on such paths.

Runtime Analysis: Pluck-a-leaf can be implemented in time linear in the
size of the dataset, i.e. O(nd). Counting the number of simple coordinates takes
time O(nd2), and Split takes time O(nd). A naive implementation of the base

Additive Approximation for Near-Perfect Phylogeny Construction 35

case of the recursion takes time O(nd2) for contracting coordinates, and the rest
can be implemented in time O(nd). Hence the time to process each node in the
recursion tree is at most O(nd2). Since there are at most O(q) nodes in the
recursion tree, the total runtime is O(qnd2).

5 Discussion and Open Problems

This paper presents a randomized approximation algorithm for constructing
near-perfect phylogenies. In order to achieve this, we obtain a Steiner tree of
low additive error. However, from the biological perspective, the goal is to find
a good evolutionary tree, one that will give correct answers to questions like
“what is the common ancestor of the following species?” or “which of the two
gene-mutations happened earlier?”. Such questions, we hope, can be answered
by finding the most-parsimonious phylogenetic tree over the given taxa. Hence,
it is also desirable that any low-cost tree which we output also captures a lot of
the structure of the optimal tree.

We would like to point out that our algorithm in fact has this valuable property.
Notice that until the base case of the recursion, both Pluck-a-leaf and Split

subroutines construct the optimal tree, and correctly identify the endpoints of the
edges they remove. Even when the algorithm reaches the base case of the recursion
– we can declare every edge of weight> q to be good, and we know its endpoints up
to at most q coordinates. In total, our algorithm gives the structure of the optimal
tree up to O(q2) edges, and those edges can be marked as “unsure”.

Several open problems remain for this work. The most straight-forward one
is whether one can devise an algorithm outputting a phylogenetic tree of cost
d + O(q)? Alternatively, one may try to design exact algorithms that are effi-
cient even for q = ω(log d). We suspect that even the case of q = O((log d)2)
poses quite a challenge. Finally, extending our results to non-binary alphabets
is intriguing. Note however that even the case of perfect phylogenies is NP-hard,
and tractable only for moderately sized alphabets. Furthermore, our bottom-up
approach completely breaks down for non-binary alphabets (see comment past
Lemma 1), so devising an additive-approximation algorithm for the phylogeny
problem with non-binary alphabets requires a different approach altogether.

References

1. Ding, Z., Filkov, V., Gusfield, D.: A Linear-Time Algorithm for the Perfect
Phylogeny Haplotyping (PPH) Problem. In: Miyano, S., Mesirov, J., Kasif, S.,
Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI),
vol. 3500, pp. 585–600. Springer, Heidelberg (2005)

2. Blelloch, G.E., Dhamdhere, K., Halperin, E., Ravi, R., Schwartz, R., Sridhar, S.:
Fixed Parameter Tractability of Binary Near-Perfect Phylogenetic Tree Recon-
struction. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4051, pp. 667–678. Springer, Heidelberg (2006)

3. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press (1997)

4. Semple, C., Steel, M.: Phylogenetics. Oxford lecture series in mathematics and its
applications. Oxford University Press (2003)

36 P. Awasthi et al.

5. Hinds, D.A., Stuve, L.L., Nilsen, G.B., Halperin, E., Eskin, E., Ballinger, D.G.,
Frazer, K.A., Cox, D.R.: Whole-genome patterns of common dna variation in three
human populations. Science 307(5712), 1072–1079 (2005)

6. The international hapmap project. Nature 426(6968), 789–796 (2003)
7. Alon, N., Chor, B., Pardi, F., Rapoport, A.: Approximate maximum parsimony and

ancestral maximum likelihood. IEEE/ACM Trans. Comput. Biol. Bioinformatics 7,
183–187 (2010)

8. Robins, G., Zelikovsky, A.: Improved steiner tree approximation in graphs. In:
SODA, pp. 770–779. Society for Industrial and Applied Mathematics (2000)

9. Robins, G., Zelikovsky, A.: Improved steiner tree approximation in graphs (2000)
10. Robins, G., Zelikovsky, A.: Tighter bounds for graph steiner tree approximation.

SIAM Journal on Discrete Mathematics 19, 122–134 (2005)
11. Misra, N., Blelloch, G., Ravi, R., Schwartz, R.: Generalized Buneman Pruning

for Inferring the Most Parsimonious Multi-state Phylogeny. In: Berger, B. (ed.)
RECOMB 2010. LNCS, vol. 6044, pp. 369–383. Springer, Heidelberg (2010)

12. Fernández-Baca, D., Lagergren, J.: A polynomial-time algorithm for near-perfect
phylogeny. SIAM J. Comput. 32, 1115–1127 (2003)

13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103.
Plenum, New York (1972)

14. Foulds, L.R., Graham, R.L.: The Steiner problem in phylogeny is NP-complete.
Adv. Appl. Math. 3 (1982)

15. Sridhar, S., Dhamdhere, K., Blelloch, G., Halperin, E., Ravi, R., Schwartz, R.:
Algorithms for efficient near-perfect phylogenetic tree reconstruction in theory and
practice. IEEE/ACM Trans. Comput. Biol. Bioinformatics 4, 561–571 (2007)

16. Damaschke, P.: Parameterized enumeration, transversals, and imperfect phylogeny
reconstruction. Theor. Comput. Sci. 351, 337–350 (2006)

17. Agarwala, R., Fernandez-Baca, D.: A polynomial-time algorithm for the per-
fect phylogeny problem when the number of character states is fixed. In: SFCS,
pp. 140–147 (November 1993)

18. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved lp-based approxi-
mation for steiner tree. In: STOC. ACM (2010)

19. Bodlaender, H.L., Fellows, M.R., Warnow, T.: Two Strikes against Perfect Phy-
logeny. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer,
Heidelberg (1992)

20. Takahashi, H., Matsuyama, A.: An approximate solution for the steiner problem
in graphs. Mathematica Japonica 24, 573–577 (1980)

21. Berman, P., Ramaiyer, V.: Improved approximations for the steiner tree problem.
In: SODA, pp. 325–334 (1992)

22. Prömel, H.J., Steger, A.: RNC-Approximation Algorithms for the Steiner Problem.
In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 559–570.
Springer, Heidelberg (1997)

23. Karpinski, M., Zelikovsky, A.: New approximation algorithms for the steiner tree
problems. Journal of Combinatorial Optimization 1, 47–65 (1995)

24. Zelikovsky, A.: Better approximation bounds for the network and euclidean steiner
tree problems. Technical report (1996)

25. Hougardy, S., Promel, H.J.: A 1.598 approximation algorithm for the steiner prob-
lem in graphs. In: SODA, pp. 448–453 (1999)

26. Borchers, A., Du, D.Z.: The k-steiner ratio in graphs. In: STOC, pp. 641–649.
ACM (1995)

Improved Spectral-Norm Bounds for Clustering

Pranjal Awasthi and Or Sheffet�

Carnegie Mellon University,
5000 Forbes Ave., Pittsburgh PA 15213, USA

{pawasthi,osheffet}@cs.cmu.edu

Abstract. Aiming to unify known results about clustering mixtures of
distributions under separation conditions, Kumar and Kannan [1] intro-
duced a deterministic condition for clustering datasets. They showed that
this single deterministic condition encompasses many previously studied
clustering assumptions. More specifically, their proximity condition re-
quires that in the target k-clustering, the projection of a point x onto the
line joining its cluster center μ and some other center μ′, is a large ad-
ditive factor closer to μ than to μ′. This additive factor can be roughly
described as k times the spectral norm of the matrix representing the
differences between the given (known) dataset and the means of the (un-
known) target clustering. Clearly, the proximity condition implies center
separation – the distance between any two centers must be as large as
the above mentioned bound.

In this paper we improve upon the work of Kumar and Kannan [1]
along several axes. First, we weaken the center separation bound by a
factor of

√
k, and secondly we weaken the proximity condition by a factor

of k (in other words, the revised separation condition is independent
of k). Using these weaker bounds we still achieve the same guarantees
when all points satisfy the proximity condition. Under the same weaker
bounds, we achieve even better guarantees when only (1− ε)-fraction of
the points satisfy the condition. Specifically, we correctly cluster all but
a (ε+O(1/c4))-fraction of the points, compared to O(k2ε)-fraction of [1],
which is meaningful even in the particular setting when ε is a constant
and k = ω(1). Most importantly, we greatly simplify the analysis of
Kumar and Kannan. In fact, in the bulk of our analysis we ignore the
proximity condition and use only center separation, along with the simple
triangle and Markov inequalities. Yet these basic tools suffice to produce
a clustering which (i) is correct on all but a constant fraction of the
points, (ii) has k-means cost comparable to the k-means cost of the
target clustering, and (iii) has centers very close to the target centers.

Our improved separation condition allows us to match the results of
the Planted Partition Model of McSherry [2], improve upon the results
of Ostrovsky et al [3], and improve separation results for mixture of
Gaussian models in a particular setting.

� This work was supported in part by the National Science Foundation under grants
CCF-0830540, IIS-1065251, and CCF-1116892 as well as by CyLab at Carnegie
Mellon under grants DAAD19-02-1-0389 and W911NF-09-1-0273 from the Army
Research Office.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 37–49, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

38 P. Awasthi and O. Sheffet

1 Introduction

In the long-studied field of clustering, there has been substantial work [4–12]
studying the problem of clustering data from mixture of distributions under the
assumption that the means of the distributions are sufficiently far apart. Each of
these works focuses on one particular type (or family) of distribution, and devise
an algorithm that successfully clusters datasets that come from that particular
type. Typically, they show that w.h.p. such datasets have certain nice properties,
then use these properties in the construction of the clustering algorithm.

The recent work of Kumar and Kannan [1] takes the opposite approach. First,
they define a separation condition, deterministic and thus not tied to any dis-
tribution, and show that any set of data points satisfying this condition can
be successfully clustered. Having established that, they show that many previ-
ously studied clustering problems indeed satisfy (w.h.p) this separation condi-
tion. These clustering problems include Gaussian mixture-models, the Planted
Partition model of McSherry [2] and the work of Ostrovsky et al [3]. In this as-
pect they aim to unify the existing body of work on clustering under separation
assumptions, proving that one algorithm applies in multiple scenarios.1

However, the attempt to unify multiple clustering works is only successful in
part. First, Kumar and Kannan’s analysis is “wasteful” w.r.t the number of clus-
ters k. Clearly, motivated by an underlying assumption that k is constant, their
separation bound has linear dependence in k and their classification guarantee
has quadratic dependence on k. As a result, Kumar and Kannan overshoot best
known bounds for the Planted Partition Model and for mixture of Gaussians by
a factor of

√
k. Similarly, the application to datasets considered by Ostrovsky et

al only holds for constant k. Secondly, the analysis in Kumar-Kannan is far from
simple – it relies on most points being “good”, and requires multiple iterations of
Lloyd steps before converging to good centers. Our work addresses these issues.

To formally define the separation condition of [1], we require some notation.
Our input consists of n points in Rd. We view our dataset as a n × d matrix,
A, where each datapoint corresponds to a row Ai in this matrix. We assume
the existence of a target partition, T1, T2, . . . , Tk, where each cluster’s center is
μr = 1

nr

∑
i∈Tr

Ai, where nr = |Tr|. Thus, the target clustering is represented
by a n × d matrix of cluster centers, C, where Ci = μr iff i ∈ Tr. Therefore,
the k-means cost of this partition is the squared Frobenius norm ‖A − C‖2F ,
but the focus of this paper is on the spectral (L2) norm of the matrix A − C.
Indeed, the deterministic equivalent of the maximal variance in any direction is,
by definition, 1

n‖A− C‖2 = max{v: ‖v‖=1}
1
n‖(A− C)v‖2.

Definition 1. Fix i ∈ Tr. We say a datapoint Ai satisfies the Kumar-Kannan
proximity condition if for any s �= r, when projecting Ai onto the line connecting

1 We comment that, implicitly, Achlioptas and McSherry [8] follow a similar approach,
yet they focus only on mixtures of Gaussians and log-concave distributions. Another
deterministic condition for clustering was considered by [13], which generalized the
Planted Partition Model of [2].

Improved Spectral-Norm Bounds for Clustering 39

μr and μs, the projection of Ai is closer to μr than to μs by an additive factor

of Ω
(
k(1√

nr
+ 1√

ns
)‖A− C‖

)
.

Kumar and Kannan proved that if all but at most ε-fraction of the data points
satisfy the proximity condition, they can find a clustering which is correct on all
but an O(k2ε)-fraction of the points. In particular, when ε = 0, their algorithm
clusters all points correctly. Observe, the Kumar-Kannan proximity condition
gives that the distance ‖μr−μs‖ is also bigger than the above mentioned bound.
The opposite also holds – one can show that if ‖μr − μs‖ is greater than this
bound then only few of the points do not satisfy the proximity condition.

1.1 Our Contribution

Our Separation Condition. In this work, the bulk of our analysis is based on
the following quantitatively weaker version of the proximity condition, which we
call center separation. Formally, we define Δr =

1√
nr

min{
√
k‖A−C‖, ‖A−C‖F}

and we assume throughout the paper that for a large constant2 c we have that
the means of any two clusters Tr and Ts satisfy

‖μr − μs‖ ≥ c(Δr +Δs) (1)

Observe that this is a simpler version of the Kumar-Kannan proximity condition,
scaled down by a factor of

√
k. Even though we show that (1) gives that only

a few points do not satisfy the proximity condition, our analysis (for the most
part) does not partition the dataset into good and bad points, based on satisfying
or non-satisfying the proximity condition. Instead, our analysis relies on basic
tools, such as the Markov inequality and the triangle inequality. In that sense
one can view our work as “aligning” Kumar and Kannan’s work with the rest of
clustering-under-center-separation literature – we show that the bulk of Kannan
and Kumar’s analysis can be simplified to rely merely on center-separation.

Our Results. We improve upon the results of [1] along several axes. In addition
to the weaker condition of Equation (1), we also weaken the Kumar-Kannan
proximity condition by a factor of k, and still retrieve the target clustering, if
all points satisfy the (k-weaker) proximity condition. Secondly, if at most εn
points do not satisfy the k-weaker proximity condition, we show that we can
correctly classify all but a (ε + O(1/c4))-fraction of the points, improving over
the bound of [1] of O(k2ε). Note that our bound is meaningful even if ε is a

2 We comment that throughout the paper, and much like Kumar and Kannan, we
think of c as a large constant (c = 100 will do). However, our results also hold when
c = ω(1), allowing for a (1+o(1))-approximation. We also comment that we think of
d	 k, so one should expect ‖A−C‖2F ≥ k‖A−C‖2 to hold, thus the reader should
think of Δr as dependent on

√
k‖A−C‖. Still, including the degenerate case, where

‖A − C‖2F < k‖A − C‖, simplifies our analysis in Section 3. One final comment is
that (much like all the work in this field) we assume k is given, as part of the input,
and not unknown.

40 P. Awasthi and O. Sheffet

constant whereas k = ω(1). Furthermore, we prove that the k-means cost of the
clustering we output is a (1 +O(1/c))-approximation of the k-means cost of the
target clustering.

Once we have improved on the main theorem of Kumar and Kannan, we derive
immediate improvements on its applications. In Section 3.1 we show our analysis
subsumes the work of Ostrovsky et al [3], and applies also to non-constant k.
Using the fact that Equation (1) “shaves off” a

√
k factor from the separation

condition of Kumar and Kannan, we obtain a separation condition of Ω(σmax

√
k)

for learning a mixture of Gaussians, and we also match the separation results of
the Planted Partition model of McSherry [2]. These results are detailed in the
full version [14] of this paper.

From an approximation-algorithms perspective, it is clear why the case of k =
ω(1) is of interest, considering the ubiquity of k-partition problems in TCS (e.g.,
k-Median, Max k-coverage, Knapsack for k items, maximizing social welfare in k-
items auction – all trivially simple for constant k). In addition, we comment that
in our setting only the case where k = ω(1) is of interest, since otherwise one can
approximate the k-means cost using the PTAS of Kumar et al [15], which doesn’t
even require any separation assumptions. From a practical point of view, there
is a variety of applications where k is quite large. This includes problems such
as clustering images by who is in them, clustering protein sequences by families
of organisms, and problems such as deduplication where multiple databases are
combined and entries corresponding to the same true entity are to be clustered
together [16, 17]. The challenges that arise from treating k as a non-constant are
detailed in the proofs overview (Section 1.4).

To formally detail our results, we first define some notations and discuss a
few preliminary facts.

1.2 Notations and Preliminaries

The Frobenius norm of a n × m matrix M , denoted as ‖M‖F is defined as

‖M‖F =
√∑

i,jM
2
i,j , and the spectral norm of M is ‖M‖ = maxx:‖x‖=1 ‖Mx‖.

It is a well known fact that if the rank of M is t, then ‖M‖2F ≤ t‖M‖2. The
Singular Value Decomposition (SVD) of M is the decomposition of M as M =
UΣV T , where U is a n × n unitary matrix, V is a m × m unitary matrix, Σ
is a n × m diagonal matrix whose entries are nonnegative real numbers, and
its diagonal entries satisfy σ1 ≥ σ2 ≥ . . . ≥ σmin{m,n}. The diagonal entries in
Σ are called the singular values of M , and the columns of U and V , denoted
ui and vi resp., are called the left- and right-singular vectors. As a convention,
when referring to singular vectors, we mean the right-singular vectors. Observe

that the Singular Value Decomposition allows us to write M =
∑rank(Σ)

i=1 σiuiv
T
i .

Projecting M onto its top t singular vectors means taking M̂ =
∑t

i=1 σiuiv
T
i .

It is a known fact that for any t, the t-dimensional subspace which best fits the
rows of M , is obtained by projecting M onto the subspace spanned by the top
t singular vectors (corresponding to the top t singular values). Another way to
phrase this result is by saying that M̂ = argminN :rank(N)=t{‖M −N‖F }. For a

Improved Spectral-Norm Bounds for Clustering 41

proof, see [18]. The same matrix, M̂ , also minimizes the spectral norm of this
difference, meaning M̂ = argminN :rank(N)=t{‖M −N‖} (see [19] for proof).

As previously defined, ‖A − C‖ denotes the spectral norm of A − C. The
target clustering, T , is composed of k clusters T1, T2, . . . , Tk. Observe that we
use μ as an operator, where for every set X , we have μ(X) = 1

|X|
∑

i∈X Ai. We

abbreviate, and denote μr = μ(Tr). From this point on, we denote the projection
of A onto the subspace spanned by its top k-singular vectors as Â, and for any
vector v, we denote v̂ as the projection of v onto this subspace. Throughout the
paper, we abuse notation and use i to iterate over the rows of A, whereas r and
s are used to iterate over clusters (or submatrices). So Ai represents the ith row
of A whereas Ar represents the submatrix [Ai]{i∈Tr}.

Basic Facts. The analysis of our main theorem makes use of the following facts,
from [1, 2, 18]. The first fact bounds the cost of assigning the points of Â to
their original centers.

Fact 1 (Lemma 9 from [2]). ‖Â− C‖2F ≤ 8min{k‖A− C‖2, ‖A− C‖2F }.

Next, we show that we can match each target center μr to a unique, relatively
close, center νr that we get in Part I of the algorithm.

Fact 2 (Claim 1 in Section 3.2 of [18]). For every μr there exists a center
νs s.t. ‖μr − νs‖ ≤ 6Δr, so we can match each μr to a unique νr.

Finally, we exhibit the following fact, which is detailed in the analysis of [1].

Fact 3. Fix a target cluster Tr and let Sr be a set of points created by removing
ρoutnr points from Tr and adding ρin(s)nr points from each cluster s �= r, s.t.
every added point x satisfies ‖x − μs‖ ≥ 2

3‖x − μr‖. Assume ρout < 1
4 and

ρin
def
=
∑

s�=r ρin(s) <
1
4 . Then ‖μ(Sr)− μr‖ is upper bounded by

1√
nr

⎛⎝√
ρout +

3
2

∑
s�=r

√
ρin(s)

⎞⎠ ‖A− C‖ ≤
(√

ρout
nr

+ 3
2

√
k

√
ρin
nr

)
‖A− C‖

1.3 Formal Description of the Algorithm and Our Theorems

Having established notation, we now present our algorithm, in Figure 1. Our
algorithm’s goal is three fold: (a) to find a partition that identifies with the
target clustering on the majority of the points, (b) to have the k-means cost
of this partition comparable with the target, and (c) output k centers which
are close to the true centers. It is partitioned into 3 parts. Each part requires
stronger assumptions, allowing us to prove stronger guarantees.

– Assuming only the center separation of (1), then Part I gives a clustering
which (a) is correct on at least 1 − O(c−2) fraction of the points from each
target cluster (Theorem 1), and (b) has k-means cost smaller than (1 +
O(1/c))‖A− C‖2F (Theorem 2).

42 P. Awasthi and O. Sheffet

Part I: Find initial centers:
– Project A onto the subspace spanned by the top k singular vectors.
– Run a 10-approximation algorithma for the k-means problem on the

projected matrix Â, and obtain k centers ν1, ν2, . . . , νk.

Part II: Set Sr ← {i : ‖Âi − νr‖ ≤ 1
3
‖Âi − νs‖, for every s} and θr ← μ(Sr).

Part III: Repeatedly run Lloyd steps until convergence.
– Set Θr ← {i : ‖Ai − θr‖ ≤ ‖Ai − θs‖, for every s}.
– Set θr = μ(Θr).

a Throughout the paper, we assume the use of a 10-approximation algorithm. Clearly,
it is possible to use any t-approximation algorithm, assuming c/t is large enough.

Fig. 1. Algorithm ∼Cluster

– Assuming also that Δr =
√
k√
nr

‖A − C‖, i.e. assuming the non-degenerate

case where ‖A − C‖2F ≥ k‖A − C‖2, then Part II finds centers that are

O(1/c)‖A−C‖√
nr

close to the true centers (Theorem 3). As a result (see Sec-

tion 4.1), if (1 − ε)n points satisfy the proximity condition (weakened by a
k factor,), then we misclassify no more than (ε+O(c−4))n points.

– Assuming all points satisfy the proximity condition (weakened by a k-factor),
Part III finds exactly the target partition (Theorem 4).

1.4 Organization and Proofs Overview

Organization. Related work is detailed in Section 2. The analysis of Part I of
our algorithms is in Section 3. Part I is enough for us to give a “one-line” proof
in Section 3.1 showing how the work of Ostrovsky et al falls into our framework.
The analysis of Part II of the algorithm is in Section 4. The improved guarantees
we get by applying the algorithm to the Planted Partition model and to the
Gaussian mixture model are discussed in the full version of this paper [14].

Proof Outline for Section 3. The first part of our analysis is an immediate
application of Facts 1 and 2. Our assumption dictates that the distance between
any two centers is big (≥ c(Δr +Δs)). Part I of the algorithm assigns each pro-
jected point Âi to the nearest νr instead of the true center μr and Fact 2 assures
that the distance ‖μr − νr‖ is small (< 6Δr). Consider a misclassified point Ai,
where ‖Ai−μr‖ < ‖Ai−μs‖ yet ‖Âi− νs‖ < ‖Âi− νr‖. The triangle inequality
assures that Âi has a fairly big distance to its true center (> (c2 − 12)Δr). We
deduce that each misclassified point contributes Ω(c2Δ2

r) to the k-means cost
of assigning all projected points to their true centers. Fact 1 bounds this cost
by ‖Â − C‖2F ≤ 8nrΔ

2
r , so the Markov inequality proves only a few points are

misclassified. Additional application of the triangle inequality for misclassified
points gives that the distance between the original point Ai and a true center

Improved Spectral-Norm Bounds for Clustering 43

μr is comparable to the distance ‖Ai − μs‖, and so assigning Ai to the cluster s
only increases the k-means cost by a small factor.

Proof Outline for Section 4. In the second part of our analysis we compare
between the true clustering T and some proposed clustering S, looking both at
the number of misclassified points and at the distances between the matching
centers ‖μr − θr‖. As Kumar and Kannan show, the two measurements are re-
lated: Fact 3 shows how the distances between the means depend on the number
of misclassified points, and the main lemma (Lemma 3) essentially shows the
opposite direction. These two relations are how Kumar and Kannan show that
Lloyd steps converge to good centers, yielding clusters with few misclassified
points. They repeatedly apply (their version of) the main lemma, showing that
with each step the distances to the true means decrease and so fewer of the good
points are misclassified.

To improve on Kumar and Kannan analysis, we improve on the two above-
mentioned relations. Lemma 3 is a simplification of a lemma from Kumar and
Kannan, where instead of projecting into a k-dimensional space, we project only
into a 4-dimensional space, thus reducing dependency on k. However, the de-
pendency of Fact 3 on k is tight3. So in Part II of the algorithm we devise
sub-clusters Sr s.t. ρin(s) = ρout/k

2. The crux in devising Sr lies in Proposi-
tion 1 – we show that any misclassified projected point i ∈ Ts ∩ Sr is essentially
misclassified by μ̂r. And since (see [8]) ‖μr − μ̂r‖ ≤ 1√

k
Δr (compared to the

bound ‖μr − νr‖ ≤ 6Δr), we are able to give a good bound on ρin(s).
Recall that we rely only on center separation rather than a large batch of

points satisfying the Kumar-Kannan separation, and so we do not apply iterative
Lloyd steps (unless all points are good). Instead, we apply the main lemma only
once, w.r.t to the misclassified points in Ts ∩ Sr, and deduce that the distances
‖μr − θr‖ are small. In other words, Part II is a single step that retrieve centers
whose distances to the original centers are

√
k-times better than the centers

retrieved by Kumar and Kannan in numerous Lloyd iterations.

2 Related Work

The work of [4] was the first to give theoretical guarantees for the problem of
learning a mixture of Gaussians under separation conditions. He showed that
one can learn a mixture of k spherical Gaussians provided that the separation
between the cluster means is Ω̃(

√
n(σr+σs)) and the mixing weights are not too

small. Here σ2
r denotes the maximum variance of cluster r along any direction.

This separation was improved to Ω̃((σr + σs)n
1/4) by [5]. Arora and Kannan [6]

extended these results to the case of general Gaussians. For the case of spher-
ical Gaussians, [7] showed that one can learn under a much weaker separation
of Ω̃((σr + σs)k

1/4). This was extended to arbitrary Gaussians by [8] and to
various other distributions by [10], although requiring a larger separation. In

3 In fact, Fact 3 is exactly why the case of k = ω(1) is hard – because the L1 and L2

norms of the vector (1√
k
, 1√

k
, . . . , 1√

k
) are not comparable for non-constant k.

44 P. Awasthi and O. Sheffet

particular, the work of [8] requires a separation of Ω((σr + σs)(
1√

min(wr,ws)
+√

k log(kmin{2k, n}))) whereas [10] require a separation of Ω̃(k
3/2

w2
min

(σr + σs)).

Here wr’s refer to the mixing weights. [9, 20] gave algorithms for clustering mix-
tures of product distributions and mixtures of heavy tailed distributions. [12]
gave an algorithm for clustering the mixture of 2 Gaussians assuming only that
the two Gaussians are separated by a hyperplane. They also give results for
learning a mixture of k > 2 Gaussians. The work of [21] gave an algorithm for
learning a mixture of 2 Gaussians, with provably minimal assumptions. This was
extended in [22] to the case when k > 2 although the algorithm runs in time
exponential in k. Similar results were obtained in the work of [23] who can also
learn more general distribution families. The work of [13] studied a determinis-
tic separation condition required for efficient clustering. The precise condition
presented in [13] is technical but essentially assumes that the underlying graph
over the set of points has a “low rank structure” and presents an algorithm to
recover this structure which is then enough to cluster well. In addition, previous
works (e.g. [24, 25]) addressed the problem of clustering from the viewpoint of
minimizing the number of mislabeled points.

3 Part I of the Algorithm

In this section, we look only at Part I of our algorithm. Our approximation algo-
rithm defines a clustering Z, where Zr = {i : ‖Âi−νr‖ ≤ ‖Âi−νs‖ for every s}.
Our goal in this section is to show that Z is correct on all but a small constant
fraction of the points, and furthermore, the k-means cost of Z is no more than
(1 +O(1/c)) times the k-means cost of the target clustering.

Theorem 1. There exists a matching (given by Fact 2) between the target clus-
tering T and the clustering Z = {Zr}r where Zr = {i : ‖Âi − νr‖ ≤ ‖Âi −
νs‖ for every s} that satisfies the following properties:

– For every cluster Ts0 in the target clustering, no more than O(1/c2)|Ts0 |
points are misclassified.

– For every cluster Zr0 in the clustering that the algorithm outputs, we add no
more than O(1/c2)|Tr0 | points from other clusters.

– At most O(1/c2)|Tr2 | points are misclassified overall, where Tr2 is the second
largest cluster.

Proof. Let us denote Ts→r as the set of points Âi that are assigned to Ts in
the target clustering, yet are closer to νr than to any other ν′r. From triangle
inequality we have that ‖Âi−μs‖ ≥ ‖Âi−νs‖−‖μs−νs‖. We know from Fact 2
that ‖μs − νs‖ ≤ 6Δs. Also, since Âi is closer to νr than to νs, the triangle
inequality gives that 2‖Âi − νs‖ ≥ ‖νr − νs|. So,

‖Âi − μs‖ ≥ 1

2
‖νr − νs‖ − 6Δs ≥

1

2
‖μr − μs‖ − 12(Δr +Δs) ≥

c

4
(Δr +Δs)

Improved Spectral-Norm Bounds for Clustering 45

Thus, we can look at ‖Â−C‖2F , and using Fact 1 we immediately have that for
every fixed r′∑

r

∑
s�=r

|Ts→r|
c2

16
(Δr +Δs)

2 ≤
∑
r

∑
i∈Tr

‖Âi − μr‖2 = ‖Â− C‖2F ≤ 8nr′Δ
2
r′

The proof of the theorem follows from fixing some r0, and deducing that Δ2
r0∑

s�=r0 |Ts→r0 | ≤
∑

s�=r0 |Ts→r0 |(Δr0 + Δs)
2 ≤

∑
r

∑
s�=r |Ts→r|(Δr + Δs)

2 ≤
128
c2 nr0Δ

2
r0 . Alternatively, one can fix some s0 and have thatΔ2

s0

∑
r �=s0 |Ts0→r| ≤∑

r �=s0 |Ts0→r|(Δr +Δs0)
2 ≤

∑
r

∑
s�=r |Ts→r|(Δr +Δs)

2 ≤ 128
c2 ns0Δ

2
s0 . Observe

that for every r �= s we have that Δr+Δs ≥ Δr2 (where r2 is the cluster with the
second largest number of points), so we also have that Δ2

r2

∑
r

∑
s�=r |Ts→r| ≤∑

r

∑
s�=r |Ts→r|(Δr +Δs)

2 ≤ 128
c2 nr2Δ

2
r2 .

We now show that the k-means cost of Z is close to the k-means cost of T .
Observe that the k-means cost of Z is computed w.r.t the best center of each
cluster (i.e., μ(Zr)), and not w.r.t the centers νr.

Theorem 2. The k-means cost of Z is at most (1 +O(1/c))‖A− C‖2F .

Proof. Given Z, it is clear that the centers that minimize its k-means cost are
μ(Zr) = 1

|Zr |
∑

i∈Zr
Ai. Recall that the majority of points in each Zr belong

to a unique Tr, and so, throughout this section, we assume that all points in
Zr were assigned to μr, and not to μ(Zr). (Clearly, this can only increase the
cost.) We show that by assigning the points of Zr to μr, our cost is at most
(1 + O(1/c))‖A − C‖2F , and so Theorem 2 follows. In fact, we show something
stronger. We show that by assigning all the points in Zr to μr, each point Ai
pays no more than (1+O(1/c))‖Ai−Ci‖2. This is clearly true for all the points
in Zr ∩ Tr. We show this also holds for the misclassified points.

Because i ∈ Ts→r, it holds that ‖Âi− νr‖ ≤ ‖Âi− νs‖. Observe that for every
s we have that ‖Ai − νs‖2 = ‖Ai − Âi‖2 + ‖Âi − νs‖2, because Âi − νs is the
projection of Ai − νs onto the subspace spanned by the top k-singular vectors
of A. Therefore, it is also true that ‖Ai − νr‖ ≤ ‖Ai − νs‖. Because of Fact 2,
we have that ‖μr − νr‖ ≤ 6Δr and ‖μs − νs‖ ≤ 6Δs, so we apply the triangle
inequality and get

‖Ai−μr‖ ≤ ‖Ai−μs‖+ ‖μr− νr‖+ ‖μs− νs‖ ≤ ‖Ai−μs‖
(
1 +

6(Δr +Δs)

‖Ai − μs‖

)
So all we need to do is to lower bound ‖Ai−μs‖. As noted, ‖Ai−νs‖ ≥ ‖Âi−νs‖.
Thus ‖Ai − μs‖ ≥ ‖Ai − νs‖ − 6Δr ≥ ‖Âi − νs‖ − 6Δr ≥ 1

2‖νs − νr‖ − 6Δr ≥
1
4c(Δr +Δs) and we have the bound ‖Ai − μr‖ ≤

(
1 + 24

c

)
‖Ai − μs‖, so ‖Ai −

μr‖2 ≤
(
1 + 49

c

)
‖Ai − μs‖2.

3.1 Application: The ORSS-Separation

One straight-forward application of Theorem 2 is for the datasets considered
by Ostrovsky et al [3], where the optimal k-means cost is an ε-fraction of the

46 P. Awasthi and O. Sheffet

optimal (k − 1)-means cost. Ostrovsky et al proved that for such datasets a
variant of the Lloyd method converges to a good solution in polynomial time.
Kumar and Kannan’s non-trivial analysis shows that datasets satisfying the
ORSS-separation also have the property that most points satisfy their proximity-
condition, resulting in a (1 +O(

√
kε))-approximation.

Here, we provide a “one-line” proof that Part I of Algorithm ∼Cluster yields a
(1+O(

√
ε))-approximation, for any k. Suppose we have a dataset satisfying the

ORSS-separation condition, so any (k − 1)-partition of the dataset have cost ≥
1
ε‖A−C‖2F . For any r and any s �= r, by assigning all the points in Tr to the center
μs, we get some (k−1)-partition whose cost is exactly ‖A−C‖2F +nr‖μr−μs‖2,
so ‖μr−μs‖ ≥

√
1
ε−1√
nr

‖A−C‖F . Setting c = O(1/
√
ε), Theorem 2 is immediate.

4 Part II of the Algorithm

In this section, our goal is to show that Part II of our algorithm gives centers
that are very close to the target clusters. We should note that from this point
on, we assume we are in the non-degenerate case, where ‖A−C‖2F ≥ k‖A−C‖2.
Therefore, Δr =

√
k√
nr

‖A−C‖. Due to space limitation, all proofs in this section

are omitted and are deferred to the full version [14] of this paper.
Recall, in Part II we define the sets Sr = {i : ‖Âi−νr‖ ≤ 1

3‖Âi−νs‖, ∀s �= r}.
Observe, these set do not define a partition of the dataset! There are some points
that are not assigned to any Sr. However, we only use the centers of Sr.

Theorem 3. Denote Sr = {i : ‖Âi − νr‖ ≤ 1
3‖Âi − νs‖, ∀s �= r}. Then for

every r it holds that ‖μ(Sr)− μr‖ = O(1/c) 1√
nr

‖A− C‖ = O(1
c
√
k
Δr).

The proof of Theorem 3 is an immediate application of Fact 3 combined with the
following two lemmas, that bound the number of misclassified points. Observe
that for every point that belongs to Ts yet is assigned to Sr (for s �= r) is also
assigned to Zr in the clustering Z discussed in the previous section. Therefore,
any misclassified point i ∈ Ts∩Sr satisfies that ‖Ai−μr‖ ≤ (1+O(c−1))‖Ai−μs‖
as the proof of Theorem 2 shows. So all conditions of Fact 3 hold.

Lemma 1. Assume that for every r we have that ‖μr − νr‖ ≤ 6Δr. Then at
most 512

c2 nr points of Tr do not belong to Sr.

Lemma 2. Redefine Ts→r as the set Ts ∩ Sr. Assume that for every r we have

that ‖μr − νr‖ ≤ 6Δr. Then ∀r, s �= r we have that |Ts→r| =
(

482

c4k2

)
nr.

We now turn to proving Lemma 2. Proposition 1 exhibit some property that
every point in Ts→r must satisfy, and then we show that only few of the points
in Ts satisfy this property. Recall that μ̂r indicates the projection of μr onto the
subspace spanned by the top k-singular vectors of A.

Improved Spectral-Norm Bounds for Clustering 47

Proposition 1. Fix i ∈ Ts s.t. ‖Âi − μ̂s‖ ≤ 2‖Âi − μ̂r‖. Then ‖Âi − νs‖ <
3‖Âi − νr‖, so i /∈ Sr.

Proposition 1 shows that in order to bound |Ts→r| it suffices to bound the number
of points in Ts satisfying ‖Âi − μ̂s‖ ≥ 2‖Âi − μ̂r‖. The major tool in providing
this bound is the following technical lemma. This lemma is a variation on the
work of [1], on which we improve on the dependency on k and simplify the proof.
Following Lemma 3, the proof of Lemma 2 is fairly straight-forward.

Lemma 3 (Main Lemma). Fix α, β > 0. Fix r �= s and let ζr and ζs be
two points s.t. ‖μr − ζr‖ ≤ αΔr and ‖μs − ζs‖ ≤ αΔs. We denote Ãi as the
projection of Ai onto the line connecting ζr and ζs. Define X =

{
i ∈ Ts :

‖Ãi − ζs‖ − ‖Ãi − ζr‖ ≥ β‖ζs − ζr‖
}
. Then |X | ≤ 256α

2

β2
1
c4k

(
min {nr, ns}

)
.

4.1 The Proximity Condition – Part III of the Algorithm

Part II of our algorithm returns centers θ1, . . . , θk which are O(1
c
√
nr

)‖A − C‖
close to the true centers. Suppose we use these centers to cluster the points:
Θs = {i : ∀s′, ‖Ai−θs‖ ≤ ‖Ai−θs′‖}. It is evident that this clustering correctly
classifies the majority of the points. It correctly classifies any point i ∈ Ts with
‖Ai − μr‖ − ‖Ai − μs‖ = Ω(1

c
√
nr

)‖A − C‖ for every r �= s, and the analysis

of Theorem 1 shows that at most O(c−2)-fraction of the points do not satisfy
this condition. In order to have a direct comparison with the Kumar-Kannan
analysis, we now bound the number of misclassified points w.r.t the fraction of
points satisfying the Kumar-Kannan proximity condition.

Definition 2. Denote gapr,s = (1√
nr

+ 1√
ns
)‖A−C‖. Call a point i ∈ Ts γ-good,

if for every r �= s we have that the projection of Ai onto the line connecting μr
and μs, denoted Āi, satisfies that ‖Āi − μr‖ − ‖Āi − μs‖ ≥ γ gapr,s; otherwise
we say the point is γ-bad.

Corollary 1. Denote the fraction of γ-bad points as ε. Then (a) the cluster-

ing {Θ1, . . . , Θk} misclassifies no more than
(
ε + O(1)

γ2c4

)
n points, and (b) ε <

O
(
(c− γ√

k
)−2
)
, assuming γ < c

√
k.

Observe that Corollary 1 allows for multiple scaled versions of the proximity
condition, based on the magnitude of γ. In particular, setting γ = 1 we get a
proximity condition whose bound is independent of k, and still our clustering
misclassifies only a small fraction of the points – at most O(c−2) fraction of
all points might be misclassified because they are 1-bad, and no more than a
O(c−4)-fraction of 1-good points may be misclassified. In addition, if there are no
1-bad points we show the following theorem. The proof (omitted) merely follows
the Kumar-Kannan proof, plugging in the better bounds, provided by Lemma 3.

48 P. Awasthi and O. Sheffet

Theorem 4. Assume all data points are 1-good. That is, for every point Ai
that belongs to the target cluster Tc(i) and every s �= c(i), by projecting Ai onto
the line connecting μc(i) with μs we have that the projected point Āi satisfies

‖Āi− μc(i)‖− ‖Āi − μs‖ = Ω
(
(1√

nc(i)
+ 1√

ns
)
)
‖A−C‖, whereas ‖μc(i) − μs‖ =

Ω
(√

k(1√
nc(i)

+ 1√
ns
)
)
‖A−C‖. Then the Lloyd method, starting with θ1, . . . , θk,

converges to the true centers.

Acknowledgements. We would like to thanks Avrim Blum for multiple helpful
discussions and suggestions. We thank Amit Kumar for clarifying a certain point
in the original Kumar and Kannan paper. We thank the anonymous referees
for their suggestions, and especially regarding a discussion about the result of
Achlioptas and McSherry.

References

1. Kumar, A., Kannan, R.: Clustering with spectral norm and the k-means algorithm.
In: FOCS (2010)

2. McSherry, F.: Spectral partitioning of random graphs. In: FOCS (2001)
3. Ostrovsky, R., Rabani, Y., Schulman, L.J., Swamy, C.: The effectiveness of lloyd-

type methods for the k-means problem. In: FOCS, pp. 165–176 (2006)
4. Dasgupta, S.: Learning mixtures of gaussians. In: FOCS (1999)
5. Dasgupta, S., Schulman, L.: A probabilistic analysis of em for mixtures of sepa-

rated, spherical gaussians. J. Mach. Learn. Res. (2007)
6. Sanjeev, A., Kannan, R.: Learning mixtures of arbitrary gaussians. In: STOC

(2001)
7. Vempala, S., Wang, G.: A spectral algorithm for learning mixtures of distributions.

Journal of Computer and System Sciences (2002)
8. Achlioptas, D., McSherry, F.: On Spectral Learning of Mixtures of Distributions.

In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 458–469.
Springer, Heidelberg (2005)

9. Chaudhuri, K., Rao, S.: Learning mixtures of product distributions using correla-
tions and independence. In: COLT (2008)

10. Kannan, R., Salmasian, H., Vempala, S.: The spectral method for general mixture
models. SIAM J. Comput. (2008)

11. Dasgupta, A., Hopcroft, J., Kannan, R., Mitra, P.: Spectral clustering with limited
independence. In: SODA (2007)

12. Brubaker, S.C., Vempala, S.: Isotropic pca and affine-invariant clustering. In: FOCS
(2008)

13. Coja-Oghlan, A.: Graph partitioning via adaptive spectral techniques. Comb.
Probab. Comput. 19, 227–284 (2010)

14. Awasthi, P., Sheffet, O.: Improved spectral-norm bounds for clustering, full version
(2012), http://arxiv.org/abs/1206.3204

15. Kumar, A., Sabharwal, Y., Sen, S.: A simple linear time (1 + ε)-approximation
algorithm for k-means clustering in any dimensions. In: FOCS (2004)

16. Cohen, W.W., Richman, J.: Learning to match and cluster large high-dimensional
data sets for data integration. In: KDD, pp. 475–480 (2002)

http://arxiv.org/abs/1206.3204

Improved Spectral-Norm Bounds for Clustering 49

17. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: Scop: a structural clas-
sification of proteins database for the investigation of sequences and structures.
Journal of Molecular Biology 247(4), 536–540 (1995)

18. Kannan, R., Vempala, S.: Spectral algorithms. Found. Trends Theor. Comput. Sci.
(March 2009)

19. Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. Johns Hopkins Uni-
versity Press, Baltimore (1996)

20. Chaudhuri, K., Rao, S.: Beyond gaussians: Spectral methods for learning mixtures
of heavy-tailed distributions. In: COLT (2008)

21. Kalai, A.T., Moitra, A., Valiant, G.: Efficiently learning mixtures of two gaussians.
In: STOC 2010, pp. 553–562 (2010)

22. Moitra, A., Valiant, G.: Settling the polynomial learnability of mixtures of gaus-
sians. In: FOCS 2010 (2010)

23. Belkin, M., Sinha, K.: Polynomial learning of distribution families. Computing
Research Repository abs/1004.4, 103–112 (2010)

24. Schulman, L.J.: Clustering for edge-cost minimization (extended abstract). In:
STOC, pp. 547–555 (2000)

25. Balcan, M.F., Blum, A., Gupta, A.: Approximate clustering without the approxi-
mation. In: SODA, pp. 1068–1077 (2009)

Primal-Dual Approximation Algorithms

for Node-Weighted Network Design
in Planar Graphs�

Piotr Berman and Grigory Yaroslavtsev

Pennsylvania State University, USA
{berman,grigory}@cse.psu.edu

Abstract. We present primal-dual algorithms which give a 2.4 approx-
imation for a class of node-weighted network design problems in planar
graphs, introduced by Demaine, Hajiaghayi and Klein (ICALP’09). This
class includes Node-Weighted Steiner Forest problem studied re-
cently by Moldenhauer (ICALP’11) and other node-weighted problems
in planar graphs that can be expressed using (0, 1)-proper functions in-
troduced by Goemans and Williamson. We show that these problems can
be equivalently formulated as feedback vertex set problems and analyze
approximation factors guaranteed by different violation oracles within
the primal-dual framework developed by Goemans and Williamson.

1 Introduction

In feedback vertex set problems the input is a graphG = (V,E), a family of cycles
C in G and a function w : V → R≥0. The goal is to find a set of vertices H ⊂ V
which contains a node in every cycle in C such that the total weight of vertices
in H is minimized. This is a special case of the hitting set problem, where sets
correspond to the cycles of C. There five natural examples for the family C.

– All cycles. This is Feedback Vertex Set problem (FVS).
– Odd cycles. If H ⊂ V is a hitting set for all odd-length cycles then the

subgraph of G, induced by the vertex set V \H is bipartite. This is Bipar-

tization problem (BIP).
– The set of all cycles which contain at least one node from a given set of

nodes. This is Subset Feedback Vertex Set problem (S-FVS).
– The set of all directed cycles of a given directed graph. This is Directed

Feedback Vertex Set problem (D-FVS).
– In Node-Weighted Steiner Forest problem we are given a weighted

graph and a set of terminal pairs (si, ti). The goal is to select S ⊂ V such that
in the subgraph induced by S all terminal pairs are connected. In Section 2.1
we show that Node-Weighted Steiner Forest belongs to a class of
problems which can be expresed as a hitting set problem for an appropriately
defined collection of cycles.

� G.Y. is supported by NSF / CCF CAREER award 0845701 and by College of
Engineering Fellowship.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 50–60, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Primal-Dual Approximation Algorithms for Node-Weighted Network Design 51

Table 1. Planar graphs

Problem Previous work (our analysis)1 Our work Hardness

FVS 10 [3], 3 (18/7) [11], 2 [4,1]
2.4 NP-hard [20]BIP, D-FVS, S-FVS 3 (18/7) [11]

Node-Weighted Steiner Forest 6 [5], 3 (18/7) [17]

While in general graphs FVS can be approximated within factor of 2 for all
graphs, as shown by Becker and Geiger [4] and Bafna, Berman and Fujito [1],
hitting a restricted family of cycles can be much harder. For example, the best
known approximation ratio for graph bipartization in general graphs is O(log n)
by Garg, Vazirani and Yannakakis [9]. ForD-FVS the best known approximation
is O(log n log logn), as shown by Even, Naor, Schieber and Sudan [8]. These and
other results for general graphs are discussed in the full version.

Yannakakis [20] has given an NP-hardness proof for many vertex deletion
problems restricted to planar graphs which applies to all problems that we con-
sider. For planar graphs, the unweighted Feedback Vertex Set problem ad-
mits a PTAS, as shown by Demaine and Hajiaghayi [6] using a bidimensionality
technique. Goemans and Williamson [11] created a framework for primal-dual
algorithms that for planar instances of all above problems provide approximation
algorithms with constant approximation factors. More specifically, they showed
9/4-approximations for FVS, S-FVS, D-FVS and BIP. For Node-Weighted

Steiner Forest it was shown by Demaine, Hajiaghayi and Klein [5] that the
generic framework of Goemans and Williamson gives a 6-approximation which
was improved to 9/4-approximation by Moldenhauer [17]. However, the original
paper by Goemans and Williamson [11] contains a mistake in the analysis. Sim-
ilar mistake was repeated in [17]. We exhibit the mistake on an example and
prove that no worse example exists. More precisely, primal-dual approximation
algorithms of Goemans and Williamson for all problems described above give
approximation factor 18/7 rather than 9/4. We also give an improved version
of the violation oracle which can be used within the primal-dual framework of
Goemans and Williamson and guarantees approximation factor 2.4. Results for
planar graphs are summarized in Table 1.

Applications and ramifications. Node-weighted Steiner problems have been stud-
ied theoretically in many different settings, see e.g. [15,18,19,16]. Applications of
such problems range from maintenance of electric power networks [12] to com-
putational sustainability [7]. Experimental evaluation of primal-dual algorithms
for feedback vertex set problems in planar graphs in applications to VLSI design
has been done by Kahng, Vaya and Zelikovsky [13].

Organization. We give basic definitions and preliminary observations in Sec-
tion 2. In Section 2.1 we show that a wide class of node-weighted network design
problems in planar graphs, introduced by Demaine, Hajiaghayi and Klein [5], can

1 See discussion in the text.

52 P. Berman and G. Yaroslavtsev

be equivalently defined as a class of hitting set problems for appropriately defined
collections of cycles satisfying uncrossing property, as introduced by Goemans
and Williamson [11]. In Section 3 we introduce local-ratio analog of primal-dual
framework of Goemans and Williamson for such problems and give examples of
violation oracles which can be used within this framework.

In Section 4 we give corrected analysis of the approximation factor achieved by
the generic primal-dual algorithm with a violation oracle, presented by Goemans
and Williamson in [11]. In the full version we present analysis of primal-dual
algorithms with a new violation oracle which gives approximation factor 2.4.
In Section 4.2 we show examples, on which these approximation factors are
achieved.

2 Preliminaries

A simple cycle of length k is a sequence of vertices v1, . . . , vk+1, where vk+1 ≡ v1,
all vertices v1, . . . vk are distinct, (vi, vi+1) ∈ E for all 1 ≤ i ≤ k and all these
edges are distinct. Note that in undirected simple graphs a simple cycle has
length at least three. For a cycle C, the edge set of C is denoted as E(C),
although to simplify presentation we may refer to it as just C.

Every planar graph has a combinatorial embedding which for every vertex
specifies a cyclic ordering of edges that are adjacent to it. A subset U ⊂ V
defines G[U], the induced subgraph of G, with node set U and edges {(u, v) ∈
E : u, v ∈ U}. An embedding of a planar graph naturally defines embeddings
of all its induced subgraphs. We denote the set of faces of a planar graph as F
(for a standard definition of the set of faces via a combinatorial embedding, see
e.g. [14]). The planar dual of a graph G is graph G∗ = (F,E′) where F is the
set of faces of G, and E′ is the set of pairs of faces that share an edge. We select
one face F0 as the outer face.

For a simple cycle C = (v1, . . . , vk+1) we denote the set of faces that are
surrounded by C as Faces(C). More formally, let E′′ be the set of pairs of faces
that share an edge that is not on C then in (F,E′′) has exactly two connected
components. We denote as Faces(C) the connected component of (F,E′′) that
does not contain the outer face F0.

For a weight function w : V → R and a set S ⊆ V we denote w(S) =∑
e∈S w(e).

2.1 Uncrossable Families of Cycles and Proper Functions

Two simple cycles C,D are crossing if neither Faces(C) ⊂ Faces(D), nor
Faces(D) ⊂ Faces(C), nor Faces(D) ∩ Faces(C) = ∅. A family of simple
cycles Z is laminar iff it does not contain a pair of crossing cycles.

Our algorithms apply to every family of cycles that satisfies the following
(similar to the uncrossing property of [11]). If two simple cycles C1, C2 are cross-
ing then there exist paths P1 ⊆ C1 and P2 ⊆ C2, such that P1 (P2) intersects
C2 (C1) only at its endpoints and P2 contains an edge in the interior of C1.

Primal-Dual Approximation Algorithms for Node-Weighted Network Design 53

Definition 2.1 (Uncrossing property [11]). A family of simple cycles C has
the uncrossing property if for every pair of crossing cycles C1, C2 ∈ C as described
above either P1 ∪ P2 ∈ C and (C1 \ P1) ∪ (C2 \ P2) contains a cycle in C, or
(C1 \ P1) ∪ P2 ∈ C and (C2 \ P2) ∪ P1 contains a cycle in C.

Many natural families of cycles satisfy the uncrossing property. Goemans and
Williamson [11] showed this for FVS, D-FVS, BIP, and S-FVS. We show that
these problems belong to a wider class of node-weighted connectivity problems
in planar graphs which can be expressed as problems of finding hitting sets
for families of cycles satisfying the uncrossing property. To state it formally we
introduce some definitions.

Definition 2.2 ((0, 1)-proper function). A Boolean function f : 2V → {0, 1}
is proper if f(∅) = 0 and it satisfies the following properties:
1. (Symmetry) f(S) = f(V \ S).
2. (Disjointness) If S1 ∩ S2 = ∅ and f(S1) = f(S2) = 0 then f(S1 ∪ S2) = 0.

These properties imply the property known as complementarity: if A ⊆ S and
f(S) = f(A) = 0 then f(S \A) = 0.

For a set S ⊆ V , let Γ (S) be its boundary, i.e. the set of nodes not in S
which have a neighbor in S, or formally Γ (S) = {v ∈ V |v /∈ S, ∃u ∈ S : (u, v) ∈
E}. As observed by Demaine, Hajiaghayi and Klein [5], a wide class of node-
weighted network design problems can be formulated as the following generic
integer program, where f : 2V → {0, 1} is a (0, 1)-proper function:

Minimize:
∑
v∈V

w(v)x(v) (1)

Subject to:
∑

v∈Γ (S)

x(v) ≥ f(S) for all S ⊆ V (2)

x(v) ∈ {0, 1} for all v ∈ V, (3)

For example, for Node-Weighted Steiner Forest the corresponding (0, 1)-
proper function is defined as follows: f(S) = 1 iff there exists a pair of terminals
(si, ti), such that |S ∩ {si, ti}| = 1. The edge-weighted version of this program
was introduced by Goemans and Williamson in [10]. Note that without loss of
generality we can assume that the input graph is triangulated. Otherwise we add
extra nodes of infinite cost inside each face and connect these new nodes to all
nodes on their faces without changing the cost of the optimum solution. Let V ′

be the set of nodes after such extension. Then the corresponding (0, 1)-proper
function f ′ for the extended instance is defined for all S ⊆ V ′ as f ′(S) = f(S∩V).

In Theorem 2.1 we show that a problem expressed by an integer program (1-3)
with some (0, 1)-proper function f can also be expressed as a problem of hitting
a collection of cycles with the uncrossing property. We give some definitions and
simplifying assumptions first.

54 P. Berman and G. Yaroslavtsev

Definition 2.3 (Active sets and boundaries). Assume that f : 2V → {0, 1}
is a (0, 1)-proper function. If f(S) = 1 we say that S is active, and that Γ (S)
is an active boundary. If Γ (S) is a simple cycle we call it an active simple
boundary. We denote the collection of all active simple boundaries as Cf .

Using this terminology the integer program (1-3) expresses the problem of find-
ing a minimum weight hitting set for the collection of all active boundaries.
Note that every active singleton set {s} must be included in the solution be-
cause {s} = Γ (V \ {s}) and V \ {s} is active by symmetry, so {s} has to be
hit. Let S0 be the set of such singletons. Using the observation above we can
simplify the integer program (1-3) by using only inequalities of type (2) such
that Γ (S) ∩ S0 = ∅. By disjointness of f , if Γ (S) ∩ S0 = ∅ then f(Γ (S)) = 0,
i.e. every active boundary in the inequalities (2) of the simplified program is
inactive.

In Lemma 2.1 we show that hitting all active boundaries is equivalent to
hitting Cf because every active boundary contains an active simple boundary as
a subset. This lemma is proved in the full version.

Lemma 2.1. Let G(V,E) be a connected triangulated planar graph, f be a (0, 1)-
proper function and Γ ⊂ V be a set with the following properties:

1. f({a}) = 0 for every a ∈ Γ .
2. f(B) = 1 for some B that is a connected component of V \ Γ .

Then every set C which is a minimal subset of Γ satisfying the two properties
above is a simple cycle.

Then we show that the family of active simple boundaries Cf satisfies the un-
crossing property.

Theorem 2.1. Let G(V,E) be a triangulated planar graph. For every (0, 1)-
proper function f : 2V → {0, 1} the collection of active simple boundaries Cf
forms an uncrossable family of cycles.

Proof. Consider two active simple boundaries Γ (S1) and Γ (S2). If Γ (S2) crosses
Γ (S1) then there exists a collection of edge-disjoint paths in Γ (S2) which we
denote as P , such that each path Pi ∈ P has only two nodes in common with
Γ (S1). Each path Pi ∈ P partitions S1 \ Pi into two parts which we denote as
A1
i and A2

i respectively. Let’s fix a path Pi ∈ P , such that at A1
i doesn’t contain

any other paths from P .
There are two cases: A1

i ∩ S2 = ∅ and A1
i ⊆ S2. They are symmetric because

if A1
i ⊆ S2 we can replace the set S2 by a set S′

2 = V \S2 \ Γ (S2), ensuring that
A1
i ∩ S2 = ∅. Note that the boundary doesn’t change after such replacement,

because Γ (S2) = Γ (S′
2). By symmetry of f we have that f(S2) = f(V \S2) = 1.

Because f(Γ (S2)) = 0 by disjointness we have f(V \ S2 \ Γ (S2)) = f(S′
2) = 1,

so S′
2 is also an active set.

This is why it is sufficient to consider only the case when A1
i ∩ S2 = ∅. We

will show the following auxiliary lemma:

Primal-Dual Approximation Algorithms for Node-Weighted Network Design 55

Lemma 2.2. Let A1, A,B ⊆ V be such that A1 ⊆ A, A1 ∩ B = ∅ and f(A) =
f(B) = 1. Then at least one of the following two statements holds:
1. f(A1 ∪B) = f(A \A1) = 1.
2. f(A1) = max [f(B \ (A \A1)), f((A \A1) \B)] = 1.

The proof of the lemma follows from the properties of (0, 1)-proper functions
and is given in the full version.

To show the uncrossing property for cycles C1 = Γ (S1) and C2 = Γ (S2) we
select the paths in the definition of the uncrossing property as P1 = Γ (A2

i) \ Pi
and P2 = Pi. Now we can apply Lemma 2.2 to sets A1

i , S1 and S2, because A
1
i ⊆

S1, A
1
i ∩S2 = ∅ and f(S1) = f(S2) = 1. Thus, by Lemma 2.2 either f(A1

i ∪S2) =
f(S1 \A1

i) = 1 or f(A1
i) = max(f(S2 \ (S1 \A1

i)), f((S1 \A1
i) \ S2)) = 1. In the

first case we have f(A2
i) = f(A1

i ∪S2) = 1 and thus both cycles P1∪P2 = Γ (A2
i)

and (C1 \ P1) ∪ (C2 \ P2) = Γ (A1
i ∪ S2) are active simple boundaries. In the

second case f(A1
i) = 1 and thus the cycle (C1 \ P1) ∪ P2 = Γ (A1) is an active

simple boundary. The cycle (C2 \P2)∪P1 is not necessarily simple, but it forms
a boundary of an active set (S2\(S1\A1

i))∪((S1 \A1
i)\S2). Thus, by Lemma 2.1

it contains an active simple boundary, which is a cycle in Cf .

3 Algorithm

3.1 Generic Local-Ratio Algorithm

We will use a local-ratio analog of a generic primal-dual algorithm formulated
by Goemans and Williamson [11] which we state as Algorithm 1. As observed
in the full verison of [17] these two formulations are equivalent for the problems
that we consider (see also [2]).

Algorithm 1: Generic local-ratio algorithm (G(V,E), w, C)

1 w̄ ← w.
2 S ← {u ∈ V : w̄(u) = 0}.
3 while S is not a hitting set for C do
4 M← Violation(G, C, S).
5 cM(u) ← |{M ∈ M : u ∈M}|, for all u ∈ V \ S.
6 α← minu∈V \S

w̄(u)
cM(u)

.

7 w̄(u)← w̄(u)− αcM(u), for all u ∈ V \ S.
8 S ← {u ∈ V : w̄(u) = 0}.

end
9 return a minimal hitting set H ⊂ S of C.

We say that a hitting set for a collection of cycles is minimal, if it doesn’t contain
another hitting set as its proper subset. Note that we don’t need to specify the
collection of cycles C explicitly. Instead the generic algorithm requires that we
specify an oracle Violation(G, C, S) used in Step 4. Given a graph G, collection

56 P. Berman and G. Yaroslavtsev

of cycles C and a solution S if there are some cycles in C which are not hit by
S this oracle should return a non-empty collection of such cycles, otherwise it
should return the empty set. Such an oracle also allows to perform Step 3 and
Step 9 without explicitly specifying C.

The performance guarantee of the generic algorithm depends on the oracle
used as described below.

Theorem 3.1 (Local-ratio analog of Theorem 3.1 in [11]). If the set M
returned by a violation oracle used in Step 4 of the generic local-ratio Algorithm 1
satisfies that for any minimal solution H̆:

cM(H̆) ≤ γ|M|,

then Algorithm 1 returns a hitting set H of cost w(H) ≤ γw(H∗), where H∗ is
the optimum solution.

We give the proof of this theorem for completeness in the full version.
The simplest violation oracles return a single cycle. Bar-Yehuda, Geiger, Naor

and Roth [3] show that for FVS this approach can give a 10-approximation for
planar graphs and Goemans andWillamson [11] improve it to a 5-approximation.
They also analyzed an oracle, which returns a collection of all faces in C,
which are not hit by the current solution, and showed such oracle gives a 3-
approximation for all families of cycles satisfying uncrossing property. Thus, by
Theorem 2.1 such oracle gives a 3-approximation for all problems that we con-
sider. We now give more complicated examples of violation oracles which give
better approximation factors.

3.2 Face Minimal Violation Oracles

Definition 3.1. Given S ⊂ V , C(S) = {C ∈ C : C ∩ S = ∅}. A cycle C ∈
C(S) is face minimal if there is no D ∈ C(S) such that Faces(D) � Faces(C).
Minimal(S) = {C ∈ C(S) : C is face minimal}.

Goemans and Williamson [11] showed that using Minimal(S) as Violation

(G, C, S) leads to approximation ratio 3. Other violation oracles we discuss can
be computed by selecting a subset of Minimal(S). Thus the algorithms we
discuss run in polynomial time if the function Minimal(S) can be computed
in polynomial time. This is shown in [11,17] for the problems considered there.
This also holds in general for sets of cycles defined by (0, 1)-proper functions.

Lemma 3.1. For a family of cycles Cf defined by a (0, 1)-proper function
Minimal(S) can be computed in polynomial time.

We give a sketch of the proof below. Let A be the set of active connected com-
ponents of V \ S. Each cycle in Minimal(S) will be a minimal subset of Γ (A)
for some A ∈ A. However, we need to show how to find all cycles of Minimal(S)
rather than one.

Primal-Dual Approximation Algorithms for Node-Weighted Network Design 57

We start by defining a partial order on A. For a fixed A ∈ A we have set
K(A) of connected components of V \ Γ (A); note that A ∈ K(A). We say that
a B ∈ K(A) is an outer (inner) component if B contains at least one node of
the outer face (does not contain any). One can see that there exists at most one
outer component in K(A). We say that A dominates A′ ∈ A if some B is an
inner component of K(A), B �= A and A′ ⊂ B. This relation is anti-symmetric
and transitive, hence it defines a partial order. We can show that each cycle of
Minimal(S) is contained in Γ (A) where A is a minimal element of A in terms
of domination.

Then given such minimal A we first insert to A those nodes from Γ (A) that
have neighbors only in Γ (A)∪A. Then we can show that resulting smaller Γ (A)
induces a subgraph that can be uniquely decomposed into a family of simple
cycles, and exactly one of those cycles is a boundary of an active set. Details
will be provided in the full version.

3.3 Minimal Pocket Violation Oracles

The following oracle, introduced by Goemans and Williamson [11], returns a col-
lection of faces in C inside a minimal pocket not hit by the current solution H .

Definition 3.2. A pocket for a planar graph G(V,E) and a cycle collection C
is a set U ⊆ V such that:
1. The set U contains at most two nodes with neighbors outside U .
2. The induced subgraph G[U] contains at least one cycle in C.

Algorithm 2: Minimal-Pocket-Violation (G, C, S)

1 C0 ← {c ∈ C : c not hit by S}
2 M←Minimal(S)
3 Construct a graph GS by removing from G:
4 All edges in the interior of cycles of M.
5 All vertices which are not adjacent to any edges.
6 Let U0 be a pocket for GS and C0 which doesn’t contain any other pockets.
7 return A collection of all cycles in C0 which are faces of GS[U0].

As in the generic algorithm, we will not specify C and C0 explicitly, but will
rather use an oracle to check relevant properties with respect to them. We show
analysis of the approximation factor obtained with this oracle in Section 4.

We will obtain a better approximation ratio by analyzing the following oracle
in the full version.

Definition 3.3. A triple pocket for a planar graph G(V,E) and a cycle collec-
tion C is a set U ⊆ V such that:

1. The set U contains at most three nodes with neighbors outside U .
2. The induced subgraph GS [U] has at least three faces in C.

58 P. Berman and G. Yaroslavtsev

The violation oracle Minimal-3-Pocket-Violation finds a minimal U0 that is
either a pocket or a triple pocket, and otherwise works like Minimal-Pocket-

Violation.

4 18/7 Approximation Ratio with Pocket Oracle

According to Theorem 3.1, to show that Algorithm 1 with Minimal-Pocket-

Violation oracle has approximation factor 18/7 it suffices to prove the following:

Theorem 4.1. In every iteration of the generic local-ratio algorithm (Algo-
rithm 1) with oracle Minimal-Pocket-Violation for every minimal hitting
set H̆ of C we have cM(H̆) ≤ γ|M| for γ = 18/7.

The proof is in the full version.

4.1 12/5 Approximation Ratio with Triple Pocket Oracle

In the generic local-ratio algorithm we can change the implementation of the
oracle Violation. Namely we can use Minimal-3-Pocket-Violation which
in turn is a modification of Algorithm 2: in line 6 select U0 as a minimal triple
pocket. Note that a triple pocket is defined by three (or less) nodes that form
Γ (V − U0), hence we still have a polynomial time. In the full version we prove

Theorem 4.2. In every iteration of the generic local-ratio algorithm (Algo-
rithm 1) with oracle Minimal-3-Pocket-Violation for every minimal hitting
set H̆ of C we have cM(H̆) ≤ γ|M| for γ = 12/5.

4.2 Tight Examples

We show instances of graphs, on which the primal-dual algorithm with oracles
Minimal-Pocket-Violation andMinimal-3-Pocket-Violation gives 18/7
and 12/5 approximations respectively.

Our examples are for the Subset Feedback Vertex Set problem. Recall
that in this problem we need to hit all cycles which contain a specified set of
“special” nodes. Our examples are graphs with no pockets (or triple pockets),
in which every face belongs to the family of cycles that we need to hit – this
is ensured by selection of “special” nodes, which are marked with a star . The
weights of vertices are assigned as follows. Given a node u with degree d(u), its
weight is w(u) = d(u) if u is a solid dot and w(u) = d(u)+ ε otherwise (for some
negligibly small value of ε).

First we show an example for the oracle Minimal-Pocket-Violation in
Figure 1. Because there are no pockets, the first execution of the violation oracle
returns the collection of all faces in the graph. Thus, in each building block
of Picture 1 (which shows 5 such blocks from left to right), the primal-dual
algorithm selects the black dots with total weight 18 while stars also form a

Primal-Dual Approximation Algorithms for Node-Weighted Network Design 59

valid solution with weight 7 + 3ε. Hence the ratio will be arbitrarily close to
18/7, if we repeat the building block many times.

Similar family of examples for the oracle Minimal-3-Pocket-Violation is
shown in Figure 2. In these examples there are no pockets or triple pockets, so
the oracle Minimal-3-Pocket-Violation returns the collection of all faces in
the graph. As above, the primal-dual algorithm selects the black dots with total
weight 12 within each block, while the cost of the solution given by the stars is
5 + 2ε, so we can make the ratio arbitrarily close to 12/5.

●●

●

●

●●

✿

✿

✿

●●

●

●

●●

✿

✿

✿

●●

●

●

●●

✿

✿

✿

●●

●

●

●●

✿

✿

✿

●●

●

●

●●

✿

✿

✿

✿

✿

Fig. 1. Family of instances of S-FVS with approximation factor 18/7 for the primal-
dual algorithm with oracle Minimal-Pocket-Violation

✿ ●●

✿

●●

✿

●●

✿

●●

✿

●●

✿

●●

✿

●●

✿

●●

✿

●●

✿

●●

✿

Fig. 2. Family of instances of S-FVS with approximation factor 12/5 for primal-dual
algorithm with oracle Minimal-3-Pocket-Violation

References

1. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM J. Discrete Math. 12(3), 289–297 (1999)

2. Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D.: Local ratio: A unified frame-
work for approxmation algrithms in memoriam: Shimon even 1935-2004. ACM
Comput. Surv. 36(4), 422–463 (2004)

3. Bar-Yehuda, R., Geiger, D., Naor, J.S., Roth, R.M.: Approximation algorithms
for the vertex feedback set problem with applications to constraint satisfaction
and bayesian inference. In: SODA 1994, pp. 344–354. SIAM, Philadelphia (1994),
http://dl.acm.org/citation.cfm?id=314464.314514

http://dl.acm.org/citation.cfm?id=314464.314514

60 P. Berman and G. Yaroslavtsev

4. Becker, A., Geiger, D.: Optimization of pearl’s method of conditioning and
greedy-like approximation algorithms for the vertex feedback set problem. Artif.
Intell. 83(1), 167–188 (1996)

5. Demaine, E.D., Hajiaghayi, M., Klein, P.N.: Node-Weighted Steiner Tree and
Group Steiner Tree in Planar Graphs. In: Albers, S., Marchetti-Spaccamela, A.,
Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp.
328–340. Springer, Heidelberg (2009)

6. Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connections between fpt
algorithms and ptass. In: SODA 2005, pp. 590–601. SIAM, Philadelphia (2005),
http://dl.acm.org/citation.cfm?id=1070432.1070514

7. Dilkina, B., Gomes, C.P.: Solving Connected Subgraph Problems in Wildlife Con-
servation. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140,
pp. 102–116. Springer, Heidelberg (2010)

8. Even, G., (Seffi) Naor, J., Schieber, B., Sudan, M.: Approximating minimum feed-
back sets and multicuts in directed graphs. Algorithmica 20, 151–174 (1998)

9. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut
theorems and their applications. SIAM J. Comput. 25, 235–251 (1996)

10. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM J. Comput. 24(2), 296–317 (1995)

11. Goemans, M.X., Williamson, D.P.: Primal-dual approximation algorithms for feed-
back problems in planar graphs. Combinatorica 18, 37–59 (1998)

12. Guha, S., Moss, A., Naor, J., Schieber, B.: Efficient recovery from power outage
(extended abstract). In: STOC 1999, pp. 574–582 (1999)

13. Kahng, A.B., Vaya, S., Zelikovsky, A.: New graph bipartizations for double-
exposure, bright field alternating phase-shift mask layout. In: ASP-DAC 2001, pp.
133–138. ACM, New York (2001)

14. Klein, P.: Optimization Algorithms for Planar Graphs,
http://www.planarity.org/

15. Klein, P.N., Ravi, R.: A nearly best-possible approximation algorithm for node-
weighted steiner trees. J. Algorithms 19(1), 104–115 (1995)

16. Li, X., Xu, X.-H., Zou, F., Du, H., Wan, P., Wang, Y., Wu, W.: A PTAS for Node-
Weighted Steiner Tree in Unit Disk Graphs. In: Du, D.-Z., Hu, X., Pardalos, P.M.
(eds.) COCOA 2009. LNCS, vol. 5573, pp. 36–48. Springer, Heidelberg (2009)

17. Moldenhauer, C.: Primal-Dual Approximation Algorithms for Node-Weighted
Steiner Forest on Planar Graphs. In: Aceto, L., Henzinger, M., Sgall, J. (eds.)
ICALP 2011. LNCS, vol. 6755, pp. 748–759. Springer, Heidelberg (2011)

18. Moss, A., Rabani, Y.: Approximation algorithms for constrained node weighted
steiner tree problems. SIAM J. Comput. 37(2), 460–481 (2007)

19. Remy, J., Steger, A.: Approximation Schemes for Node-Weighted Geometric
Steiner Tree Problems. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L.
(eds.) APPROX and RANDOM 2005. LNCS, vol. 3624, pp. 221–232. Springer,
Heidelberg (2005)

20. Yannakakis, M.: Node-and edge-deletion np-complete problems. In: STOC 1978,
pp. 253–264. ACM, New York (1978)

http://dl.acm.org/citation.cfm?id=1070432.1070514
http://www.planarity.org/

What’s the Frequency, Kenneth?:

Sublinear Fourier Sampling Off the Grid

Petros Boufounos1,�, Volkan Cevher2,��, Anna C. Gilbert3,���,
Yi Li4, and Martin J. Strauss5,†

1 Mitsubishi Electric Research Labs, 201 Broadway, Cambridge, MA 02139
petrosb@merl.com

2 EPFL, Laboratory for Information and Inference Systems, Lausanne, Switzerland
volkan.cevher@epfl.ch

3 Department of Mathematics, University of Michigan, Ann Arbor
annacg@umich.edu

4 Department of EECS, University of Michigan, Ann Arbor
leeyi@umich.edu

5 Departments of Mathematics and EECS, University of Michigan, Ann Arbor
martinjs@umich.edu

Abstract. We design a sublinear Fourier sampling algorithm for a case
of sparse off-grid frequency recovery. These are signals with the form
f(t) =

∑k
j=1 aje

iωjt+ν̂, t ∈ ZZ; i.e., exponential polynomials with a noise
term. The frequencies {ωj} satisfy ωj ∈ [η, 2π−η] and mini�=j |ωi−ωj | ≥
η for some η > 0. We design a sublinear time randomized algorithm,
which takes O(k log k log(1/η)(log k + log(‖a‖1/‖ν‖1)) samples of f(t)
and runs in time proportional to number of samples, recovering {ωj} and
{aj} such that, with probability Ω(1), the approximation error satisfies
|ω′

j − ωj | ≤ η/k and |aj − a′
j | ≤ ‖ν‖1/k for all j with |aj | ≥ ‖ν‖1/k.

1 Introduction

Many natural and man-made signals can be described as having a few degrees of
freedom relative to their size due to natural parameterizations or constraints; ex-
amples includeAM,FM,andother communication signals andper-flowtrafficmea-
surements of the Internet. Sparse models capture the inherent structure of such
signals via concise linear representations: A signal y ∈ IRN has a sparse represen-
tation as y = Ψx in a basis Ψ ∈ IRN×N when k � N coefficients x can exactly
represent the signal y. Sparse models guide the way we acquire signals (e.g., sam-
pling or sketching) and how we efficiently recover them from limited observations
(e.g., sublinear recovery algorithms).

� Exclusively supported by Mitsubishi Electric Research Laboratories.
�� Supported by a Rice Faculty Fellowship, MIRG-268398, ERC Future Proof, SNSF

200021-132620, and DARPA KeCoM program #11-DARPA-1055.
��� Supported in part by NSF DMS 0354600 and partially supported by DARPA ONR

N66001-06-1-2011.
† Supported in part by NSF DMS 0354600 and NSF DMS 0510203 and partially

supported by DARPA ONR N66001-06-1-2011.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 61–72, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

62 P. Boufounos et al.

There has been considerable effort to develop sublinear algorithms within the
theoretical computer science community for recovering signals with a few signif-
icant discrete Fourier components, beginning with Kushilevitz and Mansour [1],
including [2–4], and culminating in the recent work of Hassanieh, et al. [5, 6].
All of these algorithms are predicated upon treating the vector y as periodic and
the discrete Fourier transform of a vector x being approximately k-sparse.

Unfortunately, these assumptions are too strong for many practical applica-
tions where the discrete Fourier transform coefficients are only approximation of
an underlying continuous Fourier transform. For example, if we want to measure
the approaching speed (the “doppler”) of an object via the Doppler effect, we
transmit a sinusoid wave eiω0t (where t is time in this example) and receive a
sinusoid wave whose frequency offset from ω0 depends on the unknown doppler,
v. Since v can be essentially any continuous value, so can be the received fre-
quency. If there are two or more speeding objects in view, the received signal is
of the form f(t) = a1eiω1t + a2eiω2t, where ω1/ω2 is not necessarily a rational
number, so that f(t) is not periodic. This practical and common example does
not directly fit the discrete Fourier transform setting of [1–6].

To illustrate why we cannot simply reduce the continuous problem to the
previous discrete Fourier sampling techniques, consider f(t) = a1eiω1t + a2eiω2t

and simply sample it on N equally-spaced points t. The Discrete Fourier Trans-
form (DFT) of these samples produces a set of N coefficients at corresponding
frequencies 2π�/N , � = 0, . . . , N − 1, uniformly spaced in the interval [0, 2π].
It is also possible to compute the oversampled DFT, producing a larger set of
coefficients N ′ > N , also corresponding to frequencies 2π�/N ′, � = 0, . . . , N ′−1,
uniformly spaced in [0, 2π]. In this setting, the existing DFT-based methods of-
ten fail to capture the true sparsity of the signal and may blow up the sparsity in
an unacceptable fashion. Indeed, even a 1-sparse original signal f(t) = eiω1t for,
say, ω1 = 5.3 · 2π/N , will lead to a discretized signal whose Fourier transform is
concentrated around 5 · 2π/N and 6 · 2π/N , but is significant in Ω(N) places.
This phenomenon arises even with an oversampled DFT, no matter how finely
we discretize the frequency grid; i.e., no matter how large N ′ is.

To this end, our approach lets ω range continuously while keeping t discrete. In
Fourier analysis on (locally compact abelian) groups, the variables t and ω must
be members of dual groups, which include the pairings ZZN ↔ ZZN , ZZ ↔ S1

(where S1 denotes a continuous circle, IR/ZZ), and IR ↔ IR. We take t ∈ ZZ and
ω ∈ S1. The generalization benefits over ZZN ↔ ZZN are as follows.

– In ZZN ↔ ZZN , the data {f(n)} are completely specified by N consecutive
samples; we can treat double-ended infinite sequences {f(n)}n∈ZZ provided∑

n∈ZZ |f(n)| < ∞.
– In ZZN ↔ ZZN , the frequencies ωj must lie on a discrete grid; we can treat

frequencies in the continuous space S1.

A concrete application of our approach (studied in the extended version of this
paper) is the bearing (or angular direction) estimation of sources transmitting at
fixed frequencies, a canonical array signal processing problem with applications

What’s the Frequency, Kenneth?: Sublinear Fourier Sampling Off the Grid 63

to radar, sonar, and remote sensing. Other applications also include the finite
rate of innovation problems [7].

The organization of the paper is as follows. In Sect. 2, we define our model
and problem formulation. In Sect. 3, we present our algorithm and its analysis.
An application of this result to bearing estimation problems can be found in the
full version of this paper.

2 Preliminaries

In this section, we define the problem of sublinear recovery of sparse off-grid
frequencies, set the stage notationally, and then detail our results.

2.1 The Problem

We define a spectrally sparse function f with off-grid frequencies as a function
f : ZZ → C with k frequencies ω1, . . . , ωk ∈ S1, and we allow for noise ν in
the spectrum that is supported on a set Iν ⊂ S1. We fix a minimum frequency
resolution η and assume that {[ωj − η/2, ωj + η/2)}k

j=1 and [Iν − η/2, Iν + η/2)
are all mutually disjoint. That is, the frequencies are not on a fixed, discrete
grid but they are separated from each other and from the noise by a minimum
frequency resolution. In our analysis below, we assume that |ωj | > η without
loss of generality. Specifically, we assume f is of the form

f(t) =
k∑

j=1

ajeiωjt +
∫

Iν

ν(ω)eiωtdω, t ∈ IR,

with ν ∈ L1(Iν). Without loss of generality, we assume that aj �= 0 for all j. 1

Our goal is to find all (aj , ωj) with

|aj | ≥ 1
k

∫
Iν

|ν(ω)|dω (1)

making as few samples on ZZ as possible (and with the smallest support) from
f and for the shortest duration and to produce such a list in time comparable
to the number of samples. The number of samples and the size of the support
set of the samples should be proportional to a polynomial in k and log(1/η), the
number of desired frequencies and precision. We call the frequencies ωj whose
associated amplitude aj meet the threshold condition (1) significant.
1 Strictly speaking these functions are not well-defined as, in the current definition, f

is not in L1(ZZ) and does not have a mathematically well-defined Fourier transform
(without resorting to more sophisticated mathematical techniques, such as tempered
distributions). To be mathematically correct, we define f as above and then multiply
it by a Gaussian window of width η100. Call this mollified function f̃ . The spectrum
of f̃ is thus the convolution of f̂ with a Gaussian of width η−100. Up to the precision
factor η/k, the spectra of f̃ and f are indistinguishable. Henceforth, we consider f
with the understanding that f̃ is the well-defined version.

64 P. Boufounos et al.

If we dilate the frequency domain S1 by a factor 1/d ∈ IR (i.e., map ω to
ω/d), we produce an equivalent sequence of samples f(t), at regularly spaced
real-valued points t = nd, n ∈ ZZ. The dilation factor d determines the “rate”
at which we sample the underlying signal and the total number of samples times
the sampling rate is the duration over which we sample. Both the rate and the
total number of samples are resources for our algorithm.

2.2 Notation

Let Ω be a domain (which can be either continuous or discrete). Roughly speak-
ing, we call a function K : Ω → IR a filter if K is or approximates the charac-
teristic function χE of some set E ⊂ Ω, which will be called the pass region of
K. The resulting signal of applying filter K to signal f (viewed as a function on
Ω) is the pointwise product K · f .

Let Km be a kernel defined on S1 (identified with (−π, π]) that satisfies the
following properties:

– it is continuous on S1,
– its Fourier transform K̂m : ZZ → C has finite support: | supp K̂m| =

O(m
α log 1

ε),
– it approximates χ[− π

m , π
m] (so Km is a filter): |Km(x)| ≤ ε for |x| ≥ π

m ,
|Km(x) − 1| ≤ ε for |x| ≤ (1 − α) π

m and Km(x) ∈ [−ε, 1 + ε] elsewhere.

A Dolph-Chebyshev filter convolved with the characteristic function of an inter-
val meets these criteria. We call the region [−(1−α) π

m , (1−α) π
m] the plateau of

Km. The pass region of Km is [− π
m , π

m] and we define the transition region to be
the complement of plateau in the pass region. A similar kernel was used in [5]
and [6] with the only difference that their kernel was constructed by a Gaussian
kernel convolved with the characteristic function of an interval.

2.3 Main Result

Theorem 1. There is a distribution D on a set of sampling points t ∈ IR
and an algorithm A such that for each perturbed exponential polynomial f(t) =∑k

j=1 ajeiωjt + ν̂(t), with constant probability, the algorithm returns a list Λ =
{(a′

j , ω
′
j)}k

j=1 of coefficients and frequencies such that

1. For each |aj | ≥ ‖ν‖1/k there exists ω′
j ∈ Λ such that

|ωj − ω′
j | ≤

η

k
.

2. Let Λ0 =
{
ω′

j ∈ Λ : ∃ωj0 such that
∣∣ωj0 − ω′

j

∣∣ ≤ η
k and |aj0 | ≥ ‖ν‖1

k

}
, then

for each ω′
j ∈ Λ0 it holds that

|a′
j − aj | ≤ ‖ν‖1

k
.

What’s the Frequency, Kenneth?: Sublinear Fourier Sampling Off the Grid 65

3. For each ω′
j ∈ Λ \ Λ0, it holds that

|a′
j | ≤

‖ν‖1

k
.

The algorithm takes O(k log k log(1/η)(log k+log(‖a‖1/‖ν‖1))) samples and runs
in time proportional to number of samples. Furthermore, the size of the support
of D, i.e., the total duration of sampling, is O(k/η(log k + log(‖a‖1/‖ν‖1))).

3 Analysis

Almost all sublinear sparse recovery algorithms (including both the Fourier and
canonical basis) randomly hash frequencies or vector elements into buckets. Since
the representation of the vector is sparse (in either the Fourier or the canonical
basis), it is likely that each bucket contains exactly one coefficient and small
noise so that the position of the “heavy hitter” can be found and then its value
estimated. At a high level, our algorithm also follows this recipe. Some of these
sublinear algorithms are iterative (i.e., non-adpative hashing and estimation
of the difference between the original vector and significant frequencies found in
previous iterations) to use fewer samples or measurements or to refine inaccurate
estimates. In contrast, our algorithm is not iterative. We hash the range of the
frequencies into buckets and repeat sufficiently many times so that all frequencies
are isolated, then we locate the frequency and estimate its amplitude.

A main difference between the discrete and continuous Fourier sampling prob-
lems is that, in the continuous frequency setting, it is impossible to recover a
frequency exactly (from finite samples) so that one can subtract off recovered
signals at exact positions. Typically in the discrete setting, an iterative algo-
rithm uses a loop invariant either as in [8, 6] or in [3]. In the former case [8, 6],
the number of buckets decreases per round as the number of remaining heavy
hitters decreases. In the continuous case, however, the accuracy of the frequency
estimates produced by location procedure are dependent on the width the pass
region of the filter: the wider the pass region is, the more inaccurate the fre-
quency estimate is. Unless the algorithm not only estimates the coefficient at a
given frequency but also improves the frequency estimate, we must increase the
distance d between samples from O(k/η) to O(k2/η) to the achieve the same
accuracy for the final frequency estimate, i.e., we must increase the duration
over which samples are collected.

In the latter case [3], the number of buckets is kept the same at each round
while the energy of the residual signal drops, and there are typically log ‖a‖
rounds. In hashing, we need to bound the inaccuracy |K(h(ω))−K(h(ω′))|, where
ω′ is the recovered estimate of some real frequency ω, h the hash function and
K the kernel. We can achieve this with a kernel that does not have a significant
portion of its total energy outside of its pass region (i.e., a “non-leaking” kernel),
but it is not obvious how to achieve such an accurate estimate using a Dirichlet
or Fejér kernel which was used in [3]. Unfortunately, using a “non-leaking” kernel
like the one used in [5, 6] or the one used in this paper introduces a factor log ‖a‖
into the number of samples in order to decrease the noise in a bucket.

66 P. Boufounos et al.

3.1 Recovery Algorithm

See Algorithm 1 for detailed pseudo-code.

3.2 Analysis of Algorithm

In this subsection, we provide a modular characterization of the algorithm.

Isolation. This portion of the analysis is similar to that of [6] but we emphasize
the continuous frequency setting.

Let Km be the kernel as described in Sec. 2 and set D = 2π/η. Define

H = {Km(ωd) = hd(ω)|d ∈ [D, 2D]}
to be a family of hash functions. We choose hd randomly from H by drawing d
from the interval [D, 2D] uniformly at random. Observe that the map ω → ωd is
a random dilation of S1. Similar to [6] and [3], we shall consider m-translations
of Km, denoted by {K(j)

m }m−1
j=0 , where K

(j)
m (x) = Km

(
x + 2πj

m

)
(x ∈ S1), so that

their pass regions cover S1. The pass regions will be referred to as buckets and
the pass region of K

(j)
m as j-th bucket. For convenience we shall also call the

plateau of K
(j)
m the plateau of the j-th bucket. It is clear that each frequency ω,

under the random dilation ω → ωd, will land in some bucket with index b(ω, d).
Similar to the hashing in [6], our hashing scheme guarantees that

– (small collision) Suppose that |ω−ω′| ≥ η then Pr{b(ω, d) = b(ω′, d)} ≤ c/m
for some absolute constant c > 0.

– (good plateau landing) Suppose that ω ≥ η and let 0 < α < 1/2 be as given
in the definition of Km, then ω lands in the plateau of the bucket with index
b(ω, d) with probability ≥ (1 − α)(1 − 1/m).

If a bucket contains exactly one frequency ωj0 , we say that ωj0 is isolated. Fur-
thermore, if ωj0 lands in the plateau of the bucket, we say that ωj0 is well-isolated.
Notice that when ωj0 is isolated, it holds that |hd(ωj)| ≤ ε for all j �= j0.

The next lemma, an imitation of Lemma 3.1 in [3], allows us to bound the
inaccuracy of its estimate in terms of the noise ‖ν‖1.

Lemma 1. Suppose that ξ is a random variable on [D, 2D] such that |ξ| ≤ π/m.
Let ω ≥ η. Then Ed[|Km(ωd + ξ)|] ≤ c/m for some absolute constant c > 0.

Now we are ready to show that our algorithm isolates frequencies.
Fix j0 and choose m = Ω(k). The hashing guarantees that ωj0 is well-isolated

with probability Ω(1) by taking a union bound. Also, it follows immediately
from Lemma 1 that the expected contribution of ν to the bucket is at most
c‖ν‖1/m. Therefore we conclude by Markov’s inequality that
Lemma 2. Conditioned on ωj0 being well-isolated under hd ∈ H, w.p. Ω(1),∣∣∣∣∣∣

∑
j �=j0

ajhd(ωj) +
∫

Iν

ν(ω)hd(ω)dω

∣∣∣∣∣∣ ≤ C1ε‖a‖1 +
C2

m
‖ν‖1

for some constants C1, C2 that depend on the failure probability.

What’s the Frequency, Kenneth?: Sublinear Fourier Sampling Off the Grid 67

Algorithm 1. The overall recovery algorithm
1: function Main
2: y ← signal samples
3: L← Identify(y)
4: Λ← Estimate(L)
5: return

∑
ω∈Λ aωeiωt

6: end function

1: function Identify(y)
2: L← ∅
3: for t← 1 to Θ(log m) do
4: Choose a random d as described
5: Collect zst, the sample taking at time point with index (s, t)
6: bi ← 0 for all i = 0, . . . , m− 1
7: for r ← 1 to �log2(1/η)	 do
8: Compute {u�}m−1

�=0 and {v�}m−1
�=0 according to Remark 1

where u� =
∑

j ajKm

(
ωjd− 2π�

m

)
Kn

(
ωjd

2r − 2π
2rm

	− 2b�π
2r

)
and v� =

∑
j ajKm

(
ωjd− 2π�

m

)
Kn

(
ωjd

2r − 2π
2rm

	− 2b�π
2r − π

)
9: for 	← 0 to m− 1 do

10: if |v�| > |u�| then
11: br ← br + 2r−1

12: end if
13: end for
14: end for
15: for 	← 0 to m− 1 do
16: L← L ∪ { 2π�

md
+ 2b�π

d
}

17: end for
18: end for
19: return L
20: end function

1: function Estimate(L)
2: Choose hash families H1 and H2 as described.
3: for r ← 1 to Θ(log k) do
4: for each ω ∈ L do
5: a

(r)
ω ← measurement w.r.t. H1

6: b
(r)
ω ← measurement w.r.t. H2

7: end for
8: end for
9: for each ω ∈ L do

10: aω ← mediant a
(r)
ω

11: bω ← mediant b
(r)
ω

12: end for
13: L′ ← {x ∈ L : |bω| ≥ |aω|/2}.
14: Λ← {(ω, aω) : ω ∈ L′}.
15: Cluster Λ = {(ω, aω)} by x and retain only one element in the cluster.
16: Retain top k ones (w.r.t. aω) in Λ
17: return Λ
18: end function

68 P. Boufounos et al.

Bit Testing. The isolation precedure above reduces the problem to the fol-
lowing: The parameter d is known, and exactly one of {ωjd}k

j=1, say ωj0d, be-
longs to

⋃N−1
n=0 [2nπ − δ, 2nπ + δ] for some small δ and (large) N . Suppose that

ωj0d ∈ [2sπ − δ, 2sπ + δ]. We shall find s and thus recover ωj0 . Assume that ωj0

is significant, i.e., aj0 satisfies (1).
We recover s from the least significant bit to the most significant bit, as in

[3]. Assume we have already recovered the lowest r bits of s, and by translation,
the lowest r bits of s are 0s. We shall now find the (r + 1)-st lowest bit.

Let Kn (n is a constant, possibly n = 3) be another kernel with parameter ε′.
The following lemma shows that Line 6–14 of Identify gives the correct s.

Lemma 3. Suppose that the lowest r bits of s are 0, let G1 = Km(x)Kn

(
x
2r

)
,

G2 = Km(x)Kn

(
x
2r − π

)
and u be the sample taken using G1 and v using G2,

then |u| > |v| if s ≡ 0 (mod 2r) and |u| < |v| if s ≡ 2r (mod 2r+1), provided
that m = Ω(k) and ε ≤ ‖ν‖1/(m‖a‖1).

Proof. We leverage the isolation discussion. By Lemma 2, when s ≡ 0 (mod 2r),

|u| ≥ (1 − ε)(1 − ε′)|aj0 | − (1 + ε′)
(

C1ε‖a‖1 − C2

m
‖ν‖1

)
. (2)

and when s ≡ 2r−1 (mod 2r),

|u| ≤ (1 + ε)ε′|aj0 | + (1 + ε′)
(

C1ε‖a‖1 +
C2

m
‖ν‖1

)
. (3)

Similar bounds hold for |v|. Thus it suffices to choose m ≥ 2(1+ε′)(C1+C2)
1−ε−2ε′ k. ��

Repeat this process until r = log2(πD) = O(log(π/η)) to recover all bits of s. At
each iteration step the number of samples needed is O(| supp Ĝ1|+ | supp Ĝ2|) =
O(| supp K̂m| · | supp K̂n|) = O(k log 1

ε), so the total number of samples used in
a single execution of Line 8 of Identify is O(k log 1

ε log 1
η).

The precision of ωj0d will be δ = π/m and thus the precision of ωj0 will be
δ/d ≤ π/(mD) = η/m. In summary, the hashing process guarantees that

Lemma 4. With probability Ω(1), Identify returns a list L such that for each
ωj with aj satisfying (1), there exists ω′ ∈ L such that |ω′ − ωj| ≤ η/m.

Remark 1. Notice that σ(Km) ⊆ [−M, M]∩ZZ for integer M = O(k
α log 1

ε). We
shall show that, similar to [3], despite Line 6–14 of Identify (for m translations
altogether) requires mr numbers, each of which is a sum of O(M) terms, this
process can be done in O((M + m log m)r) time instead of O(Mmr) time.

Suppose that at step r, the translation that shifts the lowest bits of sj to 0 is
bj (0 ≤ j ≤ m − 1). In Line 8 of Identify, each uj or vj has the form

Θ(n)∑
s=−Θ(n)

e−2πi(bj+
j
m) s

2r

M∑
t=−M

e−2πi jt
m wstzst, j = 0, . . . , m − 1,

What’s the Frequency, Kenneth?: Sublinear Fourier Sampling Off the Grid 69

where zst is the sample at time with index (s, t) and the associated weight is
wst. Notice that the inner sum can be rewritten as

m∑

=0

e−2πi j�
m

∑
t∈(mZZ+{
})∩[−M,M]

wstzst,

which can be done in O(M + m log m) time using FFT. The outer sum has only
constantly many terms. Hence Line 8 of Identify takes O(M +m log m) times.
There are r steps, so the total time complexity is O((M + m logm)r).

Amplitude Estimation. The isolation procedure generates a list L of can-
didate frequencies. Like [6], we estimate the amplitude at each position in L
by hasing it into buckets using the same kernel but with possibly different pa-
rameters. We shall show how to extract good estimates and eliminate unreliable
estimates among |L| estimates.

The following lemma states that if a frequency candidate is near a true fre-
quency then they fall in the same bucket with a good probability and if a fre-
quency candidate is adequately away from a true frequency then they fall in
different buckets with a good probability.

Lemma 5. Let D = Θ(1/η) and δ > 0. Choose d uniformly at random from
[θ1D, θ2D].

1. if |ω −ω′| ≤ β1δ/D ≤ η then Pr {b(ω′, d) = b(ω, d)} ≥ 1− β1θ2. Thus except
with probability ≤ β1θ2 + α it holds that ω falls in the same bucket as ω′;

2. if |ω − ω′| ≥ β2δ/D then Pr {b(ω′, d) = b(ω, d)} ≤ 1/(β2(θ2 − θ1)) + cδD for
some universal constant c > 0.

Choose parameters 0 < β1 < β2, 0 < θ1 < θ2 such that β1θ2 + α < 1/3 and
1/(β2(θ2 − θ1)) < 1/3. Let D = Cπ/η. Define a hash family

H = {Km(ωd) = hd(ω)|d ∈ [θ1D, θ2D]}.
As a direct corollary of Lemma 5 we have

Lemma 6. Let ω′ ≥ η and j0 = argminj |ω′ − ωj |. Obtain a measurement aω′

w.r.t. hd ∈ H.

1. If |ω′ − ωj0 | ≤ β1Cη/m, with probability Ω(1), it holds that |aω′ − aj0 | ≤
ε‖a‖1 + c′‖ν‖1/m for some c′ > 0 dependent on the failure probability;

2. If |ω′ − ωj0 | ≥ β2Cη/m, with probability Ω(1), it holds that |aω′ | ≤ ε‖a‖1 +
c′‖ν‖1/m for some c′ > 0 dependent on the failure probability.

Let Δ = ε‖a‖1 + c′‖ν‖1/m, where c′ is a constant dependent on the failure
probability guaranteed in the lemma.

Take different C1 > C2 (and thus different D1 and D2) such that β1C2 ≥ 1
and that C2β2 ≤ C1β1. Define hash families Hi (i = 1, 2) as

Hi = {Km(ωd) = hd(ω)|d ∈ [θ1Di, θ2Di]}, i = 1, 2.

It then follows that

70 P. Boufounos et al.

Lemma 7. Upon termination of execution of line 13 in Estimate, with prob-
ability Ω(1), for each ω′ ∈ L′ let j0 = argminj |ω′ − ωj | it holds that

1. If |ω′ − ωj0 | ≤ β1C1η/m, then |aω′ − aj0 | ≤ Δ;
2. If |ω′ − ωj0 | ≥ β2C1η/m, then |aω′ | ≤ Δ
3. If β1C1η/m ≤ |ω′ − ωj0 | ≤ β2C1η/m, then |aω′ | ≤ 2Δ.

Loosely speaking, Lemma 7 guarantees a multiplicative gap between the ampli-
tude estimates for the “good” estimates of significant frequencies and the am-
plitudes estimates for all other frequency estimates. Next, we merge estimates
of the same true source utilizing the gap as follows. In increasing order, for each
ω′ ∈ L′ with amplitude estimate aω′ , find

I(ω′) =
{

ω ∈ L′ : ω′ ≤ ω ≤ ω′ +
C1β1η

m
and

2
γ − 1

|aω′ | < |aω| <
γ − 1

2
|aω′ |

}
,

where γ > 3 is a constant to be determined later.
Choose an arbitary element from I as the representative of all elements in I

and add it to Λ. Continue this process from the next ω′ ∈ L that is larger than
all elements in I. Retain the top k items of Λ.

Lemma 8. Suppose that Estimate is called with argument L. With probability
Ω(1), it produces a list Λ such that

1. For each j with |aj | ≥ γΔ for some γ > 2 +
√

5, if there exists ω′ ∈ L such
that |ω′ −ωj | ≤ π/m, then there exists (ω′′, aω′′) ∈ Λ (we say that ω′′ ∈ Λ is
paired) such that |ω′′ − ωj | ≤ C1β1η/m and |aω′′ − aj | ≤ Δ.

2. For each unpaired ω ∈ Λ it holds that |aω| ≤ 2Δ.

Proof. In case (1), for all ω ∈ L′ such that |ω − ωj| ≤ C1β1η/m it holds that
|aω| ≥ (γ−1)Δ while for other ω it holds that |aω| ≤ 2Δ. There is a multiplicative
gap so the merging process does not mix frequencies that are close to and far
away from a true source. It is easy to verify that ω ∈ L′ upon termination of
line 13 since C2β1 ≥ 1. The rest is obvious. ��
Our main result is now ready.

Proof (of Theorem 1). We show that Main returns the claimed result with
probability Ω(1). Choose ε in the estimation procedure to be ε = ‖ν‖1/(2γk‖a‖1)
and m ≥ γc′k, then Δ ≤ ‖ν‖1/(γk) and thus whenever |aj | satisfies (1) it holds
that |aj | ≥ γΔ. Combining Lemma 4 and Lemma 8 completes the proof. ��

Number of Samples. There are O(log k) repetitions in isolation and each takes
O(k log 1

ε log 1
η) samples, hence the isolation procedure takes O(k log k log 1

ε log 1
η)

samples in total.
The input of Estimate is a list L of size |L| = O(m log m) = O(k log k). Use

the same trick as in isolation, it takes O(M) = O(k log(1/ε)) samples for each of
O(log k) repetitions. Hence the estimation takes O(k log k log 1

ε log 1
η) samples.

What’s the Frequency, Kenneth?: Sublinear Fourier Sampling Off the Grid 71

The total number of samples is therefore

O

(
k log k log

1
ε

log
1
η

)
= O

(
k log k

(
log

‖a‖1

‖ν‖1
+ log k

)
log

1
η

)
.

Run Time. It follows from Remark 1 that each isolation repetition takes
O((M + m log m)r) = O(k log k

ε log 1
η) time. There are O(log m) = O(log k)

repetitions so the total time for isolation is O(k log k log k
ε log 1

η).
The input of Estimate is a list L of size |L| = O(k log k). Use the same trick

as in isolation, it takes O(M +m logm+ |L|) to obtain values for all buckets and
compute a

(s)
ω and b

(s)
ω for all ω ∈ L and each s. Hence line 3–8 of Estimate takes

time O((M + m log m + |L|) log k) = O(k log k log(k/ε)) time. Thus estimation
takes time O(k log k log(k/ε)) + |L| log k + |L| log |L|) = O(k log k log(k/ε)).

The total running time is domimated by that of isolation, which is propor-
tional to the number of samples taken.

Output Evaluation Metric. Since we do not expect to recover the frequencies
exactly, the typical approximation error of the form∥∥∥∥∥∥

∑
j

ajeiωjt − a′
je

iω′
jt + ν(t)

∥∥∥∥∥∥
p

contains both the amplitude approximation error ‖a−a′‖ and a term of the form∑ |aj ||ωj − ω′
j |, rather than the more usual bound in terms of the noise alone

‖ν‖p in the discrete case. Given bounds on both the amplitudes |aj − a′
j | and

the frequencies |ωj − ω′
j |, it is possible to compute the two terms in the error.

This is standard in the literature of polynomial-time algorithms to recover real
frequencies (e.g., [9], with which our result is comparable).

4 Conclusion

In this paper, we define a mathematically rigorous and practical signal model for
sampling sparse Fourier signals with continuously placed frequencies and devise
a sublinear time algorithm for recovering such signals. There are a number of
technical difficulties in this model with directly applying the discrete sublinear
Fourier sampling techniques, both algorithmic and mathematical. In particular,
several direct techniques incur the penalty of extra measurements. We do not
know if these additional measurements are necessary, if they are inherent in the
model. Furthermore, unlike the discrete case, the “duration” of the sampling or
the extent of the samples is a resource for which we have no lower bounds.

Acknowledgements. The authors would like to thank an anonymous reviewer
for a suggestion that improves the running time.

72 P. Boufounos et al.

References

1. Kushilevitz, E., Mansour, Y.: Learning decision trees using the Fourier spectrum.
In: STOC, pp. 455–464 (1991)

2. Gilbert, A.C., Guha, S., Indyk, P., Muthukrishnan, M., Strauss, M.: Near-optimal
sparse fourier representations via sampling. In: STOC, pp. 152–161 (2002)

3. Gilbert, A.C., Muthukrishnan, S., Strauss, M.: Improved time bounds for near-
optimal sparse Fourier representations. In: Proceedings of Wavelets XI Conference
(2005)

4. Iwen, M.: Combinatorial sublinear-time Fourier algorithms. Foundations of Compu-
tational Mathematics 10(3), 303–338 (2009)

5. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Simple and practical algorithm for
sparse Fourier transform. In: SODA, pp. 1183–1194 (2012)

6. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Nearly optimal sparse Fourier trans-
form. In: STOC, pp. 563–578 (2012)

7. Vetterli, M., Marziliano, P., Blu, T.: Sampling signals with finite rate of innovation.
IEEE Transactions on Signal Processing 50(6), 1417–1428 (2002)

8. Gilbert, A.C., Li, Y., Porat, E., Strauss, M.: Approximate sparse recovery: Opti-
mizing time and measurements. SIAM J. Comput. 41(2), 436–453 (2012)

9. Peter, T., Potts, D., Tasche, M.: Nonlinear approximation by sums of exponentials
and translates. SIAM J. Sci. Comput. 33(4), 1920–1947 (2011)

Improved Hardness Results for Profit

Maximization Pricing Problems
with Unlimited Supply

Parinya Chalermsook1,�, Julia Chuzhoy2,��,
Sampath Kannan3,���, and Sanjeev Khanna3,†

1 University of Chicago, Chicago, IL and IDSIA, Lugano, Switzerland
2 Toyota Technological Institute, Chicago, IL

3 Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA

Abstract. We consider profit maximization pricing problems, where we
are given a set of m customers and a set of n items. Each customer c
is associated with a subset Sc ⊆ [n] of items of interest, together with
a budget Bc, and we assume that there is an unlimited supply of each
item. Once the prices are fixed for all items, each customer c buys a
subset of items in Sc, according to its buying rule. The goal is to set the
item prices so as to maximize the total profit.

We study the unit-demand min-buying pricing (UDPMIN) and the
single-minded pricing (SMP) problems. In the former problem, each
customer c buys the cheapest item i ∈ Sc, if its price is no higher
than the budget Bc, and buys nothing otherwise. In the latter prob-
lem, each customer c buys the whole set Sc if its total price is at most
Bc, and buys nothing otherwise. Both problems are known to admit
O(min {log(m+ n), n})-approximation algorithms. We prove that they
are log1−ε(m+ n) hard to approximate for any constant ε, unless NP ⊆
DTIME(nlogδ n), where δ is a constant depending on ε. Restricting our
attention to approximation factors depending only on n, we show that

these problems are 2log
1−δ n-hard to approximate for any δ > 0 unless

NP ⊆ ZPTIME(nlogδ
′
n), where δ′ is some constant depending on δ. We

also prove that restricted versions of UDPMIN and SMP, where the sizes
of the sets Sc are bounded by k, are k1/2−ε-hard to approximate for any
constant ε.

We then turn to the Tollbooth Pricing problem, a special case of SMP,
where each item corresponds to an edge in the input graph, and each set

� Supported in part by NSF CAREER grant CCF-0844872, Swiss National Science
Foundation project 200020-122110/1, and Hasler Foundation Grant 11099. Part of
this work was done while at University of Chicago.

�� Supported in part by NSF CAREER grant CCF-0844872 and Sloan Research Fel-
lowship.

��� Supported in part by the National Science Foundation grant CCF-1137084.
† Supported in part by the National Science Foundation grants CCF-1116961 and
IIS-0904314.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 73–84, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

74 P. Chalermsook et al.

Sc is a simple path in the graph. We show that Tollbooth Pricing is at least
as hard to approximate as the Unique Coverage problem, thus obtaining

an Ω(logε n)-hardness of approximation, assuming NP �⊆ BPTIME(2n
δ

),
for any constant δ, and some constant ε depending on δ.

1 Introduction

We study profit maximization pricing problems in the unlimited supply model.
In these problems, we are given a set of m customers and a set of n items, where
each customer c is associated with a budget Bc, and a subset Sc ⊆ [n] of items
it is interested in. Our goal is to set a price p(i) for each item i ∈ [n], so as to
maximize the total revenue. Once the prices for the items are set, each customer
c chooses a subset of items in Sc to buy, using its buying rule. We assume that
we are given an unlimited supply of each item.

One of the most natural buying rules is the unit-demand min-buying rule,
where each customer c ∈ [m] buys the cheapest item i ∈ Sc (breaking ties arbi-
trarily), provided that the price p(i) ≤ Bc. We refer to the corresponding pricing
problem as UDPMIN. This problem was first introduced by Rusmevichientong et
al. [18,19], and subsequently Aggarwal et al. [1] have shown an O(logm+logn)-
approximation algorithm for it.

The second problem that we consider is Single-Minded Pricing (SMP). Here,
each customer c buys the whole set Sc of items if its total price does not exceed
its budget Bc, and buys nothing otherwise. This problem was introduced by
Guruswami et al. [14], who also show that the techniques of [1] can be used
to obtain an O(logm + logn)-approximation algorithm for SMP. Hartline and
Koltun [15] gave a (1 + ε)-approximation algorithm for both UDPMIN and SMP
when the number of items n is constant.

We remark that for pricing problems, it is natural to assume that the number
of customers is much higher than the number of items, that is, m >> n. Even
though both UDPMIN and SMP admit logarithmic approximation algorithms in
terms of (m + n), if we restrict ourselves to approximation factors depending
only on n, nothing better than the trivial O(n)-approximation is known.

On the negative side, Briest [3] has shown that both UDPMIN and SMP are

max
{
nδ, logδ(m+ n)

}
-hard to approximate for some (small) δ > 0, assum-

ing that no randomized polynomial-time algorithms can approximate constant-
degree Balanced Bipartite Independent Set to within arbitrarily small constant
factors. He also showed similar results under an assumption that slightly
strengthens Feige’s Random 3SAT hypothesis [11].

In this paper, we show that both UDPMIN and SMP are log1−ε(m+n) hard to

approximate for any constant ε, unless NP ⊆ DTIME(nlogε′ n) for some constant
ε′ depending only on ε. If we restrict our attention to approximation factors as

a function of n, then we show that both these problems are 2log
1−δ n hard to ap-

proximate for any constant δ, under the assumption that NP �⊆ ZPTIME(nlogδ′ n),
for some constant δ′ depending only on δ.

Improved Hardness Results for Profit Maximization Pricing Problems 75

We next turn to restricted versions of UDPMIN and SMP, denoted by kUDPMIN

and kSMP respectively, where the sizes of the sets Sc are bounded by k. The
kSMP problem is known to be APX-hard even for k = 2 [14], and Balcan and
Blum [2] have shown an O(k)-approximation for kUDPMIN, improving on an in-
dependent work of Briest and Krysta [4], who achieved an O(k2)-approximation
for the problem. As for negative results, Briest [3] has proved that kSMP is
kε-hard to approximate for some constant ε, assuming Feige’s random 3SAT hy-
pothesis [11], and Khandekar et al. [16] showed that the problem is Ω(k) hard to
approximate for constant k, assuming the Unique Games Conjecture of Khot [17].
We show that both kUDPMIN and kSMP are k1/2−ε-hard to approximate for any
constant ε unless P = NP.

Finally, we consider a special case of the SMP problem called the Tollbooth
Pricing problem, where we are given a graph G, and items correspond to the
edges of G. The item set Sc of every customer c is some simple path in graph
G, and the goal is to set the prices of the edges, so as to maximize the rev-
enue. Since the Tollbooth Pricing problem is a special case of SMP, it admits an
O(logm + logn) approximation [14]. The problem is APX-hard [14], and from
the results of Khandekar et al. [16], it is (2 − ε) hard to approximate even on
star graphs, assuming the Unique Games Conjecture. We show that the Toll-
booth Pricing problem is at least as hard to approximate as the Unique Coverage
problem (to within a constant factor). In the Unique Coverage problem, we are
given a collection U of n elements, and a family S of subsets of elements of U .
The goal is to find a family S ′ ⊆ S of element subsets, maximizing the num-
ber of elements that are covered by exactly one subset in S ′. The problem was
introduced and studied by Demaine et al. [8], who showed that for any arbi-

trarily small constant δ, if NP �⊆ BPTIME(2n
δ

), then Unique Coverage is hard to
approximate to within a factor of Ω(logε n), where ε is some constant depend-
ing on δ. They also showed that the problem is hard to approximate to within
Ω(log1/3−ε n) for any ε assuming the Random 3SAT Hypothesis of Feige [11], and
proved additional hardness results using a hypothesis about Balanced Bipartite
Independent Set. Our reduction immediately implies similar hardness results for
the Tollbooth Pricing problem.

Related Work. Briest and Krysta [4] considered a more general version of UDPMIN,
where customers are allowed to have different budgets (valuations) for different
items. They show an Ω(logε n)-hardness for this problem for some constant ε,
unless NP ⊆ DTIME

(
nO(log logn)

)
, and an nε-hardness for some constant ε > 0,

unless NP ⊆ DTIME
(
2O(nδ)

)
for all δ > 0.

A special case of the Tollbooth Pricing problem, called the Highway Prob-
lem, where the input graph is restricted to be a path, has received a significant
amount of attention. Elbassioni et al. [9] showed that the problem is strongly
NP-hard. On the algorithmic side, Balcan and Blum [2] have shown an O(log n)-
approximation algorithm, and Elbassioni et al. [10] have proposed a QPTAS.
Subsequently, Grandoni and Rothvoss [13] have shown a PTAS for the problem.
For the special case of the Tollbooth Pricing problem where the input graph is

76 P. Chalermsook et al.

a tree, the best known approximation ratio is O(log n/ log logn), due to Gamzu
and Segev [12]. However, when the number of leaves in the tree is bounded by a
constant, the problem admits a PTAS [13].

Pricing problems with limited supply have also received a considerable amount
of attention; Please refer to, e.g., [5,7,6] and references therein.

Our Results. We start by formally stating the pricing problems we consider. We
are given a set of m customers and a set of n items, where each customer c ∈ [m]
is associated with a set Sc ⊆ [n] of items and a budget Bc. Given a setting
{p(i)}i∈[n] of item prices, every customer selects a subset S′

c ⊆ Sc of items to
buy according to its buying rule, and our goal is to maximize the total profit,∑

c∈[m]

∑
i∈S′

c
p(i). In the UDPMIN problem, the buying rule of the customers

is defined as follows. Each customer c ∈ [m] buys the cheapest item i ∈ Sc,
breaking ties arbitrarily, if p(i) ≤ Bc, and buys nothing otherwise.

In the SMP problem, each customer c ∈ [m] purchases the whole set Sc if∑
i∈Sc

p(i) ≤ Bc, and purchases nothing otherwise. Our main result is summa-
rized in the following theorem.

Theorem 1. UDPMIN and SMP are log1−ε(m+n)-hard to approximate for any

constant ε > 0, unless NP ⊆ DTIME(n(logn)ε
′
), where ε′ is some constant depend-

ing only on ε. Moreover, assuming that NP �⊆ ZPTIME(n(log n)δ
′
), both problems

are hard to approximate to within a factor of 2log
1−δ n for any constant δ, where

δ′ is some constant depending only on δ.

We next turn to special cases of both problems, denoted by kUDPMIN and kSMP
respectively, where the sizes of the sets Sc are bounded by k and prove the
following theorem.

Theorem 2. Let ε > 0 be any constant. Then for infinitely many constants k,
both kUDPMIN and kSMP are k1/2−ε-hard to approximate unless P = NP.

Finally we turn to the Tollbooth Pricing problem. In this problem, we are given
a graph G = (V,E), and a set of m simple paths P1, . . . , Pm, where each path
Pc is associated with a customer c and a budget Bc. Once the price function
p : E → R on the edges is set, each customer c buys all edges on the path Pc if∑

e∈Pc
p(e) ≤ Bc, and buys nothing otherwise. The goal is to compute the edge

prices p(e) so as to maximize the total profit. It is clear that Tollbooth Pricing is
a special case of SMP, and notice that the number of items is n = |E(G)|.

We perform a reduction from the Unique Coverage problem to the Tollbooth
Pricing. In the Unique Coverage problem, we are given a set U of elements and
a family S of subsets of U as input. A solution is a sub-collection S ′ ⊆ S of the
input sets. We say that element u ∈ U is satisfied by the solution if and only if
it belongs to exactly one set in S ′. Our goal is to choose S ′ so as to maximize
the number of satisfied elements. Demaine et. al. [8] have shown that for any

arbitrarily small constant δ, if NP �⊆ BPTIME(2n
δ

), then Unique Coverage is hard
to approximate to within a factor of Ω(logε n), for some constant ε depending

Improved Hardness Results for Profit Maximization Pricing Problems 77

on δ. They also showed that, under the assumption of Feige [11] that refuting
random instances of 3SAT is hard, Unique Coverage is hard to approximate to
within a factor of Ω(log1/3−ε n) for any ε > 0. We prove the following theorem:

Theorem 3. If there is a factor α-approximation algorithm for the Tollbooth
Pricing problem, for any approximation factor α ≤ O(log n), then there is a
randomized O(α)-approximation algorithm for the Unique Coverage problem.

Combining this with the result of [8], we obtain the following corollary.

Corollary 1. For any arbitrarily small constant δ, if NP �⊆ BPTIME(2n
δ

),
Tollbooth Pricing is hard to approximate to within a factor of Ω(logε n) for
some constant ε depending on δ. Moreover, under Feige’s random 3SAT assump-
tion, this problem is hard to approximate to within a factor of Ω(log1/3−ε n) for
any ε > 0.

2 Hardness of UDPMIN and SMP

In this section we prove Theorems 1 and 2. We focus here on the UDPMIN problem
only. The hardness results for SMP are obtained using similar ideas and appear
in the full version of the paper.

We start with the following theorem, due to Trevisan [20]. Since we use slightly
different parameters, we provide the proof in the full version.

Theorem 4. Given an n-variable 3SAT formula ϕ, any sufficiently small con-
stant ε > 0 and any integer λ > 0, there is a randomized algorithm to construct
a graph G with maximum degree at most Δ = 2λpoly(1

ε) such that w.h.p.:

– (Yes-Instance:) If ϕ is satisfiable, then G has an independent set of size
|V (G)|/Δε.

– (No-Instance:) If ϕ is not satisfiable, then G has no independent set of
size |V (G)|/Δ1−ε.

The construction size is |V (G)| = nλpoly(1
ε), and the reduction runs in time

nλpoly(1
ε). Moreover, the algorithm can be made deterministic with running time

2O(Δ)nλ poly(1
ε).

We remark that this theorem allows us to adjust parameter λ. To prove Theo-
rem 1, we will use λ = O(log logn), while we set λ = O(1) for Theorem 2.

2.1 The Construction

Let G = (V,E) be the instance of Maximum Independent Set obtained from
Theorem 4, where the value of λ (and Δ) will be fixed later. We first define an
intermediate instance of UDPMIN, which is then converted into a final instance.

The intermediate instance is defined as follows. The set of items contains, for
each vertex v ∈ V , for each index y ∈ [Δ], an item i(v, y). That is, the set of
items is I = {i(v, y) | v ∈ V, y ∈ [Δ]}.

78 P. Chalermsook et al.

Similarly, the set of customers contains, for each vertex v ∈ V , for each indexx ∈
[Δ], a customer c(v, x).That is, the set of customers isC = {c(v, x) | v ∈ V, x ∈ [Δ]}.

The item set Sc(v,x) for the customer c(v, x), contains the item i(v, x), and
additionally, for each neighbor u of vertex v in graph G, for each index y ∈ [Δ],
item i(u, y) belongs to Sc(v,x). Formally, Sc(v,x) = {i(u, y) | (u, v) ∈ E, y ∈ [Δ]}∪
{i(v, x)}. Notice that

∣∣Sc(v,x)∣∣ ≤ Δ2 + 1 for all customers c(v, x) ∈ C. Moreover
for each item i(v, y) ∈ I, there are at most Δ2 + 1 customers c′ ∈ C such that
i(v, y) ∈ Sc′ .

We partition the set C of customers into Δ subsets C1, . . . , CΔ, such that for
each 1 ≤ h ≤ Δ, set Ch contains customers c(v, h) for all v ∈ V . Finally, for each
1 ≤ h ≤ Δ, each customer c ∈ Ch is assigned budget Bc = 1/2h.

This finishes the definition of the intermediate instance. For convenience, we
call the customers in set C virtual customers. In our final instance, we replace
each virtual customer with a number of new customers.

In order to define the final instance, for each 1 ≤ h ≤ Δ, we replace each
virtual customer c ∈ Ch with a set G(c) =

{
c(1), . . . , c(2h)

}
of 2h identical new

customers. Each new customer c(h′), for 1 ≤ h′ ≤ 2h has budget Bc(h′) = Bc
and Sc(h′) = Sc. The final set of customers is C′ =

⋃
c∈C G(c) and the final set of

items remains unchanged, I ′ = I. The number of customers in the final instance
is m̃ = |C′| = O(2Δ |C|) = |V | ·Δ ·2O(Δ) = |V | ·2O(Δ), while the number of items
is ñ = |V | ·Δ. Moreover, for each customer c ∈ C′, we have |Sc| ≤ Δ2 + 1. This
completes the construction description.

2.2 Analysis

We analyze the construction in the following two lemmas.

Lemma 1. In the Yes-Instance, there is a solution to the UDPMIN problem
instance whose value is at least |V |Δ1−ε.

Proof. Let U ⊆ V be a maximum independent set of size |V |/Δε in G. We set
the prices of the items i(u, y) ∈ I ′ as follows. If u �∈ U , then the price of i(u, y)
is set to ∞. Otherwise, if u ∈ U , then we set the price of i(u, y) to 1/2y. Notice
that, since |U | · Δ ≥ |V | · Δ1−ε, there are |V | · Δ1−ε items of finite prices. We
now show that this solution has value at least |V | ·Δ1−ε.

Indeed, for each vertex u ∈ U and an index y ∈ [Δ], consider the virtual
customer c′ = c(v, y) ∈ Cy. Notice that Sc′ contains item i(v, y) whose price
is 1/2y, but all other items in Sc′ have price ∞. Therefore, each customer c ∈
G(c′) buys the item i(v, y), and pays 1/2y for it. The total profit collected from
customers in G(c′) is 1, and so the total profit collected from all customers is at
least |U |Δ ≥ |V | ·Δ1−ε.

Lemma 2. In the No-Instance, the value of the optimal solution is at most
O(|V | ·Δε).

Proof. Let p∗ be an optimal solution, and let r∗ be its revenue. We first ar-
gue that we can assume w.l.o.g. that for each item i ∈ I ′, either p∗(i) ∈{
1/2h | 1 ≤ h ≤ Δ

}
, or p∗(i) = ∞.

Improved Hardness Results for Profit Maximization Pricing Problems 79

Indeed, suppose there is an item i ∈ I ′ with p∗(i) ∈ (1/2h, 1/2h−1). Then
any customer who buys item i must have budget at least 1/2h−1, so increasing
p∗(i) to 1/2h−1 does not affect these customers, and may only increase the
revenue. Therefore, from now on we assume that for each item i ∈ I ′, p∗(i) ∈{
1/2h | 1 ≤ h ≤ Δ

}
∪ {∞}.

Notice that for each virtual customer c ∈ C, all customers in G(c) contribute
the same amount to the total revenue. Let kc denote this amount. We now let
C∗ ⊆ C be the set of virtual customers for which kc = Bc. Equivalently,

C∗ =

{
c ∈ C : min

i∈Sc

{p∗(i)} = Bc

}

Claim. The customers in
⋃
c′∈C∗ G(c′) contribute at least r∗/2 to the total

revenue.

Due to space limitation, the proof of this claim appears in the full version. Notice
that |C∗| ≥ r∗/2, since for each virtual customer c ∈ C∗, the total budget of all
customers in G(c) is 1.

From now on, we focus on finding an independent set U in graph G of size at
least (r∗/2−|V |)/Δ from C∗. Since in the No-Instance, G does not contain an
independent set of size more than |V |/Δ1−ε, this implies that (r∗/2− |V |)/Δ ≤
|V | /Δ1−ε, and hence r∗ ≤ O(|V |Δε).

We construct an independent set U ⊆ V (G), together with a partition (C1, C2)
of C∗, as follows. Start with U, C1, C2 = ∅. We then perform Δ iterations, where
in iteration y, we consider each virtual customer c(v, y) in C∗ ∩ Cy, and do the
following:

– If vertex v is already in U , we add virtual customer c(v, y) into C1.
– If vertex v is not in U and U ∪ {v} remains an independent set, we add

vertex v to set U and add c(v, y) to C1. We say that c(v, y) is responsible for
adding vertex v into U .

– Otherwise, v �∈ U , but there is a vertex u ∈ U such that (u, v) ∈ E(G). We
add c(v, y) to C2 in this case and say that vertex u prevents the algorithm
from adding v into U .

In the end, when all customers in C∗ are processed, each virtual customer in C∗

is added to either C1 or C2, so C∗ = C1∪C2. Moreover, for each virtual customer
c(v, y) in C1, the corresponding vertex v belongs to U , so |U | ≥ |C1|/Δ. The
following claim will complete the proof of the lemma.

Claim. |C2| ≤ |V |, and so |U | ≥ |C∗ \ C2|/Δ ≥ (r∗/2− |V |)/Δ.

Proof. It is sufficient to show that for each vertex v ∈ V , no two virtual cus-
tomers c(v, y), c(v, y′) with y �= y′ belong to C2. Assume otherwise, and let
c(v, y), c(v, y′) ∈ C2. By our construction, we have c(v, y) ∈ Cy and c(v, y′) ∈ Cy′ .
Assume w.l.o.g. that y < y′, so c(v, y) was processed before c(v, y′).

Let u ∈ U be a vertex such that (u, v) ∈ E(G), and vertex u prevents the
algorithm from adding v to set U . Let c(u, x) be the customer responsible for
adding u to U . Then c(u, x) was processed before c(v, y), and so x ≤ y < y′.

80 P. Chalermsook et al.

Notice that the item i(v, y′) belongs to Sc(u,x). The price of i(v, y
′) then must

be set to at leastBc(u,x) = 1/2x > 1/2y
′
= Bc(v,y′), since otherwise the customers

in G(c(u, x)) would have paid below Bc(u,x) for item i(v, y′), contradicting the
fact that c(u, x) ∈ C∗. But then customer c(v, y′) must buy some item i′ �=
i(v, y′). Assume that i′ = i(w, z). Then w must be a neighbor of v in G, w �= v,
and so i′ ∈ Sc(v,y) must hold. But the price of i′ must be Bc(v,y′) = 1/2y

′
<

1/2y = Bc(v,y), and so the customers in G(c(v, y)) should have paid below Bc(v,y)
for item i′, contradicting the fact that c(v, y) ∈ C∗.

Hardness factors: The gap between Yes-Instance and No-Instance costs is
Δ1−2ε, while the number of customers in the instance is m̃ = |V (G)| ·2O(Δ), and
the number of items is ñ = |V (G)| ·Δ.

We first prove Theorem 1. We choose the parameter λ = O(log log n) such
that Δ = (logn)b, where b > 1

2ε . The hardness factor then becomes g = Δ1−2ε ≥
logb−1 n, while m̃ + ñ = |V (G)|2O(Δ) ≤ 2O(Δ logn) ≤ 2log

b+2 n ≤ 2g
1+O(ε)

. Tak-

ing logarithm on both sides will give g = log1−O(ε)(m̃ + ñ). The deterministic

reduction takes time 2O(Δ) = n(logn)f(ε)

for some function f , so we have proved
the first part of Theorem 1.

To prove the second part, we use the randomized version of Theorem 4, and
choose λ = (log n)b for some large constant b, while ε is set to be any small enough

constant for which Theorem 4 works. In this case, we have Δ = 2O((logn)b) and

ñ ≤ |V (G)|Δ ≤ 2(logn)
b+2

, while g = Δ1−2ε ≥ 2O((logn)b). It is easy to check

that g ≥ 2log
1−O(1/b) ñ, as desired. Since we use the randomized reduction, the

running time of the reduction is 2(logn)
O(b)

, and so the result holds under the

assumption that NP �⊆ ZPTIME(n(logn)O(b)

).
To prove Theorem 2, we choose λ in Theorem 4 to be any sufficiently large

constant. Denote by k = maxc∈C′ |Sc|. Since the construction guarantees that
k ≤ 2Δ2, we have the hardness factor of Δ1−2ε ≥ k1/2−ε. In this case, the
deterministic reduction only takes polynomial time, so this hardness result holds
under the assumption that P �= NP.

3 Tollbooth Pricing

In this section we prove Theorem 3. It will be useful to introduce the notion of
fractional coverage and show how to convert fractional coverage to an integral
one. Given an instance of Unique Coverage and a fractional solution that assigns
a non-negative weight w(S) to every set S ∈ S, we say that an element u ∈ U
is fractionally covered if and only if 1/4 ≤

∑
S:u∈S w(S) ≤ 1. We argue that any

good fractional coverage can be converted into a good integral coverage with a
constant loss in the solution value. The proof of the following lemma appears in
the full version of the paper.

Lemma 3. There is an efficient randomized algorithm, that, given a fractional
solution of value βn to any instance of the Unique Coverage problem, w.h.p. finds
an integral solution of value Ω(βn) to the Unique Coverage instance.

Improved Hardness Results for Profit Maximization Pricing Problems 81

3.1 Construction

Let (U,S) be an instance of Unique Coverage, where |U | = n and |S| = m.
We construct an instance of Tollbooth Pricing as follows. Graph G = (V,E)
consists of m+1 vertices v0, . . . , vm. Let h = �logm�. For each consecutive pair
(vi−1, vi) of vertices, 0 < i ≤ m, we add h + 1 parallel edges ei0, . . . , e

i
h. These

edges are viewed as representing the set Si ∈ S. We now define the set of paths
(or customers) in the graph. All paths start from v0 and end at vm. For each
element u ∈ U , for each j : 1 ≤ j ≤ h, we have a set P(u, j) of 2h−j paths. The
budget of each path in P(u, j) is 2j, the source vertex is v0, and the sink is vm.
Each path in P(u, j) consists of edges e1i1 , e

2
i2
, . . . , emim , where for all 1 ≤ � ≤ m,

if u ∈ S then i = j, or otherwise i = 0. This completes the description of the
construction. Notice that the total budget is B = nh2h. Let m̃ and ñ denote the
number of customers (i.e. the number of paths) and items, respectively. Notice
that m̃ ≤ O(nm logm), and ñ ≤ nh ≤ O(n logm) ≤ O(n2), since we can assume
w.l.o.g. that |S| ≤ 2n.

3.2 Analysis

The analysis consists of two parts. First we show that if there is a solution
to Unique Coverage that satisfies a β-fraction of the elements, then there is a
solution to Tollbooth Pricing of value at least β · B. In the second part, we show
an efficient randomized algorithm, that, given any solution to Tollbooth Pricing
instance G of value α · B, w.h.p. finds a solution to the Unique Coverage problem
that satisfies Ω(αn) elements.

Lemma 4. If there is a solution to the Unique Coverage instance (U,S) that
satisfies at least βn-elements, then there is a solution to the Tollbooth Pricing
instance of value βB.

Proof. Let S ′ ⊆ S be a solution to the Unique Coverage problem, and let U ′ ⊆ U
be the set of elements uniquely covered by S ′, |U ′| ≥ βn. For each Si ∈ S ′,
for each j : 1 ≤ j ≤ h, we set the price of the edge eij to 2j. The prices of all

other edges (including the edges ei0 for all i) are set to 0. For each u ∈ U ′ and
j : 1 ≤ j ≤ h, we consider the revenue collected from the paths in P(u, j). Let Si
be the set that uniquely covers u in the solution. Then for each path in P(u, j),
exactly one edge eij on the path has a non-zero price. This price is 2j - the same
as the budget of the path, while all other edges have price 0. Therefore, each
such path contributes 2j to the solution value, and the total contribution of the
paths in P(u, j) is 2h. This implies the lemma.

Lemma 5. There is an efficient randomized algorithm, that, given any solution
to the Tollbooth Pricing instance G of value αB, w.h.p. finds a solution to the
Unique Coverage instance (U,S) that satisfies Ω(αn) of the elements.

Proof. Let p∗ : E → R≥0 be any solution of value αB to the Tollbooth Pricing
problem. Let P1 be the set of paths, such that each P ∈ P1 contributes at least

82 P. Chalermsook et al.

half of its budget to the solution. Our first observation is that the profit collected
from the paths in P1 must be at least αB/2 (otherwise, we can multiply the price
of each edge by a factor of two and get a better solution). From now on, we will
only focus on paths in P1 and we will discard all other paths. We say that a
path P ∈ P1 is of type 1 if at least half the cost it pays goes to edges in set
E0 =

{
ei0 : 1 ≤ i ≤ m

}
, and it is of type 2 otherwise. Let P ′ and P ′′ denote the

set of paths of type 1 and 2 respectively. We distinguish between two cases.

Case 1: Paths of type 1 contribute at least αB/4 to the solution value. We
claim that in this case the solution value is at most O(B/ logm), and therefore
it is sufficient to find a solution to Unique Coverage instance that satisfies a
Ω(1/ logm)-fraction of the elements. We then show an algorithm to find such a
solution.

Indeed, consider some element u ∈ U . Recall that, for all j, every path in
the sets P(u, j) traverses all edges in the set E0(u) =

{
ei0 : u �∈ Si

}
, and these

are the only edges from E0 traversed by these paths. Let Cu =
∑

e∈E0(u)
p∗(e)

be the total price of these edges. A path P ∈ P(u, j) can belong to P ′ only if
2j/4 ≤ Cu ≤ 2j . This means that there are at most 3 values of j : 1 ≤ j ≤ h

for which P(u, j)∩P ′ �= ∅, so for each u ∈ U , the paths in set
⋃h
j=1 P(u, j) only

contribute at most an O(1/h) = O(1/ logm)-fraction of their total budget to the
solution. Therefore, the solution value is at most O(B/h) = O(B/ logm). Now
we show an algorithm for the Unique Coverage problem instance that satisfies an
Ω(1/ logm)-fraction of the elements. From Lemma 3, it is enough to construct a
fractional solution of value Ω(n/ logm). For each element u ∈ U , let δ(u) be the
number of sets in S to which element u belongs. We partition the elements into
h = �logm� classes C1, . . . , Ch where class Cj contains elements u with 2j ≤
δ(u) ≤ 2j+1. Let j∗ be the class containing the maximum number of elements, so
|Cj∗ | ≥ Ω(n/ logm). We set the weight of every set S to be w(S) = 1/2j

∗+1. This
ensures that all elements in Cj∗ are fractionally covered. Applying Lemma 3, we
obtain an integral solution of value Ω(n/ logm).

Case 2: Assume now that the paths in P ′′ contribute at least αB/4 to the
solution value. Let r′′ denote the total revenue collected from these paths by
edges in E1 = E \E0. Then we have that r′′ ≥ Ω(αB) = Ω(αnh2h). Notice that
by the definition of set P ′′, each path P ∈ P ′′ pays at least 1/4 of its budget for
the edges in set E1 that lie on path P .

We now partition the paths in P ′′ into sets P ′′
1 , . . . ,P ′′

h where set P ′′
j contains

all type-2 paths whose budget is 2j. Let j∗ be the index for which the profit
contributed by the paths in P ′′

j∗ is maximized. This profit is at least αn2h.

We say that element u is good if 2j
∗
/4 ≤

∑
i:u∈Si

p∗(eij∗) ≤ 2j
∗
. From the

above arguments, for each path P ∈ P ′′, if P ∈ P(u, j∗), then the corresponding
element u must be good. Moreover, if u is good, then all paths in P(u, j∗)
belong to P ′′

j∗ . Therefore, at least Ω(αn) of the elements in U must be good. We
now define a fractional solution to the Unique Coverage problem, where every
the weight of every set Si ∈ S is set to w(Si) = p(eij∗)/2

j∗ . Notice that all

Improved Hardness Results for Profit Maximization Pricing Problems 83

good elements are fractionally covered, thus giving us a fractional solution where
Ω(αn) elements are satisfied. We finally invoke Lemma 3 to complete the proof.

Acknowledgement. The first author thanks Khaled Elbassioni for introduc-
ing him to pricing problems and for explaining the differences between various
pricing models. He also thanks Danupon Nanongkai and Khaled Elbassioni for
useful discussions about UDPMIN and SMP.

References

1. Aggarwal, G., Feder, T., Motwani, R., Zhu, A.: Algorithms for Multi-product Pric-
ing. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 72–83. Springer, Heidelberg (2004)

2. Balcan, M.-F., Blum, A.: Approximation algorithms and online mechanisms for
item pricing. Theory of Computing 3(1), 179–195 (2007)

3. Briest, P.: Uniform Budgets and the Envy-Free Pricing Problem. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 808–819. Springer, Heidelberg
(2008)

4. Briest, P., Krysta, P.: Buying cheap is expensive: hardness of non-parametric multi-
product pricing. In: SODA, pp. 716–725 (2007)

5. Chen, N., Deng, X.: Envy-Free Pricing in Multi-item Markets. In: Abramsky,
S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.)
ICALP 2010, Part II. LNCS, vol. 6199, pp. 418–429. Springer, Heidelberg (2010)

6. Chen, N., Ghosh, A., Vassilvitskii, S.: Optimal envy-free pricing with metric sub-
stitutability. SIAM J. Comput. 40(3), 623–645 (2011)

7. Cheung, M., Swamy, C.: Approximation algorithms for single-minded envy-free
profit-maximization problems with limited supply. In: FOCS, pp. 35–44. IEEE
Computer Society (2008)

8. Demaine, E.D., Feige, U., Hajiaghayi, M., Salavatipour, M.R.: Combination can be
hard: Approximability of the unique coverage problem. SIAM J. Comput. 38(4),
1464–1483 (2008)

9. Elbassioni, K., Raman, R., Ray, S., Sitters, R.: On Profit-Maximizing Pricing for
the Highway and Tollbooth Problems. In: Mavronicolas, M., Papadopoulou, V.G.
(eds.) SAGT 2009. LNCS, vol. 5814, pp. 275–286. Springer, Heidelberg (2009)

10. Elbassioni, K., Sitters, R., Zhang, Y.: A Quasi-PTAS for Profit-Maximizing Pricing
on Line Graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 451–462. Springer, Heidelberg (2007)

11. Feige, U.: Relations between average case complexity and approximation complex-
ity. In: STOC, pp. 534–543 (2002)

12. Gamzu, I., Segev, D.: A Sublogarithmic Approximation for Highway and Tollbooth
Pricing. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F.,
Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 582–593. Springer,
Heidelberg (2010)

13. Grandoni, F., Rothvoß, T.: Pricing on paths: A ptas for the highway problem. In:
SODA, pp. 675–684 (2011)

14. Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry,
F.: On profit-maximizing envy-free pricing. In: SODA, pp. 1164–1173 (2005)

84 P. Chalermsook et al.

15. Hartline, J.D., Koltun, V.: Near-Optimal Pricing in Near-Linear Time. In: Dehne,
F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 422–431.
Springer, Heidelberg (2005)

16. Khandekar, R., Kimbrel, T., Makarychev, K., Sviridenko, M.: On Hardness of Pric-
ing Items for Single-Minded Bidders. In: Dinur, I., Jansen, K., Naor, J., Rolim, J.
(eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 202–216. Springer,
Heidelberg (2009)

17. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the
Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC 2002, pp.
767–775. ACM, New York (2002)

18. Rusmevichientong, P.: A non-parametric approach to multi-product pricing: The-
ory and application. Ph. D. thesis, Stanford University (2003)

19. Rusmevichientong, P., Van Roy, B., Glynn, P.W.: A nonparametric approach to
multiproduct pricing. Oper. Res. 54, 82–98 (2006)

20. Trevisan, L.: Non-approximability results for optimization problems on bounded
degree instances. In: STOC, pp. 453–461 (2001)

Online Flow Time Scheduling in the Presence

of Preemption Overhead

Ho-Leung Chan�, Tak-Wah Lam��, and Rongbin Li

The University of Hong Kong, Hong Kong
{hlchan,twlam,rbli}@cs.hku.hk

Abstract. This paper revisits the online problem of preemptive schedul-
ing to minimize the total flow time. Previous theoretical results often
assume that preemption is free, which is not true for most systems. This
paper investigates the complexity of the problem when a processor has
to perform a certain amount of overhead (extra work) before it resumes
the execution of a job preempted before. Such overhead causes delay
to all unfinished jobs. In this paper we first consider single-processor
scheduling. We show that no online algorithm can be competitive for
total flow time in the presence of preemption overhead (note that the
well-known online algorithm SRPT is 1-competitive when preemption
overhead is zero). We then consider resource augmentation and show a
simple algorithm that is (1+ ε)-speed (1+ 1

ε
)-competitive for minimizing

total flow time on a single processor. We also extend the result to the
multiprocessor setting.

1 Introduction

This paper is concerned with online scheduling of jobs that can be preempted
but with a certain overhead, which is modeled as extra work for a processor
that delays the execution of jobs. This paper studies how to use preemption
effectively while minimizing the delay. Specifically, we consider schedules that
minimize the total flow time of jobs, where the flow time of a job is defined as
the completion time of the job minus its arrival time. An algorithm is said to
be c-competitive if for any input sequence, its total flow time is at most c times
that of the optimal schedule.

It is well-known that preemption is undesirable because it incurs overhead due
to context switching. Online flow time scheduling has been studied intensively
for two decades; it is perhaps surprising that not much theoretical results have
been known on the effect of preemption overhead. Most previous work assumes
preemption is free, i.e., a job can be interrupted and resumed without any extra
cost (e.g., [8, 11]). In this setting, the simple algorithm SRPT, which always
schedules the job with the minimum remaining size, is 1-competitive and always
minimizes the total flow time. Bartal et al. [3] considered a model where the
flow time and preemption overhead are accounted separately, i.e., a processor

� The research is partially supported by GRF Grant HKU710210E.
�� The research is partially supported by HKU Grant 201109176197.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 85–97, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

86 H.-L. Chan, T.-W. Lam, and R. Li

can switch from one job to another job in zero time but it costs k > 0 units
of “abstract” overhead. The objective is to minimize the total flow time plus
the total preemption overhead. A competitive online algorithms has been given
for this objective. However, this model might have oversimplified the charging
of preemption overhead. In reality, when a job is preempted for later execution,
the overhead increases the flow time of all unfinished jobs, and the actual “cost”
of the overhead is sensitive to the number of unfinished jobs.

In this paper, we adopt a more natural model studied by Heydari et al. [10], in
which preemption overhead is modeled as extra h units of work for a processor
and the time incurred directly increases the flow time of all unfinished jobs. The
objective is simply to minimize the total flow time of all jobs. More specifically,
the h units of overhead is due to the re-configuration of the runtime environment
before a job can be processed; when a processor runs a job for the first time or
resumes a job preempted before, the processor has to perform h units of extra
work. We assume that the processing of overhead can also be interrupted, but
the entire overhead needs to be processed again upon next resumption.

Based on the above model that charges preemption overhead into flow time,
Heydari et al. [10] proposed an online algorithm for minimizing the total flow
time and they evaluated it by simulations and experiments. Their algorithm is
based on a simple greedy strategy that recomputes the currently best schedule
whenever a new job arrives, assuming no more job will arrive in the future.
It is easy to see that this algorithm is not competitive. In this paper we in-
deed show that any online algorithm is Ω(n1/4)-competitive. Yet, with resource
augmentation, we give a simple algorithm QSRPT that is (1 + ε)-speed (1+ 1

ε)-
competitive for any ε > 0. Note that the algorithm of Heydari et al. [10] is not
s-speed O(1)-competitive for any s < 1.5.

It is worth-mentioning that, for other objectives, online scheduling with pre-
emption overhead is relatively easier. Liu and Cheng [13] considered the same
online setting as in this paper but the objective of minimizing the total com-
pletion time. They gave a 1.5625-competitive algorithm. We can in fact adapt
the analysis of QSRPT to show that, without resource augmentation, QSRPT is
(1+ε+O(1/n))-competitive for total completion time, for any ε > 0 (Details are
left to the full paper). Hence, the competitive ratio can be arbitrarily close to 1
with sufficient jobs. Another interesting objective is maximum flow time. Note
that FIFO, which is non-preemptive in nature, is 1-competitive for minimizing
the maximum flow time no matter the preemption overhead is zero or finite.

This paper presents three results on flow time scheduling with preemption
overhead, the first two are based on single processor, while the third for multi-
processors. Details are as follows:

• We show that the problem has unbounded competitive ratio even if the
preemption overhead is small relative to the job size. In particular, we show that
any algorithm, without resource augmentation, is Ω((δ

1+δ)
1/4n1/4)-competitive,

where n is the number of jobs in the input and δ is the ratio of preemption
overhead to the minimum job size. Notice that in Bartal et al’.s model, the

Online Flow Time Scheduling in the Presence of Preemption Overhead 87

separation of flow time and overhead accounting makes scheduling easier and
allows an O(

√
δ)-competitive algorithm without extra resource [3].

• Given the strong lower bound, we consider the resource augmentation
model where the online algorithm is given an s-speed processor, for some s ≥ 1.
Formally, an s-speed processor can process s units of preemption overhead or
the work of the jobs in one unit of time. Since preemption incurs overhead, a
natural idea is to process a job for at least a quantum of work before preempt-
ing it. We integrate this idea into SRPT, that is, we select the job with the
minimum remaining size after completing each quantum. We call the resulting
algorithm QSRPT. Notice that at selection time, if a job not being processed
currently has a size slightly smaller than the job being processed, QSRPT will
still preempt the current job and switch to the smaller job. This is true even
if we can complete the current job earlier than the smaller job which requires
preemption overhead. While this looks unnatural, insisting on the smaller job
at selection time keeps the analysis simple. In fact, we are not able to analyze
the algorithm which selects the job with the earliest completion time. We show
that QSRPT is (1 + ε)-speed (1 + 1

ε)-competitive, for any ε > 0. Notice that
if the jobs are non-preemptive, no algorithm can be O(1)-competitive with an
O(1)-speed processor [15].

• When there is more than one processor, resuming a job may require different
amount of overhead depending on where the job is resumed. In this case, we
assume that h units of overhead is needed for starting a job for the first time or
resuming a preempted job on the same processor; and h′ ≥ h units of overhead
for resuming a job on a different processor. To distinguish the two types of
overhead, we call h the preemption overhead and h′ the migration overhead.
Interestingly, we notice that there is a non-migratory algorithm IMD which is
(1 + ε)-speed O(1ε)-competitive on total flow time when preemption overhead is
assumed to be zero [2]. IMD assigns a job to a processor immediately when a job
is released. When preemption overhead is non-zero, we use IMD to assign jobs to
the processors and then schedule each processor by QSRPT. We can easily show
that IMD plus QSPRT is (1 + ε)2-speed O(1

ε2)-competitive for total flow time.
Interestingly, we can improve the ratio by a more careful and direct analysis of
QSRPT (instead of extending the previous analysis of IMD). This shows that
QSRPT is indeed (1 + ε)-speed O(1ε)-competitive.

Related Work. Scheduling with preemption overhead was also studied in the
offline context. Some approximation results have been obtained. Liu and Cheng
[12] considered single processor scheduling where the jobs have different release
times, preemption overheads and delivery times. The objective is to minimize
the maximum completion time plus delivery time. They showed the problem
is NP-hard and gave a PTAS for the problem. Schuurman and Woeginger [16]
considered parallel processor scheduling where all jobs are released at time 0.
The objective is to minimize the maximum completion time. They gave a 4/3-
approximate algorithm for jobs with different preemption overheads, and a PTAS
for jobs with identical preemption overhead. Chen [4] and Monma and Potts
[14] studied parallel processor scheduling where jobs have different types and

88 H.-L. Chan, T.-W. Lam, and R. Li

preemption overhead is incurred only when the processor resumes a job with a
type different from the current job. They gave O(1)-approximate algorithms to
minimize the maximum completion time.

A perhaps related problem is non-preemptive scheduling with setup overhead
depending on the types of the jobs. Divakaran and Saks [7] considered online
algorithms to minimize the maximum flow time on a single processor. They gave
an O(1)-competitive algorithm. Other results are based on the offline setting
(e.g., [5, 6, 9]). See the survey by Allahverdi et. al. [1].

Notations. We consider online scheduling on m ≥ 1 processors. Jobs arrive
online. Each job j has a release time r(j) and size p(j). Recall that h denotes
the preemption overhead, and h′ the migration overhead. Note that each time
before starting or resuming a job j, a preemption (or migration) overhead must
be performed. For the analysis reason, this preemption (or migration) overhead is
called a preemption (or migration) overhead of the job j. Following, the work of
j always refers to the p(j) units work of j. The overhead of j refers to preemption
or migration overhead of j. We say that an algorithm is processing the work of
j if it is processing the p(j) units work of j. It is processing j if it is processing
work or overhead of j.

2 Lower Bound

This section shows that even on a single processor, no algorithm is competitive
without resource augmentation.

Theorem 1. Consider single processor scheduling to minimize total flow time
with preemption overhead h > 0. Any algorithm is Ω((δ

1+δ)
1/4n1/4)-competitive,

where n is the number of jobs and δ = h
pmin

, where pmin is the minimum job size.

Let Alg be any online algorithm. Below we focus on input instances of which
the minimum job size is 1 and δ = h

pmin
= h. For any integer P ≥ 1, we give an

instance with n = O(P 4) jobs such that the total flow time of Alg is at least P
times that of the optimal schedule. To obtain a lower bound result for arbitrary
minimum job size (Theorem 1), we can simply scale the instance accordingly.

The instance is based on a simple idea. We release a big job and a stream
of small jobs. If Alg continues processing the big job, many small jobs are de-
layed and the flow time is immediately bad. Otherwise, if Alg preempts the big
job, it incurs some extra preemption overhead which can be avoided by the op-
timal schedule. This extra overhead can be accumulated and the flow time of
Alg becomes w(1) times the optimal. Furthermore, the rate at which the extra
overhead is accumulated decreases with δ = h

pmin
, and the result follows.

Lower Bound Instance. Assume the minimum job size is 1 and δ = h
pmin

= h.

Let P ≥ 1 be any integer. Let w = (1+ δ)+(1+ δ)+ δ
P . We release the following

two streams of jobs. At each time t = 0, w, 2w, . . . , we release a small job of size
1. At each time t = 0, Pw, 2Pw, . . . , we release a big job of size P (1 + δ). Let

Online Flow Time Scheduling in the Presence of Preemption Overhead 89

to be the earliest time such that Alg processes a big job non-preemptively for

δ+ P (1+δ)
2 units of time. If no such event occurs until P

3(1+δ)w
δ , let to =

P 3(1+δ)w
δ .

We terminate the above two steams at time to. Starting from to, we release a

small job of size 1 at time to + (i− 1)(1 + δ) for i = 1, 2, . . . , P
4(1+δ)
δ .

Fact 1. Let n be the number of jobs released. Then n ≤ 3P
4(1+δ)
δ .

Proof. During [0, to), we release at most P 3(1+δ)w
δ /w small jobs and

P 3(1+δ)w
δ /(Pw) big jobs. From to, we release P 4(1+δ)

δ small jobs. ��

Below we show that the flow time of Alg is Ω(P) times that of the optimal,
hence it is Ω((δ

1+δ)
1/4n1/4)-competitive.

Consider the jobs released by the two streams during [0, Pw). By first process-
ing the big job without preemption and then each small jobs, the total amount
of time required is (δ + P (1 + δ)) + P (1 + δ) = Pw. Hence, it is possible to
complete all the jobs by time Pw. In particular, at time to, let t

′
o be the largest

multiple of Pw that is less than or equal to to. At time t′o, the optimal schedule
can complete all jobs released before time t′o. From time t′o to time to, it can
simply schedule the new released small jobs. Hence, the optimal schedule can
have at most one big job and one small job unfinished at time to. However, we
can show that Alg has many jobs remaining at time to.

Lemma 1. Consider all jobs remaining in Alg at time to. Either (i) the total
amount of remaining work for small jobs is at least P

6 , or (ii) the total amount

of remaining work for big jobs is at least P 2(1+δ)
6 .

Proof. There are two cases depending on whether to is the first time that a

big job is processed non-preemptively for at least δ + P (1+δ)
2 units of time. If

it is the case, the number of small jobs released during this period is at least

(δ + P (1+δ)
2)/w ≥ P (1+δ)

2 /(2 + 3δ) ≥ P/6. Since all these small jobs are not
processed, the total remaining work for small jobs is at least P/6.

Otherwise, we have to =
P 3(1+δ)w

δ . Let R1 and R2 be the amount of remaining
work for small and big jobs, respectively. Then, during [0, to], Alg has processed
P 2(1+δ)

δ · P (1 + δ) − R2 units of work for big jobs. Alg processes δ units of

preemption overhead before processing at most P (1+δ)
2 units of work. Hence, the

amount of time that Alg is processing a big job is at least (P
3(1+δ)2

δ − R2) +

(P
3(1+δ)2

δ −R2)/
P (1+δ)

2 ·δ = P 3(1+δ)2

δ +2P 2(1+δ)−R2(1+
2δ

P (1+δ)). Similarly, the

amount of time that Alg is processing a small job is at least (P
3(1+δ)
δ −R1)(1+δ).

The total amount of time spent on small and big jobs is at most to. Hence, the

sum of the above two terms is at most to = P 3(1+δ)w
δ = 2P

3(1+δ)2

δ + P 2(1 + δ).

Rearranging the terms, we have P 2(1 + δ)−R2(1 +
2δ

P (1+δ))−R1(1 + δ) ≤ 0. If

R1 ≥ P/6, then (i) is true. Otherwise, P 2(1+ δ) ≤ R2(1+
2δ

P (1+δ))+R1(1+ δ) ≤
R2(1+2)+P (1+δ)/6. Hence, R2 ≥ 5

18P
2(1+δ) > 1

6P
2(1+δ) and (ii) is true. ��

90 H.-L. Chan, T.-W. Lam, and R. Li

Lemma 2. The total flow time of Alg is Ω(P) times the optimal total flow time.

Proof. Recall that the optimal schedule Opt can complete all except two jobs by
time to. At any time during [0, to], Opt has at most P unfinished jobs. During

[to, to+
P 4(1+δ)2

δ], Opt has at most 3 unfinished jobs. Opt has at most 2 unfinished

jobs at time to+
P 4(1+δ)2

δ , which can be completed in 2(δ+P (1+δ)) units of time.

Hence, the total flow time of Opt is at most toP+3P
4(1+δ)2

δ +2 ·2(δ+P (1+δ)) ≤
3P

4(1+δ)2

δ + 3P
4(1+δ)2

δ + 8P
4(1+δ)2

δ ≤ 14P
4(1+δ)2

δ .
By Lemma 1, at time to, Alg has at least P/6 units of work from small jobs

or at least P 2(1+δ)
6 units of work from big jobs. It is easy to see that Alg has at

least P/6 jobs remaining during [to, to +
P 4(1+δ)2

δ]. The total flow time of Alg is

at least P/6 · P
4(1+δ)2

δ = P 5(1+δ)2

6δ , which is at least P/84 times that of Opt. ��

3 A (1 + ε)-Speed (1 + 1
ε
)-Competitive Algorithm

This section gives a (1 + ε)-speed (1 + 1
ε)-competitive algorithm for the single

processor setting. We call the algorithm QSRPT. Intuitively, to minimize total
flow time, it is natural to follow SRPT and give priority to the job with the
minimum remaining work. But since there is preemption overhead, we should
process a job for at least a quantum amount of work before preempting it.
QSRPT divides the work of a job j into quantums each of fixed size � > 0,
except the final quantum which has size less than or equal to �. We assume that
when QSRPT finishes the current quantum of a certain job, an interrupt will
occur immediately to trigger selecting the next job.

Algorithm QSRPT(�). Let � ≥ 0 be a parameter. At any time t, if
the processor is idle or if a selection interrupt occurs, QSRPT(�) selects
a job for processing if there is some job unfinished. It selects the job j
with the minimum remaining work, and it processes the next � units of
work of j (or all remaining work of j if the remaining work of j is at most
�). We call this work a quantum. Note that if j is not being processed
just before t, QSRPT(�) first processes h units of preemption overhead
for j. QSRPT(�) sets the next selection interrupt to the time at which
it finishes processing this quantum.

If a quantum is processed immediately after the preemption overhead, we call it
an inefficient quantum. Otherwise, we call it an efficient quantum. Note that an
efficient quantum is processed immediately after another quantum of the same
job. The final quantum of each job may be efficient or inefficient.

When QSRPT selects a job j at time t, j is the job with the minimum re-
maining work at time t. However, new jobs with smaller size may arrive while

Online Flow Time Scheduling in the Presence of Preemption Overhead 91

QSRPT is processing j. Notice that QSRPT will process j for only a bounded
amount of time before the next selection occurs. Precisely, QSRPT re-selects in
at most h+

s units of time, where h is the size of the preemption overhead and s
is the speed of the processor of QSRPT.

Our main result is that when QSRPT(�) is given a (1 + ε)-speed processor,
we can set � to h

ε . Then, QSRPT(hε) is (1 + ε)-speed (1 + 1
ε)-competitive. The

analysis is divided into the following two subsections. To ease the discussion, for
the rest of this section, we assume QSRPT is given a (1+ ε)-speed processor and
� = h

ε . We also omit the parameter � from the notation.

3.1 Reduction to Setting without Preemption Overhead

Consider any input instance I. In this section, we transform both the schedule
of QSRPT and the optimal schedule OPT into other schedules where there is no
preemption overhead. We show that the performance of QSRPT can be implied
based on the performance of the new schedules.

We define another input instance I∗ based on I as follows. Jobs in I∗ have no
preemption overhead. Whenever a job j is released at time t in I, we release a
corresponding job j∗ in I∗ and the size of j∗ is p(j∗) = p(j) + h.

Let OPT* be a schedule for I∗ which always processes the job in I∗ with
the minimum remaining size. Note that OPT* minimizes the total flow time for
input I∗. We observe that OPT* is a lower bound for OPT as follows.

Lemma 3. The total flow time incurred by OPT on I is at least the total flow
time incurred by OPT* on I∗.

Proof. For any job j in I, the total amount of time that OPT spent on processing
j is at least p(j) + h. Let S be a schedule for I∗ which processes j∗ whenever
OPT processes the corresponding job j in I. The flow time of S on I∗ is at most
the flow time of OPT on I. OPT* is running SRPT on I∗, which minimizes the
total flow time. The total flow time of OPT* is at most that of S. ��

To analyze QSRPT, the main difficulty is that QSRPT may sometimes work on
preemption overhead which can be avoided by OPT, e.g., by avoiding preemption
of the jobs. Hence, there may be times during which QSRPT is wasting its
processing power. Intuitively, since QSRPT has a (1+ε)-speed processor, we can
charge these wasted processing power to the period that QSRPT is processing
useful work. Formally speaking, we define a schedule QSRPT* on I∗ which
selects jobs identically as QSRPT, but processes the job at an adjusted speed
depending on what kind of work QSRPT is processing. Details are as follows.

Definition 1 (Definition of schedule QSRPT*). At any time t, QSRPT*
processes a job j∗ if and only if QSRPT is processing the corresponding job j
at time t. The speed at which QSRPT* processes j∗ varies depending on which
part of j QSRPT is processing.

92 H.-L. Chan, T.-W. Lam, and R. Li

1. If QSRPT is processing the preemption overhead of j, then QSRPT* pro-
cesses j∗ at speed 1.

2. If QSRPT is processing the work of j but is not processing the final quantum,
there are two cases. If this quantum is inefficient, QSRPT* processes j∗ at
speed 1; otherwise, QSRPT* proceeses j∗ at speed (1 + ε).

3. If QSRPT is processing the work of j and is processing the final quantum,
there are two cases. Let f be the size of this final quantum. If this quantum
is inefficient, QSRPT* processes j∗ at speed (1+ ε)+ εh

f ; otherwise, i.e., this

quantum is efficient, QSRPT* proceeses j∗ at speed (1 + ε) + (1+ε)h
f .

Lemma 4. For any job j∗, the work done on j∗ by QSRPT* is p(j∗) = p(j)+h.

Proof. Note that the length of time for QSRPT to process a preemption overhead
is h

1+ε . The length of time for QSRPT to process � = h
ε units of work is h

ε(1+ε) .

The length of time for QSRPT to process the final quantum (of size f) is f
1+ε .

For a maximal period during which QSRPT is processing the preemption
overhead, the work done on j∗ is h

1+ε . For a period that QSRPT processes a

non-final inefficient quantum, the work done on j∗ is h
ε(1+ε) . For a period that

QSRPT processes a non-final efficient quantum, the work done on j∗ is h
ε .

Assume that j has x inefficient quantums and y efficient quantums excluding
the final quantum. Hence, the size of j is p(j) = (x + y)hε + f . The size of j∗ is
p(j∗) = p(j) + h. We consider two cases depending on the final quantum of j. If
the final quantum is efficient, then QSRPT processes x preemption overhead of
j. The total work done on j∗ equals

x · (h
ε(1+ε) +

h
1+ε) + y · hε + ((1 + ε) + (1+ε)h

f) · f
1+ε = (x + y)hε + f + h.

Similarly, if the final quantum is inefficient, then QSRPT processes (x + 1)
preemption overhead of j. The total work done on j∗ equals
x · h

ε(1+ε) +(x+1) · h
1+ε + y · hε + ((1+ ε) + εh

f) · f
1+ε = (x+ y)hε + f + h. ��

Lemma 5. The total flow time incurred by QSRPT on I equals the total flow
time incurred by QSRPT* on I∗.

Proof. By Lemma 4, the jobs j and j∗ complete at the same time. ��

In Theorem 3 in the next subsection, we show that the flow time of QSRPT* is
at most (1 + 1

ε) times that of OPT*. Hence, together with Lemma 3 and 5, we
conclude with the following theorem.

Theorem 2. When � = h
ε , QSRPT(�) is (1 + ε)-speed (1 + 1

ε)-competitive.

Before analyzing QSRPT*, we first notice three properties of it. we say that
QSRPT* selects job j∗ at time t if QSRPT selects the corresponding job j at
time t. We say a selection interrupt occurs in QSRPT* at time t if a selection
interrupt occurs in QSRPT at time t. Property 1 is obvious.

Online Flow Time Scheduling in the Presence of Preemption Overhead 93

Property 1. (i) QSRPT* never idles if there is some job unfinished.
(ii) QSRPT* always processes the selected job at speed at least 1.
(iii)After QSRPT* selects a job j∗, it processes j∗ for at most (h+ h

ε)/(1+ε) =
h
ε

units of time before the next selection interrupt occurs.

Property 2. Assume QSRPT* selects a job j∗ at time t, then j∗ is the unfinished
job with the minimum remaining work at time t.

Proof. Consider any unfinished job j∗o in QSRPT* and the corresponding job
jo in QSRPT. Since a selection interrupt occur at time t and jo is unfinished,
QSRPT has processed c quantums of jo, where c is an integer. Furthermore, these
c quantums are non-final. Let p(jo, t) and p(j

∗
o , t) be the remaining size of jo and

j∗o at time t, respectively. Then p(jo, t) = p(jo)− chε . Among those c quantums,
suppose there are x inefficient quantums and (c − x) efficient quantums. Then
QSRPT processes x preemption overheads for jo by time t. The amount of
work done on j∗o by QSRPT* equals x h

1+ε + x h
ε(1+ε) + (c − x)hε = chε . Hence,

p(j∗o , t) = p(j∗o)− chε = h+ p(jo, t).
Hence, for any unfinished jobs in QSRPT*, its remaining size at time t is h

plus the remaining size of the corresponding job in QSRPT. At time t, QSRPT*
selects the job j∗ because QSRPT selects the corresponding job j. j is the
unfinished job with the minimum remaining size in QSRPT, hence j∗ is the
unfinished job with the minimum remaining size in QSRPT*. ��

Property 3. At any time, each unfinished job that is not being processed by
QSRPT* has remaining size at least h.

Proof. At any time t, consider any unfinished job j∗ that is not being processed
by QSRPT*. Let p(j∗, t) and p(j, t), respectively, be the remaining size of j∗ and
the corresponding job j in QSRPT at time t. Note that QSRPT has processed
c non-final quantums of j, where c is an integer. By the same calculation as in
the proof of Property 2, p(j∗, t) = p(j, t) + h ≥ h. ��

3.2 Analysis of QSRPT* and OPT*

Recall that I∗ is an input where jobs have no preemption overhead. The schedule
OPT* always processes the job with the minimum remaining size using a 1-speed
processor. QSRPT* is a schedule satisfying Property 1, 2 and 3. This section
shows that the flow time of QSRPT* is at most (1 + 1

ε) times that of OPT*.
We first define some notations. Consider any time t. Let Nt be the total num-

ber of jobs released by t. Consider the schedule of OPT*. We list the Nt jobs
in increasing order of their remaining sizes in OPT* (ties broken by job IDs).
Note that the list may start with jobs with zero remaining size, which are jobs
already completed by OPT* by time t. We call this list the profile of OPT* at
time t, and denote it as OPT ∗

t . Note that OPT* is working on the first job in

94 H.-L. Chan, T.-W. Lam, and R. Li

OPT ∗
t with non-zero remaining size. For any k = 1, . . . , Nt, we denote OPT ∗

t [k]
as the remaining size of the k-th job in OPT ∗

t . Similarly, we list the Nt jobs in
increasing order of their remaining sizes in QSRPT* (ties broken by job IDs).
Then, we define the profile QSRPT ∗

t and QSPRT ∗
t [k] similarly.

At any time t, let prefixq(k, t) =
∑k

i=1QSRPT
∗
t [i], and let prefixo(k, t) =∑k

i=1OPT
∗
t [i]. We can prove the following relationship between the two profiles

(Lemma 6), which will imply our desired result (Theorem 3).

Lemma 6. At any time t, for any k = 1, . . . , Nt, prefixq(k, t) ≤ prefixo(k, t)+
h
ε .

Theorem 3. The total flow time of QSRPT* on I∗ is at most (1+ 1
ε) times the

total flow time of OPT* on I∗.

Proof. At any time t, let nq(t) and no(t) be the number of jobs with non-zero
remaining size in the profiles of QSRPT* and OPT*, respectively. Let T be the
union of all time intervals during which QSRPT* is processing a job. Let T1 ⊆ T
be those time intervals that all unfinished jobs in QSRPT* have remaining size at
least h. Let T2 = T \T1. By definition, at any time t ∈ T2, QSRPT* has at least
one unfinished job with remaining size less than h. Together with Property 3,
we know that at any time t ∈ T2, QSRPT* has exactly one unfinished job with
remaining size less than h and this job is being processed at t.

At any time t ∈ T1 ∪ T2, OPT* has no(t) unfinished jobs and prefixo(Nt −
no(t), t) = 0. Assume among the the first (Nt − no(t)) jobs in the profile of
QSRPT*, there are y jobs with non-zero remaining size. By Lemma 6, the total
remaining size of these y jobs is prefixq(Nt − no(t), t) ≤ h

ε . Note that nq(t) ≤
no(t) + y. For any t ∈ T1, all unfinished jobs in QSRPT* has remaining size at
least h, hence y ≤ 1

ε and nq(t) ≤ no(t) +
1
ε . For any t ∈ T2, there is exactly one

unfinished job in QSRPT* with remaining size less than h, hence y ≤ 1+ 1
ε and

nq(t) ≤ no(t) + 1 + 1
ε .

Let |T |, |T1| and |T2| be the total length of T, T1 and T2, respectively. The flow
time of QSRPT* is

∫
T1
nq(t)dt+

∫
T2
nq(t)dt ≤

∫
T1
(no(t)+

1
ε)dt+

∫
T2
(no(t)+1+

1
ε)dt =

∫
T1∪T2

no(t)dt+
1
ε (|T1|+ |T2|+ ε|T2|) =

∫
T
no(t)dt+

1
ε (|T |+ ε|T2|).

Consider any job j∗, let α(j∗) the amount of time that QSRPT* is processing
the last h units of work of j∗. We want to show that α(j∗) ≤ h

1+ε . Consider the

corresponding job j in QSRPT. QSRPT takes f
1+ε units of time to complete the

final quantum of size f . During this period, QSRPT* process j∗ at speed at least
(1 + ε) + εh

f and the work done by QSPRT* is at least f + hε
1+ε . If f + hε

1+ε ≥ h,

we conclude that QSPRT* processes the last h units of work with speed at least
1 + ε and α(j∗) ≤ h

1+ε . Else if f + hε
1+ε < h, since QSRPT* always has speed

at least 1 and the last f + hε
1+ε units of work takes at most f

1+ε units of time,

α(j∗) ≤ (h− (f + hε
1+ε)) +

f
1+ε =

h
1+ε −

εf
1+ε ≤

h
1+ε .

For each job j∗, let β(j∗) be the amount of time that QSRPT* is process-
ing the first p(j∗) − h units of work. Obviously, β(j∗) ≤ p(j∗) − h. Hence,

Online Flow Time Scheduling in the Presence of Preemption Overhead 95

|T | =
∑

j∗∈I∗(α(j
∗) + β(j∗)) ≤

∑
j∗∈I∗(p(j

∗) − h + h
1+ε). Also,

|T2| =
∑

j∗∈I∗ α(j
∗) ≤

∑
j∗∈I∗

h
1+ε . The flow time of QSPRT* is at most∫

T no(t)dt +
1
ε (|T | + ε|T2|) ≤

∫
T no(t)dt +

1
ε

∑
j∗∈I∗ p(j

∗). Note that
∫
T no(t)dt

and
∑

j∗∈I∗ p(j
∗) are both lower bounds for the flow time of OPT*, the theorem

follows. ��

It remains to prove Lemma 6. We show that prefixq and prefixo actually satisfy
a stronger relationship (see Lemma 7). At any time t, we say that a job j∗ has
rank i in the profile of QSRPT* if it appears as the i-th entry in the profile
QSRPT∗

t . Let index(t) be the rank of the job that QSRPT* is processing at
time t. With Lemma 7, proving Lemma 6 is straightforward.

Lemma 7. Consider any time t that QSRPT* is processing a job. Let last(t)
be the latest time on or before t when a job selection is performed. For any
k = 1, . . . , Nt,
(i) if k ≥ index(t), then prefixq(k, t)− prefixo(k, t) ≤ h

ε ; and
(ii) if k < index(t), then prefixq(k, t)− prefixo(k, t) ≤

max
{
t− last(t), hε − (QSRPT ∗

t [index(t)]−QSRPT ∗
t [k])

}
.

Proof of Lemma 6. Notice that Lemma 6 is true if QSRPT* is idle at time t, since
QSRPT* is idle only when all jobs are completed by QSRPT*. When QSRPT* is
not idle at time t, Lemma 7 gives bounds on prefixq(k, t)− prefixo(k, t). We only

need to check that t−last(t) ≤ h
ε and h

ε−(QSRPT ∗
t [index(t)]−QSRPT ∗

t [k])} ≤
h
ε . The first bound is true by Property 1(iii). The second bound is true because
when k < index(t), QSRPT ∗

t [index(t)] ≥ QSRPT ∗
t [k]. ��

We prove Lemma 7 by induction on time. Consider a maximal interval [t1, t2]
during which QSRPT* is processing some job. Just after the first job j is released
at time t1, index(t1) = Nt1 , last(t1) = t1, and all jobs in QSRPT* have remain-
ing size zero except that QSRPT ∗

t1[Nt1] = p(j). Hence, QSRPT ∗
t1[i] ≤ OPT ∗

t1 [i]
for all i and we can easily check that the lemma is true at t1.

We partition [t1, t2] into intervals by following discrete events : job arrival, job
completion, selection of a job and change of index(t). We show that if the lemma
is true at some time t, it remains true after a period without any discrete event.
We also show that if the lemma is true before a discrete event occurs, it remains
true after that discrete event. Hence, by induction on time, the lemma is true
at any time during [t1, t2]. The induction involves a careful case analysis and is
non-trivial, but due to space limit, we leave the details to the full paper.

4 Multiprocessor Scheduling

When there are m > 1 processors, we let h to denote the preemption overhead
and h′ to denote the migration overhead. This section gives a (1 + ε)-speed
O(1ε)-competitive algorithm.

96 H.-L. Chan, T.-W. Lam, and R. Li

Consider any input I. Let OPT be the optimal (migratory) schedule. We define
another input I∗ for the setting without preemption and migration overhead. In
particular, whenever a job j is released in I, we release a corresponding job
j∗ ∈ I∗ where r(j∗) = r(j) and p(j∗) = p(j) + h. Let OPT* be the (migratory)
schedules that minimizes the flow time for I∗. It is obvious that the flow time
of OPT* is at most the flow time of OPT. For the setting without preemption
and migration overhead, there is a known competitive algorithm.

Lemma 8. [2] For minimizing flow time without preemption and migration
overhead, the non-migratory algorithm IMD is (1 + ε)-speed O(1ε)-competitive.
Furthermore, IMD assigns each job to a processor once the job arrives and on
each processor IMD schedules jobs by SRPT.

Given any input I in the setting with preemption and migration overhead, our
algorithm follows the same job assignment as IMD and schedules each indi-
vidual processors by QSRPT. Since QSRPT is competitive for single processor
scheduling and there is no job migration, the resulting algorithm has flow time
comparable to that of IMD, which in turns is competitive with OPT*.

Algorithm IMD-QSRPT(�). Let � ≥ 0 be a parameter. We assume
IMD-QSRPT(�) is given (1 + ε)2-speed processors.

Job assignment.We simulate a copy of IMD with (1+ε)-speed processors
and input I∗. Let qi and q∗i denotes the processors in IMD-QSRPT and
IMD, respectively, where i = 1, . . . ,m. At any time, if a new job j arrives,
we assign j to qi if IMD assigns the corresponding job j∗ to q∗i .

Job execution. At any time, each processor qi processes the jobs assigned
to it by QSRPT(�) with a (1 + ε)2-speed processor.

Theorem 4. When � = h
ε , IMD-QSRPT(�) is (1 + ε)2-speed O(1ε)-competitive

for minimizing flow time with preemption and migration overhead in the multi-
processor setting.

Proof. Consider any processor qi and q∗i . Let Ii ⊆ I and I∗i ⊆ I∗ be the sets of
jobs assigned to qi and q∗i , respectively. Let Ii (resp., I

∗
i) be the set of jobs ob-

tained by scaling down the preemption overhead and size of each job in Ii (resp.,
I∗i) by a factor of 1 + ε. For any algorithm A, denote F (A, s, I) as the total flow
time incurred when algorithmA is given an s-speed processor and input I. Notice

that F (QSRPT (hε), (1 + ε)2, Ii) = F (QSRPT (hε), (1 + ε), Ii), where h = h
1+ε is

the preemption overhead for Ii. The proof of Theorem 3 actually shows a stronger

bound that F (QSRPT (hε), (1+ ε), Ii) ≤ F (SRPT, 1, I∗i)+
1
ε

∑
j∗∈I∗i

p(j∗). Also,

F (SRPT, 1, I∗i) = F (SRPT, 1 + ε, I∗i). Combining these equalities and inequal-
ity, we conclude that the flow time incurred by IMD-QSRPT on Ii is at most
the flow time incurred by IMD on I∗i plus 1

ε

∑
j∗∈I∗i

p(j∗) ≤ 1
ε

∑
j∗∈I∗i

p(j∗).

Online Flow Time Scheduling in the Presence of Preemption Overhead 97

Summing up over all processors, we have that the total flow time of IMD-
QSRPT is at most the total flow time of IMD plus 1

ε

∑
j∗∈I∗ p(j

∗). Since the

total flow time of IMD is at most O(1ε) times that of OPT* and
∑

j∗∈I∗ p(j
∗) is

at most the total flow time of OPT*, the theorem follows. ��

By setting ε = 1
3ε

′, IMD-QSRPT is (1 + 2
3ε

′ + (13ε
′)2) ≤ (1 + ε′)-speed O(3

ε′)-
competitive.

References

1. Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y.: A survey of schedul-
ing problems with setup times or costs. European Journal of Operational
Research 187(3), 985–1032 (2008)

2. Avrahami, N., Azar, Y.: Minimizing total flow time and total completion time with
immediate dispatching. Algorithmica 47(3), 253–268 (2007)

3. Bartal, Y., Leonardi, S., Shallom, G., Sitters, R.A.: On the Value of Preemption
in Scheduling. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX
and RANDOM 2006. LNCS, vol. 4110, pp. 39–48. Springer, Heidelberg (2006)

4. Chen, B.: A better heuristic for preemptive parallel machine scheduling with batch
setup times. SIAM J. Comput. 22(6), 1303–1318 (1993)

5. Crauwels, H.A.J., Potts, C.N., Oudheusden, D.V., Wassenhove, L.N.V.: Branch
and bound algorithms for single machine scheduling with batching to minimize the
number of late jobs. J. Scheduling 8(2), 161–177 (2005)

6. Divakaran, S., Saks, M.E.: Approximation algorithms for problems in scheduling
with set-ups. Discrete Applied Mathematics 156(5), 719–729 (2008)

7. Divakaran, S., Saks, M.E.: An online algorithm for a problem in scheduling with
set-ups and release times. Algorithmica 60(2), 301–315 (2011)

8. Fox, K., Moseley, B.: Online scheduling on identical machines using srpt. In:
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2011, USA, January 23-25, pp. 120–128 (2011)

9. Hariri, A., Potts, C.: Single machine scheduling with batch set-up times to minimize
maximum lateness. Annals of Operations Research 70, 75–92 (1997)

10. Heydari, M., Sadjadi, S., Mohammadi, E.: Minimizing total flow time subject to
preemption penalties in online scheduling. The International Journal of Advanced
Manufacturing Technology 47, 227–236 (2010), doi:10.1007/s00170-009-2190-9

11. Leonardi, S., Raz, D.: Approximating total flow time on parallel machines. J. Com-
put. Syst. Sci. 73(6), 875–891 (2007)

12. Liu, Z., Cheng, T.C.E.: Scheduling with job release dates, delivery times and pre-
emption penalties. Inf. Process. Lett. 82(2), 107–111 (2002)

13. Liu, Z., Cheng, T.C.E.: Minimizing total completion time subject to job release
dates and preemption penalties. J. Scheduling 7(4), 313–327 (2004)

14. Monma, C.L., Potts, C.N.: Analysis of heuristics for preemptive parallel machine
scheduling with batch setup times. Oper. Res. 41, 981–993 (1993)

15. Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via
resource augmentation. Algorithmica 32(2), 163–200 (2002)

16. Schuurman, P., Woeginger, G.J.: Preemptive scheduling with job-dependent setup
times. In: SODA, pp. 759–767 (1999)

Prize-Collecting Survivable Network Design
in Node-Weighted Graphs�

Chandra Chekuri, Alina Ene, and Ali Vakilian

Dept. of Computer Science, University of Illinois, Urbana, IL 61801, USA
{chekuri,ene1,vakilia2}@illinois.edu

Abstract. We consider node-weighted network design problems, in particular
the survivable network design problem (SNDP) and its prize-collecting version
(PC-SNDP). The input consists of a node-weighted undirected graph G = (V,E)
and integral connectivity requirements r(st) for each pair of nodes st. The goal
is to find a minimum node-weighted subgraph H of G such that, for each pair
st, H contains r(st) edge-disjoint paths between s and t. PC-SNDP is a gener-
alization in which the input also includes a penalty π(st) for each pair, and the
goal is to find a subgraph H to minimize the sum of the weight of H and the
sum of the penalties for all pairs whose connectivity requirements are not fully
satisfied by H . Let k = maxst r(st) be the maximum requirement. There has
been no non-trivial approximation for node-weighted PC-SNDP for k > 1, the
main reason being the lack of an LP relaxation based approach for node-weighted
SNDP. In this paper we describe multiroute-flow based relaxations for the two
problems and obtain approximation algorithms for PC-SNDP through them. The
approximation ratios we obtain for PC-SNDP are similar to those that were pre-
viously known for SNDP via combinatorial algorithms. Specifically, we obtain
an O(k2 log n)-approximation in general graphs and an O(k2)-approximation in
graphs that exclude a fixed minor. The approximation ratios can be improved by
a factor of k but the running times of the algorithms depend polynomially on nk .

1 Introduction

In this paper we consider the survivable network design problem (SNDP) and its prize-
collecting version (PC-SNDP). In SNDP the input consists of an undirected graph G =
(V,E) and a connectivity requirement function specified in terms of an integer r(st) for
each unordered pair of nodes st. The goal is to find a minimum-weight subgraphH ofG
that contains r(st) disjoint paths for each pair st. We use EC-SNDP and VC-SNDP to
refer to the versions of SNDP depending on whether the desired paths are edge or node
disjoint. In this paper we focus on EC-SNDP; for notational convenience we use SNDP
when we mean EC-SNDP. A parameter of interest is the maximum requirement k =
maxst r(st). Special cases of SNDP include well-studied problems such as the Steiner
tree and Steiner forest problems (here k = 1). The weight of the chosen subgraph
H can depend both on the edges and nodes in H . In the edge-weighted version, each
edge has a weight w(e) and the weight of H is the sum of the weights of the edges

� Partially supported by NSF grant CCF-1016684. A longer version containing the omitted
proofs will be made available on the authors’ webpages.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 98–109, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Prize-Collecting Survivable Network Design in Node-Weighted Graphs 99

in H ; Jain [14] obtained a 2-approximation for this problem via the influential iterated
rounding technique that he introduced. The focus of this paper is the more general
node-weighted case where each node v has a weight w(v); the weight of H is the sum
of the weights of the nodes in it1. The node-weighted version is provably harder to
approximate. In contrast to the constant factor approximation for edge-weighted SNDP,
the node-weighted Steiner tree problem is already Ω(log n)-hard to approximate via a
simple reduction from the Set Cover problem [17].

Klein and Ravi [17] were the first to study node-weighted network design from an
approximation point of view. They showed the hardness result mentioned above and
described algorithms that achieved an O(log n)-approximation for the Steiner tree and
Steiner forest problems. Their algorithms are based on finding a structure called spider.
Nutov examined the approximability of node-weighted SNDP [19] and obtained an
O(k log n)-approximation via the augmentation framework of Williamson et al. [21]
(the connectivity requirements are met in k stages with each stage increasing the con-
nectivity of every unsatisfied pair by 1). His algorithm is based on a non-trivial structural
result on spiders for covering an arbitrary 0-1 uncrossable requirement function2. Fur-
ther, Nutov gave evidence, via a reduction from the k-densest subgraph problem, that
a dependence on k is necessary in the approximation ratio when k is large. The algo-
rithms of Klein and Ravi [17] and that of Nutov [19] are combinatorial. Mathematical
programming relaxation based algorithms are powerful and flexible and it is natural to
ask about their efficacy for node-weighted network design, and in particular for SNDP.
Guha et al. [9] considered a natural LP relaxation for node-weighted Steiner tree and
forest and showed that its integrality gap is O(log n), matching the bound obtained
via the combinatorial algorithm; in fact, their proof uses a nice dual-fitting argument
via spiders. In more recent work Demaine, Hajiaghayi, and Klein [8] demonstrated
the advantage of the LP relaxation by describing a primal-dual algorithm that achieves
an O(1)-approximation for node-weighted Steiner tree and forest when the underlying
graph is planar.

In recent work [5] we generalized the work of Demaine et al. [8] and described an
O(k)-approximation for node-weighted SNDP in planar graphs. A technical point of
interest is that the algorithm is not based on a single LP relaxation. It uses the augmen-
tation framework in which the connectivity requirements are incrementally satisfied in
k phases; a separate LP relaxation (Augment-LP) for each stage (that depends on the
solution for the previous stages) is used3.

This paper is motivated by two questions. Is there a natural LP relaxation for node-
weighted SNDP? Is there a non-trivial approximation for node-weighted PC-SNDP?

1 The version where both edges and nodes have weights can be easily reduced to the node-
weighted version by sub-dividing each edge e and placing a weight of w(e) on the new node.

2 A 0-1 set function f : 2V → {0, 1} is said to be uncrossable if f(A) = f(B) = 1 implies
that f(A ∩B) = f(A ∪B) = 1 or f(A−B) = f(B − A) = 1.

3 There is some subtlety to understanding the integrality gap of Augment-LP since it only ap-
plies to a certain restricted class of uncrossable functions that arise from proper functions; in
particular, each uncrossable function is a residual function of a node-induced subgraph of the
original graph. This is in contrast to the edge-weighted case where there is a natural cut re-
laxation for covering an arbitrary uncrossable function whose integrality gap is at most 2. We
refer the reader to Subsection 2.1 and [5] for more details.

100 C. Chekuri, A. Ene, and A. Vakilian

We now give some background on prize-collecting network design problems and then
discuss our results.

Prize-Collecting SNDP (PC-SNDP): In PC-SNDP the input, in addition to that for
SNDP, consists of penalties π(st) for each pair of nodes. The goal is to find a subgraph
H of G to minimize the weight of H plus the sum of the penalties for pairs whose
connectivity requirement is not satisfied by H ; a pair st is not satisfied if the number
of disjoint paths in H between s and t is strictly less than r(st); this is the all-or-
nothing penalty model and is the most interesting one from a technical point of view.
The prize-collecting version of Steiner tree and Steiner forest have been studied exten-
sively and have several theoretical and practical applications [15,11,20,10]. A simple
technique, introduced by Bienstock et al. [2], shows how one can use an LP relaxation
based ρ-approximation algorithm for Steiner tree (and Steiner forest) to obtain an O(ρ)
approximation algorithm for the prize-collecting version. PC-SNDP for higher connec-
tivity has been recently studied [18,13,12]. In [12] a technique similar to that of Bien-
stock et al. is used for edge-weighted SNDP (and also for Elem-SNDP and VC-SNDP).
However, [12] shows that a straightforward and natural LP relaxation has a large inte-
grality gap, and introduce a stronger LP relaxation. In this paper we are concerned with
node-weighted PC-SNDP. For node-weighted Steiner tree and Steiner forest there is a
natural LP relaxation with O(log n) integrality gap (and O(1) gap for planar graphs),
and one can use this to obtain a corresponding approximation for the prize-collecting
version. However, as we already remarked, the algorithms for node-weighted SNDP for
k > 1 have not been based on a single LP relaxation.

Our Contribution: Our first contribution is to formulate an LP relaxation for node-
weighted SNDP and PC-SNDP via multi-route flows [16,1]. We give two relaxations,
one for arbitrary k and a different relaxation that is more suited for fixed k. The multi-
route flow based relaxation easily allows us to apply the basic idea of Bienstock et al.
[2] to reduce the PC-SNDP problem to the SNDP problem. Our second contribution is
to analyze the integrality gap of these relaxations for node-weighted SNDP. We obtain
an upper bound on the integrality gap by relating the optimum value of the relaxation to
that of the Augment-LP relaxation [5] in each phase of the augmentation framework.
For planar graphs we can use the result from [5] that showed that the integrality gap of
the Augment-LP is O(1). In this paper we show that Augment-LP has an integrality
gap of O(log n) for general graphs. These ingredients give us the following theorem
that summarizes our results.

Theorem 1. There is an O(k2 logn)-approximation for node-weighted PC-SNDP in
undirected graphs which improves to anO(k2)-approximation for planar graphs. There
is an algorithm with running time that is polynomial in nk that achieves an O(k logn)
approximation for general graphs and an O(k) approximation for planar graphs.

Discussion, Related Work and Extensions: We start with the question as to why it
is non-trivial to find a natural LP relaxation for the node-weighted SNDP problem.
Consider the problem where the requirement is only for a single pair st; that is, we
wish to find a minimum weight subgraph that has k edge-disjoint paths from s to t. If
the weights are on the edges then this problem can be solved easily via min-cost flow.
However, if the weights are on the nodes the edge-disjoint paths from s to t may use

Prize-Collecting Survivable Network Design in Node-Weighted Graphs 101

a node v multiple times, yet the weight of the node v counts only once. (This is the
same issue that is also present in the capacitated SNDP (Cap-SNDP) problem [3,4].)
The inability to solve the single pair problem exactly is at the heart of the difficulty
of finding a relaxation for node-weighted SNDP. We write a multi-route flow based
LP that we cannot solve in polynomial time because the separation oracle for the dual
requires us to solve the single pair problem. However, this relaxation can be solved
approximately within a factor of k. This is the reason that our approximation ratios
depend on k2, one factor of k from approximating the relaxation, and another factor of
k from the augmentation framework. We write a different relaxation that can be solved
in time that is polynomial in nk. This relaxation is inspired by the formulation of the
Augment-LP and allows us to improve the approximation when k is a fixed constant.
Multi-route flows and cuts are useful concepts when considering higher connectivity.
Their applications and properties are not as widely known as they could be, and we
hope our work helps highlight their usefulness.

One can also consider the node-weighted versions of element-connectivity SNDP
(Elem-SNDP) and vertex-connectivity SNDP (VC-SNDP). Multi-route flow based re-
laxations can be written in the same fashion. The same difficulty present in EC-SNDP
for solving the single-pair node-weighted problem extends to the Elem-SNDP problem.
Interestingly, it is easy to write a multi-route LP relaxation for VC-SNDP and solve it
in polynomial time! The reason for this is that in VC-SNDP the paths are required to be
node-disjoint and hence the capacitated aspect goes away. However, the only non-trivial
algorithmic technique for VC-SNDP at this point is via a (randomized) reduction from
VC-SNDP to Elem-SNDP [7]. We believe that our algorithms and analysis will extend
from EC-SNDP to Elem-SNDP as well and hence indirectly also to VC-SNDP.

The multi-route flow based LP relaxations can be solved in polynomial time for edge-
weighted problems. For the prize-collecting version the relaxation is in fact equivalent
to that in the work of Hajiaghayi et al. [12]; the multi-route flow view makes the cut-
based relaxation in [12] easier to understand. Previous work on prize-collecting SNDP
has considered submodular penalty functions [20,12]; here the penalty for not connect-
ing a set of pairs is a monotone submodular function of those pairs. It is easy to extend
our algorithms and analysis to this more general case by simply replacing the linear
penalty in the objective function of the relaxation by a Lovász-extension based convex
penalty function; this is in the same fashion as in the work of Chudak and Nagano [6].
We omit the details in this version of the paper.

Finally, the advantage of having an LP relaxation based algorithm (for node-weighted
SNDP) is the flexibility it affords in incorporating additional constraints and solving re-
lated problems. For instance, problems such as k-MST can be solved via relaxations for
the Steiner tree. Guha et al. [9] studied an LP relaxation approach for node-weighted
Steiner tree motivated by such considerations. Similar applications can now be derived
for higher connectivity.

Organization: The rest of the paper is organized as follows. Section 2 discusses the
multi-route flow based relaxations and relates their integrality gap to that of Augment-LP.
In Section 3we bound the integrality gap of Augment-LPbyO(logn) for general graphs.

102 C. Chekuri, A. Ene, and A. Vakilian

2 LP Relaxations for Node-Weighted PC-SNDP

Let s and t be two vertices of the graph and let � be an integer. Consider a tuple p =
(p1, p2, · · · , p) such that each pi is a path from s to t and the paths in p are edge-
disjoint; we refer to such a tuple p as an �-route tuple connecting s to t. In the following,
we ignore the order in which the paths appear in the tuple; more precisely, two tuples
consisting of the same collection of paths are considered to be the same tuple. A vertex
v intersects p if there exists some path in p that contains v; we use v ∈ p to denote the
fact that v intersects p. Similarly, an edge e intersects p if there exists some path in p
that contains e; we use e ∈ p to denote the fact that e intersects p.

Consider an instance of the node-weighted PC-SNDP problem. For each unordered
pair st of nodes, we let Pr(st)

st denote the collection of all r(st)-tuples that connect s to
t, where r(st) is the requirement of the pair. We can write a relaxation for the problem
as follows. We have a variable x(v) for each vertex v and a variable z(st) for each pair
st of nodes with the interpretation that x(v) = 1 if v is in the solution and z(st) = 1
if the requirement of st is not satisfied by the solution. We also have variables f(p),
where p ∈ Pr(st)

st , with the interpretation that f(p) = 1 if the paths connecting s to t
are the paths of p.

PC-Multiroute-LP

min
∑
v∈V

w(v)x(v) +
∑

st∈V×V
π(st)z(st)

s.t.
∑

p∈Pr(st)
st

f(p) = 1− z(st) ∀st

∑
p∈Pr(st)

st , v∈p

f(p) ≤ x(v) ∀v, ∀st

0 ≤ x(v) ≤ 1 ∀v
0 ≤ z(st) ≤ 1 ∀st
f(p) ≥ 0 ∀p

Multiroute-LP

min
∑
v∈V

w(v)x(v)

s.t.
∑

p∈Pr(st)
st

f(p) = 1 ∀st

∑
p∈Pr(st)

st , v∈p

f(p) ≤ x(v) ∀v, ∀st

0 ≤ x(v) ≤ 1 ∀v
f(p) ≥ 0 ∀p

Proposition 1. PC-Multiroute-LP is a valid relaxation for the node-weighted PC-
SNDP problem. Moreover if there is a single pair st with non-zero requirement then
the relaxation is exact.

We summarize at a high-level our theorems about PC-Multiroute-LP and
Multiroute-LP below.

– Given a feasible solution (x, f, z) to PC-Multiroute-LP it is easy to obtain another
feasible solution (x′, f ′, z′), via the scaling trick of Bienstock et al. [2], such that
z′ is integral and the cost of (x′, f ′, z′) is at most 2 times the cost of (x, f, z).

– The integrality gap of Multiroute-LP is O(k logn) for general graphs and O(k)
for graphs from a minor-closed family of graphs.

Prize-Collecting Survivable Network Design in Node-Weighted Graphs 103

– PC-Multiroute-LP and Multiroute-LP are NP-hard to solve when k is part of
the input. However, one can find in polynomial time a feasible solution to them
with cost at most k times the optimum solution value. This is done by solving a
compact relaxation. Combining the above three ingredients gives an O(k2 logn)
approximation for node-weighted PC-SNDP and the ratio improves to O(k2) for
minor-closed families of graphs.

– There is a different relaxation that leads to an improvement in the approximation
ratio for PC-SNDP to O(k logn) in general graphs and to O(k) in minor-closed
families of graphs respectively. The running time is, however, polynomial in nk.

Remark 1. For edge-weighted problems the multi-route formulation will have a vari-
able x(e) for each edge and the total multi-route flow on each edge e for any pair will
be bounded by x(e). This relaxation can be solved in polynomial time since the sepa-
ration oracle for the dual is the min-cost flow problem. This relaxation for PC-SNDP
is equivalent (in the sense of having the same optimal value for each instance) to the
cut-based relaxation from [12].

We sketch the rounding step in the first item above that reduces the PC-SNDP problem
to the SNDP problem, since it demonstrates the naturalness of the multi-route LP for
higher connectivity. Let (x, f, z) be a feasible fractional solution to PC-Multiroute-LP.
Let I = {st | z(st) > 1/2}. Consider the SNDP instance that we get from the prize-
collecting instance by setting the requirements of all the pairs in I to zero. Let J be
the set of all pairs not in I . Let x′ and f ′ be the following vectors. For each vertex
v ∈ V , we set x′(v) = min{1, 2x(v)}. For each pair st ∈ J and each p ∈ Pr(st)

st ,
we set f ′(p) = f(p)/(1 − z(st)). (Note that, for each st ∈ J , z(st) ≤ 1/2.) It is
straightforward to show that (x′, f ′) is a feasible solution to Multiroute-LP for the
pairs in J . Further, the penalty incurred for pairs in I is at most twice the penalty that
the fractional solution (x, f, z) already paid for them. The factor of 2 loss here can be
improved slightly via an idea of Goemans as was done in prior work, but we omit the
improvement in this version.

In Subsection 2.1 we show an upper bound on the integrality gap of Multiroute-LP
via the augmentation framework and Augment-LP from [5].

A Different Relaxation: Consider a solution H that satisfies the requirement of the
pair st. If we remove less than r(st) of the edges of H then there will be at least one
path from s to t in the resulting graph. With this observation in mind, we can write an
LP relaxation as follows. As before, we have a variable x(v) for each vertex v and a
variable z(st) for each pair st. We introduce the following constraints for each pair st
and each set F ⊆ E such that |F | < r(st). Consider the network GF = (V,E − F)
with node capacities given by the values x(v). We impose the valid constraint that the
network GF supports at least 1 − z(st) units of flow from s to t subject to the node
capacity constraints given by x. The resulting LP has O(|E|k) constraints and can be
solved in time that is polynomial in nk. When k is a fixed constant, this relaxation leads
to an improvement in the approximation ratio.

We refer to this LP as PC-Cut-LP and to its non-prize-collecting counterpart
as Cut-LP. We note that Multiroute-LP is strictly stronger than Cut-LP; on instances
of the problem in which there is a single requirement pair with requirement k,

104 C. Chekuri, A. Ene, and A. Vakilian

Multiroute-LP is exact whereas Cut-LP has an Ω(k) integrality gap. Nevertheless,
we can show that the integrality gap of Cut-LP is O(k logn) for general graphs and
O(k) for graphs from a minor-closed family. The approach for upper bounding the
integrality gap of PC-Cut-LP and Cut-LP is very similar to the approach described
in Subsection 2.1 for upper bounding the integrality gap of PC-Multiroute-LP and
Multiroute-LP.

2.1 Integrality Gap of Multiroute-LP via Augment-LP

In this section, we show that the integrality gap of Multiroute-LP is O(k logn) for
general graphs and O(k) for minor-closed families of graphs.

Theorem 2. Let OPT be the value of the optimal fractional solution to Multiroute-LP.
There is a polynomial time algorithm that constructs a subgraph H of G such that
H is a feasible solution for the node-weighted SNDP instance and the weight of H is
O(k log n)· OPT.

Theorem 3. Let OPT be the value of the optimal fractional solution to Multiroute-LP.
If the input graph G belongs to a minor-closed family G, there is a polynomial time
algorithm that constructs a subgraph H of G such that H is a feasible solution for the
node-weighted SNDP instance and the weight of H is O(k)· OPT, where the constant
depends only on the family G.

In order to prove Theorem 2 and Theorem 3, we use the augmentation framework that
was introduced by Williamson et al. [21] for the edge-weighted SNDP problem. Note
that the theorems only upper bound the integrality gap of the relaxations; the algorithms
for SNDP are not based on solving them. The relaxations need to be solved for PC-
SNDP to identify the pairs to connect and reduce to SNDP.

We start by introducing some notation. A set S separates a pair st iff S contains
exactly one of s, t. Let r : 2V → Z+ be the function such that r(S) is the maximum
requirement of a pair separated by S. Let r : 2V → Z+ be the function such that
r(S) = min{r(S), �} for all sets S ⊆ V . Let δH(S) be the set of all edges of H with
an endpoint in S and the other in V − S (note that H may not contain all the vertices
of S). A graph H covers r iff |δH(S)| ≥ r(S) for all sets S. By Menger’s theorem, a
graph H is a feasible solution to the SNDP instance iff H covers r.

The algorithm selects a cover H of r in k phases. The algorithm maintains the in-
variant that the first � phases have selected a graph H that covers r. During phase �,
the algorithm adds a new set of nodes to H−1 in order to get a graph H that cov-
ers r. More precisely, in phase �, we solve the following augmentation problem. It is
convenient to assume that all the nodes in H−1 have weight zero; since we have al-
ready paid for the nodes, we can set their weight to zero at the beginning of phase �.
Let h : 2V → {0, 1} be the function such that h(S) = 1 iff |δH�−1

(S)| = � − 1
and r(S) ≥ �. Let G′

 = (V,E − E(H−1)). The goal is to select a minimum weight
subgraph K of G′

 that covers h; once we have K, we let H be the subgraph of G
induced by V (H−1) ∪ V (K).

Prize-Collecting Survivable Network Design in Node-Weighted Graphs 105

In the following, we show that, in each phase �, we can select a subgraph K that
covers h such that the node weight of K is at most O(log n) ·OPT for general graphs
and O(1) · OPT for minor-closed families of graphs, where OPT is the value of the
optimal solution to Multiroute-LP. It will then follow that the algorithm described
above constructs a subgraphH such thatH covers r and the weight ofH is O(k logn) ·
OPT for general graphs and O(k) · OPT for minor-closed families of graphs.

Consider a phase �. Recall that the goal is to cover h using a subgraph of G′
. Let

ΓG′
�
(S) be the vertex neighborhood of S; that is, the set of vertices v ∈ V − S such

that there is an edge uv ∈ E(G′
), where u ∈ S. We have the following relaxation for

the augmentation problem of phase �.

Augment-LP(G′
, h)

min
∑
v∈V

w(v)x(v)

s.t.
∑

v∈ΓG′
�
(S)

x(v) ≥ h(S) ∀S ⊆ V

x(v) ≥ 0 ∀v ∈ V

As shown in Lemma 1, for each phase of the algorithm, the optimal value of
Augment-LP is at most the optimal value of Multiroute-LP.

Lemma 1. Let (x, f) be a feasible solution to Multiroute-LP. For any phase �, x is a
feasible solution to Augment-LP(G′

, h).

Corollary 1. Let ρ be such that, for each phase �, the integrality gap of
Augment-LP(G′

, h) is at most ρ. Then the integrality gap of Multiroute-LP is at most
kρ.

Therefore it suffices to upper bound the integrality gap of Augment-LP. We prove
Theorem 4 in Section 3. Theorem 5 was shown in [5].

Theorem 4. For each �, the integrality gap of Augment-LP(G′
, h) is O(log n). More-

over, there is a polynomial time algorithm that selects a subgraph K of G′
 such that

K covers h and the weight of K is at most O(log n) times the weight of the optimal
fractional solution to Augment-LP(G′

, h).

Theorem 5 ([5]). Suppose that G belongs to a minor-closed family G. For each �, the
integrality gap of Augment-LP(G′

, h) is a constant that depends only on the family G.
Moreover, there is a polynomial time algorithm that selects a subgraph K of G′

 such
that K covers h and the weight of K is at most O(1) times the weight of the optimal
fractional solution to Augment-LP(G′

, h).

Remark 2. The integrality gap of Augment-LP is unbounded when the function h is
an arbitrary uncrossable function. However, the functions h that arise from instances
of the node-weighted SNDP problem via the augmentation framework have additional
properties that are exploited by Theorem 2 and Theorem 3. We refer the reader to [5]
for more details.

Theorem 2 and Theorem 3 follow from Corollary 1 and Theorem 4 and Theorem 5.

106 C. Chekuri, A. Ene, and A. Vakilian

3 Integrality Gap of Augment-LP

In this section, we prove Theorem 4that upper bounds the integrality gap of Augment-LP
in general graphs. We refer the reader to Subsection 2.1 for the relevant definitions and
notation.

In order to simplify notation, we let G′ = G′
 and h = h; our goal is to select a

minimum-weight subgraph K of G′ that covers h. As we have already seen in Subsec-
tion 2.1, we have the following LP relaxation for this problem.

Augment-LP(G′, h)

min
∑
v∈V

w(v)x(v)

s.t.
∑

v∈ΓG′ (S)

x(v) ≥ h(S) ∀S ⊆ V

x(v) ≥ 0 ∀v ∈ V

Dual of Augment-LP(G′, h)

max
∑
S⊆V

y(S)h(S)

s.t.
∑

S:v∈ΓG′ (S)

y(S) ≤ w(v) ∀v ∈ V

y(S) ≥ 0 ∀S ⊆ V

Our proof uses the concept of a (generalized) spider that was introduced by Nutov [19]
which we will define shortly. While Nutov uses a combinatorial algorithm to find a
spider we find one via a primal-dual algorithm and relate its density to that of the LP
relaxation. We start with some notation and some definitions that are based on [19,21].

Preliminaries: Recall that we are working with a 0-1 uncrossable function h : 2V →
{0, 1}. We can also view h as a family consisting of all sets S such that h(S) = 1.
Following Nutov, we let F = {S | h(S) = 1} be the family corresponding to h. We
refer to each set in F as a violated set and we refer to the inclusion-wise minimal sets of
F as min-cores. Let C be the set of all min-cores of F . The sets in C are disjoint and we
can compute the collection C in polynomial time for the function h that arises in SNDP
[21]. Additionally, if S is a violated set and C is a min-core, either C is contained in S
or C and S are disjoint.

A set S ∈ F is a core of F iff S contains exactly one min-core C; we refer to a
core S that contains the min-core C ∈ C as a C-core. Let A ⊆ C and let u be a vertex.
Let S(A, u) ⊆ F be the family consisting of all sets S ∈ F such that S is an A-core
for some A ∈ A and u /∈ S. We refer to the family S(A, u) as a spider family. We
refer to the min-cores in A as the feet of S(A, u) and we refer to u as the center of
S(A, u). A set F ⊆ E(G′) of edges covers a family F ′ of sets iff, for each set S ∈ F ′,
there is at least one edge of F leaving S; more precisely, we have |δF (S)| ≥ 1 for
each set S ∈ F ′. If F ′ is a spider family, we refer to F as a spider cover. Nutov [19]
introduced the notions of spider families and covers as a generalization to the concept
of spiders that play an important role in the algorithm of Klein and Ravi [17] for the
node-weighted Steiner tree problem; we refer the reader to [19] for more details. We
remark that there are subtleties when thinking about spiders for uncrossable functions
since a spider cover F can be disconnected.

The Algorithm for Covering F : Nutov extended the algorithm of Klein and Ravi to
the problem of covering an uncrossable family F as follows. We find a spider family

Prize-Collecting Survivable Network Design in Node-Weighted Graphs 107

S(A, u) and a coverF of S(A, u). Let F ′ = {S | S ∈ F , δF (S) = ∅} be the subfamily
of F that is not covered by F ; the residual family F ′ is uncrossable as well. Let G′′ =
(V,E(G′) − F). We recursively construct a cover F ′ ⊆ E(G′′) for F ′ and we return
F ∪ F ′ as our cover of F .

Nutov gave a polynomial time algorithm to find a spider cover whose weight (in
terms of nodes) is “comparable” to the weight of the optimal integral solution; here
the comparison is in the sense of density which is the weight divided by the number
of min-cores that are removed by the addition of the cover. We show that we can find
a spider cover whose weight is “comparable” to the weight of the optimal fractional
solution for Augment-LP(G′, h). More precisely, we show the following theorem.

Theorem 6. There is a spider family S(A, u) of F and a cover F of S(A, u) with the
following properties. Let F ′ = {S | S ∈ F , δF (S) = ∅} be the subfamily of F that
is not covered by F , and let C′ be the collection of all minimal sets of F ′. We have
|C′| < |C| and w(V (F)) (total weight of the nodes in F) is O

(
(|C| − |C′|)/|C|

)
times

the value of the optimal fractional solution to Augment-LP(G′, h). Moreover, we can
find the feet A, the center u, and the cover F of S(A, u) in polynomial time.

Once we have Theorem 6, we can find a cover of h using a greedy algorithm. If the
collection C of all minimal violated components is empty, we return an empty cover.
Otherwise, let S(A, u) and F be the spider family and spider cover guaranteed by Theo-
rem 6. LetH ′ and h′ be as in the statement of Theorem 6, and letG′′ = (V,E−E(H ′)).
We recursively find a cover F ′ of h′ and we return F ∪ F ′.

It is straightforward to verify that the weight of the optimal fractional solution
to Augment-LP(G′′, h′) is at most the weight of the optimal fractional solution to
Augment-LP(G′, h). This observation together with a standard set cover analysis gives
us that the total weight of the cover constructed by the algorithm above is O(log |C|)
times the weight of the optimal fractional solution to Augment-LP(G′, h).

Therefore, in order to complete the proof of Theorem 4, it suffices to prove The-
orem 6. In the following, we give the algorithm for constructing the spider family
S(A, u).

Primal-Dual Algorithm for Constructing the Spider Family: Consider the dual of
the Augment-LP(G′, h) (see above). The algorithm selects a set X ⊆ V (G′) of nodes
as follows. The algorithm also maintains a solution y that is feasible for the dual of
Augment-LP(G′, h); the solution y is implicitly initialized to zero.

We proceed in iterations. Consider iteration i and let Xi−1 be the nodes selected in
the first i− 1 iterations; X0 is the set of all zero-weight nodes. A set S is violated with
respect to a set Z of nodes iff h(S) = 1 and δG′[Z](S) is empty. Recall that C is the
collection of all minimal violated components of h; note that C is also the collection
of all minimal sets that are violated with respect to X0. Let Ci−1 be the collection of
minimal violated sets with respect to Xi−1. For each component C ∈ Ci−1, we have
C ⊆ Xi−1 [5]. Since the components of Ci−1 are disjoint and two components C ∈ C
and C′ ∈ Ci−1 do not properly intersect, we have |Ci−1| ≤ |C|. If |Ci−1| is strictly
less than |C|, we return the set X = Xi−1 and the dual solution y, and we terminate
the algorithm. In other words we stop the algorithm when at least two of the min-cores
in C “merge” and are part of the same minimal violated set of Ci−1. Otherwise, we

108 C. Chekuri, A. Ene, and A. Vakilian

increase the dual variables {y(C)}C∈Ci−1 uniformly until a dual constraint for a vertex
becomes tight. (Note that it is possible that the increase was zero if there was already a
tight vertex at the beginning of the iteration; any vertex that was already tight is not in
Xi−1.) Let v be a vertex that became tight; if there are several such vertices, we pick
one of them arbitrarily. We add v to X and we proceed to the next iteration (note that
we have Xi = Xi−1 ∪ {v}).

Let X be the set of nodes selected by the algorithm. Let i∗ denote the last iteration
of the algorithm which adds a node. Let Ĉ = ∪i≤i∗Ci−1 be the collection of all sets
that were minimal violated sets throughout the history of the primal-dual algorithm
before merging happens at the end of iteration i∗. Let u be the node that was added to
X in iteration i∗. Intuitively, the addition of u merged some of the cores. We formally
identify the min-cores associated with the merged cores as follows. Let A = {C ∈
C | there is D ∈ Ci∗−1 such that C ⊆ D and u ∈ ΓG′(D)}. The family S(A, u) is the
desired spider family.

Finally, we perform the following reverse-delete step on the set X of nodes in order
to identify a subset of nodes that cover S(A, u). We let YC be the set of all nodes in
X − (X0 ∪ {u}) that are adjacent to some C-core in Ĉ. The sets {YC}C∈C are disjoint
and their union is X − (X0 ∪ {u}). We consider each foot A ∈ A separately. An
important observation is that G′[YA∪X0∪{u}] covers S({A}, u). For each footA, we
select a set ZA ⊆ YA such that G′[ZA ∪ X0 ∪ {u}] covers S({A}, u) as follows. We
start with ZA = YA. We consider the nodes of ZA in the reverse of the order in which
they were added to X . Let v be the current node. If the graphG′[(ZA∪X0∪{u})−{v}]
covers the spider family S({A}, u), we remove v from ZA. We set Z = ∪A∈AZA and
we output the family S(A, u) and the cover G′[Z ∪X0 ∪ {u}].

The spider family S(A, u) and the cover G′[Z ∪ X0 ∪ {u}] have the properties
required by Theorem 6; we defer the proof to a longer version of this paper.

References

1. Aggarwal, C.C., Orlin, J.B.: On multiroute maximum flows in networks. Networks 39(1),
43–52 (2002)

2. Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.: A note on the prize col-
lecting traveling salesman problem. Mathematical Programming 59(1), 413–420 (1993)

3. Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps
for capacitated network design and covering problems. In: Proc. of ACM-SIAM SODA,
pp. 106–115 (2000)

4. Chakrabarty, D., Chekuri, C., Khanna, S., Korula, N.: Approximability of Capacitated
Network Design. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655,
pp. 78–91. Springer, Heidelberg (2011)

5. Chekuri, C., Ene, A., Vakilian, A.: Node-Weighted Network Design in Planar and Minor-
Closed Families of Graphs. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012, Part I. LNCS, vol. 7391, pp. 206–217. Springer, Heidelberg (2012)

6. Chudak, F.A., Nagano, K.: Efficient solutions to relaxations of combinatorial problems with
submodular penalties via the Lovász extension and non-smooth convex optimization. In:
Proc. of ACM-SIAM SODA, pp. 79–88 (2007)

7. Chuzhoy, J., Khanna, S.: An O(k3 log n)-approximation algorithm for vertex-connectivity
survivable network design. In: Proc. of IEEE FOCS, pp. 437–441 (2009)

Prize-Collecting Survivable Network Design in Node-Weighted Graphs 109

8. Demaine, E.D., Hajiaghayi, M.T., Klein, P.: Node-Weighted Steiner Tree and Group Steiner
Tree in Planar Graphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 328–340. Springer, Heidelberg (2009)

9. Guha, S., Moss, A., Naor, J.S., Schieber, B.: Efficient recovery from power outage. In: Proc.
of ACM STOC, pp. 574–582 (1999)

10. Gutner, S.: Elementary approximation algorithms for prize collecting Steiner tree problems.
Information Processing Letters 107(1), 39–44 (2008)

11. Hajiaghayi, M.T., Jain, K.: The prize-collecting generalized Steiner tree problem via a new
approach of primal-dual schema. In: Proc. of ACM-SIAM SODA, pp. 631–640 (2006)

12. Hajiaghayi, M.T., Khandekar, R., Kortsarz, G., Nutov, Z.: Prize-Collecting Steiner Network
Problems. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 71–84.
Springer, Heidelberg (2010)

13. Hajiaghayi, M.T., Nasri, A.A.: Prize-Collecting Steiner Networks via Iterative Rounding. In:
López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 515–526. Springer, Heidelberg
(2010)

14. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica 21(1), 39–60 (1998); Preliminary version in FOCS 1998

15. Johnson, D.S., Minkoff, M., Phillips, S.: The prize collecting Steiner tree problem: theory
and practice. In: Proc. of ACM-SIAM SODA, pp. 760–769 (2000)

16. Kishimoto, W.: A method for obtaining the maximum multiroute flows in a network. Net-
works 27(4), 279–291 (1996)

17. Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted
Steiner trees. J. Algorithms 19(1), 104–115 (1995); Preliminary version in IPCO 1993

18. Nagarajan, C., Sharma, Y., Williamson, D.P.: Approximation Algorithms for Prize-
Collecting Network Design Problems with General Connectivity Requirements. In: Bampis,
E., Skutella, M. (eds.) WAOA 2008. LNCS, vol. 5426, pp. 174–187. Springer, Heidelberg
(2009)

19. Nutov, Z.: Approximating Steiner networks with node-weights. SIAM Journal of Comput-
ing 39(7), 3001–3022 (2010); Preliminary version in LATIN 2008

20. Sharma, Y., Swamy, C., Williamson, D.P.: Approximation algorithms for prize collect-
ing forest problems with submodular penalty functions. In: Proc. of ACM-SIAM SODA,
pp. 1275–1284 (2007)

21. Williamson, D.P., Goemans, M.X., Mihail, M., Vazirani, V.V.: A primal-dual approximation
algorithm for generalized Steiner network problems. Combinatorica 15(3), 435–454 (1995);
Preliminary version in STOC 1993

Approximating Minimum-Cost Connected

T -Joins

Joseph Cheriyan, Zachary Friggstad, and Zhihan Gao

Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, Ontario N2L3G1, Canada

{jcheriyan,zfriggstad,z9gao}@uwaterloo.ca

Abstract. We design and analyse approximation algorithms for the
minimum-cost connected T -join problem: given an undirected graph G =
(V,E) with nonnegative costs on the edges, and a set of nodes T ⊆ V ,
find (if it exists) a spanning connected subgraph H of minimum cost
such that T is the set of nodes of odd degree; H may have multiple
copies of any edge of G. Recently, An, Kleinberg, and Shmoys (STOC
2012) improved on the long-standing 5

3
approximation guarantee for the

s, t path TSP (the special case where T = {s, t}) and presented an algo-
rithm based on LP rounding that achieves an approximation guarantee

of 1+
√

5
2

≈ 1.618. We show that the methods of An et al. extend to the
minimum-cost connected T -join problem to give an approximation guar-
antee of 5/3 − 1/(9|T |) + O

(|T |−2) when |T | ≥ 4; our approximation
guarantee is 1.625 when |T | = 4, and it is ≈ 1.642 when |T | = 6. Fi-
nally, we focus on a prize-collecting version of the problem, and present
a primal-dual algorithm that is “Lagrangian multiplier preserving” and
that achieves an approximation guarantee of 3−2/(|T |−1) when |T | ≥ 4.

Keywords: approximation algorithms, LP rounding, primal-dual
method, prize-collecting problems, T -joins, TSP, s, t-path TSP.

1 Introduction

The Traveling Salesman Problem (TSP) and its variants, especially the s, t path
TSP, are currently attracting substantial research interest. We focus on a gen-
eralization that captures the TSP and the s, t path TSP.

Let G = (V,E) be an undirected graph with nonnegative costs ce on the edges
e ∈ E and let T be a subset of V . A T -join is a multiset of edges J of G such that
the set of nodes with odd degree in the graph H = (V, J) is precisely T , that is,
a node v ∈ V has degJ(v) odd if and only if v ∈ T , [8]. A (spanning) connected
T -join is a multiset of edges F of G such that the graph H = (V, F) is connected
and T is the set of nodes with odd degree in H . Clearly, we may (and we shall)
assume that G is connected and that |T | is even, otherwise, no connected T -join
exists; moreover, we may assume that each edge of G occurs with multiplicity
zero, one, or two in H , otherwise, we may remove two copies of an edge from H
while preserving the connected T -join property. In the minimum-cost connected

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 110–121, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Min-Cost Connected T -Joins 111

T -join problem, the goal is to find a connected T -join of minimum cost. Two
well-known special cases are the TSP (T = ∅), and the s,t path TSP (T = {s, t}).

By a metric graph G we mean a complete graph on V (G) such that the edge
costs satisfy the triangle inequality. The metric completion of a graph G is given
by the complete graph on V (G) with the cost of any edge vw equal to the cost
of a shortest v, w path of G. It can be seen that G has a connected T -join of cost
γ if and only if the metric completion has a connected T -join of cost γ. Thus,
we may assume that the given graph G is a metric graph.

Christofides presented an algorithm for the (metric) TSP that achieves an ap-
proximation guarantee of 3

2 , see [8], and this is the best result known. Hoogeveen
[6] extended the algorithm and its analysis to the s, t path TSP, and proved an
approximation guarantee of 5

3 . Recently, An, Kleinberg, and Shmoys [1] im-
proved on this long-standing 5

3 approximation guarantee and presented an al-

gorithm that achieves an approximation guarantee of 1+
√
5

2 ≈ 1.61803. To the
best of our knowledge, there is only one previous result on approximating min-
cost connected T -joins: Sebő and Vygen [7] present a very nice 3

2 -approximation
algorithm for unweighted graphs (each edge has unit cost); in this context, we
mention that the input graph cannot be assumed to be a metric graph.

All of our algorithms follow the plan of Christofides’ algorithm: first, compute
an appropriate tree, then, compute a D-join of minimum cost, where D denotes
the set of nodes that have the “wrong degree” in the tree; finally, return the
union of the tree and the D-join. (Here, a D-join means a multiset of edges E′

such that D is the set of nodes of odd degree in (V,E′); throughout the paper,
we use “T ” and “T -join” as in the abstract, that is, T denotes a set of nodes
specified in the input; we use a symbol different from T for a join with respect
to some auxiliary set of nodes.)

We show that the methods of An et al. extend to the minimum-cost connected
T -join problem. They presented a new proof for a 5

3 approximation guarantee
for the s, t path TSP; in Section 3, we show that their proof extends easily to
the minimum-cost connected T -join problem. More interestingly, in Section 4,
we generalize the main result of An et al. to obtain an approximation guarantee

of 5
3 − σ(|T |), where σ(|T |) = 4|T |−11

36|T |2−156|T |+168 = 1
9|T | −O(|T |−2) when |T | ≥ 4.

For sets T whose size is bounded by a constant, this approximation guarantee is
better than 5

3 by a constant. For example, the approximation guarantee is 1.625
when |T | = 4 and is less than 1.6421 when |T | = 6. Our analysis uses some new
methods over that of An et al. and we elaborate in the next subsection.

Our second batch of results pertain to the following prize-collecting version of
the problem: in addition to the graph G = (V,E) and the edge costs c, there is a
nonnegative penalty π(v) for each node v ∈ V \T ; the goal is to find I ⊆ V \T and
a connected T -join F of the graph G\ I such that c(F)+π(I) is minimized. The
special case of the prize-collecting TSP (T = ∅) has been extensively studied for
over 20 years, starting with Balas [3], and an approximation guarantee of 1.91457
has been presented by Goemans [5]; also see Archer et al. [2]. The special case
of the prize-collecting s, t path TSP (T = {s, t}) has also been studied, and An
et al. [1] present an approximation guarantee of 1.9535.

112 J. Cheriyan, Z. Friggstad, and Z. Gao

We focus on the general problem (prize-collecting connected T -join) and
present a primal-dual algorithm that achieves an approximation guarantee of
3 − 2

|T |−1 when |T | ≥ 4. Our primal-dual algorithm may be viewed as a gen-

eralization of the known primal-dual 2-approximation for the prize-collecting
s, t path TSP by Chaudhuri et al. [4], and we also match their approximation
guarantee of 2 for |T | = 2. Our algorithm has the “Lagrangian Multiplier Pre-
serving” property; this property is useful for the design of approximation algo-
rithms for cardinality-constrained versions of problems. Furthermore, we show
that our analysis is tight by presenting instances with |T | ≥ 4 such that the cost
of the solution found by the algorithm is exactly 3− 2

|T |−1 times the cost of the

constructed dual solution.
Our algorithm and analysis follow well-known methods for the prize-collecting

Steiner tree problem, see [4,5]. One key difference comes from the cost analysis
for the D-join, where D denotes the set of nodes that have the wrong degree
in the tree computed by the algorithm. A simple analysis of the cost of this D-
join results in an approximation guarantee of 4− O(|T |−1). To improve on this
approximation guarantee, our analysis has to go beyond the standard methods
used for analysing the approximation guarantee of primal-dual algorithms.

Most of our notation is standard, and follows Schrijver [8]; Section 2 has a
summary of most of our notation.

1.1 New Contributions on Min-Cost Connected T -Joins

This subsection discusses the main points of difference between our analysis and
that of An et al.

Our algorithm and analysis follow that of An et al. at a high level. The
algorithm solves an LP relaxation, and using the optimal solution x∗ of the LP,
it samples a random spanning tree J , and then computes a min-cost D-join,
where D is the set of nodes of the wrong degree in J . The analysis hinges on
constructing a fractional D-join (a solution to an LP formulation of the D-join
problem) of low cost to “fix” the wrong-degree nodes in J .

We construct the fractionalD-join as y := α·χ(J)+β ·x∗+z where χ(J) is the
0-1 indicator vector for the edges of J , z is some “correction” vector (described
in Section 4.3), and α and β are carefully chosen values. By integrality of the
D-join polytope, the cheapest D-join has cost at most the cost of y. By linearity
of expectation, the expected cost of y is less than or equal to α + β times the
cost of x∗ plus the expected cost of z. It turns out that the correction vector z
is needed only for a special type of cut, the so-called τ -narrow cuts: these are
given by T -odd sets U such that x∗(δ(U)) < 1+ τ . When |T | = 2, as in An et al.
[1], it turns out that (the node sets of) the τ -narrow cuts form a nested family
U1 ⊂ U2 ⊂ · · · ⊂ Ui ⊂ This is no longer true for |T | ≥ 4, and hence, the
analysis of the correction vectors by An et al. does not apply when |T | ≥ 4.

We prove that the τ -narrow cuts form a laminar family when |T | ≥ 4. More-
over, in contrast with An et al., our analysis hinges on the “partition inequali-
ties” that are satisfied by spanning trees and fractional spanning trees such as
x∗, namely, every partition P = {P1, . . . , Pk} of the node set into nonempty sets

Min-Cost Connected T -Joins 113

satisfies x∗(δ(P1, . . . , Pk)) ≥ k − 1. In our application, we are given a subfamily
of τ -narrow cuts from the laminar family of τ -narrow cuts, and we have to obtain
a partition of the nodeset V into nonempty sets that correspond to the given
subfamily. It is not clear that this holds for τ close to 1, but, we prove that it
holds for τ = O(|T |−1). This is one reason why our approximation guarantee
approaches 5/3 (from below) as |T | increases.

To complete the analysis, we have to fix α, β and τ subject to several con-
straints, and we have to minimize the expected cost of the fractional D-join. We
chose the optimal values for the above constants, and thus our approximation
guarantee (in terms of |T |) is optimal for our methods.

2 Preliminaries

We first establish some notation. Given a multiset of edges F , we use c(F) to
denote the cost of F ; thus, c(F) =

∑
e μ

F
e ce; here, μ

F
e denotes the number of

copies of the edge e in F .
For any set of edges F of G, we use χ(F) to denote the zero-one indicator

vector of F , thus, χ(F) ∈ {0, 1}|E|, and we use V (F) to denote the set of incident
nodes. For any set of edges F of G and any subset of nodes S, we use F (S) to
denote the set of edges of F that have both endpoints in S, and we use δF (S)
to denote the set of edges of F that have exactly one endpoint in S. We use the
same notation for a multiset of edges.

For any set of nodes S, let S denote the complement V \S. A set of nodes S is
called T -even if |S ∩ T | is even, and it is called T -odd if |S ∩ T | is odd. Also, we
say that a cut δF (S) is T -even (respectively, T -odd) if S is T -even (respectively,
S is T -odd).

We say that two subsets of nodes R and S cross if R ∩ S, R ∪ S, R \ S and
S \R are all non-empty, proper subsets of V . A family of subsets of V is called
laminar if no two of the subsets in the family cross.

Let P = {P1, . . . , Pk} be a partition of the nodes of G into nonempty sets
P1, . . . , Pk. Then δ(P) denotes the set of edges that have endpoints in different
sets in P .

For ease of notation, we often identify a tree with its edge-set, e.g., we may
use J ⊆ E(G) to denote a spanning tree. Moreover, we may use relaxed notation
for singleton sets, e.g., for a node t, we may use V − t instead of V \ {t}.

We use the the next fact throughout the paper. It relates the number of odd-
degree nodes in a set U ⊆ V and the parity of the cut δ(U).

Lemma 1. Let G = (V,E) be a graph, and let T ⊆ V have even size. Let F be
a multiset of edges of G, and let D be the set of wrong-degree nodes w.r.t. F ,
that is, D is the set of nodes v such that either v ∈ T and degF (v) is even, or
v ∈ V \ T and degF (v) is odd. Then, for any U ⊆ V we have

(i) |δF (U)| ≡ |U ∩D ∩ T |+ |U ∩D ∩ T | (mod 2);
(ii) moreover, if U is both T -odd and D-odd, then |δF (U)| is even.

114 J. Cheriyan, Z. Friggstad, and Z. Gao

2.1 An LP Relaxation

We will assume that G is a metric graph for both the 5/3-approximation and its
improvement; moreover, we will assume that T �= ∅, except where stated oth-
erwise. The next result is essential for our LP (linear programming) relaxation;
the proof follows by generalizing the notion of shortcutting an Eulerian walk.

Proposition 1. Let G = (V,E) be a metric graph, and let T ⊆ V have even
cardinality. Assume that T �= ∅. Given a connected T -join F , we can efficiently
find a spanning tree of G of cost ≤ c(F) that is also a connected T -join.

Let F be a connected T -join and consider any T -even subset of nodes S. Observe
that |δF (S)| is even; this follows from Lemma 1 (since the set of wrong-degree
nodes D in F is empty). This fact and Proposition 1 lead to our linear program-
ming relaxation (L.P.1) for the minimum-cost connected T -join problem.

(L.P.1) minimize :
∑

e∈E cexe
subject to : x(E(S)) ≤ |S| − 1 ∀S � V, |S| ≥ 2

x(E(V)) = |V | − 1
x(δ(S)) ≥ 2 ∀∅ � S � V, |S ∩ T | even

xe ≥ 0 ∀e ∈ E

The preceding discussion shows that the optimal value of this linear program
is a lower bound for the optimal cost for the connected T -join problem when
T �= ∅. Using the ellipsoid method, we can solve this linear program efficiently,
see [8].

Finally, we recall a linear programming formulation for the minimum cost
T -join problem. The extreme points of this LP are integral [8] meaning that the
optimal value of this LP is equal to the minimum cost of a T -join (assuming
c ≥ 0). We call any feasible solution to the following linear program a fractional
T -join.

(L.P.2) minimize :
∑

e∈E cexe
subject to : x(δ(U)) ≥ 1 ∀U ⊆ V, |U ∩ T | odd

xe ≥ 0 ∀e ∈ E

3 A 5
3
-Approximation Algorithm

Hoogeveen [6] showed that Christofides’ 3/2-approximation algorithm for the
TSP (the case when T = ∅) extends to give a 5/3-approximation algorithm for
the s, t path TSP (the case when T = {s, t}). Later, An, Kleinberg, and Shmoys
(AKS) [1] proved that the 5/3-approximation guarantee holds with respect to
(the optimal value of) an LP relaxation for the s, t path TSP.

It turns out that Christofides’ algorithm generalizes to a 5/3-approximation
algorithm for the min-cost connected T -join problem. This was observed in [7]
and the arguments in [1] can be used essentially without modification to bound
the integrality gap of (L.P.1) by 5/3. The (generalized) algorithm first computes
a minimum spanning tree J ⊆ E(G). Then let D denote the set of “wrong

Min-Cost Connected T -Joins 115

degree” nodes in J . That is, D consists of the nodes in T that have even degree
in J and the nodes in V \ T that have odd degree in J . Let M ⊆ E(G) be a
minimum-cost D-join. Then the multiset F = J ∪M (F has two copies of each
edge in J ∩M) forms a connected T -join.

Thus the algorithm is combinatorial and does not require solving any linear
programs. But, the optimal value of the linear program (L.P.1) serves as a useful
lower bound on the minimum cost of a connected T -join.

Theorem 1 (An, Kleinberg, and Shmoys [1]). Let x∗ be an optimal so-
lution for the linear programming relaxation of the connected T -join problem,
(L.P.1), and let OPTLP denote the optimal value

∑
e∈E cex

∗
e. Then the solution

F computed by the algorithm has cost ≤ 5
3OPTLP .

4 An Improved Approximation for Small T

In this section, we improve on the approximation guarantee of 5/3 for the min-
cost connected T -join problem, by extending the approximation algorithm and
analysis by An et al. [1], for the s, t path TSP. We assume |T | ≥ 4, and we prove

an approximation guarantee of 5
3 − 4|T |−11

36|T |2−156|T |+168 .

Theorem 2. There is an algorithm (described in Section 4.1) that finds a con-

nected T -join F of cost at most 5
3 − 4|T |−11

36|T |2−156|T |+168 times the optimum value

of linear program (L.P.1).

4.1 The Algorithm

Let x∗ denote an optimal solution to the linear programming relaxation for
the minimum-cost connected T -join problem. The first two constraints of the
LP allow us to decompose x∗ as a convex combination of incidence vectors of
spanning trees. That is, there exist spanning trees J1, . . . , Jk and non-negative
values λ1, . . . , λk summing to 1 such that x∗ =

∑k
i=1 λi χ(Ji). By Caratheodory’s

theorem, we may assume k ≤ |E| + 1 and it is possible to find these spanning
trees in polynomial time, [8]. For each spanning tree Ji, let Di denote the set
of nodes that have the “wrong” degree in Ji, that is, Di consists of the nodes
in T that have even degree in Ji and the nodes in V \ T that have odd degree
in Ji. Let Mi be a minimum cost Di-join and let Fi be the multiset formed by
the union of Mi and Ji. Clearly, each Fi is a connected T -join. We output the
cheapest of these solutions.

It is easier to analyze a related randomized algorithm. Rather than trying
every tree Ji, our algorithm randomly selects a single tree J by choosing Ji with
probability λi. Since the deterministic algorithm tries all such trees, the cost of
the solution found by the deterministic algorithm is at most the expected cost of
the solution found by this randomized algorithm. Let D denote the set of nodes
of wrong degree in J , M denote the minimum-cost D-join, and F denote the
(multiset) union of M and J . The randomized algorithm returns F .

116 J. Cheriyan, Z. Friggstad, and Z. Gao

The expected cost of F is the expected cost of J plus the expected cost of
the D-join M . The expected cost of the tree J is precisely the cost of x∗ since
each edge e has probability precisely x∗e of appearing in J . We will show that

the expected cost of M is at most 2
3 − 4|T |−11

36|T |2−156|T |+168 times the cost of x∗.

4.2 Constructing the Fractional D-Join

We will construct the fractional D-join as y := α · χ(J) + β · x∗ + z, where

x∗ ∈ IR|E|, z is some “correction” vector in IR|E| to be described below, and α
and β are values which will be specified shortly; clearly, y ∈ IR|E|. Again, by the
integrality of the T -join polyhedron, the cost of M will be at most the cost of y.
By linearity of expectation, the expected cost of y will be exactly α + β times
the cost of x∗ plus the expected cost of z.

The following lemma shows that for certain α and β, the correction vector is
not needed for many cuts. The proof is similar to a result in [1].

Lemma 2. Suppose α+2β ≥ 1. Then (α ·χ(J)+β ·x∗)(δ(U)) ≥ 1 if U is either
(i) T -even, or
(ii) T -odd and D-odd, with x∗(δ(U)) ≥ 1−2α

β .

It will be convenient to fix a particular node t̂ ∈ T . Unless otherwise specified,
when discussing a cut of the graph we will take the set S ⊆ V representing the
cut to be such that t̂ �∈ S; thus the cut will be denoted δ(S), S ⊆ V \ {t̂}. As
T -odd cuts of the graph that have small x∗ capacity will be used frequently in
our analysis, we employ the following definition: Let τ ≥ 0. A T -odd subset of
nodes S is called τ -narrow if x∗(δ(S)) < 1 + τ .

Using this definition, Lemma 2 says that if α + 2β ≥ 1 with both α, β ≥ 0,
then the vector α · χ(J) + β · x∗ satisfies all constraints defining the D-join
polyhedron except, perhaps, the constraints corresponding to T -odd, τ -narrow
cuts for τ ≥ 1−2α

β − 1.

An et al. in [1], proved that if R and S are distinct T -odd, τ -narrow cuts then
either S ⊂ R or R ⊂ S. A generalization of this result to connected T -joins is
the following.

Lemma 3. If τ ≤ 1 and R and S are distinct T -odd, τ-narrow cuts, then R
and S do not cross.

Another way to state Lemma 3 is that the T -odd, τ -narrow cuts of the graph
form a laminar family L of nonempty subsets of V \ {t̂}.

The correction vector z that we add to α ·χ(J)+β ·x∗ for the T -odd, τ -narrow
cuts can be constructed from the following lemma. The main difference from the
analogous result in [1] is that we require a further restriction on the size of τ .
This is essentially the reason our approximation guarantee degrades to 5

3 as the
size of T increases.

Lemma 4. Let L = {Ui} be the laminar family of T -odd, τ-narrow cuts. For

τ ≤ 1
|T |−2 there exist non-negative vectors fU ∈ IR|E|, one for each cut U ∈ L,

such that
∑

U∈L f
U ≤ x∗ and for each U ∈ L, fU (δ(U)) ≥ 1.

Min-Cost Connected T -Joins 117

The proof of this lemma is deferred to the next section. Assuming this lemma,
we will now show how to complete the analysis of the algorithm. We now fix τ

to be 1
|T |−2 . We also set α := |T |−3

3|T |−7 and β := |T |−2
3|T |−7 . For |T | ≥ 4 and these

choices of parameters, we have α+ 2β ≥ 1 and τ = 1−2α
β − 1.

We construct the correction vector z by including an appropriate multiple of
fU for each D-odd cut U ∈ L. Formally,

z =
∑
U∈L

|U∩D| odd

(1− 2α− βx∗(δ(U))) · fU .

Since x∗(δ(U)) < 1 + τ and τ = 1−2α
β − 1, we have 1− 2α− βx∗(δ(U)) ≥ 0 for

each U ∈ L which shows z ≥ 0. So, using Lemma 2 plus the contribution of the
correction vector to the D-odd, τ -narrow cuts, we can verify that y(δ(U)) ≥ 1
for every D-odd set U so y is a fractional D-join.

We conclude the analysis by bounding the expected cost of y. This is given
by

E[cost(y)] = (α+β) cost(x∗)+
∑
U∈L

(1−2α−βx∗(U))·Pr[|D∩U | is odd]·cost(fU).

As argued in [1], the probability that a T -odd cut U is also D-odd is at most
x∗(δ(U)) − 1. So, for each U ∈ L we can bound (1− 2α− βx∗(δ(U))) ·Pr[|D ∩
U | is odd] by (1−2α−βx∗(δ(U))) · (x∗(δ(U))−1). For x∗(δ(U)) bound between
1 and 1+ 1

|T |−2 , the maximum value of this expression is achieved at x∗(δ(U)) =

1 + 1
2 · 1

|T |−2 and its value is γ(|T |) := 1
12|T |2−52|T |+56 .

So, the expected cost of y is at most (α+β)·cost(x∗)+γ(|T |)·
∑

U∈L cost(fU).
Since

∑
U∈L f

U ≤ x∗, we have the final bound on the expected cost of y being
(α+β+γ(|T |)) cost(x∗). Adding this to the expected cost of J , we have that the
expected cost of the connected T -join is at most (1+α+β+γ(|T |)) ·cost(x∗). In
terms of |T |, this bound on the integrality ratio is at most 5

3 −
4|T |−11

36|T |2−156|T |+168 .

We note that for |T | ≥ 4, this is strictly less than 5
3 .

4.3 The Correction Vector

We complete the analysis by proving Lemma 4. As in [1], we set up a flow network
and use the max-flow/min-cut theorem to ensure a flow exists with the desired
properties. However, our analysis is complicated by the fact that the sets in L
are laminar rather than simply nested.

Let L′ be a subfamily of L. For U ∈ L′, let gL′(U) be the nodes in U that are
not found in any smaller subset in L′. That is,

gL′(U) = {v ∈ U : v �∈ W for any W ∈ L′ with W � U}.

The following result is the key to generalizing the argument in [1] to our setting.

118 J. Cheriyan, Z. Friggstad, and Z. Gao

Lemma 5. Suppose that τ ≤ 1
|T |−2 . Let L′ be any subfamily of L. The family

of subsets {gL′(U) : U ∈ L′}∪ {V \
⋃
W∈L′ W} forms a partition of V , and each

such subset is nonempty.

Proof. Each node v in some subset in the family L′ is in gL′(U) for some U ∈ L′

since v is “assigned” to the smallest subset of L′ containing v. All other nodes
appear in the set V \

⋃
W∈L′ W . By construction, the sets are disjoint. It remains

to prove that each of the sets is nonempty.
Since t̂ is not in any subset in the family L′, it must be that V \

⋃
W∈L′ W �= ∅.

For a set U ∈ L′, letmL′(U) be the maximal proper subsets of U in the subfamily
L′ and note that gL′(U) = U \

⋃
W∈mL′ (U)W and the sets inmL′(U) are disjoint.

For the sake of contradiction, suppose that gL′(U) = ∅. Then U is the disjoint
union of the sets in mL′(U). Since every set in L′ is T -odd, then |mL′(U)| is also
odd and we let 2k+1 = |mL′(U)|. Notice that 2k+1 ≤ |T |− 1 since each of the
disjoint sets in mL′(U) contain at least one node of T − t̂.

Now we examine the quantity X = (2k−1)x∗(δ(U))+
∑

W∈mL′ (U) x
∗(δ(W)).

Since U and each W ∈ mL′(U) is a T -odd, τ -narrow cut, then X < (2k− 1)(1+
τ)+(2k+1)(1+τ) = 4k(1+τ). Also, note that X =

∑
W∈mL′(U) x

∗(δ(U \W)) ≥
2(2k + 1) where the inequality follows because each set U \W in the sum is T -
even. But then 2(2k + 1) ≤ X < 4k(1 + τ), which contradicts 2k ≤ |T | − 2 and
τ ≤ 1

|T |−2 . This completes the proof of Lemma 5.

Proof (of Lemma 4). We now finish construction of the vectors fU , U ∈ L by
describing the flow network. Create a directed graph with 4 layers of nodes,
where the first layer has a single source node vs and the last layer has a single
sink node vt. We have a node vU for each T -odd, τ -narrow cut U ∈ L in the
second layer, and a node ve for each edge e ∈ E(G) in the third layer. For each
U ∈ L, there is an arc from vs to vU with capacity 1. For each edge e of G,
there is an arc from ve to vt with capacity x∗e. Finally, for each U ∈ L and each
e ∈ δ(U) we have an arc from vU to ve with capacity ∞.

We claim that there is a flow from vs to vt that saturates each of the arcs
originating from vs; this is proved below. From such a flow, we construct the
vectors fU for U ∈ L by setting fUe to be the amount of flow sent on the arc
from vU to ve (where we use fUe = 0 if e �∈ δ(U)). We have fU ≥ 0 and, by
the capacities of the arcs entering vt,

∑
U∈L f

U ≤ x∗. Finally, since each U ∈ L
has the arc from vs to vU saturated by one unit of flow, we have fU (δ(U)) ≥ 1.
Thus, the vectors fU , U ∈ L satisfy the requirements of Lemma 4.

We prove the existence of this flow by the max-flow/min-cut theorem. Let S
be any cut with vs ∈ S, vt �∈ S. If S contains some node vU for U ∈ L but not
ve for some e ∈ δ(U), then the capacity of S is ∞. Otherwise, let LS denote the
subfamily of sets U ∈ L such that the node vU representing U is in S. Then the
total capacity of the arcs leaving S is

|L| − |LS |+
∑

e∈δ(U)
for some U∈LS

x∗e = |L| − |LS |+ x∗(PS)

Min-Cost Connected T -Joins 119

where PS is the partition of V given by the sets {gLS(U), U ∈ LS} ∪ {V \⋃
W∈LS

W}. From Lemma 5, each set in PS is nonempty so we have x∗(PS) ≥
|LS | because x∗ is in the spanning tree polytope and |PS | = |LS | + 1. So, the
capacity of this cut is at least |L|.

Since this holds for all vs,vt cuts S, then the maximum flow is at least |L|.
Finally, the cut S = {vs} has capacity precisely |L| so the maximum vs,vt flow
saturates all of the arcs exiting vs.

5 Prize-Collecting Connected T -Joins

We start with a linear programming relaxation of the prize-collecting problem.
For notational convenience, we define a large penalty for each node in T . We
also designate an arbitrary node t� ∈ T as the root node. The LP has a variable
ZX for each set X ⊆ V − t� such that ZX = 1 indicates that X is the set of
isolated nodes of an optimal integral solution; moreover, we have a cut constraint
for each nonempty subset S of V − t�; the requirement (r.h.s. value) of a cut
constraint is 1 or 2, depending on whether the set S is T -odd or T -even.

Let Q denote the T -odd subsets of V − t�, and let R denote the non-empty
T -even subsets of V − t�. For every solution to the prize-collecting connected
T -join problem, observe that there exists an edge in δ(Q) for each Q ∈ Q. The
LP relaxation we use is the following.

(L.P.3) minimize :
∑
e

cexe +
∑

X⊆V−t�
π(X)ZX

subject to : x(δ(Q)) ≥ 1 ∀ Q ∈ Q
x(δ(R)) +

∑
X:X⊇R,X⊆V−t�

2ZX ≥ 2 ∀ R ∈ R

x, Z ≥ 0
The dual of (L.P.3) has a variable yQ for each primal-constraint of the first type,
and a variable yR for each primal-constraint of the second type; thus, each T -odd
set Q ⊆ V − t� has a dual variable yQ, and each T -even set ∅ � R � V − t� has
a dual variable yR.

(L.P.4) maximize :
∑
Q∈Q

yQ +
∑
R∈R

2yR

subject to :
∑

S∈Q∪R:e∈δ(S)
yS ≤ ce ∀ e ∈ E∑

R⊆X,R∈R
2yR ≤ π(X) ∀ X ⊆ V − t�

y ≥ 0
Consider the dual LP and a feasible solution y; we call an edge e tight if the
constraint for e holds with equality, and we call a set of nodes X ⊆ (V − t�)
π-tight if the constraint for X holds with equality.

5.1 The Primal-Dual Algorithm

The algorithm proceeds in phases. In each phase, a partition P of V (G) is main-
tained; some sets in this partition are active and some are inactive. Throughout,

120 J. Cheriyan, Z. Friggstad, and Z. Gao

the set containing the root, t�, is taken to be inactive. The initial partition consists
of singletons {v} for every v ∈ V . Each of the sets {v}, v ∈ V − t�, is designated as
active. We initialize yS := 0 for every subset S of V . Let F denote the set of edges
choosen during the growing phase of the algorithm; we initialize F := ∅.

Each phase proceeds as follows. We simultaneously raise yS for every active
set S in the current partition at a uniform rate. The phase ends when either an
edge becomes tight or an active subset of nodes S becomes π-tight. If the former
occurs, we add e to F , merge the components in the current partition containing
the endpoints of e, and call this new component inactive if it contains the root,
otherwise, we call the new component active. If the latter occurs, that is, if an
active subset S ⊆ V in the partition becomes π-tight, then S becomes inactive.
The algorithm terminates when there are no remaining active sets.

Standard arguments show that the dual solution at the end of the algorithm is
feasible and that the set of edges F chosen throughout the algorithm is acyclic.
We prune our solution F in the usual way. Namely, we iteratively discard any
edge e such that there exists an inclusion-wise maximal set X that was inactive
at some point of the algorithm and δ(X) = {e}; moreover, after this stage of
pruning, we discard all remaining edges that are not in the component of t�.
Let J denote the remaining subset of edges. The subgraph that remains after
discarding the isolated nodes is a tree J containing the root t�. Furthermore,
since each node in T has a large penalty, then J contains all nodes in T .

Finally, let D ⊆ V (J) denote the set of nodes that have the wrong degree
in the tree J . Compute a minimum-cost D-join M and output J ∪ M as the
connected T -join on V (J). Let I denote the set of nodes not included in J , thus
I = V \ V (J).

5.2 Analysis of the Primal-Dual Algorithm

Our argument for bounding the cost of the tree J and the penalties of the nodes in
I is similar to known arguments. The main contribution here is how we bound the
cost of the D-join without simply doubling the edges of J . The following theorem
summarizes the cost bounds. For convenience, we define ρ(|T |) = 2− 1

(|T |−1) .

Theorem 3. The penalty of the nodes in I is exactly 2
∑
X⊆I

yX , the cost of the

tree J is at most ρ(|T |)
∑
Q∈Q

yQ + 2
∑

R∈R,R �⊆I
yR, and the cost of the minimum-cost

D-join M is at most (ρ(|T |)− 1)
∑
Q∈Q

yQ + 2
∑

R∈R,R �⊆I
yR.

Proof. The bounds on the total penalty and the cost of J follow by standard
arguments. The reason we get the slight improvement from 2 to ρ(|T |) in the
coefficient of the dual variables for sets in Q is that the number of T -odd active
sets in any step of the algorithm is at most |T | − 1.

To bound the cost of the D-join, let Ĵ be the set of edges of J whose deletion
separates J into two D-even components. One can verify that M ′ := J \ Ĵ is

Min-Cost Connected T -Joins 121

a D-join. Furthermore, using parity arguments, one can show that |δĴ(Q)| ≥ 1
for every Q ∈ Q that was active at some point in the algorithm. This, in turn,
implies that the cost of M ′ is at most the cost of J minus

∑
Q∈Q yQ, thus giving

our bound on the cost of the minimum-cost D-join.

Our analysis is tight even up to lower-order terms when |T | ≥ 4. This is realized
by a cycle on T , that is, G = (T,E) consists of an even-length cycle with at least
4 nodes. Let t� ∈ T be a designated node and let the edges incident to it have
cost 1

2 while all other edges have cost one. The dual growth phase grows y{v} to

1/2 for every singleton v ∈ T − t�. The algorithm could find a tree of cost |T |− 3
2

(by picking all edges of G except one of the two edges incident to t�), and then

find a D-join of cost |T |−2
2 . Observe that the cost of the dual solution is |T |−1

2 ,

whereas the connected T -join constructed by the algorithm has cost 3|T |−5
2 ; the

ratio of these two quantities is exactly 3− 2
|T |−1 .

6 Conclusions

A key open questions is whether the min-cost connected T -join problem can be
approximated within a constant strictly smaller than 5/3, regardless of the size
of T . This question has been settled for unweighted graphs by Sebő and Vygen
via their 3

2 -approximation algorithm [7], but the general question remains open.

Acknowledgements. We thank a number of colleagues for useful discussions;
in particular, we thank Jochen Könemann and Chaitanya Swamy. We thank
the referees for their comments. The first author is supported by NSERC grant
No. OGP0138432.

References

1. An, H.-C., Kleinberg, R., Shmoys, D.B.: Improving Christofides’ algorithm for the
s-t path TSP. In: Proc. ACM STOC (2012); CoRR, abs/1110.4604v2 (2011)

2. Archer, A., Bateni, M., Hajiaghayi, M., Karloff, H.J.: Improved approximation algo-
rithms for prize-collecting Steiner tree and TSP. SIAM J. Comput. 40(2), 309–332
(2011)

3. Balas, E.: The prize-collecting traveling salesman problem. Networks 19(6), 621–636
(1989)

4. Chaudhuri, K., Godfrey, B., Rao, S., Talwar, K.: Paths, trees, and minimum latency
tours. In: Proc. IEEE FOCS, pp. 36–45 (2003)

5. Goemans, M.X.: Combining approximation algorithms for the prize-collecting TSP.
CoRR, abs/0910.0553 (2009)

6. Hoogeveen, J.A.: Analysis of Christofides’ heuristic: Some paths are more difficult
than cycles. Operations Research Letters 10, 291–295 (1991)

7. Sebő, A., Vygen, J.: Shorter tours by nicer ears: 7/5-approximation for graphic
TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. CoRR,
abs/1201.1870v3 (2012)

8. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms
and Combinatorics, vol. 24. Springer, Berlin (2003)

iBGP and Constrained Connectivity�

Michael Dinitz1 and Gordon Wilfong2

1 Weizmann Institute of Science
michael.dinitz@weizmann.ac.il

2 Alcatel-Lucent Bell Labs
gtw@research.bell-labs.com

Abstract. We initiate the theoretical study of the problem of minimiz-
ing the size of an iBGP (Interior Border Gateway Protocol) overlay in
an Autonomous System (AS) in the Internet subject to a natural notion
of correctness derived from the standard “hot-potato” routing rules. For
both natural versions of the problem (where we measure the size of an
overlay by either the number of edges or the maximum degree) we prove
that it is NP-hard to approximate to a factor better than Ω(logn) and
provide approximation algorithms with ratio Õ(

√
n). This algorithm is

based on a natural LP relaxation and randomized rounding technique in-
spired by recent progress on approximating directed spanners. The main
technique we use is a reduction to a new connectivity-based network
design problem that we call Constrained Connectivity, in which we are
given a graph G = (V,E) and for every pair of vertices u, v ∈ V we are
given a set S(u, v) ⊆ V called the safe set of the pair. The goal is to find
the smallest subgraph H = (V, F) of G in which every pair of vertices
u, v is connected by a path contained in S(u, v). We show that the iBGP
problem can be reduced to the special case of Constrained Connectivity
where G = Kn. Furthermore, we believe that Constrained Connectivity
is an interesting problem in its own right, so provide stronger hardness
results and integrality gaps for the general case.

1 Introduction

The Internet consists of a number of interconnected subnetworks called Au-
tonomous Systems (ASes). As described in [1], the way that routes to a given
destination are chosen by routers within an AS can be viewed as follows. Routers
have a ranking of routes based on economic considerations of the AS. Without
loss of generality, in what follows we assume that all routes are equally ranked
(it suffices to concentrate on the highest-ranked routes; lower-ranked routes can
be ignored without loss of generality). Thus routers must use some tie-breaking
scheme in order to choose a route from amongst the equally ranked routes. Tie-
breaking is based on traffic engineering considerations and in particular, the goal
is to get packets out of the AS as quickly as possible (called hot-potato routing).

An AS attempts to achieve hot-potato routing using the Interior Border Gate-
way Protocol (iBGP), the version of the interdomain routing protocol BGP [15]

� Full version can be found at http://arxiv.org/abs/1107.2299

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 122–133, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://arxiv.org/abs/1107.2299

iBGP and Constrained Connectivity 123

used by routers within a subnetwork to announce routes that have been learned
from outside the subnetwork. An iBGP configuration is defined by a signaling
graph, which is supposed to enforce hot-potato routing. Unfortunately, while
iBGP has many nice properties that make it useful in practice, constructing a
good signaling graph turns out to be a computationally difficult problem. For
example, it is not clear a priori that it is even possible to check in polynomial
time that a signaling graph is correct, i.e. it is not obvious that the problem is
even in NP! In this paper we study the problem of constructing small and correct
signaling graphs, as well as a natural extension to a more general network design
problem that we call Constrained Connectivity.

1.1 iBGP

We begin with some definitions. In what follows, when we speak of a route, we
mean a route to some fixed destination d in the Internet. We define a border
router as a router that initially knows of a route that it has been told about
by a router outside the AS it is in. The border router that initially knows of
a route is said to be the egress router of that route. Without loss of generality
we can assume that each border router knows of exactly one route to d. Thus
an initial set F of routes defines a set XF of egress routers where there is a
one-to-one relationship between routes in F and routers in XF . The AS has
an underlying physical network with edge weights, e.g. IGP (Interior Gateway
Protocol) distances or OSPF (Open Shortest Path First) weights. The distance
between two routers in the AS is then defined to be the length of the shortest path
(according to the edge weights) between them. Given a set of routes, a router
will choose the one whose egress router is closest according to this definition of
distance. The signaling graph H is an overlay network whose nodes represent
routers and whose edges represent the fact that the two routers at its endpoints
use iBGP to inform one another of their current chosen route. The endpoints
of an edge in H are called iBGP neighbors. A path in H is called a signaling
path. Note that iBGP neighbors are not necessarily neighbors in the underlying
graph, since H is an overlay and can include any possible edge.

The goal of iBGP is to get each router r in the AS to chose a route with a
“nearby” egress router E. Then when r has packets to send to d they will be
routed from r to E along a shortest path in the AS. Finally, E will forward the
packets to the router outside the AS from which it learned about its route.

Intuitively, iBGP can be thought of as working as follows. We can assume
that at the beginning each border router has chosen the single route that it has
learned about from a router in some other AS. Each border router then tells
its iBGP neighbors about its chosen route. Then in an asynchronous fashion,
each router is activated: it considers the routes currently chosen by its iBGP
neighbors, of these it chooses the route with the closest egress router and finally
it tells its iBGP neighbors about this chosen route if the chosen route differs
from its previously chosen route. This process continues until no router changes
its chosen route. It should be noted that a router cannot choose any route other
than one of its neighbors’ currently chosen routes. Thus on activation of router

124 M. Dinitz and G. Wilfong

r, if it finds that its previously chosen route R is no longer a chosen route of at
least one of its neighbors (implying that the neighbor from which r originally
learned of R has since chosen a different route) then r is forced to choose a new
route. This is true even if the egress router of R is strictly closer to r than r
is to any of the egress routers of the currently chosen routes of its neighbors.
It must choose one of its neighbors’ currently chosen routes as its new chosen
route, even if that route seems worse.

When this process ends the route chosen by router r is denoted by R(r). Let
P (r) be the shortest path from r to E(r), the egress router of R(r). When a
packet arrives at r, it sends it to the next router r′ on P (r), r′ in turn sends the
packet to the next router on P (r′) and so on. Thus if P (r′) is not the subpath of
P (r) starting at r′ then the packet will not get routed as r expected. Note that
because of the fact that a router can only choose a route that one of its iBGP
neighbors has also chosen, when the process ends there must be a neighbor of r in
the signaling graph that also chooses R(r) as its route, but because the signaling
graph is an overlay (and not necessarily a subgraph) this neighbor might not be
r′, and thus r′ might have chosen a different route.

A signaling graph H has the complete visibility property for a set of egress
routers XF if each router r ultimately chooses as R(r) the route in F whose
egress router E(r) is closest to r from among all routers in XF . It is easy to see
that H will achieve hot-potato routing for XF if and only if it has the complete
visibility property for XF . So we say that a signaling graph is correct if it has
the complete visibility property for all possible sets XF .

Clearly if H is the complete graph then H is correct. Because of this, the de-
fault configuration of iBGP and the original standard was to maintain a complete
graph, also called a full mesh [15]. However the complete graph is not practi-
cal and so network managers have adopted various configuration techniques to
reduce the size of the signaling graph [2,16]. Unfortunately these methods do
not guarantee correct signaling graphs [1,12]. Thus our goal is to determine cor-
rect signaling graphs with fewer edges than the complete graph. Slightly more
formally, two natural questions are to minimize the number of edges in the sig-
naling graph or to minimize the maximum number of iBGP neighbors for any
router, while guaranteeing correctness. We define iBGP-Sum to be the problem
of finding a correct signaling graph with the fewest edges, and similarly we define
iBGP-Degree to be the problem of finding a correct signaling graph with the
minimum possible maximum degree.

1.2 Constrained Connectivity

All we know a priori about the complexity of iBGP-Sum and iBGP-Degree

is that they are in Σ2 (the second existential level of the polynomial hierarchy),
since the statement of correctness is that “there exists a small graph H such
that for all possible subsets XF each router ultimately chooses the route with
the closest egress router”. In particular, it is not obvious that these problems
are in NP, i.e. that there is a short certificate that a signaling graph is correct.
However, it turns out that these problems are actually in NP (see Section 2.1),

iBGP and Constrained Connectivity 125

and the proof of this fact naturally gives rise to a more general network design
problem that we call Constrained Connectivity. In this problem we are given an
undirected graph G = (V,E) and for each pair of nodes (u, v) ∈ V × V we are
given a set S(u, v) ⊆ V . Each such S(u, v) is called a safe set and it is assumed
that u, v ∈ S(u, v). We say that a subgraph H = (V,E′) of G is safely connected
if for each pair of nodes (u, v) there is a path in H from u to v where each node
in the path is in S(u, v).

As with iBGP, we are interested in two optimization versions of this prob-
lem: Constrained Connectivity-Sum, in which we want to compute a safely
connected subgraph H with the minimum number of edges, and Constrained

Connectivity-Degree, in which we want to compute a safely connected sub-
graph H that minimizes the maximum degree over all nodes. It turns out (see
Theorem 1) that the iBGP problems can be viewed as Constrained Connectivity
problems with G = Kn and safe sets defined in a particular geometric way.

While the motivation for studying ConstrainedConnectivity comes from iBGP,
we believe that it is an interesting problem in its own right. It is an extremely natu-
ral and general network design problem that, somewhat surprisingly, seems to have
not been considered before. While we only provide negative results for the general
problem (hardness of approximation and integrality gaps), a better understanding
ofConstrainedConnectivitymight lead to a better understanding of other network
design problems, both explicitly via reductions and implicitly through techniques.
For example, many of the techniques used in this paper come from recent liter-
ature on directed spanners [4,7,3], and given these similarities it is not unreason-
able to think that insight into ConstrainedConnectivitymight provide insight into
directed spanners.

For a more direct example, there is a natural security application of Con-
strained Connectivity. Suppose we have n players who wish to communicate
with each other, but they do not all trust one another with messages they send
to others. That is, when u wishes to send a message to v there is a subset S(u, v)
of players that it trusts to see the messages that it sends to v. We can repre-
sent this situation as a graph where the nodes are the players and the edges are
communication channels. Of course, if for every pair of players there is a direct
communication channels between the two players (i.e. the graph is Kn), then
there is no problem. But suppose that the graph of communication channels is
not Kn, and furthermore that there is a cost to protect communication chan-
nels from eavesdropping or other such attacks. Then a goal would be to have
as small a network of communication channels as possible (to minimize the cost
of security) that would still allow a route from each u to each v with the route
completely contained within S(u, v). Thus this problem defines a Constrained

Connectivity-Sum problem.

1.3 Summary of Main Results

Due to space constraints we omit all proofs, which can be found in the full ver-
sion [8]. In Section 3 we give a polynomial approximation for the iBGP problems,

126 M. Dinitz and G. Wilfong

by giving the same approximations for the more general problem of Constrained
Connectivity on Kn.

Theorem 2. There is an Õ(
√
n)-approximation to the Constrained Connectiv-

ity problems on Kn, and thus also to the iBGP problems.

To go along with these theoretical upper bounds, we design a different (but
related) algorithm for Constrained Connectivity-Sum on Kn that provides
a worse theoretical upper bound (a Õ(n2/3)-approximation) but is faster in both
practice and theory, and show by simulation on five real AS topologies (Telstra,
Sprint, NTT, TINET, and Level 3) that in practice it provides an extremely
good approximation. Details of this algorithm and simulations can be found in
the full version [8].

To complement these upper bounds, in Section 4 we show that the iBGP
problems are hard to approximate, which implies the same hardness for the
Constrained Connectivity problems on Kn:

Theorems 3 and 4. It is NP-hard to approximate the iBGP problems to a fac-
tor better than Ω(logn).

We then study the more general Constrained Connectivity problems, and in
Section 5 we show that the fully general constrained connectivity problems are
hard to approximate:

Theorems 6 and 7. Assuming NP �⊆ DTIME(npolylog(n)), the Constrained

Connectivity problems do not admit a 2log
1−ε n-approximation algorithm for any

constant ε > 0.

This is basically the same inapproximability factor as for Label Cover, and in fact
our reduction is from a minimization version of Label Cover known as Min-Rep.
Moreover, we show that the natural LP relaxation has a polynomial integrality
gap of Ω(n

1
3−ε).

Finally, we consider some other special cases of Constrained Connectivity
that turn out to be easier. In particular, we say that a collection of safe sets is
symmetric if S(x, y) = S(y, x) for all x, y ∈ V and that it is hierarchical if for all
x, y, z ∈ V , if z ∈ S(x, y) then S(x, z) ⊆ S(x, y) and S(z, y) ⊆ S(x, y). It turns
out that all of our hardness results and integrality gaps also hold for symmetric
instances, but adding the hierarchical property makes things easier. In the full
version [8] we show that a reasonably simple greedy algorithm solves symmetric
and hierarchical instances optimally in polynomial time:

Theorem. Constrained Connectivity-Sum with symmetric and hierarchi-
cal safe sets can be solved optimally in polynomial time.

1.4 Related Work

Issues involving eBGP, the version of BGP that routers in different ASes use
to announce routes to one another, have recently received significant attention

iBGP and Constrained Connectivity 127

from the theoretical computer science community, especially stability and game-
theoretic issues (e.g., [11,14,9]). However, not nearly as much work has been
done on problems related to iBGP. There has been some work on the problem
of guaranteeing hot-potato routing in any AS with a route reflector architec-
ture [2]. These earlier papers did not consider the issue of finding small signaling
graphs that achieved the hot-potato goal. Instead they either provided suffi-
cient conditions for correctness relating the underlying physical network with
the route reflector configuration [12] or they showed that by allowing some spe-
cific extra routes to be announced (rather than just the one chosen route) they
could guarantee a version of hot-potato routing [1]. The first people to consider
the problem of designing small iBGP overlays subject to achieving hot-potato
correctness were Vutukuru et al. [17], who used graph partitioning schemes to
give such configurations. But while they proved that their algorithm gave cor-
rect configurations, they only gave simulated evidence that the configurations it
produced were small. Buob et al. [5] considered the problem of designing small
correct solutions and gave a mathematical programming formulation, but then
simply solved the integer program using super-polynomial time algorithms.

Many of the techniques that we use are adapted from recent work on directed
spanners and directed steiner forest. In particular, the LP rounding algorithm
that we use is based on a framework of doing both LP-based rounding and
independent tree sampling that has been used for both directed spanners [4,7,3]
and (in a more complicated form) for directed steiner forest [10]. The exact
rounding algorithm that we use is particularly similar to Berman et al. [3] as
it uses independent randomized rounding, as opposed to the threshold-based
rounding of [4,7].

2 Preliminaries

2.1 Relationship between iBGP and Constrained Connectivity

We will now show that the iBGP problems are just special cases ofConstrained

Connectivity-Sum and Constrained Connectivity-Degree. This will be
a natural consequence of the proof that iBGP-Sum and iBGP-Degree are in
NP.

To see this we will need the following definitions. We will assume without loss
of generality that there are no ties, i.e. all distances are distinct. For two routers
x and y, let D(x, y) = {w : d(x,w) > d(x, y)} be the set of routers that are
farther from x than y is. Let S(x, y) = {w : d(w, y) < d(w,D(x, y))} ∪ {y} be
the set of routers that are closer to y than to any router not in the ball around x
of radius d(x, y) (where we slightly abuse notation and define the distance from
a node x to a set J of nodes as d(x, J) = min{d(x, j) : j ∈ J}). We will refer
to S(x, y) as “safe” routers for the pair (x, y). It turns out that these safe sets
characterize correct signaling graphs.

Theorem 1. An iBGP signaling graph H is correct if and only if for every pair
(x, y) ∈ V × V there is a signaling path between y and x that uses only routers
in S(x, y).

128 M. Dinitz and G. Wilfong

Note that this condition is easy to check in polynomial time, so we have shown
membership in NP. Also this characterization shows that the problems iBGP-

Sum and iBGP-Degree are Constrained Connectivity problems where the un-
derlying graph is Kn and the safe sets are defined by the underlying metric
space. While the proof of this is relatively simple, we believe that it is an im-
portant contribution of this paper as it allows us to characterize the behavior of
a protocol (iBGP) using only the static information of the signaling graph and
the network distances.

2.2 Linear Programming Relaxations

The obvious linear programming relaxation of the Constrained Connectiv-

ity problems (and thus the iBGP problems) is the flow LP. For every pair
(u, v) ∈ V × V let Puv be the collection of u − v paths that are contained in
S(u, v). The flow LP has a variable ce for every edge e ∈ E (called the capacity
of edge e) and a variable f(P) for every u−v path in Puv for every (u, v) ∈ V ×V
(called the flow assigned to path P). The flow LP simply requires that at least
one unit of flow is sent between all pairs while obeying capacity constraints:

min
∑

e ce

s.t
∑

P∈Puv
f(P) ≥ 1 ∀(u, v) ∈ V × V∑

P∈Puv:e∈P f(P) ≤ ce ∀e ∈ E, (u, v) ∈ V × V

0 ≤ ce ≤ 1 ∀e ∈ E

0 ≤ f(P) ≤ 1 ∀(u, v) ∈ V × V, P ∈ Puv
This is obviously a valid relaxation ofConstrained Connectivity-Sum: given
a valid solution to Constrained Connectivity-Sum, let Puv denote the re-
quired safe u−v path for every (u, v) ∈ V ×V . For every edge e in some Puv set ce
to 1, and set f(Puv) to 1 for every (u, v) ∈ V ×V . This is clearly a valid solution
to the linear program with the same value. To change the LP for Constrained

Connectivity-Degree we can just introduce a new variable λ, change the
objective function to min λ, and add the extra constraints

∑
v:{v,u}∈E c{u,v} ≤ λ

for all u ∈ V . And while this LP can be exponential in size (since there is a
variable for every path), it is also easy to design a compact representation that
has only O(n4) variables and constraints. This compact representation has vari-

ables f
(x,y)
(u,v) instead of f(P), where f

(x,y)
(u,v) represents the amount of flow from u

to v along edge {u, v} for the demand (x, y). Then we can write the normal flow
conservation and capacity constraints for every demand (x, y) independently,
restricted to S(x, y).

3 Algorithms for iBGP and Constrained Connectivity
on Kn

In this section we show that there is a Õ(
√
n)-approximation algorithm for both

Constrained Connectivity problems as long as the underlying graph is the com-
plete graph Kn. This algorithm is inspired by the recent progress on directed

iBGP and Constrained Connectivity 129

spanners by Bhattacharyya et al. [4], Dinitz and Krauthgamer [7], and Berman
et al. [3]. In particular, we use the same two-component framework that they
do: a randomized rounding of the LP and a separate random tree-sampling step.
The randomized rounding we do is simple independent rounding with inflated
probabilities. The next lemma implies that this works well when the safe sets
are small.

Lemma 1. Let E′ ⊆ E be obtained by adding every edge e ∈ E to E′ indepen-
dently with probability at least min{12ce · |S(x, y)| lnn, 1}. Then with probability
at least 1− 1/n3, E′ will have a path between x and y contained in S(x, y).

Another important part of our algorithm will be random sampling that is inde-
pendent of the LP. We will use two different types of sampling: star sampling
for the sum version and edge sampling for the degree version. First we consider
star sampling, in which we independently sample nodes with probability p, and
every sampled node becomes the center of a star that spans the vertex set.

Lemma 2. All pairs with safe sets of size at least s will be satisfied by random
star sampling with high probability if p = (3 lnn)/s.

For edge sampling, we essentially consider the Erdős-Rényi graph Gn,p, i.e. we
just sample every edge independently with probability p. We will actually con-

sider the union of 3 logn independent Gn,p graphs, where p = (1+ε) log s
s for some

small ε > 0. Let H be this random graph.

Lemma 3. With probability at least 1 − 1/n, all pairs with safe sets of size at
least s will be connected by a safe path in H.

We will now combine the randomized rounding of the LP and the random sam-
pling into a single approximation algorithm. Our algorithm is divided into two
phases: first, we solve the LP and randomly include every edge e with probabil-
ity O(ce

√
n lnn). By Lemma 1 this takes care of safe sets of size at most

√
n.

Second, if the objective is to minimize the number of edges we do star sampling
with probability (3 lnn)/

√
n, and if the objective is to minimize the maximum

degree we do edge sampling using the construction of Lemma 3 with s =
√
n. It

is easy to see that this algorithm with high probability results in a valid solution
that is a Õ(

√
n)-approximation (details can be found in the full version).

Theorem 2. This algorithm is a Õ(
√
n)-approximation to both Constrained

Connectivity-Sum and Constrained Connectivity-Degree on Kn.

4 Complexity of iBGP-Sum and iBGP-Degree

In this section we will show that the iBGP problems are Ω(logn)-hard to ap-
proximate by a reduction from Hitting Set (or equivalently from Set Cover).

This is a much weaker hardness than the 2log
1−ε n hardness that we prove for the

general Constrained Connectivity problems in Section 5, but the iBGP problems

130 M. Dinitz and G. Wilfong

are much more restrictive. We note that this Ω(logn) hardness is easy to prove
for Constrained Connectivity on Kn; the main difficulty is constructing a metric
so that the geometrically defined safe sets of iBGP have the structure that we
want.

We begin by giving a useful gadget that encodes a Hitting Set instance as
an instance of an iBGP problem in which all we care about is minimizing the
degree of a particular vertex. We will then show how a simple combination of
these gadgets can be used to prove that iBGP-Degree is hard to approximate,
and how more complicated modifications to the gadget can be used to prove
that iBGP-Sum is hard to approximate.

Suppose we are given an instance of hitting set with elements 1, 2, . . . , n
(note that we are overloading these as both integers and elements) and sets
T1, T2, . . . , Tm. Our gadget will contain a node x whose degree we want to mini-
mize, a node ai for all elements i ∈ {1, . . . , n}, and a node bTj for each set Tj in
the instance. We will also have four extra “dummy” nodes: z, y, u, and h. The
following table specifies some of the distances between points. All other distances
are the shortest path graph distances given these. Let M be some large value
(e.g. 20), and let ε be some extremely small value larger than 0.

x z y ai bTj u h
x M M + 1.4 + jε
z M 1.5 1 + iε 2
y 1.5
ai 1 + iε 1 + (i + j)ε (if i ∈ Tj) 1.1
bTj M + 1.4 + jε 1 + (i+ j)ε (if i ∈ Tj) 1 + jε
u 2 1.1
h 1 + jε

It is easy to check that this is indeed a metric space. Informally, we want to
claim that any solution to the iBGP problems on this instance must have an
edge from x to ai nodes such that the associated elements i form a hitting set.
Here y, u, and h are nodes that force the safe sets into the form we want, and z
is used to guarantee the existence of a small solution.

Lemma 4. Let E be any feasible solution to the above iBGP instance. For every
vertex bTj there is either an edge {x, bTj} ∈ E or an edge {x, ai} ∈ E where
i ∈ Tj.

We now want to use this gadget to prove logarithmic hardness for iBGP-Sum.
We will use the basic gadget but will duplicate x. So there will be � copies
of x, which we will call x1, x2, . . . , x, and their distances are defined to be
d(xi, z) = M + iε and d(xi, bTj) = M + 1.4 + (i + j)ε with all other distances
defined to be the shortest path. Note that all we did was modify the gadget to
“break ties” between the xi’s. Let H be the smallest hitting set.

Lemma 5. Any feasible iBGP-Sum solution has at least �|H | edges.

iBGP and Constrained Connectivity 131

Lemma 6. There is a feasible iBGP-Sum solution with at most �|H |+�+(m+
n+ 4)2 edges.

Setting � = (m + n + 4)2 and combining these two lemmas with the known
logarithmic hardness of Hitting Set gives us the following theorem:

Theorem 3. It is NP-hard to approximate iBGP-Sum to a factor better than
Ω(logN), where N is the number of vertices in the metric.

It is also fairly simple to modify the basic gadget to prove the same logarithmic
hardness for iBGP-Degree. We do this by duplicating everything other than
x, instead of duplicating x. This will force x to have the largest degree.

Theorem 4. It is NP-hard to approximate iBGP-Degree to a factor better
than Ω(logN), where N is the number of vertices in the metric.

5 Constrained Connectivity

In this section we consider the hardness of the Constrained Connectivity prob-
lems and the integrality gaps of the natural LP relaxations.

5.1 Hardness

We now show that the Constrained Connectivity-Sum and Constrained

Connectivity-Degree problems are both hard to approximate to better than
2log

1−ε n for any constant ε > 0. We do this via a reduction from Min-Rep, a
problem that is known to be impossible to approximate to better than 2log

1−ε n

unless NP ⊆ DTIME(npolylog(n)) [13]. An instance of Min-Rep is a bipartite
graph G = (U, V,E) in which U is partitioned into groups U1, U2, . . . , Um and V
is partitioned into groups V1, V2, . . . , Vm. There is a super-edge between Ui and
Vj if there is an edge {u, v} ∈ E such that u ∈ Ui and v ∈ Vj . The goal is to
find a minimum set S of vertices such that for all super-edges {Ui, Vj} there is
some edge {u, v} ∈ E with u ∈ Ui ∩ S and v ∈ Vj ∩ S. Vertices from a group
that are in S are called the representatives of the group. It is easy to prove
by a reduction from Label Cover that Min-Rep is hard to approximate to
better than 2log

1−ε n, and in particular it is hard to distinguish the case when
2m vertices are enough (one from each group) from the case when 2m× 2log

1−ε n

vertices are necessary [13].
Given an instance of Min-Rep, we want to convert it into an instance of

Constrained Connectivity-Sum. We will create a graph with five types of
vertices: vertices xij for j ∈ [m] and i ∈ [d]; vertices in U ; vertices in V ; vertices

yij for j ∈ [m] and i ∈ [d]; and a special vertex z. Here the x nodes represent
d copies of the groups of U and the y nodes represent d copies of the groups
of V , where d is some parameter that we will define later. z is a dummy node
that we will use to connect pairs that are not crucial to the analysis. Given this
vertex set, there will be four types of edges: {xij , u} for all j ∈ [m] and i ∈ [d]

132 M. Dinitz and G. Wilfong

and u ∈ Uj ; {u, v} for all edges {u, v} in the original Min-Rep instance; {v, yij}
for all j ∈ [m] and i ∈ [d] and v ∈ Vj ; and {w, z} for all vertices w.

Now that we have described the constrained connectivity graph, we need to
define the safe sets. There are two types of safe sets: if in the original instance
there is a super-edge between Ui and Vj then S(x

k
i , y

k
j) = S(ykj , x

k
i) = {xki , ykj }∪

Ui ∪ Vj for all k ∈ [d]. All other safe sets consist of the two endpoints and z.
Let eMR denote the number of super-edges in the Min-Rep instance, let nMR

denote the number of vertices.
The following theorem shows that this reduction works. The intuition behind

it is that a safe path between an x node and a y node corresponds to using the
intermediate nodes in the path as the representatives of the groups corresponding
to the x and y nodes, so minimizing the number of labels is like minimizing the
number of edges incident on x and y nodes.

Theorem 5. The original Min-Rep instance has a solution of size at most K
if and only if there is a solution to the reduced Constrained Connectivity problem
of size at most Kd+ eMR + 2md+ nMR.

We can now set d = n2
MR, which gives the following theorem:

Theorem 6. Constrained Connectivity-Sum cannot be approximated bet-
ter than 2log

1−ε n for any ε > 0 unless NP ⊆ DTIME(npolylog(n)).

To show that Constrained Connectivity-Degree has the same hardness
we modify the above reduction so that along with having d copies of the xj and
yj nodes there are also d2 copies of the rest of the gadget. This lets us have
a different copy of the Min-Rep instance for each pair of copies, forcing some
vertex in some copy to have large degree.

Theorem 7. Constrained Connectivity-Degree cannot be approximated
better than 2log

1−ε n for any constant ε > 0 unless NP ⊆ DTIME(npolylog(n)).

5.2 Integrality Gap for Constrained Connectivity

We claim that the integrality gap of the flow LP relaxation is large for both Con-

strained Connectivity-Sum and Constrained Connectivity-Degree.
The intuition is that we use a Min-Rep instance in which the edges between
each group form a matching (i.e. an instance of Unique Games), allowing the LP
to cheat by splitting the flow, but many representatives are needed for a valid
integral solution. This instance is then changed into a Constrained Connectivity
problem as in the hardness reduction. These results are in many ways similar
to the Ω(n1/3−ε) integrality gap for Min-Rep recently proved by Charikar et
al. [6] and the Ω(n1/3−ε) integrality gap for directed k-spanner by Dinitz and
Krauthgamer [7], but the reduction to Constrained Connectivity adds some ex-
tra complications, especially when the objective is to minimize the maximum
degree.

Theorem 8. The flow LP for Constrained Connectivity-Sum has an in-
tegrality gap of Ω(n

1
3−ε) and the flow LP for Constrained Connectivity-

Degree has an integrality gap of Ω(n
1
9−ε) for any constant ε > 0.

iBGP and Constrained Connectivity 133

References

1. Basu, A., Ong, C.-H.L., Rasala, A., Shepherd, F.B., Wilfong, G.: Route oscillations
in I-BGP with route reflection. In: Proc. ACM SIGCOMM (2002)

2. Bates, T., Chandra, R., Chen, E.: BGP route reflection - an alternative to full
mesh IBGP. RFC 2796 (2000)

3. Berman, P., Bhattacharyya, A., Makarychev, K., Raskhodnikova, S., Yaroslavtsev,
G.: Improved Approximation for the Directed Spanner Problem. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 1–12. Springer,
Heidelberg (2011)

4. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.P.:
Transitive-closure spanners. In: Proceedings of the 20th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 932–941 (2009)

5. Buob, M.-O., Uhlig, S., Meulle, M.: Designing Optimal iBGP Route-Reflection
Topologies. In: Das, A., Pung, H.K., Lee, F.B.S., Wong, L.W.C. (eds.) NETWORK-
ING 2008. LNCS, vol. 4982, pp. 542–553. Springer, Heidelberg (2008)

6. Charikar, M., Hajiaghayi, M.T., Karloff, H.: Improved Approximation Algorithms
for Label Cover Problems. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS,
vol. 5757, pp. 23–34. Springer, Heidelberg (2009)

7. Dinitz, M., Krauthgamer, R.: Directed spanners via flow-based linear programs.
In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing,
STOC 2011, pp. 323–332. ACM, New York (2011)

8. Dinitz, M., Wilfong, G.T.: iBGP and Constrained Connectivity. CoRR,
abs/1107.2299 (2011), http://arxiv.org/abs/1107.2299

9. Fabrikant, A., Papadimitriou, C.: The complexity of game dynamics: BGP oscilla-
tions, sink equilibria, and beyond. In: SODA 2008: Proceedings of the 19th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 844–853 (2008)

10. Feldman, M., Kortsarz, G., Nutov, Z.: Improved approximation algorithms for
directed steiner forest. Journal of Computer and System Sciences 78(1), 279–292
(2012)

11. Griffin, T.G., Shepherd, F.B., Wilfong, G.: The stable paths problem and interdo-
main routing. IEEE/ACM Trans. Netw. 10(2), 232–243 (2002)

12. Griffin, T.G., Wilfong, G.: On the correctness of IBGP configuration. In: Proc.
ACM SIGCOMM (September 2002)

13. Kortsarz, G.: On the hardness of approximating spanners. Algorithmica 30 (1999)
14. Levin, H., Schapira, M., Zohar, A.: Internet routing and games. In: STOC 2008:

Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
pp. 57–66. ACM, New York (2008)

15. Stewart, J.W.: BGP4: Inter-Domain Routing in the Internet. Addison-Wesley
(1999)

16. Traina, P., McPherson, D., Scudder, J.: Autonomous system confederations for
BGP. RFC 3065 (2001)

17. Vutukuru, M., Valiant, P., Kopparty, S., Balakrishnan, H.: How to Construct a
Correct and Scalable iBGP Configuration. In: IEEE INFOCOM, Barcelona, Spain
(April 2006)

http://arxiv.org/abs/1107.2299

Online Scheduling of Jobs with Fixed Start

Times on Related Machines

Leah Epstein1, �Lukasz Jeż2,3,�, Jǐŕı Sgall4,��, and Rob van Stee5

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il

2 Institute of Computer Science, University of Wroc�law, ul. Joliot-Curie 15, 50-383
Wroc�law, Poland

lje@cs.uni.wroc.pl
3 Institute of Mathematics, Academy of Sciences of the Czech Republic, Žitná 25,

115 67 Praha 1, Czech Republic.
4 Computer Science Institute of Charles University, Faculty of Mathematics and

Physics, Malostranské nám. 25, CZ-11800 Praha 1, Czech Republic
sgall@iuuk.mff.cuni.cz

5 Max Planck Institute for Informatics, Saarbrücken, Germany
vanstee@mpi-inf.mpg.de

Abstract. We consider online preemptive scheduling of jobs with fixed
starting times revealed at those times on m uniformly related machines,
with the goal of maximizing the total weight of completed jobs. Every
job has a size and a weight associated with it. A newly released job
must be either assigned to start running immediately on a machine or
otherwise it is dropped. It is also possible to drop an already scheduled
job, but only completed jobs contribute their weights to the profit of the
algorithm.

In the most general setting, no algorithm has bounded competitive
ratio, and we consider a number of standard variants. We give a full
classification of the variants into cases which admit constant competitive
ratio (weighted and unweighted unit jobs, and C-benevolent instances,
which is a wide class of instances containing proportional-weight jobs),
and cases which admit only a linear competitive ratio (unweighted jobs
and D-benevolent instances). In particular, we give a lower bound ofm on
the competitive ratio for scheduling unit weight jobs with varying sizes,
which is tight. For unit size and weight we show that a natural greedy
algorithm is 4/3-competitive and optimal on m = 2 machines, while for
a large m, its competitive ratio is between 1.56 and 2. Furthermore, no
algorithm is better than 1.5-competitive.

� Partially supported by MNiSW grant N N206 368839, 2010–2013, UWr grant
1400/M/II/11, grant IAA100190902 of GA AV ČR, and a scholarship co-financed
by an ESF project Human Capital.

�� Partially supported by the Center of Excellence – Inst. for Theor. Comp. Sci., Prague
(project P202/12/G061 of GA ČR).

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 134–145, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Online Scheduling of Jobs with Fixed Start Times on Related Machines 135

1 Introduction

Scheduling jobs with fixed start times to maximize (weighted) throughput is
a well-studied problem with many applications, for instance work planning for
personnel, call control and bandwidth allocation in communication channels [1,2].
In this paper, we consider it for uniformly related machines. In this problem, jobs
with fixed starting times are released online to be scheduled onmmachines. Each
job needs to start immediately or else be rejected. The completion time of a job is
determined by its length and the speed of a machine. As pointed out by Krumke
et al. [3], who were the first to study them for uniformly related machines, prob-
lems like these occur when jobs or material should be processed immediately
upon release, but there are different machines available for processing, for in-
stance in a large factory where machines of different generations are used side
by side. Because on identical machines the size of the job together with is fixed
start time determine the time interval that one of the machines has to devote
to the job in order to complete it, this problem is commonly known as interval
scheduling [4,5,6,7,8]. In fact, Krumke et al. [3] used the name interval schedul-
ing on related machines but we refrain from it as different speeds translate into
different time intervals for different machines, albeit with a common start time.

We consider the preemptive version of this problem, where jobs can be pre-
empted (and hence lost) at any time (for example, if more valuable jobs are
released later). Without preemption, it is easy to see that no online algorithm
can be competitive for most models. The only exception is the simplest version of
this problem, where all jobs have unit size and weight. For this case, preemption
is not needed.

1.1 Our Results

It is known (cf. Section 1.2) that if both the weight and the size of a job are
arbitrary, then no (randomized) algorithm is competitive on identical machines,
a special case of related machines. Therefore, we study several restricted models.

One of them is the case of jobs with unit sizes and unit weights, studied in
Section 2. While a trivial greedy algorithm is 1-competitive in this case on iden-
tical machines (cf. Section 1.2), attaining this ratio on related machines is impos-
sible. We give a lower bound of (3 · 2m−1 − 2)/(2m− 1) on the competitive ratio
for this case, which for large m tends to 3/2 from below. The high level reason
why this holds is that the optimal assignment of jobs to machines may depend
on the timing of future arrivals. We also show that a simple greedy algorithm is
2-competitive and we use a more complicated lower bound construction to show
that it is not better than 1.56-competitive for large m. For m = 2 machines, we
show that it is 4/3-competitive, matching the lower bound.

Next, in Section 3, we consider two extensions of this model: weighted unit-
sized jobs and a model where the weight of a job is determined by a fixed
function of its size. This last model includes the important case of proportional
weights. A function f : R+

0 → R+
0 (where R+

0 denotes the non-negative reals) is
C-benevolent if it is convex, f(0) = 0, and f(p) > 0 for all p > 0. This implies in

136 L. Epstein et al.

Table 1. An overview of old and new results for deterministic algorithms; upper bounds
by randomized algorithms (UBr) are also given for a single machine. The upper bounds
of m and 4m follow from Fact 1.1 below.

size, weight 1 machine 2 related machines m related machines
LB UB UBr LB UB LB UB

1, 1 1 1 [10, 4] 1 [10, 4] 4/3 4/3 3·2m−1−2
2m−1

2

1, variable 4 [9] 4 [9] 2 [6] 2 [5] 4 1.693 [11, 7] 4
variable, 1 1 1 [10, 4] 1 [10, 4] 2 2 m m

variable,D-benevolent 3 [9]1 4 [9] 2 [8] 2 8 m 4m
variable,C-benevolent 4 [9] 4 [9] 2 [8] 1.693 [11, 7] 4 1.693 [11, 7] 4
variable,proportional 4 [9] 4 [9] 2 [8] 1.693 [11, 7] 4 1.693 [11, 7] 4

variable, variable ∞ [9] − − ∞ − ∞ −

particular that f is continuous in (0,∞), and monotonically non-decreasing. We
consider instances, called C-benevolent, where the weights of jobs are given by
a fixed C-benevolent function f of their sizes. If f(x) = ax for some a > 0, the
weights are proportional. We give a 4-competitive algorithm, which can be used
both for f -benevolent jobs and for weighted unit-sized jobs. This generalizes the
results of Woeginger [9] for these models on a single machine; cf. Section 1.2.

Finally, in Section 4, we give a lower bound of m for unit-weight variable-
sized jobs, which is tight due to a trivial 1-competitive algorithm for a single
machine [10,4] and the following simple observation.

Fact 1.1. If algorithm Alg is R-competitive on a single machine, then an al-
gorithm that uses only the fastest machine by simulating Alg on it is (R ·m)-
competitive on m related machines.

Proof. Fix an instance and the optimum schedule for it on m related machines.
To prove our claim, it suffices to show that a subset of jobs from that schedule
with total weight no smaller than a 1/m fraction of the whole schedules weight
can be scheduled on the fastest machine. Clearly, one of the machines is assigned
a subset of sufficient weight in the optimum schedule, and this set can be sched-
uled on the fastest machine. ��

Instances with unit-weight variable-sized jobs are a special case of D-benevolent
instances: a function f is D-benevolent if it is decreasing on (0,∞), f(0) = 0,
and f(p) > 0 for all p > 0. (Hence such functions have a discontinuity at 0.)
Hence our lower bound of m applies to D-benevolent instances as well, and
again we obtain an optimal (up to a constant factor) algorithm by combining
a 4-competitive algorithm for a single machine [9] with Fact 1.1. Note that in
contrast, C-benevolent functions are not a generalization of unit weights and
variable sizes, because the constraint f(0) = 0 together with convexity implies
that f(cx) ≥ c ·f(x) for all c > 0, x > 0, so the weight is at least a linear function
of the size.
1 This lower bound holds for all surjective functions.

Online Scheduling of Jobs with Fixed Start Times on Related Machines 137

We give an overview of our results and the known results in Table 1. In this
table, a lower bound for a class of functions means that there exists at least one
function in the class for which the lower bound holds.

1.2 Previous Work

As mentioned before, if both the weight and the size of a job are arbitrary,
then no (randomized) algorithm is competitive, either on one machine [9,2] or
identical machines [2]. For this general case on one machine, it is possible to
give an O(1)-competitive algorithm, and even a 1-competitive algorithm, using
constant resource augmentation on the speed; that is, the machine of the online
algorithm is O(1) times faster than the machine of the offline algorithm that it
is compared to [12,13].

Faigle and Nawijn [4] and Carlisle and Lloyd [10] considered the version of
jobs with unit weights on m identical machines. They gave a 1-competitive algo-
rithm for this problem. Woeginger [9] gave optimal 4-competitive algorithms for
unit sized jobs with weights, D-benevolent jobs, and C-benevolent jobs a single
machine.

For unit sized jobs with weights, Fung et al. [5] gave a 3.59-competitive ran-
domized algorithm for one and two (identical) machines, as well as a deterministic
lower bound of 2 for two identical machines. The upper bound for one machine
was improved to 2 by the same authors [6] and later generalized to the other
nontrivial models [8]. See [11,14] for additional earlier randomized algorithms.
A randomized lower bound of 1.693 for one machine was given by Epstein and
Levin [11]; Fung et al. [7] pointed out that it holds for parallel machines as
well, and gave an upper bound for that setting (not shown in the table): a 2-
competitive algorithm for even m and a (2+ 2/(2m− 1))-competitive algorithm
for odd m ≥ 3.

1.3 Notation

There are m machines, M1,M2 . . . ,Mm, in order of non-increasing speed. Their
speeds, all no larger than 1, are denoted s1, s2 . . . , sm respectively. For an in-
stance I and algorithm Alg, Alg(I) and Opt(I) denote the total weight of
jobs completed by Alg and an optimal schedule, respectively. The algorithm is
R-competitive if Opt(I) ≤ R ·Alg(I) for every instance I.

For a job j, we denote its size by p(j), its release date by r(j), and its weight
by w(j) > 0; in Section 3 jobs are denoted by capital J ’s. Any job that an
algorithm runs is executed in a half-open interval [r, d), where r = r(j) and d
is the time at which the job completes or is preempted. We call such intervals
job intervals. If a job (or a part of a job) of size p is run on machine Mi then
d = r + p

si
. A machine is called idle if it is not running any job, otherwise it is

busy.

138 L. Epstein et al.

2 Unit Sizes and Weights

In this section we consider the case of equal jobs, i.e., all the weights are equal
to 1 and also the size of each job is 1. We first note that it is easy to design a
2-competitive algorithm, and for 2 machines we find an upper bound of 4/3 for
a natural greedy algorithm.

The main results of this section are the lower bounds. First we prove that no
online algorithm on m machines can be better than (3 · 2m−1 − 2)/(2m − 1)-
competitive. This matches the upper bound of 4/3 for m = 2 and tends to 1.5
from below for m → ∞. For Greedy on m = 3n machines we show a larger
lower bound of (25 · 2n−2 − 6)/(2n+2 − 3), which tends to 25/16 = 1.5625 from
below. Thus, somewhat surprisingly, Greedy is not 1.5-competitive.

2.1 Greedy Algorithms and Upper Bounds

As noted in the introduction, in this case preemptions are not necessary. We may
furthermore assume that whenever a job arrives and there is an idle machine,
the job is assigned to some idle machine. We call such an algorithm greedy-like.

Fact 2.1. Every greedy-like algorithm is 2-competitive.

Proof. Let Alg be a greedy-like algorithm. Consider the following charging from
the optimum schedule to Alg’s schedule. Upon arrival of a job j that is in
the optimum schedule, charge j to itself in Alg’s schedule if Alg completes j;
otherwise charge j to the job Alg is running on the machine where the optimum
schedule assigns j. As everyAlg’s job receives at most one charge of either kind,
Alg is 2-competitive. ��

We also note that some of these algorithms are indeed no better than 2-
competitive: If there is one machine with speed 1 and the remaining m− 1 have
speeds smaller than 1

m , an algorithm that assigns an incoming job to a slow
machine whenever possible has competitive ratio no smaller than 2− 1

m . To see
this consider an instance in which m − 1 successive jobs are released, the i-th
of them at time i − 1, followed by m jobs all released at time m. It is possible
to complete them all by assigning the first m− 1 jobs to the fast machine, and
then the remaining m jobs each to a unique machine. However, the algorithm in
question will not complete any of the first m − 1 jobs before the remaining m
are released, so it will complete exactly m jobs.

AlgorithmGreedy: Upon arrival of a new job: If some machine is idle, schedule
the job on the fastest idle machine. Otherwise reject it.

While we cannot show that Greedy is better than 2-competitive in general, we
think it is a good candidate for such an algorithm. We support this by showing
that it is optimal for m = 2.

Theorem 2.2. Greedy is 4/3-competitive algorithm for interval scheduling of
unit size and weight jobs on 2 related machines.

Online Scheduling of Jobs with Fixed Start Times on Related Machines 139

Proof. Consider a schedule of Greedy and split it into independent intervals
[Ri, Di) as follows. Let R1 be the first release time. Given Ri, let Di be the first
time after Ri when both machines are available, i.e., each machine is either idle
or just started a new job. Given Di, let Ri+1 be the first release time larger than
or equal to Di. Note that no job is released in the interval [Di, Ri+1). Thus it is
sufficient to show that during each [Ri, Di), the optimal schedule starts at most
4/3 times the number of jobs that Greedy does.

At any time that a job j arrives in (Ri, Di), bothmachines are busy in the sched-
ule of Greedy, as otherwiseGreedy could schedule it. An exception could be the
case whenGreedy indeed scheduled j and onemachine is idle, but then j’s release
time would be chosen as Di. Thus any job that Adv starts in (Ri, Di) can be as-
signed to the most recent job thatGreedy started on the samemachine (possibly
to itself). We get a one-to-one assignment between the jobs of Adv that arrive in
(Ri, Di), and the jobs of Greedy that arrive in [Ri, Di). Hence the optimal sched-
ule completes at most one additional job (the one started at time Ri on the idle
machine). This proves the claim if Greedy starts at least 3 jobs in [Ri, Di).

If Greedy starts only one job in [Ri, Di), then so does the optimal schedule. If
Greedy starts two jobs in [Ri, Di), then the first job is started on M1. No job is
released in [Ri, Di) at or after the completion of the first job on the fast machine,
as Greedy would have scheduled it. It follows that the optimal schedule cannot
schedule any two of the released jobs on the same machine and schedules also
only two jobs. This completes the proof. ��

2.2 Lower Bounds

We give two lower bounds, for any deterministic algorithm and for Greedy

that, with the number of machines tending to infinity, tend to 3/2 and 25/16
respectively from below. Due to space constraints, the rather tedious details of
both constructions are left out.

For the first construction, we have m machines with geometrically decreasing
speeds. The instance has two sets of jobs. The first part, Im, is the set of jobs that
both the algorithm and the adversary complete. The other part, Em, consists of
jobs that are completed only by the adversary.

Intuitively, the instance (Im, Em) can be described recursively. The set Im
contains one leading job jm to be run on Mm plus two copies of Im−1. One
copy is aligned so that it finishes at the same time as jm on Mm. The other is
approximately aligned with the start of the job onMm; we offset its release times
slightly forward so that the first m− 1 of its jobs are released before jm. These
jobs are actually the leading jobs j1, j2, . . . , jm−1 in the subinstances I1, I2,
. . . , Im−1 along the first (leftmost) branch of the recursion tree. Because of the
offsets of the release times, Greedy runs the leading jobs j1, j2, . . . , jm on M1,
M2, . . . , Mm, respectively. The adversary schedules these m jobs on different
machines, cyclically shifted, so that one of them, namely the one running on
M1, finishes later than in Greedy but the remaining m− 1 finish earlier. Upon
completion of each of these m − 1 jobs, the adversary releases and schedules a
job from Em; the times are arranged so that at the time of release of any of these

140 L. Epstein et al.

Greedy

Adv

Greedy

Adv

Greedy

Adv

M1

M2

M3

j1

j2

j3

e2

e3

Fig. 1. The instance (I3, E3) for Greedy. Common jobs in Greedy and Adv schedule
are joined using dotted lines. Jobs that only Adv completes are thicker. Note that
machines M2 and M1 contain two instances of (I2, E2).

job from Em, all the machines are busy in the schedule of Greedy. In addition,
Em contains all the jobs from both sets Em−1 in the subinstances (Im−1, Em−1).
This construction for k = 3 with |I3| = 7 and |E3| = 3 is illustrated in Figure 1;
the constructions for k = 1, 2 appear as subinstances of a single job (|I1| = 1,
E1 = ∅) and of four jobs (|I2| = 3, |E2| = 1) respectively.

The same idea works for a general algorithm in place of Greedy, but we need
to be more careful. Here the adversary dynamically determines the instance. The
algorithm can use an arbitrary permutation to schedule the leading jobs. We let
the adversary cyclically shift the jobs, so that onm−1 machines they start a little
bit earlier than in the algorithm’s assignment. However, this slightly disturbs the
timing at the end of the subinstances, so that we cannot align them exactly. To
overcome this, we need to change the offsets of the leading jobs, making them
geometrically decreasing in the nested subinstances, and adjust the timing of the
subinstances carefully depending on the actual schedule.

The proofs actually use a more convenient decomposition of the binary recur-
sion tree: The instance (Ik, Ek) is decomposed into some jobs and subinstances
(I1, E1), (I2, E2), . . . , (Ik−1, Ek−1), each occurring exactly once. More precisely,
Ik consists of all the k leading jobs and the sets I1, I2, . . . , Ik−1 that correspond
to the subinstances whose completion is (approximately) aligned with the com-
pletion time of jobs j2, j3, . . . , jk. The actual exact timing of the subinstances I1,
I2, . . . , Ik−1 depends on the algorithm’s schedule of the leading jobs. Similarly,
Ek contains m − 1 extra jobs corresponding to the leading jobs of Ik and the
jobs from the sets E1, E2, . . . , Ek−1 that correspond to the same subinstances.

Theorem 2.3. Let Alg be an online algorithm for interval scheduling of unit
size and unit weight jobs on m related machines. Then the competitive ratio of
Alg is at least (3 · 2m−1 − 2)/(2m − 1).

The second lower bound is higher, however it works only forGreedy. We observe
that cyclic shift of the leading jobs may not be the best permutation for the
adversary. Instead, we create triplets of machines of the same speeds and shift
the jobs cyclically among the triplets. I.e., the permutation of the leading jobs
has three independent cycles of length m/3. Only for the three fastest machines
we use different speeds and the previous construction as a subinstance.

Online Scheduling of Jobs with Fixed Start Times on Related Machines 141

Theorem 2.4. The competitive ratio of the Greedy algorithm for interval
scheduling of unit size and unit weight jobs on m = 3n related machines is
at least (25 · 2n−2 − 6)/(2n+2 − 3).

3 Constant Competitive Algorithm for Two Input Classes

In this section we consider two types of instances. The first type are equal-sized
jobs (of size 1, without loss of generality), whose weights can be arbitrary. We
also consider input instances where the weights of jobs are given by a fixed C-
benevolent function f of their sizes, that is, w(J) = f ((p(J)). We call such an
instance f -benevolent.

Algorithm Alg: On arrival of a new job J do the following.
1. Use an arbitrary idle machine if such a machine exists.
2. Otherwise, if no idle machines exist, preempt the job of minimum weight

among the jobs running at time r(J) having a weight less than w(J)/2 if
such jobs exist.

3. If J was not scheduled in the previous steps, then reject it.

Note that we do not use the speeds in this algorithm in the sense that there
is preference of slower or faster machines in any of the steps. But clearly, the
eventual schedule does depend on the speeds.

Definition 3.1. A chain is a maximal sequence of jobs J1, . . . , Jn that Alg runs
on one machine, such that Jj is preempted when Jj+1 arrives (j = 1, . . . , n− 1).

Observation 3.2. For a chain J1, . . . , Jn that Alg runs on machine i, J1 starts
running on an idle machine, and Jn is completed by Alg. Let [rj , dj) be the
time interval in which Jj is run (j = 1, . . . , n). Then it holds that rj = r(Jj),
dn − rn = p(Jn)/si, and finally dj − rj < p(Jj)/si, and dj = rj+1 for j < n.

The following observation holds due to the preemption rule.

Observation 3.3. For a chain J1, . . . , Jn, 2w(Jj) < w(Jj+1) for 1 ≤ j ≤ n−1.

Consider a fixed optimal offline solution Opt, which runs all its selected jobs to
completion. We say that a job J which is executed by Opt is associated with a
chain J1, . . . , Jn if Alg runs the chain on the machine where Opt runs J and
J is released while this chain is running, i.e., r(J) ∈ [r(J1), d(Jn)).

Claim. Every job J executed by Opt such that J is not the first job of any chain
of Alg is associated with some chain.

Proof. Assume that J is not associated with any chain. The machine i which is
used to execute J in Opt is therefore idle at the time r(J) (before J is assigned).
Thus, J is assigned in step 1 (to i or to another machine), and it is the first job
of a chain. ��

142 L. Epstein et al.

Thus, every job run by Opt but not by Alg is associated with a chain. We
assume without loss of generality that every job in the instance either belongs
to a chain or is run by Opt (or both), since other jobs have no effect on Alg

and on Opt.
We assign every job that Opt runs to chains of Alg. The weight of a job J

is split between J and the chain that J is associated with, where one of the two
parts can be zero. In particular, if Alg does not run J then the first part must
be zero, and if J is not associated with a chain then the second part must be
zero. The assignment is defined as follows. Consider job J with release date r
which Opt runs on machine i.

1. If J is not associated with any chain, assign a weight of w(J) to J .
2. If J is associated with a chain of Alg (on machine i), let J ′ be the job such

that r(J) ∈ [r(J ′), d(J ′)). Assign min{w(J), 2·w(J ′)} part of J to this chain,
and assign the remainder max{w(J)− 2 · w(J ′), 0} part to J itself.

Note that for an f -benevolent instance, multiple jobs which are associated with
a chain on a machine of speed s can be released while a given job J ′ of that
chain is running, but only the last one can have weight above w(J ′), since all

other such jobs J satisfy r(J) + p(J)
s ≤ d(J ′) and r(J) ≥ r(J ′), so p(J) ≤ p(J ′)

and by monotonicity w(J) ≤ w(J ′). The weight of all such jobs is assigned to
the chain, while the last job associated with the chain may have some weight
assigned to itself, if its weight is above 2w(J ′); this can happen only if Alg runs
this job on another machine. This holds since if Alg does not run J , Alg does
not preempt any of the jobs it is running, including the job J ′ on the machine
that Opt runs J on, then w(J) ≤ 2w(J ′) (and J is fully assigned to the chain
it is associated with). If Alg runs a job J on the same machine as Opt, then
J = J ′ must hold, and J is completely assigned to the chain (and not assigned
to itself).

For any chain, we can compute the total weight assigned to the specific jobs
of the chain (excluding the weight assignment to the entire chain).

Claim. For a chain J1, . . . , Jn that Alg runs on machine i, the weight assigned
to J1 is at most w(J1). The weight assigned to Jk for 2 ≤ k ≤ n is at most
w(Jk)− 2w(Jk−1). The total weight assigned to the jobs of the chain is at most

w(Jn)−
∑n−1

k=1 w(Jk).

Proof. The property for J1 follows from the fact that the assigned weight never
exceeds the weight of the job. Consider job Jk for k > 1. Then w(Jk) > 2w(Jk−1)
by Observation 3.3. If there is a positive assignment to Jk, then the machine i′

where Opt runs Jk is not i. At the time r(Jk) all machines are busy (since
the scheduling rule prefers idle machines, and Jk preempts Jk−1). Moreover, the
job J ′ running on machine i′ at time r(Jk) satisfies w(J ′) ≥ w(Jk−1). Thus
Jk is assigned w(Jk) − 2 · w(J ′) ≤ w(Jk) − 2w(Jk−1). The total weight as-
signed to the jobs of the chain is at most w(J1) +

∑n
k=2 (w(Jk)− 2w(Jk−1)) =

w(J1)+
∑n

k=2 w(Jk)− 2
∑n−1

k=1 w(Jk) =
∑n

k=1 w(Jk)− 2
∑n−1

k=1 w(Jk) = w(Jn)−∑n−1
k=1 w(Jk). ��

Online Scheduling of Jobs with Fixed Start Times on Related Machines 143

For a job J that has positive weight assignment to a chain of Alg it is associated
with (such that the job J ′ of this chain was running at time r(J)), we define a
pseudo-job π(J). This job has the same release date time as J and its weight is
the amount of J assigned to the chain, i.e., min{w(J), 2 ·w(J ′)}. It is said to be
assigned to the same chain of Alg that J is assigned to. If the input consists of
unit jobs, then the size of π(J) is 1. If the instance is an f -benevolent instance,
then the size p (π(J)) of π(J) is such that f (p (π(J))) = 2w(J ′) (since f is
continuous in (0,∞), and since there are values x1,x2 (the sizes of J, J ′) such
that f(x1) = w(J ′) < 2w(J ′) and f(x2) = w(J) > 2w(J ′) then there must exist
x1 < x3 < x2 such that f(x3) = 2w(J ′)), and p (π(J)) ≤ p(J).

Definition 3.4. For a given chain J1, . . . , Jn of Alg running on machine i, an

alt-chain is a set of pseudo-jobs J ′
1, . . . , J

′
n′ such that r(J ′

k) ≥ r(J ′
k−1) +

p(J′
k−1)

si
for 2 ≤ k ≤ n′, r(J ′

1) ≥ r(J1), r(J
′
n′) < d(J ′

n), (that is, all jobs of the alt-chain
are released during the time that the chain of Alg is running, and they can all
be assigned to run on machine i in this order). Moreover, if r(J ′

k) ∈ [r, d), then
w(J ′

k) ≤ 2 · w(J).

Lemma 3.5. For unit jobs, a chain J1, . . . , Jn of Alg on machine i and any
alt-chain J ′

1, . . . , J
′
n′ satisfy

n′∑
k=1

w(J ′
k) ≤

n∑
=1

w(J) + 2w(Jn).

Proof. For every job J, there can be at most one job of the alt-chain which
is released in [r, d), since the time to process a job on machine i is 1

si
and

thus difference between release times of jobs in the alt-chain is at least 1
si
, while

d ≤ r+
1
si
. However, every job of the alt-chain J ′

k must have a job of the chain
running at r(J ′

k). If job J ′
k of the alt-chain has r(J ′

k) ∈ [r, d) then by definition

w(J ′
k) ≤ 2 · w(J), which shows

∑n′

k=1 w(J
′
k) ≤ 2

∑n
=1 w(J).

Using w(Jk) > 2w(Jk−1) for 2 ≤ k ≤ n we find w(Jk) <
w(Jn)
2n−k for 1 ≤ k ≤ n

and
∑n−1

k=1 w(Jk) < w(Jn). Thus
∑n′

k=1 w(J
′
k) ≤

∑n
=1 w(J) + 2w(Jn). ��

Lemma 3.6. For C-benevolent instances, a chain J1, . . . , Jn of Alg on machine
i and any alt-chain J ′

1, . . . , J
′
n′ satisfy

n′∑
k=1

w(J ′
k) ≤

n∑
=1

w(J) + 2w(Jn).

We omit the proof due to space constraints, but note that it can be be deduced
from a claim in the algorithm’s original analysis for a single machine [9].

Observation 3.7. For a chain J1, . . . , Jn of Alg, the sorted list of pseudo-
jobs (by release date) assigned to it is an alt-chain, and thus the total weight of
pseudo-jobs assigned to it is at most 2

∑n
=1 w(J).

144 L. Epstein et al.

Proof. By the assignment rule, every job which is assigned to the chain (partially
or completely) is released during the execution of some job of the chain. Consider
a pseudo-job J assigned to the chain, and let J ′ be the job of the chain executed
at time r(J).

The pseudo-job π(J) has weight at most min{w(J), 2 · w(J ′)}. Since the set
of pseudo-jobs assigned to the chain results from a set of jobs that Opt runs of
machine i, by possibly decreasing the sizes of some jobs, the list of pseudo-jobs
can still be executed on machine i. ��

Theorem 3.8. The competitive ratio of Alg is at most 4 for unit length jobs,
and for C-benevolent instances.

Proof. The weight allocation partitions the total weight of all jobs between the
chains, thus it is sufficient to compare the total weight a chain was assigned (to
the entire chain together with assignment to specific jobs) to the weight of the
last job of the chain (the only one which Alg completes), which is w(Jn).

Consider a chain J1, . . . , Jn of Alg. The total weight assigned to it is at most
(w(Jn)−

∑n−1
k=1 w(Jk)) + (

∑n
=1w(J) + 2w(Jn)) = 4w(Jn). ��

4 Lower Bound for Unit Weights and Variable Sizes

We give a matching lower bound to the upper bound ofm shown in the introduc-
tion. Note that Krumke et al. [3] claimed an upper bound of 2 for this problem,
which we show is incorrect.

Fix 0 < ε < 1
2 such that 1

ε is integer. Our goal is to show that no online
algorithm can be better than (1 − ε)m-competitive. We define M = (1ε − 1)m
and N = m3 +Mm2 +Mm.

Input. One machine is fast and has speed 1. The other m − 1 machines have
speed 1/N . The input sequence will consist of at most N jobs, which we identify
with their numbers. Job j will have size p(j) = 2N−j and release time r(j) ≥ j;
we let r(1) = 1. The input consists of phases which in turn consist of subphases.
Whenever a (sub)phase ends, no jobs are released for some time in order to
allow the adversary to complete its most recent job(s). Alg will only be able to
complete at most one job per full phase (before the next phase starts). The time
during which no jobs are released is called a break.

Specifically, if Alg assigns job j to a slow machine or rejects it, the adversary
assigns it to the fast machine instead, and we will have r(j + 1) = r(j) + p(j).
We call this a short break (of length p(j)). A short break ends a subphase.

If Alg assigns job j to the fast machine, then in most cases, job j is rejected
by the adversary and we set r(j+1) = r(j)+1. The only exception occurs when
Alg assigns m consecutive jobs to the fast machine (since at most N jobs will
arrive, and p(j) = 2N−j, each of the first m − 1 jobs is rejected by Alg when
the next job arrives). In that case, the adversary assigns the first (i.e., largest)
of these m jobs to the fast machine and the others to the slow machines (one
job per machine). After the m-th job is released, no further jobs are released

Online Scheduling of Jobs with Fixed Start Times on Related Machines 145

until the adversary completes all these m jobs. The time during which no jobs
are released is called a long break, and it ends a phase.

The input ends after there have been M long breaks, or if m2 + bm short
breaks occur in total (in all phases together) before b long breaks have occurred.
Thus the input always ends with a break. We claim (omitting the proof due to
space constraints) that if there are m2+ bm short breaks in total before the b-th
long break,Alg can complete at most b−1+m jobs from the input (one per long
break plus whatever jobs it is running when the input ends), whereas Opt earns
m2 + bm during the short breaks alone. This implies a ratio of m and justifies
ending the input in this case (after the (m2 + bm)-th short break). If the M -th
long break occurs, the input also stops. Alg has completed at most M jobs and
can complete at most m−1 more. Opt completes at leastMm jobs in total (not
counting any short breaks). The ratio is greater than Mm/(M +m) = (1− ε)m
for M = (1ε − 1)m.

References

1. Awerbuch, B., Bartal, Y., Fiat, A., Rosén, A.: Competitive non-preemptive call
control. In: Proc. of 5th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 1994), pp. 312–320 (1994)

2. Canetti, R., Irani, S.: Bounding the power of preemption in randomized scheduling.
SIAM Journal on Computing 27(4), 993–1015 (1998)

3. Krumke, S.O., Thielen, C., Westphal, S.: Interval scheduling on related machines.
Computers & Operations Research 38(12), 1836–1844 (2011)

4. Faigle, U., Nawijn, W.M.: Note on scheduling intervals on-line. Discrete Appliled
Mathematics 58(1), 13–17 (1995)

5. Fung, S.P.Y., Poon, C.K., Zheng, F.: Online interval scheduling: randomized and
multiprocessor cases. Journal of Combinatorial Optimization 16(3), 248–262 (2008)

6. Fung, S.P.Y., Poon, C.K., Zheng, F.: Improved Randomized Online Scheduling of
Unit Length Intervals and Jobs. In: Bampis, E., Skutella, M. (eds.) WAOA 2008.
LNCS, vol. 5426, pp. 53–66. Springer, Heidelberg (2009)

7. Fung, S.P.Y., Poon, C.K., Yung, D.K.W.: On-line scheduling of equal-length inter-
vals on parallel machines. Information Processing Letters 112(10), 376–379 (2012)

8. Fung, S.P.Y., Poon, C.K., Zheng, F.: Improved randomized online scheduling of
intervals and jobs. CoRR abs/1202.2933 (2012)

9. Woeginger, G.J.: On-line scheduling of jobs with fixed start and end times. Theo-
retical Computer Science 130(1), 5–16 (1994)

10. Carlisle, M.C., Lloyd, E.L.: On the k-coloring of intervals. Discrete Appliled Math-
ematics 59(3), 225–235 (1995)

11. Epstein, L., Levin, A.: Improved randomized results for the interval selection prob-
lem. Theoretical Computer Science 411(34-36), 3129–3135 (2010)

12. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. Journal of
the ACM 47(4), 617–643 (2000)

13. Koo, C., Lam, T.W., Ngan, T., Sadakane, K., To, K.: On-line scheduling with tight
deadlines. Theoretical Computer Science 295, 251–261 (2003)

14. Seiden, S.S.: Randomized online interval scheduling. Operations Research Let-
ters 22(4-5), 171–177 (1998)

A Systematic Approach to Bound Factor

Revealing LPs and Its Application to the Metric
and Squared Metric Facility Location Problems�

Cristina G. Fernandes1, Lúıs A.A. Meira2, Flávio K. Miyazawa,
and Lehilton L.C. Pedrosa3

1 Department of Computer Science, University of São Paulo, Brazil
cris@ime.usp.br

2 Faculty of Technology, University of Campinas, Brazil
meira@ft.unicamp.br

3 Institute of Computing, University of Campinas, Brazil
{fkm,lehilton}@ic.unicamp.br

Abstract. A systematic technique to bound factor-revealing linear pro-
grams is presented. We show how to derive a family of upper bound
factor-revealing programs (UPFRP), and that each such program can
be solved by a computer to bound the approximation factor. Obtain-
ing an UPFRP is straightforward, and can be used as an alternative to
analytical proofs, that are usually very long and tedious. We apply this
technique to the Metric Facility Location Problem (MFLP) and to a gen-
eralization where the distance function is a squared metric. We call this
generalization the Squared Metric Facility Location Problem (SMFLP)
and prove that there is no approximation factor better than 2.04, as-
suming P �= NP. Then, we analyze the best known algorithms for the
MFLP based on primal-dual and LP-rounding techniques when they are
applied to the SMFLP. We prove very tight bounds for these algorithms,
and show that the LP-rounding algorithm achieves a ratio of 2.04, and
therefore has the best factor for the SMFLP. We use UPFRPs in the
dual-fitting analysis of the primal-dual algorithms for both the SMFLP
and the MFLP, improving some of the previous analysis for the MFLP.

1 Introduction

Let C and F be finite disjoint sets. Call cities the elements of C and facilities the
elements of F . For each facility i and city j, let cij be a non-negative number
representing the cost to connect i to j. Additionally, let fi be a non-negative
number representing the cost to open facility i. For each city j and subset F ′ of F ,
let c(F ′, j) = mini∈F ′ cij . The Facility Location Problem (FLP) consists
of the following: given sets C and F , and c and f as above, find a subset F ′

of F such that
∑

i∈F ′ fi +
∑

j∈C c(F
′, j) is minimum. Hochbaum [7] presented

an O(logn)-approximation for the FLP.

� This research was partially supported by CNPq (grant numbers 306860/2010-4,
473867/2010-9, and 309657/2009-1) and FAPESP (grant number 2010/20710-4).

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 146–157, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Metric and Squared Metric Facility Location Problems 147

A well-studied particular case of the FLP is the Metric FLP (MFLP),
where the connection cost function is a metric, that is, c satisfies the trian-
gle inequality cij ≤ cij′ + ci′j′ + ci′j for all i, i′ ∈ F , and j, j′ ∈ C. Several
algorithms were proposed in the literature for the MFLP [2,6,8,9,10,12,13], and
the best known algorithm is a 1.488-approximation proposed by Li [10]. Also,
there is no approximation for the MFLP with a ratio smaller than 1.463, unless
NP ⊆ DTIME[nO(log log n)] [6]. This result was later strengthened by Sviridenko,
who showed that the lower bound holds unless P = NP [14].

For the Euclidean FLP (EFLP), where facilities and cities are points in the
Euclidean space, there is a PTAS by Arora, Raghavan, and Rao [1]. A variant
of the EFLP is the Squared Euclidean FLP (E2FLP), where the connection
cost function is the square of the Euclidean distance. This cost function is known
as �22 and was for instance considered by Jain and Vazirani [9, pp. 292–293]. Their
approach implies a 9-approximation for the E2FLP.

We consider a relaxed version of the triangle inequality: a connection cost
function c is called a squared metric, if

√
cij ≤ √

cij′ +
√
ci′j′ +

√
ci′j for all

i, i′ ∈ F , and j, j′ ∈ C. The particular case of the FLP that only considers
instances with a squared metric is called the Squared Metric FLP (SMFLP).
Notice that the SMFLP is a generalization of the E2FLP and of the MFLP. The
9-approximation of Jain and Vazirani [9] applies also to the SMFLP and, to
our knowledge, has the best known approximation factor. The choice of squared
metrics discourages excessive distances in the solution. This effect is important
in several applications, such as k-means and classification problems.

Although there are several algorithms for the MFLP in the literature, there
are very few works on the SMFLP. Nevertheless, one may try to solve an in-
stance of the SMFLP using good algorithms designed for the MFLP. Since these
algorithms and their analysis are based on the assumption of the triangle in-
equality, it is reasonable to expect that they generate good solutions also for
the SMFLP. However, there is no trivial way to derive an approximation factor
from the MFLP to the SMFLP, so each algorithm must be individually rean-
alyzed. In this paper, we analyze three primal-dual algorithms (the 1.861 and
the 1.61-approximation algorithms of Jain et al. [8], and the 1.52-approximation
of Mahdian, Ye, and Zhang [12]) and an LP-rounding algorithm (Chudak and
Shmoys’s algorithm [4] used in the 1.5-approximation of Byrka and Aardal [2])
when applied to squared metric FLP instances. We show that these algorithms
achieve ratios of 2.87, 2.43, 2.17, and 2.04 respectively. The last approxima-
tion factor is the best possible, as we show a 2.04-inapproximability limit for
the SMFLP. This was obtained by extending the hardness results of Guha and
Khuller [6] for the metric case. Although the primal-dual algorithms have larger
factors, they are very fast [8], and so can be more interesting in practice.

The original analysis of the three primal-dual algorithms are based on the
so called families of factor-revealing linear programs [8,12]. The lower bound
on the approximation factor is given by a computer calculated solution of any
program in such a family. The upper bound, however, is obtained analytically by
bounding the value of every program in such a family, which requires long and

148 C.G. Fernandes et al.

tedious non-straightforward proofs. In this paper, we propose a way to obtain
a new family of upper bound factor-revealing programs for the SMFLP, as an
alternative technique to achieve an upper bound. Now, the upper bound on the
approximation factor is also obtained by a computer calculated solution of a
single program. We note that, in our case, the factor-revealing programs are
nonlinear, since the squared metric constraints contain square roots. We tackle
this by replacing these constraints with an infinite set of linear constraints.

Recently, Mahdian and Yan [11] introduced the strongly factor-revealing linear
programs. Our upper bound factor-revealing program is similar to a strongly
factor-revealing program. The techniques involved in obtaining our program,
however, are different. To obtain a strongly factor-revealing linear program, one
projects a solution of an arbitrarily large linear program into a linear program
with a constant number of variables, and guesses how to adjust the restrictions to
obtain a feasible solution. In our approach, we define a candidate dual solution
for a program with a fixed number of variables, and obtain an upper bound
factor-revealing program directly in the form of a minimization program using
only straightforward calculations. For the case of the SMFLP, we observed that
calculating the dual upper bound program is easier than projecting the solutions
on the primal. Also, we have considered the case of the MFLP, for which the
obtained lower and upper bound factor-revealing programs converge.

Our contribution is two-folded. First, we make an important step towards
generalizing the squared Euclidean distance, and successfully analyze this gen-
eralization in the context of FLP. Second, more importantly, we propose a new
technique to systematically bound factor-revealing programs. This technique
is used in the dual-fitting analysis of the primal-dual algorithms for both the
SMFLP and the MFLP. We hope that this technique can also be used in the
analysis of other dual-fitting algorithms analyzed through factor-revealing LPs.

A full version of this paper is available [5].

2 Preliminaries

Although the constraints over the cost function c from an SMFLP instance are
defined by square roots, they are convex. Indeed, the next lemma shows that a
squared metric can be expressed by an infinite set of linear inequalities. As a
consequence, for any cost function not satisfying the squared metric inequality,
there exists some linear inequality, as defined in Lemma 1, that is violated.

Lemma 1. Let A, B, C, and D be non-negative numbers. Then
√
A ≤

√
B +√

C +
√
D if and only if A ≤ (1 + β + 1

γ)B + (1 + γ + 1
δ)C + (1 + δ + 1

β)D for

every positive numbers β, γ, and δ. In particular, if
√
A ≤

√
B +

√
C +

√
D,

then A ≤ 3B + 3C + 3D.

We also use the concept of a bi-factor approximation algorithm, adopted in
the context of the FLP for algorithms with distinct approximation factors for
facility and connection costs. A bi-factor approximation for the FLP, as defined
by Mahdian, Ye, and Zhang [12], is described in the following:

Metric and Squared Metric Facility Location Problems 149

Definition 1 (Bi-factor approximation algorithm [12]). An algorithm is
called a (γf , γc)-approximation algorithm for the FLP if, for every instance I =
(C,F, c, f) of the FLP, and for every solution S ⊆ F for I with facility cost
f(S) =

∑
i∈S fi and connection cost c(S) =

∑
j∈C c(S, j), the cost of the solution

produced by the algorithm is at most γff(S) + γc c(S).

Jain et al. [8] showed that no algorithm is a (γf , γc)-approximation for the MFLP,
with γc < 1 + 2e−γf , unless NP ⊆ DTIME[nO(log logn)]. Following the lines
of Sviridenko (see Vygen [14, Section 4.4]), the condition is changed to unless
P = NP. We extend these results for the SMFLP as follows:

Theorem 1. Let γf and γc be positive constants with γc < 1 + 8e−γf . If there
is a (γf , γc)-approximation for the SMFLP, then P = NP. In particular, let
α ≈ 2.04011 be the solution of equation γ = 1 + 8e−γ, then there is no α′-
approximation with α′ < α for the SMFLP unless P = NP.

3 A New Factor-Revealing Analysis

We analyze the algorithms of Jain et al. [8] using a new systematic factor-
revealing technique. Their analysis uses a family of factor-reveling LPs param-
eterized by some k, so that, for a given k, the optimal value zk of the LP is a
lower bound on the approximation factor. To obtain the approximation factor,
one has to analytically bound supk≥1 zk. This is a nontrivial analysis, since it
requires guessing a general suboptimal dual solution for the LP, usually inspired
by numerically obtained dual LP solutions for small values of k. In this section,
we show how to derive a new family of upper bound factor-revealing programs
(UPFRP) parameterized by some t, so that, for any given t, the optimal value
xt of one such program is an upper bound on supk≥1 zk. Obtaining an UPFRP
and solving it using a computer is much simpler and more straightforward than
using an analytical proof to obtain the approximation factor, since this does not
include a guessing step and a manual verification of the feasibility of the solution.
Additionally, as a property of the UPFRPs, we may tighten the obtained factor
by solving the LP for larger values of t. In fact, in some cases (see Theorem 2
below), the lower and upper bound factor-revealing programs converge, that is,
supk≥1 zk = inft≥1 xt.

We use an UPFRP to show that, when applied to SMFLP instances, the first
algorithm of Jain et al. [8], denoted by A1, is a 2.87-approximation.

Algorithm A1 (C,F, c, f) [8]

1. Set U := C, meaning that every facility starts unopened, and every city
unconnected. Each city j has some budget αj , initially 0, and, at every
moment, the budget that an unconnected city j offers to some unopened
facility i equals to max(αj − cij , 0).

2. While U �= ∅, the budget of each unconnected city is increased continuously
until one of the following events occur:

150 C.G. Fernandes et al.

(a) For some unconnected city j and some open facility i, αj = cij . In this
case, connect city j to facility i and remove j from U .

(b) For some unopened facility i,
∑

j∈U max(αj − cij , 0) = fi. In this case,
open facility i and, for every unconnected city j with αj ≥ cij , connect
j to i and remove it from U .

The analysis presented by Jain et al. [8] uses the dual fitting method. That is,
their algorithms produce not only a solution for the MFLP, but also a vector
α = (α1, . . . , α|C|) such that the value of the solution produced is equal to

∑
j αj .

Moreover, for the first algorithm, following the dual fitting method, Jain et al. [8]
proved that the vector α/1.861 is a feasible solution for the dual linear program
presented as (3) in [8], concluding that the algorithm is a 1.861-approximation
for the MFLP. To present a similar analysis for the SMFLP, we use the same
definitions and follow the steps of Jain et al. analysis. We start by adapting
Lemma 3.2 from [8] for a squared metric.

Lemma 2. For every i ∈ F , j, j′ ∈ C, and α obtained by the first algorithm of
Jain et al. [8] given an instance of the SMFLP,

√
αj ≤

√
αj′ +

√
cij′ +

√
cij .

A facility i is said to be γ-overtight for some positive γ if, at the end of the
algorithm,

∑
j max

(αj

γ − cij , 0
)

≤ fi. Observe that, if every facility is γ-

overtight, then the vector α/γ is a feasible solution for the dual linear program
presented as (3) in [8]. Jain et al. proved that, for the MFLP, every facility is
1.861-overtight. We want to find a γ for the SMFLP, as close to 1 as possible,
for which every facility is γ-overtight.

Fix a facility i. Let us assume without loss of generality that αj ≥ γcij only
for the first k cities. Following the lines of Jain et al. [8], we want to obtain the
so called factor-revealing program. We define a set of variables f , dj , and αj ,
corresponding to facility cost fi, distance cij , and city contribution αj . Then,
we capture the intrinsic properties of the algorithm using constraints over these
variables. We assume without loss of generality that α1 ≤ · · · ≤ αk. Also, we use
Lemma 3.3 from [8], that states that the total contribution offered to a facility at

any time is at most its cost, that is,
∑k

l=j max(αj −dl, 0) ≤ f . Besides these, we
have the constraints from Lemma 2. Subject to all of these constraints, we want
to find the minimum γ so that the facility is γ-overtight. In terms of the defined
variables, we want the maximum ratio

∑k
j=1 αj/(f +

∑k
j=1 dj), resulting in

zk = max
∑k

j=1 αj

f+
∑

k
j=1 dj

s.t. αj ≤ αj+1 ∀ 1 ≤ j < k√
αj ≤

√
αl +

√
dj +

√
dl ∀ 1 ≤ j, l ≤ k∑k

l=j max(αj − dl, 0) ≤ f ∀ 1 ≤ j ≤ k

αj , dj , f ≥ 0 ∀ 1 ≤ j ≤ k.

(1)

The next lemma has the same statement of Lemma 3.4 in [8], but it refers to
program (1). Since the proof is the same, we omit it.

Metric and Squared Metric Facility Location Problems 151

Lemma 3. Let γ = supk≥1 zk. Every facility is γ-overtight.

Therefore supk≥1 zk is an upper bound on the approximation factor of the algo-
rithm for the SMFLP. A slight modification of the example presented in Theorem
3.5 of [8] shows that this upper bound is tight.

3.1 A First Analysis Using Upper Bound Factor-Revealing Programs

Our first step is to relax (1) into a linear program. For that, we adjust the
objective function as in [8], and we approximate the squared metric property
by using inequalities given by Lemma 1. For simplicity, here we will use only
the inequalities corresponding to β = γ = δ = 1. With this, we will prove
that supk≥1 zk is not greater than 3.236. We can improve this bound to 2.87 by
using a whole set of inequalities from Lemma 1. See [5] for details. The relaxed
factor-revealing linear program is:

wk = max
∑k

j=1 αj

s.t. f +
∑k

j=1 dj ≤ 1

αj ≤ αj+1 ∀ 1 ≤ j < k
αj ≤ 3αl + 3dj + 3dl ∀ 1 ≤ j, l ≤ k
xjl ≥ αj − dl ∀ 1 ≤ j ≤ l ≤ k∑k

l=j xjl ≤ f ∀ 1 ≤ j ≤ k

αj , dj , f, xjl ≥ 0 ∀ 1 ≤ j, l ≤ k.

(2)

As (2) is a relaxation of (1), we have that zk ≤ wk and thus an upper bound
on supk≥1 wk is also an upper bound on supk≥1 zk. Solving linear program (2)
using CPLEX for k = 540, we get that supk≥1 wk is at least 3.220. The next
lemma uses a linear program to give a very tight bound on supk≥1 wk.

Lemma 4. For every k, wk ≤ 3.236.

Proof. In what follows, we deduce an upper bound on wk by deriving a linear
minimization program whose feasible solutions are upper bounds on wk. Then
we present a feasible solution of value less than 3.236 for this program.

The idea is to determine a conical combination of the inequalities of (2) so that
a given facility is γ-overtight for γ as small as possible. The linear minimization
program will help us to choose the coefficients of such conical combination.

First rewrite the third inequality of program (2), so that the right-hand side is
zero. For each j and l, we multiply the corresponding inequality by ϕjl. Denote
by A the sum of all these inequalities, that is,∑k

j=1

∑k
l=1 ϕjl(αj − 3αl − 3dl − 3dj) ≤ 0.

The fourth and fifth inequalities of program (2) can be relaxed to the set of

inequalities
∑lj

i=j(αj − di) ≤ f , one for each lj such that j ≤ lj ≤ k. For each j
and lj, we multiply the corresponding inequality by θjlj and denote by B the
inequality resulting of summing them up, that is,∑k

j=1

∑k
l=j θjl

∑l
i=j(αj − di) ≤

(∑k
j=1

∑k
l=j θjl

)
f.

152 C.G. Fernandes et al.

The coefficients of αj in A and B are coeffA[αj] =
∑k

l=1(ϕjl − 3ϕlj) and

coeffB[αj] =
∑k

l=j(l− j+1)θjl, respectively. The coefficients of −dj in A and B

are coeffA[−dj] =
∑k

l=1 3(ϕjl + ϕlj) and coeffB[−dj] =
∑j

i=1

∑k
l=j θil.

Now, we sum inequalities A and B and obtain a new inequality C:∑k
j=1 coeffC [αj] αj −

∑k
j=1 coeffC [−dj] dj ≤ coeffC [f] f. (3)

We want to find values for γ, θjl, and ϕjl so that the coefficients of C in inequal-
ity (3) imply, for sufficiently large k, that∑k

j=1 αj − γ
∑k

j=1 dj ≤ γf. (4)

Moreover, we want γ as small as possible. For (3) to imply (4), it is enough that,
for each j, coefficient coeffC [αj] ≥ 1, coeffC [−dj] ≤ γ, and coeffC [f] ≤ γ. Hence,
this can be expressed by the following linear program.

yk = min γ
s.t. coeffC [αj] ≥ 1 ∀ 1 ≤ j ≤ k

coeffC [−dj] ≤ γ ∀ 1 ≤ j ≤ k
coeffC [f] ≤ γ
ϕjl ≥ 0 ∀ 1 ≤ j, l ≤ k
θjl ≥ 0 ∀ 1 ≤ j ≤ l ≤ k.

(5)

The interested reader may note that (5) is the dual of a relaxed version of the
factor-revealing linear program (2). Thus, its optimal value is an upper bound
on the optimal value of (2).

As wk does not decrease for multiples of k, we may assume that k has the form
k = pt with p and t positive integers. We will use a scaling argument to create
a linear minimization program with a small number of variables, and obtain a
feasible solution for program (5) from a solution of the former program. Then,
we will show that the value of the generated solution is bounded by the value of
the small solution.

Consider variables γ′ ∈ R+, ϕ
′
jl ∈ R+ for 1 ≤ j, l ≤ t, and θ′jl ∈ R+ for

1 ≤ j ≤ l ≤ t. For an arbitrary n, let n̂ = �np �. We obtain a candidate solution

for program (5) by taking ϕjl = ϕ′
ĵ l̂
/p, θjl = θ′

ĵl̂
/p2, and γ = γ′. Let us calculate

each coefficient of C for this solution.

coeffC [αj] =
∑k

l=1(ϕjl − 3ϕlj) +
∑k

l=j(l − j + 1)θjl

= 1
p

∑k
l=1(ϕ

′
ĵl̂
− 3ϕ′

l̂ĵ
) + 1

p2

∑k
l=j(l − j + 1)θ′

ĵl̂

≥ 1
p

∑pt
l=1(ϕ

′
ĵl̂
− 3ϕ′

l̂ĵ
) + 1

p2

∑pt

l=p ĵ+1
(l − p ĵ)θ′

ĵl̂

= 1
p

∑t
l′=1 p(ϕ

′
ĵl′

− 3ϕ′
l′ ĵ
) + 1

p2

∑t
l′=ĵ+1 θ

′
ĵl′
∑p−1

i=0 (p l
′ − i− p ĵ)

=
∑t

l′=1(ϕ
′
ĵl′

− 3ϕ′
l′ĵ
) + 1

p2

∑t
l′=ĵ+1 θ

′
ĵl′
(p2 l′ − p(p−1)

2 − p2 ĵ)

≥
∑t

l′=1(ϕ
′
ĵl′

− 3ϕ′
l′ĵ
) +
∑t

l′=ĵ+1(l
′ − ĵ − 1

2)θ
′
ĵl′
.

Metric and Squared Metric Facility Location Problems 153

Straightforward calculations (see the full version [5]) show that

coeffC [−dj] ≤
t∑

l′=1

3(ϕ′
ĵl′

+ ϕ′
l′ ĵ
) +

ĵ∑
i′=1

t∑
l′=ĵ

θ′i′l′ , and coeffC [f] ≤
t∑

j′=1

t∑
l′=ĵ

θ′j′l′ .

Now, we want to find the minimum value of γ′ and values for ϕ′
jl and θ

′
jl such that

the candidate solution for program (5) is feasible. We may define the following
linear program, named the upper bound factor-revealing program.

xt = min γ′

s.t.
∑t

l=1(ϕ
′
jl − 3ϕ′

lj) +
∑t

l=j+1(l − j − 1
2)θjl ≥ 1 ∀ 1 ≤ j ≤ t∑t

l=1 3(ϕ
′
jl + ϕ′

lj) +
∑j

i=1

∑t
l=j θ

′
il ≤ γ′ ∀ 1 ≤ j ≤ t∑t

j=1

∑t
l=j θ

′
jl ≤ γ′

ϕ′
jl ≥ 0 ∀ 1 ≤ j, l ≤ t

θ′jl ≥ 0 ∀ 1 ≤ j ≤ l ≤ t.

(6)

Consider an optimal solution for program (5). Replacing it in (3), that is, in

inequality C, we obtain
∑k

j=1 αj − γ
∑k

j=1 dj ≤ γf . Thus, wk ≤ γ = yk. Now,
consider an optimal solution for program (6) and the corresponding generated
solution for (5). We obtain yk ≤ γ = γ′ = xt, and conclude that wk ≤ xt, for
all t. Using CPLEX to solve (6), we get that x800 ≈ 3.23586 < 3.236.

3.2 Improved Factor-Revealing Analysis Using UPFRPs

In Lemma 4, we obtained the minimization program (6) from a conical combina-
tion of constraints from program (2) that bounds the approximation factor. This
process is similar to obtaining the dual and using a scaling argument. Indeed, we
propose a systematic way to obtain an upper bound factor-revealing program.

Consider the dual program of a traditional maximization factor-revealing lin-
ear program for some k. Take k in the form k = pt, for a fixed t. We want to
create a minimization program that mimics the dual, but depends only on t and
bounds its optimal value for every k. The idea is to constrain the variables of
the small program to obtain a feasible solution for the dual program. To obtain
a linear program independent of k, we scale the variables by p. The strategy to
obtain an upper bound factor-revealing program may be summarized as follows:

1. obtain the dual P (k) of the lower bound factor-revealing linear program;
2. consider a block variable x′i for variables x(i−1)p+1, . . . , x(i−1)p+p of P (k);
3. identify each variable xi with the block variable x′�i/p� scaled by p;
4. replace identified variables in P (k), canceling factors p.

Denote the resulting program by P ′(t). If P ′(t) depends only on t, both in
number of variables and constraints, then any feasible solution of P ′(t) is an
upper bound on the solution of P (pt) for every p. Also, if it is the case that the
value of P (k) is not greater than the value of P (kt), for every t, then a solution
of P ′(t) for any t is also a bound on the approximation factor. Therefore, we call
P ′(t) an upper bound factor-revealing program.

154 C.G. Fernandes et al.

Notice that we could also have used a relaxed version of the factor-revealing
linear program, as in Lemma 4. Observe that the factor-revealing program is not
required to be linear. If one constraint is nonlinear, but convex, then one can
approximate this by a set of linear inequalities, and calculate the dual program
normally. Using this strategy on program (1), one may show that the approxi-
mation factor of A1 is, in fact, 2.87.

If we apply this analysis to the metric case, we simplify and strengthen the
original 1.861 analysis. In fact, we show that the values of the upper and lower
bound factor-revealing programs converge. See the full version [5] for details.

Theorem 2. Let zk be the optimal value of program (5) in [8] and let xk be the
optimal value for the corresponding upper bound factor-revealing program. Then
supk≥1 zk = infk≥1 xk. Moreover, for the MFLP, the approximation factor of
A1 [8] is between 1.814 and 1.816.

We also analyzed the second algorithm of Jain et al. [8] for the SMFLP. The
algorithm, denoted by A2, is similar to A1, but each connected city j keeps con-
tributing to unopened facilities. For the metric case, the approximation factor is
1.61. With a completely analogous reasoning, we derive the corresponding lower
and upper bound factor-revealing programs for A2, and obtain the following.

Theorem 3. The approximation factor of A2 when applied to SMFLP instances
is between 2.415 and 2.425.

4 Scaling and Greedy Augmentation

Algorithm A2 can also be analyzed as a bi-factor approximation algorithm. The
analysis uses a factor-revealing linear program, and is similar to the previous
analysis. Mahdian, Ye, and Zhang [12] observed that, due to the asymmetry
between the approximation guarantee for the opened facilities cost and the con-
nections cost, Algorithm A2 may be used to open facilities that are very eco-
nomical. This gives rise to a two-phase algorithm, denoted here by A3(δ), based
on scaling facility costs by a constant δ ≥ 1, and on the greedy augmentation
technique [6]. First, we scale the facility costs by δ and run Algorithm A2 on
the modified instance. Then, while there is a facility i that may be opened to
decrease the total cost by gi, we open the facility that maximizes the ratio gi/fi.

In [12], a factor-revealing linear program is used to analyze Algorithm A3(δ)
using a somewhat different, but equivalent, greedy augmentation procedure.
Such analysis may be used to balance a bi-factor of Algorithm A2 for the MFLP.
As noticed by Byrka and Aardal [2], this analysis is not restricted to Algo-
rithm A2, and applies to any bi-factor approximation for the FLP. Therefore,
since it does not depend on the cost function being a metric, we can use it to
balance a bi-factor approximation for the squared metric case. This result is
precisely stated as follows.

Lemma 5 ([12]). Consider a (γf , γc)-approximation for the FLP. Then, for
every δ ≥ 1, Algorithm A3(δ) is a (γf + ln δ+ ε, 1+ γc−1

δ)-approximation for the
FLP.

Metric and Squared Metric Facility Location Problems 155

For the metric case, Algorithm A2 is a (1.11, 1.78)-approximation. This and
Lemma 5 give a (1.52+ ε)-approximation for the MFLP. We present an analysis
for the SMFLP using an upper bound factor-revealing program. Using straight-
forward calculations, we have the following:

Lemma 6. Let γf ≥ 1 be a fixed value and let γc = xk, where

xk = max
∑k

j=1 αj−γff∑
k
j=1 dj

s.t. αl ≤ αl+1 ∀ 1 ≤ l < k
rjl ≥ rj,l+1 ∀ 1 ≤ j < l < k√
αl ≤

√
rjl +

√
dl +

√
dj ∀ 1 ≤ j < l ≤ k

l−1∑
j=1

max(rjl−dj,0)+
k∑

j=l+1

max(αl−dj,0) ≤ f ∀ 1 ≤ l ≤ k

αj , dj , f, rjl ≥ 0 ∀ 1 ≤ j ≤ l ≤ k.

(7)

Then, if γc < ∞, Algorithm A2 is a (γf , γc)-approximation for the SMFLP.

Theorem 4. Algorithm A3(2.0543) is a 2.17-approximation for the SMFLP.

5 An Optimal Approximation Algorithm

Byrka and Aardal [2] (see also [3]) gave a 1.5-approximation for the MFLP
combining a (1.11, 1.78)-approximation of Jain et al. [8] and a new analysis of
the LP-rounding algorithm CS (γ) of Chudak and Shmoys [4], that leads to a
(1.6774, 1.3737)-approximation. Byrka and Aardal showed that CS (γ) has the
optimal bi-factor approximation (γ, 1 + 2e−γ) for γ ≥ γ0 ≈ 1.6774.

We show that CS (γ) is a 2.04-approximation for the SMFLP, and thus has
the best possible factor. We start with the natural linear program relaxation.

min
∑

i∈F yifi +
∑

j∈C
∑

i∈F xijcij
s.t.

∑
i∈F xij = 1 ∀j ∈ C

xij ≤ yi ∀i ∈ F, j ∈ C

xij , yi ≥ 0 ∀i ∈ F, j ∈ C.

(8)

The corresponding integer variables yi indicate whether facility i is open, and
the corresponding integer variables xij indicate whether facility i serves city j in
the solution. Algorithm CS(γ) may be summarized as follows. First, a solution
(x∗, y∗) of program (8) is obtained. Then, the fractional opening variables y∗i
are scaled by a factor γ ≥ 1, yi = γy∗i , and variables xij are defined so that
city j is served entirely by its closest facilities, obtaining a new solution (x, y).
We may assume that this solution is complete, i.e., for every city j and facility i,
if xij > 0, then xij = yi, and that for every i, yi ≤ 1, since, in either case, we can
split facility i, and obtain an equivalent instance with these properties. Finally,
a clustering of some of the facilities is obtained according to a given criterion,
and a probabilistic rounding procedure is used to obtain the final solution. For
a detailed description of the algorithm, see [2] (also [3]).

156 C.G. Fernandes et al.

A facility i with xij > 0 is called a close facility of city j, and the set of such
facilities is denoted by Cj . Similarly, a facility i with xij = 0 but x∗ij > 0 is
called a distant facility of j, and the set of such facilities is denoted by Dj . Let
Fj = Cj∪Dj . The analysis of CS(γ) uses the notion of average distance between
a city j ∈ C and a subset of facilities F ′ ⊆ F such that

∑
i∈F ′ yi > 0, defined

as d(j, F ′) =
∑

i∈F ′ cij ·yi∑
i∈F ′ yi

. For a city j, we also use some definitions from [3]: the

average connection cost, dj = d(j, Fj); the average distance from close facilities,

d
(c)
j = d(j, Cj); the average distance from distant facilities, d

(d)
j = d(j,Dj); and

the maximum distance from close facilities, d
(max)
j = maxi∈Cj cij .

With these definitions, we may describe the clustering of the facilities. In each
iteration, greedily select a city j, called the cluster center, such that the sum

d
(c)
j + d

(max)
j is minimum, and build a cluster formed by j and its close facilities

Cj . Remove j and every other city j′ such that Cj ∩Cj′ is not empty, and repeat
this process until every city is removed. The set of facilities opened by CS(γ) is
given by the following rounding procedure: for each cluster center j, open one
facility i from Cj with probability xij = yi, and, for each unclustered facility i,
open it independently with probability yi. Each city is connected to its closest
opened facility.

The following lemma of Byrka and Aardal [2] is used to bound the expected
connection cost between a city and the closest facility from a set of facilities.

Lemma 7 ([2]). Consider a random vector y ∈ {0, 1}|F| produced by Algorithm
CS(γ), a subset A ⊆ F of facilities such that

∑
i∈A ȳi > 0, and a city j ∈ C.

Then, the following holds: IE
[
mini∈A,yi=1 cij |

∑
i∈A yi ≥ 1

]
≤ d(j, A).

For a given city j, if one facility in Cj or Dj is opened, then Lemma 7 states

that the expected connection cost is bounded by d
(c)
j and d

(d)
j , respectively. If

no facility in Cj ∪ Dj = Fj is opened, then city j can always be connected to
one of the close facilities Cj′ of the associated cluster center j′, with expected
connection cost d(j, Cj′ \Fj). Byrka and Aardal [2] showed that, for the MFLP,

when γ < 2, this cost is at most d
(d)
j +d

(max)
j′ +d

(c)
j′ . Since for the SMFLP we need

γ > 2, we will use an improved version of this lemma by Li [10]. The adapted
lemma for the squared metric is given in the following. The proof is the same,
but we use the squared metric property, instead of the triangle inequality.

Lemma 8. Let j be a city and j′ be the associated cluster center such that Cj ∩
Cj′ �= ∅. Then, d(j, Cj′ \Fj) ≤ 3 ·

(
(2 − γ)d

(max)
j + (γ − 1)d

(d)
j + d

(max)
j′ + d

(c)
j′

)
.

Now, we can bound the expected facility and connection cost of a solution gen-
erated by CS(γ). The next theorem extends Theorem 2.5 from [3].

Theorem 5. For γ ≥ 1, Algorithm CS(γ) produces a solution (x, y) for the in-
teger program corresponding to (8) with expected facility and connection costs

IE[yifi] = γ · F ∗
i , and IE [mini∈F,yi=1 cij] ≤ max

{
1 + 8e−γ , 5e

−γ+e−1

1− 1
γ

}
· C∗

j ,

where F ∗
i = y∗i fi and C∗

j =
∑

i∈F x
∗
ijcij .

Metric and Squared Metric Facility Location Problems 157

Let γ0 be the solution of equation (5e−γ + e−1)/(1 − 1
γ) = (1 + 8e−γ). For

γ ≥ γ0 ≈ 2.00492, the maximum connection cost factor is 1 + 8e−γ , so CS(γ)
touches the curve (γ, 1 + 8e−γ), that is, its approximation factor is the best
possible for the SMFLP, unless P = NP. The next theorem follows immediately.

Theorem 6. Let α ≈ 2.04011 be the solution of equation γ = 1 + 8e−γ. Then
CS(α) is an α-approximation for the SMFLP and the approximation factor is
the best possible unless P = NP.

References

1. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Euclidean k-medians
and related problems. In: Proc. 30th Annual ACM Symp. on Theory of Computing,
pp. 106–113. ACM, New York (1998)

2. Byrka, J., Aardal, K.: An Optimal Bifactor Approximation Algorithm for the Met-
ric Uncapacitated Facility Location Problem. SIAM J. on Comp. 39(6), 2212–2231
(2010)

3. Byrka, J., Ghodsi, M., Srinivasan, A.: LP-rounding algorithms for facility-location
problems (2010), http://arxiv.org/abs/1007.3611

4. Chudak, F.A., Shmoys, D.B.: Improved Approximation Algorithms for the Unca-
pacitated Facility Location Problem. SIAM J. on Comp. 33(1), 1–25 (2003)

5. Fernandes, C.G., Meira, L.A.A., Miyazawa, F.K., Pedrosa, L.L.C.: Squared Metric
Facility Location Problem (2012), http://arxiv.org/abs/1111.1672

6. Guha, S., Khuller, S.: Greedy Strikes Back: Improved Facility Location Algorithms.
Journal of Algorithms 31(1), 228–248 (1999)

7. Hochbaum, D.S.: Heuristics for the fixed cost median problem. Mathematical Pro-
gramming 22, 148–162 (1982)

8. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility
location algorithms analyzed using dual fitting with factor-revealing LP. Journal
of the ACM 50(6), 795–824 (2003)

9. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location
and k-Median problems using the primal-dual schema and Lagrangian relaxation.
Journal of the ACM 48(2), 274–296 (2001)

10. Li, S.: A 1.488 Approximation Algorithm for the Uncapacitated Facility Location
Problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 77–88. Springer, Heidelberg (2011)

11. Mahdian, M., Yan, Q.: Online bipartite matching with random arrivals: an ap-
proach based on strongly factor-revealing LPs. In: Proc. 43rd Annual ACM Symp.
on Theory of Computing, pp. 597–606. ACM, New York (2011)

12. Mahdian, M., Ye, Y., Zhang, J.: Approximation Algorithms for Metric Facility
Location Problems. SIAM J. on Comp. 36(2), 411–432 (2006)

13. Shmoys, D.B., Tardos, E., Aardal, K.: Approximation algorithms for facility lo-
cation problems. In: Proc. 29th Annual ACM Symp. on Theory of Computing,
pp. 265–274. ACM, New York (1997)

14. Vygen, J.: Approximation algorithms for facility location problems (Lecture
Notes). Tech. Rep. 05950-OR, Research Institute for Discrete Mathematics, Uni-
versity of Bonn (2005)

http://arxiv.org/abs/1007.3611
http://arxiv.org/abs/1111.1672

Approximating Bounded Occurrence Ordering CSPs�

Venkatesan Guruswami1 and Yuan Zhou2

1 Computer Science Department
Carnegie Mellon University
guruswami@cmu.edu

2 Computer Science Department
Carnegie Mellon University
yuanzhou@cs.cmu.edu

Abstract. A theorem of Håstad shows that for every constraint satisfaction prob-
lem (CSP) over a fixed size domain, instances where each variable appears in at
most O(1) constraints admit a non-trivial approximation algorithm, in the sense
that one can beat (by an additive constant) the approximation ratio achieved by
the naive algorithm that simply picks a random assignment. We consider the anal-
ogous question for ordering CSPs, where the goal is to find a linear ordering of
the variables to maximize the number of satisfied constraints, each of which stip-
ulates some restriction on the local order of the involved variables. It was shown
recently that without the bounded occurrence restriction, for every ordering CSP
it is Unique Games-hard to beat the naive random ordering algorithm.

In this work, we prove that the CSP with monotone ordering constraints xi1 <
xi2 < · · · < xik of arbitrary arity k can be approximated beyond the random
ordering threshold 1/k! on bounded occurrence instances. We prove a similar re-
sult for all ordering CSPs, with arbitrary payoff functions, whose constraints have
arity at most 3. Our method is based on working with a carefully defined Boolean
CSP that serves as a proxy for the ordering CSP. One of the main technical in-
gredients is to establish that certain Fourier coefficients of this proxy constraint
have substantial mass. These are then used to guarantee a good ordering via an
algorithm that finds a good Boolean assignment to the variables of a low-degree
bounded occurrence multilinear polynomial. Our algorithm for the latter task is
similar to Håstad’s earlier method but is based on a greedy choice that achieves a
better performance guarantee.

1 Introduction

Constraint satisfaction. Constraint satisfaction problems (CSPs) are an important class
of optimization problems. A CSP is specified by a finite set Π of relations, each of
arity k, over a domain {0, 1, . . . , D − 1}, where k,D are some fixed constants. An
instance of such a CSP consists of a set of variables V and a collection of constraints
(possibly with weights) each of which is a relation from Π applied to some k-tuple of

� This research was supported in part by NSF CCF 1115525 and US-Israel BSF grant
2008293. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of
the National Science Foundation. A full version of this paper can be found hat
http://eccc.hpi-web.de/report/2012/074/

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 158–169, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://eccc.hpi-web.de/report/2012/074/

Approximating Bounded Occurrence Ordering CSPs 159

variables from V . The goal is to find an assignment σ : V → D that maximizes the
total weight of satisfied constraints. For example in the Max Cut problem, k = D = 2
and Π consists of the single relation CUT(a, b) = 1(a �= b). More generally, one can
also allow real-valued payoff functions f : {0, 1, . . . , D − 1}k → R+ in Π (instead of
just {0, 1}-valued functions), with the goal being to find an assignment maximizing the
total payoff.

Most Max CSP problems are NP-hard, and there is by now a rich body of work on
approximation algorithms and hardness of approximation results for CSPs. Algorith-
mically, semidefinite programming (SDP) has been the principal tool to obtain good
approximation ratios. In fact, SDP is universal for CSPs in the sense that under the
Unique Games conjecture a certain canonical SDP achieves the optimal approximation
ratio [Rag08]. However, many CSPs, including Max 3SAT, Max 3LIN, Max NAE-4-
SAT, etc., are approximation resistant, meaning that for any ε > 0, even when given
a (1 − ε)-satisfiable instance, it is hard to find an assignment that satisfies more than
a fraction r + ε of the constraints, where r, the random assignment threshold, is the
expected fraction of constraints satisfied by a random assignment [Hås01, AM09]. In
other words, it is hard to improve upon the naive algorithm that simply picks a random
assignment without even looking at the structure of the instance.

Let us call a CSP that is not approximation resistant as non-trivially approximable. In-
spite of a rich body of powerful algorithmic and hardness results, we are quite far from a
complete classification of all CSPs into approximation resistant or non-trivially approx-
imable. Several partial results are known; for example, the classification is known for
Boolean predicates of arity 3. It is known that every binary CSP (i.e., whose constraints
have arity 2), regardless of domains size (as long as it is fixed), is non-trivially approx-
imable via a SDP-based algorithm [GW95, EG04, Hås08]. In a different vein, Håstad
[Hås00] showed that for every Boolean CSP, when restricted to sparse instances where
each variable participates in a bounded numberB of constraints, one can beat the random
assignment threshold (by an amount that is at least Ω(1/B)). Trevisan showed that for
Max 3SAT beating the random assignment threshold by more thanO(1/

√
B) is NP-hard,

so some degradation of the performance ratio with the bound B is necessary [Tre01].

Ordering CSPs. With this context, we now turn to ordering CSPs, which are the focus
of this paper. The simplest ordering CSP is the well-known Maximum Acyclic Sub-
graph (MAS) problem, where we are given a directed graph and the goal is to order the
vertices V = {x1, . . . , xn} of the graph so that a maximum number of edges go for-
ward in the ordering. This can be viewed as a “CSP” with variables V and constraints
xi < xj for each directed edge (xi, xj) in the graph; the difference from usual CSPs is
that the variables are to be ordered, i.e., assigned values from {1, 2, . . . , n}, instead of
being assigned values from a fixed domain (of size independent of n).

An ordering CSP of arity k is specified of a constraint Π : Sk → {0, 1} where Sk is
the set of permutations of {1, 2, . . . , k}. An instance of such a CSP consists of a set of
variables V and a collection of constraints which are (ordered) k-tuples. The constraint
tuple e = (xi1 , xi2 , · · · , xik) is satisfied by an ordering of V if the local ordering of the
variables xi1 , xi2 , · · · , xik , viewed as an element of Sk, belongs to the subset Π . The
goal is to find an ordering that maximizes the number of satisfied constraint tuples. An
example of an arity 3 ordering CSP is the Betweenness problem with constraints of the

160 V. Guruswami and Y. Zhou

form xi2 occurs between xi1 and xi3 (this corresponds to the subset Π = {123, 321} of
S3). More generally, one can allow more than one kind of ordering constraint, or even
a payoff function ωe : Sk → R+ for each constraint tuple e. The goal in this case is
to find an ordering O that maximizes

∑
e ωe(O|e) where O|e is the relative ordering of

vertices in e induced by O.
For the problem to decide whether all the constraints of an ordering CSP can be

satisfied or not (i.e. the decision version), [GM06] showed a dichotomy theorem for 3-
ary ordering CSPs. [BK10] proved a more generalised dichotomy theorem for a broader
class of problems (the temporal CSPs) of all arities.

Now we turn to the optimization problem – to maximize the number of satisfied
ordering constraints. Despite much algorithmic progress on CSPs, even for MAS there
was no efficient algorithm known to beat the factor 1/2 achieved by picking a random
ordering. This was explained by the recent work [GMR08] which showed that such an
algorithm does not exist under the Unique Games conjecture, or in other words, MAS
is approximation resistant. This hardness result was generalized to all ordering CSPs
of arity 3 [CGM09], and later to higher arities, showing that every ordering CSP is
approximation resistant (under the UGC) [GHM+11]!1

In light of this pervasive hardness of approximating ordering CSPs, in this work we
ask the natural question raised by Håstad’s algorithm for bounded occurrence
CSPs [Hås00], namely whether bounded occurrence instances of ordering CSPs ad-
mit a non-trivial approximation. For the case of MAS, Berger and Shor [BS97] gave an
efficient algorithm that given any directed graph of total degree D, finds an ordering in
which at least a fraction (1/2 + Ω(1/

√
D)) of the edges go forward. This shows that

bounded occurrence MAS is non-trivially approximable. The algorithm is quite simple,
though its analysis is subtle. The approach is to order the vertices randomly, and pro-
cess vertices in this order. When a vertex is processed, if it has more incoming edges
than outgoing edges (in the graph at that stage), all outgoing edges are removed, and
otherwise all its incoming edges are removed. The graph remaining after all the vertices
are processed is returned as the acyclic subgraph.

Evidently, this algorithm is tailored to the MAS problem, and heavily exploits its
underlying graph-theoretic structure. It therefore does not seem amenable for extensions
to give non-trivial approximations to other ordering CSPs.

Our Results. In this work, we prove that important special cases of ordering CSPs
do admit non-trivial approximation on bounded occurrence instances. In particular, we
prove this for the following classes of ordering CSPs:

1. The monotone ordering k-CSP for arbitrary k with constraints of the form xi1 <
xi2 < · · · < xik (i.e., the CSP defined by the constraint subset {123 . . . k} ⊆ Sk
consisting of the identity permutation). This can be viewed as the arity k general-
ization of the MAS problem. (Note that we allow multiple constraint tuples on the
same set of k variables, just as one would allow 2-cycles in a MAS instance given
by a directed graph.)

1 This does not rule out non-trivial approximations for satisfiable instances. Of course for
satisfiable instances of MAS, which correspond to DAGs, topological sorting satisfies all
the constraints. For Betweenness, a factor 1/2 approximation for satisfiable instances is
known [CS98, Mak09].

Approximating Bounded Occurrence Ordering CSPs 161

2. All ordering CSPs of arity 3, even allowing for arbitrary payoff functions as con-
straints.

Our proofs show that these ordering CSPs admit an ordering into “4 slots” that beats the
random ordering threshold. We remark that CSP instances which are satisfiable for or-
derings into n slots but do not admit good “c slot” solutions for any fixed constant c are
the basis of the Unique Games hardness results for ordering CSPs [GMR08, GHM+11].
Our results show that for arity 3 CSPs and monotone ordering k-ary CSPs such gap in-
stances cannot be bounded occurrence.

Our Methods. As mentioned above, the combinatorial approach of the Berger-Shor
algorithm for MAS on degree-bounded graphs seems to have no obvious analog for
more complicated ordering constraints. We prove our results by applying (after some
adaptations) Håstad’s algorithm [Hås00] to certain “proxy” Boolean CSPs that corre-
spond to solutions to the ordering CSP that map the variables into a domain of size
4. The idea is to only consider orderings where the range is a small constant (like
[4]) instead of [n]. This idea was also used in recent hardness results on ordering
[GMR08, CGM09, GHM+11]. But the fact that one can afford to restrict the range
even for algorithm design (in the case of some CSPs) is a surprise.

For the case of monotone ordering constraints (of arbitrary arity k), we prove that
for this proxy payoff function on the Boolean hypercube, a specific portion of the
Fourier spectrum carries non-negligible mass. This is the technical core of our argu-
ment. Once we establish this, the task becomes finding a Boolean assignment to the
variables of a bounded-occurrence low-degree multilinear polynomial (namely the sum
of the Fourier representations of all the constraints) that evaluates to a real number that
is non-negligibly larger than the constant term (which is the random assignment thresh-
old). We present a greedy algorithm for this latter task which is similar to Håstad’s
algorithm [Hås00], but yields somewhat better quantitative bounds.

Our result on general ordering 3-CSPs faces an additional complication since it can
happen that the concerned part of Fourier spectrum is in fact zero for certain kinds of
constraints. We identify all the cases when this troublesome phenomenon occurs, prov-
ing that in such cases the pay-off function can be expressed as a linear combination
of arity 2 pay-off functions (accordingly, we call these cases as “binary representable”
pay-off functions). If the binary representable portion of the pay-offs is bounded away
from 1, then the remaining pay-offs (which we call “truly 3-ary”) contribute a substan-
tial amount to the Fourier spectrum. Fortunately, the binary representable portion of
pay-offs can be handled by our argument for monotone ordering constraints (special-
ized to arity two). So in the case when they comprise most of the constraints, we prove
that their contribution to the Fourier spectrum is significant and cannot be canceled by
the contribution from the truly 3-ary pay-offs.

1.1 Outline for the Rest of the Paper

In Section 2, we formally define the ordering CSPs with bounded occurrence, and the
proxy problems (the t-ordering version). We also introduce the notation and analytic
tools we will need in the remainder of the paper. In Section 3, we present an algorithm
which is a variant of Håstad’s algorithm in [Hås00], and is used to solve the proxy

162 V. Guruswami and Y. Zhou

problems. In Section 4 and Section 5, we prove the two main theorems (Theorems 1
and 2) of the paper.

2 Preliminaries

2.1 Ordering CSPs, Bounded Occurrence Ordering CSPs

An ordering over vertex set V is an injective mapping O : V → Z+. An instance of
k-ary monotone ordering problem G = (V,E, ω) consists of vertex set V , set E of
k-tuples of distinct vertices, and weight function ω : E → R+. The weight satisfied by
ordering O is

ValO(G)
def
=

∑
e=(vi1 ,vi2 ,··· ,vik)∈E

ω(e) · 1O(vi1)<O(vi2)<···<O(vik)
.

We also denote the value of the optimal solution by

Val(G)
def
= max

injective O:V→Z
{ValO(G)}.

We can extend the definition of the monotone ordering problem to ordering CSPs I =
(V,E,Ω) with general pay-off functions, where V and E are similarly defined. For
each k-tuple e = (v1, v2, · · · , vk) ∈ E, a general pay-off function ωe ∈ Ω, mapping
from all k! possible orderings among O(v1),O(v2), · · · ,O(vk) to R�0, is introduced.
That is, for an ordering O, its pay-off ωe(O) for constraint tuple e only depends on
O|e, the relative ordering on vertices of e induced by O. The overall pay-off achieved

by an ordering O is defined as ValO(I) def
=
∑

e∈E ωe(O). The optimal pay-off for the
instance is then given by

Val(I) def
= max

injective O:V→Z
{ValO(I)} .

An ordering CSP problem I = (V,E,Ω) (or a monotone ordering problem G =
(V,E, ω)) is called B-occurrence bounded if each vertex v ∈ V occurs in at most
B tuples in E.

2.2 The t-Ordering Version of Ordering CSPs

We start this section with several definitions. Two orderings O and O′ are essentially
the same if ∀u, v ∈ V,O(u) < O(v) ⇔ O′(u) < O′(v), otherwise we call them
essentially different. For a positive integer m, denote [m] = {1, 2, . . . ,m}. For integer
t > 0, a t-ordering on V is a mapping Ot : V → [t], not necessarily injective. An
ordering O is consistent with a t-ordering Ot, denoted by O ∼ Ot, when ∀u, v ∈
V,Ot(u) < Ot(v) ⇒ O(u) < O(v).

The monotone ordering problem G can be naturally extended to its t-ordering ver-
sion, which is a regular CSP problem over domain [t] defined as follows. For each
constraint e = (v1, v2, · · · , vk) ∈ E, we introduce a pay-off function

πe(Ot)
def
= E

O∼Ot

[1O(v1)<O(v2)<···<O(vk)],

Approximating Bounded Occurrence Ordering CSPs 163

where the expectation is uniformly taken over all the essentially different orderings O
that are consistent with Ot. (In this paper, when O becomes a random variable for total
ordering without further explanation, it is always uniformly taken over all essentially
different orderings (that satisfy certain criteria).) Note that although πe receives an n-
dimensional vector as parameter in the equation above, its value depends only on the
k values to v1, v2, · · · , vk. Then the k-ary CSP problem (t-ordering version of G) is to
find the t-ordering Ot to maximize the objective function

ValOt
t (G)

def
=
∑
e∈E

ω(e) · πe(Ot).

We denote the value of the optimal solution by

Valt(G)
def
= max

Ot∈[t]n
{ValOt

t (G)}.

We can also extend the ordering CSP problem I with general pay-off functions to its
t-ordering version. For each constraint e ∈ E, the pay-off function in the t-ordering

version is defined as πe(Ot)
def
= EO∼Ot[ωe(O)]. The pay-off achieved by a particular

t-ordering Ot is given by ValOt
t (I) def

=
∑

e∈E πe(Ot), and the value of the optimal

t-ordering solution is Valt(I) def
= maxOt∈[t]n{ValOt

t (I)}.
Our approach to getting a good solution for (occurrence bounded) ordering CSPs is

based on the following fact.

Fact 1. For all positive integers t, Val(I) � Valt(I).

Note that for t = 1, Val1(I) equals the expected pay-off of a random ordering. Since
the monotone ordering problem is a special case of ordering CSP with general pay-
off functions, Fact 1 is also true for the monotone ordering problem. By fact 1, it is
enough to find a good solution for t-ordering version of I (or G) to show that Val(I)
(or Val(G)) is large.

2.3 Fourier Transform of Boolean Functions

For every f : {−1, 1}d → R, we write the Fourier expansion of f as

f(x) =
∑
S⊆[d]

f̂(S)χS(x),

where f̂(S) is the Fourier coefficient of f on S, and χS(x) =
∏
i∈S xi.

The Fourier coefficients can be computed by the inverse Fourier transform, i.e., for
every S ⊆ [d],

f̂(S) = E
x∈{−1,1}d

[f(x)χS(x)].

164 V. Guruswami and Y. Zhou

3 Finding Good Assignments for Bounded Occurrence
Polynomials

Let f be a polynomial in n variables x1, x2, . . . , xn containing only multilinear terms of
degree at most k with coefficients f̂(S). In other words, let
f(x) =

∑
S⊆[n],|S|�k f̂(S)χS(x). We say that f is D-occurrence bounded if for each

coordinate i ∈ [n], we have |{S � i : f̂(S) �= 0}| � D. We also define

|f | def=
∑

∅�=S⊆[n]

|f̂(S)|.

Then, the following proposition shows us how to find a good assignment for f .

Proposition 1. Given a D-occurrence bounded polynomial f of degree at most k, it is
possible, in poly(n, 2k) time, to find x ∈ {−1, 1}n such that f(x) � f̂(∅)+|f |/(2kD).

Proof. We use the following algorithm to construct x.

Algorithm. As long as |f | > 0, the algorithm finds a non-empty set T that maximizes
|f̂(T)|, and let γ = f̂(T). We want to make sure we get |γ| for credit while not losing
too much other terms in |f |.

Note that for all ∅ �= U � T , we have Ez∈{−1,1}T :χT (z)=sgn(f̂(T))[χU (z)] = 0 , and
therefore

E
z∈{−1,1}T :χT (z)=sgn(f̂(T))

[∑
U⊆T

f̂(U)χU (z)
]
= f̂(∅) + |f̂(T)| = f̂(∅) + |γ|.

We can enumerate all the z ∈ {−1, 1}T such that χT (z|T) = sgn(f̂(T)) to find a

particular z∗, with
∑

U⊆T f̂(U)χU (z
∗) � f̂(∅) + |γ| . We fix x|T = z∗. For the rest of

the coordinates, let g : {−1, 1}[n]\T → R be defined as,

g(y)
def
= f(y, z∗), ∀y ∈ {−1, 1}[n]\T .

We note that g is also a D-occurrence bounded polynomial f of degree at most k, and
by fixing all the variables in T , we have

ĝ(∅) =
∑
U⊆T

f̂(U)χU (z
∗) � f̂(∅) + |γ|.

On the other hand, observing that |T | � k and |γ| is an upper bound of all |f̂(S)| with
S �= ∅, we have

|g| =
∑

∅�=S⊆[n]\T
|ĝ(S)| =

∑
∅�=S⊆[n]\T

∣∣∣ ∑
U⊆T

f̂(S ∪ U)χU (z
∗)
∣∣∣

�
∑

∅�=S⊆[n]\T
|f̂(S)| −

∑
∅�=S⊆[n]\T

∑
∅�=U⊆T

|f̂(S ∪ U)|

� |f | − 2
∑

S:S∩T �=∅
|f̂(S)|

� |f | − 2
∑
i∈T

∑
S�i

|f̂(S)| � |f | − 2|T |D|γ| � |f | − 2kD|γ|.

Approximating Bounded Occurrence Ordering CSPs 165

Then we can use the two inequalities above to establish ĝ(∅) + |g|/(2kD) � f̂(∅) +
|f |/(2kD) .

By recursively applying this algorithm on g, we can eventually fix all the coordinates
in x, and get a constant function whose value is at least f̂(∅) + |f |/(2kD).

Remark 1. The algorithm is similar to Håstad’s algorithm in [Hås00] but we make a
greedy choice of the term χT (x) to satisfy (the one with the largest coefficient |f̂(T)|) at
each stage. Our analysis of the loss in |g| is more direct and leads to a better quantitative
bound, avoiding the loss of a “scale” factor (which divides all non-zero coefficients of
the polynomial) in the advantage over f̂(∅).

Remark 2. In the performance guarantee of the algorithm, f̂(∅) corresponds to the
value of random assignments in the later sections, while |f |/(2kD) corresponds the
advantage we get over random assignments. Because of the 1/D factor, our algorithm
gives weaker gaurantee than Berger-Shor gives, but our algorithm extends to permuta-
tion CSPs of larger arities.

4 Bounded Occurrence Monotone Ordering Problem

Our main result in this section is the following.

Theorem 1. For any constant k > 1, given a B-occurrence bounded k-ary monotone
ordering problem G = (V,E, ω), there is a poly-time randomized algorithm to find a
solution satisfying at least Val(G)(1/k! +Ωk(1/B)) weight (in expectation).

To prove the above theorem, we will show the following lemma.

Lemma 1. For any constant k > 1, given a B-occurrence bounded k-ary monotone
ordering problemG = (V,E, ω) with total weightW . Then it is possible, in polynomial
time, to find a 4-ordering solution O4 with Val(G)(1/k! +Ωk(1/B)) weight.

Note that given Lemma 1, the randomized algorithm that samples ordering O ∼ O4

fulfills the task promised in the theorem.
Lemma 1 also implies the following.

Corollary 1. For any B-occurrence bounded k-ary monotone ordering problem G, we
have Val4(G) � Val(G)(1/k! +Ωk(1/B)).

Proof (Proof of Lemma 1)
We begin the proof with the analysis of the pay-off functionπe : [4]{v1,v2,··· ,vk} → R

for some e = (v1, v2, · · · , vk) ∈ E. We can also view πe as a real-valued function
defined on Boolean cube {−1, 1}2k, so that

πe(x1,x2, · · · , x2k)

= πe

(
(1 − x1) +

(1− x2)

2
+ 1, · · · , (1− x2k−1) +

(1− x2k)

2
+ 1
)
.

166 V. Guruswami and Y. Zhou

If we let Γ (e) be the set of all k! permutations of e, then∑
e′∈Γ (e)

E
O4∈[4]k

[πe′(O4)]

=
∑

e′=(vi1 ,vi2 ,···vik)∈Γ (e)

E
O4∈[4]k

[
E

O∼O4

[1O(vi1)<O(vi2)<···<O(vik
)]
]

= E
O4∈[4]k

[
E

O∼O4

[∑
e′=(vi1 ,vi2 ,···vik)∈Γ (e)

1O(vi1)<O(vi2)<···<O(vik)

]]
= 1.

Since EO4∈[4]k [πe′(O4)] is the same for all e′ ∈ Γ (e), we know that
EO4∈[4]k [πe(O4)] = 1/k! . Hence we have the following fact.

Fact 2. π̂e(∅) = E
x∈{−1,1}2k

[πe(x)] = E
O4∈[4]k

[πe(O4)] =
1

k!
.

By Fact 2, if we apply the algorithm in Proposition 1, to the objective function f(x) =∑
e∈E ω(e)πe(x) of the 4-ordering version, we are guaranteed to have a solution that

is no worse than the random threshold (1/k!). Then, we only need to identify some
non-negligible weights on the rest of the Fourier spectrum of f .

Let Sodd = {2i−1|i ∈ [k]}, and S+
odd = Sodd∪{2k}. We make the following claim

whose proof is included in the full version of the paper.

Claim 1. π̂e(S
+
odd) =

−21−k + 22−2k

k!
.

The above claim makes sure there is indeed non-negligible mass on non-empty-set
Fourier coefficients for each constraint. Then we prove that, when summing up these
constraints, either of the following two cases happens.

– Some weights shown in Claim 1 are not canceled by others, and finally appears in
the non-empty-set Fourier coefficients for the final objective function f .

– Some weights are canceled by others, but in this case, the guarantee by f̂(∅) itself
beats 1/k! in terms of approximation ratio.

We define
‖̂πe‖̂ =

∑
S⊆[2k]:∀i∈[k],S∩{2i−1,2i}�=∅

|π̂e(S)| .

Now Claim 1 implies ‖̂πe‖̂ = Ωk(1) for all k � 2. Let Γ ⊆ E be a set of constraints
sharing the same Γ (e), and let us define, by abusing notation slightly

ω(Γ) =
∑
e∈Γ

ω(e), ωmax(Γ) = max
e∈Γ

{ω(e)}, and πΓ (x) =
∑
e∈Γ

ω(e)πe(x) .

We treat πΓ : {−1, 1}2k → R as a real-valued function defined on a Boolean cube.
The idea of defining ‖̂πe‖̂ and Γ is as follows. The Fourier mass identified in Claim 1

could be canceled within Γ , but once the mass goes into ‖̂πΓ ‖̂, it cannot be canceled by
‖̂πΓ ′ ‖̂ for a different Γ ′, and will finally go into |f |. Then the following lemma shows
that either ‖̂πΓ ‖̂, or π̂Γ (∅) alone, beats ωmax(Γ)/k!, where ωmax(Γ) is an upperbound
on the optimal solution’s performance on the constraints in Γ .

Approximating Bounded Occurrence Ordering CSPs 167

Lemma 2. For all 0 < α < 1, we have π̂Γ (∅) + α‖̂πΓ ‖̂ � ωmax(Γ)(
1
k! + α ·Ωk(1)).

Proof. First, by Fact 2, we know that π̂Γ (∅) =
∑
e∈Γ

π̂e(∅) = ω(Γ) · 1

k!
. Let e∗ ∈ Γ be

the constraint with the most weight. If ω(e∗) = ωmax(Γ) � 2/3 · ω(Γ), we have

π̂Γ (∅) + α‖̂πΓ ‖̂ = π̂Γ (∅) + α‖̂
∑
e∈Γ

ω(e)πe‖̂

� π̂Γ (∅) + α
(
‖̂ω(e∗)πe∗ ‖̂ −

∑
e∈Γ\{e∗}

‖̂ω(e)πe‖̂
)

= ω(Γ) · 1

k!
+ α
(
ω(e∗)−

∑
e∈Γ\{e∗}

ω(e)
)
‖̂πe∗ ‖̂

� ωmax(Γ)
(1

k!
+
α

2
‖̂πe∗ ‖̂

)
= ωmax(Γ)

(1

k!
+ α ·Ωk(1)

)
.

where the last step follows from Claim 1. On the other hand, when ω(e∗) = ωmax(Γ) <
2/3 · ω(Γ),

π̂Γ (∅) + α‖̂πΓ ‖̂ � π̂Γ (∅) = ω(Γ) · 1

k!

> ωmax(Γ)
(1

k!
+

1

2
· 1

k!

)
= ωmax(Γ)

(1

k!
+Ωk(1)

)
. �

Given a k-ary monotone ordering problem G = (V,E, ω), we partition E = Γ1 ∪ Γ2 ∪
· · · ∪ Γm into m disjoint groups, so that constraints ej in each group Γi share a distinct
Γ (e) value. Then we write the objective function of its 4-ordering version as

f(x) =
∑
e∈E

ω(e)πe(x) =

m∑
i=1

∑
e∈Γi

πe(x) =

m∑
i=1

πΓi(x),

where f : {−1, 1}2n → R is defined on Boolean cube. For each 1 � i � m, let
{vi1 , vi2 , · · · , vik} be the k vertices participating in Γi, then we note that for each S ∈
{2it − 1, 2it : t ∈ [k]} that intersects with {2it − 1, 2it} for each t ∈ k, we have
f̂(S) = π̂Γi(S), since all other constraints will have 0 as its Fourier coefficient over S.
Then, for α ∈ (0, 1), we have

f̂(∅) + α · |f | �
m∑
i=1

(
π̂Γi(∅) + α · ‖̂πΓi ‖̂

)
�

m∑
i=1

ωmax(Γi)
(1

k!
+ α ·Ωk(1)

)
, (1)

where the last inequality is because of Lemma 2.
For each Γi(1 � i � m), a total ordering O will satisfy at most ωmax(Γi) weight of

constraints. This give an upper bound of the optimal solution

Val(G) �
m∑
i=1

ωmax(Γi). (2)

168 V. Guruswami and Y. Zhou

Fix a coordinate i ∈ [2k], each constraint πe contributes at most 2k−1 non-zero Fourier
coefficients containing i. Since G = (V,E, ω) is B-occurrence bounded, there are at
most B2k−1 non-zero Fourier coefficients of f containing i, therefore f is B2k−1-
occurrence bounded.

Applying Proposition 1 to f , the polynomial time algorithm gets a vector x ∈
{−1, 1}2n, which corresponds to a 4-ordering O4 (recall that every two consecutive
bits in x encode a value in [4]), such that

ValO4
4 (G) = f(x) � f̂(∅) + 1

k2kB
|f |

�
m∑
i=1

ωmax(Γi)
(1

k!
+Ωk(1/B)

)
� Val(G)

(1

k!
+Ωk(1/B)

)
,

where the last two inequalities use (1) and (2) separately.

5 Bounded Occurrence 3-Ary Ordering CSP with General
Pay-Off Functions

For a ordering CSP problem I = (V,E,Ω) with general pay-off functions, we define

Rand(I) def
= E

injective O:V→Z
[ValO(I)],

as the performance of random ordering. Then we have our main result for 3-ary ordering
CSPs:

Theorem 2. Given a B-occurrence bounded 3-ary ordering CSP problem
I = (V,E,Ω) with general pay-off functions, there is a poly-time randomized algo-
rithm, to find a solution satisfying at least Rand(I) + (Val(I) − Rand(I)) · Ω(1/B)
weight (in expectation).

The proof of Theorem 2 is included in the full version of this paper.

6 Concluding Remarks

In this paper, we investigate the problem whether there are non-trivial approximation
algorithms for bounded occurrence ordering CSPs. By reducing the problem to a CSP
over a fixed size domain, and applying a variant of Håstad’s algorithm [Hås00], we give
a positive answer for monotone ordering problems, and 3-ary ordering CSPs. The obvi-
ous open question left by our work is whether we can extend the technique presented in
this paper to ordering CSPs with arbitrary arity. Given our approach, the following nat-
ural question arises in this vein: given maximum occurrence B, and arity k, does there
exist a constant t = t(B, k) so that it is enough to solve the t-ordering version to get
a non-trivial approximate solution for the original ordering CSP? At first glance, one
might believe that the answer to this question is “no”, as t being independent of n seems
too strong a restriction. But surprisingly, as Lemma 1 showed, even under a stronger re-
striction that t = 4 (which is independent of k as well), the answer is still “yes” for
monotone ordering problems. In view of this special case, we believe that there is a
generalization of our proof techniques to general bounded occurrence ordering CSPs,
and leave the resolution of this as an open question.

Approximating Bounded Occurrence Ordering CSPs 169

References

[AM09] Austrin, P., Mossel, E.: Approximation resistant predicates from pairwise indepen-
dence. Computational Complexity 18(2), 249–271 (2009); Preliminary version in
CCC 2008

[BK10] Bodirsky, M., Kára, J.: The complexity of temporal constraint satisfaction problems.
J. ACM 57, 9:1–9:41 (2010)

[BS97] Berger, B., Shor, P.W.: Tight bounds for the Maximum Acyclic Subgraph problem.
J. Algorithms 25(1), 1–18 (1997)

[CGM09] Charikar, M., Guruswami, V., Manokaran, R.: Every permutation CSP of arity 3 is
approximation resistant. In: Proceedings of the 24th IEEE Conference on Computa-
tional Complexity, pp. 62–73 (July 2009)

[CS98] Chor, B., Sudan, M.: A geometric approach to betweenness. SIAM J. Discrete
Math. 11(4), 511–523 (1998)

[EG04] Engebretsen, L., Guruswami, V.: Is constraint satisfaction over two variables always
easy? Random Structures and Algorithms 25(2), 150–178 (2004)

[GHM+11] Guruswami, V., Håstad, J., Manokaran, R., Raghavendra, P., Charikar, M.: Beating
the random ordering is hard: Every ordering CSP is approximation resistant. SIAM
J. Comput. 40(3), 878–914 (2011)

[GM06] Guttmann, W., Maucher, M.: Variations on an Ordering Theme with Constraints.
In: Navarro, G., Bertossi, L.E., Kohayakawa, Y. (eds.) IFIP TCS. IFIP, vol. 209,
pp. 77–90. Springer, Boston (2006)

[GMR08] Guruswami, V., Manokaran, R., Raghavendra, P.: Beating the random ordering hard:
Inapproximability of maximum acyclic subgraph. In: Proceedings of the 49th IEEE
Symposium on Foundations of Computer Science, pp. 573–582 (2008)

[GW95] Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming. Journal of the
ACM 42(6), 1115–1145 (1995)

[Hås00] Håstad, J.: On bounded occurrence constraint satisfaction. Inf. Process. Lett. 74(1-
2), 1–6 (2000)

[Hås01] Håstad, J.: Some optimal inapproximability results. Journal of the ACM 48(4),
798–859 (2001)

[Hås08] Håstad, J.: Every 2-CSP allows nontrivial approximation. Computational Complex-
ity 17(4), 549–566 (2008)

[Mak09] Makarychev, Y.: Simple linear time approximation algorithm for betweenness. Mi-
crosoft Research Technical Report MSR-TR-2009-74 (2009)

[Rag08] Raghavendra, P.: Optimal algorithms and inapproximability results for every
CSP? In: Proceedings of the 40th ACM Symposium on Theory of Computing,
pp. 245–254 (2008)

[Tre01] Trevisan, L.: Non-approximability results for optimization problems on bounded
degree instances. In: Proceedings of the 33rd Annual ACM Symposium on Theory
of Computing, pp. 453–461 (2001)

On the NP-Hardness of Max-Not-2

Johan H̊astad�

KTH Royal Institute of Technology

Abstract. We prove that, for any ε > 0, it is NP-hard to, given a satis-
fiable instance of Max-NTW (Not-2), find an assignment that satisfies a
fraction 5

8
+ ε of the constraints. This, up to the existence of ε, matches

the approximation ratio obtained by the trivial algorithm that just picks
an assignment at random and thus the result is tight. Said equivalently
the result proves that Max-NTW is approximation resistant on satisfi-
able instances and this makes our understanding of arity three Max-CSPs
with regards to approximation resistance complete.

1 Introduction

In this paper we study the approximability of Maximum Constraint Satisfaction
Problems, written more shortly as Max-CSPs. In the generic problem we are
given a large number of constraints each affecting only a constant number of
variables and the goal is to find an assignment to the variables that satisfies the
maximal number of constraints. The most common domain of these variables
is given by Boolean values and this is also the focus of this paper. Constraints
can be of many forms, but the most studied case, and this is also the situation
here, is when each constraint is of the form of a fixed predicate, P , applied to
a sequence of literals corresponding to different variables. Almost all Max-CSPs
are NP-hard and we turn to efficient approximation algorithms.

For such a maximization problem we say that an algorithm, A, is a C-
approximation algorithm if it, for each instance I, outputs a number A(I) such
that Opt(I) ≥ A(I) ≥ COpt(I) where Opt(I) is the optimal value on instance
I. Most algorithms will, at least with the help of randomness, in fact find an
assignment that satisfies this A(I) fraction of the constraints but we do not put
this as a formal requirement.

The simple algorithm of picking an assignment uniformly at random gives a
lower bound for approximability. In the basic situation this is just the probability,
EP , that a random assignment satisfies the defining predicate P . It is somewhat
surprising, but mounting evidence [2] shows that for most predicates this is
the best constant of approximability that can be guaranteed by any algorithm
running in polynomial time. The predicates, for which this is indeed the best
constant of approximability, are called approximation resistant.

An equivalent way to formulate approximation resistance is to say that, for
any ε > 0, it is NP-hard to distinguish instances for which the best assignment

� Funded by ERC Advanced Investigator Grant 226203.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 170–181, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On the NP-Hardness of Max-Not-2 171

satisfies a fraction 1 − ε of the constraints from those where this fraction is
EP+ε. A slightly stronger property is that it is NP-hard to distinguish completely
satisfiable instances from those where the best assignment satisfies a fraction
EP + ε of the constraints. We call such predicates approximation resistant on
satisfiable instances.

If NP=P then all Max-CSPs are possible to solve optimally in polynomial
time and thus the strongest results we can hope for is to prove a predicate
approximation resistant based on the standard assumption NP �=P. Another fre-
quently used assumption is the Unique Games Conjecture (UGC) proposed by
Khot [9] in 2002. If we are willing to assume this conjecture, then as briefly
mention above, if follows from [2] that most predicates are indeed approxima-
tion resistant. Let us note in passing that assuming the UGC the same authors
[3] completely classify the property of being “useless” which is a generalization
of approximation resistant.

When it comes to establishing approximation resistance on satisfiable in-
stances much less is known. A key problem here is that the UGC does not
have perfect completeness and thus cannot be used as a starting point for re-
ductions. The question whether the difference between satisfiable instances and
almost satisfiable instances is real or just a technicality is, in our eyes, not fully
answered. The main example separating the two cases is parity and while there
are some differences also for higher degree equations [7], also these examples
have a strong smell of linear equations.

In this paper we focus on predicates of small arity and in particular on arity at
most three. Using the seminal paper by Goemans and Williamson [4] it follows
that all predicates of arity two are non-trivially approximable. When it comes to
arity three, by combining the results of Zwick [16] and the results of H̊astad [6],
a predicate is approximation resistant iff it is implied by parity or its negation.

When turning to satisfiable instances, all problems of arity two can be solved
perfectly while for arity three the situation is more interesting. For parity (of
any size) it is the case that if all constraints can be satisfied simultaneously
then such an assignment can be found efficiently by Gaussian elimination. At
the other end, the predicates that are implied by parity (or its negation) and
accept at least six of the eight inputs were proved to be approximation resistant
on satisfiable instances already in [6]. In view of these results, the only approx-
imation resistance problem of arity three that has remained open is the status
of predicates accepting 5 inputs and being implied by parity (or its negation)
when considering satisfiable instances. Such a predicate accepts the four strings
accepted by parity (or its negation) and one more string. If we negate a suitable
set of inputs to make this extra string the all zero string the predicate turns
into “Not Two”, which is true unless exactly two of the three Boolean inputs
take the value true. As negating some inputs does not change the approximation
resistance we may as well study this predicate and we call the resulting problem
Max-NTW.

To address this problem O’Donnell and Wu [13] proved that, assuming the
d-to-1 conjecture of Khot [9], that Max-NTW is approximation resistant on

172 J. H̊astad

satisfiable instances. The purpose of the current paper is to establish the same
result based only on NP �=P and thus making our knowledge with respect to
approximation resistance of predicates of arity at most three complete. Let us
briefly discuss the methods used.

We, as do previous papers establishing similar results, obtain our result by
producing a Probabilistically Checkable Proof (PCP), where the acceptance cri-
teria is given by the target predicate (in our case “Not Two”). We follow the
approach of [13] to a great extent and our starting point is a projection label
cover instance. Such an instance is given by two sets of variables u ∈ U and
v ∈ V all of which should given labels from the sets1 [M] and [L], respectively,
where for some pairs (u, v) we are given constraints in the form of projection
operators πuv. A labeling satisfies a given constraint iff πuv(lv) = lu.

It turns out that, for any ε > 0, it is NP-hard to distinguish the situation
when all constraints can be satisfied from those where only a fraction ε of the
constraints can be simultaneously satisfied. An interesting parameter here is the
degeneracy2 of the projections πuv used in the instances constructed to prove
hardness. In the known proofs of NP-hardness the degeneracy grows polynomi-
ally in ε−1. The d-to-1 conjecture says that it is possible to obtain the same
result with this parameter bounded by d, and just letting the sizes of the label
sets go to infinity.

To prove our result we reuse several results from [13]. Their PCP for a pro-
jection label cover instance has a parameter δ and we use their protocol for a
random choice of δ. We need one additional modification and that is to use in-
stances of smooth label cover as introduced by Khot [11]. If we think of the label
cover instance as a two prover game these instances are construted by sending
a large set of identical questions to both provers.

Usually the key property of such instances is that unequal answers by the
prover with the longer answers project to unequal answers of the other prover
and this is the definition of “smooth”. We use slightly more and in particular
we need that we have copies of the original game within the extended game.

As is well known, Max-CSPs are in fact in one-to-one correspondence with
non-adaptive PCPs. Thus our results establishes 5

8 as the tight infimum of the
soundness for any non-adaptive PCP that reads three bits with perfect com-
pleteness. This lower bounds was proved by Zwick [16] while, the upper bound
by O’Donnell and Wu [13] was conditioned on the d-to-1 conjecture. The pre-
viously best upper bound based only on NP-completeness was 20

27 by Khot and
Saket [10]. For a longer discussion of these issues we refer to [13].

Finally let us note that we can make a Max-NTW into a two-prover games by
sending a uniformly chosen constraint to one prover and a random variable from
that constraint to the other prover. It is not difficult to see that this protocol
has soundness 7

8 + ε and is three-to-one and this is, as far as we know, the best
soundness for such a protocol.

1 Any sets of given cardinalities works equally well.
2 This is defined to be the maximal number of elements from the big set that project
onto the same element.

On the NP-Hardness of Max-Not-2 173

2 Preliminaries

We use mostly standard notation. We use {−1, 1}-notation for Boolean variables
with −1 corresponding to “true”. We have real-valued functions of Boolean vari-
ables and the Fourier expansion is given by

f(x) =
∑
α

f̂αχα(x),

where χα is a character function defined to equal
∏
i∈α xi.

We let [M] denote the set of integers 0, 1 . . .M − 1 and we are interested in
projection operators π mapping [L] to [M]. Any such operator creates a parti-
tioning of [L], defining the blocks to be the elements that map onto the same
element. For a set β ⊆ [L] we define π(β) to the set of projected elements, i.e.,

π(β) = {i |∃j ∈ β, π(j) = i}.

Given g : {−1, 1}L → R we use the decomposition

g(y) =
∑
α

gα(y), (1)

where

gα(y) =
∑

β | π(β)=α
ĝβχβ(y). (2)

This decomposition in fact equals the Efron-Stein decomposition with regards
to blocks in the partitioning defined above. For a longer discussion of the Efron-
Stein decomposition and its properties we refer to [12].

Functions of special interest to us are the dictator functions f(x) = xi which
are also known as the “long code of i”. For tables in a PCP we use the standard
techniques of folding to make sure that f(−x) = −f(x).

We use correlated spaces as introduced by Mossel [12]. For a measure μ we
use the L2-norm by

‖f‖2 = Eμ[f(x)
2]1/2.

Definition 1. Suppose μ is a probability measure on (X × Y) such that the
marginals of μ have full support. Define the correlation of X and Y under μ by

ρ(X,Y, μ) = maxEμ[f(x)g(y)],

where the maximum is taking over functions f and g such that ‖f‖2 = ‖g‖2 = 1
and E[f] = E[g] = 0.

It is important for us how correlated spaces behave under products and how
they interact with the Efron-Stein decomposition. Given a sequence of correlated
spaces (Xi, Yi, μi)

n
i=1 we can define the product space ((Xi)

n
i=1, (Yi)

n
i=1,

∏n
i=1 μi)

and Proposition 2.13 of [12] establishes that the correlation of this product space
is bounded by the maximum correlation of any underlying space.

174 J. H̊astad

Lemma 1. [12] Let (Xi × Yi) and μi be correlated spaces, then
ρ((Xi)

n
i=1, (Yi)

n
i=1,

∏n
i=1 μi) ≤ maxi ρ(Xi, Yi, μi).

If g is a function on (Yi)
n
i=1 and g =

∑
S gS is its Efron-Stein decomposition

then by Proposition 2.12 of [12] we have the following lemma.

Lemma 2. [12] Let (Xi×Yi) and μi be correlated spaces with ρ(Xi, Yi, μi) = ρi,
and f : (Xi)

n
i=1 → R and g : (Yi)

n
i=1 → R then

E[f(x)gS(y)] ≤ ‖f‖2‖gS‖2
∏
i∈S

ρi.

3 From Label-Cover to a PCP

We start with a standard projection label cover instance and think of it as a
two-prover game. In this game the verifier generates tuples (q1, q2, π) and sends
question qi to prover Pi. The prover P2 gives an answer a2 ∈ [L] while P1 answers
a1 ∈ [M] and the verifier accepts iff π(a2) = a1. We here assume that π is at
most d-to-1, in other words for any a1 there are at most d different a2 such that
π(a2) = a1. The following lemma follows from the PCP-theorem [1] and Raz
parallel repetition theorem [14].

Lemma 3. For any ε > 0 there exists a two-prover game with parameters M,L
and d and where the verifiers uses O(log n) random bits, such that it is NP-hard
to distinguish the cases when all constraints can be simultaneously satisfied from
those where the optimal strategy of the provers makes the verifier accept with
probability at most ε. The sizes of M , L, and d are polynomial in ε−1.

We make the two-prover-protocol more robust by generating T extra indepen-
dent copies of the question q2. These questions are sent to both players. Thus
the prover P2 thus get T +1 independent instances of its standard type of ques-
tions while P1 gets T questions of the type initially sent to P2 and one of its
original type of questions. Let us denote these new type of questions by Q2 and
Q1, respectively.

Both provers are supposed to answer all questions and the extended verifier
accepts if it gets the same answer from the two provers on the questions sent to
both provers and if the original verifier would have accepted the answers given
to the standard questions. We call this protocol the T -extended protocol.

This protocol has similar properties to that of the the original, not extended,
protocol. The parameters d and ε do not change while M and L do increase in
the extended game and we reserve M and L to be used for these new values.

3.1 The PCP

For each question to one of the provers in the extended two-prover game we
introduce a table which, in a correct proof of a correct statement, should be
the long code of the answer to this question. We now have the below basic test,
called NTWδ, with a parameter δ. It is identical to the test used by O’Donnell
and Wu [13].

On the NP-Hardness of Max-Not-2 175

Test NTWδ

Written Proof. For each question Q1 to P1 we have a table fQ1 : {−1, 1}M →
{−1, 1} and similarly tables gQ2 : {−1, 1}L → {−1, 1} for questions to P2. These
tables are folded over true.

Desired Property. To check that the tables form a long coding of a strategy
in the T -extended game that makes the verifier of that game always accept.

Verifier

1. Choose a question (Q1, Q2, π) in the two prover game.

2. Choose x ∈ {−1, 1}M and y ∈ {−1, 1}L independently with the uniform
probability and set zj = −yjxπ(j) for all j ∈ L.

3. For each i ∈ [M] with probability δ chose a random j such that π(j) = i and
set zj = yj = xi.

4. Accept iff not two of the bits fQ1(x), gQ2(y) and gQ2(z) are −1.

For each δ we define two parameters sδ = c′ log(1/δ)/ log d, for a constant c′

and Sδ = c′′ log(1/δ)d322dδ−2 for a constant c′′. We later find suitable values for
these constants. We are now in a position to define our final test, which operates
on the same type of written test and checks the same property.

Test NTW k
δ′

1. Set δ0 = δ′ and for i = 1, . . . k − 1 choose δi such that sδi = Sδi−1 .

2. Pick a random i ∈ [k] uniformly at random and run NTWδi.

First note that, as sδ tends to infinity when δ tends to 0, we do get a well defined
sequence δi. We can also observe that log(1/δk) is a constant that only depends
on d, k and δ′ and that it is bounded by a tower of exponentials of height around
k.

4 Completeness and Soundness of Main PCP

Let us start by the easy completeness.

Lemma 4. If label-cover instance is satisfiable, then there is a proof such that
the verifier in NTW k

δ′ always accepts.

Proof. Consider a written proof that is given by correct long codes of a strat-
egy that always convinces the verifier in the extended two-prover game. In this
situation, the three bits read are of the form xπ(j), yj, zj and these either have
product −1 or are all 1. In either case the verifier accepts.

Let us turn to the more interesting problem of analyzing soundness. The key
soundness lemma is the following.

176 J. H̊astad

Lemma 5. For any ε′ > 0, and any basic two-prover games with parameters L,
M , and d there are constants δ′ > 0, k and T such that if the verifier accepts in
NTW k

δ′ with probability at least 5
8 + ε′, then there is a strategy for the provers in

the basic two-prover game that makes that verifier accept with probability ε′2.

We can conclude that for any ε′ > 0, for appropriate values of δ′, k and T , the
soundness of NTW k

δ′ is at most 5
8 + ε′. This follows by choosing ε < ε′2 obtaining

parameters L, M , and d such that the soundness of the basic two-prover game
is at most ε and then using values of δ′, k and T produced by Lemma 5.

As all involved numbers are constants we get, by the standard translation
from a PCP with a given acceptance criteria to the Max-CSP with the same
predicate, our main theorem.

Theorem 1. For any ε > 0 it is NP-hard to approximate Max-NTW within
5
8 + ε on satisfiable instances.

All that remains is to prove Lemma 5.

Proof. We analyze NTWδ for a fixed value of δ. For readability let us drop the
subscripts on the functions f and g, as well as the parameters s and S.

Arithmetizing the predicate “Not Two” we see that

5 + f(x) + g(y) + g(z) + f(x)g(y) + f(x)g(z) + g(y)g(z)− 3f(x)g(y)g(z)

8
(3)

is one if the verifier accepts and zero otherwise. We need to analyze the expected
value of this quantity and we start by noting that each of x, y and z is uniformly
random and that y and z are symmetric.

From the uniformity of x, y and z, it follows, by folding, that the first three
non-trivial terms in (3) have expectation 0. For the next three terms we use the
analysis of [13] (details omitted from this abstract) which proves that each of
them is bounded, in absolute value, by δ.

We turn to analyzing E[f(x)g(y)g(z)] which is the most challenging term. Let
us look at the Fourier expansion

g(y) =
∑
α

ĝαχα(y)

and divide the terms into four parts forming functions gi, 1 ≤ i ≤ 4. This division
is guided by our two parameters s and S and g1 contains the terms of size at
least S and g2 the terms of size smaller than S but larger than s.

For the small sets β we define a set β to be shattered if for any j1, j2 ∈ β with
j1 �= j2, we have that j1 and j2 give different answer to the T questions sent
to both provers. Note that this in particular implies that π(j1) �= π(j2). We let
g3 be the small terms that are not shattered and g4 the small terms that are
shattered. Obviously

E[f(x)g(y)g(z)] =

4∑
i=1

E[f(x)g(y)gi(z)] (4)

and we estimate these terms separately.

On the NP-Hardness of Max-Not-2 177

Let us consider the first term in (4). The function g1 consists only of terms
given by Fourier coefficients of size at least S. Using the definition of the Efron-
Stein decomposition given by (1) we see that it contains only terms of size at
least S/d. We want to use Lemma 2 with the subdivision X × Y and Z and we
have the following correlation bound, which appears as Lemma 5.3 of [13].

Lemma 6. [13] ρ(X × Y, Z) ≤ (1 − δ2

d222d+1) and the same bound applies to
ρ(X × Z, Y).

From Lemma 2 we conclude that

|E[f(x)g(y)g1(z)]|≤ (1− δ2

d222d+1
)S/d‖fg‖2‖g1‖2≤ (1− δ2

d222d+1
)S/d ≤ e−

δ2S

d322d+1 .

For the second term and third terms in (4) we have

|E[f(x)g(y)gi(z)]| ≤ ‖fg‖2‖gi‖2 ≤ ‖gi‖2,

where we will bound these L2-norms later. For the last term we use

E[f(x)g(y)g4(z)] =

4∑
i=1

E[f(x)gi(y)g4(z)]. (5)

Since y and z are symmetric and the only property we used in the previous steps
is that f(x)g(y) has L2-norm bounded by 1, and the same is true for f(x)g4(z),
we can repeat the above argument and we are left to analyze

E[f(x)g4(y)g4(z)]. (6)

We expand the three functions by the Fourier transform and we need to analyze

E

⎡⎣∑
α,β,γ

f̂αĝβ ĝγχα(x)χβ(y)χγ(z)

⎤⎦ .
Remember that all β and γ occurring in the sum are of size at most s and are
shattered. In fact any sum over β from now on contains only such terms. Moving
the expectation inside the sum we first note that for β = γ and π(β) = α we
have

E[χα(x)χβ(y)χγ(z)] = (1 − δ/d)|β|.

Most other terms are zero by the following lemma.

Lemma 7. Unless α ⊆ π(β)∪π(γ) and for any element in i contained in π(β)∪
π(γ) but not in α we have an element in β ∩ γ with π(j) = i then

E[χα(x)χβ(y)χγ(z)] = 0.

Proof. In the first case for i ∈ α but i �∈ π(β) ∪ π(γ) we have xi uniform and
independent of all other terms. The other claim follows by inspection.

For the terms not covered above we have

178 J. H̊astad

Lemma 8. For any term not covered by Lemma 7 and which does not satisfy
β = γ and π(β) = α we have

|E[χα(x)χβ(y)χγ(z)]| ≤ δ.

Proof. To see this, take and j which is in the symmetric difference of β and γ
(or which belong to both β and γ but π(j) �∈ α if β = γ) fix all values except yj
and zj (and xπ(j) in the latter case and remembering that β is shattered). The
absolute value of the expectation over these remaining variables is at most δ.

Next we bound ∑
α,β,γ

|f̂αĝβ ĝγ | (7)

where we sum over all α, β, γ that give a non-zero value of E[χα(x)χβ(y)χγ(z)].
To help the readers intuition let us point out that any bound, b, on the sum

(7) in terms of s and d that allows s to go to infinity while making δb tend to 0
is good enough for us.

We can apply Cauchy-Schwarz to (7) to get the bound

(∑
α

f2
α

)1/2
⎛⎜⎝∑

α

⎛⎝∑
β,γ

|ĝβ ĝγ |

⎞⎠2
⎞⎟⎠

1/2

(8)

where the inner sum over pairs β and γ that could appear together with a given
α. In particular for any i ∈ α, at least one of β and γ contains an element that
projects onto i and for i �∈ α if β contains an element j such that π(j) = i then
j belongs also to γ .

The first factor of (8) is bounded by one and let us look at the second. Ex-
panding the square in the second factor we get a sum of the form∑

β,γ,β′γ′
|ĝβ ĝγ ĝβ′ ĝγ′|, (9)

and we claim (and leave to the reader to verify) that each term that appears,
is a projective double cover. This is defined to mean for any i that appears in
π(β ∪ γ ∪ β′ ∪ γ′) there are at least two elements in β ∪ γ ∪ β′ ∪ γ′ that project
onto this element. Note also that any term appears for at most 2s different α.
The following lemma is essentially from [5] but is proved in the full version of
this paper.

Lemma 9. Suppose
∑

β ĝ
2
β = 1 and each set β occurring is of size at most

s. Then the sum (9) taken over distinct projective double covers is at most
(729d2/2)s.

Summing up we get that |E[f(x)g(y)g(z)]| is bounded by (remember that each
term in the sum (9) can appear at most 2s times),

On the NP-Hardness of Max-Not-2 179

∑
β

|f̂π(β)ĝ2β|(1 − δ/d)|β| + δ(729d2)s/2 + 2e−
δ2S

d322d+1 + 2‖g2‖2 + 2‖g3‖2. (10)

We first take care of the last term.

Lemma 10. E[‖g3‖2] ≤ (s2T−1)1/2. The expectation is taken over a random
question Q1 that can be asked jointly with Q2.

Proof. We have

‖g3‖22 =
∑

ĝ2β,

where the sum is taken over β of that size as most s and which are not shattered
by π. For any j1, j2 ∈ β such that j1 �= j2 we have that the probability that they
give the same values to the T questions sent to both provers is at most 1

T and
as we have less than s2 such pairs the probability that any individual β is not
shattered is bounded by s2T−1. Since∑

ĝ2β ≤ 1

the lemma follows.

We proceed to bound ‖g2‖2.
Lemma 11. E[‖g2‖2] ≤ k−1/2. The expectation is taken over a random value
of i in NTW k

δ′ .

Proof. If i is chosen in the protocol then

‖g2‖22 =
∑

sδi≤|β|≤Sδi

ĝ2β .

These summation intervals are disjoint and the sum over all β is bounded by
one. The lemma follows.

Now by setting the constant c′ sufficiently small, the constant c′′ sufficiently
large, δ′ sufficiently small, k sufficiently large and, finally, T sufficiently large,
we can conclude that if the verifier in NTW k

δ′ accepts with probability at least
5
8 + ε′ then

E

⎡⎣∑
β

|f̂π(β)ĝ2β|(1 − δk/d)
|β|

⎤⎦ ≥ ε′,

where the sum is over β which are of size at most sδk and shattered by π. By an
application Cauchy-Schwarz it follows that

E

⎡⎣∑
β

f̂2
π(β)ĝ

2
β(1− δk/d)

2|β|

⎤⎦ ≥ ε′2. (11)

Now consider the following probabilistic strategy for P1 and P2 in the basic
two-prover game.

180 J. H̊astad

Add the same independent random T copies of q2 to each of the two questions
and look at the corresponding tables f and g in the PCP. Pick sets α and β with
probabilities f̂2

α and ĝ2β respectively. Look at the elements of these sets and
what answers they give to the added question. Take the element that defines the
lexicographically first value on these added questions and return the answer of
this element to the real question. We claim that if π(β) = α and β is shattered
then this strategy succeeds. This follows as each element of β and α give different
values to the answers to the added questions and thus choosing the element that
gives the lexicographically first value (or any either uniquely defined value) as
these values, gives coordinated strategies such that the answers also respect π
in the essential coordinate. It follows that the success probability is at least

E

⎡⎣∑
β

f̂2
π(β)ĝ

2
β

⎤⎦ , (12)

where the sum is over shattered β. Comparing this to the expression (11) we see
that this success probability is at least ε′2. This completes the proof of Lemma 5.

5 Conclusions

As the ideas contained in [6] did not seem sufficient to prove our main theorem, it
is instructive to see what additional ideas were used. Note that idea of choosing
a random bias δ was used in [6] to prove approximation resistance of Max-3Sat
on satisfiable instances. Khot later realized (in a, as far as we know, unpublished
note) that this complication was not needed by starting the reduction with a
smooth instance of label cover.

An important part of the current paper is to combine these two ingredients.
While the interaction of these two ideas is not technically difficult the resulting
constants are very poor. We are not aware of any other approximation resistance
result where the size blow-up as a function of the parameter ε is equally dramatic.

Another important part of the current paper is to use the correlated spaces
of Mossel and the seemingly simple but very powerful results on what happens
to these spaces under products.

We also note that a another key ingredient is the final step where we manage to
coordinate the strategies of P1 and P2 in the basic two-prover game. In previous
similar arguments it has been sufficient to choose a random element in the picked
sets α and β. This is not sufficient in the current situation as the resulting
acceptance probability would be much smaller than the soundness in the basic
two-prover game. Here the smoothness is essential. This idea could be used in
many previous arguments in other papers but it is not clear to us that it would
result in a significant strengthening of any previous result.

It is an interesting open question to what extent the current methods can be
used to eliminate the need of the d-to-1 conjecture in other situations. Huang [8]
extended the results of O’Donnell and Wu (also assuming the d-to-1 conjecture),
to prove that for any arity k ≥ 4 the predicate which accepts all odd strings and

On the NP-Hardness of Max-Not-2 181

one even string is approximation resistant on satisfiable instances. It is likely
that our proof could be adopted to this situation but on the other hand Wenner
[15] has a proof for this result using other methods (which, however, cannot
handle our case, k = 3) giving much better constants.

We finally note that we get that Not-Two is useless on satisfiable instances in
the sense of [3].

Acknowledgement. I thank Sangxia Huang and Cenny Wenner for discussions
relating to this paper and I am also grateful to Oded Goldreich for some com-
ments on the presentation, and to John Wright for pointing out the consequence
for the three-to-one conjecture.

References

1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
intractability of approximation problems. Journal of the ACM 45, 501–555 (1998)

2. Austrin, P., H̊astad, J.: Randomly supported independence and resistance. SIAM
Journal on Computing 40, 1–27 (2011)

3. Austrin, P., H̊astad, J.: On the usefulness of predicates. To appear at the Confer-
ence for Computational Complexity, 2012 (2012)

4. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the
ACM 42, 1115–1145 (1995)

5. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182,
105–142 (1999)

6. H̊astad, J.: Some optimal inapproximability results. JACM 48, 798–859 (2001)
7. H̊astad, J.: Satisfying Degree-d Equations over GF[2]n. In: Goldberg, L.A., Jansen,

K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM 2011. LNCS, vol. 6845, pp.
242–253. Springer, Heidelberg (2011)

8. Huang, S.: Approximation resistance on satisfiable instances for predicates strictly
dominating parity. ECCC Report 12-040 (2012)

9. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of 34th
ACM Symposium on Theory of Computating, pp. 767–775 (2002)

10. Khot, S., Saket, R.: A 3-query non-adaptive pcp with perfect completeness. In:
Proc. of 21st Annual Conference on Computational, pp. 159–169. IEEE Computer
Society (2006)

11. Khot, S.: Hardness results for coloring 3-colorable 3-uniform hypergraphs. In: Pro-
ceedings of 43rd Annual IEEE Symposium of Foundations of Computer Science,
pp. 23–32 (2002)

12. Mossel, E.: Gaussian bounds for noise correlation of functions. GAFA 19, 1713–
1756 (2010)

13. O’Donnell, R., Wu, Y.: Conditional hardness for satisfiable 3-CSPs. In: Proceedings
of 41st ACM Symposium on Theory of Computating, pp. 493–502 (2009)

14. Raz, R.: A parallel repetition theorem. SIAM J. on Computing 27, 763–803 (1998)
15. Wenner, C.: CircumventingD-to-1 for ApproximationResistance of Satisfiable Pred-

icates Strictly Containing Parity of Width Four. In: Gupta, A., et al. (eds.) AP-
PROX/RANDOM 2012. LNCS, vol. 7408, pp. 325–337. Springer, Heidelberg (2012)

16. Zwick, U.: Approximation algorithms for constraint satisfaction problems involving
at most three variables per constraint. In: Proceedings 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 201–210. ACM (1998)

The Remote Set Problem on Lattices

Ishay Haviv

School of Computer Science
The Academic College of Tel Aviv-Yaffo, Israel

Abstract. We initiate studying the Remote Set Problem (RSP) on lat-
tices, which given a lattice asks to find a set of points containing a point
which is far from the lattice. We show a polynomial-time deterministic
algorithm that on rank n lattice L outputs a set of points at least one of
which is

√
log n/n · ρ(L)-far from L, where ρ(L) stands for the covering

radius of L (i.e., the maximum possible distance of a point in space from
L). As an application, we show that the Covering Radius Problem with
approximation factor

√
n/ log n lies in the complexity class NP, improv-

ing a result of Guruswami, Micciancio and Regev by a factor of
√
log n

(Computational Complexity, 2005).
Our results apply to any p norm for 2 ≤ p ≤ ∞ with the same ap-

proximation factors (except a loss of
√
log log n for p =∞). In addition,

we show that the output of our algorithm for RSP contains a point whose
2 distance from L is at least (log n/n)1/p · ρ(p)(L), where ρ(p)(L) is the
covering radius of L measured with respect to the p norm. The proof
technique involves a theorem on balancing vectors due to Banaszczyk
(Random Struct. Alg., 1998) and the ‘six standard deviations’ theorem
of Spencer (Trans. AMS, 1985).

Keywords: Lattices, Covering radius, Remote Set Problem.

1 Introduction

An m-dimensional lattice of rank n is the set of all integer combinations of n
linearly independent vectors in Rm called a basis. Lattices were investigated since
the late 18th century by mathematicians, and during the last decades they have
also attracted lots of attention from a computational point of view. On one hand,
a long line of research shows that many fundamental lattice problems are hard
and indicates that it is impossible to solve them in polynomial running time. On
the other hand, lattices were shown to be useful as an algorithmic tool as well
as applicable in cryptography (see, e.g., [27]). Interestingly, the use of lattices
in constructions of cryptographic primitives enjoys strong security relied on the
worst-case hardness of certain lattice problems, as was first shown by Ajtai [2].
Therefore, research on algorithms for lattice problems and on their hardness is
highly motivated.

There are many important computational problems associated with lattices.
The two most fundamental ones are the Shortest Vector Problem (SVP) and the
Closest Vector Problem (CVP). In the former, for a lattice given by an arbitrary

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 182–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Remote Set Problem on Lattices 183

basis we are supposed to find (the length of) a shortest nonzero vector in the
lattice. The problem CVP is an inhomogeneous variant of SVP, in which given
a lattice and some target point one has to find (the distance from) the closest
lattice point. Another lattice problem of interest is the Covering Radius Problem
(CRP) in which given a lattice the goal is to find (a point in space which attains)
the maximum possible distance from the lattice. This distance is referred to
as the covering radius of the lattice. In all problems, the distance is measured
relative to some fixed norm on Rm. Usually it is the Euclidean norm �2 (to which
we refer unless otherwise specified) but other �p norms for 1 ≤ p ≤ ∞ are of
interest as well (see, e.g., [31]). We note that all the mentioned problems have
analogous intensively studied problems in the context of linear codes.

The first polynomial-time approximation algorithm for SVP was presented by
Lenstra, Lenstra and Lovász (LLL) in 1982 and achieved an approximation factor
of 2O(n), where n is the rank of the lattice [22]. Using their algorithm, Babai
came up with the nearest plane algorithm achieving the same approximation
factor for CVP [6]. A few years later, Schnorr obtained a slightly sub-exponential

approximation factor for SVP, namely 2O(n(log log n)2/ logn) [32], and this has since
been improved by a randomized algorithm of [3]. Kannan presented deterministic
algorithms solving SVP and CVP exactly requiring running time nO(n) [20], and
this was improved to 2O(n) more than two decades later by Micciancio and
Voulgaris [28]. The algorithm of [28] was recently extended to any �p norm (and
other norms) by Dadush, Peikert and Vempala [12].

On the hardness side, it is known that CVP is NP-hard to approximate to
within nc/ log logn [14] for some constant c > 0 and that (under randomized re-
ductions) it is NP-hard to approximate SVP to within any constant [21]. Hardness
of approximating SVP to within some nc/ log logn factor is known to date only
assuming some stronger (yet plausible) complexity assumptions [19,25] (see [13]
for stronger results for the �∞ norm). In contrast to the hardness results, there
is a line of research showing limits on the hardness of lattice problems. For ex-
ample, suitably defined gap versions of both SVP and CVP are known to lie in
coNP for approximation factor of

√
n [1] and in coAM for approximation factor

of
√
n/ logn [15]. Therefore, they are unlikely to be NP-hard to approximate

to within
√
n/ logn, as this would imply the collapse of the polynomial-time

hierarchy [11]. The results of [1] were extended by Peikert to SVP and CVP in
the �p norm for 2 ≤ p ≤ ∞ with essentially the same approximation factors [30].

The study of the Covering Radius Problem on lattices (CRP) from a computa-
tional point of view was initiated by Guruswami, Micciancio and Regev in [16].
Previously this problem was used by Micciancio to get tighter connections be-
tween the average-case and worst-case complexity of lattice problems [23]. It
was shown in [16] that approximating CRP to within γ(n) can be done in ex-
ponential time 2O(n) for any constant γ(n) > 1 and in polynomial time for
some γ(n) = 2O(n log logn/ log n).1 In addition, they showed that CRP is in AM

1 To be precise, the algorithms of [16] were randomized since they used randomized
algorithms of [4]. However, the deterministic algorithm of [28] implies that the ap-
proximation obtained in [16] can be achieved deterministically.

184 I. Haviv

for γ(n) = 2, in coAM for γ(n) =
√
n/ logn, and in NP ∩ coNP for γ(n) =

√
n.

Peikert showed in [30] that CRP in the �p norm for 2 ≤ p ≤ ∞ lies in coNP for
the same

√
n approximation factor (except a loss of

√
logn for p = ∞). However,

such an extension to �p norms is not known for NP and this was left as an open
question in [16]. On the hardness side, very little is known. The decisional gap
version of CRP (of deciding whether the covering radius is at most some given r)
naturally lies in the complexity class Π2 and is conjectured to be Π2-hard [23].
However, Π2-hardness is only known for CRP in the �p norm for any sufficiently
large value of p [18].

Among the results mentioned above regarding CRP, the one saying that CRP
is in AM for γ(n) = 2 is unique for this lattice problem. The proof of this fact is
relatively simple, and follows from the following AM protocol. Given a lattice L
and a number r, the verifier sends to the prover a uniformly chosen random point
in space and the prover has to provide a lattice point whose distance from the
random point is at most r. Clearly, if the covering radius is at most r then the
prover can act in a way that the verifier accepts with probability 1. On the other
hand, the soundness is crucially based on an observation of [16] that random
points in space are far from the lattice with high probability. More precisely, a
uniformly chosen random point is with constant probability at least 1

2 · ρ(L)-far
from a lattice L, where ρ(L) stands for the covering radius of L.

A natural question to ask is whether CRP with γ(n) = 2 (or with some other
factor smaller than

√
n) can be shown to be in NP. Observe that if the verifier

could deterministically pick a point in space which is quite far from the input
lattice, then the protocol above could yield an NP verifier for CRP. Moreover,
it can be seen that a deterministic algorithm which outputs polynomially many
points at least one of which is quite far from the lattice could suffice for this
purpose as well. This challenge is the driving force of the current work, in which
we study deterministic polynomial-time algorithms which given a lattice find a
set of points containing a point which is far from the lattice.

1.1 Our Contribution

In this paper we initiate studying the Remote Set Problem (RSP) on lattices.
This problem can be viewed as a generalized search variant of the Covering
Radius Problem studied in [23,16,18,17]. In RSP the input is a rank n lattice
given by a basis generating it. The goal is to find a set S of points in the span of
B containing a point which is far from the lattice. This problem is analogous to
a problem suggested for study by Alon, Panigrahy and Yekhanin in the context
of linear codes [5].

Recall that the maximum possible distance of a point in space from a lattice
L is called the covering radius of L and is denoted by ρ(L). The quality of an
algorithm for RSP depends on two parameters (to be minimized):

1. the size d of the set S constructed by the algorithm, and
2. the remoteness parameter which is defined as the minimum γ ≥ 1 for which

S contains a point whose distance from L is at least 1
γ · ρ(L) for every input

lattice L.

The Remote Set Problem on Lattices 185

As was mentioned before, for every lattice L a uniformly chosen random point
in space has distance at least 1

2 · ρ(L) from L with a constant probability [16].
This implies that the efficient algorithm which uniformly and randomly picks
a point in space (without even looking at the specific input) solves RSP with
d = 1 and γ = 2 with a constant probability of success. Moreover, an algorithm
that independently and randomly picks d points and outputs all of them solves
RSP with parameters d and γ = 2 with failure probability which tends to 0
exponentially in d. However, the problem seems much more challenging if we
require the algorithm to be deterministic (this is also the case for linear codes;
see [5] for details).

To obtain a deterministic algorithm for RSP one can use an observation made
in [7,16] saying that for every lattice L there exists a point in 1

2 · L whose
distance from L is at least 1

2 · ρ(L). This implies that the algorithm, which
outputs all the linear combinations of the basis vectors with all coefficients in
{0, 12}, deterministically solves RSP with γ = 2. However, the number of points
that this algorithm outputs is d = 2n, where n is the rank of the input lattice,
and, in particular, its running time is exponential in n.

In this paper we consider the task of finding an algorithm for RSP which is
simultaneously deterministic and of polynomial running time. First, we observe
that the LLL algorithm [22] can be used to deterministically and efficiently
calculate a point whose distance from the lattice approximates the covering
radius with an exponential factor.

Theorem 1. There exists a deterministic polynomial-time algorithm for RSP
with d = 1 and γ(n) = 2O(n).

Our main result significantly improves the remoteness parameter γ achieved in
Theorem 1 at the price of having d polynomial in the input size, as stated below.

Theorem 2. There exists a deterministic polynomial-time algorithm for RSP
with γ(n) =

√
n/ logn.

Notice that the number d of points that the algorithm of Theorem 2 outputs
is polynomial in the input size, as d clearly cannot be higher than the running
time.

As alluded to before, besides being a natural lattice problem, studying RSP is
motivated by research on the Covering Radius Problem (CRP). In the promise
version of CRP with parameter γ ≥ 1 the input consists of a lattice L and a
number r, and the goal is to decide whether the covering radius ρ(L) of L is at
most r or larger than γ · r. This problem lies in the complexity class Π2 (for
any γ), since ρ(L(B)) ≤ r if and only if for all x in the span of L there exists
y ∈ L such that the distance between x and y is at most r. For small values of
γ the problem is conjectured to be Π2-hard [23], however it is known that for
γ(n) =

√
n it lies in NP [16] (see also [26, Section 7]). In order to prove that CRP

with certain γ = γ(n) is in NP one should come up with an efficiently verifiable
witness for instances with ρ(L(B)) ≤ r which does not exist if ρ(L(B)) > γ · r.
We claim that a deterministic and efficient algorithm for RSP can be useful for

186 I. Haviv

this purpose. Indeed, such an algorithm outputs a set S of points at least one
of which is quite far from the lattice, hence in order to verify that the covering
radius is small it suffices to verify that the points in S are close to the lattice.
This can be easily done taking the witness which consists of the lattice points
closest to the points in S. We combine this idea with Theorem 2 and obtain the
following theorem which improves upon the

√
n factor obtained in [16].

Theorem 3. CRP with approximation factor
√
n/ logn is in NP.

Another motivation to study RSP comes from the connections between CRP and
the Closest Vector Problem (CVP). Known connections between these problems
were found useful in several results of [16] regarding the complexity of CRP,
namely, the exponential-time approximation algorithm for any γ > 1 and the
proof systems implying that CRP with approximation factors

√
n and

√
n/ logn

are in coNP and coAM respectively. It turns out that algorithms for RSP imply
reductions from CRP to CVP. Specifically, we show that our algorithm for RSP
from Theorem 2 implies a deterministic rank-preserving polynomial-time Cook
reduction from CRP to CVP with

√
n/ logn loss in the approximation factor. The

only similar result we are aware of is implied by a paper of Micciancio [24] and
gives a

√
n loss in the approximation factor.2 We also show that Karp reductions

from CRP to CVP can be derived from algorithms for RSP. For details see the
full version of the paper.

In the above discussion RSP and CRP were considered with respect to the
Euclidean norm, but it is natural to consider them with respect to any other
�p norm for 1 ≤ p ≤ ∞. It is easy to prove that our results can be adapted to
arbitrary �p norm, since in Rm all �p norms are within

√
m from the �2 one.

However, this introduces a
√
m loss in the approximation factors (where m is

the dimension of the lattice). We actually show that this loss is not necessary
answering a question asked in [16]. We prove that Theorem 2 holds for any �p
norm for 2 ≤ p < ∞. Namely, for every 2 ≤ p < ∞, there exists a deterministic
polynomial-time algorithm that given a lattice whose covering radius with re-
spect to the �p norm is r outputs a set of points guaranteed to contain a point

whose �p distance from the lattice is at least
√
logn/n · r. Interestingly, we show

that our algorithm can also be generalized to the �p norm in the following man-
ner: given a lattice whose covering radius with respect to the �p norm is r it
outputs a set of points guaranteed to contain a point whose �2 distance from the
lattice is at least (logn/n)1/p · r. Our results are similarly extended to the �∞
norm and imply a generalization of Theorem 3 to every �p norm for 2 ≤ p ≤ ∞.

Open Questions. Our work raises several open questions. It will be interesting to
understand for which parameters the Remote Set Problem can be deterministi-
cally solved in polynomial time. We have shown that there exists a deterministic

2 Strictly speaking, Micciancio shows in [24] a gap-preserving Cook reduction from the
Shortest Independent Vectors Problem (SIVP) to CVP which, combined with known
relations between SIVP and CRP, implies a Cook reduction from CRP to CVP with√
n loss in the approximation factor.

The Remote Set Problem on Lattices 187

polynomial-time algorithm that given a lattice outputs a set of points one of
which has distance at least

√
logn/n times the covering radius. Can the guar-

antee on the distance be improved? Can it be improved to the factor 1/2 for
which this can be achieved by a randomized algorithm [16]? Can one achieve the√
logn/n factor (or even a 1/

√
n factor) by an algorithm which outputs only

one point instead of polynomially many points? Can it be achieved for the �p
norm for 1 ≤ p < 2?

Outline. The paper is organized as follows. In Section 2 we gather all the defini-
tions on lattices and computational lattice problems that we need in the paper.
In Section 3 we present our algorithm for RSP proving Theorem 2 and some
extensions of it. In Section 4 we present an application of RSP to CRP implying
Theorem 3. The proof of Theorem 1 and additional applications of RSP can be
found in the full version of the paper.

2 Preliminaries

Notations. For 1 ≤ p < ∞ the �p norm of a vector x ∈ Rm is defined as ‖x‖p =
(
∑m

i=1 |xi|p)1/p and for p = ∞ it is defined as ‖x‖∞ = max1≤i≤m |xi|. The �p
distance between two vectors x, y ∈ Rm is defined as distp(x, y) = ‖x− y‖p. The
�p distance of a vector x ∈ Rm from a set S ⊆ Rm is defined as distp(x, S) =
miny∈S distp(x, y). We say that x is r-far from S if distp(x, S) ≥ r. When we
omit the subscript p (or a superscript (p)) we refer to the the Euclidean norm
�2.

Lattices. A lattice is a discrete additive subgroup of Rm. Equivalently, it is the set
of all integer combinations L(b1, . . . , bn) = {

∑n
i=1 xibi : xi ∈ Z for all 1 ≤ i ≤ n}

of n linearly independent vectors b1, . . . , bn in Rm (n ≤ m). If the lattice rank n
equals its dimension m we say that the lattice is full-rank. The set (b1, . . . , bn)
is called a basis of the lattice. Note that a lattice has many possible bases.
We often represent a basis by an m by n matrix B having the basis vectors
as columns, and we say that the basis B generates the lattice L. In such case
we write L = L(B). The linear space spanned by B is denoted span(B) =
{
∑n

i=1 xibi : xi ∈ R for all 1 ≤ i ≤ n}. A sublattice of L is a lattice L(S) ⊆ L
generated by some linearly independent lattice vectors S ⊆ L.

A basic parameter associated with lattices is the covering radius. For a lattice
basis B = (b1, . . . , bn) the covering radius of L(B) with respect to the �p norm
is defined as ρ(p)(L(B)) = maxx∈span(B) distp(x,L(B)). Hence, ρ(p)(L(B)) ≤ r
means that for any x ∈ span(B) there exists a lattice point y ∈ L(B) such
that distp(x, y) ≤ r. Conversely, ρ(p)(L(B)) > r means that there exists some
x ∈ span(B) such that any lattice point y ∈ L(B) satisfies distp(x, y) > r. A
deep hole of L(B) is a point x ∈ span(B) at distance distp(x,L(B)) = ρ(p)(L(B))
from the lattice.

The following lemma shows that in order to find a point quite far from a lattice
L(B) it suffices to consider linear combinations of vectors in B with coefficients

188 I. Haviv

in {0, 12}. This lemma (in more general forms) was proved in [7,16], and we repeat
its proof here for completeness.

Lemma 1. For every 1 ≤ p ≤ ∞ and any lattice basis B = (b1, . . . , bn) there
exists a vector

v = a1 · b1 + . . .+ an · bn
with aj ∈ {0, 12} for all 1 ≤ j ≤ n such that distp(v,L(B)) ≥ 1

2 · ρ(p)(L(B)).

Proof. Let w be a deep hole of the lattice L(B) with respect to the �p norm.
Consider the point 2w and observe that, like any point in span(B), its �p distance
from L(B) is at most ρ(p)(L(B)). This means that there exists a lattice point
u ∈ L(B) such that distp(u, 2w) ≤ ρ(p)(L(B)) and hence distp(

1
2 · u,w) ≤ 1

2 ·
ρ(p)(L(B)). Now, by triangle inequality,

distp(
1

2
· u,L(B)) ≥ distp(w,L(B)) − distp(

1

2
· u,w) ≥ 1

2
· ρ(p)(L(B)).

Finally, observe that 1
2 · u ∈ 1

2 · L(B), so by reducing modulo 1 its coefficients
as a linear combination of B, we obtain a vector of the required form with the
same �p distance from L(B).

Computational Lattice Problems. For any 1 ≤ p ≤ ∞ and any approximation
factor γ ≥ 1 (which is usually considered as a function of the lattice rank n) we
define the following computational problems.

Definition 1 (Covering Radius Problem). An instance of GapCRP(p)
γ is a

pair (B, r) where B ∈ Qm×n is a rank n lattice basis and r ∈ Q is a rational
number. In YES instances ρ(p)(L(B)) ≤ r and in NO instances ρ(p)(L(B)) > γ ·r.

Definition 2 (Remote Set Problem). An instance of RSP
(p)
d,γ is a rank n

lattice basis B ∈ Qm×n. The goal is to find a set S ⊆ span(B) of size |S| ≤ d
containing a point v such that distp(v,L(B)) ≥ 1

γ · ρ(p)(L(B)).

Balancing Vectors. The analysis of the main algorithm presented in this work
relies on upper bounds on the length of linear combinations with ±1 coefficients
of a given set of vectors. In the following we provide the needed background.

In Banach spaces theory, a normed space X is said to have type 2 if there
exists a constant T < ∞ such that for every n and x1, . . . , xn ∈ X ,(

E ‖
n∑
i=1

εi · xi‖2X
)1/2

≤ T ·
(n∑
i=1

‖xi‖2X
)1/2

, (1)

where the expectation is over a uniform choice of signs ε1, . . . , εn ∈ {−1,+1}.
For example, it is easy to see that the Euclidean space �2 has type 2, since for �2
equality holds in (1) with T = 1 as follows from the parallelogram law. It is well-
known that for every 2 ≤ p < ∞ the �p normed space has type 2 with T = c ·√p
for some absolute constant c > 0 (see, e.g., [29]). In particular, for every n vectors
x1, . . . , xn there exists some choice of signs for which the corresponding linear
combination has �p norm at most O(

√
n) times the maximum �p norm of the

xi’s. This is stated in the following lemma.

The Remote Set Problem on Lattices 189

Lemma 2. For every 2 ≤ p < ∞ there exists a constant cp > 0 for which the
following holds. For every n vectors x1, . . . , xn ∈ Rm there exist ε1, . . . , εn ∈
{−1,+1} such that ‖

∑n
i=1 εi · xi‖p ≤ cp ·

√
n ·max1≤i≤n ‖xi‖p.

A similar statement, motivated by questions on set systems in combinatorial
discrepancy, is known for the �∞ norm. By a simple probabilistic argument it
can be seen that every set of n vectors in Rm has a linear combination with ±1
coefficients whose �∞ norm is at most O(

√
n logm) times the maximum �∞ norm

of the vectors. Interestingly, Spencer showed in 1985 that this can be improved
to O(

√
n log (2m/n)) [33]. For the special case of m = n he showed a bound of

6
√
n, commonly referred to as the ‘six standard deviations’ theorem. In a recent

breakthrough, Bansal [9] gave algorithmic results related to Spencer’s bound.

Theorem 4 ([33]). There exists a constant c∞ > 0 such that for every n
vectors x1, . . . , xn ∈ Rm (m ≥ n) there exist ε1, . . . , εn ∈ {−1,+1} such that
‖
∑n

i=1 εi · xi‖∞ ≤ c∞ ·
√
n · log (2m/n) ·max1≤i≤n ‖xi‖∞.

3 Algorithms for the Remote Set Problem

In this section we present our deterministic polynomial-time algorithm for RSP,
namely we prove Theorem 2 and some extensions. The proof of Theorem 1 can
be found in the full version of the paper.

3.1 Proof of Theorem 2

We start with the following statement from which we derive Theorem 2.

Theorem 5. For every 2 ≤ p < ∞ and every k = k(n) ≥ 1 there exists a

deterministic 2k · sO(1) time algorithm for RSP
(p)
d,γ with d(n) = O(nk · 2k) and

γ(n) = O(
√

n
k), where n denotes the lattice rank and s denotes the input size.

The same holds for p = ∞ with γ(n,m) = O(
√

n
k · log (2mk/n)), where m

denotes the lattice dimension.

Proof. Assume for simplicity that k = k(n) divides n. We consider the algorithm
that given a lattice basis B = (b1, . . . , bn) first partitions its vectors into

n
k sets

of size k each. Then the algorithm outputs all vectors in space which form a
linear combination with all coefficients in {0, 12} of vectors in one of these sets.
More precisely, for every 1 ≤ i ≤ n

k let Si be the set of all vectors of the form

a1 · b(i−1)k+1 + . . .+ ak · bik

where aj ∈ {0, 12} for all j. Our algorithm outputs the union S = ∪n/ki=1Si (see
Figure 1). Observe that |S| ≤ n

k · 2k and that S can be constructed in time

2k · sO(1) where s is the input size.
Fix some 2 ≤ p < ∞. We claim that there exists a vector in S whose �p

distance from L(B) is at least 1
2·cp ·

√
k
n ·ρ(p)(L(B)), where cp > 0 is the constant

190 I. Haviv

Remote Set Problem(B)
Input: A lattice basis B = (b1, . . . , bn) ∈ Qm×n.
Output: A set S of n

k
·2k vectors in span(B) at least one of which is far from L(B).

– For every 1 ≤ i ≤ n
k
,

1. Define Bi = (b(i−1)k+1, . . . , bik).
2. Construct the set Si of all vectors that form a linear combination with all

coefficients in {0, 1
2
} of the vectors in Bi.

– Output S = ∪n/k
i=1Si.

Fig. 1. An Algorithm for the Remote Set Problem

from Lemma 2 which depends solely on p. Assume for contradiction that this is
not the case. By Lemma 1, there exists a vector v = a1 · b1 + . . . + an · bn with
aj ∈ {0, 12} for all 1 ≤ j ≤ n such that distp(v,L(B)) ≥ 1

2 · ρ(p)(L(B)). Write
v = 1

2 (v1 + . . .+ vn/k) where for every 1 ≤ i ≤ n
k , vi = 2 · (a(i−1)k+1 · b(i−1)k+1 +

. . .+ aik · bik). Since 1
2 · vi ∈ S our assumption implies that there exists a lattice

vector ui ∈ L(B) such that

‖1
2
· vi − ui‖p <

1

2 · cp
·
√
k

n
· ρ(p)(L(B)). (2)

For every 1 ≤ i ≤ n
k , denote si = 1

2 · vi − ui, and apply Lemma 2 to obtain

ε1, . . . , εn/k ∈ {−1,+1} such that ‖
∑n/k

i=1 εi · si‖p ≤ cp ·
√

n
k ·max1≤i≤n/k ‖si‖p <

cp ·
√

n
k · 1

2·cp ·
√

k
n · ρ(p)(L(B)) = 1

2 · ρ(p)(L(B)), as follows from (2). Finally,

observe that the difference between v and
∑n/k

i=1 εi · si is a lattice vector, hence

distp(v,L(B)) = distp(

n/k∑
i=1

εi · si,L(B)) ≤ ‖
n/k∑
i=1

εi · si‖p <
1

2
· ρ(p)(L(B)),

in contradiction to our choice of v.
The analysis for p = ∞ is almost identical to the analysis described above.

The only difference is in applying Spencer’s theorem (Theorem 4) instead of
Lemma 2 to find a short ±1 combination of the si’s.

Notice that in the �∞ case the remoteness parameter γ obtained in Theorem 5
does not depend only on the rank n but also on the dimension m. Hence, let
us state it again for the special case of full-rank lattices (i.e., m = n) which is
usually considered.

Theorem 6. For every k = k(n) ≥ 1 there exists a deterministic 2k · sO(1) time

algorithm for RSP
(∞)
d,γ on full-rank lattices with d(n) = O(nk · 2k) and γ(n) =

O(
√

n·log (2k)
k), where s denotes the input size.

Now Theorem 2 is easily derived from Theorem 5 by choosing k = c logn where
n is the lattice rank and c is a constant, as stated in the following corollary. We

The Remote Set Problem on Lattices 191

note that one can obtain a slightly stronger version of this corollary by choosing
k = O(log s) where s is the input size.

Corollary 1. For every 2 ≤ p < ∞ and every constant c ≥ 1, there exists

a deterministic polynomial-time algorithm for RSP
(p)
d,γ with d(n) = nO(c) and

γ(n) = O(
√
n/(c logn)). In addition, for every constant c ≥ 1, there exists a

deterministic polynomial-time algorithm for RSP
(∞)
d,γ on full-rank lattices with

d(n) = nO(c) and γ(n) = O(
√
n · log log n/(c logn)).

3.2 Extensions of Theorem 2

In the analysis of our algorithm for RSP we applied Lemma 2 and Theorem 4
which roughly speaking say that every set of vectors has a linear combination
with ±1 coefficients of small �p norm compared to the maximum �p norm of the
vectors in the set. It turns out that similar questions were studied where the goal
is to minimize the �p norm of the linear combination compared to the maximum
�2 norm of the vectors in the set. This is stated in the following theorem which
stems from a paper of Banaszczyk [8] (see also [10, Propositions 24, 25]).

Theorem 7 ([8]). For every 2 ≤ p ≤ ∞ there exists a constant cp > 0 for which
the following holds. For every n vectors x1, . . . , xn ∈ Rm there exist ε1, . . . , εn ∈
{−1,+1} such that for 2 ≤ p < ∞, ‖

∑n
i=1 εi · xi‖p ≤ cp · n1/p ·max1≤i≤n ‖xi‖2,

and for p = ∞, ‖
∑n

i=1 εi · xi‖∞ ≤ c∞ ·
√
1 + logn ·max1≤i≤n ‖xi‖2.

For p = ∞, a famous conjecture of Komlós asserts the following.

Conjecture 1. [Komlós Conjecture] There exists a constant c > 0 such that for
every n vectors x1, . . . , xn ∈ Rm there exist ε1, . . . , εn ∈ {−1,+1} such that
‖
∑n

i=1 εi · xi‖∞ ≤ c ·max1≤i≤n ‖xi‖2.
Now we observe that Theorem 7 can be used to prove an additional property of

the output of our algorithm for RSP. The use of Lemma 2 and Theorem 4 in the
proof implied that at least one of points in the output has large �p distance from
the lattice compared to the covering radius in the �p norm. However, applying
Theorem 7 in the proof yields that at least one of the vectors has large �2 distance
from the lattice, still compared to the covering radius in the �p norm. Theorems 8
and 9 below follow from the algorithm presented in the proof of Theorem 5 (see
Figure 1) for k = Θ(log n) and k = 1 respectively. We omit the proof details.

Theorem 8. For every 2 ≤ p < ∞ there exists a constant cp > 0 for which
the following holds. For every c ≥ 1 there exists a deterministic polynomial-time
algorithm that given a rank n lattice L outputs a set of nO(c) points at least one
of which has �2 distance at least cp · (c log nn)1/p · ρ(p)(L) from L.

Theorem 9. There exists a constant c > 0 and a deterministic polynomial-time
algorithm that given a rank n lattice L outputs a set of n points at least one of
which has �2 distance at least c√

1+log n
·ρ(∞)(L) from L. Assuming Conjecture 1,

one of the points has �2 distance at least c · ρ(∞)(L) from L.

192 I. Haviv

4 On the Complexity of the Covering Radius Problem

The following simple lemma, whose proof can be found in the full version of the
paper, relates RSP to proving that CRP with certain approximation factors is in
NP. The theorem that follows it is an immediate consequence of the lemma and
Corollary 1 confirming Theorem 3.

Lemma 3. For every 1 ≤ p ≤ ∞, d = d(n) and γ = γ(n), if there exists a

deterministic polynomial-time algorithm for RSP
(p)
d,γ then GapCRP(p)

γ is in NP.

Theorem 10. For every 2 ≤ p < ∞ and every constant c ≥ 1, GapCRP(p)
γ is in

NP for γ(n) =
√
n/(c logn). In addition, for every constant c ≥ 1, GapCRP(∞)

γ

on full-rank lattices is in NP for γ(n) =
√
n log log n/(c logn).

Acknowledgement. We would like to deeply thank Oded Regev for valuable
and fruitful discussions.

References

1. Aharonov, D., Regev, O.: Lattice problems in NP intersect coNP. Journal of the
ACM 52(5), 749–765 (2005); Preliminary version in FOCS 2004

2. Ajtai, M.: Generating hard instances of lattice problems. In: Complexity of Com-
putations and Proofs. Quad. Mat., vol. 13, pp. 1–32. Dept. Math., Seconda Univ.
Napoli, Caserta (2004)

3. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Proc. 33rd ACM Symp. on Theory of Computing (STOC),
pp. 601–610 (2001)

4. Ajtai, M., Kumar, R., Sivakumar, D.: Sampling short lattice vectors and the closest
lattice vector problem. In: Proc. of 17th IEEE Annual Conference on Computa-
tional Complexity (CCC), pp. 53–57 (2002)

5. Alon, N., Panigrahy, R., Yekhanin, S.: Deterministic Approximation Algorithms
for the Nearest Codeword Problem. In: Dinur, I., Jansen, K., Naor, J., Rolim, J.
(eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 339–351. Springer,
Heidelberg (2009)

6. Babai, L.: On Lovász lattice reduction and the nearest lattice point problem. Com-
binatorica 6(1), 1–13 (1986)

7. Banaszczyk, W.: Balancing vectors and convex bodies. Studia Math. 106(1), 93–100
(1993)

8. Banaszczyk, W.: Balancing vectors and gaussian measures of n-dimensional convex
bodies. Random Struct. Algorithms 12(4), 351–360 (1998)

9. Bansal, N.: Constructive algorithms for discrepancy minimization. In: FOCS,
pp. 3–10 (2010)

10. Barthe, F., Guédon, O., Mendelson, S., Naor, A.: A probabilistic approach to the
geometry of the np -ball. The Annals of Probability 33(2), 480–513 (2005)

11. Boppana, R., H̊astad, J., Zachos, S.: Does co-NP have short interactive proofs?
Information Processing Letters 25, 127–132 (1987)

12. Dadush, D., Peikert, C., Vempala, S.: Enumerative lattice algorithms in any norm
via M-ellipsoid coverings. In: FOCS, pp. 580–589 (2011)

The Remote Set Problem on Lattices 193

13. Dinur, I.: Approximating SVP∞ to within almost-polynomial factors is NP-hard.
Theoretical Computer Science 285(1), 55–71 (2002)

14. Dinur, I., Kindler, G., Raz, R., Safra, S.: Approximating CVP to within almost-
polynomial factors is NP-hard. Combinatorica 23(2), 205–243 (2003); Preliminary
version in FOCS 1998

15. Goldreich, O., Goldwasser, S.: On the limits of nonapproximability of lattice prob-
lems. J. Comput. System Sci. 60(3), 540–563 (2000)

16. Guruswami, V., Micciancio, D., Regev, O.: The complexity of the covering radius
problem on lattices and codes. Computational Complexity 14(2), 90–121 (2005);
Preliminary version in CCC 2004

17. Haviv, I., Lyubashevsky, V., Regev, O.: A note on the distribution of the distance
from a lattice. Discrete and Computational Geometry 41(1), 162–176 (2009)

18. Haviv, I., Regev, O.: Hardness of the covering radius problem on lattices. In:
Proc. of 21st IEEE Annual Conference on Computational Complexity (CCC),
pp. 145–158 (2006)

19. Haviv, I., Regev, O.: Tensor-based hardness of the shortest vector problem to within
almost polynomial factors. In: Proc. 39th ACM Symp. on Theory of Computing
(STOC), pp. 469–477 (2007)

20. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12, 415–440 (1987)

21. Khot, S.: Hardness of Approximating the Shortest Vector Problem in Lattices. In:
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 126–135 (2004)

22. Lenstra, A., Lenstra, H., Lovász, L.: Factoring polynomials with rational coeffi-
cients. Math. Ann. 261, 515–534 (1982)

23. Micciancio, D.: Almost perfect lattices, the covering radius problem, and appli-
cations to Ajtai’s connection factor. SIAM Journal on Computing 34(1), 118–169
(2004); Preliminary version in STOC 2002

24. Micciancio, D.: Efficient reductions among lattice problems. In: SODA, pp. 84–93
(2008)

25. Micciancio, D.: Inapproximability of the shortest vector problem: Toward a
deterministic reduction. Electronic Colloquium on Computational Complexity
(ECCC) 19 (2012)

26. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic
Perspective. The Kluwer International Series in Engineering and Computer Science,
vol. 671. Kluwer Academic Publishers, Boston (2002)

27. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J. (eds.) Post-quantum Cryprography, pp. 147–191. Springer (2008)

28. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm
for most lattice problems based on voronoi cell computations. In: Proc. 42nd ACM
Symposium on Theory of Computing (STOC), pp. 351–358 (2010)

29. Milman, V.D., Schechtman, G.: Asymptotic theory of finite dimensional normed
spaces. Springer-Verlag New York, Inc., New York (1986)

30. Peikert, C.: Limits on the hardness of lattice problems in p norms. Computational
Complexity 17(2), 300–351 (2008); Preliminary version in CCC 2007

31. Regev, O., Rosen, R.: Lattice problems and norm embeddings. In: Proc. 38th ACM
Symp. on Theory of Computing (STOC), pp. 447–456 (2006)

32. Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theoretical Computer Science 53(2-3), 201–224 (1987)

33. Spencer, J.: Six standard deviations suffice. Trans. Amer. Math. Soc. 289(2),
679–706 (1985)

Approximation Algorithms for Generalized

and Variable-Sized Bin Covering

Matthias Hellwig1 and Alexander Souza2

1 Humboldt University of Berlin, Germany
mhellwig@informatik.hu-berlin.de

2 Apixxo AG, Switzerland
alex.souza@apixxo.com

Abstract. We consider the Generalized Bin Covering problem: We
are given m bin types, where each bin of type i has profit pi and demand
di. Furthermore, there are n items, where item j has size sj . A bin of
type i is said to be covered if the set of items assigned to it has total size
of at least di. For earning profit pi a bin of type i has to be covered. The
objective is to maximize the total profit. Only the cases pi = di = 1 (Bin

Covering) and pi = di (Variable-Sized Bin Covering) have been
treated before. We study two models of bin supply: In the unit supply
model, we have exactly one bin of each type, i. e., we have individual
bins. By contrast, in the infinite supply model, we have arbitrarily many
bins of each type. Both versions of the problem are NP-hard and can not
be approximated better than 2 in polynomial time, unless P = NP.

We prove that there is a combinatorial 5-approximation algorithm
for Generalized Bin Covering with unit supply, which has running
time O(nm

√
m+ n). This also transfers to the infinite supply model.

Furthermore, for Variable-Sized Bin Covering, in which we have pi =
di, we show that the natural and fast Next Fit Decreasing (nfd)
algorithm is a 9/4-approximation in the unit supply model. The bound
is tight for the algorithm and close to being best-possible.

The above results in the unit supply model not hold only asymptoti-
cally, but for all instances. This contrasts most of the previous work on
Bin Covering, which has been asymptotic. Additionally, we can extend
an existing AFPTAS for Bin Covering in order to obtain an AFPTAS
for Variable-Sized Bin Covering in the infinite supply model.

1 Introduction

Models and Motivation. We study generalizations of the NP-hard classical Bin

Covering problem. In this problem we have an infinite supply of unit-sized bins
and a collection of items having individual sizes. Each item has to be assigned
to a bin. A bin is said to be covered if the total size of the assigned items is
at least the size of the bin. We seek an assignment of items that maximizes the
number of covered bins. In order to distinguish the size of bins and the size of
items we refer in the following to the demand of a bin instead of its size. This
notion also captures that a bin has to be covered in order to contribute to the
objective function.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 194–205, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Approximation Algorithms for Generalized and Variable-Sized Bin Covering 195

Bin Covering has received considerable attention in the past [1,2,3,5,4,9]. In
this paper we studyGeneralized Bin Covering: We have a set I = {1, . . . ,m}
of bin types and each bin type i ∈ I has a profit pi and demand di. We denote
the set of items by J = {1, . . . , n} and define that each item j ∈ J has a
size sj . A bin is covered or filled if the total size of the packed items is at
least the demand di of the bin, in which case we earn profit pi. The goal is
to maximize the total profit gained. The special case with pi = di is known
as Variable-Sized Bin Covering. The special case with pi = di = 1 is the
classical Bin Covering problem. To the best of our knowledge, the model with
general profits and demands has not been studied in the Bin Covering setting
before. Furthermore, we consider two models of bin supply: In the infinite supply
model we have arbitrary many bins of each bin type available. By contrast, we
introduce the more general unit supply model. In this model we have only one
bin per type available. Thus, in the following, we rather speak of individual
bins than of bin types. Note that some of these individual bins are allowed to
have identical demand. Hence by introducing n copies of each bin type, we can
simulate the infinite supply model with the unit supply model. The converse is
obviously not true.

For motivating these generalizations, we mention the following application
from trucking. Suppose that a moving company receives a collection of inquiries
for moving contracts. Each inquiry has a certain volume and yields a certain
profit if it is served (entirely). The company has a fleet of trucks, where each
truck has a certain capacity. The objective is to decide which inquiries to serve
with the available trucks as to maximize total profit. Inquiries map to bins, while
trucks map to items in the setting of Generalized Bin Covering. Notice that
in particular the unit supply model is essential here, since the inquiries are indi-
vidual, i. e., are not available arbitrarily often. To the best of our knowledge, all
previous work on Bin Covering exclusively considers the infinite supply model
and is hence not applicable here. Also note that the Generalized Bin Cov-

ering problem applies in particular, if the profits do not necessarily correlate
with the volume, but also depend on the types of goods.

Let I denote the family of all sets of bin types and J the family of all sets
of items. Furthermore, let alg(I, J) and opt(I, J) be the respective profits
gained by some algorithm alg and by an optimal algorithm opt on an instance
(I, J) ∈ I × J . The approximation ratio of an algorithm alg, is defined by
ρ(alg) = sup{opt(I, J)/alg(I, J) | I ∈ I, J ∈ J }. If ρ(alg) ≤ ρ holds for an
algorithm alg with running time polynomial in the input size, then it is called
a ρ-approximation. If there is a (1 + ε)-approximation for every ε > 0, then the
respective family of algorithms is called a polynomial time approximation scheme
(PTAS). If the running of a PTAS is additionally polynomial in 1/ε, then it is
called a fully polynomial time approximation scheme (FPTAS). With ρ̄(alg) =
limp→∞ sup{opt(I, J)/alg(I, J) | I ∈ I, J ∈ J ,opt(I, J) ≥ p} we denote
the asymptotic approximation ratio of an algorithm alg. The notions of an
asymptotic approximation algorithm and of asymptotic (F)PTAS (A(F)PTAS)
transfer analogously.

196 M. Hellwig and A. Souza

Related Work. To the best of our knowledge, all of the previous work considers
the (Variable-Sized) Bin Covering problem in the infinite supply model.
Surveys on offline and online versions of these problems are given by Csirik and
Frenk [3] and by Csirik and Woeginger [6]. Historically, research (on the offline
version) of the Bin Covering problem was initiated by Assmann et al. [1]. They
proved that Next Fit is a 2-approximation algorithm and that First Fit De-

creasing is an asymptotic 3/2-approximation. They improved on this result by
giving an asymptotic 4/3-approximate algorithm. Csirik et al. [2] also obtained
asymptotic approximation guarantees of 3/2 and 4/3 with simpler heuristics.
The next breakthrough was achieved by Csirik, Johnson, and Kenyon [4] by
giving an APTAS for the classical Bin Covering problem. Their algorithm
is based on a suitable LP relaxation and a rounding scheme. Later on, Jansen
and Solis-Oba [9] improved on the running time and gave an AFPTAS. They
reduce the number of variables by approximating the LP formulation of Csirik
et al. [4], which yields the desired speed-up. Csirik and Totik [5] gave a lower
bound of 2 for every algorithm for online (Variable-Sized) Bin Covering,
where items arrive one-by-one. This bound holds also asymptotically. Clearly,
the algorithm Next Fit, which uses only the largest bin type, is already an
asymptotic 2-approximation.

Our Contribution. In Section 2 we consider Generalized Bin Covering in
the unit supply model. Our first main result, stated in Theorem 1, is a 5-
approximation algorithm having running time O(nm

√
m+ n). The basic idea

is to solve a modified version of the problem optimally. Even though the found
solution may not be feasible for the original problem, it will enable us to provide
a good solution for it. As a side result, which might be interesting in its own
right, we obtain an integrality gap of two for a linear program of the modified
problem and a corresponding integer linear program.

For Variable-Sized Bin Covering in the infinite supply model, it is not
hard to see that any reasonable algorithm (using only the largest bin type)
is an asymptotic 2-approximation. The situation changes considerably in the
unit supply model: Firstly, limitations in bin availability have to be respected.
Secondly, the desired approximation guarantees are non-asymptotic. Our main
result here is a tight analysis of the Next Fit Decreasing (nfd) algorithm in
the unit supply model for Variable-Sized Bin Covering, which can be found
in Section 3. Theorem 4 states that nfd yields an approximation ratio of at most
9/4 = 2.25 with running time O(n logn+m logm). Example 1 shows that this
bound is tight. The main idea behind our analysis is to classify bins according
to their coverage: The bins that nfd covers with single items are – in some
sense – optimally covered. If a bin is covered with at least two items, then their
total size is at most twice the demand of the covered bin. Hence those bins yield
at least half of the achievable profit. Intuitively, the problematic bins are those
that are not covered by nfd: An optimal algorithm might recombine leftover
items of nfd with other items to cover some of these bins and increase the
profit gained. Our analysis gives detailed insight into the limited improvements
to which such recombinations can lead. Firstly, our result is interesting in its

Approximation Algorithms for Generalized and Variable-Sized Bin Covering 197

own right, since nfd is a natural and fast algorithm. Secondly, it is also close to
being best possible, in the following sense. A folklore reduction from Partition

yields that even the classicalBin Covering problem is not approximable within
a factor of two, unless P = NP. This clearly excludes the possibility of a PTAS
for Bin Covering in any of the models. The reduction crucially uses that there
are only two identical bins in the Bin Covering instance it creates. Then the
question arises if one can improve in an asymptotic notion, where the optimal
profit diverges. Indeed, for the classical Bin Covering problem with infinite
supply, there is an A(F)PTAS [4,9].

Since we have individual bins rather than bin types in the unit supply model,
there are difficulties for defining meaningful asymptotics for Variable-Sized

Bin Covering therein. We elaborate more on this issue in a full version of the
paper. In Theorem 8 we show that, if there are m > 2 bins available and the
profit as well as the number of covered bins of an optimal solution diverges, there
are instances for which no polynomial-time algorithm can have an approximation
ratio smaller than 2−ε for any ε > 0, unless P = NP. Intuitively, we show that in
this asymptotic notion one still has to solve a Partition instance on two “large”
bins. Hence, for this asymptotics there is no APTAS for Variable-Sized Bin

Covering in the unit supply model, unless P = NP. However, this fact does not
exclude the possibility of an A(F)PTAS for Variable-Sized Bin Covering

in the infinite supply model. Indeed, we can give an A(F)PTAS for Variable-
Sized Bin Covering with infinite supply. Our algorithm is an extension of the
APTAS of Csirik et al. [4] for classical Bin Covering. We remove bin types
with small demands and adjust the LP formulation and the rounding scheme
used by [4]. The running-time of the APTAS can be further improved using the
involved method of Jansen and Solis-Oba [9] to yield the claimed AFPTAS in
Theorem 9.

Notation. For any set K ⊆ J define the total size by s(K) =
∑

k∈K sk. Note
that a bin i ∈ I is covered by a set K ⊆ J , if s(K) ≥ di. As a shorthand, define
s = s(J). Any assignment of items to bins is a solution of the Generalized

Bin Covering problem. We will denote such an assignment by a collection
of sets S = (Si)i∈I , where the Si ⊆ J are pairwise disjoint subsets of the set
J of items. Denote the profit of a solution S by p(S) =

∑
i∈I:s(Si)≥di pi. The

profit of a solution S determined by some algorithm alg on an instance (I, J) is
denoted by alg(I, J) = p(S). We may omit the instance (I, J) in calculations,
if it is clear to which instance alg refers to. Furthermore, for a solution S of an
algorithm alg, let ualg(i) = s(Si) be the total size of the items assigned to bin
i. If no confusion arises, we will write u(i) instead of ualg(i).

2 Generalized Bin Covering

Theorem 1. There exists a 5-approximation for Generalized Bin Covering

in the unit supply model, which has running time O(nm
√
m+ n).

It is not hard to see that naive greedy strategies that assign items to most
profitable bins or that assign items to bins with the best ratio of profit to demand

198 M. Hellwig and A. Souza

do not yield a constant approximation ratio. We give examples in a full version
of the paper. There we also give all missing proofs. We start with an informal
description of the ideas of our algorithm and define terms formally below.

At the heart of our analysis lies the following observation. In an optimal
solution either a not too small fraction of bins is covered with only one item
exceeding the demand of the respective bin or a large fraction of bins is covered
with more than one item, and all these items are smaller than the demand of
the bin they were assigned to. We explain below, why this can be assumed to
hold true. In the former case we speak of singular coverage and in the latter of
regular coverage. It is easy to see (cf. Observation 2) that a bipartite maximum
matching gives a solution being at least as good as the partial optimal solution
of singularly covered bins. More difficult to handle is the case when a large
fraction of bins is covered regularly in an optimal solution. We address these
difficulties by considering an appropriately modified Bin Covering problem.
In this problem items are only allowed to be assigned to bins with demand of
at most their size. In this situation we say that the items are admissible to the
respective bins. Furthermore, it is allowed to split items into parts and these
parts may be distributed among the bins to which the whole item is admissible.
Intuitively, in this modified problem the profit gained for a bin is the fraction of
demand covered multiplied with the profit of the respective bin.

In Lemma 1 we show that the modified problem can be solved optimally in
polynomial time by a greedy algorithm alg

∗. Algorithm alg
∗ considers bins in

non-increasing order of efficiency, where the efficiency of a bin is defined as the
ratio of profit to demand of the respective bin. For each bin i alg∗ considers the
largest item j, which is admissible to i. If j was not assigned or only a part of j
was assigned previously, then j, respectively the remaining part of j, is assigned
to i. Then alg

∗ proceeds with the next smaller item. Once a bin is covered, the
item that exceeds this bin is split in order to exactly cover the bin. Note that it
can happen that during this procedure bins receive items, but are not covered.
Nonetheless, by definition of the modified problem, these bins proportionally
contribute to the objective function. The solution found by this algorithm is
optimal. We show this by transforming an arbitrary optimal solution to a linear
program formulation of the modified problem – for example found by an LP
solver – into the solution of alg∗ without losing any profit.

In contrast to an arbitrary optimal solution, the solution found by algorithm
alg

∗ has additional structural properties. We crucially use these to transform it
via two steps into a good solution for theGeneralized Bin Covering problem.
We are able to reassemble the split items in Lemma 2 without losing too much
profit in the modified model. The solution is further modified in a greedy way
such that there are no items on a not covered bin i, which are admissible to
another not covered bin i′ having larger efficiency. A solution with this property
is called maximal with respect to the modified problem.

In Lemma 3 we show how to create a solution for the Generalized Bin

Covering problem from a maximal solution obtained in the above way, again
by losing only a bounded amount of profit. For this we move items successively

Approximation Algorithms for Generalized and Variable-Sized Bin Covering 199

from a not covered bin to the next not covered bin, which has at least the same
efficiency. Since the solution was maximal, the bins with higher efficiency are
covered. By this procedure all bins are covered, which were not covered in the
maximal solution, except the least efficient one. Either this least efficient bin or
the remaining ones yield at least half of the profit of all bins in the maximal
solution. Therefore, after applying this procedure at most half of the profit is
lost in comparison to the maximal solution. But now, all bins that have received
items are actually covered after this procedure.

We now start with the proof of Theorem 1. Let S = (S1, . . . , Sm) be any solu-
tion. During the analysis we can assume that S1∪· · ·∪Sm = J , i. e. all considered
algorithms assign all items to some bin. This is justified, since we could add a
dummy bin m+ 1 with pm+1 = 0 and dm+1 = ∞ for sake of analysis.

A covered bin i is said to be covered singularly if Si = {j} for some j ∈ J with
sj > di, otherwise it is said to be covered regularly. Since we can assume that
all items can be assigned to bins, we can also make the following assumptions.
A bin i containing an item j with sj > di is singularly covered. For a bin i,
which is covered regularly, it holds s(Si) ≤ 2di. The latter can be assumed to
hold true, since the bin i does not contain an item j with sj > di and hence, in
case s(Si) > 2di, we could remove an item and the bin i would still be covered.

Observation 2. For an optimal solution O on an instance (I, J) let IS ⊆ I be
the bins covered singularly in O and let JS ⊆ J be the set of items in O assigned
to the bins from IS . There is an algorithm alg such that for every instance (I, J)
there holds alg(I, J) ≥ opt(IS , JS). The running time is O(nm

√
m+ n).

Proof (Sketch). Construct a bipartite graph G = (I∪J,E), where E contains an
edge (i, j), if item j can cover bin i singularly. Recall, pi is the profit of bin i. We
set the weight of (i, j) to be pi. A Maximum Weight Bipartite Matching [8]
in G is at least as large as the value of the partial solution of singularly bins
covered by opt in the instance (I, J). ��

Consider the following modified Bin Covering problem. An item j may be split
by an algorithm into pj ≥ 1 parts. We will refer to such an item j as pj many
items (j, 1), . . . (j, pj) of positive size, where we may omit the braces in indices.
We refer to the (j, l) as the parts of the item j. The size of item part (j, i) of
item j is denoted by sj,i. Formally it has to hold sj =

∑pj
i=1 sj,i and sj,l > 0 for

1 ≤ l ≤ pj .
An item j is said to be admissible to a bin i, if sj ≤ di. The parts (j, l) of an

item j are defined to be admissible to i if and only if j is admissible to i. Item
parts can only be assigned to bins to which they are admissible.

For a fixed solution S = (S1, . . . , Sm) let Si be the set of item parts, assigned
to bin i. Let yi := min{s(Si)/di, 1}. Intuitively, yi is the “fill level” of bin i. Note,
that this “fill level” of a bin i may be at most one, but nevertheless s(Si) > di
is permitted, i. e. the sum of item sizes assigned to bin i may exceed its demand.
The profit gained for bin i in the modified problem is p∗(Si) := piyi, which
intuitively is the percentage of covered demand multiplied with the profit of the
bin, where the maximal profit that can be gained is bounded by pi. Further for

200 M. Hellwig and A. Souza

a solution S = (S1, . . . , Sm) on an instance (I, J) let p∗(S) =
∑

i∈I p
∗(Si). The

goal is to find a solution S that maximizes p∗(S) for a given instance (I, J).
Let the efficiency ei of bin i be ei := pi/di. Due to space limitations algorithm

alg
∗ for the modified Bin Covering problem is described formally in a full

version of the paper. Let alg∗(I, J) denote as usual the value of its solution for
the modified problem on the instance (I, J). Analogously let opt∗(I, J) be the
value of an optimal solution to the modified Bin Covering problem.

Lemma 1. Algorithm alg
∗ gives a solution of value alg

∗(I, J) = opt
∗(I, J).

Observation 3. Let S be a solution with the property s(Si) ≤ di for all i ∈ I.
Let S∗ be a solution having the property s(S∗

i) ≤ 2di for all i ∈ I. If for all item
parts j ∈ J with j ∈ Si and j ∈ S∗

i′ there holds ei ≤ ei′ , then p∗(S) ≤ 2p∗(S∗).

We say that a solution S contains no split items, if for all i ∈ I and j ∈ Si
there holds sj,1 = sj . We call a solution S containing no split items maximal
with respect to the modified Bin Covering problem, if there are no two distinct
bins i and i′ with 0 < s(Si) < di and 0 < s(Si′) < di′ and ei ≤ ei′ , such that
there is an item j ∈ Si, which is admissible to bin i′. Note that this implies the
following. If we assign in a maximal solution only one item j from such a bin i
to such a bin i′, then bin i′ is already covered by this single item. This comes
from the fact that j is not admissible to i′ by the maximality of the solution.

Lemma 2. Let S be the solution given by alg
∗ for the modified problem. S

can be transformed into a solution S∗ with the following properties. There holds
p∗(S) ≤ 2p∗(S∗), S∗ contains no split items and S∗ is maximal with respect to
the modified Bin Covering problem.

Lemma 3. Let S be a solution containing no split items and being maximal
with respect to the modified Bin Covering problem. S can be transformed into a
solution S∗ for the Generalized Bin Covering problem with p∗(S) ≤ 2p(S∗).

Proof (of Theorem 1). Let (I, J) be the given instance. Our algorithm works as
follows. We use Observation 2 to find a solution S1. Then we run alg

∗ on the
instance (I, J) and let S be the solution output. We transform solution S into a
solution S′ as done in Lemma 2 and then solution S′ into a solution S2 as done
in Lemma 3. We output the better solution from {S1, S2}. The running time is
dominated by the algorithm for Maximum Weight Bipartite Matching [8].

For the proof of the approximation guarantee, fix an optimal solution O to the
instance (I, J). Let IR ⊆ I be the set of bins covered regularly by the solution
O and JR = {j ∈ J | ∃i ∈ IR : j ∈ Oi}, the set of items in these bins. Let
IS ⊆ I be the set of bins covered singularly by the solution O and JS = {j ∈
J | ∃i ∈ IS : j ∈ Oi}, the set of items on these bins. We have opt(I, J) =
opt(IR, JR) + opt(IS , JS). Thus, opt(I, J)− opt(IR, JR) = opt(IS , JS).

If opt(IR, JR) < 4/5 · opt(I, J), then opt(IS , JS) > 1/5 · opt(I, J) by the
above. Hence in this case opt(I, J) ≤ 5alg(I, J) using Observation 2.

Otherwise, if opt(IR, JR) ≥ 4/5 · opt(I, J), then we have opt(IS , JS) ≤
1/5 · opt(I, J). We find the claimed opt(I, J) ≤ 5 · alg(I, J) as follows. We

Approximation Algorithms for Generalized and Variable-Sized Bin Covering 201

have opt(I, J) = opt(IR, JR) + opt(IS , JS) ≤ opt
∗(IR, JR) + 1/5 · opt(I, J),

where we use opt∗(IR, JR) ≥ opt(IR, JR) and the assumption of the case. There
holds opt∗(I, J) + 1/5 · opt(I, J) = alg

∗(I, J) + 1/5 · opt(I, J) by Lemma 1.
Further alg∗(I, J) + 1/5 · opt(I, J) ≤ 4 · alg(I, J) + 1/5 · opt(I, J), where we
have accounted for transforming the fractional solution to the modified problem
into a solution for the Generalized Bin Covering problem with Lemmas 2
and 3. This gives the claim. ��

3 Variable-Sized Bin Covering

3.1 Tight Analysis of NFD in the Unit Supply Model

In this subsection we consider the unit supply model and it is assumed that
di = pi for all i. The algorithm Next Fit Decreasing (nfd) works as follows.
The algorithm considers bins in non-increasing order of demand. For each bin,
if the total size of the unassigned items suffices for coverage, it assigns as many
items (also non-increasing in size) as necessary to cover the bin. Otherwise, the
bin is skipped. Due to lack of space we omit a formal description here. In this
section we assume that we have d1 ≥ · · · ≥ dm and s1 ≥ · · · ≥ sn, as needed by
the algorithm.

Example 1. Let 2/3 > ε > 0 be arbitrary. The following instance (I, J) yields
that nfd gives an approximation not better than 9/4−2ε. Hence nfd is at least
a 9/4-approximation. Let I = {4, 3− 2ε, 3− 2ε, 3− 2ε} and J = {2− ε, 2− ε, 2−
ε, 1− ε, 1− ε, 1− ε}. Observe we have nfd(I, J) = 4 and opt(I, J) = 9− 6ε.

Theorem 4. Algorithm nfd is a 9/4-approximation, which has running time
O(n log n+m logm). The bound on the approximation factor is tight.

Note that this is almost best possible, since the problem is inapproximable up
to a factor of two, unless P = NP.

Proof Techniques. We will use three kinds of arguments. The first type we call
a volume argument. If s is the sum of item sizes in the (remaining) instance,
we have opt ≤ s. This argument holds independently of the actual demands of
bins. Such volume bounds are too weak in general to achieve the claimed bound,
thus we need arguments using the structure of bins in the instance, which is the
second type of arguments. For example, if the sum of item sizes in the (remain-
ing) instance is αd, α > 1 and the demand of the only bin in the instance is d,
then it follows opt ≤ d, while we could only conclude opt ≤ αd with a volume
argument. The third type of argument we use are arguments transforming in-
stances. These arguments give that we can w. l. o g. restrict ourselves to analyze
instances having certain properties. For example, we may assume that there are
no items in the instance with size larger than the largest bin demand.

Proof Outline. Our proof looks at the specific structure of the solution given by
nfd and argues based on that, how much better an optimal solution can be. We
employ the described techniques in the following way. Firstly, we settle two basic

202 M. Hellwig and A. Souza

properties of nfd: A solution of nfd is unique and if a bin is covered with at least
twice its demand, then there is only one item assigned to it. These properties
will be used implicitly during the analysis. After that, we give transformation
arguments, which allow us to restrict ourselves to analyze instances with the fol-
lowing properties. We may assume that nfd covers the first bin (Observation 5),
and that the “right-most bins” (i. e. the bins with the least demand – or the
smallest bins) are empty (Observation 6), where we will specify this notion in
more detail later. We will show that we may assume that the “left-most bins”
(i. e. the largest bins) are only assigned items such that they do not exceed twice
their demand (Lemma 4). Here “left-most bins” refers to the bins up to the first
empty bin.

With these tools at hand we can come to the actual proof. The central notion
here is the well-covered bin (Definition 1): Consider the right-most (i.e., smallest)
empty bin in the instance with the property that all larger bins are assigned items
only up to twice their demand. If such a bin exists, then we call the covered bins
of these well-covered. The proof will be inductive. The terminating cases are
the ones, when there are either at least four well-covered bins (Observation 7)
or between two and three well-covered bins and there is a bin among these
containing at least three items (Lemma 9). These cases are settled by volume
arguments which is also the reason, why they are terminating cases – even if
there are additional filled but not well-covered bins in the instance. We are also
in terminating cases if the above prerequisites are not met, but there are no filled
bins which are not well-covered: Lemma 5 treats the case that all of the at most
three well-covered bins contain at most two items and Lemma 6 gives the cases,
in which we have exactly one well-covered bin in the instance.

If there are additional filled but not well-covered bins and we cannot apply
volume arguments – as in the both last mentioned situations – , we have to
look at the instance more closely. Our idea is here to consider a specific not well-
covered bin, which will be called the head of the instance. We will subdivide such
an instance into two parts, which is done by the key lemma of the recursion step,
the Decomposition Lemma 10. Therein and in Lemma 7 we show that it is not
advantageous to assign items, which nfd assigned to bins with larger demand
than the demand of the head of the instance, to bins with smaller demand than
the demand of the head of the instance. This allows us in combination with some
estimations to consider the left part of the instance and the right part separately.
For the left part Lemma 8 and Lemma 10 give that the approximation factor of
nfd is at most 9/4 and the right part of the instance is a smaller instance and
we may hence iteratively apply the argumentation.

Observation 5. Fix an instance (I, J). If unfd(1) = · · · = unfd(i) = 0 then
uopt(1) = · · · = uopt(i) = 0. Let I ′′ = I\{1, . . . , i}. Then nfd(I, J) = nfd(I ′′, J)
and opt(I, J) = opt(I ′′, J).

By the argument given by the previous observation it is also justified to as-
sume nfd(I, J) > 0. Since otherwise also opt(I, J) = 0 follows and nfd is
optimal. This assumption will always be implicitly used and thus the quotient

Approximation Algorithms for Generalized and Variable-Sized Bin Covering 203

opt(I, J)/nfd(I, J) is always defined. Alternatively, if nfd(I, J) = opt(I, J) =
0, we could define opt(I, J)/nfd(I, J) := 1. Further, we may always assume that
there exists an empty bin, otherwise nfd is clearly optimal. We may strengthen
this observation such that it suffices to compare instances of nfd to opt, where
the right-most bins are all empty, i. e. there is a non-empty bin i′, the bin i′ + 1
is empty and all bins with higher indices, if they exist, are also empty.

Observation 6. Fix the solution of nfd on an instance (I, J). Let i∗ be a bin
with u(i∗) = 0 and for all i > i∗ we have u(i) > 0. Then opt(I, J)/nfd(I, J) ≤
opt(I ′, J)/nfd(I ′, J), where I ′ = I \ {i∗ + 1, . . . ,m}.

Due to this observation we may assume that u(m) = 0 from now on. The next
lemma states that we can assume w. l. o g. that all bins i up to the bin with
smallest index i∗, such that u(i∗+1) = 0, receive only items in such a way, that
u(i) ≤ 2di for i < i∗.

Lemma 4. Let (I, J) be an instance and consider a solution of nfd for it. Let
i∗ be the smallest index, such that i∗ is a bin with u(i∗) > 0 and u(i∗ + 1) = 0.
Let i1, . . . , ik ∈ {1, . . . , i∗} be the indices with u(ij) ≥ 2dij for j = 1, . . . , k
and let j1, . . . , jk be the items on these bins. Set I ′ = I \ {i1, . . . , ik} and J ′ =
J \ {j1, . . . , jk}. Then opt(I, J)/nfd(I, J) ≤ opt(I ′, J ′)/nfd(I ′, J ′).

Definition 1. Consider a solution of nfd for an instance (I, J). Fix a bin i∗,
with u(i∗) > 0, and let i′ be the smallest number with i′ > i∗ such that u(i′) = 0,
if it exists. We call the bin i∗ well-covered, if i′ exists and u(i) ≤ 2di for all
i = 1, . . . , i′.

Observation 7. Let (I, J) be given. If nfd gives a solution with k ≥ 1 well-
covered bins, then opt(I, J)/nfd(I, J) ≤ 2 + 1/k.

Proof. Let k′ ≥ k be the largest index of a well-covered bin and let I ′ = {i ∈
{1, . . . , k′} | u(i) > 0} be the set of well-covered bins. On the one hand we have
nfd(I, J) ≥

∑
i∈I′ di and on the other nfd(I, J) ≥ kdk′ . Recall, we have for

every i ∈ I ′ that u(i) ≤ 2di. Let l be the index of the first item, which nfd did
not assign to a bin with index k′ or smaller. Since u(k′ + 1) = 0 by definition of
k′, we further have

∑n
j=l sj < dk′+1 ≤ dk′ , otherwise nfd would have filled bin

k′+1. For the sum of item sizes s =
∑n

j=1 sj <
∑

i∈I′ 2di+dk′ . Because opt ≤ s
we can bound opt <

∑
i∈I′ 2di + dk′ ≤ 2nfd+ 1/k · nfd = (2 + 1/k)nfd. ��

By Observation 5 and Lemma 4 it can be shown that we may assume that there
is at least one well-covered bin in the instance. Hence by Observation 7 we can
conclude that nfd is at most a 3-approximation. Additionally, for a number of
k ≥ 4 well-covered bins this observation already gives the desired result. Hence
we now turn our attention to the cases where k ≤ 3.

Lemma 5. Let (I, J) be an instance. If nfd gives a solution, in which ev-
ery filled bin is well-covered and contains at most two items, then there holds
opt(I, J)/nfd(I, J) ≤ 2.

204 M. Hellwig and A. Souza

Lemma 6. Let (I, J) be an instance. If nfd gives a solution with k = 1 well-
covered bins and all other bins are empty, then opt(I, J)/nfd(I, J) ≤ 9/4.

In order to simplify the following statements we introduce the term head of
the instance, which is a distinguished bin. For this, fix a solution of nfd to a
given instance (I, J). Let i0 be the index of the first not well-covered bin with
u(i0) > 0 and let i1 be the smallest index such that u(i1+1) = 0 with i1 ≥ i0. Let
i∗ = maxi:u(i)>2di{i ≤ i1}. Then, the bin i∗ is called the head (of the instance).

Lemma 7. Let (I, J) be an instance on which nfd gives a solution with k = 1
well-covered bin and which contains a non-empty bin, which is not well-covered.
Let i∗ be the head of the instance. If there are at least three items in bin 1 in
nfd’s solution and opt assigns at least one of these items to a bin with index
at least i∗, then opt(I, J)/nfd(I, J) ≤ 9/4.

Lemma 8. Let (I, J) be an instance on which nfd gives a solution with k ∈
{1, 2, 3} well-covered bins and each of these contains at most two items. Moreover
let the solution contain at least one non-empty bin, which is not well-covered,
and let i∗ be the head of the instance. Define I ′ = {1, . . . , i∗} and I ′′ = I \ I ′.
Further let J ′ be the set of items, which reside on a bin from I ′ in nfd’s solution,
and let J ′′ = J \ J ′. Fix an optimal solution O. Let A be the set of items, which
reside in O on a bin from I ′, and let B = J \A. Then (opt(I ′, A)+opt(I ′′, B \
J ′′))/nfd(I ′, J ′) ≤ 2.

Lemma 9. Let (I, J) be an instance on which nfd gives a solution with k ≥ 2
well-covered bins. If at least one of these bins contains at least three items, then
opt(I, J)/nfd(I, J) ≤ 9/4.

Lemma 10 (Decomposition Lemma). Let (I, J) be an instance on which
nfd gives a solution with k well-covered bins and at least one not well-covered
bin. Let i∗ be the head of the instance. Let J ′ be the set of items residing on the
bins 1, . . . , i∗ in nfd’s solution and J ′′ = J \ J ′. Further let I ′ = {1, . . . , i∗} and
I ′′ = I \ I ′. Then opt(I, J)/nfd(I, J) ≤ max{9/4,opt(I ′′, J ′′)/nfd(I ′′, J ′′)}.

Proof (of Theorem 4). First observe that Example 1 yields a lower bound of 9/4
on the approximation ratio of nfd. Let k be the number of well-covered bins in
the solution of nfd. If k ≥ 4 then Observation 7 already gives the claim. Thus
let k ∈ {1, 2, 3}. Firstly assume that there is no additional filled bin besides the
k well-covered bins. If one of the k bins contains at least three items, then the
claim follows by Lemma 6 and Lemma 9. If all k well-covered bins contain at
most two items, the statement follows from Lemma 5.

Now let there be k ∈ {1, 2, 3} well-covered bins in the solution of nfd and at
least one additional filled bin, which is not well-covered. Define I ′ = {1, . . . , i∗},
I ′′ = I \ I ′, J ′ to be the set of items, which are assigned to the bins in I ′

by nfd and J ′′ = J \ J ′, where i∗ is the head of the instance. Now we can
apply Lemma 10. Observe that (I ′′, J ′′) is a smaller instance, which has at least
one not well-covered bin less. Hence we can apply the analysis recursively to
this instance. The recursion terminates if (I ′′, J ′′) is an instance, such that the

Approximation Algorithms for Generalized and Variable-Sized Bin Covering 205

solution of nfd contains only well-covered bins or only empty bins. Clearly, in the
latter case we have that nfd is optimal and in the former we can argue as above.
The algorithm can be implemented such that the running-time is dominated by
sorting bins and items. ��

3.2 Asymptotical Results for Variable-Sized Bin Covering

The details of the following results can be found in the full version of the paper.
There we also discuss the difficulty of defining suitable asymptotics for the unit
supply model. Here we consider an asymptotics, where the total profit and the
number of covered bins in an optimal solution diverge.

Theorem 8. Consider Variable-Sized Bin Covering with unit supply. Let
2 ≤ m ≤ n. Then there is an instance (I, J), with |J | = n+m−2, such that in an
optimal solution m bins are covered, but there is no polynomial time algorithm
with approximation factor better than ρ = 2− m−2

s/2+m−2 , unless P = NP.

For the Variable-Sized Bin Covering model with infinite supply the APTAS
of Csirik et al. [4] and the method of Jansen and Solis-Oba [9] can be extended.
The basic idea is to ignore bin types with small demand. Adjusting the param-
eters in the algorithms of [4] and [9] and adapting the calculations gives the
desired result.

Theorem 9. There is an AFPTAS for Variable-Sized Bin Covering in the
infinite supply model.

References

1. Assmann, S.F., Johnson, D.S., Kleitman, D.J., Leung, J.Y.-T.: On a dual version
of the one-dimensional bin packing problem. J. Algorithms 5(4), 502–525 (1984)

2. Csirik, J., Frenk, J., Labbé, M., Zhang, S.: Two simple algorithms for bin covering.
Acta Cybernetica 14, 13–25 (1999)

3. Csirik, J., Frenk, J.B.G.: A dual version of bin packing. Algorithms Review 1(2),
87–95 (1990)

4. Csirik, J., Johnson, D.S., Kenyon, C.: Better approximation algorithms for bin
covering. In: SODA, pp. 557–566 (2001)

5. Csirik, J., Totik, V.: Online algorithms for a dual version of bin packing. Discrete
Applied Mathematics 21, 163–167 (1988)

6. Csirik, J., Woeginger, G.J.: On-line Packing and Covering Problems. In: Fiat, A.
(ed.) Online Algorithms 1996. LNCS, vol. 1442, pp. 147–177. Springer, Heidelberg
(1998)

7. Grigoriadis, M.D., Khachiyan, L.G.: Coordination complexity of parallel price-
directive decomposition. Math. Oper. Res., 321–340 (May 1996)

8. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipar-
tite graphs. SIAM J. C. 2(4), 225–231 (1973)

9. Jansen, K., Solis-Oba, R.: An asymptotic fully polynomial time approximation
scheme for bin covering. TCS 306(1-3), 543–551 (2003)

10. Jansen, K., Zhang, H.: Approximation algorithms for general packing problems
with modified logarithmic potential function. In: ICTCS, Montreal, Canada,
pp. 255–266 (2002)

Approximating Minimum Linear Ordering

Problems

Satoru Iwata1, Prasad Tetali2,3, and Pushkar Tripathi3

1 Research Institute for Mathematical Sciences, Kyoto University
2 School of Mathematics, Georgia Institute of Technology�

3 School of Computer Science, Georgia Institute of Technology

Abstract. This paper addresses the Minimum Linear Ordering Prob-
lem (MLOP): Given a nonnegative set function f on a finite set V , find
a linear ordering on V such that the sum of the function values for all
the suffixes is minimized. This problem generalizes well-known problems
such as the Minimum Linear Arrangement, Min Sum Set Cover, Mini-
mum Latency Set Cover, and Multiple Intents Ranking. Extending a re-
sult of Feige, Lovász, and Tetali (2004) on Min Sum Set Cover, we show
that the greedy algorithm provides a factor 4 approximate optimal solu-
tion when the cost function f is supermodular. We also present a factor
2 rounding algorithm for MLOP with a monotone submodular cost func-
tion, using the convexity of the Lovász extension. These are among very
few constant factor approximation algorithms for NP-hard minimization
problems formulated in terms of submodular/supermodular functions. In
contrast, when f is a symmetric submodular function, the problem has
an information theoretic lower bound of 2 on the approximability.

Feige, Lovász, and Tetali (2004) also devised a factor 2 LP-rounding
algorithm for the Min Sum Vertex Cover. In this paper, we present an
improved approximation algorithm with ratio 1.79. The algorithm per-
forms multi-stage randomized rounding based on the same LP relaxation,
which provides an answer to their open question on the integrality gap.

1 Introduction

In this paper we introduce the Minimum Linear Ordering Problem (MLOP),
which generalizes several known problems such as the Minimum Linear Ar-
rangement (MLA) and Min Sum Set Cover (MSSC) problems. Each of these
problems has been extensively studied in isolation. In this paper we initiate a
systematic study of these problems under the general umbrella of submodular
and supermodular set functions.

An instance of the MLOP consists of a ground set V of cardinality n and a
cost function f : 2V → R+. The objective is to find a linear ordering (bijection)
σ : V → {1, . . . , n} such that

∑
i f(Si) is minimized, where for any linear or-

dering σ of V , we define Si = Si(σ) = {v | σ(v) ≥ i}. We consider three broad
classes of cost functions f : supermodular, monotone submodular, and symmetric
submodular functions.
� Supported in part by NSF DMS-1101447 and CCR 0910584.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 206–217, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Approximating Minimum Linear Ordering Problems 207

1.1 Results and Techniques

For the case when the cost function is a supermodular function we establish the
following theorem.

Theorem 1. For any instance of MLOP with a supermodular cost function, the
greedy algorithm yields a factor 4 approximation to the optimal linear ordering.

The proof is based on a scaling technique that is similar to dual fitting. We use a
histogram to represent any solution to the problem and show that the histogram
corresponding to the greedy solution when scaled appropriately fits within the
histogram for the optimal solution.

We also consider a special case of this problem, the min sum vertex cover prob-
lem. In this problem we are given a graph G(V,E) and the objective is to arrange
the vertices of G in a linear ordering σ, such that

∑
(u,v)∈E min {σ(u), σ(v)} is

minimized. We achieve the following result with regard to this problem.

Theorem 2. There exists a Las Vegas algorithm that approximates the min sum
vertex cover to within a factor of 1.79.

This algorithm is based on a multi-stage rounding of the natural linear program-
ming relaxation. In our rounding technique, we randomly and independently
round each of the variables in the optimal linear programming solution. How-
ever we do not perform this rounding simultaneously for all variables. Instead,
we round the variables in several stages. Using this technique, we are able to
achieve an approximation factor better than 2. In doing so we also answer an
open question posed by [10], showing that the integrality gap of the natural LP
relaxation is indeed less than 2.

We also consider the MLOP when the cost function is submodular. For mono-
tone submodular functions, we obtain the following result.

Theorem 3. For any monotone submodular function defined over a ground set
of size n, there exists a deterministic algorithm for the corresponding MLOP
that achieves a factor of 2− 2

n+1 .

The algorithm is based on the Lovász extension for the given submodular func-
tion. The Lovász extensions provide a means of extending the techniques of
linear programing to discrete set functions such as the ones considered here. We
use the Lovász extension for the given submodular function to define a convex
program that is solvable using the ellipsoid method. We then give a determinis-
tic procedure to round the optimal solution to this program to get the desired
integral solution.

Finally, we also consider the case when the cost function is a general sub-
modular function, which may not be monotone. For this setting, we show an
information theoretic lower bound of 2. In particular, we have the following
result.

Theorem 4. For any constant ε > 0, there exists a family of instances of the
MLOP with symmetric submodular cost functions such that no algorithm making

208 S. Iwata, P. Tetali, and P. Tripathi

polynomially many queries achieve a factor better than 2− ε, even if it is given
infinite computational time.

We achieve this by constructing two families of submodular cost functions that
are indistinguishable, with high probability, after polynomial number of value
queries, but have different optimal objective values. The ratio of the optimal
values under these functions gives the desired factor. Note that the bound is
information theoretic, i.e., it holds even if the algorithm is given infinite compu-
tational time, but is constrained to make only polynomially many value queries.

1.2 Prior Work

Submodular functions have been the subject of intense study over the last
four decades with regards to combinatorial optimization. Special instances of
the above mentioned problems have received considerable attention from the
point of view of approximation algorithms. However, we are not aware of any
work that has studied these problems under a unified framework of submodu-
lar/supermodular functions. We will now review some of the problems that have
previously been studied in this area.

Feige, Lovász, and Tetali [10] introduced the min sum set cover (MSSC),
which is a special instance of MLOP with a supermodular cost function. In
this problem, we are given a hyper-graph H = (V,E). For a linear ordering
σ : V → {1, . . . , n} and a hyper-edge e ∈ E, let σ̂(e) denote the minimum of
σ(v) among all the vertices v in e. The goal of the min sum set cover problem
is to find a linear ordering σ that minimizes

∑
e∈E σ̂(e). They gave a factor

4 approximation algorithm for this problem and showed that the factor was
essentially tight.

They also considered the min sum vertex cover problem described in Section
3, and gave an LP-rounding-based factor 2 approximation algorithm for the
problem. This result was not provably tight and the integrality gap of the LP-
relaxation was left as an open question. In subsequent work, Barenholz, Feige,
and Peleg [5] provided a small improvement (with a rather technically involved
analysis) by way of obtaining a 1.99995 factor approximation, and raised the
question of further improving the bound. Answering this question, Theorem 2
below provides a substantial improvement, with an alternative rounding and a
simpler analysis, in giving a 1.79 factor approximation.

A recent paper of Azar, Gamzu, and Yin [2] discusses a generalization of the
MSSC problem in the context of reranking of search results by a search engine.
In this so-called Multiple Intents Ranking (MIR) problem, we are given a hyper-
graph H = (V,E) with each hyper-edge e ∈ E having a vector of nonnegative
reals w(e) = 〈w1(e), . . . , wr(e)(e)〉, where r(e) denotes the number of vertices
contained in e. For a linear ordering σ : V → {1, . . . , n} and a hyper-edge e ∈ E,
let σ̂i(e) denote the i-th smallest σ(v) among all the vertices v in e. Then the

objective is to find a linear ordering σ that minimizes
∑

e∈E
∑r(e)

i=1 wi(e)σ̂i(e).
Azar, Gamzu, and Yin[2] presented an O(log r)-approximation algorithm, where
r = maxe∈E . They also provided a 4-approximation algorithm for monotone

Approximating Minimum Linear Ordering Problems 209

non-increasing weight vectors and 2-approximation algorithm for monotone non-
decreasing weight vectors. The former case includes MSSC, while the latter case
generalizes the minimum latency set cover problem introduced by Hassin and
Levin [12]. We refer the reader to [1] and [3] for recent developments on MIR.

We were also informed of a recent (unpublished), further generalization due to
Im, Nagarajan, and van der Zwaan [14]; these authors study a so-called Minimum
Latency Submodular Cover (MLSC), which generalizes the submodular ranking
work of Azar and Gamzu on one hand and the Latency Covering Steiner Tree
on the other. See the manuscript [14] on the arxiv, for details.

In the Minimum Linear Arrangement (MLA) problem which is a special case
of submodular MLOP, we are asked to arrange the vertices of a given graph
G(V,E) in a linear ordering σ, so that

∑
(u,v)∈E |σ(v)− σ(u)| is minimized. Rao

and Richa [18] gave a O(log n) factor algorithms for this problem which was
later improved to an O(

√
logn log logn) factor algorithm by Feige and Lee [9]

and Charikar et. al. in [6]. The problem has also been studied on special instances
and polynomial time algorithms are known for some special graphs; refer to [13]
for a detailed exposition.

On the hardness front, Devanur, Khot, Saket, and Vishnoi [8] showed that the
problem is hard to approximate to within any constant factor under the Unique
Games Conjecture and proved that the integrality gap for the SDP relaxation
of this problem is bounded from below by O(log logn). The problem has also
received considerable attention from the point of view of experimental analysis
and heuristics (refer [4], [17]).

Finally, there has been recent interest in studying minimization problems with
submodular cost functions [11,19,15]. However almost all the problems previously
considered turn out to be quite intractable and have large polynomial lower
bounds. Exceptions include the submodular vertex cover problem [11,15] and
the submodular multiway partition [7].

1.3 Preliminaries

A set function f is said to be submodular if f(X)+f(Y) ≥ f(X∪Y)+f(X∩Y)
holds for every X,Y ⊆ V . Supermodular functions are defined in a similar way;
f is supermodular if f(X)+f(Y) ≤ f(X∪Y)+f(X∩Y) for everyX,Y ⊆ V . We
define a function f to be monotone if f(X) ≤ f(Y) for X,Y ⊆ V with X ⊆ Y .
It is called symmetric if f(X) = f(V \X) for every X ⊆ V . We assume that f
is normalized, i.e., f(∅) = 0. Note that a normalized nonnegative supermodular
function is monotone, asX ⊆ Y implies f(X) ≤ f(X)+f(Y \X) ≤ f(Y)+f(∅) =
f(Y).

Finally, a word is in order about the representation of the cost function f ,
since it is defined over an exponentially large domain. We use the standard value
oracle model: that the cost function is given by a value oracle that when queried
with a set S returns the value f(S).

210 S. Iwata, P. Tetali, and P. Tripathi

2 Supermodular Linear Ordering

This section is devoted to the linear ordering problem with supermodular cost
function f . In this setting, we are given a supermodular set function f over a
ground set V of size n and we are required to arrange the elements of V in a
linear ordering σ such that

∑
i f(Si) is minimized, where Si = {v | σ(v) ≥ i}.

We first claim that the min sum set cover (MSSC) problem, considered in [10],
is a special instance of this problem. For eachX ⊆ V in the hyper-graphH(V,E),
let f(X) denote the number of edges included in X . Then f is a supermodular
function. Note that e ∈ E is included in Si if and only if i ≤ σ̂(e). Therefore, we
have

∑n
i=1 f(Si) =

∑
e∈E σ̂(e). Thus the min sum set cover problem is a very

special case of our setting with f being a nonnegative supermodular function.
More generally, the multiple intents ranking problem is a special case of MLOP

where each hyper-edge e ∈ E has a weight w(e) = 〈w1(e), . . . , wr(e)(e)〉. For
each X ⊆ V and e, let fe(X) denote the sum of the last |X ∩ e| components of

w(e), and put f(X) =
∑

e∈E fe(X). Then
∑n

i=1 f(Si) =
∑

e∈E
∑r(e)

j=1 wj(e)σ̂j(e)
holds for any linear ordering σ. If the weight vector w(e) is monotone non-
increasing, i.e., w1(e) ≥ · · · ≥ wr(e)(e), then fe is a supermodular function. Thus
the multiple intents ranking problem with non-increasing weight vectors is a
special case of MLOP with supermodular cost functions.

In contrast, if w(e) is monotone non-decreasing, then fe is monotone sub-
modular. Thus the multiple intents ranking problem with non-decreasing weight
vectors reduces to the MLOP with monotone submodular cost functions, which
will be discussed in Section 4.1.

2.1 Greedy Algorithm

We will consider the following greedy algorithm for this problem. We try to
iteratively build the ordering by augmenting the current solution with the ele-
ment such that the cost of the remaining elements is the smallest possible. The
greedy algorithm for the supermodular linear ordering problem begins by setting
T1 = V . Then for i = 1, . . . , n, select v ∈ Ti that minimizes f(Ti \ {v}) and set
σ(v) = i and Ti+1 = Ti \ {v}.

2.2 Analysis

We now prove that the greedy algorithm provides an approximate solution within
a ratio of 4. Let S1, . . . , Sn be the subsets given by Si = {v | σ(v) ≥ i} with
an optimal solution σ. Consider a histogram that consists of n columns. The
i-th column has width f(Si) − f(Si+1), corresponding to the interval between
f(Si+1) and f(Si), and height i. The area of this diagram is equal to the optimal
value of the problem denoted by OPT .

With reference to the subsets T1, . . . , Tn generated by the greedy algorithm,
construct another histogram that also consists of n columns. The i-th column
has width f(Ti) − f(Ti+1), corresponding to the interval between f(Ti+1) and

Approximating Minimum Linear Ordering Problems 211

f(Ti), and height pi =
f(Ti)

f(Ti)−f(Ti+1)
. The area under this histogram is equal to

the objective value of the greedy solution denoted by GREEDY .
Shrink the second diagram by a factor of 2. We now intend to show that this

shrunk version of the second diagram is completely included in the first diagram.
To see this, it suffices to check that (f(Ti)/2, pi/2) lies in the first histogram for
each i ∈ [n] = 1, 2, . . . , n.

For each fixed i, put k = �pi/2�. Then we now claim that f(Sk) ≥ f(Ti)/2.
In fact, by the procedure of the greedy algorithm, we have f(Ti \ {v}) ≥ f(Ti+1)
for each v ∈ V \ Ti. This implies that

f(Sk) ≥ f(Ti ∩ Sk) ≥ f(Ti)−
∑

v∈Ti\Sk

[f(Ti)− f(Ti \ {v})]

≥ f(Ti)− |Ti \ Sk| · [f(Ti)− f(Ti+1)]

≥ f(Ti)− (k − 1)[f(Ti)− f(Ti+1)]

≥ f(Ti)−
pi
2
[f(Ti)− f(Ti+1)] =

f(Ti)

2
,

The second inequality follows from the supermodularity of f . Thus, the second
histogram is contained in the first one, which implies GREEDY /4 ≤ OPT .

3 Min Sum Vertex Cover Problem

The Min Sum Vertex Cover (MSVC) problem is a special instance of the Min
Sum Set Cover (MSSC) problem in which the given hyper-graph is a graph. We
are given a graphG(V,E) and the objective is to arrange the vertices ofG in a lin-
ear order σ, such that the following sum is minimized,

∑
(u,v)∈E min {σ(u), σ(v)}.

We present a factor 1.79 approximation algorithm for MSVC.

3.1 Randomized Rounding Algorithm

We begin with the following LP relaxation of the problem. We will use t ∈ [n] to
index the positions in the ordering. Let xv(t) denote whether vertex v is present
at position t and let yuv(t) depict if edge (u, v) is not covered by the vertices in
the first t positions.

Minimize
∑

(uv)∈E

n∑
t=1

yuv(t)

subject to 1−
∑
s≤t

xu(s)−
∑
s≤t

xv(s) ≤ yuv(t) (u, v) ∈ E, ∀t, (1a)

n∑
s=1

xu(s) +

n∑
s=1

xv(s) ≥ 1 ∀(u, v) ∈ E, (1b)

xu(t) ≥ 0 ∀u ∈ V, ∀t (1c)

yuv(t) ≥ 0 ∀(u, v) ∈ E, ∀t. (1d)

212 S. Iwata, P. Tetali, and P. Tripathi

The LP can be solved by standard means and let (x∗, y∗) be the optimal solution
to the LP. Next, we will define a rounding scheme to round (x∗, y∗) to an integer
solution by assigning every vertex a unique integer value (position) on the real
line.

Overview of the Algorithm: Note that in the above linear program, if we
(independently and) randomly round every vertex by interpreting x∗v(.) as a
probability distribution, we are not even guaranteed a feasible solution. In [10],
the authors fix this problem by scaling the solution x∗ prior to rounding as
follows. Let tv be the largest value of t for which

∑
s<t xv(t) < 1/2. For every

vertex v, they introduce a new variable zv(t) where zv(t) = 2xv(t) for t < tv, and
zv(tv) = 1 −

∑
t<tv

zv(t), and zv(t) = 0 for t > tv. By equation (1b), for every

edge uv there exists w ∈ {u, v} is such that
∑n

s=1 x
∗
w(s) ≥ 1/2, which implies∑n

s=1 z
∗
w(s) = 1. Therefore rounding independently, according to z, will surely

yield a feasible solution. One can show that the expected value of the rounded
solution is at most the optimal value of the objective.

The only shortcoming of the above rounding scheme is that owing to the
scaling step, on an average 2 vertices can get rounded to the same position.
Intuitively, this can be rectified by stretching the real-axis by a factor of 2 to
accommodate the extra vertices as shown in Figure 3.1(a). This gives us one a
2 approximate algorithm.

We beat this factor by interleaving the rounding and stretching subroutines in
multiple phases. In each phase our algorithm independently rounds on a subset of
vertices and assigns them positions on the real-line. Then we stretch the real-line
by a constant factor before starting the next phase.

Algorithm Description: Let us fix some notation that would be useful in
describing the algorithm. The algorithm proceeds in several phases indexed by r
and in each phase it assigns positions for some vertices on the real line. We will
use p(v) to denote position of vertex v. For any positive integer r, let zrv(t) =
zv(t

′), if t = α(r−1)t′ for some constant 1 < α ≤ 2 to be determined later; else,
let zrv(t) = 0. That is, for r > 1, zr is obtained from z1 by stretching the real-line
by a factor of αr−1. Refer to Figure 3.1(b).

At the start of the algorithm assign a phase number βv to every vertex v
according to the distribution Pr [βv = r] = 2−r and let Sr = {v | βv = r}. In the
r-th phase all vertices in Sr are assigned positions as follows - for every vertex
v ∈ Sr, randomly (and independently) assign v to position t with probability
zrv(t) i.e. set p(v) to t. The algorithm terminates when all vertices are assigned
a position on the real-line.

For position t, let nt =
∑

v p(v). To recover the ordering of vertices, replace
position t by nt time slots and allocate the vertices v for which p(v) = t to these
time slots in a random order.

Approximating Minimum Linear Ordering Problems 213

3.2 Analysis

For the sake of conciseness, for any edge uv ∈ E for a given execution of the al-
gorithm, let us use Γuv to denote | {w | p(w) < min {p(u), p(v)}} | =

∑
s<t ns i.e.

Γuv is the number of vertices that are placed to the left of argmin {p(u), p(v)}.
Thus the expected contribution of edge uv to the objective value is E [1 + Γuv].
This can be further simplified using conditional expectation as shown below.

E [1 + Γuv] =
∑
t

Pr [min {p(u), p(v)} = t]× E [1 + Γuv|min {p(u), p(v)} = t]

=
∑
t

tPr [min {p(u), p(v)} = t]× E [1 + Γuv | min {p(u), p(v)} = t]

t

≤
∑
t

tPr [min {p(u), p(v)} = t]×max
t

{
E [1 + Γuv | min {p(u), p(v)} = t]

t

}

≤ E [min {p(u), p(v)}]×max
t

{
E [1 + Γuv | min {p(u), p(v)} = t]

t

}
(2a)

In Lemmas 1 and 2, we bound both quantities in (2a).

Lemma 1. For any edge (u, v) ∈ E,

E [min {p(u), p(v)}] ≤ 3

4− α

∑
t

yuv(t) .

Proof. As a warm up let us calculate the expected value of min {p(u), p(v)}
given that the edge is covered during the first phase. For any u ∈ V , define
Fu(t) =

∑
s<t z

1
u(s), i.e., Fu(t) is the probability that u is placed at a position

to the left of t given that βu = 1.
E [min {p(u), p(v)} | (u, v) is covered in phase 1]

=

∑
t (1− Fu(t))

3
+

∑
t (1− Fv(t))

3
+

∑
t (1− Fu(t)) (1− Fv(t))

3
(3a)

= 1/3
∑
t

3− 2Fu(t)− 2Fv(t) + Fu(t)Fv(t) (3b)

≤ 1/3
∑
t

3− 2Fu(t)− 2Fv(t) +
Fu(t) + Fv(t)

2
(3c)

=
∑
t

1− Fu(t) + Fv(t)

2
(3d)

The first term in (3a) corresponds to the case when ru = 1 and rv > 1; similarly
the second term corresponds to the case when rv = 1 and ru > 1, and the third
term is the case when both ru = 1 and rv = 1. We get (3c) from (3b) since
both Fu and Fv are bounded by 1. Finally, since Pr [uv is covered in phase 1] =
3/4, we have Pr [min {p(u), p(v)}&(u, v) is covered in phase 1] = 3/4

∑
t 1 −

Fu(t)+Fv(t)
2 .

214 S. Iwata, P. Tetali, and P. Tripathi

Edge (u, v) is not covered by the start of the r-th phase if both βu ≥ r and
βv ≥ r. This happens with probability 2−2(r−1). Also since by the start of the r-
th phase z1u and z1v have been stretched by a factor of αr−1, the expected position
where edge (u, v) is covered, if it is covered in the r-th phase, is αr−1

∑
t 1 −

Fu(t)+Fv(t)
2 . Once again, as above, the probability that uv is covered in the rth

phase, given that it was not covered in the first r− 1 phases, is 3/4. Combining
these two facts we get,

E [min {x̄u, x̄v}] =
∞∑
r=1

4−(r−1) 3α
r−1

4

∑
t

1− Fu(t) + Fv(t)

2

= 3/4

∞∑
r=1

(α/4)r−1
∑
t

{
1−

∑
s<t

(xu(t) + xv(t))

}

≤ 3/4
∞∑
r=0

(α/4)r
∑
t

yuv(t) ≤ 3/4
∑
t

yuv(t)
∞∑
r=0

(α/4)r =
3

4− α

∑
t

yuv(t) .

The last equation follows from the linear programming constraint (1a).

Lemma 2. max
t

{
E [1 + Γuv | min {p(u), p(v)} = t]

t

}
≤ 2α/(2α− 1) .

Proof. For any position t,

E [1 + Γuv | min {p(u), p(v)} = t] = 1 +

∞∑
r=1

∑
w/∈{u,v}

∑
s<t

Pr [βw = r] zrw(s)

= 1 +

∞∑
r=1

2−r
∑

w/∈{u,v}

∑
s<t

zrw(s) ≤ 1 +

∞∑
r=1

2−r
2(t− 1)

αr−1
(5a)

≤ t

∞∑
r=0

(2α)
−r

= 2tα/(2α− 1) . (5b)

The first part of (5a) follows from the distribution from which we choose βw and
the second part is derived from the definition of zr. Finally (5b) holds for α < 2
and dividing throughout by t gives the desired result.

Substituting the results from Lemmas 1 and 2 in to (2a) we find that for
an arbitrary edge uv, the expected contribution to the objective is at most

6α
(4−α)(2α−1)

∑
t yuv(t). For α =

√
2, this is approximately equal to 1.79

∑
t yuv(t).

Summing over all edges and noting that
∑

(uv)∈E
∑

t yuv(t) is a lower bound on
the optimal solution, we conclude that the above algorithm approximates min
sum vertex cover to within a factor of at most 1.79.

4 Submodular Linear Ordering

4.1 Monotone Submodular Functions

In this section, we discuss the minimum linear ordering problem with f being a
monotone submodular function. The algorithm is based on a continuous exten-
sion for the submodular function called the Lovász extension defined below.

Approximating Minimum Linear Ordering Problems 215

Definition 1. For a set function f : 2V → R with f(∅) = 0, its extension

f̂ : R+
V → R is defined by f̂(x) =

∑n
i=1 λif(Si), where V = S1 � S2 � · · · �

Sn � ∅ is a chain such that
∑

λi1Si = x and λi ≥ 0.

Alternatively, one can define f̂ by f̂(x) = E [f({i : xi > λ}], where λ is uniformly

random in [0, 1]. Note that the value f̂(x) is easy to compute, provided that an

oracle access to f is available. Lovász [16] showed that f̂ is convex if and only if
f is submodular.

Consider the following convex optimization problem, which can be solved in
polynomial time by the ellipsoid method.

〈CP〉 Minimize f̂(x)

subject to
∑
v∈S

x(v) ≥ |S|(|S|+ 1)/2, ∀S ⊆ V.

For a linear ordering σ, let xσ denote a vector defined by xσ(v) = σ(v). Then xσ

is a feasible solution, and its objective value is f̂(xσ) =
∑n

i=1 f(Si). Thus 〈CP〉
serves as a relaxation problem. Let x∗ be an optimal solution of 〈CP〉. We now
consider a deterministic rounding procedure that returns a linear ordering σ so
that x∗(u) ≤ x∗(v) implies σ(u) ≤ σ(v).

Lemma 3. For each v ∈ V , we have k ≤ (2− 2
k+1)x

∗(v), where k = σ(v).

Proof. Consider the subset S = {u | σ(u) ≤ k}. By the feasibility of x∗, we have∑
v∈S x

∗(v) ≥ k(k + 1)/2. Since x∗(u) ≤ x∗(v) for every u ∈ S, this implies
x∗(v) ≥ (k + 1)/2. Hence we obtain k ≤ (2− 2

k+1)x
∗(v).

Theorem 5. The algorithm constructs a linear ordering whose objective value
is no more than 2− 2

n+1 times the optimal one.

Proof. Recall that xσ(v) = σ(v) for each v ∈ V . It follows from Lemma 3

that xσ(v) ≤
(
2− 2

k+1

)
x∗(v) ≤

(
2− 2

n+1

)
x∗(v), where k = σ(v). Since f̂ is

monotone non-decreasing and f̂(αx) = αf̂(x) holds for any α > 0, this implies

f̂(xσ) ≤
(
2− 2

n+1

)
f̂(x∗). Therefore,

∑n
i=1 f(Si) is at most 2 − 2

n+1 times the

optimal value.

4.2 Symmetric Submodular Functions

We now focus on the linear ordering problem with f being a symmetric sub-
modular function which includes the minimum linear arrangement problem over
graphs. Given a graph G(V,E) with edge capacity c : E → R+, the minimum
linear arrangement problem asks for finding a linear ordering σ : V → {1, . . . , n}
that minimizes

∑
(u,v)∈E c(u, v)|σ(u) − σ(v)|. Let κ : 2V → R+ denote the cut

capacity function. For a linear ordering σ : V → {1, . . . , n}, we have

n∑
i=1

κ(Si) =

n∑
i=1

∑
(u,v)∈E, u∈Si, v/∈Si

c(u, v) =
∑

(u,v)∈E
c(u, v) |σ(u)− σ(v)|.

216 S. Iwata, P. Tetali, and P. Tripathi

Thus the minimum linear arrangement problem is a special case of MLOP with
f being a cut function of a graph which is a symmetric submodular function.

Next, we show an unconditional information theoretic lower bound on the
approximation factor for MLOP with symmetric submodular functions. This is
done by defining two symmetric submodular functions f1 and f2 such that they
achieve the same value on ‘most’ of the queries but have different optimal values.

Concretely, let δ > 0 such that δ2 = 1
nω(logn) and β = n

4 (1 + δ) . Let R be a

subset of V of size n
2 then for any S ⊆ V , define f1(S) = min

(
|S|, n2

)
− |S|

2 and

f2(S) = min
(
|S|, n2 , β + |S ∩R|, β + |S ∩ R̄|

)
− |S|

2 .
It can be shown that both f1 and f2 are nonnegative and submodular, and

using a result by Svitkina and Fleischer [19], we can bound the probability of
distinguishing them using polynomially many value queries.

Lemma 4 ([19]). For R chosen uniformly at random from among all subsets
of V of size n

2 , any algorithm that makes a polynomial number of oracle queries

has probability at most nω(1) of distinguishing the functions f1 and f2.

It can be shown the ratio of the optimal values of the linear arrangements under
f1 and f2 is 2−o(1), which coupled with Lemma 4, yields the following theorem.
We defer the details of the proof to the full version of the paper.

Theorem 6. For every constant ε > 0, there exists a family of instances of the
NM-MLOP such that no (computationally unbounded) algorithm making polyno-
mially many queries to the cost function can achieve a factor better than 2− ε.

Acknowledgment. We thank Zoya Svitkina for suggesting Theorem 4.

References

1. Azar, Y., Gamzu, I.: Ranking with submodular valuations. In: Proceedings of
the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011,
pp. 1070–1079. Society for Industrial and Applied Mathematics, Philadelphia
(2011)

2. Azar, Y., Gamzu, I., Yin, X.: Multiple intents re-ranking. In: Proceedings of the
41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 669–678.
ACM, New York (2009)

3. Bansal, N., Gupta, A., Krishnaswamy, R.: A constant factor approximation algo-
rithm for generalized min-sum set cover. In: Proceedings of the 21st Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 1539–1545. Society for
Industrial and Applied Mathematics, Philadelphia (2010)

4. Bar-Yehuda, R., Even, G., Feldman, J., Naor, J.S.: Computing an optimal orienta-
tion of a balanced decomposition tree for linear arrangement problems. J. Graph
Algorithms Appl. 5, 1–27 (2001)

5. Barenholz, U., Feige, U., Peleg, D.: Improved approximation for min-sum vertex
cover (2006)

6. Charikar, M., Hajiaghayi, M.T., Karloff, H., Rao, S.: l22 spreading metrics for
vertex ordering problems. Algorithmica 56(4), 577–604 (2010)

Approximating Minimum Linear Ordering Problems 217

7. Chekuri, C., Ene, A.: Approximation algorithms for submodular multiway parti-
tion. In: Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, pp. 807–816. IEEE Computer Society, Washington,
DC (2011)

8. Devanur, N.R., Khot, S.A., Saket, R., Vishnoi, N.K.: Integrality gaps for sparsest
cut and minimum linear arrangement problems. In: Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, STOC 2006, pp. 537–546. ACM, New
York (2006)

9. Feige, U., Lee, J.R.: An improved approximation ratio for the minimum linear
arrangement problem. Inf. Process. Lett. 101, 26–29 (2007)

10. Feige, U., Lovász, L., Tetali, P.: Approximating min sum set cover. Algorithmica 40,
219–234 (2004)

11. Goel, G., Karande, C., Tripathi, P., Wang, L.: Approximability of combinato-
rial problems with multi-agent submodular cost functions. In: Proceedings of the
50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009,
pp. 755–764. IEEE Computer Society, Washington, DC (2009)

12. Hassin, R., Levin, A.: An Approximation Algorithm for the Minimum Latency Set
Cover Problem. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669,
pp. 726–733. Springer, Heidelberg (2005)

13. Horton, S.B.: The Optimal Linear Arrangement Problem: Algorithms and Approx-
imation. PhD thesis, Georgia Institute of Technology, Atlanta, GA, USA (1997),
AAI9735901

14. Im, S., Nagarajan, V., van der Zwaan, R.: Minimum latency submodular cover
(manuscript, 2012)

15. Iwata, S., Nagano, K.: Submodular function minimization under covering con-
straints. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2009, pp. 671–680. IEEE Computer Society, Washington,
DC (2009)

16. Lovász, L.: Submodular functions and convexity. In: Mathematical Programming
— The State of the Art, pp. 235–257. Springer (1983)

17. Petit, J.: Experiments on the minimum linear arrangement problem. J. Exp. Al-
gorithmics 8 (December 2003)

18. Rao, S., Richa, A.W.: New approximation techniques for some ordering problems.
In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 1998, pp. 211–218. Society for Industrial and Applied Mathematics,
Philadelphia (1998)

19. Svitkina, Z., Fleischer, L.: Submodular approximation: Sampling-based algorithms
and lower bounds. SIAM J. Comput. 40(6), 1715–1737 (2011)

New Approximation Results

for Resource Replication Problems

Samir Khuller1,�, Barna Saha2, and Kanthi K. Sarpatwar1,��

1 Department of Computer Science
University of Maryland (College Park)

{samir,kasarpa}@cs.umd.edu
2 AT&T Shannon Research Laboratory

barna@research.att.com

Abstract. We consider several variants of a basic resource replication
problem in this paper, and propose new approximation results for them.
These problems are of fundamental interest in the areas of P2P net-
works, sensor networks and ad hoc networks, where optimal placement
of replicas is the main bottleneck on performance. We observe that the
threshold graph technique, which has been applied to several k-center
type problems, yields simple and efficient approximation algorithms for
resource replication problems. Our results range from positive (efficient,
small constant factor, approximation algorithms) to extremely negative
(impossibility of existence of any algorithm with non-trivial approxi-
mation guarantee, i.e., with positive approximation ratio) for different
versions of the problem.

1 Introduction

Problems related to data placement and replication are of fundamental interest
both in the area of large scale distributed networking systems as well as central-
ized storage systems. The performance of distributed systems such as P2P file
sharing systems, wireless ad hoc networks, sensor networks etc., where resources
are shared among clients, can be significantly impacted by placement of the
replicated resources [16,17,2]. On the other hand, centralized storage systems,
such as in netflix, might have data distributed across different data centers so
that it is necessary to keep data closer to the demand to prevent over loading
the network. Demand patterns for data can also vary widely, especially in the
context of video on demand distribution.

There is a lot of research on centralized storage systems [9] that addresses
the problem of data layout when all the storage units are centrally located in a
single location and thus the “distance” of each client from any storage unit is
the same. However, in modern storage management systems, this assumption is

� Supported by NSF Awards CCF-0728839 and CCF-0937865, and a Google Research
Award.

�� Supported by NSF Grant CCF-0728839.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 218–230, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

New Approximation Results for Resource Replication Problems 219

not valid. Companies rent storage space all over the world from different data
centers in different locations. Since the most interesting objective functions are
NP-hard, it is of interest to consider efficient approximation algorithms.

The basic framework is the following: given a collection of k data items, we
wish to distribute the k data items to a collection of n nodes modeled by a
graph, where the vertices are embedded in a metric space. In the basic model,
each node wishes to access each of the k data items and the goal is to minimize
the maximum distance any node has to travel to access all k items. For this
problem, Ko and Rubenstein [16] give a distributed algorithm based on a local
search idea and also show that this algorithm delivers a solution with a worst
case approximation guarantee of 3. We note that the algorithm is not guaranteed
to run in polynomial time, however, in practice its convergence was reasonably
quick. In a followup piece of work [17], Ko and Rubenstein introduced a gen-
eralization of the basic problem in which each node only required a subset of
the items. For this problem, they develop a heuristic, however, for this heuristic,
unlike the other case, there is no approximation guarantee any more.

In this paper we consider both the questions described above, along with sev-
eral other generalizations and provide polynomial time approximation algorithms
for them. In particular we develop a simple algorithm with a 3-approximation
for the basic model, and this can be implemented in a distributed setting. We
also develop a more involved centralized 3-approximation scheme for the general
problem as well. However, we do not know how to implement this algorithm in a
distributed setting as yet. In addition, we consider further generalizations where
we need to provide excellent service to a given fraction of the clients and not all
the clients. This is motivated from the fact that there may be a few outliers, and
it may be extremely costly to provide all data items to the outliers. Here, the
two problems deviate in difficulty immediately. For the basic problem we can
still provide a constant approximation, but for the general problem, somewhat
surprisingly, it turns out that, assuming P �= NP , there is no polynomial time
algorithm with any non-trivial approximation guarantee. We give a polynomial
time reduction of the densest k-subgraph [8] to the feasibility version of the
general problem.

Following the works of Ko and Rubenstein [16,17], in this paper, we consider
the “min-max” objective function for data placement problems. A different ob-
jective function of minimizing average data-access cost was studied by Baev et
al. [1,2] under the assumption that each client only requires a particular data
item. A generalization of this problem with load and capacity constraints on
servers was considered by Guha et al. [11] and Meyerson et al. [20] (called the
page-placement problem). They developed bicriteria approximation algorithms
for this problem where load and/or capacity are violated by a small factor.

Our Contributions. The following is a summary of our results.

– In Section 2, we consider the basic replication problem where each client
needs all k data items (basic resource replication) and its generalization
where each client might need a subset of data items (subset resource replica-
tion). For the first problem, we give a distributed polynomial time

220 S. Khuller, B. Saha, and K.K. Sarpatwar

3-approximation algorithm and show that there does not exist any poly-
nomial time algorithm achieving a 2 − ε (for any ε > 0) approximation
(Theorem 1 and Theorem 3). For the later, we give the first polynomial time
3-approximation algorithm (in a centralized setting) along with matching
hardness (Theorem 2 and Theorem 3).

– In Section 3, we consider the outlier version of the basic as well as sub-
set resource replication problem. For the former, we give a polynomial time
3-approximation algorithm while for the latter, somewhat surprisingly, we
show that there does not exist any non-trivial approximation guarantee (in
polynomial time). We also consider the case where each resource can be repli-
cated at most K times and give polynomial time 5-approximation algorithm
for it.

– In Section 4, we consider another natural generalization of the basic resource
replication problem where each node has an upper bound (load) on the
number of clients it can serve. We give polynomial time 4-approximation
algorithm for this version when load L ≥ 2k−1 (k is the number of resources).
A simple counting argument shows that this problem is infeasible if L < k.
This implies our 4-approximation algorithm is a bicriteria approximation
algorithm and the load capacity is not violated by more than a factor of 2.

2 Resource Replication Problem

2.1 Basic Resource Replication Problem

The following problem, which we call the Basic Resource Replication (BRR)
problem, was first studied by Ko and Rubenstein [16]. The input consists of:

– set of nodes or vertices, V = {v1, v2 . . . vn}
– a metric space defined by the function d : V × V → R+ ∪ {0}
– set of resources or colors C = {C1, C2, C3, . . . , Ck}.

We seek to find an optimal mapping φ : V → C of colors to vertices. The objective
function for optimality is defined in the following way. Define dr(v) to be the
shortest distance between a vertex assigned the color Cr

1 and the vertex v. The
goal of the Basic Resource Replication (BRR) problem is the following -

min
φ

max
v∈V
Cr∈C

dr(v).

This is the central problem of the work of Ko and Rubenstein [16] who give
a distributed algorithm with a 3-approximation guarantee. Unfortunately, their
algorithm has no proven polynomial running time bound. We give a simple
distributed polynomial time 3-approximation algorithm for this problem. All
the algorithms in this work use a technique called threshold graph construction

1 We may abuse the notation and use same expression, dr(v), when r represents a
color.

New Approximation Results for Resource Replication Problems 221

introduced by Edmonds and Fulkerson [7] and used extensively for k-center
type problems [10,15,14,13]. We observe that the use of this approach enables
the design of very simple and efficient algorithms for several resource replication
problems. Given δ ∈ R+∪{0}, the threshold graph, denoted by Gδ, is constructed
by adding edges between every pair of vertices u, v which are at distance at most
δ. The algorithm for BRR works in the following way. For each vertex v, we
determine the distance of the (k − 1)th closest neighbor - and denote by δL the
maximum of these distances. We construct the threshold graph GδL which has
minimum degree at least k− 1. Also δL must be a lower bound on the optimal δ
(δOPT) - because δL is the least value such that the threshold graph has degree at
least k− 1 and GδOPT has minimum degree at least k− 1. Now in the graph G2

δL
which is the graph formed by squaring GδL , we compute a maximal independent
set I. Finally, for each vertex in I, we color the vertex with C1 and pick k − 1
vertices from its list of neighbors in Gδ and assign them a distinct color from
the remaining k− 1 colors. Due to space restrictions, we defer the details of the
algorithm and discussion of this problem (along with a few other generalizations)
to full version2.

Theorem 1. There is a distributed, polynomial time, 3-approximation algo-
rithm for the problem of BRR.

2.2 Subset Resource Replication Problem

In BRR model each client requires all the data items. But in general each client
might be interested in a subset of resources instead of all the resources. The
servers might also have capacity to hold several data items. This substantially
more generalized version of resource replication problem, which we call Subset
Resource Replication Problem (SRR) was considered by Ko and Rubenstein in
a subsequent paper [17]. Formally, the problem has the following input

– a set of vertices V = {v1, v2 . . . vn}, a metric d : V × V → R+ ∪ {0} and a
set of colors C = {C1, C2 . . . Ck}.

– every vertex v ∈ V has a subset Cv ⊆ C of “required” colors and a non-
negative integer sv as the storage capacity - that is we can assign sv colors
to vertex v.

The goal is to assign a list of colors φ(v) ⊆ C to each vertex v, such that
|φ(v)| ≤ sv, with the following objective -

δ = min
φ

max
v∈V
r∈Cv

dr(v)

where dr(v) is the shortest distance from v to a vertex having Cr on its list of
colors. Ko and Rubenstein [17] extended their basic approach to this problem but
had no guarantee on either the approximation ratio or the running time. We give
the first centralized polynomial time 3-approximation algorithm (Algorithm 1)

2 http://www.cs.umd.edu/~samir/grant/approx12-full.pdf

http://www.cs.umd.edu/~samir/grant/approx12-full.pdf

222 S. Khuller, B. Saha, and K.K. Sarpatwar

for the problem. Later, in Theorem 3, we will prove that this is the best possible
approximation one can expect, assuming P �= NP .

We again use the threshold graph technique. The optimal distance δ has to
be the distance between one of the O(n2) pairs of vertices. Hence, it has only
polynomial number of possible values and we can assume that the value of δ is
known (trying out all possible values of δ will only add a polynomial factor).
Assuming δ is known, we construct the threshold graph Gδ. We now square the
graph Gδ to obtain G2

δ, i.e., add an edge between two vertices u, v ∈ V if they
are at a distance at most two in Gδ. Consider a color r and let Hr ⊆ G2

δ be the
induced subgraph on vertices that need color r (among possibly other colors).
Let Ir be a maximal independent set in the subgraph Hr. The following is a key
observation about an optimal solution.

Observation. For every vertex v ∈ Ir, the optimal solution must assign a
unique copy of r in the neighborhood of v in Gδ. (†)
Indeed, in Gδ the neighborhoods corresponding to vertices in Ir must be mu-
tually disjoint. If neighborhoods corresponding to vertices u, v ∈ Ir intersect,
then there must exist an edge between u, v in G2

δ - which is impossible, as Ir
forms an independent set in this graph. Since, every vertex must be satisfied by
some copy in its neighborhood in Gδ, our observation holds. If for every vertex
v ∈ Ir, dr(v) ≤ δ then every vertex u ∈ Hr has dr(u) ≤ 3 × δ. Thus to find
a 3-approximation, we focus on satisfying vertices of such independent sets Ir,
for each color r ∈ C. We cast this as a b-matching problem [6] on the graph
B = (X,Y) - where X is the union of independent sets Ir, ∀r ∈ C (i.e., if a ver-
tex belongs to s independent sets of the form Ir , we add s copies of the vertex to
X) and Y is a copy of V with b−matching bounds sv on each vertex v ∈ V . We
add an edge across the partitions, if its end points are at distance at most δ from
each other. From observation (†), there must exist a b-matching that saturates
all the vertices of X .

Algorithm 1. A 3-approximation algorithm for SRR

1: Guess the optimal value δ. Construct the graph G2
δ

2: for all colors c do
3: Let Hc be the subgraph of G2

δ induced by the set of vertices that require color
c.

4: Compute Ic, any maximal independent set of Hc.
5: end for
6: Let X denote the union of copies of each Ic (i.e., if a vertex is contained in s

independent sets of form Ic, we add s copies of that vertex to X). Let Y be a copy
of set of vertices in V with non-zero storage capacities.

7: Construct the bipartite graph B = (X,Y) : add an edge between x ∈ X and y ∈ Y
if the nodes they represent are at distance at most δ.

8: Compute a maximum b-matching in B with bounds : 1 on vertices of X and re-
spective storage capacities on the nodes of Y .

9: For every node v ∈ Y , let Sv ⊆ X be matched subset of nodes, assign the list of
colors Lv of nodes of Sv to v.

New Approximation Results for Resource Replication Problems 223

Theorem 2. Algorithm 1 is a 3-approximation for the Subset Resource Repli-
cation problem.

Proof. We start by proving that (assuming δ is the optimal solution), the max-
imum b-matching, found in step 7 of Algorithm 1, completely saturates X . It
is sufficient to show that there exists of b-matching which saturates X (which
implies the maximum matching also does so). In the optimal coloring, which
satisfies every vertex within distance δ, let Loptv denote the list of colors placed
on v ∈ V (for feasibility, |Loptv | ≤ sv, where sv is the storage capacity of v). For
a color i and a vertex v, we denote the copy of v in Ii by vi. We note that for
every v requiring a color i, there exists a vertex u ∈ Y which is within distance δ
of v and has i in its list of colors Loptu . We now claim that the following edge set
forms a b-matching which saturates X . The edge set, denoted by bM , consists
one edge for each vi ∈ X , namely viu, where u is some vertex within distance δ
of vi such that i ∈ Loptu . We only have to show that bM is a feasible b-matching,
because it saturates X by its definition.

In order to prove that bM is a feasible b−matching, we show that the number
of edges incident on each vertex is within the allocated bounds - sv for v ∈ Y and
1 for vi ∈ X . The latter bound is trivially verified. To prove that the bounds sv
are not violated, we observe that no two vertices of X with same color index i,
say vi and wi, are matched to the same vertex u ∈ Y with respect to bM . Indeed,
this would imply that v and w are adjacent in G2

δ, which is a contradiction to the
fact that they belong to a maximal independent set (in some induced subgraph
of G2

δ). Thus the number of edges of bM incident on u, is at most |Loptu | ≤ su.
Hence, bM is a valid b-matching which saturates all the vertices of X .
To finish the proof, we now show that every node v requiring a color i finds a
node hosting i at distance at most 3δ. Indeed, there exists some ui ∈ X , such
that u is a neighbor of v in Hi (note that the distance between such u and v is
at most 2δ). Now, if uiw ∈ bM , w is the vertex hosting i at distance at most
3δ. Hence, Algorithm 1 is a 3-approximation algorithm for the subset resource
replication problem.

2.3 Hardness of BRR and SRR

We now prove some lower bounds on the above problems. The following theo-
rem shows that Algorithm 1 provides the best possible guarantee for the SRR
problem, while there is a small gap between the algorithm and the lower bound
proven for the BRR problem. We state the theorem here; for lack of space, the
proof is given in full version.

Theorem 3. Assuming P �= NP , for any given constant ε > 0, there is no
polynomial time algorithm which guarantees an approximation ratio better than

– (2− ε) for basic resource replication problem.

– (3− ε) for subset resource replication problem.

224 S. Khuller, B. Saha, and K.K. Sarpatwar

3 Robust Resource Replication Problem

The objective of minimizing the maximum distance over all vertices may result
in a much larger distance if there are few distant “outliers”. Even a good ap-
proximation algorithm, in this case, will raise δ to a very high value and many
nodes could get a bad solution. It is therefore natural to study outlier version
of such problems. In such a model, the objective remains the same but we are
allowed to ignore a few far away vertices (the outliers). Several well known prob-
lems have been studied under the “outlier” model like outlier versions of k-center
problem [5] (called robust k-centers), scheduling with outliers [4,12,21], outlier
versions of facility location type problems [5,19]. In this section, we initiate the
problem of robust basic resource replication (RBRR) or the resource replication
problem with outliers. In the RBRR problem, the input is the same as the BRR
problem along with a lower bound M - which is the number of vertices that
have to be satisfied. Formally, the input instance I = (V, C,M, d) is defined as
following.

– A set of vertices V = {v1, v2, . . . vn}, a metric d : V × V → R+ ∪ {0} and a
set of colors C = {C1, C2 . . . Ck}.

– A lower bound M ∈ N.

The objective function of the Robust Basic Resource Replication problem is
defined as-

min
φ

S⊆V
|S|≥M

max
v∈S

max
Cr∈C

dr(v)

A simple extension to the BRR algorithm results in a 3-approximation algorithm
for this problem. Due to space restrictions, we defer our discussion to full ver-
sion. Instead, we focus on a more interesting generalization of the Robust Basic
Resource Replication problem called the K-Robust Basic Resource Replication
(K-RBRR) problem. In this problem we only allow K copies of each resource,
while the rest of input and output structure remains the same as RBRR. This
problem is a natural generalization of the robust K-center problem- the former
problem has k resources and latter has only one. The robust K-center problem
is the outlier version of K-center problem and was studied, along with several
other outlier variants of facility location type problems by Charikar et al. [5].
One variant of particular interest to our work is the robust K-supplier problem,
for which [5] gives a 3 -approximation algorithm. The robust K-supplier is the
outlier variant of K-supplier problem. In the K-supplier problem, we have a set
of suppliers and a set of clients, embedded in a metric. The goal is to choose
K suppliers which can hold a resource (there is only one resource here) such
that the maximum “client to nearest resource distance” is minimized over all
clients. In the robust K-supplier problem, we have the same objective but we
may satisfy only M clients. We use the 3-approximation algorithm of [5] as a
sub-routine and obtain a 5-approximation algorithm for K-RBRR problem. For
the sake of completeness, we briefly describe the algorithm from [5] here.
For a given value δ, the algorithm of [5] proceeds in the following way.

New Approximation Results for Resource Replication Problems 225

– For each supplier v, construct Gv as the set of clients within distance δ and
Ev as the set of clients within distance 3δ of v.

– Repeat the following steps k times:
• Greedily pick a supplier v as a center whose set Gv covers most number
of yet uncovered clients. (†)

• Mark all the clients in Ev as covered.
– If at least M vertices are not satisfied return NO, or else return the set of

centers.

For a proof on why this algorithm guarantees a 3-approximation, we refer the
reader to [5]. We make a small modification to the above algorithm before using
it as a sub-routine. In the step (†), if there are no more clients to be covered
we can stop (this will clearly not affect the performance or feasibility of the
algorithm). Otherwise, there is at least one new uncovered client which is now
covered by v. We pick one such newly covered client arbitrarily and label it U(v).
Note that this process assigns a distinct client to each supplier.

We can now describe our Algorithm 2 to solve theK-RBRR problem.We make
the following claims about Algorithm 2 but defer the proofs to full version.

Claim. If δ is optimal distance value for an instance of K-RBRR, it is a feasible
distance for the K-supplier instance in the step 2 of Algorithm 2.

Claim. The set I formed in the step 3 of Algorithm 2 is an independent set in
G2
δ.

Algorithm 2. A 5-approximation for K-RBRR

1: Guess optimal distance value δ and construct Gδ. Mark the nodes of degree ≥ k−1.
Let these “high” degree vertices form a set Vc.

2: With Vc as the set of clients, Vs = V as the set of suppliers, distance between
copies remaining the same as the original vertices, we solve the robust K-supplier
problem [5] with δ as the input distance. Let S ⊆ Vs be the set of centers returned.
By Claim 3, S is well defined.

3: Let I = {U(v) : v ∈ S}. By Claim 3, I is an independent set such that each
member has degree ≥ k − 1 in Gδ.

4: for v ∈ I do
5: Pick k − 1 neighbors of v in Gδ. Assign each of these vertices along with v, one

color each of the k colors.
6: end for

Theorem 4. Algorithm 2 is a 5-approximation for the K-RBRR.

Proof. We defer the proof to full version.

Let us now consider the Robust Subset Resource Replication (RSRR) problem.
In this problem, we are provided with the input for the SRR problem along with
a lower bound M on the number of vertices that must be satisfied with their
requirement. The objective function is -

226 S. Khuller, B. Saha, and K.K. Sarpatwar

min
φ

max
S⊂V
|S|≥M

max
v∈S
r∈Cv

dr(v)

Given that the outlier version of BRR and its extension with bound on each
color has simple constant factor approximation algorithms, it is a natural ques-
tion to ask whether similar bounds can be obtained for Robust SRR. But, quite
surprisingly, we show not only there does not exist any constant factor approx-
imation algorithm for Robust SRR, but in fact, assuming P �= NP , there is no
polynomial time algorithm that provides any nontrivial approximation guaran-
tee. In Theorem 5, we prove that deciding if a given instance of RSRR is feasible,
is NP hard. We give a polynomial time reduction of the well-studied densest k
subgraph [8] problem to the problem of deciding the feasibility of RSRR. In the
decision version of the densest k-subgraph problem, we have an instance of the
form I = (G, k, L) and the goal is to decide if there is a subgraph of G with
exactly k vertices and at least L edges.

Theorem 5. Assuming P �= NP , there is no polynomial time algorithm which
gives a positive approximation ratio for Robust Subset Resource Replication
problem.

Proof. Reduction. Given an instance of densest k-subgraph problem I = (G =
(V,E), k, L), |V | = n, |E| = m where the problem is to decide if there is a
subgraph on k vertices with at least L edges - we construct an instance of
RSRR, I ′ = (G′,M, C, {Cv : ∀v ∈ G′}) as follows. First, color the vertices in
V with distinct colors c1, c2 . . . cn. The vertex set of G′ has 3 parts - V1, V2, V3.
V1 has k vertices and V2 has m vertices corresponding to the edges of G. The
distance between any two vertices u ∈ V1, v ∈ V2 is 1. Each vertex v ∈ V2 has a
set of m2 vertices, Gv, associated with itself. The distance between any vertex
pair of v ∪Gv is 1. Rest of the distances are computed using the shortest path
metric. The set {Cv : ∀v ∈ G′} is specified in the following way - Each vertex
u ∈ V1 requires 0 colors and hence are trivially satisfied. Each vertex v ∈ V2
requires colors {av, ci, cj} where av is a color associated uniquely with vertex
v and ci, cj are the colors of the end points of the edge in G associated with
v. Each vertex w ∈ Gv requires colors {av, biv : i ∈ [1 : m2]}. Each one of
av, b

i
v : v ∈ V2, i ∈ [1,m2] is a distinct color. Set M = m3 + L + k, the lower

bound of the number of vertices that must be satisfied.

Claim: I is an YES instance of densest k subgraph problem if and only if I ′ is a
feasible solution of Robust Subset Resource Replication problem. In other words,
we prove that the feasibility question of Robust Subset Resource Replication
problem is NP-hard. This would imply that there is no approximation algorithm
for this problem.

Proof of the Claim. Let I be an YES instance of the densest subgraph problem
and let H = {v1, v2 . . . vk} be the k vertices that induce L edges in G. We present
a feasible coloring for I ′ as following -

New Approximation Results for Resource Replication Problems 227

– The k vertices of V1 are colored with the k colors of H
– Each vertex v ∈ V2 is colored with its associated color av.
– For each vertex v ∈ V2, its m

2 associated vertices Gv are colored with m2

colors of type biv.

It is straightforward to check that the above coloring satisfies M = m3 + k + L
vertices - all the vertices of V3 are satisfied, all the vertices of V1 are satisfied and
at least L vertices of V2 are satisfied. Now, we consider the other direction. Let
there be a coloring of vertices of G′ which certifies that I ′ is a feasible instance.
We first observe that, all the m3 colors of type biv and the m colors of type av
must be used - otherwise, there will be at least m2 vertices out of m3 +m+ k
vertices which go unsatisfied and hence the bound M is not met. Since, we are
only interested in the feasibility question, we can assume that m2 vertices of Gv

are colored with m2 colors of type biv and the m vertices v ∈ V2 are colored with
color av. Now at least L vertices of V2 must be satisfied and the k vertices of V1
must be colored with k colors from {c1, c2 . . . cn} - say {c1, c2 . . . ck}. We observe
that the union of colors required by the L vertices, apart from their associated
colors, must be {c1, c2 . . . ck}. Hence, the L edges in G corresponding to these L
vertices in V2 must be completely incident on the vertices in V corresponding to
these k colors. This implies the existence of k vertices in G that induce L edges.
Hence the theorem.

4 Capacitated Basic Resource Replication Problem

Another desired quality of an assignment scheme in client-server type problems
is load balancing [18,15,3]. In this setting, we are not allowed to “overload” a
server by assigning more than a bounded number of clients. Bar-Ilan, Kortsarz
and Peleg [3], Khuller and Sussman [15] study the load balancing version of the
k-center problem which is called the capacitated k-center problem. Khuller and
Sussman [15] provide the current best approximation ratio of 5 for this problem.
We initiate the study of basic resource replication problem in the load balancing
setting. We call it the capacitated basic resource replication problem (CBRR). In
this problem, the input instance is defined as I = (V, C = {C1, C2 . . . Ck}, d, L)
and the goal is the same as the basic resource replication problem with an addi-
tional restriction that a vertex with a certain color is not allowed to serve more
than L other vertices (including itself). We give a 4-approximation algorithm
(Algorithm 3) for this problem, provided L ≥ 2k − 1. We prove in the full ver-
sion that, for a feasible solution, L has to be ≥ k. By using this fact, we observe
that Algorithm 3 is in fact a bicriteria approximation algorithm - it gives an
approximation guarantee of 4 while exceeding the load by a factor of 2 at most.

Algorithm 3 starts by guessing the optimal δ and constructs the threshold
graph Gδ. Let I be some maximal independent set of G2

δ. We divide all the
vertices into three levels - level 0, level 1 and level 2. All the elements in I are at
level 0. All vertices not in I but adjacent (with respect to Gδ) to some element
in I are at level 1. Finally all the vertices not in level 0 or level 1 are in level 2.

228 S. Khuller, B. Saha, and K.K. Sarpatwar

For each element v at level 0, its empire Empire(v) consists of itself along with
all the adjacent(with respect to Gδ) level 1 vertices. Since I is independent in
G2
δ, all the empires defined so far are mutually disjoint. Finally, all the level 2

vertices are adjacent to at least one level 1 vertex. For each level 2 vertex, we
pick one such level 1 vertex arbitrarily and assign the former to the same empire
as the latter. Thus we have assigned every vertex to exactly one empire.

In the next step, we consider one empire at a time and split it into “blocks” of
vertices. Every block consists of exactly k vertices, except the last block which
might have less than k vertices. A key property of vertices in a block is the
following - any two vertices are at a distance of at most 4δ from each other. We
now color each block of size exactly k using all k colors (since the degree of each
vertex is at least k− 1 in Gδ, every empire has at least one block of size exactly
k). A vertex in a block only serves other vertices in the same block, hence the
load is not more than k currently on any vertex. The vertices of the final block
(which might have ≤ k vertices) are now served by some block of size exactly
size k. Thus the load on each vertex is at most 2k − 1.

Algorithm 3. A 4-approximation for CBRR

1: Guess the optimal value δ. Construct the graph Gδ and G2
δ .

2: Let I be a maximal independent set in G2
δ .

3: for all v ∈ V do
4: if v ∈ I then
5: Empire(v) = {v}
6: end if
7: if v /∈ I then
8: if v has a vertex u ∈ I at distance δ. then
9: Such a vertex is unique owing to the property that I is an independent set.

Add v to the empire of u, Empire(u) = Empire(u) ∪ {v}.
10: else if v has a vertex in I at distance 2δ. then
11: Pick one such vertex u arbitrarily and add v to the empire of u.
12: end if
13: end if
14: end for
15: for all v ∈ I do
16: Each vertex v has degree at least k − 1 in Gδ. Hence, |Empire(v)| ≥ k. Divide

Empire(v) into blocks, all of which have size exactly k - except possibly the last
one which has size at most k.

17: Color each block of size exactly k using k colors, arbitrarily. The final block,
whose size is at most k, has its color requirement satisfied from one such block.
Since there is at least one block of size exactly k, such an assignment is valid.

18: end for

Theorem 6. Algorithm 3 is a 4-approximation algorithm for the problem of
Capacitated Basic Resource Replication problem where the allowed load L ≥
2k − 1.

Proof. We defer the proof to full version.

New Approximation Results for Resource Replication Problems 229

To conclude, we study several variants of the resource replication problem and
prove that most of them are approximable within a small constant. A striking
anomaly is the problem of RSRR, which somewhat surprisingly is hard to ap-
proximate within any non-trivial bound. Our work leaves several open problems.
It would be interesting to close the gap between the approximation factor and
the lower bound of the BRR problem. Extending the capacitated version to SRR,
obtaining a true approximation factor for CBRR for all values of load, improv-
ing the approximation factor for K-RBRR etc. are few other future directions
to consider.

References

1. Baev, I.D., Rajaraman, R.: Approximation algorithms for data placement in arbi-
trary networks. In: SODA, pp. 661–670 (2001)

2. Baev, I.D., Rajaraman, R., Swamy, C.: Approximation algorithms for data place-
ment problems. SIAM J. Comput. 38(4), 1411–1429 (2008)

3. Bar-Ilan, J., Kortsarz, G., Peleg, D.: How to allocate network centers. J. Algo-
rithms 15(3), 385–415 (1993)

4. Charikar, M., Khuller, S.: A robust maximum completion time measure for schedul-
ing. In: SODA, pp. 324–333 (2006)

5. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility
location problems with outliers. In: SODA, pp. 642–651 (2001)

6. Edmonds, J.: Paths, trees, and flowers. In: Gessel, I., Rota, G.-C. (eds.) Classic Pa-
pers in Combinatorics, Modern Birkhuser Classics, pp. 361–379. Birkhuser, Boston
(1987)

7. Edmonds, J., Fulkerson, D.R.: Bottleneck extrema. Journal of Combinatorial The-
ory 8(3), 299–306 (1970)

8. Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorith-
mica 29(3), 410–421 (2001)

9. Golubchik, L., Khanna, S., Khuller, S., Thurimella, R., Zhu, A.: Approxima-
tion algorithms for data placement on parallel disks. ACM Transactions on Al-
gorithms 5(4) (2009)

10. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293–306 (1985)

11. Guha, S., Munagala, K.: Improved algorithms for the data placement problem. In:
SODA, pp. 106–107 (2002)

12. Gupta, A., Krishnaswamy, R., Kumar, A., Segev, D.: Scheduling with Outliers. In:
Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009.
LNCS, vol. 5687, pp. 149–162. Springer, Heidelberg (2009)

13. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem.
Mathematics of Operations Research 10(2), 180–184 (1985)

14. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms
for bottleneck problems. J. ACM 33(3), 533–550 (1986)

15. Khuller, S., Sussmann, Y.J.: The capacitated k-center problem. SIAM J. Discrete
Math. 13(3), 403–418 (2000)

16. Ko, B.-J., Rubenstein, D.: Distributed, self-stabilizing placement of replicated re-
sources in emerging networks. In: ICNP, pp. 6–15 (2003)

17. Ko, B.-J., Rubenstein, D.: Distributed server replication in large scale networks.
In: NOSSDAV, pp. 127–132 (2004)

230 S. Khuller, B. Saha, and K.K. Sarpatwar

18. Korupolu, M.R., Greg Plaxton, C., Rajaraman, R.: Analysis of a local search
heuristic for facility location problems. In: SODA, pp. 1–10 (1998)

19. Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The ma-
troid median problem. In: SODA, pp. 1117–1130 (2011)

20. Meyerson, A., Munagala, K., Plotkin, S.A.: Web caching using access statistics. In:
SODA, pp. 354–363 (2001)

21. Saha, B., Srinivasan, A.: A new approximation technique for resource-allocation
problems. In: ICS, pp. 342–357 (2010)

Maximum Matching in Semi-streaming

with Few Passes�

Christian Konrad1,2, Frédéric Magniez1, and Claire Mathieu3

1 LIAFA, Université Paris Diderot, Paris, France
2 LRI, Université Paris-Sud, Orsay, France

3 DI/ENS CNRS, Paris, France and CS Dept, Brown University, Providence
konrad@lri.fr, frederic.magniez@univ-paris-diderot.fr, claire@cs.brown.edu

Abstract. We present three semi-streaming algorithms for Maximum

Bipartite Matching with one and two passes. Our one-pass semi-
streaming algorithm is deterministic and returns a matching of size at
least 1/2 + 0.005 times the optimal matching size in expectation, as-
suming that edges arrive one by one in (uniform) random order. Our
first two-pass algorithm is randomized and returns a matching of size at
least 1/2+0.019 times the optimal matching size in expectation (over its
internal random coin flips) for any arrival order. These two algorithms
apply the simple Greedy matching algorithm several times on carefully
chosen subgraphs as a subroutine. Furthermore, we present a two-pass
deterministic algorithm for any arrival order returning a matching of size
at least 1/2 + 0.019 times the optimal matching size. This algorithm is
built on ideas from the computation of semi-matchings.

1 Introduction

Streaming. Classical algorithms assume random access to the input. This is
a reasonable assumption until one is faced with massive data sets as in bioin-
formatics for genome decoding, Web databases for the search of documents, or
network monitoring. The input may then be too large to fit into the computer’s
memory. Streaming algorithms sequentially scan the input piece by piece in one
pass, while using sublinear memory space. The analysis of Internet traffic [1] was
one of the first applications of such algorithms. A similar but slightly different
situation arises when the input is recorded on an external storage device where
only sequential access is possible, such as optical disks, or even hard drives. Then
a small number of passes, ideally constant, can be performed.

By sublinear memory one ideally means memory that is polylogarithmic in
the size of the input. Nonetheless, polylogarithmic memory is often too restric-
tive for graph problems: as shown in [2], deciding basic graph properties such as
bipartiteness or connectivity of an n-vertex graph requires Ω(n) space. Muthukr-
ishnan [3] initially mentioned massive graphs as typical examples where one

� Supported by the French ANR Defis program under contract ANR-08-EMER-012
(QRAC project). Christian Konrad is supported by a Fondation CFM-JP Aguilar
grant. Claire Mathieu is supported by NSF grant CCF-0964037.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 231–242, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

232 C. Konrad, F. Magniez, and C. Mathieu

assumes a semi-external model, that is, not the entire graph but the vertex
set can be stored in memory. In that model, a graph is given by a stream of
edges arriving in arbitrary order. A semi-streaming algorithm has memory space
O(n polylogn), and the graph vertices are known in advance.

Matching. In this paper we focus on an iconic graph problem: finding large
matchings. In the semi-streaming model, the problem was primarily addressed
by Feigenbaum, Kannan, McGregor, Suri and Zhang [4]. In the meantime a
variety of semi-streaming matching algorithms for particular settings exist (un-
weighted/weighted, bipartite/general graphs). Most works, however, consider the
multipass scenario [5,6] where the goal is to find a (1 − ε) approximation while
minimizing the number of passes. The techniques are based on finding augment-
ing paths, and, recently, linear programming was also applied. Ahn and Guha
[5] provide an overview of the current best algorithms. In this paper, we also
take the augmenting paths route.

In the one-pass setting, in the unweighted case, the greedy matching algorithm
is still the best known algorithm. (We note that in the weighted case, progress was
made [7] [8], but when the edges are unweighted those algorithms are of no help.)
Thegreedymatching constructs amatching in the following online fashion: starting
with an empty matchingM , upon arrival of edge e, it adds e toM ifM +e remains
a matching. Amaximal matching is a matching that can not be enlarged by adding
another edge to it. It is well-known that the cardinality of maximal matchings is
at least half of the cardinality of maximum matchings. By construction, since the
greedymatching is maximal,M is a 1/2-approximationof anymaximummatching
M∗, that is |M | ≥ |M∗|/2. The starting point of this paper was to address the
following long standing open problem: Is the greedy algorithm best possible,
or is it possible to get an approximation ratio better than 1/2?

A very recent result [9] rules out the possibility of any one-pass semi streaming
algorithm for Maximum Bipartite Matching (MBM) with approximation
ratio better than 2/3, since that would require memory space n1+Ω(1/ log log n).
Nevertheless, there is still room between 1/2 and 2/3. To get an approximation
ratio better than 1/2, prior semi-streaming algorithms require at least 3 passes,
for instance the algorithm of [6] can be used to run in 3 passes providing a
matching strictly better than a 1/2 approximation.

Random Order of Edge Arrivals. The behavior of the greedy matching
algorithm has been studied in a variety of settings. The most relevant refer-
ence [10] considers a (uniform) random order of edge arrivals. Here, Dyer and
Frieze showed that the expected approximation ratio is still 1/2 for some graphs
(their example can be extended to bipartite graphs), but can be better for par-
ticular graph classes such as planar graphs and forests.

In the context of streaming algorithms, random order arrival has been first
studied for the problems of sorting and selecting in limited space by Munro and
Paterson [11]. Then Guha and McGregor [12] gave an exponential separation
between random and adversarial order models. One justification of the random
order model is to understand why some problems do not admit a memory efficient
streaming algorithms in theory, while in practice, heuristics are often sufficient.

Maximum Matching in Semi-streaming with Few Passes 233

Other Related Work. MBM was studied in the online setting, where nodes
from one side arrive in adversarial order together with all their incident edges.
The well-known randomized algorithm by Karp and Vazirani [13] achieves an
optimal approximation ratio of (1−1/e) for bipartite graphs where all nodes from
one side are known in advance. This barrier was broken recently by assuming
that, although the graph is worst-case, the arrival order is random according to
some distribution [14,15]. Estimating the size of maximum matchings was further
studied in the sublinear time model. For graphs with degrees bounded by d, it
is possible to estimate the size of a maximum matching up to an additive ε in
time independent of n [16,17]. The algorithm partially explores balls of limited
radius around some vertices, an approach that cannot be adapted to one-pass
streaming. Furthermore, estimations with one-sided error require linear time.

Our Results. In this paper we present algorithms for settings in which we can
beat 1/2. We design semi-streaming algorithms for MBM with one and two
passes. Our one-pass semi-streaming algorithm is deterministic and achieves an
expected approximation ratio 1/2+0.005 for any graph (Theorem 1) assuming
that the edges arrive one by one in (uniform) random order. This is the first
analysis of a graph algorithm in the semi-streaming model assuming random
order arrival of edges. Our two two-pass semi-streaming algorithm do not need
the random order assumption. We present a randomized two-pass algorithm with
expected approximation ratio 1/2+ 0.019 against its internal random coin flips,
for any graph and for any arrival order (Theorem 3). Furthermore, we present
a deterministic counterpart with the same approximation ratio for any graph
and any arrival order (Theorem 4).

Techniques. The one-pass algorithm as well as the randomized two-pass algo-
rithm each apply three times the greedy matching algorithm on different and
carefully chosen subgraphs. The deterministic two-pass algorithm is slightly more
complicated as it uses a subroutine that computes a particular semi-matching
besides the greedy algorithm.

General idea: If we had three passes at our disposal (see for instance Algorithm 2
in [4]), we could use one pass to build a maximal matching M0 between the two
sides A and B of the bipartition, a second pass to find a matching M1 between
the A vertices matched in M0 and the B vertices that are free w.r.t. M0 whose
combination with edges of M0 forms paths of length 2. Finally, a third pass to
find a matching M2 between B vertices vertices matched in M0 and A vertices
that are free w.r.t.M0 whose combination withM0 andM1 forms paths of length
3 that can be used to augment matching M0. All our algorithms simulate these
3 passes in less passes.

One pass, deterministic, random order: To simulate this with a single pass, we
split the sequence of arrivals [1,m] into three phases [1, αm], (αm, βm], and
(βm,m] and build M0 during the first phase, M1 during the second phase, and
M2 during the third phase. Of course, we see only a subset of the edges for
each phase, but thanks to the random order arrival, these subsets are random,
and, intuitively, we loose only a constant fraction in the sizes of the constructed

234 C. Konrad, F. Magniez, and C. Mathieu

matchings. As it turns out, the intuition can be made rigorous, as long as the
first matchingM0 is maximal or close to maximal. We observe that, if the greedy
algorithm, executed on the entire sequence of edges, produces a matching that is
not much better than a 1/2 approximation of the optimal maximum matching,
then that matching is built early on. More precisely (Lemma 4), if the greedy
matching on the entire graphs is no better than a 1/2 + ε approximation, then
after seeing a mere one third of the edges of the graph, the greedy matching is
already a 1/2− ε approximation, so it is already close to maximal.

Two passes, randomized, any order: Assume a bipartite graph (A,B,E) com-
prising a perfect matching. If A′ is a small random subset of A, then, regardless
of the arrival order, the greedy algorithm that constructs a greedy matching
between A′ and B (that is, the greedy algorithm restricted to the edges that
have an endpoint in A′) will find a matching that is near-perfect, that is, almost
every vertex of A′ is matched (see Theorem 2 for a slightly more general version
of this statement). This property of the greedy algorithm may be of independent
interest. Then, in one pass we compute a greedy matching M0 and also via the
greedy algorithm independently and in parallel a matching M1 between a subset
A′ ⊂ A and the B vertices. It turns out that M0 ∪ M1 comprise many length
2 paths that can be completed to 3-augmenting paths by a third matching M2

that we compute in the second pass.

Two passes, deterministic, any order: Again, assume a bipartite graph (A,B,E)
comprising a perfect matching and some integer λ. Add now greedily edges ab to
a set S if the degree of a in S is yet 0, and the degree of b is smaller than λ. This
algorithm computes an incomplete semi-matching with a degree limitation λ on
the B nodes. In the first pass, we run this algorithm in parallel to the greedy
matching algorithm for constructing M0. S replaces the computation of M1. We
will show that many length 2 paths in M0∪S can be completed to 3-augmenting
paths in the second pass via a further greedy matching M2.

Extension to General Graphs. All algorithms presented in this paper can
be generalized to non-bipartite graphs. These generalizations, however, require
more technically involved analyses while the main ideas are already captured in
the bipartite versions. For this reason, and for the sake of a clean presentation, we
only present here the bipartite versions while the algorithms for general graphs
are postponed to the full version of this paper.

When searching for augmenting paths in general graphs, algorithms have to
cope with the fact that a candidate edge for an augmenting path may form
an undesired triangle with the edge to augment and an optimal edge. In this
case, the candidate edge can block the entire augmenting path. McGregor [18]
overcomes this problem by repeatedly sampling bipartite graphs from the input
graph. Such a strategy is not needed for our randomized algorithms. Indeed, one
can show that undesired triangles only appear with small probability allowing
our techniques to still work. For our deterministic two-pass algorithm, a direct
combinatorial argument can be used to bound the number of those bad triangles.

Maximum Matching in Semi-streaming with Few Passes 235

2 Preliminaries

Notations and Definitions. Let G = (A,B,E) be a bipartite graph with
V = A ∪ B, n = |V | vertices and m = |E| edges. For e ∈ E with end points
a ∈ A and b ∈ B, we denote e also by ab. The input G is given as an edge
sequence arriving one by one in some order. Let Π(G) be the set of all edge
sequences of G.

Definition 1 (Semi-Streaming Algorithm). A k-pass semi-streaming algo-
rithm A with processing time per edge t is an algorithm such that, for every
input stream π ∈ Π(G) encoding a graph G with n vertices: (1) A performs in
total at most k passes on stream π, (2) A maintains a memory space of size
O(n polylogn), (3) A has running time O(t) per edge.

For a subset of edges F , we denote by opt(F) a matching of maximum size in
the graph G restricted to edges F . We may write opt(G) for opt(E), and we use
M∗ = opt(G). We say that an algorithm A computes a c-approximation of the
maximum matching if A outputs a matching M such that |M | ≥ c · |opt(G)|. We
consider two potential sources of randomness: from the algorithm and from the
arrival order. Nevertheless, we will always consider worst case against the graph.
For each situation, we relax the notion of c-approximation so that the expected
approximation ratio is c, that is E |M | ≥ c·|opt(G)| where the expectation can be
taken either over the internal random coins of the algorithm, or over all possible
arrival orders.

For simplicity, we assume that A, B and m = |E| are given in advance to our
semi-streaming algorithms. Moreover, for two sets S1, S2 we denote by S1 ⊕ S2

the symmetric difference (S1 \ S2) ∪ (S2 \ S1) of the two sets.
For an input stream π ∈ Π(G), we write π[i] for the i-th edge of π, and

π[i, j] for the subsequence π[i]π[i + 1] . . . π[j]. In this notation, a parenthesis
excludes the smallest or respectively largest element: π(i, j] = π[i + 1, j], and
π[i, j) = π[i, j − 1]. If i, j are real, π[i, j] := π["i#, "j#], and π[i] := π["i#]. Given
a subset S ⊆ V , π|S is the largest subsequence of π such that all edges in π|S
are among vertices in S.

For a set of vertices S and a set of edges F , let S(F) be the subset of vertices
of S covered by F . Furthermore, we use the abbreviation S(F) := S \ S(F).
For SA ⊆ A and SB ⊆ B, we write opt(SA, SB) for opt(G|SA×SB), that is a
maximum matching in the subgraph of G induced by vertices SA ∪ SB.

Maximal Matchings and the Greedy Matching Algorithm. Formally, the
greedy matching algorithm Greedy on stream π is defined as follows: Starting
with an empty matching M , upon arrival of an edge π[i], Greedy inserts π[i]
into M if π[i] does not intersect any edges in M , that is, if V (M) ∩ {π[i]} =
∅. Denote by Greedy(π) the matching M after the stream π has been fully
processed. By maximality, |Greedy(π)| ≥ 1

2 |opt(G)|. Greedy can be seen as a
semi-streaming algorithm for MBM with expected approximation ratio 1

2 and
O(1) processing time per edge. We now state some preliminary properties (proofs
omitted). Lemma 1 shows that a maximal matching that is far from the optimal
matching in value is also far from the optimal matching in Hamming distance.

236 C. Konrad, F. Magniez, and C. Mathieu

Lemma 1. Let M∗ = opt(G), and let M be a maximal matching of G. Then
|M ∩M∗| ≤ 2(|M | − 1

2 |M∗|).

Lemma 2 shows that maximal matchings that are small in size contain many
edges that are 3-augmentable. Given a maximum matching M∗ = opt(G), and
a maximal matching M , we say that an edge e ∈ M is 3-augmentable if the
removal of e from M allows the insertion of two edges f, g from M∗ \M into M .

Lemma 2. Let ε ≥ 0. Let M∗ = opt(G), let M be a maximal matching of G st.
|M | ≤ (12 + ε)|M∗|. Then M contains at least (12 −3ε)|M∗| 3-augmentable edges.

3 One-Pass Algorithm on Random Order

Algorithm. Here is a key observation in the random order setting: if Greedy
performs badly on some input graphG, then most edges of Greedy appear within
the first constant fraction of the stream, see Lemma 4. Our strategy is hence to
run Greedy on a first part of the stream, and then, on the remaining part of the
stream, we focus on searching for 3-augmenting paths.

Let M0 denote the matching computed by Greedy on the first part of the
stream. Assume that Greedy performs badly on the input graphG. Lemma 2 tells
us that almost all of the edges of M0 are 3-augmentable. To find 3-augmenting
paths, in the next part of the stream we run Greedy to compute a matching
M1 between B(M0) and A(M0). The edges in M1 serve as one of the edges of
3-augmenting paths (from the B-side of M0). In Lemma 5, we show that we
find a constant fraction of those. In the last part of the stream, again by the
help of Greedy, we compute a matching M2 that completes the 3-augmenting
paths. Lemma 8 shows that by this strategy we find many 3-augmenting paths.
Then, either a simple Greedy matching performs well on G, or else we can find
many 3-augmenting paths and use them to improve M0: see the main theorem,
Theorem 1 whose proof is deferred to the end of this section.

Algorithm 1. One-pass deterministic bipartite matching algorithm

1: α← 0.4312, β ← 0.7595
2: MG ← Greedy(π)
3: M0 ← Greedy(π[1, αm]), matching obtained by running Greedy on the first
�αm� edges

4: F1 ← complete bipartite graph between B(M0) and A(M0)
5: M1 ← Greedy(F1 ∩ π(αm,βm]), matching obtained by running Greedy on edges
�αm� + 1 to βm that intersect F1

6: A′ ← {a ∈ A | ∃b ∈ B(M1) : ab ∈M0}
7: F2 ← complete bipartite graph between A′ and B(M0)
8: M2 ← Greedy(F2 ∩ π(βm,m]), matching obtained by running Greedy on edges
�βm� + 1 to m that intersect F2

9: M ← matching obtained from M0 augmented by M1 ∪M2

10: return larger of the two matchings MG and M

Maximum Matching in Semi-streaming with Few Passes 237

Our algorithm only uses memory space O(n log n). Indeed, the subsets F1 and
F2 can be compactly represented by two n-bit arrays, and checking if an edge of
π belongs to one of them can be done in time O(1) via that representation.

Theorem 1. Algorithm 1 is a deterministic one-pass semi-streaming algorithm
for MBM with approximation ratio 1

2 + 0.005 against (uniform) random order
for any graph, and can be implemented with O(1) processing time per edge.

Analysis. We use the notations of Algorithm 1. Consider α and β as variables
with 0 ≤ α ≤ 1

2 < β < 1.

Lemma 3. ∀e = ab ∈ E : Pr[a and b /∈ V (M0)] ≤ (1
α − 1)Pr[e ∈ M0].

Proof. Observe: Pr[a and b /∈ V (M0)]+Pr[e ∈ M0] = Pr[a and b /∈ V (M0\{e})],
because the two events on the left hand side are disjoint and their union is the
event on the right hand side.

Consider the following probabilistic argument. Take the execution for a par-
ticular ordering π. Assume that a and b /∈ V (M0 \ {e}) and let t be the arrival
time of e. If we modify the ordering by changing the arrival time of e to some
time t′ ≤ t, then we still have a and b /∈ V (M0 \ {e}). Thus1

Pr[a and b /∈ V (M0 \ {e})] ≤ Pr[a and b /∈ V (M0 \ {e})|e ∈ π[1, αm]].

Now, the right-hand side equals Pr[e ∈ M0|e ∈ π[1, αm]], which simplifies into
Pr[e ∈ M0]/Pr[e ∈ π[1, αm]] since e can only be in M0 if it is one of the first
αm arrivals. The we conclude the Lemma by the random order assumption
Pr[e ∈ π[1, αm]] = α. �

Lemma 4. If Eπ |MG| ≤ (12 + ε)|M∗|, then Eπ |M0| ≥ |M∗|(12 − (1
α − 2)ε).

Proof. Rather than directly analyzing the number of edges |M0|, we analyze the
number of vertices matched byM0, which is equivalent since |V (M0)| = 2(|M0|).

Fix an edge e = ab of M∗. Either e ∈ M0, or at least one of a, b is matched
by M0, or neither a nor b are matched. Summing over all e ∈ M∗ gives

|V (M0)| ≥ 2|M∗ ∩M0|+ |M∗ \M0| −
∑

e=ab∈M∗
χ[a and b /∈ V (M0)],

where χ[X] = 1 if the eventX happens, otherwise χ[X] = 0. Taking expectations
and using Lemma 3,

E
π
(|V (M0)|) ≥ 2E

π
|M∗ ∩M0|+ E

π
|M∗ \M0| − (

1

α
− 1)E

π
|M∗ ∩M0|

= |M∗| − (
1

α
− 2)E

π
|M∗ ∩M0|.

1 Formally, we define a map f from the uniform distribution on all orderings to the
uniform distribution on all orderings such that e ∈ π[1, αm]: if e ∈ π[1, αm] then
f(π) = π and otherwise f(π) is the permutation obtained from π by removing e and
re-inserting it at a position picked uniformly at random in [1, αm].

238 C. Konrad, F. Magniez, and C. Mathieu

Since M0 is just a subset of the edges of MG, using Lemma 1 and linearity of
expectation, Eπ |M∗ ∩M0| ≤ Eπ |M∗ ∩MG| ≤ 2(Eπ |MG| − 1

2 |M∗|) ≤ 2ε|M∗|.
Combining gives the Lemma. �

Lemma 5. Assume that Eπ |MG| ≤ (12 + ε)|M∗|. Then:
Eπ |opt(A(M0), B(M0))| ≥ |M∗|(12 − (1

α + 2)ε).

Proof. The size of a maximum matching between A(M0) and B(M0) is at least
the number of augmenting paths of length 3 in M0 ⊕ M∗. By Lemma 2, in
expectation, the number of augmenting paths of length 3 in MG⊕M∗ is at least
(12 − 3ε)|M∗|. All of those are augmenting paths of length 3 in M0 ⊕M∗, except
for at most |MG| − |M0|. Hence, in expectation, M0 contains (12 − 3ε)|M∗| −
(Eπ |MG| − Eπ |M0|) 3-augmentable edges. Lemma 4 concludes the proof. �

Lemma 6. Eπ |M1| ≥ 1
2 (β − α)(Eπ |opt(A(M0), B(M0))| − 1

1−α).

Proof. Since Greedy computes a maximal matching which is at least half the size
of a maximum matching, Eπ |M1| ≥ 1

2 Eπ |opt(A(M0), B(M0)) ∩ π(αm, βm]|.
By independence between M0 and the ordering within (αm,m], we see that

even if we condition on M0, we still have that π(αm, βm] is a random uniform
subset of π(αm,m]. Thus:

E
π
|opt(A(M0), B(M0)) ∩ π(αm, βm]| = β−α

1−α E
π
|opt(A(M0), B(M0)) ∩ π(αm,m]|.

We use a probabilistic argument similar to but slightly more complicated than
the proof of Lemma 3. We define a map f from the uniform distribution on all
orderings to the uniform distribution on all orderings such that e ∈ π(αm,m]:
if e ∈ π(αm,m] then f(π) = π and otherwise f(π) is the permutation obtained
from π by removing e and re-inserting it at a position picked uniformly at random
in (αm,m]; in the latter case, if this causes an edge f = a′b′, previously arriving
at time "αm#+1, to now arrive at time "αm# and to be added to M0, we define
M ′

0 = M0 \ {f}; in all other cases we define M ′
0 = M0. Thus, if in π we have

e ∈ opt(A(M0), B(M0)), then in f(π) we have e ∈ opt(A(M ′
0), B(M ′

0)). Since
the distribution of f(π) is uniform conditioned on e ∈ π(αm,m]:

Pr[e ∈ opt(A(M ′
0), B(M ′

0)) and e ∈ π(αm,m]]

Pr[e ∈ π(αm,m]]
≥ Pr[e ∈ opt(A(M0), B(M0))],

Using Pr[e ∈ π(αm,m]] = 1− α and summing over e:

Eπ |opt(A(M ′
0), B(M ′

0)) ∩ π(αm,m]| ≥ (1− α)Eπ |opt(A(M0), B(M0))|.

Since M ′
0 and M0 differ by at most one edge, |opt(A(M0), B(M0))| ≥

|opt(A(M ′
0), B(M ′

0))| − 1, and the Lemma follows. �

Lemma 7. If E
π
|MG| ≤ (

1

2
+ε)|M∗|, then E

π
|opt(A′, B(M0)| ≥ E

π
|M1|−4ε|M∗|.

Proof. |opt(A′, B(M0)| is at least |M1| minus the number of edges of M0 that
are not 3-augmentable. Since M0 is a subset of MG, the latter term is bounded

Maximum Matching in Semi-streaming with Few Passes 239

by the number of edges of MG that are not 3-augmentable, which by Lemma 2
is in expectation at most (12 + ε)|M∗| − (12 − 3ε)|M∗| = 4ε|M∗|. �

Lemma 8. Eπ |M2| ≥ 1
2 ((1 − β)Eπ |opt(A′, B(M0))| − 1).

The proof of Lemma 8 has a similar flavor as the proofs of Lemmas 3 and 6
and it uses a similar probabilistic argument (proof omitted). We now present
the proof of the main theorem, Theorem 1.

Proof (of Theorem 1). Assume that Eπ |MG| ≤ (12 + ε)|M∗|. By construction,
every e ∈ M2 completes a 3−augmenting path, hence |M | ≥ |M0| + |M2|. In
Lemma 4 we show that Eπ |M0| ≥ |M∗|(12 − (1

α −2)ε). By Lemmas 8 and 7, |M2|
can be related to |M1|:

E
π
|M2| ≥

1

2
(1− β)E

π
|opt(A′, B(M0))| −

1

2
≥ 1

2
(1− β)(E

π
|M1| − 4ε|M∗|)− 1

2
.

By Lemmas 6 and 5, |M1| can be related to |M∗|:

E
π
|M1| ≥ 1

2 (β − α)E
π
|opt(A(M0), B(M0)| −O(1)

≥ 1
2 (β − α)(|M∗|(1

2
− (

1

α
+ 2)ε))−O(1).

Combining,
E
π
|M | ≥ |M∗|(12 − (1

α − 2)ε+ 1
2 (1 − β)(12 (β − α)(12 − (1

α + 2)ε)− 4ε))−O(1).

The expected value of the output of the Algorithm is at least minεmax{(12 +
ε)|M∗|,Eπ |M |}. We set the right hand side of the above Equation equal to
(12 + ε)|M∗|. By a numerical search we optimize parameters α, β. Setting α =
0.4312 and β = 0.7595, we obtain ε ≈ 0.005 which proves the Theorem. �

4 Randomized Two-Pass Algorithm on Any Order

The algorithm relies on a property of the Greedy algorithm that we discuss
before the presentation of the algorithm. This property may be of independent
interest.

Matching Many Vertices of a Random Subset of A. For a fixed parameter
0 < p ≤ 1, consider an independent random sample of vertices A′ ⊆ A such that
Pr[a ∈ A′] = p, for all a ∈ A. Theorem 2 (proof omitted) shows that the greedy
algorithm restricted to the edges with an endpoint in A′ will output a matching
of expected approximation ratio p/(1 + p), compared to a maximum matching
opt(G) over the full graph G. Since, in expectation, the size of A′ is p|A|, one
can roughly say that a fraction of 1/(1+ p) of vertices in |A′| has been matched.

Theorem 2. Let 0 < p ≤ 1, let G = (A,B,E) be a bipartite graph. Let A′ be an
independent random sample A′ ⊂ A such that Pr[a ∈ A′] = p, for all a ∈ A. Let
F be the complete bipartite graph between A′ and B Then for any input stream
π ∈ Π(G): EA′ |Greedy(F ∩ π)| ≥ p

1+p |opt(G)|.

240 C. Konrad, F. Magniez, and C. Mathieu

Application: a Randomized Two-Pass Algorithm. Based on Theorem 2,
we design our randomized two-pass algorithm. Assume that Greedy(π) returns
a matching that is close to a 1

2 approximation. In order to apply Theorem 2,
we pick an independent random sample A′ ⊆ A such that Pr[a ∈ A′] = p for
all a. In a first pass, our algorithm computes a Greedy matching M0 of G, and
a Greedy matching M ′ between vertices of A′ and B. M ′ then contains some
edges that form parts of 3-augmenting paths for M0.Let M1 ⊂ M ′ be the set of
those edges. It remains to complete these length 2 paths M0 ∪M1 in a second
pass by a further Greedy matchingM2. Theorem 3 states then that if Greedy(π)
is close to a 1

2 approximation, then we find many 3-augmenting paths.

Algorithm 2. Two-pass randomized bipartite matching algorithm

1: Let p← √
2− 1.

2: Take an independent random sample A′ ⊆ A st. Pr[a ∈ A′] = p, for all a ∈ A
3: Let F1 be the set of edges with one endpoint in A′.
4: First pass: M0 ← Greedy(π) and M ′ ← Greedy(F1 ∩ π)
5: M1 ← {e ∈M ′ | e goes between B(M0) and A(M0)}
6: A2 ← {a ∈ A(M0) : ∃b, c : ab ∈M0 and bc ∈M1}.
7: Let F2 ← {da : d ∈ B(M0) and a ∈ A2}.
8: Second pass: M2 ← Greedy(F2 ∩ π)
9: Augment M0 by edges in M1 and M2 and store it in M
10: return the resulting matching M

Theorem 3. Algorithm 2 is a randomized two-pass semi-streaming algorithm
for MBM with expected approximation ratio 1

2 + 0.019 in expectation over its
internal random coin flips for any graph and any arrival order, and can be im-
plemented with O(1) processing time per edge.

Proof. By construction, each edge in M2 is part of a 3-augmenting path, hence
the output has size: |M | = |M0| + |M2|. Define ε to be such that |M0| = (12 +
ε)|opt(G)|. Since M2 is a maximal matching of F2, we have |M2| ≥ 1

2 |opt(F2)|.
Let M∗ be a maximum matching of G. Then |opt(F2)| is greater than or equal
to the number of edges ab of M0 such that there exists an edge bc of M1 and an
edge da of M∗ that altogether form a 3-augmenting path of M0:

|opt(F2)| ≥ |{ab ∈ M0 | ∃c : bc ∈ M1 and ∃d : da ∈ M∗}|
≥ |{ab ∈ M0 | ∃c : bc ∈ M1}| − |{ab ∈ M0 | ab not 3-augmentable}|.

Lemma 2 gives |{ab ∈ M0 | ab is not 3-augmentable with M∗}| ≤ 4ε|opt(G)|. It
remains to bound |{ab ∈ M0 | ∃c : bc ∈ M1}| from below. By definition of M ′

and of M1 ⊆ M ′, and by maximality of M0,

|{ab ∈ M0 | ∃c : bc ∈ M1}| = |M ′| − |{ab ∈ M ′ | a ∈ A(M0)}|
≥ |M ′| − |A(M0) ∩ A′|.

Taking expectations, by Theorem 2 and by independence of M0 from A′:

E
A′

|M ′| − E
A′

|A(M0) ∩A′| ≥ p

1 + p
|opt(G)| − p(

1

2
+ ε)|opt(G)|.

Maximum Matching in Semi-streaming with Few Passes 241

Combining:

E
A′

|M | ≥ (
1

2
+ ε)|opt(G)|+ 1

2

(
|opt(G)|p(1

1 + p
− 1

2
− ε)− 4ε|opt(G)|.

)
For ε small, the right hand side is maximized for p =

√
2 − 1. Then ε ≈ 0.019

minimizes max{|M |, |M0|} which proves the theorem.

5 Deterministic Two-Pass Algorithm on Any Order

The deterministic two-pass algorithm, Algorithm 4, follows the same line as its
randomized version, Algorithm 2. In a first pass we compute a Greedy matching
M0 and some additional edges S via Algorithm 3. If M0 is not much more than
a 1

2 -approximation then S contains edges that serve as parts of 3-augmenting
paths. These are completed via a Greedy matching in the second pass.

The way we compute the edge set S is now different. Before, S was a matching
M ′ between B and a random subset A′ of A. Now, S is not a matching but a
relaxation of matchings as follows. Given an integer λ ≥ 2, an incomplete λ-
bounded semi-matching S of a bipartite graph G = (A,B,E) is a subset S ⊆ E
such that degS(a) ≤ 1 and degS(b) ≤ λ, for all a ∈ A and b ∈ B. This notion
is closely related to semi-matchings. A semi-matching matches all A vertices
to B vertices without limitations on the degree of a B vertex. However, since
we require that the B vertices have constant degree, we loosen the condition
that all A vertices need to be matched. In Lemma 9 (proof omitted) we show
that Algorithm 3, a straightforward greedy algorithm, computes an incomplete
λ-bounded semi-matching that covers at least λ

λ+1 |M∗| vertices of A.

Lemma 9. Let S = SEMI(λ) be the output of Algorithm 3 for some λ ≥ 2.
Then S is an incomplete λ-bounded semi-matching such that |A(S)| ≥ λ

λ+1 |M∗|.

Algorithm 3. incomplete λ bounded semi-matching SEMI(λ)

S ← ∅
while ∃ edge ab in stream
if degS(a) = 0 and degS(b) ≤ λ− 1 then S ← S ∪ {ab}

return S

Now, assume that the greedy matching algorithm computes aM0 close to a 1
2 -

approximation. Then, for λ ≥ 2 there are many A vertices that are not matched
in M0 but are matched in S. Edges incident to those in S are candidates for
the construction of 3-augmenting paths. This argument can be made rigorous,
leading to Algorithm 4 where λ is set to 3, in Theorem 4 (proof omitted).

Theorem 4. Algorithm 4 is a deterministic two-pass semi-streaming algorithm
for MBM with approximation ratio 1

2 + 0.019 for any graph and any arrival
order and can be implemented with O(1) processing time per edge.

242 C. Konrad, F. Magniez, and C. Mathieu

Algorithm 4. two-pass deterministic bipartite matching algorithm

First pass: M0 ← Greedy(π) and S ← SEMI(3)
M1 ← {e ∈ S | e is between B(M0) and A(M0)}
A2 ← {a ∈ A(M0) | ∃bc : ab ∈M0 and bc ∈M1}
F ← {e | e goes between A2 and B(M0)}
Second pass: M2 ← Greedy(π ∩ F)
Augment M0 by edges in M1 and M2 and store it in M
return M

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. J. of Computer and System Sciences 58(1), 137–147 (1999)

2. Feigenbaum, J., Kannan, S., Mcgregor, A., Suri, S., Zhang, J.: Graph distances in
the streaming model: the value of space. In: SODA, pp. 745–754 (2005)

3. Muthukrishnan, S.: Data streams: Algorithms and applications. In: Foundations
and Trends in Theoretical Computer Science. Now Publishers Inc. (2005)

4. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. Theoretical Computer Science 348(2-3), 207–216 (2005)

5. Ahn,K.J.,Guha,S.:LinearProgramming in theSemi-streamingModelwithApplica-
tion to theMaximumMatching Problem. In: Aceto, L., Henzinger,M., Sgall, J. (eds.)
ICALP 2011, Part II. LNCS, vol. 6756, pp. 526–538. Springer, Heidelberg (2011)

6. Eggert, S., Kliemann, L., Munstermann, P., Srivastav, A.: Bipartite matching in
the semi-streaming model. Algorithmica 63(1-2), 490–508 (2012)

7. Zelke, M.: Weighted matching in the semi-streaming model. Algorithmica 62(1-2),
1–20 (2012)

8. Epstein, L., Levin, A., Mestre, J., Segev, D.: Improved approximation guarantees
for weighted matching in the semi-streaming model. In: STACS, pp. 347–358 (2010)

9. Goel, A., Kapralov, M., Khanna, S.: On the communication and streaming com-
plexity of maximum bipartite matching. In: SODA (2012)

10. Dyer, M., Frieze, A.: Randomized greedy matching. Random Structures & Algo-
rithms 2(1), 29–46 (1991)

11. Munro, J., Paterson, M.: Selection and sorting with limited storage. Theoretical
Computer Science 12, 211–219 (1980)

12. Guha, S., McGregor, A.: Stream order and order statistics: Quantile estimation in
random-order streams. SIAM J. of Computing 38(1), 2044–2059 (2009)

13. Karp, R., Vazirani, U., Vazirani, V.: An optimal online bipartite matching algo-
rithm. In: STOC, pp. 352–358 (1990)

14. Karande, C., Mehta, A., Tripathi, P.: Online bipartite matching with unknown
distributions. In: STOC, pp. 587–596 (2011)

15. Mahdian, M., Yan, Q.: Online bipartite matching with random arrivals: an ap-
proach based on strongly factor-revealing LPs. In: STOC, pp. 597–605 (2011)

16. Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local im-
provements. In: FOCS, pp. 327–336 (2008)

17. Yoshida, Y., Yamamoto, M., Ito, H.: An improved constant-time approximation
algorithm for maximum matchings. In: STOC, pp. 225–234 (2009)

18. McGregor, A.: Finding Graph Matchings in Data Streams. In: Chekuri, C., Jansen,
K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX and RANDOM 2005. LNCS,
vol. 3624, pp. 170–181. Springer, Heidelberg (2005)

Improved Inapproximability for TSP

Michael Lampis�

KTH Royal Institue of Technology
mlampis@kth.se

Abstract. The Traveling Salesman Problem is one of the most studied
problems in computational complexity and its approximability has been
a long standing open question. Currently, the best known inapproxima-
bility threshold known is 220

219
due to Papadimitriou and Vempala. Here,

using an essentially different construction and also relying on the work
of Berman and Karpinski on bounded occurrence CSPs, we give an al-
ternative and simpler inapproximability proof which improves the bound
to 185

184
.

1 Introduction

The Traveling Salesman Problem (TSP) is one of the most widely studied algo-
rithmic problems and deriving optimal approximability results for it has been a
long-standing question. Recently, there has been much progress in the algorith-
mic front, after more than thirty years, at least in the important special case
where the instance metric is derived from an unweighted graph, often referred to
as Graphic TSP. The 3

2 -approximation algorithm by Christofides was the best
known until Gharan et al. gave a slight improvement [6] for Graphic TSP. Then
an algorithm with approximation ratio 1.461 was given by Mömke and Svensson
[10]. With improved analysis on their algorithm Mucha obtained a ratio of 13

9
[11], while the best currently known algorithm has ratio 1.4 and is due to Sebö
and Vygen [16].

Nevertheless, there is still a huge gap between the guarantee of the best ap-
proximation algorithms we know and the best inapproximability results. The
TSP was first shown MAXSNP-hard in [15], where no explicit inapproximability
constant was derived. The work of Engerbretsen [5] and Böckenhauer et al. [4]
gave inapproximability thresholds of 5381

5380 and 3813
3812 respectively. Later, this was

improved to 220
219 in [14] by Papadimitriou and Vempala1. No further progress

has been made on the inapproximability threshold of this problem in the more
than ten years since [13].

Overview: Our main objective in this paper is to give a different, less compli-
cated inapproximability proof for TSP than the one given in [13,14]. The proof
of [14] is very much optimized to achieve a good constant: the authors reduce

� Research supported by ERC Grant 226203.
1 The reduction of [14] was first presented in [13], which (erroneously) claimed a better

bound.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 243–253, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

244 M. Lampis

directly from MAX-E3-LIN2, a constraint satisfaction problem (CSP) for which
optimal inapproximability results are known, due to Håstad [7]. They take care
to avoid introducing extra gadgets for the variables, using only gadgets that en-
code the equations. Finally they define their own custom expander-like notion on
graphs to ensure consistency between tours and assignments. Then the reduction
is performed in essentially one step.

Here on the other hand we take the opposite approach, choosing simplicity
over optimization. We also start from MAX-E3-LIN2 but go through two inter-
mediate CSPs. The first step in our reduction gives a set of equations where
each variable appears at most five times (this property will come in handy in
the end when proving consistency between tours and assignments). In this step,
rather than introducing something new we rely heavily on machinery developed
by Berman and Karpinski to prove inapproximability for bounded occurrence
CSPs [1,2,3]. As a second step we reduce to MAX-1-in-3-SAT. The motivation
is that the 1-in-3 predicate nicely corresponds to the objectives of TSP, since
we represent clauses by gadgets and the most economical solution will visit all
gadgets once but not more than once. Another way to view this step is that we
use MAX-1-in-3-SAT as an aid to design a TSP gadget for parity. Finally, we
give a reduction from MAX-1-in-3-SAT to TSP.

This approach is (at least arguably) simpler than the approach of [14], since
some of our arguments can be broken down into independent pieces, arguing
about the inapproximability of intermediate, specially constructed CSPs. We
also benefit from re-using out-of-the box the amplifier construction of [3]. In-
terestingly, putting everything together we end up obtaining a slightly better
constant than the one currently known, implying that there may still be some
room for further improvement. Though we are still a long way from an optimal
inapproximability result, our results show that there may still be hope for bet-
ter bounds with existing tools. Exploring how far these techniques can take us
with respect to TSP (and also its variants, see for example [8]) may thus be an
interesting question.

The main result of this paper is given below and it follows directly from the
construction in section 4.1 and Lemmata 1,2 2.

Theorem 1. For all ε > 0 there is no polynomial-time (92.391.8 − ε)-approximation
algorithm for TSP, unless P=NP.

2 Preliminaries

In the metric Traveling Salesman Problem (TSP) we are given as input an edge-
weighted undirected graph G(V,E). Let d(u, v), for u, v ∈ V denote the shortest-
path distance from u, v. The objective is to find an ordering v1, v2, . . . , vn of the
vertices such that

∑n−1
i=1 d(vi, vi+1) + d(vn, v1) is minimized.

2 Due to space constraints, some proofs have been omitted. A full version of this paper
can be found in [9].

Improved Inapproximability for TSP 245

Another, equivalent view of the TSP is the following: given an edge-weighted
graph G(V,E) we seek to find a multi-set ET consisting of edges from E such
that the graph induced by ET spans V , is Eulerian and the sum of the weights
of all edges in ET is minimized. It is not hard to see that the two formulations
are equivalent. We will make use of this second formulation because it makes
some arguments on our construction easier.

We generalize the Eulerian multi-graph formulation as follows: a multi-set
ET of edges from E is a quasi-tour iff the degrees of all vertices in the multi-
graph GT (V,ET) are even. The cost of a quasi-tour is defined as

∑
e∈ET

w(e) +
2(c(GT)− 1), where c(GT) denotes the number of connected components of the
multi-graph. It is not hard to see that a TSP tour can also be considered a quasi-
tour with the same cost (since for a normal tour c(GT) = 1), but in a weighted
graph there could potentially be a quasi-tour that is cheaper than the optimal
tour.

2.1 Forced Edges

As mentioned, we will view TSP as the problem of selecting edges from E to
form a minimum-weight multi-set ET that makes the graph Eulerian. It is easy
to see that no edge will be selected more than twice, since if an edge is selected
three times we can remove two copies of it from ET and the graph will still be
Eulerian while we have improved the cost.

In our construction we would like to be able to stipulate that some edges are
to be used at least once in any valid tour. We can achieve this with the following
trick: suppose that there is an edge (u, v) with weight w that we want to force
into every tour. We sub-divide this edge a large number of times, say p− 1, that
is, we remove the edge and replace it with a path of p edges going through new
vertices of degree two. We then redistribute the original edge’s weight to the p
newly formed edges, so that each has weight w/p. Now, any tour that fails to use
two or more of the newly formed edges must be disconnected. Any tour that fails
to use exactly one of them can be augmented by adding two copies of the unused
edge. This only increases the cost by 2w/p, which can be made arbitrarily small
by giving p an appropriately large value. Therefore, we may assume without loss
of generality that in our construction we can force some edges to be used at least
once. Note that these arguments apply also to quasi-tours.

3 Intermediate CSPs

In this section we will design and prove inapproximability for a family of in-
stances of MAX-1-in-3-SAT with some special structure. We will use these
instances (and their structure) in the next section where we reduce from MAX-
1-in-3-SAT to TSP.

Let I1 be a system of m linear equations mod 2, each consisting of exactly
three variables. Let n be the total number of variables appearing in I1 and let
the variables be denoted as xi, i ∈ [n]. Let B be the maximum number of times

246 M. Lampis

any variable appears. We will make use of the following seminal result due to
Håstad:

Theorem 2 ([7])
For all ε > 0 there exists a B such that given an instance I1 as above it is NP-

hard to decide if there is an assignment that satisfies at least (1− ε)m equations
or all assignment satisfy at most (12 + ε)m equations.

3.1 Bounded Occurences

In I1 each variable appears at most a constant number of times B, where B
depends on ε. We would like to reduce the maximum number of occurrences of
each variable to a small absolute constant. For this, one typically uses some kind
of expander or amplifier construction. Here we will rely on a construction due
to Berman and Karpinski that reduces the number of occurrences to 5.

Theorem 3 ([3])
Consider the family of bipartite graphs G(L,R,E), where |L| = B, |R| =

0.8B, all vertices of L have degree 4, all vertices of R have degree 5 and B is a
sufficiently large multiple of 5. If we select uniformly at random a graph from this
family then with high probability it has the following property: for any S ⊆ L∪R
such that |S ∩L| ≤ |L|

2 the number of edges in E with exactly one endpoint in S
is at least |S ∩ L|.

We now use the above construction to construct a system of equations where
each variable appears exactly 5 times. First, we may assume that in I1 the
number of appearances of each variable is a multiple of 5 (otherwise, repeat all
equations five times). Also, by repeating all the equations we can make sure that
all variables appear at least B′ times, where B′ is a sufficiently large number to
make Theorem 3 hold.

For each variable xi in I1 we introduce the variables x(i,j), j ∈ [d(i)] and
y(i,j), j ∈ [0.8d(i)] where d(i) is the number of appearances of xi in the original
instance. We call Xi = {x(i,j) | j ∈ [d(i)]} ∪ {y(i,j) | j ∈ [0.8d(i)]} the cloud
that corresponds to xi. Construct a bipartite graph with the property described
in Theorem 3 with L = [d(i)], R = [0.8d(i)] (since d(i) < B is a constant that
depends only on ε this can be done in constant time by brute force). For each edge
(j, k) ∈ E introduce the equation x(i,j) + y(i,k) = 1. Finally, for each equation
xi1 + xi2 + xi3 = b in I1, where this is the j1-th appearance of xi1 , the j2-th
appearance of xi2 and the j3-th appearance of xi3 replace it with the equation
x(i1,j1) + x(i2,j2) + x(i3,j3) = b.

Denote this instance by I2 and we have |I2| = 13m, with 12m equations having
size 2. A consistent assignment to a cloud Xi is an assignment that sets all x(i,j)
to b and all y(i,j) to 1− b. By standard arguments using the graph of Theorem 3
we can show that an optimal assignment to I2 is consistent (in each inconsistent
cloud let S be the vertices with the minority assignment; flipping all variables
of S cannot make the solution worse). From this it follows that it is NP-hard to

Improved Inapproximability for TSP 247

distinguish if the maximum number of satisfiable equations is at least (13− ε)m
or at most (12.5 + ε)m.

3.2 MAX-1-in-3-SAT

In the MAX-1-in-3-SAT problem we are given a collection of clauses (li∨lj∨lk),
each consisting of at most three literals, where each literal is either a variable
or its negation. A clause is satisfied by a truth assighment if exactly one of its
literals is set to True. The problem is to find an assignment that satisfies the
maximum number of clauses.

We would like to produce a MAX-1-in-3-SAT instance from I2. Observe that
it is easy to turn the size two equations x(i,j)+y(i,k) = 1 to the equivalent clauses
(x(i,j) ∨ y(i,k)). We only need to worry about the m equations of size three.

If the k-th size-three equation of I2 is x(i1,j1) + x(i2,j2) + x(i3,j3) = 1 we
introduce three new auxilliary variables a(k,i), i ∈ [3] and replace the equation
with the three clauses (x(i1,j1)∨a(k,1)∨a(k,2)), (x(i2,j2)∨a(k,2)∨a(k,3)), (x(i3,j3)∨
a(k,1) ∨ a(k,3)). If the right-hand-side of the equation is 0 then we add the same
three clauses except we negate x(i1,j1) in the first clause. We call these three
clauses the cluster that corresponds to the k-th equation.

It is not hard to see that if we fix an assignment to x(i1,j1), x(i2,j2), x(i3,j3)
that satisfies the k-th equation of I2 then there exists an assignment to
a(k,1), a(k,2), a(k,3) that satisfies the whole cluster. Otherwise, at most two of
the clauses of the cluster can be satisfied. Furthermore, in this case there exist
three different assignments to the auxilliary variables that satisfy two clauses
and each leaves a different clause unsatisfied.

From now on, we will denote by M the set of (main) variables x(i,j), by C the
set of (checker) variables y(i,j) and by A the set of (auxilliary) variables a(k,i).
Call the instance of MAX-1-in-3-SAT we have constructed I3. Note that it
consists of 15m clauses and 8.4m variables.

4 TSP

4.1 Construction

We now describe a construction that encodes I3 into a TSP instance G(V,E).
Rather than viewing this as a generic construction from MAX-1-in-3-SAT to
TSP, we will at times need to use facts that stem from the special structure of
I3. In particular, the fact that variables can be partitioned into sets M,C,A,
such that variables in M ∪C appear five times and variables in A appear twice;
the fact that most clauses have size two and they involve one positive variable
from M and one positive variable from C; and also the fact that clauses of size
three come in clusters as described in the construction of I3.

As mentioned, we assume that in the graph G(V,E) we may include some
forced edges, that is, edges that have to be used at least once in any tour.
The graph includes a central vertex, which we will call s. For each variable in

248 M. Lampis

Fig. 1. Example construction for the clause (x∨y)∧(x∨z). Forced edges are denoted by
dashed lines. There are two terminals for each variable and two gadgets that represent
the two clauses. The True edges incident on the terminals are re-routed through the
gadgets where each variable appears positive. The False edges connect the terminals
directly since no variable appears anywhere negated.

x ∈ M ∪C ∪A we introduce two new vertices named xL and xR, which we will
call the left and right terminal associated with x. We add a forced edge from each
terminal to s. For terminals that correspond to variables in M ∪C this edge has
weight 7/4, while for variables in A it has weight 1/2. We also add two (parallel)
non-forced edges between each pair of terminals representing the same variable,
each having a weight of 1 (we will later break down at least one from each pair
of these, so the graph we will obtain in the end will be simple). Informally, these
two edges encode an assignment to each variable: we arbitrarily label one the
True edge and the other the False edge, the idea being that a tour should pick
exactly one of these for each variable and that will give us an assignment. We will
re-route these edges through the clause gadgets as we introduce them, depending
on whether each variable appears in a clause positive or negative.

Now, we add some gadgets to encode the size-two clauses of I3. Let (x(i,j1) ∨
y(i,j2)) be a clause of I3 and suppose that this is the k1-th clause that contains
x(i,j1) and the k2-th clause that contains y(i,j2), k1, k2 ∈ [5]. Then we add two
new vertices to the graph, call them xk1(i,j1) and yk2(i,j2). Add two forced edges
between them, each of weight 3/2 (recall that forced edges represent long paths,
so these are not really parallel edges). Finally, re-route the True edges incident
on xL(i,j1) and yL(i,j2) through xk1(i,j1) and yk2(i,j2) respectively. More precisely, if the
True edge incident on xL(i,j1) connects it to some other vertex u, remove that
edge from the graph and add an edge from xL(i,j1) to xk1(i,j1) and an edge from
xk1(i,j1) to u. All these edges have weight one and are non-forced (see Figure 1).

We use a similar gadget for clauses of size three. Consider a cluster (x(i1,j1) ∨
a(k,1) ∨ a(k,2)), (x(i2,j2) ∨ a(k,2) ∨ a(k,3)), (x(i3,j3) ∨ a(k,1) ∨ a(k,3)) and suppose for
simplicity that this is the fifth appearance for all the main variables of the clus-
ter. Then we add the new vertices x5(i1,j1), x

5
(i2,j2)

, x5(i3,j3) and also the vertices
a1(k,1), a

2
(k,1), a

1
(k,2), a

2
(k,2) and a1(k,3), a

2
(k,3). To encode the first clause we add two

forced edges of weight 5/4, one from x5(i1,j1) to a1(k,1) and one from x5(i1,j1) to

Improved Inapproximability for TSP 249

a1(k,2). We also add a forced edge of weight 1 from a1(k,1) to a1(k,2), thus making
a triangle with the forced edges (see Figure 2). We re-route the True edge from
aL(k,1) through a1(k,1) and a2(k,1). We do similarly for the other two auxilliary vari-
ables and the main variables. Finally, for a cluster where x(i1,j1) is negated, we
use the same construction except that rather than re-routing the True edge that
is incident on xL(i1,j1) we re-route the False edge. This completes the construction.

Fig. 2. Example construction fragment for the cluster (x1 ∨ a1 ∨ a2)∧ (x2 ∨ a2 ∨ a3)∧
(x3 ∨ a1 ∨ a3). The False edges which connect each pair of terminals and the forced
edges that connect terminals to s are not shown.

4.2 From Assignment to Tour

Let us now prove one direction of the reduction and in the process also give some
intuition about the construction. Call the graph we have constructed G(V,E).

Lemma 1. If there exists an assignment to the variables of I3 that leaves at most
k equations unsatisfied, then there is a tour of G with cost at most T = L + k,
where L = 91.8m.

Proof. Observe that by construction we may assume that all the unsatisfied
clauses of I3 are in the clusters and that at most one clause in each cluster is
unsatisfied, otherwise we can obtain a better assignment. Also, if an unsatisfied
clause has all literals set to False we can flip the value of one of the auxilliary
variables without increasing the number of violated clauses. Thus, we may as-
sume that all clauses have a True literal. Also, we may assume that no clause
has all literals set to True: suppose that a clause does, then both auxilliary vari-
ables of the clause are True. We set them both to False, gaining one clause. If
this causes the two other clauses of the cluster to become unsatisfied, set the
remaining auxilliary variable to True. We conclude that all clauses have either
one or two True literals.

Our tour uses all forced edges exactly once. For each variable x set to True
in the assignment the tour selects the True edge incident on the terminal corre-
sponding to x. If the edge has been re-routed all its pieces are selected, so that
we have selected edges that make up a path from xL to xR. Otherwise, if x is
set to False in the assignment the tour selects the corresponding False path.

250 M. Lampis

Observe that this is a valid quasi-tour because all vertices have even degree
(for each terminal we have selected the forced edge plus one more edge, for
gadget vertices we have selected the two forced edges and possibly the two edges
through which True or False was re-routed). Also, observe that the tour must be
connected, because each clause contains a True literal, therefore for each gadget
two of its external edges have been selected and they are part of a path that
leads to the terminals.

The cost of the tour is at most F +N +M +k, where F is the total cost of all
forced edges in the graph and N,M are the total number of variables and clauses
respectively in I3. To see this, notice that there are 2N terminals, and there is
one edge incident on each and there are M clause gadgets, M − k of which have
two selected edges incident on them and k of which have four. Summing up, this
gives 2N + 2M + 2k, but then each unit-weight edge has been counted twice,
meaning that the non-forced edges have a total cost of N +M + k.

Finally, we have N = 8.4m, M = 15m and F = 3 × 12m + 7
2 × 3m + 7

2 ×
5.4m + 1 × 3m = 68.4m, where the terms are respectively the cost of size-two
clause gadgets, the cost of size-three clause gadgets, the cost of edges connecting
terminals to s for the main variables and for the auxilliary variables. We have
F +N +M = 91.8m. ��

4.3 From Tour to Assignment

We would like now to prove the converse of Lemma 1, namely that if a tour of
cost L + k exists then we can find an assignment that leaves at most k clauses
unsatisfied. Let us first give some high-level intuition and in the process justify
the weights we have selected in our construction.

Informally, we could start from a simple base case: suppose that we have a
tour such that all edges of G are used at most once. It is not hard to see that this
then corresponds to an assignment, as in the proof of Lemma 1. So, the problem
is how to avoid tours that may use some edges twice.

To this end, we first give some local improvement arguments that make sure
that the number of problematic edges, which are used twice, is limited. However,
arguments like these can only take us so far, and we would like to avoid having
too much case analysis.

We therefore try to isolate the problem. For variables in M ∪ C which the
tour treats honestly, that is, variables which are not involved with edges used
twice, we directly obtain an assignment from the tour. For the other variables
in M ∪ C we pick a random value and then extend the whole assignment to A
in an optimal way. We want to show that the expected number of unsatisfied
clauses is at most k.

The first point here is that if a clause containing only honest variables turns
out to be violated, the tour must also be paying an extra cost for it. The difficulty
is therefore concentrated on clauses with dishonest variables.

By using some edges twice the tour is paying some cost on top of what is
accounted for in L. We would like to show that this extra cost is larger than the
number of clauses violated by the assignment. It is helpful to think here that it

Improved Inapproximability for TSP 251

is sufficient to show that the tour pays an additional cost of 5
2 for each dishonest

variable, since main variables appear 5 times.
A crucial point now is that, by a simple parity argument, there has to be an

even number of violations (that is, edges used twice) for each variable (Lemma
4). This explains the weights we have picked for the forced edges in size-three
gadgets (54) and for edges connecting terminals to s (74 = 5

4 +
1
2 or 5

4 extra to the
cost already included in L for fixing the parity of the terminal vertex). Two such
violations give enough extra cost to pay for the expected number of unsatisfied
clauses containing the variable.

At this point, we could also set the weights of forced edges in size-two gad-
gets to 5

2 , which would be split among the two dishonest variables giving 5
4 to

each. Then, any two violations would have enough additional cost to pay for the
expected unsatisfied clauses. However, we are slightly more careful here: rather
than setting all dishonest variables in M ∪C independently at random, we pick a
random but consistent assignment for each cloud. This ensures that all size-two
clauses with violations will be satisfied. Thus, it is sufficient for violations in them
to have a cost of 3

2 : the amount "paid" to each variable is now 3
4 = 5

4 − 1
2 , but

the expected number of unsatisfied clauses with this variable is also decreased
by 1

2 since one clause is surely satisfied.

Due to space constraints we provide here only a sketch of the rest of the proof.
Recall that if a tour of a certain cost exists, then there exists also a quasi-tour
of the same cost. It suffices then to prove the following:

Lemma 2. If there exists a quasi-tour of G with cost at most L + k then
there exists an assignment to the variables of I3 that leaves at most k clauses
unsatisfied.

In order to prove Lemma 2 it is helpful to first make some easy observations.
First, all (non-forced) edges of weight one are used at most once. Second, in
each gadget there is at most one forced edge that is used twice. Third, for each
variable x, at least one of the forced edges that connect xL, xR to s is used
exactly once.

Given a tour ET , we will say that a variable x is honestly traversed in that
tour if all the forced edges that involve it are used exactly once (this includes
the forced edges incident on xL, xR and xi, i ∈ [5]).

Let us now give two more useful facts.

Lemma 3. There exists an optimal tour where all forced edges between two dif-
ferent vertices that correspond to two variables in A are used exactly once.

Lemma 4. In an optimal tour, if a variable is dishonest then it must be dis-
honest twice. More precisely, the number of forced edges that involve the variable
(either inside gadgets or connecting terminals to s) and are used twice must be
even.

252 M. Lampis

Observe that it follows from Lemmata 3,4 that if all the main variables involved
in a cluster are honest then the auxilliary variables of that cluster are also honest.
This holds because if the main variables are honest then by Lemma 3 no forced
edge inside the gadgets of the cluster is used twice, so by Lemma 4 and the fact
that at least one of the forced edges incident on the terminals is used once, the
auxilliary variables are honest.

We would like now to be able to extract a good assignment even if a tour is
not honest, thus indirectly proving that honest tours are optimal. This is done
in the (omitted) proof of Lemma 2 by the random assignment method we have
already sketched.

5 Conclusions

We have given an alternative and (we believe) simpler inapproximability proof
for TSP, also modestly improving the known bound. We believe that the ap-
proach followed here where the hardness proof goes explicitly through bounded
occurrence CSPs is more promising than the somewhat ad-hoc method of [14],
not only because it is easier to understand but also because we stand to gain
almost "automatically" from improvements in our understanding of the inap-
proximability of bounded occurrence CSPs. In particular, though we used the
5-regular amplifiers from [3], any such amplifier would work essentially "out of
the box", and any improved construction could imply an improvement in our
bound. Nevertheless, the distance between the upper and lower bounds on the
approximability of TSP remains quite large and it seems that some major new
idea will be needed to close it.

References

1. Berman, P., Karpinski, M.: On Some Tighter Inapproximability Results (Extended
Abstract). In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999.
LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999)

2. Berman, P., Karpinski, M.: Efficient amplifiers and bounded degree optimization.
Electronic Colloquium on Computational Complexity (ECCC) 8(53) (2001)

3. Berman, P., Karpinski, M.: Improved approximation lower bounds on small
occurrence optimization. Electronic Colloquium on Computational Complexity
(ECCC) 10(008) (2003)

4. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: An Im-
proved Lower Bound on the Approximability of Metric TSP and Approximation
Algorithms for the TSP with Sharpened Triangle Inequality. In: Reichel, H., Tison,
S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 382–394. Springer, Heidelberg (2000)

5. Engebretsen, L.: An explicit lower bound for TSP with distances one and two.
Algorithmica 35(4), 301–318 (2003)

6. Gharan, S.O., Saberi, A., Singh, M.: A randomized rounding approach to the trav-
eling salesman problem. In: Ostrovsky [12], pp. 550–559

7. Håstad, J.: Some optimal inapproximability results. Journal of the ACM
(JACM) 48(4), 798–859 (2001)

Improved Inapproximability for TSP 253

8. Karpinski, M., Schmied, R.: On approximation lower bounds for TSP with bounded
metrics. CoRR, abs/1201.5821 (2012)

9. Lampis, M.: Improved Inapproximability for TSP. CoRR, abs/1206.2497 (2012)
10. Mömke, T., Svensson, O.: Approximating graphic TSP by matchings. In: Ostrovsky

[12], pp. 560–569
11. Mucha, M.: 13/9-approximation for graphic TSP. In: Dürr, C., Wilke, T. (eds.)

STACS. LIPIcs, vol. 14, pp. 30–41. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2012)

12. Ostrovsky, R. (ed.): IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25. IEEE (2011)

13. Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman
problem (extended abstract). In: Yao, F.F., Luks, E.M. (eds.) STOC, pp. 126–133.
ACM (2000)

14. Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman
problem. Combinatorica 26(1), 101–120 (2006)

15. Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with dis-
tances one and two. Mathematics of Operations Research, 1–11 (1993)

16. Sebö, A., Vygen, J.: Shorter tours by nicer ears: CoRR, abs/1201.1870 (2012)

Approximation Algorithm

for Non-boolean MAX k-CSP

Konstantin Makarychev1 and Yury Makarychev2,�

1 Microsoft Research
2 Toyota Technological Institute at Chicago

Abstract. In this paper, we present a randomized polynomial-time ap-
proximation algorithm for MAX k-CSPd. In MAX k-CSPd, we are given
a set of predicates of arity k over an alphabet of size d. Our goal is to
find an assignment that maximizes the number of satisfied constraints.

Our algorithm has approximation factor Ω(kd/dk) (when k ≥ Ω(log d)).
This bound is asymptotically optimal assuming the Unique Games Con-
jecture. The best previously known algorithm has approximation factor
Ω(k log d/dk).

We also give an approximation algorithm for the boolean MAX k-
CSP2 problem with a slightly improved approximation guarantee.

1 Introduction

We design an approximation algorithm for the MAX k-CSPd, the maximum
constraint satisfaction problem with k-ary predicates and domain size d. In this
problem, we are given a set of variables {xu}u∈X and a set of predicates P . Each
variable xu takes values in [d] = {1, . . . , d}. Each predicate P ∈ P depends on
at most k variables. Our goal is to assign values to variables so as to maximize
the number of satisfied constraints.

There has been a lot of interest in finding the approximability of MAX k-
CSPd in the complexity community motivated by the connection of MAX k-
CSPd to k-bit PCPs. Let us briefly overview known results. Samorodnitsky
and Trevisan [9] showed that the boolean MAX k-CSP2 problem cannot be

approximated within a factor of Ω(22
√
k/2k) if P �= NP . Later Engebretsen

and Holmerin [5] improved this bound to Ω(2
√
2k/2k). For non-boolean MAX

k-CSPd, Engebretsen [4] proved a hardness result of 2O(
√
d)/dk. Much stronger

inapproximability results were obtained assuming the Unique Games Conjecture
(UGC). Samorodnitsky and Trevisan [10] proved the hardness of O(k/2k) for the
boolean MAX k-CSP2. Austrin and Mossel [1] and, independently, Guruswami
and Raghavendra [6] proved the hardness of O(kd2/dk) for non-boolean MAX
k-CSPd. Moreover, Austrin and Mossel [1] proved the hardness of O(kd/dk) for
every d and infinitely many k; specifically, their result holds for d and k such
that k = (dt− 1)/(d− 1) for some t ∈ N. Very recently, H̊astad strengthened the

� Yury Makarychev is supported in part by the NSF Career Award CCF-1150062.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 254–265, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Approximation Algorithm for Non-boolean MAX k-CSP 255

result of Austrin and Mossel and showed the hardness of O(kd/dk) for every d
and k ≥ d [private communication].

On the positive side, approximation algorithms for the problem have been
developed in a series of papers by Trevisan [12], Hast [7], Charikar, Makarychev
and Makarychev [3], and Guruswami and Raghavendra [6]. The best currently
known algorithm for k-CSPd by Charikar et al [3] has approximation factor of
Ω(k log d/dk). Note that a trivial algorithm for MAX k-CSPd that just picks a
random assignment satisfies each constraint with probability at least 1/dk, and
therefore its approximation ratio is 1/dk.

The problem is essentially settled in the boolean case. We know that the op-
timal approximation factor is Θ(k/2k) assuming UGC. However, best known
lower and upper bounds for the non-boolean case do not match. In this pa-
per, we present an approximation algorithm for non-boolean MAX k-CSPd with
approximation factor Ω(kd/dk) (for k ≥ Ω(log d)). This algorithm is asymp-
totically optimal assuming UGC — it is within a constant factor of the upper
bounds of Austrin and Mossel and of H̊astad (for k of the form (dt − 1)/(d− 1)
and for k ≥ d, respectively). Our result improves the best previously known
approximation factor of Ω(k log d/dk).

RelatedWork. Raghavendra studied a more general MAX CSP(P) problem [8].
He showed that the optimal approximation factor equals the integrality gap of
the standard SDP relaxation for the problem (assuming UGC). His result applies
in particular to MAX k-CSPd. However, the SDP integrality gap of MAX k-CSPd
is not known.

Overview. We use semidefinite programming (SDP) to solve the problem. In
our SDP relaxation, we have an “indicator vector” ui for every variable xu and
value i; we also have a “indicator vector” zC for every constraint C. In the
intended solution, ui is equal to a fixed unit vector e if xu = i, and ui = 0 if
xu �= i; similarly, zC = e if C is satisfied, and zC = 0, otherwise.

It is interesting that the best previously known algorithm for the problem [3]
did not use this SDP relaxation; rather it reduced the problem to a binary k-
CSP problem, which it solved in turn using semidefinite programming. The only
previously known algorithm [6] that directly rounded an SDP solution for MAX

k-CSPd had approximation factor Ω
(
k/d7

dk

)
.

One of the challenges of rounding the SDP solution is that vectors ui might
have different lengths. Consequently, we cannot just use a rounding scheme that
projects vectors on a random direction and then chooses vectors that have largest
projections, since this scheme will choose longer vectors with disproportionately
large probabilities. To deal with this problem, we first develop a rounding scheme
that rounds uniform SDP solutions, solutions in which all vectors are “short”.
Then we construct a randomized reduction that converts any instance to an
instance with a uniform SDP solution.

Our algorithm for the uniform case is very simple. First, we choose a random
Gaussian vector g. Then for every u, we find ui that has the largest projection
on g (in absolute value), and let xu = i. However, the analysis of this algorithm

256 K. Makarychev and Y. Makarychev

is quite different from analyses of similar algorithms for other problems: when
we estimate the probability that a constraint C is satisfied, we have to analyze
the correlation of all vectors ui with vector zC (where {ui} are SDP vectors
for variables xu that appear in C, zC is the SDP vector for C), whereas the
standard approach would be to look only at pairwise correlations of vectors {ui};
this approach does not work in our case, however, since vectors corresponding
to an assignment that satisfies C may have very small pairwise correlations,
but vectors corresponding to assignments that do not satisfy C may have much
larger pairwise correlations.

Remark 1.1. We study the problem only in the regime when k ≥ Ω(log d). In
Theorem 5.1, we prove that when k = O(log d) our algorithm has approxima-
tion factor eΩ(k)/dk. However, in this regime, a better approximation factor of
Ω(d/dk) can be obtained by a simple greedy approach.

Other Results. We also apply our SDP rounding technique to the Boolean
Maximum CSP Problem. We give an algorithm that has approximation guaran-
tee ≈ 0.62 k/2k for sufficiently large k. That slightly improves the best previ-
ously known guarantee of ≈ 0.44 k/2k [3]. Due to space limitations, we present
this result only in the full version of our paper.

2 Preliminaries

We apply the approximation preserving reduction of Trevisan [12] to transform
a general instance of MAX k-CSPd to an instance where each predicate is a
conjunction of terms of the form xu = i. The reduction replaces a predicate P ,
which depends on variables xv1 , . . . , xvk , with a set of clauses

{(xv1 = i1) ∧ · · · ∧ (xvk = ik) : P (i1, . . . , ik) is true} .

Then it is sufficient to solve the obtained instance. We refer the reader to [12]
for details. We assume below that each predicate is a clause of the form (xv1 =
i1) ∧ · · · ∧ (xvk = ik).

Definition 2.1 (Constraint satisfaction problem). An instance I of MAX
CSPd consists of

– a set of “indices” X,
– a set of variables {xu}u∈X (there is one variable xu for every index u ∈ X),
– a set of clauses C.

Each variable xu takes values in the domain [d] = {1, . . . , d}. Each clause C ∈ C
is a set of pairs (u, i) where u ∈ X and i ∈ [d]. An assignment xu = x∗u satisfies a
clause C if for every (u, i) ∈ C, we have x∗u = i. We assume that no clause C in
C contains pairs (u, i) and (u, j) with i �= j (no assignment satisfies such clause).
The length of a clause C is |C|. The support of C is supp(C) = {u : (u, i) ∈ C}.

Approximation Algorithm for Non-boolean MAX k-CSP 257

The value of an assignment x∗u is the number of constraints in C satisfied by
x∗u. Our goal is to find an assignment of maximum value. We denote the value
of an optimal assignment by OPT = OPT (I).

In the MAX k-CSPd problem, we additionally require that all clauses in C
have length at most k.

We consider the following semidefinite programming (SDP) relaxation for MAX
CSPd. For every index u ∈ X and i ∈ [d], we have a vector variable ui; for every
clause C, we have a vector variable zC .

maximize:
∑
C∈C

‖zC‖2

subject to

d∑
i=1

‖ui‖2 ≤ 1 for every u ∈ X

〈ui, uj〉 = 0 for every u ∈ X, i, j ∈ [d] (i �= j)

〈ui, zC〉 = ‖zC‖2 for every C ∈ C, (u, i) ∈ C

〈uj, zC〉 = 0 for every C ∈ C, (u, i) ∈ C and j �= i

Denote the optimal SDP value by SDP = SDP (I). Consider the optimal solu-
tion x∗u to an instance I and the corresponding SDP solution defined as follows,

ui =

{
e, if x∗u = i;

0, otherwise;
zC =

{
e, if C is satisfied;

0, otherwise;

where e is a fixed unit vector. It is easy to see that this is a feasible SDP solution
and its value equals OPT (I). Therefore, SDP (I) ≥ OPT (I).

Definition 2.2. We say that an SDP solution is uniform if ‖ui‖2 ≤ 1/d for
every u ∈ X and i ∈ [d].

Definition 2.3. Let ξ be a standard Gaussian variable with mean 0 and variance
1. We denote

Φ(t) = Pr (|ξ| ≤ t) =
1√
2π

∫ t

−t
e−x

2/2dx, and

Φ̄(t) = 1− Φ(t) = Pr (|ξ| > t) .

We will use the following lemma, which we prove in Appendix.

Lemma 2.1. For every t > 0 and β ∈ (0, 1] , we have

Φ̄(βt) ≤ Φ̄(t)β
2

.

We will also use the following result of Šidák [11]:

258 K. Makarychev and Y. Makarychev

Theorem 2.1 (Šidák [11]). Let ξ1, . . . , ξr be Gaussian random variables with
mean zero and an arbitrary covariance matrix. Then for any positive t1, . . . , tr,

Pr (|ξ1| ≤ t1, |ξ2| ≤ t2, . . . , |ξr| ≤ tr) ≥
r∏
i=1

Pr (|ξi| ≤ ti) .

3 Rounding Uniform SDP Solutions

In this section, we present a rounding scheme for uniform SDP solutions.

Lemma 3.1. There is a randomized polynomial-time algorithm that given an
instance I of the MAX CSPd problem (with d ≥ 57) and a uniform SDP solution,
outputs an assignment xu such that for every clause C ∈ C:

Pr (C is satisfied by xu) ≥
min(‖zC‖2|C|d/8, e|C|)

2d|C| .

Proof. We use the following rounding algorithm:

Rounding Scheme for Uniform SDP solutions

Input: an instance of the MAX CSPd problem and a uniform SDP solution.
Output: an assignment {xu}.

– Choose a random Gaussian vector g so that every component of g is dis-
tributed as a Gaussian variable with mean 0 and variance 1, and all compo-
nents are independent.

– For every u ∈ V , let x′u = argmaxi |〈ui, g〉|.
– For every u ∈ V , choose x′′u uniformly at random from [d] (independently for

different u).
– With probability 1/2 return assignment {x′u}; with probability 1/2 return

assignment {x′′u}.

For every clause C, let us estimate the probabilities that assignments x′u and x′′u
satisfy C. It is clear that x′′u satisfies C with probability d−|C|. We prove now
that x′u satisfies C with probability at least d−3|C|/4 if ‖z‖2C ≥ 8/(|C|d).

Claim. Suppose C ∈ C is a clause such that ‖z‖2C ≥ 8/(|C|d) and d ≥ 57. Then
the probability that the assignment x′u satisfies C is at least d−3|C|/4.

Proof. Denote s = |C|. We assume without loss of generality that for every
u ∈ supp(C), (u, 1) ∈ C. Note that for (u, i) ∈ C, we have ‖zC‖2 = 〈zC , ui〉 ≤
‖zC‖ · ‖ui‖ ≤ ‖zC‖/

√
d (here we use that the SDP solution is uniform and

therefore ‖ui‖2 ≤ 1/d). Thus ‖zC‖2 ≤ 1/d. In particular, s = |C| ≥ 8 since
‖z‖2C ≥ 8/(|C|d).

Approximation Algorithm for Non-boolean MAX k-CSP 259

For every u ∈ supp(C), let u⊥1 = u1−zC . Let γu,1 = 〈g, u⊥1 〉 and γu,i = 〈g, ui〉
for i ≥ 2. Let γC = 〈g, zC〉. All variables γu,i, γC are Gaussian variables. Using
that for every two vectors v and w, E [〈g, v〉 · 〈g, w〉] = 〈v, w〉, we get

E [γC · γu,1] = 〈zC , u1 − zC〉 = 〈zC , u1〉 − ‖zC‖2 = 0;

E [γC · γu,i] = 〈zC , ui〉 = 0 for i ≥ 2.

Therefore, all variables γu,i are independent from γC . (However, for u
′, u′′ ∈

supp(C) variables γu′,i and γu′′,j are not necessarily independent.) Let M =

Φ̄−1(1/ds/2)/
√
sd/8. We write the probability that x′u satisfies C,

Pr(x′u satisfies C) = Pr
(
argmaxi |〈g, ui〉| = 1 for every u ∈ supp(C)

)
= Pr (|〈g, u1〉| > |〈g, ui〉| for every u ∈ supp(C), i ∈ {2, . . . , d})
= Pr (|γu,1 + γC | > |γu,i| for every u ∈ supp(C), i ∈ {2, . . . , d})
≥ Pr(|γu,1| ≤ M/2, and |γu,i| ≤ M/2

for every u ∈ supp(C), i ∈ {2, . . . , d}
∣∣ |γC | > M) · Pr (|γC | > M) .

Since all variables γu,i are independent from γC ,

Pr (x′u satisfies C) ≥
Pr (|γu,i| ≤ M/2 for every u ∈ supp(C), i ∈ {1, . . . , d}) · Pr (|γC | > M) .

By Šidák’s Theorem (Theorem 2.1), we have

Pr (x′u satisfies C) ≥
(∏
u∈supp(C)

d∏
i=1

Pr (|γu,i| ≤ M/2)
)
· Pr (|γC | > M) . (1)

We compute the variance of vectors γu,i. We use that Var[〈g, v〉] = ‖v‖2 for every
vector v and that the SDP solution is uniform.

Var[γu,1] = ‖u⊥1 ‖2 = ‖u1 − zC‖2 = ‖u1‖2 − 2〈u1, zC〉+ ‖zC‖2

= ‖u1‖2 − ‖zC‖2 ≤ ‖u1‖2 ≤ 1/d;

Var[γu,i] = ‖ui‖2 ≤ 1/d for i ≥ 2.

Hence since Φ(t) is an increasing function and Φ̄(βt) ≤ Φ̄(t)β
2

(by Lemma 2.1),
we have

Pr (|γu,i| ≤ M/2) = Φ(M/(2
√
Var[γu,i])) ≥ Φ(

√
dM/2) = 1− Φ̄(

√
dM/2)

≥ 1− Φ̄(
√
sd/8M)2/s = 1− (d−s/2)2/s = 1− d−1

(recall that we defined M so that Φ̄(
√
sd/8M) = d−s/2). Similarly, Var[γC] =

‖zC‖2 ≥ 8/(sd) (by the condition of the lemma). We get (using the fact that
Φ̄(t) is a decreasing function),

Pr (|γC | > M) = Φ̄(M/
√
Var[γC]) ≥ Φ̄(M

√
sd/8) = d−s/2.

260 K. Makarychev and Y. Makarychev

Plugging in bounds for Pr (|γu,i| ≤ M/2) and Pr (|γC | > M) into (1), we obtain

Pr (x′u satisfies C) ≥ (1− d−1)dsd−s/2 ≥ d−3s/4.

Here, we used that (1 − d−1)d ≥ d−1/4 for d ≥ 57 (the inequality
(1 − d−1)d ≥ d−1/4 holds for d ≥ 57 since it holds for d = 57 and the left
hand side, (1− d−1)d, is an increasing function, the right hand side, d−1/4, is a
decreasing function). ��

We conclude that if ‖zC‖2 ≤ 8/(|C|d) then the algorithm chooses assignment
x′′u with probability 1/2 and this assignment satisfies C with probability at least
1/d|C| ≥ ‖zC‖2 |C| d/(8 d|C|). So C is satisfied with probability at least, 1/d|C| ≥
‖zC‖2 |C| d/(16 d|C|); if ‖zC‖2 ≥ 8/(|C|d) then the algorithm chooses assignment
x′ with probability 1/2 and this assignment satisfies C with probability at least
d−3|C|/4 ≥ e|C|/d|C| (since e ≤ 571/4 ≤ d1/4). In either case,

Pr (C is satisfied) ≥ min(‖zC‖2|C|d/8, e|C|)

2d|C| . ��

Remark 3.1. We note that we did not try to optimize all constants in the
statement of Lemma 3.1. By choosing all parameters in our proof appropri-
ately, it is possible to show that for every constant ε > 0, there is a ran-
domized rounding scheme, δ > 0 and d0 such that for every instance of MAX
CSPd with d ≥ d0 the probability that each clause C is satisfied is at least
min((1 − ε)‖zC‖2 · |C| d, δ · eδ|C|)/d|C|.

4 Rounding Arbitrary SDP Solutions

In this section, we show how to round an arbitrary SDP solution.

Lemma 4.1. There is a randomized polynomial-time algorithm that given an
instance I of the MAX CSPd problem (with d ≥ 113) and an SDP solution,
outputs an assignment xu such that for every clause C ∈ C:

Pr (C is satisfied by xu) ≥
min(‖zC‖2|C|d/64, 2e|C|/8)

4d|C| .

Proof. For every index u, we sort all vectors ui according to their length. Let
Su be the indices of �d/2� shortest vectors among ui, and Lu = [d] \ Su be the
indices of "d/2# longest vectors among ui (we break ties arbitrarily). For every
clause C let r(C) = | {(u, i) ∈ C : i ∈ Su} |.

Claim. For every i ∈ Su, we have ‖ui‖2 ≤ 1/|Su|.

Proof. Let i ∈ Su. Note that ‖ui‖2 +
∑

j∈Lu
‖uj‖2 ≤ 1 (this follows from SDP

constraints). There are at least �d/2� terms in the sum, and ‖ui‖2 is the smallest
among them (since i ∈ Su). Thus ‖ui‖2 ≤ 1/�d/2� = 1/|Su|. ��

Approximation Algorithm for Non-boolean MAX k-CSP 261

We use a combination of two rounding schemes: one of them works well on
clauses C with r(C) ≥ |C|/4, the other on clauses C with r(C) ≤ |C|/4.

Lemma 4.2. There is a polynomial-time randomized rounding algorithm that
given an MAX CSPd instance I with d ≥ 113 outputs an assignment xu such
that every clause C with r(C) ≥ |C|/4 is satisfied with probability at least

min(‖zC‖2 |C| d/64, e|C|/4)

2d|C| .

Proof. We will construct a sub-instance I ′ with a uniform SDP solution and then
solve I ′ using Lemma 3.1. To this end, we first construct a partial assignment
xu. For every u ∈ X , with probability |Lu|/d = "d/2#/d, we assign a value to xu
uniformly at random from Lu; with probability 1 − |Lu|/d = |Su|/d, we do not
assign any value to xu. Let A = {u : xu is assigned}. Let us say that a clause
C survives the partial assignment step if for every (u, i) ∈ C either u ∈ A and
i = xu, or u /∈ A and i ∈ Su.

The probability that a clause C survives is∏
(u,i)∈C,i∈Lu

Pr (xu is assigned value i)
∏

(u,i)∈C,i∈Su

Pr (xu is unassigned) =

(
"d/2#
d

· 1

"d/2#

)|C|−r(C)

·
(
�d/2�
d

)r(C)

=
�d/2�r(C)

d|C| .

For every survived clause C, let C′ = {(u, i) : u /∈ A}. Note that for every (u, i) ∈
C′, we have i ∈ Su. We get a sub-instance I ′ of our problem on the set of
unassigned variables {xu : u /∈ A} with the set of clauses {C′ : C ∈ C survives}.
The length of each clause C′ equals r(C). In sub-instance I ′, we require that each
variable xu takes values in Su. Thus I ′ is an instance of MAX CSPd′ problem
with d′ = |Su| = �d/2�.

Now we transform the SDP solution for I to an SDP solution for I ′: we let
zC′ = zC for survived clauses C, remove vectors ui for all u ∈ A, i ∈ [d] and
remove vectors zC for non-survived clauses C. By Claim 4, this SDP solution is
a uniform solution for I ′ (i.e. ‖ui‖ ≤ 1/d′ for every u /∈ A and i ∈ Si; note that
I ′ has alphabet size d′). We run the rounding algorithm from Lemma 3.1. The
algorithm assigns values to unassigned variables xu. For every survived clause
C, we get

Pr (C is satisfied by xu) = Pr (C′ is satisfied by xu)

≥ min(‖zC‖2|C′|d′/8, e|C′|)

2d′|C
′|

=
min(‖zC‖2r(C)d′/8, er(C))

2d′r(C)

≥ min(‖zC‖2|C|d/64, e|C|/4)

2d′r(C)
.

262 K. Makarychev and Y. Makarychev

Therefore, for every clause C,

Pr (C is satisfied by xu) ≥ Pr (C is satisfied by xu | C survives) Pr (C survives)

≥ min(‖zC‖2|C|d/64, e|C|/4)

2d′r(C)
× �d/2�r(C)

d|C|

=
min(‖zC‖2|C|d/64, e|C|/4)

2d|C| . ��

Finally, we describe an algorithm for clauses C with r(C) ≤ |C|/4.

Lemma 4.3. There is a polynomial-time randomized rounding algorithm that
given an MAX CSPd instance I outputs an assignment xu such that every clause
C with r(C) ≤ |C|/4 is satisfied with probability at least e|C|/8/d|C|.

Proof. We do the following independently for every vertex u ∈ X . With proba-
bility 3/4, we choose xu uniformly at random from Lu; with probability 1/4, we
choose xu uniformly at random from Su. The probability that a clause C with
r(C) ≤ |C|/4 is satisfied equals

∏
(u,i)∈C,i∈Lu

3

4|Lu|
∏

(u,i)∈C,i∈Su

1

4|Su|
=

1

d|C| ·
(

3d

4|Lu|

)|C|−r(C)(
d

4|Su|

)r(C)

≥ 1

d|C| ·
(

3d

4|Lu|

)3|C|/4(
d

4|Su|

)|C|/4

≥ 1

d|C| ·
((

3

2

)3/4(
d

2(d+ 1)

)1/4
)|C|

.

Note that
(
3
2

)3/4 (d
2(d+1)

)1/4
≥
(
3
2

)3/4 (113
2·114

)1/4 ≥ e1/8. Therefore, the proba-

bility that the clause is satisfied is at least e|C|/8/d|C|. ��

We run the algorithm from Lemma 4.2 with probability 1/2 and the algorithm
from Lemma 4.3 with probability 1/2. Consider a clause C ∈ C. If r(C) ≥ |C|/4,
we satisfy C with probability at least min(‖zC‖2|C|d/64,e|C|/4)

4d|C| . If r(C) ≤ |C|/4, we
satisfy C with probability at least e|C|/8/(2d|C|). So we satisfy every clause C

with probability at least min(‖zC‖2|C|d/64, 2e|C|/8)
4d|C| . ��

5 Approximation Algorithm for MAX k-CSPd

In this section, we present the main result of the paper.

Theorem 5.1. There is a polynomial-time randomized approximation algorithm
for MAX k-CSPd that given an instance I finds an assignment that satisfies at
least Ω(min(kd, ek/8)OPT (I)/dk) clauses with constant probability.

Approximation Algorithm for Non-boolean MAX k-CSP 263

Proof. If d ≤ 113, we run the algorithm of Charikar, Makarychev and Maka-
rychev [3] and get Ω(k/dk) approximation. So we assume below that d ≥ 113.
We also assume that kd/dk ≥ 1/|C|, as otherwise we just choose one clause from
C and find an assignment that satisfies it. Thus dk is polynomial in the size of
the input.

We solve the SDP relaxation for the problem and run the rounding scheme
from Lemma 4.1 dk times. We output the best of the obtained solutions. By
Lemma 4.1, each time we run the rounding scheme we get a solution with ex-
pected value at least

∑
C∈C

min(‖zC‖2|C|d/64, 2e|C|/8)

4d|C| ≥
∑
C∈C

min(kd/64, 2ek/8)

4dk
‖zC‖2

≥ min(kd/64, 2ek/8)

4dk
SDP (I) ≥ min(kd/64, 2ek/8)

4dk
OPT (I).

Denote α = min(kd/64,2ek/8)
4dk

. Let Z be the random variable equal to the number
of satisfied clauses. Then E [Z] ≥ αOPT (I), and Z ≤ OPT (I) (always). Let
p = Pr (Z ≤ αOPT (I)/2). Then

p · (αOPT (I)/2) + (1− p) ·OPT (I) ≥ E [Z] ≥ αOPT (I).

So p ≤ 1−α
1−α/2 = 1 − α

2−α . So with probability at least 1 − p ≥ α
2−α , we find a

solution of value at least αOPT (I)/2 in one iteration. Since we perform dk >
1/α iterations, we find a solution of value at least αOPT (I)/2 with constant
probability. ��

References

1. Austrin, P., Mossel, E.: Approximation Resistant Predicates from Pairwise Inde-
pendence. Computational Complexity 18(2), 249–271 (2009)

2. Charikar, M., Makarychev, K., Makarychev, Y.: Near-Optimal Algorithms for
Unique Games. In: Proceedings of the 38th ACM Symposium on Theory of Com-
puting, pp. 205–214 (2006)

3. Charikar, M., Makarychev, K., Makarychev, Y.: Near-Optimal Algorithms for Max-
imum Constraint Satisfaction Problems. ACM Transactions on Algorithms 5(3)
(July 2009)

4. Engebretsen, L.: The Nonapproximability of Non-Boolean Predicates. SIAM Jour-
nal on Discrete Mathematics 18(1), 114–129 (2004)

5. Engebretsen, L., Holmerin, J.: More Efficient Queries in PCPs for NP and Improved
Approximation Hardness of Maximum CSP. In: Diekert, V., Durand, B. (eds.)
STACS 2005. LNCS, vol. 3404, pp. 194–205. Springer, Heidelberg (2005)

6. Guruswami, V., Raghavendra, P.: Constraint Satisfaction over a Non-Boolean
Domain: Approximation Algorithms and Unique-Games Hardness. In: Goel, A.,
Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008.
LNCS, vol. 5171, pp. 77–90. Springer, Heidelberg (2008)

264 K. Makarychev and Y. Makarychev

7. Hast, G.: Approximating Max kCSP —Outperforming a Random Assignment with
Almost a Linear Factor. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 956–968. Springer, Heidelberg
(2005)

8. Raghavendra, P.: Optimal Algorithms and Inapproximability Results For Every
CSP? In: Proceeding of the ACM Symposium on Theory of Computing, STOC
(2008)

9. Samorodnitsky, A., Trevisan, L.: A PCP characterization of NP with optimal amor-
tized query complexity. In: Proceedings of the ACM Symposium on Theory of
Computing (STOC), pp. 191–199 (2000)

10. Samorodnitsky, A., Trevisan, L.: Gowers Uniformity, Influence of Variables, and
PCPs. In: Proceedings of the 38th ACM Symposium on Theory of Computing,
pp. 11–20 (2006)

11. Šidák, Z.: Rectangular Confidence Regions for the Means of Multivariate Normal
Distributions. Journal of the American Statistical Association 62(318), 626–633
(1967)

12. Trevisan, L.: Parallel Approximation Algorithms by Positive Linear Programming.
Algorithmica 21(1), 72–88 (1998)

A Proof of Lemma 2.1

In this section, we prove Lemma 2.1. We will use the following fact.

Lemma A.1 (see e.g. [2]). For every t > 0,

2t√
2π (t2 + 1)

e−
t2

2 < Φ̄(t) <
2√
2π t

e−
t2

2 .

Lemma 2.1. For every t > 0 and β ∈ (0, 1], we have

Φ̄(βt) ≤ Φ̄(t)β
2

.

Proof. Rewrite the inequality we need to prove as follows: (Φ̄(βt))1/β
2 ≤ Φ̄(t).

Denote the left hand side by f(β, t):

f(β, t) = Φ̄(βt)1/β
2

.

We show that for every t > 0, f(β, t) is strictly increasing function as a function
of β ∈ (0, 1]. Then,

(Φ̄(βt))1/β
2

= f(β) < f(1) = Φ̄(t).

We first prove that ∂f(1,t)
∂β > 0. Write,

∂f(1, t)

∂β
= −2 log(Φ̄(t)) Φ̄(t) + tΦ̄′(t) = −2 log(Φ̄(t)) Φ̄(t)− 2t e−t

2/2

√
2π

.

Approximation Algorithm for Non-boolean MAX k-CSP 265

Consider three cases. If t ≥
√

2e
π , then, by Lemma A.1,

Φ̄(t) <
2√
2πt

e−t
2/2 ≤ e−1/2e−t

2/2 = e−(t2+1)/2.

Hence, −2 log(Φ̄(t)) > (t2 + 1), and by Lemma A.1,

−2 log(Φ̄(t)) Φ̄(t) > (t2 + 1) Φ̄(t) >
2t e−t

2/2

√
2π

.

If t <
√

2e
π , then let ρ(x) = − logx/(1− x) for x ∈ (0, 1) and write,

− log Φ̄(t) = ρ(Φ̄(t)) · (1− Φ̄(t)) =
ρ(Φ̄(t))√

2π

∫ t

−t
e−x

2/2dx ≥ 2ρ(Φ̄(t))te−t
2/2

√
2π

.

Hence,

∂f(1, t)

∂β
= −2 log(Φ̄(t)) Φ̄(t)− 2t e−t

2/2

√
2π

≥ 2te−t
2/2

√
2π

× (2ρ(Φ̄(t))Φ̄(t)− 1).

For x ∈ [1/3, 1], 2ρ(x)x > 1, since the function ρ(x)x is increasing and ρ(1/3) >
3/2. Hence 2ρ(Φ̄(t))Φ̄(t) > 1, if Φ̄(t) ≥ 1/3.

The remaining case is t <
√

2e
π and Φ̄(t) < 1/3. Then, Φ̄(t) ≥ Φ̄(

√
2e
π) > 1/6

and hence Φ̄(t) ∈ (1/6, 1/3). Since the function −x log x is increasing on the
interval (0, e−1),

−2 log(Φ̄(t)) Φ̄(t) > −2 log(1/6) · 1
6
>

1

2
.

The function te−t
2/2 attains its maximum at t = 1, thus

2t e−t
2/2

√
2π

≤ 2e−1/2

√
2π

<
1

2
.

We get

∂f(1, t)

∂β
= −2 log(Φ̄(t)) Φ̄(t)− 2t e−t

2/2

√
2π

> 0.

Since ∂f(1,t)
∂β > 0, for every t > 0, there exists ε0 > 0, such that for all ε ∈ (0, ε0),

f(1− ε, t) < f(1, t). Particularly, for t′ = βt,

f(β, t) = f(1, t′)1/β
2

≥ f(1− ε, t′)1/β
2

= f((1 − ε)β, t). ��

Planarizing an Unknown Surface

Yury Makarychev� and Anastasios Sidiropoulos

Toyota Technological Institute at Chicago
{yury,tasos}@ttic.edu

Abstract. It has been recently shown that any graph of genus g > 0 can
be stochastically embedded into a distribution over planar graphs, with
distortion O(log(g+1)) [Sidiropoulos, FOCS 2010]. This embedding can
be computed in polynomial time, provided that a drawing of the input
graph into a genus-g surface is given.

We show how to compute the above embedding without having such a
drawing. This implies a general reduction for solving problems on graphs
of small genus, even when the drawing into a small genus surface is
unknown. To the best of our knowledge, this is the first result of this
type.

1 Introduction

The genus of a graph is a parameter that quantifies how far it is from being
planar. Informally, a graph has genus g, for some g ≥ 0, if it can be drawn
without any crossings on the surface of a sphere with g additional handles (see
Section 1.4). For example, a planar graph has genus 0, and a graph that can be
drawn on a torus has genus at most 1.

Planar graphs exhibit properties that give rise to improved algorithmic
solutions for numerous problems (see, for example [Bak94]). Because of their
similarities to planar graphs, graphs of small genus enjoy similar algorithmic
characteristic. More precisely, algorithms for planar graphs can usually be ex-
tended to graphs of bounded genus, with a small loss in efficiency or quality of
the solution (e.g. [CEN09]).

Unfortunately, such extensions typically suffer from two main difficulties.
First, for different problems, one typically needs to develop complicated, and
ad-hoc techniques. Second, a perhaps more challenging issue is that essentially
all known algorithms for graphs of small genus require that a drawing of the
input graph into a small genus surface is given. In general, computing a drawing
of a graph into a surface of minimum genus is NP-hard [Tho89, Tho93]. More-
over, the currently best-known approximation algorithm for this problem is only
a trivial O(n)-approximation that follows by bounds on the Euler characteristic.
This has been improved to O(

√
n)-approximation for graphs of bounded degree

[CKK97].
The first of the above two obstacles has been recently addressed for some

problems by Sidiropoulos [Sid10], who showed that any graph of genus g > 0 can

� Yury Makarychev is supported in part by the NSF Career Award CCF-1150062.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 266–275, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Planarizing an Unknown Surface 267

be embedded into a distribution over planar graphs, with distortion O(log(g+1))
(see Section 1.4 for definitions). This result implies a general reduction for a large
class of geometric optimization problems from instances on genus-g graphs, to
corresponding ones on planar graphs, with a O(log(g + 1)) loss factor in the
approximation guarantee.

Unfortunately, the algorithm from [Sid10] can compute the above embedding
in polynomial time, only if a drawing of the input graph into a small genus surface
is given. We show how to compute this embedding even when the drawing of the
input graph is unknown. In particular, this implies that the above reduction for
solving problems on graphs of small genus, can be performed even on graphs for
which we don’t have a drawing into a small genus surface. The statement of our
main embedding result follows.

Theorem 1.1 (Main result). There exists a polynomial time algorithm which
given a graph G of genus g > 0, computes a stochastic embedding of G into
planar graphs, with distortion O(log(g + 1)). In particular, the algorithm does
not require a drawing of G as part of the input.

1.1 Applications

The main application of our result is a general reduction from a class of opti-
mization problems on genus-g graphs, to their restriction on planar graphs. This
is the same reduction obtained in [Sid10], only here we don’t require a drawing
of the input graph. For completeness, we state precisely the reduction, as given
in [Sid10] (see also [Bar96]). Let V be a set, I ⊂ RV×V

+ a set of non-negative
vectors corresponding to all feasible solutions for a minimization problem, and
c ∈ RV×V

+ . Then, we define the linear minimization problem (I, c) to be the
computational problem where we are given a graph G = (V,E), and we are
asked to find s ∈ I, minimizing∑

{u,v}∈V×V
cu,v · su,v · d(u, v)

Observe that this definition captures a very general class of problems. For ex-
ample, MST can be encoded by letting I be the set of indicator vectors of the
edges of all spanning trees on V , and c the all-ones vector. Similarly, one can
easily encode problems such as TSP, Facility-Location, k-Server, Bi-Chromatic
Matching, etc.

The main Corollary of our embedding result can now be stated as follows.

Corollary 1.1. Let Π = (I, c) be a linear minimization problem. If there exists
a polynomial-time α-approximation algorithm for Π on planar graphs, then there
exists a randomized polynomial-time O(α · log(g + 1))-approximation algorithm
for Π on graphs of genus g > 0, even when the drawing of the input graph is
unknown.

268 Y. Makarychev and A. Sidiropoulos

1.2 Overview of the Algorithm

We now give a high-level overview of our algorithm. Consider a graphG = (V,E).
Let us say that a collection P of shortest paths in G is a planarizing set of paths,
if the graph G \

⋃
P∈P V (P) is planar. It was shown by Sidiropoulos [Sid10]

that any graph having a planarizing set of paths of size k, admits a stochastic
embedding into planar graphs, with distortion O(log k). Moreover, given such a
set of planarizing paths, the embedding can be computed in polynomial time. It
follows by the work of Eppstein [Epp03], and Erickson and Whittlesey [EW05],
that for any graph G of genus g, that there exists a planarizing set of paths,
of size O(g). However, all known algorithms for computing this planarizing set
require a drawing of the graph into a surface of genus g. Since we don’t know how
to compute a drawing of a graph into a minimum-genus surface in polynomial
time, all known algorithms are not applicable in our case.

Our main technical contribution is showing how to compute in polynomial
time a planarizing set of paths of approximately optimal size (up to a polylogn
factor) in an arbitrary graph. For a graphG, we say that a collectionQ of shortest
paths having a common endpoint is a balanced set of paths if

⋃
Q∈Q V (Q) is a

balanced vertex-separator of G. That is, removing all paths in Q from G, leaves
a graph where every connected component is at most half the size of G. Our
high-level approach is as follows. We find and remove a “small” balanced set of
paths in G. Then we compute connected components in the obtained graph. In
each non-planar connected component, we again find and remove a balanced set
of paths. We repeat this procedure until all components are planar. Finally, we
output the planarizing set of paths that consists of all paths that we removed
from the graph.

In order for this approach to work, we first prove that in a (possibly vertex-
weighted) graph G of genus g, there exists a balanced set Q of paths of size
O(g). Next, we show how to compute in polynomial time a balanced set of paths
of approximately optimal size in an arbitrary graph G. As outlined above, we
then recursively use this as a subroutine to find a set P of planarizing paths.
We begin with a graph G of genus g (for which we don’t have a drawing into a
genus-g surface), and inductively build P in steps. At the first step, we compute
a balanced set Q1 of paths in G. We add these paths to P . At every subsequent
step i > 1, let Gi be the graph obtained from G after removing all the paths we
have computed so far, i.e. Gi = G \

⋃
P∈P V (P). Since G has genus g, graph Gi

has at most O(g) non-planar connected components. For every such non-planar
component, we compute a balanced set of paths and add it to P . We show that
after every step, the size of the largest non-planar component reduces by at
least a constant factor. Therefore, after O(log n) steps, we obtain the desired
planarizing set of paths.

1.3 Related Work

Inspired by Bartal’s stochastic embedding of general metrics into trees [Bar96],
Indyk and Sidiropoulos [IS07] showed that every metric on a graph of genus g

Planarizing an Unknown Surface 269

can be stochastically embedded into a planar graph with distortion 2O(g) (see
Section 1.4 for a formal definition of stochastic embeddings). The above bound
was later improved by Borradaile, Lee, and Sidiropoulos [BLS09], who obtained
an embedding with distortion gO(1). Subsequently, Sidiropoulos [Sid10] gave an
embedding with distortion O(log g), matching the Ω(log g) lower bound from
[BLS09]. The embeddings from [IS07], and [Sid10] can be computed in polyno-
mial time, provided that the drawing of the graph into a small genus surface
is given. Computing the embedding from [BLS09] requires solving an NP-hard
problem, even when the drawing is given.

1.4 Preliminaries

Throughout the paper, we consider graphs with non-negative edge lengths. For
a tree T with root r ∈ V (T), and for v ∈ V (T) we denote by T (v) the unique
path in T between v and r.

Graphs on surfaces. Let us recall some notions from topological graph theory (an
in-depth exposition can be found in [MT01]). A surface is a compact connected
2-dimensional manifold, without boundary. For a graph G we can define a one-
dimensional simplicial complex C associated with G as follows: The 0-cells of
C are the vertices of G, and for each edge {u, v} of G, there is a 1-cell in
C connecting u and v. A drawing of G on a surface S is a continuous injection
f : C → S. The genus of a surface S is the maximum cardinality of a collection of
simple closed non-intersecting curves C1, . . . , Ck in S, such that S\(C1∪· · ·∪Ck)
is connected. The genus of a graph G is the minimum k, such that G can be
drawn into a surface of genus k. Note that a graph of genus 0 is a planar graph.
We remark that we make no distinction between orientable, and non-orientable
genus, since all of our results hold in both settings.

Metric embeddings. A mapping f : X → Y between two metric spaces (X, d)
and (Y, d′) is non-contracting if d′(f(x), f(y)) ≥ d(x, y) for all x, y ∈ X . If (X, d)
is any finite metric space, and Y is a family of finite metric spaces, we say that
(X, d) admits a stochastic D-embedding into Y if there exists a random metric
space (Y, d′) ∈ Y and a random non-contracting mapping f : X → Y such that
for every x, y ∈ X ,

E
[
d′(f(x), f(y))

]
≤ D · d(x, y). (1)

The infimal D such that (1) holds is the distortion of the stochastic embedding.
A detailed exposition of results on metric embeddings can be found in [Ind01]
and [Mat02].

2 Path Separators in Embedded Graphs

For a graph G, a real α ∈ (0, 1/2], and a set X ⊆ V (G) we say that X is an α-
balanced vertex separator for G if every connected component of G \X contains
at most α · |V (G)| vertices. It is also called simply balanced vertex separator,
when α = 1/2.

270 Y. Makarychev and A. Sidiropoulos

For a vertex-weighted graph G with weight function w : V (G) → R≥0, for
every Y ⊆ V (G) we use the notation w(Y) =

∑
v∈V (G) w(v). Similarly to the

unweighted case, we say that a set X ⊆ V (G) is a balanced vertex separator for
a weighted graph (G,w) if for every connected component C of G \X we have
w(V (C)) ≤ w(V (G))/2.

Theorem 2.1 (Lipton & Tarjan [LT79], Thorup [Tho04]). Let G be a
planar graph, let r ∈ V (G), and let T be a spanning tree of G with root r. Then,
there exist v1, v2, v3 ∈ V (G), such that V (T (v1) ∪ T (v2) ∪ T (v3)) is a balanced
vertex separator for G. Moreover, the vertices v1, v2 and v3 can be computed in
polynomial time.

We will use a slight modification of Theorem 2.1, for the case of weighted graphs.
The proof is a straightforward extension to the one due to Thorup [Tho04], which
is based on the argument of Lipton and Tarjan [LT79].

Lemma 2.1. Let G be a planar graph, let r ∈ V (G), and let T be a spanning
tree of G with root r. Let w : V (G) → R≥0. Then, there exist v1, v2, v3 ∈ V (G),
such that V (T (v1) ∪ T (v2) ∪ T (v3)) is a balanced vertex separator for (G,w).
Moreover, the vertices v1, v2 and v3 can be computed in polynomial time.

The next Theorem follows by the work of Eppstein [Epp03], and Erickson &
Whittlesey [EW05].

Theorem 2.2 (Erickson & Whittlesey [EW05], Eppstein [Epp03]). Let
G be a graph of genus g > 0, and let ϕ be an embedding of G into a surface S of
genus g. Let r ∈ V (G), and let T be a spanning tree of G with root r. Then, there

exist edges {x1, y1}, . . . , {x2g, y2g} ∈ E(G), such that G \
⋃2g
i=1 V (T (xi) ∪ T (yi))

is planar. Moreover, the topological space S \
⋃2g
i=1 ϕ(T (xi) ∪ T (yi) ∪ {xi, yi}) is

homeomorphic to an open disk.

We are now ready to prove the main result of this section.

Lemma 2.2 (Existence of path separators in embedded graphs). Let
G be a weighted graph of genus g, with weight function w : V (G) → R≥0. Let
r ∈ V (G), and let T be a spanning tree of G with root r. Then, there exists
X ⊆ V (G), with |X | ≤ 4g + 3, such that

⋃
u∈X V (T (u)) is a balanced vertex

separator for (G,w).

Proof. The case g = 0 follows by Lemma 2.1, so we may assume that g >
0. Fix an embedding ϕ of G into a surface S of genus g. By Theorem 2.2
there exist {x1, y1}, . . . , {x2g, y2g} ∈ E(G), such that the topological space

S \
⋃2g
i=1 ϕ(T (xi) ∪ T (yi) ∪ {xi, yi}) is homeomorphic to an open disk. Let

H =

2g⋃
i=1

T (xi) ∪ T (yi) ∪ {xi, yi}.

Note that r ∈ V (H). Let G′ be the graph obtained from G by contractingH into
a single vertex r′. Since S \ ϕ(H) is an open disk, it follows that G′ is planar.

Planarizing an Unknown Surface 271

Let T ′ be the subgraph of G′ induced by T after contracting H . Since T
is a spanning subgraph of G, it follows that T ′ is a spanning subgraph of G′.
Indeed, the set of vertices V (H) spans is a connected subtree of T . Therefore,
after contracting H , the subgraph T ′ induced by T is still a tree. Thus, T ′ is a
spanning subtree of G′. We consider T ′ being rooted at r′.

Define a weight function w′ : V (G′) → R≥0 such that for every v ∈ V (G′),

w′(v) =

{
w(v), if v �= r′

0, if v = r′

By Lemma 2.1 it follows that there exist v1, v2, v3 ∈ V (G′) such that V (T ′(v1)∪
T ′(v2) ∪ T ′(v3)) is a balanced vertex separator for (G′, w′).

Let J = G\V (H). Observe that J = G\V (H) = G′ \ {r′}. Moreover, for any
v ∈ V (J), we have T (v)∩J = T ′(v)∩J . Thus, the set of connected components
of (G \ V (H)) \ V (T (v1) ∪ T (v2) ∪ T (v3)) is the same as the set of connected
components of (G′ \ {r′}) \ V (T ′(v1) ∪ T ′(v2) ∪ T ′(v3)). Let C be a connected
component of (G \ V (H)) \ V (T (v1) ∪ T (v2) ∪ T (v3)). We have

w(C) = w′(C) ≤ 1

2
w(V (G′)) =

1

2
(w(V (G)) − w(V (H))) ≤ 1

2
w(V (G)).

Thus, V (T (v1) ∪ T (v2) ∪ T (v3)) ∪
⋃2g
i=1 V (T (xi) ∪ T (yi)) is a balanced vertex

separator for (G,w), as required. ��

3 Computing Path Separators in Arbitrary Graphs

Recall the definition of a caterpillar decomposition of a tree.

Definition 3.1 (Caterpillar decomposition [Mat99, CS02]). A caterpillar
decomposition of a rooted tree T is a family of paths P = {Pi}, satisfying the
following conditions:

(i) Every Pi ∈ P is a subpath of a root–leaf path.
(ii) For every Pi �= Pj ∈ P, we have V (Pi) ∩ V (Pj) = ∅.
(iii) V (T) =

⋃
Pi∈P V (Pi).

The proof of the following lemma about caterpillar decompositions can be found
in [Mat99, CS02].

Lemma 3.1 (See [Mat99, CS02]). For every rooted tree T , there exists a
caterpillar decomposition P, such that every root–leaf path T (u) crosses at most
O(log n) paths from P. Moreover, this decomposition can be found in polynomial
time.

We are now ready to prove that main result of this section.

Lemma 3.2 (Computing approximate path separators). Let G be a graph,
and w : V (G) → R≥0. Let r ∈ V (G), and let T be a spanning tree of G with

272 Y. Makarychev and A. Sidiropoulos

root r. Suppose that there exists X ⊆ V (G), such that
⋃
u∈X V (T (u)) is a bal-

anced vertex separator for (G,w). Then we can compute in polynomial time a

set Y ⊆ V (G) with |Y | ≤ O(log3/2 n) · |X |, such that
⋃
u∈Y V (T (u)) is a 3/4-

balanced vertex separator for (G,w).

Proof. We reduce the problem to the problem of finding a vertex separator in an
auxiliary graph. Using Lemma 3.1 we construct a caterpillar decomposition P
of T such that every root–leaf path T (u) crosses at most O(log n) paths from P .
We define an auxiliary graph G on the set P as follows: Pi ∈ P and Pj ∈ P are
connected with an edge in G if there is an edge between sets V (Pi) and V (Pj) in
G. We assign each Pi weight equal to the total weight of all vertices of Pi. Note
that then the total weight of all vertices in G equals w(V (G)).

Observe that for every A ⊂ P the induced graph G[A] is connected if and only
if the induced graph G[A], where A =

⋃
Pi∈A V (Pi), is connected. Consequently,

if C1, . . . , Ct are connected components of G \ B (for some B ⊂ P) then sets
Cj =

⋃
Pi∈Cj

V (Pi) (for j = 1, . . . , t) are connected components of G \ B where

B =
⋃
Pi∈B V (Pi); moreover, the weight of each Ci equals the weight of Ci.

Therefore, B is a balanced vertex separator in G if and only if B =
⋃
Pi∈B V (Pi)

is a balanced vertex separator in G.
We now prove that there is a balanced vertex separator in G of size O(log n) ·

|V (G)|. Let X =
⋃
u∈X{Pi ∈ P : Pi intersects T (u)}. First, we show that X

is a balanced vertex separator in G. Denote X ′ =
⋃
Pi∈X V (Pi). Observe that

X ′ ⊃
⋃
u∈X V (T (u)). Indeed, consider v ∈

⋃
u∈X V (T (u)). Then v ∈ T (u) for

some u ∈ X . Let Pi be the path in P that contains v. Then Pi intersects T (u)
at vertex v and therefore Pi ∈ X . Hence v ∈ V (Pi) ⊂ X ′. We conclude that
X ′ ⊃

⋃
u∈X V (T (u)). Since

⋃
u∈X V (T (u)) is a balanced vertex separator in G,

set X ′ is also a balanced vertex separator in G. Hence X is a balanced vertex
separator in G. Now we upper bound the size of X . Note that for every u, we
have |{Pi ∈ P : Pi intersects T (u)}| = O(log n) (by Lemma 3.1). Thus we have,
|X | = O(log n) · |X |. We proved that there is a balanced vertex separator in G
of size O(log n) · |X |.

We use the algorithm of Feige, Hajiaghayi and Lee [FHL08] to find aO(
√
logn)

approximation for the optimal balanced vertex separator in G. We get a 3/4-
balanced vertex separator Y ⊂ P in G of size at most O(

√
logn) · |X | =

O(log3/2 n) · |X |.
Finally, we define the set Y . For every path Pi ∈ P , let pi be a leaf of T

such that Pi is a subset of T (pi). Let Y = {pi : Pi ∈ P}. Note that |Y | ≤
|Y| = O(log3/2 n) · |X |. Since Y is a 3/4-balanced separator in G, the set Y ′ =⋃
Pi∈Y V (Pi) is a 3/4-balanced separator inG, and therefore

⋃
u∈Y V (T (u)) ⊃ Y ′

is a 3/4-balanced separator in G. ��

4 Computing Planarizing Sets of Paths

Lemma 4.1 (Computing a planarizing set of paths). Let G be an n-vertex
graph of genus g > 0. Let r ∈ V (G), and let T be a spanning subtree of G

Planarizing an Unknown Surface 273

with root r. Then, we can compute in polynomial time a set X ⊆ V (G), with

|X | = O(g2 · log5/2 n), such that the graph G \
⋃
v∈X V (T (v)) is planar.

Proof. We inductively construct a sequence {Xi}ki=0, for some k = O(log n),
where for every i ∈ {0, . . . , k}, we have Xi ⊆ V (G). The resulting desired set

will be X =
⋃k
i=0Xi.

For the basis of the induction, we set X0 = ∅.
Let i > 0, and suppose that Xi−1 has already been constructed. We

show how to construct Xi. Let Ci be the set of connected components of
G \

⋃i−1
j=0

⋃
u∈Xj

V (T (u)). Let also C′
i be the set of non-planar components in

Ci. Note that G is the only component in C1. For every component C ∈ Ci we
define a function wC : V (G) → R≥0 such that for every v ∈ V (G),

wC(v) =

{
1, if v ∈ V (C)
0, if v /∈ V (C)

By Lemma 2.2 it follows that there exists YC ⊆ V (G), with |YC | ≤ 4g + 3, such
that

⋃
v∈YC

V (T (v)) is a balanced vertex separator for (G,wC). Therefore, by
Lemma 3.2 we can compute in polynomial time a set ZC ⊆ V (G), with

|ZC | ≤ O(log3/2 n) · |YC | ≤ O(log3/2 n) · (4g + 3),

and such that
⋃
v∈ZC

V (T (v)) is an 3/4-balanced vertex separator for (G,wC).
We set

Xi =
⋃
C∈C′

i

ZC .

This concludes the inductive construction of the sequence {Xi}ki=0.

We next show that for some k = O(log n), the set X =
⋃k
i=0Xi is as required.

Consider some i ≥ 1, and let C ∈ C′
i be a non-planar connected component

of G \
⋃i−1
j=0

⋃
u∈Xj

V (T (u)). Observe that there exists a connected component

C′ ∈ Ci−1 such that C ⊆ C′. Since C is non-planar, it follows that C′ is also
non-planar, and thus C′ ∈ C′

i−1. By the construction, the set Xi contains the set
ZC′ , where

⋃
v∈ZC′ V (T (v)) is a 3/4-balanced vertex separator for (G,wC′). It

follows that |V (C)| ≤ 3|V (C′)|/4. Thus, the size of every non-planar connected
component in Ci is at most (3/4)i−1|V (G)|. This implies in particular that for k =
�log4/3 n�−1, the set Ck does not contain any non-planar connected components,
and therefore the graph G \

⋃
v∈X V (T (v)) is planar.

It remains to upper bound |X |. Since G has genus g, we have that for every
i ∈ {0, . . . , k}, the set Ci contains at most g non-planar connected components,
i.e. |C′

i| ≤ g. Therefore,

|X | ≤
k∑
i=0

|Xi| ≤
k∑
i=0

∑
C∈C′

i

|ZC | ≤
k∑
i=0

∑
C∈C′

i

O(log3/2 n) ·(4g+3) ≤ O(g2 · log5/2 n),

as required. ��

274 Y. Makarychev and A. Sidiropoulos

5 Putting Everything Together

The next lemma follows by the work of Sidiropoulos [Sid10].

Lemma 5.1 (Sidiropoulos [Sid10]). Let G be a graph, and r ∈ V (G). Let
P1, . . . , Pk be a collection of shortest paths in G, having r as a common end-point.
Suppose that G \

⋃k
i=1 V (Pi) is planar. Then, G admits a stochastic embedding

into planar graphs, with distortion O(log k). Moreover, if the paths P1, . . . , Pk
are given, then we can sample from the stochastic embedding in polynomial time.

Theorem 5.1 (Kawarabayashi, Mohar & Reed [iKMR08]). There exists
an algorithm which given a graph G of genus g, computes a drawing of G into a
surface of genus g, in time O

(
2O(g) · n

)
.

Theorem 5.2 (Main result). There exists a polynomial time algorithm which
given a graph G of genus g > 0, computes a stochastic embedding of G into
planar graphs, with distortion O(log(g + 1)). In particular, the algorithm does
not require a drawing of G as part of the input.

Proof. We can use the algorithm of Kawarabayashi, Mohar & Reed from The-
orem 5.1 to test whether g ≤ logn in polynomial time. If g ≤ logn, then the
algorithm from Theorem 5.1 returns a drawing of G into a surface of genus g.
Since we have a drawing of G into a surface of genus g, we can use the algorithm
of Sidiropoulos [Sid10], to compute the required embedding.

Otherwise, if g > logn, we proceed as follows. Let r be an arbitrary vertex in
G, and let T be a shortest-path tree in G, with root r. By Lemma 4.1 we can
compute a set X ⊆ V (G), with |X | = O(g2 · log5/2 n) = O(g9/2), such that the
graph G\

⋃
v∈X V (T (v)) is planar. Since for every v ∈ X , the path T (v) has r as

an endpoint, it follows that we can use Lemma 5.1 with the collection of paths
{T (v)}v∈X , to compute in polynomial time a stochastic embedding into planar
graphs, with distortion O(log |X |) = O(log(g + 1)), as required. ��

References

[Bak94] Baker, B.S.: Approximation algorithms for np-complete problems on planar
graphs. J. ACM 41(1), 153–180 (1994)

[Bar96] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic
applications. In: 37th Annual Symposium on Foundations of Computer Sci-
ence (Burlington, VT), pp. 184–193. IEEE Comput. Soc. Press, Los Alami-
tos (1996)

[BLS09] Borradaile, G., Lee, J.R., Sidiropoulos, A.: Randomly removing g handles at
once. In: Proc. 25th Annual ACM Symposium on Computational Geometry
(2009)

[CEN09] Chambers, E.W., Erickson, J., Nayyeri, A.: Homology flows, cohomology
cuts. In: Proc. 41st Annual ACM Symposium on Theory of Computing
(2009)

[CKK97] Chen, J., Kanchi, S.P., Kanevsky, A.: A note on approximating graph genus.
Inf. Process. Lett. 61(6), 317–322 (1997)

Planarizing an Unknown Surface 275

[CS02] Charikar, M., Sahai, A.: Dimension reduction in the 1 norm. In: Proceed-
ings of the 43rd Annual IEEE Symposium on Foundations of Computer
Science, pp. 551–560. IEEE (2002)

[Epp03] Eppstein, D.: Dynamic generators of topologically embedded graphs. In:
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 599–608. Society for Industrial and Applied Mathematics
(2003)

[EW05] Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology gen-
erators. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 1038–1046. Society for Industrial and Applied
Mathematics (2005)

[FHL08] Feige, U., Hajiaghayi, M.T., Lee, J.R.: Improved approximation algorithms
for minimum weight vertex separators. SIAM J. Comput. 38(2), 629–657
(2008)

[iKMR08] Kawarabayashi, K.I., Mohar, B., Reed, B.A.: A simpler linear time algo-
rithm for embedding graphs into an arbitrary surface and the genus of
graphs of bounded tree-width. In: FOCS, pp. 771–780 (2008)

[Ind01] Indyk, P.: Tutorial: Algorithmic applications of low-distortion geometric
embeddings. In: Symposium on Foundations of Computer Science (2001)

[IS07] Indyk, P., Sidiropoulos, A.: Probabilistic embeddings of bounded genus
graphs into planar graphs. In: Proc. 23rd Annual ACM Symposium on Com-
putational Geometry (2007)

[LT79] Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics 36(2), 177–189 (1979)

[Mat99] Matoušek, J.: On embedding trees into uniformly convex Banach spaces.
Isr. J. Math. 114, 221–237 (1999)

[Mat02] Matousek, J.: Lectures on Discrete Geometry. Springer (2002)
[MT01] Mohar, B., Thomassen, C.: Graphs on Surfaces. John Hopkins (2001)
[Sid10] Sidiropoulos, A.: Optimal stochastic planarization. In: 2010 IEEE 51st An-

nual Symposium on Foundations of Computer Science, pp. 163–170. IEEE
(2010)

[Tho89] Thomassen, C.: The graph genus problem is np-complete. J. Algo-
rithms 10(4), 568–576 (1989)

[Tho93] Thomassen, C.: Triangulating a surface with a prescribed graph. J. Comb.
Theory, Ser. B 57(2), 196–206 (1993)

[Tho04] Thorup, M.: Compact oracles for reachability and approximate distances in
planar digraphs. Journal of the ACM (JACM) 51(6), 993–1024 (2004)

The Projection Games Conjecture

and the NP-Hardness
of lnn-Approximating Set-Cover

Dana Moshkovitz

MIT

Abstract. We suggest the research agenda of establishing new hardness
of approximation results based on the “projection games conjecture”, i.e.,
an instantiation of the Sliding Scale Conjecture of Bellare, Goldwasser,
Lund and Russell to projection games.

We pursue this line of research by establishing a tight NP-hardness
result for the Set-Cover problem. Specifically, we show that under the
projection games conjecture (in fact, under a quantitative version of the
conjecture that is only slightly beyond the reach of current techniques), it
is NP-hard to approximate Set-Cover on instances of size N to within
(1−α) lnN for arbitrarily small α > 0. Our reduction establishes a tight
trade-off between the approximation accuracy α and the time required

for the approximation 2N
Ω(α)

, assuming Sat requires exponential time.
The reduction is obtained by modifying Feige’s reduction. The lat-

ter only provides a lower bound of 2N
Ω(α/ log log N)

on the time required
for (1−α) lnN-approximating Set-Cover assuming Sat requires expo-
nential time (note that N1/ log logN = No(1)). The modification uses a
combinatorial construction of a bipartite graph in which any coloring of
the first side that does not use a color for more than a small fraction of
the vertices, makes most vertices on the other side have their neighbors
all colored in different colors.

1 Introduction

1.1 Projection Games and The Projection Games Conjecture

Most of the NP-hardness of approximation results known today (e.g., all of the
results in H̊astad’s paper [H̊as01]) are based on a PCP Theorem for projection
games (also known as Label-Cover) [AS98, ALM+98, Raz98, MR10]. The
input to a projection game consists of: (i) a bipartite graph G = (A,B,E); (ii)
finite alphabets ΣA, ΣB; (iii) constraints (also called projections) πe : ΣA → ΣB

for every edge e ∈ E. The goal is to find assignments to the vertices ϕA :
A → ΣA, ϕB : B → ΣB that satisfy as many of the edges as possible. We say
that an edge e = (a, b) ∈ E is satisfied, if the projection constraint holds, i.e.,
πe(ϕA(a)) = ϕB(b). We denote the size of a projection game by n = |A|+ |B|+
|E|. A PCP Theorem for projection games with soundness error ε and alphabet
size k (where ε and k may depend on n) states the following:

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 276–287, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Projection Games Conjecture and the NP-Hardness 277

Given a projection game of size n with alphabets of size k, it is NP-hard
to distinguish between the case where all edges can be satisfied and the
case where at most ε fraction of the edges can be satisfied.

We can refine this statement by saying that there is a reduction from (exact)
Sat to projection games, and the reduction maps instances of Sat of size n to
projection games of size N = n1+o(1)poly(1/ε). Such PCPs are referred to as
“almost-linear size PCP” because of the exponent of n, although for small ε the
blow-up may be super-linear.

The state of the art today for PCP Theorems for projection games is the
following:

Theorem 1 ([MR10]). There exists c > 0, such that for every ε ≥ 1/N c,
Sat on input of size n can be reduced to a projection game of size N =
n1+o(1)poly(1/ε) over alphabet of size exp(1/ε) that has soundness error ε. The
reduction is computed in polynomial time in N .

Note that one cannot hope for ε that is lower than 1/N (polynomially small).
The exp(1/ε) in the statement is not tight. It can be shown that |Σ| ≥ 1/ε, and
we conjecture that an alphabet size of poly(1/ε) could be achieved:

Conjecture 1 (Projection games conjecture, PGC). There exists c > 0,
such that for every ε ≥ 1/N c, Sat on input of size n can be efficiently reduced to
a projection game of size N = n1+o(1)poly(1/ε) over alphabet of size poly(1/ε)
that has soundness error ε.

In almost all applications, one wishes the alphabet size to be at most polynomial
in n. This happens in Theorem 1 only when ε ≥ 1/(logN)b for some constant
b > 0. The PGC, on the other hand, gives polynomial alphabet for any ε ≥ 1/N c.

The projection games conjecture is in fact the Sliding Scale Conjecture of
Bellare, Goldwasser, Lund and Russell [BGLR93] instantiated for projection
games. By “sliding scale” we refer to the idea that the error can be decreased
as we increase the alphabet size. Bellare et al. conjectured that polynomially
small error could be achieved simultaneously with polynomial alphabet, even for
two queries. They did not formulate their conjecture for projection games – the
importance of projection games was not fully recognized when they published
their work in 1993.

1.2 Previous Work

Approximation algorithms for projection games were researched, and the
conjecture is consistent with the state of the art algorithm, giving 1/ε =
O(3

√
Nk) [CHK09] (Note that the formulation in [CHK09] is slightly different

than ours – they have a vertex per pair (vertex, assignment) in our formulation).
The existing hardness results for projection games include two results: the

one mentioned in Theorem 1 and another result that is based on parallel repe-
tition [Raz98]:

278 D. Moshkovitz

Theorem 2 ([Raz98]). There exists c > 0, such that for every ε ≥ 1/N c/ logn,
Sat on input of size n can be efficiently reduced to a projection game of size N
over alphabet of size O(1/ε) that has soundness error ε.

Note that when the reduction is polynomial, i.e., N = nO(1), the soundness error
is constant. Better soundness error ε can be obtained for larger N . For instance,
for N = nO(logn), one obtains ε = 1/n. Unfortunately, polynomially small error
1/N c cannot be obtained from Theorem 2.

For PCPs with more than two queries, soundness error approaching polyno-
mial, ε = 2−(logN)1−ε

for every ε > 0, is known [DFK+11]. Alas, these PCPs are
not projection games, and the number of queries depends on 1/ε.

The projection games conjecture has a similar flavor to the unique games
conjecture (UGC) of Khot [Kho02]: both assert that low soundness error1 for a
special kind of 2-prover games can be obtained for sufficiently large alphabets.
Unique games are the special case of projection games in which the projections πe
are 1-1. Unique games appear to be much easier than general projection games. In
particular, while there are constructions of projection games with low soundness
error for Sat, we do not know of any constructions of unique games with almost-
perfect completeness2 and bounded soundness error. The two conjectures, UGC
and PGC, seem unrelated: neither would imply the other.

1.3 The Potential Influence of The PGC

We believe that the projection games conjecture provides a stable foundation
on which many new hardness of approximation results can be based. In particu-
lar, for several central approximation problems, achieving tight hardness results
seems to require projection games with low soundness error; a few examples
follow.

In a work in progress with Gopal we research the approximability of Max-

3Sat and Max-3Lin just above their approximation thresholds, which are 7/8
and 1/2, respectively. For context, H̊astad discusses hardness beyond any con-
stant larger than the thresholds [H̊as01], and Moshkovitz-Raz improve this to
1/(log logn)O(1) beyond the threshold [MR10], which is still quite large for rea-
sonable n’s. Researching the range of 1/nO(1) beyond the threshold is possible
assuming projection games with polynomially small error.

Other results we hope could be achieved (but would require further ideas) are:

– Tight lower bound for n1−o(1)-approximation of Clique [H̊as99, Kho01].

– Tight lower bound for nΩ(1)-approximation of the Shortest-Vector-

Problem (SVP) in lattices [Kho05].

1 The unique games conjecture only asks for arbitrarily small constant soundness error
ε, while the PGC asks for polynomially small error.

2 For unique games, if all the edges can be satisfied simultaneously, then one can find a
satisfying assignment in polynomial time. Hence, we consider the case where almost
all edges can be satisfied simultaneously (“almost perfect completeness”).

The Projection Games Conjecture and the NP-Hardness 279

In this paper, we show a tight lower bound on (1 − α) lnn-approximation of
Set-Cover assuming the projection games conjecture. (Of course, all the lower
bounds are conditioned on a lower bound for Sat.)

There are several types of gains that can obtained from the PGC:

– Better lower bounds. For some problems (e.g., Set-Cover) the sound-
ness error obtained from parallel repetition (Theorem 2) is sufficient, but the
blow-up in the reduction translates into weak lower bounds. For Set-Cover,

this lower bound is 2n
Ω(α/ log log n)

which is much lower than the exponential
lower bound one could a-priori hope for (note that n1/ log logn = no(1)).

– Minimal assumptions. The parallel-repetition based hardness re-
sult for Set-Cover can equivalently stated: Assuming NP �⊆
DTIME(nO(log log n)), polynomial-time (1− α) lnn-approximation for Set-
Cover is ruled out [Fei98]. The PGC lets one see what results can potentially
be obtained relying only on the minimal assumption P �= NP .

– Improved inapproximability factors. For many problems (such as the
other problems mentioned above: SVP, Clique, etc), one seems to need
polynomially small soundness error to obtain the best inapproximability
factor.

In all the aforementioned examples, the existing reductions have super-polynomial
blow-up, not only in order to achieve low error for a projection game, but also to
facilitate the reduction. For instance, H̊astad’s reductions use the long code on
top of a projection game. For low error ε, the long code incurs a large blow-up

2(1/ε)
O(1)

[H̊as01]. Basing hardness results on the PGC, would require reductions
that do not resort to large blow-ups.

1.4 Set-Cover

We demonstrate the application of the PGC to the NP-hardness of approximat-
ing Set-Cover. In Set-Cover, given a collection of sets over the same base
set, such that the sets cover all of the base set, the goal is to find as few sets as
possible that cover the entire base set:

Definition 3 (Set-Cover). The input to Set-Cover consists of a base set U ,
|U | = n and subsets S1, . . . Sm ⊆ U ,

⋃m
j=1 Sj = U , m ≤ poly(n). The goal is to

find as few sets Si1 , . . . , Sik as possible that cover U , i.e.,
⋃k
j=1 Sij = U .

Set-Cover is a classic NP-hard optimization problem. It is equivalent to the
Hitting-Set,Hypergraph-Vertex-Cover andDominating-Set problems,
and is a special case of many other problems, e.g., Group-Steiner-Tree and
Group-Traveling-Salesman-Problem.

The greedy algorithm was shown to give a (lnn+ 1)-approximation for Set-
Cover [Chv79]. Slav́ık analyzed the low order terms of the greedy algorithm,
and showed that it in fact obtains an approximation to within lnn − ln lnn +
O(1) [Sla96]. Set-Cover also has a linear programming based algorithm that
gives approximation to within similar factors [Sri99].

280 D. Moshkovitz

Lund and Yannakakis proved that Set-Cover cannot be approximated in
polynomial time to within any factor better than (log2 n)/4, assuming NP �⊆
DTIME(npoly logn) [LY93]. By adapting their construction, Feige changed the
leading constant to the right constant, and showed that Set-Cover cannot be
approximated in polynomial time to within (1−α) lnn for any α > 0, assuming
NP �⊆ DTIME(nO(lg lgn)) [Fei98] (the improvement in the assumption is due
to the proof of the parallel repetition theorem [Raz98] in the time between
the two results). Under P �= NP , the best hardness factor known is about
0.2 lnn [AMS06], based on the PCP of [RS97, AS03].

The assumption NP �⊆ DTIME(nO(lg lgn)) in Feige’s work comes from the
use of the parallel repetition theorem. Parallel repetition is used by Feige not
only to ensure very low error 1/(logn)O(1), but also for its unique structure.
It was assumed by some that the blow-up incurred by parallel repetition was
inherent to the problem. We show that this is not the case, assuming the PGC.
Moreover, the blow-up in our reduction is essentially optimal.

Theorem 4. For every 0 < α < 1, there is c = c(α), such that if the projection
games conjecture holds with error ε = c

lg4 n
, then (exact) Sat on inputs of size

n can be reduced in polynomial time to approximating Set-Cover on inputs of
size N = nO(1/α) better than (1− α) lnN .

The theorem proves that approximating Set-Cover on inputs of size N better
than (1− α) lnN is NP -hard, assuming the PGC. Interestingly, the blow-up of
the reduction N = nO(1/α) is optimal (up to the constant in the O(·)), assum-
ing that Sat requires exponential time 2Ω(n) and the PGC. This follows from
a sub-exponential 2O(nα log n)-time approximation algorithm for (1−α) lnN ap-
proximating Set-Cover [CKW09].

Another interesting point about the theorem is that the quantitative version
of the PGC that we need, namely, ε = c

lg4 n
for sufficiently small constant c > 0,

is much weaker than the full conjecture, and it is just outside the reach of current
techniques.

1.5 Preliminaries

For a set S and a natural number � we denote by
(
S

)
the family of all sets of �

elements from S.
We assume without loss of generality that the projection game in Conjecture 1

is bi-regular, i.e., all the A vertices have the same degree, which we call the
A-degree, and all the B vertices have the same degree, which we call the B-
degree. We note that any projection game can be converted to bi-regular using a
technique developed in [MR10] (“right degree reduction – switching sides – right
degree reduction”), and the cost in the soundness error and graph size does not
change the parameters as stated in Conjecture 1.

The Projection Games Conjecture and the NP-Hardness 281

2 Set-Cover Hardness

2.1 The New Component

Feige uses the structure obtained from parallel repetition to achieve a projection
game in which the soundness guarantee is that very few B vertices have any two
of their neighbors agree on a value for them:

Definition 5 (Total disagreement). Assume a projection game

(G = (A,B,E), ΣA, ΣB, Φ).

Let ϕA : A → ΣA be an assignment to the A vertices. We say that the A vertices
totally disagree on a vertex b ∈ B if there are no two neighbors a1, a2 ∈ A of b,
e1 = (a1, b), e2 = (a2, b) ∈ E, for which

πe1(ϕA(a1)) = πe2(ϕA(a2)).

Definition 6 (Agreement soundness). Assume a projection game

(G = (A,B,E), ΣA, ΣB, Φ)

for deciding whether a boolean formula φ is satisfiable. We say that G has agree-
ment soundness error ε, if for unsatisfiable φ, for any assignment ϕA : A → ΣA,
the A vertices are in total disagreement on at least 1− ε fraction of the b ∈ B.

Feige used parallel repetition together with a coding theoretic “trick” to achieve
agreement soundness. We show a different way to achieve agreement soundness.
Our construction centers around the following combinatorial construction:

Lemma 21 (Combinatorial construction). For 0 < ε < 1, for infinitely
many n, D, there is an explicit construction of a regular graph H = (U, V,E)
with |U | = n, V -degree D, and |V | ≤ nO(1) that satisfies the following. For every
partition U1, . . . , Ul of U into sets, such that |Ui| ≤ ε |U | for i = 1, . . . , l, the
fraction of vertices v ∈ V with more than one neighbor in any single set Ui, is
at most εD2.

Note that the combinatorial property could be achieved by a randomized con-
struction, or by a construction that has a V vertex per every possible set of D
neighbors in U . However, the first construction is randomized and the second –
too wasteful with a size of ≈ |U |D. The lemma can therefore be thought of as a
derandomization of the randomized/full constructions.

Proof. (of Lemma 21) Associate U with a space Fm where F is a finite field of
size |F| = D, and m is a natural number. Let V be the set of all lines in Fm.

Hence, |V | =
(|U|

2

)
/
(|F|
2

)
. We connect a line v ∈ V with a point u ∈ U if u lies

in v.
Let us show this construction satisfies the desired property. Fix a partition

U1, . . . , Ul of U into tiny sets, |Ui| ≤ ε |U | for i = 1, . . . , l. For every 1 ≤ i ≤ l,

282 D. Moshkovitz

the number of V lines that have at least two neighbors in Ui is at most
(|Ui|

2

)
.

Thus the total number of V vertices with more than one neighbor in a single Ui
is at most

l∑
i=1

(
|Ui|
2

)
≤

l∑
i=1

|Ui|2

2

≤ max { |Ui| | 1 ≤ i ≤ l} ·
l∑

i=1

|Ui|
2

≤ ε |U | · |U |
2

≤ ε |F|2 |V | .

We show how to take a projection game with standard soundness and convert it
to a projection game with total disagreement soundness, by combining it with
the graph from Lemma 21.

Lemma 22. Let D ≥ 2, ε > 0. From a projection game with soundness error
ε2D2, we can construct a projection game with agreement soundness error 2εD2

and B-degree D. The transformation preserves the alphabets of the game. The
size is raised to a constant factor.

Proof. Let G = (G = (A,B,E), ΣA, ΣB, Φ) be the original projection game.
Assume that the B-degree is |U |, and we use U to enumerate the neighbors of
a B vertex, i.e., there is a function E← : B × U → A that given a vertex b ∈ B
and u ∈ U , gives us the A vertex which is the u neighbor of b.

Let H = (U, V,EH) be the graph from Lemma 21. We create a new projec-
tion game (G = (A,B × V,E′), ΣA, ΣB, Φ

′). The intended assignment to every
vertex a ∈ A is the same as its assignment in the original game. The intended
assignment to a vertex 〈b, v〉 ∈ B × V is the same as the assignment to b in the
original game. We put an edge e′ = (a, 〈b, v〉) if E←(b, u) = a and (u, v) ∈ EH .
We define πe′ ≡ π(a,b).

If there is an assignment to the original game that satisfies c fraction of its
edges, then the corresponding assignment to the new game satisfies c fraction of
its edges.

Suppose there is an assignment for the new game ϕA : A → ΣA in which more
than 2εD2 fraction of the vertices in B × V do not have total disagreement.

Let us say that b ∈ B is “good” if for more than εD2 of the vertices in {b}×V
the A vertices do not totally disagree. Note that the fraction of good b ∈ B is at
least εD2.

Focus on a good b ∈ B. Consider the partition of U into |ΣB| sets, where the
set corresponding to σ ∈ ΣB is:

Uσ = {u ∈ U | a = E←(b, u) ∧ e = (a, b) ∧ πe(ϕA(a)) = σ} .

By the property of H , there must be σ ∈ ΣA such that |Uσ| > ε |U |. We call σ
the “champion” for b.

The Projection Games Conjecture and the NP-Hardness 283

We define an assignment ϕB : B → ΣB that assigns good b’s their champions,
and other b’s arbitrary values. The fraction of edges that ϕA, ϕB satisfy in the
original game is at least ε2D2.

Next we consider a variant of projection games that is relevant for the reduction
to Set-Cover. In this variant the prover is allowed to assign each vertex �
values, and an agreement is interpreted as agreement on one of the assignments
in the list:

Definition 7 (List agreement). Assume a projection game

(G = (A,B,E), ΣA, ΣB, Φ).

Let � ≥ 1. Let ϕ̂A : A →
(
ΣA

)
be an assignment that assigns each A vertex l

alphabet symbols. We say that the A vertices totally disagree on a vertex b ∈ B
if there are no two neighbors a1, a2 ∈ A of b, e1 = (a1, b), e2 = (a2, b) ∈ E, for
which there exist σ1 ∈ ϕ̂A(a1), σ2 ∈ ϕ̂A(a2), such that

πe1 (σ1) = πe2(σ2).

Definition 8 (List agreement soundness). Assume a projection game

(G = (A,B,E), ΣA, ΣB, Φ)

for deciding membership whether a boolean formula φ is satisfiable. We say that
G has agreement soundness error (�, ε), if for unsatisfiable φ, for any assignment
ϕ̂A : A →

(
ΣA

)
, the A vertices are in total disagreement on at least 1−ε fraction

of the b ∈ B.

If a projection game has low error ε, then even when the prover is allowed to
assign each A vertex � values, the game is still sound. This is argued in the next
corollary:

Lemma 23 (Projection game with list agreement soundness). Let � ≥ 1,
0 < ε′ < 1. A projection game with agreement soundness error ε′ has agreement
soundness error (�, ε′�2).

Proof. Assume on way of contradiction that the projection game has an assign-
ment ϕ̂A : A →

(
ΣA

)
such that on more than ε′�2 fraction of the B vertices,

the A vertices do not totally disagree. Define an assignment ϕA : A → ΣA by
assigning every vertex a ∈ A a symbol picked uniformly at random from the �
symbols in ϕ̂A(a). If a vertex b ∈ B has two neighbors a1, a2 ∈ A that agree on
b under the list assignment ϕ̂A, then the probability that they agree on b under
the assignment ϕA is at least 1/�2. Thus, under ϕA, the expected fraction of the
B vertices that have at least two neighbors that agree on them, is more than
ε′. In particular, there exists an assignment to the A vertices, such that more
than ε′ fraction of the B vertices have two neighbors that agree on them. This
contradicts the agreement soundness of the game.

284 D. Moshkovitz

By applying Lemma 22 and then Lemma 23 on the game from Conjecture 1, we
get:

Corollary 24. Assuming Conjecture 1, for any � ≥ 1, for infinitely many D,
for any ε ≥ 1/nc, given a projection game with alphabet size poly(1/ε) and B-
degree D, it is NP-hard to distinguish between the case where all edges can be
satisfied, and the case where the agreement soundness error is (�, 2D�2

√
ε).

2.2 Following Feige’s Reduction

In the remainder, we will show how to use Corollary 24 to obtain the desired
hardness result for Set-Cover. The reduction is along the lines of Feige’s orig-
inal reduction.

For the reduction we rely on a combinatorial construction of a universe to-
gether with partitions of it. Each partition covers the universe, but any cover
that takes at most one set out of each partition, is necessarily large:

Lemma 25 (Partition system, [NSS95]). For natural numbersm,D, for α ≤
2/D, there is an explicit construction of a universe U , |U | ≤ poly(DlogD, logm)
and partitions P1, . . . ,Pm of U into D sets that satisfy the following: there is no
cover of U with � = D ln |U | (1− α) sets Si1 , . . . , Si� , 1 ≤ i1 < · · · < i ≤ m, such
that set Sij belongs to partition Pij .

To see why � = D ln |U | (1 − α) is to be expected (this later determines the
hardness factor we get), think of the following randomized construction: each
element in U corresponds to a vector in [D]m, specifying for each of the m
partitions, to which of its D sets it belongs. Consider a uniformly random choice
of such a vector. Fix any Si1 , . . . , Si� . The probability that a random element
is not covered by Si1 , . . . , Si� is (1 − 1/D) ≈ e−/D. When � = D ln |U | (1 −
α), we have e−/D ≥ 1/ |U |, and we expect one of the |U | elements in U not
to be covered by Si1 , . . . , Si� . The construction in [NSS95] de-randomizes this
randomized construction.

We now describe the reduction from a projection game G as in Corollary 24,
to a Set-Cover instance SCG .

Apply Lemma 25 for m = |ΣB| and D which is the B-degree of the projection
game. Let U be the universe, and Pσ1 , . . . ,Pσm be the partitions of U . We
index the partitions by ΣB symbols σ1, . . . , σm. The elements of the Set-Cover

instance are B × U .
For every vertex a ∈ A and an assignment σ ∈ ΣA to a we have a set Sa,σ

in the Set-Cover instance. The intuition is that whether we take Sa,σ to the
cover would correspond to assigning σ to a. The set Sa,σ is a union of subsets,
one for every edge e = (a, b) touching a. Suppose e is the i’th edge coming
into b (1 ≤ i ≤ D), then the subset associated with e is the i’th subset of the
partition Pϕe(σ). Note that if we have an assignment to the A vertices, such that
all of b’s neighbors agree on one value for b, then the D subsets corresponding to
those neighbors and their assignments form a partition that covers b’s universe.
On the other hand, if one uses only sets that correspond to totally disagreeing

The Projection Games Conjecture and the NP-Hardness 285

assignments to the neighbors, then by the definition of the partitions, covering
U requires ≈ ln |U | times more sets.

Claim 26 The following hold:

– Completeness: If all the edges in G can be satisfied, then SCG has a set cover
of size |A|.

– Soundness: Let �
.
= D ln |U | (1 − α) be as in Lemma 25. If G has agree-

ment soundness (�, α), then every set cover of SCG is of size more than
|A| ln |U | (1− 2α).

Proof. Completeness follows from taking the set cover corresponding to each of
the A vertices and its satisfying assignment.

Let us prove soundness. Assume on way of contradiction that there is a set
cover C of SCG of size at most |A| ln |U | (1− 2α). For every a ∈ A let sa be the
number of sets in C of the form Sa,·. Hence,

∑
a∈A sa = |C|. For every b ∈ B

let sb be the number of sets in C that participate in covering {b} × U . Then,
denoting the A-degree of G by DA,∑

b∈B
sb =

∑
a∈A

saDA ≤ DA |A| ln |U | (1 − 2α) = D |B| ln |U | (1− 2α).

In other words, on average over the b ∈ B, the universe {b} × U is covered by
at most D ln |U | (1− 2α) sets. Therefore, by Markov’s inequality, the fraction of
b ∈ B whose universe {b}×U is covered by at most D ln |U | (1−α) = � sets is at
least α. By Lemma 25 and our construction, for such b ∈ B, there are two edges
e1 = (a1, b), e2 = (a2, b) ∈ E with Sa1,σ1 , Sa2,σ2 ∈ C where πe1 (σ1) = πe2(σ2).

We define an assignment ϕ̂A : A →
(
ΣA

)
to the A vertices as follows. For

every a ∈ A pick � different symbols σ ∈ ΣA from those with Sa,σ ∈ C (add
arbitrary symbols if there are not enough). As we showed, for at least α fraction
of the b ∈ B, the A vertices will not totally disagree.

Fix a constant 0 < α < 1. The inapproximability ratio we get for Set-Cover

from Claim 26 is (1−2α) ln |U |, assuming agreement soundness (�, α). The latter
is obtained from Corollary 24 for ε = c/ log4 n for a certain constant c = c(α).

Let N = |U | |B| be the number of elements in SCG . We take |U | = Θ(|B|1/α)
(we might need to duplicate elements for that), so lnN = (1 + α) ln |U |, and
the inapproximability ratio is at least (1 − 3α) lnN . Note that the reduction is
polynomial in n. This proves Theorem 4.

3 Open Problems

The main open problem is to prove the projection games conjecture. We believe
that many more hardness of approximation results could be proved based on
the PGC. Two concrete open problems are to prove results for Clique and
SVP. It will be interesting to show equivalence between certain strong hardness
results and the PGC. Another very interesting open problem is to find better
approximation algorithms for projection games.

286 D. Moshkovitz

Acknowledgments. The motivation to prove the Set-Cover result came from
discussions with Ran Raz. The author would also like to thank Scott Aaronson,
Zach Friggstad, Ryan O’Donnell, Muli Safra and the anonymous reviewers for
useful comments.

References

[ALM+98] Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification
and the hardness of approximation problems. Journal of the ACM 45(3),
501–555 (1998)

[AMS06] Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for
k-restrictions. ACM Trans. Algorithms 2, 153–177 (2006)

[AS98] Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization
of NP. Journal of the ACM 45(1), 70–122 (1998)

[AS03] Arora, S., Sudan, M.: Improved low-degree testing and its applications.
Combinatorica 23(3), 365–426 (2003)

[BGLR93] Bellare, M., Goldwasser, S., Lund, C., Russell, A.: Efficient probabilistically
checkable proofs and applications to approximations. In: Proc. 25th ACM
Symp. on Theory of Computing, pp. 294–304 (1993)

[CHK09] Charikar, M., Hajiaghayi, M., Karloff, H.: Improved Approximation Algo-
rithms for Label Cover Problems. In: Fiat, A., Sanders, P. (eds.) ESA 2009.
LNCS, vol. 5757, pp. 23–34. Springer, Heidelberg (2009)

[Chv79] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics
of Operations Research 4(3), 233–235 (1979)

[CKW09] Cygan, M., Kowalik, L., Wykurz, M.: Exponential-time approximation of
weighted set cover. Inf. Process. Lett. 109(16), 957–961 (2009)

[DFK+11] Dinur, I., Fischer, E., Kindler, G., Raz, R., Safra, S.: PCP characteriza-
tions of NP: Toward a polynomially-small error-probability. Computational
Complexity 20(3), 413–504 (2011)

[Fei98] Feige, U.: A threshold of lnn for approximating set cover. Journal of the
ACM 45(4), 634–652 (1998)

[H̊as99] H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathemat-
ica 182, 105–142 (1999)

[H̊as01] H̊astad, J.: Some optimal inapproximability results. Journal of the
ACM 48(4), 798–859 (2001)

[Kho01] Khot, S.: Improved inapproximability results for maxclique, chromatic
number and approximate graph coloring. In: Proc. 42nd IEEE Symp. on
Foundations of Computer Science, pp. 600–609 (2001)

[Kho02] Khot, S.: On the power of unique 2-prover 1-round games. In: Proc. 34th
ACM Symp. on Theory of Computing, pp. 767–775 (2002)

[Kho05] Khot, S.: Hardness of approximating the shortest vector problem in lattices.
Journal of the ACM 52(5), 789–808 (2005)

[LY93] Lund, C., Yannakakis, M.: On the hardness of approximating minimization
problems. In: Proc. 25th ACM Symp. on Theory of Computing (1993)

[MR10] Moshkovitz, D., Raz, R.: Two query PCP with sub-constant error. Journal
of the ACM 57(5) (2010)

[NSS95] Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal de-
randomization. In: Proc. 36th IEEE Symp. on Foundations of Computer
Science, pp. 182–191 (1995)

The Projection Games Conjecture and the NP-Hardness 287

[Raz98] Raz, R.: A parallel repetition theorem. SIAM Journal on Computing 27,
763–803 (1998)

[RS97] Raz, R., Safra, S.: A sub-constant error-probability low-degree test and a
sub-constant error-probability PCP characterization of NP. In: Proc. 29th
ACM Symp. on Theory of Computing, pp. 475–484 (1997)

[Sla96] Slav́ık, P.: A tight analysis of the greedy algorithm for set cover. In: Proc.
28th ACM Symp. on Theory of Computing, pp. 435–441 (1996)

[Sri99] Srinivasan, A.: Improved approximations guarantees for packing and cover-
ing integer programs. SIAM Journal on Computing 29(2), 648–670 (1999)

New and Improved Bounds

for the Minimum Set Cover Problem

Rishi Saket1 and Maxim Sviridenko2

1 IBM T.J. Watson Research Center, NY, USA
2 Department of Computer Science, University of Warwick, UK

Abstract. We study the relationship between the approximation factor
for the Set-Cover problem and the parameters Δ : the maximum cardi-
nality of any subset, and k : the maximum number of subsets containing
any element of the ground set. We show an LP rounding based approxi-

mation of (k− 1)(1− e−
lnΔ
k−1) + 1, which is substantially better than the

classical algorithms in the range k ≈ lnΔ, and also improves on related
previous works [19,22]. For the interesting case when k = θ(logΔ) we
also exhibit an integrality gap which essentially matches our approxi-
mation algorithm. We also prove a hardness of approximation factor of

Ω
(

logΔ
(log logΔ)2

)
when k = θ(logΔ). This is the first study of the hardness

factor specifically for this range of k and Δ, and improves on the only
other such result implicitly proved in [18].

1 Introduction

We consider the classical minimum set cover problem. We are given the ground
set {1, . . . , n} = [n] and m subsets Sj ⊆ [n] for j = 1, . . . ,m. Each set Sj has
an associated non-negative weight wj . The goal is to choose a collection of sets
indexed by C ⊆ {1, . . . ,m} = [m] such that [n] = ∪j∈CSj and minimize

∑
j∈C wj .

There are two additional parameters associated with the problem. Let Δ =
maxj∈[m] |Sj | be the maximal cardinality of a set in the instance. For each el-
ement i ∈ [n], let ki = |{Sj : i ∈ Sj , j ∈ [m]}| be the number of sets in the
instance containing the element i ∈ [n] and let k = maxi∈[n] ki.

There are two types of classical approximation algorithms for the minimum set
cover problem. The natural greedy algorithm has performance guarantee lnΔ+1
[20,12,5]. Another well-known type of algorithms has performance guarantee k
[4,10]. Both performance guarantees are asymptotically the best possible under
natural complexity assumptions [7,6,17] specifically for the regime where Δ is
not bounded by a constant, although for constant Δ a performance guarantee
strictly better than k can be obtained [9]. Nevertheless, assuming that Δ is not
bounded, if one defines the performance ratio ρ(k) as a function of parameter k
the classical approximation algorithms provide us with performance guarantee
ρ(k) = min{k, lnΔ + 1} (see Figure 1). The function ρ(k) is not smooth at
the point k = lnΔ + 1, which indicates that performance guarantee of classical
algorithms is not best possible, at least in regime when k ≈ lnΔ+ 1.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 288–300, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

New and Improved Bounds for the Minimum Set Cover Problem 289

Our Results. In this paper we study the relationship between the approxima-
tion factor for Set-Cover in terms of k and Δ. We prove the following results.

Approximation Algorithm. In this paper we design a simple LP rounding

based approximation algorithm with performance guarantee (k−1)(1−e− lnΔ
k−1)+1

which asymptotically matches the performance guarantee of known (and best
possible) approximation algorithms when k � lnΔ or k � lnΔ in the regime
where Δ is unbounded. In particular, when k = lnΔ + 1, our algorithm has
performance guarantee (1− e−1) lnΔ+ 1. For a comparison of the performance
of our algorithm with ρ(k), refer to Figure 2. Our approximation algorithm and
its analysis are presented in Section 2.

Previous results in this direction are due to Krivelevich [19] and Okun [22].
Using our notations Krivelevich [19] designed an approximation algorithm with

performance guarantee max{k− 1, (k− 1)(1− e−
lnΔ
k−1) + 1} for the case when all

subsets have cardinality Δ and all elements of the ground set belong to exactly
k sets. Okun [22] designed an approximation algorithm that works in the regime
when (1− e−1)k ≤ lnΔ with performance guarantee smaller than k but strictly
worse than ours.

Integrality Gap. For the interesting regime where k = θ(logΔ) we show an LP

integrality gap of k(1− e−
lnΔ
k − δ) for any constant δ > 0, essentially matching

our LP rounding upper bound. Our construction is probabilistic and is given in
Section 3.

Hardness of Approximation. In this work we obtain a lower bound of

Ω
(

logΔ
(log logΔ)2

)
when k = θ(logΔ), where Δ is a polynomial in n. In previous

work, Feige [7] had shown that in the regime where k = Ω(Δγ) for some constant
γ > 0, it is hard to approximate Set-Cover to within a factor of (1 − ε) lnΔ.
As mentioned before, this essentially matches the lnΔ+ 1 greedy algorithm. A
slightly weaker lower bound of Ω(logΔ) was obtained by Lund and Yannakakis

[21] for k = Ω((logΔ)c), where c > 1 is a large constant, and for k = 2log
1−ε Δ

by Raz and Safra [23] and by Alon, Moshkovitz and Safra [1]. On the other
hand, for small values of k the known hardness factors are linear in k. For con-
stant k, assuming the Unique Games Conjecture [14] it is NP-hard to approxi-
mate within a factor of k − ε [17,3]. In [6] it was shown that for superconstant
k = O((log logΔ)1/c) the hardness factor is k− 1− ε, and for k = O((logΔ)1/c)
it is k/2 − ε. In all these hardness reductions (except for that of [17,3]) Δ is a
polynomial in the size of the ground set n. It should be noted that these hardness
results did not explicitly state the dependence between k,Δ and n, and these
relations can be inferred from the respective hardness reductions.

However, the interesting case when k = θ(logΔ) remained unexplored till the
work of Khot and Saket [18] who studied the problem of minimizing the size of
DNF expression of a boolean function given its truth table. In their work [18],
they implicitly obtain a hardness factor (for k = θ(logΔ), Δ polynomial in n)
of Ω(log1−εΔ) although [18] do not explicitly mention this in their work.

290 R. Saket and M. Sviridenko

Our stronger lower bound of Ω
(

logΔ
(log logΔ)2

)
is obtained by revisiting the

Probabilistically Checkable Proof (PCP) construction of [18] using different pa-
rameters while avoiding some of the complications of their reduction, and is pre-
sented in Section 4. This still leaves open the possibility that when k = lnΔ+1,
our approximation of (1− e−1) lnΔ+1 may not be optimal. Conversely, it may
be possible to improve the hardness factor to match the algorithmic bound.
We include, in Section 4.4, a brief discussion on some of the limitations of cur-
rent PCP techniques to improving the hardness factor. The hardness result of
this paper along with previous ones for various regimes of k are summarized in
Figure 3.

k

lnΔ + 1

lnΔ + 1 n

ρ(k)

(1, 1)

Fig. 1. Approximation Factor by Classical Algorithms

k

lnΔ + 1

lnΔ + 1 n

Approx. Factor

(1− e−1) lnΔ + 1

ρ(k)

LP Rounding

(1, 1)

Fig. 2. Comparison of ρ(k) with the LP Rounding Approximation for growing param-
eter Δ

New and Improved Bounds for the Minimum Set Cover Problem 291

Range of k Hardness Factor Complexity Assumption Reference

k: arbitrarily large const. k − ε Unique Games Conj. [14] [17,3]

k ≤ O((log logΔ)1/c) k − 1− ε NP�⊆ DTIME(nO(log log n)) [6]

k ≤ O((logΔ)1/c) k/2− ε NP�⊆ DTIME(nO(log log n)) [6]

k = θ(logΔ) Ω(log1−ε Δ) NP�⊆ DTIME(npoly(log n)) Implicit in [18]

k = θ(logΔ) Ω
(

logΔ
(log logΔ)2

)
NP�⊆ DTIME(npoly(log n)) This work.

k = Ω((logΔ)c) Ω(logΔ) NP�⊆ DTIME(nO(log log n)) [21,15]

k = Ω(2log
1−ε Δ) Ω(logΔ) P �= NP [23,1]

k = Ω(Δγ) (1− ε) lnΔ NP�⊆ DTIME(nO(log log n)) [7]

Fig. 3. Summary of known NP-hardness factors for Set-Cover with different ranges
of k

2 Approximation Algorithm

Consider the following linear programming relaxation of the minimum set cover
problem:

min
∑
j∈[m]

wjxj , (1)

∑
j:i∈Sj

xj ≥ 1, ∀i ∈ [n], (2)

xj ≥ 0, ∀j ∈ [m]. (3)

Our approximation algorithm solves linear programming relaxation on the first
step. Let LP ∗ be the optimal value of the linear programming relaxation and
x∗j , j ∈ [m] be the optimal fractional solution found by the LP solver. We define

pj = min{1, αk ·x∗j} where α = 1− e−
lnΔ
k−1 . Our approximation algorithm defines

a partial cover by choosing to add the set Sj to the cover with probability pj
and not choosing it with probability 1 − pj independently at random. Let R1

be the indices of sets chosen by our random procedure. Let Ir be the set of the
elements of the ground set that do not belong to any of the sets chosen by the
random procedure, i.e. the set of uncovered elements. Each element in Ir chooses
the cheapest set in our instance that covers it. Let R2 be the set of indices of
such sets covering Ir. Our algorithm outputs R1 ∪R2 as the final solution.

Theorem 1. The expected value of the approximate solution output by our al-

gorithm is at most ((k − 1)(1− e−
lnΔ
k−1) + 1)LP ∗.

Proof. By linearity of expectation, the expected value of the sets indexed by R1

is
∑

j∈[m] wjpj ≤ k(1− e−
lnΔ
k−1)LP ∗.

Assume that each element i ∈ [n] of the ground set chooses the cheapest set
that covers that element. Let ji be the index of such a set andW =

∑
i∈[n] wji be

292 R. Saket and M. Sviridenko

the upper bound on the weight of chosen sets. Then by utilizing the constraints
(2) we obtain

W =
∑
i∈[n]

wji ≤
∑
i∈[n]

wji
∑
j:i∈Sj

x∗j ≤
∑
i∈[n]

∑
j:i∈Sj

wjx
∗
j ≤ Δ · LP ∗.

Now, we estimate Pr[i ∈ Ir] above. If pj = 1 for at least one set such that i ∈ Sj
then Pr[i ∈ Ir] = 0. Otherwise, pj = αk · x∗j for all sets Sj such that i ∈ Sj and

Pr[i ∈ Ir] =
∏

j|i∈Sj

(1− pj) ≤
(
1−

∑
j|i∈Sj

pj

ki

)ki
≤
(
1−

∑
j|i∈Sj

pj

k

)k

=

(
1−

∑
j|i∈Sj

αk · x∗j
k

)k
≤ (1− α)

k
=

1

Δk/(k−1)
.

Therefore, by linearity of expectation, the expected weight of the sets in R2 can
be estimated above by W/Δk/(k−1) ≤ LP ∗/Δ1/(k−1). Overall, the expected cost
of the approximate solution is upper bounded above by(

k(1− e−
lnΔ
k−1) +

1

Δ1/(k−1)

)
LP ∗ =

(
(k − 1)(1− e−

lnΔ
k−1) + 1

)
LP ∗

3 Integrality Gap

The integrality gap of a linear programming relaxation for the specific instance of
a minimization problem is the ratio between the minimum value integral solution
of the relaxation (in the numerator) and the minimum value of the fractional
solution (in the denominator).

Consider the following instance of the minimum set cover problem. We are
given a ground set of n elements and m = nε sets. We fix an arbitrary constant
c > 0 and consider the regime when k = c · lnn. Each element i ∈ [n] indepen-
dently at random chooses k sets out of possible m sets, i.e. this element chooses
one combination of k sets out of possible

(
m
k

)
variants uniformly at random. Each

set Sj for j ∈ [m] consists of elements that chose that set. Let Iε be the resulting
random instance of the minimum set cover problem. Note that the parameter
Δ ≤ n. We prove the following theorem showing that for all values of c > 0 the
instance Iε is, with high probability, the desired integrality gap example.

Theorem 2. For any constants c > 0 and δ > 0, there exists a constant ε > 0
such that the integrality gap of the linear programming relaxation (1)-(3) for the
instance Iε is at least k(1− e−1/c − δ) with high probability for large enough n.

Proof. First, we note the fractional solution x′j = 1/k for all j ∈ [m] is feasible.
Indeed, each element is covered by exactly k sets in the instance Iε. Therefore,∑

j:i∈Sj
x′j = 1 for each element i ∈ [n]. We obtain LP ∗ ≤ m/k.

New and Improved Bounds for the Minimum Set Cover Problem 293

We will assume that the constants c, δ > 0 and m are such that the number
(e−1/c+ δ)m is an integer. We now fix an arbitrary collection of sets indexed by
C ⊆ [m] such that |C| = (1− e−1/c − δ)m. We will estimate the probability that
this integral solution is infeasible, i.e. there exist an element i ∈ [n] which is left
uncovered by the sets in this collection in the instance Iε.

The probability that a fixed element i ∈ [n] is not covered by the sets indexed
by C is exactly(

(e−1/c+δ)m
k

)(
m
k

) =

k−1∏
i=0

(e−1/c + δ)m− i

m− i
≥ (e−1/c + δ/2)k =

(1 + e1/cδ/2)c lnn

n

= n−(1−Fc,δ),

where the inequality holds for large enough m since k << m and Fc,δ = c ln(1+
δe1/c/2) is a constant depending on c and δ. We assume that δ is small enough
that Fc,δ ∈ (0, 1).

Since each element chooses its sets independently, the probability that all n
elements are covered by the sets indexed by C is at most(

1− n−(1−Fc,δ)
)n

≤ e−n
Fc,δ

.

The total number of choices for the index set C is at most 2m = 2n
ε

. Therefore,
by the union bound, the probability that there exists a feasible index set C is at
most

e−n
Fc,δ

2n
ε

≤ en
ε−nFc,δ

.

If we choose ε = Fc,δ/2 then probability that there exists a feasible solution
becomes negligibly small for large values of n. Therefore, with probability at

least 1 − en
ε−nFc,δ

one needs to choose at least (1 − e−1/c − δ)m sets into any
feasible integral solution. This implies the claimed bound on the integrality gap.

4 Hardness of Approximation

In this section we shall derive an inapproximability result for the minimum set
cover problem when k = θ(logΔ). Our reduction utilizes a PCP verifier con-
structed by Khot and Saket [18] who used it to prove a nearly optimal hardness
result for minimizing the size of DNF expressions for a boolean function given
its truth table, which is itself a special case of minimum set cover. We slightly
modify the parameters of the verifier constructed in [18] to construct an instance
of maximum constraint satisfaction problem (CSP) with some specific proper-
ties. This is then combined with a reduction – similar to that of Holmerin [11]
for vertex cover – to obtain an instance of Set-Cover. In Section 4.1 we define
the constraint satisfaction problem and state a hardness result for it, a proof of
which is given in Section 4.3. The hardness reduction to Set-Cover is given in
Section 4.2.

In the rest of this section, for convenience, we shall use notations (such as k,
n) in contexts different to the previous sections.

294 R. Saket and M. Sviridenko

4.1 A Hardness Result for Constraint Satisfaction

In this section we shall describe a result on the hardness of a variant of maximum
constraints satisfaction problem (as defined below), which shall be useful in our
reduction for the Set-Cover problem.

Definition 1. An instance of Max-CSP-Reg(t, k) with N constraints, with pa-
rameters t, k as functions of N consists of a set of variables V , a label set [k] and
a set of t-variable constraints E, with |E| = N . The constraints are non-trivial,
i.e. there is at least one satisfying labeling for every constraint. Additionally,
each variable occurs in the same number of constraints. The goal is to assign
labels to each variable in V to satisfy as many constraints in E as possible.

The following hardness result for Max-CSP-Reg follows from the results in [16]
and [18], and a formal proof is presented in Section 4.3.

Theorem 3. Given an instance A of Max-CSP-Reg(t, k) with variable set V
and set of constraints E, where |E| = N , tk = ω(logN) and t = θ((log k)2),
there is no polynomial time algorithm to distinguish between the following two
cases:

YES CASE: There is a set V ′ ⊂ V of variables of size at most |V |/(k3) and a
labeling σ∗ : V \ V ′ → [k] such that,

1. (Strong Completeness) σ∗ satisfies all constraints in E induced by V \ V ′.
2. (Extendability) For any constraint e ∈ E (possibly containing variables from

V ′), there is a labeling σ′
e to variables in e∩ V ′ such that σ∗ extended by σ′

e

satisfies constraint e.

NO CASE: Any labeling σ to the variables of V satisfies at most k−t+O(
√
t)

(soundness) fraction of the constraints,

unless NP ⊆ DTIME(npoly(logn)).

In the next subsection we shall give a reduction from Max-CSP-Reg to an in-
stance of Set Cover to prove our hardness result.

4.2 Reduction to Set-Cover

Now we give a reduction from the instance A of Max-CSP-Reg(t, k) given in
Theorem 3 to an instance I of Set-Cover. As before we have V as the variable
set of A and E as the set of t-variable constraints, where E = |N |, kt = ω(logN)
and t = θ((log k)2). Before describing the instance I of Set-Cover, we need to
construct the following objects.

For every variable v, define a set L(v) := {(v, i) | i ∈ [k]}, which is just the
set of all labels for that variable. Let e ∈ E be any constraint over variables
v1, . . . , vt. Define L̃(e) := ∪ti=1L(vi). Clearly, |L̃(e)| = tk for all e ∈ E.

Let T (e) be set of all labelings τ to v1, . . . , vt that satisfy e. Since the con-
straints are non-trivial, T (e) �= ∅ for all e ∈ E. We say that a subset S ⊆ L̃(e)
is “good” if for all τ ∈ T (e), there is an i ∈ {1, . . . , t} such that (vi, τ(vi)) ∈ S.

New and Improved Bounds for the Minimum Set Cover Problem 295

In other words, every assignment to the variables v1, . . . , vt, that satisfies e, has
a variable-label pair from S. As an illustration, suppose e is a constraint over
vertices v1, . . . , vt such that assigning the label 1 ∈ [k] to each of v1, . . . vt satis-
fies e. Then any good subset S ⊆ L̃(e) must contain at least one pair (vi, 1) for
some i ∈ {1, . . . , t}, and this should similarly hold for any satisfying assignment
to v1, . . . , vt which satisfies e.Let G(e) to be the set of all such “good” subsets
S for the constraint e ∈ E. With these definitions we now describe the ground
set G and the set of subsets C for our instance I of Set-Cover.

Ground Set G. The ground set is defined as G := ∪eG(e), where the union is
over all constraints e ∈ E.

Set of Subsets C. Every possible variable-label pair (v, i), there is a subset
C(v, i) which contains all elements from G (i.e. “good” subsets of L̃(e) for all
constraints e) that contain (v, i). This finishes the construction of our Set-Cover
instance.

Note that every element of the ground set G can be covered by at most tk subsets
from C and that for every constraint e, |G(e)| ≤ 2tk and therefore |G| ≤ 2ktN .
Also, since kt = ω(logN), we obtain that log |G| = O(kt). We now analyze the
YES and NO cases of A.

YES Case. In the YES case there is a subset V ′ of the variables V and a
labeling τ∗ to V \ V ′ as given in Theorem 3. We construct a cover H∗ for
the instance I as follows. For all variables v in V \ V ′ we choose the subset
C(v, τ∗(v)). Additionally, for all variables v′ in V ′ we choose all subsets C(v′, i)
for all i ∈ [k].

Let us first confirm that H∗ indeed covers all elements of the ground set G.
Consider a constraint e over variables v1, . . . , vt. Let us first consider the case
when e does not contain any variable from V ′. By construction of G(e), we have
that for every S ∈ G(e), there is an i ∈ {1, . . . , t} such that (vi, τ

∗(vi)) ∈ S. Thus
G(e) is covered byH∗. Now consider the case that e contains some variables from
V ′. In this case, by the Extendability property of Theorem 3, τ∗ can be extended
by choosing labels to variables in e∩V ′ so that the constraint e is satisfied. Since
H∗ contains all subsets C(v′, i), i ∈ [k], for all v′ ∈ e ∩ V ′, this implies that it
covers all elements in G(e). Thus, H∗ is a valid set cover.

Now, H∗ chooses one subset for each variable in V \ V ′, and k subsets for all
variables in V ′. Therefore we have, |H∗| = |V \V ′|+ k|V ′| ≤ |V |(1+ k−2), using
the bound in Theorem 3 that |V ′|/|V | = O(k−3).

NO Case. In the NO case let H ⊆ C be any cover. We shall prove that it cannot
be small. For any variable v, letH(v) be the set of variable-label pairs (v, i) where
i ∈ [k] such that C(v, i) is in H. Consider a constraint e over variables v1, . . . , vt.
Let H̃(e) := ∪ti=1H(vi). It can be seen that there must be a choice of variable-
label pairs (vi, ji) ∈ H(vi) for each 1 ≤ i ≤ t which constitutes a satisfying
assignment to e. In other words H̃(e) must contain a satisfying assignment to e.
If not, then L̃(e) \ H̃(e) ∈ G(e) is “good”, and is not covered by H. Note that
this also implies that H(v) is non-empty for every variable v.

296 R. Saket and M. Sviridenko

The above analysis suggests a randomized way to assign labels to each vari-
able based on the cover H. For every variable choose a label uniformly at
random from the labels corresponding to the set H(v). For any constraint e
over variables v1, . . . , vt, let pe be the probability that it is satisfied. Then,
pe ≥ 1∏

t
i=1 |H(vi)| . In expectation, the number of constraints satisfied is

∑
e∈E pe.

This quantity has to be at most the soundness of the instance A in the NO
case, i.e.

∑
e∈E pe ≤ |E|k−t+O(

√
t). This implies by Markov’s Inequality, that

for at least half of the constraints e ∈ E over variables v1, . . . , vt, we have
1∏t

i=1 |H(vi)| ≤ pe ≤ 2k−t+O(
√
t), and thus,

∑t
i=1 |H(vi)|

t
≥
(

t∏
i=1

|H(vi)|
) 1

t

≥ 1

(2k−t+O(
√
t))

1
t

. (4)

Since each variable in V occurs in the same number of constraints, we have

the following, (|H|/|V |) = (1/|V |)
∑

v∈V |H(v)| = Ee∈E
[∑t

i=1 |H(vi)|
t

]
, where

the inner summation in the final expression is over the variables v1, . . . vt of the
constraint e in the outer expectation. Combining the above with the fact that
Equation (4) is satisfied for at least half of the coonstraints we obtain,

|H| ≥ |V |
(
1

2

)(
1

(2k−t+O(
√
t))

1
t

)
≥ |V |Ω

(
k
1−O

(
1√
t

))
.

Therefore we obtain a hardness factor of Ω

(
k
1−O

(
1√
t

))
. Since t = θ((log k)2),

the hardness factor is Ω(k). Let d be the upper bound on the number of subsets
that can cover any element in G. From our construction and previous calcu-
lations we have that d = O(kt), and log |G| = O(kt), where t = θ((log k)2).

Therefore, we obtain a hardness of approximation factor of Ω
(

log |G|
(log log |G|)2

)
. By

adding a dummy subset of |G| new dummy elements to the ground set we can
ensure that Δ = Ω(|G|), and by adding another dummy element and log |G|
additional dummy singleton sets containing that element, we can ensure that

d = θ(log |G|). This implies a hardness factor of Ω
(

logΔ
(log logΔ)2

)
, which holds

under the assumption that NP �⊆ DTIME(npoly(logn)).

4.3 Proof of Theorem 3

We begin by stating the following theorem proved by Khot and Ponnuswami
[16] on the hardness of approximating Max-3LIN : the problem of satisfying as
many of a system of three variable linear equations over F2.

Theorem 4. [16] Given a 7-regular instance A of Max-3LIN over F2 on n vari-

ables, unless NP ⊆ DTIME(2O(log2 N)), there is no polynomial time algorithm to
distinguish between the following two cases,

New and Improved Bounds for the Minimum Set Cover Problem 297

YES CASE. There is an assignment to the variables of A that satisfies 1 −
2−Ω(

√
logn) fraction of the equations (completeness).

NO CASE. No assignment to the variables of A satisfies more than 1−Ω(log−3 n)
fraction of the equations (soundness).

We shall combine the above result of [16] with the following “inner verifier”
constructed by Khot and Saket [18]. A similar combination was done in [16] itself,
however our construction is more optimized and we also use slightly different
parameters.

Theorem 5. Given an instance A of Max-3LIN over n variables with complete-
ness 1 − c(n) and soundness 1 − s(n), for parameters m, r, k, � and t there is a
verifier Vlin which expects a proof Π where each position in the proof is expected
to be labeled from [k] = [2r] such that,

1. Vlin uses m logn+O(�mr) random bits.
2. Vlin queries t := �2 + 2� positions from the proof.
3. If the instance A is a YES instance then there is a set Γ consisting of at

most mc(n) fraction (by the probability that Vlin queries any of them) of the
positions in the proof, and an assignment τ∗ to all the positions of the proof
except those in Γ such that,

a. (Strong Completeness) The verifier accepts on τ∗ whenever none of the
positions in Γ are queried.

b. (Extendability) For any constraint q of the verifier which (possibly) queries
positions from Γ , there is an assignment τq to the positions in Γ queried
in q, such that τ∗ extended by τq satisfies the constraint q.

4. If the instance A is a NO instance then the probability that the verifier accepts
is at most k−

2

+ δ, for δ2 = (1− s(n)κ)(m/(κr))(k− 1)
2

, for some universal
constant κ.

We first regularize the above inner verifier as follows. Let p be any position in
the proof Π , and let Rp be the set of all random strings on which the verifier Vlin
queries p. Replicate p with |Rp| copies one for each string in Rp, for each position
p. The new verifier simply chooses an element in Rp at random for each position
p in the original query. Clearly, the new verifier queries each position with equal
probability. It can also be seen that this does not change the completeness or the
soundness of the verifier, and the strong completeness and extendability proper-
ties hold as well. The following lemma formalizes the modification to Theorem
5 that we can make.

Lemma 1. The properties of the verifier Vlin in Theorem 4 hold with the fol-
lowing modifications : (i) The verifier Vlin queries each position with equal prob-
ability, and (ii) The number of random bits used by the verifier is t(m logn +
O(�mr)).

298 R. Saket and M. Sviridenko

In the combination of the above verifier with the Max-3Lin instance of [16]

with n variables we have the completeness c(n) = 2−Ω(
√
log n), and soundness

s(n) = Ω(log3 n). We set the rest of the parameters as follows: take m =
θ(log3κ+3 n) and r = θ(log log n) such that k = θ(log6κ+10 n). Additionally,
we set � = θ(log logn). Now let Q be the set of all queries that the verifier
makes. Clearly log |Q| = t(m logn + O(�mr)) = O(log3κ+5 n) = o(k). Further-
more, the fraction of positions in the subset Γ (as defined in Theorem 5) is

mc(n) ≤ θ(log3κ+3 n) · 2−Ω(
√
logn) = o(k−3). Since s(n) = Ω(log−3 n), we have

δ2 = (1−s(n)κ)(m/(κr))(k−1)
2

= 2−Ω(log2 n)(k−1)
2

. Therefore, the soundness

(k−
2

+ δ) = k−t+O(
√
t).

It is easy to see that with this setting of the parameters, the PCP verifier
obtained in the above combination is an instance of Max-CSP-Reg(t, k) with
variable set V identical to the set of positionsΠ , the set of constraints E identical
to the set of queries Q, and the subset V ′ same as Γ such that the properties of
Theorem 3 hold. This completes the proof of Theorem 3.

4.4 Limitations to Improving the Hardness Factor

In Section 4 we have shown a hardness factor of Ω
(

logΔ
(log logΔ)2

)
for Set-Cover

where every subset has at most Δ elements, and each element of the ground set
is in at most θ(logΔ) subsets. The two parts of this result are : a reduction to
the Set-Cover problem from the Max-CSP problem; and the construction of a
hard instance of Max-CSP with appropriate alphabet size, arity and hardness
factor.

The second step is accomplished by running the t-query PCP test of Samorod-
nitsky and Trevisan [24] on a Hadamard Code based encoding of 3SAT introduced
by Khot [13], which reduces the blowup of the PCP compared to the alphabet size.

The t-query PCP test of [24] on an alphabet [q] has a soundness of q−t+O(
√
t). No-

tably, a better soundness of qt/O(qt) is achieved by more efficient PCP tests given
in [8,2]. However these tests do not combine with the Hadamard Code encoding
of [13] and instead are used along with the Long Code encoding of Unique Games,
which leads to a large blowup of the PCP compared to the alphabet size. Another
issue with the efficient tests of [8,2] is that t needs to be at least q2, which will lead
to weaker bounds for the canonical reduction to Set-Cover.

Thus, improving the hardness factor proved in Section 4 is connected to the
question of designing efficient PCPs for Max-CSP problems over large alphabet,
which in itself is a significant line of research. The current PCP techniques seem
to fall short of yielding a tight bound for Set-Cover when k = θ(logΔ) and
resolving the gap between the hardness result and the algorithmic upper bound
remains an interesting open question.

Acknowledgements. We would like to thank Uriel Feige for helpful and in-
sightful discussions on the topic.

New and Improved Bounds for the Minimum Set Cover Problem 299

References

1. Alon, N., Moshkovitz, D., Safra, M.: Algorithmic construction of sets for k-
restrictions. The ACM Transactions on Algorithms 2(2), 153–177 (2006)

2. Austrin, P., Mossel, E.: Approximation Resistant Predicates from Pairwise Inde-
pendence. Computational Complexity 18(2), 249–271 (2009)

3. Bansal, N., Khot, S.: Inapproximability of Hypergraph Vertex Cover and Applica-
tions to Scheduling Problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 250–261.
Springer, Heidelberg (2010)

4. Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted
vertex cover problem. J. Algorithms 2(2), 198–203 (1981)

5. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3),
233–235 (1979)

6. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the
hardness of hypergraph vertex cover. SIAM J. Comput. 34(5), 1129–1146 (2005)

7. Feige, U.: A threshold of lnn for approximating set cover. J. ACM 45(4), 634–652
(1998)

8. Guruswami, V., Raghavendra, P.: Constraint Satisfaction over a Non-Boolean
Domain: Approximation Algorithms and Unique-Games Hardness. In: Goel, A.,
Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008.
LNCS, vol. 5171, pp. 77–90. Springer, Heidelberg (2008)

9. Halperin, E.: Improved Approximation Algorithms for the Vertex Cover Problem
in Graphs and Hypergraphs. SIAM J. Comput. 31(5), 1608–1623 (2002)

10. Hochbaum, D.: Approximation algorithms for the set covering and vertex cover
problems. SIAM J. Comput. 11(3), 555–556 (1982)

11. Holmerin, J.: Improved Inapproximability Results for Vertex Cover on k-Uniform
Hypergraphs. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eiden-
benz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 1005–1016. Springer,
Heidelberg (2002)

12. Johnson, D.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9, 256–278 (1974)

13. Khot, S.: Improved inaproximability results for maxclique, chromatic number and
approximate graph coloring. In: Proc. FOCS, pp. 600–609 (2001)

14. Khot, S.: On the power of unique 2-prover 1-round games. In: Proc. STOC, pp.
767–775 (2002)

15. Khot, S.: Online lecture notes for Probabilistically Checkable Proofs and
Hardness of Approximation, Lecture 3 (scribed by Deeparnab Chakrabarty),
www.cs.nyu.edu/~khot/pcp-lecnotes/lec3.ps

16. Khot, S., Ponnuswami, A.K.: Better Inapproximability Results for MaxClique,
Chromatic Number and Min-3Lin-Deletion. In: Bugliesi, M., Preneel, B., Sassone,
V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 226–237. Springer, Hei-
delberg (2006)

17. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
J. Comput. System Sci. 74(3), 335–349 (2008)

18. Khot, S., Saket, R.: Hardness of Minimizing and Learning DNF Expressions. In:
Proc. FOCS, pp. 231–240 (2008)

19. Krivelevich, M.: Approximate set covering in uniform hypergraphs. J. Algo-
rithms 25(1), 118–143 (1997)

www.cs.nyu.edu/~khot/pcp-lecnotes/lec3.ps

300 R. Saket and M. Sviridenko

20. Lovasz, L.: On the ratio of the optimal integral and fractional covers. Disc.
Math. 13, 383–390 (1975)

21. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. J. ACM 31(5), 960–981 (1994)

22. Okun, M.: On the approximation of the vertex cover problem in hypergraphs.
Discrete Optimization 2(1), 101–111 (2005)

23. Raz, R., Safra, M.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In: Proc. STOC, pp. 475–
484 (2007)

24. Samorodnitsky, A., Trevisan, L.: A PCP characterization of NP with optimal amor-
tized query complexity. In: Proc. STOC, pp. 191–199 (2000)

Hardness of Vertex Deletion

and Project Scheduling�

Ola Svensson

EPFL, Switzerland
ola.svensson@epfl.ch

Abstract. Assuming the Unique Games Conjecture, we show strong
inapproximability results for two natural vertex deletion problems on
directed graphs: for any integer k ≥ 2 and arbitrary small ε > 0, the
Feedback Vertex Set problem and the DAG Vertex Deletion problem are
inapproximable within a factor k−ε even on graphs where the vertices can
be almost partitioned into k solutions. This gives a more structured and
therefore stronger UGC-based hardness result for the Feedback Vertex
Set problem that is also simpler (albeit using the “It Ain’t Over Till It’s
Over” theorem) than the previous hardness result.

In comparison to the classical Feedback Vertex Set problem, the DAG
Vertex Deletion problem has received little attention and, although we
think it is a natural and interesting problem, the main motivation for
our inapproximability result stems from its relationship with the classi-
cal Discrete Time-Cost Tradeoff Problem. More specifically, our results
imply that the deadline version is NP-hard to approximate within any
constant assuming the Unique Games Conjecture. This explains the dif-
ficulty in obtaining good approximation algorithms for that problem and
further motivates previous alternative approaches such as bicriteria ap-
proximations.

1 Introduction

Many interesting problems can be formulated as that of finding a large induced
subgraph satisfying a desired property of a given (directed) graph. One of the
most well studied such problems is the Feedback Vertex Set (FVS) problem
where the property is acyclicity, i.e., given a directed graph G = (V,E) we
wish to delete the minimum number of vertices so that the resulting graph is
acyclic. Another example is the DAG Vertex Deletion (DVD) problem, where
we are given an integer k and a directed acyclic graph and we wish to delete
the minimum number of vertices so that the resulting graph has no path of
length1 k.

� This research was supported by Grant 228021-ECCSciEng of the European Research
Council.

1 For notational convenience, we shall measure the length of a path in terms of the
number of vertices it contains instead of the number of edges.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 301–312, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

302 O. Svensson

The FVS problem and the related Feedback Arc Set problem was shown to be
NP-complete already in Karp’s seminal paper [9] and there is a long history of
approximation algorithms for these problems. Leighton and Rao [13] first gave a
O(log2 |V |)-approximation algorithm. Seymour [16] improved the approximation
guarantee by showing that a certain linear program approximates the value
within a factor O(log |V | log log |V |). Seymour’s arguments were then generalized
by Even et al. [5] to obtain the best known approximation algorithms achieving
a factor O(log |V | log log |V |) even in weighted graphs.

Motivated by certain VLSI design and communication problems, Paik et
al. [15] considered the DVD problem and showed it to beNP-complete on general
graphs and polynomial time solvable on series-parallel graphs. One can also see
that DVD for a fixed k is a special case of the Vertex Cover problem on k-uniform
hypergraphs and has a fairly straightforward k-approximation algorithm.

In comparison to FVS, the DVD problem has received little attention and,
although we think it is a natural problem, our main motivation for studying
its approximability comes from its relationship (that we prove in Section 4)
with the classical deadline version of the project scheduling problem known as
the Discrete Time-Cost Tradeoff problem. Informally (see Section 4 for a formal
definition of the Deadline problem), this is the problem where we are given a
deadline and a project consisting of tasks related by precedence constraints, and
the time it takes to execute each task depends, by a given cost function, on
how much we pay for it. The objective is to minimize the cost of executing all
the tasks in compliance with the precedence constraints so that they all finish
within the given deadline. Due to its obvious practical relevance, the problem
has been studied in various contexts over the last 50 years (see the paper [11]
by Kelly and Walker for an early reference). Fulkerson [6] and Kelley [10] ob-
tained polynomial time algorithms if all cost functions are linear. In contrast,
the problem becomes NP-hard for arbitrary cost functions [3] and there is even
no known constant factor approximation algorithm in the general case. However,
better (approximation) algorithms have been obtained for special cases. For ex-
ample, Grigoriev and Woeginger [7] gave polynomial time algorithms for special
classes of precedence constraints and one of several algorithms by Skutella [17]
is a bicriteria approximation that, for any μ ∈ (0, 1), approximates the Deadline
problem within a factor 1/(1− μ) if the deadline is allowed to be violated by a
factor 1/μ.

In summary, there are no known constant approximation algorithms for FVS,
DVD, and the Deadline problem although few strong inapproximability results
are known. The best known NP-hardness of approximation results follow from
the fact that they are all as hard to approximate as Vertex Cover which is NP-
hard to approximate within a factor 1.3606 [4]. It is indeed easy to see that
Vertex Cover is a special case of FVS and DVD, and Grigoriev and Woegin-
ger [7] gave an approximation-preserving reduction from Vertex Cover to the
Deadline problem. If we assume the Unique Games Conjecture (UGC) [12], our
understanding of the approximability of FVS becomes significantly better: the
hardness of approximation result for Maximum Acyclic Subgraph by Guruswami

Hardness of Vertex Deletion and Project Scheduling 303

et al. [8] implies that it is NP-hard to approximate FVS within any constant
factor assuming the UGC. However, the results in [8] use very sophisticated tech-
niques that are not known to imply a similar hardness for DVD and the Deadline
problem.

Even though the starting motivation of this work was to better understand
the approximability of the Deadline problem (and DVD), the techniques that
we develop also lead to a stronger UGC-based hardness result for FVS: similar
to the recent results for Vertex Cover on k-uniform hypergraphs by Bansal and
Khot [1,2], we show that, for any integer k ≥ 2 and arbitrarily small ε > 0, there
is no k − ε-approximation algorithm for FVS even on graphs where the vertices
can be almost partitioned into k feedback vertex sets. Our reduction is also
much simpler than the one in [8] (albeit using the “It Ain’t Over Till It’s Over”
theorem) but is tailored for FVS and does not yield any inapproximability result
for the Maximum Acyclic Subgraph problem. More importantly, our techniques
also lead to an analogous result for the DVD problem (and thereby the Deadline
problem). Formally, our results for the considered vertex deletion problems can
be stated as follows.

Theorem 1. Assuming the Unique Games Conjecture, for any integer k ≥ 2
and arbitrary constant ε > 0, the following problems are NP-hard:

FVS: Given a graph G(V,E), distinguish between the following cases:

– (Completeness): there exist disjoint subsets V1, . . . , Vk ⊂ V satisfying
|Vi| ≥ 1−ε

k |V | and such that a subgraph induced by all but one of these
subsets is acyclic.

– (Soundness): every feedback vertex set has size at least (1− ε)|V |.
DVD: Given a DAG G(V,E), distinguish between the following cases:

– (Completeness): there exist disjoint subsets V1, . . . , Vk ⊂ V satisfying
|Vi| ≥ 1−ε

k |V | and such that a subgraph induced by all but one of these
subsets has no path of length k.

– (Soundness): every induced subgraph of ε|V | vertices has a path of length
|V |1−ε.

Note that in the completeness cases, letting V ′ = V \ (V1 ∪ · · · ∪ Vk), the sets
V ′∪Vi for i = 1, . . . , k are almost disjoint solutions of size at most (1k+ε)|V | each.
In contrast, any solution basically needs to delete all vertices in the soundness
case (even to avoid paths of length |V |1−ε for DVD).

When proving UGC-based inapproximability results, the main task is usu-
ally to design “gadgets” of the considered problems that simulate a so-called
dictatorship test. Once we have such “dictatorship gadgets”, the process of ob-
taining UGC-based hardness results often follows from (by now) fairly standard
arguments. In particular, the main ideas needed for our reductions leading to
Theorem 1 are already present in the design of the gadgets. We have therefore
chosen to present those gadget constructions with less cumbersome notation in
the conference version (Section 3) and the reductions from Unique Games can
be found in the full version of the paper.

304 O. Svensson

As alluded to above, our main interest in DVD stems from its relationship with
the Deadline problem. More specifically, in Section 4, we give an approximation-
preserving reduction from DVD to the Deadline problem that combined with
Theorem 1 yields:

Theorem 2. Conditioned on the Unique Games Conjecture, for every C > 0,
it is NP-hard to find a C-approximation to the Deadline problem.

This explains the difficulty in obtaining good approximation algorithms for the
Deadline problem and also further motivates alternative approaches such as the
bicriteria approach by Skutella [17] that approximates the Deadline problem
within a constant if the deadline is allowed to be violated by a constant factor.

2 Preliminaries

2.1 Low Degree Influence and “It Ain’t over Till It’s over” Theorem

Let [k] = {0, 1, . . . , k − 1}. When analyzing our hardness reductions, we shall
use known properties regarding the behavior of functions of the form f : [k]R →
{0, 1} depending on whether they have influential co-ordinates. Similar to [14,
Section 3], we define the influence of the i-th co-ordinate by

Infli(f) = Ex[Var(f)|x1, . . . , xi−1, xi+1, . . . , xR].

We note that if f : {−1, 1}R → {−1, 1} then this definition coincides with the
intuitive expression Prx[f(x1, . . . , xi, . . . , xR) �= f(x1, . . . ,−xi, . . . , xR)].

It is well known that if we let f =
∑

Φ f̂(φ)Xφ be the multi-linear representa-
tion of f (where, analogous of the standard Fourier representation, the charac-
ters (Xφ)φ∈[k]R define an orthonormal basis of the vector space of all functions
[k]n → R) then the influence can also be expressed as

Infli(f) =
∑

φ:φi �=0

f̂2(φ),

which motivates the following definition of the degree d-influence of the i-th
co-ordinate:

Infldi (f) =
∑

φ:φi �=0,|φ|≤d
f̂2(φ).

As we shall not work directly with these definitions or with the multi-linear
representation, we refer the reader to [14] for the precise definitions and cut the
discussion short by mentioning the property of low degree influence that shall
be crucial to us (which follows from that

∑
φ f̂

2(φ) = Ex[f(x)2] ≤ 1).

Observation 3. For a boolean function f : {0, 1}R → {0, 1}, the sum of all
degree d-influences is at most d.

Hardness of Vertex Deletion and Project Scheduling 305

We shall now introduce a simplified version of the “It Ain’t Over Till It’s Over”
theorem that is sufficient for the applications in this paper. The first proof was
given by Mossel et al. [14] and a more combinatorial proof of a simplified version
(very similar to the one used here) was given by Bansal and Khot [1] who used
it to prove tight inapproximability results for Vertex Cover and a classical single
machine scheduling problem. In fact many of our ideas are inspired from [1].
For x ∈ [k]R and a subsequence Sε = (i1, . . . , iεR) of εR not necessarily distinct
indexes in [R], let

Cx,Sε = {z ∈ [k]R : zj = xj ∀j �∈ Sε}

denote the sub-cube defined by fixing the co-ordinates not in Sε according to
x. Let also f(Cx,Sε) ≡ 0 denote the expression that f is identical to 0 on the
sub-cube Cx,Sε .

Theorem 4. For every ε, δ > 0 and integer k, there exists η > 0 and integer d
such that any f : [k]R → {0, 1} that satisfies

E[f] ≥ δ and ∀i ∈ [R], Infldi (f) ≤ η,

has
Pr
x,Sε

[f(Cx,Sε) ≡ 0] ≤ δ.

Here and throughout the paper, the probability over x, Sε is such that x and
Sε are taken independently and uniformly at random. When ε is clear from
the context we often also abbreviate Sε by S. Note that the theorem says that
a reasonably balanced function with no low degree influential co-ordinates has
very low probability to be identical to 0 over the random choice of sub-cubes. In
contrast, it is easy to see that a dictatorship function (on the boolean domain)
f(x) = xs, for some s, has Prx,Sε [f(Cx,Sε) ≡ 0] = Prx,Sε [f(Cx,Sε) ≡ 1] ≥ 1/2−ε.
It is this drastic difference that we will exploit in our hardness reductions.

2.2 Unique Games Conjecture

An instance of Unique Games L = (G(V,W,E), [R], {πv,w}(v,w)) consists of a
regular bipartite graph G(V,W,E) and a set [R] of labels. For each edge (v, w) ∈
E there is a constraint specified by a permutation πv,w : [R] → [R]. The goal is to
find a labeling ρ : (V ∪W) → [R] so as to maximize val(ρ) := Pre∈E [ρ satisfies e],
where a labeling ρ is said to satisfy an edge e = (v, w) if ρ(v) = πv,w(ρ(w)). For
a Unique Games instance L, we let OPT (L) = maxρ:V ∪W �→[R] val(ρ). The now
famous Unique Games Conjecture that has been extensively used to prove strong
hardness of approximation results can be stated as follows.

Conjecture 1 ([12]). For any constants ζ, γ > 0, there is a sufficiently large
integer R = R(ζ, γ) such that, for Unique Games instances L with label set [R]
it is NP-hard to distinguish between:

– (Completeness): OPT (L) ≥ 1− ζ.
– (Soundness): OPT (L) ≤ γ.

306 O. Svensson

3 Dictatorship Gadgets for Vertex Deletion Problems

We give fairly simple gadgets of the considered vertex deletion problems that
informally corresponds to a dictatorship test in the following sense: (Complete-
ness:) any dictatorship function f : [k]R → [k] (defined by f(x) = xs for some
s ∈ [R]) corresponds to a good solution whereas (Soundness:) any non-trivial
solution corresponds to a function f : [k]R → {0, 1} with a high influence co-
ordinate. By fairly standard arguments, these gadgets are then used to obtain
analogous hardness results assuming the Unique Games Conjecture (see the full
version of the paper for details).

Throughout this section, we fix k to be an integer, ε, δ > 0 to be arbitrarily
small constants, and let η and d be as in Theorem 4 (depending on k, ε and δ).

3.1 Feedback Vertex Set

We shall here describe a graph G = (V,E) that naturally corresponds to a
dictatorship test in the following sense:

– (Completeness:) A dictatorship function partitions the vertex set into subsets
V ′, V0, . . . , Vk−1 satisfying Vj ≥ 1−ε

k |V |, |V ′| ≤ ε|V |, and for j ∈ [k] the graph
obtained by deleting V ′ ∪ Vj is acyclic.

– (Soundness:) Any feedback vertex set that deletes less than (1 − 2δ)|V |
vertices corresponds to a function f : [k]R → {0, 1} with a co-ordinate i so
that Infldi (f) > η.

Dictatorship Gadget. To make the analysis more intuitive, it will be conve-
nient to first present a gadget that consists of two types of vertices that we refer
to as bit-vertices and test-vertices and all arcs are between bit- and test-vertices:

– There is a bit-vertex bx of weight ∞ for every x ∈ [k]R.

– There is a test-vertex tx,S of weight 1 for every x ∈ [k]R and every sequence
S = (i1, . . . , iεR) ∈ [R]εR of εR not necessarily distinct indices.

– The arc incident to a test-vertex tx,S are the following. There is an arc
(bz, tx,S) if z ∈ Cx,S and an arc (tx,S , bz) if z ∈ C⊕

x,S , where

C⊕
x,S = {z ⊕ 1 : z ∈ Cx,S}

(here ⊕ denotes addition mod k).

As the bit-vertices have weight ∞, they will never be deleted in an optimal
solution. We can therefore obtain an unweighted graph G of same optimal value
by omitting the bit-vertices and having an arc (tx,S , tx′,S′) between two test
vertices if there exists a bit-vertex bz so that (tx,S, bz) and (bz, tx′,S′). The vertex
set of G will therefore correspond to the set T of test-vertices. The analysis of
G therefore follows from proving that (completeness:) any dictatorship function
partitions the test-vertices as required and (soundness:) that any solution that
deletes less than a fraction 1 − 2δ of the test-vertices corresponds to a function
with a co-ordinate of high influence.

Hardness of Vertex Deletion and Project Scheduling 307

Completeness. We show that a dictatorship function f : [k]R → [k] of index
s naturally partitions the test-vertices into subsets T ′, T0, . . . , Tk−1 satisfying
Tj ≥ 1−ε

k |T |, |T ′| ≤ ε|T |, and such that the sets T ′ ∪ Tj for j ∈ [k] are almost
disjoint feedback vertex sets of size at most (1k + ε)|T | each.

As f(x) = xs, it partitions the bit-vertices in k equal sized sets

Bj = {bx : f(x) = j} for j ∈ [k].

We say that a test-vertex tx,S is good if s �∈ S and partition the good test-vertices
into k equal sized sets

Tj = {tx,S : s �∈ S and f(x) = j} for j ∈ [k].

The sets are of equal size since they are partitioned according to x and whether
a test-vertex is good only depends on S. Furthermore, as at least a fraction 1− ε
of the test-vertices are good we have that |Tj | ≥ 1−ε

k |T | for j ∈ [k] and therefore
the remaining test-vertices in T ′ are at most ε|T | many.

It remains to show that Tj ∪ T ′ defines a feedback vertex set for any j ∈ [k].
The key observation is that Tj only have incoming edges from bit-vertices in
Bj and outgoing edges to bit-vertices in Bj⊕1. Indeed, consider a test-vertex
tx,S ∈ Tj and an arc (bz, tx,S). By definition we have that z ∈ Cx,S and as S is
good we have that f(z) = f(x) = j, which implies that z ∈ Bj . The exact same
argument implies that tx,S only has outgoing edges to Bj⊕1.

The graph obtained by deleting all bad test-vertices and one of the sets
T0, T1, . . . , TQ−1 is therefore acyclic as required.

Soundness. Let A be the last 1/2 fraction of the bit-vertices according to a
topological sort of the graph. Let fA be the indicator function of A. Note that a
test-vertex tx,S has incoming arcs from all bit-vertices in Cx,S and outgoing arcs
to all bit-vertices in C⊕

x,S . Therefore, if a test-vertex tx,S is not deleted then we
must have that either fA is identical to 0 on Cx,S (if tx,S is placed before the
last bit-vertex for which fA evaluates to 0) or identical to 1 on C⊕

x,S (if tx,S is
placed after the last bit-vertex for which fA evaluates to 0) depending on where
tx,S is placed according to the topological sort.

As E[fA] = 1/2, we have by Theorem 4 that if Infldi (fA) ≤ η for all i ∈ [R]
then

Pr
x,S

[f(Cx,S) ≡ 0] ≤ δ

and

Pr
x,S

[f(C⊕
x,S) ≡ 1] = Pr

x,S
[f(Cx,S) ≡ 1] = Pr

x,S
[(1− f)(Cx,S) ≡ 0] ≤ δ.

Therefore, if the solution does not correspond to a function with a co-ordinate
of high low-degree influence it must have deleted at least a fraction 1− 2δ of the
test-vertices.

308 O. Svensson

3.2 Dag Vertex Deletion Problem

We shall describe a directed acyclic graph (DAG) G = (V,E) that naturally
corresponds to dictatorship test in the following sense:

– (Completeness:) A dictatorship function partitions the vertex set into subsets
V ′, V0, . . . , Vk−1 satisfying Vj ≥ 1−ε

k |V |, |V ′| ≤ ε|V |, and such that for j ∈ [k]
the graph obtained by deleting V ′ ∪ Vj has no path of length k.

– (Soundness:) Any graph obtained by deleting less than (1 − 6δ)|V | vertices
either has a path of length |V |1−δ or corresponds to a function f : [k]R →
{0, 1} with a co-ordinate i such that Infldi (f) > η.

Dictatorship Gadget. As in Section 3.1, it will be convenient to first present
a gadget that consists of two types of vertices that we refer to as bit-vertices and
test-vertices, and all edges will be between bit- and test-vertices:

– The bit-vertices are partitioned into L + 1 bit-layers (L is selected below).
Each bit-layer � = 0, . . . , L contains a bit-vertex bx of weight ∞ for every
x ∈ [k]R.

– Similarly, the test-vertices are partitioned into L test-layers. Each test-layer
� = 0, . . . , L − 1 has a test-vertex tx,S of weight 1 for every x ∈ [k]R and

every sequence of indices S = (i1, . . . , iεR) ∈ [R]εR.

– The arcs are the following: there is an arc (bz, t
′
x,S) if � ≤ �′ and z ∈ Cx,S ,

and there is an arc (t
′
x,S , b

z) if � > �′ and z ∈ C⊕

x,S .

– Finally, L is selected so as δL ≥ |T |1−δ, where T is the set of test-vertices.

Note that, as there are only arcs from a bit-layer � to a test-layer �′ if �′ ≥ �
and only arcs from a test-layer �′ to a bit-layer � if � > �′, the constructed graph
is acyclic. Similar to the gadget for FVS, the bit-vertices can be omitted to
obtain an unweighted graph G (with the set T of test-vertices as vertices) with
the same optimal value by having an arc between two test-vertices if there was
a path between them through one bit-vertex. Note that a path in G of length
k is a path in the gadget that consists of k test-vertices. When arguing about
the gadget, we will therefore say that a path has length k if it consists of k
test-vertices.

Similarly to Section 3.1, the analysis of G follows from proving that (com-
pleteness:) any dictatorship function partitions the test-vertices as required and
(soundness:) that any solution that deletes less than a fraction 1 − 6δ of the
test-vertices either has a path of length |T |1−δ or corresponds to a function with
a co-ordinate of high influence.

Completeness. We show that a dictatorship function f : [k]R → [k] of index
s naturally partitions the test-vertices into subsets T ′, T0, . . . , Tk−1 satisfying
Tj ≥ 1−ε

k |T |, |T ′| ≤ ε|T |, and such that for j ∈ [k] the graph obtained by
deleting T ′ ∪ Tj has no path of length k.

Hardness of Vertex Deletion and Project Scheduling 309

This can be seen by the same arguments as in Section 3.1. Indeed if we “col-
lapse” the different layers by identifying the different copies of bit- and test-
vertices then the gadget constructed here is identical to the gagdet in that
section. We can therefore (by the arguments of Section 3.1), partition the bit-
vertices into k equal sized sets B0, B1, . . . , Bk−1 and all but an ε fraction of the
test-vertices into k equal sized sets T0, T1, . . . , Tk−1 so that any test-vertex in Tj
has only incoming arcs from bit-vertices in Bj and outgoing arcs to bit-vertices
in Bj⊕1.

Any j ∈ [k] therefore corresponds to a solution by removing an ε fraction of
the test-vertices (i.e., the set T ′) and those test-vertices in Tj .

Soundness. Before proceeding to the analysis it will be convenient to consider
a different but equivalent formulation of the problem.

First, note that in any solution to DVD, i.e., a subgraph so that each path
contains less than k test-vertices, we can find a coloring χ (using for example
depth-first search) that assigns a color in {1, 2, . . . , k} to the bit-vertices with the
property that, for each remaining test-vertex, the maximum color assigned to its
predecessors is strictly less than the minimum color assigned to its successors.
Similarly, any such coloring χ can be turned into a solution to DVD by deleting
those test-vertices, for which not all predecessors are assigned lower colors than
all its successors. Furthermore, from the construction of the arcs, we can assume
w.l.o.g that the coloring satisfies χ(bx) ≤ χ(b

′
x) if � ≤ �′.

Fromthe above discussion, an equivalent formulationofDVDonthe constructed
instances is as follows: find a coloring χ that assigns a color in {1, 2, . . . , k} to each
bit-vertex satisfying χ(bx) ≤ χ(b

′
x) if � ≤ �′ so as to minimize the number of un-

satisfied test-vertices where a test-vertex tx,S is said to be satisfied if

max
z∈Cx,S

χ(bz) < min
z∈C⊕

x,S

χ(b+1
z),

that is all its predecessors are assigned lower colors than its successors.
It will also be convenient to consider the following lower bound on the colors

assigned to most bit-vertices in each layer: define the color χ(�) of a bit-layer
� = 0, 1, . . . , L as the maximum color that satisfies Prx[χ(b

x) ≥ χ(�)] ≥ 1− δ.

Now, with each test-layer � = 0, 1, . . . , L−1 we associate the indicator function
f : [k]R → {0, 1} defined as follows

f (x) =

{
0 if χ(b+1

x) > χ(�),

1 otherwise.

The key observation for the soundness analysis is the following.

Claim. For � = 0, . . . , L − 1, assuming that Infldi (f
) ≤ η for all i ∈ [R]: if a

fraction 3δ of the test-vertices of test-layer � are satisfied, then χ(�) < χ(�+ 1).

Proof. As at least a fraction 3δ of the test-vertices of test-layer � are satisfied,

Pr
x,S

[
max
z∈Cx,S

χ(bz) < min
z∈C⊕

x,S

χ(b+1
z)

]
≥ 3δ.

310 O. Svensson

By the definition of χ(�) we have Prx[χ(b

x) ≥ χ(�)] ≥ 1− δ and therefore

Pr
x,S

[
χ(�) < min

z∈C⊕
x,S

χ(b+1
z)

]
= Pr

x,S

[
f (Cx,S) ≡ 0

]
≥ 2δ.

As Infldi (f
) ≤ η for all i ∈ [R], Theorem 4 implies that E[f] < δ and hence

χ(�+ 1) > χ(�).

If a coloring satisfies more than a fraction 6δ of the test-vertices then at least
a 3δ fraction of the test-layers are such that at least a fraction 3δ of the test-
vertices of that layer are satisfied, which in turn by the preceding claim implies
that either one of them corresponds to a function with a co-ordinate of high
influence or 3δL many colors are needed (or equivalently the graph contains a
path consisting of at least 3δL− 1 ≥ δL ≥ |T |1−δ test-vertices).

4 Discrete Time-Cost Tradeoff Problem

In the discrete time-cost tradeoff problem we are given a set J of activities
together with a partial order (J,<). Any execution of the activities must comply
with the partial order, that is, if j < k activity k may not be started until j is
completed. The duration of an activity depends on how much resources that are
spent on it. This tradeoff between time and cost for each job is described by a
nonnegative cost function cj : R+ → R+ ∪ {∞}, where cj(xj) denotes the cost
to run j with duration xj . The project duration t(x) of the realization x is the
makespan (length) of the schedule which starts each activity at the earliest point
in time obeying the precedence constraints and durations xj . Given a deadline
T > 0, the Deadline problem is that of finding the cheapest realization x that
obeys the deadline, i.e., t(x) ≤ T .

Theorem 5. The Deadline problem is as hard to approximate as DVD.

Proof. We reduce (in polynomial time) the problem of approximating DVD to
that of approximating the Deadline problem. Given an instance of DVD, i.e., an
integer k and a DAG G(V,A) with the vertices ordered 0, 1, . . . , n− 1 according
to a topological sort, consider the instance of the Deadline problem defined as
follows:

– The deadline T is set to n.

– The set J of activities contains three activities li,mi, ri for each vertex i ∈
V = {0, 1 . . . , n − 1} with precedence constraints li < ci < ri and cost
functions

cli(x) =

{
0, if x ≥ i

∞, otherwise
cmi(x) =

{
0, if x ≥ 9/10

1, otherwise

cri(x) =

{
0, if x > n− 1− i

∞, otherwise .

Hardness of Vertex Deletion and Project Scheduling 311

0 1 2 3

G

0 1 2 3 4

Deadline Problem

Fig. 1. For each vertex i ∈ V the activity mi is depicted in light gray (activities li and
ri are omitted). The activities corresponding to arcs are depicted in white. Finally, the
depicted solution pays a cost of 1 for running activity m2 in time 0.

In addition, there is an activity a(i,j) for each arc (i, j) ∈ A with precedence
constraints mi < a(i,j) < mj and cost function

ca(i,j)(x) =

{
0, if x ≥ j − i− 9

10 + 1
10(k−1)

∞, otherwise.

See Figure 1 for an example of the Deadline problem corresponding to a DVD
instance G with k = 3.

Note that the cost functions of li,mi, and ri enforces that activity mi has to
be executed in the interval [i, i+ 1) and that it will require time 9/10 unless we
pay a cost of 1 which allows us to run the activity in 0 time. Furthermore, as an
activity a(i,j) always has duration (at least) j− i− 9

10 +
1

10(k−1) , the start time sj

of activitymj must be such that sj−j ≥ si−i+ 1
10(k−1) , where si is the start time

of activity i. Using the fact that an activity mi must run in the interval [i, i+1)
in order to obey the deadline, it follows that we have to pay a cost of 1 for at
least one activity corresponding to each path of length k. By similar arguments,
it also follows that this is also sufficient for having a realization respecting the
deadline. Therefore, any solution to the Deadline problem naturally corresponds
to a solution to DVD (and vice versa) by deleting those vertices corresponding
to activities with a cost of 1.

References

1. Bansal, N., Khot, S.: Optimal long code test with one free bit. In: Proceedings
of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2009, pp. 453–462. IEEE Computer Society, Washington, DC (2009)

2. Bansal, N., Khot, S.: Inapproximability of Hypergraph Vertex Cover and Applica-
tions to Scheduling Problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 250–261.
Springer, Heidelberg (2010)

312 O. Svensson

3. De, P., James Dunne, E., Ghosh, J.B., Wells, C.E.: The discrete time-cost trade-
off problem revisited. European Journal of Operational Research 81(2), 225–238
(1995)

4. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover.
Annals of Mathematics 162, 2005 (2004)

5. Even, G., (Seffi) Naor, J., Schieber, B., Sudan, M.: Approximating minimum feed-
back sets and multi-cuts in directed graphs. Algorithmica 20, 151–174 (1998)

6. Fulkerson, D.R.: A network flow computation for project cost curves. Management
Science 7(2), 167–178 (1961)

7. Grigoriev, A., Woeginger, G.J.: Project scheduling with irregular costs: complexity,
approximability, and algorithms. Acta Inf. 41(2-3), 83–97 (2004)

8. Guruswami, V., H̊astad, J., Manokaran, R., Raghavendra, P., Charikar, M.: Beat-
ing the random ordering is hard: Every ordering CSP is approximation resistant.
SIAM J. Comput. 40(3), 878–914 (2011)

9. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J.
(eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

10. Kelley, J.E.: Critical-path planning and scheduling: Mathematical basis. Opera-
tions Research 9(3), 296–320 (1961)

11. Kelley Jr., J.E., Walker, M.R.: Critical-path planning and scheduling. Papers pre-
sented at the December 1-3, Eastern Joint IRE-AIEE-ACM Computer Conference,
IRE-AIEE-ACM 1959 (Eastern), pp. 160–173. ACM, New York (1959)

12. Khot, S.: On the power of unique 2-prover 1-round games. In: Reif, J.H. (ed.)
STOC, pp. 767–775. ACM (2002)

13. Leighton, T., Rao, S.: An approximate max-flow min-cut theorem for uniform
multicommodity flow problems with applications to approximation algorithms. In:
Proceedings of the 29th Annual Symposium on Foundations of Computer Science,
SFCS 1988, pp. 422–431. IEEE Computer Society, Washington, DC (1988)

14. Mossel, E., O’Donnell, R., Oleszkiewicz, K.: Noise stability of functions with low
influences: Invariance and optimality. Annals of Mathematics 171(1) (2010)

15. Paik, D., Reddy, S., Sahni, S.: Deleting vertices to bound path length. IEEE Trans.
Comput. 43(9), 1091–1096 (1994)

16. Seymour, P.D.: Packing directed circuits fractionally. Combinatorica 15(2),
281–288 (1995)

17. Skutella, M.: Approximation algorithms for the discrete time-cost tradeoff problem.
Mathematics of Operations Research 23(4), 909–929 (1998)

Approximation Guarantees

for the Minimum Linear Arrangement Problem
by Higher Eigenvalues

Suguru Tamaki1 and Yuichi Yoshida2

1 Graduate School of Informatics, Kyoto University, Japan
tamak@kuis.kyoto-u.ac.jp

2 National Institute of Informatics, and Preferred Infrastructure, Inc., Japan
yyoshida@nii.ac.jp

Abstract. Given an undirected graph G = (V,E) and positive edge
weights {we}e∈E , a linear arrangement is a permutation π : V → [n].
The value of the arrangement is val(G, π) := 1

n

∑
e={u,v} we|π(u)−π(v)|.

In the minimum linear arrangement problem (MLA), the goal is to
find a linear arrangement π∗ that achieves val(G, π∗) = MLA(G) :=
minπ val(G, π).

In this paper, we show that for any ε > 0 and positive integer r,
there is an O(nr/ε)-time randomized algorithm which, given a graph G,
returns a permutation π such that

val(G, π) ≤
(
1 +

2

(1− ε)λr+1(L)
)
MLA(G) +O

(
log n√

n

∑
e∈E

we

)

with high probability. Here L is the normalized Laplacian of G and λr(L)
is the r-th eigenvalue of L. Our algorithm gives a constant factor approx-
imation for regular graphs that are weak expanders.

Keywords: Semidefinite programming, Lasserre hierarchy, graph Lapla-
cian, expander graph, ordering problem.

1 Introduction

Given an undirected graph G = (V,E) and positive edge weights {we}e∈E , a
linear arrangement is a permutation π : V → [n]. The value of the arrange-
ment is val(G, π) := 1

n

∑
e={u,v} we|π(u) − π(v)|. In the minimum linear ar-

rangement problem (MLA), the goal is to find a linear arrangement π∗ that
achieves val(G, π∗) = MLA(G) := minπ val(G, π). Since MLA is known to be
NP-hard [9], we are interested in approximation algorithms for MLA.

Rao and Richa [18] presented an algorithm achieving approximation factors
of O(log n). Charikar et al. [6] and Feige and Lee [8] independently improved the
approximation factor to O(

√
logn log logn). There are also better algorithms for

some families of graphs; Arora et al. [3] gave polynomial time approximation

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 313–324, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

314 S. Tamaki and Y. Yoshida

scheme (PTAS) for dense graphs and Rao and Richa [18] obtained a constant
factor approximation ratio for planar graphs.

On the inapproximability side, no NP-hardness of approximation results are
known. The semidefinite programing (SDP) relaxation used for MLA were shown
to have integrality gap Ω(log logn) by Devanur et al. [7]. Under the assump-

tion that SAT has no probabilistic algorithm that runs in time 2n
o(1)

, Ambühl
et al. [1] show that MLA has no PTAS. Raghavendra et al. [17] show that there
are no constant factor approximation algorithms for MLA under the Small-Set
Expansion Hypothesis (SSEH) [16].

Our Contribution. In this paper, we present an algorithm with an approximation
ratio which relies on the higher eigenvalues of the normalized Laplacian of an
input graph. Given a graph G = (V,E, {we}), we denote by L the normalized
Laplacian of G and by λr(L) the r-th eigenvalue of L. We show the following.

Theorem 1. For any ε > 0 and positive integer r, there is an O(nr/ε)-time
randomized algorithm which, given a graph G, returns a permutation π such
that

val(G, π) ≤
(
1 +

2

(1− ε)λr+1(L)

)
MLA(G) + O

(
logn

∑
e∈E we√
n

)
with high probability.

Note that if MLA(G) = ω(n−1/2 logn
∑

e∈E we), then the above theorem gives
an O(1/λr)-approximation factor. For example, we will show that MLA(G) =
ω(n−1/2 logn

∑
e∈E we) if G is a regular graph and λr/r

2 = ω(n−1/2 logn).

Our Technique. We basically follow the approach by [11] to relate the approx-
imation ratio and eigenvalues of L. We first formulate MLA as an integer pro-
gram and consider its SDP relaxation. Our SDP is chosen from the Lasserre
hierarchy [14] of r/ε rounds. Here, its solution has a vector xS,α for each set
S of at most r/ε + 1 vertices and an assignment α ∈ [n]S . Intuitively, vectors
{xS,α}α∈[n]S defines probability distribution of assignments over S. The vectors
satisfy constraints on dot products to keep the consistency among these local
probability distribution. Also, we add constraints among vectors so that each
variable takes only one label and each label is chosen by one variable.

Given an optimal solution to the Lasserre SDP, we first choose an appropriate
subset S∗ of r/ε vertices. Then, for each assignment α∗ to vertices in S∗, we
randomly extend the assignment to all vertices by assigning, for each u ∈ V \S∗

independently, a random value from u’s marginal distribution based on xS∪{u},α
conditioned on the assignment α∗ to S.

We note that the required round of the Lasserre hierarchy in the algorithm
by [11] is proportional to the label size. This is because the error term is bounded
by using eigenvalues in the Laplacian of the constraint graph instead of the
original graph. However, since the label size of MLA is n, it will take nn time
to compute the optimal solution for the Lasserre hierarchy. To avoid this issue,

Approximation Guarantees for the Minimum Linear Arrangement Problem 315

we apply the technique used to give an approximation algorithm for Unique
Games in [11]. That is, we embed the set of n vectors {xu,i}i∈[n] for a vertex u
into a single vector x̃u with some nice distance preserving properties. With the
embedding, we can upper bound the error term by

∑
u∈V du‖X⊥

S x̃u‖, where du
is the (weighted) degree of u and XS is the projection matrix onto the span of
{x̃u}u∈S . Then, we can apply the method by [11] to choose S so that the error
term becomes at most 2

(1−ε)λr+1(L) times MLA(G).

A remaining issue is that the rounding above does not give a permutation.
However, since the rounding is done independently for each u ∈ V \ S, the
obtained integer solution is very close to a permutation. Thus, we can transform
it a permutation at the cost of a tiny error.

Related Work. The idea of relating approximation ratios with eigenvalues of
Laplacians was developed while designing approximation algorithms for Unique
Games [12]. A Unique Game is a special case of maximum constraint satisfaction
problems (Max CSPs), in which each constraint forms a permutation between
labels over two variables. In [4], it was shown that, given a (1 − ε)-satisfiable
instance, we can obtain a (1−O(ε

λ2(LG) log
ε

λ2(LG)))-satisfying assignment. Then,

[13] gave an algorithm that uses higher eigenvalues. For a graphG, let rank≤τ (G)
be the number of eigenvalues of the normalized Laplacian that is smaller than τ .
In a breakthrough work [2], it is shown that we can obtain a (1−εO(1))-satisfying
assignment in exp(knO(ε)) time. The idea there is decomposing a graph into
subgraphs S so that rank≤εO(1)(G[S]) ≤ knO(ε) holds, where G[S] is the graph
induced by S and k is the label size.

Recently in independent works [5] and [11], it is shown that the Lasserre
hierarchy is useful to obtain a good approximation for Unique Games when
rank≤τ (G) is small. In [5], it is shown that, if each constraint has arity two, then
we can approximate any instance of Max CSPs with an ε-fraction of error using
an O(k · rank≤1−Ω((ε/k)2)(G)/ε4)-round Lasserre hierarchy. In [11], it is shown
that we can approximate Max Cut, Minimum Uncut, Minimum (Maximum)
Bisection, Small Set Expansion and Unique Games within multiplicative error
of O(1/λr(G)) using an r-round Lasserre hierarchy. The Lasserre hierarchy is
also applied to obtain a similar approximation ratio for Sparsest Cut [10].

2 Preliminaries

In this paper, we consider undirected weighted graphs. An undirected weighted
graph is represented as G = (V,E,W), where V is a set of vertices, E is a set of
undirected edges and W = {we}e∈E is a set of edge weights with

∑
e∈E we = 1.

Let n denote the number of vertices in G, i.e., n := |V |. We define the degree
of a vertex u as du :=

∑
e={u,v} we. Though we drop G from the notations, it

must be clear from the context. Matrices LG and LG are the Laplacian and the
normalized Laplacian of a graph G = (V,E,W). That is,

316 S. Tamaki and Y. Yoshida

LG(u, v) :=

{
−w{u,v} if u �= v.

du if u = v.

LG(u, v) :=
{
−w{u,v}/

√
dudv if u �= v.

1 if u = v.

We denote by λi(LG) the i-th smallest eigenvalue of LG.
We use define [n] := {1, 2, . . . , n}, and Sn stands for the set of permutations

from V to [n].

2.1 The Minimum Linear Arrangement Problem

Given a graph G = (V,E,W), we define the value of π : V → [n] as

val(G, π) :=
1

n

∑
{u,v}∈E

w{u,v}|π(u)− π(v)|

and the minimum linear arrangement as MLA(G) := minπ∈Sn val(G, π).
In the next section, we consider an algorithm that outputs π which is approx-

imately a permutation. Formally, π : V → [n] is called γ-good if for any i, j with
1 ≤ i < j ≤ n,

j − i+ 1− γ ≤ |{k ∈ [n] | i ≤ π−1(k) ≤ j}| ≤ j − i+ 1 + γ

holds. Then, we have the following lemma.

Lemma 1. If π : V → [n] is γ-good, then there exists π̃ ∈ Sn such that
val(G, π̃) ≤ val(G, π) + 2γ

n

∑
e∈E we.

Proof. Define π̃ ∈ Sn to satisfy π̃(u) < π̃(v) if and only if π(u) ≤ π(v) for any
u, v ∈ V . We can easily obtain such π̃ by ranking u ∈ V according to π(u) and
using any tie-breaking rule. Note that |π(u) − π(v)| ≤ |π̃(u) − π̃(v)| + 2γ by
γ-goodness.

2.2 Lasserre Hierarchy of Semidefinite Programs

Let
(

V
≤r+1

)
denote the set of subsets of V of size at most r+1. For any S ∈

(
V

≤r+1

)
and α ∈ [n]S , xS,α is a row vector in RΥ , where Υ is some positive integer.
For α ∈ [n]S and S′ ⊆ S, we write αS′ to denote the projection of α on the
coordinates indexed from S′. For α ∈ [n]S and β ∈ [n]T , we say α and β are
consistent if αS∩T = βS∩T . If α and β are consistent, we denote by α◦β ∈ [n]S∪T

a vector which is consistent to α and β. We consider the following r-round
Lasserre SDP relaxation of MLA.

Approximation Guarantees for the Minimum Linear Arrangement Problem 317

min 1
n

∑
e={u,v}∈E

we
∑

i,j∈[n]

〈xu,i,xv,j〉|i− j|

s.t. 〈xS,α,xT,β〉 = 0 ∀|S ∪ T | ≤ r + 1, αS∩T �= βS∩T
〈xS,α,xT,β〉 = 〈xA,α′ ,xB,β′〉 ∀|S ∪ T | ≤ r + 1, S ∪ T = A ∪B,

α ◦ β = α′ ◦ β′∑
i∈[n]

xv,i = x∅ ∀v ∈ V∑
v∈V

xv,i = x∅ ∀i ∈ [n]

|x∅|2 = 1.

By Lasserre constraints, for any S ∈
(

V
≤r+1

)
, u ∈ S and α ∈ [n]S\{u},∑

β∈[n]u xS,α◦β = xS\{u},α. Therefore,

Fact 2 (Observation 6 in the full version of [11]). For all S ∈
(
V
r

)
,

span
(
{xS,α}α∈[n]S

)
⊇ span

(
{xu,i}u∈S,i∈[n]

)
holds.

2.3 Matrix Analysis

We present some useful facts from matrix analysis theory. For a square matrix
A, Tr(A) denotes the trace of A. For a matrix B, Btr stands for the transposed
matrix of B. For a vector a, we define a := a/‖a‖.

Fact 3. For a matrix X ∈ RΥ×V , let Xu be the u-th column vector of X and L
be the Laplacian matrix of some graph G = (V,E,W). Then,

Tr(XtrXL) =
∑

e={u,v}∈E
we‖Xu −Xv‖2.

We use the following notations.

ΠS :=
∑

α∈[n]S

xS,α
tr xS,α, Π⊥

S := I −ΠS ,

PS :=
∑

u∈S,i∈[n]

xu,i
tr xu,i,

XS :=
∑
u∈S

Xu Xu
tr
, X⊥

S := I −XS .

Here, ΠS is the projection matrix onto the span of {xS,α}α∈[n]S . Note that
xS,α’s are row vectors. Similarly, PS is the projection matrix onto the span of
{xu,i}u∈S,i∈[n]. Finally, XS is the projection matrix onto the span of {Xu}u∈S.

318 S. Tamaki and Y. Yoshida

Proposition 1 (Lemma 30 in the full version of [11]). Given X ∈ RΥ×V

and a Laplacian matrix L ∈ RV×V , for any positive integer r and positive con-
stant ε > 0, there exists a set of r/ε columns S ∈

(
V
r/ε

)
of X such that

Tr(XtrX⊥
S XD) ≤ Tr(XtrXL)

(1− ε)λr+1(L)

where L is the corresponding normalized Laplacian and D is the diagonal matrix
of L. Furthermore such S can be found in deterministic O(rn4) time.

3 The Main Rounding Algorithm and Its Analysis

Let {xS,α} be an optimal solution to the (r/ε)-round Lasserre SDP. Our ap-
proach to round {xS,α} to a labeling π : V → [n] is similar to the propagation
sampling used in [4,5,11]. Our rounding algorithm is described in Algorithm 1.

Algorithm 1. Algorithm for labeling in time O(nr/ε)

Input: {xS,α} and S ⊆ V of size at most r/ε.
Output: π : V → [n].

Choose α ∈ [n]S with probability ‖xS,α‖2.
For each u ∈ V , set π(u) = i ∈ [n] with probability

〈xS,α,xu,i〉
‖xS,α‖2 .

When we write π ∼ DS , π : V → [n] is sampled by the rounding algorithm.
We first observe that the algorithm above yields an integer solution close to a
permutation.

Lemma 2. For any S ∈
(
V
r/ε

)
,

Pr
π∼DS

[π is not O(
√
n logn)-good] = o(1).

Proof. First note that {π(u)}u∈[n]\S are independent random variables. Define
pk := Pr[π(k) ∈ {i, i + 1, . . . , j}], then

∑
k∈[n] pk = j − i + 1 by Lasserre con-

straints.
We can show the followings by the Chernoff-Hoeffding bound.

Pr[|{k ∈ [n] | i ≤ π−1(k) ≤ j}| < j − i+ 1− ω(
√
n logn)] = O(1/n3)

and

Pr[|{k ∈ [n] | i ≤ π−1(k) ≤ j}| > j − i+ 1 + ω(
√
n logn)] = O(1/n3).

By the union bound over all pairs (i, j), we obtain the conclusion of the lemma.

We prove the following in Section 3.1.

Approximation Guarantees for the Minimum Linear Arrangement Problem 319

Theorem 4. Define alg(G) := Eπ∼DS val(G, π)

= E
π∼DS

⎡⎣ 1
n

∑
e={u,v}∈E

we
∑
i,j∈[n]

Pr[π(u) = i, π(v) = j]|i− j|

⎤⎦ .
Then, There exists S ∈

(
V
r/ε

)
such that

alg(G) ≤
(
1 +

2

(1− ε)λr+1

)
MLA(G).

Corollary 1. There exists S ∈
(
V
r/ε

)
such that for any δ > 0,

Pr
π∼DS

[
alg(G) ≤ (1 + δ)

(
1 +

2

(1− ε)λr+1

)
MLA(G)

]
≥ δ.

Combining Lemmas 1, 2 and Corollary 1, we have Theorem 1.

3.1 Upper Bounds on the Expected Value

In this section, we see the proof of Theorem 4. Let us denote the optimum value
of the (r/ε)-round Lasserre SDP as

sdp(G) :=
1

n

∑
e={u,v}∈E

we
∑
i,j∈[n]

〈xu,i,xv,j〉|i − j|.

We use the following convention: xu,<i =
∑

j<i xu,j and xu,≥i =
∑

j≥i xu,j . We
define a vector

x̃u :=
1√
n
(xu,<1, . . . ,xu,<n,xu,≥1, . . . ,xu,≥n)

and for a matrix P ∈ RΥ×Υ ,

P̃xu :=
1√
n
(Pxu,<1, . . . , Pxu,<n, Pxu,≥1, . . . , Pxu,≥n).

Then, we can see that the objective function of the Lasserre SDP is an expected
distance between x̃u and x̃v.

Lemma 3

sdp(G) =
1

2

∑
e={u,v}∈E

we‖x̃u − x̃v‖2.

Similarly, we can prove the following expression on the expected value of the
output by the rounding algorithm.

Lemma 4. Given a set S ∈
(
V
r/ε

)
,

alg(G) =
1

2

∑
e={u,v}∈E

we‖Π̃Sxu − Π̃Sxv‖2 +
∑
u∈V

du‖Π̃⊥
S xu‖

2.

Combining the above lemmas with the following lemmas, we have Theorem 4.

320 S. Tamaki and Y. Yoshida

Lemma 5. For any set S ∈
(
V
r/ε

)
,

‖Π̃Sxu − Π̃Sxv‖2 ≤ ‖x̃u − x̃v‖2.

Lemma 6. For any ε > 0, there exists a set S ∈
(
V
r/ε

)
such that

∑
u∈V

du‖Π̃⊥
S xu‖

2 ≤ 2

(1 − ε)λr+1(L)
· 1
2

∑
e={u,v}∈E

we‖x̃u − x̃v‖2.

In the next section, we give proofs of Lemmas 3, 4, 5 and 6.

3.2 Proofs of Lemmas

Note that some proofs of technical lemmas in this section are omitted due to
page limitations.

Proof of Lemma 3. First we need the following technical lemma.

Lemma 7. Let {xu,i}u∈V,i∈[n] be vectors such that
∑

i∈[n] xu,i is a unit vector
for each u ∈ V .

n−
∑
i∈[n]

〈xu,<i,xv,<i〉 −
∑
i∈[n]

〈xu,≥i,xu,≥i〉 =
∑

j,k∈[n]

〈xu,j,xv,k〉|j − k|.

The following lemma immediately implies Lemma 3.

Lemma 8

1

n

∑
i,j∈[n]

〈xu,i,xv,j〉|i − j| = 1

2
‖x̃u − x̃v‖2.

Proof. First, we check

‖x̃u‖2 =
1

n

∑
j∈[n]

‖xu,j‖2(n− j) +
1

n

∑
j∈[n]

‖xu,j‖2j =
∑
j∈[n]

‖xu,j‖2 = 1.

Thus,

1

2
‖x̃u − x̃v‖2 =

1

2
‖x̃u‖2 +

1

2
‖x̃v‖2 − 〈x̃u, x̃v〉

=
1

n

(
n−

∑
i

〈xu,<i,xv,<i〉 −
∑
i

〈xu,≥i,xv,≥i〉
)

=
1

n

∑
i,j∈[n]

〈xu,i,xv,j〉|i− j|, (from Lemma 7)

which implies the lemma.

Approximation Guarantees for the Minimum Linear Arrangement Problem 321

Proof of Lemma 4. First we need the following technical lemma.

Lemma 9

1

n

∑
i,j∈[n]

〈ΠSxu,i, ΠSxv,j〉|i− j|

=
1

2
‖Π̃Sxu − Π̃Sxv‖2 +

1

2
(‖Π̃⊥

S xu‖
2 + ‖Π̃⊥

S xv‖
2).

Note that

Pr
π∼DS

[π(u) = i, π(v) = j] =
∑

α∈[n]S

‖xS,α‖2
〈xS,α,xu,i〉
‖xS,α‖2

〈xS,α,xv,j〉
‖xS,α‖2

=
∑

α∈[n]S

〈xS,α,xu,i〉〈xS,α,xv,j〉 = 〈ΠSxu,i, ΠSxv,j〉.

From Lemma 9, we have (recall the definition of alg(G) in Theorem 4)

alg(G) =
1

2

∑
e={u,v}∈E

we

(
‖Π̃Sxu − Π̃Sxv‖2 + ‖Π̃⊥

S xu‖
2 + ‖Π̃⊥

S xv‖
2
)

=
1

2

∑
e={u,v}∈E

we‖Π̃Sxu − Π̃Sxv‖2 +
∑
u∈V

du‖Π̃⊥
S xu‖

2.

Proof of Lemma 5

‖Π̃Sxu − Π̃Sxv‖2 ≤ ‖Π̃Sxu − Π̃Sxv‖2 + ‖Π̃⊥
S xu − Π̃⊥

S xv‖
2 = ‖x̃u − x̃v‖2.

Proof of Lemma 6. First note that

‖Π̃⊥
S xu‖

2 ≤ ‖P̃⊥
S xu‖

2

by Fact 2.
Let X be the matrix in R(n×Υ)×V whose u-th column is x̃tr

u and XS , X
⊥
S be

defined as
XS :=

∑
u∈S

x̃u
tr

x̃u, X⊥
S := I −XS ,

Then we have:

Lemma 10
‖P̃⊥

S xu‖
2 ≤ ‖X⊥

S x̃u‖2.
Thus, ∑

u∈V
du‖P̃⊥

S xu‖
2 ≤

∑
u∈V

du‖X⊥
S x̃u‖2 = Tr(XtrX⊥

S XD)

and by choosing S as Proposition 1,

≤ Tr(XtrXL)

(1 − ε)λr+1(L)
=

2

(1 − ε)λr+1(L)
· 1
2

∑
e={u,v}∈E

we‖x̃u − x̃v‖2.

322 S. Tamaki and Y. Yoshida

4 Lower Bounds for MLA by Eigenvalues

The goal of this section is showing that MLA(G) can be bounded below by
Ω(λr(LG)/r2). We only consider d-regular graphs, that is, dv = d for every
v ∈ V .

Definition 1. The (edge) expansion of S is

φG(S) =
|E(S)|
d|S|

where E(S) is the total weight of edges in G crossing from S to its complement.
We define the r-way expansion of G as

ρG(r) = min
S1,...,Sr⊆V

max
i∈[r]

φG(Si)

where the minimum is over all collections of r non-empty disjoint subsets
S1, . . . , Sr ⊆ V .

Theorem 5 ([15]). For every graph G and every integer r ≥ 1, we have

λr(LG)
2

≤ ρG(r) ≤ O(r2)
√
λr(LG).

For a (closed line) segment T = [a, b], we define minT = a,maxT = b, and
|T | = b − a. For a segment T ⊆ [1, n], we define val(G, π, T) as the value
involved in the segment T . That is,

val(G, π, T) =
1

|T | E
(u,v)∈E

|chopT (π(u))− chopT (π(v))|

where

chopT (c) =

⎧⎪⎨⎪⎩
c if minT ≤ c ≤ maxT

minT if c < minT

maxT if maxT < c

Note that val(G, π) = 1
n

t∑
j=1

val(G, π, Ti)|Ti| holds for any partition T1, . . . , Tt

of [1, n] into segments.

Theorem 6. For a graph G and any integer r ≥ 1, λr(LG) = O(r2MLA(G))
holds.

Proof. For simplicity, we assume n is a multiple of 2r − 1. The proof can be
easily modified for general case.

Let θ = MLA(G) and π be the permutation achieving θ. Let t = 2r − 1 and
define a partition T1, . . . , T2r−1 of [n] into segments so that each Ti has the same

Approximation Guarantees for the Minimum Linear Arrangement Problem 323

size n
2r−1 . Note that val(G, π, Ti) ≤ (2r − 1)θ for each i ∈ [t]. Define s0 = 0

and sr = n. Then, there exists some si ∈ {minT2i, . . . ,maxT2i − 1} for each
i ∈ [r − 1] satisfying the following property: If we define Si = {si−1 + 1, . . . , si}
for each i ∈ [r], then the number of edges crossing the boundary between Si and
Si+1 is at most (2r − 1)θ ·m for each i ∈ [r − 1]. Since each Si has size at least
n

2r−1 , we have

φG(Si) ≤
(2r − 1)θ ·m

d n
2r−1

= (2r − 1)2θ.

Thus, λr(LG)
2 ≤ ρG(r) ≤ (2r − 1)2θ from Theorem 5.

From the above theorem, we can show that our rounding algorithm gives a
O(1/λr+1(LG))-factor approximation for d-regular weak expander graphs.

Corollary 2. For any ε > 0 and positive integer r, there is an O(nr/ε)-time ran-
domized algorithm which, given a d-regular graph G with λr/r

2 = ω(n−1/2 logn),
returns a permutation π such that

val(G, π) ≤
(
1 +

2

(1− ε)λr+1(L)
+ o(1)

)
MLA(G)

with high probability.

Proof. By Theorem 6, we have
logn

∑
e∈E we√
n

= o(MLA(G)) in Theorem 1.

We remark that Theorem 6 cannot be extended to weighted graphs as is. Let
G = (V,E) be a graph consisting of a clique of size n − 1 with an edge (u, v)
attached, where u is a vertex in the clique and v is the only vertex outside of the
clique. Then, we set weights of edges in the clique to 1 and the weight of the edge
(u, v) to an extremely large value, say 2n. We can obtain MLA(G) = O(1/n)
by putting v next to u in the permutation. Now, we consider ρG(r) for r ≥ 3.
For any set of r non-empty disjoint subsets S1, . . . , Sr ⊆ V , we have some set Si
such that |Si| ≤ n−2

r−2 and Si only contains vertices in V \ {u, v}. Then, we can
show φG(Si) = 1−c/r for some constant c since Si is a small subset in the clique
of size n− 1. From Theorem 5, it follows that λr(LG) ≥ (1

r2 (1 −
c
r))

2 = Ω(1
r4),

which contradicts the statement of Theorem 6.

Acknowledgement. The authors thank anonymous reviewers for suggestions
on how to improve the presentation.

References

1. Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability results for maximum
edge biclique, minimum linear arrangement, and sparsest cut. SIAM Journal on
Computing 40(2), 567–596 (2011)

324 S. Tamaki and Y. Yoshida

2. Arora, S., Barak, B., Steurer, D.: Subexponential algorithms for unique games
and related problems. In: Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 563–572 (2010)

3. Arora, S., Frieze, A.M., Kaplan, H.: A new rounding procedure for the assignment
problem with applications to dense graph arrangement problems. Mathematical
Programming 92(1), 1–36 (2002)

4. Arora, S., Khot, S., Kolla, A., Steurer, D., Tulsiani, M., Vishnoi, N.K.: Unique
games on expanding constraint graphs are easy: extended abstract. In: Proceedings
of the 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 21–28
(2008)

5. Barak, B., Raghavendra, P., Steurer, D.: Rounding semidefinite programming hi-
erarchies via global correlation. In: Proceedings of the 52nd Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), pp. 472–481 (2011); Full
version: Electronic Colloquium on Computational Complexity (ECCC) TR11-65

6. Charikar, M., Hajiaghayi, M.T., Karloff, H.J., Rao, S.: 22 spreading metrics for
vertex ordering problems. Algorithmica 56(4), 577–604 (2010)

7. Devanur, N.R., Khot, S., Saket, R., Vishnoi, N.K.: Integrality gaps for sparsest cut
and minimum linear arrangement problems. In: Proceedings of the 38th Annual
ACM Symposium on Theory of Computing (STOC), pp. 537–546 (2006)

8. Feige, U., Lee, J.R.: An improved approximation ratio for the minimum linear
arrangement problem. Information Processing Letters 101(1), 26–29 (2007)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

10. Guruswami, V., Sinop, A.K.: Certifying graph expansion and non-uniform sparsity
via generalized spectra. CoRR abs/1112.4109 (2011)

11. Guruswami, V., Sinop, A.K.: Lasserre hierarchy, higher eigenvalues, and approxi-
mation schemes for quadratic integer programming with PSD objectives. In: Pro-
ceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), pp. 482–491 (2011); Full version: Electronic Colloquium on Compu-
tational Complexity (ECCC) TR11-66

12. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the
34th Annual ACM Symposium on Theory of Computing (STOC), pp. 767–775
(2002)

13. Kolla, A., Tulsiani, M.: Playing random and expanding unique games (unpublished
manuscript)

14. Lasserre, J.: An explicit equivalent positive semidefinite program for nonlinear 0-1
programs. SIAM Journal on Optimization 12(3), 756–769 (2002)

15. Lee, J.R., Gharan, S.O., Trevisan, L.: Multi-way spectral partitioning and higher-
order cheeger inequalities. In: Proceedings of the 44th Annual ACM Symposium on
Theory of Computing (STOC), pp. 1117–1130 (2012); Full version: arXiv:1111.1055

16. Raghavendra, P., Steurer, D.: Graph expansion and the unique games conjecture.
In: Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC),
pp. 755–764 (2010)

17. Raghavendra, P., Steurer, D., Tulsiani, M.: Reductions between expansion prob-
lems. In: Proceedings of the 27th Annual IEEE Conference on Computational
Complexity (CCC) (to appear, 2012); Full version: Electronic Colloquium on Com-
putational Complexity (ECCC) TR10-172

18. Rao, S., Richa, A.W.: New approximation techniques for some linear ordering
problems. SIAM Journal on Computing 34(2), 388–404 (2004)

Circumventing d-to-1 for Approximation

Resistance of Satisfiable Predicates Strictly
Containing Parity of Width Four

(Extended Abstract)

Cenny Wenner�

KTH – Royal Institute of Technology and Stockholm University
cenny@cwenner.net

Abstract. H̊astad established that any predicate P ⊆ {0, 1}m contain-
ing parity of width at least three is approximation resistant for almost
satisfiable instances. However, in comparison to for example the approx-
imation hardness of Max-3SAT, the result only holds for almost satis-
fiable instances. This limitation was mitigated by O’Donnell, Wu, and
Huang under the d-to-1 Conjecture. They showed the threshold result
that if a predicate strictly contains parity of width at least three, then
it is approximation resistant also for satisfiable instances. We extend
modern hardness of approximation techniques by Mossel et al. to pro-
jection games, eliminating dependencies on the degree of projections via
Smooth Label Cover, and prove unconditionally the same approxi-
mation resistance result for predicates of width four.

1 Introduction

We study the limits of approximation forNP-hard Constraint Satisfaction Prob-
lems (CSP). A canonical example of such problems is Max-3SAT which in the
CSP framework can be denoted Max-CSP

±(3OR).1 In Max-3SAT, we are
given Boolean variables x1, . . . , xn and clauses of the form “a ∨ b ∨ c”, where
each literal a, b, and c is either a variable xi or its negation. A solution to an
instance is an assignment to the variables, the value of a solution is the number
of clauses it satisfies, and the value of an instance is the maximum value over all
solutions. In the CSP framework, we substitute the value ‘true’ for 1 and ‘false’
for 0. In greater generality, a Max-CSP

±(P) problem is defined by specifying
the width-m predicate P applied to the set of literals instead of 3OR.

Seeing how 3SAT is NP-complete to solve exactly, we turn our attention to
efficient approximations. We say that a solution is a c-approximation if its value
is at least c times the value of an instance. In particular, for Max-3SAT, as-
signing each variable a random value yields a 7/8-approximation in expectation.

� Supported by ERC Advanced Investigator Grant 226203.
1 The definition of Max-CSP is sometimes ambiguous and we have added a plus-minus
superscript to signify that constraints may involve negations of variables.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 325–337, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

326 C. Wenner

Unfortunately, this is essentially the best efficient approximation of the problem
as Max-3SAT is known to be NP-hard to approximate better than 7/8+ ε for
every ε > 0 [9]. In fact, even if the instance is perfectly satisfiable, i.e., positive
instances have value 1, it is NP-hard to satisfy more than a fraction 7/8 + ε.

We call predicates with this property for approximation resistant, i.e. when a
random assignment essentially achieves the best polynomial-time approximation
factor assuming P �= NP . For simplicity, our treatise hereafter works under this
assumption. A convenient consequence of showing that a predicate is approxima-
tion resistant is that it establishes the optimal polynomial-time approximation
factor of the predicate, up to lower-order terms. In particular, this quantity
is 2−m|P| and is also called the random assignment threshold. The celebrated
work by H̊astad [9] demonstrated that a number of well-studied predicates are
approximation resistant and has been a starting point of a long line of strong
inapproximability results. In fact, assuming Khot’s Unique Games Conjecture
(UGC) [12], most predicates of sufficiently large width are known to be approx-
imation resistant [1].

Of particular interest to us is the predicate odd parity defined by (a1, . . . , am) ∈
P if the number of ai = 1 is odd. The predicate even parity is defined analo-
gously. H̊astad showed that (either) parity is hereditarily approximation resis-
tant ; meaning that not only is parity approximation resistant, but so is any
predicate Q ⊆ {0, 1}m containing parity. By containing, we mean in the set
sense. However, in comparison to e.g. Max-3SAT, the approximation resistance
result holds with respect to almost satisfiable instances. Formally, letting Q be an
arbitrary predicate containing parity, for any ε, ε′ > 0, given a Max-CSP

±(Q)
instance with value at least 1 − ε′, it is NP-hard to find a solution with value
at least 2−m|Q|+ ε.

For parity, the use of almost-satisfiable instances is necessary: perfectly-
satisfiable instances can via Gaussian elimination be solved in polynomial time,
whereas almost-satisfiable instances are hard to approximate within 1/2 + ε. It
is not immediately clear whether other approximation-resistant predicates con-
taining parity should be easy or hard for satisfiable instances, and indeed 3SAT
is as hard to approximate for almost-satisfiable as perfectly-satisfiable instances.

Assuming Khot’s d-to-1 Conjecture [12], this question was settled by O’Donnell
and Wu [19] for m = 3 and later generalized to m ≥ 3 by Huang [10]. They
showed the remarkable threshold that any predicate strictly containing parity is
approximation resistant also for perfectly-satisfiable instances. More specifically,
O’Donnell and Wu showed the hereditary approximation resistance, for satisfi-
able instances, of the predicate “Not-Two”, the predicate which accepts three
bits that are either of odd parity or all zeroes.

The result of O’Donnell and Wu follows from the construction of a Proba-
bilistically Checkable Proof (PCP) reducing from an outer verifier to Max-CSP

±(Not-Two). The outer verifier may be taken as a black-box constraint satisfac-
tion problem called Label Cover. In Label Cover, one is given a bipartite
graph G = (U ∪ V,E), a “small” label set K, a “large” label set L, and for
each edge e ∈ E an associated projection πe : L → K. Solutions assign each

Circumventing d-to-1 for Approximation Resistance 327

vertex u ∈ U a label λ(u) from K and each vertex v ∈ V a label λ(v) from
L, and the value of a solution is the fraction of edges {u, v} ∈ E for which
λ(u) = π{u,v}(λ(v)). One can show that it is NP-hard for every ε > 0 to distin-
guish whether a Label Cover instance has value 1 (the completeness) or value
at most ε (the soundness) for sufficiently large label sets K and L depending
on ε.

Reductions from Label Cover are today standard in hardness of approxi-
mation. For Boolean constraints, such proofs typically involve semantically re-

placing λ(u) and λ(v) with 22
|K|

and 22
|L|

Boolean variables, respectively. These
variables are respectively viewed as functions fu : {−1, 1}K → {−1, 1} and
gv : {−1, 1}L → {−1, 1}. The intention, for positive instances, is to set these
functions to dictators. That is, setting fu(x) = xλ(u) and gv(y) = yλ(v). For
negative instances, there are however no guarantees that the functions are set
according to this coding scheme. Reducing to a Max-CSP

±(P) instance, and
viewing P as the indicator of its set, points of such functions are passed as argu-
ments to P . The value of an edge {u, v} in the Label Cover instance is thereby
reduced to, for some integer T , to the value of the expectation

Ex(1),...,x(T),y(T+1),...,y(m)

[
P (fu(x(1)), . . . , fu(x(T)), gv(y(T+1)), . . . , gv(y(m))

]
,

(1)

where the arguments are chosen according to a test distribution. Equation 1 is
the starting point for Fourier analysis of PCP’s. For approximation resistance,
this involves first taking the Fourier expansion of P and proceeding to bounds
terms of the forms E [

∏
fu], E [

∏
gv], and/or E [

∏
fu
∏
gv]. For work most

similar to this treatise, T is typically one, rendering the first kind of term(s)
trivial to bound while terms of the third kind become E [fu

∏
gv]. Finally, a

central parameter to this work is the (maximum) degree of projections, d =
d(ε) = maxe∈E maxi∈K |π−1

e (i)|. That is, the greatest number of labels from the
large label set which share projection. For present NP-hard constructions of
Label Cover, d → ∞ as ε → 0.

The construction by O’Donnell and Wu is similar to that of H̊astad for Max-

3-Lin-2, i.e. parity on three bits. Working with almost satisfiable instances,
H̊astad could define his test distribution such that each argument to a function
was somewhat “noised”. O’Donnell and Wu, working with perfectly satisfiable
instances, could not afford this. Instead they made use of the “unpredictability”
of a predicate which strictly contains parity. Defining a test distribution close
to that for Max-3-Lin-2, but with somewhat bounded correlation between the
arguments to the functions, they used theorems by Mossel [14] to argue that the
analysis behave roughly as though the arguments were somewhat noised. Follow-
ing this, the effect of only being “close” to the uniform distribution over parity
had to be bounded. For this, they extended modern techniques for analyzing
PCP’s. They introduced a “matrix-notation technique” to bound terms of the
form E [

∏
gv] while for terms of the form E [fu

∏
gv], they used a coordinate-

wise distribution-substitution method to bound the terms by influences. Their
method has subsequently found other applications [21,20].

328 C. Wenner

We note that all of the steps in the above proof involves degenerative depen-
dencies on d, the degrees of projections. This promoted the use of the d-to-1
Conjecture which states that Label Cover remains NP-hard for arbitrarily
low soundness ε, even for a fixed degree of projections d. The d-to-1 Conjec-
ture, and its more well-known sibling, the UGC, have proven highly useful for
establishing (conditional) hardness of approximation results. However, despite
remarkable efforts to prove or refute these conjectures, we appear to be nowhere
near settling the conjectures nor theorems serving equivalent purposes. There has
however been recent progress towards circumventing the conjectures for partic-
ular problems [20,6].

2 Our Contributions and Techniques

Our main contribution is to circumvent the d-to-1 Conjecture to show that any
predicate strictly containing parity of width four is approximation resistant for
satisfiable instances unless P = NP . The overarching steps of our proof follow
those of O’Donnell and Wu, and our main technical contribution is to extend
the methods of Mossel et al. [16,14]. Subject to smoothness, we show that the
analysis behaves roughly the same subject to what we call projected noise as it
does subject to independent noise; more on this below. Additionally, we employ
a multivariate invariance principle extended to projection games which avoids
dependencies on the degree of projections d. We note that a similar elimination of
the dependency on d, using different methods, was recently shown by O’Donnell
and Wright [17] for a particular two-variable case.

The Smooth Label Cover problem serves an integral role in our proofs.
The problem is a variant of Label Cover which roughly states that if one
looks at a vertex v ∈ V and two labels j, j′ ∈ L, over the random choice e of
edges incident v, the two labels are unlikely to share projection, i.e. the event
‘πe(j) = πe(j

′)’ has arbitrarily low positive measure over the choice of uṽ. The
problem was first defined by Khot to show approximation hardness of Coloring

[11]. Subsequently, Feldman et al. [5] used it for the hardness of learning mono-
mials, and Guruswami et al. [6] to establish exciting optimal inapproximability
results for two geometric results where previously only optimal UG-hardness
results were known. More intimately related to our work, Khot and Saket [13]
used smoothness to show 20/27 + ε approximation hardness of Max-CSP on
satisfiable instances.

Subject to smoothness, we relate what we call projected noise to non-projected
or independent noise. The former is introduced by conventional techniques from
correlation bounds, while the latter is needed to decode from influences without
a dependency on the degree of a projection. The issue with the former is that
projected noise does not significantly affect functions which depend on a large
number of coordinates with the same projection. However, under Smooth La-

bel Cover, any function which depends on many coordinates must essentially
depend in expectation on many coordinates with different projections. With the
limited unpredictability of the distribution we define, we can via correlation

Circumventing d-to-1 for Approximation Resistance 329

bounds introduce projected noise independent of d and subsequently turn it into
independent noise due to smoothness.

With a test distribution which behaves roughly as though arguments were
independently noised, we wish to bound expectations of the form E [

∏
gv] and

E [fu
∏
gv]. For the former, we employ smoothness, partial independence of the

test distribution, and hypercontractivity to argue that the expectation is roughly
the same as for a distribution where all coordinates j ∈ L are drawn indepen-
dently, as in Unique Games. Since our test distribution is arbitrarily close to
being independent over the arguments {y(t)}t in this setting, the expectation
E [
∏
gv] is close to 0.

Finally, we extend the coordinate-wise distribution-substitution method of
O’Donnell and Wu, to show a multivariate invariance theorem similar to Mos-
sel’s [14] but where bounds do not depend on the degree of projections d [22].
This permits us to effortlessly bound terms of the form E [fu

∏
gv]. In fact, the

soundness analysis of a term E [fu
∏
g] involving functions on both the small

and large label sets – often considered the hardest part of soundness analysis –
becomes the easiest step subject to this theorem.

It may be pedagogical to discuss what we require to employ our steps. For
noise introduction, it suffices, with smoothness, that each string y(r) has in
the marginal distribution over a label j ∈ L bounded correlation to arguments
{y(t)}t�=r conditioned on {x(t)}t. For bounding products of the form E [

∏
gv],

we require noise, smoothness, and a roughly m/2-wise independent balanced
distribution for {y(t)}t. For bounding products of the form E [fu

∏
gv] in terms

of influences, we require the weak conditions of uniform marginals and that any
single string y(r) is independent of {x(t)}t. We note that the last step does not
employ smoothness and in particular pairwise independence suffices.

3 Preliminaries

3.1 Basic Notation

For any real p, we denote by p̄ = 1−p, while for a set A from a possibly implicit
universe U , Ā refers to its complementary set U \ A. We use Iverson notation
[S] where S is a true/false statement to denote 1 whenever S is true and 0
otherwise. For a natural number n, the integral interval {1, . . . , n} is denoted
[n]. In this treatise, we deal extensively with correlated spaces P = (

∏m
t=1Ωt, μ)

over finite domains. When the sample space is clear from the context, we may
also specify measures instead of probability spaces, and vice versa. Given an
index set A ⊆ [m], we call ΩA the product space

∏
t∈AΩt. Vectors may for

clarity be denoted either by bold font. Given a tuple x = (xi)i∈A and a bijection
σ : A ↔ A, x ◦ σ denotes the tuple (xσ(i))i∈A.

3.2 Operators on Probability Spaces

Tensoring. Given a probability space P = (Ω,μ), the nth tensor power of P is
P⊗n = (Ωn, μ′ = μ⊗n) where μ′(ω1, . . . , ωn) = μ(ω1) · · ·μ(ωn).

330 C. Wenner

Noise Operators. So called noised functions are standard when analyzing
PCP’s and we extend the notion somewhat to encompass also probability spaces.

Definition 1. Let P = (Ω1, μ) be a probability space, n an natural number, and
f : Ωn → R a function on P⊗n. The noise operator, also called the Bonami-
Beckner operator, TP,γ(f) : Ωn → Ωn with parameter γ ∈ [0, 1] applied to f
takes an argument x = (xi)i∈[n], and yields the expectation of f where for every
i, xi is independently resampled from P with probability γ̄.

We generally let the distribution be implicit. The noise operator is more com-
monly defined by a parameter specifying the noise, whereas we specify the cor-
relation, a more natural quantity in our eyes. The relation between the two
definitions is immediate, substituting γ for γ̄.

It is convenient for our proofs to extend the definition of noise operators to
probability spaces. In particular, let P = (

∏m
Ωt, μ) be a correlated probability

space, A ⊆ [m] an index set, and γ a parameter. Then, TAγ P is defined as the
probability space which first draws from P and with probability γ̄ resamples
ΩA from its marginal of μ. When A is singleton {x}, we merely denote the

noise operator by Txγ rather than T{x}
γ . As an example, let P = (Ω1 × Ω2, μ)

be a correlated space, and, for t = 1, 2, consider functions ft : Ω
n
t → R; then,

ET2
γP⊗n [f1f2] = EP⊗n [f1Tγf2].

The Projection Operator. In order to conveniently analyze projection-game-
based PCP’s, we introduce a projection operator on correlated spaces. Intuitively,
the operator yields a correlated space which first samples a subset of spaces ΩA
and then a number of times independently samples the remaining spaces ΩĀ
conditioned on ΩA.

Definition 2. The degree-d projection from an index set A ⊆ [m] on a cor-

related space P = (
∏m

Ωt, μ) is defined as Pd-proj-A def
= (

∏m
Ω′
t, μ

′), where
Ω′
t = Ωt if t ∈ A and otherwise Ωd

t , and

μ′(ω′
1, . . . , ω

′
n) = Pμ(ΩA = ω′

A)
d∏
i=1

Pμ

(
∀t/∈AΩt = ω′

t,i |ΩA = ω′
A

)
.

3.3 Influences

Auseful concept of functions is the influence of a coordinate. Intuitively, for a func-
tion f : {−1, 1}n → R, the influence of coordinate i is how much f(x) changes on
averagewith xi. When analyzing positive instances in long-code-based PCP’s, the
functions in question are dictators of the encoded assignments; formally, fu(x) =
xλ(u) where λ(u) is the assignment to the vertex u in the reduced-from Label

Cover instance. In the other direction, whenever a protocol accepts with a non-
negligible probability over a random assignment, one would like to argue that the
functions must essentially have significant influences and additionally so, for mul-
tiple functions, of coordinates consistent with projections.

Circumventing d-to-1 for Approximation Resistance 331

Definition 3. Let f : Ωn → R be a function and i ∈ [n] a coordinate. The
influence of coordinate i is Infi(f) = Ex−i [Varxi [f(x)]] , where the implicit
distributions are uniform over Ωn.

In a similar way, noisy influences are defined as Inf
(γ)
i (f)

def
= Infi(Tγf) where

γ ∈ [0, 1] is noise parameter. We note that the total influence of a function with
codomain [−1, 1] can be of the order n while the total noisy influence for γ < 1
is always bounded from above by a constant depending only on γ.

3.4 Correlations

Intimately connected with noise operators is the concept of correlation between
sample spaces. We note that correlations are always bounded by one and noise
operators applied to individual sample spaces can only decrease correlation.

Definition 4. The correlation ρ(Ω1, Ω2; μ) between Ω1 and Ω2 with respect to
the probability space P = (Ω1 × Ω2, μ) is

ρP(Ω1, Ω2)
def
= ρ(Ω1, Ω2; P)

def
= max

φ,ψ
Eμ [φψ] ,

where the maximum is over functions φ : Ω1 → R, ψ : Ω2 → R such that
E [φ] = 0 and Var [φ] = Var [ψ] = 1.

3.5 Smooth Label Cover

Formally, we define the smoothness of a Label Cover instance as follows.

Definition 5. A Label Cover instance is (J, κ)-smooth if for any vertex v ∈
V and any set of labels S ⊆ L, |S| ≤ J , over a uniformly at random neighbor
u ∈ U of v, Pu∼v

(
|π{u,v}(S)| < |S|

)
≤ κ.

We have adapted the original definition of Smooth Label Cover somewhat,
choosing bipartite projection games over hypergraphs and characterizing Def-
inition 5 as the essential property of smoothness. Our definition carries more
similarity to smoothness as used in H̊astad’s simplified proof – attributed to
Khot – of the approximation resistance of Max 3SAT [7]. In particular, the
Label Cover variant our hardness result reduces from is the following. The
theorem follows from standard arguments and is proved in the full version of
this paper.

Theorem 1. For any parameters ε > 0, κ > 0, J ∈ N, there exists k = k(ε)
such that Gap-(1, ε) Label Coverk with the following properties is NP-hard.

– The constraint graph G is left and right regular.
– Instances are (J, κ)-smooth.
– For some integer u = u(ε) and v = v(J, κ), the cardinalities of K and L are

k
def
= 2u10u(v−1)v and 10uv, respectively.

– Projections are d(ε) = 5u(ε)-regular.

332 C. Wenner

4 Main Theorem

The main theorem of the paper is the following.

Theorem 2. The arity-4 predicate “0, 1, or 3” with negation is approximation
resistant for satisfiable instances. Put differently, for every ε > 0, it is NP-hard
to distinguish whether a Max-CSP

±(“0, 1, or 3”) instance has value 1 or value
at most |P |/2−4 + ε = 9/16 + ε.

Our proof defines a distribution on the predicate “0, 1, or 3” and shows that
every non-constant term in the Fourier expansion of any predicate P must be
small in the negative case. This proof in fact establishes that the predicate is
hereditarily approximation resistant for satisfiable instances and, by symmetry,
any predicate which strictly contains even or odd parity on four bits.

4.1 The Protocol

The hardness of Max-CSP
±(P) follows by a reduction from Smooth Label

Cover as it appears in Theorem 1 with soundness ε = ε(ε), and label sets
K = [k(ε, J, κ)] and L = K × [d(ε)].

To define the reduction R from an instance I, take as variables for the

CSP±(P) instance R(I) for every vertex u ∈ U , 22
|K|

Boolean variables and

for every vertex v ∈ V , 22
|L|

variables. As is standard, we see these variables as
functions fu : {0, 1}K → {0, 1} and gv : {0, 1}L → {0, 1}. Let D be the uniform
distribution on “1 or 3” and let E be the distribution which chooses u.a.r. from
{0000, 0111} with probability 0.5 and otherwise from {1000, 1110, 1101, 1011}.
Define constraints corresponding to the following probabilistic verifier.

1. Pick a random vertex u ∈ U and a random neighbor v ∈ V . Sample π =
π{u,v} as defined by the Smooth Label Cover instance and let π̄ be an
arbitrary bijection L ↔ L such that for every i, i′ ∈ K and r ∈ [d], π(i, r) = i′

iff ∃r′∈[d]π̄(i, r) = (i′, r′).
2. Sample random folding constants a, b ∼ {0, 1}. Define fa(x) = a⊕ fu(a⊕x)

and gb(y) = b⊕ gv(b ⊕ y ◦ π̄).
3. For each i ∈ K, independently choose xi u.a.r. from {0, 1}. For each j ∈ L,

independently sample (xπ(j), y
(2)
j , y

(3)
j , y

(4)
j) conditioned on xπ(j) fromD with

probability δ and otherwise E .
4. Accept iff

(
fa(x), gb(y

(2)), gb(y
(3)), gb(y

(4))
)
∈ P.

We note that queries a⊕f(a⊕·) are permitted in Max-CSP
± where the opera-

tion a⊕· act as a possible negation of a variable. This construct is called folding
and ensures that Ex[f] = Ey [g] = 0.

The goal is to show the following two properties of the protocol from which
Theorem 2 follows. Completeness follows by inspection and is standard. We
elaborate on the more interesting soundness bound in the following section. For
constants and complete arguments, we refer to the full version.

Circumventing d-to-1 for Approximation Resistance 333

Proposition 1. The protocol has completeness 1. Said equivalently, if Val(I) =
1, then Val(RP(I)) = 1.

Proposition 2. The protocol has soundness |P|/16+ ε = 9/16+ ε. More specif-
ically, if Val(I) ≤ ε = ε(ε), then Val(RP(I)) ≤ 9/16 + ε where ε(ε) → 0 as
ε → 0.

4.2 Soundness

As is usual, we establish the soundness through the contradiction of its con-
trapositive: supposing that the acceptance probability of RP(I) is greater than
|P|/16 + ε, we show that there is a labeling of the Smooth Label Cover in-
stance I achieving value greater than ε = ε(ε). The dependency in particular is
ε(ε) = 2−8η̄γ̄3ε2 where the noise constants η and γ appear below.

Denote by T0 the distribution δD+δ̄E , by T ′
0 the distribution T d-proj-1

0

⊗K
, and

by T ′
1 the distribution

(
T1
ηT

2
γT

3
γT

4
γT0
)d-proj-1⊗K

. The test distribution of the pro-
tocol is T ′

0 and we wish to argue that it behaves as T ′
1 . For notational simplicity,

define f = Ea [fa] and g = Eb [gb]. Let q1 = f(x), q2 = g(y(2)), . . . , q4 = g(y(4)).
As is usual for PCP analysis, we substitute 1 for −1 and 0 for 1.

Considering the Fourier transform {P̂Γ }Γ⊆[4] of the predicate, the acceptance

probability of the protocol equals EE,T ′
0

[∑
Γ⊆[4] P̂ΓχΓ (q)

]
where the distribu-

tion is over a random edge e ∈ E from the Smooth Label Cover instance and
the arguments from T ′

0 . For an arbitrary Γ �= ∅ and distribution R, let us denote
by ψΓ (R) = EE,R [χΓ (q)]. Conceptually, we refer to these terms as E [

∏
g] or

E [f
∏
g] for zero or more functions g. We also note that the acceptance proba-

bility in the new notation equals
∑

Γ ψΓ (T ′
0). The term with Γ = ∅ corresponds

to the constant |P |/2−4 and we wish to bound all other terms. This is handled
by the following five propositions from which the soundness follows. Their re-
spective proofs can be found in the full version of the paper. We note that the
first two steps establish basic properties while the remaining three mimic the
approach of O’Donnell and Wu [19].

The first proposition establishes basic properties of the distributions and fol-
lows from inspection of the distributions. If we did not have a predicate on at
least four bits, we would not be able to in the general case define bounded-
correlation distributions with this property.

Proposition 3. Consider either distribution T ′
0 or T ′

1 . The marginals of x and
y(t) are uniform and additionally y(t) is independent of x for t = 2, 3, 4.

The second proposition states that, due to the preceding independence, terms
involving at most one y(t) argument are zero.

Proposition 4. ψΓ (T ′
0) = 0 for ∅ �= Γ ⊆ [4], |Γ ∩ {2, 3, 4}| ≤ 1.

The third lemma, which involves smoothness and significant technical work,
argues that terms are in expectation roughly the same with the original test

334 C. Wenner

distribution as the test distribution with noise, independent of d, on all ar-
guments. We argue this in three steps. First, correlation bounds and a noise
introduction lemma by Mossel [14] are used to introduce projected noise for
y(t) arguments, i.e. noise where all coordinates sharing projection are jointly
resampled. Next, with projected noise, the string x has bounded correlation to
{y(t)}4t=2 and permit by the same lemma introduction of noise for x. Finally,
we argue that if an argument y(t) has projected noise γ for smoothness (J, κ),
then the expectation changes by at most 2

√
κ+2γJ going to independent noise

for y(t). This latter step is probably the most interesting and involves analyz-
ing Fourier expansions, or Efron-Stein decompositions. Under smoothness, for
Fourier coefficients of cardinality at most J , with high probability, projections
are unique and projected noise behave the same as independent noise; for Fourier
coefficients of greater cardinality, with high probability, the set projects to a large
number of different labels and makes an expectation small due to either noise.

We note that the constants ρ0 and ρ1 appearing in the proposition are corre-
lation bounds appearing in the proofs and are bounded away from 1 depending
only on δ and γ.

Proposition 5. |ψΓ (T ′
0)− ψΓ (T ′

1)| ≤ supk≥0 ρ
k
0(1− γk) + supk≥0 ρ

k
1(1− ηk) +

2
√
κ+ 6γJ ≤ ε/256 for any Γ ⊆ [4].

Fourth, over the noised distribution, terms of the form E [
∏
g] are shown to have

an expectation which approaches 0 as parameters are tweaked. The hardest case
is E

[
g(y(2))g(y(3))g(y(4))

]
, i.e. when all three g arguments are involved. We pro-

vide a brief sketch of the argument here but refer to the full version for definitions
due to space limitations. The proof begins by arguing that because of noise and
partial independence, E [ggg] ≈ E

[
g≤kg≤kg

]
where g≤k is a “low-degree expan-

sion” of g and k = "J/2#. Because of uniform marginals, this implies E [ggg] ≈
E
[
g≤kg≤kg≤2k

]
. Second, one can argue that removing terms from the Fourier ex-

pansion of these functions which do not have “unique” projections will not change
the expectation by too much. This step involves smoothness and going from higher
�p norms of sums of Fourier terms to �2 via hypercontractivity and using that the
functions are of low degree. For “unique” projections, the expectation of the ex-
pression is identical to that of the distribution which does not sample conditioned
on the argument x. Still, the expectation of a product of low-degree functions is
not easily bounded and so we take all steps in reverse for the non-conditional dis-
tribution. This returns us to the expression E [ggg] but under a distribution where

the expectation is at most
√
δ̄ due to correlation bounds.

Proposition 6. |ψΓ (T ′
1)| ≤ 4γJ/2−1 + 6 · 33J/4

√
κ +

√
δ̄ ≤ ε/256 for 1 /∈ Γ ⊆

[4], |Γ | ≥ 2.

Finally, we bound terms of the form E [f
∏
g]. This is often considered the

hardest part of PCP analysis. However, the argument is almost immediate after
we extend Mossel’s multivariate invariance principle [14] to projection games.

Circumventing d-to-1 for Approximation Resistance 335

Proposition 7. |ψΓ (T ′
1)| ≤ 2

√
γ̄−1EE

[∑
(i,j)∈π Inf

(η)
i (f)Inf

(γ)
j (g)

]
for 1∈Γ ⊆

[4], |Γ | ≥ 3.

As mentioned previously, the acceptance probability of the protocol equals∑
Γ ψΓ (T ′

0). Each term, besides the constant term, is bounded by the preceding
propositions. Proposition 4 and Proposition 6 bound terms by arbitrarily small
constants while Proposition 7 bounds the expectation of a E [f

∏
g] term by

the sum of noisy “cross-influences” of coordinated coordinates. This quantity
is easy to relate to the value of the (η, γ)-Noisy Influence Assignment which
independently sets vertex u resp. v to label i resp. j with probability propor-

tional to Inf
(η)
i (fu) resp. Inf

(γ)
j (gv). To conclude the proof, one argues that if

these terms are not negligible, then the noisy influence assignment contradicts
the assumption that the reduced-from Label Cover instance has a low value.

5 Discussion

We note that our result should generalize to any predicate of width at least four
strictly containing parity, exploiting the roughly m/2-wise independent distri-
bution conditioned on the first variable which one can define on the generalized
predicate “odd or zero” with strictly positive weight on the all-zeroes outcome.
As all our proofs are based on Efron-Stein decompositions, which have similar
properties also for larger domains, one may venture that similar results hold also
for predicates P ⊆ Fq strictly containing linear equations. Considering general-
izations of our proofs, it also appears feasible that supporting roughly 2m/3-wise
independence suffices for the unconditional approximation resistance of a predi-
cate. This is an interesting question as the present gap is essentially the greatest
non-trivial possible: (m−1)-wise independence suffices under P �= NP [9], while
two-wise independence suffices under UGC [2].

However, we face technical difficulties addressing the width-three case, even
for Boolean variables. The main technical limitation of this extension is that we
are unable to simultaneously make the coordinates independent in the argument
y(2) for a function on the larger label set, and y(2) independent of the argument
x for a function on the smaller label set. These two properties are used in all of
the major steps of our result. Curiously, H̊astad has shown in parallel a result [8]
similar to ours for the case m = 3. The methods of the two papers have similar
foundations in that they rely on Smooth Label Cover to reduce the effect of
projection degrees. They differ in that ours seek general techniques to eliminate
this dependency while H̊astad uses more direct methods and counteracts the
dependency with massive smoothness constants.

It is interesting to consider whether the techniques could be used to circum-
vent the d-to-1 Conjecture for other results. Indeed, the sole reason d-to-1
Games rather than Unique Games is used as a starting point for reductions,
is because Unique Games is not hard for satisfiable instances. As mentioned
previously, the invariance argument of O’Donnell and Wu has appeared in other
works. O’Donnell and Wu initially posed a three-bit dictatorship test [18] before

336 C. Wenner

adapting it to a PCP assuming the d-to-1 Conjecture. It has been suggested [4]
that other query-efficient dictatorship tests [3,20] may yield PCP’s by similar
methods; perhaps unconditionally by our methods.

Acknowledgement. The author would like to thank Johan H̊astad for his in-
valuable advice, curious discussions, and intuitive explanations; Sangxia Huang
for discussions and calling previous work to attention; and an anonymous referee
for helpful comments.

References

1. Austrin, P., H̊astad, J.: Randomly Supported Independence and Resistance. In:
ACM Symp. on the Theory of Comp. (STOC), vol. 41 (2009)

2. Austrin, P., Mossel, E.: Approximation Resistant Predicates from Pairwise Inde-
pendence. In: IEEE Conf. on Comp. Complexity (CCC), vol. 23 (2008)

3. Chen, V.: A Hypergraph Dictatorship Test with Perfect Completeness. In: Dinur,
I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS,
vol. 5687, pp. 448–461. Springer, Heidelberg (2009)

4. Chen, V.: Property Testing. Springer (2010)

5. Feldman, V., Guruswami, V., Raghavendra, P., Yi, W.: Agnostic Learning of Mono-
mials by Halfspaces is Hard. In: (FOCS) IEEE Found. of Comp. Sc., vol. 50 (2009)

6. Guruswami, V., Raghavendra, P., Saket, R.: Bypassing UGC from Some Opti-
mal Geometric Inapproximability Results. In: ACM-SIAM Symp. on Discrete Alg.
(SODA), vol. 23 (2012)

7. H̊astad, J.: On Linear Equations and Satisfiability (2011) (unpublished material)
8. H̊astad, J.: On the NP-Hardness of Max-Not-2. In: Gupta, A., et al. (eds.) AP-

PROX/RANDOM 2012. LNCS, vol. 7408, pp. 170–181. Springer, Heidelberg (2012)
9. H̊astad, J.: Some Optimal Inapproximability Results. J. of ACM 48 (2001)

10. Huang, S.: Approximation Resistance on Satisfiable Instances for Predicates
Strictly Dominating Parity. Elect. C. on Comp. Complexity (ECCC) (2012)

11. Khot, S.: Hardness Results for Coloring 3-Colorable 3-Uniform Hypergraphs. In:
IEEE Foundations of Comp. Sc. (FOCS), vol. 43 (2002)

12. Khot, S.: On the Power of Unique 2-Prover 1-Round Games. In: ACM Symp. on
the Theory of Comp. (STOC), vol. 34 (2002)

13. Khot, S., Saket, R.: A 3-query Non-Adaptive PCP with Perfect Completeness. In:
Conf. on Comp. Complexity (CCC), vol. 21 (2006)

14. Mossel, E.: Gaussian Bounds for Noise Correlation of Functions. In: Geometric and
Functional Analysis. Birkhauser, Basel (2010)

15. Mossel, E.: Gaussian Bounds for Noise Correlation of Functions and Tight Analysis
of Long Codes. In: IEEE Found. of Comp. Sc. (FOCS), vol. 49 (2008)

16. Mossel, E., O’Donnell, R., Oleszkiewicz, K.: Noise stability of Functions with Low
Influences: Invariance and Optimality. In: IEEE Foundations of Comp. Sc. (FOCS),
vol. 46 (2005)

17. O’Donnell, R., Wright, J.: A New Point of NP-hardness for Unique Games. In:
ACM Symp. on the Theory of Comp. (STOC), vol. 44 (2012)

18. O’Donnell, R., Yi, W.: 3-Bit Dictator Testing: 1 vs. 5/8. In: ACM-SIAM Symp. on
Discrete Alg. (SODA), vol. 20 (2009)

Circumventing d-to-1 for Approximation Resistance 337

19. O’Donnell, R., Wu, Y.: Conditional Hardness for Satisfiable 3-CSPs. In: ACM
Symp. on the Theory of Comp. (STOC), vol. 41 (2009)

20. Tamaki, S., Yoshida, Y.: A Query Efficient Non-Adaptive Long Code Test with
Perfect Completeness. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.)
APPROX and RANDOM 2010, LNCS, vol. 6302, pp. 738–751. Springer, Heidelberg
(2010)

21. Tang, L.: Conditional Hardness of Approximating Satisfiable Max 3CSP-q. In:
Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 923–932.
Springer, Heidelberg (2009)

22. Wenner, C.: Noise Introduction and Multivariate Invariance for Projection Games
(2012) (unpublished manuscript)

Spectral Norm of Symmetric Functions"

Anil Ada, Omar Fawzi, and Hamed Hatami

School of Computer Science, McGill University
{aada,ofawzi,hatami}@cs.mcgill.ca

Abstract. The spectral norm of a Boolean function f : {0,1}n → {−1,1} is the
sum of the absolute values of its Fourier coefficients. This quantity provides use-
ful upper and lower bounds on the complexity of a function in areas such as
learning theory, circuit complexity, and communication complexity. In this pa-
per, we give a combinatorial characterization for the spectral norm of symmetric
functions. We show that the logarithm of the spectral norm is of the same order of
magnitude as r(f) log(n/r(f)) where r(f) = max{r0,r1}, and r0 and r1 are the
smallest integers less than n/2 such that f (x) or f (x) · PARITY(x) is constant for
all x with ∑xi ∈ [r0,n− r1]. We mention some applications to the decision tree
and communication complexity of symmetric functions.

1 Introduction

The study of Boolean functions f : {0,1}n → {−1,1} is central to complexity the-
ory and combinatorics as objects of interest in these areas can often be represented as
Boolean functions. Fourier analysis of Boolean functions provides some of the strongest
tools in this study with applications to graph theory, circuit complexity, communication
complexity, hardness of approximation, machine learning, etc.

In many different settings, Boolean functions with “smeared out” Fourier spectrums
have higher “complexity”. There are various useful ways to measure the spreadness of
the spectrum. Some notable ones are the spectral norm ‖ f̂‖1 = ∑S | f̂ (S)| (i.e., the �1

norm), the �∞ norm ‖ f̂‖∞ = maxS | f̂ (S)|, and the Shannon entropy of the squares of
the Fourier coefficients H[f̂ 2] =−∑S f̂ (S)2 log f̂ (S)2. The focus of this paper is on the
spectral norm.

Spectral Norm of Boolean Functions. As ∑S f̂ (S)2 = 1 for a Boolean function f , it is
often useful to view the squares of the Fourier coefficients as a probability distribution
over the subsets S ⊆ [n]. The spectral norm corresponds to the Rényi entropy of order

1/2 of the squares of the Fourier coefficients, H1/2[f̂
2] = 2log

(
∑S | f̂ (S)|

)
= 2log‖ f̂ ‖1.

It provides useful upper and lower bounds on the complexity of a function in settings
such as learning theory, circuit complexity, and communication complexity. It is partic-
ularly useful in the settings where PARITY is considered a function of low complexity.
We list some of the applications below.

In the setting of learning theory, the spectral norm is used in conjunction with the
Kushilevitz-Mansour Algorithm [12]. This algorithm, using membership queries, learns

" A full version can be found online [1].

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 338–349, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Spectral Norm of Symmetric Functions 339

efficiently a concept class C where the Fourier spectrum of every function in C is con-
centrated on a small set of characters (This set can be different for different functions.).
Kushilevitz and Mansour observe that an upper bound on the spectral norm implies
such a concentration, and obtain:

If C = { f : {0,1}n →{−1,1} | ‖ f̂ ‖1 ≤ s}, then C is learnable with membership
queries in time poly(n,s,1/ε).

Using the above result, they show that functions computable by small size parity deci-
sion trees1 are efficiently learnable with membership queries. This is done by observing
that a function computable by a size s parity decision tree satisfies ‖ f̂‖1 ≤ s. This in-
equality is also interesting since it provides a lower bound in terms of the spectral norm
on the size of any parity decision tree computing f .

Threshold circuits (i.e., circuits composed of threshold gates) constitute an important
model of computation (in part due to their resemblance to neural networks), and they
have been studied extensively. A classical result of Bruck and Smolensky [3] states
that a function with small spectral norm can be represented as the sign of a polyno-
mial with few monomials. This in turn implies that functions with small spectral norm
can be computed by depth 2 threshold circuits of small size. The result of Bruck and
Smolensky has found other interesting applications (see for example [22,5,8,14]).

We now turn our attention to communication complexity. Arguably the most fa-
mous conjecture in communication complexity is the Log Rank Conjecture which states
that the deterministic communication complexity of a function F : {0,1}n ×{0,1}n →
{−1,1} is upper bounded by logc rankMF where the matrix MF is defined as MF [x,y] =
F(x,y). Grolmusz [7] makes a similar intriguing conjecture for the randomized com-
munication complexity:

There is a constant c such that the public coin randomized communication
complexity of F : {0,1}n×{0,1}n →{−1,1} is upper bounded by logc ‖F̂‖1.

In the same paper, Grolmusz is able to prove a much weaker upper bound of
O(‖F̂‖2

1δ(n)) with exp(−cδ(n)) probability of error. Even this weaker result has in-
teresting applications in circuit complexity and decision tree complexity (see [7] for
more details).

Another major open problem in communication complexity is whether the classi-
cal and quantum communication complexity of total Boolean functions f : X ×Y →
{−1,1} (i.e., functions defined on all of X ×Y) are polynomially related. It is conjec-
tured that this is so and research has been focused on establishing it for natural large
families of functions. In an important paper [17] Razborov showed that the conjecture
is true for functions of the form F(x,y) = SYM(x∧ y) where SYM denotes a symmet-
ric function, and x∧ y is the bitwise AND of x and y. Shi and Zhang [20] verified the
conjecture for F(x,y) = SYM(x⊕ y) where x⊕ y denotes the bitwise XOR. The next big
targets are F(x,y) = f (x∧y) and F(x,y) = f (x⊕y) for general f , but handling arbitrary
f seems difficult at the moment.

1 Parity decision trees generalize the usual decision tree model: in every node we branch accord-
ing to the parity of a subset of the variables.

340 A. Ada, O. Fawzi, and H. Hatami

A variant of the spectral norm, the approximate spectral norm, is intimately related
to the communication complexity of “xor functions”. The ε-approximate spectral norm
of f , denoted ‖ f̂‖1,ε, is the smallest spectral norm of a function g : {0,1}n → R such
that ‖ f − g‖∞ ≤ ε. It is known (see for example [13]) that log‖ f̂‖1,ε lower bounds
the quantum bounded error communication complexity of f (x⊕ y). We expect that the
lower bound log‖ f̂ ‖1,ε is tight, and that this quantity characterizes the communication
complexity of xor functions. More discussion on the communication complexity of xor
functions, and how it relates to this work is given in Section 4.

This ends our discussion of the use of the spectral norm in learning theory, circuit
complexity and communication complexity. We conclude this subsection by mentioning
a relatively recent result that studies the spectral norm of Boolean functions. Green and
Sanders [6] show that every Boolean function whose spectral norm is bounded by a
constant can be written as a sum of constantly many ± indicators of cosets. This gives
an interesting characterization of Boolean functions with small spectral norm.

Fourier Spectrum of Symmetric Functions. A function f : {0,1}n → {−1,1} is
called symmetric if it is invariant under permutations of the coordinates. In other words
the value of f (x) depends only on ∑xi (i.e., f (x) = f (y) whenever ∑i xi = ∑i yi). Sym-
metric functions are at the heart of complexity theory as natural functions like AND,
OR, MAJORITY, and MODm are all symmetric. They are often the starting point of in-
vestigation because the symmetry of the function can be exploited. On the other hand,
they can also have surprising power. In several settings, functions such as PARITY and
MAJORITY represent “hard” functions. Given their central role, it is of interest to gain
insight into the Fourier spectrum of symmetric functions.

There are various nice results related to the Fourier spectrum of symmetric functions.
We cite a few of them here. A beautiful result of Paturi [16] tightly characterizes the
approximate degree of every symmetric function, and this has found many applications
in theoretical computer science [17,2,18,4,19]. Kolountzakis et al. [11] studied the so
called minimal degree of symmetric functions and applied their result in learning theory.
Shpilka and Tal [21] later simplified and improved the work of Kolountzakis et al.
Recently, O’Donnell, Wright and Zhou [15] verified an important conjecture in the
analysis of Boolean functions, the Fourier Entropy/Influence Conjecture, in the setting
of symmetric functions. In fact we make use of their key lemma in this paper.

1.1 Our Results and Proof Overview

We give a combinatorial characterization of the spectral norm of symmetric functions.

For x ∈ {0,1}n, define |x| def
= ∑xi. For a function f : {0,1}n →{−1,1}, let r0 and r1 be

the minimum integers less than n/2 such that f (x) or f (x) · PARITY(x) is constant for x

with |x| ∈ [r0,n− r1]. Define r(f)
def
= max{r0,r1}. We show that log‖ f̂ ‖1 is of the same

order of magnitude as r(f) log(n/r(f)):

Theorem 1 (Main Theorem). For any symmetric function f : {0,1}n → {−1,1}, we
have

Spectral Norm of Symmetric Functions 341

log‖ f̂‖1 = Θ
(

r(f) log

(
n

r(f)

))
whenever r(f)> 1. If r(f)≤ 1, then ‖ f̂‖1 = Θ(1).

As an application, we give a characterization of the parity decision tree size of sym-
metric functions. As mentioned in Section 1, a parity decision tree computes a boolean
function by querying the parities of subsets of the variables. The size of the tree is
simply the number of leaves in the tree.

Corollary 1. Let f : {0,1}n → {−1,1} be a symmetric function. Then the parity deci-
sion tree size of f is 2Θ(r(f) log(n/r(f))).

We present the proof of this corollary in the full version. Note that the lower bound also
applies in the case of the usual decision tree size (where one is restricted to query only
variables). Decision tree size is an important measure in learning theory; algorithms
for learning decision trees efficiently is of great interest both for practical and theoret-
ical reasons. One of the most well-known and studied problems is whether small size
decision trees are efficiently learnable from uniformly random examples.

As a second application, using the protocol of Shi and Zhang [20, Proposition 3.4],
and the observation that ‖F̂‖1 = ‖ f̂‖1 when F(x,y) = f (x⊕ y), we verify Grolmusz’s
conjecture mentioned earlier in Section 1 in the setting of symmetric xor functions.

Corollary 2. Let f : {0,1}n → {−1,1} be a symmetric function and let F : {0,1}n ×
{0,1}n →{−1,1} be defined as F(x,y) = f (x⊕y). Then the public coin constant error
randomized communication complexity of F is upper bounded by O(log2 ‖F̂‖1).

We now give an outline for the proof of Theorem 1. The upper bound is quite straight-
forward and is given in Lemma 2. The lower bound is handled in two different cases:
when r(f) is bounded away from n/2 (Lemma 4) and when r(f) is close to n/2
(Lemma 6).

We refer to the Fourier spectrum of f restricted to the sets S ⊆ [n] of size k as the
k-th level of the Fourier spectrum. Note that for a symmetric f , we have f̂ (S) = f̂ (T)
whenever |S| = |T |. Therefore the Fourier spectrum is maximally spread out in each
level. The overall strategy for the lower bound is to show an appropriate lower bound on
the �2 mass of the Fourier spectrum on a middle level. Middle levels have many Fourier
coefficients, and therefore contribute significantly to the spectral norm provided there is
enough �2 mass on them. An important tool in our analysis is the use of certain discrete
derivatives of f . Indentify {0,1}n with Fn

2 and let e1, . . . ,en denote the standard vectors

in Fn
2. For i �= j, define fi j(x)

def
= f (x+ ei + e j)− f (x). We observe that

∑
i�= j

E
[

f 2
i j

]
= 8∑

S

|S|(n−|S|) f̂ (S)2.

The quantity on the LHS, and therefore the RHS, can be lower bounded using r(f)
(Lemma 3). As the coefficient |S|(n−|S|) increases as |S| approaches n/2, we are able
to give a lower bound on the �2 mass of the Fourier spectrum on the middle levels. This
approach gives tight bounds for r(f) bounded away from n/2, but not for a function
such as MAJORITY.

342 A. Ada, O. Fawzi, and H. Hatami

To handle functions f with r(f) close to n/2, we use ideas from [15]. The main
lemma of [15] states that the first derivatives of a symmetric function are noise sensitive.
We observe that this is also true for the derivatives fi j . This allows us to derive the
inequality

∑
S

|S|(n−|S|) f̂(S)2(ρ|S|+ρn−|S|)≤ 8√
πc

·∑
S

|S|(n−|S|) f̂ (S)2,

where ρ = (1 − c/n). The quantity ρ|S| + ρn−|S| is decreasing in |S| for |S| ≤ n/2.
Thinking of c as a large constant, we see that the dampening of the middle levels with
ρ|S|+ρn−|S| decreases the value of the sum significantly. From this, we can lower bound
the �2 mass of the middle levels. Note that if ∑S |S|(n−|S|) f̂ (S)2 is small to begin with
(r(f) is small), the above inequality is not useful. On the other hand if r(f) is large,
∑S |S|(n−|S|) f̂(S)2 is large, and the strategy just described gives good bounds.

2 Preliminaries

We view Boolean functions f : {0,1}n → {−1,1} as residing in the vector space { f :
{0,1}n →C}. If we view the domain as the group Fn

2, we can appeal to Fourier analysis,
and express every f : {0,1}n → C (uniquely) as a linear combination of the characters
of Fn

2. That is every function f : Fn
2 →C can be written as f = ∑S⊆[n] f̂ (S)χS, where the

characters χS are defined as χS : x → (−1)∑i∈S xi , and f̂ (S) ∈ C are their corresponding
Fourier coefficients. Since the characters form an orthonormal basis for { f : {0,1}n →
C}, we have f̂ (S) = 〈 f ,χS〉= Ex [f (x)χS(x)] .

For a Boolean function f , we define Wk[f] = ∑|S|=k | f̂ (S)|2. We simply use Wk when
f is clear from the context. For a symmetric function, we often write f (k) for f (x)
with ∑i xi = k and k ∈ [n]. We use h to denote the binary entropy function h(α) =
−α log(α)− (1−α) log(1−α).

Definition 1. For any f : {0,1}n → R, we define R(f)
def
= ∑S⊆[n] |S|(n−|S|) f̂ (S)2.

For a ∈ Fn
2, we define the derivative of f : Fn

2 → R in the direction a as Δa f : x →
f (x+a)− f (x). Let e1, . . . ,en denote the standard vectors in Fn

2, and let f : {0,1}n →R.
For all i �= j, define

fi j
def
= Δei+e j f . (1)

Lemma 1. For every f : {0,1}n → R, we have ∑i�= j E
[

f 2
i j

]
= 8R(f).

For a proof, we refer the reader to the full version.

3 Proof of Theorem 1

As mentioned earlier the upper bound is proved in Lemma 2. The proof of the lower
bound is divided into two parts: Lemma 4 handles the case where r is bounded away
from n/2 and Lemma 6 the case when r is close to n/2.

Spectral Norm of Symmetric Functions 343

3.1 Upper Bound

Lemma 2. For all n ≥ 1 and every symmetric function f : {0,1}n → {−1,1},

log‖ f̂‖1 ≤ 2 · r(f) log(n/r(f))+ 3.

The proof can be found in the full version.

3.2 Lower Bound

We start by proving some simple observations.

Lemma 3. Let f : {0,1}n → {−1,1} be a symmetric function, and define r0 = r0(f)
and r1 = r1(f). Then

R(f) ≥
(
(n− r0 + 1)(n− r0)

(
n

r0 − 1

)
+(n− r1+ 1)(n− r1)

(
n

r1 − 1

))
2−n. (2)

Moreover, assuming that f (s) = 1 for all s ∈ {r0, . . . ,n− r1}, we have

∑
S �= /0

f̂ (S)2 ≤ 4

(
∑

s<r0

(
n
s

)
+ ∑

s<r1

(
n
s

))
2−n. (3)

Lower Bound: r � n/2.

Lemma 4. For every symmetric function f : {0,1}n → {−1,1} with r = r(f),

log‖ f̂‖1 ≥ Ω
((

1− 2r− 2
n

)
· r log(n/r)

)
.

Proof. Observe that we can assume without loss of generality that f (s) = 1 for all
s ∈ {r0, . . . ,n− r1}. In fact, to handle the case f = −1 or f = ±PARITY in [r0,n− r1],
it suffices to multiply the function by −1 or by ±PARITY, respectively. This does not
affect the spectral norm of the function.

We prove the statement by showing that a significant portion of the �2 mass of f̂ sits
in the middle levels from m to n−m for a well-chosen m depending on r(f).

Define α0 = r0−1
n < 1/2 and α1 = r1−1

n . We also let for i ∈ {0,1},

mi =

⌊
n/2 · (1−

√
4αi − 6α2

i + 4α3
i)

⌋
. By Lemma 3, we have ∑k>0 Wk ≤ 4 ·(

∑s<r0

(n
s

)
+∑s<r1

(n
s

))
2−n. Let Uk and Vk be so that Wk = Uk +Vk and ∑k>0 Uk ≤ 4 ·

2−n ∑s<r0

(n
s

)
and ∑k>0 Vk ≤ 4 ·2−n ∑s<r1

(n
s

)
. Recall that our strategy is to obtain a lower

bound on the �2 mass of the Fourier transform on the middle levels. More precisely, our
objective will be to derive a lower bound on ∑n−m0

k=m0
k(n−k)Uk +∑n−m1

k=m1
k(n−k)Vk using

Lemma 3.

344 A. Ada, O. Fawzi, and H. Hatami

n−m0

∑
k=m0

k(n− k)Uk +
n−m1

∑
k=m1

k(n− k)Vk

= R(f)− ∑
k/∈[m0,n−m0]

k(n− k)Uk − ∑
k/∈[m1,n−m1]

k(n− k)Vk

≥ (n− r0)(n− r0 + 1)

(
n

r0 − 1

)
2−n − (m0 − 1)(n−m0+ 1)4 ·2−n ∑

s<r0

(
n
s

)
+(n− r1)(n− r1 + 1)

(
n

r1 − 1

)
2−n − (m1 − 1)(n−m1+ 1)4 ·2−n ∑

s<r1

(
n
s

)
. (4)

Define A0
def
= (n− r0)(n− r0 +1)

(n
r0−1

)
2−n− (m0 −1)(n−m0 +1)4 ·2−n ∑s<r0

(n
s

)
, and

let A1 be its analogue for r1 so that the right hand side of (4) equals A0 +A1.
Observe that

(n
s

)
= s+1

n−s

(n
s+1

)
, and s+1

n−s ≤
r0−1

n−(r0−1) =
α0

1−α0
for s < r0 − 1. Thus

A0≥
(

n
r0 − 1

)
2−n
(
(n−α0n− 1)(n−α0n)− 4(m0 − 1)(n−m0+ 1)

1
1−α0/(1−α0)

)
≥
(

n
r0 − 1

)
2−n
(

n2
(
(1−α0)

2 − (1− (4α0− 6α2
0 + 4α3

0))
1−α0

1− 2α0

)
− (1−α0)n

)
=

(
n

r0 − 1

)
2−n(1−α0)

(
α0(1− 2α0)n

2 − n
)
. (5)

An analogous inequality also holds for A1. We now assume that r0 ≥ r1. Observe that
we then have m0 ≤ m1. Combining (4) and (5), we get

n2
n−m0

∑
k=m0

Wk ≥
n−m0

∑
k=m0

k(n− k)Wk ≥
(

n
r0 − 1

)
2−n(1−α0)

(
α0(1− 2α0)n

2 − n
)
.

Note that for symmetric functions ‖ f̂‖1 = ∑n
k=0

√(n
k

)
Wk, and thus

‖ f̂‖1 ≥
n−m0

∑
k=m0

√(
n
k

)
Wk ≥

√√√√(n
m0

)n−m0

∑
k=m0

Wk

≥

√(
n

m0

)(
n

r0 − 1

)
2−n (1−α0)(α0(1− 2α0)n2 − n)

n2

≥
√√√√(n⌊

n/2(1−
√

4α0 − 6α2
0 + 4α3

0)

⌋)(n
α0n

)
2−n (1−α0)(α0(1− 2α0)n2 − n)

n2 .

(6)

Using standard estimates for binomial coefficients, we obtain

‖ f̂‖2
1 ≥

2
n

(
h

(
1
2−

1
2

√
4α0−6α2

0+4α3
0

)
+h(α0)−1

)
n(n+ 1)2 ·

(1−α0)
(
α0(1− 2α0)n2 − n

)
n2 .

Spectral Norm of Symmetric Functions 345

As a result

log‖ f̂‖1 ≥
n
2

(
h

(
1
2
− 1

2

√
4α0 − 6α2

0 + 4α3
0

)
+ h(α0)− 1

)
+

1
2

log
(1−α0)

(
α0(1− 2α0)n2 − n

)
n3(n+ 1)2 .

Claim. There exists a constant c > 0 such that for all α0 ∈ (0,1/2),

h

(
1
2
− 1

2

√
4α0 − 6α2

0 + 4α3
0

)
+ h(α0)− 1 ≥ c · (1− 2α0) ·α0 · log(1/α0).

Using the claim, which is proved in the full version, we get

log‖ f̂‖1 ≥ c(1− 2α0) ·α0 log(1/α0) ·
n
2
+

1
2

log
(1−α0)

(
α0(1− 2α0)n2 − n

)
n3(n+ 1)2 .

This proves the desired result provided r(f) is larger than some constant. To handle
small values of r(f), we refer the reader to the full version.

Lower Bound: r ≈ n/2. For the case r ≈ n/2, we use a result of [15] that states that the
derivative of a symmetric Boolean function is noise sensitive. Here, we use the noise
sensitivity of the derivative fi j . The following lemma is an analogue of [15, Theorem
6] and is proved in the full version [1].

Lemma 5. Let f be a symmetric Boolean function and fi j be defined as in (1). Then
for ρ = 1− c/n, we have

∑
S

f̂i j(S)
2ρ|S| ≤ 4√

πc
·∑

S

f̂i j(S)
2, (7)

for any c ∈ [1,n]. Summing over all i, j with i �= j, we get

8∑
S

|S|(n−|S|) f̂ (S)2ρ|S| ≤ 4√
πc

·8R(f). (8)

We are now ready to prove the following result.

Lemma 6. There exists a constant γ < 1/2 such that for any symmetric Boolean func-
tion f with r(f) ≥ γn, we have log‖ f̂‖1 = Ω(n).

Proof. Let ρ = 1− c/n where c is a constant chosen later, and let n be large enough so

that ρ ≥ 1/2. We apply (8) to g
def
= f · PARITY:

∑
S

|S|(n−|S|)ĝ(S)2ρ|S| ≤ 4√
πc

·R(g).

Note that PARITY = χ[n] which shows f̂ ([n]\S)= ĝ(S) for all S, and in particular R(g)=
R(f). So we can rewrite the above inequality as

∑
S

|S|(n−|S|) f̂ (S)2ρn−|S| ≤ 4√
πc

·R(f). (9)

346 A. Ada, O. Fawzi, and H. Hatami

Summing (8) and (9), we get

∑
S

|S|(n−|S|) f̂ (S)2(1−ρ|S| −ρn−|S|)≥
(

1− 8√
πc

)
R(f). (10)

Let β < 1/2 be a positive constant to be chosen later. We have

∑
|S|≤βn

|S|(n−|S|) f̂ (S)2(ρ|S|+ρn−|S|)≥ ∑
|S|≤βn

|S|(n−|S|) f̂(S)2(ρβn +ρ(1−β)n)

≥ ∑
|S|≤βn

|S|(n−|S|) f̂(S)2(1/2 · e−cβ+ 1/2 · e−c(1−β)).

For the first equality, we used the fact that ρ|S|+ρn−|S| is decreasing in |S| for |S| ≤ n/2.
For the second inequality, we used the inequality (1−c/n)βn ≥ e−cβ/2 when 1−c/n≥
1/2. Summing this inequality with an analogous one for |S| ≥ (1 − β)n, we obtain
Summing the two inequalities, we obtain

∑
|S|�∈(βn,(1−β)n)

|S|(n−|S|) f̂(S)2(ρ|S|+ρn−|S|)

≥ e−cβ + e−c(1−β)

2 ∑
|S|�∈(βn,(1−β)n)

|S|(n−|S|) f̂ (S)2.

Combining this with (10), we obtain

∑
βn≤|S|≤(1−β)n

|S|(n−|S|) f̂ (S)2(1−ρ|S| −ρn−|S|)

= ∑
S

|S|(n−|S|) f̂ (S)2(1−ρ|S| −ρn−|S|)− ∑
|S|�∈(βn,(1−β)n)

|S|(n−|S|) f̂ (S)2(1−ρ|S| −ρn−|S|)

≥ (1− 8√
πc

)R(f)− (1−e−cβ/2−e−c(1−β)/2) ∑
|S|�∈(βn,(1−β)n)

|S|(n−|S|) f̂ (S)2.

As e−cβ/2+ e−c(1−β)/2 < 1, this leads to

∑
βn≤|S|≤(1−β)n

|S|(n−|S|) f̂ (S)2(1−ρ|S| −ρn−|S|)≥
(

e−cβ + e−c(1−β)

2
− 8√

πc

)
R(f).

Consequently,

n2

4 ∑
βn≤|S|≤(1−β)n

f̂ (S)2 ≥ R(f)

(
e−cβ + e−c(1−β)

2
− 8√

πc

)
.

By picking c = 104 and β = 10−4 ln2, we have e−cβ+e−c(1−β)

2 − 8√
πc

≥ 1
10 . We conclude

that ∑βn≤k≤(1−β)nWk ≥ 4R(f)
10n2 , and thus

‖ f̂‖1 =
n

∑
k=0

√(
n
k

)
Wk ≥

√(
n

βn

)
R(f)

4
10n2 .

Spectral Norm of Symmetric Functions 347

Using (2), it follows that

‖ f̂‖1 = Ω

(√(
n

βn

)(
n

r− 1

)
2−n

)
= Ω

(
2(h(β)+h(α)−1) n

2 (n+ 1)−1
)
,

where α = (r− 1)/n. If α is such that h(α)≥ 1− h(β)/2, we obtain the desired bound
log‖ f̂‖1 = Ω(n).

4 Conclusion and Future Work

A natural next step is to extend Theorem 1 to approximate spectral norm. Indeed this
would have interesting implications. Recall that the ε-approximate spectral norm of a
Boolean function f is the smallest spectral norm of a function g with ‖ f −g‖∞ ≤ ε, i.e.,
for all x, | f (x)− g(x)| ≤ ε. Trivially ‖ f̂‖1,ε is smaller than ‖ f̂ ‖1. We conjecture that it
cannot be much smaller.

Conjecture 1. For all symmetric functions f : {0,1}n → {±1},

log‖ f̂‖1 = Θ∗(log‖ f̂ ‖1,1/3)

where Θ∗ suppresses O(logn) factors.

We now discuss some of the applications of the above conjecture in conjunction with
Theorem 1.

Analog of Paturi’s Result for Monomial Complexity. A famous result of Paturi [16]
characterizes the approximate degree of all symmetric functions. Recall that the degree
of a function f is the largest |S| such that f̂ (S) is non-zero. Let t0 and t1 be the minimum
integers such that f (i) = f (i+ 1) for all i ∈ [t0,n− t1].

Theorem 2 ([16]). Let f : {0,1}n →{±1} be a symmetric function and let t0 and t1 be
defined as above. Then, deg1/3(f) = Θ(

√
n(t0 + t1)).

Paturi’s result has found numerous applications in theoretical computer science
[17,2,18,4,19].

The monomial complexity of a Boolean function f , denoted mon(f), is the number
of non-zero Fourier coefficients of f . The monomial complexity appears naturally in
various areas of complexity theory, and it is desirable to obtain simple characterizations
for natural classes of functions. With some additional observations, the combination of
Conjecture 1 with Theorem 1 shows that r(f) characterizes the approximate monomial
complexity of f :

Conjecture 2 (Consequence of Conjecture 1). For a symmetric function f : {0,1}n →
{±1}, logmon1/3(f) = Θ∗(r(f)).

348 A. Ada, O. Fawzi, and H. Hatami

Communication Complexity of Xor Functions. Recall the Log Rank Conjecture
mentioned in the introduction. This conjecture has an analogous version for the ran-
domized communication complexity model: “Log Approximation Rank Conjecture”.
The ε-approximate rank of a matrix M is denoted by rankε(M), and is the minimum
rank of a matrix that ε approximates M. Denote by Rε(F) the ε-error randomized com-
munication complexity of F . It is known that Rε(F) ≥ logrankε′(MF), where ε′ is a
constant that depends on ε and MF is the matrix representation of F . Log Approxima-
tion Rank Conjecture states that this lower bound is tight:

Conjecture 3 (Log Approximation Rank Conjecture). There is a universal constant c
such that for any 2 party communication problem F ,

logrankε′(MF)≤ Rε(F)≤ logc rankε′(MF).

The important paper of Razborov [17] established this conjecture for the functions
F(x,y) = f (x∧ y) where f is symmetric. In fact, Razborov showed that the quantum
and classical randomized communication complexities of such functions are polyno-
mially related. Later, Shi and Zhang [20], via a reduction to the case f (x∧ y), showed
the quantum/classical equivalence for symmetric xor functions F(x,y) = f (x⊕y). They
show that the randomized and quantum bounded error communication complexities of
F are both Θ(r(f)), up to polylog factor. However, their result does not verify the Log
Approximation Rank Conjecture for symmetric xor functions.

Conjecture 1 along with Theorem 1 would verify the Log Approximation Rank Con-
jecture for symmetric xor functions. Furthermore, we would obtain a direct proof of
the result of Shi and Zhang. This is very desirable since a major open problem is to
understand the communication complexity of f (x⊕y) for general f (with no symmetry
condition on f). There is a sentiment that this should be easier to tackle than f (x∧y) as
xor functions seem more amenable to Fourier analytic techniques. A direct proof of the
result of Shi and Zhang gives more insight into the communication complexity of xor
functions.

Agnostically Learning Symmetric Functions. Let C be a concept class and gi :
{−1,1}n → R be functions for 1 ≤ i ≤ s such that every f : {−1,1}n → {−1,1} in
C satisfies ‖ f −∑s

i=1 cigi‖∞ ≤ ε, for some reals ci. The smallest s for which such gi’s
exist corresponds to the ε-approximate rank of C . If each gi(x) is computable in polyno-
mial time, then C can be agnostically learned under any distribution in time poly(n,s)
and with accuracy ε [9].

Klivans and Sherstov [10] proved lower bounds on the approximate rank
of the concept class of disjunctions {∨i∈S xi : S ⊆ [n]} and majority functions
{MAJ(±x1,±x2, . . . ,±xn)} thereby ruled out the possibility of applying the algorithm
of [9] to agnostically learning these concept classes.

Theorem 1 together with Conjecture 1 provides additional negative results and gives
strong lower bounds on the approximate rank of the concept class consisting of sym-
metric functions f with large r(f).

Spectral Norm of Symmetric Functions 349

References

1. Ada, A., Fawzi, O., Hatami, H.: Spectral norm of symmetric functions. arXiv:1205.5282
(2012)

2. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by poly-
nomials. J. ACM 48(4), 778–797 (2001)

3. Bruck, J., Smolensky, R.: Polynomial threshold functions, ac0 functions, and spectral norms.
SIAM J. Comput. 21(1), 33–42 (1992)

4. de Wolf, R.: A note on quantum algorithms and the minimal degree of ε-error polynomials
for symmetric functions. Quantum Inf. Comput. 8(10), 943–950 (2008)

5. Goldmann, M., Håstad, J., Razborov, A.A.: Majority gates vs. general weighted threshold
gates. Comput. Complex., 277–300 (1992)

6. Green, B., Sanders, T.: Boolean functions with small spectral norm. Geom. Funct.
Anal. 18(1), 144–162 (2008)

7. Grolmusz, V.: On the power of circuits with gates of low l1 norms. Theor. Comput.
Sci. 188(1-2), 117–128 (1997)

8. Grolmusz, V.: Harmonic analysis, real approximation, and the communication complexity of
boolean functions. Algorithmica 23(4), 341–353 (1999)

9. Kalai, A.T., Klivans, A.R., Mansour, Y., Servedio, R.A.: Agnostically learning halfspaces.
SIAM J. Comput. 37(6), 1777–1805 (2008)

10. Klivans, A.R., Sherstov, A.A.: Lower bounds for agnostic learning via approximate rank.
Comput. Complex. 19(4), 581–604 (2010)

11. Kolountzakis, M.N., Lipton, R.J., Markakis, E., Mehta, A., Vishnoi, N.K.: On the fourier
spectrum of symmetric boolean functions. Combinatorica 29(3), 363–387 (2009)

12. Kushilevitz, E., Mansour, Y.: Learning decision trees using the fourier spectrum. In: Proceed-
ings of the Twenty-Third Annual ACM Symposium on Theory of Computing, STOC 1991,
pp. 455–464. ACM, New York (1991)

13. Lee, T., Shraibman, A.: Lower bounds in communication complexity, vol. 3. Now Publishers
Inc. (2009)

14. O’Donnell, R., Servedio, R.A.: Extremal properties of polynomial threshold functions. J.
Comput. Syst. Sci. 74(3), 298–312 (2008)

15. O’Donnell, R., Wright, J., Zhou, Y.: The Fourier Entropy–Influence Conjecture for Certain
Classes of Boolean Functions. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part I. LNCS, vol. 6755, pp. 330–341. Springer, Heidelberg (2011)

16. Paturi, R.: On the degree of polynomials that approximate symmetric Boolean functions
(preliminary version). In: Proceedings of the Twenty-Fourth Annual ACM Symposium on
Theory of Computing, pp. 468–474. ACM, New York (1992)

17. Razborov, A.: Quantum communication complexity of symmetric predicates. Izvestiya:
Mathematics 67(1), 145–159 (2003)

18. Sherstov, A.A.: Approximate inclusion-exclusion for arbitrary symmetric functions. Comput.
Complex. 18(2), 219–246 (2009)

19. Sherstov, A.A.: The pattern matrix method. SIAM J. Comput. 40(6), 1969–2000 (2011)
20. Shi, Y., Zhang, Z.: Communication complexities of symmetric XOR functions. Quantum Inf.

Comput. (available at arXiv:0808.1762) 9, 255–263 (2009)
21. Shpilka, A., Tal, A.: On the minimal fourier degree of symmetric boolean functions. In:

Proceedings of the 2011 IEEE 26th Annual Conference on Computational Complexity, CCC
2011, pp. 200–209. IEEE Computer Society, Washington, DC (2011)

22. Siu, K.-Y., Bruck, J.: On the power of threshold circuits with small weights. SIAM J. Discrete
Math. 4(3), 423–435 (1991)

Almost K-Wise vs. K-Wise Independent

Permutations, and Uniformity
for General Group Actions

Noga Alon1,� and Shachar Lovett2,��

1 Tel-Aviv University and the Institute for Advanced Study
nogaa@tau.ac.il

2 The Institute for Advanced Study
slovett@math.ias.edu

Abstract. A family of permutations in Sn is k-wise independent if a
uniform permutation chosen from the family maps any distinct k ele-
ments to any distinct k elements equally likely. Efficient constructions of
k-wise independent permutations are known for k = 2 and k = 3, but are
unknown for k ≥ 4. In fact, it is known that there are no nontrivial sub-
groups of Sn for n ≥ 25 which are 4-wise independent. Faced with this
adversity, research has turned towards constructing almost k-wise inde-
pendent families, where small errors are allowed. Optimal constructions
of almost k-wise independent families of permutations were achieved by
several authors.

Our first result is that any such family with small enough error is sta-
tistically close to a distribution which is perfectly k-wise independent.
This allows for a simplified analysis of algorithms: an algorithm which
uses randomized permutations can be analyzed assuming perfect k-wise
independence, and then applied to an almost k-wise independent family.
In particular, it allows for an oblivious derandomization of two-sided ran-
domized algorithms which work correctly given any k-wise independent
distribution of permutations.

Another model is that of weighted families of permutations, or equiv-
alently distributions of small support. We establish two results in this
model. First, we show that a small random set of nO(k) permutations
w.h.p supports a k-wise independent distribution. We then derandomize
this by showing that any almost 2k-wise independent family supports a
k-wise independent distribution. This allows for oblivious derandomiza-
tion of algorithms for search problems which work correctly given perfect
k-wise independent distributions.

These results are all in fact special cases of a general framework where
a group acts on a set. In the aforementioned case, the group of permuta-
tions acts on tuples of k elements. We prove all the above results in the
general setting of the action of a finite group on a finite set.

� Supported in part by an ERC advanced grant and by NSF grant DMS-0835373.
�� Supported by NSF grant DMS-0835373.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 350–361, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Almost K-Wise vs. K-Wise Independent Permutations, and Uniformity 351

1 Introduction

Small probability spaces of limited independence are widely used in many ap-
plications. Specifically, if the analysis of a randomized algorithm depends only
on the assumption that the entries are k-wise independent, one can replace the
random tape by a tape selected from a k-wise independent distribution. One ap-
plication of this is a derandomization of the algorithm by enumerating over all
possible random strings. Another application is when the random string needs
to be saved, for example in data structures, where using k-wise independence
allows one to maintain a succinct data structure.

The case of k-wise independent distributions over {0, 1}n has been widely
studied, and there are optimal constructions of k-wise independent probability
spaces of size nO(k) (see e.g. [ABI86]). Moreover, these constructions are strongly
explicit: given an index of an element i ∈ [nO(k)] and an index of a bit j ∈ [n],
one can compute the j-th bit of the i-th string in time O(k logn). This is crucial
for several applications, for example for streaming algorithms and cryptography,
where operations need to be performed in poly-logarithmic time.

Another widely studied case is that of k-wise independent permutations of n
elements. This problem is motivated by cryptographic applications, as k-wise in-
dependent permutations allow perfect secrecy even if one allows k oracle queries
to the encryption. For more details on the role of k-wise independent permuta-
tions in cryptography, see, e.g., [RW06, Vau98, Vau00, Vau03].

Here, the situation is much less understood. For k = 2 the group of invertible
affine transformations x → ax+b over a finite field F yields a 2-wise independent
family; and for k = 3 the group of Möbius transformations x → (ax+b)/(cx+d)
with ad − bc = 1 over the projective line F ∪ {∞} yields a 3-wise independent
family. For k ≥ 4 (and n large enough), however, no k-wise independent family
is known, other than the full symmetric group Sn and the alternating group An.
In fact, it is known (c.f.., e.g., [Cam95], Theorem 5.2) that for n ≥ 25 and k ≥ 4
there are no other subgroups of Sn which form a k-wise independent family1.
This is a major obstacle, while as groups are by no means the only way to produce
such families, algebraic techniques are among the most useful in combinatorics,
and the lack of algebraic structure is a serious drawback. Recently, Kuperberg,
Lovett and Peled [KLP12] were able to show by a probabilistic argument that
there exist small families of permutations which are k-wise independence. Still,
it is unknown how to find these families efficiently.

Faced with this adversity, research has turned towards constructing families
of permutations which are almost k-wise independent, allowing for small errors.
There has been much research towards constructing explicit almost k-wise inde-
pendent families of minimal size. This was achieved, up to polynomial factors,
by Kaplan, Naor and Reingold [KNR05], who gave a construction of such a fam-
ily of size nO(k). Alternatively, one can start with the constant size expanding
set of Sn given by Kassabov [Kas07], and take a random walk on it of length

1 In the language of group theory, these are k-transitive groups. The currently known
proof of this fact is hard, as it requires the classification of finite simple groups.

352 N. Alon and S. Lovett

O(k log n). Both of these constructions are also strongly explicit: given an in-
dex of a permutation i ∈ [nO(k)] and an element j ∈ [n], one can compute the
image of the i-th permutation on j in time O(k logn). Again, this is crucial for
applications such as streaming algorithms or cryptography.

For many applications, almost k-wise independent families are just as good
as perfect k-wise independent families. However, the analysis must take into
account the error, which in some cases is not trivial. Our first result shows that
by choosing the error small enough, one can analyze an algorithm using perfect
k-wise independent permutations, and then apply almost k-wise independent
permutations to achieve almost the same results.

Theorem 1. Let μ be a distribution taking values in Sn which is almost k-wise
independent with error ε · n−O(k). Then there exists a distribution over permu-
tations μ′ which is k-wise independent, and such that the statistical distance
between μ and μ′ is at most ε.

A similar result for k-wise independent hash functions was obtained by Alon,
Goldreich and Mansour [AGM03], and more generally over product spaces by
Rubinfeld and Xie [RX10]. Our proof technique is similar in spirit, although
technically more involved. This allows for an oblivious derandomization of two-
sided algorithms which ”work” given any k-wise independent distribution over
permutations: let f be a boolean function, and let A be a randomized algorithm
such that

Pr
π∼μ

[A(x, π) = f(x)] ≥ 2/3

for any k-wise independent distribution over permutations μ. Then A can be
derandomized by letting π be chosen uniformly from an almost k-wise indepen-
dent distribution with error n−O(k). Since such distributions can be generated
strongly explicitly, the overhead (in terms of the number of bits needed to sample
from the distribution) is just O(k logn).

A relaxation of the problem of constructing small families of k-wise indepen-
dent permutations is that of considering weighted families, or equivalently dis-
tributions of small support which are k-wise independent. Contrary to the case
of unweighted families, it is simple to establish that there exist distributions of
small support which are k-wise independent. First, note that given a family S
of permutations, it is easy to decide if there exists a distribution μ supported
on S which is k-wise independent, using linear programming: for a permutation
π define the matrix Mk(π) to be the permutation on distinct k-tuples induced

by π. It is an (n)k × (n)k permutation matrix, where (n)k :=
∏k−1
i=0 (n− i). Let

U denote the uniform matrix all whose elements are (n − k)!/n!. Then there
exists a k-wise independent distribution supported on S iff U belongs to the
convex hull of {Mk(π) : π ∈ S}. The latter condition can be easily verified using
linear programming. Now, starting with any set of permutations which support
k-wise independent permutations (for example the set of all permutations), one
can apply Carathéodory theorem, and deduce that U lies in the convex hull of
at most n2k permutations. That is, there exist k-wise independent distributions

Almost K-Wise vs. K-Wise Independent Permutations, and Uniformity 353

which are supported on at most n2k permutations. Moreover, and somewhat
surprisingly, one can algorithmically find a k-wise independent distribution with
small support in a weakly explicit manner (i.e. in time nO(k)) using the ideas of
Karp and Papadimitriou [KP82] and Koller and Megiddo [KM94]2.

We consider the problem of constructing small explicit sets which support k-
wise independent distributions. First, we establish that most small sets support
k-wise independent distributions.

Theorem 2. Let S be a random subset of Sn of size n6k. Then with high prob-
ability (w.h.p, for short) there exists a distribution μ supported on S which is
k-wise independent.

A similar result for k-wise independent hash functions was obtained by Austrin
and H̊astad [AH11]. Our result implies a somewhat surprising consequence for
search algorithms which ”work” given any k-wise independent distribution over
permutations, which allows to transform weak guarantees to strong guarantees.
Let f be a function and A an algorithm, such that for any k-wise independent
distribution μ,

Pr
π∼μ

[A(x, π) = f(x)] > 0.

Then since almost all sets of size nO(k) support such a distribution, we must
have that A has a noticeable fraction of witnesses in Sn,

Pr
π∈Sn

[A(x, π) = f(x)] ≥ n−O(k).

We also show that almost 2k-wise independent permutations give an explicit
construction of a set which supports k-wise independence, thus derandomizing
Theorem 2.

Theorem 3. Let S be a subset of Sn such that S is almost 2k-wise independent
with error n−O(k). Then there exists a distribution μ supported on S which is
k-wise independent.

We are not aware of a similar result, even in the case of k-wise independent hash
functions. This allows for an oblivious derandomization of search algorithms
which ”work” given any k-wise independent distribution over permutations: let
f be a function, and let A be a randomized algorithm such that

Pr
π∼μ

[A(x, π) = f(x)] > 0

for any k-wise independent distribution μ over permutations. Then taking S to
be an almost 2k-wise independent family of permutations with error n−O(k), we

2 Essentially, the linear program for finding μ has n! variables and nO(k) constraints.
Its dual has nO(k) variables and n! constraints. The dual problem can be solved
efficiently using the ellipsoid method since it has an efficient separating-hyperplane
oracle.

354 N. Alon and S. Lovett

get that there exists π ∈ S for which A(x, π) = f(x), achieving an oblivious
derandomization of A with overhead (measured in bits, as before) O(k logn).

Here is a toy example illustrating the way the last theorem and the discussion
preceding it can be applied. Let G = (V,E) be a graph on a set V of n vertices,
and suppose that each vertex v ∈ V has a real positive weight w(v). Let d(v)
be the degree of v, and assume all degrees are bounded by k. We claim that
G contains an independent set U ⊂ V of total weight W (U) =

∑
u∈U w(u)

at least
∑

v∈V
w(v)
d(v)+1 . To prove it, let π be a random permutation of the set

of vertices V , and let U consist of all vertices u so that π(u) precedes π(v) for
every neighbor v of u. It is clear that U is an independent set, and for any vertex
u ∈ V the probability that u ∈ U is exactly 1

d(u)+1 , as this is the probability

that u precedes all its neighbors. By linearity of expectation, the expected value

of the total weight of U is
∑

v∈V
w(v)
d(v)+1 and hence there exists an independent

set U of total weight at least as claimed.
The above proof clearly works even if π is only assumed to be (k + 1)-wise

independent (in fact, a weaker condition suffices, we only need π to be (k + 1)-
minwise independent). Therefore, the discussion preceding Theorem 3 implies
that if π is chosen uniformly at random, then the probability it provides a set

U satisfying W (U) ≥
∑

v∈V
w(v)
d(v)+1 , is at least n

−O(k). The theorem itself shows

that the support of any set of almost (2k + 2)-wise independent permutations
with sufficiently small error must contain a permutation π that provides an
independent set U as above.

A similar reasoning can be applied to other arrangement problems. Given a
k-uniform hypergraph with a weight for each permutation of the vertices in each
of its edges, one may want to find a permutation maximizing the total weight
of all orders induced on the sets of vertices in the edges. Problems of this type
are called k-CSP-rank problems, (see, e.g., [AA07]), and include Betweenness
and Feedback Arc Set. In most of these problems, finding the precise optimum
is NP-hard, and the reasoning above provides some insight about algorithms for
the (much easier) problem of finding a permutation in which the total weight is
at least as large as the expected weight in a uniform random permutation.

1.1 Group Action Uniformity vs. Almost Uniformity

We actually prove all the aforementioned results in the general setting of group
actions, of which k-wise independent permutations as well as k-wise indepen-
dent random variables form specific instances. A group G acts on a set X
if G acts as a group of permutations on X . That is, g : X → X is a per-
mutation of X for all g ∈ G, and (gh)(x) = g(h(x)) for all g, h ∈ G and
x ∈ X . This gives a general framework: k-wise independent permutations cor-
respond to the case of G = Sn the group of permutations, and X = [n]k =
{i1, . . . , ik ∈ [n] distinct} the set of (ordered) distinct k-tuples, where the ac-
tion of G on X is straightforward. The case of k-wise independent distributions
over {0, 1}n corresponds to G = Fn2 and X = [n]k × Fk2 , where the action of
g = (g1, . . . , gn) ∈ Fn2 on x = ((i1, . . . , ik), (b1, . . . , bk)) ∈ [n]k × Fk2 is given by

Almost K-Wise vs. K-Wise Independent Permutations, and Uniformity 355

g(x) = ((i1, . . . , ik), (b1+gi1 , . . . , bk+gik)). Similarly, one can obtain in this way
distributions supporting k-wise independent random variables, even when each
variable is distributed over a different domain.

We now introduce some definitions. If G acts on X , a distribution μ over G
is X-uniform if

Pr
g∼μ

[g(x) = y] = Pr
g∈G

[g(x) = y]

for all x, y ∈ X ; and is almost X-uniform with error ε if∣∣∣∣ Prg∼μ
[g(x) = y]− Pr

g∈G
[g(x) = y]

∣∣∣∣ ≤ ε

for all x, y ∈ X . These definitions coincide with k-wise independence and almost
k-wise independence for permutations when G = Sn and X = [n]k. Theorem 1,
Theorem 2 and Theorem 3 are immediate corollaries of the following general
theorems, when applied to G = Sn and X = [n]k.

First, we show that distributions over G which are almost X-uniform with
small enough error, are close in statistical distance to distributions which are
X-uniform.

Theorem 4 (informal version). Let μ be a distribution over G which is almost
X-uniform with error ε · |X |−O(1). Then there exists a distribution μ′ on G which
isX-uniform, and such that the statistical distance between μ and μ′ is at most ε.

Second, we show that a small random subset of G supports w.h.p a X-uniform
distribution.

Theorem 5 (informal version). Let S ⊂ G be a random set of size |X |O(1).
Then w.h.p there exists a distribution μ supported on S which is X-uniform.

Finally, we derandomized Theorem 5. Recall that if G acts on X , then G also
acts on X ×X in the obvious manner, i.e. g((x1, x2)) = (g(x1), g(x2)). We show
that if a distribution over G is almost X×X uniform with a small enough error,
then it must support an X-uniform distribution.

Theorem 6 (informal version). Let μ be a distribution supported on a set
S ⊂ G which is almost (X ×X)-uniform with error |X |−O(1). Then there exists
a distribution μ′ supported on S which is X-uniform.

The proof of Theorem 5 is by a counting argument using the symmetry of the
group action. The proofs of Theorem 4 and Theorem 6 rely on representation
theory of finite groups. In the language of Fourier analysis literature, we prove
results regarding quadrature rules for the representations appearing in the action
of G on X . Technically, our arguments involving representation theory are quite
basic, and as such are similar in spirit to several known results in the Fourier
analysis literature. In particular, Theorem 5 is similar to theorems established
in [KORT01, AR11]. However, our proof in arguably simpler, as it applies the
Carathéodory theorem instead of a more involved second moment argument.

356 N. Alon and S. Lovett

Also, some technical parts used in the proof of Theorem 6 are related to known
results in the Fourier analysis literature, e.g. in [Mas98, RS09].

Paper organization Theorem 4 is proved in Section 2, Theorem 5 in Section 3
and Theorem 6 in Section 4. We conclude with some open problems in Section 5.
For lack of space, some preliminary definitions and many proofs are omitted and
can be found in the full version of this paper [AL11]. We note that throughout
the paper we do not attempt to optimize constants.

2 Almost X-Uniform Distributions are Statistically Close
to X-Uniform Distributions

We prove in this section Theorem 4, which states that almost X-uniform distri-
butions with small enough error are statistically close toX-uniform distributions.

Theorem 4. Let μ be a distribution on G which is almost X-uniform with error
ε. Then there exists a distribution μ′ on G which is X-uniform, and such that
the statistical distance between μ and μ′ is at most ε · 3|X |4.

We first rephrase the conditions for a distribution to be X-uniform, or almost X
uniform, in terms of representations. Let RX be the representation of the action
of G on X , i.e. RX(g)x,y = 1g(x)=y. Let UG denote the uniform distribution over
G.

Proposition 1. Let μ be a distribution on G. Then μ is X-uniform iff RX(μ) =
RX(UG); and μ is almost X-uniform with error ε iff ‖RX(μ)−RX(UG)‖∞ ≤ ε.

Proof. Omitted.

The first step is to decompose RX into its irreducible representations. Let
RX ≡ e01 + e1R1 + . . . + etRt, where R1, . . . , Rt are unitary nonequivalent
non-trivial irreducible representations, and ei is the multiplicity of Ri in RX .
We next transform the conditions of Proposition 1 to the basis of the irreducible
representations.

Proposition 2. Let μ be a distribution on G. Then μ is X-uniform iff Ri(μ) = 0
for all i ∈ [t]; and if μ is almost X-uniform with error ε then ‖Ri(μ)‖∞ ≤ ε|X |
for all i ∈ [t].

Proof. Omitted.

The main idea in the proof of Theorem 4 is to ”correct” each element of Ri(μ)
to be zero by making a small statistical change in μ, and without affecting the
other elements of Ri or in any other Ri′ . This is analogous to the proof idea
of [AGM03] for almost k-wise independent bits (see also [AAK+07]). Performing
all these local changes sequentially over all elements of Ri, i ∈ [t], will shift μ
into an X-uniform distribution. Actually, as a first step we will get a general
element in C[G], which we then rectify to be a distribution.

Almost K-Wise vs. K-Wise Independent Permutations, and Uniformity 357

Let Ri be one of the irreducible representations, and let di = dim(Ri) be its
dimension. For j, k ∈ [di] we define Δi,j,k ∈ C[G] as

Δi,j,k(g) =
di
|G|Ri(g)j,k.

We consider how shifting μ by a small multiple of Δi,j,k affects the entries of
R1, . . . , Rt.

Proposition 3. Let i ∈ [t], j, k ∈ [di] and i′ ∈ [t], j′, k′ ∈ [di′]. For any δ ∈ R
we have

Ri′(μ+ δΔi,j,k)j′,k′ = Ri′(μ)j′,k′ + δ · 1(i,j,k)=(i′,j′,k′).

Proof. Omitted.

We will also need the following proposition, which asserts that 1(Δi,j,k) = 0 and
that ‖Δi,j,k‖∞ is bounded.

Proposition 4. Let i ∈ [t], j, k ∈ [di]. Then 1(Δi,j,k) = 0 and ‖Δi,j,k‖∞ ≤ |X|
|G| .

Proof. Omitted.

Applying Proposition 3 and Proposition 4 iteratively over all elements of
R1, . . . , Rt, we obtain the following corollary.

Corollary 1. Let μ be a distribution over G which is almost X-uniform with
error ε. Define Δ ∈ C[G] by

Δ(g) = −
∑
i∈[t]

∑
j,k∈[di]

Ri(μ)j,k ·Δi,j,k(g).

Then RX(μ+Δ) = RX(UG) and ‖Δ‖∞ ≤ ε|X|4
|G| .

Proof. Omitted.

We are nearly done. The only problem is that μ+Δ may not be a distribution: it
may be complex, or have negative values. This can be fixed, without increasing
the statistical distance too much. This resolves the proof of Theorem 4. Details
are omitted.

3 Random Sets Support X-Uniform Distributions

We establish Theorem 5 in this section, which states that w.h.p a random set of
size |X |O(1) supports an X-uniform distribution.

Theorem 5. Let S ⊂ G be a random set of size O(|X |6). Then with probability
0.99 over the choice of S, there exists a distribution μ supported on S which is
X-uniform.

358 N. Alon and S. Lovett

Recall that a distribution μ is X-uniform if Prg∼μ[g(x) = y] = Prg∈G[g(x) =
y] for all x, y ∈ X . We say a set S supports X-uniformity if there exists a
distribution supported on S which is X-uniform. We first establish that this a
purely geometric property of S.

Let RX be the representation of the action of G on X , that is, RX(g)x,y =
1g(x)=y. Let U = RX(UG) = Eg∈G[RX(g)] denote the matrix which corresponds
to the action onX of the uniform distribution overG. We consider these matrices
as points in Rd for d = |X |2.

Proposition 5. A set S ⊂ G supports X-uniformity iff the convex hull of the
matrices {RX(g) : g ∈ S} contains the matrix U .

Proof. Omitted.

Let S ⊂ G be a random set. By Proposition 5 it is enough to show that the
matrix U lies in the convex hull of {RX(g) : g ∈ S}. Suppose this is not the
case; then there must exist a hyperplane H in Rd which passes through U and
such that all matrices {RX(g) : g ∈ S} lie on one side of H . We first show that
any hyperplane which passes through U has a noticeable fraction of the matrices
{RX(g) : g ∈ G} on both sides.

Proposition 6. Let H be a hyperplane which passes through U . The number of
matrices {RX(g) : g ∈ G} on any side of H is at least |G|/(|X |2 + 1).

Proof. Omitted.

We now establish Theorem 5.

Proof (Proof of Theorem 5). Let S ⊂ G be a random set of N elements, chosen
with repetitions. Let K � G be the normal subgroup of G which acts trivially
on X , i.e. K = {g ∈ G : g(x) = x ∀x ∈ X}. Observe that the quotient group
G/K also acts on X , and that {RX(g) : g ∈ G} = {RX(g) : g ∈ G/K}. Thus
the number of distinct matrices RX(g) is bounded by |G/K| ≤ |X |!, and by a
standard VC dimension argument the number of ways to partition this set of
matrices by any hyperplane, and in particular one which passes through U , is
bounded by (|X |!)d. Fix such a partition. The number of matrices {Rx(g) : g ∈
G} which lies on each side of the partition is at least |G|/(d+1) by Proposition 6.
Hence, the probability that S is contained in one side of the partition is bounded
by 2(1−1/(d+1))N . Thus, by the union bound, the probability that there exists
a hyperplane passing through U , such that S is contained in one side of it, is at
most

|G/K|d · 2
(
1− 1

d+ 1

)N
≤ 2 exp(−N/(d+ 1) + d log(|X |!)),

which is at most 0.01 for N = O(d2 log(|X |!)) ≤ O(|X |6).

Almost K-Wise vs. K-Wise Independent Permutations, and Uniformity 359

4 Almost X-Uniform Distributions Support X-Uniform
Distributions

We prove in this section Theorem 6, which states that if μ is an almost X ×X-
uniform distribution with small enough error, then there exists an X-uniform
distribution μ′ supported on the support of μ.

Theorem 6. Let μ be a distribution supported on a set S ⊂ G which is almost
(X × X)-uniform with error ε < 0.5|X |−7. Then there exists a distribution μ′

supported on S which is X-uniform.

Fix such a distribution μ, and let S denote its support, S = {g : μ(g) > 0}.
Let RX be the representation of G acting on X . By Proposition 5, S supports
an X-uniform distribution iff RX(UG) = Eg∈G[RX(g)] lies in the convex hull of
{RX(g) : g ∈ S}. Assume this is not the case; then there exists an hyperplane
H which passes through RX(UG) and such that all {RX(g) : g ∈ S} lie on one
side of H .

We first projectH into an hyperplane with a simpler representation. LetRX ≡
e01+e1R1+. . .+etRt denote the decomposition ofRX into unitary nonequivalent
irreducible representation, and let di = dim(Ri) denote the dimension of each
irreducible representation. Essentially, we will project H to ”use” only one copy
from each nontrivial irreducible representation. That is, we will show that H can
be projected to a hyperplane separating 0 from {R1(g)× . . .×Rt(g) : g ∈ S}.

Proposition 7. There exists a map L : G → R given by

L(g) :=
∑
i∈[t]

∑
j,k∈[di]

λi,j,k ·Ri(g)j,k

for some coefficients {λi,j,k ∈ C : i ∈ [t], j, k ∈ [di]} such that Eg∈G[L(g)] = 0
and L(g) > 0 for all g ∈ S.

Proof. Omitted.

We may assume w.l.o.g that Eg∈G[L2(g)] = 1 by multiplying all coefficients λi,j,k
by an appropriate factor. The main idea is to show that if μ is almost X ×X
uniform, then Eg∼μ[L2(g)] ≈ Eg∈G[L2(g)] = 1 while Eg∼μ[L(g)] ≈ Eg∈G[L(g)] =
0. Combining this with a bound on ‖L‖∞ a simple calculation shows that it
cannot be the case that L(g) > 0 for all g in the support of μ.

The first step is to show that the coefficients λi,j,k cannot be very large.

Proposition 8.
∑

i∈[t]

∑
j,k∈[di]

|λi,j,k|2
di

= 1. In particular, |λi,j,k| ≤ |X |1/2 for
all i, j, k.

Proof. Omitted.

An immediate corollary is that L(g) can never be very large.

360 N. Alon and S. Lovett

Corollary 2. |L(g)| ≤ |X |2.5 for all g ∈ G.

Proof. Omitted.

The bound on |λi,j,k| together with the assumption that μ is almost X × X-
uniform, implies that the first and second moment of L are approximately the
same under μ and under the uniform distribution over G.

Proposition 9. Let μ be a distribution which is almost X × X-uniform with
error ε. Then |Eg∼μ[L(g)]| ≤ ε|X |4.5 and |Eg∼μ[L2(g)]− 1| ≤ ε|X |7.

Proof. Omitted.

Proof (Proof of Theorem 6). Let μ be almost X × X uniform with error
ε ≤ 0.5|X |−7. Summarizing Corollary 2 and Proposition 9, we have ‖L‖∞ ≤
|X |2.5, Eg∼μ[L(g)] ≤ ε|X |4.5 and Eg∼μ[L(g)

2] ≥ 1 − ε|X |7. However, since
we assumed by contradiction that L(g) > 0 for all g in the support of μ,
we have Eg∼μ[L(g)2] ≤ ‖L(g)‖∞ · Eg∼μ[L(g)] ≤ |X |2.5 · ε|X |4.5, i.e. we have
1− ε|X |7 ≤ ε|X |7, which is false whenever ε < 0.5|X |−7.

5 Summary and Open Problems

We showed that almost X-uniform (or X×X-uniform) distributions are close to
perfect X uniform distributions in two ways: they are statistically close to some
X-uniform distribution μ′, and they support a X-uniform distribution μ′′. It
may be possible that both can be realized by the same X-uniform distribution,
i.e. that μ′ = μ′′. We leave this as an open problem.

Another interesting combinatorial problem is to construct small sets which
are perfectly uniform. This is unknown even in the special case of k-wise inde-
pendent permutations. Recently, Kuperberg et al. [KLP12] gave a non-explicit
proof for the existence of small families of k-wise independent permutations. It is
intriguing whether their argument can be adapted to efficiently construct these
families.

Acknowledgements. We thank Avi Wigderson for helpful discussions and
reference to the work of Karp and Papadimitriou [KP82].

References

[AA07] Ailon, N., Alon, N.: Hardness of fully dense problems. Inform. and Com-
put. 205(8), 1117–1129 (2007)

[AAK+07] Alon, N., Andoni, A., Kaufman, T., Matulef, K., Rubinfeld, R., Xie, N.:
Testing k-wise and almost k-wise independence. In: STOC 2007, pp. 496–
505. ACM, New York (2007)

[ABI86] Alon, N., Babai, L., Itai, A.: A fast and simple randomized algorithm for
the maximal independent set problem. Journal of Algorithms 7, 567–583
(1986)

Almost K-Wise vs. K-Wise Independent Permutations, and Uniformity 361

[AGM03] Alon, N., Goldreich, O., Mansour, Y.: Almost k-wise independence versus
k-wise independence. Inf. Process. Lett. 88, 107–110 (2003)

[AH11] Austrin, P., H̊astad, J.: Randomly supported independence and resistance.
SIAM J. Comput. 40(1), 1–27 (2011)

[AL11] Alon, N., Lovett, S.: Almost k-wise vs. k-wise independent permutations,
and uniformity for general group actions. Electronic Colloquium on Com-
putational Complexity, ECCC (2011)

[AR11] Alagic, G., Russell, A.: Spectral Concentration of Positive Functions on
Compact Groups. Journal of Fourier Analysis and Applications, 1–19
(February 2011)

[Cam95] Cameron, P.J.: Permutation groups. In: Handbook of Combinatorics, vol. 1,
2, pp. 611–645. Elsevier, Amsterdam (1995)

[Kas07] Kassabov, M.: Symmetric groups and expanders. Inventiones Mathemati-
cae 170(2), 327–354 (2007)

[KLP12] Kuperberg, G., Lovett, S., Peled, R.: Probabilistic existence of rigid com-
binatorial structures. In: Proceedings of the 44th Symposium on Theory of
Computing, STOC 2012, pp. 1091–1106. ACM, New York (2012)

[KM94] Koller, D., Megiddo, N.: Constructing small sample spaces satisfying given
constraints. SIAM Journal on Discrete Mathematics 7, 260–274 (1994)

[KNR05] Kaplan, E., Naor, M., Reingold, O.: Derandomized Constructions of k-Wise
(Almost) Independent Permutations. In: Chekuri, C., Jansen, K., Rolim,
J.D.P., Trevisan, L. (eds.) APPROX and RANDOM 2005. LNCS, vol. 3624,
pp. 354–365. Springer, Heidelberg (2005)

[KORT01] Kueh, K., Olson, T., Rockmore, D., Tan, K.: Nonlinear approximation the-
ory on compact groups. Journal of Fourier Analysis and Applications 7,
257–281 (2001)

[KP82] Karp, R.M., Papadimitriou, C.H.: On linear characterizations of combina-
torial optimization problems. SIAM Journal on Computing 11(4), 620–632
(1982)

[Mas98] Maslen, D.: Efficient computation of fourier transforms on compact groups.
Journal of Fourier Analysis and Applications 4, 19–52 (1998)

[RS09] Roy, A., Scott, A.J.: Unitary designs and codes. Des. Codes Cryptogra-
phy 53, 13–31 (2009)

[RW06] Russell, A., Wang, H.: How to fool an unbounded adversary with a short
key. IEEE Transactions on Information Theory 52(3), 1130–1140 (2006)

[RX10] Rubinfeld, R., Xie, N.: Testing Non-uniform k-Wise Independent Distribu-
tions over Product Spaces. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS,
vol. 6198, pp. 565–581. Springer, Heidelberg (2010)

[Vau98] Vaudenay, S.: Provable Security for Block Ciphers by Decorrelation. In:
Morvan, M., Meinel, C., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373,
pp. 249–275. Springer, Heidelberg (1998)

[Vau00] Vaudenay, S.: Adaptive-Attack Norm for Decorrelation and Super-
Pseudorandomness. In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS,
vol. 1758, pp. 49–61. Springer, Heidelberg (2000)

[Vau03] Vaudenay, S.: Decorrelation: a theory for block cipher security. Journal of
Cryptology 16(4), 249–286 (2003)

Testing Permanent Oracles – Revisited

Sanjeev Arora�, Arnab Bhattacharyya��, Rajsekar Manokaran�,
and Sushant Sachdeva�

Department of Computer Science and Center for Computational Intractability,
Princeton University, USA

{arora,arnabb,rajsekar,sachdeva}@cs.princeton.edu

Abstract. Suppose we are given an oracle that claims to approximate
the permanent for most matrices X, where X is chosen from the Gaus-
sian ensemble (the matrix entries are i.i.d. univariate complex Gaus-
sians). Can we test that the oracle satisfies this claim? This paper gives
a polynomial-time algorithm for the task.

The oracle-testing problem is of interest because a recent paper of
Aaronson and Arkhipov showed that if there is a polynomial-time al-
gorithm for simulating boson-boson interactions in quantum mechanics,
then an approximation oracle for the permanent (of the type described
above) exists in BPPNP. Since computing the permanent of even 0/1 ma-
trices is #P-complete, this seems to demonstrate more computational
power in quantum mechanics than Shor’s factoring algorithm does. How-
ever, unlike factoring, which is in NP, it was unclear previously how to
test the correctness of an approximation oracle for the permanent, and
this is the contribution of the paper.

The technical difficulty overcome here is that univariate polynomial
self-correction, which underlies similar oracle-testing algorithms for per-
manent over finite fields —and whose discovery led to a revolution in
complexity theory—does not seem to generalize to complex (or even,
real) numbers. We believe that this tester will motivate further progress
on understanding the permanent of Gaussian matrices.

1 Introduction

The permanent of an n-by-n matrix X = (xi,j) is defined as

Per(X) =
∑
π

n∏
i=1

xi,π(i),

where π ranges over all permutations from [n] to [n]. A recent paper of Aaron-
son and Arkhipov [1] (henceforth referred to as AA) introduced a surprising
connection between quantum computing and the complexity of computing the
permanent (which is well-known to be #P-complete to compute in the worst
case [2]). They define and study a formal model of quantum computation with

� This work is supported by the NSF grants CCF-0832797 and CCF-1117309.
�� This work is supported by NSF Grants CCF-0832797, 0830673, and 0528414.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 362–373, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Testing Permanent Oracles – Revisited 363

non-interacting bosons in which n bosons pass through a “circuit” consisting of
optical elements. Each boson starts out in one of m different phases and, at the
end of the experiment, is in a superposition of the basis states—one for each
possible partition of the n bosons into m phases.

AA proceed to show that if there is an efficient classical randomized algorithm
A that simulates the experiment, in the sense of being able to output random
samples from the final distribution (up to a small error in total variation dis-
tance) of the Bosonic states at the end of the experiment, then there is a way
to design an approximation algorithm B in BPPNP for the permanent problem
for an interesting family of random matrices. The random matrices are drawn
from the Gaussian ensemble—each entry is an independent standard Gaussian
complex number—and the algorithm computes an additive approximation, in
the sense that,

|B(X)− Per(X)|2 � δ2n! , (1)

for at least a fraction 1− η of the input matrices X . (Note that the variance of
Per(X) is n! for Gaussian ensembles, so this approximation is nontrivial.) The
running time of B is poly(n, 1/δ, 1/η) with access to an oracle in NPA. In other

words, B ∈ BPPNPA
for η, δ = Ω(1/poly(n)) (refer to Problem 2 and Theorem 3 in

[1]). The authors go on to conjecture that obtaining an additive approximation
as in eq. (1) is #P-hard (this follows from Conjectures 5 and 6, and Theorem 7
in [1]). If true, this conjecture has surprising implications for the computational
power of quantum systems. By contrast, the crown jewel of quantum computing,
Shor’s algorithm [3], implies that the ability to simulate quantum systems would
allow us to factor integers in polynomial time, but factoring (as well as other
problems known to be in BQP) is not even known to be NP-Hard.

As evidence for their conjecture, Arkhipov and Aaronson point to related
facts about the permanent problem for matrices over integers and finite fields.
It is known that that if there is a constant factor approximation algorithm for
computing Per(X) where X is an arbitrary matrix of integers, then one can
solve #P problems in polynomial time. Thus, approximation on all inputs seems
difficult1. Likewise, starting with a paper of Lipton, researchers have studied
the complexity of computing the permanent (exactly) for many matrices. For
example, given an algorithm that computes the permanent exactly for 1/poly(n)
fraction of all matrices X over a finite field GF (p) (where p is a sufficiently large
prime), one can use self-correction procedures for univariate polynomials [7,8,9]
to again obtain efficient randomized algorithms for #P-hard problems.

Thus, either restriction —approximation on all matrices, or the ability to
compute exactly on a significant fraction of matrices— individually results in a
#P-hard problem. What makes the AA conjecture interesting is that it involves
the conjunction of the two restrictions: the oracle in question approximates the
value of the permanent for most matrices.

The focus of the current paper is the following question: given an additive
approximation oracle for permanents of Gaussian matrices (B in eq. (1) above),

1 Note that approximating the permanent is known to be feasible for the special case
of non-negative real matrices [4,5,6].

364 S. Arora et al.

how can we test that the oracle is correct? We want a tester that accepts with
high probability when B satisfies the condition in eq. (1) and rejects with high
probability when B does not approximate well on a substantial fraction of inputs.
Note that the testing problem is a non-issue for previous quantum algorithms
such as Shor’s algorithm, since the correctness of a factoring algorithm is easy
to test.

The testing question has been studied for the permanent problem over finite
fields. Given an oracle that supposedly computes Per(·) for even, say, 3/4th of the
matrices over GF (p), one can verify this claim using self-correction for polyno-
mials over finite fields and the downward self-reducibility of Per(·), as described
below in more detail in Section 1.1. (In fact, if the oracle satisfies the claim, then
one can compute Per(·) on all matrices with high probability.) However, as noted
in AA, these techniques that work over finite fields fail badly over the complex
numbers. The authors in AA also seem to suggest that techniques analogous
to self-correction and downward self-reducibility can be generalized to complex
numbers in some way, but this remains open.

In this paper, we solve the testing problem using downward self-reducibility
alone. Perhaps this gives some weak evidence for the truth of the AA conjecture.
Note that since we lack self-correction techniques, we do not get an oracle at
the end that computes the permanent for all matrices as in the finite field case.
Incidentally, an argument similar to the one presented in this paper works in the
finite field case also, giving an alternate tester for the permanent that does not
use self-correction of polynomials over finite fields.

1.1 Related Work

As mentioned above, testing an oracle for the permanent over finite fields has
been extensively studied. The approach, basically arising from [10], uses self-
correction of polynomials over finite fields and downward self-reducibility of the
permanent. Let us revisit the argument.

Suppose we are given a sequence of oracles {Ok}k , where for each k, Ok

allegedly computes the permanent for a 9/10 fraction of all k-by-k matrices over
the field. The argument proceeds by first applying a self-correction procedure
for low-degree polynomials (see [8]), noting that the permanent is a k-degree
multilinear polynomial in the k2 entries of the matrix, treated as variables.

The correction procedure, on input X, queries Ok at poly(n) points, and out-
puts the correct value of Per(X) with 1−exp(−n) probability (over the coin tosses
of the procedure). Thus, the procedure acts as a proxy for the oracle, provid-
ing {O�

k}k which can now be tested for mutual consistency using the downward
self-reducibility of the permanent:

Per(X) =
∑

jx1,j · Per(Xj). (2)

Here, Xj is the submatrix formed by removing the first row and jth column.
Finally, since O1 can be verified by direct computation, this procedure tests
and accepts sequences where Ok computes the permanent of a fraction 9/10

Testing Permanent Oracles – Revisited 365

of all k × k matrices; while rejecting sequences of oracles where for some k,
Ok(X) �= Perk(X) on more than, say a fraction 3/10, of the inputs.

A natural attempt to port this argument to real/complex gaussian matrices
runs into fatal issues with the self-correction procedures: since the oracles are
only required to approximate the value of the permanent, a polynomial interpo-
lation procedure incurs an exponential (in the degree) blow-up in the error at the
point of interest (see [11]). In our work, we circumvent polynomial interpolation
and only deal with self-reducibility, noting that eq. (2) expresses the permanent
as a linear function of permanent of smaller matrices.

1.2 Overview of the Tester

We work with the following notion of quality of an oracle, naturally inspired by
the AA conjecture: the approximation guarantee is achieved by the oracle on all
but a small fraction of the inputs.

Definition 1. For an integer n, an oracle On : Cn
2

→ C, is said to be (δ, η)-

good if |On(X)− Per(X)|2 � δ2n! , with probability at least 1− η over the choice
of n× n matrices, X, from the Gaussian ensemble.

Note that since the tester is required to be efficient, we (necessarily) allow even
good oracles to answer arbitrarily on a small fraction of inputs, because the tester
will not encounter these bad inputs with high probability. As an aside, there is
also the issue of additive vs multiplicative approximation, which AA conjecture
have similar complexity. In this paper, we stick with additive approximation as
defined above.

Our main result is stated informally below (see Theorem 2 for a precise state-
ment).

Theorem 1 (Main theorem – informal). There exists an algorithm A that,
given a positive integer n, an error parameter2 δ � 1/poly(n), and access to oracles

{Ok}1�k�n such that Ok : Ck
2

→ C, has the following behavior:

– If for every k � n, the oracle Ok is (δ, 1/poly(n))-good, then A accepts with
probability at least 1− 1/poly(n).

– If there exists a k � n such that the oracleOk is not even (poly(n) · δ, 1/poly(n))-
good, then A rejects with probability at least 1− 1/poly(n).

– The query complexity as well as the time complexity of A is poly(n/δ).

We conduct the test in n stages, one stage for each submatrix size. Let k � n

denote a fixed stage, and let X ∈ Ck
2

. Now, using downward self-reducibility
(eq. (2)), we have,

|Ok(X)− Perk(X)| �∣∣∣Ok(X)−
∑

jxjOk−1(Xj)
∣∣∣︸ ︷︷ ︸

(A)

+
∣∣∣∑jxj [Ok−1(Xj)− Perk−1(Xj)]

∣∣∣︸ ︷︷ ︸
(B)

. (3)

2 All of the poly(·) are fixed polynomials, hidden for clarity.

366 S. Arora et al.

Recall that Xj is the submatrix formed by removing the first row and jth column
(often referred to as a minor).

We bound term (A) above, by checking if Ok is a linear function in the vari-
ables along the first row (xj in above), when the rest of the entries of the matrix
are fixed; the coefficients of the linear function are determined by querying Ok−1

on the k minors along the first row. The tolerance needed in the test is estimated
as follows: a good collection of oracles estimates Perk−1 up to δ

√
(k − 1)!, and

Perk up to δ
√
k! additive error. Further, since the expression is identically zero

for the permanent function, we have:

(A) � |Ok(X)− Perk(X)|+
∣∣∣∑jxj (Ok−1(Xj)− Perk−1(Xk))

∣∣∣
� δ

√
k! +

∣∣∣∑jxjδ
√
(k − 1)!

∣∣∣ � δ
√
k! · (1 +O(

√
logn)),

where the last inequality follows from standard Gaussian tail bounds.
We test this by simply querying the oracles for random X and the minors

obtained thereof and checking if the downward self-reducibility condition is ap-
proximately met.

The second term, term (B), is linear in the error Ok−1 makes on the minors,
say εk−1

√
(k − 1)! on each minor. A naive argument as above says term (B) is

at most εk−1

√
k! · Θ(

√
logn). From this and eq. (3), the error in Ok is at most

a Θ(
√
logn) factor times the error in Ok−1. However, this bound is too weak to

conclude anything useful about On.
We overcome this issue by measuring the error in a root-mean-square (RMS

or �2) sense as follows:

err2(Ok) =

√
E
X
[Ok(X)− Perk(X)]

2
= ‖Ok − Perk‖2.

Now,

‖Ok − Perk‖2 � ‖Ok −
∑

j(xjOj−1(Xj))‖2 +
√
E
[∑

jxj(Ok−1 − Perk−1)
]2
.

The first term is still δ
√
k! · O(

√
logn) assuming the linearity test passes. Since

each xi is an independent standard Gaussian, the second term is at most
√
k ·

err2(Ok−1) = εk−1 ·
√
k!. Then, err2(Ok) � (δ

√
logn + εk−1) ·

√
k!, and thus

err2(On) is at most poly(n)δ
√
n! as we set out to prove! The caveat however is

that err2 as defined cannot be bounded precisely because we necessarily need to
discount a small fraction of the inputs: the oracles could be returning arbitrary
values on a small fraction, outside the purview of any efficient tester. We deal
with this by using a more sophisticated RMS error that discounts an η-fraction
of the input:

err2,η(Ok) = inf
S:μ(S)�η

√
E
X
[1s(Ok(X)− Perk(X))]2,

Testing Permanent Oracles – Revisited 367

where 1S denotes the indicator function of the set S.We then use a tail inequality
on the permanent based on its fourth moment to carry through the inductive
argument set up above. This requires a Tail Test on the oracles to check that
the oracles have a tail similar to the permanent. Our analysis shows that the
Linearity and Tail test we design are sufficient and efficient, proving Theorem 1.

Organization. In the next section, we set up the notation. Section 3 describes the
test we design and follows it up with its analysis. All missing proofs are deferred
to the final version.

2 Preliminaries

Notation and Setup. We deal with complex valued functions on the space of
square matrices over the complex numbers, Ck×k for some integer k. We assume
Ck×k is endowed with the standard Gaussian measure N (0, 1)k×kC . We use the

notation PX [E] to denote the probability of an event E, when X ∼ N (0, 1)k×kC .
We denote by EX [Y] to denote the expectation of the random variable Y, when
X ∼ N (0, 1)k×kC .

Functions from Cd to {0, 1} are called indicator functions (since they indicate
inclusion in the set of points where the function’s value is 1). We denote the
indicator function for a predicate q(X) by I[q(X)] and define it to be 1 when q(X)
is true and 0 otherwise. For example, I[|x| � 2] is 1 for all x whose magnitude
is at least 2, and 0 otherwise.

Error and �2 norm of Oracles. The (standard) �2 norm of a square-integrable

function f : Cd → C is denoted by ‖f‖2 and is equal to EX [|f |2]. An oracle
for the permanent is simply a function Ok : Ck×k → C that can be queried in
a single time unit. We will work with a sequence of oracles {Ok}{k�n}, one for
every dimension k less than n.

Moments of Permanents. The first and the second moments of the perma-
nent under the Gaussian distribution on k × k matrices are easy to compute:
EX [Perk(X)] = 0, EX [|Perk(X)|2] = k! . We also know the fourth moment of
the permanent function for Gaussian matrices, EX [|Perk(X)|4] = (k + 1)(k!)2

(Lemma 56, [1]). This fact and Markov’s inequality immediately imply:

Lemma 1 (Tail Bound for Permanent). For every positive integer k, the
permanent satisfies PX [|Perk(X)|> T

√
k!] � (k+1)/T 4.

3 Testing Approximate Permanent Oracles

Our testing procedure, PTest, has three parameters: a positive integer n, the
dimension of the matrices being tested; δ ∈ (0, 1], the amount of error allowed;
and c ∈ (0, 1], a completeness parameter. In addition, it has query access to the
sequence of oracles, {Ok}{k�n} being tested. In the following, for a matrix X,
we denote the entries in the first row of X by x11, . . . , x1k, and by Xi the minor
obtained by removing the first row and the ith column from X. (There will be
no confusion since we will only be working with expansion along the first row.)

368 S. Arora et al.

The guarantees of the tester are twofold: it accepts with probability at least
1 − c if |Ok(X)− Perk(X)|2 � δ2k! for every k, and every X ∈ Ck×k; on the
other hand, the tester almost always rejects if for some k � n, Ok(X) is not
poly(n)δ·

√
k! close to Perk(X) for at least 1− 1

poly(n) measure ofX ’s (see below for

precise theorems). The query complexity of PTest is bounded by poly(n, 1/δ, 1/c).
Assuming that each oracle query takes constant time, the time complexity of
PTest is also bounded by poly(n, 1/δ, 1/c) (see below for precise bounds).

The test consists of two parts: The first is a Linearity test, that tests that
the oracles {Ok}{k�n} satisfy Ok(X) ≈

∑
i x1iOk−1(Xi) (observe that the per-

manent satisfies this exactly). The second part is a Tail test, that tests that
the function does not take large values too often (the permanent satisfies this
property too, as shown by Lemma 1).

LinearityTest(n, k, δ): Sample a k × k matrix X ∼ N (0, 1)k×kC . If k = 1,

output Reject unless |Ok(X)−X |2 � n2 · δ2. Else, test if:
∣∣∣Ok(X) −∑k

i=1 x1iOk−1(Xi)
∣∣∣2 � n2δ2 · k! . Output Reject if it does not hold.

TailTest(k, T): Sample a k × k matrix X. Test that |Ok(X)|2� T 2k! .
Output Reject if it does not hold.

Parameters: A positive integer n ∈ IN, error parameter δ ∈ (0, 1], and com-
pleteness parameter c ∈ (0, 1].

Requires: Oracle access to {Ok}{k�n}, where Ok : Ck×k → C.

1. Set the following variables: T = 4n/δ
√
c, d = 192n2

/δ4c.
2. For each 1 � k � n,

(a) Run LinearityTest(n, k, δ) d times.
(b) Run TailTest(k, T) d times.

3. If none of the above tests output Reject, output Accept.

Fig. 1. The tester PTest

The procedure PTest is formally defined in Figure 1. In the rest of the paper, we
prove the following theorem about PTest.

Theorem 2 (Main Theorem). For all n ∈ IN, δ ∈ (0, 1], and c ∈ (0, 1], satisfy-

ing n = Ω
(√

log 1
cδ

)
, given oracle access to {Ok}{k�n}, where Ok : Ck×k → C,

the procedure PTest satisfies the following:

1. (Completeness). If, for every k � n, and every X ∈ Ck×k,

|Ok(X)− Perk(X)|2 � δ2k!, then PTest accepts with probability at least 1−c.
2. (Soundness). For every 1 � k � n, either

Testing Permanent Oracles – Revisited 369

There exists an indicator function 1k : Ck×k → {0, 1} satisfying

EX [1k(X)] � 1− δ4c
64n , such that, EX [1k(X) · |Ok(X)−Perk(X)|2] �

(2nkδ)2k! .
or else,

PTest outputs Reject with probability at least 1− e−n.
3. (Complexity) The total number of queries made by PTest is O(n4δ−4c−1).

Moreover, assuming that each oracle query takes constant time, the time
required by PTest is also O(n4δ−4c−1).

The completeness and soundness are proved below as Theorem 3, Theorem 4 in
Sections 3.1, 3.2 respectively. The complexity of the test is immediate from the
definitions.

Remark 1. Observe that, assuming both 1/c and 1/δ are polynomial in n, the query com-
plexity is poly(n), and hence, even if the oracles {Ok}k�n satisfy |Ok(X)−Perk(X)|2�
δ2k! only with probability 1− 1

poly(n)
, PTest would still accept with probability 1− c−

1
poly(n)

.

Remark 2. Observe that the (informal) main theorem (Theorem 1) stated in the intro-
duction follows from Theorem 2 from a simple Markov argument. Given δ = Ω(1/poly(n)),
set c = 1

poly(n)
and note that the completeness follows directly from Theorem 2 and

the previous remark. Further, from the Soundness claim of Theorem 2, we have an in-

dicator function 1k : Ck×k → {0, 1} satisfying EX [1k(X)] � 1− δ4c
64n

� 1− 1
poly(n)

, such

that, EX [1k(X) · |Ok(X)−Perk(X)|2] � (2nkδ)2k!� poly(n) ·δ2k! . Applying Markov’s
inequality, we have that P

[
1k(X) · |Ok(X)− Perk|2 � poly(n)δ2k!

]
� 1/poly(n). Now,

note that 1k is an indicator function, and P[1k(X) = 0] is at most 1/poly(n). This,
along with the previous expression gives that the tester outputs Reject if the sequence
of oracles is not even (poly(n) · δ, 1/poly(n))-good.

3.1 Completeness

We first prove the completeness of PTest: that a (δ, 0)-good sequence of oracles
is accepted with probability at least 1− c.

Theorem 3 (Completeness). If, for every k � n, and every X ∈ Ck×k,

|Ok(X)− Perk(X)|2 � δ2k!, then PTest accepts with probability at least 1− c.

Proof. Suppose we are given a sequence of oracles {Ok}k�n such that for all
k � n, we have that |Ok(X) − Perk(X)|2� δ2 · k! . Let X denote a randomly
sampled k × k matrix.

We first bound the probability that the oracles {Ok}{k�n} fail a LinearityTest.
For k = 1, it is easy to see that LinearityTest(n, 1, δ) never outputs Reject

upon querying O1. For larger k, we have the following lemma that shows that
Ok(X) ≈

∑
i x1iOk−1(Xi), and hence LinearityTest outputs Reject only with

small probability. We defer its proof to the full version.

Lemma 2 (Completeness for LinearityTest). For every 2 � k � n, the oracles

{Ok}{k�n} satisfy PX [|Ok(X)−
∑

ix1iOk−1(Xi)|2> n2δ2k!] � 2e−
(n−1)2

2 .

370 S. Arora et al.

This lemma implies that every call to LinearityTest(n, k, δ) outputs Reject with

probability at most 2e−
(n−1)2

2 .
Next, we bound the probability that the oracles {Ok}{k�n} fail a TailTest. Us-

ing the tail bound for the permanent given by Lemma 1, we get, PX [|Perk(X)|>
(T − δ)

√
k!] � (k+1)/(T−δ)4. Since |Ok(X)− Perk(X)|� δ ·

√
k!, we use it in the

above bound to get PX [|Ok(X)|> T
√
k!] � (k+1)/(T−δ)4. Thus, every call to

TailTest fails with probability at most (n+1)
(T−δ)4 .

Now applying a union bound, we get that for n that is Ω
(√

log 1
δc

)
, PTest

outputs Reject with probability at most

(2e−
(n−1)2

2 + (n+1)/(T−δ)4)dn � 384n
3
/δ4c · e−(n−1)2/2 + 192(n+1)n3c/(4n−δ2

√
c)4 � c.

��

3.2 Soundness

The interesting part of the analysis is the soundness for PTest, which we prove in
this section. Given {Ok}{k�n}, we need to define the following indicator functions
to aid our analysis:

1LINk (X) =

{
I[(Ok(X)−X)2 � n2δ2], if k = 1

I[(Ok(X)−
∑

i x1iOk−1(Xi))
2 � n2δ2k!], if 2 � k � n

1TAILk (X) = I[Ok(X)2 � T 2 · k!],
1PERMk (X) = I[Perk(X)2 � T 2 · k!],

1k(X) = 1LINk (X) ∧ 1TAILk (X) ∧ 1PERMk (X). (4)

We now prove the following theorem.

Theorem 4 (Soundness). Let the indicator function 1k be as defined by Equa-
tion (4). For every k � n, either both of the following two conditions hold:

1. The indicator 1k satisfies EX [1k(X)] � 1− δ4c
64n .

2. The oracle Ok and the indicator 1k satisfy EX [1k(X)·|Ok(X)−Perk(X)|2] �
(2nkδ)2k! ,

or else, PTest outputs Reject with probability at least 1− e−n.

Proof. We first prove the following lemma that shows that for all k � n, the
expectation of 1k is large.

Lemma 3 (Large Expectation of 1k). Either, for every k, the indicator func-

tion 1k satisfies EX [1k(X)] � 1− δ4c
64n , or else, PTest outputs Reject with prob-

ability at least 1− e−n.

The first part of the theorem follows immediately from this lemma. The proof
of this lemma is given later in this section.

For the second part of the theorem, we prove the following inductive claim
about the oracles {Ok}.

Testing Permanent Oracles – Revisited 371

Lemma 4. (Main Induction Lemma) If for some 2 � k � n, we have

E
X ∈C(k−1)×(k−1)

[1k−1(X) · |Ok−1(X)− Perk−1(X)|2] � ε2k−1(k − 1)! ,

then, either EX∈Ck×k [1k(X) · |Ok(X) − Perk(X)|2] � (εk−1 + 2nδ)2k! , or else,
PTest outputs Reject with probability at least 1− e−n.

The proof of this lemma is also presented later in the section. Assuming this
lemma, we can complete the proof of soundness for PTest.

For the second part of the theorem, we first show that the required bound
holds for k = 1. We know that for any X ∈ C, whenever 11(X) = 1, we have
|O1(X)−X |2� n2δ2. Thus,

E
X
[11(X)· |O1(X)−Per1(X)|2] � E

X
[1LIN1 (X)· |O1(X)−X |2] � n2δ2 < (2nδ)2 ·1! .

This gives us our base case. Assume that there is a 2 � j � n such that,

E
X∈C(j−1)×(j−1)

[1j−1(X) · |Oj−1(X)− Perj−1(X)|2] � (2n(j − 1)δ)2 · (j − 1)! .

Now, we use Lemma 4 to deduce that either, EX∈Cj×j [1j(X)·|Oj(X)−Perj(X)|2]
� (2njδ)2 · j! , or else, PTest outputs Reject with probability at least 1− e−n.
Thus, by induction, either for every k � n, EX [1k(X) · |Ok(X) − Perk(X)|2] �
(2nkδ)2 · k! , or else, PTest outputs Reject with probability at least 1 − e−n.
This completes the proof of the theorem. ��
Large expectation of 1k. We now prove Lemma 3.

Proof. (of Lemma 3). We begin by making several claims about the structure
the oracles {Ok}{k�n} must have with high probability, assuming that PTest
accepts. First, we claim that O1 must be close to the identity function.

Claim (Soundness of LinearityTest for O1). Either the oracle O1 satisfies that

PX

[
|O1(X)−X |2 > n2δ2

]
� n/d, or else, PTest outputs Reject with probabil-

ity at least 1− e−n.

The straightforward proof of this claim is omitted. We also need the following
two claims stating that for every 2 � k � n, Ok(X) ≈

∑
i x1iOk−1(Xi) often

and that Ok(X) does not take large values often.

Claim (Soundness of LinearityTest). Either the oracles {Ok} satisfy the inequal-

ity PX

[
|Ok(X)−

∑
i x1iOk−1(X)|2 > n2δ2k!

]
� n/d for every 2 � k � n, or

else, PTest outputs Reject with probability at least 1− e−n.

Claim (Soundness of TailTest). Either the oracles {Ok} satisfy the following for
every k � n, PX

[
|Ok(X)|2> T 2 · k!

]
� n/d, or else, PTest outputs Reject with

probability at least 1− e−n.

The proofs of these claims are very similar to that of the first Claim for soundness
of LinearityTest for O1 and are omitted here. We can restate the above claims in
terms of 1LINk and 1TAILk defined in (4) as follows: Either, for every k � n,

372 S. Arora et al.

E
X
[1LINk (X)] � 1− n/d, E

X
[1TAILk (X)] � 1− n/d, (5)

or else, PTest will output Reject with probability at least 1− e−n.
From Lemma 1, we know that PX [|Perk(X)|2> T 2 · k!] � (k+1)/T 4. Again,

this implies that EX [1PERMk] � 1− (k+1)/T 4.
We are now ready to prove our lemma. We know that 1k = 1LINk ∧ 1TAILk ∧

1PERMk . We know that if either of the claims in Equation (5) does not hold,
PTest outputs Reject with probability at least 1 − e−n. Thus, we assume that
both the claims in Equation (5) hold and get that for large enough n,

E
X
[1k(X)] � 1−E

X
[1− 1LINk (X)]−E

X
[1− 1TAILk (X)]−E

X
[1− 1PERMk (X)]

� 1− n/d− n/d− k+1/T 4 � 1− δ4c/96n− (n+1)δ4c2/256n4 � 1− δ4c/64n. ��

Main Induction Lemma. We now give a proof of the main induction lemma.

Proof. (of Lemma 4). Recall that Xi is the minor obtained by deleting the first
row and the ith column from X.We first split the probability space for X ∈ Ck×k

according to whether all of its minors Xi satisfy 1k−1(Xi) = 1 or not.

‖1k(X)(Ok(X)− Perk(X))‖2 =

(C)︷ ︸︸ ︷
‖1k(X) ·

∏
i1k−1(Xi)(Ok(X)− Perk(X))‖2

+ ‖1k(X)(1 −
∏
i1k−1(Xi))(Ok(X)− Perk(X))‖2︸ ︷︷ ︸

(D)

Let 1̃k(X) = 1k(X)
∏
i 1k−1(Xi). Term (C), above, is bounded by adding and

subtracting the expression
∑

i x1iOk−1(Xi) and then expanding the permanent
along the first row.

‖1̃k(X)(Ok(X)− Perk(X))‖ � ‖1̃k(X)[Ok(X)−
∑

ix1iOk−1(Xi)]‖
+ ‖1̃k(X)[

∑
ix1iOk−1(Xi)−

∑
ix1iPerk−1(Xi)]‖︸ ︷︷ ︸

(E)

(6)

We know that if 1k(X) = 1, then |Ok(X) −
∑

i x1iOk−1(Xi)|2 is bounded by
n2δ2k! . Thus, the first term in eq. (6) is at most n2δ2k! . As for Term (E):

(E) =
∥∥∥1k(X) ·

∏
i1k−1(Xi)

[∑
iOk−1(Xi)−

∑
ix1iPerk−1(Xi)

]∥∥∥2
� E

X1,...Xk

E
x11,...,x1k

[
∏
i1k−1(Xi) · |

∑
ix1iOk−1(Xi)−

∑
ix1iPerk−1(Xi)|2]

� E
X1,...Xk

[
∏
i1k−1(Xi) ·

∑
i|Ok−1(Xi)− Perk−1(Xi)|2]

�
∑

i EXi

[
1k−1(Xi) · |Ok−1(Xi)− Perk−1(Xi)|2

]
� kε2k−1(k − 1)!= ε2k−1k!

Combining the bounds on the two terms of eq. (6), we get,

(C) = E
X
[1k(X) ·

∏
i1k−1(Xi) · |Ok(X)− Perk(X)|2] � (εk−1 + nδ)2 · k! . (7)

Testing Permanent Oracles – Revisited 373

Next, we bound term (D) as follows. First use lemma 3 to deduce PX [1k−1(Xi) =

0] � δ4c
64n (If it does not hold, we know that PTest outputs Reject with prob-

ability at least 1 − e−n). Since whenever 1k(X) = 1, we have |Ok(X)|� T
√
k!

and |Perk(X)|� T
√
k!. This implies that 1k(X) · |Ok(X) − Perk(X)|2� 4T 2k!

everywhere. Thus, we have,

(D) = ‖1k(X)(1−
∏
i1k−1(Xi))(Ok(X)− Perk(X))‖2

� 4T 2k!E
X
[1−

∏
i1k−1(Xi)]

� 4T 2k!E
X
[
∑

i(1 − 1k−1(Xi))] � 4T 2k! ·k · δ4c/64n � n2δ2 · k! . (8)

Combining eqs. (6) to (8) completes the proof:

E
[
1k(X) · |Ok(X)− Perk(X)|2] � (

(εk−1 + nδ)2 + n2δ2
) · k!� (εk−1 + 2nδ)2 · k! .

Acknowledgements. The authors would like to thank Madhur Tulsiani and
Rishi Saket for extensive discussions during early stages of this work. We would
also like to thank Scott Aaronson, Alex Arkhipov, Swastik Kopparty and Srikanth
Srinivasan for helpful discussions.

References

1. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In:
Fortnow, L., Vadhan, S.P. (eds.) Proc. 43rd Annual ACM Symposium on the The-
ory of Computing, pp. 333–342. ACM (2011)

2. Valiant, L.G.: The complexity of computing the permanent. Theor. Comp. Sci. 8(2),
189–201 (1979)

3. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: Proc. 35th Annual IEEE Symposium on Foundations of Computer Science,
pp. 124–134. IEEE Computer Society (1994)

4. Broder, A.Z.: How hard is to marry at random (on the approximation of the perma-
nent). In: Hartmanis, J. (ed.) Proc. 18th Annual ACM Symposium on the Theory
of Computing, pp. 50–58. ACM (1986)

5. Jerrum, M., Sinclair, A.: Approximating the permanent. SIAM J. on Com-
put. 18(6), 1149–1178 (1989)

6. Jerrum,M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for
the permanent of a matrix with nonnegative entries. J. ACM 51(4), 671–697 (2004)

7. Gemmell, P., Lipton, R.J., Rubinfeld, R., Sudan, M., Wigderson, A.: Self-
testing/correcting for polynomials and for approximate functions. In: Kout-
sougeras, C., Vitter, J.S. (eds.) Proc. 23rd Annual ACM Symposium on the Theory
of Computing, pp. 32–42. ACM (1991)

8. Gemmell, P., Sudan, M.: Highly resilient correctors for polynomials. Inform. Pro-
cess. Lett. 43(4), 169–174 (1992)

9. Cai, J.-Y., Pavan, A., Sivakumar, D.: On the Hardness of Permanent. In: Meinel,
C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 90–99. Springer, Heidelberg
(1999)

10. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992)

11. Arora, S., Khot, S.: Fitting algebraic curves to noisy data. J. Comp. Sys. Sci. 67(2),
325–340 (2003)

Limitations of Local Filters
of Lipschitz and Monotone Functions�

Pranjal Awasthi1, Madhav Jha2, Marco Molinaro1, and Sofya Raskhodnikova2,��

1 Carnegie Mellon University, USA
{pawasthi,molinaro}@cmu.edu
2 Pennsylvania State University, USA
{mxj201,sofya}@cse.psu.edu

Abstract. We study local filters for two properties of functions f : {0, 1}d → R:
the Lipschitz property and monotonicity. A local filter with additive error a is a
randomized algorithm that is given black-box access to a function f and a query
point x in the domain of f . Its output is a value F (x), such that (i) the recon-
structed function F (x) satisfies the property (in our case, is Lipschitz or mono-
tone) and (ii) if the input function f satisfies the property, then for every point x
in the domain (with high constant probability) the reconstructed value F (x) dif-
fers from f(x) by at most a. Local filters were introduced by Saks and Seshadhri
(SICOMP 2010) and the relaxed definition we study is due to Bhattacharyya et al.
(RANDOM 2010), except that we further relax it by allowing additive error. Lo-
cal filters for Lipschitz and monotone functions have applications to areas such
as data privacy.

We show that every local filter for Lipschitz or monotone functions runs in
time exponential in the dimension d, even when the filter is allowed significant
additive error. Prior lower bounds (for local filters with no additive error, i.e., with
a = 0) applied only to more restrictive class of filters, e.g., nonadaptive filters.
To prove our lower bounds, we construct families of hard functions and show that
lookups of a local filter on these functions are captured by a combinatorial object
that we call a c-connector. Then we present a lower bound on the maximum
outdegree of a c-connector, and show that it implies the desired bounds on the
running time of local filters. Our lower bounds, in particular, imply the same
bound on the running time for a class of privacy mechanisms.

1 Introduction

In this work we study local reconstruction of properties of functions. Property-
preserving data reconstruction [1] is a direction of research in sublinear algorithms that
has its roots in property testing [14, 10]. Some related notions include locally decodable
codes [12], program checking [7] and, more generally, local computation [15, 2].

To motivate the reconstruction model, consider an algorithm ALG that is computing
on a large dataset and whose correctness is contingent upon the dataset satisfying a

� All omitted proofs appear in the full version [3].
�� P.A. is supported by NSF grant CCF-1116892. M.J. and S.R. are supported by NSF CAREER

grant CCF-0845701 and NSF grant CCF-0729171. M.M. is supported by NSF grant CMMI-
1024554.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 374–386, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Limitations of Local Filters of Lipschitz and Monotone Functions 375

certain structural property. For example, ALG may require that its input array be sorted
or that its input function be Lipschitz. In such situations, ALG could access its input
via a filter that ensures that data seen by ALG always satisfies the desired property,
modifying it at few places on the fly, if required. We can represent the input to ALG
as a function f , where f(x) represents the portion of the data that can be accessed on
query x. Instead of accessing f(x) directly, ALG makes a query x to the filter. The filter
looks up the value of f on a small number of points and returns F (x), where F satisfies
the desired property and is as close to the original function f as possible. Thus, ALG is
computing with reconstructed data F instead of its original input f .

Saks and Seshadhri [16] introduced the stronger notion of a local filter. It has an ad-
ditional requirement that the reconstruction of f(x) and f(y) on two different queries x
and y should be done independently. In particular, the output function F is independent
of the order of the queries x made to the filter.

Local filters have many desirable features: for example, they can be implemented
in a distributed setting, where several processes need to access different parts of the
input, and the filter has to ensure that all the parts together are consistent with some
function F that satisfies the desired property. This global consistency guarantee enables
several applications of local filters described in previous work [16, 5, 11], including the
application to data privacy that we explain below.

The main goal of this paper is to understand limitations of local filters. This is crucial
in order to identify the types of tradeoffs (i.e., output quality vs. lookup complexity)
available for a given application. Two natural candidate properties for this evaluation
are the Lipschitz property and monotonicity of functions1 f : [n]d → R, studied in
previous work [1, 16, 5, 11]: the first is motivated by the privacy application explained
below and the second is a ‘benchmark’ problem in property-preserving reconstruction
and property testing. A function f : [n]d → R is Lipschitz (with respect to the �1
metric on [n]d) if |f(x) − f(y)| ≤ ‖x − y‖1 for all points x, y in the domain [n]d.
Intuitively, changing the argument to the Lipschitz function by a small amount does not
significantly change the value of the function. A function f : [n]d → R is monotone
if f(x) ≤ f(y) for all points x - y in the domain [n]d, where - denotes the natural
partial order on [n]d: for x = (x1, . . . , xd) ∈ [n]d and y = (y1, . . . , yd) ∈ [n]d, we have
x - y iff xi ≤ yi for all coordinates i ∈ [d]. In other words, increasing the coordinates
of the argument to a monotone function does not decrease the value of the function.

The original definition of local filters in [16] has a requirement that the filter be
distance-respecting, that is, the reconstructed function F should not differ from the
original function f on significantly more points than necessary. Bhattacharyya et al.
[5] and Jha and Raskhodnikova [11] removed this requirement and demonstrated that
it is not necessary in some applications. Their local filter is simply required to out-
put F = f if the original function has the property; otherwise, F can be an arbitrary
function satisfying the property. We relax the notion of local filter further by allowing
additive error. Our definition (see Definition 2.1) has an additional parameter a, and the
function F can differ from f by a small amount on every point, even if f satisfies the
property: namely, we require that for every x in the domain, with high constant proba-
bility |F (x) − f(x)| ≤ a. Local filters considered in [5, 11] are a special case of our

1 We use [n] to denote the set {1, 2, . . . , n}.

376 P. Awasthi et al.

local filters with a = 0. Our goal is to determine (for small a) if there are local filters
that make only poly(n, d) lookups in order to output the reconstructed function F (x)
at a given point x.

Privacy Application. We observe that local filters with small additive error can still
be used in the privacy application described in [11]. Consider a server which has a
private database with information about individuals, modeled as a point x in {0, 1}d,
representing which of d possible types of people are present in the database. (More
generally, x is modeled as a point in [n]d representing a histogram that captures how
many people of each type are present.) A user who does not have direct access to x
can ask the server for some information about this database by specifying a function f
for the server to evaluate at the point x. The server’s goal is to output a value which
is close to f(x) but which reveals almost no information about any single individual.
Recently, the latter notion has been made precise via the concept of differential privacy
[9]. A standard way of obtaining such guarantees is to ask users to submit only Lipschitz
functions2, and have the server output f(x) plus some random noise depending on the
desired privacy guarantee [9]. However, if a malicious user submits a function which is
not Lipschitz, the differential privacy guarantee is lost. A local filter with the following
properties can then be used between the server and the submitted function f to ensure
the desired privacy: (i) the reconstructed function F is always Lipschitz; (ii) if f is
already Lipschitz, then with high probability |F (x)− f(x)| ≤ a for all x, where a is a
given parameter. This way, the server always evaluates a Lipschitz function F and thus
has the desired privacy guarantees. Furthermore, if the user provides a valid Lipschitz
function f , the mechanism outputs a value F (x) in the range f(x) ± a plus a random
noise; if a is reasonably small it is then absorbed in the noise. Thus, bounds on the
running time and additive error of the local filter translate directly into bounds on the
running time and accuracy of the corresponding privacy mechanism.

1.1 Previous Results on Local Filters

Despite the fact that local filters have been thoroughly studied, lower bounds for general
(not necessarily distance-respecting) adaptive filters remained a big challenge.

Saks and Seshadhri [16] present a distance-respecting local filter for monotonicity of
functions f : [n]d → R with running time (logn+ 1)O(d) per query. For monotonicity
of functions f : {0, 1}d → R, no nontrivial (i.e., performing o(2d) lookups per query)
filter is known. Saks and Seshadhri also show that a distance-respecting local filter for
monotonicity on the domain {0, 1}d must perform 2Ω(d) lookups per query. This lower
bound crucially uses the fact that the filter is distance respecting, and does not apply to
general local filters (even when no additive error is allowed).

As we explained, in many applications the extra requirement that the filter be distance-
respecting is not necessary. Bhattacharyya et al. [5] studied lower bounds for local
monotonicity filters which are not necessarily distance-respecting. However, their

2 More generally, if a user wants to evaluate a function f with Lipschitz constant at most ,
where > 1, then the Lipschitz function f/ can be submitted to the server. When the noisy
answer returned by the server is multiplied by , the effect is to add noise proportional to .

Limitations of Local Filters of Lipschitz and Monotone Functions 377

super-polynomial lower bounds only hold for nonadaptive filter. For the domain {0, 1}d,

Bhattacharyya et al. show that nonadaptive filters must perform Ω(2
αd

d) lookups per
query in the worst case, where α ≥ 0.1620. For adaptive filters, their bound quickly
degrades with the number of lookups performed to incomparable points in the domain
(x, y ∈ [n]d are comparable if x - y or y - x and incomparable otherwise). Specif-

ically, their lower bounds for adaptive filters is Ω(2
αd−�

d), where � is the number of
lookups to points incomparable to x made on query x; for arbitrary adaptive filters, this
degrades toΩ(d). Prior to our work, no super-polynomial lower bound for adaptive local
monotonicity filter was known.

For the Lipschitz property, Jha and Raskhodnikova [11] obtain a deterministic non-
adaptive local filter that runs in time O((log n + 1)d) per query. They also show that
the lower bound from [5] for nonadaptive filters, with the same statement, applies to
nonadaptive local filters of the Lipschitz property.

Previous work left open whether it is possible to obtain (adaptive and not necessarily
distance-respecting) local filters monotonicity and Lipschitz properties that make only
poly(n, d) lookups per query.

1.2 Our Results and Techniques

We consider local a-filters, which is the relaxation of local filters that allows additive
error a, as described above and formally stated in Definition 2.1. These filters do not
need to be distance-respecting and can be fully adaptive. Our main results, stated in
more detail in Section 2, are that even such relaxed filters need to perform a number
of lookups exponential in the dimension d in order to reconstruct a Lipschitz (resp.,
monotone) function. (This applies even to functions on the domain {0, 1}d).

Theorem 1.1 (Limitations of Lipschitz filters). Consider the Lipschitz property of
functions f : {0, 1}d → R and any (randomized) local (not necessarily distance-
respecting) d

402 -filter for this property. Then there is a function f and a query x where,
with constant probability, this filter makes 2Ω(d) lookups.

The additive error a = d/402 in the theorem above is as large as possible up to a
constant factor: the trivial filter that outputs F (x) = (f(0) + f(1))/2, where 0 and 1
are all-0 and all-1 vectors, respectively, is a local d2 -filter.3 To see this, note that (i) the
reconstructed function F (x) is Lipschitz and (ii) if the input function f(x) is Lipschitz
then |F (x)− f(x)| = 1

2 |f(0)+ f(1)− 2f(x)| ≤ 1
2 (|f(0)− f(x)|+ |f(1)− f(x)|) ≤

1
2 (‖0− x‖1 + ‖1− x‖1) = d

2 for every x ∈ {0, 1}d.
For monotonicity, we can prove an analogous theorem with no upper bound on a.

This is explained by the fact that monotonicity is determined by the order of the values
at different points and not their magnitudes. To calibrate the additive error, we state the
next theorem for functions with bounded range, namely, [0, 2a+ 1]. The additive error
in the theorem is also tight because for functions with that range, the trivial filter above
that outputs F (x) = (f(0) + f(1))/2 is a local (a+ 1

2)-filter.

3 In order to simplify the presentation, we did not attempt to optimize this constant factor. In
particular, the choice of weights d/3 and 2d/3 in Definition 3.1 might not give the best factor.

378 P. Awasthi et al.

Theorem 1.2 (Limitations of monotonicity filters). Consider the monotonicity prop-
erty of functions f : {0, 1}d → [0, 2a+ 1] and any (randomized) local a-filter for this
property. Then there is a function f and query x where, with constant probability, this
filter makes 2Ω(d) lookups.

To introduce the ideas used in the proofs, we focus for now on deterministic filters.
To obtain lower bounds for nonadaptive filters in [5, 11], the authors construct two
collections of ‘hard functions’ f (x,y) and f (x,y) (satisfying the Lipschitz property) in-
dexed by x, y ∈ {0, 1}d. They show that if a local filter works correctly on f (x,y) and
f (x,y), as well as on a suitably defined function h(x,y) (violating the Lipschitz property
on (x, y)), the lookups made on queries x and y need to have a structured interaction.
(Note that in this case the lookups are independent of the input function because the fil-
ter is nonadaptive.) More precisely, they construct a graph over {0, 1}d based on these
interactions and show that it is a 2-transitive-closure-spanner (2-TC-spanner) for the
hypercube. (TC-spanners were introduced in [6]; see Section 3 for definition and com-
parison with c-connectors that we introduce.) Using the lower bound on the size of a
2-TC-spanner for the hypercube from [5], it can be shown that any non-adaptive filter
must use exponential lookups on one of the query points.

In the case of adaptive filters one cannot assume that the lookups made on a given
query point are independent of the input function. One simple idea to try to overcome
this obstacle is to consider, for each query x, the union of the lookups made on query x
over all possible choice of hard functions. One can then try to apply the lower bound ap-
proach discussed in the previous paragraph. In fact this union of lookups still has strong
interactions that imply a 2-TC-spanner. The problem is that this is clearly overcounting
the number of lookups made by the filter on a single given function on query x. Due to
the large number of ‘hard functions’ considered in [5, 11], this overcounting makes the
bound coming from the 2-TC-spanners vacuous for adaptive filters; this is where the
factor 2 lost in [5] mentioned above comes from.

In order to remedy this, we build a collection of hard functions which are much
‘smoother’ than those from [5, 11]. This allows us to use fewer functions. However, it
comes at a cost: the interactions of the lookups caused by these functions are not as
structured as before and do not imply a 2-TC-spanner. We introduce a type of directed
graph called c-connector (Definition 3.2) which captures lookup interactions. When arc
directions are ignored, a c-connector is a relaxation of 2-TC-spanners (as discussed in
Section 3, our transformation to c-connectors preserves information on whether x is
looked up on query y or vice versa, while this information is lost in the transformation
to 2-TC-spanners in [5, 11]). Nevertheless, we can argue that a c-connector has a large
maximum outdegree, which relates to the lookup complexity. Indeed, one of the key
ingredients for our lower bound is recognizing the limitations of 2-TC-spanners in this
context and finding a combinatorial structure with the right amount of flexibility. Given
the importance of TC-spanners (see [13] for a survey), c-connectors might find use
outside of this work.

Organization. Section 2 gives basic definitions and a more detailed statement of our
main results. In Section 3, we define c-connectors, the graph objects on which our lower
bounds are based. In Sections 4 and 5, we develop a connection between c-connectors
and local filters for the Lipschitz property and monotonicity. In Section 6, we bound

Limitations of Local Filters of Lipschitz and Monotone Functions 379

the outdegree of c-connectors. Our lower bounds follow directly from putting these two
parts together.

2 Definitions and Formal Statement of Results

Given a point x ∈ {0, 1}d, we use xi to denote its ith coordinate and |x| to denote its
Hamming weight, that is, |x| =

∑
i xi. We identify each point x ∈ {0, 1}d with the

subset of coordinates where it takes value 1, namely, {i : xi = 1}. This gives meaning
to expressions like x ⊆ y, x ∩ y, x ∪ y and x \ y for x, y ∈ {0, 1}d. For x ∈ {0, 1}d,
the Hamming weight |x| coincides with the cardinality of the set associated with x.

We now provide a formal definition of local a-filters that allow additive error a. It is
stated for a general property P of functions with domain D; in our case, P will be either
the Lipschitz property or monotonicity.

Definition 2.1 (Local a-filter). Let P be a property of functions f : D → R for some
R ⊆ R. A local a-filter for P with error probability δ is a randomized algorithm which
is given black-box access to a function f : D → R together with a query point x ∈
D. For each random seed σ in the algorithm’s probability space (Ω,Pr), the filter
obtains the value of f on a sequence of points L(σ, f, x) = {y1, y2, . . . , yk}, called
lookups, (where the choice of yi depends only on x, σ and f(y1), f(y2), . . . , f(yi−1))
and outputs a reconstructed value F (σ, f, x) for x solely based on the values of f at
L(σ, f, x). The reconstructed function Fσ,f : D → R given by Fσ,f (x) = F (σ, f, x)
must obey two conditions: (i) Fσ,f satisfies property P for all functions f and all random
seeds σ; (ii) if f satisfies property P then for all x ∈ D we have Prσ(Fσ,f (x) ∈
[f(x)− a, f(x) + a]) ≥ 1− δ.

Notice that requirement (ii) in this definition is weaker than requiring that “if f satisfies
property P then Prσ(∀x ∈ D,Fσ,f (x) ∈ [f(x) − a, f(x) + a]) ≥ 1 − δ”; therefore,
we manage to obtain lower bounds for a more general class of filters. As a notational
remark, we usually omit the probability space and denote a local a-filter by (L, F).

The next observation captures the structural rigidity of local filters exploited in our
lower bounds. It states that if functions f and g are identical on the lookups performed
on query x when the input function is f , then the filter will perform the same lookups
on x for both f and g and, consequently, reconstruct the same value.

Observation 2.1. Let (L, F) be a local a-filter. Then the following holds for every
random seed σ and query point x: if f and g are functions such that f |L(σ,f,x) =
g|L(σ,f,x), then F (σ, f, x) = F (σ, g, x).

Now we restate Theorems 1.1 and 1.2, giving more details about parameters we obtain.

Theorem 2.1. Fix a non-negative constant δ, consider a sufficiently large integer d
(depending on δ) and let a ∈ [0, d/402]. Let (L, F) be a local a-filter for the Lipschitz
property with error probability δ. Then there exists a function f : {0, 1}d → R and a
query x ∈ {0, 1}d such that Prσ(|L(σ, f, x)| ≥ 20.009d) ≥ 1/2− 1.1δ.

380 P. Awasthi et al.

Theorem 2.2. Fix a non-negative constant δ, consider a sufficiently large integer d
(depending on δ) and let a ≥ 0. Let (L, F) be a local a-filter for monotonicity with
error probability δ. Then there exists a function f : {0, 1}d → [0, 2a+ 1] and a query
x ∈ {0, 1}d such that Prσ(|L(σ, f, x)| ≥ 20.009d) ≥ 1/2− 1.1δ.

The proof of Theorem 2.1 (resp. Theorem 2.2) follows directly from Lemma 4.3 (resp.
Lemma 5.3) and Theorem 6.1; details are given in the full version [3].

3 c-Connectors

In this section, we formally introduce the notion of c-connectors. This combinatorial
structure can be represented as a directed graph on the vertex set {0, 1}d, where pairs
of nodes need to share an out-neighbor with some prescribed properties. As we shall
see next, c-connectors are related to 2-TC-spanners, although the full motivation for the
exact definition will only become clear in Sections 4 and 5.

Definition 3.1. Let X denote the set of points in {0, 1}d with Hamming weight exactly
d/3 and let Y denote the set of points in {0, 1}d with Hamming weight exactly 2d/3.
Also let P denote the set of comparable pairs (x, y) ∈ X×Y , namely, such that x ≺ y.

Definition 3.2 (c-connector). Fix c ∈ N. Given a subset P ′ of P , a digraph G with the
node set {0, 1}d is a c-connector for P ′ if for every (x, y) ∈ P ′ there exists z ∈ {0, 1}d
with the following properties:

– (Connectivity) The arcs (x, z) and (y, z) belong to G.
– (Structure) |z \ y| < c and |z| > d

3 − c.

A 2-TC-spanner of the boolean hypercube (with the usual partial order) is a directed
graph H on the node set {0, 1}d with the property that for all x ≺ y there is a point z
satisfying x - z - y, such that the arcs (x, z) and (z, y) belong to H [6]. If we reorient
the arcs in a 2-TC-spanner of the hypercube, so that the nodes in Y only have outgoing
arcs, we obtain a valid c-connector for every c ≥ 1: this is because the requirement
x - z - y (in the definition of 2-TC-spanner) implies the structure requirement in a
c-connector. Therefore, c-connectors relax 2-TC-spanners in two ways: first it requires
that only pairs in P have a common neighbor with prescribed properties, and second it
relaxes the required properties of this common neighbor. We remark that the direction
of the arcs in c-connectors is important here, since in order to obtain the desired results
we lower bound the outdegree. In contrast, in previous work [5, 11] the information of
whether point x was looked up on query y or vice versa was lost in the transformation
to the corresponding 2-TC-spanner and the lower bound on the number of arcs, not the
outdegree, was used. This is one of the changes that gives us stronger lower bounds.

4 Local Filters for the Lipschitz Property Imply c-Connectors

In this section we focus on the Lipschitz property. We construct a family of functions
such that a local a-filter that works correctly on functions from the family must preform
lookups corresponding to a c-connector. The idea is to start with a Lipschitz function

Limitations of Local Filters of Lipschitz and Monotone Functions 381

f0 and then construct other Lipschitz functions f cy which agree with f0 on most points,
but where f cy(y) is much larger than f0(y). We argue that if a purported local a-filter
makes only ‘local’ lookups when reconstructing at queries x and y, then we can create
a function that looks like f cy around y (so that the filter is fooled and returns F (y) in
the range f cy(y)± a) and looks like f0 around x (so that the filter is fooled and returns
F (x) in the range f0(x) ± a � f cy(y)± a). Thus, for the returned function, F (x) and
F (y) are too far apart, ensuring that it is not Lipschitz.

4.1 Hard Functions for Filter

Recall from Definition 3.1 that Y denotes the set of points in {0, 1}d with Hamming
weight exactly d/3. In order to construct these hard functions, for a point y ∈ Y let
Ty = {x ∈ {0, 1}d : x ⊆ y, |x| ≥ d/3}. Define the function f0 by f0(z) =
max{|z|, d/3} for all z ∈ {0, 1}d. Intuitively, for c ∈ N and y ∈ Y , we define the
function f cy as the smallest Lipschitz function which is at least f0 + cχTy , where χTy

denotes the characteristic function of the set Ty . More specifically, we set f cy(z) =

max{|z|+ c− |z \ y|, f0(z)} for all z ∈ {0, 1}d.
Clearly f0 is Lipschitz, and the functions f cy can be shown to be Lipschitz as well.

Lemma 4.1. For all c ∈ N and y ∈ Y the function f cy is Lipschitz.

For a point y ∈ Y and a constant c ∈ N, let T cy ⊆ {0, 1}d be the set of points z, such
that f cy(z) �= f0(z). Then T 1

y = Ty and the set T cy gets larger as c increases: specif-

ically, T cy ⊆ T c
′

y for c < c′. The definitions of f cy and f0 directly give the following
observation, which justifies the specific structure used in the definition of a c-connector.

Observation 4.1. All elements z in the set T cy satisfy |z \ y| < c and |z| > d
3 − c.

4.2 Correct Reconstruction of Hard Functions Implies c-Connector

Now we show that if a local a-filter is correct on the constructed functions, its lookups
correspond to a c-connector for the interesting pairs P (recall that P is the set of pairs
(x, y) ∈ X × Y such that x ≺ y). We start by essentially focusing on deterministic
filters or, alternatively, by looking at a ‘good’ seed of a randomized filter. The analysis
for randomized filters is based on the ability to pick a few of these good seeds and then
analyzing the ‘union’ of the behavior of the filter running with these seeds.

Consider a local a-filter (L, F). Given points x ∈ X and y ∈ Y , we say that a
random seed σ ∈ Ω is good for x and y if Fσ,f0(x) ∈ [f0(x) − a, f0(x) + a] and
Fσ,fc

y
(y) ∈ [f cy(y)−a, f cy(y)+a]. Given a seed σ which is good for x and y, we define

the digraph Gxy
σ = ({0, 1}d, Axyσ) that captures the lookups made on queries x and y.

Specifically, the set Axyσ consists of all the arcs {(x, z) : z ∈ L(σ, f0, x) ∪ {x}} and
{(y, z) : z ∈ L(σ, f cy , y) ∪ {y}}.

Lemma 4.2 (Local filter implies c-connector). Consider a local a-filter (L, F) for
the Lipschitz property and an integer c > 2a. For all (x, y) ∈ P , if σ ∈ Ω is good for
x and y then Gxy

σ is a c-connector for (x, y).

382 P. Awasthi et al.

Proof. For the sake of contradiction suppose not. Unraveling the definitions and using
Observation 4.1 this means that the sets (L(σ, f0, x) ∪ {x}) ∩ T cy and (L(σ, f cy , y) ∪
{y}) ∩ T cy do not intersect. Then let A,B be a partition of T cy such that A contains
(L(σ, f0, x) ∪ {x}) ∩ T cy and B contains (L(σ, f cy , y) ∪ {y}) ∩ T cy . Define the func-
tion f such that f |A = f0|A, f |B = f cy |B , and f |{0,1}d\(A∪B) = f0|{0,1}d\(A∪B) =
f cy |{0,1}d\(A∪B) (the last equation follows from the definition of T cy). To reach a con-
tradiction, we show that the filter does not reconstruct f correctly.
Notice that f0|L(σ,f0,x) = f |L(σ,f0,x), so Observation 2.1 gives that F (σ, f, x) =
F (σ, f0, x). Similarly, f cy |L(σ,fc

y ,y)
= f |L(σ,fc

y ,y)
and hence F (σ, f, y) = F (σ, f cy , y).

Now since σ is good for x and y, we have that F (σ, f, x) = F (σ, f0, x) ≤ f0(x) +
a = d

3 + a and F (σ, f, y) = F (σ, f cy , y) ≥ f cy(y) − a = 2d
3 + c − a. Since c > 2a

we get F (σ, f, y) − F (σ, f, x) > d/3 = ‖x − y‖1, and hence the function Fσ,f is not
Lipschitz; this contradicts that (L, F) is a local a-filter and concludes the proof. ��

Consider two subsets P1,P2 of P . Notice that if G1 is a c-connector for P1 and G2 is
a c-connector for P2 then the graph formed by the union of (the arcs of) G1 and G2

is a c-connector for P1 ∪ P2. We remark that when we take this union we do not add
parallel arcs. This directly gives the following result.

Corollary 4.1. Consider a local a-filter (L, F) for the Lipschitz property and an in-
teger c > 2a. Suppose that for each (x, y) ∈ P there is a random seed σ(x, y) ∈
Ω which is good for x and y. Then the graph obtained as the union of the graphs
{Gxy

σ(x,y)}(x,y)∈P is a c-connector for P . Moreover, this graph has outdegree at most

max

{
max
x∈X

{∣∣⋃
y

L(σ(x, y), f0, x)
∣∣} ,max

y∈Y

{∣∣⋃
x

L(σ(x, y), f cy , y)
∣∣}}+ 1. (1)

Using this corollary, we show that a local a-filter with small ‘average’ number of
lookups implies a c-connector for P with a small outdegree. The idea is to construct,
via the probabilistic method, a set S̄ ⊆ Ω of good seeds which attains a small value in
(1); details are provided in the full version [3].

Lemma 4.3. Consider a local a-filter (L, F) for the Lipschitz property with er-
ror probability δ and an integer c > 2a. Consider α > 0 and let M =
maxf,x Prσ (|L(σ, f, x)| > α) . If δ + M < 1/2 then there is a c-connector for P
with maximum outdegree at most 2dα/ log

(
1

2δ+2M

)
+ 1.

5 Local Filters for Monotonicity Imply 1-Connectors

In this section, we consider the monotonicity property and show that again the lookups
performed by a local a-filter give rise to a c-connector (in this case, with c = 1).

5.1 Hard Functions for Filter

Again, we start by defining functions f0 and fay , such that if a local filter is correct on
these functions, its lookups correspond to a 1-connector. Recall that for a point y ∈ Y ,

Limitations of Local Filters of Lipschitz and Monotone Functions 383

we define Ty = {x ∈ {0, 1}d : x ⊆ y, |x| ≥ d/3}. Define the function f0 by f0(z) =
2a + 1 if |z| ≥ d/3 and f0(z) = 0 if |z| < d/3. For a point y ∈ Y , we define the
function fay equal to f0− (2a+1)χTy , namely, fay (z) = 2a+1 if z ≥ d/3 and z /∈ Ty
and fay (z) = 0 otherwise. It can be easily verified that these functions are monotone.

Lemma 5.1. For all y ∈ Y and a ≥ 0, the functions f0 and fay are monotone.

Notice that the functions f0 and fay differ exactly on points in Ty and that Ty is the set
of points which satisfy the structure property in the definition of a 1-connector.

5.2 Correct Reconstruction of Hard Functions Implies 1-Connector

Recall that P is the set of comparable pairs (x, y) ∈ X × Y or, equivalently, pairs
where x ∈ Ty . Consider a local a-filter (L, F) for monotone functions. As before,
given x ∈ X and y ∈ Y , we say that a random seed σ ∈ Ω is good for x and y if
Fσ,f0(x) ∈ [f0(x) − a, f0(x) + a] and Fσ,fa

y
(y) ∈ [fay (y) − a, fay (y) + a]. Given

a seed σ which is good for x and y, we define the digraph Gxy
σ = ({0, 1}d, Axyσ)

in a way similar to what we did in the previous section: we add to Axyσ all the arcs
{(x, z) : z ∈ L(σ, f0, x) ∪ {x}} and {(y, z) : z ∈ L(σ, fay , y) ∪ {y}}.

Again the construction of our functions and the digraph Gxy
σ together with the be-

havior of local a-filters captured in Observation 2.1 give the following.

Lemma 5.2. Take a ≥ 0 and consider a local a-filter (L, F) for monotonicity. For any
(x, y) ∈ P , if σ ∈ Ω is good for x and y then Gxy

σ is a 1-connector for (x, y).

Finally, we can utilize the same technique for finding a set of good seeds which achieve
small value in (1) as done in Lemma 4.3 to obtain the desired connection between local
a-filters and 1-connectors for P .

Lemma 5.3. Take a ≥ 0 and consider a local a-filter (L, F) for monotone functions
with error probability δ. Consider α > 0 and let M = maxf,x Prσ (|L(σ, f, x)| > α) .
If δ + M < 1/2 then there is a 1-connector for P with maximum outdegree at most

2dα/ log
(

1
2δ+2M

)
+ 1.

6 Lower Bound on the Maximum Outdegree of a c-Connector

Recall that P is the set of pairs (x, y) ∈ X × Y such that x and y are comparable. We
show a lower bound on the maximum outdegree of a c-connector for P . We remark that
the constants in the bound are not optimized.

Theorem 6.1. Consider d ≥ 40, 200 and let c be an integer in the range [d/201, d/200].
Then the maximum outdegree of any c-connector for P is at least 20.01d.

To prove this, let G be a c-connector for P . Let T̃ cy = {z : |z \y| < c, |z| > d/3−c} be

the points which satisfy the structure property in Definition 3.2. Then Ty ⊆ T cy ⊆ T̃ cy
for all y ∈ Y , and for x ∈ Ty and z ∈ T̃ cy we have x ∪ z ∈ T̃ cy . We say that a pair

(x, y) ∈ P is covered by a point z if z ∈ T̃ cy and the arcs (x, z) and (y, z) belong to G.

384 P. Awasthi et al.

Each pair in P needs to be covered by a point. For a fixed x ∈ X , the outdegree
of x in G is at least the number of distinct points which are covering the pairs in P
containing x (and similarly for a fixed y ∈ Y). The difficulty in lower bounding the
outdegree of x is that many pairs containing it can be covered by the same point. The
heart of the argument is to show that no point can cover too many such pairs. It relies on
the fact that the sets T̃ cy are ‘localized’. More precisely, consider a point z and let (x, y)

be covered by it. Notice that x ∈ Ty and z ∈ T̃ cy , hence x ∪ z ∈ T̃ cy . If z is not near

x, namely, z \ x is large, then we argue that not too many points y satisfy x ∪ z ∈ T̃ cy ,

given the localization of T̃ cy . On the other hand, if z is near x then there are not too many
possibilities for x itself. Our bound is derived by putting these observations together.

In order to make the above argument work we divide the pairs in P into two groups
based on the covers they have. Let α ∈ [1/15, 1/14] be such that αd is an integer,
which exists since d is sufficiently large. For (x, y) ∈ P and z that covers (x, y), if
|z \ x| ≤ αd, then we say that z is near x and that z is a nearby cover of (x, y). Let N
denote the set of pairs (x, y) ∈ P which have a nearby cover and let F = P \N be the
remaining pairs. For a fixed y ∈ Y , define Ny as the pairs in N containing y and for
x ∈ X define Fx as the pairs in F containing x.

Let Z ⊆ {0, 1}d be the set of points which cover at least one pair in P . For a
given x ∈ X , we use Zx to denote the set of points which cover at least one pair in P
containing x. We define Zy analogously. That is, Z is the union of sets Zx and Zy over
all x ∈ X and y ∈ Y .

Now we sketch the argument that upper bounds the number of pairs in N and F ;
computations are presented in the full version [3]. In order to upper bound N we start
by arguing that, for a fixed y ∈ Y , a point cannot be a nearby cover for many pairs
(x, y) in Ny . To see this, take z ∈ Zy and let (x, y) ∈ P be such that z is a nearby
cover for it. Then notice that x and z are very similar: |z \ x| ≤ αd and |x \ z| ≤
αd + c; the first bound follows from the definition of a nearby cover and the second
uses |z| ≥ |x| − c from Observation 4.1. From these constraints, it follows that there
are at most d2

(
d/3+αd
αd

)(
2d/3+c
αd+c

)
possibilities for such x’s. Thus, for all y ∈ Y we have

|Ny| ≤ |Zy| · d2
(
d/3+αd
αd

)(
2d/3+c
αd+c

)
. Adding over all y gives the desired bound.

Lemma 6.1. Letting Θ = d2
(
d/3+αd
αd

)(
2d/3+c
αd+c

)
, the number of pairs in N is at most

|Y | · Θ ·maxy∈Y {|Zy|}.

To upper bound the size of F we start by showing that, for a fixed x ∈ X , a point cannot
be a (non-nearby) cover for too many pairs in Fx. To see this, take z ∈ Zx and suppose
(x, y) ∈ Fx is covered by z. Notice that x ∪ z and y are very similar: |(x ∪ z) \ y| ≤ c
and |y \ (x ∪ z)| ≤ d/3− αd+ c; the first bound follows from x ⊆ y and Observation
4.1, and the second further uses the fact that |x∪ z| ≥ d/3+αd (since z is not a nearby

cover). Then it is easy to see that there are at most d2
(2d

3 +c
c

)(2d
3 −αd

d
3−αd+c

)
such y’s. Thus,

for each x ∈ X we have |Fx| ≤ |Zx| · d2
(2d

3 +c
c

)(2d
3 −αd

d
3−αd+c

)
and adding over all x gives

the desired bound on F .

Lemma 6.2. Letting Φ = d2
(2d

3 +c
c

)(2d
3 −αd

d
3−αd+c

)
, the number of pairs in F is at most

|X | · Φ ·maxx∈X{|Zx|}.

Limitations of Local Filters of Lipschitz and Monotone Functions 385

The maximum outdegree of the c-connector G is bounded from below by

M � max{max
x∈X

{|Zx|},max
y∈Y

{|Zy|}}.

Since N and F partition the set of pairs P , we can add the bounds from Lemmas 6.1
and 6.2 and obtain that M is at least the size of P divided by

(
d
d/3

)
(Θ + Φ), which

gives M ≥
(2d/3
d/3

)
/(Θ + Φ). Standard computations can be used to lower bound the

right-hand side of this expression by 20.01d. This concludes the proof of Theorem 6.1.

7 Conclusion and Future Work

We show that local filters for the Lipschitz property and monotonicity require expo-
nentially many (in the dimension) lookups, even when allowed additive error. One can
try to further relax the requirements on local filters in order to overcome these lower
bounds.

One possibility is to consider local filters whose output does not satisfy the desired
property P with small probability. Such weaker guarantees can still be useful for other
definitions of privacy [4, 8]. Another relaxation, specific to the Lipschitz property, is to
allow the reconstructed function F to be b-Lipschitz, that is, to require only |F (x) −
F (y)| ≤ b·‖x−y‖1 for all x, y ∈ {0, 1}d. For the privacy application described, having
a and b of orderO(

√
d) is still acceptable. We remark that the techniques presented here

yield similar lower bounds for b slightly larger than 1, but not for b ≥ 2.

References

[1] Ailon, N., Chazelle, B., Comandur, S., Liu, D.: Property-preserving data reconstruction.
Algorithmica 51(2), 160–182 (2008)

[2] Alon, N., Rubinfeld, R., Vardi, S., Xie, N.: Space-efficient local computation algorithms.
In: Rabani, Y. (ed.) SODA, pp. 1132–1139. SIAM (2012)

[3] Awasthi, P., Jha, M., Molinaro, M., Raskhodnikova, S.: Limitations of local filters of
lipschitz and monotone functions. Electronic Colloquium on Computational Complexity
(ECCC) TR12-075 (2012)

[4] Bhaskar, R., Bhowmick, A., Goyal, V., Laxman, S., Thakurta, A.: Noiseless Database Pri-
vacy. In: Lee, D.H., Wans, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 215–232.
Springer, Heidelberg (2011)

[5] Bhattacharyya, A., Grigorescu, E., Jha, M., Jung, K., Raskhodnikova, S., Woodruff, D.P.:
Lower bounds for local monotonicity reconstruction from transitive-closure spanners.
SIAM J. Discrete Math. 26(2), 618–646 (2012)

[6] Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.P.: Transitive-
closure spanners. In: SODA, pp. 932–941 (2009)

[7] Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical
problems. J. Comput. Syst. Sci. 47(3), 549–595 (1993)

[8] Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our Data, Ourselves: Pri-
vacy Via Distributed Noise Generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 486–503. Springer, Heidelberg (2006)

386 P. Awasthi et al.

[9] Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private
Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284.
Springer, Heidelberg (2006)

[10] Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and
approximation. J. ACM 45(4), 653–750 (1998)

[11] Jha, M., Raskhodnikova, S.: Testing and reconstruction of Lipschitz functions with ap-
plications to data privacy. In: IEEE FOCS, pp. 433–442 (2011) full version available at,
http://eccc.hpi-web.de/report/2011/057/

[12] Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-correcting
codes. In: STOC, pp. 80–86 (2000)

[13] Raskhodnikova, S.: Transitive-Closure Spanners: A Survey. In: Goldreich, O. (ed.) Property
Testing. LNCS, vol. 6390, pp. 167–196. Springer, Heidelberg (2010)

[14] Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to pro-
gram testing. SIAM J. Comput. 25(2), 252–271 (1996)

[15] Rubinfeld, R., Tamir, G., Vardi, S., Xie, N.: Fast local computation algorithms. In: ICS,
pp. 223–238 (2011)

[16] Saks, M.E., Seshadhri, C.: Local monotonicity reconstruction. SIAM J. Comput. 39(7),
2897–2926 (2010)

http://eccc.hpi-web.de/report/2011/057/

Testing Lipschitz Functions on Hypergrid Domains�

Pranjal Awasthi1, Madhav Jha2, Marco Molinaro1, and Sofya Raskhodnikova2,��

1 Carnegie Mellon University, USA
{pawasthi,molinaro}@cmu.edu
2 Pennsylvania State University, USA
{mxj201,sofya}@cse.psu.edu

Abstract. A function f(x1, ..., xd), where each input is an integer from 1 to
n and output is a real number, is Lipschitz if changing one of the inputs by 1
changes the output by at most 1. In other words, Lipschitz functions are not very
sensitive to small changes in the input. Our main result is an efficient tester for
the Lipschitz property of functions f : [n]d → δZ, where δ ∈ (0, 1] and δZ is
the set of integer multiples of δ.

The main tool in the analysis of our tester is a smoothing procedure that makes
a function Lipschitz by modifying it at a few points. Its analysis is already non-
trivial for the 1-dimensional version, which we call Bubble Smooth, in analogy to
Bubble Sort. In one step, Bubble Smooth modifies two values that violate the Lip-
schitz property, i.e., differ by more than 1, by transferring δ units from the larger
to the smaller. We define a transfer graph to keep track of the transfers, and use
it to show that the 1 distance between f and BubbleSmooth(f) is at most twice
the 1 distance from f to the nearest Lipschitz function. Bubble Smooth has other
important properties, which allow us to obtain a dimension reduction, i.e., a re-
duction from testing functions on multidimensional domains to testing functions
on the 1-dimensional domain, that incurs only a small multiplicative overhead in
the running time and thus avoids the exponential dependence on the dimension.

1 Introduction

Property testing aims to understand how much information is needed to decide (approx-
imately) whether an object has a property. A property tester [8, 5] is given oracle access
to an object and a proximity parameter ε ∈ (0, 1). If an object has the desired property,
the tester accepts it with probability at least 2/3; if the object is ε-far from having the
desired property then the tester rejects it with probability at least 2/3. Specifically, for
properties of functions, ε-far means that a given function differs on at least an ε fraction
of the domain points from any function with the property. Properties of different types
of objects have been studied, including graphs, metrics spaces, images and functions.

We present efficient testers for the Lipschitz property of functions1 f : [n]d → δZ,
where δ ∈ (0, 1] and δZ is the set of integer multiples of δ. A function f is c-Lipschitz

� All omitted proofs appear in the full version [1].
�� P.A. is supported by NSF grant CCF-1116892. M.J. and S.R. are supported by NSF CAREER

grant CCF-0845701 and NSF grant CCF-0729171. M.M. is supported by NSF grant CMMI-
1024554.

1 The set {1, . . . , n} is denoted by [n].

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 387–398, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

388 P. Awasthi et al.

(with respect to the �1 metric on the domain) if |f(x) − f(y)| ≤ c · |x − y|1. Points
in the domain [n]d can be thought of as vertices of a d-dimensional hypergrid, where
every pair of points at �1 distance 1 is connected by an edge. Each edge (x, y) imposes
a constraint |f(x)− f(y)| ≤ c and a function f is c-Lipschitz iff every edge constraint
is satisfied. We say a function is Lipschitz if it is 1-Lipschitz. (Note that rescaling by a
factor of 1/c converts a c-Lipschitz function into a Lipschitz function.)

Testing of the Lipschitz property was first studied by Jha and Raskhodnikova [7] who
motivated it by applications to data privacy and program verification. They presented
testers for the Lipschitz property of functions on the domains {0, 1}d (the hypercube)
and [n] (the line) that run in timeO(d2/(δε)) andO(log n/ε), respectively. Even though
the applications in [7] are most convincing for functions on general hypergrid domains
(in one of their applications, for instance, a point in [n]d represents a histogram of a
private database), no nontrivial tester for functions on such general domains was known
prior to this work.

1.1 Our Results

We present two efficient testers of the Lipschitz property of functions of the form f :
[n]d → δZ with running time polynomial in d, n and (δε)−1. Our testers are faster for
functions whose image has small diameter.

Definition 1.1 (Image diameter). Given a function f : [n]d → R, its image diameter
is ImgD(f) = maxx∈[n]d f(x)−miny∈[n]d f(y).

Observe that a Lipschitz function on [n]d must have image diameter at most nd. How-
ever, image diameter can be arbitrarily large for a non-Lipschitz function.

Our testers are nonadaptive, that is, their queries do not depend on answers to pre-
vious queries. The first tester has 1-sided error, that is, it always accepts Lipschitz
functions. The second tester is faster (when

√
d � log(1/ε) and ImgD(f) is large), but

has 2-sided error, i.e., it can err on both positive and negative instances.

Theorem 1.1 (Lipschitz testers). For2 all δ, ε ∈ (0, 1], the Lipschitz property of func-
tions f : [n]d → δZ can be tested nonadaptively with the following time complexity:

(1) in O
(
d
δε ·min {ImgD(f), nd} · logmin{ImgD(f), n}

)
time with 1-sided error.

(2) in O
(
d
δε ·min

{
ImgD(f), n

√
d log(1/ε)

}
· logmin{ImgD(f), n}

)
time with

2-sided error.

If ImgD(f), δ and ε are constant, then both testers run inO(d) time. This is tight already
for the range {0, 1, 2}, even for the special case of the hypercube domain [7].

1.2 Our Techniques

For clarity of presentation, we state and prove all our theorems for δ = 1, i.e., for
integer-valued functions. In the full version, by discretizing (as was done in [7]), we
extend our results to the range δZ.

2 If δ > 1 then f is Lipschitz iff it is 0-Lipschitz (that is, constant). Testing if a function is
constant takes O(1/ε) time.

Testing Lipschitz Functions on Hypergrid Domains 389

The main challenge in designing a tester for functions on the hypergrid domains is
avoiding an exponential dependence on the dimension d. We achieve this via a dimen-
sion reduction, i.e., a reduction from testing functions on the hypergrid [n]d to testing
functions on the line [n], that incurs only an O(d · min{ImgD, nd}) multiplicative
overhead in the running time. In order to do this, we relate the distance to the Lipschitz
property of a function f on the hypergrid to the average distance to the Lipschitz prop-
erty of restrictions of f to 1-dimensional (axis-parallel) lines. For i ∈ [d], let ei ∈ [n]d

be 1 on the ith coordinate and 0 on the remaining coordinates. Then for every dimen-
sion i ∈ [d] and α ∈ [n]d with αi = 0, the line g of f along dimension i with position
α is the restriction of f defined by g(xi) = f(α + xi · ei), where xi ranges over [n].
We denote the set of lines of f along dimension i by Lif and the set of all lines, i.e.,⋃
i∈[d] L

i
f , by Lf . We denote the relative distance of a function h to the Lipschitz prop-

erty, i.e., the fraction of input points where the function needs to be changed in order
to become Lipschitz, by εLip(h). The technical core of our dimension reduction is the
following theorem that demonstrates that if a function on the hypergrid is far from the
Lipschitz property then a random line from Lf is, in expectation, also far from it.

Theorem 1.2 (Dimension reduction). For all functions f : [n]d → Z, the following

holds: Eg←Lf

[
εLip(g)

]
≥ εLip(f)

2·d·ImgD(f) .

To obtain this result, we introduce a smoothing procedure that “repairs” a function
(i.e., makes it Lipschitz) one dimension at a time, while modifying it at a few points.
Such procedures have been previously designed for restoring monotonicity of Boolean
functions [4, 3] and for restoring the Lipschitz property of functions on the hypercube
domain [7]. The key challenge is to find a smoothing procedure that satisfies the follow-
ing three requirements: (1) It makes all lines along dimension i (i.e., in Lif) Lipschitz.
(2) It changes only a small number of function values. (3) It does not make lines in other
dimensions less Lipschitz, according to some measure.

Smoothing Procedure for 1-Dimensional Functions. Our first technical contribu-
tion is a local smoothing procedure for functions f : [n] → Z, which we call Bub-
bleSmooth, in analogy to Bubble Sort. In one basic step, BubbleSmooth modifies two
consecutive values (i.e., f(i) and f(i + 1) for some i ∈ [n − 1]) that violate the Lips-
chitz property, namely, differ by more than 1. It decreases the larger and increases the
smaller by 1, i.e., it transfers a unit from the larger to the smaller. See Algorithm 1 for
the description of the order in which basic steps are applied. BubbleSmooth is a natural
generalization of the averaging operator in [7], used to repair an edge of the hypercube,
that can also be viewed as several applications of the basic step to the edge.

One challenge in analyzing BubbleSmooth is that when it is applied to all lines in
one dimension, it may increase the average distance to the Lipschitz property for the
lines in the remaining dimensions. Our second key technical insight is to use the �1
distance to the Lipschitz property to measure the performance of our procedure on the
line and its effect on other dimensions. The �1 distance between functions f and f ′ on
the same domain, denoted by |f − f ′|1, is the sum of |f(x) − f ′(x)| over all values
x in the domain. The �1 distance of a function f to the nearest Lipschitz function over
the same domain is denoted by �Lip1 (f). Observe that the Hamming distance and the �1

390 P. Awasthi et al.

distance from a function to a property can differ by at most ImgD(f). Later, we leverage
the fact that Lipschitz functions have a relatively small image diameter to relate the �1
distance to the Hamming distance.

We prove that BubbleSmooth returns a Lipschitz function and that it makes at most
twice as many changes in terms of �1 distance as necessary to make a function Lipschitz.

Theorem 1.3. Consider a function f : [n] → Z and let f ′ be the function returned by
BubbleSmooth(f). Then (1) function f ′ is Lipschitz and (2) |f − f ′|1 ≤ 2 · �Lip1 (f).

The proof of the second part of this theorem requires several technical insights. One of
the challenges is that BubbleSmooth changes many function values, but then undoes
most changes during subsequent steps. We define a transfer graph to keep track of the
transfers that move a unit of function value during each basic step. Its vertex set is
[n] and an edge (x, y) represents that a unit was transferred from f(x) to f(y). Since
two transfers (x, y) and (y, z) are equivalent to a transfer (x, z), we can merge the
corresponding edges in the transfer graph, proceeding with such merges until no vertex
in it has both incoming and outgoing edges. As a result, we get a transfer graph, where
the number of edges, |E|, is twice the �1 distance from the original to the final function.

To prove that |E| ≤ �Lip1 (f), we show that the transfer graph has a matching with
the violation score at least |E|. The violation score of an edge (or a pair) (x, y) is the
quantity by which |f(x) − f(y)| exceeds the distance between x and y. (Recall that
|f(x) − f(y)| ≤ |x − y| for all Lipschitz functions f on domain [n].) The violation
score of a matching is the sum of the violation scores over all edges in the matching.
We observe (in Lemma 2.3) that �Lip1 (f) is at least a violation score of any matching.
The crucial step in obtaining a matching with a large violation score is pinpointing
a provable, but strong enough property of the transfer graph that guarantees such a
matching. Specifically, we show that the violation score of each edge in the graph is
at least the number of edges adjacent to its endpoints at its (suitably defined) moment
of creation (Lemma 2.1). E.g., this statement is not true for adjacent edges in the final
transfer graph. The construction of a matching with a large violation score in the transfer
graph is one of the key technical contributions of this paper. It is the focus of Section 2.

Dimension Reduction with Respect to �1. Our smoothing procedure for functions
on the hypergrids applies BubbleSmooth to repair all lines in dimensions 1, 2, ..., d,
one dimension at a time. We show that for all i, j ∈ [d] applying BubbleSmooth in
dimension i does not increase the expected �Lip1 (f) for a random line g in dimension j.
The key feature of our smoothing procedure that makes the analysis tractable is that it
can be broken down into steps, each consisting of one application of the basic step of
BubbleSmooth to the same positions (k, k+1) on all lines in a specific dimension. This
allows us to show that one such step does not make other dimensions worse in terms
of the �1 distance to the Lipschitz property. The cleanest statement of the resulting
dimension reduction is with respect to the �1 distance.

Theorem 1.4. For all functions f : [n]d → Z, we have:
∑

g∈Lf
�Lip1 (g) ≥ Lip

1 (f)

2 .

Our Testers and Effective Image Diameter. The main component of our tester repeats
the following procedure: Pick a line uniformly at random and run one step of the line

Testing Lipschitz Functions on Hypergrid Domains 391

tester. (We use the line tester from [7].) Our dimension reduction (Theorem 1.2) is cru-
cial in analyzing this component. However, the bound in Theorem 1.2 depends on the
image diameter of the function f . In the case of a non-Lipschitz function, it can be arbi-
trarily large, but for a Lipschitz function on [n]d it is at most the diameter of the space,
namely nd (notice this factor in part (1) of Theorem 1.1). In fact, for our application
we can also use the observable diameter of the space [6]: since the hypergrid exhibits
Gaussian-type concentration of measure, a Lipschitz function maps the vast majority of
points to an interval of size O(n

√
d) (notice this factor in part (2) of Theorem 1.1). Our

testers use a preliminary step to rule out functions with large image diameter (resulting
in 1-sided error) or with large observable diameter (resulting in 2-sided error).

1.3 Comparison to Previous and Concurrent Work

Jha and Raskhodnikova [7] gave a 1-sided error nonadaptive testers for the Lipschitz
property of functions of the form f : {0, 1}d → δZ and f : [n] → R that run in time
O
(
d
δε ·min {ImgD(f), d}

)
and O

(
log n
ε

)
, respectively. They also showed that Ω(d)

queries are necessary for testing the Lipschitz property on the domain {0, 1}d, even
when the range is {0, 1, 2}. No nontrivial tester of the Lipschitz property of functions
on the domain [n]d was known prior to this work.

Our first tester from Theorem 1.1 naturally generalizes the testers of [7] to functions
on the domain [n]d. As in [7], our tester has at most quadratic dependence on the di-
mension d. Our second tester from Theorem 1.1 gives an improvement in the running
time over the hypercube tester in [7] at the expense of allowing 2-sided error. In this
specific case, Theorem 1.1 gives a tester with running time Õ(d1.5/(δε)).

Concurrently with our work, Chakrabarty and Seshadhri [2] gave an ingenious anal-
ysis of the simple edge test for the Lipschitz property (and monotonicity) of functions
f : {0, 1}d → R that shows that it is enough to run it for O(d/ε) time. Their analysis
does not apply to functions on the domain [n]d.

Organization. In Section 2, we present and analyze BubbleSmooth, our procedure
for smoothing 1-dimensional functions, and prove Theorem 1.3. In Section 3, we use
BubbleSmooth to construct a smoothing procedure for multidimensional functions that
leads to the dimension reduction of Theorems 1.2 and 1.4. Our Lipschitz testers for
functions on hypergrids claimed in Theorem 1.1 are presented in Section 4.

2 BubbleSmooth and Its Analysis

In this section, we describe BubbleSmooth and prove Theorem 1.3 which asserts that
BubbleSmooth(f) outputs a Lipschitz function that does not differ too much from f
in the �1 distance. In Section 2.1, we present BubbleSmooth (Algorithm 1) and show
that it outputs a Lipschitz function. Sections 2.2 and 2.3 are devoted to proving part (2)
of Theorem 1.3. At the high level, the proof follows the ideas explained in Section 1.2
(right after Theorem 1.3). In Section 2.2, we define our transfer graph (Definition 2.3)

392 P. Awasthi et al.

and prove its key property (Lemma 2.1). In Section 2.3, we show that the existence
of a matching with a large violation score implies that f is far from Lipschitz in the �1
distance (Lemma 2.3) and complete the proof of part (2) of Theorem 1.3 by constructing
such a matching in the transfer graph.

2.1 Description of BubbleSmooth and Proof of Part (1) of Theorem 1.3

We begin this section by recalling two basic definitions from [7].

Definition 2.1 (Violation score). Let f be a function and x, y be points in its domain.
The pair (x, y) is violated by f if |f(x)−f(y)| > |x−y|1. The violation score of (x, y),
denoted by vsf (x, y), is |f(x) − f(y)| − |x− y|1 if it is violated and 0 otherwise.

Definition 2.2 (Basic operator). Given f : [n]d → Z and x, y ∈ [n]d, where |x−y|1 =
1 and vertex names x and y are chosen so that f(x) ≤ f(y), the basic operator Bx,y
works as follows: If the pair (x, y) is not violated by f then Bx,y[f] is identical to f .
Otherwise, Bx,y[f](x) = f(x) + 1 and Bx,y[f](y) = f(y)− 1.

In this section, we view a function f : [n] → Z as an integer-valued sequence
f(1), f(2), . . . , f(n). We denote the subsequence f(i), f(i + 1), . . . , f(j) by f [i..j].
Naturally, a sequence f [i..j] is Lipschitz if |f(k)− f(k+1)| ≤ 1 for all i ≤ k ≤ j− 1.
Algorithm 1 presents a formal description of BubbleSmooth.

Algorithm 1. BubbleSmooth (Input: an inte-
ger sequence f [1 . . . n])

1 for i = n− 1 to 1 do
// Start phase i.

2 while |f(i)− f(i+ 1)| > 1 do // (i, i+ 1)
is violated by f

3 LinePass(i).
4 return f

Algorithm 2. LinePass
(Input: integer i)

1 for j = i to n− 1 do
2 f ← Bj,j+1[f].

// Apply basic
operator (see
Definition 2.2.)

We start analyzing the behavior of BubbleSmooth by proving part (1) of Theo-
rem 1.3, which states that BubbleSmooth returns a Lipschitz function.

Proof (of part (1) of Theorem 1.3). Consider an integer sequence f [1..n] and let f ′[1..n]
be the sequence returned by BubbleSmooth(f). We prove that f ′ is Lipschitz by in-
duction on the phase of BubbleSmooth. Initially, f(n) is vacuously Lipschitz. We fix
i ∈ [n], assume f [i+ 1..n] is Lipschitz at the beginning of phase i and show this phase
terminates and that f [i..n] is Lipschitz at the end of the phase.

Consider an execution of LinePass(i). Assume f [i+1..n] is Lipschitz in the begin-
ning of this execution. Let j be the index, such that at the beginning of the execution,
f [i..j] is the longest strictly monotone sequence starting from f(i). Then LinePass(i)
modifies two elements: f(i) and f(j). If f(i) > f(j) then f(i) is decreased by 1 and

Testing Lipschitz Functions on Hypergrid Domains 393

f(j) is increased by 1, i.e., 1 unit is transferred from i to j. Similarly, if f(i) < f(j)
then 1 unit is transferred from j to i. It is easy to see that after this transfer is performed,
f [i+1..n] is still Lipschitz. Moreover, each iteration of LinePass(i) reduces the viola-
tion score of the pair (i, i+1) by at least 1. Thus, phase i terminates with f [i..n] being
Lipschitz. ��

2.2 Transfer Graph

In the proof of part (1) of Theorem 1.3, we established that for all i ∈ [n], each iteration
of LinePass(i) transfers one unit to or from i. We record the transfers in the transfer
graph T = ([n], E), defined next. A transfer from x to y is recorded as a directed edge
(x, y). The edges of the transfer graph are ordered (indexed), according to when they
were added to the graph. The edge (i, j) (resp., (j, i)) corresponding to the most resent
transfer is combined with a previously added edge (j, k) (resp., (k, j)) if such an edge
exists. This is done because transfers from x to y and from y to z are equivalent to a
transfer from x to z. If a new edge (x, y) is merged with an existing edge (y, z), the
combined edge retains the index of the edge (y, z).

Definition 2.3 (Transfer graph). The transfer graph T = ([n], E), where the edge set
E = (e1, . . . , et) is ordered and edges are not necessarily distinct. The graph is defined
by the following procedure. Initially, E = ∅ and t = 0. Each new run of LinePass
during the execution of BubbleSmooth, transfers a unit from i to j (or resp., from j to
i) for some i and j. If j has no outgoing (resp., incoming) edge in T , then increment
t by 1 and add the edge et = (i, j) (resp., et = (j, i)) to E. Otherwise, let es be an
outgoing edge (j, k) (resp., an incoming edge (k, j)) with the largest index s. Replace
(j, k) with (i, k), i.e., es ← (i, k). (Replace (k, j) with (k, i), i.e., es ← (k, i).) The
final transfer graph is denoted by T ∗.

As mentioned previously, the order of creation of edges is important to formalize the
desired property of the transfer graph, so we need to consider the subgraphs that consist
of the first s edges e1, . . . , es of E.

Definition 2.4 (Degrees). Consider a transfer graph T at some time during the exe-
cution of BubbleSmooth. For all s ∈ {0, . . . , t} its subgraph graph Ts is defined as
([n], (e1, . . . , es)), where (e1, . . . , et) is the ordered edge set of T . (When s = 0, the
edge set of Ts is empty.) The degree of a vertex x ∈ [n] of Ts is denoted by degs(x);
when Ts is a subgraph of the final transfer graph, it is denoted by deg∗s (x).

Observe that at no point in time can a vertex in T simultaneously have an incoming and
an outgoing edge because such edges would get merged into one edge.

Lemma 2.1 (Key property of transfer graph). Let f be an input function given to
BubbleSmooth. Then for each edge es = (x, y) of the final transfer graph T ∗, the fol-
lowing holds: vsf (x, y) ≥ deg∗s (x) + deg∗s (y)− 1.

To prove this lemma, we consider each phase of BubbleSmooth separately and formu-
late a slightly stronger invariant that holds at every point during that phase.

394 P. Awasthi et al.

Definition 2.5. For all i ∈ [n− 1], let Δi be the degree of i in the transfer graph at the
end of phase i.

The following stronger invariant of the transfer graph directly implies Lemma 2.1.

Claim 2.2 (Invariant for phase i) Let f be an input function given to BubbleSmooth.
At every point during the execution of BubbleSmooth(f), for each edge es = (x, y) of
the transfer graph T ,

f(x)− f(y) ≥ degs(x) + degs(y)− 1 + |x− y|.

Moreover, for each phase i ∈ [n − 1], after each execution of LinePass(i), for each
edge es incident on vertex i, the following (stronger) condition holds:

if the edge es = (i, j), i.e., it is outgoing from i, then f(i)− f(j) ≥ Δi+ degs(j)−
1 + |i− j|;

if the edge es = (j, i), i.e., it is incoming into i, then f(j)− f(i) ≥ Δi + degs(j)−
1 + |i− j|.

Observe that all transfers involving i during phase i are in the same direction: if in the
beginning of the phase we have f(i) > f(i + 1), then all transfers are from i; if we
have f(i) < f(i + 1) instead, then all transfers are to i. In particular, whenever an
edge incident to i is added, it is not modified subsequently during phase i. So for all
s, degs(i) never exceeds Δi during phase i and the condition in Claim 2.2 is indeed
stronger than that in Lemma 2.1. The proof of Claim 2.2 is omitted.

2.3 Matchings of Violated Pairs

Part (2) of Theorem 1.3 states that the �1 distance between f and BubbleSmooth(f)
is at most 2 · �Lip1 (f). By definition of the transfer graph T = ([n], E), the distance
|f −BubbleSmooth(f)|1 = 2|E|. Lemma 2.3 shows that �Lip1 (f) is bounded below by
the violation score of any matching. We complete the proof of Theorem 1.3 by showing
that T has a matching with violation score |E|.

Lemma 2.3. Let M be a matching of pairs (x, y), where x and y are in the (discrete)
domain of a function f . Then �Lip1 (f) ≥ vsf (M),where vsf (M) =

∑
(x,y)∈M vsf (x, y)

is the violation score of M .

Proof. Let f∗ be a closest Lipschitz function to f (on the same domain as f) with
respect to the �1 distance, i.e., |f − f∗|1 = �1(f, Lip). Consider a pair (x, y) ∈ M.
Since |f(x) − f(y)| = d(x, y) + vsf (x, y) and |f∗(x) − f∗(y)| ≤ d(x, y), it follows
by the triangle inequality that |f(x) − f∗(x)| + |f(y)− f∗(y)| ≥ vsf (x, y). Since M
is a matching, we can add over all of its pairs to obtain

�1(f, Lip) = |f − f∗|1 ≥
∑

(x,y)∈M
(|f(x)− f∗(x)|+ |f(y)− f∗(y)|)

≥
∑

(x,y)∈M
vsf (x, y) = vsf (M),

which concludes the proof. ��

Testing Lipschitz Functions on Hypergrid Domains 395

Now using Lemma 2.1 we exhibit a matching in the final transfer graph which has large
violation score, concluding the proof of Theorem 1.3.

Proof (of part (2) of Theorem 1.3). Let T ∗ = ([n], E) be the final transfer graph cor-
responding to the execution of BubbleSmooth on f and let E = {e1, . . . , et}. By
definition of the transfer graph, |f − f ′|1 =

∑
i∈[n] degt(i) = 2|E|. By Lemma 2.3, it

is enough to show that there is a matching M of pairs violated by f with the violation
score vsf (M) ≥ |E|.

We claim that T contains such a matching. It can be constructed greedily by repeating
the following step, starting with s = t: add es to M and then remove es and all other
edges adjacent to its endpoints from T ; set s to be the number of edges remaining in E.
In each step, at most degs(x) + degs(y) − 1 are removed from T . (“At most” because
T can have multiple edges.) By Lemma 2.1, vsf (x, y) ≥ degs(x) + degs(y) − 1. So,
at each step of the greedy procedure, the violation score of the pair (x, y) added to M
is at least the number of edges removed from T . Therefore, vsf (M) ≥ |E|. ��

3 Dimension Reduction: Proof of Theorems 1.2 and 1.4

In this section, we explain the main ideas used to prove Theorems 1.2 and 1.4 that con-
nect the distance of a function to being Lipschitz to the distance of its lines to being Lip-
schitz. Effectively, these results reduce the task of testing a multidimensional function
to the task of testing its lines. Our main contribution in this section is a smoothing pro-
cedure that makes a function Lipschitz by modifying it at a few points by repairing one
dimension at a time. In Definition 3.1, we present the dimension operator that repairs
all lines in a specified dimension by applying BubbleSmooth to each of them. The im-
portant properties of the dimension operator are summarized in Lemma 3.1 which is the
key ingredient in the proofs of Theorems 1.2 and 1.4. The derivation of Theorems 1.2
and 1.4 from Lemma 3.1 appears in the full version.

Recall from the discussion in Section 1.2 that we denote the set of lines of f along
dimension i by Lif and the set of all lines of f by Lf = Lif .

Definition 3.1 (Dimension operator Ai). Given f : [n]d → Z and dimension i ∈ [d],
the dimension operatorAi applies BubbleSmooth to every function g ∈ Lif and returns
the resulting function.

Next lemma summarizes the properties of the dimension operator.

Lemma 3.1 (Properties of the dimension operatorAi). For all i ∈ [d], the dimension
operator Ai satisfies the following properties for every function f : [n]d → Z.

1. (Repairs dimension i.) Every g ∈ LiAi[f]
is Lipschitz.

2. (Does not modify the function too much.) |f −Ai[f]|1 ≤ 2 ·
∑

g∈Li
f
�Lip1 (g).

3. (Does not spoil other dimensions.) For all j �= i in [d], it does not increase the
expected �1 distance of a random line in dimension j to the Lipschitz property, i.e.,
Eg←Lj

Ai[f]
[�Lip1 (g)] ≤ Eg←Lj

f
[�Lip1 (g)].

396 P. Awasthi et al.

Proof. Item 1. Item 1 follows from part (1) of Theorem 1.3.
Item 2. Since the dimension operator Ai operates by applying BubbleSmooth to

all (disjoint) lines in Lif , we get |f −Ai[f]|1 =
∑

g∈Li
f
|g − BubbleSmooth[g]|1. The

latter is at most
∑

g∈Li
f
2 · �Lip1 (g) by Part (2) of Theorem 1.3, thus proving the item.

Item 3. Fix i and j. First, we give a standard argument [4, 3, 7] that it is enough to
prove this statement for n×n grids. Namely, every α ∈ [n]d with αi = αj = 0 defines
a restriction of a function f to an n×n grid by h(xi, xj) = f(α+xi ·ei+xj ·ej), where
xi and xj range over [n]. (Recall that ei ∈ [n]d is 1 on the ith coordinate and 0 on the
remaining coordinates.) If the item holds for all 2-dimensional grids, we can average
over all such grids defined by different α to obtain the statement for the d-dimensional
function f . Now fix an arbitrary restriction h : [n]2 → Z as discussed and think of h as
an n×n matrix with rows (resp., columns) corresponding to lines in dimension i (resp.,
in dimension j).

The key feature of our dimension operator Ai is that it can be broken down into
steps, each consisting of one application of the basic step of BubbleSmooth to the same
positions (k, k+ 1) on all lines in dimension i. To see this, observe that we can replace
the while loop condition on Line 2 of Algorithm 2 with ”repeat t times”, where t should
be large enough to guarantee that the line segment under consideration is Lipschitz after
t iterations of LinePass. (E.g., t = n · ImgD(f) repetitions suffices.) If this version of
BubbleSmooth is run synchronously and in parallel on all lines in dimension i, the the
basic step will be applied to the same positions (k, k + 1) on all lines.

Since in each parallel update step only two adjacent columns of h are affected, it
is sufficient to prove the item for two adjacent columns of h. Accordingly, consider
two adjacent columns C1 and C2 of h. Let M1 and M2 be Lipschitz columns that are
closest in the �1 distance to C1 and C2, respectively. Thus, �Lip1 (C1) = |C1−M1|1 and
�Lip1 (C2) = |C2 −M2|1. Let C′

1 and C′
2 be the columns of the matrix resulting from

applying the basic operator to the rows of the matrix (C1, C2). Similarly, defineM ′
1 and

M ′
2 to be the columns of the matrix resulting from applying the basic operator to the

rows of (M1,M2). We prove in the full version that applying the basic operator to the
rows of a matrix consisting of two Lipschitz columns results in a matrix whose columns
are still Lipschitz, that is, M ′

1 and M ′
2 are Lipschitz. Therefore, �Lip1 (C′

1) ≤ |C′
1−M ′

1|1
and �Lip1 (C′

2) ≤ |C′
2 −M ′

2|1. Finally, using the inequality |C′
1 −M ′

1|1 + |C′
2 −M ′

2|1 ≤
|C1 − M1|1 + |C2 − M2|1 whose proof is deferred to the full version, the proof of
Item 3 is completed as follows: �Lip1 (C1) + �Lip1 (C2) = |C1 −M1|1 + |C2 −M2|1 ≥
|C′

1 −M ′
1|1 + |C′

2 −M ′
2|1 ≥ �Lip1 (C′

1) + �Lip1 (C′
2). ��

4 Algorithms for Testing the Lipschitz Property on Hypergrids

In this section, we present our testers for the Lipschitz property of functions f : [n]d →
Z. Theorem 1.2 relates the distance of a function f from the Lipschitz property to the
(expected) distance of its lines to this property. The resulting bound, however, depends
on the image diameter of f . The image diameter is small (at most nd) for Lipschitz
functions, but can be arbitrarily large otherwise. The high-level description of our testers
is the following: (i) estimate the image diameter of f and reject if it is too large; (ii)

Testing Lipschitz Functions on Hypergrid Domains 397

repeatedly sample a line g of f at random, run one step of a Lipschitz tester for the
line on g and reject if a violated pair is discovered; otherwise, accept. Step (i) ensures
that a small sample of lines is enough to succeed with constant probability. The testers
differ only in one parameter which quantifies what “too large” means in Step (i).

4.1 Estimating the Effective Image Diameter

As mentioned before, a Lipschitz function on [n]d has image diameter at most nd,
which can serve as a threshold for rejection in Step (i) of the informal procedure above.
However (if we are willing to tolerate two-sided error), it is sufficient to use a smaller
threshold, equal the effective diameter of the function. For a given ε ∈ (0, 1], define
ImgDε(f) as the smallest value α such that f is ε-close to having image diameter α:

ImgDε(f) = min
U⊆[n]d:|U|≥(1−ε)nd

{max
x∈U

f(x)−min
x∈U

f(x)}.

Although the image diameter of a Lipschitz function f can indeed achieve value
nd, the effective ImgDε(f) is upper bounded by the potentially smaller quantity
O(n

√
d ln(1/ε)). The next lemma makes this precise, and follows directly from Mc-

Diarmid’s inequality.

Lemma 4.1 (Effective image diameter). For all ε ∈ (0, 1], each Lipschitz function
f : [n]d → R is (ε/21)-close to having image diameter at most n

√
d ln(42/ε).

Our testers use estimates of image diameter or effective diameter to reject functions. The
next lemma, proved in the full version, shows that we can get such estimates efficiently.
An algorithm satisfying parts (i) and (ii) of the lemma was obtained in [7].

Lemma 4.2. There is a randomized algorithm SAMPLE-DIAMETER that, given a func-
tion f : [n]d → R and ε ∈ (0, 1], outputs an estimate r ∈ R such that: (i) ImgDε(f) ≤
r with probability at least 5/6; (ii) r ≤ ImgD(f) (always) and (iii) r ≤ ImgDε/21(f)
with probability at least 2/3. Moreover, the algorithm runs in time O(1/ε).

4.2 Tester for Hypergrid Domains

Our tester for functions on hypergrids uses a tester for functions on lines from [7].

Lemma 4.3 (Full version of [7]). Consider a function g : [n] → R and r ≥ ImgD(g).
Then there is a 1-sided error algorithm LINE-TESTER which on input g and r rejects

with probability at least εLip(g)
6 logmin{r,n} .

To analyze our testers, we also need to estimate the probability that a random line
g ← Lf is rejected by LINE-TESTER(g, r) with r ≥ ImgDε/2(f). Such bound r will
be obtained via Lemma 4.2. Since r may be much smaller than ImgD(f), Lemma 4.3
does not apply directly. Nevertheless, the next lemma (proved in the full version) shows
how to circumvent this difficulty.

Lemma 4.4. Let f : [n]d → Z be ε-far from Lipschitz. Consider a real r ≥ ImgDε/2(f).
For a random line g ← Lf , the probability that LINE-TESTER(g, r) rejects is at least

ε
24dr logmin{r,n} .

398 P. Awasthi et al.

Algorithm 3 presents our tester for the Lipschitz property on hypergrid domains. One
of its inputs is a threshold R for rejection in Step 1. The testers in Theorem 1.1 are
obtained by setting R appropriately.

Algorithm 3. Tester for Lipschitz property on hypergrid.

input : function f : [n]d → Z, ε ∈ (0, 1], and value R ∈ R

1 Let r ← SAMPLE-DIAMETER(f, ε/2). If r > R, reject.

2 for i = 1 to � = 48d·r logmin{r,n}
ε do

3 Select a line g uniformly from Lf and reject if LINE-TESTER(g, r) does.
4 Accept.

Proof (of Theorem 1.1). We claim that Algorithm 3 run with R = nd (respectively,
R = n

√
d ln(84/ε)) gives the tester in part (1) (respectively, part (2)) of Theorem 1.1.

Suppose that the input function f is Lipschitz. When R = nd, the algorithm accepts
f with probability 1; when R = n

√
d ln(84/ε), Lemmas 4.2 and 4.1 guarantee that

it accepts with probability at least 2/3. Now suppose that f is ε-far from Lipschitz.
Conditioning on the event that r ≥ ImgDε/2(f) (which holds with probability at least
5/6 by Lemma 4.2), we get from Lemma 4.4 that f is rejected with probability at least
4/5 in Step 3. Removing the conditioning gives that f is rejected with probability at
least 2/3 (regardless of R). Further details and the analysis of the running time are
omitted. ��

References

[1] Awasthi, P., Jha, M., Molinaro, M., Raskhodnikova, S.: Testing Lipschitz functions on hy-
pergrid domains. Electronic Colloquium on Computational Complexity (ECCC) TR12-076
(2012)

[2] Chakrabarty, D., Seshadhri, C.: Optimal bounds for monotonicity and Lipschitz testing over
the hypercube. Electronic Colloquium on Computational Complexity (ECCC) TR12-030
(2012)

[3] Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky, A.: Im-
proved Testing Algorithms for Monotonicity. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P.,
Sinclair, A. (eds.) RANDOM-APPROX 1999. LNCS, vol. 1671, pp. 97–108. Springer, Hei-
delberg (1999)

[4] Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing mono-
tonicity. Combinatorica 20(3), 301–337 (2000)

[5] Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and
approximation. J. ACM 45(4), 653–750 (1998)

[6] Gromov, M.: Metric Structures for Riemannian and non-Riemannian Spaces (1999)
[7] Jha, M., Raskhodnikova, S.: Testing and reconstruction of Lipschitz functions with ap-

plications to data privacy. In: IEEE FOCS, pp. 433–442 (2011) full version available at,
http://eccc.hpi-web.de/report/2011/057/

[8] Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to pro-
gram testing. SIAM J. Comput. 25(2), 252–271 (1996)

http://eccc.hpi-web.de/report/2011/057/

Extractors for Polynomials Sources

over Constant-Size Fields of Small Characteristic

Eli Ben-Sasson1,� and Ariel Gabizon2,��

1 Department of Computer Science, Technion, Haifa, Israel and Microsoft Research
New-England, Cambridge, MA

2 Department of Computer Science, Technion, Haifa, Israel

Abstract. A polynomial source of randomness over Fn
q is a random

variable X = f(Z) where f is a polynomial map and Z is a random
variable distributed uniformly on Fr

q for some integer r. The three main
parameters of interest associated with a polynomial source are the field
size q, the (total) degree D of the map f , and the “rate” k which specifies
how many different values does the random variable X take, where rate
k means X is supported on at least qk different values. For simplicity we
call X a (q,D, k)-source.

Informally, an extractor for (q,D, k)-sources is a deterministic func-
tion E : Fn

q → {0, 1}m such that the distribution of the random variable
E(X) is close to uniform on {0, 1}m for any (q,D, k)-source X. Generally
speaking, the problem of constructing deterministic extractors for such
sources becomes harder as q and k decrease and as D grows larger.

The only previous work of [Dvir et al., FOCS 2007] construct extrac-
tors for such sources when q 	 n. In particular, even for D = 2 no
constructions were known for any fixed finite field.

In this work we construct for the first time extractors for (q,D, k)-
sources for constant-size fields. Our proof builds on the work of DeVos
and Gabizon [CCC 2010] on extractors for affine sources, with two no-
table additions (described below). Like [DG10], our result makes crucial
use of a theorem of Hou, Leung and Xiang [J. Number Theory 2002] giv-
ing a lower bound on the dimension of products of subspaces. The key
insights that enable us to extend these results to the case of polynomial
sources of degree D greater than 1 are
1. A source with support size qk must have a linear span of dimension

at least k, and in the setting of low-degree polynomial sources it
suffices to increase the dimension of this linear span.

2. Distinct Frobenius automorphisms of a (single) low-degree polyno-
mial source are ‘pseudo-independent’ in the following sense: Taking
the product of distinct automorphisms (of the very same source)
increases the dimension of the linear span of the source.

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
number 240258.

�� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
number 240258.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 399–410, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

400 E. Ben-Sasson and A. Gabizon

1 Introduction

This paper is part of a long and active line of research devoted to the problem
of “randomness extraction”: Given a family of distributions all guaranteed to
have a certain structure, devise a method that can convert a sample from any
distribution in this family to a sequence of uniformly distributed bits — or at
least a sequence statistically close to the uniform distribution. Usually, it is easy
to prove that a random function is, with high probability, a good extractor for
the given family, and the challenge is to give an explicit construction of such an
extractor.

The first example of a randomness extraction problem was given by von-
Neumann [20], who gave an elegant solution to the following problem: How can
a biased coin with unknown bias be used to generate ‘fair’ coin tosses? In this
case the input distribution consists of independent identically distributed bits
which makes the extraction task simpler. Since then many families of more com-
plex distributions were studied. Also, the concept of randomness extraction has
proven to be useful for various applications. The reader is referred to the intro-
duction of [9] for more details on the classes of distributions studied, references
and motivation.

1.1 Polynomial Sources

In this paper we construct extractors for polynomial sources — distributions that
are sampled by applying low-degree polynomials to uniform inputs as defined
next. Throughout this paper if Ω is a finite set we let UΩ denote the uniform
distribution on Ω.

Definition 1 (Polynomial sources and extractors). Fix integers n, d, k with
k ≤ n and a field Fq. We define M[n, d, k] to be the set of mappings f : Frq → Fnq ,
where r is an integer counting the number of inputs to the source and

f(Z1, . . . , Zr) = (f1(Z1, . . . , Zr), . . . , fn(Z1, . . . , Zr))

such that

– for every i ∈ [n], fi is a polynomial in Fq[Z1, . . . , Zr] of individual degree at
most d.

– The range, or support, of f is of size at least qk. Formally,

|{f(z1, . . . , zr) | (z1, . . . , zr) ∈ Frq}| ≥ qk.

A (n, k, d)-polynomial source is a distribution of the form f(UFr
q
) for some and

f ∈ M[n, k, d] with r inputs. (When the parameters n, k, d are clear from context
we shall omit them and, simply, use the term “polynomial source”.)

Let Ω be some finite set. A function E : Fnq → Ω is a (k, d,D, ε)-polynomial
source extractor if for every f ∈ M[n, d, k] of total degree at most D and r

Extractors for Polynomials Sources over Constant-Size Fields 401

inputs, E(f(UFr
q
)) is ε-close to uniform, where a distribution P on Ω is ε-close

to uniform if for every A ⊆ Ω

| Pr
x←P

(x ∈ A)− |A|/|Ω|| ≤ ε.

Remark 1. A few words are in order regarding the above definitions.

– The number of inputs used by our source — denoted by r in the definitions
above — does not affect the parameters of our extractors hence we omit this
parameter from the definition of polynomial sources and extractors.

– In the context of extractors what might have seemed more natural is to re-
quire the distribution f(UFr

q
) to have min-entropy1 k · log q. Our requirement

on the size of the range of f is weaker, and suffices for our construction to
work.

– Individual degree plays a larger role than total degree in our results. In fact,
the first stage of our construction — constructing a non-constant polynomial
over Fq- requires a field of size depending only on individual degree. This is
why it is more convenient to limit individual degree and not total degree in
the definition of M[n, d, k].

Motivation. To motivate our study of extractors for polynomials sources, we
mention four distinct applications of such extractors for the simplest class of
sources — affine ones, in which the degree of the source is 1 (see definition below).
Demenkov and Kulikov [8] showed, using elementary methods, that any circuit
over the full binary basis that computes an affine disperser for min-entropy rate
o(1) must contain at least 3n(1−o(1)) gates, and this matches the previous best
circuit lower bound of Blum from 1984 [4]. Another application of affine extrac-
tors was given by Viola [19] and independently by De and Watson [7] showing
how to use them to construct extractors for bounded depth circuits. A third
application was given by Ben-Sasson and Zewi [3] who showed how to construct
two-source extractors and bipartite Ramsey graphs from affine extractors. Re-
cent work of Guruswami [14] and of Dvir and Lovett [12] use “subspace evasive
functions” which are closely related to affine extractors to get better algorithms
for list-decoding of folded Reed-Solomon codes. These applications lead us to
believe that extractors for general low-degree sources of the kind defined next
will similarly be useful in other branches of computational complexity.

1.2 Previous Work and Our Result

Polynomial source extractors are a generalization of affine source extractors —
where the source is sampled by a degree one map. There has been much work
recently on affine source extractors [1,5,22,13,9,16] and related objects called

1 The min-entropy of a distribution P is the largest such that for every fixed x,
Pr(P = x) ≤ 2−
. This is the standard measure of randomness in the context of
extractors originating from Chor and Goldreich [6].

402 E. Ben-Sasson and A. Gabizon

affine source dispersers [2,18] where the output is required to be non-constant
but not necessarily close to uniform.

Turning to extractors for non-affine, low-degree sources, the only previous
work is by Dvir, Gabizon and Wigderson [11], and it requires large fields. In
particular, to extract a single bit [11] needs a field of size at least nc where
c > 1 is a constant and n is number of inputs to the extractor, i.e., the number
of outputs of the polynomial source. (In a related albeit different vein, Dvir
[10] constructed extractors for distributions that are uniform over low-degree
algebraic varieties, which are sets of common zeros of a system of low-degree
multivariate polynomials.)

In this work we construct polynomial source extractors over much smaller
fields than previously known, assuming the characteristic of the field is signifi-
cantly smaller than the field size.

Theorem 1 (Main — Extractor). Fix a field Fq of characteristic p, integers
d,D, 4 ≤ k ≤ n where n ≥ 25, and a positive integer m < 1/2 · logp q. Let

α = 3D · (p · d)3n/k. Assume that q ≥ 2 · α2. There is an explicit (k, d,D, ε)-
polynomial source extractor E : Fnq → Fmp with error ε = pm/2 · α · q−1/2.

In particular, when D,n/k and p are constant we get a polynomial source ex-
tractor for constant field size. We state such an instantiation.

Corollary 1 (Extractor for quadratic sources of min-entropy rate half
over fields of characteristic 2). There is a universal constant C such that the
following holds. For any ε > 0 and any q > C/ε2 which is a power of 2, there is
an explicit (n/2, 2, 2, ε)-polynomial source extractor E : Fnq → {0, 1} .

Non-boolean dispersers for smaller fields. Along the way of our proof we con-
struct a weaker object called a non-boolean disperser. A non-boolean disperser
maps the source into a relatively small (but not {0, 1}) domain and guarantees
the output is non-constant. The advantage of this part of the construction is
that it works for smaller fields than the extractor, and moreover, the field size
for which it works depends only on the individual degrees of the source poly-
nomials. In the theorem and corollary below we use an implicit isomorphism of
Fnq and Fqn . See an explanation of this in the beginning of Section 3.

Theorem 2 (Main — Disperser). Fix a prime power q = p. Fix integers
k ≤ n and d < s such that n is prime and s is a power of p. Fix a non-trivial
Fq-linear map T : Fnq → Fq. Let u = �(n − k)/(k − 1)�. Define P : Fnq → Fq by

P (x) � T (x1+s+s
2+...+su). Assume that q > d · su+1−1

s−1 . Then, for any f(Z) =
f(Z1, . . . , Zr) ∈ M[n, k, d], P (f(Z)) is a non-constant function from Frq into Fq.

We instantiate this result for the smallest field it works for — F4.

Corollary 2 (Disperser for min-entropy rate half over F4). Let n be
prime. Define the function P : Fn4 → F4 as follows. Think of the input x
as an element of F4n and compute x3. Now output the first coordinate of the

Extractors for Polynomials Sources over Constant-Size Fields 403

vector x3. Then for any f ∈ M[n, �n/2 + 1�, 1] — that is any multilinear
f ∈ F4n [Z1, . . . , Zr] that has support size at least 4�n/2+1�, the polynomial
P (f(Z1, . . . , Zr)) is a non-constant function from Fr4 into F4.

2 Overview of the Proof

Our goal is to describe an explicit function E : Fnq → {0, 1}m such that for
any (n, k, d)-polynomial source X we have that E(X) is ε-close to the uniform
distribution on {0, 1}m and we do this in two steps. First we construct a function
E0, called a non-boolean disperser, that is guaranteed to be non-constant on X ,
i.e., such that the distribution Y = E0(X) has support size greater than 1.
This part is done in Section 4. Then we apply a second function E1 to the
output of E0 and prove that the distribution E1(Y) = E1(E0(X)) is ε-close to
uniform. This “disperser–to–extractor” part is described in the full version. We
now informally describe the two functions assuming for simplicity the field Fq is
of characteristic 2 and that n is prime. Before starting let us recall the notion
of a Frobenius automorphism. If K is a finite field of characteristic 2 then the
mapping

σi : K → K, σi(z) = z2
i

is a Frobenius automorphism of K over F2. (These mappings can be defined
over larger fields as well, cf. Section 3.2.) The three elementary properties of
this mapping that we use below are first its F2-linearity — that σi(a + b) =
σi(a) + σi(b), second its distinctness, i.e., that if K is an extension of F2 of
degree at least t and 0 ≤ i < j ≤ t− 1 then σi and σj are different, and third its

dimension-preservation: If K ⊃ Fq ⊃ F2 then A ⊂ K and σi(A) � {σi(a) | a ∈ A}
span spaces of equal dimension over Fq (see Claim 3.2).

A different view on low-degree sources. The first part of our analysis uses a
somewhat nonstandard view of low-degree sources that we need to highlight. The
random variable X ranges over Fnq and is the output of n degree-d polynomials

over Fq. Let F≤d
q [Z1, . . . , Zr] denote the set monomials over Fq of individual

degree at most d where d < q. (We use Z variables to denote inputs of the
polynomial source and X variables for its output.) Suppose the ith coordinate
of X is

Xi = P (i)(Z1, . . . , Zr) =
∑

M∈F
≤d
q [Z1,...,Zr]

a
(i)
M ·M(Z1, . . . , Zr)

where a
(i)
M ∈ Fq and Z1, . . . , Zr are independent random variables distributed

uniformly over Fq. Applying an Fq-linear bijection φ : Fnq → Fqn , let aM =

φ(a
(1)
M , . . . , a

(n)
M) denote the sequence of coefficients of the monomials M , viewed

now as a single element in Fqn . Our nonstandard view is that our source is

X = P (Z1, . . . , Zr) =
∑

M∈F
≤d
q [Z1,...,Zr]

aM ·M(Z1, . . . , Zr) (1)

404 E. Ben-Sasson and A. Gabizon

where the coefficients aM and the random variable X come from the “large” field
Fqn but the random variables Z1, . . . , Zr still range over the “small” field Fq. This
large-field-small-field view will be important in what comes next. In particular,
we shall use the following claim which reduces the problem of constructing a
non-boolean disperser to that of constructing a polynomial whose coefficients
span Fqn over Fq.

Claim (Full-span polynomials are non-constant coordinate-wise). Suppose P has
individual degree smaller than q. If the set of coefficients A = {aM | deg(M) > 0}
appearing in (1) spans Fqn over Fq then Xi = P (i)(Z1, . . . , Zr) is a non-constant
function for every i ∈ {1, . . . , n}.

Proof. By way of contradiction. If P (i) is constant on Frq and has individual
degrees smaller than q, then all its nonzero coefficients are zero in which case A
spans a strict subspace of Fqn .

Non-boolean disperser. We start with the simplest nontrivial case to which our
techniques apply and construct a non-boolean disperser for homogeneous multi-
linear quadratic sources with min-entropy rate greater than half over the finite
field with 4 elements (this is a special case of Corollary 2). Using

(
r
2

)
to denote

the set {(i, j) | 1 ≤ i < j ≤ r} and writing X as in (1) we get

X =
∑

(i,j)∈(r2)

aijZiZj , aij ∈ F4n (2)

where Z1, . . . , Zr are uniformly and independently distributed over F4 and X
has support of size greater than 4n/2. Let

A =

{
aij | (i, j) ∈

(
[r]

2

)}
(3)

denote the set of coefficients appearing in (2). In light of Claim 2 it suffices to
construct E0 such that E0(X), when written as a polynomial over Z1, . . . , Zr, has
a set of coefficients that spans F4n over F4. (Then we “project” this polynomial
onto, say, the first coordinate and get a non-constant function mapping into F4,
i.e., a non-boolean disperser.)

To do this we take the approach of DeVos and Gabizon [9] which uses the
theorem of Hou, Leung and Xiang [15]. Assuming n is prime, this theorem implies
that if A,B ⊂ Fqn are sets spanning spaces of respective dimensions d1, d2 over
Fq, then the set of products

A · B � {a · b | a ∈ A, b ∈ B}

spans a subspace of Fqn over Fq of dimension at least min{n, d1 + d2 − 1}.
Returning to our case and taking A as in (3), our first observation is that
dim(span(A)) > n/2 because X is contained in span(A). So the theorem of
[15] mentioned above implies that span(A ·A) = F4n . Consider what would hap-
pen if we could sample twice from X independently and take the product of the

Extractors for Polynomials Sources over Constant-Size Fields 405

two samples in F4n . Using X
′, Z ′

1, . . . , Z
′
r to express the second sample we write

this product as

X ·X ′ =

⎛⎜⎝ ∑
(i,j)∈(r2)

aijZiZj

⎞⎟⎠ ·

⎛⎜⎝ ∑
(i′,j′)∈(r2)

ai′j′Z
′
iZ

′
j

⎞⎟⎠ .

Opening the right-hand-side as a polynomial in Z1, . . . , Zr, Z
′
1, . . . , Z

′
r we see

that its set of coefficients is A · A which spans F4n over F4, as desired
2.

Unfortunately we only have access to a single sample of X and have to
make use of it. We use the fact that F4 is a degree 2 extension of a smaller field
(F2) and hence has two distinct Frobenius automorphisms. And here comes our
second observation: Taking the product of 2 distinct Frobenius automorphisms
of a single sample of X has a similar effect to that of taking two independent
samples of X ! Indeed, take the product of σ0(X) and σ1(X) and, using the
linearity of Frobenius mapping, expand as

X ·X2 =

⎛⎜⎝ ∑
(i,j)∈(r2)

aijZiZj

⎞⎟⎠ ·

⎛⎜⎝ ∑
(i′,j′)∈(r2)

a2ijZ
2
i Z

2
j

⎞⎟⎠
=

∑
(i,j),(i′,j′)∈(r2)

aija
2
i′j′ZiZjZ

2
i′Z

2
j′ .

The main point is that every element in the set of products of A and A2 �{
a2 | a ∈ A

}
appears as the coefficient of a monomial in the polynomial above

and these monomials are distinct over F4. And the dimension-preservation of
σ1 implies that dim(span(A2)) = dim(span(A)) > n/2. Consequently, the the-
orem of [15] implies that A · A2 spans F4n over F4, so by Claim 2 the function
E0(X), which outputs the first coordinate of X ·X2, is non-constant for X and
this completes the sketch of our non-boolean disperser for the special case of
homogenous, quadratic, multilinear polynomials over F4.

To extend this argument to general polynomial sources of individual degree
≤ d we carefully select a set of t distinct Frobenius automorphisms σi0 , . . . , σit−1

(assuming Fq is an extension-field of degree at least t) such that the mapping
f : (F≤d

q [Z1, . . . , Zr])
t → Fq[Z1, . . . , Zr] given by

f(M0, . . . ,Mt−1) =
t−1∏
j=0

σij (Mj) mod (Zq1 − Z1, . . . , Z
q
r − Zr)

is injective. Then we argue, just as in the case above, that the function g(X) �∏t−1
j=0 σij (X) expands to a sum of distinct monomials with coefficients ranging

over the product set Â = σi0 (A) · · ·σit−1 (A) where σ(A) = {σ(a) | a ∈ A}. The
2 The same argument would work as well over the two-element field F2. The extension
field is needed to deal with the case of a single source as explained next.

406 E. Ben-Sasson and A. Gabizon

theorem of [15] is applied t times to conclude that Â spans Fqn over Fq. Now
we apply Claim 2 and get that the first coordinate of g(X) (viewing g(X) as a
tuple of n polynomials over Fq) is a non-constant function. Details are provided
in Section 4.

From dispersers to extractors. This part is based on the work of Gabizon and
Raz [13] and uses an important theorem of Weil [21]. This theorem implies the
following. Suppose we evaluate a polynomial g ∈ Fq[Z1, . . . , Zr] of small-enough
degree deg(g) <

√
q on a uniformly random sample in Frq and then take the

first bit of this evaluation (when viewing it as a vector over F2). Then, this
bit will either be constant — we then say g is “degenerate” — or close to the
uniform distribution. Assuming our source is low-degree and the field size q
is sufficiently large we can argue that deg(E0(X)) <

√
q because X is low-

degree by assumption and E0 is low-degree by construction. So to apply Weil’s
Theorem and get an extractor we only need to ensure that we have in hand
a non-degenerate polynomial. Alas, we have relatively little control over the
polynomial source so need to transform it somehow into a non-degenerate one
in a black-box manner. Here we apply another observation, its proof is due to
Swastik Kopparty, which says that (E0(X))v is non-degenerate for odd3 v > 2.
This part is explained in the full version. So we take E1(Y) to be the first4 bit of
Y 3 and using this observation and Weil’s Theorem conclude that E1(E0(X)) is
close to uniform. Analysis of the resulting extractor is given in the full version.

3 Preliminaries

Notation: When we discuss identities between polynomials we only mean identi-
ties as formal polynomials. We will frequently alternate between viewing x ∈ Fnq
as an element of either Fnq or the field Fqn . When we do this we assume it is
using an implicit bijective map φ : Fnq → Fqn that is an isomorphism of vector
spaces. That is, φ(t1 · a1 + t2 · a2) = t1 · φ(a1) + t2 · φ(a2) for any t1, t2 ∈ Fq and
a1, a2 ∈ Fnq . Such φ is efficiently computable using standard representations of
Fqn . (For details see for example the book of Lidl and Niederreiter [17].) For a
set Ω we denote by UΩ the uniform distribution on Ω.

3.1 Dimension Expansion of Products

Recall that Fqn is a vector space over Fq isomorphic to Fnq . For a set A ⊆ Fqn
we denote by dim(A) the dimension of the Fq-span of A. For sets A,B ⊆ Fqn
let A · B � {a · b | a ∈ A, b ∈ B}. Hou, Leung and Xiang [15] show that such
products expand in dimension. The following theorem is a corollary of Theorem
2.4 of [15].

3 For characteristic p > 2 the criteria for v is a bit different: we need p � |v.
4 In fact, we can output several bits. See the full version for details.

Extractors for Polynomials Sources over Constant-Size Fields 407

Theorem 3 (Dimension expansion of products). Let Fq be any field, and
let n be prime.5 Let A and B be non-empty subsets of Fqn such that A,B �= {0}.
Then

dim(A ·B) ≥ min{n, dim(A) + dim(B)− 1}
In particular, if A1, . . . , Am are non-empty subsets of Fqn such that for all 1 ≤
i ≤ m, dim(Ai) ≥ k for some k ≥ 1. Then

dim(A1 · · ·Am) ≥ min{n, k ·m− (m− 1)}.

Remark 2. The definition of A ·B is somewhat different from that in [15] where
it is defined only for subspaces, and as the span of all possible products. The
definition above will be more convenient for us. It is easy to see that Theorem
2.4 of [15] implies the theorem above with our definition. For clarity, we give a
self-contained proof in the full version.6

3.2 Frobenius Automorphisms of Fq

Let q = p for prime p and let i ≥ 0 be an integer. Raising to power pi in Fq is
known as a Frobenius automorphism of Fq over Fp and will play an important
role. We record two useful and well-known properties of this automorphism that
will be used in our proofs.

– Linearity: ∀a, b ∈ Fq, (a+ b)p
i

= ap
i

+ bp
i

.

– Bijection: The map x → xp
i

over Fq is bijective. In particular, for c ∈ Fq,

c1/p
i

is always (uniquely) defined.

A useful fact following from these properties is that ‘taking the p’th power’ of a
set does not change its dimension.

Claim (Dimension preservation). Let q = p from prime p and an integer �. For

an integer i ≥ 1 and a set A ⊆ Fqn let Ap
i � {api | a ∈ A}. Then dim(A) =

dim(Ap
i

).

See the full version for a proof of the claim.

4 The Main Construction

As before, we use r to denote the number of inputs of f(Z1, . . . , Zr) ∈ M[n, d, k].
We denote by D the product set {0, . . . , d}r. We use bold letters to denote
variables that are vectors in Frq. For example, Z = (Z1, . . . , Zr). For an element
S = (s1, . . . , sr) ∈ D we use the notation

ZS � Zs11 · · ·Zsrr .

5 The theorem of [15] works also for non-prime n in which case the inequality involves
the size of a certain subfield of Fqn .

6 Also, see Section 3.2 of [9] for a self-contained proof using the definition of [15].

408 E. Ben-Sasson and A. Gabizon

Fix f = (f1(Z), . . . , fn(Z)) ∈ M[n, d, k]. For 1 ≤ j ≤ n, we write

fj(Z) =
∑
S∈D

aj,S · ZS .

With the notation above, for S ∈ D let aS � (a1,S , . . . , an,S) ∈ Fnq . Using the
isomorphism of the vectors spaces Fnq and Fqn , we can view aS as an element of
Fqn and write

f(Z) =
∑
S∈D

aS · ZS . (4)

That is, we view f as a multivariate polynomial with coefficients in Fqn . A
crucial observation is that when f has large support the coefficients of f have
large dimension.

Lemma 1 (Large support implies large span). Let f ∈ M[n, d, k]. As in
(4), write f(Z) =

∑
S∈D aS · ZS where aS ∈ Fqn . Then dim{aS}S∈D\{0} ≥ k.

Proof. The range of f over inputs in Frq is contained in an affine shift of the

Fq-linear span of {aS}S∈D\{0}. Since this range is of size at least qk, we must
have dim{aS}S∈D\{0} ≥ k.

A simple but crucial observation from [9] is that a polynomial with coefficients in
Fqn whose non-constant coefficients span Fqn over Fq can be ‘projected’ to a non-
constant polynomial with coefficients in Fq. We formalize this in the definition
and lemma below.

Definition 2 (Full-span polynomial). We say that a polynomial G ∈
Fqn [Z] = Fqn [Z1, . . . , Zr] has full span if the coefficients of the non-constant
monomials of G span Fqn over Fq.

Lemma 2 (Disperser for full-span polynomials). Suppose G ∈ Fqn [Z] has
full span. Let T : Fqn → Fq be a non-trivial Fq-linear mapping. Then T (G(Z)),
as a function from Frq to Fq, is a non-constant polynomial in Fq[Z] whose total
and individual degrees are at most those of G.

See the full version of a proof of the lemma.
The previous lemma implies that to construct a disperser for polynomial

sources it suffices to produce a function that increases the span of low-degree
polynomials, which is what we do in the next theorem which is of paramount
importance in this paper.

Theorem 4 (Product of Frobenius automorphisms increases span). Fix
a prime power q = p. Fix integers k ≤ n and d < s such that n is prime and s is
a power of p. (In particular, raising to power si is a Frobenius automorphism of
Fq over Fp.) Let u = �(n−k)/(k−1)�. Then for any f(Z1, . . . , Zr) ∈ M[n, k, d],
the polynomial

f1+s+s2+...+su(Z1, . . . , Zr) = f(Z1, . . . , Zr) · f s(Z1, . . . , Zr) · · · f s
u

(Z1, . . . , Zr)

has full span.

Extractors for Polynomials Sources over Constant-Size Fields 409

Proof. Fix f ∈ M[n, k, d]. As in (4), write f(Z) =
∑

S∈D aS ·ZS with aS ∈ Fqn .

f1+s+s2+...+su(Z) =

(∑
S∈D

aS · ZS
)1+s+s2+...+su

=

u∏
i=0

(∑
S∈D

aS · ZS
)si

In what follows we use the notation Si = (Si,1, . . . , Si,r) and Si · si = (Si,1 ·
si, . . . , Si,r · si). Using the linearity of Frobenius automorphisms we continue the
derivation and get

=

u∏
i=0

(∑
S∈D

as
i

S · ZS·s
i

)
=

∑
S0,...,Su∈D

u∏
i=0

as
i

Si
·
u∏
i=0

ZSi·si

=
∑

S0,...,Su∈D

u∏
i=0

as
i

Si
·
u∏
i=0

r∏
j=1

Z
Si,j·si
j =

∑
S0,...,Su∈D

AS0,...,Su ·MS0,...,Su(Z),

where AS0,...,Su =
∏u
i=0 a

si

Si
and MS0,...,Su(Z) =

∏u
i=0

∏r
j=1 Z

Si,j ·si
j . The crucial

observation is that if (S0, . . . , Su) and (S′
0, . . . , S

′
u) are two distinct tupples of

elements of D then the monomialsMS0,...,Su(Z) and MS′
0,...,S

′
u
(Z) are distinct as

well: Consider j ∈ {1, . . . , r} such that Si,j �= S′
i,j for some 0 ≤ i ≤ u. Then Zj

is raised to power
∑u

i=0 Si,j · si in MS0,...,Su(Z) and to power
∑u

i=0 S
′
i,j · si in

MS′
0,...,S

′
u
(Z). These powers are different as for all 0 ≤ i ≤ u, Si,j , S

′
i,j ≤ d < s;

And there is only one way to write an integer in base s with ‘coefficients’ smaller
than s.

Define A � {AS0,...,Su | S0, . . . , Su ∈ D \ {0}}. For 0 ≤ i ≤ u, define Bsi �
{asiS | S ∈ D \ {0}}. Note that A = Bs0 · · ·Bsu . For all 0 ≤ i ≤ u, by Lemma 1

and Claim 3.2 we have dim(Bsi) ≥ k. Therefore, by Theorem 3 we get

dim(A) ≥ min{n, k · (u + 1)− u} = n.

Our theorem follows by noticing that the coefficients of the non-constant mono-
mials in f1+s+s2+...+su contain the set A, hence f1+s+...+su has full span.

In the full version Theorem 4 is used together with a version of Weil’s Theorem
to obtain our main results.

Acknowledgements. We thank Swastik Kopparty for the proof of a version
of Weil’s Theorem appearing in the full version. We thank Swastik Kopparty
and Shubhangi Saraf for helpful discussions. We thank Zeev Dvir for reading
a previous version of this paper. The first author thanks Emanuele Viola for
raising the question addressed in this paper. We thank the anonymous reviewers
for helpful comments.

410 E. Ben-Sasson and A. Gabizon

References

1. Ben-Sasson, E., Hoory, S., Rozenman, E., Vadhan, S., Wigderson, A.: Extractors
for affine sources (2001) (unpublished Manuscript)

2. Ben-Sasson, E., Kopparty, S.: Affine dispersers from subspace polynomials. In:
Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
pp. 65–74 (2009)

3. Ben-Sasson, E., Zewi, N.: From affine to two-source extractors via approximate
duality. In: Fortnow, L., Vadhan, S.P. (eds.) STOC, pp. 177–186. ACM (2011)

4. Blum, N.: A boolean function requiring 3n network size. Theor. Comput. Sci. 28,
337–345 (1984)

5. Bourgain, J.: On the construction of affine extractors. Geometric & Functional
Analysis 17(1), 33–57 (2007)

6. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. SIAM Journal on Computing 17(2), 230–261
(1988); Special issue on cryptography

7. De, A., Watson, T.: Extractors and Lower Bounds for Locally Samplable Sources.
In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM
2011. LNCS, vol. 6845, pp. 483–494. Springer, Heidelberg (2011)

8. Demenkov, E., Kulikov, A.S.: An Elementary Proof of a 3n − o(n) Lower Bound
on the Circuit Complexity of Affine Dispersers. In: Murlak, F., Sankowski, P. (eds.)
MFCS 2011. LNCS, vol. 6907, pp. 256–265. Springer, Heidelberg (2011)

9. DeVos, M., Gabizon, A.: Simple affine extractors using dimension expansion. In:
Proceedings of the 25th Annual IEEE Conference on Computational Complexity,
p. 63 (2010)

10. Dvir, Z.: Extractors for varieties (2009)
11. Dvir, Z., Gabizon, A., Wigderson, A.: Extractors and rank extractors for polyno-

mial sources. Computational Complexity 18(1), 1–58 (2009)
12. Dvir, Z., Lovett, S.: Subspace evasive sets. Electronic Colloquium on Computa-

tional Complexity (ECCC) 18, 139 (2011)
13. Gabizon, A., Raz, R.: Deterministic extractors for affine sources over large fields.

Combinatorica 28(4), 415–440 (2008)
14. Guruswami, V.: Linear-algebraic list decoding of folded reed-solomon codes. In:

IEEE Conference on Computational Complexity, pp. 77–85. IEEE Computer So-
ciety (2011)

15. Hou, X., Leung, K.H., Xiang, Q.: A generalization of an addition theorem of kneser.
Journal of Number Theory 97, 1–9 (2002)

16. Li, X.: A new approach to affine extractors and dispersers (2011)
17. Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cam-

bridge University Press, Cambridge (1994)
18. Shaltiel, R.: Dispersers for affine sources with sub-polynomial entropy. In: Ostro-

vsky, R. (ed.) FOCS, pp. 247–256. IEEE (2011)
19. Viola, E.: Extractors for circuit sources. Electronic Colloquium on Computational

Complexity (ECCC) 18, 56 (2011)
20. von Neumann, J.: Various techniques used in connection with random digits. Ap-

plied Math Series 12, 36–38 (1951)
21. Weil, A.: On some exponential sums. Proc. Nat. Acad. Sci. USA 34, 204–207 (1948)
22. Yehudayoff, A.: Affine extractors over prime fields (2009) (manuscript)

Multiple-Choice Balanced Allocation
in (Almost) Parallel�

Petra Berenbrink1, Artur Czumaj2, Matthias Englert2,
Tom Friedetzky3, and Lars Nagel4

1 School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada
petra@sfu.ca

2 DIMAP and Department of Computer Science, University of Warwick, UK
{A.Czumaj,M.Englert}@warwick.ac.uk

3 School of Engineering and Computing Sciences, Durham University, Durham, UK
tom.friedetzky@dur.ac.uk

4 Zentrum für Datenverarbeitung, Johannes Gutenberg Universität Mainz, Germany
nagell@uni-mainz.de

Abstract. We consider the problem of resource allocation in a parallel environ-
ment where new incoming resources are arriving online in groups or batches.

We study this scenario in an abstract framework of allocating balls into bins.
We revisit the allocation algorithm GREEDY[2] due to Azar, Broder, Karlin, and
Upfal (SIAM J. Comput. 1999), in which, for sequentially arriving balls, each
ball chooses two bins at random, and gets placed into one of those two bins with
minimum load. The maximum load of any bin after the last ball is allocated by
GREEDY[2] is well understood, as is, indeed, the entire load distribution, for a
wide range of settings. The main goal of our paper is to study balls and bins
allocation processes in a parallel environment with the balls arriving in batches. In
our model, m balls arrive in batches of size n each (with n being also equal to the
number of bins), and the balls in each batch are to be distributed among the bins
simultaneously. In this setting, we consider an algorithm that uses GREEDY[2]
for all balls within a given batch, the answers to those balls’ load queries are with
respect to the bin loads at the end of the previous batch, and do not in any way
depend on decisions made by other balls from the same batch.

Our main contribution is a tight analysis of the new process allocating balls
in batches: we show that after the allocation of any number of batches, the gap
between maximum and minimum load is O(log n) with high probability, and is
therefore independent of the number of batches used.

1 Introduction

One of the central challenges in modern distributed systems is to cope with the problem
of allocating their resources effectively in a balanced way. In this paper we consider a
general scenario of resource allocation in the case when new incoming resources are
arriving as a stream of batches, and the resources from each incoming batch are to be

� Research supported by the Centre for Discrete Mathematics and its Applications (DIMAP),
and by EPSRC awards EP/D063191/1, EP/G069034/1, EP/F043333/1 and EP/F043333/1.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 411–422, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

412 P. Berenbrink et al.

allocated instantly. Although any analysis of the resource allocation protocols depends
heavily on various properties of the underlying system, such as, for instance, the un-
derlying network, service times and processing times, our focus is to study resource
allocation schemes in an abstract framework of balls and bins, which is known to be
able to provide important insights into more complex systems.

The framework of balls and bins is a powerful model with various applications in
computer science, e.g., the analysis of hashing, the modeling of load balancing strate-
gies, or the analysis of distributed processes. The typical aim is to find strategies that
balance the balls evenly among the bins and produce small maximum loads. While tra-
ditionally mostly processes allocating balls into random bins (the single-choice scheme)
have been studied (cf. [8,10]), more recently the main focus has been on the analysis
of extensions of processes that let each ball choose multiple random bins instead of
one, and then allocate itself to one of the chosen bins by considering their loads (see,
e.g., [3,4,7,9,14,15]). As many of these papers have demonstrated, multiple-choice pro-
tocols maintain the simplicity of the original single-choice scheme, while at the same
they have superior performance in many natural settings. For example, if one allocates
sequentially n balls into n bins by choosing d ≥ 2 random bins for each ball and then
places the ball into the lesser loaded of the chosen bins (such a scheme will be denoted
by GREEDY[d]), then no bin will have load greater than ln lnn

ln d + O(1) with high prob-
ability (w.h.p.1) [3], which compares favorably to the allocation of the balls performed
i.u.r. (independently and uniformly at random), where the maximum load is Θ(lnn

ln lnn),
w.h.p.

One major disadvantage of the multiple-choice strategies described above is that
they unfold their full potential only in a sequential setting. For example, to prove the
bounds for the standard multiple-choice schemes [3,4,15], it is assumed that the m
balls are allocated online, one after another, and that the information about bin loads is
immediately updated after allocation of each ball. These assumptions are unrealistic in
various load balancing applications, e.g., where the balls model the jobs in some parallel
or distributed setting and the choices of the balls must be performed independently and
in parallel, or in scenarios where the balls cannot easily access the current load of the
bins, for example, because of the delay in receiving this information. To cope with this,
various multiple-choice strategies have been developed for parallel environments to deal
with concurrent requests [1,2,11,13] and communication delays [6,7,12]. They base
their decisions on the number of parallel requests, allow extra rounds of communication,
and in some cases let balls re-choose.

We investigate how multi-choice schemes perform in a semi-parallel environment.
In our model, a stream of m balls arrives in batches of size n each (with n being equal
to the number of bins), and the loads of the bins are updated only between batches, that
is, any decisions made by balls belonging to the same batch are strictly concurrent. In
this setting, the algorithm uses GREEDY[d], but for all balls within a given batch, the
answers to those balls’ load queries are with respect to the bin loads at the end of the
previous batch, and do not in any way depend on decisions made by balls belonging to
the same batch. We show that, for d = 2, after the allocation of the mth ball, the gap

1 Event E holds with high probability if P (E) ≥ 1−n−c for any constant c > 0; it is important
to notice that throughout the paper this bound is independent of m, the number of balls.

Multiple-Choice Balanced Allocation in (Almost) Parallel 413

between the maximum and the minimum load is O(log n) with high probability, with
probability at least 1− 1/nO(1), and is therefore independent of the number of batches.

1.1 Our Model

In this paper we investigate how the bare GREEDY[2] protocol performs in a semi-
parallel environment in which m ≥ n balls are allocated into n bins. Concurrent re-
quests to the same bin are answered with the same current load (load here means the
number of balls allocated to the bin) and no additional information, like the number of
new requests. We model this by updating the bins only after every nth ball and show
that the gap between maximum and minimum load is independent of the number of
balls (and batches). With high probability, the gap is O(log n), similar to the bounds in
the sequential setting [4]. Our process follows GREEDY[2] [3,4], but we introduce ex-
plicit batches of size n, and will assume that all balls within one batch will be allocated
concurrently. Our protocol (which we shall refer to as BGREEDY[2], short for batch
greedy) is, therefore, in some sense a mix between sequential and parallel.

When a new batch of n balls arrives, each ball has two random choices and goes into
a bin of lower load. If both loads are equal, the bin with smaller ID is selected. (The
use of the bins’ IDs is only to break the ties; there are no restrictions for the IDs other
than that they are all distinct and there is a total order defined on them.) Note that due
to the batch structure of our model, bin loads are updated only after having allocated all
n balls belonging to a batch.

BGREEDY[d]:

• Repeat m
n

times:
� for each of the n new balls in a new batch, independently in parallel do the following:
� choose d bins i.u.r.
� allocate the ball into the chosen bin with the minimum loada; in case of tie, allocate

the ball into the chosen minimum-load bin with the smallest ID

a The load of each bin remains unchanged for the allocation of all balls from the same batch.

Our goal is to show that after throwing m balls into n bins, the gap between the
maximum load and the minimum load is at most O(log n), with high probability, in-
dependent of the number of balls. We restrict our analysis to the case d = 2. Indeed,
experiments with larger values of d suggest that the resulting load distribution does not
improve but gets slightly worse, though still being O(log n) for constant d.

1.2 Related Work

There is a vast amount of literature studying the resource allocation problem modeled
using the balls into bins framework. The classical processes allocating balls into random
bins (the single-choice schemes) have been surveyed, e.g., in [8,10], and used in many

414 P. Berenbrink et al.

areas of mathematics, computer science, and engineering. The multiple-choice schemes
have been used in these areas and in various settings, e.g., in adaptive load sharing
[7], PRAM simulations [9], load balancing [3], and numerous follow-up papers, e.g.,
[1,4,5,14].

Although the multiple-choice schemes have been originally studied in the context of
sequential allocation, there has also been a significant interest in its use in a parallel
setting, see, e.g., [1,2,11,13]. Most known strategies involve additional rounds of com-
munication, some are also adaptive and allow for re-choosing bins. In a typical parallel
multiple-choice scheme, one aims at allocating n balls into n bins by allocating the
balls with very limited coordination and using as few as possible extra communication
rounds. For example, Lenzen and Wattenhofer [11] show that one can attain a maximum
load of 2 using log∗ n+O(1) rounds of communication, w.h.p.

The main difference between the parallel multiple-choice schemes and our model is
that in our setting, the allocation of the balls from a single batch must be done instantly,
without any coordination between the allocation of balls in the same batch.

Our model shares some similarities with the bulletin board model with periodic up-
dates, as proposed by Mitzenmacher [12], to deal with systems with “outdated infor-
mation.” The model deals with the continuous process of allocating balls into bins: the
balls are arriving as a Poisson stream of rate λn, λ < 1, and each bin “serves” (re-
moves) its balls with exponential distribution with mean 1. The novel feature of the
model is the access to the information about the load of the bins, which is available
through a bulletin board, and which can contain outdated information about the load of
the bins. The main variant of the model proposed by Mitzenmacher [12], the bulletin
board model with periodic updates, assumes that the information about the load of each
bin is updated periodically every T seconds, that is, for every k ∈ N, to allocate the
balls arriving in time interval [kT, (k + 1)T), the process will use the load of the bins
at time kT . Mitzenmacher [12] considers three allocation mechanisms in this setting:
(i) each ball chooses a bin i.u.r., (ii) each ball chooses a bin with the smallest load in the
bulletin board, and (iii) each ball chooses d bins i.u.r. and is then allocated to the chosen
bin with the smallest load in the bulletin board. Mitzenmacher [12] provided an analyt-
ical study for this model for the limiting case as n → ∞ and supported the analytical
results by simulations. The third model studied by Mitzenmacher [12] is very related
to the model considered in our paper, though with several key differences. Firstly, it as-
sumes stochastic arrivals of the balls and stochastic ball removals. Secondly, the paper
only provides an analytical study in the limiting case which is supported by simulations,
whereas our paper gives a rigorous probabilistic analysis.

1.3 Contributions of This Paper

We analyze BGREEDY[2] in which the balls are allocated in batches of size n. We
consider the scenario in which m balls are allocated into n bins, and we assume that the
bins are initially empty. The allocation at time t is described by the load vector directly
after the tth batch. Our main goal is to understand the load of the bins after allocating
m balls in m

n batches for arbitrary values of m.

Multiple-Choice Balanced Allocation in (Almost) Parallel 415

The main result of the paper, Theorem 3, is that after the last batch has been allocated,
the load of any bin is m

n ± O(log n) w.h.p. (with probability at least 1 − n−c for any
constant c). This follows from our two main technical results, Theorems 1 and 2.

We begin with Theorem 1 which studies the process under the assumption that the
number of allocated balls is (relatively) small, at most polynomially large in n.

Theorem 1. Let δ ≥ 1 be an arbitrary constant. Suppose that we run BGREEDY[2] for
τ ≤ nδ−1 batches, allocating m ≤ nδ many balls.

1. For all i ≥ 0 simultaneously, the number of bins with load at least mn + i + γ is
upper bounded by ne−i, w.h.p., where γ = γ(δ) denotes a suitable constant.

2. No bin has fewer than m
n −O(log n) balls, w.h.p.

Theorem 1 directly implies Corollary 1.

Corollary 1. For any constant δ ≥ 1, if m ≤ nδ then the maximum load is m
n +

O(log n) w.h.p. and the minimum load is m
n −O(log n) w.h.p.

Our proof of Theorem 1 crucially relies on the assumption that m is at most polynomial
in n. To deal with arbitrarily large values of m we prove Theorem 2 which removes the
restriction of having to have only polynomially many balls, and reduces the problem to
the case m = poly(n).

Theorem 2. Let c be a sufficiently large constant. Suppose that we run BGREEDY[2]
for τ ≥ nc batches. Further suppose that the maximum load is at most MAX and that
the minimum load is at least MIN with probability at least p. Then, for any positive
constant δ and any τ∗ > τ , the process after running τ∗ batches will have maximum
load at most MAX and minimum load at least MIN with probability at least p− n−δ.

By combining Theorem 2 with Corollary 1 we immediately obtain the following main
theorem, which holds for any number m of allocated balls.

Theorem 3 (Main). Fix n and m to be arbitrary integers and let c be any constant.
If one allocates m balls into n bins using BGREEDY[2] then with probability at least
1− n−c the maximum load is m

n +O(log n) and the minimum load is m
n −O(log n).

Remark 1. Let us emphasize that Theorem 3 ensures that the gap between the maxi-
mum and the minimum load is O(log n) w.h.p. at the end of the process. It is easy to
see that for large enough m no such bound can be ensured after every single batch.

The Approach. On a high level, our analysis follows the approach proposed by Beren-
brink et al. [4] (see also [14]), but there are differences when applying the line of attack
from [4] to the parallel setting considered in this paper. Our analysis uses new ideas and
needs to be significantly tighter in several places.

The first part of our analysis (Theorem 1 and Corollary 1, proven in Section 2) deals
with the process after allocating a polynomial number of balls in the system, or equiv-
alently, after a polynomial number of batches. That part forms the basic block of this
paper, as the analysis of the general case can be reduced to it. Many ideas from [4] do
not work any more once decisions have to be made based upon outdated information.

416 P. Berenbrink et al.

We split this (batch-wise) analysis into two sub-parts: The first provides bounds on the
distribution of the underloaded bins (with load below the average), the second bounds
on the distribution of the overloaded bins (with load above the average). Whereas the
analysis of the underloaded bins follows the one in [4] rather closely, the analysis of the
overloaded bins requires several new ideas. The basic approach used in [4], the layered
induction, cannot (easily) be applied because of the large number of new balls allocated
in parallel in each single round. Instead, using the fact that the probability for a bin to
receive a ball does not change within a batch, we base our analysis on an appropriate
bound on the expected number of new balls for each bin.

The second part of the analysis is related to the infinite process (the number of
batches is arbitrarily large) and is formalized by the so-called Short Memory Theo-
rem. It states that, informally, if we run the process for a long time, then the behavior of
the load of the bins is essentially determined only by a small number of the most recent
batches. With that, one can reduce the analysis for an arbitrary number of batches to the
case in the first part, that is, to the case when the number of batches is only polynomi-
ally small. The proof of the Short Memory Theorem uses similar coupling arguments as
the approach initiated in [4] (cf. also [14]), but the need to cope with parallel allocations
for the same batch makes the arguments more involved.

Further Discussion. Our analysis shows that even in a parallel environment, where the
tasks from the same batch are to be allocated concurrently, the idea of using multiple-
choices for the allocation leads to a significant improvement in the performance of sys-
tem. Indeed, if we used BGREEDY[1] instead of BGREEDY[2], that is, if all balls were
allocated at random, then it is a folklore result that for m ≥ n logn the gap between the
maximum and the minimum load is Θ(

√
m logn/n), w.h.p. Thus, our result shows that

despite the lack of any coordination between the allocation of balls in a single batch,
the use of a multiple-choice allocation scheme can improve the performance of system
as compared to the naive approach of fully random allocations (BGREEDY[1]).

Our result in Theorem 3 provides further evidence that even in systems with out-
dated information, by carefully choosing the allocation rules (multiple-choice alloca-
tion scheme), one can obtain a very balanced load allocation.

Let us also mention that our analysis is tight in the sense that for large enough m the
gap between the maximum and the minimum load in BGREEDY[2] is Ω(log n), w.h.p.

2 Polynomially Many Balls (Theorem 1)

Our analysis for the case of polynomially many balls follows the outline of the proof of
[4]. We will show two invariants, one for the underloaded and one for the overloaded
bins. The underloaded bins are analyzed in Section 2.2, the overloaded bins in Section
2.3. Together the invariants shown in both sections imply Theorem 1.

2.1 Preliminaries

The load of a bin is the number of balls it contains. Assuming that balls are allocated
sequentially, a ball’s height, or level, is the load of the selected bin right after the allo-
cation. Thus, one can picture the bin as a stack of balls and every new ball is simply

Multiple-Choice Balanced Allocation in (Almost) Parallel 417

pushed on top of the stack. If balls arrive at the same time, then we nevertheless assume
that they are added to the stack one after the other (in an arbitrary order) so that each
ball has a unique height.

Fix a time step t and let m be the number of balls allocated until time step t (that is,
in t batches of size n each). The average number of balls per bin at time t is m

n = t.
We call bins with fewer than t balls underloaded and bins with more than t balls

overloaded. We will frequently refer to holes in the distribution. For a given bin, the
number of holes is defined to be the number of balls it is short of the average load at
that point of time.

Key invariants. Our analysis relies on the following invariants that we will prove to
hold w.h.p. (for t ≤ poly(n)):

• L(t): At time t, there are at most 0.7 · n holes.
• H(t): At time t, there are at most 0.47 · n balls of height at least t+ 5.

Observe that since the total number of holes equals the total number of balls with height
above average, invariant L(t) immediately implies that there are at most 0.7 · n balls
with height t+ 1 or larger at time t.

We will use induction on t to prove the invariantsL(t) andH(t): we will show that if
L(0), . . . , L(t−1) andH(0), . . . , H(t−1) hold, thenL(t) andH(t) are fulfilled w.h.p.
(Observe that unlike in [4], we do not need L(t) to prove H(t).) We will analyze the
underloaded and overloaded bins separately; the corresponding analyses communicate
only through the two invariants above. We will finally use invariant H(t) to derive
Theorem 1. Throughout the analysis, we use the following notation:

Definition 1. For i, t ≥ 0, we let α(t)
i denote the fraction of bins with load at most t− i

at time t, and β(t)
i denote the fraction of bins with load at least t+ i at the same time t.

2.2 Analysis of Underloaded Bins

We begin with the analysis of the load in the underloaded bins, that is, in the bins with
the load below the average load. Our goal is to prove that for any t, if the invariants
L(0), . . . , L(t−1) and H(0), . . . , H(t−1) hold, then L(t) is fulfilled, that is, there are
at most 0.7n holes at time t w.h.p. Our analysis follows the analysis for the underloaded
bins from [4]. The details are omitted here.

Let c1 and c2 be suitable constants with c1 ≤ c2. The idea is to prove the following
two invariants (implying L(t)) for time t ∈ [0, poly(n)]:

• L1(t): For 1 ≤ i ≤ c1 · lnn, we have α(t)
i ≤ 1.6 · 0.3i.

• L2(t): For i ≥ c2 · lnn, we have α(t)
i = 0.

The proofs of L1(t) and L2(t) use an “outer” induction on t and an “inner” (layered)
induction on i. Note that the second invariant establishes the bound on the minimum
load of Theorem 1.

418 P. Berenbrink et al.

2.3 Analysis of Overloaded Bins

In this section, we analyze the load in overloaded bins and we will prove invariantH(t):
there are not more than 0.47 ·n balls with height at least t+5 w.h.p. The proof assumes
that invariant L(t− 1) holds, and hence that at time t− 1 there are at most 0.7 · n balls
above the average t− 1. Unlike our analysis in Section 2.2, this section is new and the
analysis requires many new ideas compared to [4].

We will analyze invariants H1(t) and H2(t) that imply both H(t) and Theorem 1.
To formulate the invariants H1(t) and H2(t), we first define two auxiliary functions h
and f :

Definition 2. For any i ≥ 0, define h(i) = 67 · 0.34i.
Let � denote the smallest integer i such that h(i) ≤ n−0.9 and let σ ≥ 1 denote a

suitable constant (that will be specified later). For i ≥ 4, we define:

f(i) =

⎧⎪⎨⎪⎩
h(i) for 4 ≤ i < � ,

max{h(i), 13 · n−0.9} for i = � ,

σ · n−1 for i = �+ 1 .

We use Definition 2 to set up our main invariants, H1(t) and H2(t). (Let us recall that

β
(t)
i denotes the fraction of bins with load at least t+ i at time t; see Definition 1.)

• H1(t): For 5 ≤ i ≤ �, we have β(t)
i ≤ f(i),

• H2(t):
∑

i> β
(t)
i ≤ σ · n−1.

H1(t) tells us that the number of balls decrease exponentially with each level. On level
� the fraction of balls is upper-bounded by n−0.9. The number of balls above level � can
be bounded by a constant σ. The proof of the following observation follows easily from
the properties of the function f .

Observation 1. H1(t) and H2(t) imply H(t).

Observation 2. If L(t), H1(t) and H2(t) hold w.h.p. for all t, then Theorem 1 holds.

Proof. First we show that the number of bins with load at least m
n + i + 5 is upper

bounded by n · e−i: using Definition 2 and basic properties of functions f and h, we
can show that for i ≥ 5, the fraction βi of balls on level i is upper-bounded by h(i).
Thus, it suffices to show that e−k ≥ h(k + 4) for k ≥ 1:

1.08k ≥ 0.9 ⇒ e−k · 0.34−k ≥ 67 · 0.344 ⇔ e−k ≥ h(k + 4) = 67 · 0.34k+4 .

It remains to prove that this upper bound holds w.h.p. for all t ≤ nδ

n = nδ−1. This
follows directly from the statement that L(t), H1(t) and H2(t) hold w.h.p. for all t. ��
Further details are omitted here, but the invariants H1 and H2 are proven by induction
on t. Our induction assumptions areH1(0), . . . , H1(t−1),H2(t−1) andL(t−1). These
assumptions provide a distribution of the balls over the bins at time t−1. The induction
step is proven by bounding the number of additional balls for each bin w.h.p. Counting
the number of additional balls is somewhat simplified by the fact that the probability
for a bin to receive a ball from batch t does not depend on how many balls of batch t
have been allocated before. This is because the protocol defines that the allocation of a
ball depends only on the loads of the bins (immediately) before batch t.

Multiple-Choice Balanced Allocation in (Almost) Parallel 419

3 Reducing to Polynomially Many Batches (Theorem 2)

In this section we sketch the arguments used to prove Theorem 2, which shows that
in order to analyze the maximum and/or minimum load after allocating m balls it is
sufficient to consider the scenario when the number of balls is polynomial with respect
to the number of bins, that is, m = poly(n).

The proof of Theorem 2 follows the approach proposed by [4] (see also [14]). The
main idea (stated formally in Theorem 4 in Section 3.3) is to prove that in BGREEDY[2],
if we start the process with K balls already allocated in the bins, and we then allocate
another K · poly(n) batches using BGREEDY[2], the obtained load distribution will be
(in a stochastic sense) almost independent of the initial allocation of the K balls in the
system. Therefore, without loss of generality, we could assume that the initial allocation
started with the same number of balls in every bin, in which case the process would be
identical to the one which ignored the initial K balls. This allows us to reduce the
analysis of BGREEDY[2] with m balls to the analysis of BGREEDY[2] with m′ � m
balls, and by applying this recursively, we can reduce the analysis of BGREEDY[2] to
the case when m is not too big, namely m = poly(n).

3.1 Basic Definitions and Notation

We use the standard notation [M] = {1, 2, . . . ,M} for any natural number M .

Load vectors and normalized load vectors. We model the allocation of balls in the bins
using load vectors. A load vector x = (x1, . . . , xn) specifies that the load of the ith bin
is xi. We will consider normalized load vectors; a load vector x is normalized if the
entries in x are sorted in non-increasing order, that is, xi ≥ xi+1 for every 1 ≤ i < n.
In that case, xi denotes the number of balls in the ith fullest bin. We observe that since
in our analysis the order among the bins is irrelevant (apart from tie breaking according
to bin IDs, which themselves are essentially arbitrary), we can restrict the state space to
normalized load vectors.

Let us mention an important feature of our analysis: while the normalized load vec-
tors are n-vectors with integer values, BGREEDY[2] resolves the ties in the load of
the two chosen bin by taking the one with the smallest ID, and so the outcome of
BGREEDY[2] depends on more than just the vector. However, one can always see any
normalized load vector as the one in which we order the bins of the same load accord-
ing to their IDs, from the largest ID to the smallest one. In view of that, the process of
selecting two bins to allocate a ball according to BGREEDY[2] for a normalized load
vector x = (x1, . . . , xn) is equivalent to one of choosing two indices it, jt i.u.r. and
then allocating the ball into the bin corresponding to xmax{it,jt}.

3.2 Allocation Process and Markov Chains

We will model the allocation process (one step of BGREEDY[2]) by a Markov chain:
if Xt denotes the (normalized) load vector at time t (after inserting t batches) then the
stochastic process (Xt)t∈N corresponds to a Markov chain MC = (Xt)t∈N whose tran-
sition probabilities are defined by our allocation process. In particular, Xt is a random

420 P. Berenbrink et al.

variable obeying a probability distribution L(Xt) defined by t steps of BGREEDY[2].
(Throughout the paper we use the standard notation to denote the probability distribu-
tion of a random variable U by L(U).)

Measuring similarity of distributions. We use a standard measure of discrepancy be-
tween two probability distributionsϑ and ν on a spaceΩ, the variation distance, defined
as ‖ϑ− ν‖ = 1

2

∑
ω∈Ω |ϑ(ω)− ν(ω)| = maxA⊆Ω(ϑ(A) − ν(A)).

3.3 Short Memory Theorem

Now we are ready to state our key result: Short Memory Theorem 4. Let us begin
with some further useful terminology. For any n,K ∈ N, let Ψn,K be the set of all
normalized load vectors x = (x1, . . . , xn) with

∑n
i=1 xi = K . That is, Ψn,K is the set

of all normalized load vectors that describe the system with K balls allocated to n bins.

Theorem 4 (Short Memory Theorem). Let K ∈ N and let x and y be any two nor-
malized load vectors in Ψn,K . For any t, let Xt (Yt) be the random variable describing
the normalized load vector after allocating t further batches on top of x (y, respec-
tively) using BGREEDY[2].

Then, for any ε > 0 there is some τ = O(K · n + n6 · log2(Kn/ε)), such that for
every T ≥ τ , ‖L(XT)− L(YT)‖ ≤ ε.

One should read the claim in Theorem 4 so that if we start with any two arbitrary alloca-
tions of K balls into n bins, then after adding T = K(n log(1/ε))O(1) batches to each
of them, the normalized load vectors of these two systems are almost indistinguishable;
they will be stochastically identical with probability at least 1−ε, for an arbitrary small,
positive ε.

Sketch of the Proof of Theorem 4. The proof of Theorem 4 uses the neighboring
coupling approach initiated in [4]. We consider two normalized load vectors after al-
locating τ batches, xτ = (xτ1 , . . . , x

τ
n) and yτ = (yτ1 , . . . , y

τ
n) that differ by a single

ball, that is, xτ = yτ + ei − ej for i �= j. (Here, for any s ∈ [n], es will denote
an n-vector consisting of a single element 1 in the coordinate s and of 0 in all other
coordinates. With this notation, if xτ = yτ + ei − ej for i �= j then xi = yi + 1,
xj = yj − 1, and xs = ys for all s ∈ [n] \ {i, j}.) For any two normalized load vectors
x = (x1, . . . , xn) and y = (y1, . . . , yn) with x = y + ei − ej for any i, j, define
Δ(x,y) = max{|xi − xj |, |yi − yj |}. Note that if x = y then i = j and Δ(x,y) = 0.

We will analyze a coupling for the Markov chains (Xt) and (Yt) starting with x0 and
y0 differing by a single ball, where all random choices performed by xτ are identical
to those performed by yτ . More formally, let us first consider state xτ . For each ball in
a given batch, we first choose two random numbers i, j ∈ [n] i.u.r., then take the larger
of them, say i, and then allocate the ball to the ith bin in the vector xτ = (xτ1 , . . . , x

τ
n).

Then, the same choice of i is used for the same ball for the vector yτ . Observe that this
construction uses the fact that in the normalized vector, the bins with the same load are
sorted in the decreasing order of their IDs.

Multiple-Choice Balanced Allocation in (Almost) Parallel 421

It is not difficult to see that (i) the coupling (xτ ,yτ) → (xτ+1,yτ+1) is a proper
coupling (i.e., transitions xτ → xτ+1 and yτ → yτ+1 are faithful copies of one step of
BGREEDY[2]), (ii) if xτ and yτ differ by a single ball then either xτ+1 and yτ+1 differ
by a single ball or xτ+1 = yτ+1, and (iii) if xτ = yτ then our coupling ensures that
xτ+1 = yτ+1. In view of these properties, our interest is in the analysis of the number
of steps required until xτ = yτ . Our central result about the coupling is as follows.

Lemma 1. Let t be any time step of the process with Δ(xt,yt) > 0. Then, either

• for some constant c > 0: Pr
[
Δ(xt+1,yt+1) = 0 | xt,yt

]
≥ c

n3 , or

• E
[
Δ(xt+1,yt+1) | xt,yt,xt �= yt

]
≤ Δ(xt,yt)− 1

n .

By combining Lemma 1 with some basic analysis of random walks on a line, we can
prove the following.

Lemma 2. Let ε be any positive real. If Δ(x0,y0) = Δ then the coupling satisfies
Pr
[
xτ = yτ | x0,y0

]
≥ 1− ε for some τ = O(Δ · n+ n6 · log2(n/ε)).

As the final step, we can combine Lemma 2 with the neighboring coupling approach
from [4] to conclude the proof of Theorem 4.

3.4 Using Short Memory Theorem 4 to Prove Theorem 2

We are now ready to prove our key result, Theorem 2. Our approach follows the ap-
proach used in [4, Section 4] (see the discussion in [4, Remark 2, p. 1376]), and below
we will briefly present the main ideas of the reduction.

Suppose that we have m batches to be allocated into n bins. We first allocate a
smaller number of batches, say m′ � m batches with m′ · n balls. Then, suppose we
can show that the maximum load in any bin is at most m′ + ϑ and the minimum load
in any bin is at least m′ − ϑ, with sufficiently high probability 1 − p, and for an ap-
propriate value ϑ (majorization by the process of allocating all balls in random gives
ϑ = O(

√
m′ · logn/p), see, e.g., [4]). Since the difference between the maximum

and minimum load is at most 2ϑ, the distance between the load vector after allocating
m′ · n balls and the load vector in which every bin has identical load m′ is at most
2ϑn. Therefore, if we apply the Short Memory Theorem 4, after allocating a further
ϑnc batches for an appropriate constant c, we will have a system with m′ · n + ϑnc+1

balls for which the distributions of the bins loads in these two processes are almost in-
distinguishable (w.h.p.). Hence, instead of analyzing the original process, it is sufficient
to analyze the process in which we first allocate m′ balls to each bin, and then allocate
a further ϑnc batches using BGREEDY[2] – but this process can completely ignore the
first m′ batches, because they are allocated deterministically. Therefore, we have shown
that in order to analyze the process for m = m′ + ϑnc batches, it is sufficient to ana-
lyze the same process for a smaller number of batches, for m∗ = ϑnc. As it has been
shown in detail in [4], by applying the reduction recursively with an appropriate choice
of parameters, the arguments above can be easily formalized to prove Theorem 2.

422 P. Berenbrink et al.

References

1. Adler, M., Berenbrink, P., Schröder, K.: Analyzing an Infinite Parallel Job Allocation Pro-
cess. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS,
vol. 1461, pp. 417–428. Springer, Heidelberg (1998)

2. Adler, M., Chakrabarti, S., Mitzenmacher, M., Rasmussen, L.: Parallel randomized load bal-
ancing. In: Proceedings of the 27th Annual ACM Symposium on Theory of Computing
(STOC), USA, pp. 238–247 (1995)

3. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations. SIAM Journal on Com-
puting 29(1), 180–200 (1999)

4. Berenbrink, P., Czumaj, A., Steger, A., Vöcking, B.: Balanced allocations: The heavily
loaded case. SIAM Journal on Computing 35(6), 1350–1385 (2006)

5. Czumaj, A., Stemann, V.: Randomized allocation processes. In: Proceedings of the 38th IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 194–203 (1997)

6. Dahlin, M.: Interpreting stale load information. IEEE Transactions on Parallel and Dis-
tributed Systems 11(10), 1033–1047 (2000)

7. Eager, D.L., Lazowska, E.D., Zahorjan, J.: Adaptive load sharing in homogeneous distributed
systems. IEEE Transactions on Software Engineering 12, 662–675 (1986)

8. Johnson, N.L., Kotz, S.: Urn Models and Their Application: An Approach to Modern Dis-
crete Probability Theory. John Wiley & Sons, New York (1977)

9. Karp, R.M., Luby, M., Meyer auf der Heide, F.: Efficient PRAM simulation on a distributed
memory machine. In: Proceedings of the 24th Annual ACM Symposium on Theory of Com-
puting (STOC), pp. 318–326 (1992)

10. Kolchin, V.F., Sevast’yanov, B.A., Chistyakov, V.P.: Random Allocations. V. H. Winston and
Sons, Washington, D.C. (1978)

11. Lenzen, C., Wattenhofer, R.: Tight bounds for parallel randomized load balancing. In: Pro-
ceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC), pp. 11–20
(2011)

12. Mitzenmacher, M.: How useful is old information? IEEE Transactions on Parallel and Dis-
tributed Systems 11(1), 6–20 (2000)

13. Stemann, V.: Parallel balanced allocations. In: Proceedings of the 8th Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA), pp. 261–269 (1996)

14. Talwar, K., Wieder, U.: Balanced allocations: The weighted case. In: Proceedings of the 39th
Annual ACM Symposium on Theory of Computing (STOC), pp. 256–265 (2007)

15. Vöcking, B.: How asymmetry helps load balancing. Journal of the ACM 50(4), 568–589
(2003)

Optimal Hitting Sets for Combinatorial Shapes�

Aditya Bhaskara1, Devendra Desai2, and Srikanth Srinivasan3

1 Department of Computer Science, Princeton University
bhaskara@cs.princeton.edu

2 Department of Computer Science, Rutgers University
devdesai@cs.rutgers.edu

3 DIMACS, Rutgers University
srikanth@dimacs.rutgers.edu

Abstract. We consider the problem of constructing explicit Hitting sets
for Combinatorial Shapes, a class of statistical tests first studied by
Gopalan, Meka, Reingold, and Zuckerman (STOC 2011). These general-
ize many well-studied classes of tests, including symmetric functions and
combinatorial rectangles. Generalizing results of Linial, Luby, Saks, and
Zuckerman (Combinatorica 1997) and Rabani and Shpilka (SICOMP
2010), we construct hitting sets for Combinatorial Shapes of size polyno-
mial in the alphabet, dimension, and the inverse of the error parameter.
This is optimal up to polynomial factors. The best previous hitting sets
came from the Pseudorandom Generator construction of Gopalan et al.,
and in particular had size that was quasipolynomial in the inverse of the
error parameter.

Our construction builds on natural variants of the constructions of
Linial et al. and Rabani and Shpilka. In the process, we construct frac-
tional perfect hash families and hitting sets for combinatorial rectangles
with stronger guarantees. These might be of independent interest.

1 Introduction

Randomness is a tool of great importance in Computer Science and combina-
torics. The probabilistic method is highly effective both in the design of simple
and efficient algorithms and in demonstrating the existence of combinatorial ob-
jects with interesting properties. But the use of randomness also comes with
some disadvantages. In the setting of algorithms, introducing randomness adds
to the number of resource requirements of the algorithm, since truly random
bits are hard to come by. For combinatorial constructions, ‘explicit’ versions of
these objects often turn out to have more structure, which yields advantages be-
yond the mere fact of their existence (e.g., we know of explicit error-correcting
codes that can be efficiently encoded and decoded, but we don’t know if random
codes can [5]). Thus, it makes sense to ask exactly how powerful probabilistic
algorithms and arguments are. Can they be ‘derandomized’, i.e., replaced by de-
terminstic algorithms/arguments of comparable efficiency?1 There is a long line
of research that has addressed this question in various forms [19,11,18,23,16].

� Many proofs are missing from this extended abstract. The full version is on the arxiv.
1 A ‘deterministic argument’ for the existence of a combinatorial object is one that
yields an efficient deterministic algorithm for its construction.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 423–434, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

424 A. Bhaskara, D. Desai, and S. Srinivasan

An important line of research into this subject is the question of derandomiz-
ing randomized space-bounded algorithms. In 1979, Aleliunas et al. [1] demon-
strated the power of these algorithms by showing that undirected s-t connectivity
can be solved by randomized algorithms in just O(log n) space. In order to show
that any randomized logspace computation could be derandomized within the
same space requirements, researchers considered the problem of constructing an
efficient ε-Pseudorandom Generator (ε-PRG) that would stretch a short random
seed to a long pseudorandom string that would be indistinguishable (up to er-
ror ε) to any logspace algorithm.2 In particular, an ε-PRG (for small constant
ε > 0) with seedlength O(log n) would allow efficient deterministic simulations of
logspace randomized algorithms since a deterministic algorithm could run over
all possible random seeds.

A breakthrough work of Nisan [18] took a massive step towards this goal
by giving an explicit ε-PRG for ε = 1/poly(n) that stretches O(log2 n) truly
random bits to an n-bit pseudorandom string for logspace computations. In the
two decades since, however, Nisan’s result has not been improved upon at this
level of generality. However, many interesting subcases of this class of functions
have been considered as avenues for progress [20,12,14,13,15].

The class of functions we consider are the very natural class of Combinato-
rial Shapes. A boolean function f is a combinatorial shape if it takes n inputs
x1, . . . , xn ∈ [m] and computes a symmetric function of boolean inputs that de-
pend on the membership of the inputs xi in sets Ai ⊆ [m] associated with f . (A
function of boolean bits y1, . . . , yn is symmetric if its output depends only on
their sum.) In particular, ANDs, ORs, Modular sums and Majorities of subsets
of the input alphabet all belong to this class. Until recently, Nisan’s result gave
the best known seedlength for any explicit ε-PRG for this class, even when ε
was a constant. In 2011, however, Gopalan et al. [9] gave an explicit ε-PRG for
this class with seedlength O(log(mn) + log2(1/ε)). This seedlength is optimal
as a function of m and n but suboptimal as a function of ε, and for the very
interesting case of ε = 1/nO(1), this result does not improve upon Nisan’s work.

Is the setting of small error important? We think the answer is yes, for many
reasons. The first deals with the class of combinatorial shapes: many tests from
this class accept a random input only with inverse polynomial probability (e.g.,
the alphabet is {0, 1} and the test accepts iff the Hamming weight of its n in-
put bits is n/2); for such tests, the guarantee that a 1/no(1)-PRG gives us is
unsatisfactory. Secondly, while designing PRGs for some class of statistical tests
with (say) constant error, it often is the case that one needs PRGs with much
smaller error — e.g., one natural way of constructing almost-logn wise indepen-
dent spaces uses PRGs that fool parity tests [17] to within inverse polynomial
error. Thirdly, the reason to improve the dependence on the error is simply be-
cause we know that such PRGs exist. Indeed, a randomly chosen function that
expands O(log n) bits to an n-bit string is, w.h.p., an ε-PRG for ε = 1/poly(n).
Derandomizing this existence proof is yet another challenge in understanding

2 As a function of its random bits, the logspace algorithm is read-once: it scans its
input once from left to right.

Optimal Hitting Sets for Combinatorial Shapes 425

how to eliminate randomness from existence proofs, and the tools we gain in
solving this problem might help us in solving others of a similar flavor.

Our result: While we are unable to obtain optimal PRGs for the class of com-
binatorial shapes, we make progress on a standard relaxation of this problem:
the construction of an ε-Hitting Set (ε-HS). An ε-HS for the class of combinato-
rial shapes has the property that any combinatorial shape that accepts at least
an ε fraction of truly random strings accepts at least one of the strings in the
hitting set. This is clearly a weaker guarantee than what an ε-PRG gives us.
Nevertheless, in many cases, this problem turns out to be very interesting and
non-trivial: in particular, an ε-HS for the class of space-bounded computations
would solve the long-standing open question of whether RL = L. Our main re-
sult is an explicit ε-HS of size poly(mn/ε) for the class of combinatorial shapes,
which is optimal, to within polynomial factors, for all errors.

Theorem 1 (Main Result (informal)). For any m,n ∈ N, ε > 0, there is an
explicit ε-HS for the class of combinatorial shapes of size poly(mn/ε).

Related work: There has been a substantial amount of research into both PRGs
and hitting sets for many interesting subclasses of the class of combinatorial
shapes, and also some generalizations. Naor and Naor [17] constructed PRGs
for parity tests of bits (alphabet size 2); these results were extended by Lovett
et al. [13] and Meka and Zuckerman [15] to modular sums (with coefficients).
Combinatorial rectangles, a subclass of combinatorial shapes, have also been
the subject of much attention. A series of works [6,4,14] constructed ε-PRGs
for this class of functions: the best such PRG, due to Lu [14], has seedlength

O(log n+ log3/2(1/ε)). Linial et al. [12] constructed optimal hitting sets for this
class of tests. We build on many ideas from this work.

We also mention two more recent results that are very pertinent to our work.
The first is to do with Linear Threshold functions which are weighted general-
izations of threshold symmetric functions of input bits. For this class, Rabani
and Shpilka [21] construct an explicit ε-HS of optimal size poly(n/ε). They use
a bucketing and expander walk construction to build their hitting set. Our con-
struction uses similar ideas.

The final result that we use is the PRG for combinatorial shapes by Gopalan et
al. [9] that was mentioned in the introduction. This work directly motivates our
results and moreover, we use their PRG as a black-box within our construction.

2 Notation and Preliminaries

Definition 1 (Combinatorial Shapes, Rectangles, Thresholds). A func-
tion f is an (m,n)-Combinatorial Shape if there exist setsA1, . . . , An ⊆ [m] and a
symmetric function h : {0, 1}n → {0, 1} such that f(x1, . . . , xn) = h(1A1(x1), . . .
, 1An(xn))

3. If h is the AND function, we call f an (m,n)-Combinatorial Rect-
angle. If h is an unweighted threshold function (i.e. h accepts based on the sign of

3 1A is the indicator function of the set A.

426 A. Bhaskara, D. Desai, and S. Srinivasan∑
i 1Ai(xi) − θ for some θ ∈ N), then f is said to be an (m,n)-Combinatorial

Threshold. We denote by CShape(m,n), CRect(m,n), and CThr(m,n) the class of
(m,n)-Combinatorial Shapes, Rectangles, and Thresholds respectively.

Notation. For i ∈ [n], let Xi = 1Ai(xi), pi = |Ai|/m, qi = 1 − pi and wi = piqi.
Define the weight of a shape f as w(f) =

∑
iwi. For θ ∈ N, let T−

θ (resp. T+
θ)

be the function that accepts iff
∑

1Ai(Xi) is at most (resp. at least) θ.

Definition 2 (Pseudorandom Generators and Hitting Sets). Let F ⊆
{0, 1}A denote a boolean function family for some input domain A. A function
G : {0, 1}s → A is an ε-pseudorandom generator (ε-PRG) with seedlength s for
a class of functions F if for all f ∈ F , |Px∈u{0,1}s [f(G(x)) = 1]−Py∈uA[f(y) =
1]| ≤ ε.. An ε-hitting set (ε-HS) for F is a subset H ⊆ A s.t. for any f ∈ F , if
Px∈uA[f(x) = 1] ≥ ε, then ∃x ∈ H s.t. f(x) = 1.

Remark 1. Whenever we say that there exist explicit families of combinatorial
objects of some kind, we mean that the object can be constructed by a deter-
ministic algorithm in time polynomial in the description of the object.

We will need the following previous results in our constructions.

Theorem 2 (ε-PRGs for CShape(m,n) [9]). For every ε > 0, there exists an
explicit ε-PRG for CShape(m,n) with seed-length O(log(mn) + log2(1/ε)).

Theorem 3 (ε-HS for CRect(m,n) [12]). For every ε > 0, there exists an
explicit ε-hitting set Sm,n,εLLSZ for CRect(m,n) of size poly(m(logn)/ε).

Recall that a distribution μ over [m]n is k-wise independent for k ∈ N if for any
S ⊆ [n] s.t. |S| ≤ k, the marginal μ|S is uniform over [m]|S|. Also, G : {0, 1}s →
[m]n is a k-wise independent probability space over [m]n if for uniformly randomly
chosen z ∈ {0, 1}s, the distribution of G(z) is k-wise independent.

Fact 4 (Explicit k-wise independent spaces) For any k,m, n ∈ N, there is
an explicit k-wise independent probability space Gm,nk-wise : {0, 1}s → [m]n with
s = O(k log(mn)).

Expanders. Recall that a degree-D graph G = (V,E) on N vertices is an
(N,D, λ)-expander if the second largest (in absolute value) eigenvalue of its
normalized adjacency matrix is at most λ. We will use explicit expanders as a
basic building block. We refer the reader to the excellent survey of Hoory, Linial,
and Wigderson [10] for various related results.

Fact 5 (Explicit Expanders [10]) Given any λ > 0 and N ∈ N, there is an
explicit (N,D, λ)-expander where D = (1/λ)O(1).

Expanders have found numerous applications in derandomization. A central
theme in these applications is to analyze random walks on a sequence of ex-
pander graphs. Let G1, . . . , G be a sequence of (possibly different) graphs on

Optimal Hitting Sets for Combinatorial Shapes 427

the same vertex set V . Assume Gi (i ∈ [�]) is an (N,Di, λi)-expander. Fix any
u ∈ V and y1, . . . , y ∈ N s.t. yi ∈ [Di] for each i ∈ [�]. Note that (u, y1, . . . , y)
naturally defines a ‘walk’ (v1, . . . , v) ∈ V as follows: v1 is the y1th neighbour
of u in G1 and for each i > 1, vi is the yith neighbour of vi−1 in Gi. We denote
by W(G1, . . . , G) the set of all tuples (u, y1, . . . , y) as defined above. Moreover,
given w = (u, y1, . . . , y) ∈ W(G1, . . . , G), we define vi(w) to be the vertex vi
defined above (we will simply use vi if the walk w is clear from the context).

We need a variant of a result due to Alon et al. [2] and a corollary that follows
from it. The lemma as it is stated below is slightly more general than the one
given in [2] but it can be obtained by using essentially the same proof and setting
the parameters appropriately.

Lemma 1. There is an absolute constant cwalk > 0 s.t. the following holds. Let
G1, . . . , G be a sequence of graphs defined on the same vertex set V of size N .
Assume that Gi is an (N,Di, λi)-expander. Let V1, . . . , V ⊆ V s.t. |Vi| ≥ piN >
0 for each i ∈ [�]. Then, Pw∈W(G1,...,G�) [∀i ∈ [�], vi(w) ∈ Vi] ≥ 1

2cwalk�

∏
i∈[] pi

as long as for each i ∈ [�], λi ≤ (pipi−1)/10.

Corollary 1. Let V be a set of N elements, and let 0 < pi < 1 for 1 ≤ i ≤ s be
given. There exists an explicit set of walks W, each of length s, s.t. for any subsets
V1, V2, . . . , Vs of V , with |Vi| ≥ piN , there exists a walk w = w1w2 . . . ws ∈ W
such that wi ∈ Vi for all i. Furthermore, there exist such W satisfying |W| ≤
poly

(
N,
∏s
i=1

1
pi

)
.

Hashing. Hashing plays a vital role in all our constructions. Thus, we need
explicit hash families which have several “good” properties. These are obtained
by extending constructions due to Rabani and Shpilka [21], Schmidt and Siegel
[22], and Fredman, Komlos, and Szemeredi [8]. The second lemma is a fractional
version of the first. Proofs are omitted for lack of space.

Lemma 2 (Perfect Hash Families). There is an absolute constant cperf > 0
so that the following holds. For any n, t ∈ N, there is an explicit family of hash
functions Hn,t

perf ⊆ [t][n] of size 2O(t)poly(n) s.t. for any S ⊆ [n] with |S| = t, we

have Ph∈Hn,t
perf

[h is 1-1 on S] ≥ 1
2cperft

.

Lemma 3 (Fractional Perfect Hash families). For an absolute constant
cfrac and any n, t ∈ N, there is an explicit family of hash functions Hn,t

frac ⊆
[t][n] of size 2O(t)nO(1) s.t. for any z ∈ [0, 1]n with

∑
j∈[n] zj ≥ 10t, we have

Ph∈Hn,t
frac

[
∀i ∈ [t],

∑
j∈h−1(i) zj ∈ [0.01M, 10M]

]
≥ 1

2cfract , whereM =
∑

j∈[n] zj

t .

3 Outline of the Construction

We first make a standard simplifying observation that we can throughout assume
that m,n, 1/ε can be nO(1). Thus, we only need to construct hitting sets of size
nO(1) in this case. The proof is omitted. From now on, we assumem, 1/ε = nO(1).

428 A. Bhaskara, D. Desai, and S. Srinivasan

Lemma 4. Assume that for every constant c ≥ 1, and m ≤ nc, there is an
explicit 1/nc-HS for CShape(m,n) of size nOc(1). Then, for any m,n,∈ N and
ε > 0, there is an explicit ε-HS for CShape(m,n) of size poly(mn/ε).

Next, we prove a crucial lemma which shows how to obtain hitting sets for
CShape(m,n) starting with hitting sets for CThr(m,n). This reduction crucially
uses the fact that CShape does only ‘symmetric’ tests – it fails to hold, for
instance, for natural “weighted” generalizations of CShape.

Lemma 5. Suppose that for every ε > 0, there exist ε-HS for CThr(m,n) of
size F (m,n, 1/ε). Then there exists an ε-HS for CShape(m,n) of size (n + 1) ·
F 2(m,n, n/ε).

Proof. Suppose we can construct hitting sets for CThr(m,n) and parameter ε′ of
size F (m,n, 1/ε′), for all ε′ > 0. Now consider some f ∈ CShape(m,n), defined
using sets Ai and symmetric function h. Since h is symmetric, it depends only
on the number of 1’s in its input. In particular, there is a W ⊆ [n] ∪ {0} s.t.
for a ∈ {0, 1}n we have h(a) = 1 iff |a| ∈ W . Now if Px[f(x) = 1] ≥ ε, there
must exist a w ∈ W s.t. the probability that Px[|{i ∈ [n] | 1Ai(xi) = 1}| =
w] ≥ ε/|W | ≥ ε/n. Thus if we consider functions in CThr(m,n) defined by
the same Ai, and thresholds T+

w and T−
w respectively, we have that both have

accepting probability at least ε/n, and thus an ε/n-HS S for CThr(m,n) must
have ‘accepting’ elements y, z ∈ [m]n for T−

w and T+
w respectively.

The key idea is now the following. Suppose we started with the string y and
moved to string z by flipping the coordinates one at a time – i.e., the sequence of
strings would be: (y1 y2 . . . yn), (z1 y2 . . . yn), (z1 z2 . . . yn), . . . , (z1 z2 . . . zn).

In this sequence the number of “accepted” indices (i.e., i for which 1Ai(xi) =
1) changes by at most one in each ‘step’. To start with, since y was accepting for
T−
w , the number of accepting indices was at most w, and in the end, the number

is at least w (since z is accepting for T+
w), and hence one of the strings must

have precisely w accepting indices, and this string would be accepting for f !
Thus we can consider every pair of strings in a hitting set for CThr(m,n) and

error ε/n, and consider the (n + 1) “intermediate” strings as a hitting set for
CShape(m,n) of error ε. It is easy to check that it has size (n+1) ·F 2(m,n, n/ε).

Overview of the Constructions. In what follows, we focus on constructing hitting
sets for CThr(m,n). We will describe the construction of two families of hitting
sets: the first is for the “high weight” case – w(f) :=

∑
i wi > C logn for some

large constant C, and the second for the case w(f) < C logn. The final hitting
set is a union of the ones for the two cases. The high-weight case is conceptually
simpler, and illustrates the important tools. A main tool in both cases is a
“fractional” version of the perfect hashing lemma, which, though a consequence
of folklore techniques, does not seem to be known in this generality (Lemma 3).

The proof of the low-weight case is technically more involved, and for lack of
space, we only present the solution in the special case when all the sets Ai are
“small”, i.e., we have pi ≤ 1/2 for all i. This case illustrates the main tool we use
for the low-weight case, which is the perfect hashing lemma (which appears, for

Optimal Hitting Sets for Combinatorial Shapes 429

instance in derandomization of “color coding” – a trick introduced in [3], which
our proof in fact bears a resemblance to).

4 Hitting Sets for Combinatorial Thresholds

As described above, we first consider the high-weight case (i.e., w(f) ≥ C logn
for some large absolute constant C). Next, we consider the low-weight case, with
an additional restriction that each of the accepting probabilities pi ≤ 1/2. This
serves as a good starting point to explain the general low-weight case, which we
get to in section 4.2. The theorem we finally prove in the section is as follows

Theorem 6. Suppose m, 1/ε = nO(1). For the class of functions CThr(m,n),
there exists an explicit ε-hitting set of polynomial size.

4.1 High Weight Case

Theorem 7. For any c > 0, there is a C > 0 s.t. for m, 1/ε ≤ nc, there is an
explicit ε-HS of size nOc(1) for the class of functions in CThr(m,n) of weight at
least C logn.

As discussed earlier, we wish to construct hitting sets for T+
θ and T−

θ , for θ s.t.
the probability of the event for independent, perfectly random xi is at least 1/n

c.
For convenience, define μ := p1 + p2 + · · ·+ pn, and W := w1 +w2 + . . . wn. We
have W > C logn for a large constant C (it needs to be large compared to c, as
seen below). First, we have the following by Chernoff bounds.

Claim. If Px[T
+
θ (x) = 1] > ε (≥ 1/nc), we have θ ≤ μ+ 2

√
cW logn.

Outline. Let us concentrate on hitting sets for the event T+
θ (the case T− follows

verbatim). The main idea is the following: we first divide the indices [n] into
logn buckets using a hash function (from a fractional perfect hash family, see
Lemma 3). This is to ensure that the wi get distributed uniformly. Second, we

aim to obtain an advantage of roughly 2
√

cW
logn in each of the buckets (advantage

is w.r.t. the mean in each bucket). Third, we ensure that the advantages add
up, giving a total advantage of 2

√
cW logn over the mean, which is what we

intended to obtain. In the second step (i.e., in one bucket), we can prove that
the desired advantage occurs with constant probability, and thus we can use a
result of Gopalan et al. [9]. Finally, in the third step, we cannot afford to use
different hash functions in different buckets (this would result in a seed length
of Θ(log2 n)) – thus we need to use expander walks to save on randomness. Let
us now describe the three steps in detail. We note that these steps parallel the
results of Rabani and Shpilka [21].

The first step is straightforward: we pick a hash function from a perfect frac-
tional hash family Hn,logn

frac . From Lemma 3, we obtain

Claim. For every set of weights w, there exists an h ∈ Hn,logn
frac s.t. for all 1 ≤

i ≤ logn, we have W
100 logn ≤

∑
j∈h−1(i) wj ≤ 100W

logn .

430 A. Bhaskara, D. Desai, and S. Srinivasan

The rest of the construction is done starting with each h ∈ Hn,logn
frac . Thus for

analysis, suppose that we are working with an h satisfying the inequality from
the above claim. For the second step, we first prove that for independent random

xi ∈ [m], we have a constant probability of getting an advantage of 2
√

cW
logn .

Lemma 6. Let S be the sum of k independent random variables Xi, with P[Xi =
1] = pi, let c

′ be a constant, and let
∑

i pi(1 − pi) ≥ σ2, for some σ satisfying

σ ≥ 4ec
′2
. Define μ :=

∑
i pi. Then P[S > μ+ c′σ] ≥ α, and P[S < μ− c′σ] ≥ α,

for some constant α depending on c′.

The proof is straightforward, but it is instructive to note that in general, a
random variable (in this case, S) need not deviate “much more” (in this case,
a c′ factor more) than its standard deviation: we have to use the fact that S is
the sum of independent r.v.s. This is done by an application of the Berry-Esséen
theorem [7]. We refer to the full version of the paper for details.

Now, note that since α is a constant, we can appeal to the result of Gopalan et
al. [9] and use the output of a pseudorandom generator instead of independent
xi (in each bucket), and succeed w.p. at least α/2.

Thus we are left with the third step: here for each bucket, we would like
to have (independent) PRGs which generate the corresponding xi (and each of
these PRGs has a seed length of O(log n)). Since we cannot afford O(log2 n)
total seed length, we instead do the following: consider a PRG for combinatorial
thresholds defined on all the n indices (we can obtain assignments to a subset of
indices by restriction). This is done for error parameter α/2 (a constant), thus
the seed length is only O(log n). Let S be such a PRG (viewed as a collection
of strings: S ⊆ [m]n). From the above, we have that for the ith bucket, the
probability x ∼ S exceeds the threshold on indices in bucket i is at least α/2.
Now there are logn buckets, and in each bucket, the probability of ‘success’ is
at least α/2. We can thus appeal to the ‘expander walk’ lemma of Alon et al. [2]
(see preliminaries, Lemma 1 and the corollary following it).

This means the following: we consider an explicitly constructed expander on
a graph with vertices being the elements of S, and the degree being a constant
depending on α). We then perform a random walk of length logn (the number
of buckets). Let s1, s2, . . . , slogn be the strings (from S) we see in the walk. We
form a new string in [m]n by picking values for indices in bucket i, from the
string si. By the Expander walk lemma (1), with non-zero probability, this will
succeed for all 1 ≤ i ≤ log n, and this gives the desired advantage.

The seed length for generating the walk is O(log |S|)+O(1) · logn = O(log n).
Combining (or in some sense, composing) this with the hashing earlier completes
the construction.

4.2 Thresholds with Small Weight (and Small Sized Sets)

We now prove Theorem 6 for the case of shapes f satisfying w(f) = O(log n).

Theorem 8. Fix any c ≥ 1. For any m = nc, there exists an explicit 1/nc-HS
Sn,clow ⊆ [m]n of size nOc(1) for functions f ∈ CThr(m,n) s.t. w(f) ≤ c logn.

Optimal Hitting Sets for Combinatorial Shapes 431

We will prove this theorem in the rest of this sub-section in the special case that
the underlying subsets of f , A1, . . . , An ⊆ [m] are small : pi ≤ 1/2 for each i. To
begin, we note that hitting sets for the symmetric function T−

θ are very easy to
come up with in this case. In particular, since T−

0 accepts iff
∑

Xi = 0, it can
also be interpreted as a combinatorial rectangle on A1, . . . , An. The probability
of this event over uniformly chosen inputs is at least

∏
i(1 − pi) ≥ e−2

∑
i pi ≥

e−4
∑

i pi(1−pi) ≥ n−4c. Thus the existence of these follows from Linial et al.. [12].
Further, by definition, a hitting set for T−

0 is also a hitting set for T−
θ for θ > 0.

Let us now fix a T+
θ that accepts with good probability, Px[T

+
θ (x) = 1] ≥ ε.

Since w(T+
θ) ≤ c logn, it follows that μ ≤ 2c logn. Thus by a Chernoff bound

and the fact that ε = 1/nc, we have that θ ≤ c′ logn for some c′ = Oc(1).

Outline. The idea is to use a perfect hash family (not a fractional one) mapping
[n] → [θ]. The aim will now be to obtain a contribution of 1 from each bucket4.
In order to do this, we require

∏
i μi be large, where μi is the sum of pj for j in

bucket Bi. By a reason similar to color coding (see [3]), it will turn out that this
quantity is large when we bucket using a perfect hash family. We then prove that
using a pairwise independent space in each bucket Bi “nearly” gives probability
μi of succeeding. As before, since we cannot use independent hashes in each
bucket, we take a hash function over [n], and do an expander walk. The final
twist is that in the expander walk, we cannot use a constant degree expander: we
will have to use a sequence of expanders on the same vertex set with appropriate
degrees (some of which can be super-constant, but the product will be small).
This will complete the proof. We note that the last trick was implicitly used in
the work of [12].

Construction. Let us formally describe a hitting set for T+
θ for a fixed θ. (The

final set Sn,clow will be a union of these for θ ≤ c′ logn along with the hitting set
of [12]).

Step 1: Let Hn,θ
perf = {h : [n] → [θ]} be a perfect hash family as in Lemma 2.

The size of the hash family is 2O(θ)poly(n) = nOc′ (1) = nOc(1). For each hash

function h ∈ Hn,θ
perf divide [n] into θ buckets B1, . . . , Bθ (so Bi = h−1(i)).

Step 2: We will plug in a pairwise independent space in each bucket. Let
Gm,n2−wise : {0, 1}s → [m]n denote the generator of a pairwise independent space.
Note that the seed-length for any bucket is s = O(log n)5.

Step 3: The seed for the first bucket is chosen uniformly at random and
seeds for the subsequent buckets are chosen by a walk on expanders with varying
degrees. For each i ∈ [θ] we choose every possible η′i such that 1/η′i is a power
of 2 and

∏
i η

′
i ≥ 1/nc. There are at most poly(n) such choices for all η′i’s in

total. We then take an (2s, di, λi)-expander Hi on vertices {0, 1}s with degree
di = poly(1/(η′iη

′
i−1)) and λi = η′iη

′
i−1/100. Now for any j ∈ [θ], u ∈ {0, 1}s,

{yi ∈ [di]}ji=1, let (u, y1, . . . , yj) ∈ W(H1, . . . , Hj) be a j-step walk. For all

4 This differs from the high-weight case, where we looked at advantage over the mean.
5 We do not use generators with different output lengths, instead we take the n-bit
output of one generator and restrict to the entries in each bucket.

432 A. Bhaskara, D. Desai, and S. Srinivasan

starting seeds z0 ∈ {0, 1}s and all possible yi ∈ [di] for all i ∈ [θ], construct the
input for the i-th bucket as x|Bi = G(vi(z0, y1, . . . , yi)).

Size. We have |Sn,clow| = c′ logn · nOc(1) ·
∏
i di, where the c′ logn factor is due to

the choice of θ, the nOc(1) factor is due to the size of the perfect hash family,
the number of choices of (η′1, . . . , η

′
θ), and the choice of the first seed, and the∏

i di factor is the number of expander walks. Simplifying, |Sn,clow| = nOc(1)
∏
di =

nOc(1)
∏
i(η

′
i)

−O(1) ≤ nOc(1), where the last inequality is due to the choice of η′i’s.

Analysis. We follow the outline. First, we can upper bound Px∼[m]n [T
+
θ (x) = 1]

by
∑

|S|=θ
∏
i∈S pi ≥ ε (this is like a Union bound). Second, if we hash the indices

[n] into θ buckets at random and consider one S with |S| = θ, the probability that
the indices in S are ‘uniformly spread’ (one into each bucket) is 1/2O(θ). This
property is also true if we pick h from the perfect hash family. Formally, given an
h ∈ Hn,θ

perf , define αh =
∏
i∈θ
∑

j∈h−1(i) pj. Over a uniform choice of h from the

family Hn,θ
perf , we can conclude that Ehαh ≥

∑
|S|=θ

∏
i∈S pi Ph[h is 1-1 on S] ≥

ε/2O(θ) ≥ 1/nOc(1). Thus there must exist an h that satisfies αh ≥ 1/nOc(1). We
fix such an h.

For a bucket Bi, define μi =
∑

j∈Bi
pj and ηi = P[

∑
j∈Bi

Xj ≥ 1] where the

probability is taken over inputs generated by Gm,n2−wise. Further, call a bucket Bi
as being good if μi ≤ 1/10, otherwise call the bucket bad. The following claim
gives lower bounds on the probability that in any given bucket, at least one
of the input coordinates xj satisfies xj ∈ Aj . The claim is easily proved using
pairwise independence and inclusion-exclusion. We omit the proof.

Claim. For any good bucket Bi, ηi ≥ μi/2 and for any bad bucket Bi, ηi ≥ 1/20.
Moreover, the good buckets collectively satisfy

∏
Bi good μi ≥ 1/nOc(1).

For a moment, let us analyze the construction assuming independent pairwise in-
dependent spaces in each bucket. Then, using the above claim, the success prob-
ability, namely the probability that every bucket i has a non-zero

∑
j∈h−1(i)Xj

is equal to
∏
i ηi ≥ (

∏
Bi bad 1/20)(

∏
Bi good μi/2) = (1/2O(θ))

∏
Bigood

μi ≥
1/(2O(θ)nOc(1)) ≥ 1/nOc(1).(∗)

If now the seeds for Gm,n2−wise in each bucket are chosen according to the
expander walk corresponding to the probability vector (η1, . . . , ηθ), then by
Lemma 1 the success probability becomes at least (1/2O(θ))

∏
i ηi ≥ 1/nOc(1),

using (∗) for the final inequality.
But we are not done yet.We cannot guess the correct probability vector exactly.

Instead, we get a closest guess (η′1, . . . , η
′
θ) such that for all i ∈ [θ], η′i ≥ ηi/2.

Again, by Lemma 1 the success probability becomes at least (1/2O(θ))
∏
i η

′
i ≥

(1/2O(θ))2
∏
i ηi ≥ 1/nOc(1), using (∗) for the final inequality.

The general low-weight case: The general case (where pi are arbitrary) is
more technical: here we need to do a “two level” hashing. The top level is by
dividing into buckets, and in each bucket we get the desired “advantage” using
a generalization of hitting sets for combinatorial rectangles (which itself uses

Optimal Hitting Sets for Combinatorial Shapes 433

hashing) from [12]. For lack of space, we are unable to prove the general low-
weight case here, but we state this generalization of (a special case of) [12] and
outline its proof below. As pointed to in the introduction, [12] give ε-hitting set
constructions for combinatorial rectangles, even for ε = 1/n2. However in our
applications, we require something slightly stronger – in particular, we need a
set S s.t. Px∼S(x in the rectangle) ≥ ε (roughly speaking). We however need to
fool only special kinds of rectangles, given by the two conditions in Theorem 9.

Theorem 9. For all constants c > 0, m = nc, and ρ ≤ c logn, for any R ∈
CRect(m,n) which satisfies the properties: 1. R is defined by Ai, and the rejecting
probabilities qi which satisfy

∑
i qi ≤ ρ and 2. Px∼[m]n [R(x) = 1] ≥ p (≥ 1/nc),

there is an explicit set Sn,c,ρrect of size poly(n) that satisfies Px∼Sn,c,ρ
rect

[R(x) = 1] ≥
p/2crectρ, for some crect depending on c.

Proof sketch. The outline of the construction is as follows:

1. We guess an integer r ≤ ρ/10 (supposed to be an estimate for
∑

i qi/10).
2. Then we use a fractional hash family Hn,r

frac to map the indices into r buckets.
This ensures that each bucket has roughly a constant weight.

3. In each bucket, we show that taking O(1)-wise independent spaces (Fact 4)
would ensure a success probability depending on the weight of the bucket.

4. We then combine the distributions for different buckets using expander walks
(this step has to be done with more care now, since the probabilities are
different across buckets).

Proof of Theorem 6. The theorem follows easily from Theorems 7 and 8. Fix
constant c ≥ 1 s.t. m, 1/ε ≤ nc. For C > 0 a constant depending on c, we obtain
hitting sets for thresholds of weight at least C logn from Theorem 7 and for
thresholds of weight at most C logn from Theorem 8. Their union is an ε-HS for
all of CThr(m,n).

Open Problems. It would be nice to extend our methods to weighted variants
of combinatorial shapes: functions which accept an input x iff

∑
i αi1Ai(xi) = S

where αi ∈ R≥0. The difficulty here is that having hitting sets for this sum being
≥ S and ≤ S do not imply a hitting set for ‘= S’. The simplest open case here
is m = 2 and all Ai being {1}. However, it would also be interesting to prove
formally that such weighted versions can capture much stronger computational
classes.

References

1. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks,
universal traversal sequences, and the complexity of maze problems. In: 20th An-
nual Symposium on Foundations of Computer Science, San Juan, Puerto Rico,
October 29-31, pp. 29–31. IEEE (1979)

2. Alon, N., Feige, U., Wigderson, A., Zuckerman, D.: Derandomized graph products.
Computational Complexity 5, 60–75 (1995), doi:10.1007/BF01277956

434 A. Bhaskara, D. Desai, and S. Srinivasan

3. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
4. Armoni, R., Saks, M., Wigderson, A., Zhou, S.: Discrepancy sets and pseudo-

random generators for combinatorial rectangles. In: 37th Annual Symposium on
Foundations of Computer Science, Burlington, VT, pp. 412–421. IEEE Comput.
Soc. Press, Los Alamitos (1996)

5. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

6. Even, G., Goldreich, O., Luby, M., Nisan, N., Velic̆ković, B.: Efficient approxima-
tion of product distributions. Random Structures Algorithms 13(1), 1–16 (1998)

7. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 2.
Wiley (1971)

8. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with 0(1) worst
case access time. J. ACM 31(3), 538–544 (1984)

9. Gopalan, P., Meka, R., Reingold, O., Zuckerman, D.: Pseudorandom generators for
combinatorial shapes. In: STOC, pp. 253–262 (2011)

10. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bul-
letin of the AMS 43(4), 439–561 (2006)

11. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: De-
randomizing the XOR lemma. In: Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, El Paso, Texas, May 4-6, pp. 220–229 (1997)

12. Linial, N., Luby, M., Saks, M., Zuckerman, D.: Efficient construction of a small
hitting set for combinatorial rectangles in high dimension. Combinatorica 17,
215–234 (1997), doi:10.1007/BF01200907

13. Lovett, S., Reingold, O., Trevisan, L., Vadhan, S.: Pseudorandom Bit Generators
That Fool Modular Sums. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.)
APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 615–630. Springer, Heidelberg
(2009)

14. Lu, C.-J.: Hyper-encryption against space-bounded adversaries from on-line strong
extractors, pp. 257–271

15. Meka, R., Zuckerman, D.: Small-bias spaces for group products. These proceedings
(2009)

16. Moser, R.A., Tardos, G.: A constructive proof of the general lovász local lemma.
J. ACM 57(2) (2010)

17. Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and ap-
plications. SIAM Journal on Computing 22(4), 838–856 (1993)

18. Nisan, N.: Pseudorandom generators for space-bounded computation. Combina-
torica 12(4), 449–461 (1992)

19. Nisan, N., Wigderson, A.: Hardness vs. randomness. J. Comput. Syst. Sci. 49(2),
149–167 (1994)

20. Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer
and System Sciences 52(1), 43–52 (1996)

21. Rabani, Y., Shpilka, A.: Explicit construction of a small epsilon-net for linear
threshold functions. SIAM J. Comput. 39(8), 3501–3520 (2010)

22. Schmidt, J.P., Siegel, A.: The analysis of closed hashing under limited randomness
(extended abstract). In: STOC, pp. 224–234 (1990)

23. Shaltiel, R., Umans, C.: Pseudorandomness for approximate counting and sam-
pling. Computational Complexity 15(4), 298–341 (2006)

Tight Bounds for Testing k-Linearity

Eric Blais1 and Daniel Kane2

1 School of Computer Science, Carnegie Mellon University
eblais@cs.cmu.edu

2 Department of Mathematics, Stanford University
dankane@math.stanford.edu

Abstract. The function f : Fn
2 → F2 is k-linear if it returns the sum

(over F2) of exactly k coordinates of its input. We introduce strong lower
bounds on the query complexity for testing whether a function is k-linear.
We show that for any k ≤ n

2
, at least k−o(k) queries are required to test

k-linearity, and we show that when k ≈ n
2
, this lower bound is nearly

tight since 4
3
k+o(k) queries are sufficient to test k-linearity. We also show

that non-adaptive testers require 2k −O(1) queries to test k-linearity.
We obtain our results by reducing the k-linearity testing problem to

a purely geometric problem on the boolean hypercube. That geometric
problem is then solved with Fourier analysis and the manipulation of
Krawtchouk polynomials.

1 Introduction

What global properties of functions can we test with only a partial, local view
of an unknown object? Property testing, a model introduced by Rubinfeld and
Sudan [20], formalizes this question. In this model, a property of functions Fn2 →
F2 is simply a subset of these functions. A function f : Fn2 → F2 is ε-far from a
property P if for every g ∈ P , the inequality f(x) �= g(x) holds for at least an ε
fraction of the inputs x ∈ Fn2 . A q-query ε-tester for P is a randomized algorithm
that queries a function f on at most q inputs and distinguishes with probability
at least 2

3 between the cases where f ∈ P and where f is ε-far from P . The
aim of property testing is to identify the minimum number of queries required
to test various properties. For more details on property testing, we recommend
the recent surveys [17,18,19] and the collection [13].

Linearity testing is one of the earliest success stories in property testing.
The function f : Fn2 → F2 is linear if it is of the form f(x) =

∑
i∈S xi for

some set S ⊆ [n], where the sum is taken over F2. Equivalently, f is linear
if every pair x, y ∈ Fn2 satisfies the identity f(x) + f(y) = f(x + y). Blum,
Luby, and Rubinfeld [7] showed that, remarkably, linearity can be ε-tested with
only O(1/ε) queries. The exact query complexity of this problem has since been
studied extensively [2,3,1,15] and is well understood.

In this work, we study a closely related property: k-linearity. The function f :
Fn2 → F2 is k-linear if it is of the form f(x) =

∑
i∈S xi for some set S ⊆ [n] of size

|S| = k. The k-linearity property plays a fundamental role in testing properties of
boolean functions. Notably, the query complexity of the k-linearity testing prob-
lem provides a lower bound for the query complexity for testing juntas [11], testing

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 435–446, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

436 E. Blais and D. Kane

low Fourier degree [9], testing computability by small-depth decision trees [9], and
testing a number of other basic properties of boolean functions.

Our goal is to determine the exact query complexity of the k-linearity testing
problem. As an initial observation, we note that for any 0 ≤ k ≤ n, the query
complexity for the k-linearity and (n−k)-linearity testing problems are identical.
(See the full version of the article for the easy proof of this fact.) This observation
lets us concentrate on the range 0 ≤ k ≤ n

2 from now on; all our results also
apply to the range n

2 < k ≤ n by applying this identity.

Previous Work. The connection between property testing and learning theory,
first established by Goldreich, Goldwasser, and Ron [14], yields a simple and non-
adaptive k-linearity tester with query complexity n+O(1/ε). For i = 1, 2 . . . , n,
define ei ∈ Fn2 to be the vector with value 1 in the ith coordinate and value 0
elsewhere. The tester queries the function on the inputs e1, e2, . . . , en ∈ Fn2 . If
f(ei) = 1 for exactly k indices i ∈ [n], then f is consistent with exactly one
k-linear function h. We can query the function f on O(1/ε) additional inputs
chosen uniformly and independently at random from Fn2 to verify that the rest
of the function f is also consistent with h. This test always accepts k-linear
functions, while the functions that are ε-far from k-linear functions fail at least
one of the two steps of the test with high probability. We call this algorithm the
learning tester for k-linearity.

Fischer, Kindler, Ron, Safra, and Samorodnitsky [11] introduced an algorithm
for testing k-linearity with roughly O(k2) queries. They also showed that for k =
o(
√
n), non-adaptive testers—that is, testers that must fix all their queries before

observing the value of the function on any of those queries—require roughlyΩ(
√
k)

queries to test k-linearity.This implies a lower bound ofΩ(log k) queries for general
(i.e., possibly adaptive) k-linearity testers for the same range of values of k.

The upper bound on the query complexity for testing k-linearity was improved
implicitly by the introduction of a new algorithm for testing k-juntas—that is,
testing whether a function depends on at most k variables—with only O(k log k)
queries [4]. By combining this junta tester with the BLR linearity test [7], one
can test k-linearity with roughly O(k log k) queries.

The first lower bound for testing k-linearity that applied to all values of k was
discovered by Blais and O’Donnell [6], who, as a special case of a more general
theorem on testing function isomorphism, showed that non-adaptive testers need
at least Ω(log k) queries to test k-linearity.

A much stronger bound was obtained by Goldreich [12], who showed that Ω(k)
queries are required to test k-linearity non-adaptively, and that general testers
require at least Ω(

√
k) queries for the same task. He conjectured that this last

bound could be strengthened to show that Ω(k) queries are required to test k-
linearity for all 1 ≤ k ≤ n

2 .
1 Goldreich’s conjecture was recently verified by Blais,

1 Goldreich’s results and conjecture are stated in terms of the slightly different problem
of testing ≤ k-linearity—the property of being a function that returns the sum over
Fn
2 of at most k variables. The ≤ k-linearity and k-linearity problems are largely

equivalent; see [5,12] for more details.

Tight Bounds for Testing k-Linearity 437

Brody, and Matulef [5], who proved the desired lower bound by establishing a
new connection between communication complexity and property testing.

Our Results. Continuing on the line of work described above, we pose the
following question: can we obtain exact bounds on the query complexity of the
k-linearity testing problem? The results presented in this paper make significant
progress on this question. Our main results are new lower bounds for general as
well as for non-adaptive testing algorithms.

Theorem 1.1. Fix 1 ≤ k ≤ n
2 . At least k−O(k2/3) queries are required to test

k-linearity.

Theorem 1.2. Fix 1 ≤ k ≤ n
2 . Non-adaptive testers for k-linearity need at least

2k −O(1) queries.

A particularly interesting case for k-linearity testing is when k = n
2 . The learning

tester for n
2 -linearity requires n queries, so the lower bound in Theorem 1.2

shows that no non-adaptive tester can reduce this query complexity by more
than an additive constant. It is reasonable to ask whether Theorem 1.1 can
be strengthened to obtain the same conclusion for adaptive testers as well. It
cannot: our next result shows that there is an adaptive n

2 -linearity tester that
makes much fewer than n queries.

Theorem 1.3. It is possible to test n
2 -linearity with 2

3n+O(
√
n) queries.

This theorem is a special case of a more general upper bound on the query
complexity for testing k-linearity for values of k that are close to n

2 . The details
and the proof of this more general upper bound are presented in the full version
of the article.

The lower bounds in Theorems 1.1 and 1.2, as well as all previous lower bounds
on the query complexity for testing n

2 -linearity, proceed by establishing a lower
bound on the number of queries required to distinguish n

2 -linear and (n2 + 2)-
linear functions. Our final result shows that for this promise problem our lower
bound is optimal up to the lower order error term.

Theorem 1.4. We can distinguish n
2 -linear and (n2 + 2)-linear functions with

�n2 �+ 1 queries. More generally, for � ≥ 1, let b be the smallest positive integer
for which 2b does not divide �. It is possible to distinguish n

2 -linear and (n2 +2�)-
linear functions with 2

3 (1 − 2−2b)n+ o(n) queries.

Implications. The k-linearity testing problem plays a fundamental role in the
study of property testing on boolean functions. In particular, lower bounds on the
query complexity of this problem imply lower bounds for the query complexity
of a number of other property testing problems. Our lower bounds carry over
directly to all these other problems. As a result, Theorem 1.1 sharpens several
previous results. In this section, we only provide a short description of these
results; the details are found in the full version of the article.

438 E. Blais and D. Kane

Corollary 1.5. Fix 1 ≤ k ≤ n
2 . At least k − O(k2/3) queries are required to

test (1) k-juntas, (2) k-sparse F2-polynomials, (3) functions of Fourier degree at
most k, (4) functions computable by depth-k decision trees, and (5) isomorphism
to the function f : x → x1 + · · ·+ xk.

A property of linear functions is called symmetric if it is invariant under rela-
beling of its variables. A symmetric property P of linear functions is completely
characterized by the function hP : {0, 1, . . . , n} → {0, 1} where hP(k) = 1 iff
k-linear functions are included in P . Define ΓP to be the minimum value of
� ∈ {0, 1, . . . , "n2 #} for which every value of k in the range � ≤ k ≤ n− � satisfies
hP(k) = hP(k + 2). This measure is closely related to the Paturi complexity of
symmetric functions [16]. It also provides a lower bound on the query complexity
for testing P .

Corollary 1.6. Let P be a symmetric property of linear functions. Then at least

ΓP −O(Γ
2/3
P) queries are required to test P.

Discussion of Our Results. Rare are the questions in theoretical computer
science for which we can obtain exact (as opposed to asymptotic) answers. The
results in this paper shows that the query complexity of the k-linearity testing
problem is one of those special questions. Yet, while the fundamental nature
of the k-linearity testing problem causes the determination of its exact query
complexity to be of intrinsic interest, two other reasons form the main motivation
for the research described in this article.

First, one main reason for studying the k-linearity testing problem is to gain a
better understanding of the structure of linear functions. All the previous works
on this problem yielded new insights into this structure. However, the insights
into the structure of linear functions have yet to be exhausted by the current
line of research. Indeed, as we will discuss below, our research uncovered new
connections between the problem of testing k-linearity and the geometry of the
boolean hypercube.

Second, the asymptotic bounds on query complexity hide some important
questions. For example, consider the following rephrasing of our main question:
what is the difference between the query complexities of the best n

2 -linearity
tester and the (näıve) learning tester? An asymptotic lower bound on the query
complexity of n

2 -linearity testers is too weak to shed any light on this question.
In stark contrast, Theorem 1.2 shows that if we restrict our attention to non-
adaptive testers, the difference is at most constant. Furthermore, Theorem 1.3
shows that for adaptive testers the difference is linear in n.

Our Techniques. We reduce the problem of testing k-linear functions to a
purely geometric problem on the Hamming cube. Namely, we obtain our test-
ing lower bound by showing that affine subspaces of large dimension intersect
roughly the same fraction of the middle layers of the cube. More precisely, let
Wk ⊆ Fn2 denote the set of vectors x ∈ Fn2 of Hamming weight k. Our main
technical contribution is the following result.

Tight Bounds for Testing k-Linearity 439

Lemma 1.7. There is a constant c > 0 such that for any affine subspace V ⊆
{0, 1}n of codimension d ≤ n

2 − cn2/3,∣∣∣∣ |V ∩Wn
2
−1|

|Wn
2 −1|

−
|V ∩Wn

2
+1|

|Wn
2 +1|

∣∣∣∣ ≤ 1
362

−d.

We prove the lemma with Fourier analysis and with the manipulation of
Krawtchouk polynomials.

The proof of our lower bound for non-adaptive testers proceeds via a similar
reduction to a geometric problem on the Hamming cube. See Section 4 for the
details.

2 Preliminaries

Fourier Analysis. For a finite dimensional vector space V over F2, the inner
product of two functions f, g : V → R is 〈f, g〉 = Ex∈V [f(x) · g(x)], where
the expectation is over the uniform distribution on V . The L2 norm of f is
‖f‖2 :=

√
〈f, f〉. A character of V is a group homomorphism χ : V → {1,−1}∗.

Equivalently a character is a function χ : V → {1,−1} so that for any x, y ∈ V ,
χ(x+ y) = χ(x)χ(y). Define V̂ to be the set of characters of V .

For a function f : V → R, the Fourier transform of f is the function f̂ :
V̂ → R given by f̂(χ) := 〈f, χ〉. The Fourier decomposition of f is f(x) =∑

χ∈V̂ f̂(χ)χ(x). A fundamental property of the Fourier transform is that it
preserves the squared L2 norm.

Fact 2.1 (Parseval’s Identity). For any f : V → R, ‖f‖22 =
∑

χ∈V̂ f̂(χ)2.

The pushforward of the function f : V → R by the linear function g : V → W
is defined by (g∗(f))(x) :=

1
|V |
∑

y∈g−1(x)[f(y)].

Fact 2.2. For any linear function g : V → W and any function f : V →
R, ĝ∗(f)(χ) =

1
|W | f̂(χ ◦ g).

Krawtchouk Polynomials. For n > 0 and k = 0, 1, . . . , n, the (binary)
Krawtchouk polynomial Kn

k : {0, 1, . . . , n} → Z is defined by

Kn
k (m) =

k∑
j=0

(−1)j
(
m

j

)(
n−m

k − j

)
.

The generating function representation of the Krawtchouk polynomial Kn
k (m)

is Kn
k (m) = [xk] (1− x)m(1+ x)n−m. Krawtchouk polynomials satisfy a number

of useful properties. In particular, we use the following identities in our proofs.

Fact 2.3. Fix n > 0. Then

i. For every 2 ≤ k ≤ n, Kn
k (m)−Kn

k−2(m) = Kn+2
k (m+ 1).

ii.
∑n

k=0K
n
k (m)2 = (−1)mK2n

n (2m).

440 E. Blais and D. Kane

iii. For every 0 ≤ d ≤ n
2 ,
∑d

j=0

(
d
j

)
(−1)jKn

n
2
(2j + 2) = 22dKn−2d

n
2 −d (2).

iv. K2n
n (2m+1) = 0 and (−1)mK2n

n (2m) is positive and decreasing inmin{m,n−
m}.

Fact 2.4. Fix n > 0 and −n
2 ≤ k ≤ n

2 . Then

Kn
n
2 +k(m) =

2n−1im

π

∫ 2π

0

sinm θ cosn−m θei2kθ dθ.

Krawtchouk polynomials are widely used in coding theory [22] and appear in
our proofs because of their close connection with the Fourier coefficients of the
(Hamming weight indicator) function IWk

: Fn2 → {0, 1} defined by IWk
(x) =

1|x|=k. With the Hamming weight of the vector α = (α1, . . . , αn) ∈ {0, 1}n
defined as |α| =

∑n
i=1 αi, the connection is formulated as follows.

Fact 2.5. Fix 0 ≤ k ≤ n, and α ∈ {0, 1}n. Then ÎWk
(α) = 2−nKn

k (|α|).

For a more thorough introduction to Krawtchouk polynomials and for the proofs
of these facts, see [21,22] and the full version of this article.

Property Testing. The proof of Theorem 1.1 uses the following standard prop-
erty testing lemma.

Lemma 2.6. Let Dyes and Dno be any two distributions over functions Fn2 →
F2. If for every set X ⊆ Fn2 of size |X | = q and any vector r ∈ Fq2 we have
that

∣∣Prf∼Dyes [f(X) = r]− Prf∼Dno [f(X) = r]
∣∣ < 1

36 2
−q, then any algorithm

that distinguishes functions drawn from Dyes from those drawn from Dno with
probability at least 2

3 makes at least q + 1 queries.

Lemma 2.6 follows from Yao’s Minimax Principle [23]. The proof of this result
can be found in [10,8].

3 Proof of the General Lower Bound

Proof (of Theorem 1.1). We first prove the special case where k = n
2 −1. There is

a natural bijection between linear functions Fn2 → F2 and vectors in Fn2 : associate
f(x) =

∑
i∈S xi with the vector α ∈ Fn2 whose coordinates satisfy αi = 1 iff i ∈ S.

Note that f(x) = α · x.
For 0 ≤ � ≤ n, let W ⊆ Fn2 denote the set of elements of Hamming weight �.

Fix any set X ⊆ Fn2 of q < n
2 −O(n2/3) queries and any response vector r ∈ Fq2.

The set of linear functions that return the response vector r to the queries in
X corresponds in our bijection to an affine subspace V ⊆ Fn2 of codimension q.
This is because for each x ∈ X , the requirement that f(x) = ri imposes an affine
linear relation on f . By Lemma 1.7, this subspace satisfies the inequality∣∣∣∣ |V ∩Wn

2 −1|
|Wn

2 −1|
−

|V ∩Wn
2 +1|

|Wn
2 +1|

∣∣∣∣ ≤ 1
362

−q. (1)

Tight Bounds for Testing k-Linearity 441

Define Dyes and Dno to be the uniform distributions over (n2 − 1)-linear and
(n2 +1)-linear functions, respectively. By our bijection, Dyes and Dno correspond
to the uniform distributions over Wn

2 −1 and Wn
2 +1. As a result, the probability

that a function drawn from Dyes or from Dno returns the response r to the set
of queries X is

Pr
f∼Dyes

[f(X) = r] =
|V ∩Wn

2
−1|

|Wn
2
−1|

and Pr
f∼Dno

[f(X) = r] =
|V ∩Wn

2
+1|

|Wn
2
+1|

.

So (1) and Lemma 2.6 imply that at least n
2 − O(n2/3) queries are required to

distinguish (n2 −1)-linear and (n2 +1)-linear functions. All (n2 +1)-linear functions
are 1

2 -far from (n2 −1)-linear functions, so this completes the proof of the theorem
for k = n

2 − 1.
For other values of k, we apply a simple padding argument. When k < n

2 − 1,
modify Dyes and Dno to be uniform distributions over k-linear and (k+2)-linear
functions, respectively, under the restriction that all coordinates in the sum taken
from the set [2k+ 2]. This modification with k = n

2 − 2 shows that n
2 −O(n2/3)

queries are required to distinguish (n2 − 2)- and n
2 -linear functions; this implies

the lower bound in the theorem for the case k = n
2 . ��

Proof (of Lemma 1.7). For any set A ⊆ Fn2 , define IA : Fn2 → {0, 1} to be the
indicator function for A. For a given function f : Fn2 → {0, 1}, let us write E[f]
as shorthand for Ex[f(x)] where the expectation is over the uniform distribution
of x ∈ Fn2 . Similarly, for two functions f, g, we write E[f · g] as short-hand for
Ex[f(x) · g(x)].

For any subsets A,B ⊆ Fn2 , |A∩B| = 2n ·E[IA ·IB]. Since |Wn
2 −1| = |Wn

2 +1| =(
n

n
2 −1

)
,

∣∣∣∣ |V ∩Wn
2
−1|

|Wn
2 −1|

−
|V ∩Wn

2
+1|

|Wn
2 +1|

∣∣∣∣ = 2n(
n

n
2 −1

) · E[IV · (IWn
2

−1
− IWn

2
+1
)
]
.

The subspace V can be defined by a set S ⊆ [n] of size |S| = d and an affine-
linear function f : {0, 1}n−d → {0, 1}d, where x ∈ V iff xS = f(xS̄). Define ISm
and I S̄m to be indicator functions for |xS | = m and |xS̄ | = m, respectively. Then

E[IV · (IW n
2

−1
− IWn

2
+1
)] =

d∑
m=0

E
[
IV · ISm · (I S̄n

2 −m−1 − I S̄n
2 −m+1)

]
.

Let U ⊆ {0, 1}S be the image of f . Let d′ = dim(U). Define hm : {0, 1}S →
[−1, 1] by setting hm(u) = Ex∈{0,1}S̄ [IV (x, u) · (I S̄n

2 −m−1(x)− I S̄n
2 −m+1(x))]. Note

that hm = f∗
(
I S̄n

2 −m−1 − I S̄n
2 −m+1

)
. Notice also that hm is supported on U . We

have

E[IV · (IWn
2

−1
− IWn

2
+1
)] =

d∑
m=0

E
[
ISm · hm

]
=

d∑
m=0

E
[
ISm · 1U · hm

]
. (2)

442 E. Blais and D. Kane

Two applications of the Cauchy-Schwarz inequality yield

d∑
m=0

E
[
ISm · 1U · hm

]
≤

d∑
m=0

‖ISm ·1U‖2 ·‖hm‖2 ≤

√√√√ d∑
m=0

‖ISm · 1U‖22 ·

√√√√ d∑
m=0

‖hm‖22.

(3)
We bound the two terms on the right-hand side. The first term satisfies

d∑
m=0

‖ISm · 1U‖22 =
∑
m

Ex[I
S
m(x)2 · 1U] = Ex

[
1U
∑
m

ISm(x)2

]
= 2d

′−d, (4)

where the last equality follows from the fact that for every x ∈ {0, 1}n, there is
exactly one m for which ISm(x) = 1.

We now examine the second term. ByParseval’s Identity, we have that ‖hm‖22 =∑
α∈{0,1}S ĥm(χα)

2.Suppose that the image of f has dimension d′ ≤ d. Then, since
hm is a pushforward,

ĥm(χ) = 2−d
(
Î S̄n

2 −m−1(χ ◦ f)− Î S̄n
2 −m+1(χ ◦ f)

)
.

The characters χ ◦ f depend only on the restriction of χ to f({0, 1}S̄). Thus
these characters all lie in some subspace W ⊆ {̂0, 1}S̄ of dimension d′, with each
character appearing 2d−d

′
times. Thus, we have that

‖hm‖22 = 2−d−d
′ ∑
χ∈W

(
Î S̄n

2 −m−1(χ)− Î S̄n
2 −m+1(χ)

)2
.

For any set χ ⊆ S̄, we can apply Facts 2.5 and 2.3(i) to obtain

Î S̄n
2 −m+1(χ)− Î S̄n

2 −m−1(χ) = 2−(n−d)Kn−d+2
n
2 −m+1(|χ|+ 1).

Therefore,
∑d

m=0 ‖hm‖22 = 2−2n+d−d′∑
m

∑
χ∈W Kn−d+2

n
2 −m+1(|χ|+1)2 and by Fact

2.3(ii),

d∑
m=0

‖hm‖22 ≤ 2−2n+d−d′
∑
χ∈W

(−1)|χ|+1K
2(n−d+1)
n−d+1 (2|χ|+ 2). (5)

There exist some d′ coordinates such that the projection ofW onto those coordi-
nates is surjective. Therefore the number of elements of W with weight at most

� is at most
∑

j=1

(
d′
j

)
. We also have a similar bound on the number of elements

of W of size at least n− d− �. Therefore, since by Fact 2.3(iv) the summand in
(5) is decreasing in min(|χ|, n− d− |χ|), we have

d∑
m=0

‖hm‖22 ≤ 2−2n+d−d′+1
d′∑
j=0

(
d′

j

)
(−1)j+1K

2(n−d+1)
n−d+1 (2j + 2).

Tight Bounds for Testing k-Linearity 443

By Fact 2.3(iii), the sum on the right-hand side evaluates to −K2(n−d−d′+1)
n−d−d′+1 (2).

We can then apply the generating function representation of Krawtchouk poly-
nomials to obtain

d∑
m=0

‖hm‖22 ≤ −2−2n+d+d′+1[xn−d−d
′+1](1− x)2(1 + x)2(n−d−d

′)

= 2−2n+d+d′+2

((
2(n− d− d′)

n− d− d′

)
−
(
2(n− d− d′)

n− d− d′ − 1

))
= 2−d−d

′
Θ(n− d− d′)−3/2 = 2−d−d

′
O
(
(n− 2d)−3/2

)
.

Thus we have that

E[IV · (IWn
2

+1
− IWn

2
−1
)] ≤

√
2d′−d

√
2−d−d′O

(
(n− 2d)−3/2

)
= 2−dO

(
(n− 2d)−3/4

)
.

When d = n
2 − cn2/3 for some large enough constant c > 0, we therefore have

E[IV · (IWn
2

+1
− IWn

2
−1
)] < 1

36

(
n

n
2 −1

)
2−n−d and the lemma follows. ��

4 Non-adaptive Lower Bound

The strategy for the proof of Theorem 1.2 is similar to that of the proof of the
general lower bound in the last section. Once again, we reduce the problem to
a geometric problem on the Hamming cube. The main difference is that in this
case we prove the following lemma.

Lemma 4.1. There is a constant d0 > 0 such that for any linear subspace
V ⊆ {0, 1}n of codimension d ≤ n− d0,∑

x∈{0,1}n/V

(|(V + x) ∩Wn
2 −1|

|Wn
2 −1|

−
|(V + x) ∩Wn

2 +1|
|Wn

2 +1|

)2

≤ 1
32

−d.

Proof (sketch). As in the last section, define IA : {0, 1}n → {0, 1} to be the
indicator function for the set A ⊆ {0, 1}n. To prove Lemma 4.1, we want to
show that

∑
x∈{0,1}n/V

(
E[IV+x · IWn

2
−1
]

E[IWn
2

−1
]

−
E[IV+x · IWn

2
+1
]

E[IWn
2

+1
]

)2

≤ 1
32

−d.

Let Dn
2
= IWn

2
−1

− IWn
2

+1
, and note that E[IWn

2
−1
] = E[IWn

2
+1
] =

(
n

n
2 −1

)
/2n.

Then the above inequality is equivalent to

∑
x∈{0,1}n/V

E[IV+x ·Dn
2
]2 ≤ 1

32
−d ·

((n
n
2 −1

)
2n

)2

.

444 E. Blais and D. Kane

Let π : {0, 1}n → {0, 1}n/V be the projection map. Notice that E[IV+x ·Dn
2
] =

π∗Dn
2
(x). By Parseval’s Theorem and Fact 2.2,

Ex∈{0,1}n/V [π∗Dn
2
(x)2] = |π∗Dn

2
|22 =

∑
χ∈ ̂{0,1}n/V

π̂∗Dn
2
(χ) = 2d−n

∑
χ∈V ⊥

D̂n
2
(χ).

Where above V ⊥ is the set of pullbacks of ̂{0, 1}n/V to {̂0, 1}n, which is the
space of characters of {0, 1}n that are trivial on V .

By Fact 2.5, D̂n
2
(χ) = 2−nKn+2

n
2 +1(|χ|+ 1). By Fact 2.3(iv), the absolute value

of this is 0 for |χ| even and otherwise decreasing in min(|χ|, n− |χ|). Since there
are at most 2

∑
j=0

(
d
j

)
χ ∈ V ⊥ with min(|χ|, n− |χ|) < �, the above sum is less

than it would be if there were 2 χ ∈ V ⊥ with |χ| = 0, 2
((

d
2

)
+
(
d
1

))
with |χ| = 2,

2
((

d
4

)
+
(
d
3

))
with |χ| = 4, and so on. Hence

∑
x∈{0,1}n/V

E[IV+x ·Dn
2
]2 ≤ 22−2n−d

d∑
m=0

(
d

m

)
Kn+2

n
2 +1(m+ 1)2.

By Fact 2.4, we can expand the sum on the right-hand side of the inequality into
a double integral. Namely,

d∑
m=0

(
d

m

)
Kn+2

n
2 +1(m+ 1)2

=
22n

π2

∫∫ d∑
m=0

(
d

m

)
(−1)m sinm+1 θ sinm+1 φ cosn−m+1 θ cosn−m+1 φdθ dφ.

As we show in the full version of this article, we can manipulate the trigonometric
functions and apply the Cauchy-Schwarz inequality to obtain

d∑
m=0

(
d

m

)
Kn+2

n
2 +1(m+ 1)2 ≤ O

(
22nd−

1
2 (n− d+ 1)−

3
2

)
. (6)

Using this bound, we obtain∑
x∈{0,1}n/V

E[IV+x ·Dn
2
]2 ≤ O

(
2−dd−

1
2 (n− d+ 1)−

3
2

)
.

Note that 2−d·
(
(n

n
2

−1)
2n

)2

= Θ(2−dn−1/2). If d < n/2,
∑

x∈{0,1}n/V E[IV+x·Dn
2
]2

is O(2−dn−3/2), which is too small. Otherwise it is O(2−dn−1/2(n− d+1)−3/2),
which is too small as long as n−d is bigger than a sufficiently large constant. ��

For the details of the proof of Lemma 4.1 as well as the proof of Theorem 1.2
using this lemma, see the complete version of the article.

Tight Bounds for Testing k-Linearity 445

5 Upper Bounds

We provide a sketch of the proofs of Theorems 1.3 and 1.4 in this section.
Let us begin by describing the algorithm for distinguishing n

2 -linear and
(n2 + 2)-linear functions. The starting point for this algorithm is an elemen-
tary observation: n

2 �≡ n
2 + 2 (mod 4). For a set S ⊆ [n], let xS ∈ Fn2 be the

vector with value 1 at each coordinate in S and 0 in the remaining coordinates.
Query f(x{1,2}), f(x{3,4}), . . . , f(x{n−1,n}). Let m denote the number of queries
that returned 1. Define the set T = {2i : f(x{2i−1,2i}) = 0}. Query f(xT); if
f(xT) = 1, increment m by 2. When f is k-linear, we have m ≡ k (mod 4) and
this algorithm completes the proof of the first claim in Theorem 1.4.

The algorithm that proves the more general claim in Theorem 1.4 is obtained
by applying the same approach recursively. When b > 0 is the minimum integer
for which 2b � � and f is k-linear, we can determine the value of k modulo 2b in b
rounds and thereby distinguish between the cases where k = n

2 and k = n
2 + 2�.

Finally, to complete the proof of Theorem 1.3, we essentially combine the
Blum–Luby–Rubinfeld (BLR) linearity test [7] with the algorithm described
above. The BLR test rejects functions that are far from linear; after that, the
problem of testing k-linearity is essentially equivalent to that of distinguishing
k-linear from functions that are k′-linear for some k′ �= k. For the complete
proofs of Theorems 1.3 and 1.4, see the full version of this article.

References

1. Bellare, M., Coppersmith, D., H̊astad, J., Kiwi, M., Sudan, M.: Linearity testing
in characteristic two. IEEE Trans. on Information Theory 42(6), 1781–1795 (1996)

2. Bellare, M., Goldwasser, S., Lund, C., Russell, A.: Efficient probabilistically check-
able proofs and applications to approximations. In: Proc. of the 25th Symposium
on Theory of Computing, pp. 294–304 (1993)

3. Bellare, M., Sudan, M.: Improved non-approximability results. In: Proc. of the 26th
Symposium on Theory of Computing, pp. 184–193 (1994)

4. Blais, E.: Testing juntas nearly optimally. In: Proc. 41st Annual ACM Symposium
on Theory of Computing (STOC), pp. 151–158 (2009)

5. Blais, E., Brody, J., Matulef, K.: Property testing lower bounds via communication
complexity. In: Proc. of the 26th Conference on Computational Complexity (2011)

6. Blais, E., O’Donnell, R.: Lower bounds for testing function isomorphism. In: Proc.
of the 25th Conference on Computational Complexity, pp. 235–246 (2010)

7. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. J. Comput. Syst. Sci. 47, 549–595 (1993)

8. Chakraborty, S., Garćıa-Soriano, D., Matsliah, A.: Nearly tight bounds for test-
ing function isomorphism. In: Proc. 22nd Symposium on Discrete Algorithms, pp.
1683–1702 (2011)

9. Diakonikolas, I., Lee, H.K., Matulef, K., Onak, K., Rubinfeld, R., Servedio, R.A.,
Wan, A.: Testing for concise representations. In: Proc. 48th Symposium on Foun-
dations of Computer Science, pp. 549–558 (2007)

10. Fischer, E.: The art of uninformed decisions. Bulletin of the EATCS 75, 97–126
(2001)

446 E. Blais and D. Kane

11. Fischer, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, A.: Testing juntas. J.
Comput. Syst. Sci. 68(4), 753–787 (2004)

12. Goldreich, O.: On Testing Computability by Small Width OBDDs. In: Serna, M.,
Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM 2010, LNCS,
vol. 6302, pp. 574–587. Springer, Heidelberg (2010)

13. Goldreich, O. (ed.): Property Testing. LNCS, vol. 6390. Springer, Heidelberg (2010)
14. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. J. of the ACM 45(4), 653–750 (1998)
15. Kaufman, T., Litsyn, S., Xie, N.: Breaking the ε-soundness bound of the linearity

test over GF(2). SIAM J. on Computing 39, 1988–2003 (2010)
16. Paturi, R.: On the degree of polynomials that approximate symmetric boolean

functions (preliminary version). In: Proc. STOC 1992, pp. 468–474 (1992)
17. Ron, D.: Property testing: A learning theory perspective. Found. Trends Mach.

Learn. 1, 307–402 (2008)
18. Ron, D.: Algorithmic and analysis techniques in property testing. Found. Trends

Theor. Comput. Sci. 5, 73–205 (2010)
19. Rubinfeld, R., Shapira, A.: Sublinear time algorithms. Technical Report TR11-013,

ECCC (2011)
20. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applica-

tions to program testing. SIAM J. Comput. 25(2), 252–271 (1996)
21. Szegő, G.: Orthogonal Polynomials, 4th edn. Colloquium Publications, vol. 23.

AMS (1975)
22. Van Lint, J.H.V.: Introduction to Coding Theory, 3rd edn. Graduate Texts in

Mathematics, vol. 86. Springer (1999)
23. Yao, A.C.: Probabilistic computations: towards a unified measure of complexity.

In: Proc. 18th Sym. on Foundations of Comput. Sci., pp. 222–227 (1977)

Pseudorandomness for Linear Length Branching

Programs and Stack Machines

Andrej Bogdanov1,�, Periklis A. Papakonstantinou2, and Andrew Wan2,

1 Department of Computer Science and Engineering and ITCSC
Chinese University of Hong Kong

andrejb@cse.cuhk.edu.hk
2 Institute for Theoretical Computer Science, IIIS��

Tsinghua University, P.R. China
{papakons,andrew}@tsinghua.edu.cn

Abstract. We show the existence of an explicit pseudorandom genera-
tor G of linear stretch such that for every constant k, the output of G is
pseudorandom against:
– Oblivious branching programs over alphabet {0, 1} of length kn and

size 2O(n/ log n) on inputs of size n.
– Non-oblivious branching programs over alphabet Σ of length kn,

provided the size of Σ is a power of 2 and sufficiently large in terms
of k.

– The model of logarithmic space randomized Turing Machines (over
alphabet {0, 1}) extended with an unbounded stack that make k
passes over their randomness.

The construction of the pseudorandom generator G is the same as in
our previous work (FOCS 2011). The results here rely on a stronger
analysis of the construction. For the last result we give a length-efficient
simulation of stack machines by non-deterministic branching programs.
(over a large alphabet) whose accepting computations have a unique
witness.

1 Introduction

We consider the problem of constructing an explicit pseudorandom distribution
for branching programs of bounded width. A branching program with input
symbols from the alphabet Σ, is a directed acyclic graph with a unique start
vertex, where every non-sink vertex is labeled by one of n variables and has |Σ|
outgoing arcs, each labelled with σ ∈ Σ, and each sink vertex is labeled by an
output value “accept” or “reject.” The branching program computes a Boolean
function over n variables in the natural way: it begins at the start vertex, reads
the value of the variable at that vertex, and follows the corresponding arc to the

� Work partially supported by RGC GRF grants CUHK410309 and CUHK410111.
�� This work was supported in part by the National Basic Research Program of China

Grant 2011CBA00300, 2011CBA00301, and the National Natural Science Founda-
tion of China Grant 61033001, 61061130540, 61073174, 61050110452, 61150110163.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 447–458, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

448 A. Bogdanov, P.A. Papakonstantinou, and A. Wan

next vertex. When it reaches a sink vertex, it halts and outputs the corresponding
label.

Fix an alphabet Σ. A family of distributions p : Σs(n)→Σn is pseudorandom
with seed length s(n) < n, and bias ε(n) for a class of functions F if for every
f ∈ F in n inputs, ∣∣Ep[f(p)]−Eu[f(u)]

∣∣ ≤ ε(n).

where u is the uniform distribution on n symbols.
The problem of constructing explicit, unconditionally pseudorandom distri-

butions for various models of computation has been met with the most success
for two types of models, the first being small-depth computation [AB84,AW85,
Nis91,Bra10]. The second type is space-bounded computation, for which branch-
ing programs play an important role: the computation of a randomized Turing
Machine that uses n random bits and space S can be modeled as a width 2S

branching program, where the inputs to the program are the n random bits. The
pseudorandom generators constructed by Nisan [Nis92] and by Impagliazzo et
al. [INW94] use seed length O(log2 n) to fool fixed input-order, poly(n) width,
read-once branching programs.

Pseudorandom generators for space-bounded algorithms take advantage of
the limited communication that can occur between parts of the computation,
and are typically based on the following principle: a space-bounded algorithm
records a small amount of information between stages of its computation, so
randomness may be reused from one stage to the next without substantially
altering performance.

However, in the constructions mentioned, the ability to recycle randomness
relies not only on limited communication between the computation stages, but
also on the nature of its access to the randomness. The random bits cannot be
accessed too often and the order in which they are accessed must be known in
advance. A natural goal is to construct distributions that remain pseudorandom
without these access restrictions.

Recent work [BPW11] makes some progress towards removing these restric-
tions, giving the first pseudorandom generator (with linear stretch) for read-once
branching programs under any ordering of the inputs. However, the access to the
randomness is still restricted: the branching program is read-once and oblivious,
i.e., it reads bits in an order independent of their values.

One motivation for our work comes from the problem of derandomizing log-
space stack machines which make a bounded number of sequential passes over
their randomness. These machines were proposed by David et al. [DNPS11] as
a model of randomized polynomial time with limited access to randomness.1

Without the random tape access restriction, randomized stack machines charac-
terize randomized polynomial time [Coo71]. If they are allowed one pass over the
randomness, however, such machines can be simulated deterministically. David
et al. suggest studying what happens between these two extreme cases.

1 They are also known as auxiliary pushdown automata, see the full version of [DP10]
for terminology.

Pseudorandomness for Linear Length Branching Programs 449

1.1 Results

In this work we show that the distribution in [BPW11] (with different param-
eters) is pseudorandom even for bounded-width branching programs that have
linear length. In other words, the input symbols may be accessed adaptively and
arbitrarily many times, provided that the total number of accesses is O(n).

Theorem 1. For every k > 1 there exist constants ρ, γ, λ and and an explicit
pseudorandom distribution family p : Σ(1−ρ)n→Σn, where Σ = {0, 1}λ so that
for every n, ∣∣Ep[F (p)]−Eu[F (u)]

∣∣ = 2−Ω(n)

for every length kn, width 2γn branching program F : Σn→{0, 1} over n inputs.

Here the constants ρ, γ, λ are inverse exponential in k; see the end of Section 3.2
for the precise dependence on k. For oblivious branching programs, we obtain a
stronger form of the theorem in which Σ = {0, 1}. This theorem is stated and
proved as Theorem 2 in Section 3.1.

As an example application, consider the problem of identity testing for linear-
size arithmetic formulas (see [KI04]). Let f be a linear-size arithmetic formula on
inputs of length n coming from some subset S of a field F. Such a formula can be
computed2 by a boolean oblivious branching program of linear length and width
|F|O(logn). The Schwarz-Zippel lemma says that if f is nonzero, then f(u) takes
value zero with probability at most deg(f)/|S|. By Theorem 2, f(p) takes value

zero with probability at most deg(f)/|S| − 2−Ω(n), as long as |F| � 2n/(logn)
2

.
Our proof of Theorem 1 immediately applies to non-deterministic branch-

ing programs with unique witnesses as well; we apply this result to fool (non-
uniform) randomized Turing Machines over alphabet {0, 1} extended with an
unbounded stack, henceforth called stack machines, which make a constant num-
ber of passes over their randomness tape. As mentioned previously, randomized
log-space stack-machines characterize probabilistic polynomial time. David et
al. [DNPS11] showed that pseudorandom generators that fool polynomial size
circuits of depth d(n) = Ω(log n) also fool stack machines that make 2O(d(n))

passes over their randomness. It is conceivable that one can derandomize stack
machines that make a sub-polynomial (and in particular constant) number of
passes over the randomness without the full derandomization of BPNC1.

In the full version, we show that our pseudorandom distribution fools stack
machines that make k sequential passes over their input. This in particular im-
plies that we can replace the random tape of a randomized stack machine (re-
stricted to make k passes over its randomness – and unrestricted in every other
tape) with our distribution. Here k is the same constant as in Theorem 1. Pre-
viously, no nontrivial simulation was known even for k = 2.

2 Lemma 1 of [BPW11] shows this for boolean formulas. The extension to larger
domains is straightforward.

450 A. Bogdanov, P.A. Papakonstantinou, and A. Wan

1.2 Techniques

Fooling Branching Programs. In order to construct pseudorandomness that
can be accessed in arbitrary order, the approach in [BPW11] addresses the is-
sue of limited communication in the following way. Consider the computation as
occurring in two halves, where only a bit of information (however, it may be com-
puted in an arbitrary fashion) is remembered from each half. The distribution p

constructed in [BPW11] was shown to satisfy the following property:

For every pair of Boolean functions f, g : {0, 1}n/2→{0, 1} and every
equipartition (I, J) of [n], the joint distribution (f(p|I), g(p|J)) is close
(in statistical distance) to the distribution (f(U |I), g(U |J)).

The distribution output by the base generator of the expander-based construc-
tion from [INW94] satisfies the above property for any fixed equipartition such
as {1, · · · , n/2} ∪ {n/2 + 1, · · · , n} (but not all at the same time).

The distribution from [BPW11] has the advantage that it is pseudorandom
for every equipartition and hence will accomodate access to the inputs under
every ordering. In fact, it was observed in [BPW11], without proof, that the
distribution remains pseudorandom for any f and g which depend on at most
(1 − Ω(1))n of the input bits. We prove this more general lemma (Lemma 1)
in Section 2. In the lemma, inputs to f and g can now be shared, so one might
expect that the distribution will remain pseudorandom with multiple accesses.

Now consider an oblivious branching program of length kn. We split the com-
putation into t stages, for some large enough t that will be set later. The result
of the computation can then be stated as a sum over wt products of t Boolean
functions, each over nk/t variables. We do not argue that the outputs of these
functions look independent; instead, we show in Section 3.1 that each summand
can always be rewritten as a pair of functions (f, g), where f and g each depend
on at most (1−Ω(1))n bits, and then apply Lemma 1.

A more complicated argument is required if the branching program is non-
oblivious; under the previous decomposition, a single stage of the computation
may depend on all n input symbols. In fact, in this case we do not know how to
construct a pseudorandom distribution with symbols from {0, 1}. However, we
can achieve this over any sufficiently large (in terms of k) alphabet Σ, where |Σ|
is a power of 2. Achieving this over {0, 1} is a very interesting open question.
In Lemma 3, we show how to rearrange the paths of the branching program so
that the combinatorial argument in Section 3.1 can still be used. Thus, we can
express any branching program as a short sum (the size of the summation is
substantially larger than in the oblivious case) over pairs of functions that fulfill
the conditions of Lemma 1.

In fact, the decompositions we obtain for (oblivious) branching programs are
implicit in work of Beame, et al. [BJS01]. That work gives similar decomposi-
tions for branching programs in order to prove lower bounds using communica-
tion complexity arguments. Accordingly, they decompose a branching program
as a disjunction of function pairs, and the conditions on the function pairs are
stronger. Our application requires the summation instead of the disjunction;

Pseudorandomness for Linear Length Branching Programs 451

however, the proofs are essentially the same, and we include them here for com-
pleteness and simplification. We remark that further decompositions that yielded
stronger lower bounds were given in subsequent work [Ajt99,BSSV03], but, to
our knowledge, these are not relevant to the constructions here.

Fooling Stack Machines. We show that for every constant λ, a log-space stack
machine over alphabet {0, 1} that makes k(n) passes over its randomness can
be simulated by a family of nondeterministic branching programs over alphabet
{0, 1}λ of size 2O((logn)2) and length nk(n). Moreover, the branching programs
can be designed to have unique witnesses; namely, for every accepting input
there is exactly one accepting computation path. We observe that our proof of
Theorem 1 easily extends to nondeterministic branching programs with unique
witnesses, and we conclude that our distribution p is pseudorandom for the
corresponding stack machines. Due to space limitations, our reduction is given
in the full version of this work.

A log-space stack machine computes a polynomial time predicate but it may

run in time 2n
O(1)

. In [DNPS11] it is shown that given a stack machine that makes
k(n) passes over its randomness, for a given input x, there is an advice string and
a stack machine that computes the same predicate, runs in time k(n)·poly(n), and
preserves the number of passes over the random tape. Such stack machines can be
simulated by small space computations [All89,BCD+89,Ruz80]. Niedermeier and
Rossmanith [NR95] give a variant of this simulation that preserves the number
of witnesses. However, these simulations fail to preserve the number of accesses
to the input, even when the stack machines are equipped with an index tape to
access the memory.

We show that with a non-trivial modification to [Ruz80], a randomized stack
machine that makes k(n) many passes can be simulated by a non-deterministic
branching program with a unique witness that preserves the number of accesses
to input bits (but not necessarily the order). More specifically, the branching pro-
gram recursively verifies a kind of a “proof tree” that the computation accepts.
For our purposes it is crucial to ensure that the random tape is not accessed
more than nk(n) times.

2 Fooling Pairs of Functions with Shared Inputs

In this section we give a distribution p over {0, 1}n that looks pseudorandom to
any pair of functions f, g : {0, 1}n→[−1, 1] such that f and g depend on at most
(1−Ω(1))n of their inputs. The construction is identical to the one from our pre-
vious work [BPW11], with different parameters. Note, however, that later on we
will apply this theorem in two different ways, one of which regards distributions
over alphabets other than {0, 1} (and this is essential for obtaining non-trivial
stretch). In [BPW11] we proved that the desired pseudorandomness under the
additional restriction that f and g each depend on n/2 bit inputs which are
disjoint. We also remarked (without proof) that our analysis can be extended
to the more general case, which is needed for the applications in this work. We
now give a proof of that statement.

452 A. Bogdanov, P.A. Papakonstantinou, and A. Wan

Our Pseudorandom Distribution. The pseudorandom distribution p has the form
p = Mz + e, where M is a fixed n ×m for m = (1 − ρ) · n matrix over GF (2)
such that every subspace spanned by α · n rows has dimension α · n− r, and all
operations are over GF (2). Here z ∼ {0, 1}m is a uniformly random seed, and
e ∈ {0, 1}n is chosen independently of z from an ε-biased distribution. (Recall
that e is ε-biased if for every s ∈ {0, 1}n, s �= 0, |Ee[(−1)|〈s,e〉|]| ≤ ε.)

The existence of an explicit matrix M with the desired properties follows
from constructions of binary codes with small list size for list-decoding radius
bounded away from 1/2. We now explain this connection. Recall that a linear
code C over {0, 1}n is (δ, �) list-decodable if for every x ∈ {0, 1}n, the number of
codewords of C within hamming distance δn of x is at most �. A parity check
matrix M for C is a GF (2) matrix such that cTM = 0 if and only if c is a
codeword of C.

It is easily seen (by substituting α for 1/2) that the proof of Proposition 1
from [BPW11] yields the following more general statement:

Proposition 1. Let C be a (α2 , �) list-decodable code over {0, 1}n. Let M be the
parity check matrix of C. Then every subset of α · n rows of M spans a vector
space over GF (2) of dimension at least α · n− log2(2�).

Then we have the following fact, which follows from the Johnson bound and
standard constructions of asymptotically good binary linear codes; see Theorems
3.1 and 7.1 from [Gur07].

Proposition 2. For every α > 0 there exists ρ > 0 and an explicit matrix M
of size n× (1−ρ)n such that every subset of α ·n rows spans a vector space over
GF (2) of dimension at least α · n− r, with r = 4 log(4n/(1− α)).

The Main Lemma Now, we prove the main lemma that powers our results in
Section 3.

Lemma 1. For every α > 0 there exists ρ > 0 and an explicit matrix M of
size n × (1 − ρ) · n so that for every pair of (possibly intersecting) ordered sets

I, J with |I|, |J | ≤ αn and for every pair of functions f : {0, 1}|I|→[−1, 1], g :

{0, 1}|J|→[−1, 1], ∣∣Ep[f(p|I)g(p|J)]−Eu[f(u|I)g(u|J)]
∣∣ ≤ 2rε

where u is the uniform distribution over {0, 1}n, p is defined as above, and
x|I , x|J denote the projections of x on the sets I and J , respectively, and r =
4 · log 4n

1−α .

In particular, when g = 1, |Ep[f(p|I)]−Eu[f(u|I)]| ≤ 2rε, so the pseudorandom
distribution also preserves the marginal probabilities of events, within 2rε, over
all subsets of size at most α · n.

Pseudorandomness for Linear Length Branching Programs 453

Proof (Proof of Lemma 1). Using Fourier decomposition, for any pair of subsets
I, J of [n] with |I|, |J | ≤ αn, we have

Ep[f(p|I)g(p|J)] = Ez,e[f((Mz + e)|I)g((Mz + e)|J)]

=
∑

S⊆I,T⊆J
f̂(S)ĝ(T)Ez,e[χS(Mz|I)χS(e|I)χT (Mz|J)χT (e|J)]

(1)

We may view subsets S ⊆ I and T ⊆ J as subsets of [n], so we write χS(Mz|I) =
χS(Mz) and χT (Mz|J) = χT (Mz), and (1) becomes:∑

S⊆I,T⊆J
f̂(S)ĝ(T)Ez[χS(Mz)χT (Mz)]Ee[χS(e)χT (e)].

We denote by SΔT the symmetric difference of S and T viewed as subsets of
[n].

We have that Eu[f(u|I)g(u|J)] =
∑

S⊆I∩J f̂(S)ĝ(S) and |Ee[χSΔT (e)]| ≤ ε,
therefore∣∣Ep[f(p|I)g(p|J)]−Eu[f(u|I)g(u|J)]

∣∣
=

∣∣∣∣ ∑
S⊆I,T⊆J
SΔT �=∅

f̂(S)ĝ(T)Ez[χSΔT (Mz)]Ee[χSΔT (e)]

∣∣∣∣
≤

∑
S⊆I,T⊆J
SΔT �=∅

ε · |f̂(S)||ĝ(T)|
∣∣Ez[χSΔT (Mz)]

∣∣.
Let G be a bipartite graph over vertices (subsets of I) ∪ (subsets of J), with an
edge (S, T) present whenever Ez[χSΔT (Mz)] �= 0. We will shortly argue that G
has maximum degree 2r. Assuming this, we can upper bound the last expression
by

ε ·
∑

edge (S,T)

|f̂(S)||ĝ(T)| ≤ ε ·
√ ∑

edge (S, T)

f̂(S)2
√ ∑

edge (S,T)

ĝ(T)2

≤ ε ·
√
2r ·

∑
S⊆I

f̂(S)2
√
2r ·

∑
T⊆J

ĝ(T)2 ≤ ε · 2r,

where the first inequality follows from the Cauchy-Schwarz inequality, the second
from the fact that G has maximum degree 2r, and the third from Parseval’s
identity.

It remains to argue that G has maximum degree 2r. We let s ∈ {0, 1}n, t ∈
{0, 1}n be indicator vectors for the sets S and T , respectively, and s and t as
vectors in GF (2)n. Then

Ez[χSΔT (Mz)] = E[(−1)(s+t)
TMz] =

{
1, if (s+ t)TM = 0

0, otherwise.

454 A. Bogdanov, P.A. Papakonstantinou, and A. Wan

Now, (s + t)TM = 0 if and only if sTM = tTM , where sTM is zero at least
everywhere outside I and similarly for tTM and J . Since (by assumption) the
matrix M |I has rank at least αn − r, for every t ∈ {0, 1}n, there can be at
most 2r distinct vectors s ∈ {0, 1}n such that sTM = tTM . Similarly, for every
s ∈ {0, 1}n, there can be at most 2r vectors t ∈ {0, 1}n such that sTM = tTM .

In Section 3.2 we will apply the pseudorandom generator to strings of length n
over alphabet Σ = {0, 1}λ. These can be viewed as strings in {0, 1}λn in the
natural way.

3 Fooling Branching Programs of Linear Length

We show that essentially the same generator (modulo the setting of the parame-
ters and the different input alphabets) fools branching programs of linear length.
For oblivious branching programs we obtain this for binary {0, 1} input alpha-
bets (Section 3.1), whereas for arbitrary branching programs we show this for
branching programs over (larger) constant size alphabets (Section 3.2).

Let F be a width w, length kn, layered branching program over n inputs; we
think of k as an arbitrarily large but fixed constant as n increases. We view the
computation of the branching program on an input x as occurring in t stages,
where each stage reads kn/t variables. Suppose first that the branching program
is oblivious. Then, for every input each stage reads the same kn/t variables. In
this case, we may write the branching program as a sum over wt many t-tuples
of Boolean functions (as was done in [BPW11] for k = 1 and t = 2).

More formally, divide the inputs into t sets of layers so that S1 consists of
inputs {1, · · · , kn/t}, S2 of inputs {kn/t + 1, · · · , 2kn/t}, etc. (if variables re-
occur within a set, its size might be smaller). We define functions fi,p,q(x|Si) :

{0, 1}|Si|→{0, 1} to be indicator functions for the event that the program moves
from state p to q when the inputs in Si are read from x. By definition, we have

F (x) =
∑

p1,...,pt:

pt∈accept

f1,s,p1(x|S1)f2,p1,p2(x|S2) · · · ft,pt−1,pt(x|St) (2)

3.1 Pseudorandomness for Oblivious Branching Programs

We will argue that each of the summands in (2) can be rewritten in terms of
two functions, each over at most αn bits. Then, we apply Lemma 1 to show that
the output of the generator fools each of these summands. This will give us the
following theorem for oblivious branching programs.

Theorem 2. Let F : {0, 1}n→{1,−1} be computable by a width w, length kn
oblivious branching program on n inputs. Let p be the pseudorandom distribution.
Then

|Ep[F (p)]−EU [F (U)]| ≤ wt · 2rε.

where t = 24k, r = 4 log 4n
1−α , and α > 1− 1

22k .

Pseudorandomness for Linear Length Branching Programs 455

The proof of Theorem 2 will use the following combinatorial lemma, which shows
that we can always find a way to color each stage by one of two colors, so that
neither color will contain too many variables. A slightly different version of this
lemma was proven in [BJS01]; in the full version, we include a proof and argue
that the parameter α below is close to optimal.

Lemma 2. Fix any k ∈ Z+. Let {S1, · · · , St} be a collection of subsets over
[n], each of size at most kn/t. Then there exists a partition (C, C) of {1, · · · , t}
satisfying: ∣∣⋃

i∈C
Si
∣∣ ≤ α · n and

∣∣⋃
i∈C

Si
∣∣ ≤ α · n

where α ≥ 1− 1
2k

+ 2k√
t
+ 2√

n
.

Proof (Proof of Theorem 2). Now, consider the expected bias of the branching
program using Equation 2; by linearity of expectation and the triangle inequality,
we have:

|E[F (U)]−E[F (p)]| ≤∑
p1,...,pt:

pt∈accept

|E[f1,s,p1(p|S1) · · · ft,pt−1,pt(p|St)]−E[f1,s,p1(U |S1) · · · ft,pt−1,pt(U |St)]|.

(3)

For each expectation of the summation, we can apply Lemma 2 to rewrite each
product as a product of two functions, i.e.,

f1,s,p1(x|S1) · · · ft,pt−1,a(xSt) = g1(x|S)g2(x|S),

where both S :=
∣∣⋃

i∈C Si
∣∣ ≤ α · n and S contain at most α · n variables.

Setting t = 24k in Lemma 2 and applying Lemma 1 with α from Lemma 2,
we bound the magnitude of each difference by 2rε. Since there are wt terms, we
obtain

|E[F (U)]−E[F (p)]| ≤ wt2r · ε. (4)

3.2 Arbitrary Linear Size Branching Programs over Large
Alphabets

We show how to fool arbitrary branching programs with inputs over alphabet
Σ = {0, 1}λ, where λ is a sufficiently large constant which depends on the
multiplicative constant k in the length of the branching program.

Lemma 3. Let P (x) = P1(x) ∧ . . . ∧ Pt(x), where P1, · · · , Pt : Σn→{0, 1} are
branching programs of length at most kn/t each. Then, there exist collections
of boolean functions {FC,U} and {GC,V }, where C ranges over all partitions of
{1, . . . , t} and U, V range over all subsets of [n] of size αn such that

P (x) =
∑

C⊆[t],U,V⊆[n]
|U|=|V |=αn

FC,U (x) ·GC,V (x) (5)

and α ≥ 1− 1
2k

+ 2k√
t
+ 2√

n
.

456 A. Bogdanov, P.A. Papakonstantinou, and A. Wan

Proof. We can express every Pi as Pi(x) =
∑

i∈Li
fi,i(x) where the summation

ranges over Li which denotes all accepting paths �i of Pi and fi,i(x) is the
indicator function for the event that the computation of Pi on input x takes
path �i. We can write

P (x) =

t∏
i=1

Pi(x) =

t∏
i=1

∑
i∈Li

fi,i(x) =
∑

(1,...,t)∈L1×···×Lt

f1,1(x) · . . . · ft,t(x).

By Lemma 2, for every collection � = (�1, . . . , �t) there exists a partition C(�)
of [t] and sets U(�) and V (�), each of size at most αn, such that when i ∈ C,
fi,i(x) depends only on inputs in U(�) and when i ∈ C, fi,i(x) depends only on
inputs in V (�). Without loss of generality we will assume that the sizes of U(�)
and V (�) are exactly αn. We set

FC,U (x) =
∨

:C()=C
U()=U

∧
i∈C

fi,i(x) and GC,V (x) =
∨

:C()=C
V ()=V

∧
i∈C

fi,i(x)

We now prove the identity (5). If P (x) = 1, then there is a unique path � =
(�1, . . . , �t) such that fi,i(x) = 1 for all i, and so FC,U (x) and GC,V (x) both take
value 1 when and only when C = C(�), U = U(�), and V = V (�). Then exactly
one term on the right hand side of (5) evaluates to 1.

If P (x) = 0, then Pi(x) = 0 for some i, so fi,i(x) = 0 for all accepting paths
�i of Pi. This forces FC,U (x) to equal zero when i ∈ C, and GC,V (x) = 0 when
i ∈ C. So all terms on the right hand side of (5) evaluate to 0.

To prove Theorem 3 below, we will use Lemma 3 to write the branching program
as a sum of a limited number of pairs of functions, where each pair satisfies the
desired property. We then use Lemma 1 to bound the deviation of each term in
this summation when the uniform distribution is replaced by the pseudorandom
one.

Theorem 3. Let k > 0 be a constant, and fix an alphabet size λ ≥ 2. Let
F : Σn→{0, 1} be computable by a branching program on n inputs of width w
and length kn. Then

|Ep[F (p)]−Eu[F (u)]| ≤
(

4λn

1− α

)4

· w24k · 22H(α)n · ε,

where p is the pseudorandom distribution over {0, 1}λn, and α ≥ 1− 1
22k .

Proof. Applying the decomposition (2) we write

F (x) =
∑

p1,...,pt:

pt∈accept

f1,s,p1(x|S1)f2,p1,p2(x|S2) · · · ft,pt−1,pt(x|St)

=
∑

p1,...,pt:

pt∈accept

Fp1,...,pt(x).

Pseudorandomness for Linear Length Branching Programs 457

Here, fi,p,q are all branching programs of length kn/t. By Lemma 3 we have

F (x) =
∑

p1,...,pt:

pt∈accept

∑
C,U,V

Fp1,...,pt,C,U (x) ·Gp1,...,pt,C,V (x). (6)

where C ranges over all partitions of [t], U, V range over all subsets of [n] of
size αn, and Fp1,...,pt,C,U : Σαn→{0, 1} and Gp1,...,pt,C,V : Σαn→{0, 1} de-
pend only on inputs coming from U and V respectively. Now, let us view
Fp1,...,pt,C,U , Gp1,...,pt,C,V as functions with domain {0, 1}αλn. Set t = 24k and
r = 4 log(4λn/(1− α)). By Lemma 1 for each term in the sum, the difference in
expectations under the uniform and pseudorandom distributions is at most ε2r

in absolute value. Since there are at most wt choices for (p1, . . . , pt), 2
t choices

for C, and
(
n
αn

)
choices for each of U and V , by the triangle inequality we obtain

that

|Ep[F (p)]−Eu[F (u)]| ≤ ε2r · wt · 2t
(
n

αn

)2

,

which yields the desired bound after substituting the values for r and t and the
standard bound for binomial coefficients.

Parameters. We now set the parameters to obtain Theorem 1. We assume the
availability of a family small-biased generators over {0, 1}m for bias ε and seed
length log(m/ε)K for some constant K constructible in time polynomial in the
seed length (see e.g. [AGHP90] for a construction with K = 2). We instantiate
this construction with parameters m = λn and ε = 2−4n to obtain a seed length
of 4Kn + o(n). Set α = 1 − 2−2k. By Lemma 1, there exists a constant 2ρ
(depending on α) for which the distribution p can be generated efficiently with
seed length (1−2ρ)λn+4Kn+o(n). Setting λ = 5K/ρ, the seed length is upper
bounded by (1−ρ)λn bits, i.e. (1−ρ)n elements of Σ, when n is sufficiently large.

To calculate the bias, we simplify the upper bound in Theorem 3 to 4λ4n4w24k ·
22n · ε. When w ≤ 2n/2

4k

, this expression is upper bounded by 4λ4n4 · 2−n =
2−Ω(n).

Acknowledgements. We are grateful to the anonymous referee that pointed
out a significant flaw in the proof of a previous version of our main theorem.

References

[AB84] Ajtai, M., Ben-Or, M.: A theorem on probabilistic constant depth computa-
tions. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory
of Computing, STOC 1984, pp. 471–474. ACM, New York (1984)

[AGHP90] Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple constructions of al-
most k-wise independent random variables. In: Proceedings of the 31st An-
nual Symposium on Foundations of Computer Science, pp. 544–553 (1990)

[Ajt99] Ajtai, M.: A non-linear time lower bound for boolean branching programs.
In: 40th Annual Symposium on Foundations of Computer Science, pp. 60–
70. IEEE (1999)

458 A. Bogdanov, P.A. Papakonstantinou, and A. Wan

[All89] Allender, E.W.: P-uniform circuit complexity. Journal of the ACM 36(4),
912–928 (1989)

[AW85] Ajtai, M., Wigderson, A.: Deterministic simulation of probabilistic constant
depth circuits. In: 26th Annual Symposium on Foundations of Computer
Science, pp. 11–19. IEEE (1985)

[BCD+89] Borodin, A., Cook, S.A., Dymond, P.W., Ruzzo, W.L., Tompa, M.: Two
applications of inductive counting for complementation problems. SIAM J.
Comput 18(3), 559–578 (1989)

[BJS01] Beame, P., Jayram, T.S., Saks, M.: Time-space tradeoffs for branching pro-
grams. Journal of Computer and System Sciences 63(4), 542–572 (2001)

[BPW11] Bogdanov, A., Papakonstantinou, P.A., Wan, A.: Pseudorandomness for
read-once formulas. In: Proceedings of the 52nd IEEE Symposium on Foun-
dations of Computer Science, FOCS 2011 (2011)

[Bra10] Braverman, M.: Polylogarithmic independence fools AC0 circuits. Journal
of the ACM (JACM) 57(5), 1–10 (2010)

[BSSV03] Beame, P., Saks, M., Sun, X., Vee, E.: Time-space trade-off lower bounds
for randomized computation of decision problems. Journal of the ACM
(JACM) 50(2), 154–195 (2003)

[Coo71] Cook, S.A.: Characterizations of pushdown machines in terms of time-
bounded computers. Journal of ACM (JACM) 18(1), 4–18 (1971)

[DNPS11] David, M., Nguyen, P., Papakonstantinou, P.A., Sidiropoulos, A.: Compu-
tationally limited randomness. In: Chazelle, B. (ed.) Proceedings of Innova-
tions in Computer Science - ICS 2010, January 7-9, pp. 522–536. Tsinghua
University Press, Beijing (2011)

[DP10] David, M., Papakonstantinou, P.A.: Trade-off lower bounds for stack ma-
chines. In: IEEE Conference on Computational Complexity (CCC), Boston,
USA, pp. 163–171 (2010)

[Gur07] Guruswami, V.: Algorithmic results in list decoding. Foundations and
Trends R© in Theoretical Computer Science 2(2), 107–195 (2007)

[INW94] Impagliazzo, R., Nisan, N., Wigderson, A.: Pseudorandomness for network
algorithms. In: Proceedings of the 26th Annual ACM Symposium on Theory
of Computing, STOC 1994, Montréal, Québec, Canada, May 23-25, pp. 356–
364. ACM Press, New York (1994)

[KI04] Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests
means proving circuit lower bounds. Computational Complexity 13(1-2),
1–46 (2004)

[Nis91] Nisan, N.: Pseudorandom bits for constant depth circuits. Combinator-
ica 11(1), 63–70 (1991)

[Nis92] Nisan, N.: Pseudorandom generators for space-bounded computation. Com-
binatorica 12(4), 449–461 (1992)

[NR95] Niedermeier, R., Rossmanith, P.: Unambiguous auxiliary pushdown au-
tomata and semi-unbounded fan-in circuits. Information and Computa-
tion 118(2), 227–245 (1995)

[Ruz80] Ruzzo, W.L.: Tree-size bounded alternation. Journal of Computer Systems
and Sciences (JCSS) 21(2), 218–235 (1980)

A Discrepancy Lower Bound

for Information Complexity

Mark Braverman1,2,� and Omri Weinstein2

1 University of Toronto
mbraverm@cs.princeton.edu

2 Princeton University
oweinste@cs.princeton.edu

Abstract. This paper provides the first general technique for proving
information lower bounds on two-party unbounded-rounds communica-
tion problems. We show that the discrepancy lower bound, which applies
to randomized communication complexity, also applies to information
complexity. More precisely, if the discrepancy of a two-party function f
with respect to a distribution μ is Discμf , then any two party random-
ized protocol computing f must reveal at least Ω(log(1/Discμf)) bits
of information to the participants. As a corollary, we obtain that any
two-party protocol for computing a random function on {0, 1}n×{0, 1}n
must reveal Ω(n) bits of information to the participants.

In addition, we prove that the discrepancy of the Greater-Than func-
tion is Ω(1/

√
n), which provides an alternative proof to the recent proof

of Viola [Vio11] of the Ω(logn) lower bound on the communication com-
plexity of this well-studied function and, combined with our main result,
proves the tight Ω(log n) lower bound on its information complexity.

The proof of our main result develops a new simulation procedure that
may be of an independent interest. In a very recent breakthrough work
of Kerenidis et al. [KLL+12], this simulation procedure was a building
block towards a proof that almost all known lower bound techniques for
communication complexity (and not just discrepancy) apply to informa-
tion complexity.

1 Introduction

The main objective of this paper is to expand the available techniques for
proving information complexity lower bounds for communication problems. Let
f : X ×Y → {0, 1} be a function, and μ be a distribution on X ×Y. Informally,
the information complexity of f is the least amount of information that Alice
and Bob need to exchange on average to compute f(x, y) using a randomized
communication protocol if initially x is given to Alice, y is given to Bob, and
(x, y) ∼ μ. Note that information here is measured in the Shannon sense, and the
amount of information may be much smaller than the number of bits exchanged.
Thus the randomized communication complexity of f is an upper bound on its
information complexity, but may not be a lower bound.

� Partially supported by an NSERC Discovery Grant, an Alfred P. Sloan Fellowship,
and an NSF CAREER award.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 459–470, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

460 M. Braverman and O. Weinstein

Within the context of communication complexity, information complexity
has first been introduced in the context of direct sum theorems for randomized
communication complexity [CSWY01, BYJKS04, BBCR10]. These techniques
are also being used in the related direction of direct product theorems
[KSDW04, LSS08, Jai10, Kla10]. A direct sum theorem in a computational
model states that the amount of resources needed to perform k independent
tasks is roughly k times the amount of resources c needed for computing a single
task. A direct product theorem, which is a stronger statement, asserts that any
attempt to solve k independent tasks using o(kc) resources would result in an
exponentially small success probability 2−Ω(k).

The direct sum line of work [HJMR07, JSR08, BBCR10, BR11] has even-
tually led to a tight connection (equality) between amortized communication
complexity and information complexity. Thus proving lower bounds on the com-
munication complexity of k copies of f for a growing k is equivalent to proving
lower bounds on the information complexity of f . In particular if f satisfies
IC(f) = Ω(CC(f)), i.e. that its information cost is asymptotically equal to its
communication complexity, then a strong direct sum theorem holds for f . In
addition to the intrinsic interest of understanding the amount of information
exchange that needs to be involved in computing f , direct sum theorems moti-
vate the development of techniques for proving lower bounds on the information
complexity of functions.

Another important motivation for seeking lower bounds on the information
complexity of functions stems from understanding the limits of security in two-
party computation. In a celebrated result Ben-Or et al. [BOGW88] (see also
[AL11]) showed how a multi-party computation (with three or more parties)
may be carried out in a way that reveals no information to the participants
except for the computation’s output. The protocol relies heavily on the use of
random bits that are shared between some, but not all, parties. Such a resource
can clearly not exist in the two-party setting. While it can be shown that perfect
information security is unattainable by two-party protocols [CK89, BYCKO93],
quantitatively it is not clear just how much information the parties must “leak”
to each other to compute f . The quantitative answer depends on the model in
which the leakage occurs, and whether quantum computation is allowed [Kla04].
Information complexity answers this question in the strongest possible sense for
classical protocols: the parties are allowed to use private randomness to help
them “hide” their information, and the information revealed is measured on
average. Thus an information complexity lower bound of I on a problem implies
that the average (as opposed to worst-case) amount of information revealed to
the parties is at least I.

As mentioned above, the information complexity is always upper bounded
by the communication complexity of f . The converse is not known to be true.
Moreover, lower bound techniques for communication complexity do not read-
ily translate into lower bound techniques for information complexity. The key
difference is that a low-information protocol is not limited in the amount of
communication it uses, and thus rectangle-based communication bounds do not

A Discrepancy Lower Bound for Information Complexity 461

readily convert into information lower bounds. No general technique has been
known to yield sharp information complexity lower bounds. A linear lower bound
on the communication complexity of the disjointness function has been shown in
[Raz92]. An information-theoretic proof of this lower bound [BYJKS04] can be
adapted to prove a linear information lower bound on disjointness [Bra11]. One
general technique for obtaining (weak) information complexity lower bounds was
introduced in [Bra11], where it has been shown that any function that has I bits
of information complexity, has communication complexity bounded by 2O(I).
This immediately implies that the information complexity of a function f is at
least the log of its communication complexity (IC(f) ≥ Ω(log(CC(f)))). In fact,
this result easily follows from the stronger result we prove below (Theorem 2).

1.1 Our Results

In this paper we prove that the discrepancy method – a general communication
complexity lower bound technique – generalizes to information complexity. The
discrepancy of f with respect to a distribution μ on inputs, denoted Discμ(f),
measures how “unbalanced” f can get on any rectangle, where the balancedness
is measured with respect to μ:

Discμ(f)
def
= max

rectangles R

∣∣∣∣Prμ [f(x, y) = 0∧(x, y) ∈ R]−Pr
μ
[f(x, y) = 1∧(x, y) ∈ R]

∣∣∣∣.
A well-known lower bound (see e.g [KN97]) asserts that the distributional com-
munication complexity of f , denoted Dμ

1/2−ε(f), when required to predict f with

advantage ε over a random guess (with respect to μ), is bounded from below by
Ω(log 1/Discμ(f)):

Dμ
1/2−ε(f) ≥ log(2ε/Discμ(f)).

Note that the lower bound holds even if we are merely trying to get an advantage
of ε =

√
Discμ(f) over random guessing in computing f . We prove that the

information complexity of computing f with probability 9/10 with respect to μ
is also bounded from below by Ω(log(1/Discμ(f))).

Theorem 1. Let f : X × Y → {0, 1} be a Boolean function and let μ be any
probability distribution on X × Y. Then

ICμ(f, 1/10) ≥ Ω(log(1/Discμ(f))).

Remark 1. The choice of 9/10 is somewhat arbitrary. For randomized worst-case
protocols, we may replace the success probability with 1/2 + δ for a constant δ,
since repeating the protocol constantly many times (1/δ2) would yield the afore-
mentioned success rate, while the information cost of the repeated protocol differs
only by a constant factor from the original one. In particular, using prior-free
information cost [Bra11] this implies IC (f, 1/2− δ) ≥ Ω(δ2 log(1/Discμ(f))).

In particular, Theorem 1 implies a linear lower bound on the information complex-
ity of the inner product function IP (x, y) =

∑n
i=1 xiyi mod 2, and on a random

boolean function fr : {0, 1}n × {0, 1}n → {0, 1}, expanding the (limited) list of
functions for which nontrivial information-complexity lower bounds are known:

462 M. Braverman and O. Weinstein

Corollary 1. The information complexity ICuniform(IP, 1/10) of IP (x, y) is
Ω(n). The information complexity ICuniform(fr, 1/10) of a random function fr
is Ω(n), except with probability 2−Ω(n).

We study the communication and information complexity of the Greater-Than
function (GTn) on numbers of length n. This is a very well-studied problem
[Smi88, MNSW95, KN97]. Only very recently the tight lower bound of Ω(log n)
in the public-coins probabilistic model was given by Viola [Vio11]. We show that
the discrepancy of the GTn function is Ω(1/

√
n):

Lemma 1. There exist a distribution μn on X ×Y such that the discrepancy of
GTn with respect to μn satisfies Discμn(GTn) < 20/

√
n.

For the proof we refer the reader to the full version of this paper. Lemma 1
provides an alternative (arguably simpler) proof of Viola’s [Vio11] lower bound
on the communication complexity of GTn. By Theorem 1, Lemma 1 immediately
implies a lower bound on the information complexity of GTn:

Corollary 2. ICμn(GTn, 1/10) = Ω(log n)

This settles the information complexity of the GT function, since this problem can
be solved by a randomized protocol with O(log n) communication (see [KN97]).
This lower bound is particularly interesting since it demonstrates the first tight
information-complexity lower bound for a natural function that is not linear.

The key technical idea in the proof of Theorem 1 is a new simulation procedure
that allows us to convert any protocol that has information cost I into a (two-
round) protocol that has communication complexity O(I) and succeeds with
probability > 1/2 + 2−O(I), yielding a 2−O(I) advantage over random guessing.
Combined with the discrepancy lower bound for communication complexity, this
proves Theorem 1.

1.2 Comparison and Connections to Prior Results

The most relevant prior work is an article by Lee, Shraibman, and Špalek
[LSS08]. Improving on an earlier work of Shaltiel [Sha03], Lee et al. show a
direct product theorem for discrepancy, proving that the discrepancy of f⊗k

— the k-wise XOR of a function f with itself — behaves as Disc(f)Ω(k). This
implies in particular that the communication complexity of f⊗k scales at least
as Ω(k · logDisc(f)). Using the fact that the limit as k → ∞ of the amortized
communication complexity of f is equal to the information cost of f [BR10], the
result of Lee et al. “almost” implies the bound of Theorem 1. Unfortunately, the
amortized communication complexity in the sense of [BR10] is the amortized
cost of k copies of f , where each copy is allowed to err with some probability
(say 1/10). Generally speaking, this task is much easier than computing the
XOR (which requires all copies to be evaluated correctly with high probability).
Thus the lower bound that follows from Lee et al. applies to a more difficult
problem, and does not imply the information complexity lower bound.

A Discrepancy Lower Bound for Information Complexity 463

Another generic approach one may try to take is to use compression results
such as [BBCR10] to lower bound the information cost from communication com-
plexity lower bounds. The logic of such a proof would go as follows: “Suppose
there was a information-complexity-I protocol π for f , then if one can compress
it into a low-communication protocol one may get a contradiction to the com-
munication complexity lower bound f”. Unfortunately, all known compression
results compress π into a protocol π′ whose communication complexity depends
on I but also on CC(π). Even for external information complexity (which is
always greater than the internal information complexity, the bound obtained in
[BBCR10] is of the form Iext(π) · polylog(CC(π)). Thus compression results of
this type cannot rule out protocols that have low information complexity but a
very high (e.g. exponential) communication complexity.

Our result can be viewed as a weak compression result for protocols, where a
protocol for computing f that conveys I bits of information is converted into a
protocol that uses O(I) bits of communication and giving an advantage of 2−O(I)

in computing f . This strengthens the result in [Bra11] where a compression to
2O(I) bits of communication has been shown. We still do not know whether
compression to a protocol that uses O(I) bits of communication and succeeds
with high probability (as opposed to getting a small advantage over random) is
possible.

In a very recent breakthrough work of Kerenidis, Laplante, Lerays, Roland,
and Xiao [KLL+12], our main protocol played an important role in the proof that
almost all known lower bound techniques for communication complexity (and
not just discrepancy) apply to information complexity. The results of [KLL+12]
shed more light on the information complexity of many communication problems,
and the question of whether interactive communication can be compressed.

2 Preliminaries

In an effort to make this paper as self-contained as possible, we provide some
background on information theory and communication complexity, which is es-
sential to proving our results. For further details and a more thorough treatment
of these subjects see [BR10] and references therein.

Notation. We reserve capital letters for random variables and distributions, cal-
ligraphic letters for sets, and small letters for elements of sets. Throughout this
paper, we often use the notation |b to denote conditioning on the event B = b.
Thus A|b is shorthand for A|B = b.

We use the standard notion of statistical/total variation distance between two
distributions.

Definition 1. Let D and F be two random variables taking values in a set S.
Their statistical distance is |D − F | def= maxT ⊆S(|Pr[D ∈ T] − Pr[F ∈ T]|) =
1
2

∑
s∈S |Pr[D = s]− Pr[F = s]|

464 M. Braverman and O. Weinstein

2.1 Information Theory

Definition 2 (Entropy). The entropy of a random variable X is H(X)
def
=∑

x Pr[X = x] log(1/Pr[X = x]). The conditional entropy H(X |Y) is defined as
Ey∈RY [H(X |Y = y)].

Definition 3 (Mutual Information). The mutual information between two
random variables A,B, denoted I(A;B) is defined to be the quantity H(A) −
H(A|B) = H(B) −H(B|A). The conditional mutual information I(A;B|C) is
H(A|C)−H(A|BC).

We also use the notion of divergence (also known as Kullback-Leibler distance
or relative entropy), which is a different way to measure the distance between
two distributions:

Definition 4 (Divergence). The informational divergence between two distri-
butions is

D (A||B)
def
=
∑
x

A(x) log(A(x)/B(x)).

Proposition 1. Let A,B,C be random variables in the same probability space.
For every a in the support of A and c in the support of C, let Ba denote B|A = a
and Bac denote B|A = a, C = c. Then I(A;B|C) = Ea,c∈RA,C [D (Bac||Bc)].

2.2 Communication Complexity

We use the standard definitions of the computational model defined in [Yao79].
For complete details see the full version of this paper [BW11].

Given a communication protocol π, π(x, y) denotes the concatenation of the
public randomness with all the messages that are sent during the execution of
π. We call this the transcript of the protocol. When referring to the random
variable denoting the transcript, rather than a specific transcript, we will use
the notation Π(x, y) — or simply Π when x and y are clear from the context,
thus π(x, y) ∈R Π(x, y). When x and y are random variables themselves, we will
denote the transcript by Π(X,Y), or just Π .

Definition 5 (Communication Complexity notation). For a function f :
X × Y → ZK , a distribution μ supported on X × Y, and a parameter ε >
0, Dμ

ε (f) denotes the communication complexity of the cheapest deterministic
protocol computing f on inputs sampled according to μ with error ε.

Definition 6 (Combinatorial Rectangle). A Rectangle . in X ×Y is a subset
R ⊆ X × Y which satisfies (x1, y1) ∈ R and (x2, y2) ∈ R =⇒ (x1, y2) ∈ R

2.3 Information + Communication: The Information Cost of a
Protocol

The following quantity, which is implicit in [BYJKS04] and was explicitly defined
in [BBCR10], is the central notion of this paper.

A Discrepancy Lower Bound for Information Complexity 465

Definition 7. The (internal) information cost of a protocol π over inputs drawn
from a distribution μ on X × Y, is given by:

ICμ(π) := I(Π ;X |Y) + I(Π ;Y |X).

Intuitively, Definition 7 captures how much the two parties learn about each
other’s inputs from the execution transcript of the protocol π. The first term
captures what the second player learns aboutX fromΠ – the mutual information
between the input X and the transcript Π given the input Y . Similarly, the
second term captures what the first player learns about Y from Π .

Note that the information of a protocol π depends on the prior distribution
μ, as the mutual information between the transcript Π and the inputs depends
on the prior distribution on the inputs. To give an extreme example, if μ is a
singleton distribution, i.e. one with μ({(x, y)}) = 1 for some (x, y) ∈ X ×Y, then
ICμ(π) = 0 for all possible π, as no protocol can reveal anything to the players
about the inputs that they do not already know a-priori. Similarly, ICμ(π) = 0
if X = Y and μ is supported on the diagonal {(x, x) : x ∈ X}. As expected,

one can show that the communication cost CC(π) of π is an upper bound on its
information cost over any distribution μ:

Lemma 2. [BR10] For any distribution μ, ICμ(π) ≤ CC(π).

On the other hand, as noted in the introduction, the converse need not hold. In
fact, by [BR10], getting a strict inequality in Lemma 2 is equivalent to violating
the direct sum conjecture for randomized communication complexity.

As one might expect, the information cost of a function f with respect to μ
and error ρ is the least amount of information that needs to be revealed by a
protocol computing f with error ≤ ρ:

ICμ(f, ρ) := inf
π: Pμ[π(x,y) �=f(x,y)]≤ρ

ICμ(π).

The (prior-free) information cost was defined in [Bra11] as the minimum amount
of information that a worst-case error-ρ randomized protocol can reveal against
all possible prior distributions.

IC (f, ρ) := inf
π is a protocol with P[π(x, y) �= f(x, y)] ≤ ρ for all (x, y)

max
μ

ICμ(π).

This information cost matches the amortized randomized communication com-
plexity of f [Bra11]. It is clear that lower bounds on ICμ(f, ρ) for any distribution
μ also apply to IC (f, ρ).

3 Proof of Theorem 1

To establish the correctness of Theorem 1, we prove the following theorem, which
is the central result of this paper:

466 M. Braverman and O. Weinstein

Theorem 2. Suppose that ICμ(f, 1/10) = Iμ. Then there exist a protocol π′

such that

– CC(π′) = O(Iμ).
– P(x,y)∼μ[π

′(x, y) = f(x, y)] ≥ 1/2 + 2−O(Iμ)

We first show how Theorem 1 follows from Theorem 2:

Proof of Theorem 1. Let f, μ be as in theorem 1, and let ICμ(f, 1/10) = Iμ.
By theorem 2, there exists a protocol π′ computing f with error probability
1/2 − 2−O(Iμ) using O(Iμ) bits of communication. Applying the discrepancy
lower bound for communication complexity we obtain

O(Iμ) ≥ Dμ

1/2−2−O(Iμ)(f) ≥ log(2 · 2−O(Iμ)/Discμ(f)) (1)

which after rearranging gives Iμ ≥ Ω(log(1/Discμ(f))), as desired.

We turn to prove Theorem 2. The main step is the following sampling lemma.

Lemma 3. Let μ be any distribution over a universe U and let I ≥ 0 be a param-
eter that is known to both A and B. Further, let νA and νB be two distributions
over U such that D (μ||νA) ≤ I and D (μ||νB) ≤ I. The players are each given a
pair of real functions (pA, qA), (pB, qB), pA, qA, pB, qB : U → [0, 1] such that for
all x ∈ U , μ(x) = pA(x)·pB(x), νA(x) = pA(x)·qA(x), and νB(x) = pB(x)·qB(x).
Then there is a (two round) sampling protocol Π1 = Π1(pA, pB, qA, qB, I) which
has the following properties:

1. at the end of the protocol, the players either declare that the protocol “fails”,
or output xA ∈ U and xB ∈ U , respectively (“success”).

2. let S be the event that the players output “success”. Then S ⇒ xA = xB,
and
0.9 · 2−50(I+1) ≤ Pr[S] ≤ 2−50(I+1).

3. if μ1 is the distribution of xA conditioned on S, then |μ− μ1| < 2/9.

Furthermore, Π1 can be “compressed” to a protocol Π2 such that CC(Π2) =
211I + 1, whereas |Π1 −Π2| ≤ 2−59I (by an abuse of notation, here we identify
Πi with the random variable representing its output).

We will use the following technical fact about the divergence of distributions.

Claim (3). [Claim 5.1 in [Bra11]] Suppose that D (μ||ν) ≤ I. Let ε be any
parameter. Then μ

{
x : 2(I+1)/ε · ν(x) < μ(x)

}
< ε.

For completeness, we repeat the proof in the full version of this paper [BW11].

Proof (Proof of Lemma 3). Throughout the execution of Π1, Alice and Bob
interpret their shared random tape as a source of points (xi, αi, βi) uniformly
distributed in U × [0, 250(I+1)] × [0, 250(I+1)]. Alice and Bob consider the first

A Discrepancy Lower Bound for Information Complexity 467

T = |U| · 2100(I+1) · 60I such points. Their goal will be to discover the first index
τ such that ατ ≤ pA(xτ) and βτ ≤ pB(xτ) (where they wish to find it using a
minimal amount of communication, even if they are most likely to fail). First, we
note that the probability that an index t satisfies αt ≤ pA(xt) and βt ≤ pB(xt) is
exactly 1/|U|250(I+1)250(I+1) = 1/|U|2100(I+1). Hence the probability that τ > T
(i.e. that xτ is not among the T points considered) is bounded by(

1− 1/|U|2100(I+1)
)T

< e−T/|U|2100(I+1)

= e−60I < 2−60I (2)

Denote by A the following set of indices A := {i ≤ T : αi ≤ pA(xi) and βi ≤
250(I+1) · qA(xi)}, the set of potential candidates for τ from A’s viewpoint. Sim-
ilarly, denote B := {i ≤ T : αi ≤ 250(I+1) · qB(xi) and βi ≤ pB(xi)}.

The protocol Π1 is very simple. Alice takes her bet on the first element a ∈ A
and sends it to Bob. Bob outputs a only if (it just so happens that) βτ ≤ pB(a).

We turn to analyze Π1. Denote the set of “Good” elements by

G def
= {x : 250(I+1) · νA(x) ≥ μ(x) and 250(I+1) · νB(x) ≥ μ(x)}}.

Then by Claim 3, μ(G) ≥ 48/50 = 24/25. The following claim asserts that if it
succeeds, the output of Π1 has the “correct” distribution on elements in G. Due
to space constraints we defer the proof to the full version of this paper.

Proposition 2. Assume A is nonempty. Then for any xi ∈ U , the probability
that Π1 outputs xi is at most μ(xi) · 2−50(I+1). If xi ∈ G, then this probability is
exactly μ(xi) · 2−50(I+1).

The following proposition gives an estimate of the success probability of the
protocol. We defer the proof to the full version of this paper.

Proposition 3. Let S denote the event that A �= 0 and a ∈ B (i.e, that the
protocol succeeds). Then 0.9 · 2−50(I+1) ≤ Pr[S] ≤ 2−50(I+1).

Finally, the following claim asserts that if S occurs, then the distribution of a is
indeed close to μ. For details see the full version of this paper.

Claim 4. Let μ1 be the distribution of a|S. Then |μ1 − μ| ≤ 2/9.

We turn to the “Furthermore” part of of Lemma 3. The protocol Π1 satisfies the
premises of the lemma, except it has a high communication cost. This is due to
the fact that Alice explicitly sends a to Bob. To reduce the communication, Alice
will instead send O(I) random hash values of a, and Bob will add corresponding
consistency constraints to his set of candidates. The final protocol Π2 is given
in Figure 1.

Let E denote the event that in step 4 of the protocol, Bob finds an element xi �=
a (that is, the probability that the protocol outputs “success” but xA �= xB).
We upper bound the probability of E . Given a ∈ A and xi ∈ B such that a �= xi,
the probability (over possible choices of the hash functions) that hj(a) = hj(xi)

468 M. Braverman and O. Weinstein

Information-cost sampling protocol Π2

1. Alice computes the set A. Bob computes the set B.
2. If A = ∅, the protocol fails. Otherwise, Alice finds the first element a ∈ A and

sets xA = a. She then computes d = �211I� random hash values h1(a), . . . , hd(a),
where the hash functions are evaluated using public randomness.

3. Alice sends the values {hj(a)}1≤j≤d to Bob.
4. Bob finds the first index τ such that there is a b ∈ B for which hj(b) = hj(a) for

j = 1..d (if such an τ exists). Bob outputs xB = xτ . If there is no such index,
the protocol fails.

5. Bob outputs xB (“success”).
6. Alice outputs xA.

Fig. 1. The sampling protocol Π2 from Lemma 3

for j = 1..d is 2−d ≤ 2−211I . For any t, P[t ∈ B] ≤ 1
|U|
∑

xi∈U pB(xi)qB(xi) ·
250(I+1) = 1

|U|
∑

xi∈U νB(xi) · 250(I+1) = 250(I+1)/|U|. Thus, by a union bound

we have

P[E] ≤ P[∃xi ∈ B s.t xi �= a ∧ hj(a) = hj(xi) ∀ j = 1, . . . , d] ≤
≤ T · 250(I+1) · 2−d/|U| = 2150(I+1) · 60I · 2−211I � 2−60I . (3)

By a slight abuse of notation, let Π2 (Π1) be the distribution of Π2’s ((Π1’s))
output. Note that if E does not occur, then the outcome of the execution of Π2

is identical to the outcome of Π1. Since P[E] ≤ 2−60I , we have |Π2 − Π1| =
Pr[E] · |[Π2|E]− [Π1|E]| ≤ 2 · 2−60I � 2−59I ,which completes the proof.

Remark 2. The communication cost of the sampling protocol Π2 can be reduced
from O(Iμ) to O(1) (more precisely, to only two bits) in the following way: In-
stead of having Alice compute the hash values privately and send them to Bob
in step 2 and 3 of the protocol, the players can use their shared randomness
to sample d = O(Iμ) random hash values h1(b1), . . . , hd(bd) (where the bi’s are
random independent strings in U), and Alice will only send Bob a single bit
indicating whether those hash values match the hashing of her string a (i.e,
hi(bi) = hi(a) for all i ∈ [d]). In step 4 Bob will act as before, albeit comparing
the hashes of his candidate b to the random hashes hi(bi), and output success
(”1”) if the hashes match. Note that this modification incurs an additional loss
of 2−d = 2−O(Iμ) in the success probability of the protocol (as this is the prob-
ability that hi(bi) = hi(a) for all i ∈ [d]), but since the success probability we
are shooting for is already of the order 2−O(Iμ), we can afford this loss. This
modification was discovered in [KLL+12].

Theorem 2 will now follow as a direct application of Lemma 3. The idea is that
Alice and Bob will use the (weak) correlated sampling procedure guaranteed
by Lemma 3, with μ taken to be the distribution of the information-optimal
protocol π(X,Y), whose information cost is Iμ, and the distributions νA and νB

A Discrepancy Lower Bound for Information Complexity 469

taken to be its marginals πx and πy respectively. The premises of the lemma will
guarantee that with probability 2−O(Iμ) the parties sample the correct transcript,
using O(Iμ) bits of communication, which in turn yields the (small) advantage
we are looking for in computing the value of f . For the full proof we refer the
reader to the full version of this paper [BW11].

Remark 3. Using similar techniques, it was recently shown in [Bra11] that any
function f whose information complexity is I has communication cost at most
2O(I) 1, thus implying that IC(f) ≥ Ω(log(CC(f))). We note that this result can
be easily derived (up to constant factors) from Theorem 2. Indeed, applying the
“compressed” protocol 2O(I) log(1/ε) independent times and taking a majority
vote guarantees an error of at most ε (by a standard Chernoff bound2), with
communication O(I) · 2O(I) = 2O(I). Thus, our result is strictly stronger than
the former one.

Acknowledgments. We thank Ankit Garg and several anonymous reviewers
for their useful comments and helpful discussions.

References

[AL11] Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly-
secure multiparty computation. Electronic Colloquium on Computational
Complexity (ECCC) 18, 36 (2011), http://dblp.uni-trier.de

[BBCR10] Barak, B., Braverman, M., Chen, X., Rao, A.: How to compress interactive
communication. In: Proceedings of the 42nd Annual ACM Symposium on
Theory of Computing (2010)

[BOGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, pp.
1–10. ACM (1988)

[BR10] Braverman, M., Rao, A.: Information equals amortized communication.
CoRR, abs/1106.3595 (2010)

[BR11] Braverman, M., Rao, A.: Information equals amortized communication.
Arxiv preprint arXiv:1106.3595 (2011)

[Bra11] Braverman, M.: Interactive information complexity. Electronic Colloquium
on Computational Complexity (ECCC) 18, 123 (2011)

[BW11] Braverman, M., Weinstein, O.: A discrepancy lower bound for information
complexity. CoRR, abs/1112.2000 (2011)

[BYCKO93] Bar-Yehuda, R., Chor, B., Kushilevitz, E., Orlitsky, A.: Privacy, addi-
tional information and communication. IEEE Transactions on Information
Theory 39(6), 1930–1943 (1993)

[BYJKS04] Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information
statistics approach to data stream and communication complexity. Journal
of Computer and System Sciences 68(4), 702–732 (2004)

1 More precisely, it shows that for any distribution μ, Dμ
ε+δ(f) = 2O(1+ICμ(f,ε)/δ2).

2 See N.Alon and J. Spencer, ”The Probabilistic Method” (Third Edition) ,Corollary
A.1.14, p.312.

http://dblp.uni-trier.de

470 M. Braverman and O. Weinstein

[CK89] Chor, B., Kushilevitz, E.: A zero-one law for boolean privacy. In: Proceed-
ings of the Twenty-First Annual ACM Symposium on Theory of Comput-
ing, pp. 62–72. ACM (1989)

[CSWY01] Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.: Informational complexity and
the direct sum problem for simultaneous message complexity. In: Werner,
B. (ed.) Proceedings of the 42nd Annual IEEE Symposium on Founda-
tions of Computer Science, October 14-17, pp. 270–278. IEEE Computer
Society, Los Alamitos (2001)

[HJMR07] Harsha, P., Jain, R., McAllester, D., Radhakrishnan, J.: The communica-
tion complexity of correlation. In: Twenty-Second Annual IEEE Confer-
ence on Computational Complexity, CCC 2007, pp. 10–23. IEEE (2007)

[Jai10] Jain, R.: A strong direct product theorem for two-way public coin com-
munication complexity. Arxiv preprint arXiv:1010.0846 (2010)

[JSR08] Jain, R., Sen, P., Radhakrishnan, J.: Optimal direct sum and privacy
trade-off results for quantum and classical communication complexity.
Arxiv preprint arXiv:0807.1267 (2008)

[Kla04] Klauck, H.: Quantum and approximate privacy. Theory Comput.
Syst. 37(1), 221–246 (2004)

[Kla10] Klauck, H.: A strong direct product theorem for disjointness. In: Proceed-
ings of the 42nd ACM Symposium on Theory of Computing, pp. 77–86.
ACM (2010)

[KLL+12] Kerenidis, I., Laplante, S., Lerays, V., Roland, J., Xiao, D.: Lower bounds
on information complexity via zero-communication protocols and applica-
tions. Arxiv preprint arXiv:1204.1505 (2012)

[KN97] Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge Uni-
versity Press, New York (1997)

[KSDW04] Klauck, H., Spalek, R., De Wolf, R.: Quantum and classical strong direct
product theorems and optimal time-space tradeoffs. In: Proceedings of the
45th Annual IEEE Symposium on Foundations of Computer Science, pp.
12–21. IEEE (2004)

[LSS08] Lee, T., Shraibman, A., Spalek, R.: A direct product theorem for discrep-
ancy. In: 23rd Annual IEEE Conference on Computational Complexity,
CCC 2008, pp. 71–80. IEEE (2008)

[MNSW95] Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On data struc-
tures and asymmetric communication complexity. In: Proceedings of the
Twenty-Seventh Annual ACM Symposium on Theory of Computing, pp.
103–111. ACM (1995)

[Raz92] Razborov, A.A.: On the distributional complexity of disjointness. Theor.
Comput. Sci. 106(2), 385–390 (1992)

[Sha03] Shaltiel, R.: Towards proving strong direct product theorems. Computa-
tional Complexity 12(1), 1–22 (2003)

[Smi88] Smirnov, D.V.: Shannon’s information methods for lower bounds for prob-
abilistic communication complexity. Master’s thesis, Moscow State Univer-
sity (1988)

[Vio11] Viola, E.: The communication complexity of addition. Electronic Collo-
quium on Computational Complexity (ECCC) 18, 152 (2011)

[Yao79] Yao, A.C.-C.: Some complexity questions related to distributive computing
(preliminary report). In: STOC, pp. 209–213 (1979)

On the Coin Weighing Problem

with the Presence of Noise

Nader H. Bshouty

Technion, Israel
bshouty@cs.technion.ac.il

Abstract. In this paper we consider the following coin weighing prob-
lem: Given n coins for which some of them are counterfeit with the same
weight. The problem is: given the weights of the counterfeit coin and
the authentic coin, detect the counterfeit coins a with minimal num-
ber of weighings. This problem has many applications in computational
learning theory, compressed sensing and multiple access adder channels.

An old optimal non-adaptive polynomial time algorithm of Lindstrom
can detect the counterfeit coins with O(n/ log n) weighings. An informa-
tion theoretic proof shows that Lindstrom’s algorithm is optimal. In this
paper we study non-adaptive algorithms for this problem when some of
the answers of the weighings received are incorrect or unknown.

We show that no coin weighing algorithm exists that can detect the
counterfeit coins when the number of incorrect weighings is more than
1/4 fraction of the number of weighings. We also give the tight bound
Θ(n/ log n) for the number of weighings when the number of incorrect
answers is less than 1/4 fraction of the number of weighings.

We then give a non-adaptive polynomial time algorithm that detects
the counterfeit coins with k = O(n/ log log n) weighings even if some con-
stant fraction of the answers of the weighings received are incorrect. This
improves Bshouty and Mazzawi’s algorithm [7] that uses O(n) weighings.
This is the first sublinear algorithm for this problem.

1 Introduction

The coin weighing problem with the presence of noise can be reduced to the
following reconstructing hidden (0, 1)-vectors problem. Let v be a size n hidden
(0, 1)-vector. Suppose that we are allowed to ask queries of the form

Q(x) := xT v,

where x ∈ {0, 1}n. Suppose that some of the answers received are incorrect (also
called errors) and some of them are unknown, labeled with “?” (also called
erasures). Our goal is to exactly reconstruct the hidden vector v with a minimal
number of queries.

We distinguish between two type of algorithms for solving our problems. Non-
adaptive algorithms are algorithms that ask all queries in advance, before re-
ceiving any answer. On the other hand, adaptive algorithms are algorithms that

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 471–482, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

472 N.H. Bshouty

take into account the outcome of previous queries. In this paper we study non-
adaptive algorithms for the coin weighing problem.

The coin weighing problems were heavily studied in the noiseless case, that
is, the case where all the answers are available and correct. The information
theoretic lower bound for the query complexity (number of weighings) is

Ω

(
n

logn

)
.

This problem was studied by Cantor in [8], Soderberg and Shapiro in [35] Erdös
and Rényi in [18], Lindström in [26–29] and Cantor and Mills in [10]. Lindström
[26] and independently Cantor and Mills [10] gave a non-adaptive polynomial
time algorithm for the problem with query complexity that matches the lower
bound. Simplifications appear in [29, 1, 5].

The coin weighing problem is a combinatorial search problem that is mo-
tivated by real-world problems, such as, problems in computational learning
theory, compressed sensing and multiple access adder channels. As such, it is
important to study it in the presence of noise that causes some incorrect and
unknown answers.

In this paper we study the coin weighing problem (reconstructing hidden
(0, 1)-vector problem) with noise. We say that a coin weighing algorithm (recon-
structing algorithm) tolerates m incorrect or/and unknown weighings (incorrect
answers) if the algorithm can detect the counterfeit coins (reconstruct the hid-
den vector) when the number of incorrect or/and unknown weighings (answers
of the queries) is bounded above by m. Obviously, an algorithm that can tolerate
m incorrect weighings can also tolerate m unknown weighings.

We first study non-constructive non-adaptive algorithms for the coin weighing
problem. We prove

Theorem 1. There is no coin weighing algorithm that can detect the counterfeit
coins when the number of incorrect (respectively, unknown) weighings is more
than 1/4 (respectively, more than 1/2) fraction of the number of weighings.

We then prove the following Theorem that shows that the ratio 1/4 is tight and
also gives an upper bound on the number of weighings.

Theorem 2. Let 0 ≤ ε < 1/4 (respectively, 0 ≤ ε < 1/2) be a constant. Let

k =
(2 log 3)n

(1− 2ε) logn
+O

(
n log logn

log2 n

)
.

(respectively,

k =
(2 log 3)n

(1− ε) logn
+O

(
n log logn

log2 n

)
.)

There exists a non-adaptive coin weighing algorithm that detects the counterfeit
coins with k weighings and tolerates m = εk incorrect (respectively, unknown)
weighings.

On the Coin Weighing Problem with the Presence of Noise 473

We also prove the following lower bound.

Theorem 3. Let 0 ≤ ε < 1/4 (respectively, 0 ≤ ε < 1/2) be a constant. Every
non-adaptive coin weighing algorithm with k weighings that tolerates m = εk
incorrect (respectively, unknown) weighings must satisfies

k ≥ 2n

(1 − ε) logn
−O

(
n log logn

log2 n

)
.

(respectively,

k ≥ 4n

(2− ε) logn
−O

(
n log logn

log2 n

)
.)

For polynomial time non-adaptive algorithms for the coin weighing problem, in
[7], Bshouty and Mazzawi gave a technique that show that for every 1 ≤ s ≤ n
there is a polynomial time algorithm that detects the counterfeit coins with
O(n/ log s) weighings whenO(n/s) of the answers are incorrect.When a constant
fraction of the weighings are incorrect Bshouty and Mazzawi’s algorithm requires
O(n) weighings. In this paper we prove

Theorem 4. Let ε > 0 be any small constant. There exists a non-adaptive
polynomial time coin weighing algorithm with

k = O

(
n

log logn

)
weighings that tolerates (1/16− ε)k incorrect weighings.

1.1 Applications

In this subsection we introduce one application for the coin weighing problem
with noise. We introduce the signature coding problem for the multiple access
adder channels [26, 10, 11, 23, 17, 15, 25, 3].

Consider n stations or users that transmit information using a common chan-
nel. Each user i has a component code Ci = {0k, xi} ⊂ {0, 1}k. The codes Ci
for i ∈ [n] are of the same length k. Each user i wants to send one of the words
yi ∈ Ci. Assume that codewords sent through the channel by the users are bit and
block synchronized. The codeword go through an adder that sends Y =

∑n
i=1 yi

through a noisy channel. We denote by Ỹ the output of the channel. The goal
is to recover all the messages of the users using Ỹ .

There are two models for this problem, the permanently active model where
all stations are active all the time and the partially active model where at mostm
stations are active in each transmission (the inactive stations turn off their trans-
mitter, an action that is equivalent to sending the zero codeword 0k).

A non-adaptive algorithm for the weighing problems with the presence of noise
yields signature codes for noisy channels in the permanently active model. The
existence of such codes was studied in the literature [11, 17, 36, 12, 15]. Before

474 N.H. Bshouty

we present the results, we note that no technique was known from the literature
that can handle erasures (incorrect output).

In [11], Chang and Weldon gave the first technique to reconstruct signature
codes for noisy channels. Using this technique, one can build a codes of length
O(n/(ε logn)) for n users, where a messages can be correctly recovered if the
error vector, Ỹ − Y , has L1 norm that is smaller that O(n1−ε). In other words,
the users’ messages can be recovered from Ỹ if∑

i

|Ỹi − Yi| ≤ O(n1−ε).

In [36], Wilson gave a similar technique. Using Wilson’s technique, one can re-
construct codes of length O(n/(ε logn)) for n users, where a message can be
correctly recovered if the error vector, Ỹ − Y , has L1 norm that is smaller
than O(n1−ε). Moreover, the message can be recovered correctly even if we have
O(nε/(ε logn)) consecutive errors of magnitude O(n1−ε). That is, if the error
vector Ỹ − Y has only O(nε/(ε logn)) non-zero entries, where these non-zero
entries are consecutive and each entry is bounded by O(n1−ε). Additional con-
structions also appear in [13, 12]. Finally, in [15], Cheng et. al. gave a code for n
users of length n, where the messages can be recovered if the error vector has
L1 norm that is smaller than "(n/2− 1)/2#.

Bshouty and Mazzawi, [7], gave a signature codes for the permanently active
model of length O (n/(ε logn)) , where the receiver is able to decode all the users’
messages correctly with the presence of O(n1−ε) errors and erasures. That is, if
the error vector has Hamming weight (rather than the L1 norm) that is smaller
than O(n1−ε). Moreover, if the errors are consecutive, then the message can be
recovered even when we have O(n/(ε logn)) errors.

Note that the L1 norm is always greater than or equal to the number of errors.
Therefore, Bshouty and Mazzawi result in particular, implies all the results from
the literature. On the other hand, since Ỹ , Y ∈ {0, 1, . . . , n}n, one random error
yield L1 norm of average magnitude O(n). Therefore, previous algorithms cannot
handle one random error.

All the above results cannot handle constant rate error and erasures when
code length is less than linear in the number of users. In this paper we give
the first code of sublinear length for n users that can handle O(n) errors and
erasures.

2 Lower and Upper Bounds

In this section we give lower and upper bounds for the coin weighing problem
with noise.

A non-adaptive algorithm for the coin weighing problem can be expressed as a
k×n (0, 1)-matrixM , called search matrix, where the ith rowMi in M is the ith
queryQ(Mi) := MT

i x in the algorithm. This matrix satisfiesMx �= My for every
two distinct x, y ∈ {0, 1}n. That is, the answers to the queries Q(Mi) = MT

i x,
i = 1, . . . , k, uniquely determine the hidden vector x ∈ {0, 1}n.

On the Coin Weighing Problem with the Presence of Noise 475

The algorithm tolerates m incorrect answers if and only if for every two vectors
u, v ∈ R with wt(u), wt(v) ≤ m, where wt(u) is the number of nonzero entries
in u, and every two distinct vectors x, y ∈ {0, 1}n we have Mx+u �= My+ v. In
other words, the answersMx to the queries with any noise u that forces at most
m answers to be incorrect, Mx+u, uniquely determines the hidden vector x. In
that case we say that M tolerates m incorrect answers.

The algorithm tolerates m unknown answers if and only if for every (k−m)×n
submatrix M ′ of M and every two distinct vectors x, y ∈ {0, 1}n we haveM ′x �=
M ′y. In other words, the answersMx to the queries with any m missing answers
uniquely determines the hidden vector x. In that case we say that M tolerates
m unknown answers.

We now prove.

Lemma 1. Let M be a k × n search matrix. Then

1. M tolerates m incorrect answers if and only if for every nonzero
z ∈ {−1, 0, 1}n we have wt(Mz) > 2m.

2. M tolerates m unknown answers if and only if for every nonzero
z ∈ {−1, 0, 1}n we have wt(Mz) > m.

3. M tolerates m incorrect answers if and only if M tolerates 2m unknown
answers.

Proof. (1, ⇒) If M tolerates m incorrect answers then for every u, v ∈ R with
wt(u), wt(v) ≤ m and every distinct x, y ∈ {0, 1}n we have Mx + u �= My + v.
Suppose for the contrary there is z ∈ {−1, 0, 1}n such that wt(Mz) ≤ 2m. Write
Mz as a sum of two vectors u′ and v′, each of weight less or equal to m. Write
z = x′−y′ where x′, y′ ∈ {0, 1}n. Then u′+v′ = Mz = M(x′−y′) and therefore
Mx′ + (−u′) = My′ + v′. This is a contradiction.

(1, ⇐) Now suppose for every z ∈ {−1, 0, 1}n we have wt(Mz) > 2m. Suppose
for contrary there are two distinct vectors x, y ∈ {0, 1}n and u, v ∈ R with
wt(u), wt(v) ≤ m where Mx + u = My + v. Then M(x − y) = (v − u), z :=
x− y ∈ {−1, 0, 1}n and wt(Mz) = wt(v − u) ≤ 2m. This is a contradiction.

The proof of 2 is similar and 3 follows from 1 and 2.

We now give a lower bound for the number of incorrect and unknown answers
that any M can tolerate.

Theorem 1. There is no coin weighing algorithm that can detect the counterfeit
coins when the number of incorrect (respectively, unknown) weighings is more
than 1/4 (respectively, more than 1/2) fraction of the number of weighings.

Proof. Consider any k × n (0, 1)-matrix (search matrix) M that tolerates αk
incorrect answers. LetM (i) be the ith column ofM andMi the ith row ofM . Let
{ei | i = 1, . . . , n} be the standard basis vectors of Rn. Let Nw, w = 0, 1, . . . , n
be the fraction of the number of rows in M of weight equal to w. That is

Nw =
|{j | wt(Mj) = w}|

k
.

476 N.H. Bshouty

Obviously, N0 = 0 and

N1 +N2 + · · ·+Nn = 1. (1)

Since M tolerates αk incorrect answers, for every 1 ≤ i1 < i2 ≤ n, by Lemma 1,
we have wt(M(ei1 − ei2)) = wt(M (i1) −M (i2)) > 2(αk). Therefore(

n

2

)
(2αk) <

∑
1≤i1<i2≤n

wt(M (i1) −M (i2))

= ((n− 1)1N1 + (n− 2)2N2 + · · ·
+2(n− 2)Nn−2 + 1(n− 1)Nn−1)k.

The latter equality follows from the fact that each row in M of weight w con-
tributes w(n− w) to the sum. Therefore, by (1),

αn(n− 1) < (n− 1)1N1 + (n− 2)2N2 + · · ·+ 1(n− 1)Nn−1

≤ n

2

n

2
(N1 + · · ·+Nn−1 +Nn) =

n2

4
.

and

α <
1

4

n

n− 1
=

1

4
+ o(1).

We now give a lower bound for the maximal possible incorrect weighings and
unknown weighings for which a coin weighing algorithm exists and an upper
bound for the total number of weighings.

Theorem 2. Let 0 ≤ ε < 1/4 (respectively, 0 ≤ ε < 1/2) be a constant. Let

k =
(2 log 3)n

(1− 2ε) logn
+O

(
n log logn

log2 n

)
.

(respectively,

k =
(2 log 3)n

(1− ε) logn
+O

(
n log logn

log2 n

)
.)

There exists a non-adaptive coin weighing algorithm that detects the counterfeit
coins with k weighings and tolerates m = εk incorrect (respectively, unknown)
weighings.

Proof. Consider a random uniform k × n search matrix M . We will show that
Pr[(∃z ∈ {−1, 0, 1}n) wt(Mz) < 2m] < 1 which by Lemma 1 implies the result.

Let Mi ∈ {0, 1}n be the ith row of M . Consider a vector z ∈ {−1, 0, 1}n with
w = w+ + w− nonzero entries, w+ entries that are equal to one and w− entries
that are equal to −1 (and n− w entries that are zero). It is easy to see that

qw+,w− := Pr[Miz = 0] =

(
w
w−
)

2w
≤
√

2

3w

On the Coin Weighing Problem with the Presence of Noise 477

and qw+,w− ≤ 1/2 for every w ≥ 1 . Therefore for m = εk,

Pr[wt(Mz) < 2m] =

2m∑
j=1

(1− qw+,w−)2m−jqk−2m+j
w+,w−

(
k

2m− j

)
.

Since m < k/4 and qw+,w− ≤ 1/2, we have

(1− qw+,w−)2m−jqk−2m+j
w+,w− ≤ (1− qw+,w−)2mqk−2m

w+,w−

≤ (1− qw+,w−)k/2q
k/2
w+,w− ≤ 1/2k

and therefore

Pr[wt(Mz) < 2m] ≤
2m∑
j=1

2−k
(

k

2m− j

)
≤ 2H(2ε)k−k = 2−ck (2)

for some constant c > 0 where H(x) = −x · log x − (1 − x) · log(1 − x) is the

binary entropy function. Since (1− qw+,w−)2m−jqk−2m+j
w+,w− ≤ qk−2m

w+,w− we also have

Pr[wt(Mz) < 2m] ≤ qk−2m
w+,w−

2m∑
j=1

(
k

2m− j

)
≤ q

(1−2ε)k
w+,w− 2H(2ε)k

≤
(

2

3w

) 1−2ε
2 k

2H(2ε)k. (3)

Now by (2) and (3) we have

Pr[(∃z) wt(Mz) < 2m] ≤
n∑

w=1

(
n

w

)
2wmin

((
2

3w

) 1−2ε
2 k

2H(2ε)k, 2−ck

)

≤
n/ log3 n∑
w=1

(
n

w

)
2w2−ck

+

n∑
w=n/ log3 n

(
n

w

)
2w
(

2

3w

) 1−2ε
2 k

2H(2ε)k. (4)

For w ≤ n/ log3 n we have(
n

w

)
2w2−ck ≤ n2w2−ck ≤ 2

2n
log2 n

−c n
log n <

1

n
. (5)

For w ≥ w0 := n/ log3 n we have(
n

w

)
2w
(

2

3w

) 1−2ε
2 k

2H(2ε)k ≤ 3n
(

2

3w0

) 1−2ε
2 k

2H(2ε)k

≤ 2(log 3)n− 1−2ε
2 k logn · 2H(2ε)k+ 1−2ε

2 k log((2/3) log3 n)

= 2−O(
n log log n

log n)2H(2ε)k+ 1−2ε
2 k log((2/3) log3 n)

<
1

n
. (6)

478 N.H. Bshouty

Therefore, by (4), (5) and (6) we have Pr[(∃z) wt(Mz) < 2m] < 1 and the result
follows.

We now give a lower bound for the number of weighings. We prove

Theorem 3. Let 0 ≤ ε < 1/4 (respectively, 0 ≤ ε < 1/2) be a constant. Every
non-adaptive coin weighing algorithm with k weighings that tolerates m = εk
incorrect (respectively, unknown) weighings must satisfy

k ≥ 2n

(1 − ε) logn
−O

(
n log logn

log2 n

)
.

(respectively,

k ≥ 4n

(2− ε) logn
−O

(
n log logn

log2 n

)
.)

Proof. Let M be any k × n search matrix that tolerates εk incorrect answers.
By Lemma 1, for every x, y ∈ {0, 1}n where x �= y we have dist(Mx,My) :=
wt(Mx−My) = wt(M(x−y)) > 2εk. LetMi be the ith row ofM and wt(Mi) =
wi. Let w = (w1/2, . . . , wk/2). Then dist(Mx−w,My −w) = dist(Mx,My) >
2εk for every x, y ∈ {0, 1}n where x �= y.

Let x be a uniform random (0, 1)-vector in {0, 1}n. By Moivre-Laplace the-
orem (that follows from Stirling’s approximation) the probability that |Mix −
wi/2| ≥ 2

√
wi logwi is less than O(1/w8

i). If wi >
√
n then the probability

that |Mix − wi/2| ≥ 2
√
n logn is less than O(1/n4) and if wi ≤ √

n then
|Mix − wi/2| ≤ 2

√
n ≤ 2

√
n logn with probability 1. Therefore the probabil-

ity that Mx − w ∈ [−q, q]k where q = 2
√
n logn is greater than 1 − O(1/n3).

This shows that for at least 2n(1 − O(1/n3)) ≥ 2n−1 of the vectors x ∈ {0, 1}n
we have Mx − w ∈ [−q, q]k. Let S ⊆ {0, 1}n be the set of such vectors and
W = {Mx− w | x ∈ S} ⊆ [−q, q]k. Then |W | = |S| ≥ 2n−1.

For u ∈ W let B(u) = {y ∈ [−q, q]k | dist(u, y) ≤ εk}. Since the vectors in
W are at distance more than 2εk from each other, for every two distinct vectors
w1, w2 ∈ W , we have B(w1) ∩B(w2) = Ø. We also have, for each v ∈ W

|B(v)| =
εk∑
i=0

(2q)i
(
k

i

)
.

Therefore

(2q + 1)k = |[−q, q]k| ≥
∣∣∣∣∣
⋃
v∈W

B(v)

∣∣∣∣∣ =
∑
v∈W

|B(v)| = |W |
εk∑
i=1

(2q)i
(
k

i

)
≥ |W |(2q)εk

(
k

εk

)
≥ |W |(2q)εk2εk ≥ 2n−1(4q)εk ≥ 2n(2q + 1)εk

This implies the result.

On the Coin Weighing Problem with the Presence of Noise 479

3 Polynomial Time Algorithms

In this section, we present a polynomial time algorithm for the coin weighing
problem with sublinear number of weighings that can tolerate incorrect weighings
that are constant fraction of the number of weighings.

We build a search matrix which is a Kronecker product of two matrices. The
first matrix is a generating matrix of a [N,K,D] code where N = n/

√
logn is the

length of the code, D = (1/2− o(1))N is the minimum distance and K = O(N)
is the dimension. Concatenation code is an example of such code that has poly-
nomial time decoding algorithm. The second matrix is a O(

√
logn/ log logn)×√

logn dimensional matrix that tolerate 1/4−o(1) fraction of incorrect answers.
This matrix can be built by exhaustive search and has polynomial time (in n)
algorithm. We show that the combined matrix tolerates (1/16− o(1))t incorrect
answers where t = O(n/ log logn) is the number of weighings. We also give a
polynomial time algorithm for detecting the counterfeit coins.

We show the following,

Theorem 4. Let ε > 0 be any small constant. There exists a non-adaptive
polynomial time coin weighing algorithm with

k = O

(
n

log logn

)
weighings that tolerates (1/16− ε)k incorrect weighings (respectively, (1/4− ε)k
unknown weighings).

Proof. We give the proof of the case of incorrect weighings. For unknown weigh-
ings the proof is similar.

To prove the result, we give a search matrix for the problem. That is, we build
a k × n (0, 1)-matrix B such that given Bv + e, where v ∈ {0, 1}n and e is any
n-vector with Hamming weight smaller than (1/16− ε)n, one can reconstruct v
in polynomial time.

The following lemma is proved in the full version of the paper. A weaker
version of this lemma was proved in [7].

Lemma 2. Let C be a linear code [p, k, d] over Z2 with the generating k × p
matrix G. Let D be a polynomial time decoding algorithm for C that decodes in
the presence of d′ ≤ d−1

2 errors. Let Ḡ ∈ Zk×p be equal to G.
There is an algorithm that runs in polynomial time poly(p, logn) and satisfies

the following: Given b = ḠTw + e, where w ∈ {0, 1, . . . , n}k and e, b ∈ Zp are
any p-vectors. If wt(e) ≤ d′, the algorithm returns w. If wt(e) > d′ the algorithm
returns some vector u ∈ {0, 1, . . . , 2n}k.

Choose two small constants ε1 and ε2 such that (1/4−ε1)(1/4−ε2/2) = (1/16−ε).
Consider all the (0, 1)-matrices in {0, 1}t×s where

t =
(8 log 3)

√
logn

log logn
and s =

√
logn.

480 N.H. Bshouty

There are at most 2ts ≤ n such matrices. By Theorem 2, there is M ∈ {0, 1}t×s
that tolerates (1/4−ε1)t incorrect answers for any small constant ε1. By Lemma 1
and the choice of t and s, such matrix can be found in polynomial time and
given Mx+ e where x ∈ {0, 1}s and wt(e) ≤ (1/4− ε1)t one can find x and e by
exhaustive search in polynomial time. We denote this algorithm by ES.

Let r = n/s. Let C be a linear code [N,K,D] := [c1r, r, (1/2 − ε2)c1r] over
Z2 with generating matrix G ∈ {0, 1}r×(c1r) and polynomial time decoding al-
gorithm D where c1 is a constant. Concatenated codes are an example to such
code. See for example [34]. Now, we regard G as a (0, 1)-matrix Ḡ over Z. Let,

B = ḠT ⊗M =

⎛⎜⎜⎜⎝
g1,1M g2,1M . . . gr,1M
g1,2M g2,2M . . . gr,2M

...
...

. . .
...

g1,c1rM g2,c1rM . . . gr,c1rM

⎞⎟⎟⎟⎠ .

Since rs = n, the matrix B is of size k × n where

k =
(8c1 log 3)n

log logn
.

We now argue thatB tolerates k′ = (1/4−ε1)(1/4−ε2/2)k = (1/16−ε)k incorrect
answers and given b = Bv + e, where v ∈ {0, 1}n, e ∈ Zk and wt(e) ≤ k′, one
can reconstruct v in polynomial time.

Let Mi be the ith row of M . Divide v into size s-vectors

v =

⎛⎜⎜⎜⎝
v(1)

v(2)

...

v(r)

⎞⎟⎟⎟⎠ and let w(i) =

⎛⎜⎜⎜⎝
Miv

(1)

Miv
(2)

...

Miv
(r)

⎞⎟⎟⎟⎠
for i = 1, 2, . . . , t. Then for b(i) = (bi, bt+i, b2t+i, . . . , b(c1r−1)t+i)

T and e(i) =

(ei, et+i, e2t+i, . . . , e(c1r−1)t+i)
T we have b(i) = ḠTw(i) + e(i). Since w(i) ∈ {0, 1,

. . . , s}r, by Lemma 2, there is a polynomial time algorithm A such that if
wt(e(i)) < (1/4− ε2/2)c1r then the algorithm returns w(i). Otherwise, the algo-
rithm returns some u(i) ∈ {0, 1, . . . , 2s}r. Let J := {j1, j2, . . . , jm} ⊆ {1, 2, . . . , t}
such that wt(e(i)) > (1/4− ε2/2)c1r for i ∈ J and wt(e(i)) ≤ (1/4− ε2/2)c1r for
i �∈ J . Since

t∑
i=1

wt(e(i)) = wt(e) ≤ k′,

we have

m ≤ k′

(1/4− ε2/2)c1r
=

(
1

4
− ε1

)
t.

We run the algorithm A for each b(i) and obtain some vector z(i). By Lemma 2,
z(i) is some vector u(i) ∈ {0, 1, . . . , 2s}r if i ∈ J and z(i) = w(i) if i �∈ J . Let

On the Coin Weighing Problem with the Presence of Noise 481

a(i) = (z
(1)
i , . . . , z

(t)
i)T and g(i) = (w

(1)
i −z

(1)
i , . . . , w

(t)
i −z

(t)
i)T for i = 1, 2, . . . , r.

Since a(i) + g(i) = Mv(i) we have a(i) = Mv(i) − g(i). Since for every i we have
wt(g(i)) ≤ m ≤ (1/4 − ε1)t the vectors v(i), i = 1, 2, . . . , r can be found in
polynomial time by the algorithm ES.

4 Conclusion and Open Problems

In this paper we studied the coin weighing problem when some fraction of the
weighings are incorrect or unknown. We give the tight bound 1/4 for the fraction
for the case of incorrect answers and 1/2 for the case of unknown answers. We
then give an upper and lower bounds for the number of weighings. There is a
constant gap between the upper bound in Theorem 2 and the lower bound in
Theorem 3. It is interesting to close this gap.

We then give a polynomial time algorithm with O(n/ log logn) weighings that
detects the counterfeit coins when 1/16 fraction (respectively 1/4 fraction) of the
weighing are incorrect (respectively, unknown). Two open problems arise. The
first is to find a polynomial time algorithm with a better number of weighings.
The second is to find a polynomial time algorithm with sublinear number of
weighings that can detect better fraction of incorrect and unknown weighings.

References

1. Aigner, M.: Combinatorial Search. John Wiley and Sons (1988)
2. Alon, N., Asodi, V.: Learning a Hidden Subgraph. SIAM J. Discrete Math. 18(4),

697–712 (2005)
3. Biglieri, E., Györfi, L.: Multiple Access Channels Theory and Practice Volume

10 NATO Security through Science Series - D: Information and Communication
Security (April 2007)

4. Bruneau, L., Germinet, F.: On the singularity of random matrices with independent
entries. Proc. Amer. Math. Soc. 137, 787–792 (2009)

5. Bshouty, N.H.: Optimal Algorithms for the Coin Weighing Problem with a Spring
Scale. In: Conference on Learning Theory (2009)

6. Bshouty, N.H., Mazzawi, H.: Toward a Deterministic Polynomial Time Algorithm
with Optimal Additive Query Complexity. In: Hliněný, P., Kučera, A. (eds.) MFCS
2010. LNCS, vol. 6281, pp. 221–232. Springer, Heidelberg (2010)

7. Bshouty, N.H., Mazzawi, H.: Algorithms for the Coin Weighing Problems with the
Presence of Noise. ECCC, TR11-124

8. Cantor, D.: Determining a set from the cardinalities of its intersections with other
sets. Canadian Journal of Athematics 16, 94–97 (1962)

9. Cheng, J., Kamoi, K., Watanabe, Y.: User Identification by Signature Code for
Noisy Multiple-Access Adder Channel. In: ISIT (2006)

10. Cantor, D., Mills, W.: Determining a Subset from Certain Combinatorial Proper-
ties. Canad. J. Math. 18, 42–48 (1966)

11. Chang, S.C., Weldon, E.J.: Coding for T-user multiple access channels. IEEE
Transactions on Information Theory 25(6), 684–691 (1979)

12. Cheng, J., Watanabe, Y.: A Multiuser k-Ary Code for the Noisy Multiple-Access
Adder Channel. IEEE Transactions on Information Theory 47, 6 (2001)

482 N.H. Bshouty

13. Cheng, J., Watanabe, Y.: Affine Code for T-User Noisy Multiple Access Adder
Channel. IEICE Trans. Fundamentals E83-A(3) (2000)

14. Choi, S., Han Kim, J.: Optimal Query Complexity Bounds for Finding Graphs. In:
STOC, pp. 749–758 (2008)

15. Cheng, J., Kamoi, K., Watanabe, Y.: User Identification by Signature Code for
Noisy Multiple-Access Adder Channel. In: IEEE International Symposium on In-
formation Theory, pp. 1974–1977 (2006)

16. Du, D., Hwang, F.K.: Combinatorial group testing and its application. Series on
applied mathematics, vol. 3. World Science (1993)

17. Danev, D., Laczay, B., Ruszinkó, M.: Multiple Access Adder Channel. Multiple
Access Channels - Theory and Practice, pp. 26–53. IOS Press (2007)

18. Erdös, Rényi, A.: On two problems of information theory. Publ. Math. Inst. Hung.
Acad. Sci. 8, 241–254 (1963)

19. Grebinski, V., Kucherov, G.: Optimal Reconstruction of Graphs Under the Addi-
tive Model. Algorithmica 28(1), 104–124 (2000)

20. Grebiniski, V., Kucherov, G.: Reconstructing a hamiltonian cycle by querying the
graph: Application to DNA physical mapping. Discrete Applied Mathematics 88,
147–165 (1998)

21. Grebinski, V.: On the Power of Additive Combinatorial Search Model. In: Hsu,
W.-L., Kao, M.-Y. (eds.) COCOON 1998. LNCS, vol. 1449, pp. 194–203. Springer,
Heidelberg (1998)

22. Indyk, P., Ruzic, M.: Near-Optimal Sparse Recovery in the L1 Norm. In: FOCS
2008, pp. 199–207 (2008)

23. Khachatrian, G.K., Martirossian, S.S.: Codes for T-user Noiseless Adder Channel.
Problems of Control and Information Theory 16, 187–192 (1987)

24. Komlós, J.: On the determinant of matrices. Studia. Sci. Math. Hungar. 2, 7–21
(1967)

25. Laczay, B.: Coding for the Multiple Access Adder Channel (2003)
26. Lindström, B.: On a combinatorial problem in number theory. Canad. Math.

Bull. 8, 477–490 (1965)
27. Lindström, B.: On a combinatorial detection problem II. Studia Scientiarum Math-

ematicarum Hungarica 1, 353–361 (1966)
28. Lindström, B.: On Möbius functions and a problem in combinatorial number the-

ory. Canad. Math. Bull. 14(4), 513–516 (1971)
29. Lindström, B.: Determining subsets by unramified experiments. In: Srivastava,

J.N. (ed.) A Survey of Statistical Designs and Linear Models, pp. 407–418. North
Holland, Amsterdam (1975)

30. Li, M., Vitányi, P.M.B.: Combinatorics and Kolmogorov Complexity. In: Structure
in Complexity Theory Conference, pp. 154–163 (1991)

31. Moser, L.: The second moment method in combinatorial analysis. In: Combinato-
rial Structure and their Applications, pp. 283–384. Gordon and Breach (1970)

32. Pippenger, N.: An Informtation Theoretic Method in Combinatorial Theory. J.
Comb. Theory, Ser. A 23(1), 99–104 (1977)

33. Pippenger, N.: Bounds on the performance of protocols for a multiple-access broad-
cast channel. IEEE Transactions on Information Theory 27(2), 145–151 (1981)

34. Roth, R.M.: Introduction to Coding Theory. Cambridge University Press, Cam-
bridge (2006)

35. Soderberg, S., Shapiro, H.S.: A combinatory detection problem. American Math-
ematical Monthly 70, 1066–1070 (1963)

36. Wilson, J.H.: Error-Correcting Codes for a T-User Binary Adder Channel. IEEE
Transactions of Information Theory 34(4) (1988)

Information Complexity versus Corruption
and Applications to Orthogonality and Gap-Hamming"

Amit Chakrabarti, Ranganath Kondapally, and Zhenghui Wang

Department of Computer Science, Dartmouth College Hanover, NH 03755, USA
{ac,rangak,zhenghui}@cs.dartmouth.edu

Abstract. Three decades of research in communication complexity have led to
the invention of a number of techniques to lower bound randomized communica-
tion complexity. The majority of these techniques involve properties of large sub-
matrices (rectangles) of the truth-table matrix defining a communication problem.
The only technique that does not quite fit is information complexity, which has
been investigated over the last decade. Here, we connect information complex-
ity to one of the most powerful “rectangular” techniques: the recently-introduced
smooth corruption (or “smooth rectangle”) bound. We show that the former sub-
sumes the latter under rectangular input distributions.

As an application, we obtain an optimal Ω(n) lower bound on the informa-
tion complexity—under the uniform distribution—of the so-called orthogonal-
ity problem (ORT), which is in turn closely related to the much-studied Gap-
Hamming-Distance problem (GHD). The proof of this bound is along the lines
of recent communication lower bounds for GHD, but we encounter a surprising
amount of additional technical detail.

Keywords: Communication Complexity, Information Complexity, Corruption,
Gap Hamming, Orthogonality.

1 Introduction

The basic, and most widely-studied, notion of communication complexity deals with
problems in which two players—Alice and Bob—engage in a communication protocol
designed to “solve a problem” whose input is split between them. The communication
problem is modeled by a function f : X ×Y → Z . As is often the case, we are most
interested in lower bounds.

Lower Bound Techniques and the Odd Man Out. The preeminent textbook in the
field remains that of Kushilevitz and Nisan [19], which covers the basics as well as
several advanced topics and applications. Scanning that textbook, one finds a number
of lower bounding techniques, i.e., techniques for proving lower bounds on D(f) and
R(f), the deterministic and randomized (respectively) communication complexities of
f . Some of the more important techniques are the fooling set technique, log rank, dis-
crepancy and corruption.1 Research postdating the publication of the book has produced
" Work supported in part by NSF Grant IIS-0916565.
1 Though the corruption technique is discussed in Kushilevitz and Nisan, the term “corruption”

is due to Beame et al. [4]. The technique has also been called “one-sided discrepancy” and
“rectangle method” [18] by other authors.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 483–494, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

484 A. Chakrabarti, R. Kondapally, and Z. Wang

a number of other such techniques, including the factorization norms method [21], the
pattern matrix method [24], the partition bound and the smooth corruption2 bound [12].
Notably, all of these techniques ultimately boil down to a fundamental fact called the
rectangle property. One way of stating it is that each fiber of a deterministic protocol,
defined as a maximal set of inputs (x,y) ∈ X ×Y that result in the same communi-
cation transcript, is a combinatorial rectangle in X ×Y . The aforementioned lower
bound techniques ultimately invoke the rectangle property on a protocol that computes
f ; for randomized lower bounds, Yao’s minimax lemma also comes into play.

One recent technique is an odd man out: namely, information complexity, which was
formally introduced by Chakrabarti et al. [8], generalized in subsequent work [2,16,3],
though its ideas appear in the earlier work of Ablayev [1] (see also Saks and Sun [22]).
Here, one defines an information cost measure for a protocol that captures the “amount
of information revealed” during its execution, and then considers the resulting complex-
ity measure IC(f), for a function f . A precise definition of the cost measure admits a
few variants, but all of them quite naturally lower bound the corresponding communica-
tion cost. The power of this technique comes from a natural direct sum property of infor-
mation cost, which allows one to easily lower bound IC(f) for certain well-structured
functions f . Specifically, when f is a “combination” of n copies of a simpler function
g, one can often scale up a lower bound on IC(g) to obtain IC(f) ≥ Ω(n IC(g)). The
burden then shifts to lower bounding IC(g), and at this stage the rectangle property is
invoked, but on protocols for g, not f .

Lower bounding R(f) via a lower bound on IC(f) has the nice consequence that one
obtains a direct sum theorem for free: that is, we obtain the bound R(f n)≥ Ω(n IC(f))
as an almost immediate corollary. We shall be more precise about this in Section 2.

Rectangular versus Informational Methods. It is natural to ask how, quantitatively,
these numerous lower bounding techniques relate to one another. One expects the var-
ious “rectangular” techniques to relate to one another, and indeed several such results
are known [18,21,12]. Our first theorem relates the “informational” technique to one of
the most powerful rectangular techniques, with respect to randomized communication
complexity.

Theorem 1. Let ρ be a rectangular3 input distribution for a communication problem
f : X ×Y → Z . Then, with respect to ρ , for small enough errors ε , the information
complexity bound ICρ

ε (f) is asymptotically as good as the smooth corruption bound
scbρ

400ε,ε(f) with error parameter 400ε and perturbation parameter ε . That is, there

exist absolute positive constants b,c such that ICρ
ε (f)≥ c scbρ

400ε,ε(f)− b.

The above is only an informal statement. The terminology of the theorem is precisely
defined in Section 2 and the theorem itself is fully formalized as Theorem 4.

Independent of our work, Kerenidis et al. [17] have recently proved a more gen-
eral result: namely, they have shown a similar asymptotic relation between ICρ(f) and
scbρ(f) for an arbitrary input distribution ρ . Despite this, we believe that our proof of

2 Jain and Klauck [12] used the term “smooth rectangle bound”, but we shall prefer the more
descriptive term “corruption” to “rectangle” throughout this article.

3 Some authors use the term “product distribution” for what we call rectangular distributions.

Information Complexity versus Corruption and Its Applications 485

Theorem 1 remains interesting, since it uses only elementary combinatorial and infor-
mation theoretic properties of protocol transcripts, and proceeds along intuitive lines. In
contrast, the proof in [17] is more technical in two ways. First, it uses the sophisticated
compression techniques applied to protocol trees as in Barak et al. [3] and Braverman
and Weinstein [5]. Second, it relies on the specifics of the linear programming formula-
tion of the smooth corruption bound, whereas we work solely with the intuitive variant.

Another result in the same spirit as ours is due to Braverman and Weinstein [5]: it
lower bounds information complexity by discrepancy. This result is incomparable with
ours, because on the one hand discrepancy is a weaker technique than corruption, but
on the other hand there is no restriction on the input distribution.

Information Complexity of Orthogonality and Gap-Hamming. The APPROXIMATE-
ORTHOGONALITY problem is a communication problem defined on inputs in {−1,1}n×
{−1,1}n by the Boolean function

ORTb,n(x,y) = 1, if |〈x,y〉| ≤ b
√

n, and ORTb,n(x,y) =−1, otherwise.

Here, b is to be thought of as a constant parameter. This problem arose naturally in Sher-
stov’s work on the Gap-Hamming Distance (GHD) problem [25]. This latter problem is
defined by the partial Boolean function

GHDn(x,y) =−1, if 〈x,y〉 ≤ −
√

n, and GHDn(x,y) = 1, if 〈x,y〉 ≥
√

n .

The Gap-Hamming problem has attracted plenty of attention over the last decade, start-
ing from its formal introduction in Indyk and Woodruff [11] in the context of data
stream lower bounds, leading up to a recent flurry of activity that has produced three
different proofs [7,27,25] of an optimal lower bound R(GHDn) = Ω(n). In some recent
work, Woodruff and Zhang [28] identify a need for strong lower bounds on IC(GHD),
to be used in direct sum results. We now attempt to address such a lower bound.

At first sight, these problems appear to be ideally suited for a lower bound via infor-
mation complexity: they are quite naturally combinations of n independent communi-
cation problems, each of which gives Alice and Bob a single input bit each. One feels
that the uniform input distribution ought to be hard for them for the intuitive reason that
a successful protocol cannot afford to ignore ω(

√
n) of the coordinates of x and y, and

must therefore convey Ω(1) information per coordinate for at least Ω(n) coordinates.
However, turning this intuition into a formal proof is anything but simple.

Here, we prove an optimal Ω(n) lower bound on ICμ(ORTb,n) under μ , the uniform
input distribution on {−1,1}n ×{−1,1}n. This is a consequence of Theorem 1 above,
but there turns out to be a surprising amount of work in lower bounding scbμ(ORT).
Our theorem involves the function Φ , the tail of the standard normal distribution:

Φ(x) :=
1√
2π

∫ ∞

x
e−x2/2dx .

Theorem 2. For large enough constants b, the corruption bound cb1,μ
θ (ORTb,n)=Ω(n),

where θ = Φ(2.01b). Hence, by Theorem 1, we have ICμ
θ/400(ORTb,n) = Ω(n).

Again, the terminology is precisely defined in Section 2 and the theorem is fully for-
malized as Theorem 6. As it turns out, a slight strengthening of the parameter θ in

486 A. Chakrabarti, R. Kondapally, and Z. Wang

the above theorem would give us the result ICμ
θ ′(GHDn) = Ω(n). This is because the

following result—stated somewhat imprecisely for now—connects the two problems.

Theorem 3. With θ = Φ(1.99b), we have scb1,μ
400θ ,θ (GHDn) = Ω(cb1,μ

400θ (ORTb,n))−
O(

√
n) for large constants b. By Theorem 1, ICμ

θ (GHDn)=Ω(cb1,μ
400θ (ORTb,n))−O(

√
n).

We note that Chakrabarti and Regev [7] state that their lower bound technique for
R(GHDn) can be captured within the smooth rectangle bound framework. While this
is true in spirit, there is a significant devil in the details (see Section 4): their technique
does not yield a good lower bound on scb1,μ

ε,δ (GHDn) for the uniform distribution μ .
These theorems suggest a natural follow-up conjecture: there exists a constant ε such

that ICμ
ε (GHDn) = Ω(n). This remains open despite the very recent work of Kerenidis

et al. [17], which does not touch ICμ(GHD).

Direct Sum. A direct sum theorem states that solving m independent instances of
a problem requires about m times the resources that solving a single instance does.
It could apply to a number of models of computation, with “resources” interpreted
appropriately. For our model of two-party communication, it works as follows. For a
function f : X ×Y → {−1,1}, let f m : X m ×Y m → {−1,1}m denote the function
given by

f m(x1, . . . ,xm,y1, . . . ,ym) = (f (x1,y1), . . . , f (xm,ym)) .

Notice that f m is not a Boolean function. We will define R(f m) to be the randomized
communication complexity of the task of outputting a vector (z1, . . . ,zm) such that for
each i ∈ [m], we have f (xi,yi) = zi with high probability. Then, a direct sum theorem for
randomized communication complexity would say that R(f m) = Ω(m ·R(f)). Whether
or not such a theorem holds for a general f is a major open question in the field.

Information complexity, by its very design, provides a natural approach towards
proving a direct sum theorem. Indeed, this was the original motivation of Chakrabarti
et al. [8] in introducing information complexity; they proved a direct sum theorem for
randomized simultaneous-message and one-way complexity, for functions f satisfy-
ing a certain “robustness” condition. Still using information complexity, Jain et al. [14]
proved a direct sum theorem for bounded-round randomized complexity, when f is hard
under a product distribution. Recently, Barak et al. [3] used information complexity, to-
gether with a protocol compression approach, to mount the strongest attack yet on the
direct sum question for R(f), for all f : they show that R(f m) ≈ Ω(

√
m R(f)), where

the “≈” ignores logarithmic factors.
One consequence of our work here is a simple proof of a direct sum theorem for

randomized communication complexity for functions whose hardness is captured by a
smooth corruption bound (which in turn subsumes corruption, discrepancy and smooth
discrepancy [12]) under a rectangular distribution. This includes the well-studied INNER-
PRODUCT function, and thanks to our Theorem 5, it also includes ORT. Of course, us-
ing the very recent result of Kerenidis et al. [17], the rectangularity constraint can be
removed, which lets one capture additional important functions such as DISJOINTNESS.

We note that the protocol compression approach [3] gives a strong direct sum result
for distributional complexity under rectangular distributions, but still not as strong as
ours because their result contains a not-quite-benign polylogarithmic factor. We say
more about this in Section 4.

Information Complexity versus Corruption and Its Applications 487

Comparison with Direct Product. Other authors have considered a related, yet dif-
ferent, concept of direct product theorems. A strong direct product theorem (henceforth,
SDPT) says that computing f m with a correctness probability as small as 2−Ω(m)—
but more than the trivial guessing bound—requires Ω(m R(f)) communication, where
“correctness” means getting all m coordinates of the output right. It is known that
SDPTs do not hold in all situations [23], but do hold for (generalized) discrepancy
[20,26], an especially important technique in lower bounding quantum communica-
tion. A recent manuscript offers an SDPT for bounded-round randomized communica-
tion [13].

SDPTs may look stronger than direct sum theorems,4 but are in fact incomparable.
A protocol could conceivably achieve low error on each coordinate of f m(x1, . . . ,xm,
y1, . . . ,ym) while also having zero probability of getting the entire m-tuple right.

2 Preliminaries

Consider a (partial) function f : X ×Y → Z∗, where X ,Y ,Z are nonempty finite
sets and Z∗ := Z ∪{∗}. We consider f to be undefined on an input (x,y) ∈ X ×Y if
f (x,y) = ∗. An important special case is X =Y = {−1,1}n and Z = {−1,1}, where
n is a large integer. We can interpret such a function f as a communication problem
wherein Alice receives an input x ∈ X , Bob receives an input y ∈ Y , and the players
must communicate according to a protocol P to come up with a value z ∈ Z that is
hopefully equal to f (x,y). When f (x,y) = ∗, P is deemed correct on (x,y) regardless of
what P outputs. The sequence of messages exchanged by the players when executing
P on input (x,y) is called the transcript of P on that input, and denoted P(x,y). We
require that the transcript be a sequence of bits, and end with (a binary encoding of)
the agreed-upon output. We denote the output corresponding to a transcript t by out(t):
thus, the output of P on input (x,y) is out(P(x,y)).

Our protocols will, in general, be randomized protocols with a public coin as well
as a private coin for each player. When we disallow the public coin, we will explic-
itly state that the protocol is private-coin. Notice that P(x,y) is a random string, even
for a fixed input (x,y). For a real quantity ε ≥ 0, we say that P computes f with ε
error if ∀x,y : Pr[f (x,y) �= ∗ ∧ out(P(x,y)) �= f (x,y)] ≤ ε , the probability being with
respect to the randomness used by P and the input distribution. We define the cost of
P to be the worst case length of its transcript, max |P(x,y)|, where we maximize over
all inputs (x,y) and over all possible outcomes of the coin tosses in P. Finally, the ε-
error randomized communication complexity of f is defined by Rε(f) = min{cost(P) :
P computes f with error ε}. In case Z = {−1,1}, we also put R(f) = R1/3(f).

For random variables A,B,C, we use notations of the form H(A), H(A | C), H(AB),
I(A : B), and I(A : B | C) to denote entropy, conditional entropy, joint entropy, mutual
information, and conditional mutual information respectively. For discrete probability

4 Some authors interpret “direct sum” as requiring correctness of the entire m-tuple output with
high probability. Under this interpretation, direct product theorems indeed subsume direct sum
theorems. Our definition of direct sum is arguably more natural, because under our definition,
we at least have R(f m) = O(m R(f)) always.

488 A. Chakrabarti, R. Kondapally, and Z. Wang

distributions λ ,μ , we use DKL(λ ‖ μ) to denote the relative entropy (a.k.a., informa-
tional divergence or Kullback-Leibler divergence) from λ to μ using logarithms to the
base 2. These standard information theoretic concepts are well described in a number
of textbooks, e.g., Cover and Thomas [9].

Let λ be an input distribution for f , i.e., a probability distribution on X ×Y . We say
that λ is a rectangular distribution if we can write it as a tensor product λ = λ1 ⊗λ2,
where λ1,λ2 are distributions on X ,Y respectively. Now consider a general λ and
let (X ,Y) ∼ λ be a random input for f drawn from this joint distribution. We de-
fine the λ -information-cost of the protocol P to be icostλ (P) = I(XY : P(X ,Y) | R),
where R denotes the public randomness used by P. This cost measure gives us a dif-
ferent complexity measure called the ε-error information complexity of f , under λ :
ICλ

ε (f) = inf{icostλ (P) : P computes f with error ε}. We note that in the terminology
of Barak et al. [3], the above quantity would be called the external information complex-
ity, as opposed to the internal one, which is based on the cost function I(X : P(X ,Y),R |
Y)+ I(Y : P(X ,Y),R | X). As they show, the two cost measures coincide under a rect-
angular input distribution. Since our work only concerns rectangular distributions, this
internal/external distinction is not important to us.

It is easy to see (and by now well-known) that information complexity under any
input distribution lower bounds randomized communication complexity.

Fact 1. For every input distribution λ and error ε , we have Rε(f) ≥ ICλ
ε (f). ��

Corruption and Smooth Corruption. Let f : X ×Y → Z∗ define a communi-
cation problem. Pick a particular z ∈ Z . Call a set S ⊆ X ×Y rectangular if S =
S1 × S2, where S1 ⊆ X , S2 ⊆ Y . Following Beame et al. [4], we say that S is ε-error
z-monochromatic for f under λ if λ (S \ (f−1(z)∪ f−1(∗)))≤ ε λ (S). We then define

ε-monoz,λ (f) = max{λ (S) : S is rectangular and ε-error z-monochromatic} , (1)

cbz,λ
ε (f) =− log(ε-monoz,λ (f)) , (2)

scbz,λ
ε,δ (f) = max{cbz,λ

ε (g) : g ∈ Z X ×Y
∗ , Pr

(X ,Y)∼λ
[f (X ,Y) �= g(X ,Y)]≤ δ} . (3)

The quantities cbz,λ
ε (f) and scbz,λ

ε,δ (f) are called the corruption bound and the smooth
corruption bound respectively, under the indicated choice of parameters: we call ε the
error parameter and δ the perturbation parameter. One can go on to define bounds
independent of z and λ by appropriately maximizing over these two parameters. We
note that Jain and Klauck [12] use somewhat different notation: what we have called
scb above is the logarithm of (a slight variant of) the quantity that they call the “natural
definition of the smooth rectangle bound” and denote s̃rec.

What justifies calling these quantities “bounds” is that they can be shown to lower
bound Rε ′(f) for sufficiently small δ ,ε,ε ′, under a mild condition on λ . It is clear that

scbz,λ
ε,δ (f) ≥ cbz,λ

ε (f), so we mention only the stronger result, that involves the smooth
corruption bound.

Fact 2 (Jain and Klauck [12]). Let f : X ×Y → Z∗, z ∈ Z and distribution λ on
X ×Y be such that λ (f−1(z)) ≥ 1/3. Then there is an absolute constant c > 0 such

that, for a sufficiently small constant ε , we have Rε(f) ≥ c · scbz,λ
5ε,ε/2(f). ��

Information Complexity versus Corruption and Its Applications 489

The constant 1/3 above is arbitrary and can be parametrized, but we avoid doing this
to keep things simple. The proof of the above fact is along the expected lines: an appli-
cation of (the easy direction of) Yao’s minimax lemma, followed by a straightforward
estimation argument applied to the rectangles of the resulting deterministic protocol.
Note that we never have to involve the linear-programming-based smooth rectangle
bound as defined by Jain and Klauck.

3 Information Complexity versus Corruption

We sketch the proof of our first theorem.

Theorem 4 (Precise restatement of Theorem 1). Suppose we have a function f :
X ×Y → Z∗, a rectangular distribution ρ on X ×Y , and a value z ∈ Z satisfying
ρ(f−1(z))≥ 3/20. Let ε,ε ′ be reals with 0 ≤ 384ε ≤ ε ′ < 1/4. Then

ICρ
ε (f) ≥ 1

400 scbz,ρ
ε ′,ε(f)− 1

50 = Ω
(

scbz,ρ
ε ′,ε (f)

)
−O(1) .

Let ρ be an input distribution for a communication problem, let P be a protocol for
the problem, and let t be a transcript of P. We define σt = σt(ρ) to be the distribution
(ρ | P(X ,Y) = t). We think of the relative entropy DKL(σt ‖ ρ) as a distortion measure
for t: intuitively, if t conveys little information about the inputs, then this distortion
should be low. The following lemma, based on Markov inequalities, makes this intuition
precise. Notice that it does not assume that ρ is rectangular.

While handling partial functions, we write “g(x,y) �= z” to actually denote the event
g(x,y) �= z∧g(x,y) �= ∗ for z ∈ Z , unless specified otherwise.

Lemma 1. Let P be a private-coin protocol that computes g : X ×Y → Z∗ with
error ε < 1/500. Let z ∈ Z and let ρ be an arbitrary distribution on X ×Y with
ρ(g−1(z)) ≥ 3/20− 1/500. Then, there exists a (“low-distortion”) transcript t of P
such that out(t) = z, DKL(σt ‖ ρ) ≤ 50icostρ(P), and Pr[g(X ,Y) �= z | T = t] ≤ 8ε ,
where (X ,Y)∼ ρ and T = P(X ,Y). ��

The third property in the above lemma is a low-error guarantee for the transcript t. We
can show that the existence of such a transcript implies the existence of a “large” low-
corruption rectangle, provided the input distribution ρ is rectangular: this is the only
point in the proof that uses rectangularity. One has to be careful with the interpretation
of “large” here: it means large under σt , and not ρ . However, later on we will add in the
low-distortion guarantee of Lemma 1 to conclude largeness under ρ as well.

Lemma 2. Let t be a transcript of a private-coin protocol P for g : X ×Y → Z∗. Let
ρ be a rectangular distribution on X ×Y , z ∈Z , (X ,Y)∼ ρ , T = P(X ,Y), and ε ≥ 0.
Suppose Pr[g(X ,Y) �= z | T = t]≤ ε, then there exists a rectangle L ⊆X ×Y such that
σt(L)≥ 9/16 and Pr[g(X ,Y) �= z | (X ,Y) ∈ L]≤ 16ε . ��

We need the (classical) Substate Theorem due to Jain, Radhakrishnan and Sen [15].

Fact 3 (Substate Theorem [15]). For distributions λ1,λ2 on X , with DKL(λ1 ‖ λ2)≤
d, (where d ≥ 0), for all S ⊆ X , we have λ2(S)≥ λ1(S)/22+2/λ1(S)+2d/λ1(S). ��

490 A. Chakrabarti, R. Kondapally, and Z. Wang

Proof of Theorem 4. Let P∗ be a protocol for f achieving the ε-error information cost
under ρ . By a standard averaging argument, we may fix the public randomness of P∗

to obtain a private-coin protocol P that computes f with error 2ε , and has icostρ(P)≤
2icostρ(P∗). Let g be the function achieving the maximum in Eq. (3), the definition
of the smooth corruption bound, with error parameter ε ′ and perturbation parameter ε .
Then scbz,ρ

ε ′,ε(f) = cbz,ρ
ε ′ (g) and P computes g with error 3ε ≤ 1/500. Furthermore,

ρ(g−1(z))≥ ρ(f−1(z))− Pr
(X ,Y)∼ρ

[f (X ,Y) �= g(X ,Y)]≥ 3/20− ε > 3/20− 1/500 .

By Lemma 1, there exists a transcript t of P with distortion at most 100 icostρ(P∗) and
error at most 24ε ≤ ε ′/16. Therefore, by Lemma 2, there exists a rectangle L such
that σt(L) ≥ 9/16 and Pr[g(X ,Y) �= z | (X ,Y) ∈ L] ≤ ε ′. The latter condition may be
rewritten as ρ(L \ (g−1(z)∪g−1(∗))) ≤ ε ′ρ(L), i.e., L is ε ′-error z-monochromatic for
g under ρ . Then, by the Substate Theorem, for every subset S ⊆ X ×Y , we have
ρ(S)≥ σt(S)/22+2/σt(S)+2d/σt (S), where d := DKL(σt ‖ ρ)< 100icostρ(P∗) by the dis-
tortion bound. Taking S to be the above rectangle L, and noting that σt(L) ≥ 1/2, we
have ρ(L) ≥ 1/24d+7. Since L is ε-error z-monochromatic, the definition of the cor-
ruption bound tells us that cbz,ρ

ε (g)≤− logρ(L)≤ 4d+7 < 400icostρ(P∗)+7, which
completes the proof. ��

4 Information Complexity of Orthogonality and Gap-Hamming

We now tackle Theorems 2 and 3. These results are closely connected with a few recent
works, and are both conceptually and technically interesting in their own right. We refer
the reader to the full version of this paper [6] for an important discussion on why their
proofs take so much additional work.

For the remainder of this paper, μn will denote the uniform distribution on {−1,1}n×
{−1,1}n. We will almost always drop the subscript n and simply use μ .

The Orthogonality Problem. In order to lower bound IC(ORTb,n), we now see that
it suffices to lower bound cbλ (ORTb,n) for a rectangular λ . We make the most natural
choice, picking λ = μ , the uniform input distribution. Our proof is then heavily inspired
by two recent proofs of an optimal Ω(n) lower bound on R(GHDn), namely those of
Chakrabarti and Regev [7], and Sherstov [25]. At the heart of our proof is the following
anti-concentration lemma, which says that when pairs (x,y) are randomly drawn from
a large rectangle in {−1,1}n ×{−1,1}n, the inner product 〈x,y〉 cannot be too sharply
concentrated around zero.

Lemma 3 (Anti-concentration). Let n be sufficiently large, let b ≥ 66 be a constant,
and let ε = Φ(2.01b). Then there exists δ > 0 such that for all A,B ⊆ {−1,1}n with

min{|A|, |B|}≥ 2n−δn, we have Pr(X ,Y)∈RA×B

[
〈X ,Y 〉 /∈ [−b

√
n,b

√
n]
]
≥ ε, where “∈R”

denotes “is chosen uniformly at random from”.

The proof of this anti-concentration lemma has several technical steps, and we outline
this proof in Section 5. We can prove following theorem using this lemma.

Information Complexity versus Corruption and Its Applications 491

Theorem 5 (Precise restatement of Theorem 2). Let b ≥ 1/5 be a constant. Then
cb1,μ

θ (ORTb,n) = Ω(n), for θ = Φ(2.01max{66,b}). Hence, ICμ
θ/400(ORTb,n) = Ω(n).

The Gap-Hamming Problem. We now address the issue of proving a strong lower
bound on ICμ(GHD). Our idea is that, for large b, the function GHDn is at least as “hard”
as a function that is “close” to ORTb,n, under a uniform input distribution. To be precise,
we have the following connection between GHD and ORT. Recall that μn is the uniform
distribution on {−1,1}n×{−1,1}n.

Theorem 6 (Precise restatement of Theorem 3). Let n be sufficiently large, let b ≥
100 be a constant, and let Φ(1.99b)≤ θ ≤ 1/1600. Let n′ = n+ 1

2(1.99b−1)
√

n. Then,

scb1,μn
400θ ,θ (GHDn) = Ω(cb

1,μn′
400θ (ORTb,n′))−O(

√
n) .

Invoking Theorem 4, we then have ICμn
θ (GHDn) = Ω(cb

1,μn′
400θ (ORTb,n′))−O(

√
n).

Remark. If we could strengthen Theorem 5 by showing that cb1,μ
ε (ORTb,n) =Ω(n) with

ε = Φ(1.98b), for large b. Then the present theorem would give us ICμ
ε/400(GHDn) =

Ω(n), since ε/400 > Φ(1.99b). This would resolve our conjecture about ICμ(GHDn).

Proof. Put t = n′ − n = 1
2 (1.99b− 1)

√
n. Consider the padding (x,y) ∈ {−1,1}n −→

(x′,y′)∈ {−1,1}n′ defined by x′ = (1,1, . . . ,1,x) and y′ = (−1,−1, . . . ,−1,y). Then we
have 〈x′,y′〉= 〈x,y〉− t. For b′ := 1.99b, we can verify that 〈x,y〉 ∈

[
−
√

n,b′
√

n
]
=⇒

〈x′,y′〉 ∈
[
− b

√
n′,b

√
n′
]
.

Define h(x,y) := GHDn(x,y), if 〈x,y〉 ≤ b′
√

n and h(x,y) :=−GHDn(x,y), if 〈x,y〉>
b′
√

n. We can verify that if R is ε-error 1-monochromatic for the partial function h under
μn, then R′ is ε-error 1-monochromatic for ORTb,n′ under μn′ , where R′ ⊆ {−1,1}n′ ×
{−1,1}n′ is the rectangle obtained by padding each (x,y) ∈ R as above. Hence, we have

ε-mono1,μn(h)≤ 22tε-mono1,μn′ (ORTb,n′) and thus, cb1,μn
ε (h)≥ cb

1,μn′
ε

(
ORTb,n′

)
− 2t.

By standard estimates of the tail of a binomial distribution [10], we have

Pr
(X ,Y)∼μn

[h(X ,Y) �= GHDn(X ,Y)] = Pr
(X ,Y)∼μn

[〈X ,Y 〉> b′
√

n]≤ Φ(b′) = Φ(1.99b) . (4)

Therefore, scb1,μn
ε,θ (GHDn)≥ cb1,μn

ε (h)≥ cb
1,μn′
ε (ORTb,n′)− 2t with θ ≥ Φ(1.99b). The

proof is now completed by applying Theorem 4. ��

5 Proof of the Anti-concentration Lemma

Finally, we turn to the most technical part of this work: a proof of our new anti-
concentration lemma, stated as Lemma 3 earlier. We only outline the broad steps; details
can be found in the full version of the paper [6].

Let us begin with some convenient notation. We denote the (density function of the)
standard normal distribution on the real line R by γ . We also denote the standard n-
dimensional Gaussian distribution by γn. For a set A ⊆ Rn, we denote by γn|A the dis-
tribution γn conditioned on belonging to A.

492 A. Chakrabarti, R. Kondapally, and Z. Wang

The Setup. For a contradiction, we begin by assuming the negation of Lemma 3. That
is, we assume that ∃ constant b ≥ 66 such that ∀δ > 0, ∃A,B ⊆ {−1,1}n such that

min{|A|, |B|} ≥ 2n−δn, and (5)

Pr
(X ,Y)∈RA×B

[
〈X ,Y 〉 /∈ [−b

√
n,b

√
n]
]
< ε := Φ(2.01b) . (6)

We treat the sets A and B asymmetrically in the proof. Using the largeness of A, and
appealing to a concentration inequality of Talagrand, we identify a subset V ⊆ A con-
sisting of �

√
δ n� vectors such that

(P1) the vectors in V are, in some sense, near-orthogonal; and
(P2) the quantity 〈x,Y 〉, where Y ∈R B, is concentrated around zero for each x ∈V , in

the sense of (6).

This step is a simple generalization of the first part of Sherstov’s argument in his proof
that R(GHDn) = Ω(n).

As for the set B, we consider its Gaussian analogue B̃ := {ỹ ∈ Rn : sign(ỹ) ∈ B}.
Specifically, we focus on random variable Qx = 〈x,Ỹ 〉/√n, for an arbitrary x ∈ V and
Ỹ ∼ γn|B̃. Even more specifically, we focus on the escape probability px := Pr[|Qx| >
(c+α)b], where c :=

√
2/π and α > 0 is a constant we shall fix later. To obtain a

contradiction, we shall analyze px—for a suitable x—in two ways.

Upper Bounding the Escape Probability. On the one hand, property (P2) is a con-
centration statement for the random variable 〈x,Y 〉. By the connection between Y and Ỹ ,
we can show that this implies a certain concentration for Qx for all x ∈V . Specifically,
we can upper bound px for an arbitrary x ∈V .

For simplicity, we assume, w.l.o.g., that x = (1,1, . . . ,1) so that 〈x,y〉= ∑n
i=1 yi. This

is legitimate because, if xi = −1, we can flip xi to 1 and yi to −yi without changing
〈x,y〉. Recall that each coordinate Ỹi of Ỹ has the same distribution as Yi|Wi|, where the
variables {Wi} are independent and each Wi ∼ γ . Define T := 〈x,Y 〉/√n = ∑n

i=1Yi/
√

n;
so T is a discrete random variable. After some reordering of coordinates, we can rewrite

√
nQx = 〈x,Ỹ 〉=

(
|W1|+ |W2|+ · · ·+

∣∣Wn
2+

T
√

n
2

∣∣)−
(∣∣Wn

2+
T
√

n
2 +1

∣∣+ · · ·+ |Wn|
)
.

Each |Wi| has a so-called half normal distribution. This is a well-studied distribution: in
particular, for each i, we know that E

[
|Wi|
]
=
√

2/π,Var
[
|Wi|
]
= 1− 2/π . The vari-

ables {Wi} are independent and behave well enough for us to apply Lindeberg’s version
of the central limit theorem [10]: doing so tells us that as n grows, the distribution of Qx

converges to N (cT,σ2), where c =
√

2/π and σ =
√

1− 2/π. Using the convergence
and the property (P2) of T , we can easily prove the following lemma.

Lemma 4. Recall that c =
√

2/π. Let σ =
√

1− 2/π. For all x ∈V, α > 0, and suffi-
ciently large n, we have px ≤ 4Φ(αb/σ)+ 4Φ(2.01b). ��

Information Complexity versus Corruption and Its Applications 493

Lower Bounding the Escape Probability. On the other hand, arguing along the lines
of Chakrabarti-Regev [7], we cannot have too much concentration along so many near-
orthogonal directions (as Property (P2) suggests), because B̃ is a “large” subset of Rn.
Specifically, the largeness of B implies that the relative entropy DKL(γn|B ‖ γn) is small.
This in turn implies that there exists a direction x∗ ∈ V for which the projection Qx∗

behaves quite similarly to a mixture of shifted standard normal variables (i.e., variances
close to 1, but arbitrary means). We highlight that these variances are larger than σ , and
this is what allows us to lower bound the escape probability.

This line of argument yields following lemma, proved in the full paper [6].

Lemma 5. There exists some x∗ ∈V, such that for all c,α > 0 and sufficiently large n,

we have px∗ ≥ 1
2 (1− δ 1/4)

(
Φ
(
(c+α)b/(1− 4

√
δ)
)
− 2δ 1/8

)
. ��

To complete the proof of the anti-concentration lemma, we combine the lower bound
with the upper bound for px∗ to obtain

1− δ 1/4

2

(
Φ
(
(c+α)b

1− 4
√

δ

)
− 2δ 1/8

)
≤ 4Φ

(
αb
σ

)
+ 4Φ(2.01b) .

The above inequality is supposed to hold for some constant b ≥ 66, c =
√

2/π, σ =√
1− 2/π and all constants α,δ > 0. However, if we set α = 2.01σ , we can get a

contradiction: as δ → 0, the left-hand side approaches 1
2 Φ((c+ 2.01σ)b), whereas the

right-hand side is 8Φ(2.01b). Plugging in the values of c and σ , we note that c +
2.01σ < 2.01. Therefore, if we choose δ small enough, we have a contradiction.

Acknowledgment. We are grateful to Ryan O’Donnell for an important technical
discussion.

References

1. Ablayev, F.: Lower bounds for one-way probabilistic communication complexity and their
application to space complexity. Theoretical Computer Science 175(2), 139–159 (1996)

2. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics approach
to data stream and communication complexity. J. Comput. Syst. Sci. 68(4), 702–732 (2004)

3. Barak, B., Braverman, M., Chen, X., Rao, A.: How to compress interactive communication.
In: Proc. 41st Annual ACM Symposium on the Theory of Computing, pp. 67–76 (2010)

4. Beame, P., Pitassi, T., Segerlind, N., Wigderson, A.: A strong direct product theorem for
corruption and the multiparty communication complexity of disjointness. Comput. Com-
plexity 15(4), 391–432 (2006)

5. Braverman, M., Weinstein, O.: A Discrepancy Lower Bound for Information Complexity. In:
Gupta, A., et al. (eds.) A. Gupta et al (Eds.): APPROX/RANDOM 2012. LNCS, vol. 7408,
pp. 459–470. Springer, Heidelberg (2012)

6. Chakrabarti, A., Kondapally, R., Wang, Z.: Information complexity versus corruption and
applications to orthogonality and gap-hamming. CoRR abs/1205.0968 (2012)

7. Chakrabarti, A., Regev, O.: An optimal lower bound on the communication complexity of
GAP-HAMMING-DISTANCE. In: Proc. 43rd Annual ACM Symposium on the Theory of Com-
puting, pp. 51–60 (2011)

494 A. Chakrabarti, R. Kondapally, and Z. Wang

8. Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.C.: Informational complexity and the direct sum
problem for simultaneous message complexity. In: Proc. 42nd Annual IEEE Symposium on
Foundations of Computer Science, pp. 270–278 (2001)

9. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-Interscience
[John Wiley & Sons], Hoboken, NJ (2006)

10. Feller, W.: An Introduction to Probability Theory and its Applications. John Wiley, New York
(1968)

11. Indyk, P., Woodruff, D.P.: Tight lower bounds for the distinct elements problem. In: Proc.
45th Annual IEEE Symposium on Foundations of Computer Science, pp. 283–289 (2003)

12. Jain, R., Klauck, H.: The partition bound for classical communication complexity and
query complexity. In: Proc. 25th Annual IEEE Conference on Computational Complexity,
pp. 247–258 (2010)

13. Jain, R., Pereszlényi, A., Yao, P.: A direct product theorem for bounded-round public-coin
randomized communication complexity. CoRR abs/1201.1666 (2012)

14. Jain, R., Radhakrishnan, J., Sen, P.: A Direct Sum Theorem in Communication Complexity
via Message Compression. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J.
(eds.) ICALP 2003. LNCS, vol. 2719, pp. 300–315. Springer, Heidelberg (2003)

15. Jain, R., Radhakrishnan, J., Sen, P.: A property of quantum relative entropy with an applica-
tion to privacy in quantum communication. J. ACM 56(6) (2009)

16. Jayram, T.S., Kumar, R., Sivakumar, D.: Two applications of information complexity. In:
Proc. 35th Annual ACM Symposium on the Theory of Computing, pp. 673–682 (2003)

17. Kerenidis, I., Laplante, S., Lerays, V., Roland, J., Xiao, D.: Lower bounds on information
complexity via zero-communication protocols and applications. Technical Report TR12-038,
ECCC (2012)

18. Klauck, H.: Rectangle size bounds and threshold covers in communication complexity. In:
Proc. 18th Annual IEEE Conference on Computational Complexity, pp. 118–134 (2003)

19. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cam-
bridge (1997)

20. Lee, T., Shraibman, A., Špalek, R.: A direct product theorem for discrepancy. In: Proc. 23rd
Annual IEEE Conference on Computational Complexity, pp. 71–80 (2008)

21. Linial, N., Shraibman, A.: Lower bounds in communication complexity based on factoriza-
tion norms. Rand. Struct. Alg. 34(3), 368–394 (2009); Preliminary version in Proc. 39th
Annual ACM Symposium on the Theory of Computing, pp. 699–708 (2007)

22. Saks, M., Sun, X.: Space lower bounds for distance approximation in the data stream model.
In: Proc. 34th Annual ACM Symposium on the Theory of Computing, pp. 360–369 (2002)

23. Shaltiel, R.: Towards proving strong direct product theorems. Comput. Complexity 12(1-2),
1–22 (2003)

24. Sherstov, A.A.: The pattern matrix method for lower bounds on quantum communication. In:
Proc. 40th Annual ACM Symposium on the Theory of Computing, pp. 85–94 (2008)

25. Sherstov, A.A.: The communication complexity of gap hamming distance. Technical Report
TR11-063, ECCC (2011)

26. Sherstov, A.A.: Strong direct product theorems for quantum communication and query com-
plexity. In: Proc. 43rd Annual ACM Symposium on the Theory of Computing, pp. 41–50
(2011)

27. Vidick, T.: A concentration inequality for the overlap of a vector on a large set, with appli-
cation to the communication complexity of the gap-hamming-distance problem. Technical
Report TR11-051, ECCC (2011)

28. Woodruff, D.P., Zhang, Q.: Tight bounds for distributed functional monitoring. Technical
Report (2011), http://arxiv.org/abs/1112.5153

http://arxiv.org/abs/1112.5153

An Explicit VC-Theorem for Low-Degree Polynomials

Eshan Chattopadhyay, Adam Klivans, and Pravesh Kothari

University of Texas at Austin

Abstract. Let X ⊆ Rn and let C be a class of functions mapping Rn →
{−1, 1}. The famous VC-Theorem states that a random subset S of X of size
O(d

ε2
log d

ε
), where d is the VC-Dimension of C, is (with constant probability)

an ε-approximation for C with respect to the uniform distribution on X . In this
work, we revisit the problem of constructing S explicitly. We show that for any
X ⊆ Rn and any Boolean function class C that is uniformly approximated by de-
gree k polynomials, an ε-approximation S can be be constructed deterministically

in time poly(nk, 1/ε, |X|) provided that ε = Ω
(
W ·

√
log |X|
|X|

)
where W is the

weight of the approximating polynomial. Previous work due to Chazelle and Ma-
tousek suffers an dO(d) factor in the running time and results in superpolynomial-
time algorithms, even in the case where k = O(1).

We also give the first hardness result for this problem and show that the ex-
istence of a poly(nk, |X|, 1/ε)-time algorithm for deterministically constructing
ε-approximations for circuits of size nk for every k would imply that P = BPP.
This indicates that in order to construct explicit ε-approximations for a function
class C, we should not focus solely on C’s VC-dimension.

Our techniques use deterministic algorithms for discrepancy minimization to
construct hard functions for Boolean function classes over arbitrary domains (in
contrast to the usual results in pseudorandomness where the target distribution is
uniform over the hypercube).

1 Introduction

The VC-Theorem is one of the most important results in Statistics and Machine Learn-
ing and gives a quantitative bound on the rate of convergence of an empirical estimate
of the bias of every function in a Boolean concept class to its true bias. The rate depends
on the well-known VC-dimension of a function class (we refer the reader to Vapnik [14]
for background material), and for the purposes of this paper we state the theorem as
follows:

Theorem 1 (VC Theorem [13], See also [14]). Let C be a Boolean function class
mapping Rn → {−1, 1} and let d denote its VC-dimension. Let X ⊆ Rn be finite and
let UX be the uniform distribution on X . Let S be a set of points obtained by taking
O(dε2 log

d
ε) random draws from UX and let US be the uniform distribution over points

in S. Then with probability at least 1/2 over the choice of S, for every c ∈ C

|Pr
US

[c(x) = 1]− Pr
UX

[c(x) = 1]| ≤ ε.

This bound on the sample size was improved to O(dε2) in [6].

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 495–504, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

496 E. Chattopadhyay, A. Klivans, and P. Kothari

In this paper we are concerned with the following question: given as input the set X
and a bound on the VC-dimension d, can we construct S in deterministic polynomial
time in n, 1/ε, |X |, and d? We refer to the set S as an ε-approximation.

From the perspective of computational complexity (and in particular pseudorandom-
ness), it is natural to try to understand the complexity of explicitly constructing ε-
approximations. In computational geometry, this problem has been studied before, most
notably in work due to Chazelle and Matousek [3]. The parameters d and n, however,
were considered constants, and the main goal was to obtain algorithms with run-time
linear in |X |. Their work has had applications for finding deterministic algorithms for
solving low-dimensional linear programs.

In an impressive new paper by Feldman and Langberg [4], the authors prove that
ε-approximations for the function class of halfspaces in n dimensions give new algo-
rithms for constructing core-sets and subsequently yield new applications for a host of
clustering problems. Their paper inspires the following challenging open problem:

Open Problem 1. Given a finite set of points X in Rn, construct an ε-approximation
for the class of halfspaces in deterministic time poly(n, |X |, 1/ε).

Previous work in computational geometry on explicit constructions of ε-approximations
requires an enumeration of all possible labelings induced by C on the set X and suffers
a dO(d) factor in the running time where d is the VC-dimension of the function class.
Since halfspaces in n dimensions have VC-dimension n + 1, these results run in time
nΩ(n).

1.1 Our Contributions

Unfortunately, we were unable to make progress on the above open problem. It turns
out, however, that it is challenging to explicitly construct ε-approximations even for
very simple classes of Boolean functions such as conjunctions and constant-depth de-
cision trees. Here we give the first explicit constructions of ε-approximations for these
classes that run in time subexponential in the VC-dimension. For the case of constant-
depth decision trees, we give a polynomial-time deterministic construction. Our most
general positive result is the following:

Theorem 2 (ε-Approximation For Functions Approximated by Low Degree Poly-
nomials). Let C be any class of boolean functions on n inputs on any finite set X ⊆
[−1, 1]n such that C is δ-uniformly approximated onX by polynomials of degree at most
d and weight at most W . Then, there is an algorithm that constructs an (ε+ δ log |X |)-
approximation for C of size poly(W,k, log n, 1ε) and runs in time poly(W,nk, 1ε) · |X |
whenever ε = Ω

(
W
√

k logn
|X|

)
. (The exact dependence on the parameters can be found

in Corollary 6.)

Remark 1. As in Chazelle and Matousek [3], we require a lower bound on ε in order
to achieve non-trivial bounds on the size of the ε-approximation. Roughly speaking, if
ε is chosen to be too small, then we allow ourselves to output the entire set X as the
approximation.

An Explicit VC-Theorem for Low-Degree Polynomials 497

Combining Theorem 2 with known results on uniformly approximation Boolean func-
tions by polynomials, we obtain the following corollary for Boolean conjunctions:

Corollary 1 (Informal Statement; see Section 4 for precise bounds). Let X ⊆
{−1, 1}n. Then there is a deterministic algorithm that constructs an ε-approximation
for the class of Boolean conjunctions on n variables of size nÕ(

√
n)/ε2 with running

time nO(
√
n)/ε2 · |X |.

Recall that the class of conjunctions on n literals has VC-dimension n, so previous
work due to Chazelle and Matousek [3] would require time Ω(2n) to produce such
an approximation. We point out here, however, that the size of the ε-approximations
output by Chazelle and Matousek will be much better than ours (in fact, they achieve
the optimal O(dε2 log

d
ε) bound on the size of S).

For the class of constant-depth decision trees, we can obtain a polynomial-time,
deterministic algorithm:

Corollary 2 (Informal Statement; see Section 4 for precise bounds). Let X ⊆
{−1, 1}n and let C be the class of depth k decision trees. Then there is a determin-
istic algorithm that constructs an ε-approximation for C of size nO(k)/ε2 with running

time nO(k)

ε2 · |X |.
Constant-depth decision trees have VC-dimension Ω(log n), so previous work will re-
quire time Ω(nlog logn) to produce ε-approximations.

1.2 Our Contributions: Hardness Result

Since we are allowed to run in time polynomial in |X |, it may seem that the problem of
construction ε-approximations is easier or at least incomparable to the problem of build-
ing pseudorandom generators for particular target distributions (such as {−1, 1}n). We
prove, however, that giving explicit constructions of ε-approximations in time polyno-
mial in n and the VC-dimension d is at least as hard as proving P = BPP (recall that
polynomial-size circuits have polynomial VC-dimension):

Theorem 3. Let Cmk be the class of all boolean circuits of size at most mk on m inputs
(each such circuit computes a function from {−1, 1}m → {−1, 1}). Suppose, there
exists an algorithm Bk for some k > 1, which takes as input X ⊆ {−1, 1}m and
computes an 1

3 -approximation for Ckm on X of size at most |X|
2 in time poly(|X |,mk).

Then P = BPP.

In fact, we can show that constructing ε-approximations even for linear-size circuits
deterministically in polynomial-time would imply P = BPP. As far as we are aware,
this is the first hardness result for the general problem of deterministically constructing
ε-approximations and explains why Chazelle and Matousek’s work suffers an dO(d)

factor in the running time. We conclude that we must consider additional properties of a
concept class for which we wish to build ε-approximations other than its VC-dimension.

Our hardness result does not, however, rule out polynomial-time, deterministic con-
structions of ε-approximations for restricted function classes such as halfspaces (in fact,
the relationship between Open Problem 1 and the problem of constructing pseudoran-
dom generators for halfspaces with respect to {−1, 1}n remains unclear).

498 E. Chattopadhyay, A. Klivans, and P. Kothari

1.3 Our Approach

Previous approaches for constructing ε-approximations over general domains X ⊆ Rn

due to Chazelle and Matousek [3] involve an enumeration of all possible labelings in-
duced on X with respect to a concept class C. Naively this results in an algorithm
with time complexity |X |O(d) where d is the VC-dimension of C. Chazelle and Ma-
tousek instead only enumerate labelings on small subsets of X and use an elaborate
method of partitioning and merging these subsets to reduce the time complexity to
|X | · dO(d) while maintaining an optimal size ε-approximation.1 We wish to avoid this
sort of enumeration altogether and run in time subexponential or even polynomial in the
VC-dimension (although one drawback of our results is that we do not achieve optimal
size ε-approximations).

Inspired by results on pseudorandom generators, our approach generates average-
case hard functions with respect to arbitrary domains for a fixed concept class C. In
many cases in the pseudorandomness literature, an average-case hard function with
respect to the uniform distribution on {−1, 1}n can be used to build a pseudorandom
generator. Here we show how to directly translate average-case hard functions with
respect UX for an arbitrary X in order to generate an ε-approximation for X .

One advantage of this approach is that once we have generated an average-case hard
function for a concept class C, we also obtain hard functions for any class C′ approxi-
mated in �1 by C. As such, we focus on generating hard functions for low-degree poly-
nomials, as they can approximate several interesting Boolean function classes.

The question remains– how do we deterministically obtain average-case hard func-
tions with respect to arbitrary domains? Although this problem is well-understood in
the complexity literature for the case of the uniform distribution over {−1, 1}n, very
little is known for other domains (e.g., arbitrary subsets of the hypercube). In retrospect,
it is not difficult to see that a suitably constructive proof of an upper-bound on the VC
dimension of a concept class C will yield a worst-case hard function with respect to any
domain.

Still, constructive proofs of upper-bounds on the VC-dimension of interesting func-
tion classes are hard to come by, and we require average-case, not worst-case hardness.
To this end, we turn to well-studied tools for generating low-discrepancy colorings. We
use a derandomized version of a low-discrepancy coloring for the class of monomials,
and this coloring will correspond to an average-case hard function for polynomials.

Finally, we can combine our techniques with the work of Chazelle and Matousek to
obtain deterministic algorithms with a run-time that is linear in |X |.

We do not include any proofs here. For the proofs and the details of the algorithm,
the reader is referred to the full version [1].

2 Preliminaries

We will deal with uniform distributions on arbitrary finite setsX and bounded functions
from X to [−1, 1]. This normalization of the range is without loss of generality and just

1 To reduce the time complexity to dO(d) Chazelle and Matousek require a subsystem oracle for
the class C. The existence of such an oracle is dependent on the concept class.

An Explicit VC-Theorem for Low-Degree Polynomials 499

fixes the scale for our parameters. We will refer to such functions as just bounded func-
tions and the corresponding classes as bounded function classes. The uniform distribu-
tion on X , denoted by UX fixes our notions of correlations (inner products) and norms.
We will also encounter classes of boolean valued functions (boolean functions from
now) defined on arbitrary finite domainsX that range over {−1, 1}. We do not include
the standard definitions of inner products, norms, uniform and �1-approximators and
weight of the polynomial due to lack of space. The reader is referred to the full version
[1] for these.

2.1 Discrepancy

We now provide the basic definitions from discrepancy theory. We will only concern
ourselves with combinatorial discrepancy (discrepancy from now) here. For further
details, the reader may consult [2, 7, 11].

Definition 1 (Discrepancy of a Set System). Let (X, S) be a set system with
S = {S1, S2, ..., Sm} and |X | = n. Let χ : X → {−1, 1} be a coloring of X .
The discrepancy of χ with respect to any set S is defined as χ(S) =

∑
x∈S χ(x).

The discrepancy of the coloring χ with respect to the set system (X, S) is defined as
disc[X, S](χ) = maxS∈S|χ(S)|. The discrepancy of the set system (X, S) is defined as
disc(X, S) = minχ:X→{−1,1} disc[X, S](χ).

In our setting, we will deal with discrepancies of arbitrary bounded functions. This
definition is just a simple generalization of the preceding definition of discrepancy of a
set system. Computing a coloring required in this generalization is sometimes referred
to as the lattice approximation problem (see for example [12]).

Definition 2 (Discrepancy of a Function Class). Let C be a set of functions c : X →
[−1, 1] and let χ : X → {−1, 1} be a coloring of X . The discrepancy of χ with respect
to the function c is defined as χ(c) =

∑
x:c(x)≥0 χ(x) · c(x). The discrepancy of χ with

respect to the class C on X is defined as disc[X, C](χ) = maxc∈C |χ(c)|.
Note that when the function class is the set of indicator functions of a set system (X, S)
we recover the definition of the discrepancy of a set system as in Definition 1.

A uniformly random coloring turns out to be a low discrepancy coloring.

Lemma 1 (Discrepancy of Random Coloring). Let C be a bounded function class of
m functions on domain X , |X | = n. Let χ : X → {−1, 1} be chosen uniformly and
independent at random for every x ∈ X , i.e. Pr[χ(x) = 1] = 1

2 for every x ∈ X . Then
with probability at least 1

2 , disc[X, C](χ) ≤ O(
√
n logm).

For the case of set systems a simple derandomization by conditional expectations of the
random coloring method described above yields a deterministic construction of a low
discrepancy coloring. For bounded function classes, we can use Nisan’s deterministic
simulation [8, 9] to compute such a coloring deterministically (see [12]) in poly(m,n)
time.

Lemma 2 (Deterministic Construction of Low Discrepancy Coloring [2, 12]). Let
C be a bounded function class of m functions on X . There exists a deterministic algo-
rithm running in time poly(m, |X |) that produces a coloring with discrepancy at most
O(
√

|X | logm).

500 E. Chattopadhyay, A. Klivans, and P. Kothari

2.2 Definition of ε-Approximations for Boolean Function Classes

We now define the idea of an ε-approximation discussed in the introduction. Note that
this definition is only for the case of boolean function classes.

Definition 3 (ε-approximation). Let C be a boolean function class on the domain X .
An ε-approximation for C on X is a set Y ⊆ X such that for every c ∈ C,

| Pr
x∼UY

[c(x) = 1]− Pr
x∼UX

[c(x) = 1]| ≤ ε.

As we noted in Theorem 1, the famous VC Theorem shows that, for a class C on a
finite domain X , a random subset of X of size O(dε2 log

d
ε) is an ε-approximation with

constant probability.

2.3 Hard Functions and Discrepancy

Here we describe a simple connection between the idea of low discrepancy colorings
and hard functions. This connection is almost an equivalence when the underlying class
consists of boolean functions and is slightly more involved for the class of bounded
functions. As we shall see, this translation both simplifies the proofs and facilitates our
polynomial-approximation based approach.

We first show how an algorithm for constructing a low discrepancy coloring for a
boolean function class yields a hard function for the class. This translation is immediate
and just results in loss of a constant factor in the parameters.

Proposition 1 (Low Discrepancy ⇒ Hard Function). Let C be a class of bounded
functions from X to [−1, 1]. Let −C = {−c : c ∈ C} denote the class of all negated
functions from C. If χ : X → {−1, 1} is a coloring of X with discrepancy at most ε|X |
with respect to C ∪ −C then χ is 2ε-hard for C on X .

It is now easy to see that for a class of m boolean functions on X , the algorithm

for Lemma 2 yields a 2
√

logm
|X| -hard function for the class on X and runs in time

poly(m, |X |).

Definition 4 (Absolute Value Class). For any function c : X → [−1, 1], we define
|c| : X → [0, 1] as the absolute value of c on X . That is, |c|(x) = |c(x)| for every
x ∈ X . For a class C of bounded functions on a finite set X , we denote by Cabs the
class of functions defined as Cabs = {|c| | c ∈ C}.

Proposition 2 (Hard Function ⇒ Low discrepancy). Let C be a class of bounded
functions on X . Suppose χ : X → {−1, 1} is ε-hard for the class C ∪ Cabs on X . Then
χ : X → {−1, 1} is a coloring of X for C with discrepancy at most ε|X |.

3 Constructing Hard Functions on Arbitrary Domains

In this section, we describe our constructions of hard functions for boolean function
classes on arbitrary domains that are approximated by low weight linear combinations

An Explicit VC-Theorem for Low-Degree Polynomials 501

of functions from another small class. We first show that if a class C has good approx-
imations as low weight linear combinations of functions from a class F, then one can
construct a hard function for C on X by constructing a hard function for the class F on
X . (Using Proposition 2 from Section 2.3 will give us a low discrepancy coloring from
these hard functions). We start by introducing the notion of a (W, δ)-approximating
class.

Definition 5 ((W, δ)-approximating class). Let C be a class of bounded functions on
X . A class of bounded functions F on X is a (W, δ)-approximating class for C, if ∀ c ∈
C ∃ reals αi for 1 ≤ i ≤ r satisfying

∑r
i=1 |αi| ≤ W and r functions, f1, f2, .., fr ∈ F

such that Ex∼UX [|c(x)−
∑r

i=1 αifi(x)|] ≤ δ.

We now show that if a class C has a (W, δ) approximating class F on X , then a hard
function for F is a hard function for C on X .

Theorem 4 (Hard Functions Through Low Weight Approximators). Let C be a
class of boolean functions on an arbitrary finite set X . Suppose a class of bounded
functions F is a (W, δ)-approximating class for C on X . If χ : X → {−1, 1} is ε

W -
hard for F ∪ 1 on X then χ is (ε+ δ)-hard for C ∪ 1 on X .

Remark 2. The above theorem gives us both a hard function and a low discrepancy
coloring for the class C (see Proposition 2).

Fix any finite set X ⊆ [−1, 1]n. Consider the class of all monomials of degree at most
k in n variables as functions on X (denoted by Mk). These monomials form a class of
size O(nk) of bounded functions. We can construct a hard function for the class of all
monomials of degree at most k using the algorithm from Lemma 2. Thus we have the
following result.

Lemma 3 (Hard Functions for Monomials). Let Mk be the class of all monomials
of degree at most k in n variables on X ⊆ [−1, 1]n. Then the algorithm from Lemma 2
runs in time O(nk|X |) and produces a function χ : X → {−1, 1} such that for every

monomial m ∈ Mk, |〈m,χ〉| = O
(√

k log n
|X|

)
.

Now, using Theorem 4 and Lemma 3 we can translate the hard function for monomi-
als to a hard function for functions approximated by polynomials on arbitrary finite
domains.

Corollary 3 (Hard Functions for Functions Approximated by Low Degree Poly-
nomials). Let C be a class of boolean functions on [−1, 1]n and X ⊆ [−1, 1]n a finite
set such that for each c ∈ C there is a polynomial p : Rn → R, of degree at most k
and weight at most W which δ-approximates c in �1-norm on X . Then, there exists an
algorithm that runs in time poly(nk) · |X | that constructs a function χ : X → {−1, 1}
that is (ε+ δ)-hard for C on X where ε = O

(
W
√

k logn
|X|

)
.

Hard Functions for Conjunctions. Our result for the class of all conjunctions (and dis-
junctions), is obtained from the existence of uniformly approximating polynomials of
low degree and weight. Although [10] only talks about the degree of their approximat-
ing polynomial, a simple inspection of their proof (which uses Chebyshev polynomials
of the first kind) shows the weight bound noted below.

502 E. Chattopadhyay, A. Klivans, and P. Kothari

Theorem 5 (Uniform Approximation on {0, 1}n [10]). Let f : {−1, 1}n → {−1, 1}
be any boolean conjunction (or disjunction). Then, for every δ > 0, there exists a
polynomial p : Rn → R of degreeO(

√
n·(logn+log 1

δ)) such that for all x ∈ {−1, 1}n
, we have |f(x) − p(x)| ≤ δ. Further the weight of this polynomial is bounded by
nO(

√
n·(logn+log 1

δ)).

As a result of Theorem 5 and Corollary 3 we obtain the following construction of hard
functions for the class of conjunctions which generalizes to all linear sized formulas of
constant depth.

Corollary 4. Let C denote the class of boolean conjunctions. There exists an algorithm
that runs in time nO(

√
n·(logn+log 1

ε))|X | and computes an ε-hard function for the class
C for any ε = 1√

|X|
· nΩ(

√
n logn).

Remark 3. The uniform approximation theorem in [10] shows that for the more gen-
eral class of formulas F of bounded depth. Our result for constructing hard functions
directly translates to this more general class. Details are deferred to the full version.

Hard Functions for Decision Trees
Constant depth decision trees are computed exactly by low degree polynomials.

Theorem 6. Let f : {−1, 1}n → {−1, 1} be a boolean function computed by a deci-
sion tree of depth k. Then f is exactly computed by a real valued polynomial of degree
k and weight at most 2k.

This result is well known and for completeness a proof appears in the full version. As
a corollary of Theorem 6 and Theorem 3 we obtain a hard function for the class of all
bounded depth decision trees.

Corollary 5. Let DT k denote the class of all boolean functions on n inputs computed
by depth k decision trees. Then for any X ⊆ {−1, 1}n, there exists a deterministic
algorithm which runs in time poly(nk) · |X | and outputs an ε-hard function for the

class DT k where ε = O(2k
√

k logn
|X|).

4 ε-Approximation from Hard Functions

In this section we show how to construct ε-approximations from hard functions com-
bining our techniques with those of Chazelle-Matousek’s [3]. We defer a detailed dis-
cussion to the full version [1] where we describe the algorithm. Due to a lack of space,
we only state our results here.

The following is our general result for constructing ε-approximations from hard
functions based on [3].

Theorem 7. Let C be a class of boolean functions. SupposeA is a deterministic subrou-

tine that takes input any finite setX and runs in time T (C, |X |) to give a g(n, C)
√

log |X|
|X| -

hard function for C on X . Then, for every ε = Ω
(
g(n, C)

√
log |X|
|X|

)
, there exists an

algorithm that constructs an ε-approximation for C on X of size O(g(n,C)
2

ε2 log g(n,C)
ε)

and runs in time O(T (C,K) · |X |) for K = O(g(n,C)
6

ε2 log g(n,C)
ε) .

An Explicit VC-Theorem for Low-Degree Polynomials 503

Using this result with Theorem 3 we obtain the following construction of ε-
approximation for function classes approximated by low degree polynomials .

Corollary 6 (ε-Approximation For Functions Approximated by Low Degree Poly-
nomials). Let C be any class of boolean functions on n inputs and X ⊆ [−1, 1]n

such that C is δ-uniformly approximated by the class real valued polynomials of de-
gree at most k and weight at most W on X . Then, there exists an algorithm which
combined with the hard function construction from Theorem 3, constructs an (ε +

δ log |X |)-approximation for C of size O(W
2k
ε2 log Wk

ε) · poly(nk) and runs in time

poly(nk) · |X | · W 6k3

ε2 log Wk
ε for any ε = Ω

(
W
√

k logn
|X|

)
.

As decision trees are exactly computed by polynomials of degree k and weight 2k

(Theorem 6), using the above result we have:

Corollary 7 (ε-Approximation For Decision Trees). Let DT k be the class of all
boolean functions on n inputs computed by decision trees of depth at most k and
X ⊆ {−1, 1}n. Then, there exists an algorithm which combined with the hard func-
tion construction from Corollary 5, constructs an ε-approximation for DT k of size
O(2

2kk2

ε2 log k
ε)poly(n

k) and runs in time O(2
6kk4

ε2 log k
ε) · poly(nk) · |X | for any ε =

Ω
(
2k
√

k logn
|X|

)
. Note that the size of the ε-approximation produced is nO(k) and time

complexity is nO(k)|X | for this range of ε.

Similarly, combining the construction in Corollary 6 with Corollary 4 we obtain the
following construction ε-approximation for the class of boolean conjunctions.

Corollary 8 (ε-Approximations for Conjunctions). Let C be the class of all boolean
conjunctions on n inputs. Then, there exists an algorithm which combined with the
hard function construction from Corollary 4, constructs an ε-approximation for C of

size nO(
√

n·log n)

ε2 and runs in time nO(
√
n·logn) · |X | whenever ε = nΩ(

√
n·logn) ·

√
logn
|X| .

5 Hardness of Computing ε-Approximations

In this section we show that an efficient deterministic algorithm to compute an ε-
approximation (or a hard function) for the class of polynomial size circuits on arbitrary
inputs X ⊆ {−1, 1}n implies P = BPP.

Theorem 8 (Impagliazzo-Wigderson [5]). Suppose there is a function f : {−1, 1}n →
{−1, 1} computable in time 2O(n) but cannot be computed by any circuit of size at most
2δn for some fixed δ > 0. Then P = BPP.

We first show the hardness of constructing a hard function.

Theorem 9 (Hardness of Constructing a Hard Function). For any k ≥ 1, let Cmk
be the class of all boolean circuits of size at most mk on m inputs (each such circuit
computes a function from {−1, 1}m → {−1, 1}). SupposeAk is an algorithm that takes
as input any X ⊆ {−1, 1}m and returns a function f : X → {−1, 1} such that for

504 E. Chattopadhyay, A. Klivans, and P. Kothari

every c ∈ Cmk , |〈f, c〉| < 1 and runs in time poly(|X |,mk). Then there exists a function
L : {−1, 1}n → {−1, 1} computable in time 2O(n) such that for any 0 < δ < 1

k , no
circuit on n inputs of size at most 2kδn (= 2(1−β)n for some β > 0) can compute L.

We now show that an algorithm for computing an ε-approximation of any non-trivial
size for polynomial sized circuits over arbitrary domain X implies the existence of the
algorithm Ak as in the statement of Theorem 9. Combined with Theorem 9 and 8 we
have the required result.

Theorem 10. Let Cmk be the class of all boolean circuits of size at most mk on m
inputs (each such circuit computes a function from {−1, 1}m → {−1, 1}). Suppose,
there exists an algorithm Bk for some k > 0, which takes as input X ⊆ {−1, 1}m and
computes an 1

3 -approximation for Ckm on X of size at most |X|
2 in time poly(|X |,mk).

Then P = BPP.

Acknowledgments. We thank the anonymous reviewers for their detailed comments
to improve the presentation of the paper.

References

[1] Chattopadhyay, E., Klivans, A., Kothari, P.: An explicit vc-theorem for low degree polyno-
mials. Full Version (2012)

[2] Chazelle, B.: The discrepancy method: randomness and complexity. Cambridge University
Press, New York (2000)

[3] Chazelle, B., Matousek, J.: On linear-time deterministic algorithms for optimization prob-
lems in fixed dimension. J. Algorithms 21(3), 579–597 (1996)

[4] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In:
STOC, pp. 569–578 (2011)

[5] Impagliazzo, R., Wigderson, A.: P = BPP unless E has sub-exponential circuits: Deran-
domizing the XOR lemma (preliminary version). In: Proceedings of the 29th STOC, pp.
220–229. ACM Press (1996)

[6] Li, Y., Long, P.M., Srinivasan, A.: Improved bounds on the sample complexity of learning.
Journal of Computer and System Sciences 62, 2001 (2000)

[7] Matousek, J.: Geometric Discrepancy: An Illustrated Guide (Algorithms and Combina-
torics), 1st edn. Springer (1999)

[8] Nisan, N.: Pseudorandom generators for space-bounded computation. Combinatorica 12(4),
449–461 (1992)

[9] Nisan, N.: RL ⊆ SC. In: STOC, pp. 619–623 (1992)
[10] O’Donnell, R., Servedio, R.A.: New degree bounds for polynomial threshold functions. In:

STOC, pp. 325–334 (2003)
[11] Pach, J., Agrawal, P.: Combinatorial Geometry. Wiley-Interscience (October 1995)
[12] Sivakumar, D.: Algorithmic derandomization via complexity theory. In: IEEE Conference

on Computational Complexity, p. 10 (2002)
[13] Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of

events to their probabilities. Theory of Probability and its Applications 16(2), 264–280
(1971)

[14] Vapnik, V.N.: Statistical learning theory. Wiley (1998)

Tight Bounds on the Threshold

for Permuted k-Colorability

Varsha Dani1, Cristopher Moore1,2, and Anna Olson3

1 Computer Science Department, University of New Mexico
2 Santa Fe Institute

3 Computer Science Department, University of Chicago

Abstract. If each edge (u, v) of a graph G = (V,E) is decorated with a
permutation πu,v of k objects, we say that it has a permuted k-coloring
if there is a coloring σ : V → {1, . . . , k} such that σ(v) �= πu,v(σ(u)) for
all (u, v) ∈ E. Based on arguments from statistical physics, we conjec-
ture that the threshold dk for permuted k-colorability in random graphs
G(n,m = dn/2), where the permutations on the edges are uniformly
random, is equal to the threshold for standard graph k-colorability. The
additional symmetry provided by random permutations makes it easier
to prove bounds on dk. By applying the second moment method with
these additional symmetries, and applying the first moment method to a
random variable that depends on the number of available colors at each
vertex, we bound the threshold within an additive constant. Specifically,
we show that for any constant ε > 0, for sufficiently large k we have

2k ln k − ln k − 2− ε ≤ dk ≤ 2k ln k − ln k − 1 + ε .

In contrast, the best known bounds on dk for standard k-colorability
leave an additive gap of about ln k between the upper and lower bounds.

1 Introduction

We consider random graphs G(n,m) with n vertices and m edges chosen uni-
formly without replacement. We give each edge (u, v) an arbitrary orientation,
and then associate it with a uniformly random permutation πu,v ∈ Sk, where Sk
denotes the group of permutations of k objects. A permuted k-coloring of this
decorated graph is a function σ : V → {1, . . . , k} such that σ(v) �= πu,v(σ(u))
for all edges (u, v). For convenience we will sometimes reverse the orientation of
an edge, and write πv,u = π−1

u,v when u and v are distinct.
We conjecture that there is a sharp threshold for the existence of such a

coloring in terms of the average degree d = 2m/n:

Conjecture 1. For each k ≥ 3 there is a constant dk such that

lim
n→∞

Pr [G(n,m = dn/2) has a permuted k-coloring] =

{
1 d < dk

0 d > dk ,

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 505–516, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

506 V. Dani, C. Moore, and A. Olson

where the probability space includes both the graph G(n,m) and the set of
permutations {πu,v}. Moreover, we conjecture that dk is also the threshold for
standard graph k-colorability, which is the special case where πu,v is the identity
permutation for all u, v:

Conjecture 2. For the same dk as in Conjecture 1,

lim
n→∞

Pr [G(n,m = dn/2) has a standard k-coloring] =

{
1 d < dk

0 d > dk ,

Why might these two thresholds be the same? First note that if G is a tree, we
can “unwind” the permutations on the edges, changing them all to the identity,
by permuting the colors at each vertex. For any set of permutations {πu,v}, this
gives a one-to-one map from permuted colorings to standard colorings. Since
sparse random graphs are locally treelike, for almost all vertices v we can do this
transformation on a neighborhood of radius Θ(log n) around v. The effect on
v’s neighborhood of the other vertices’ colors is then the same as it would be in
standard graph coloring, except that the colors on the boundary are randomly
permuted.

In particular, suppose we choose a uniformly random coloring of a tree, erase
the colors in its interior, and choose a new uniformly random coloring with the
same boundary conditions. The reconstruction threshold is the degree d above
which this new coloring retains a significant amount of information about the
original coloring [8,21], and it is closely related to the clustering transition [19].
Since we can unwind the permutations on a tree, permuted k-colorability and
standard k-colorability trivially have the same reconstruction threshold.

For another argument, consider the following alternate way to choose the
permutations on the edges. First choose a uniformly random permutation πu
at each vertex u. Then, on each edge (u, v), let πu,v = π−1

u πv. (Algebraically,
πu,v : E → Sk is the coboundary of πu : V → Sk.) Since c(u) = πu,v(c(v)) if and
only if πu(c(v)) = πv(c(v)), a local change of variables again gives a one-to-one
map from permuted colorings to standard ones. Now note that choosing πu,v in
this way yields a uniform joint distribution on any set of edges that does not
include a cycle; for instance, on a graph of girth g the πu,v are (g − 1)-wise
independent and uniform. Since most cycles in a sparse random graph are long,
we might hope that this distribution on the {πu,v} is the same, for all practical
purposes, as the uniform distribution.

Finally, perhaps the most convincing argument for Conjecture 2 comes from
statistical physics. Using cavity field equations to analyze the asymptotic behav-
ior of message-passing algorithms such as belief propagation and survey prop-
agation, we can derive thresholds for satisfiability or colorability [17,16,20], as
well as other thresholds such as clustering, condensation, and freezing [23,13].
However, assuming that there is an equal density of vertices of each color, the
cavity field equations for k-coloring in a random graph are identical to those for
permuted k-coloring [14,22]: they simply express the fact that each edge (u, v)
forbids u from taking a single color that depends on the color of v.

Tight Bounds on the Threshold for Permuted k-Colorability 507

Thus if the physics picture is correct—and parts of it have been shown rig-
orously (e.g. [1,9,10])—then colorings and permuted colorings have the same
“thermodynamics” on sparse random graphs, and hence the same thresholds for
colorability, as well as for clustering, condensation, and freezing.

Conjecture 2 is attractive because it is easier, given current methods, to prove
tight bounds on the threshold for permuted k-coloring than it is for standard
k-coloring. First we recall a simple upper bound. Let X denote the number
of permuted k-colorings. Since the permutations are chosen independently, the
probability that any given coloring σ is proper is (1 − 1/k)m. (Indeed, this is
true of any multigraph with m edges.) Thus the expected number of colorings is

E[X] = kn(1− 1/k)m =
[
k(1− 1/k)d/2

]n
. (1)

This is exponentially small if k(1 − 1/k)d/2 < 1, in which case X = 0 with high
probability by Markov’s inequality. Thus

dk ≤ 2 lnk

− ln(1− 1/k)
< 2k ln k − ln k . (2)

Using the second moment method, we will prove a lower bound on dk that is an
additive constant below this upper bound. We also improve the upper bound,
using a random variable that depends on the number of available colors at each
vertex. Our results show that, for any constant ε > 0 and k sufficiently large,

2k ln k − ln k − 2− ε ≤ dk ≤ 2k ln k − ln k − 1 + ε .

In contrast, the best known lower bound on the threshold for standard k-
colorability is roughly ln k below the first moment upper bound.

To simplify our arguments, we work in a modified random graph model
G̃(n,m) where the m edges are chosen uniformly with replacement, and the
endpoints of each edge are chosen uniformly with replacement from the n ver-
tices. As a consequence, both self-loops and multiple edges occur with nonzero
probability. Note that, unlike standard k-colorability, a self-loop at a vertex v
does not necessarily render the graph uncolorable: it simply means that σ(v)
cannot be a fixed point of the permutation on the loop, i.e., σ(v) �= πv,v(σ(v)).

However, if πv,v is the identity then coloring is impossible, and this occurs
with probability 1/k!. Similarly, if u and v have k edges between them, then with
constant probability the permutations on these edges make a coloring impossible.
As a consequence, the probability that G̃(n,m) with random permutations has
a permuted k-coloring is bounded below 1.

Our bounds proceed by showing that G̃(n,m) is permuted-k-colorable with
probability Ω(1) if d is sufficiently small, and is not permuted-k-colorable with
high probability if d is sufficiently large. In the sparse case m = O(n), G̃(n,m)
is simple with probability Ω(1), in which case it coincides with G(n,m). Thus,
assuming that Conjecture 1 is true, these values of d are bounds on the threshold
dk for G(n,m).

508 V. Dani, C. Moore, and A. Olson

The rest of the paper is organized as follows. In Section 2 we give our second
moment lower bound. In Section 3 we give our upper bound, which uses a random
variable that depends on the number of available colors, and which (roughly
speaking) counts the number of clusters of colorings. In Section 4, we prove an
isoperimetric inequality relevant to this random variable. The parts of our proofs
that are “mere calculus” may be found in the full version.

2 The Second Moment Lower Bound

As in the simple first moment upper bound, letX denote the number of permuted
k-colorings of a random multigraph G̃(n,m) with uniformly random permuta-
tions on its edges. Applying the Cauchy-Schwarz inequality to the inner product
X · 1X>0 gives

Pr[X > 0] ≥ E[X]2

E[X2]
.

Our goal is to show that E[X2]/E[X]2 = O(1), so that a permuted coloring
exists with probability Ω(1), for a certain value of d. Assuming Conjecture 1,
i.e., that a threshold dk exists, any such d is a lower bound on dk.

Computing the second moment E[X2] requires us to sum, over all pairs of
colorings σ, τ , the probability P (σ, τ) that both σ and τ are proper. Since the
edges of G̃ and their permutations are chosen independently, we have P (σ, τ) =
p(σ, τ)m, where p(σ, τ) is the probability that a random edge (u, v), with a
random permutation π, is satisfied by both colorings. That is,

p(σ, τ) = Pr
u,v,π

[σ(u) �= π(σ(v)) and τ(u) �= π(τ(v))] .

For random constraint satisfaction problems where each variable takes one of
two values, such as k-SAT or hypergraph 2-coloring [3,4,7], p(σ, τ) is a function
p(ζ) just of the overlap between σ and τ , i.e., the fraction ζ of variables on which
they agree. The second moment can then be bounded by maximizing a function
of ζ, which is typically a simple calculus problem.

For pairs of k-colorings, however, p(σ, τ) depends on a k-by-k matrix of over-
laps, where ζi,j is the fraction of vertices v such that σ(v) = i and τ(v) = j.
Computing the second moment then requires us to bound a function of roughly
k2 variables, a difficult high-dimensional maximization problem. Achlioptas and
Naor [6] used convexity arguments to bound this function on the Birkhoff poly-
tope, showing that

dk ≥ 2(k − 1) ln(k − 1) ≈ 2k ln k − 2 ln k .

This leaves an additive gap of about ln k between the upper and lower bounds.
Note, however, that this bound is tight enough to determine, almost surely, the
chromatic number χ(G) as a function of the average degree to one of two possible
integers, namely k or k+1 where k is the smallest integer such that 2k ln k > d.
Achlioptas and Moore extended these arguments to random regular graphs [5],
determining χ(G) as a function of d to k, k + 1, or k + 2.

Tight Bounds on the Threshold for Permuted k-Colorability 509

For permuted colorings, the second moment calculation is much easier. The
random permutations create additional local symmetries, making p(σ, τ) a func-
tion only of the fraction ζ on which the two colorings agree. Thus we just have to
maximize a function of a single variable. As a consequence, we can prove a lower
bound on dk that matches the upper bound (2) within an additive constant.

Theorem 3. For any ε > 0, for sufficiently large k we have

dk > 2k ln k − ln k − 2− ε . (3)

Proof. To compute the second moment, we sum over all kn
(
n
k

)
(k − 1)n−z pairs

of colorings that agree at z of the n vertices. We say that such a pair has overlap
ζ = z/n. Then

E[X2] = kn
n∑
z=0

(
n

z

)
(k − 1)n−z p(z/n)m , (4)

where p(ζ) is the probability that a random edge, with a random permutation,
is satisfied by both colorings. Inclusion-exclusion gives

p(ζ) = ζ2
(
1− 1

k

)
+ 2ζ(1− ζ)

(
1− 2

k

)
+ (1− ζ)2

(
1− 2

k
+

1

k(k − 1)

)
.

Note that p(1/k) = (1−1/k)2, corresponding to the fact that two independently
random colorings typically have overlap ζ = 1/k + o(1).

We proceed as in [3]. Approximating (4) with an integral and using (1) gives

E[X2]

E[X]2
∼ 1√

n

n∑
z=0

eφ(z/n)n ∼
√
n

∫ 1

0

dζ eφ(ζ)n , (5)

where ∼ hides multiplicative constants, where

φ(ζ) = h(ζ) + (1− ζ) ln(k − 1)− ln k +
d

2
ln

p(ζ)

(1 − 1/k)2
,

and where h(ζ) = −ζ ln ζ − (1 − ζ) ln(1 − ζ) is the entropy function. Applying
Laplace’s method to the integral (5) then gives

E[X2]

E[X]2
∼ eφ(ζmax)n√

|φ′′(ζmax)|
,

where ζmax = argmaxζ∈[0,1]φ(ζ) is the global maximum of φ(ζ), assuming that
it is unique and that φ′′(ζmax) < 0.

We have φ(1/k) = 0, so if ζmax = 1/k and φ′′(1/k) < 0 then E[X2]/E[X]2 =
O(1) and Pr[X > 0] = Ω(1). The proof is completed by the following lemma
(see the full version for its proof):

Lemma 1. For any constant ε > 0, if d = 2k ln k − ln k − 2 − ε and k is
sufficiently large, φ′′(1/k) < 0 and φ(ζ) < 0 for all ζ �= 1/k.

510 V. Dani, C. Moore, and A. Olson

3 An Improved First Moment Upper Bound

In this section we apply the first moment method to a weighted random variable,
and improve the upper bound (2) on dk by a constant. Specifically, we will prove
the following theorem:

Theorem 4. For any ε > 0, for sufficiently large k we have

dk < 2k ln k − ln k − 1 + ε . (6)

We define our random variable as follows. Every coloring (proper or not) of n
vertices with k colors is an element of [k]n where [k] = {1, 2, . . . , k}. Thus the
set of colorings is an n-cube of side k, with a dimension for each vertex. The
set of proper colorings is some subset of this cube, S ⊂ [k]n. The classic first
moment argument we reviewed above computes the expected number of proper
(permuted) colorings, X = |S|. Here we define a new random variable, where
each proper coloring is given a weight that depends on the “degree of freedom”
at each vertex, i.e., the number of colors that vertex could take if the colors of
all other vertices stayed fixed.

For any proper coloring σ, for each vertex v, let c(σ, v) denote the number of
colors available for v if its neighbors are colored according to σ. That is,

c(σ, v) = k − |{πu,v(σ(u)) | (u, v) ∈ E}| .

Note that if there are multiple edges between u and v, they can each forbid v
from taking a color. If v has a self-loop, we think of it as denying a color to itself,
in each direction:

c(σ, v) = k −
∣∣{πu,v(σ(u)) | (u, v) ∈ E, u �= v} ∪ {πv,v(σ(v)), π−1

v,v(σ(v))
∣∣ . (7)

If σ is a proper coloring, we have c(σ, v) ≥ 1 for all v, since v’s current color σ(v)
is available. Let

w(σ) =

{∏
v (1/c(σ, v)) if σ is proper

0 otherwise ,

and let
Z =

∑
σ∈[k]n

w(σ) .

Why this random variable? The expected number of colorings E[X] can be expo-
nentially large, even above the threshold where Pr[X > 0] is exponentially small.
But close to the threshold, solutions come in clusters, where some vertices are
free to flip back and forth between several available colors. In a cartoon where
each cluster is literally a subcube of [k]n, a cluster containing a coloring σ con-
tributes

∏
v c(σ, v) to X , but only 1 to Z. Thus, roughly speaking, Z counts the

number of clusters rather than the number of colorings. Since the sizes of the
clusters vary, Z has smaller fluctuations than X does, and hence gives a tighter

Tight Bounds on the Threshold for Permuted k-Colorability 511

upper bound on dk. We note that “cluster counting” random variables of other
sorts have been studied elsewhere, such as satisfying assignments with a typical
fraction of free variables [9] and certain kinds of partial assignments [15].

In this same cartoon where clusters are subcubes, Z also counts the number of
locally maximal colorings, i.e., those colorings where no vertex v can be flipped
to a “higher” color q > σ(v), since such colorings correspond to the highest
corner of the cluster. Bounds on d3 were derived by counting locally maximal
3-colorings in [2,12,11], culminating in d3 ≤ 4.937. The bounds we derive below
are slightly weaker for k = 3, yielding d3 ≤ 5.011, since we treat the degrees of
the vertices as independent rather than conditioning on the degree distribution.
Nevertheless, our arguments are considerably simpler argument for general k.

Clearly Z > 0 if and only if S �= ∅. However, in Section 4 we prove the
following:

Lemma 2. If S �= ∅ then Z ≥ 1.

Applying Markov’s inequality, we see that

Pr [G has a permuted k-coloring] = Pr [Z ≥ 1] ≤ E[Z] ,

and any d such that E[Z] < 1 is an upper bound on the threshold dk. Thus we
will prove Theorem 4 by computing E[Z].

Given the symmetry provided by the random edge permutations, the expected
weight E[w(σ)] of any given coloring is independent of σ. By linearity of expec-
tation and the fact that any given σ is proper with probability (1 − 1/k)m, we
then have

E[Z] = kn E[w(σ)] = kn(1− 1/k)m E[w(σ) |σ proper] .

Thus we are interested in the conditional expectation

E[w(σ) |σ proper] = E

[∏
v

1

c(σ, v)

∣∣∣∣∣ σ proper

]
.

Lemma 3. Let σ be a permuted k-coloring. For any vertex v, the conditional
distribution of the number of available colors c(σ, v) is a function only of v’s
degree. In particular it does not depend on σ.

Proof. For each neighbor u of v, there is a uniformly random permutation π =
πu,v such that v is blocked from having the color π(σ(u)). Since σ is proper, we
have π(σ(u)) �= σ(v). Subject to this condition, π is uniformly random among the
permutations such that π(σ(u)) �= σ(v), and thus π(σ(u)) is uniformly random
among the colors other than σ(v). In particular, it does not depend on σ(u).

We can think of the forbidden colors π(σ(u)) as balls, and the colors other
than σ(v) as bins. We toss deg v balls independently and uniformly into these
k− 1 bins, one for each edge (u, v). Then c(v) is the number of empty bins, plus
one for σ(v).

512 V. Dani, C. Moore, and A. Olson

Lemma 4. Let σ be a permuted k-coloring, (u, v) an edge, and π = πu,v the
associated random permutation. Then π(σ(u)) and π−1(σ(v)) are independent,
and are uniform over [k]− σ(v) and [k]− σ(u) respectively.

Proof. Since σ is proper, the conditional distribution of π is uniform among all
permutations such that π(σ(u)) �= σ(v) and π−1(σ(v)) �= σ(u). For any pair of
colors q, q′ with q �= σ(v) and q′ �= σ(u), there are exactly (k− 2)! permutations
π such that π(σ(u)) = q and π−1(σ(v)) = q′. Thus all such pairs (q, q′) are
equally likely, and the pair

(
π(σ(u)), π−1(σ(v))

)
is uniform in ([k] − σ(v)) ×

([k]− σ(u)).

Note that Lemmas 3 and 4 apply even to self-loops. That is, if π = πv,v is
uniformly random, then π(σ(v)) and π−1(σ(v)) are independent and uniform in
[k] − σ(v). Thus a self-loop corresponds to two balls, each of which can forbid
a color. Since a self-loop increases v’s degree by 2, it has the same effect as two
edges incident to v would have. Indeed, this is why we defined c(σ, v) as in (7).

Now let {deg v | v ∈ V } denote the degree sequence of G. By Lemmas 3 and 4,
the numbers of available colors c(σ, v) at the vertices v are conditionally inde-
pendent if their degrees are fixed. Thus

E[w(σ) |σ proper, {deg v}] = E

[∏
v

1

c(σ, v)

∣∣∣∣∣ σ proper, {deg v}
]

=
∏
v

E

[
1

c(σ, v)

∣∣∣∣σ proper, deg v

]

=
∏
v

k∑
c=1

Q(deg v, k, c)

c
,

where Q(deg v, k, c) denotes the probability that v has c available colors if it has
deg v; that is, the probability that if we toss deg v balls into k−1 bins, then c−1
bins will be empty. Thus

E[w(σ) |σ proper] = E
{deg v}

∏
v

k∑
c=1

Q(deg v, k, c)

c
,

where the expectation is taken over the distribution of degree sequences in
G̃(n,m).

The degree of any particular vertex in G̃(n,m = dn/2) is asymptotically
Poisson with mean d. The degrees of different vertices are almost independent,
as the next lemma shows.

Lemma 5. The joint probability distribution of the degree sequence of G̃(n,m =
dn/2) is the same as that of n independent Poisson random variables of mean
d, conditioned on their sum being 2m.

Proof. We can generate G̃(n,m = dn/2) as follows. There are n bins, one for
each vertex. We throw 2m balls uniformly and independently into the bins, and

Tight Bounds on the Threshold for Permuted k-Colorability 513

pair up consecutive balls to define the edges of the graph. The degree of each
vertex is the number of balls in the corresponding bin. The joint distribution
of these occupancies is the product of n independent Poisson distributions with
mean d, conditioned on the total number of balls being 2m [18, Theorem 5.6].

The sum of n independent Poisson variables of mean d equals its mean nd = 2m
with probability O(1/

√
m) = O(1/

√
n). Conditioning on an event that holds

with probability P increases the expectation by at most 1/P , so

E[w(σ) |σ proper] = E
{deg v}

∏
v

k∑
c=1

Q(deg v, k, c)

j

= O(
√
n)

(
E

deg v

k∑
c=1

Q(deg v, k, c)

c

)n
, (8)

where in the second line deg v is Poisson with mean d. Since our goal is to show
that E[Z] is exponentially small, the

√
n factor will be negligible.

Now consider a balls and bins process with k − 1 bins. If the total number
of balls is Poisson with mean d, then the number of balls in each bin is Poisson
with mean d/(k− 1), and these are independent. The probability that any given
bin is empty, i.e., that any given color q �= σ(v) is available, is

r = e−d/(k−1) .

The number of empty bins is binomially distributed as Bin(k − 1, r), so

Q(deg v, k, c) =

(
k − 1

c− 1

)
rc−1 (1− r)k−c ,

and

E
deg v

k∑
c=1

Q(deg v, k, c)

c
=

k∑
c=1

1

c

(
k − 1

c− 1

)
rc−1 (1− r)k−c

=
1

kr

k∑
c=1

(
k

c

)
rc (1− r)k−c

=
1

kr

(
1− (1− r)k

)
.

Putting everything together, we have

E[Z] = kn
(
1− 1

k

)m
E[w(σ) |σ proper]

= O(
√
n) kn

(
1− 1

k

)dn/2(
1

kr

(
1− (1− r)k

))n
= O(

√
n)

(
1− 1

k

)dn/2
edn/(k−1)

(
1− (1 − e−d/(k−1))k

)n
.

514 V. Dani, C. Moore, and A. Olson

Taking the logarithm and dividing by n, in which case we can ignore the poly-
nomial term

√
n, yields the following function of d:

f(d) := lim
n→∞

lnE[Z]
n

=
d

2
ln

(
1− 1

k

)
+

d

k − 1
+ ln

(
1−

(
1− e−d/(k−1)

)k)
.

(9)
If f(d) < 0 then E[Z] is exponentially small, so any such d is an upper bound on
dk. The proof of Theorem 4 is now completed by the following Lemma, whose
proof may be found in the full version.

Lemma 6. For any constant ε > 0, if d = 2k ln k − ln k − 1 + ε and k is
sufficiently large, then f(d) < 0.

4 An Isoperimetric Inequality

In this section we prove Lemma 2. It has nothing to do with colorings; it is
simply a kind of isoperimetric inequality that applies to any subset of [k]n. If
k = 2, it is the classic isoperimetric inequality on the Boolean n-cube. That is,
given S ⊆ {0, 1}n, for each σ ∈ S let ∂(σ) be the set of neighbors σ′ ∈ S that
differ from σ on a single bit. Then S �= ∅ if and only if

∑
σ∈S 2

−|∂(σ)| ≥ 1.
First, some notation. Let V = {1, . . . , n}, and think of each element of [k]n as

a function σ : V → [k]. Let S ⊆ [k]n. For each σ ∈ S and 1 ≤ v ≤ n, let ∂S(σ, v)
denote the set of elements of S that are “neighbors of σ along the v axis,” i.e.,
that agree with σ everywhere other than at v. That is,

∂S(σ, v) = {σ′ ∈ S | ∀u �= v : σ′(u) = σ(u)} .

Let cS(σ, v) denote the number of such neighbors,

cS(σ, v) = |∂S(σ, v)| ,

and define the weight function wS as follows:

wS(σ) =

{∏
v (1/cS(σ, v)) if σ ∈ S

0 if σ /∈ S .

Then define the weight of the entire set as

Z(S) =
∑
σ∈[k]n

wS(σ).

Lemma 7. If S �= ∅ then Z(S) ≥ 1.

Proof. If S = [k]n, then wS(σ) = 1/kn and Z(S) = 1. Thus our goal will to
enlarge S until S = [k]n, showing that Z(S) can only decrease at each step. For
a given σ and v, let Cylv(σ) denote the set of τ ∈ [k]n that we can obtain by
letting σ(v) vary arbitrarily:

Cylv(σ) = {τ ∈ [k]n | τ(u) = σ(u) for all u �= v} .

Tight Bounds on the Threshold for Permuted k-Colorability 515

In particular, Cylv(σ) = Cylv(σ
′) if and only if σ′ ∈ ∂S(σ, v). Similarly, let

Cylv(S) be the “thickening” of S along the v axis,

Cylv(S) =
⋃
σ∈S

Cylv(σ) .

We claim that this thickening can only decrease Z. That is, for any S �= ∅ and
any v,

Z(S) ≥ Z(Cylv S) .

To see this, let T = Cylv(S). Each σ ∈ S contributes cv(σ, v) times to the union⋃
σ∈S Cylv(σ), so

Z(T) =
∑
σ∈S

1

cS(σ, v)
wT (Cylv(σ)) . (10)

Since each σ ∈ T has cT (σ, v) = k, each τ ∈ Cylv(σ) has cT (τ, u) ≥ cS(σ, u) for
all u �= v, and |Cylv(σ)| = k, we have

wT (Cylv(σ)) ≤ k
cS(σ, v)

k
wS(σ) = cS(σ, v)wS(σ) .

Combining this with (10) gives

Z(T) =
∑
σ∈S

1

cS(σ, v)
wT (Cylv(σ)) ≤

∑
σ∈S

wS(σ) = Z(S) .

Now let T0 = S, and Tv = Cylv(Tv−1) for 1 ≤ v ≤ n. Then Tn = [k]n, and

Z(S) = Z(T0) ≥ Z(T1) ≥ · · · ≥ Z(Tn) = 1

which completes the proof.

Finally, we conclude this section with

Proof of Lemma 2. Let S be the set of permuted k-colorings. The number of
available colors c(σ, v) we defined in Section 3 is almost identical to cS(σ, v) as
defined in Lemma 7. The only difference is that in Section 3, if v has a self-loop
then it forbids two of its own colors, namely πv,v(σ(v)) and π−1

v,v(v). Removing
these self-loops can only increase c(σ, v) and thus decrease Z, so if S �= ∅ then
Z ≥ 1 by Lemma 7.

Acknowledgments. We benefited from conversations with Tom Hayes on the
manuscript; with Lenka Zdeborová and Florent Krza̧kala on the Potts spin glass;
and with Alex Russell and Dimitris Achlioptas on isoperimetric inequalities. This
work was partly supported by the McDonnell Foundation and the National Sci-
ence Foundation under grant CCF-1117426. Part of this work was done in 2008
while the third author was a student at Carnegie Mellon and a Research Expe-
rience for Undergraduates intern at the Santa Fe Institute.

516 V. Dani, C. Moore, and A. Olson

References

1. Achlioptas, D., Coja-Oghlan, A., Ricci-Tersenghi, F.: On the solution-space geome-
try of random constraint satisfaction problems. Random Struct. Algorithms 38(3),
251–268 (2011)

2. Achlioptas, D., Molloy, M.: Almost All Graphs with 2.522n Edges are not 3-
Colorable. Electronic Journal of Combinatorics 6 (1999)

3. Achlioptas, D., Moore, C.: Two moments suffice to cross a sharp threshold. SIAM
Journal on Computing 36, 740–762 (2006)

4. Achlioptas, D., Moore, C.: On the 2-Colorability of Random Hypergraphs. In:
Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 78–90.
Springer, Heidelberg (2002)

5. Achlioptas, D., Moore, C.: The Chromatic Number of Random Regular Graphs. In:
Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) APPROX and RANDOM
2004. LNCS, vol. 3122, pp. 219–228. Springer, Heidelberg (2004)

6. Achlioptas, D., Naor, A.: The Two Possible Values of the Chromatic Number of a
Random Graph. Ann. Math. 162(3), 1333–1349 (2005)

7. Achlioptas, D., Peres, Y.: The Threshold for Random k-SAT is 2k log 2−O(k). J.
AMS 17, 947–973 (2004)

8. Bhatnagar, N., Vera, J.C., Vigoda, E., Weitz, D.: Reconstruction for Colorings on
Trees. SIAM J. Discrete Math. 25(2), 809–826 (2011)

9. Coja-Oghlan, A., Panagiotou, K.: Catching the k-NAESAT threshold. In: Proc.
STOC 2012, pp. 899–908 (2012)

10. Coja-Oghlan, A., Zdeborová, L.: The condensation transition in random hyper-
graph 2-coloring. In: Proc. SODA 2012, pp. 241–250 (2012)

11. Dubois, O., Mandler, J.: On the non-3-colorability of random graphs (preprint),
arXiv:math/0209087v1

12. Kaporis, A.C., Kirousis, L.M., Stamatiou, Y.C.: A note on the non-colorability
threshold of a random graph. Electronic Journal of Combinatorics 7(1) (2000)

13. Krza̧kala, F., Montanari, A., Ricci-Tersenghi, F., Semerjian, G., Zdeborová, L.:
Gibbs states and the set of solutions of random constraint satisfaction problems.
Proc. Natl. Acad. Sci. 104(25), 10318–10323 (2007)

14. Krza̧kala, F., Zdeborová, L.: Potts Glass on Random Graphs. Euro. Phys. Lett. 81,
57005 (2008)

15. Maneva, E.N., Sinclair, A.: On the satisfiability threshold and clustering of solu-
tions of random 3-SAT formulas. Theor. Comp. Sci. 407(1-3), 359–369 (2008)

16. Mertens, S., Mézard, M., Zecchina, R.: Threshold values of Random k-SAT from
the cavity method. Random Structures and Algorithms 28, 340–373 (2006)

17. Mézard, M., Parisi, G., Zecchina, R.: Analytic and Algorithmic Solution of Random
Satisfiability Problems. Science 297 (2002)

18. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press (2005)

19. Montanari, A., Restrepo, R., Tetali, P.: Reconstruction and Clustering in Random
Constraint Satisfaction Problems. SIAM J. Disc. Math. 25(2), 771–808 (2011)

20. Mulet, R., Pagnani, A., Weigt, M., Zecchina, R.: Coloring random graphs. Phys.
Rev. Lett. 89 (2002)

21. Sly, A.: Reconstruction of Random Colourings. Communications in Mathematical
Physics 288(3), 943–961 (2009)

22. Zdeborová, L., Boettcher, S.: Conjecture on the maximum cut and bisection width
in random regular graphs. J. Stat. Mech. (2010)

23. Zdeborová, L., Krza̧kala, F.: Phase transitions in the coloring of random graphs.
Phys. Rev. E 76, 031131 (2007)

Sparse and Lopsided Set Disjointness
via Information Theory

Anirban Dasgupta, Ravi Kumar, and D. Sivakumar

Yahoo! Research, 701 First Ave, Sunnyvale, CA 94089
{anirban,ravikumar,dsiva}@yahoo-inc.com

Abstract. We study two natural variations of the set disjointness problem, ar-
guably the most central problem in communication complexity.

For the k-sparse set disjointness problem, where the parties each hold a k-
element subset of an n-element universe, we show a tight Θ(k log k) bound on
the randomized one-way communication complexity. In addition, we present a
slightly simpler proof of an O(k) upper bound on the general randomized com-
munication complexity of this problem, due originally to Håstad and Wigderson.

For the lopsided set disjointness problem, we obtain a simpler proof of
Pătraşcu’s breakthrough result, based on the information cost method of Bar-
Yossef et al. The information-theoretic proof is both significantly simpler and in-
tuitive; this is the first time the direct sum methodology based on information cost
has been successfully adapted to the asymmetric communication setting. Our re-
sult shows that when Alice has a elements and Bob has b elements (a� b) from
an n-element universe, in any randomized protocol for disjointness, either Alice
must communicate Ω(a) bits or Bob must communicate Ω(b) bits.

1 Introduction

In the set disjointness problem in communication complexity, Alice holds a subset X
of an n-element universeU and Bob holds a subset Y of U , and their goal is to decide if
X∩Y = ∅. Set disjointness has played a fundamental role in the theory of communica-
tion complexity and data structure complexity, a role similar to that of the satisfiability
problem in the complexity theory of polynomial time bounded computations.

It is fairly easy to show a tight Θ(n) bound on the deterministic communication
complexity of set disjointness. It is also easy to establish a Θ(log n) bound on the non-
deterministic communication complexity1 of set disjointness, and a Θ(n) bound on
its co-nondeterministic communication complexity. For these results, please see [17].
An Ω(n) lower bound on the randomized communication complexity of set disjoint-
ness was first shown by Kalyanasundaram and Schnitger [15]. Later Razborov [20]
presented a more accessible, if somewhat magical, proof of this result. Both proofs
establish the lower bound by showing an Ω(n) lower bound on the distributional com-
plexity2 of the problem, and by appealing to Yao’s minimax principle. From a technical

1 Here we assume the standard convention that the YES instances of set disjointness to be the
ones where X ∩ Y is non-empty and the NO instances to be the ones where X ∩ Y = ∅.

2 The δ-error distributional communication complexity of a problem f is defined as follows: the
maximum, over all distributions μ on instances of f , of the minimum, over all deterministic
protocols Π that correctly solve f on all but a δ fraction of the inputs when chosen according
to μ, of the maximum communication incurred by Π .

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 517–528, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

518 A. Dasgupta, R. Kumar, and D. Sivakumar

perspective, Razborov’s proof is a celebrated result. To obtain an Ω(n) lower bound
on the distributional complexity of set disjointness, one had to create a family of “hard
instances” (X,Y) where X and Y could not be chosen independently3. Doing so, how-
ever, rendered the analysis considerably difficult. Razborov showed an elegant (and now
standard) way to deal with this, by decomposing a non-product distribution as a convex
combination of product distributions, and analyzing the resulting components. Raz [19]
later used this idea in his famous “parallel repetition theorem.” Bar-Yossef et al. [4]
further illuminated this argument by casting it as a “direct sum.”

The work of [4] was an interesting step in communication complexity for several
reasons. First, it provided a powerful demonstration of the role of information-theoretic
methods in communication complexity, an idea that was implicit in the works of [1,21]
and that was brought to light by the elegant direct sum theorem of Chakrabarti et al.
[7] (whose ideas [4] built upon). Secondly, [4] highlighted the role of the Hellinger dis-
tance as a metric that offers an elegant way to obtain tight results in communication
complexity — demonstrated by its use [4,12] in obtaining tight lower bounds for data
stream algorithms. From a technical viewpoint, the work of [4] “bypasses” the use of
Yao’s minimax principle and provides strong lower bounds directly on the randomized
communication complexity of problems4. More broadly, there has been a great deal of
progress during the past decade in understanding the interplay between communication
complexity and information theory, and taking advantage of it to prove strong commu-
nication complexity lower bounds; the tour de force of Braverman and Rao [6] is the
most recent development, but there has been plenty of others [14,11,9,22,13,5].

Sparse and Lopsided Disjointness. The results of the present paper concern two nat-
ural variations of the set disjointness problem. In the first variant, which we dub the
sparse set disjointness problem5, Alice and Bob hold sets of size k ≤ n, and the goal is
to understand the communication complexity (specifically randomized communication
complexity) of the resulting disjointness problem. In the second variant, which is known
in the literature as the lopsided set disjointness problem, there is a significant asymme-
try in the sizes of the sets that Alice and Bob hold; typically, Bob holds a (much) larger
subset of the universe, and the goal is to obtain lower bounds as functions of the skew
in their set sizes and how their set sizes relate to the size of the universe.

The sparse disjointness problem was first studied by Håstad and Wigderson [10],
who showed an upper bound of O(k) via a randomized protocol. We present a some-
what simpler alternate proof of this result. If one is only interested in establishing an
upper bound that is independent of the universe size n (as [10] seemingly are) we show
that an O(k log k) upper bound can be established easily using simple ideas commonly
employed in probabilistic data structures. In fact, we show this by presenting a simul-
taneous protocol, in which Alice and Bob independently send a single message to a

3 A result of Babai, Frankl, and Simon [2] shows that for any “product distribution” where X
and Y are chosen independently, disjointness can be computed with negligible error using
O(
√
n) communication.

4 Subsequently, Jayram [private communication] has shown how to derive distributional lower
bounds using the information theory methods employed in [4].

5 We refer to this sometimes as the k-sparse set disjointness when we wish to make the parameter
k explicit.

Sparse and Lopsided Set Disjointness via Information Theory 519

referee, who is then able to decide the given instance. We complement this result by
establishing an Ω(k log k) lower bound for the randomized one-way communication
complexity of k-sparse disjointness. The proof of this uses an information-theoretic ar-
gument based on Fano’s inequality, developed in [3], and elementary constructions of
set systems with required properties. For the general case of r-round protocols, we
conjecture a lower bound of Ω(k log k

2r).
Turning to the lopsided disjointness problem, Pătraşcu’s fundamental work [18] has

shown that a variety of lower bound and trade-off results in data structure complexity
can be obtained directly as consequences of tight lower bounds on lopsided set disjoint-
ness. Pătraşcu showed that there are instances of set disjointness where Alice has an
N -element subset of an n-element universe and Bob has a subset with NB elements
such that in any correct protocol for disjointness, for any τ > 0, either Alice communi-
cates Ω(τN logB) bits or Bob communicates NB1−O(τ) bits. We obtain a version of
this theorem; when instantiated to parameters similar to those of [18], we obtain bounds
that imply that either Alice communicates Ω(N) bits, or Bob communicates NB bits
(corresponding to τ = 1/ logB). Thus our result is slightly less general than that of
Pătraşcu — we do not obtain the comparable tradeoff for larger values of τ ; in particu-
lar, for constant τ , we lose the logB factor, but this factor is not important for the data
structure results. The more significant feature is our proof: we show how to adapt the
information-theoretic machinery of [4] seamlessly to the case of asymmetric commu-
nication complexity. The proof of [18] begins with intuition that can be expressed nat-
urally in information-theoretic language, but in the execution, tedious technical details
supersede the underlying clarity. We restore the simplicity and clarity of the information
cost argument of [3] in the asymmetric setting; to our knowledge, this was not known.

2 Preliminaries

Let f : X ×Y → {0, 1} be a Boolean function. We consider the two-party communica-
tion complexity model, where Alice holds X ∈ X and Bob holds Y ∈ Y and they wish
to jointly compute f(X,Y) by exchanging messages according to a (possibly random-
ized) protocol Π(·, ·). A protocol is said to be δ-error protocol for f if for all inputs,
at the end of the protocol, Bob is able to correctly compute f with probability at least
1 − δ. The cost of a protocol is the maximum length of the transcript, over all inputs
and over the random coins of Alice and Bob. The δ-error randomized communication
complexity of f is the cost of the cheapest δ-error protocol for f . We assume that Alice
and Bob have access to shared public randomness.

Let Π = Π(X,Y) be the random variable denoting the transcript of the protocol
for a fixed input pair (X,Y). We write ΠA to denote Alice’s communication during
the protocol, i.e., the sequence of messages written by Alice; similarly, we write ΠB to
denote the sequence of Bob’s messages. For convenience, we write Π = ΠAΠB , even
though the messages of Alice and Bob are interleaved and not concatenated.

In the set disjointness problem DISJ, Alice holds an n-element vector X ∈ {0, 1}n
and Bob holds an n-element vector Y ∈ {0, 1}n; by mild abuse of notation, we will
think of X and Y as the characteristic vectors of subsets of [n] = {1, . . . , n}. The YES

instances of DISJ are pairs (X,Y) of inputs such thatX∩Y �= ∅, and the NO instances

520 A. Dasgupta, R. Kumar, and D. Sivakumar

are pairs (X,Y) of inputs such that X ∩ Y = ∅. For any set X and an element y, let
the expression X [y] denote the 0/1 indicator variable “y ∈ X .”

In this paper we focus on two variations of the set disjointness problem. In the k-
sparse set disjointness problem, we have |X | = |Y | = k ≤ n. In the lopsided set
disjointness problem, we have |Y | � |X |. In this case, there are two parameters of
interest: the size n of the universe and the relative sizes of X and Y .

Information Theory. We use the following elementary notions from information the-
ory. Let H(X) denote the entropy of a random variable X , let H(X | Y) denote the
conditional entropy of X given Y . The joint entropy H(X,Y) is given by the chain
rule H(X,Y) = H(Y |X) + H(X). Let I(X ;Y) = H(X) − H(X | Y) denote the
mutual information between X and Y . Conditioning on a random variable always re-
duces its entropy: H(X | Y) ≤ H(X) and conditional entropy satisfies sub-additivity:
H(X,Y | Z) ≤ H(X | Z) + H(Y | Z), with equality holding if and only if X is
independent of Y conditioned on Z . For more background, please see [8].

3 Sparse Disjointness

In this section we focus on the communication complexity of the k-sparse disjointness
problem. Recall that in this case, both Alice and Bob have sets of size k < n and
they wish to determine if their sets intersect. We show a tight communication bound
of Θ(k log k) in the one-way and simultaneous models and Θ(k) in the general model.
The interesting aspect of these bounds are that they are independent of the universe
size n, a fact that was highlighted in a recent work of Håstad and Wigderson [10], who
obtained an O(k) multi-round protocol.

3.1 Upper Bounds

Our protocols use a simple data structure for encoding a set that allows membership
testing with one-sided error; this data structure is based on the ideas underlying popular
data structures such as Bloom filters. First we provide some background on the main
tool that will be used in the protocols.

Let U and R be discrete sets. For a function f : U → R and a subset X ⊆ U ,
f(X) will denote the set of values {f(x) | x ∈ X}. Call a function f : U → R a
random mapping if for each u ∈ U , f(u) is distributed uniformly at random in R, and
the random variables {f(u) | u ∈ U} are all independent of each other. We first collect
some elementary facts about random mappings.

(1) Let X ⊆ [n] be a set with k elements. If g : [n] → [2k] is a random mapping,
for y �∈ X and x ∈ X , Pr[g(y) = g(x)] = 1/(2k), so by the union bound, Pr[g(y) ∈
g(X)] ≤ 1/2.

(2) Let X,Y ⊆ [n] be two sets with k elements each such that X ∩ Y = ∅. Let
� = 2 + �log k�. If g1, . . . , g are independent random mappings from [n] to [2k], for
y �∈ X , Fact (1) implies that Pr[(∀i ∈ [�])[gi(y) ∈ gi(X)]] ≤ (1/2) = 1/(4k).
Therefore, by the union bound, Pr[(∃y ∈ Y)(∀i ∈ [�])[gi(y) ∈ gi(X)]] ≤ 1/4.

(3) Let X,Y ⊆ [n] be two sets with k elements each such that X ∩ Y = ∅. Let
g : [n] → [4k] be a random mapping, and let F denote the set of “false positives” {y ∈

Sparse and Lopsided Set Disjointness via Information Theory 521

Y | g(y) ∈ g(X)}. Then E[|F |] = E[
∑

y∈Y g(X)[g(y)]], where g(X)[g(y)] denotes
the 0–1 indicator random variable that is 1 iff g(y) ∈ g(X). Since E[g(X)[g(y)]] =
Pr[g(y) ∈ g(X)] ≤ 1/4, by the linearity of expectation, we have E[|F |] ≤ k/4.
Moreover, the variance of each g(X)[y] is at most 3/16, and since |F | is the sum of
independent random variables with this variance, we have Var[|F |] ≤ 3k/16 ≤ k/4.
By the Chebyshev inequality, this implies that Pr[|F | ≥ k/2] ≤ 4/k.

(4) For any mapping f : U → R, any subset X ⊆ U , and any y ∈ U , given access
to the mapping f , the test f(y) ∈ f(X) can be carried out given only the |R| Boolean
variables {(∃x ∈ X)[f(x) = z] | z ∈ R}. When |X | = Θ(|R|), these variables can
be compactly encoded in |R| bits (as opposed to the |X | log |R| bits required to write
down f(x) for each x ∈ X).

Using the properties of the random mappings, we now obtain one-way and multi-round
protocols for sparse disjointness. The main idea is for Alice to send Bob an encoding
of her set using random mappings.

Theorem 1. The randomized one-way communication complexity of the k-sparse dis-
jointness problem is O(k log k).

Proof. Alice will encode her set using random mappings (realized by using the shared
public random bits) h1, . . . , hl, where the value of l is from Fact (2), and hi : [n] →
[2k]; for each i ∈ [l], she communicates to Bob the 2k-bit string that encodes the
Boolean variables {(∃x ∈ X)hi(x) = j | j ∈ [2k]}. As noted in Fact (4), this allows
Bob to check if hi(y) ∈ hi(X) for each i ∈ [l]. Clearly, if there is some y ∈ X ∩ Y ,
hi(y) ∈ hi(X) is true for all i ∈ [l]. From Fact (2), if X and Y are disjoint, the
probability that Bob accidentally concludes that X ∩ Y �= ∅ is bounded by 1/4. ��

It is easy to see that by using a single hash function into the range [4k2] and enumerating
the hash values, this protocol can be realized in the simultaneous model as well. We now
use the protocol of Theorem 1 to build an O(k) multi-round protocol. The main idea is
for Alice and Bob to exchange the encoding of their respective inputs. Alice then uses
Bob’s encoding of his input to eliminate a constant fraction of her own input elements
from future consideration; Bob does likewise. The players then repeat. We can show the
following (proof omitted).

Theorem 2 ([10]). The randomized communication complexity of the k-sparse dis-
jointness problem is O(k).

3.2 Lower Bounds

For arbitrary communication, a lower bound ofΩ(k) follows from standard disjointness
lower bounds by padding. We therefore focus on the one-way model. We prove an
Ω(k log k) lower bound on the one-way randomized communication complexity of the
sparse set disjointness problem, thereby showing that Theorem 1 is tight. We do this by
exhibiting a subset X × Y of Alice and Bob’s inputs such that the one-way complexity
of k-sparse set disjointness is Ω(k log k) when Alice is given a uniformly chosen X ∈
X and Bob is given a uniformly chosen Y ∈ Y . The proof is based on a technique
introduced by Bar-Yossef et al. [3], using Fano’s information theory inequality to derive

522 A. Dasgupta, R. Kumar, and D. Sivakumar

lower bounds on communication complexity. This method enables to formally prove an
intuitive argument of the following flavor: suppose that for X,X ′ ∈ X , the sequences
{f(X,Y) | Y ∈ Y} and {f(X ′, Y) | Y ∈ Y} are different, then to ensure that
the protocol will work correctly (whp.) for most Y ∈ Y , Alice has no choice but to
transmit X to Bob.

Definition 1 (Design). A family X of subsets of [k2] is a (k, α)-design if |X | = k for
each X ∈ X and for X �= X ′, |X ∩X ′| ≤ αk.

The next two statements can be shown using the probabilistic method (proof omitted).

Lemma 1. For sufficiently large integers k and any α, 0 ≤ α ≤ 1, there is a (k, α)-
design of size 2αk log k.

Lemma 2. Let X denote a family of m subsets of [k2] that is a (k, α)-design, for α <
1/2. There is a family Y ⊆ [k2] such that:

(1) |Y | = k for every Y ∈ Y;
(2) |Y| ≤ ak log k, where a is an absolute constant (independent of k);
(3) for X �= X ′ ∈ X , there is at least one Y ∈ Y such that Y has non-empty intersec-

tion with precisely one of X and X ′.

Theorem 3 (Fano’s inequality). Let F and P be two random variables that take val-
ues, respectively in SF and SP . Let g : SP → SF be a prediction function that,
given an observed value of P guesses the value of F . Let δ be the prediction error:
δ = PrF,P [g(P) �= F]. Then H(δ) + δ log(|SF | − 1) ≥ H(F | P). In particular, if F
is Boolean (i.e., |SF | = 2), then H(δ) ≥ H(F | P).

Theorem 4. For k ≤
√
n, the randomized one-way communication complexity of the

k-sparse disjointness problem is Ω(k log k).

Proof. Given Lemma 2, it is possible to obtain a lower bound on the “VC dimension”
of the function matrix of the k-sparse disjointness problem, and appeal to a Theorem of
[16] to obtain the one-way randomized lower bound. Instead, we will present a direct
proof, based on simple information theoretic ideas as in [3].

Let α = 1/4. Let X denote a family of 2αk log k subsets corresponding to a (k, α)
design whose universe is [k2]. Since k2 ≤ n, we will consider the sets in X to be subsets
of [n], and identify them with (Alice’s) inputs in {0, 1}n. By Lemma 2, there is a set Y
of ak log k subsets of [k2], hence of [n], that correspond to (Bob’s) inputs in {0, 1}n.

We will apply Yao’s minimax principle (see [17]) and obtain a lower bound on the
distributional one-way communication complexity of k-sparse disjointness. Specifi-
cally, we will show that for some δ > 0 (independent of k and n), when the input
to Alice is chosen uniformly from X and the input to Bob is chosen uniformly form Y ,
no deterministic one-way communication protocol can achieve an error rate less than δ.

Let X denote a subset of [n] chosen uniformly from X . let Y denote a subset of [n]
chosen uniformly from Y . Abusing notation, let DISJ(X,Y) denote the 0–1 indicator
random variable that is 1 iff X∩Y �= ∅ whenX is chosen uniformly at random fromX
and Y is chosen uniformly at random from Y . By Lemma 1, H(X), the entropy of the
random variable X , equals k log k. By Lemma 2, the sequence of values {DISJ(X, y) |

Sparse and Lopsided Set Disjointness via Information Theory 523

y ∈ Y} uniquely identifies X , so H({DISJ(X, y) | y ∈ Y}) = H(X) = αk log k ≥
0.25k log k.

Let Π = (A,B) denote a deterministic one-way communication protocol for the
k-sparse set disjointness problem where Alice’s function is denoted by A, and Bob’s
function is denoted by B; let δ denote the error of the protocol Π when the inputs X
and Y are chosen as described above; we will assume that δ is sufficiently small so
that H(δ) < 1/8a, where a is the constant from the statement of Lemma 2. Also let
t = ak log k.

Now we have:

H(δ) ≥ H(DISJ(X,Y) | A(X), Y) by Theorem 3,

=
1

t

∑
y∈Y

H(DISJ(X, y) | A(X), Y = y)

=
1

t

∑
y∈Y

H(DISJ(X, y) | A(X)) since X ⊥ Y ,

≥ 1

t
H({DISJ(X, y)}y∈Y | A(X)) by sub-additivity,

≥ 1

t
(H({DISJ(X, y)}y∈Y)−H(A(X))) by the chain rule,

≥ 1

t
(H({DISJ(X, y)}y∈Y)− |A(X)|) .

Thus we have |A(X)| ≥ H({DISJ(X, y)}y∈Y) − tH(δ). On the other hand, we have
H({DISJ(X, y)}y∈Y) ≥ 0.25k log k and tH(δ) ≤ k log k/8, so it follows that |A(X)| ≥
k log k/8. ��

It is easy to generalize Theorem 4 to the case when Alice has a set of size k and Bob has
a set of size n/k to get a communication lower bound of Ω(k log(n/k)). In this case,
if k >

√
n, then Bob’s input can always be padded with dummy elements from the

universe so that his input will be of the same size as Alice’s input. These two together
will extend Theorem 4 to work for all k.

4 Lopsided Disjointness

In this section we focus on the asymmetric communication complexity of the lopsided
set disjointness problem. Recall that in the lopsided version of the problem, Bob holds a
set that is much bigger than Alice’s set and they wish to jointly determine if their sets in-
tersect. The lopsided disjointness problem plays a central role in obtaining data structure
lower bounds [18]. Our lower bound is based on an information-theoretic framework
and we first provide some background material.

Let P and Q be two probability distributions over some universe Ω. We denote
by V (P,Q) the total variation distance between P and Q, defined by V (P,Q) =
(1/2)

∑
ω∈Ω |P (ω) − Q(ω)|. We denote by h(P,Q) the Hellinger distance between

P and Q, defined by h2(P,Q) =
∑

ω∈Ω(
√
P (ω)−

√
Q(ω))2; it is known that h(·, ·)

524 A. Dasgupta, R. Kumar, and D. Sivakumar

is a metric. We denote by KL(P‖Q) the Kullback-Leibler divergence between P and
Q, defined by KL(P‖Q) =

∑
ω∈Ω P (ω) log2

P (ω)
Q(ω) .

We begin by listing some known facts about Hellinger distance that we use.

Fact 5. h2(P,Q) ≤ V (P,Q) ≤ h2(P,Q)(2−h2(P,Q))1/2 and consequently, for any
0 ≤ α ≤ 1, h2(P, αP + (1− α)Q) ≤ (1 − α)/2.

Define the Rényi divergence hα(P,Q) as hα(P,Q) = 1 −
∑

ω∈Ω P (ω)αQ(ω)1−α;
note that the Hellinger distance h(P,Q) =

√
h1/2(P,Q). We have the following rela-

tionship between Rényi divergences.

Lemma 3 ([4]). For α < β, αβ hβ(P,Q) ≤ hα(P,Q) ≤ 1−α
1−β hβ(P,Q).

Let 0 < α < 1 be a constant and denote μ = αP + (1 − α)Q. Define the generalized
Jensen–Shannon divergence as follows: JSα(P,Q) = αKL(P‖μ)+(1−α)KL(Q‖μ).
We now show a relationship between the generalized Jensen–Shannon divergence and
the Hellinger distance (proof omitted).

Lemma 4. For α < 1/2, JSα(P,Q) ≥ α
ln 2h

2(P,Q).

Finally, the following statement, derived from [4], will be useful.

Fact 6. Let φ denote a mapping from the set {z1, z2} where φ(z1) and φ(z2) are two
random variables, and let φz denote the probability distribution of φ(z). Let Z denote
a random variable with uniform distribution in {z1, z2}. Suppose φ(z) is independent
of Z for each z ∈ {z1, z2}. Then:

(i) I(Z : φ(Z)) = JS(φz1 , φz2).
(ii) If Y be another distribution taking values in {0, 1}, and let ψ(Z, Y) be a ran-

dom variable that is independent of both Z and Y for each (z, y). Let ψz,y de-
note the corresponding probability distributions. Let ρ = Pr[Y = 1]. Then I(Z :
ψ(Z, Y)) = JS(ρψ01 + (1− ρ)ψ00, ρψ11 + (1− ρ)ψ10).

4.1 Lower Bounds

To derive lower bounds for lopsided disjointness, we generalize the class of “hard in-
stances” of disjointness introduced by Bar-Yossef et al. [4]. The instances defined by
[4] have the property that each element of the universe belongs either to Alice (with
probability 1/4), or to Bob (with probability 1/4), or to neither (with probability 1/2),
but never to both; this naturally necessitates a non-product distribution on the input in-
stances. We generalize this in two ways — to allow for lopsidedness in the set sizes and
to allow for product distributions.

Let α, β, and θ be three parameters in [0, 1]. The parameters are allowed to be func-
tions of n, the size of the universe. Since our proof will access the individual coordinates
of the input, in this section, we will use X and Y to denote the inputs to Alice and Bob.
We will define a vector D = D1 . . .Dn of random variables, and using these, the inputs
X = X1, . . . ,Xn and Y = Y1, . . . ,Yn for disjointness are defined as follows. The

Sparse and Lopsided Set Disjointness via Information Theory 525

random variables D1, . . . ,Dn will be n independent and identical random variables
with the following distribution:

Di =

⎧⎨⎩ A w.p. θ,
B w.p. θ,

AB w.p. 1− 2θ.

Let RA and RB denote independent random variables in the set {0, 1}, where Pr[RA =
1] = α and Pr[RB = 1] = β. Given Di, the pair (Xi,Yi) of input bits to Alice and
Bob are generated (independently for each i) as follows:

(Xi,Yi) =

⎧⎨⎩ (RA , 0) if Di = A,
(0, RB) if Di = B,
(RA , RB) if Di = AB.

Let ζ denote the distribution of ((Xi,Yi),Di) for i ∈ [n]. Then, ((X,Y),D) has
distribution ζn. The proof of the following statement is omitted in this version.

Lemma 5. |ΠA| ≥ I(X : Π | D) and |ΠB| ≥ I(Y : Π | D).

Lemma 6 (Information cost decomposition). I(X : Π | D) ≥
∑n

i=1 I(Xi : Π | D)
and I(Y : Π | D) ≥

∑n
i=1 I(Yi : Π | D).

Let D−i denote the n−1 random variables D1, . . . ,Di−1,Di+1, . . . ,Dn. Let d denote
a value of D, and similarly let d−i denote d1, . . . ,di−1,di+1, . . . ,dn. Let D, U , and
V denote random variables such that ((U, V), D) is distributed according to ζ (the same
distribution as ((Xi,Yi),Di) for each i, 1 ≤ i ≤ n).

Lemma 7 (Reduction from AND to DISJ). If there is a δ-error protocol Π for the
disjointness problem on n-element vectors, then for each j, 1 ≤ j ≤ n, and d, there is
an ε-error protocol P = Pj,d for the problem of computing the AND of two bits, where
ε ≤ δ+n(1−2θ)αβ. Moreover, when ((X,Y),D) has distribution ζn and ((U, V), D)
has distribution ζ, the protocol P satisfies I(Xj : Π | Dj ,D−j = d−j) = I(U : P |
D) and I(Yj : Π | Dj ,D−j = d−j) = I(V : P | D).

Proof. The proof follows the reduction presented in [4]. We begin with some notation.
Given x′ ∈ {0, 1}n, u ∈ {0, 1}, and j ∈ {1, . . . , n}, define X = X(u, j,x′) by
Xi = x′

i for i �= j, and Xj = u; similarly, for y′, v, and j, define Y = Y(v, j,y′) as a
copy of y′ with the jth coordinate replaced with v.

Given protocolΠ for DISJ, we build the protocol P for AND as follows: Protocol P
will have j and d hardwired into it. On the input (u, v), P first samples x′ and y′ ac-
cording to the distribution ζn, conditioned on D−j = d, and then simulates Π(X,Y),
where x = X(u, j,x′) and y = Y(v, j,y′). Note that since d is hardwired into P , we
can use the private coins of A and B to create the vectors x and y without any com-
munication. Note that P is a possibly erroneous in computing the AND of u and v;
this happens precisely when x−j and y−j are not disjoint, which happens with prob-
ability at most n(1 − 2θ)αβ. Thus P is an ε-protocol for the AND function where
ε ≤ δ + n(1− 2θ)αβ.

526 A. Dasgupta, R. Kumar, and D. Sivakumar

By arguments identical to those of [4], it also follows that the joint distribution
of (U, V,D, P (U, V)) is identical to the joint distribution of (Xj ,Yj , Π(X,Y),Dj),
conditioned on the event D−j = d−j . Hence, I(Xj : Π | Dj ,D−j = d−j) = I(U :
P | D) and I(Yj : Π | Dj ,D−j = d−j) = I(V : P | D). ��

Lemma 8 (Information cost LB for AND). Let P be any ε-error protocol for the
problem of computing the AND of two bits, and let Δ = (1 − 2

√
ε)/2. Assume ε is

small enough so that Δ ≥ 1/4. For each j, 1 ≤ j ≤ n, either I(U : P | D) ≥
(α/ ln 2)(Δ/2)(θ+(1− 2θ)(1− 16

√
β)) or I(V : P | D) ≥ (β/ ln 2)(Δ/2)(θ+(1−

2θ)(1− 16
√
α)).

Proof. Let Puv denote the distribution of (the transcript of) P (u, v).

I(U : P | D) = θI(U : P | D = A) + θI(U : P | D = B) + (1− 2θ)I(U : P | D = AB)

= θI(RA : P (RA, 0)) + (1− 2θ)I(RA : P (RA, RB)).

For the first term, we can use Fact 6(i) and Lemma 4 to get

I(RA : P (RA, 0)) ≥
α

ln 2
h2(P00, P10).

We now bound the second term as follows. We use Fact 6(ii) to bound

I(RA : P (RA, RB)) ≥
α

ln 2
h2((1 − β)P00 + βP01, (1− β)P10 + βP11).

Putting these together, we obtain
I(U : P | D) ≥ α

ln 2 (θh
2(P00, P10)+ (1− 2θ)h2((1−β)P00+βP01, (1−β)P10+

βP11)). Similarly, I(V : P | D) ≥ β
ln 2 (θh

2(P00, P01) + (1 − 2θ)h2((1 − α)P00 +
αP10, (1− α)P10 + αP11)).

Also we have:

2(h2(P00, P01) + h2(P00, P10)) ≥ h2(P01, P10)

via Cauchy–Schwarz and the triangle inequalities,

= h2(P00, P11)

by the Cut-and-paste Lemma [4, Lemma 6.3],

≥ 1− 2
√
ε

since P is an ε-error protocol [4, Lemma 6.5].

By averaging, at least one of the following holds: h2(P00, P10) ≥ (1 − 2
√
ε)/4 or

h2(P00, P01) ≥ (1− 2
√
ε)/4. We work out the first case. Let Δ = (1− 2

√
ε)/2; wlog.

we will assume that ε is small enough so thatΔ ≥ 1/4. DenoteR = (1−β)P00+βP01

and S = (1− β)P10 + βP11. Now, using Fact 5 and the triangle inequality,

h(R,S) ≥ h(P00, P10)− h(R,P00)− h(S, P10) ≥
√
Δ/2−

√
2β −

√
2β,

which yields

Sparse and Lopsided Set Disjointness via Information Theory 527

h2(R,S) ≥ (
√

Δ/2−
√

8β)2 ≥ Δ/2− 4
√

Δβ = Δ/2(1− 8
√

β/Δ) ≥ Δ/2(1− 16
√

β).

Thus, we have I(U : P | D) ≥ (α/ ln 2)(Δ/2)(θ + (1− 2θ)(1 − 16
√
β)).

Similarly, if h2(P00, P01) ≥ Δ, then we can show I(V : P | D) ≥ (β/ ln 2)(Δ/2)(θ+(1−
2θ)(1− 16

√
α)). �

By combining Lemmata 5, 6, 7, and 8, we obtain a general lower bound.

Theorem 7. For any δ > 0, for sufficiently large n and all α, β ∈ [0, 1], θ ∈ [0, 1/2]
satisfying and 0 ≤ (1 − 2θ)αβ ≤ 4δ/n, there are instances of the set disjointness
problem where the expected size of Alice’s set is (1 − θ)αn, the expected size of Bob’s
set is (1 − θ)βn, and the expected size of the intersection is (1 − 2θ)αβ, such that
in any protocol that computes set disjointness with error at most δ, either Alice must
communicate αC0(θ+(1− 2θ)(1− 16

√
β))n bits or Bob must communicate βC0(θ+

(1− 2θ)(1− 16
√
α))n bits, where C0 = 1

4 ln 2

(
1−

√
8δ
)

. In addition, when θ = 1/2,

the sets are guaranteed to be disjoint.

We now instantiate this lower bound to two special cases. By choosing β = Θ(1 − α)
and θ = 1/2, we obtain a near-tight lower bound for lopsided disjointness.

Corollary 1. For any δ > 0, for sufficiently large n and all α, 0 ≤ α ≤ 1, there are
instances of the set disjointness problem where the expected size of Alice’s set is αn/2
and the expected size of Bob’s set is (1−α)n/2 such that in any protocol that computes
set disjointness with error at most δ, either Alice must communicate C0αn bits or Bob

must communicate C0(1 − α)n bits, where C0 = 1
8 ln 2

(
1−

√
8δ
)

.

Let us now compare Theorem 7 with the best known result concerning the communi-
cation complexity of lopsided disjointness: this breakthrough result is due to Pătraşcu
[18, Theorem 1.4], who shows how to construct instances (X,Y) of set disjointness
from a universe U such that |X | = N and |Y | = |U |/2 = NB/2 for which in every
randomized protocol for disjointness, for every value of a trade-off parameter τ > 0,
either Alice communicates τN logB bits or Bob communicates NB1−O(τ) bits. By
taking γ = 0, size of universe n, α = 2N/n and β = Bα/2, we obtain instances where
Alice’s set has expected size N , Bob’s set has expected size NB/2, and Theorem 7
guarantees that in any randomized protocol for disjointness, either Alice communicates
Ω(N) bits or Bob communicates Ω(NB) bits.

Next, we set θ = 0 and α = Θ(n−γ), β = Θ(δn−1+γ), where 0 < γ < 1 is a
constant. In other words, the input distribution is a product distribution. We obtain a
lower bound for this case as well.

Corollary 2. If θ = 0 and α = n−γ , β = 4δn−1+γ where 0 < γ < 1 is a constant,
then the expected size of Alice’s set is Θ(n1−γ) that of Bob is Θ(nγ), the expected
size of the intersection is 4δ, and the probability of a non-zero intersection is Θ(1).
Then, either Alice needs to send C0n

1−γ bits or Bob needs to send C0n
γ bits, where

C0 = 1
4 ln 2

(
1−

√
8δ
)

.

Note that if we further let γ = 1/2, then the lower bound matches the upper bound of
O(

√
n) for set disjointness for product distributions [2].

528 A. Dasgupta, R. Kumar, and D. Sivakumar

Acknowledgments. We thank George Varghese for many discussions that led us to
these problems. We are grateful to the reviewers of this paper for CCC 2012 and RAN-
DOM 2012 for their thorough reviews and very helpful comments.

References

1. Ablayev, F.M.: Lower bounds for one-way probabilistic communication complexity and their
application to space complexity. TCS 157(2), 139–159 (1996)

2. Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity theory
(preliminary version). In: FOCS, pp. 337–347 (1986)

3. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: Information theory methods in com-
munication complexity. In: CCC, pp. 93–102 (2002)

4. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics approach
to data stream and communication complexity. JCSS 68(4), 702–732 (2004)

5. Barak, B., Braverman, M., Chen, X., Rao, A.: How to compress interactive communication.
In: STOC, pp. 67–76 (2010)

6. Braverman, M., Rao, A.: Information equals amortized communication. In: FOCS,
pp. 748–757 (2011)

7. Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.C.-C.: Informational complexity and the direct
sum problem for simultaneous message complexity. In: FOCS, pp. 270–278 (2001)

8. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Inc. (1991)
9. Harsha, P., Jain, R., McAllester, D.A., Radhakrishnan, J.: The communication complexity of

correlation. TOIT 56(1), 438–449 (2010)
10. Håstad, J., Wigderson, A.: The randomized communication complexity of set disjointness.

ToC 3(1), 211–219 (2007)
11. Jain, R., Radhakrishnan, J., Sen, P.: A Direct Sum Theorem in Communication Complexity

Via Message Compression. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J.
(eds.) ICALP 2003. LNCS, vol. 2719, pp. 300–315. Springer, Heidelberg (2003)

12. Jayram, T.S.: Hellinger Strikes Back: A Note on the Multi-party Information Complexity
of AND. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009.
LNCS, vol. 5687, pp. 562–573. Springer, Heidelberg (2009)

13. Jayram, T.S., Kopparty, S., Raghavendra, P.: On the communication complexity of read-once
AC0 formulae. In: CCC, pp. 329–340 (2009)

14. Jayram, T.S., Kumar, R., Sivakumar, D.: Two applications of information complexity. In:
STOC, pp. 673–682 (2003)

15. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity of set in-
tersection. SIDMA 5(4), 545–557 (1992)

16. Kremer, I., Nisan, N., Ron, D.: On randomized one-round communication complexity. Com-
putational Complexity 8(1), 21–49 (1999)

17. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University Press (1997)
18. Pătraşcu, M.: Unifying the landscape of cell-probe lower bounds. SICOMP 40(3), 827–847

(2011)
19. Raz, R.: A parallel repetition theorem. SICOMP 27(3), 763–803 (1998)
20. Razborov, A.A.: On the distributional complexity of disjointness. TCS 106(2), 385–390

(1992)
21. Saks, M.E., Sun, X.: Space lower bounds for distance approximation in the data stream

model. In: STOC, pp. 360–369 (2002)
22. Sen, P., Venkatesh, S.: Lower bounds for predecessor searching in the cell probe model.

JCSS 74(3), 364–385 (2008)

Maximal Empty Boxes Amidst Random Points�

Adrian Dumitrescu1,�� and Minghui Jiang2

1 Department of Computer Science, University of Wisconsin–Milwaukee, USA
dumitres@uwm.edu

2 Department of Computer Science, Utah State University, Logan, USA
mjiang@cc.usu.edu

Abstract. We show that the expected number of maximal empty axis-parallel
boxes amidst n random points in the unit hypercube [0, 1]d in Rd is (1 ± o(1))
(2d−2)!
(d−1)!

n lnd−1 n, if d is fixed. This estimate is relevant for analyzing the per-
formance of any exact algorithm for computing the largest empty axis-parallel
box amidst n points in a given axis-parallel box R, that proceeds by examining
all maximal empty boxes. While the Θ(n logd−1 n) bound has been claimed for
d = 3 for more than ten years by now, and has been recently used for all d ≥ 3 in
the analysis of algorithms for computing the largest empty box, it did not rely on
a valid proof. Here we present the first valid proof for the Θ(n logd−1 n) bound;
only an O(n logd−1 n) bound was previously proved.

1 Introduction

Given an axis-parallel rectangle R in the plane containing n points, the problem of
computing a maximum-area empty axis-parallel sub-rectangle contained in R is one
of the oldest problems studied in computational geometry. For instance, this problem
arises when a rectangular shaped facility is to be located within a similar region which
has a number of forbidden areas, or in cutting out a rectangular piece from a large
similarly shaped metal sheet with some defective spots to be avoided [20]. In higher
dimensions, finding the largest empty axis-parallel box has applications in data mining,
in finding large gaps in a multi-dimensional data set [12]. Throughout this paper we
refer to this problem as the Maximum Empty Box problem.

Throughout this paper, a box is an open axis-parallel hyperrectangle contained in the
unit hypercube Ud = [0, 1]d, d ≥ 2. Given a set S of points in Ud, a box B is empty if
it contains no points in S, i.e., B ∩ S = ∅. Some planar examples are shown in Fig. 1.

Several algorithms have been proposed for the planar problem over time [1–3, 7, 9,
19–21]. The fastest one, due to Aggarwal and Suri [1], runs in O(n log2 n) time and
O(n) space. A lower bound of Ω(n log n) in the algebraic decision tree model for this
problem has been shown by McKenna et al. [19].

Backer and Keil [4, 5] proved that Maximum Empty Box is NP-hard in high dimen-
sions, i.e., when d is part of the input. Moreover, Giannopoulos et al. [13, Theorem 3]
have recently shown that Maximum Empty Box is W[1]-hard with the dimension d as

� Due to space constraints, we omit the proofs of some lemmas in this extended abstract.
�� Supported in part by NSF grant DMS-1001667.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 529–540, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

530 A. Dumitrescu and M. Jiang

Fig. 1. A maximal empty rectangle supported by one point on each side (left), and two maximal
empty rectangles supported by both points and sides of [0, 1]2 (right)

the parameter. This implies, by a standard technique in parameterized complexity the-
ory [18, Section 6.3], that the existence of an exact algorithm running in no(d) time is
unlikely, i.e., unless the so-called Exponential Time Hypothesis (ETH) fails, i.e., unless
3-SAT can be solved in 2o(n) time.

Backer and Keil [4, 5] also reported an exact algorithm running in O(nd logd−2 n)
time, for any d ≥ 3. In particular, the running time of their algorithm for d = 3 is
O(n3 logn). Previously, Datta and Soundaralakshmi [10] had reported an O(n3) time
exact algorithm for the d = 3 case, but their analysis for the running time seems incom-
plete. Specifically, the O(n3) running time depends on an O(n3) upper bound on the
number of maximal empty boxes (see discussions in the next paragraph), but they only
gave an Ω(n3) lower bound.

An empty box of maximum volume must be maximal with respect to inclusion, thus
the maximum-volume empty box in Ud is maximal. Naamad et al. [20] have shown that
in the plane, the number of maximal empty rectangles is O(n2), and that this bound is
tight. It was conjectured by Datta and Soundaralakshmi [10] that the maximum number
of maximal empty boxes is O(nd) for each (fixed) d. The conjecture has been recently
confirmed by Backer and Keil [4] for d ≥ 3. For a fixed d, matching lower bounds has
been obtained by Kaplan et al. [14], by Backer and Keil [4] and by Dumitrescu and
Jiang [11], independently of each other. (Kaplan et al. [14] seemed to be unaware of the
conjecture and the earlier papers [10, 20].)

Hence the maximum number of maximal empty boxes is Θ(nd) for each fixed d.
This means that any algorithm for computing a maximum-volume empty box based on
enumerating maximal empty boxes is bound to be inefficient in the worst case. However,
as it is the case with the algorithm of Backer and Keil [5] which was reported to run in
O(k logd−2 n) time, the algorithm would be much faster in the case when there are only
a few maximal empty boxes (here k denotes this number). On the other hand, a (1− ε)-
approximation of the maximum volume empty box can be computed by the algorithm

of Dumitrescu and Jiang [11] in O
((

8ed
ε2

)d · n · logd n
)

time; their algorithm finds an

empty box whose volume is at least (1− ε) of the optimal.
Let us return to the exact algorithm performing in a typical case, for instance with

points randomly and uniformly distributed in a box. Datta and Soundaralakshmi claimed
in [10, Lemma 2] that in 3-space the expected number of maximal empty boxes is of
the order Θ(n log2 n). Recently, Backer and Keil [5, p. 20] acknowledged this estimate

Maximal Empty Boxes Amidst Random Points 531

by citing it as a generalized bound of Θ(n logd−1 n) for all d ≥ 3. This bound, if true,
would make their exact algorithm, which enumerates all maximal empty boxes in order
to find a maximum-volume empty box, quite attractive in a typical case. Here we show
that the proof given by Datta and Soundaralakshmi [10] in support of their claim does
not stand. We then provide a correct proof of the generalized bound of Θ(n logd−1 n)
for all d ≥ 3, and then obtain a sharper estimate.

Since the maximum-volume of an empty box is invariant under scaling, we can as-
sume w.l.o.g. that the axis-parallel box is a hypercube. It suffices therefore to prove the
following.

Theorem 1. With n points independently and uniformly chosen in [0, 1]d, the expected
number of maximal empty axis-aligned boxes E(n, d) is Θ(n logd−1 n), if d is fixed.
Moreover, E(n, d) = (1± o(1)) (2d−2)!

(d−1)! n lnd−1 n, if d is fixed.

Remark. After our work has been completed, we have learned that Kaplan et al. [14]
had obtained prior to us an upper bound of O(n logd−1 n) on E(n, d); although many
details in their proof are not spelled out and the arguments in [14] are quite sketchy,
the proof seems to lead to an O(n logd−1 n) bound. The authors [14] were apparently
unaware of previous work on this topic in the literature, such as [10, 20]. (The fo-
cus of their paper is range counting.) Obviously, if the results claimed by Datta and
Soundaralakshmi [10] were correct, then the upper bound of O(n logd−1 n) obtained
by Kaplan et al. [14] would not be a new result. Here we settle this discrepancy in the
literature by acknowledging that the first correct upper boundE(n, d) = O(n logd−1 n)
was obtained by Kaplan et al. [14]. It is also worth mentioning that the method used by
Kaplan et al. [14] in deriving the upper bound is completely different than ours. We
don’t know if their method could be adapted to obtain the sharper estimate (with the
dependence on d) that we obtain.

Our results. In Section 3 we derive an exact formula for this expectation (via (2)
and (7)), and then obtain from it a tight asymptotic bound, Θ(n logd−1 n), for a fixed
d (Theorem 3). We further obtain a finer estimate (Theorem 4): for any fixed d ≥ 2,
E(n, d) = (1± o(1)) (2d−2)!

(d−1)! n lnd−1 n.
Our estimates significantly sharpen previous estimates obtained by Kaplan et al. [14]:

their upper bound O(n logd−1 n) had no matching lower bound; moreover our proof
provides full details and our estimate is much more precise. In Section 2 we explore the
connections between these results for maximal empty boxes and previous results [6, 15]
on the expected number of maximal points and respectively, direct dominance pairs, in
a set of n random points in Rd, a problem left open by Kaplan et al. [14]. Specifically,
we show that the expected number of direct dominance pairs with n random points,
Θ(n logd−1 n), yields the same lower bound for the expected number of maximal empty
boxes amidst n random points.

Our estimates are relevant for analyzing the performance of any exact algorithm for
computing the largest empty axis-parallel box amidst n points in a given axis-parallel
boxR, that proceeds by examining all maximal empty boxes. The current most efficient
algorithm for this task, due to Backer and Keil [4], is thus expected to be much faster in
instances where the points are close to being randomly distributed. Moreover, the only

532 A. Dumitrescu and M. Jiang

approach currently known for computing the largest empty box amidst n points in a
given box is by examining all candidates, i.e., maximal empty boxes.

2 Connections between Empty Boxes and Direct Dominance

For two points p and q in Rd, we say that p dominates q if along each of the d axes the
coordinate of p is larger than or equal to the coordinate of q. For a set S of points in Rd,
and a pair of points p, q ∈ S, we say that p directly dominates q if (i) p dominates q,
and (ii) there is no other point r in S such that p dominates r and r dominates q; then
(p, q) is called a direct dominance pair. Recall that a point (vector) is maximal if it is
not dominated by any other point (vector) in the set. It is known [6] that the expected
number of maximal points in a set S of n random points in Rd is O(logd−1 n) for any
fixed d ≥ 2. It is also known [15] that the expected number of direct dominance pairs
in a set S of n random points in Rd is Θ(n logd−1 n) for any fixed d ≥ 2. In fact, one
check that if the expected number of maximal points is O(logd−1 n), then the expected
number of direct dominance pairs is O(n logd−1 n). This is because the points in S that
are directly dominated by any point p ∈ S are simply the maximal points among the
subset Sp ⊆ S of points that are dominated by p.

By symmetry, the concept of direct dominance can be generalized to include all
2d different types, one for each combination of preferred directions along the d axes.
For example, in R2, each point may directly dominate other points in each of its four
quadrants. The expected number of such generalized direct dominance pairs is clearly
still Θ(n logd−1 n) for any fixed d ≥ 2.

Datta and Soundaralakshmi [10, Lemma 2] observed that the expected number of
maximal empty boxes amidst n random points in a hypercube in R3 is related to the
number of direct dominance pairs determined by these points. Note that in R3, a max-
imal empty box may be supported by one point on each of its six faces. They argued
that “once we fix the top support as a point pi, the other five supports should be directly
dominated by pi in its four quadrants”. Then, citing the previous known results [6, 15]
on the expected number of direct dominance pairs, they jumped to the conclusion that
the expected number of maximal empty boxes is of the same order, i.e., Θ(n log2 n) in
R3. Recently, Backer and Keil [5, p. 20] acknowledged this estimate from [10] by citing
it as a generalized bound of Θ(n logd−1 n) in Rd, d ≥ 3, without a proof.

Here we show that the argument of Datta and Soundaralakshmi [10, Lemma 2] does
not stand. In relating the expected number of maximal empty boxes to the expected
number of direct dominance pairs, they correctly observed that each maximal empty
box is associated with only a constant number (depending on d only) of direct domi-
nance pairs, but they failed to provide any argument in the opposite direction to show
that each direct dominance pair is also associated with a constant number of maximal
empty boxes. For a bipartite graph with vertex partition V = A ∪B, the condition that
every vertex in A has constant degree, without the symmetric condition that every ver-
tex in B also has constant degree, is not sufficient to show that the number of vertices
in A is of same order as the number of vertices in B.

We also note that the argument of Datta and Soundaralakshmi does not use any
special property of the random distribution of the n points. Their observation that each

Maximal Empty Boxes Amidst Random Points 533

maximal empty box is associated with a constant number of direct dominance pairs
continues to hold even for non-random point sets. As long as the points have distinct
coordinates along each axis, each maximal empty box in R3 is supported by at most
six points, one in each face. Note that the number of direct dominance pairs in any set
of n points is at most the total number of pairs, i.e.,

(
n
2

)
= O(n2). If their proof were

sound, then following their argument, they could go further and claim that the number
of maximal empty boxes amidst any n points in R3 is at most O(n2). But this claim is
clearly false since for any fixed d ≥ 2, there exist n-element point sets in Rd (or [0, 1]d)
with at least Ω(nd) maximal empty boxes amidst them [4, 11, 14].

It is not difficult, however, to obtain a lower bound on the expected number of max-
imal empty boxes. Consider the set of direct dominance pairs determined by n random
points in Rd with distinct coordinates along each axis. Then each direct dominance
pair (p, q) determines an empty box B with the two points p and q at the two oppo-
site vertices of a main diagonal. This empty box B can be expanded, in both directions
along each of the d − 1 axes except the first axis, to a maximal empty box B′ with
the two points p and q supporting its two faces orthogonal to the first axis. Then each
direct dominance pair is associated with a distinct maximal empty box. Thus the num-
ber of maximal empty boxes is at least the number of direct dominance pairs. Since
the expected number of direct dominance pairs is Θ(n logd−1 n), it follows that the
expected number of maximal empty boxes is Ω(n logd−1 n). Naamad et al. [20] ob-
tained an O(n log n) upper bound for the planar case. So for d = 2, we already have
a tight asymptotic bound E(n, 2) = Θ(n log n). In the next section, we show that
E(n, d) = Θ(n logd−1 n) for any fixed d ≥ 2.

3 Proof of Theorem 1

In this section we derive an exact formula for the expected number of maximal empty
boxes amidst n random points in [0, 1]d; this yields a tight asymptotic bound
Θ(n logd−1 n), for a fixed d. In the end we obtain a finer estimate: for any fixed d ≥ 2,
E(n, d) = (1± o(1)) (2d−2)!

(d−1)! n lnd−1 n.

3.1 Setup

Let d ≥ 1 and n ≥ 2d. Let Xi = (xi,1, . . . , xi,d), 1 ≤ i ≤ n, be n random points
in the unit hypercube Ud = [0, 1]d in Rd, with independent coordinates sampled uni-
formly from the interval [0, 1]. Note that with probability 1, the n points have distinct
coordinates in the open interval (0, 1) along each axis. Without loss of generality, we
will assume this condition in our analysis.

For any pair of non-negative integers a and b such that a+ b ≤ d, let A(a, b) be the
event that

x2j−1,j = min{xi,j | 1 ≤ i ≤ 2a+ b} and x2j,j = max{xi,j | 1 ≤ i ≤ 2a+ b}, for 1 ≤ j ≤ a

x2a+j,a+j = max{xi,a+j | 1 ≤ i ≤ 2a+ b}, for 1 ≤ j ≤ b
(1)

and
〈X1, . . . , X2a+b〉 ∩ {X2a+b+1, . . . , Xn} = ∅,

534 A. Dumitrescu and M. Jiang

where 〈X1, . . . , X2a+b〉 denotes the box

(x1,1, x2,1)×· · ·×(x2a−1,a, x2a,a)×(0, x2a+1,a+1)×· · ·×(0, x2a+b,a+b)×(0, 1)d−a−b.

Then the expected number E(n, d) of maximal empty boxes is

E(n, d) =

d∑
a=0

d−a∑
b=0

(
d

a

)(
d− a

b

)
2bG(n, a, b), (2)

where

G(n, a, b) =

(
n

2a+ b

)
(2a+ b)! · Pr(A(a, b)) (3)

is the expected number of maximal empty boxes supported by one point in each of
2a + b faces: the two opposite faces orthogonal to each of the first a coordinate axes,
and the upper face orthogonal to each of the next b coordinate axes. In particular, the
expected number F (n, d) of maximal empty boxes supported by one point in each of
the 2d faces is

F (n, d) = G(n, d, 0) =

(
n

2d

)
(2d)! · Pr(A(d, 0)). (4)

It remains to calculate Pr(A(a, b)). Our uses of binomial expansion and conditional
probability in the following are inspired by the techniques of Klein [15] for bound-
ing the number of directed dominance pairs among n points uniformly and randomly
selected in [0, 1]d.

Recall that the volume of Ud is exactly 1. Thus for any fixed X1, . . . , X2a+b satisfy-
ing condition (1),

Pr(Xi /∈ 〈X1, . . . , X2a+b〉) = 1− vol〈X1, . . . , X2a+b〉

for each Xi with 2a+ b+ 1 ≤ i ≤ n. By the independence of the points,

Pr(〈X1, . . . , X2a+b〉∩{X2a+b+1, . . . , Xn} = ∅) =
(
1−vol〈X1, . . . , X2a+b〉

)n−2a−b
.

Therefore we have

Pr(A(a, b)) =

∫
· · ·
∫

X1,...,X2a+b∈[0,1]d subject to (1)

(
1− vol〈X1, . . . , X2a+b〉

)n−2a−b
dX1 . . . dX2a+b

=

n−2a−b∑
m=0

(
n− 2a− b

m

)
(−1)m

∫
· · ·
∫

X1,...,X2a+b∈[0,1]d subject to (1)

(
vol〈X1, . . . , X2a+b〉

)m
dX1 . . .dX2a+b. (5)

For any fixed X1, . . . , X2a+b satisfying condition (1), the integrand(
vol〈X1, . . . , X2a+b〉

)m
is equal to the probability that the m points X2a+b+1, . . . , X2a+b+m are all included in
the box 〈X1, . . . , X2a+b〉, that is,

x2j−1,j < xi,j < x2j,j for all i, j such that 2a+ b+ 1 ≤ i ≤ 2a+ b+m, 1 ≤ j ≤ a.

Maximal Empty Boxes Amidst Random Points 535

and

xi,a+j < x2a+j,a+j for all i, j such that 2a+ b+ 1 ≤ i ≤ 2a+ b+m, 1 ≤ j ≤ b.

Thus ∫
· · ·
∫

X1,...,X2a+b∈[0,1]d subject to (1)

(
vol〈X1, . . . , X2a+b〉

)m
dX1 . . . dX2a+b

=

∫
· · ·
∫

x2,1,...,x2a,a,x2a+1,a+1,...,x2a+b,a+b∈[0,1]

Pr(B<
m ∩B>

m) dx2,1 . . . dx2a,adx2a+1,a+1 . . . dx2a+b,a+b. (6)

where B<
m is the event that

xi,j < x2j,j for all i, j such that 1 ≤ i ≤ 2a+ b+m, 1 ≤ j ≤ a, i �= 2j

and

xi,a+j < x2a+j,a+j for all i, j such that 1 ≤ i ≤ 2a+ b+m, 1 ≤ j ≤ b, i �= 2a+ j,

and B>
m is the event that

xi,j > x2j−1,j for all i, j such that 1 ≤ i ≤ 2a+b+m, 1 ≤ j ≤ a, i �= 2j, i �= 2j−1.

Observe that when x2,1, . . . , x2a,a, x2a+1,a+1, . . . , x2a+b,a+b are fixed, we have

1. Pr(B<
m) = (x2,1 . . . x2a,ax2a+1,a+1 . . . x2a+b,a+b)

m+2a+b−1. This is because for
each valid pair i, j in the definition of B<

m, the probability that xi,j < x2j,j is
exactly x2j,j , and the probability that xi,a+j < x2a+j,a+j is exactly x2a+j,a+j .

2. Pr(B>
m | B<

m) = (m + 2a + b − 1)−a. This is because for each j, 1 ≤ j ≤ a,
the probability that xi,j > x2j−1,j for all i such that 1 ≤ i ≤ 2a + b + m, i �=
2j, i �= 2j − 1 is equal to the probability that x2j−1,j = min{xi,j | 1 ≤ i ≤
2a+ b+m, i �= 2j}. The latter is 1/(m+ 2a+ b − 1) since the m+ 2a+ b − 1
coordinates xi,j are all restricted to the same range by the event B<

m.

Thus (6) gives∫
· · ·
∫

X1,...,X2a+b∈[0,1]d subject to (1)

(
vol〈X1, . . . , X2a+b〉

)m
dX1 . . .dX2a+b

=

∫
· · ·
∫

x2,1,...,x2a,a,x2a+1,a+1,...,x2a+b,a+b∈[0,1]

Pr(B<
m) Pr(B>

m | B<
m) dx2,1 . . . dx2a,adx2a+1,a+1 . . . dx2a+b,a+b

= (m+ 2a+ b− 1)−a

(∫
x∈[0,1]

xm+2a+b−1 dx

)a+b
= (m+ 2a+ b− 1)−a(m+ 2a+ b)−(a+b),

and (5) gives

Pr(A(a, b)) =

n−2a−b∑
m=0

(
n− 2a− b

m

)
(−1)m(m+ 2a+ b− 1)−a(m+ 2a+ b)−(a+b).

536 A. Dumitrescu and M. Jiang

Substituting m+ 2a+ b by k, we have

Pr(A(a, b)) = (−1)b
n∑

k=2a+b

(
n− 2a− b

k − 2a− b

)
(−1)k(k − 1)−ak−(a+b).

Recall (3) and (4). Thus

G(n, a, b) =

(
n

2a+ b

)
(2a+ b)! · Pr(A(a, b))

= (−1)b
n∑

k=2a+b

n!

(n− k)!(k − 2a− b)!
(−1)k(k − 1)−ak−(a+b)

= (−1)b
n∑

k=2a+b

(
n

k

)
(−1)k

k!

(k − 2a− b)!(k − 1)aka+b
. (7)

In particular, the expected number of maximal empty boxes supported by one point in
each face is

F (n, d) = G(n, d, 0) =

n∑
k=2d

(
n

k

)
(−1)k

k!

(k − 2d)!(k − 1)dkd
. (8)

It is easy to verify that F (n, 1) = n− 1. However for d ≥ 2 it is not so easy to handle
the alternating binomial sum in (8). The difficulty comes from the damping factors
1/((k − 1)dkd); similar difficulties are present in the alternating binomial sum in (7).

3.2 Alternating Binomial Sums

For any n ≥ 0, the following identity is well-known:

n∑
k=0

(
n

k

)
(−1)k = (1 − 1)n = 0. (9)

We next derive a few other alternating binomial sums that we need. For any d ≥ 2,
define

R(n, d) =

n∑
k=0

(
n

k

)
(−1)k

(k + 1)d−1
, for n ≥ 0, (10)

S(n, d) =

n∑
k=1

(
n

k

)
(−1)k

kd−1
, for n ≥ 1, (11)

T (n, d) =

n∑
k=2

(
n

k

)
(−1)k

(k − 1)d−1
, for n ≥ 2. (12)

The following identity is also known; see e.g., [8, Exercise 27, p. 105].

Maximal Empty Boxes Amidst Random Points 537

Lemma 1. For any n ≥ 0, R(n, 2) = 1
n+1 .

We also have the following three lemmas relating R(·, ·), S(·, ·) and T (·, ·).

Lemma 2. For any n ≥ 1 and d ≥ 2, S(n, d) = −
∑n−1

m=0R(m, d).

Lemma 3. For any n ≥ 2 and d ≥ 2, T (n, d) = −
∑n−1

m=1 S(m, d).

Lemma 4. For any n ≥ 0 and d ≥ 3, R(n, d) = −S(n+ 1, d− 1)/(n+ 1).

For any n ≥ 1, let Hn = 1 + 1
2 + · · · + 1

n denote the nth harmonic number. It is
well-known that Hn = Θ(log n). From Lemmas 1, 2, and 3, we immediately obtain the
following corollaries:

Corollary 1. For any n ≥ 1, S(n, 2) = −Hn.

Corollary 2. For any n ≥ 2, T (n, 2) =
∑n−1

m=1Hm.

By repeatedly applying Lemmas 2 and 4, we can determine the asymptotic growth rates
of R(n, d) and S(n, d) when d is fixed:

Lemma 5. For any fixed d ≥ 2, R(n, d) = Θ(n−1 logd−2 n) and −S(n, d) =
Θ(logd−1 n).

We can now also determine the asymptotic growth rate of T (n, d):

Lemma 6. For any fixed d ≥ 2, T (n, d) = Θ(n logd−1 n).

3.3 Base Cases for G(n, a, b)

We prove a sequence of lemmas of increasing difficulty, which we need later.

Lemma 7. G(n, 0, 0) = 0, G(n, 0, 1) = 1, G(n, 1, 0) = n− 1.

Lemma 8. G(n, 0, 2) = Hn − 1. In particular, G(n, 0, 2) = Θ(log n).

Lemma 9. G(n, 1, 1) = n− 2Hn + 1. In particular, G(n, 1, 1) = Θ(n).

3.4 Partial Fraction Decompositions

A rational fraction (i.e., the quotient of two polynomials with real coefficients) is proper
if the degree of the numerator is less than the degree of the denominator. A proper
rational fraction Φ(x)/Ψ(x) is called a partial fraction if its denominator Ψ(x) is a
power of an irreducible polynomialP (x), that is, Ψ(x) = P h(x), h ≥ 1. The following
fundamental theorem holds [16] [17, Ch. 5]:

Any proper rational fraction Φ(x)/Ψ(x) has a unique decomposition into a sum of
partial fractions. Moreover, if all roots of Ψ(x) are real, all numerators of the partial
fractions in the decomposition are constants.

To handle further values of G(n, a, b) we need to obtain partial fraction decomposi-
tions of the damping factors in the alternating binomial sums.

538 A. Dumitrescu and M. Jiang

Lemma 10. G(n, 2, 0) = 2
∑n

m=1Hm + 4Hn − 5n − 1. In particular, G(n, 2, 0) =
Θ(n log n).

Proof. We use Equation (9) and Corollaries 1 and 2. According to its expression in (7),

G(n, 2, 0) =

n∑
k=4

(
n

k

)
(−1)k

k!

(k − 4)!(k − 1)2k2

=
n∑
k=4

(
n

k

)
(−1)k

(k − 3)(k − 2)

(k − 1)k

=

n∑
k=2

(
n

k

)
(−1)k

(k − 3)(k − 2)

(k − 1)k
.

The partial fraction decomposition of ((k − 3)(k − 2))/((k − 1)k) is (k−3)(k−2)
(k−1)k =

1− 6
k + 2

k−1 , hence

G(n, 2, 0) =

n∑
k=2

(
n

k

)
(−1)k

(
1− 6

k
+

2

k − 1

)

=

n∑
k=2

(
n

k

)
(−1)k − 6

n∑
k=2

(
n

k

)
(−1)k

k
+ 2

n∑
k=2

(
n

k

)
(−1)k

k − 1

=

[
n∑
k=0

(
n

k

)
(−1)k − 6

n∑
k=1

(
n

k

)
(−1)k

k
+ 2

n∑
k=2

(
n

k

)
(−1)k

k − 1

]

−
[

1∑
k=0

(
n

k

)
(−1)k − 6

1∑
k=1

(
n

k

)
(−1)k

k
+ 0

]
= [0− 6S(n, 2) + 2T (n, 2)]− [(1− n) + 6n]

= 2T (n, 2)− 6S(n, 2)− 5n− 1

= 2

n−1∑
m=1

Hm + 6Hn − 5n− 1 = 2

n∑
m=1

Hm + 4Hn − 5n− 1.

Since Hm = Θ(logm), we clearly have G(n, 2, 0) = Θ(n logn). ��

We are now in a position to give an exact formula for E(n, 2) (and F (n, 2)):

Theorem 2. F (n, 2) = 2
∑n

m=1Hm+4Hn−5n−1 andE(n, 2) = 2
∑n

m=1Hm+n+
1. In particular, F (n, 2) = Θ(n log n) and E(n, 2) = F (n, 2) +Θ(n) = Θ(n logn).

Proof. By Lemma 10, we have F (n, 2) = G(n, 2, 0) = 2
∑n

m=1Hm+4Hn− 5n− 1.
By Lemmas 7, 8, 9, and 10, and according to its definition in (2) we have

Maximal Empty Boxes Amidst Random Points 539

E(n, 2) =
2∑

a=0

2−a∑
b=0

(
2

a

)(
2− a

b

)
2bG(n, a, b)

= G(n, 0, 0) + 4G(n, 0, 1) + 2G(n, 1, 0) + 4G(n, 0, 2) + 4G(n, 1, 1) +G(n, 2, 0)

= 0 + 4 + 2(n− 1) + 4(Hn − 1) + 4(n− 2Hn + 1) + 2

n∑
m=1

Hm + 4Hn − 5n− 1

= 2
n∑

m=1

Hm + n+ 1. ��

Analogous to Lemmas 7, 8, 9, and 10, we have the following general lemma:

Lemma 11. For any fixed a ≥ 0 and b ≥ 0, G(n, a, b) = Θ(n loga−1 n) if a ≥ 2, and
G(n, a, b) = O(n) if a = 0 or 1.

We are now in position to finalize our calculation for the expected number E(n, d) of
maximal empty boxes according to (2). By Lemma 11, F (n, d) = G(n, d, 0) is the
dominating term. Thus we have the following theorem.

Theorem 3. For any fixed d ≥ 2, F (n, d) = Θ(n logd−1 n) and E(n, d) = F (n, d) +
O(n logd−2 n) = Θ(n logd−1 n).

3.5 A More Precise Bound

We next derive a more precise bound on E(n, d). For two functions f and g of n, we
write f(n) ∼ g(n) if f(n) = g(n)(1± o(1)). Then we have the following result.

Theorem 4. For any fixed d ≥ 2, E(n, d) ∼ (2d−2)!
(d−1)! n lnd−1 n.

Proof of Theorem 4. The relation ∼ is clearly symmetric. Moreover, it is almost tran-
sitive, in the sense that for any fixed number r of functions f1, . . . , fr of n, if fi(n) ∼
fi+1(n) for all i = 1, . . . , r − 1, then f1(n) ∼ fr(n). For any fixed d ≥ 2 we have
already shown that F (n, d) = Θ(n logd−1 n) and E(n, d) = F (n, d)+O(n logd−2 n).
Thus E(n, d) ∼ F (n, d). A closer look at the proof of Lemma 11 shows that for any
fixed a ≥ 2 and b ≥ 0, G(n, a, b) ∼ (2a + b − 2)!T (n, a). In particular, for any fixed
d ≥ 2, F (n, d) = G(n, d, 0) ∼ (2d − 2)!T (n, d). To prove Theorem 4, it remains
to show that T (n, d) ∼ 1

(d−1)! n lnd−1 n. This is accomplished by the following two
technical lemmas giving more precise bounds than Lemmas 5 and 6:

Lemma 12. For any fixed d ≥ 2, R(n, d) ∼ 1
(d−2)! n

−1 lnd−2 n and −S(n, d) ∼
1

(d−1)! ln
d−1 n.

Lemma 13. For any fixed d ≥ 2, T (n, d) ∼ 1
(d−1)! n lnd−1 n.

In summary, for any fixed d ≥ 2, we have E(n, d) ∼ F (n, d) = G(n, d, 0) ∼
(2d− 2)!T (n, d) ∼ (2d−2)!

(d−1)! n lnd−1 n. ��

Acknowledgement. We thank the anonymous reviewers for thoughtful comments.

540 A. Dumitrescu and M. Jiang

References

1. Aggarwal, A., Suri, S.: Fast algorithms for computing the largest empty rectangle. In: Pro-
ceedings of the 3rd Annual Symposium on Computational Geometry, pp. 278–290 (1987)

2. Atallah, M., Frederickson, G.: A note on finding the maximum empty rectangle. Discrete
Applied Mathematics 13, 87–91 (1986)

3. Atallah, M., Kosaraju, S.R.: An efficient algorithm for maxdominance, with applications.
Algorithmica 4, 221–236 (1989)

4. Backer, J., Keil, M.: The bichromatic rectangle problem in high dimensions. In: Proceedings
of the 21st Canadian Conference on Computational Geometry, pp. 157–160 (2009)

5. Backer, J., Keil, J.M.: The Mono- and Bichromatic Empty Rectangle and Square Problems
in All Dimensions. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 14–25.
Springer, Heidelberg (2010)

6. Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the average number of max-
ima in a set of vectors and applications. Journal of the ACM 25, 536–543 (1978)

7. Chazelle, B., Drysdale, R., Lee, D.T.: Computing the largest empty rectangle. SIAM Journal
on Computing 15, 300–315 (1986)

8. Chuan-Chong, C., Khee-Meng, K.: Principles and Techniques in Combinatorics. World Sci-
entific, Singapore (1996)

9. Datta, A.: Efficient algorithms for the largest empty rectangle problem. Information Sci-
ences 64, 121–141 (1992)

10. Datta, A., Soundaralakshmi, S.: An efficient algorithm for computing the maximum empty
rectangle in three dimensions. Information Sciences 128, 43–65 (2000)

11. Dumitrescu, A., Jiang, M.: On the largest empty axis-parallel box amidst n points. Algorith-
mica (2012), doi:10.1007/s00453-012-9635-5

12. Edmonds, J., Gryz, J., Liang, D., Miller, R.: Mining for empty spaces in large data sets.
Theoretical Computer Science 296, 435–452 (2003)

13. Giannopoulos, P., Knauer, C., Wahlström, M., Werner, D.: Hardness of discrepancy
computation and ε-net verification in high dimension. Journal of Complexity (2011),
doi:10.1016/j.jco.2011.09.001

14. Kaplan, H., Rubin, N., Sharir, M., Verbin, E.: Efficient colored orthogonal range counting.
SIAM Journal on Computing 38, 982–1011 (2008)

15. Klein, R.: Direct dominance of points. International Journal of Computer Mathematics 19,
225–244 (1986)

16. Kudryavtsev, L.D.: The method of undetermined coefficients. In: Hazewinkel, M. (ed.) En-
cyclopaedia of Mathematics. Springer (2001)

17. Kurosh, A.: Higher Algebra. Mir Publishers, Moscow (1975)
18. Marx, D.: Parameterized complexity and approximation algorithms. Computer Journal 51,

60–78 (2008)
19. McKenna, M., O’Rourke, J., Suri, S.: Finding the largest rectangle in an orthogonal polygon.

In: Proceedings of the 23rd Annual Allerton Conference on Communication, Control and
Computing, Urbana-Champaign, Illinois (October 1985)

20. Naamad, A., Lee, D.T., Hsu, W.-L.: On the maximum empty rectangle problem. Discrete
Applied Mathematics 8, 267–277 (1984)

21. Orlowski, M.: A new algorithm for the largest empty rectangle problem. Algorithmica 5,
65–73 (1990)

Rainbow Connectivity of Sparse Random Graphs

Alan Frieze� and Charalampos E. Tsourakakis��

Department of Mathematical Sciences
Carnegie Mellon University
5000 Forbes Av., 15213

Pittsburgh, PA
U.S.A.

alan@random.math.cmu.edu, ctsourak@math.cmu.edu

Abstract. An edge colored graph G is rainbow edge connected if any
two vertices are connected by a path whose edges have distinct colors.
The rainbow connectivity of a connected graph G, denoted by rc(G),
is the smallest number of colors that are needed in order to make G
rainbow connected.

In this work we study the rainbow connectivity of binomial random
graphs at the connectivity threshold p = log n+ω

n
where ω = ω(n) → ∞

and ω = o(log n) and of random r-regular graphs where r ≥ 3 is a fixed
integer. Specifically, we prove that the rainbow connectivity rc(G) of G =
G(n, p) satisfies rc(G) ∼ max {Z1, diameter(G)} with high probability
(whp). Here Z1 is the number of vertices in G whose degree equals 1
and the diameter of G is asymptotically equal to log n

log log n
whp. Finally,

we prove that the rainbow connectivity rc(G) of the random r-regular
graph G = G(n, r) satisfies rc(G) = O(log2 n) whp.

1 Introduction

Connectivity is a fundamental graph theoretic property. Recently, the concept of
rainbow connectivity was introduced by Chartrand et al. in [5]. An edge colored
graph G is rainbow edge connected if any two vertices are connected by a path
whose edges have distinct colors. The rainbow connectivity rc(G) of a connected
graph G is the smallest number of colors that are needed in order to make G
rainbow edge connected. Notice, that by definition a rainbow edge connected
graph is also connected and furthermore any connected graph has a trivial edge
coloring that makes it rainbow edge connected, since one may color the edges
of a given spanning tree with distinct colors. Other basic facts established in [5]
are that rc(G) = 1 if and only if G is a clique and rc(G) = |V (G)| − 1 if and
only if G is a tree. Besides its theoretical interest, rainbow connectivity is also of
interest in applied settings, such as securing sensitive information [10], transfer
and networking [4].

The concept of rainbow connectivity has attracted the interest of various
researchers. Chartrand et al. [5] determine the rainbow connectivity of several

� Research supported in part by NSF Grant ccf1013110.
�� Research supported in part by NSF Grant ccf1013110.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 541–552, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

542 A. Frieze and C.E. Tsourakakis

special classes of graphs, including multipartite graphs. Caro et al. [3] prove that
for a connected graph G with n vertices and minimum degree δ, the rainbow
connectivity satisfies rc(G) ≤ log δ

δ n(1 + f(δ)), where f(δ) tends to zero as δ

increases. The following simpler bound was also proved in [3], rc(G) ≤ n 4 log n+3
δ .

Krivelevich and Yuster more recently [9] removed the logarithmic factor from
the Caro et al. [3] upper bound. Specifically they proved that rc(G) ≤ 20n

δ . It
is worth noticing that due to a construction of a graph with minimum degree δ
and diameter 3n

δ+1 − δ+7
δ+1 by Caro et al. [3], the best upper bound one can hope

for is rc(G) ≤ 3n
δ .

As Caro et al. point out, the random graph setting poses several intriguing
questions. Specifically, let G = G(n, p) denote the binomial random graph on n
vertices with edge probability p [6]. Caro et al. [3] proved that p =

√
log n/n is

the sharp threshold for the property rc(G(n, p)) ≤ 2. He and Liang [7] studied
further the rainbow connectivity of random graphs. Specifically, they obtain
the sharp threshold for the property rc(G) ≤ d where d is constant. For further
results and references we refer the interested reader to the recent survey of Li and
Sun [10]. In this work we look at the rainbow connectivity of the binomial graph
at the connectivity threshold p = logn+ω

n where ω = o(logn). This range of values
for p poses problems that cannot be tackled with the techniques developed in
the aforementioned work. Rainbow connectivity has not been studied in random
regular graphs to the best of our knowledge.

Let

L =
logn

log log n
(1)

and let A ∼ B denote A = (1 + o(1))B as n → ∞.
We establish the following theorems:

Theorem 1. Let G = G(n, p), p = log n+ω
n , ω → ∞, ω = o(log n). Also, let Z1

be the number of vertices of degree 1 in G. Then, with high probability(whp)1

rc(G) ∼ max {Z1, L} ,

This theorem gives asymptotically optimal results. Our next theorem is not quite
as precise.

Theorem 2. Let G = G(n, r) be a random r-regular graph where r ≥ 3 is a
fixed integer. Then, whp

rc(G) = O(log2 n).

All logarithms whose base is omitted are natural. It will be clear from our proofs
that the colorings in the above two theorems can be constructed in a low order
polynomial time. The second theorem, while weaker, contains an unexpected
use of a Markov Chain Monte-Carlo (MCMC) algorithm for randomly coloring
a graph.

The paper is organized as follows: in Sections 2, 3 we prove Theorems 1, 2
respectively. Finally, in Section 4 we conclude by suggesting open problems.

1 An event An holds with high probability (whp) if limn→+∞ Pr [An] = 1.

Rainbow Connectivity of Sparse Random Graphs 543

2 Proof of Theorem 1

Observe first that rc(G) ≥ max {Z1, diameter(G)}. First of all, each edge inci-
dent to a vertex of degree one must have a distinct color. Just consider a path
joining two such vertices. Secondly, if the shortest distance between two vertices
is � then we need at least � colors. Next observe that whp the diameter D is
asymptotically equal to L, see for example [2]. We break the proof of Theorem 1
into several lemmas.

Let a vertex be large if deg(x) ≥ logn/100 and small otherwise.

Lemma 1. Whp, there do not exist two small vertices within distance at most
3L/4.

Proof. Omitted due to space considerations.

We use the notation e[S] for the number of edges induced by a given set of
vertices S. Notice that if a set S satisfies e[S] ≥ s+ t where t ≥ 1, the induced
subgraph G[S] has at least t+ 1 cycles.

Lemma 2. Fix t ∈ Z+ and 0 < α < 1. Then, whp there does not exist a subset
S ⊆ [n], such that |S| ≤ αtL and e[S] ≥ |S|+ t.

Proof. Omitted due to space considerations.

Remark 1. Let T be a rooted tree of depth at most 4L/7 and let v be a vertex
not in T , but with b neighbors in T . Let S consist of v, the neighbors of v in
T plus the ancestors of these neighbors. Then |S| ≤ 4bL/7 + 1 ≤ 3bL/5 and
e[S] = |S| + b − 2. It follows from Lemma 2 with α = 3/5 and t = 8, that we
must have b ≤ 10 with probability 1− o(n−3).

Now let

ε = ε(n) = o(1) be such that
ε log logn

log 1/ε
→ ∞ and let k = εL. (2)

Here L is defined in (1) and we could take ε = 1/(log logn)1/2.

Lemma 3. For all pairs of large vertices x, y ∈ [n] there exists a whp subgraph
Gx,y(Vx,y, Ex,y) with the following structure: The subgraph consists of two iso-
morphic vertex disjoint trees Tx, Ty rooted at x, y each of depth k. Tx and Ty both
have a branching factor of logn/101. If the leaves of Tx are x1, x2, . . . , xτ , τ ≥
n4ε/5 then yi = f(xi) where f is a natural isomporphism. Between each pair of
leaves (xi, yi), i = 1, 2, . . . ,m there is a path Pi of length (1 + 2ε)L. The paths
Pi, i = 1, 2, . . . ,m are edge disjoint.

Proof. Because we have to do this for all pairs x, y, we note without further com-
ment that likely (resp. unlikely) events will be shown to occur with probability
1− o(n−2) (resp. o(n−2)).

To find the subgraph we grow tree structures. Specifically, we first grow a tree
from x using BFS until it reaches depth k. Then, we grow a tree starting from y

544 A. Frieze and C.E. Tsourakakis

again using BFS until it reaches depth k. Finally, we grow trees from the leaves
of Tx and Ty using BFS for depth γ = (12 + ε)L. Now we analyze these processes.
Since the argument is the same we explain it in detail for Tx and we outline

the differences for the other trees. We use the notation D
(ρ)
i for the number of

vertices at depth i of the BFS tree rooted at ρ.
First we grow Tx. As we grow the tree via BFS from a vertex v at depth i to

vertices at depth i+1 certain bad edges from v may point to vertices already in
Tx. Remark 1 shows with probability 1 − o(n−3) there can be at most 10 bad
edges emanating from v.

Furthermore, Lemma 1 implies that there exists at most one vertex of degree
less than logn

100 at each level whp. Hence, we obtain the recursion

D
(x)
i+1 ≥

(
logn

100
− 10

)
(D

(x)
i − 1) ≥ logn

101
D

(x)
i . (3)

Therefore the number of leaves satisfies

D
(x)
k ≥

(
logn

101

)εL
≥ n4ε/5. (4)

We can make the branching factor exactly logn
101 by pruning. We do this so that

the trees Tx are isomorphic to each other.
With a similar argument

D
(y)
k ≥ n

4
5 ε. (5)

The only difference is that now we also say an edge is bad if the other endpoint
is in Tx. This immediately gives

D
(y)
i+1 ≥

(
logn

100
− 20

)
(D

(y)
i − 1) ≥ logn

101
D

(y)
i

and the required conclusion (5).

Similarly, from each leaf xi ∈ Tx and yi ∈ Ty we grow trees T̂xi, T̂yi of depth
γ =

(
1
2 + ε

)
L using the same procedure and arguments as above. Remark 1

implies that there are at most 20 edges from the vertex v being explored to
vertices in any of the trees already constructed. At most 10 to Tx plus any trees
rooted at an xi and another 10 for y. The numbers of leaves of each T̂xi now
satisfies

D̂(xi)
γ ≥ logn

100

(
logn

101

)γ
≥ n

1
2+

4
5 ε.

Similarly for D̂
(yi)
γ .

Observe next that BFS does not condition the edges between the leaves Xi, Yi
of the trees T̂xi and T̂yi , i.e., we do not need to look at these edges in order
to carry out our construction. On the other hand we have conditioned on the
occurence of certain events to imply a certain growth rate. We handle this tech-
nicality as follows. We go through the above construction and halt if ever we
find that we cannot expand by the required amount. Let A be the event that

Rainbow Connectivity of Sparse Random Graphs 545

we do not halt the construction i.e. we fail the conditions of Lemmas 1 or 2. We
have Pr [A] = 1− o(1) and so,

Pr [∃i : e(Xi, Yi) = 0 | A] ≤ Pr [∃i : e(Xi, Yi) = 0]

Pr(A)
≤ 2n

4ε
5 (1− p)n

1+ 8ε
5 ≤ n−nε

.

We conclude that whp there is always an edge between each Xi, Yi and thus a
path of length at most (1 + 2ε)L between each xi, yi.

Let q = (1 + 5ε)L be the number of available colors. We color the edges of G
randomly. Specifically, we show that the probability of having a rainbow path
between a pair of large vertices is at least 1− 1

n3 .

Lemma 4. Color each edge of G using one color at random from q available.
Then, the probability of having at least one rainbow path between two fixed large
vertices x, y ∈ [n] is at least 1− 1

n3 .

Proof. We show that the subgraph Gx,y contains such a path. We break our
proof into two steps:

Before we proceed, we provide certain necessary definitions. Think of the
process of coloring Tx, Ty as an evolutionary process that colors edges by starting
from the two roots x, f(x) = y until it reaches the leaves. In the following, we call
a vertex u of Tx (Ty) alive if the path P (x, u) (P (y, u)) from x (y) to u is rainbow,
i.e., the edges have received distinct colors. We call a pair of vertices {u, f(u)}
alive, u ∈ Tx, f(u) ∈ Ty if u, f(u) are both alive and the paths P (x, u), P (y, f(u))
share no color. Define Aj = |{(u, f(u)) : (u, f(u)) is alive and depth(u) = j}| for
j = 1, .., k.

• Step 1: Existence of at least n
4
5 ε living pairs of leaves

Assume the pair of vertices {u, f(u)} is alive where u ∈ Tx, f(u) ∈ Ty. It is worth
noticing that u, f(u) have the same depth in their trees. We are interested in
the number of pairs of children {ui, f(ui)}i=1,..,logn/101 that will be alive after
coloring the edges from depth(u) to depth(u) + 1. A living pair {ui, f(ui)} by
definition has the following properties: edges (u, ui) ∈ E(Tx) and (f(u), f(ui)) ∈
E(Ty) receive two distinct colors, which are different from the set of colors used
in paths P (x, u) and P (y, f(u)). Notice the latter set of colors has cardinality
2× depth(u) ≤ 2k.

Let Aj be the number of living pairs at depth j. We first bound the size of
A1.

Pr

[
A1 ≤ logn

200

]
≤ 2logn/200

(
1

q

)logn/200

= O(n−Ω(log logn)). (6)

For j > 1 we see that the random variable equal to the number of living
pairs of children of (u, f(u)) stochastically dominates the random variable X ∼
Bin

(
logn
101 , p0

)
, where p0 =

(
1− 2k

q

)2
=
(
1+3ε
1+5ε

)2
. The colorings of the descen-

dants of each live pair are independent and so we have using the Chernoff bounds

546 A. Frieze and C.E. Tsourakakis

for 2 ≤ j ≤ k,

Pr

[
Aj <

(
logn

200

)j
pj−1
0

∣∣∣∣Aj−1 ≥
(
logn

200

)j−1

pj−2
0

]

≤ exp

{
−1

2
·
(

99

200

)2

· logn
101

·
(
logn

200

)j−1

pj0

}
= O(n−Ω(log logn)). (7)

(6) and (7) justify assuming that Ak ≥
(

logn
200

)k
≥ n

4
5 ε.

• Step 2: Existence of rainbow paths between x, y in Gx,y

Assuming that there are ≥ n4ε/5 living pairs of leaves (xi, yi) for vertices x, y,

Pr(x, y are not rainbow connected) ≤
(
1−

2γ−1∏
i=0

(
1− 2k + i

q

))n4ε/5

.

But
2γ−1∏
i=0

(
1− 2k + i

q

)
≥
(
1− 2k + 2γ

q

)2γ

=

(
ε

1 + 5ε

)2γ

.

So

Pr(x, y are not rainbow connected) ≤ exp

{
−n4ε/5

(
ε

1 + 5ε

)2γ
}

= exp
{
−n4ε/5−O(log(1/ε)/ log logn)

}
. (8)

Using (2) and the union bound taking (8) over all large x, y completes the proof
of Lemma 4.

We now finish the proof of Theorem 1 i.e. take care of small vertices.

Proof. We showed in Lemma 4 that whp for any two large vertices, a random
coloring results in a rainbow path joining them. We divide the small vertices
into two sets: vertices of degree 1, V1 and the vertices of degree at least 2, V2.
Suppose that our colors are 1, 2, . . . , q and V1 = {v1, v2, . . . , vs}. We begin by
giving the edge incident with vi the color i. Then we slightly modify the argument
in Lemma 4. If x is the neighbor of vi ∈ V1 then color i cannot be used in Steps
1 and 2 of that procedure. In terms of analyis this replaces q by (q − 1) ((q − 2)
if y is also a neighbor of V1) and the argument is essentially unchanged i.e. whp
there will be a rainbow path between each pair of large vertices. Furthermore,
any path starting at vi can only use color i once and so there will be rainbow
paths between V1 and V1 and between V1 and the set of large vertices.

The set V2 is treated by using only two extra colors. Assume that Red and
Blue have not been used in our coloring. Then we use Red and Blue to color

Rainbow Connectivity of Sparse Random Graphs 547

two of the edges incident to a vertex u ∈ V2 (the remaining edges are colored
arbitrarily). Suppose that V2 = {w1, w2, . . . , ws}. Then if we want a rainbow
path joining wi, wj where i < j then we use the red edge to go to its neighbor
w′
i. Then we take the already constructed rainbow path to w′′

j , the neighbor of
wj via a blue edge. Then we can continue to wj .

3 Proof of Theorem 2

We first observe that simply randomly coloring the edges of G = G(n, r) with

q = no(1) colors will not do. This is because there will whp be nqr−r
2

= n1−o(1)

vertices v where all edges at distance at most two from v have the same color.
We follow a similar somewhat strategy to the proof in Theorem 1. We grow

small trees from each of a pair of vertices x, y and then try to connect these
trees by a number of edge disjoint paths. The main difference will come from
our procedure for coloring the edges. Because of the similarities, we will give a
little less detail in our the common parts of our proofs.

We will use the configuration model [11] in our proofs. Let W = [2m = rn]
be our set of configuration points and let Wi = [(i− 1)r+1, ir], i ∈ [n], partition
W . The function φ : W → [n] is defined by w ∈ Wφ(w). Given a pairing F (i.e.
a partition of W into m pairs) we obtain a (multi-)graph GF with vertex set [n]
and an edge (φ(u), φ(v)) for each {u, v} ∈ F . Choosing a pairing F uniformly
at random from among all possible pairings ΩW of the points of W produces a
random (multi-)graph GF . If r = O(1) then any event that occurs whp in GF

will also occur whp in G(n, r).

3.1 Tree Building

We will grow a Breadth First Search tree Tx from each vertex. We will grow
each tree to depth

k = kr =

{
1 +

⌈
logr−2 log n

⌉
r ≥ 4.

�2 log2 logn− 2 log2 log2 logn� r = 3.

Observe that

Tx has at most r(1+ (r− 1)+ (r− 1)2+ · · ·+(r− 1)k−1) = r
(r − 1)k − 1

r − 1
edges.

(9)
It is useful to observe that

Lemma 5. Whp, no set of s ≤ �1 = 1
10 logr−1 n vertices contains more than s

edges.

548 A. Frieze and C.E. Tsourakakis

Proof. Indeed,

Pr(∃S ⊆ [n], |S| ≤ �1, e[S] ≥ |S|+ 1) ≤
1∑
s=3

(
n

s

)((s
2

)
s+ 1

)(
r2

rn − rs

)s+1

(10)

≤ 2r�1
n

1∑
s=3

(
ne

s
· se
2

· 2r
n

)s
≤ 2r�1

n
· �1 · (e2r)1 = o(1). (11)

Explanation of (10): The factor
(

r2

rn−rs

)s+1

can be justified as follows. We

can estimate

Pr(e1, e2, . . . , es+1 ∈ E(GF)) =
s∏
i=0

Pr(ei+1 ∈ E(GF) | e1, e2, . . . , ei ∈ E(GF)) ≤
(

r2

rn− rs

)s+1

if we pair up the lowest index endpoint of each ei in some arbitrary order. The

fraction r2

rn−rs is an upper bound on the probability that this endpoint is paired
with the other endpoint, regardless of previous pairings.

Denote the leaves of Tx by Lx.

Corollary 1. Whp, x ∈ [n] implies that (r − 1)k ≤ |Lx| ≤ r(r − 1)k−1.

Proof. This follows from the fact that whp the vertices spanned by each Tx span
at most one cycle. This in turn follows from Lemma 5.

Next let
V1 = {x : V (Tx) contains a cycle} .

Consider two vertices x, y ∈ V (G) where x /∈ Ty and y /∈ Tx. We will show that
whp we can find a subgraph G′(V ′, E′), V ′ ⊆ V,E′ ⊆ E with similar structure
to that found in Lemma 3. Here k = kr and γ =

(
1
2 + ε

)
logr−1 n for some small

positive constant ε.
Suppose that we have constructed i = O(log n) such trees rooted at some of

the of Tx. We grow the (i + 1)st tree T̂z via BFS, ignoring edges that go into y
or previously constructed trees. Let a leaf z ∈ Lx be bad if we have to ignore a
single edge as we construct the first �1 levels of T̂z. The previously constructed
trees plus y account for O(n1/2+ε) vertices, so the probability that z is bad is at
most O((r − 1)1n−1/2+ε) = O(n−1/3). This holds regardless of whichever other
vertices are bad. So whp there will be at most 3 bad leaves on any Tx. Indeed,
Pr(∃x : x has ≥ 4 bad leaves) ≤ n

(
O(log n)

4

)
n−4/3 = o(1).

If a leaf is not bad then the first �1 levels produce Θ(n1/10) leaves. Given this,
we see that whp the next γ − �1 levels grow at a rate r − 1− o(n−1/25). Indeed,
given that a level has L vertices where n1/10 ≤ L ≤ n3/4, the number of vertices

Rainbow Connectivity of Sparse Random Graphs 549

in the next level dominates Bin
(
(r − 1)L, 1− O

(
n3/4

n

))
, after accounting for

the configuration points used in building previous trees. We can thus assert that
whp we will have that all but at most three of the leaves L∗

x ⊆ Lx of Tx are

roots of vertex disjoint trees T̂1, T̂2, . . . , each with Θ(n1/2+ε/2) leaves. The same

analysis applies when we build trees T̂ ′
1, T̂

′
2, . . . , with roots at Ly.

Now the probability that there is no edge joining the leaves of T̂i to the leaves
of T̂ ′

j is at most

(
1− (r − 1)Θ(n1/2+ε/2)

rn

)(r−1)n1/2+ε/2

≤ e−Ω(nε).

Thus whp we will succeed in finding in GF and hence in G = G(n, r), for all
x, y ∈ V (GF), for all u ∈ L∗

x, v ∈ L∗
y, a path Pu,v from u to v of length O(log n)

such that if u �= u′ and v �= v′ then Pu,v and Pu′,v′ are edge disjoint.

3.2 Coloring the Edges

We now consider the problem of coloring the edges of G. Let H denote the line
graph of G and let Γ = H2k denote the graph with the same vertex set as H
and an edge between vertices e, f of Γ if there there is a path of length at most
2k between e and f in H . We construct a (near) random proper coloring of Γ
using q = 100 log2 n colors. Since Γ has maximum degree Δ ≤ 2(r − 1)2k < q/2
we can easily achieve this in polynomial time by using Glauber Dynamics, see
Jerrum [8].

Glauber Dynamics: Suppose that our color set is [q] and that Z0, Z1, . . . , Zt ∈
[q]V (Γ) is a sequence of colorings of the vertices of graph Γ . Here Z0 is an
arbitrary coloring of Γ . Also, if e ∈ V (Γ) and NΓ (e) is the set of neighbors of e
in Γ then

A(Zt, e) = {c ∈ [q] :� ∃f ∈ NΓ (e) s.t. Zt(f) = c}
is the set of colors available for re-coloring e. We obtain Zt+1 from Zt as follows:

1. Choose e uniformly at random from V (Γ), and c uniformly at random from
A(Zt, e).

2. Set Zt+1(e) = c and for all f �= e, set Zt+1(f) = Zt(f).

Now |V (Γ)| = |E(G)| = O(n) and so it follows from [8] that after O(n log n)
steps we have the variation distance between Zt and a uniform proper coloring
of Γ is O(n−10), say.

Suppose then that we color the edges of G using the above method. Fix a pair
of vertices x, y of G. We see immediately, that no color appears twice in Tx and
no color appears twice in Ty. This is because the distance between edges in Tx
is at most 2k. We have lots of paths joining x and y. We first show that we can
find many paths where the set of 2k edges within distance k of an endpoint is
rainbow colored.

550 A. Frieze and C.E. Tsourakakis

Case 1: r ≥ 4:
We argue now that we can find σ = (r − 2)k−1 leaves u1, u2, . . . , uτ ∈ Tx and σ
leaves v1, v2, . . . , vτ ∈ Ty such for each i the Tx path from x to ui and the Ty
path from y to vi do not share any colors.

Lemma 6. Let T1, T2 be two vertex disjoint copies of an edge colored complete
d-ary tree with � levels, where d ≥ 3. Suppose that the colorings of T1, T2 are
both rainbow. Let κ = (d − 1). Then there exist leaves u1, u2, . . . , uκ of T1 and
leaves v1, v2, . . . vκ of T2 such that the following is true: If Pi, P

′
i are the paths

from x to ui in T1 and from y to vi in T2 respectively, then Pi ∪ P ′
i is rainbow

colored for i = 1, 2, . . . , κ.

Proof. Let A be the minimum number of rainbow path pairs that we can find.
We prove that A ≥ (d − 1) by induction on �. This true trivially for � = 0.
Suppose that x is incident with x1, x2, . . . , xd and that the sub-tree rooted at
xi is T1,i for i = 1, 2, . . . , d. Define yi and T2,i, i = 1, 2, . . . , d similarly w.r.t.
y. Suppose that the color of the edge (x, xi) is ci for i = 1, 2, . . . , d and let
Qx = {c1, c2, . . . , cd}. Similarly, suppose that the color of the edge (y, yi) is c′i
for i = 1, 2, . . . , d and let Qy = {c′1, c′2, . . . , c′d}. Next suppose that Qj is the set of
colors in Qx that appear on the edges E(T2,j)∪{(y, yj)} . The setsQ1, Q2, . . . , Qd

are pair-wise disjoint. Similarly, suppose that Q′
i is the set of colors in Qy that

appear on the edges E(T1,i) ∪ {(x, xi)}. The sets Q′
1, Q

′
2, . . . , Q

′
d are pair-wise

disjoint.
Now define a bipartite graph H with vertex set A + B = [d] + [d] and an

edge (i, j) iff ci /∈ Qj and c′j /∈ Q′
i. We claim that if S ⊆ A then its neighbor set

NH(S) satisfies the inequality

d|S| − |NH(S)| − |S| ≤ |S| · |NH(S)|. (12)

Here the LHS of (12) bounds the number of S : NH(S) edges from below. This
is because there are at most |S| edges missing from S : NH(S) due to i ∈ S and
j ∈ NH(S) and ci ∈ Qj. At most |NH(S)| edges are missing for similar reasons.
On the other hand, d|S| is the number there would be without these missing
edges. The RHS of (12) is a trivial upper bound.

Re-arranging we get that

|NH(S)| − |S| ≥
⌈
(d− 2− |S|)|S|

|S|+ 1

⌉
≥ −1.

(We get -1 when |S| = d).
ThusH contains a matchingM of size d−1. Suppose without loss of generality

that this matching is (i, i), i = 1, 2, . . . , d − 1. We know by induction that for

each i we can find paths (Pi,j , P̂i,j), j = 1, 2, . . . , (d− 1)−1 where Pi,j is a root

to leaf path in T1,i and P̂i,j is a root to leaf path in T2,i and that Pi,j ∪ P̂i,j is
rainbow for all i, j. Furthermore, (i, i) being an edge of H , means that the edge

sets {(x, xi)} ∪E(Pi,j) ∪ E(P̂i,j) ∪ {(y, yi} are all rainbow.

Rainbow Connectivity of Sparse Random Graphs 551

When x, y /∈ V1 we apply this Lemma to Tx, Ty by deleting one of the r sub-
trees attached to each of x, y and applying the lemma directly to the (r− 1)-ary
trees that remain. This will yield (r − 2)k pairs of paths. If x ∈ V1, we delete
r− 2 sub-trees attached to x leaving at least two (r− 1)-ary trees of depth k− 1
with roots adjacent to x. We can do the same at y. Let c1, c2 be the colors of the
two edges from x to the roots of these two trees T1, T2. Similarly, let c′1, c

′
2 be the

colors of the two analogous edges from y to the trees T ′
1, T

′
2. If c1 �= c2 and color

c1 does not appear in T ′
1 then we apply the lemma to T1 and T ′

1. Otherwise, we
can apply the lemma to T1 and T ′

2. In both cases we obtain (r − 2)k−1 pairs of
paths.

Putting σ = (r−2)k−1−6 we see that we can whp find σ paths P1, P2, . . . , Pσ
of length O(log n) from x to y. Path Pi goes from x to a leaf ui ∈ L∗

x and then
traverses P (ui, vi) where vi ∈ L∗

y.

Let P̂i be that part of Pi whose edges are not in Tx ∪ Ty, i = 1, 2, . . . , σ. Let
Xi, Yi be those parts of Pi that lie in Tx, Ty respectively. Xi ∪ Yi is rainbow by

construction. We have to argue that with sufficient probability, at least one P̂i
is colored so that the whole of Pi is rainbow.

When an edge e ∈ P̂i is re-colored by Glauber, it has a choice of at least q−Δ
colors, where Δ ≤ (r − 1)2k, regardless of the colors of the remaining edges, for
any i. So, the probability that it is given the same color as any other edge of
P ∗
i is at most 2k+2γ

q−Δ , again regardless of the color of the remaining edges. So, by

considering, in increasing time order, the color given at the last time each edge
of W is recolored, we see that

Pr(� ∃i : Pi is rainbow) ≤
(
1−

(
1− 2k + 2γ

q −Δ

)2γ
)σ

≤
(
2γ(2k + 2γ)

q −Δ

)σ

= o(n−10).

Case 2: r = 3:
When r = 3 we can’t use (r− 2)k to any effect. Instead of inducting on the trees
at depth one from the roots x, y, we now induct on the trees at depth s = 2.
The rest of the proof is omitted due to space considerations. ��

4 Conclusion

In this work we have given an aymptotically tight result on the rainbow connec-
tivity of G = G(n, p) at the connectivity threshold. It is reasonable to conjecture
that this could be tightened:

Conjecture: Whp, rc(G) = max {Z1, diameter(G(n, p))}. Our result on ran-
dom regular graphs is not so tight. It is still reasonable to believe that the above
conjecture also holds in this case. (Of course Z1 = 0 here).

It is worth mentioning that if the degree r in Theorem 2 is allowed to grow
as fast as logn then one can prove a result closer to that of Theorem 1.

552 A. Frieze and C.E. Tsourakakis

References

1. Ananth, P., Nasre, M., Sarpatwar, K.: Rainbow Connectivity: Hardness and
Tractability. In: IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), pp. 241–251 (2011)

2. Bollobás, B.: Random Graphs. Cambridge University Press (2001)
3. Caro, Y., Lev, A., Roditty, Y., Tuza, Z., Yuster, R.: On rainbow connection. Elec-

tronic Journal of Combinatorics 15 (2008),
http://www.combinatorics.org/Volume_15/PDF/v15i1r57.pdf

4. Chakrabory, S., Fischer, E., Matsliah, A., Yuster, R.: Hardness and Algorithms for
Rainbow Connection. Journal of Combinatorial Optimization 21(3) (2011)

5. Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: Rainbow connection in
graphs. Mathematica Bohemica 133(1), 85–98 (2008),
http://mb.math.cas.cz/mb133-1/8.html

6. Erdös, P., Rényi, A.: On Random Graphs I. Publicationes Mathematicae 6, 290–
297 (1959)

7. He, J., Liang, H.: On rainbow-k-connectivity of random graphs. Arxiv 1012.1942v1
(2010), http://arxiv.org/abs/1012.1942v1

8. Jerrum, M.R.: A very simple algorithm for estimating the number of k-colourings
of a low-degree graph. Random Structures and Algorithms 7(2), 157–165 (1995)

9. Krivelevich, M., Yuster, R.: The rainbow connection of a graph is (at most) recip-
rocal to its minimum degree. Journal of Graph Theory 63(3), 185–191 (2009)

10. Li, X., Sun, Y.: Rainbow connections of graphs - A survey. Arxiv 1101.5747v2
(2011), http://arxiv.org/abs/1101.5747

11. Wormald, N.C.: Models of random regular graphs. In: Surveys in Combinatorics.
London Mathematical Society Lecture Note Series, vol. 276, pp. 239–298 (1999)

http://www.combinatorics.org/Volume_15/PDF/v15i1r57.pdf
http://mb.math.cas.cz/mb133-1/8.html
http://arxiv.org/abs/1012.1942v1
http://arxiv.org/abs/1101.5747

Invertible Zero-Error Dispersers and Defective

Memory with Stuck-At Errors

Ariel Gabizon1,� and Ronen Shaltiel2,��

1 Department of Computer Science, Technion, Haifa, Israel
2 Department of Computer Science, University of Haifa, Haifa, Israel

Abstract. Kuznetsov and Tsybakov [11] considered the problem of stor-
ing information in a memory where some cells are ‘stuck’ at certain val-
ues. More precisely, For 0 < r, p < 1 we want to store a string z ∈ {0, 1}rn
in an n-bit memory x = (x1, . . . , xn) in which a subset S ⊆ [n] of size pn
are stuck at certain values u1, . . . , upn and cannot be modified. The en-
coding procedure receives S, u1, . . . , upn and z and can modify the cells
outside of S. The decoding procedure should be able to recover z given
x (without having to know S or u1, . . . , upn). This problem is related to,
and harder than, the Write-Once-Memory (WOM) problem.

We give explicit schemes with rate r ≥ 1−p−o(1) (trivially, r ≤ 1−p
is a lower bound). This is the first explicit scheme with asymptotically
optimal rate. We are able to guarantee the same rate even if following
the encoding, the memory x is corrupted in o(

√
n) adversarially chosen

positions. This more general setup was first considered by Tsybakov [24]
(see also [10,8]). and our scheme improves upon previous results.

We utilize a recent connection observed by Shpilka [21] between the
WOM problem and linear seeded extractors for bit-fixing sources. We
generalize this observation and show that memory schemes for stuck-
at memory are equivalent to zero-error seedless dispersers for bit-fixing
sources. We furthermore show that using zero-error seedless dispersers
for affine sources (together with linear error correcting codes with large
dual distance) allows the scheme to also handle adversarial errors.

It turns out that explicitness of the disperser is not sufficient for the
explicitness of the memory scheme. We also need that the disperser is
efficiently invertible, meaning that given an output z and the linear equa-
tions specifying a bit-fixing/affine source, one can efficiently produce a
string x in the support of the source on which the disperser outputs z.

In order to construct our memory schemes, we give new constructions
of zero-error seedless dispersers for bit-fixing sources and affine sources.
These constructions improve upon previous work by [14,6,2,25,13] in that
for sources with min-entropy k, they (i) achieve larger output length
m = (1 − o(1)) · k whereas previous constructions did not, and (ii) are
efficiently invertible, whereas previous constructions do not seem to be
easily invertible.

� The research leading to these results has received funding from the European Union’s
Seventh Framework Programme under grant agreement no. 259426 ERC Cryptog-
raphy and Complexity.

�� This research was supported by BSF grant 2010120, ISF grants 686/07 and 864/11,
and ERC starting grant 279559.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 553–564, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

554 A. Gabizon and R. Shaltiel

1 Introduction

1.1 Background

Kuznetsov and Tsybakov [11] considered the problem of storing information on
a defective memory with “stuck-at” errors. In this setup we have a memory
x = (x1, . . . , xn) of n cells each storing a symbol in some finite alphabet (in this
paper we will restrict attention to the Boolean alphabet). The problem is that
a subset S ⊆ [n] containing at most s out of the n cells are ‘stuck’ at a certain
“defect pattern” (namely, x|S = u for some u ∈ {0, 1}|S|) and we cannot modify
these cells. The goal is to store a string z ∈ {0, 1}m in memory x, so that at a
later point it would be possible to read x and retrieve z, even without knowing
which of the cells are stuck. Naturally, we want m to be as large as possible (as
a function of n and s). A precise definition follows.

Definition 1 (Recovering from stuck-at errors). For positive integers s <
n, an (n, s)-stuck-at memory scheme consists of

– a (possibly randomized) encoding function E such that given any S ⊂ [n]
with |S| ≤ s, u ∈ {0, 1}|S| and z ∈ {0, 1}m, E returns x ∈ {0, 1}n with
x|S = u, and

– a decoding function D : {0, 1}n → {0, 1}m such that for any x ∈ {0, 1}n
produced by E on inputs z, S and u as above, D(x) = z.

The rate of the scheme is defined as m/n. We say that a scheme (more precisely,
a sequence of schemes with n → ∞) is explicit if D is computable in determin-
istic poly(n)-time and E is computable in randomized expected poly(n)-time.1

Motivation for this model has come recently from Phase-Change-Memory where
‘stuck-at’ errors are common. It may be the case that discovering the ‘stuck-at’
cells will be time consuming, and that the process may ruin the written content.
Thus, the assumption about only the encoder knowing the defect pattern (S, u)
makes sense in such a scenario. See the introduction of [12] for more details.

Connection to the standard coding theoretic setup. It is trivial that a standard
error correcting code which corrects s adversarial errors can be used to solve the
case of stuck-at errors. The encoding function can simply ignore the knowledge
that it has of the defect pattern (S, u) and start by encoding z ∈ {0, 1}m as an
n bit string x using the code, and then modify x|S so that x|S = u. Decoding
from stuck-at errors is then simply standard decoding.

The goal is to come up with better schemes (namely obtain schemes with
better rate). We remark that an advantage of using error-correcting codes for s
adversarial errors is that this approach immediately extends to handle combi-
nations of adversarial and stuck-at errors. We will consider this combined setup
later on in Section 1.6.
1 In Definition 1 we allow the encoding function to be randomized. This makes sense
in the application, and the solutions that we propose in this paper are indeed ran-
domized. We stress that we do not assume that the decoding function has access to
the coin tosses of the encoding function.

Invertible Zero-Error Dispersers and Defective Memory with Stuck-At Errors 555

1.2 Previous Work and Our Results

It trivially holds that in any (n, s)-stuck-at memory scheme we have that m ≤
n−s. In fact, this holds even if the decoding procedure knows the defect pattern.
For simplicity, we will often set s = pn for some constant p and measure the rate
of a (family of) schemes as n grows. The trivial bound above gives that the rate of
any (n, pn)-stuck-at memory scheme is at most 1− p. Kuznetsov and Tsybakov
[11] showed schemes with rate approaching 1 − p exist by a non-constructive
argument. Tsybakov [23], showed that given a linear code C ⊆ {0, 1}n of rate
r whose dual code has relative distance p, one can construct an (n, pn)-stuck-at
memory scheme of rate R = 1− r. Using current explicit constructions of codes,
this gives a scheme of rate smaller than 1− h(p) < 1− p, where h is the binary
entropy function. Moreover, upper bounds on the rate of binary codes show that
the method of [23] cannot give schemes with rate approaching 1− p, even given
optimal code constructions. In this paper we construct a near optimal scheme,
which comes within an additive term of logO(1) n from the trivial bound.

Theorem 2 (Explicit scheme for stuck-at errors). There exists a constant
c > 1 such that for every function s(n) ≤ n − (logn)c we construct an explicit
(n, s(n))-stuck-at memory scheme with m(n) = n− s(n)− logc n.

In particular, when setting s(n) = pn we obtain rate 1 − p − o(1) which is
asymptotically optimal. This is the first explicit scheme with rate approaching
1− p.

Corollary 3 (Explicit asymptotically optimal scheme). For every con-
stant 0 < p < 1 we construct an explicit (n, pn)-stuck-at memory scheme with
rate 1− p− o(1).

1.3 Connection to Write Once Memory (WOM)

Another motivation for defective memory with stuck-at errors is the setting of
“Write-Once-Memory” (abbreviated as WOM) introduced by Rivest and Shamir
[16]. In this setting the memory cells x1, . . . , xn are initialized to the value ‘0’,
and it is possible to modify a cell from ‘0’ to ‘1’ but not vice-versa. The goal here
is to come up with schemes that allow reusing the memory x many times, where
in each round we dispose the old content and want to store new content. For
concreteness let us consider the simplest two round setup: We first store some
string z1 ∈ {0, 1}m1 in memory (by encoding it as an n bit string x) and later
(when we no longer need to remember z1) we wish to reuse the memory in order
to store some string z2 ∈ {0, 1}m2. Note that at this phase the cells containing
‘1’ are stuck, and we need to solve an instance of the defective memory with
stuck-at errors problem.

An optimal solution to the problem of stuck-at errors immediately translates
into an optimal solution to the WOM problem as follows: Identify the set of
strings z1 ∈ {0, 1}m1 with the set of strings x ∈ {0, 1}n of Hamming weight pn
(by choosing p such thatm1 = h(p)·n). At the first round, we store z1 in memory

556 A. Gabizon and R. Shaltiel

by storing the corresponding string x ∈ {0, 1}n of Hamming weight pn (and note
that we can indeed recover z1 given x). This leaves us with an instance of the
memory problem with pn stuck-at errors when we want to store z2 ∈ {0, 1}m2

in the second round. If we use a scheme with rate approaching 1 − p, then the
induced WOM-scheme has rate approaching h(p) + 1 − p which is known to be
optimal [16] and this matches the best known explicit schemes [21].

The WOM problem seems easier than the problem of stuck-at errors in the
sense that the locations of cells that are stuck at the beginning of the second
round are not arbitrary (and can be chosen by how we implement the encoding
in the first round). In particular, the WOM-scheme can choose a parameter
t = o(n) and decide not to write in the first t cells during the first round. This
allows the encoding in the second round to use these cells to pass t bits of “control
information” to the decoding procedure. We remark that this approach is used
in many of the WOM schemes in the literature.

This approach seems less robust to changes in the model (such as added stuck-
at errors or WOM with few adversarial errors) as the decoding procedure may
critically depends on correctly receiving the control information. Consequently, it
seems to us that the approach of this paper (and specifically the results presented
later in Section 1.6 in a setup where both stuck-at and adversarial errors occur)
can lead to more robust solutions to the WOM problem.

1.4 Decoding Using Zero-Error Dispersers for Bit-Fixing Sources

Shpilka’s observation. The starting point for this work is a recent observation
of Shpilka [21] which relates the problem of WOM to certain “linear seeded
extractors for bit-fixing sources” (that we elaborate on in the full version). In
addition to the WOM problem, Shpilka also considers the problem of defective
memory with stuck-at errors. However, his approach is not directly suitable to
this problem, and instead he solves a relaxed case in which the encoding function
is allowed to transfer t = O(log3 n) bits of “control information” to the decoding
function. This can be realized if both encoding and decoding procedures have
access to an additional t bit external memory which is guaranteed not to have
stuck-at errors.

Loosely speaking, the reason for needing an external memory is that the
encoding function needs to transfer control information (which is a “seed” for
the seeded extractor) so that it will be available for the decoding procedure. As
explained above, in the setup of WOM, an additional external memory is not
necessary because the encoding scheme can reserve the first t = O(log3 n) cells
for passing control information to the decoding procedure.

Seedless extractors and dispersers for bit-fixing sources. We would like to use
Shpilka’s approach while avoiding the use of external memory. This suggests that
we want to replace seeded extractors with seedless extractors (so that no control
information needs to be passed). Indeed, our first step is to recast Shpilka’s
observation in the terminology of “seedless zero-error dispersers for bit-fixing

Invertible Zero-Error Dispersers and Defective Memory with Stuck-At Errors 557

sources”. We begin by defining seedless extractors and dispersers for a general
class C of sources, and then define the class of bit-fixing sources.

Definition 4 (min-entropy and statistical distance). Let X be a distri-
bution over {0, 1}n. The min-entropy of X denoted by H∞(X) is defined by
H∞(X) = minx∈{0,1}n log(1/Pr[X = x]). Two distributions X,Y over {0, 1}n
are ε-close if for every A ⊆ {0, 1}n, |Pr[X ∈ A]− Pr[Y ∈ A]| ≤ ε.

Definition 5 (Seedless extractors and dispersers). Let C be a class of dis-
tributions over {0, 1}n. For 0 ≤ k ≤ n we use Ck to denote the class of distribu-
tions X ∈ C with H∞(X) ≥ k.

– A function E : {0, 1}n → {0, 1}m is an extractor for C with entropy thresh-
old k and error ε ≥ 0 if for every X ∈ Ck, E(X) is ε-close to the uniform
distribution on {0, 1}m.

– A function D : {0, 1}n → {0, 1}m is a disperser for C with entropy threshold
k and error ε ≥ 0 if for every X ∈ Ck, |Supp(D(X))| ≥ (1 − ε)2m (where
Supp(Z) denotes the support of the distribution Z). We say that D has zero-
error if ε = 0.

We say that a (family of) extractors (or dispersers) is explicit if it runs in time
poly(n).

The reader is referred to a survey article [19] for a tutorial on seedless extractors
and dispersers. We will be interested in the family of bit-fixing sources.

Definition 6 (bit-fixing sources). A bit-fixing source is a distribution X on
{0, 1}n such that there exists S ⊆ [n] and u ∈ {0, 1}|S| such that X |S is fixed
to the value u and X |[n]\S is uniformly distributed over {0, 1}n−|S|. Note that
H∞(X) = n− |S|.

Explicit memory schemes and efficiently invertible zero-error dispersers. We now
recast Shplika’s observation by noting that zero-error dispersers for bit-fixing
sources with entropy threshold k that output m bits imply (n, n − k)-stuck-
at memory schemes with rate m/n. In fact, zero-error dispersers for bit-fixing
sources seem to completely capture the stuck-at problem in that the decoding
procedure of any memory scheme can be shown to be a zero-error disperser.
Before we state this connection, recall that our goal is to construct explicit
schemes for stuck-at errors. Unfortunately, explicitness of the zero-error disperser
is not sufficient for the induced scheme to be explicit. An additional property is
needed: that the disperser is efficiently invertible in the sense defined below.

Definition 7 (Invertible zero-error dispersers). Let C be a class of distribu-
tions over {0, 1}n. We say that C is polynomially-specified if each distribution
X ∈ C is specified by a string of length poly(n). (For example, each bit-fixing
source can be specified by the set S ⊆ [n] and u ∈ {0, 1}|S| that define the bit-
fixing source).

We say that a zero-error disperser D (for a polynomially specified class C with
entropy threshold k) is efficiently invertible if there is a randomized algorithm

558 A. Gabizon and R. Shaltiel

running in expected poly(n)-time that given z ∈ {0, 1}m and (the specification
of) a source X ∈ Ck returns x ∈ Supp(X) such that D(x) = z.

We now formally state a connection between zero-error dispersers for bit-fixing
sources and schemes for stuck-at errors. This connection is completely straight-
forward (and the proof appears in the full version).

Theorem 8 (Equivalence between memory schemes and dispersers)

1. Given a zero-error disperser D : {0, 1}n → {0, 1}m for bit-fixing sources with
entropy threshold k there exists an (n, n− k)-stuck-at memory scheme with
rate m/n. Furthermore, if D is explicit and efficiently invertible then the
scheme is explicit.

2. Given an (n, n − k)-stuck-at memory scheme with decoding function D :
{0, 1}n → {0, 1}m, D is a zero-error disperser for bit-fixing sources with
entropy threshold k.

1.5 A New Construction of Invertible Zero-Error Dispersers for
Bit-Fixing Sources

By Theorem 8 the problem of constructing explicit (n, s(n))-stuck-at memory
scheme is reduced to the task of explicitly constructing an efficiently invertible
zero-error disperser for bit-fixing sources with entropy threshold k = n − s(n).
In order to prove Theorem 2 and achieve asymptotically optimal rate, we need
dispersers with output length m = (1− o(1)) · k. Unfortunately, no such explicit
construction is known. There are two issues:

– The best explicit construction of zero-error dispersers for bit-fixing sources
was given by Gabizon and Shaltiel [6], and it only achieves output length
m = Ω(k). This yields schemes with very poor rate of Ω(1− p) which might
be small even if 1−p is large. (Previous constructions [3,4,9,5,14] would also
give poor2 rate when viewed as zero-error dispersers.)

– The construction of [6] is quite complicated and do not seem to be easily
invertible for large values of m.

In this paper, we give an improved explicit construction of zero-error dispersers
for bit-fixing sources while handling the two issues above. Namely, whenever
k > polylogn our construction achieves m = (1 − o(1)) · k and is efficiently
invertible.

Theorem 9 (Zero-error disperser for bit-fixing sources). There exists a
constant c > 1 such that if n is large enough and k ≥ logc n, there is an explicit
and efficiently invertible zero-error disperser D : {0, 1}n → {0, 1}k−logc n for
bit-fixing sources with entropy threshold k.

2 An exception is the construction of Chor et. al [3] in the case of very large k =
n−o(n). Specifically, when k = n− t [3] constructs zero-error extractors that output
n−O(t · log n) bits which is better than our Theorem 9 when t = o(log n). In fact,
their construction, based on linear codes, is analogous to the scheme of [23] which is
superior to our Theorem 2 when, for example, s(n) = o(log n).

Invertible Zero-Error Dispersers and Defective Memory with Stuck-At Errors 559

Chor et al. [3] showed that zero-error extractors for bit-fixing sources do not
exist in case m > 1 and k < n/3. In contrast, it is easy to show the existence of
zero-error dispersers using the probabilistic method. Theorem 9 achieves output
length that approaches the one given by the non-constructive argument (which
gives m = k − logn− o(log n)). Plugging this construction in Theorem 8 yields
Theorem 2.

1.6 Recovering from Stuck-At Errors and Adversarial Errors

Tsybakov [24] considered a more general model of defective memory where in ad-
dition to the ‘stuck-at’ errors, the memory can be corrupted at few (adversarially
chosen) cells after the encoding. A formal definition follows.

Definition 10 (Stuck-at errors and adversarial errors). An (n, s, e)-stuck-
at noisy memory scheme consists of

– a (possibly randomized) encoding function E such that given any S ⊂ [n]
with |S| ≤ s, u ∈ {0, 1}|S| and z ∈ {0, 1}m, E returns x ∈ {0, 1}n such that
x|S = u, and

– a decoding function D : {0, 1}n → {0, 1}m such that for any x ∈ {0, 1}n
produced by E with input z (and any inputs S and u as above), and any
‘noise vector’ ξ ∈ {0, 1}n of hamming weight at most e, D(x+ ξ) = z.

The rate of the scheme is defined as m/n. We say a scheme (more precisely, a
sequence of schemes with n → ∞) is explicit if D is computable in deterministic
poly(n)-time and E is computable in randomized expected poly(n)-time.

Note that by the discussion in Section 1.1 an error-correcting code that corrects
s + e adversarial errors can be used to solve this more general problem. This
solution seems very expensive in case e � s (as it treats the s stuck-at errors as
adversarial) and it is possible to do better in this range.

1.7 Previous Work and Our Results

The solutions proposed in previous work (as well as our results) reduce the
problem of defective memory with stuck-at and worst-case errors to construct-
ing error-correcting codes that correct e adversarial errors. However, in all known
schemes (including ours), it is required that the error correcting code has addi-
tional properties: It should be linear, and have dual distance s (meaning that the
dual code should have distance at least s). We elaborate on why dual distance
naturally comes up in the next section.

Let e(·), s(·) be some integer functions and let 0 ≤ re,s ≤ 1 denote the largest
positive number such that there is an explicit family of linear binary codes with
block length n → ∞ such that: (i) the code corrects e(n) adversarial errors (and
in particular has distance at least 2e(n) + 1), (ii) the dual code has distance
s(n), and (iii) the rate of the code approaches re,s as n → ∞. (Here, by explicit

560 A. Gabizon and R. Shaltiel

family we mean that the code has encoding and decoding algorithms that run
in poly(n)-time).

Kuzentsov, Kasami and Yamamura [10] proposed an (n, s(n), e(n))-stuck-at
noisy memory scheme with rate re,s−s(n)/n−o(1). However, their construction
has a non-constructive component. Later, Heegard [8] made this component ex-
plicit by using partitioned linear block codes. Using current explicit constructions
of binary codes, and setting s(n) = pn for a constant p, an explicit (n, pn, e(n))-
stuck-at noisy memory scheme using [8] would give rate smaller than re,pn−h(p).
Later work focused on improving the efficiency of the encoding and decoding
procedures of [8], but not the rate [12]. In this work we give explicit schemes
matching the rate guaranteed by the non-explicit argument of [10].

Theorem 11 (Explicit scheme that also handles adversarial errors). Let
e(·), s(·) be integer functions. For sufficiently large n, we construct an explicit

(n, s(n), e(n))-stuck-at noisy memory scheme with rate re,s − s(n)
n − o(1).

It may seem restricting that in addition to correcting e adversarial errors, the
code needs to be linear and have large dual distance. Nevertheless, in some
cases these additional properties come at no extra cost (when measuring the
rate as a function of the number of adversarial errors). One such example is the
Hamming code which is an explicit linear code with distance 3 that has best
possible rate amongst all codes with such distance. The dual code (which is the
Hadamard code) has distance s(n) = n/2. Altogether, this gives that for p ≤ 1/2
and s(n) ≤ pn, we get a scheme with rate 1 − p − o(1) that corrects e(n) = 1
adversarial errors.

We can do even better and allow e(n) = o(
√
n) adversarial errors for the

same rate of 1−p−o(1) by using BCH codes. For any e(n) = o(
√
n), BCH codes

give us an explicit family of linear codes with block length n → ∞ that have
distance 2e(n)+ 1 (which in turns allows correcting e(n) adversarial errors) and
dimension at least n− logn · e(n)− 1. The dual distance of this code is at least
n/2− e(n) · √n. This translates into the following corollary.

Corollary 12. Let p < 1/2 be a constant and let e(n) = o(
√
n) and s(n) ≤ pn.

For sufficiently large n, we construct an explicit (n, s(n), e(n))-stuck-at noisy
memory scheme with rate 1− p− o(1).

This means that we can allow e(n) = o(
√
n) adversarial errors at the same rate

given in Corollary 3 (except for the identity of the function hidden in the o(1)
term). Furthermore, as n → ∞ this rate matches the trivial bound of 1 − p
(and recall that this bound holds even without adversarial errors and when the
decoding procedure knows the defect pattern).3

3 The function hidden in the o(1) term in Corollary 12 is O(1/
√
log log n). This is much

larger than the o(1) term in Corollary 3 which is O(logO(1) n/n). We also mention
that for our choice of parameters, re(n),pn = 1−O(e(n)·log n/n). We remark that our
approach can potentially achieve rate approximately re(n),pn − pn, given improved
explicit construction of zero-error dispersers for affine sources.

Invertible Zero-Error Dispersers and Defective Memory with Stuck-At Errors 561

1.8 Decoding Using Zero-Error Dispersers for Affine Sources

Loosely speaking, the reason that dual distance comes up naturally in the results
above is that a linear code C ⊆ Fn2 with dual distance s has the property that for
every S ⊆ [n] of size s and every u ∈ {0, 1}s, C has a non-empty subset CS,u of
codewords x satisfying x|S = u. This follows as the rate(C)·n×n generator matrix
of such a code has the property that every s columns are linearly independent.
Once we know that CS,u is not empty, it follows by linearity that it is in fact quite
large, as it forms an affine subspace of Fn2 with dimension at least rate(C) ·n− s.

This suggests that given (S, u), it might be a good idea that the encoding
procedure of the memory scheme encodes strings z ∈ {0, 1}m by strings x ∈
CS,u. Such strings are consistent with the defect pattern, and they form an
error correcting code (that can correct as many errors as C can). The advantage
of this approach is that it is easy for the decoding procedure of the memory
scheme to handle the adversarial errors: Upon receiving a corrupted string x′

(that was derived from some x ∈ CS,u by e adversarial errors) one can run the
decoding algorithm of C to recover x. At this point, the decoding procedure of
the memory scheme (which does not know S, u) needs to recover the original
string z by applying some polynomial time function f : {0, 1}n → {0, 1}m on x.
We would like f to have to have the following property: For every z ∈ {0, 1}m
and every defect pattern (S, u), there exists an x ∈ CS,u such that f(x) = z, and
furthermore that such an x can be found efficiently given S, u and z. This implies
that we can use efficiently invertible zero-error dispersers for affine sources with
entropy threshold rate(C) · n− s (that we define next).

Definition 13 (Affine sources). An affine source X is a distribution over
{0, 1}n (identified with Fn2) that is uniform over some affine subspace of Fn2 .

Note that every bit-fixing source is also an affine source, and that the class of
affine sources is polynomially specified as every affine subspace can be specified
by at most n affine constraints. The argument explained above gives the following
theorem.

Theorem 14. Given integers s, e and n, let C ⊆ {0, 1}n be a linear code that
corrects e errors and has dual distance s. Given a zero-error disperser f :
{0, 1}n → {0, 1}m for affine sources with entropy threshold rate(C) · n− s, there
exists an (n, s, e)-stuck-at noisy memory scheme with rate m/n. Furthermore, if
C has polynomial time encoding and decoding, and f is explicit and efficiently
invertible, then the scheme is explicit.

1.9 A New Construction of Invertible Zero-Error Dispersers for
Affine Sources

By Theorem 14 the problem of constructing explicit (n, s(n), e(n))-stuck-at noisy
memory scheme is reduced to the task of explicitly constructing an efficiently
invertible zero-error disperser for affine sources with entropy threshold k =
rs,e ·n−s. Once again, we require dispersers with output lengthm = (1−o(1))·k.

562 A. Gabizon and R. Shaltiel

Similar to the situation for bit-fixing sources, no such explicit constructions are
known. Moreover, for affine sources, there are no explicit constructions with
m = ω(1) for k = o(n/

√
log logn). For k = Ω(n/

√
log logn) there is an ex-

plicit construction that achieves m = Ω(k). This is due to by Bourgain [2]
with improvements by Yehudayoff [25] and Li [13] (in fact, this construction
gives an extractor which is a stronger object than a disperser). For smaller k,
the best known constructions by Kopparty and Ben-Sasson [1] (which handles

k = Ω(n4/5) and Shaltiel [18] (which handles k ≥ 2log
0.9 n) only achieve m = 1.

Furthermore, as was the case for bit-fixing sources, these constructions do not
seem to be easily invertible.

In this paper, we give an improved construction of zero-error dispersers for
affine sources. Our construction (which uses the construction of [2,13,25]) achieves
m = (1− o(1)) · k and is efficiently invertible. Plugging this construction in The-
orem 14 yields Theorem 11.

Theorem 15 (Zero-error disperser for affine sources). There exists a con-
stant β > 0 such that if n is large enough and k ≥ βn√

log logn
, there is an explicit

and efficiently invertible zero-error disperser D : {0, 1}n → {0, 1}k−
βn√

log log n for
affine sources with entropy threshold k.

Note that in particular, this gives m = (1 − o(1)) · k for linear k. We stress
that that Theorem 15 is incomparable to the results of [2,13,25]. It achieves
better output length, but we only obtain a zero-error disperser and not an
extractor. Obviously, the disperser of Theorem 15 is also good for bit-fixing
sources. However, it is incomparable to Theorem 9 as it only works for entropy
threshold k = Ω(n/

√
log log n) whereas Theorem 9 allows entropy threshold

k = (logn)O(1). Moreover, the output length of Theorem 9 is superior even for
large k. The inferior parameters of our zero-error disperser for affine sources
(compared to the case of bit-fixing sources) is the cause for the less tight bounds
that we obtain on schemes in the noisy case, as discussed in a footnote in the
end of the previous section.

Organization of the paper. Due to space limitations the constructions and proofs
of our zero error dispersers are deferred to the full version (which can be down-
loaded from the web pages of the authors).

2 Technique

In order to construct the zero-error dispersers of Theorem 9 and Theorem 15
we use the composition approach of Gabizon and Shaltiel [6] (see also [5,17]).
Namely, we start with a zero-error disperser that output m0 = O(log n) bits
(for which there are explicit constructions by [14,2,25,13]) and compose it with
some function F : {0, 1}n × {0, 1}m0 → {0, 1}m to get D : {0, 1}n → {0, 1}m
defined by D(x) = F (x,D′(x)). In the full version we give constructions of
adequate functions F such that the resulting function is a zero-error disperser.

Invertible Zero-Error Dispersers and Defective Memory with Stuck-At Errors 563

For this purpose, we compose several constructions of “linear seeded extractors”
[22,15,20] and of “averaging samplers” [5] (see the survey article [7]). We also
observe that if F is efficiently invertible (in a natural sense) and D′ is explicit,
then D is efficiently invertible. Exact details are given in the full version.

3 Conclusion and Open Problems

An interesting open problem is to improve the output length of our zero-error
dispersers for affine sources. (Note that we get output length m = k − logO(1) n
for bit-fixing sources, and only m = k −O(n/

√
log logn) for affine sources).

Getting improvements in the case of affine sources will allow us to improve
the bounds we get on m(n) in the case where there are both stuck-at errors
and adversarial errors. This matters especially in settings where re,s = 1. More
specifically, for codes C with dimension n − a(n) for a(n) = o(n) (such as the
Hamming and BCH codes that we use in our schemes), matching the output
length we obtain for bit-fixing sources will allow us to show that m(n) = n −
a(n)− s(n)− logO(1) n, whereas we currently achieve m(n) = n− a(n)− s(n)−
O(n/

√
log logn).

If we plan to use our composition method to construct improved dispersers
for affine sources, then we need to first solve the case of dispersers for affine
sources with low entropy threshold. It suffices to output m = Θ(log n) bits
to “jump-start” our approach. Nevertheless, we remark that all known explicit
constructions for small k [1,18] achieve only m = 1.

It may also be interesting to try and come up with schemes where the encoding
procedure is deterministic rather than randomized.

Acknowledgements. We thank Amir Shpilka for many helpful conversations.
We thank Eli Ben-Sasson and Simon Litsyn for answering our questions on
coding theory. We thank the anonymous reviewers for helpful comments.

References

1. Ben-Sasson, E., Kopparty, S.: Affine dispersers from subspace polynomials. In:
STOC, pp. 65–74 (2009)

2. Bourgain, J.: On the construction of affine extractors. Geometric and Functional
Analysis 17(1), 33–57 (2007)

3. Chor, B., Goldreich, O., H̊astad, J., Friedman, J., Rudich, S., Smolensky, R.: The
bit extraction problem of t-resilient functions. In: 26th Annual Symposium on
Foundations of Computer Science, pp. 396–407 (1985)

4. Cohen, A., Wigderson, A.: Dispersers, deterministic amplification, and weak ran-
dom sources. In: 30th Annual Symposium on Foundations of Computer Science,
pp. 14–19 (1989)

5. Gabizon, A., Raz, R., Shaltiel, R.: Deterministic extractors for bit-fixing sources
by obtaining an independent seed. SICOMP: SIAM Journal on Computing 36(4),
1072–1094 (2006)

564 A. Gabizon and R. Shaltiel

6. Gabizon, A., Shaltiel, R.: Increasing the output length of zero-error dispersers.
Random Struct. Algorithms 40(1), 74–104 (2012)

7. Goldreich, O.: A Sample of Samplers: A Computational Perspective on Sampling.
In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. LNCS, vol. 6650,
pp. 302–332. Springer, Heidelberg (2011)

8. Heegard, C.: Partitioned linear block codes for computer memory with ’stuck-at’
defects. IEEE Transactions on Information Theory 29(6), 831–842 (1983)

9. Kamp, J., Zuckerman, D.: Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. SIAM J. Comput., 1231–1247 (2007)

10. Kuznetsov, A.V., Kasami, T., Yamamura, S.: An error correcting scheme for de-
fective memory. IEEE Trans. Inform. Theory 24(6), 712–718 (1978)

11. Kuznetsov, A.V., Tsybakov, B.S.: Coding in a memory with defective cells. Probl.
Peredachi Inf. 10, 52–60 (1974)

12. Lastras-Montaño, L.A., Jagmohan, A., Franceschini, M.: Algorithms for memories
with stuck cells. In: ISIT, pp. 968–972 (2010)

13. Li, X.: A new approach to affine extractors and dispersers. In: IEEE Conference
on Computational Complexity, pp. 137–147 (2011)

14. Rao, A.: Extractors for low-weight affine sources. In: IEEE Conference on Compu-
tational Complexity, pp. 95–101 (2009)

15. Raz, R., Reingold, O., Vadhan, S.P.: Extracting all the randomness and reducing
the error in trevisan’s extractors. J. Comput. Syst. Sci. 65(1), 97–128 (2002)

16. Rivest, R.L., Shamir, A.: How to reuse a “write-once” memory. Information and
Control, 1–19 (1982)

17. Shaltiel, R.: How to get more mileage from randomness extractors. Random Struct.
Algorithms, 157–186 (2008)

18. Shaltiel, R.: Dispersers for affine sources with sub-polynomial entropy. In: FOCS,
pp. 247–256 (2011)

19. Shaltiel, R.: An Introduction to Randomness Extractors. In: Aceto, L., Henzinger,
M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 21–41. Springer,
Heidelberg (2011)

20. Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudo-
random generator. J. ACM 52(2), 172–216 (2005)

21. Shpilka, A.: Capacity Achieving Two-Write WOM Codes. In: Fernández-Baca, D.
(ed.) LATIN 2012. LNCS, vol. 7256, pp. 631–642. Springer, Heidelberg (2012)

22. Trevisan, L.: Extractors and pseudorandom generators. J. ACM 48(4), 860–879
(2001)

23. Tsybakov, B.S.: Additive group codes for defect correction. Prob. Peredachi
Inf. 11(1), 111–113 (1975)

24. Tsybakov, B.S.: Defect and error correction. Prob. Peredachi Inf. 11(3), 21–30
(1975)

25. Yehudayoff, A.: Affine extractors over prime fields. Combinatorica 31(2), 245–256
(2011)

Two-Sided Error Proximity Oblivious Testing

(Extended Abstract)�

Oded Goldreich �� and Igor Shinkar

Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, Israel

{oded.goldreich,igor.shinkar}@weizmann.ac.il

Abstract. Loosely speaking, a proximity-oblivious (property) tester is
a randomized algorithm that makes a constant number of queries to a
tested object and distinguishes objects that have a predetermined prop-
erty from those that lack it. Specifically, for some threshold probability
c, objects having the property are accepted with probability at least c,
whereas objects that are ε-far from having the property are accepted
with probability at most c− F (ε), where F : (0, 1]→ (0, 1] is some fixed
monotone function. (We stress that, in contrast to standard testers, a
proximity-oblivious tester is not given the proximity parameter.)

The foregoing notion, introduced by Goldreich and Ron (STOC 2009),
was originally defined with respect to c = 1, which corresponds to one-
sided error (proximity-oblivious) testing. Here we study the two-sided
error version of proximity-oblivious testers; that is, the (general) case
of arbitrary c ∈ (0, 1]. We show that, in many natural cases, two-sided
error proximity-oblivious testers are more powerful than one-sided error
proximity-oblivious testers; that is, many natural properties that have
no one-sided error proximity-oblivious testers do have a two-sided error
proximity-oblivious tester.

1 Introduction

In the last fifteen years, the area of property testing has attracted much attention
(see, e.g., a couple of recent surveys [R1, R2]). Loosely speaking, property testing
typically refers to sub-linear time probabilistic algorithms for deciding whether
a given object has a predetermined property or is far from any object having
this property. Such algorithms, called testers, obtain local views of the object by
performing queries; that is, the object is seen as a function and the testers get
oracle access to this function (and thus may be expected to work in time that is
sub-linear in the length of the object).

The foregoing description refers to the notion of “far away” objects, which
in turn presumes a notion of distance between objects as well as a parameter
determining when two objects are considered to be far from one another. The

� The full version of this paper is available at http://eccc.hpi-web.de/report/

2012/021
�� Partially supported by the Israel Science Foundation (grant No. 1041/08).

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 565–578, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://eccc.hpi-web.de/report/2012/021.
http://eccc.hpi-web.de/report/2012/021.

566 O. Goldreich and I. Shinkar

latter parameter is called the proximity parameter, and is often denoted ε; that is,
one typically requires the tester to reject with high probability any object that
is ε-far from the property.

Needless to say, in order to satisfy the aforementioned requirement, any tester
(of a reasonable property) must obtain the proximity parameter as auxiliary
input (and determine its actions accordingly). A natural question, first addressed
systematically by Goldreich and Ron [GR], is what does the tester do with this
parameter (or how does the parameter affect the actions of the tester). A very
minimal effect is exhibited by testers that, based on the value of the proximity
parameter, determine the number of times that a basic test is invoked, where
the basic test is oblivious of the proximity parameter. Such basic tests, called
proximity-oblivious testers, are indeed at the focus of the study initiated in [GR].

Loosely speaking, a proximity-oblivious tester (POT)makes anumber of queries
that does not depend on the proximity parameter, but the quality of its ruling does
depend on the actual distance of the tested object to the property. (A standard
tester of constant error probability can be obtained by repeatedly invoking a POT
for a number of times that depends on the proximity parameter.)1

The original presentation (in [GR]) focused on POTs that always accept ob-
jects having the property. Indeed, the setting of one-sided error probability is
the most appealing and natural setting for the study of POT. Still, one can also
define a meaningful notion of two-sided error probability proximity-oblivious
testers (POTs) by generalizing the definition (i.e., [GR, Def. 2.2]) as follows:2

Definition 1.1 (POT, generalized): Let Π =
⋃
n∈NΠn, where Πn contains

functions defined over the domain [n]
def
= {1, ..., n}, and let % : (0, 1] → (0, 1]

be monotone. A two-sided error POT with detection probability % for Π is a prob-
abilistic oracle machine T that makes a constant number of queries and satisfies
the following two conditions, with respect to some constant c ∈ (0, 1]:

1. For every n ∈ N and f ∈ Πn, it holds that Pr[T f(n)=1] ≥ c.
2. For every n ∈ N and f : [n] → {0, 1}∗ not in Πn, it holds that Pr[T f(n)=

1] ≤ c − %(δΠn(f)), where δΠn(f) = ming∈Πn{δ(f, g)} and δ(f, g)
def
= |{x ∈

[n] : f(x) �=g(x)}|/n.

The constant c is called the threshold probability (of T).

Indeed, one-sided error POTs (i.e., [GR, Def. 2.2]) are obtained as a special
case by letting c = 1. Furthermore, for every c ∈ (0, 1], every property having a
one-sided error POT also has a two-sided error POT of threshold probability c
(e.g., consider a generalized POT that activates the one-sided error POT with
probability c and rejects otherwise). Likewise, every property having a (two-sided
error) POT, has a two-sided error POT of threshold probability 1/2.

1 Specifically, referring toDefinition 1.1,when given proximity parameter ε, the standard
tester invokes the POT O(1/�(ε)2) times.

2 For simplicity, we define POTs as making a constant number of queries, and this
definition is used throughout the current work. However, as in [GR], the definition
may be extended to allow the query complexity to depend on n.

Two-Sided Error Proximity Oblivious Testing 567

Motivation. Property testing can be thought of as relating local views to global
properties, where the local view is provided by the queries and the global prop-
erty is the distance to a predetermined set. Proximity-oblivious testing takes this
relation to an extreme by making the local view independent of the distance.
In other words, it refers to the smallest local view that may provide informa-
tion about the global property (i.e., the distance to a predetermined set). Hence,
POTs are a natural context for the study of the relation between local views and
global properties of various objects. In addition, a major concrete motivation for
the study of POTs is that understanding a natural subclass of testers (i.e., those
obtained via POTs) may shed light on property testing at large. This motivation
was advocated in [GR], while referring to one-sided error POTs, but it extends
to the generalized notion defined above.

The first question. The first question that arises is whether the latter general-
ization (i.e., from one-sided to two-sided error POTs) is a generalization at all
(i.e., does it increase the power of POTs). This is not obvious, and for some
time the first author implicitly assumed that the answer is negative. However,
considering the issue seriously, one may realize that two-sided error POTs exist
also for properties that have no one-sided error POT. A straightforward example
is the property of Boolean functions that have at least a τ fraction of 1-values,
for any constant τ ∈ (0, 1). But this example is quite artificial and contrived,
and the real question is whether there exist more natural examples. In this paper
we provide a host of such examples.

Our results. The current work reports of several natural properties that have
two-sided error POTs, although they have no one-sided error POTs. A partial
list of such examples includes:

1. Properties of Boolean functions that refer to the fraction of 1-values (i.e., the
density of the preimage of 1). Each such property is specified by a constant
number of subintervals of [0, 1], and a function satisfies such a property if
the fraction of 1-values (of the function) resides in one of these subintervals.
Equivalently, this can be considered as a task of testing Boolean distribu-
tions. Namely, the class is specified by a constant number of subintervals of
[0, 1], and consists of all 0-1 random variables X such that Pr[X = 1] belongs
to one of the subintervals. See Theorems 2.2 and 2.3.

2. More generally, we consider distributions with finite support. We give a
characterization for classes of distributions that have a two sided-error POT.
See Theorem 2.5.

3. Testing graph properties in the adjacency representation model. One class of
properties refers to regular graphs of a prescribed degree and to subclasses
of such regular graphs (e.g., regular graphs that consists of a collection of
bicliques). Another class refers to graphs in which some fixed graph occurs
for a bounded number of times (e.g., at most 1% of the vertex triplets form
triangles). See Theorems 3.1 and 3.2.

It is evident that none of the foregoing properties has a one-sided error POTs.
The point is showing that they all have two-sided error POTs.

568 O. Goldreich and I. Shinkar

The current version. This extended abstract presents only a small sample of
the results that are reported in the full version of this work (which is available
at http://eccc.hpi-web.de/report/2012/021). Likewise, due to space limi-
tations, many of the proofs have been omitted too (and can be found in the full
version of this paper).

2 Testing Properties of Distributions

As mentioned in the introduction, a simple example of a property of Boolean
functions that has a (two-sided error) POT is provided by the set of all functions
that have at least a τ fraction of 1-values, for any constant τ ∈ (0, 1). In this
case, the POT may query the function at a single uniformly chosen preimage
and return the function’s value. Indeed, every function in the foregoing set is
accepted with probability at least τ , whereas every function that is ε-far from
the set is accepted with probability at most τ − ε.

A more telling example refers to the set of Boolean function having a fraction
of 1-values that is at least τ1 but at most τ2, for any 0 < τ1 < τ2 < 1. This
property has a two-sided error POT that selects uniformly two samples in the
function’s domain, obtains the function values on them, and accept with proba-

bility αi if the sum of the answers equals i, where (α0, α1, α2) = (0, 1, 2(τ1+τ2−1)
τ1+τ2

)

if τ1 + τ2 ≥ 1, and (α0, α1, α2) = (2(1−τ1−τ2)2−τ1−τ2 , 1, 0) otherwise.
In general, we consider properties that are each specified by a sequence of

t density thresholds, denoted τ = (τ1, ..., τt) ∈ [0, 1]t, such that t is even and
τ1 ≤ τ2 < · · · < τt−1 ≤ τt. The corresponding property, denoted Bτ , consists of
all Boolean functions f : [n] → {0, 1} such that for some i ≤ �t/2� it holds that
τ2i−1 ≤ Prr∈[n][f(r)=1] ≤ τ2i.

We observe that the foregoing testing task, which refers to Boolean func-
tions, can be reduced to testing 0-1 distributions when the tester is given several
samples of the tested distribution (i.e., these samples are independently and iden-
tically distributed according to the tested distribution).3 Specifically, the corre-
sponding class of Boolean distributions, denoted Dτ , consists of all 0-1 random
variables X such that for some i ≤ �t/2� it holds that τ2i−1 ≤ Pr[X=1] ≤ τ2i.
Indeed, (uniformly selected) queries made to a Boolean function (when testing
Bτ) correspond to samples obtained from the tested distribution.

More generally, we will be interested in testing distributions over larger fixed-
size domains. It turns out that POTs for properties of multi-valued distributions
are more exceptional than their binary-valued analogues. Analogously to the case
of binary distributions, where properties that correspond to intervals (bounding
the probability that the outcome is 1) have POTs, it is tempting to hope that
properties of ternary distributions that correspond to rectangles (bounding the
probabilities of the outcomes 1 and 2 respectively) also have POTs. However,
as shown in Section 2.5, this is typically not the case! In contrast, properties

3 In this case, the distance between distributions is merely the standard notion of
statistical distance.

Two-Sided Error Proximity Oblivious Testing 569

of multi-valued distributions that corresponds to regions that are ellipsoids do
have POTs.

2.1 A Generic Tester for Boolean Distributions and Its Analysis

A generic tester for Dτ obtains k (independent) samples from the tested distri-
bution, where k may (but need not) equal t, and outputs 1 with probability αi if
exactly i of the samples have value 1. That is, this generic tester is parameter-
ized by the sequence α = (α0, α1, ..., αk). The question, of course, is how many
samples do we need (i.e., how is k related to t and/or to other parameters); in
other words, whether it is possible to select a (k + 1)-long sequence α such that
the resulting tester, denoted Tα, is a POT for Dτ . (We shall show that k = t is
sufficient and necessary.) The key quantity to analyze is the probability that this
tester (i.e., Tα) accepts a distribution that is 1 with probability q. This accepting
probability, denoted Pα(q), satisfies

Pα(q) =
k∑
i=0

(
k

i

)
· qi(1− q)k−i · αi. (1)

Indeed, the function Pα is a degree k polynomial. Noting that 0-1 distributions
are determined by the probability that they assume the value 1, we associate
these distributions with the corresponding probabilities (e.g., we may say that
q is in Dτ and mean that the distribution that is 1 with probability q is in
Dτ). Thus, Tα is a POT for Dτ if every distribution that is ε-far from Dτ is

accepted with probability at most c − %(ε), where c
def
= minq∈Dτ

{Pα(q)} and
% : (0, 1] → (0, 1] is some monotone function.

One necessary condition for the foregoing condition to hold is that for every
i ∈ [t] it holds that Pα(τi) = c, because otherwise a tiny shift from some τi
to outside Dτ will not reduce the value of Pα(·) below c. Another necessary
condition is that Pα(·) is not a constant function. We first show that there exists
a setting of α for which both conditions hold (and, in particular, for k = t).

Proposition 2.1 (on the existence of τ such that Pα is “good”): For every
sequence τ = (τ1, ..., τt) such that 0 < τ1 < τ2 < · · · < τt < 1, there exists a
sequence α = (α0, α1, ..., αt) ∈ [0, 1]t+1 such that the following two conditions
hold

1. For every i ∈ [t], it holds that Pα(τi) = Pα(τ1).
2. The function Pα is not a constant function.

Proof. Fixing any q, we view (1) as a linear expression in the αi’s. Thus, Condi-
tion 1 yields a system of t−1 linear equations in the t+1 variables α0, α1, ..., αt.
This system is not contradictory, since the uniform vector, denoted u, is a so-
lution (i.e., α = ((t + 1)−1, ..., (t + 1)−1) satisfies Pα(τi) = (t + 1)−1). Thus,
this (t − 1 dimensional) system has also a solution that is linearly independent
of u. Denoting such a solution by s, consider arbitrary β �= 0 and γ such that

570 O. Goldreich and I. Shinkar

βs + γu ∈ [0, 1]t+1 \ {0t+1}. Note that α
def
= βs + γu satisfies the linear system

and is not spanned by u. To establish Condition 2, we show that only vectors α
that are spanned by u yield a constant function Pα. To see this fact, write Pα(q)
as a polynomial in q, obtaining:

Pα(q) =

t∑
d=0

(−1)d
(
t

d

)
·
(

d∑
i=0

(−1)i
(
d

i

)
· αi

)
· qd. (2)

Hence, if Pα is a constant function, then for every d ∈ [t] it holds that∑d
i=0(−1)i

(
d
i

)
· αi = 0, which yields a system of t linearly independent equa-

tion in t+ 1 unknowns. Thus, the only solutions to this system are vectors that
are spanned by u, and the claim follows. ��

We next prove that the sequence α guaranteed by Proposition 2.1 yields a POT
for Dτ .

Theorem 2.2 (analysis of Tα): For every sequence τ = (τ1, ..., τt) such that
0 < τ1 < τ2 < · · · < τt < 1, there exists a sequence α = (α0, α1, ..., αt) ∈ [0, 1]t+1

such that Tα is a POT with linear detection probability for Dτ .

Proof. Let α = (α0, α1, ..., αt) ∈ [0, 1]t+1 be as guaranteed by Proposition 2.1.
Then, the (degree t) polynomial Pα “oscillates” in [0, 1], while obtaining the value
Pα(τ1) on the t points τ1, τ2, ..., τt (and only on these points). Thus, for every
i ∈ [t] and all sufficiently small ε > 0, exactly one of the values Pα(τi − ε) and
Pα(τi + ε) is larger than Pα(τ1) (and the other is smaller than it). Without loss
of generality, it holds that Pα(q) ≥ Pα(τ1) for every q in Dτ and Pα(q) < Pα(τ1)
otherwise.4 Furthermore, we claim that there exists a constant γ such that, for
any probability q that is ε-far from Dτ , it holds that Pα(q) ≤ Pα(τ1) − γ · ε.
This claim can be proved by considering the Taylor expansion of Pα; specifically,
expanding Pα(q) based on the value at τi yields

Pα(q) = Pα(τi) + P′α(τi) · (q − τi) +
t∑

j=2

P
(j)
α (τi)

j!
· (q − τi)

j ,

where P′α is the derivative of Pα and P
(j)
α is the jth derivative of Pα. By the

above, P′α(τi) �= 0 (for all i ∈ [t]). Let v
def
= mini∈[t]{|P′α(τi)|} > 0 and w

def
=

maxi∈[t],j≥2{|P(j)α (τi)|/j!}. Then, for all sufficiently small ε > 0 (say for ε ≤
min(1, v)/3w), if |q − τi| = ε then

∑t
j=2

P
(j)
α (τi)

j! · (q − τi)
j is upper bounded by∑

j≥2 w · ε(v/3w) · (1/3)j−2 = v · ε/2; and so, for every i ≤ �t/2�, it holds that
Pα(τ2i−1 − ε) < Pα(τ2i−1) − v · ε/2 and Pα(τ2i + ε) < Pα(τ2i) − v · ε/2. Using
γ = min(1, v)/3tw, the claim holds for all ε ≤ 1. ��

4 Otherwise, use 1− Pα.

Two-Sided Error Proximity Oblivious Testing 571

Sample optimality: We have analyzed a generic tester that uses k = t samples for
testing a property parameterized by t thresholds (i.e., τ = (τ1, ..., τt)). The proof
of Theorem 2.2 implies that using t samples (i.e., k ≥ t) is necessary, because
for α = (α0, α1, ..., αk) we need the (non-constant) degree k polynomial Pα to
attain the same value on t points (i.e., the τi’s).

2.2 Generalization of Theorem 2.2

So far we considered distribution classes Dτ such that τ = (τ1, ..., τt) and 0 <
τ1 < τ2 < · · · < τt < 1. We now extend the treatment as follows.

Theorem 2.3 (Theorem 2.2, generalized): For every sequence τ = (τ1, ..., τt) ∈
[0, 1]t such that τ1 ≤ τ2 < τ3 ≤ τ4 < · · · < τt−1 ≤ τt, there exists a sequence
α = (α0, α1, ..., αt) ∈ [0, 1]t+1 such that Tα is a POT with quadratic detection
probability for Dτ . Furthermore, if τ2i−1 = τ2i for every i ∈ [�t/2�], then Pα(q) =
Pα(τ1) for every q in Dτ .

2.3 POTs Can Test Only Intervals

In this section we show that the only testable classes of Boolean distributions are
those defined by a finite collection of intervals in [0, 1], where intervals of length
zero (i.e., points) are allowed. This means that the only properties of Boolean
distribution that have a POT are those covered in Theorem 2.3.

Theorem 2.4 (characterization of Boolean distributions having a POT): Let
DS be a property of Boolean distributions associated with a set S ⊆ [0, 1] such
that X ∈ DS if and only if Pr[X = 1] ∈ S. Then, the property DS has a POT if
and only if S consists of a finite subset of subintervals of [0, 1].

Proof. The “if” direction follows from Theorem 2.3. For the other direction,
assume that T is POT for DS that makes k queries. Then, for a view b =
(b1, . . . , bk) ∈ {0, 1}k, the tester T accepts this view with some probability,
denoted αb ∈ [0, 1]. Note that when testing a distribution X such that Pr[X =

1] = p, the probability of seing this view is pw(b)(1−p)k−w(b), where w(b) =
∑

j bj

denotes the number of 1’s in b. Hence, when given a distribution X such that
Pr[X = 1] = p, the acceptance probability of T on X is

Pr[T accepts X] =

k∑
i=0

⎛⎝ ∑
b∈{0,1}k:w(b)=i

αb

⎞⎠ pi(1− p)k−i,

which is a polynomial of degree k (in p). Thus, for every r ∈ R, the set of points
p ∈ [0, 1] on which the value of this polynomial is at least r equals a union of
up to �(k + 1)/2� intervals. In particular, this holds for r = c, where c denotes
the threshold probability of T , in which case this set of points equals the set S
(because T is POT for DS). The theorem follows. ��

572 O. Goldreich and I. Shinkar

2.4 Distributions over Larger Domains

We generalize the results from the previous section to distributions over larger
(finite) domains. For r ∈ N we shall identify a distribution q = (q1, . . . , qr) on
[r] with a point in Δ(r), where

Δ(r) = {(q1, . . . , qr) ∈ [0, 1]r :
∑
i∈[t]

qi = 1}. (3)

Similarly, a class of distributions with domain [r] will be identified with a subset
of Δ(r) in a natural way. The special case of Boolean distributions corresponds
to r = 2, for which Δ(2) = {(p, 1− p) : p ∈ [0, 1]}.

The following result asserts that a class of distributions has a POT if and
only if there exists a polynomial that is non-negative exactly on the points that
correspond to distributions in that class. Thus, the question of whether or not
there exists a POT for Π ⊆ Δ(r) reduces to whether or not some polynomial
can be non-negative on Π and negative on Δ(r) \Π .

Theorem 2.5 (POT and polynomials in the context of distribution testing):
Let Π be an arbitrary class of distributions q = (q1, . . . , qr) with domain [r];
that is, Π ⊆ Δ(r). Then, Π has a two-sided error POT if and only if there is a
polynomial P : Δ(r) → R such that for every distribution q = (q1, . . . , qr) ∈ Δ(r)

it holds

P(q1, . . . , qr) ≥ 0 ⇐⇒ q ∈ Π. (4)

If the total degree of P is t, then Π has a two-sided error POT TΠ that makes t
queries and has polynomial detection probability %(ε) = Ω(εC), where C < tO(r).5

Moreover, the acceptance probability of TΠ when testing q ∈ Δ(r) can be written
as 1

2 + δ · P(q1, . . . , qr) for some constant δ > 0 that depends only on the degree
of P and on an upper bound of the absolute value of all coefficients of P.

Proof. The “only if” direction is proved by using the independence of samples of
the given distribution. Consider a POT TΠ for Π , that makes t sampling queries
and accepts each distribution in Π with probability at least c. When testing
q = (q1, . . . , qr), for every view v = (v1, . . . , vt) ∈ [r]t, the probability of seeing
this view is

∏t
i=1 qvi . Denoting by αv the probability that the tester accepts the

view v = (v1, . . . , vt), we have

Pr[TΠ accepts q] =
∑

v=(v1,...,vt)∈[r]t

(
t∏
i=1

qvi

)
· αv. (5)

Define a polynomial P such that P(q1, . . . , qr) equals the r.h.s of (5) minus c.
Then, by definition of the tester, P satisfies (4).

5 The constant in the Ω() notation depends on P, while the O() notation hides some
absolute constant.

Two-Sided Error Proximity Oblivious Testing 573

For the other direction, let P : Δ(r) → R be a polynomial of degree t. We show
that the class

Π = {(q1, . . . , qr) ∈ Δ(r) : P(q1, . . . , qr) ≥ 0} (6)

has a POT, that makes t queries, and has polynomial detection probability.
In order to simplify the proof, we shall slightly modify P, while making sure

that the modifications of P does not affect Π in (6). Specifically, we multiply
each monomial of degree d < t (of P) by (

∑
i∈[r] qi)

t−d. This does not change the

value of P in Δ(r), and hence does not affect Π .6 Henceforth we shall assume
that P is a homogeneous polynomial of degree t, and therefore can be written as

P(q1, . . . , qr) =
∑
v∈[r]t

αv

t∏
i=1

qvi (7)

for some coefficients αv ∈ R.
Assume thatΠ is non trivial. This implies that not all coefficients αv are zeros.

Given (7), we define a POT TΠ for Π as follows. The tester makes t queries to a
given distribution, gets t samples, denoted by v = (v1, . . . , vt), and accepts with
probability βv = 1

2 + δ · αv, where we choose δ = 1
2·max{|αv|:v∈[r]t} > 0, in order

to assure that βv ∈ [0, 1] for all v. Therefore, when testing q = (q1, . . . , qr) the
acceptance probability of the test is

Pr[TΠ accepts q] =
∑
v∈[r]t

βv

t∏
i=1

qvi =
1

2
+ δ ·

⎛⎝∑
v∈[r]t

αv

t∏
i=1

qvi

⎞⎠ ,

and hence, by (7), the equality above becomes

Pr[TΠ accepts q] =
1

2
+ δ · P(q1, . . . , qr). (8)

Next, we analyze the acceptance probability in (8). If q ∈ Π , then, by (6), we
have P(q1, . . . , qr) ≥ 0, and therefore Pr[TΠ accepts q] ≥ 1

2 . Lastly, assume q is
ε-far from Π . Then, in particular q /∈ Π , and hence P(q1, . . . , qr) < 0. Thus, using
(8), we have Pr[TΠ accepts q] < 1

2 . In order to prove that TΠ is a POT, we need
to show that Pr[TΠ accepts q] is bounded below 1

2 by some function that depends
on ε. This type of result is known in real algebraic geometry as the �Lojasiewicz
inequality (see [BCR, Chapter 2.6]). Specifically, we use the following theorem
of Solernó [Sol].

Theorem 2.6 (Effective �Lojasiewicz inequality): Let P : Δ(r) → R be a polyno-
mial, and let

Π = {(p1, . . . , pr) ∈ Δ(r) : P(p1, . . . , pr) ≥ 0}.
6 This grouping of monomials to homogeneous monomials maps at most 2t monomials
to a single homogeneous monomials, and thus the coefficients in the P may grow by
a factor of at most 2t.

574 O. Goldreich and I. Shinkar

Assume that for q = (q1, . . . , qr) ∈ Δ(r) it holds dist(q,Π) = inf{ 1
2

∑
i∈[r] |qi −

pi| : (p1, . . . , pr) ∈ Π} > ε. Then, P(q1, . . . , qr) < −Ω(εC) for some constant
C < deg(P)O(r), where the constant in the Ω() notation depends on P, and the
O() notation hides some absolute constant.

By applying Theorem 2.6 on (8), we conclude that if q ∈ Δ(r) is ε-far from Π ,
then Pr[TΠ accepts q] < 1

2 − Ω(εC), where C < deg(P)O(r). This completes the
proof of Theorem 2.5. ��

2.5 Corollaries to Theorem 2.5

As hinted upfront, Theorem 2.5 provides a tool towards proving both positive
and negative results regarding the existence of POTs for various properties.
We state several such corollaries for some concrete properties of interest. As
suggested by Theorem 2.5 in order to show that a some property Π ⊆ Δ(r) has
a POT it is enough to construct a polynomial that is non-negative on Π and is
negative in Δ(r) \Π . We omit the proofs due to space limitations.

Closure under disjoint union. Recall that in the standard property testing model,
as well as in one-sided error POT model, testable properties are closed under
union. However, for properties of distributions with two-sided error POT, the
closure under union does not hold in general. Nevertheless, if two disjoint classes
of distributions have two-sided error POTs, then so does their union.

Corollary 2.7 (closure under disjoint union): Let Π1, . . . Πk be disjoint classes
of distributions with domain [r], and suppose that each of the classes Πi has a
two-sided error POT. Then, their union Π = ∪ki=1Πi also has a two-sided error
POT. Moreover, suppose that for each i ∈ [k] the class Πi has a two-sided error
POT that makes ti queries and has detection probability %i. Then, their union
Π = ∪i∈[k]Πi has a two-sided error POT that makes

∑
i∈[k] ti queries and has

detection probability Ω(min{%i : i ∈ [k]}).

Positive corollaries. Corollary 2.8 says that a property Π consisting of a sin-
gle point, or, more generally, of finitely many points has a POT whose query
complexity depends on the size of Π . Corollary 2.9 gives an example of infinite
classes of distributions that have a POT. The example corresponds to properties
whose regions are ellipsoids in Δ(r).

Corollary 2.8 (finite classes of distributions have POTs): Fix r ≥ 2 and k ≥
2, and let Π be a property that contains exactly k distributions with domain
[r]. Then, Π has a POT that makes 2k queries and has quadratic detection
probability.

Corollary 2.9 (some infinite classes of distributions that have POTs): Let p =
(p1, . . . , pr) be a distribution, and let B = (B0;B1, . . . , Br) ∈ Rr+1 such that

Bi > 0 for all i ≥ 0. Define Π(p,B) to be a class of distributions that lie within

Two-Sided Error Proximity Oblivious Testing 575

an ellipsoid centered at p = (p1, . . . , pr) with radii (
√

B0

B1
, . . .

√
B0

Br
). That is,

Π(p,B) = {q = (q1, . . . , qr) :
∑

i∈[r]Bi(qi − pi)
2 ≤ B0}. Then, the property

Π(p,B) has a two-sided error POT that makes two queries and has linear detec-
tion probability.

Negative corollaries. On a negative side, we show that classes of distributions
that correspond to polytopes in general do not have POTs. The proof goes
by showing that there is no polynomial P : Δ(r) → R satisfying the condition
specified in Theorem 2.5.

Corollary 2.10 (in general, polytopes have no POT): Let r ≥ 3. Let Π ⊂ Δ(r)

be a non-trivial polytope7 that has a vertex v that is internal to Δ(r) (i.e., v is
not a convex combination of Π \{v} and all coordinates of v are positive). Then,
Π does not have a POT.

3 Graph Properties (in the Adjacency Representation
Model)

Symmetric properties of Boolean functions induce graph properties (in the ad-
jacency representation model of [GGR]), and so the statistical properties of the
previous section yield analogous properties that refer to the edge densities of
graphs. The question addressed in this section is whether the study of two-sided
error POT can be extended to “genuine” graph properties. The first property
that we consider is degree regularity.

Recall that, in the adjacency matrix model, an N -vertex graphG = ([N], E) is
represented by the Boolean function g : [N]× [N] → {0, 1} such that g(u, v) = 1
if and only if u and v are adjacent in G (i.e., {u, v} ∈ E). Distance between
graphs is measured in terms of their aforementioned representation (i.e., as the
fraction of (the number of) different matrix entries (over N2)), but occasionally
we shall use the more intuitive notion of the fraction of (the number of) edges
over

(
N
2

)
.

3.1 The Class of k-Regular Graphs

For every function k : N → N, we consider the set R(k) = ∪N∈NR(k)
N such that

R(k)
N is the set of all k(N)-regular N -vertex graphs. That is, G ∈ R(k)

N if and only
if G is a simple N -vertex graph in which each vertex has degree k(N). Clearly,
R(k) has no one-sided error POT, provided that 0 < k(N) < N − 1 (cf. [GR]).
In contrast, we show that it has a two-sided error POT.

7 A polytope Π is defined as an intersection of t half-spaces (corresponding to linear
conditions), such that the i-th half-space is given by Hi = {(q1, . . . , qr) ∈ Rr :∑

j∈[r] α
(i)
j qj ≤ βi}. A non-trivial polytope Π is a set in Rr of more than a single

point (i.e., |Π | > 1) that satisfy a system of linear inequalities.

576 O. Goldreich and I. Shinkar

Theorem 3.1 (a POT for R(k)): For every function k : N → N such that
k(N) = κN for some fixed constant κ ∈ (0, 1), the property R(k) has a two-sided
error POT. Furthermore, all graphs in R(k) are accepted with equal probability.

Proof. We may assume that N ·k(N) is an even integer (since otherwise the test
may reject without making any queries). On input N and oracle access to an
N -vertex graph G = ([N], E), the tester sets τ = k(N)/N = κ and proceeds as
follows.

1. Selects uniformly a vertex s ∈ [N] and consider the Boolean function fs :
[N] → {0, 1} such that fs(v) = 1 if and only if {s, v} ∈ E.

2. Invokes the POT of Theorem 2.3 to test whether the function fs has density
τ ; that is, it tests whether the random variable Xs defined uniformly over
[N] such that Xs(v) = fs(v) is in the class Dτ,τ .
Recall that this POT takes two samples of Xs and accepts with probability
αi when seeing i values of 1. (The values of (α0, α1, α2) are set based on τ .)

The implementation of Step 2 calls for taking two samples of Xs, which amounts
to selecting uniformly two vertices and checking whether or not each of them
neighbors s. Thus, we make two queries to the graph G.

Turning to the analysis of the foregoing test, let P(q) denote the probability
that the POT invoked in Step 2 accepts a random variable X such that Pr[X=
x] = q. Then, the probability that our graph tester accepts the graph G equals
1
N ·
∑

s∈[N] P(dG(s)/N), where dG(v) denotes the degree of vertex v in G. Thus,

every k(N)-regular N -vertex graph G is accepted with probability P(τ). As we
shall show, the following claim (which improves over a similar claim in [GGR,

Apdx D]) implies that every graph that is ε-far from R(k)
N is accepted with

probability P(τ) −Ω(ε2).

Claim 3.1.1. If
∑

v∈[N] |dG(v) − k(N)| ≤ ε′ ·N2, then G is 6ε′-close to R(k)
N .

The proof of the claim is omitted here, and can be found in the full version of
this paper. Note that the claim is non-trivial, since it asserts that small local
discrepancies (in the vertex degrees) imply small distance to regularity. The
converse is indeed trivial.

Using the claim above,we infer that ifG is ε-far fromR(k)
N , then

∑
v∈[N] |dG(v)−

k(N)| > ε ·N2/6. On the other hand, by Theorem 2.3, we have, for some γ > 0,

1

N
·
∑
s∈[N]

P(dG(s)/N) ≤ 1

N
·
∑
s∈[N]

(
P(τ)− γ · ((dG(s)− k(N))/N)2

)

≤ P(τ)− γ

N2
·
(∑

s∈[N] |dG(s)− k(N)|
N

)2

where the last inequality follows by the Cauchy-Schwarz inequality. Now, using∑
v∈[N] |dG(v)−k(N)| > ε·N2/6, we conclude thatG is accepted with probability

at most P(τ)− γ · (ε/6)2. The theorem follows. ��

Two-Sided Error Proximity Oblivious Testing 577

3.2 Bounded Density of Induced Copies

Fixing any n-vertex graph H , denote by ρH(G) the density of H as a subgraph
in G; that is, ρH(G) is the probability that a random sample of n vertices in
G induces the subgraph H . For any graph H and τ ∈ [0, 1], we consider the

graph property ΠH,τ
def
= {G : ρH(G) ≤ τ}; in particular, ΠH,0 is the class of

H-free graphs. Alon et al. [AFKS] showed that, for some monotone function Fn :
(0, 1] → (0, 1] if G is δ-far from the class of H-free graphs, then ρH(G) > Fn(δ).
Here we provide a much sharper bound for the case of τ > 0 (while using an
elementary proof).8

Theorem 3.2 (distance from ΠH,τ yields ρH > τ): For every n-vertex graph H
and τ > 0, if G = ([N], E) is δ-far from ΠH,τ , then ρH(G) > (1 + (δn/3)) · τ ,
provided that δ > 6/N .

It follows that ΠH,τ has a two-sided error POT, which just inspects a random
sample of n vertices and checks whether the induced subgraph is isomorphic to
H . This POT accepts a graph in ΠH,τ with probability at least 1− τ , whereas it
accepts any graph that is δ-far fromΠH,τ with probability at most 1−τ−(τn/3)·δ
(if δ > 6/N , and with probability at most 1− τ − (δ/6)n otherwise).

Proof. Let us consider first the case that H contains no isolated vertices. Setting
G0 = G, we proceed in iterations while preserving the invariant that Gi is (δ −
2i/N)-far from ΠH,τ . In particular, we enter the ith iteration with a graph Gi−1

not in ΠH,τ , and infer that Gi−1 contains a vertex, denoted vi, that participates

in at leastM
def
= τ ·

(
N−1
n−1

)
copies ofH . We obtain a graph Gi that is (N−1)/

(
N
2

)
-

close to Gi−1 by omitting from Gi−1 all edges incident at vi. We stress that the
M copies of H counted in the ith iterations are different from the copies counted
in the prior i− 1 iterations, because all copies counted in the ith iteration touch
the vertex vi and do not touch the vertices v1, ..., vi−1, since the latter vertices
are isolated in Gi−1 (whereas H contains no isolated vertices). Also note that
the copies of H counted in the ith iteration also occur in G, since they contain

no vertex pair on which Gi−1 differs from G. Thus, after t
def
= "δN/2# iterations,

we obtain a graph Gt �∈ ΠH,τ , which contain τ ·
(
N
n

)
copies of H that are disjoint

from the t ·M copies of H counted in the t iterations. It follows that

ρH(G) ≥ τ + t · M(
N
n

) = τ + "δN/2# · n · τ
N

> τ +

(
δn

2
− n

N

)
· τ

and the claim follows (using δ > 6/N). Recall, however, that the foregoing relies
on the hypothesis that H has no isolated vertices. If this hypothesis does not
hold, then the complement graph of H has no isolated vertices, and we can
proceed analogously. In other words, if H has an isolated vertex, then no vertex
in H is connected to all the other vertices. In this case, we consider the graph Gi

8 In contrast, the proof of Alon et al. [AFKS] relies on Szemeredy’s Regularity Lemma.

578 O. Goldreich and I. Shinkar

obtained from Gi−1 by connecting the vertex vi to all other vertices in the graph.
Also in this case, H-copies in Gi cannot touch v1, ..., vi−1 (this time because each
vertex in v1, ..., vi−1 is connected to all vertices in Gi−1), and we can proceed as
before. ��

Acknowledgments. We are grateful to Dana Ron for collaboration in early
stages of this research.

References

[AFKS] Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient Testing of Large
Graphs. Combinatorica 20, 451–476 (2000)

[BCR] Bochnak, J., Coste, M., Roy, M.: Real Algebraic Geometry. Springer (1998)
[GGR] Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection

to learning and approximation. Journal of the ACM, 653–750 (July 1998);
Extended abstract in 37th FOCS (1996)

[GR] Goldreich, O., Ron, D.: On Proximity Oblivious Testing. SIAM Journal on
Computing 40(2), 534–566 (2011); Extended abstract in 41st STOC (2009)

[R1] Ron, D.: Property testing: A learning theory perspective. Foundations and
Trends in Machine Learning 1(3), 307–402 (2008)

[R2] Ron, D.: Algorithmic and analysis techniques in property testing. Foundations
and Trends in TCS 5(2), 73–205 (2009)

[RS] Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with ap-
plications to program testing. SIAM Journal on Computing 25(2), 252–271
(1996)

[Sol] Solernó, P.: Effective �Lojasiewicz Inequalities in Semialgebraic Geometry. Ap-
plicable Algebra in Engineering, Communication and Computing 2(1), 1–14
(1990)

Mirror Descent Based Database Privacy

Prateek Jain1 and Abhradeep Thakurta2

1 Microsoft Research India
prajain@microsoft.com

2 Pennsylvania State University
azg161@cse.psu.edu

Abstract. In this paper, we focus on the problem of private database
release in the interactive setting: a trusted database curator receives
queries in an online manner for which it needs to respond with accurate
but privacy preserving answers. To this end, we generalize the IDC (Iter-
ative Database Construction) framework of [15,13] that maintains a dif-
ferentially private artificial dataset and answers incoming linear queries
using the artificial dataset. In particular, we formulate a generic IDC
framework based on the Mirror Descent algorithm, a popular convex
optimization algorithm [1]. We then present two concrete applications,
namely, cut queries over a bipartite graph and linear queries over low-
rank matrices, and provide significantly tighter error bounds than the
ones by [15,13].

1 Introduction

Statistical analysis is extensively used to mine interesting information/patterns
from the data. However, releasing such information can potentially compromise
privacy of the individual records in the data [8,11,4], hence risk leaking sensitive
information, e.g., health/financial records of a person/company.

Existing literature on privacy preserving statistical analysis studies the prob-
lem in two different settings: interactive and non-interactive. In the interactive
setting, a database curator who owns a dataset (e.g. a hospital/bank) tries to
answer queries about the dataset accurately (i.e., with small error), while pre-
serving privacy of each individual in the dataset. In the non-interactive setting,
the curator releases a “sanitized” version of the dataset that accurately an-
swers all the queries in a given query class [2,9]. While non-interactive setting
has been extensively explored in the literature[2,18,14,9,12], interactive-setting
is relatively less-explored with most results being fairly recent [19,15,13].

In this paper, we focus on the interactive setting mentioned above, where
the queries can be adaptively (and even adversarially) chosen according to past
queries and their responses. For privacy, we use the notion of differential privacy
[7,6] which is one of the most successful and theoretically sound notions, and is
now being accepted as a benchmark. Intuitively, the output of a differentially
private algorithm running on a dataset should be almost independent of the
inclusion (or exclusion) of any individual data record. It is trivial to achieve

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 579–590, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

580 P. Jain and A. Thakurta

privacy by giving a response that is completely independent of the underlying
data. However, such a response will have large error and hence low utility.

A slightly better solution is to independently add enough noise to each query
response such that it nullifies the effect of any particular record in the dataset.
However, to preserve privacy for k queries with this scheme, näıve analysis sug-
gests that the error in each query scales as O(

√
k). In the pursuit of obtaining

a better error bound than O(
√
k), [19] proposed an algorithm called the median

mechanism that improves over the näıve solution, and guarantees O(poly(log k)
N1/3)

error in each query response for adaptive queries over normalized histograms.
Here N is the number of records in the database. While their result reduced
the dependence on the number of queries to log k, the error bound was still
higher than the sampling error of 1/

√
N . Furthermore, in general the algorithm

is super-polynomial in both N and k.
Recently, [15] proposed a multiplicative weights update (MW) based algo-

rithm that can guarantee O(
√

(log k)/N) error for linear queries over normalized
histograms. Their method maintains a differentially private artificial dataset at
each step. For a given query, if the existing artificial dataset provides an answer
close to the true response then the artificial dataset is not updated. Otherwise,
the artificial dataset is updated so that it gets “closer” to the true dataset. [15]
show that a multiplicative update to the dataset requires a small number of
updates and hence only a small amount of noise needs to be added at each step.

Subsequently, [13] proposed a more generic framework which, given an update
mechanism or Iterative Database Construction scheme (IDC) for maintaining
artificial dataset, can guarantee privacy as well as utility (i.e., bound on the
error in each query response). Utility guarantee by [13] depends on the number
of updates that the given IDC might require in the worst case. Moreover, [13] also
proposed an update scheme based on Frieze/Kannan (FK) cut decomposition
method and provided utility guarantee for the same.

In this paper, we use the framework of [13] and provide a generic Iterative
Database Construction scheme (IDC) based on the Mirror Descent algorithm, a
popular convex optimization method [1]. Our Mirror Descent based IDC (MD-
IDC) scheme can be adapted for any strongly convex potential function. Further,
we provide a bound on the number of updates required by our MD-IDC scheme
and thus obtain privacy and utility guarantees using framework of [13]. We show
that the MW update based IDC (MW-IDC) and the FK algorithm based IDC
(FK-IDC) are special cases of our generic MD-IDC and their utility guarantees
follows directly from our generalized analysis.

Depending on the structure of the set of queries as well as the geometry of the
dataset, MD-IDC can provide different utility guarantees for different potential
functions. We provide examples where, by selecting different potential function
than the ones used by [15,13], we can obtain tighter error bounds.

Next, we apply our framework to the problem of releasing cut values in a bi-
partite graph and propose an algorithm that guarantees smaller error than both
[15] and [13]. For this problem, we use a group-norm based potential function
that is known to exploit sparsity structure in the data [22]. Similarly, we apply

Mirror Descent Based Database Privacy 581

our framework to the problem of releasing linear queries over a dataset that is a
low-rank matrix. We show that by using spectral structure of both the underlying
matrix and the queries, our method guarantees smaller error than the methods
of [13] and [15].

Our Contributions:

1. Unify and generalize MW-IDC and FK-IDC [15,13]: We propose a
generic Mirror Descent based IDC (MD-IDC) which is a generalized update
rule from which MW-IDC and FK-IDC can be derived as special cases.

2. Exploit geometry of true dataset and queries: Using our Mirror
Descent-IDC, we can capture a wider class of structural properties on the
underlying dataset x∗ and the set of linear queries F . Specifically, we pro-
vide potential functions for MD-IDC that can directly exploit bound on any
arbitrary Lp-norm of x∗ and the Lq-norm over F . In contrast, [15,13] are
limited to (L1, L∞) and (L2, L2) norm pair, respectively.

3. Application to graph cuts release and linear query release over low-
rank matrices:We compare our utility bounds against the ones provided by
MW-IDC and FK-IDC on three practically relevant applications: i) interac-
tive cut query release for imbalanced bi-partite graphs (i.e., bi-partite graphs
with large degree variations), ii) interactive cut query release for power-law
distributed bipartite graphs (i.e., bipartite graphs where degree distribution
follows a power-law), and iii) private matrix sensing where goal is to release
responses to linear queries over a low-rank matrix. In each case, we show
that our error bounds are significantly tighter than the ones obtained by the
existing methods [15,13].

Paper Outline: In Section 3, we formulate our problem and discuss the frame-
work of [13] in Section 3.1. Then, in Section 3.2, we propose our Mirror Descent
based IDC algorithm and provide utility guarantees for the same. In Section 4,
we provide two applications of our MD-IDC framework, namely, 1) releasing cut-
queries in bi-partite graph, 2) releasing linear queries over low-rank matrices.

2 Notation and Preliminaries

Let x∗ ∈ Rd denote the private dataset, F = {f1, . . . , fk} denote the function se-
quence provided to the online query response algorithm. For every query function
f ∈ F , we assume f : Rd → R to be a linear function, denoted by f(x) = 〈f,x〉.
Vectors are denoted by bold-face symbols (e.g., x), matrices are represented by
capital letters (e.g.,M). Xi denotes i-th row of X . 〈x,y〉 denotes the inner prod-
uct between vectors x and y. Similarly, Tr(XTY) = 〈X,Y 〉 denotes the inner
product between X and Y . Lp norm or p-norm of a vector x ∈ Rd is denoted as

‖x‖p =
(∑d

i x
p
i

)1/p
and p∗ = p

p−1 denotes the dual norm of Lp. For a matrix

X , ‖X‖p represents Lp-norm of vectorized X . ‖X‖F =
√∑

ij X
2
ij denotes the

Frobenius norm of X .

582 P. Jain and A. Thakurta

Definition 1 ((p, q)-group norm of matrix X). ‖X‖p,q = (
∑m

i=1 ‖Xi‖qp)1/q,
where X ∈ Rm×n. Hence, (p, q)-group norm is equivalent to Lq norm of a vector
of Lp norms of rows of X.

Definition 2. Let X = UΣV T be the singular value decomposition of X. Then

Schatten p-norm of X is given by: ‖X‖Sp = (
∑

i σ
p
i)

1/p
, where σi is the i-th

singular value of X and σ1 ≥ σ2

Definition 3 (Uniform convexity). A function Ψ : Rd → R is s-uniformly
convex (for s ≥ 1) with respect to ‖ · ‖r iff: ∀x,y ∈ Rd, ∀α ∈ [0, 1], Ψr(αx+

(1− α)y) ≤ αΨr(x) + (1− α)Ψr(y)− α(1−α)
s ‖x− y‖sr

Note that the definition above is a generalization of the conventional strong
convexity definition where s is set to be two.

Definition 4. Let Ψ : Rd → R be a continuously differentiable strictly convex
potential function. Then, the Bregman’s divergence (generated by Ψ) between any
two vectors x1,x2 ∈ Rd is defined as:
ΔΨ (x1;x2) = Ψ(x1)− Ψ(x2)− 〈3Ψ(x2),x1 − x2〉.

3 Problem Definition and Overview

Given a private dataset x∗ ∈ Rd and a set of queries F = {f1, . . . , fi . . . fk}, fi :
Rd → R, ∀i, the goal is to answer each query fi accurately (w.r.t x∗) while
preserving privacy of x∗. That is, if ai is the response to query fi, then we want:

|ai − fi(x
∗)| ≤ T, ∀1 ≤ i ≤ k,

while preserving privacy of x∗; T > 0 is an error parameter.
The above mentioned problem is known as the interactive dataset release prob-

lem [19,15]. In this setting, the queries can be adversarial, that is the adversary
can select fi depending on responses to previous queries. Hence, the privacy of
each response ai has to be argued w.r.t. complete query set F .

For privacy, we use the notion of differential privacy which is now a benchmark
notion [7,6]. Intuitively, an algorithm is differential private if addition (removal)
of an entry to (from) the dataset does not significantly alter the output. In the
context of interactive dataset release, it requires a guarantee that none of the
query response ai change significantly, if one entry of the dataset x∗ is modified.
Below, we provide a formal definition of (ε, δ, γ)-differential privacy adapted for
the problem of interactive dataset release.

Definition 5 (Differential privacy [7,6]). An algorithm A is
(ε, δ, γ)-differentially private if for any two datasets x,x′ ∈ Rd s.t. ‖x−x′‖1 ≤ γ,
and for all measurable sets O ⊆ Range(A), the following holds:
Pr[A(x) ∈ O] ≤ eε Pr[A(x′) ∈ O] + δ.

Mirror Descent Based Database Privacy 583

Algorithm 1. Online Query Response Mechanism (OQR) [15,13]

Require: Dataset: x∗, privacy parameters: (ε, δ, γ), query set F = {f1, · · · , fk}, failure
probability β,
UIDC : IDC algorithm, B: bound on number of updates by UIDC

1: Set noise parameter: ε0 ← ε

100γ
√

B log(4/δ)
, Set threshold T ← 4

ε0
log(2k/β)

2: x0 = UIDC(NULL,NULL,NULL), counter = 0.
3: for t ∈ {1, · · · , k} and counter < B do
4: At ∼ Lap(1

ε0
)

5: True response: at = ft(x
∗), Noisy response: ât ← ft(x

∗) + At, Noisy difference:
d̂t ← ât − ft(xt−1)

6: if |d̂t| > T then
7: xt ← UIDC(xt−1, ft, d̂t), counter← counter + 1
8: Output query response: ât = ft(x

∗) + At

9: else
10: No update, i.e., xt ← xt−1

11: Output query response: ât = ft(xt)
12: end if
13: end for

Now, a special case of the above mentioned problem is when each query fi is
linear, i.e., fi(x) = 〈fi,x〉, fi ∈ Rd. Most of the existing results are for the case
of linear queries only. For rest of the paper, we assume fi to be a linear query;
we discuss extension to the nonlinear case in the full version of this paper [16].

Recently, [15] provided a multiplicative weights update based differentially pri-
vate algorithm for the problem of interactive dataset release (with linear queries)

that guarantees at most O(log1/4 k log d) error in each query. Subsequently, [13]
proposed a more general framework that uses Iterative Database Construction
(IDC) algorithms to provide differentially private versions of dataset x∗. [13] pro-
vided a tighter analysis of the multiplicative weights based algorithm (MW-IDC)
of [15]. They also proposed a novel IDC algorithm based on Frieze/Kannan cut-
decomposition algorithm (FK-IDC) [10] and apply their method to the problem
of releasing graph cuts.

In the next section, we introduce the above mentioned online query release
mechanism of [13] and state the generic utility and privacy guarantee of [13].
Then, in section 3.2, we present our generic Mirror Descent based IDC (MD-IDC)
and show that both MW-IDC and FK-IDC form special cases of our MD-IDC
algorithm. Further, their error bounds follow directly from our generic analysis
for MD-IDC. We also provide two applications where different instantiations of
our MD-IDC provide better error bounds than MW-IDC and FK-IDC.

3.1 Online Query Release Mechanism

[15,13] introduced a generic online query release mechanism where at each step
t, a differentially private (or “public”) version of the dataset xt−1 is maintained.
Now, for a given query ft (that can be adversarially chosen according to xt−1

and past query responses), the algorithm tries to answer the query using xt−1.

584 P. Jain and A. Thakurta

However, if query response ft(xt−1) is “too far” from the true response ft(x
∗),

then the algorithm answers the query based on the true dataset x∗. Also, as the
dataset xt−1 is “inaccurate”, hence it is updated so that it gets closer to x∗. The
update algorithm is called Iterative Database Construction (IDC) algorithm, and
should produce next iterate xt using the previous iterate xt−1, current query
ft, and the response provided for ft. That is, UIDC : Rd ×Rd ×R → Rd, where
UIDC is the given IDC algorithm. See Algorithm 1 for a pseudo-code.

Now, [15] observed that, for iterations where iterate xt−1 is not updated,
Algorithm 1 is (ε = 0)-differentially private with high probability over the ran-
domness of the algorithm. Also, xt−1 is updated only for a small number of steps.
Using these observations, [15,13] show that the noise parameter set in Step 1 of
Algorithm 1 is enough to guarantee privacy of x∗.

Theorem 1 (Privacy (Theorem 4.1, [13])). Assuming each query f ∈ F ,
‖f‖∞ ≤ 1, Algorithm 1 is (ε, δ, γ)-differentially private.

Similar to [15,13], utility (i.e., maximum error in any query response) can be
guaranteed easily by bounding the magnitude of the noise added using tail
bounds for Laplace distribution.

Theorem 2 (Utility). If the variable counter (defined in Step 2 of Algorithm 1
(AlgorithmOQR)) is less thanB afterall thek-queryresponses, thenwithprobability
≥ 1− β

2 , Algorithm OQR incurs at most 2T error in each query response, i.e.,

|ât − ft(x
∗)| ≤ 2T =

800γ
√
B log(4/δ) log(2k/β)

ε
, ∀1 ≤ t ≤ k,

whereB is the bound on number of updates using UIDC.

Note that privacy guarantee of Algorithm 1 is independent of the IDC algorithm
(UIDC), while the utility guarantee depends on UIDC only through a bound on
the number of updates (B). Hence, the most critical aspect of Algorithm 1
is the design of UIDC and provide a tight upper bound on B for the given
application. In next section, we present a generic Mirror Descent algorithm based
IDC algorithm that can be adapted according to the underlying application to
obtain better bound on B (and hence the utility guarantee).

3.2 Mirror Descent Based IDC

In this section, we introduce our Mirror Descent based IDC. Mirror descent is a
popular optimization algorithm [1], that is also extensively used in the context of
online learning [20]. Suppose, the goal is to minimize a function �(x) s.t. x ∈ C
where C is a convex set. Then, mirror descent uses the following exploration-
exploitation based update (with Δ(·; ·) being the distance function):

xt = argmin
x∈C

(Δ(x;xt−1)− ηt〈3�(xt−1),x〉) . (1)

For online query release mechanism (Algorithm OQR (Algorithm 1)), we use a
similar MD-based update to design IDC. Specifically, we set �t(x) = |ft(x∗) −

Mirror Descent Based Database Privacy 585

Algorithm 2. Mirror Descent based IDC (MD-IDC)

Require: Previous iterate: xt−1, Linear query: ft ∈ F , Norm parameters: p, q,
Noisy difference in response: d̂t = 〈ft,x∗〉+At− 〈ft,xt−1〉, Threshold: T , Privacy
parameters: (ε, δ, γ), ζq = maxf∈F ‖f‖q , Potential function: Ψ that is s-uniformly
convex w.r.t. ‖ · ‖r, r = q

q−1

1: Define C = {x s.t. ‖x‖p ≤ ‖x∗‖p}
2: Set step size η = (s−1)s−1(T/2)s−1

ssζsq
and update bound B =

2s−1ssζsq
Ts(s−1)s−1 maxx∈C Ψ(x)

3: if xt−1 = φ (i.e., t = 1) then
4: Output: x0 = argmin

x∈C
Ψ(x)

5: else
6: Output: xt ← argmin

x∈C

(
ΔΨ (x;xt−1)− η · sgn(d̂t)〈#ft(xt−1),x− xt−1〉

)
7: end if

ft(x)|. Note that, we want to update xt−1 so that �t(x) is small, i.e., xt does
not make mistakes on queries similar to ft. But at the same time, we want xt
to be close to xt−1, as it contains information learned from previous queries.

As �t(x) = |ft(x∗)−ft(x)| is not a differentiable function, we use the following
sub-gradient of �t: ∂�t(xt−1) = −sgn(ft(x

∗)−ft(xt−1))3ft(xt−1). Also, as each
function ft is linear, i.e., ft(x) = 〈ft,x〉, ft ∈ Rd: 3ft(x) = ft.

Finally, we use Bregman’s divergence as the distance function Δ(·; ·). Given a
continuously differentiable strictly convex function Ψ , the corresponding Breg-
man’s divergence is given by: ΔΨ (x1;x2) = Ψ(x1)−Ψ(x2)−〈3Ψ(x2),x1 − x2〉.

Hence, for a given potential function Ψ and dt = ft(x
∗)− ft(xt−1), our MD-

IDC update for linear queries is given by:
xt = argmin

x∈C
(ΔΨ (x;xt−1)− η · sgn(dt)〈ft,x− xt−1〉) ,

where η is selected appropriately. See Algorithm 2 for a pseudo-code of our
MD-IDC algorithm. In the following, we provide the utility guarantees for our
MD-IDC based Online Query Response Mechanism (Algorithm 1).

Theorem 3 (Utility). Let ft ∈ F , 1 ≤ t ≤ k be a linear query, let q be the norm
chosen for the query set F and let C = {x s.t. ‖x‖p ≤ ‖x∗‖p}. Furthermore, let
Ψ(·) be a s-strongly convex function w.r.t. ‖ · ‖r, where r = q

q−1 . Then, w.p. at

least 1− β, for each query response, the error incurred by MD-IDC (Algorithm
2) based OQR algorithm (Algorithm 1) is bounded by:

|ât − ft(x
∗)| = O

(
log(k/β)2/(s+2)(γζq)

s/(s+2) log2(1/δ)

εs/(s+2)

(
max
x∈C

Ψ(x)

)1/(s+2)
)
,

where, 1 ≤ t ≤ k, ζq ≤ maxf∈F ‖f‖q and (ε, δ, γ) are the privacy parameters.

A detailed proof of the above theorem is provided in the full version [16].

Special Cases: MW-IDC & FK-IDC: Above we described our generic MD-
IDC algorithm which given any potential function, provides bound on the error in

586 P. Jain and A. Thakurta

each query’s response. Our algorithm has the flexibility of selecting the potential
function for different problem settings.Recall that the potential function should
be strongly convex w.r.t. ‖·‖ q

q−1
-norm over set C = {x s.t. ‖x‖p ≤ ‖x∗‖p}, while

maxx∈C Ψ(x) should be small. Note that, here we assume that ‖x∗‖p is is known
publicly or an approximate version of the same can released in differentially
private manner, by adding appropriate amount of noise.

Now, it is known that for 1 < p ≤ 2, Ψp(x) =
1

p−1‖x‖2p is 2-uniformly convex

w.r.t. ‖ · ‖p. Selecting p = q∗ (i.e., p, q are dual pairs) and ignoring privacy
parameters (ε, δ) and failure probability β, we get the following error bound:
Err p = O(

√
γ‖f‖p∗‖x∗‖p log k). Now, if x∗ is a histogram over a database with

N records, then γ = 1
N . Hence, Err p = O(

√
1
N ‖f‖p∗‖x∗‖p log k).

Interestingly, selecting p = 2, our MD-IDC reduces to Frieze/Kannan IDC
(FK-IDC) of [13]. Further, the error bound is also exactly the same as the one
obtained by [13]. Similarly, selecting p = log d

log d−1 , we get the matching error bound

for MW-IDC [13]. However, the algorithm is different than that of MW-IDC and
is in fact more general, as it can be applied to any real-valued x∗, while MW-
IDC applies to positive vectors only. Further, selecting ΨH(x) =

∑
i xi log xi, we

obtain exact MW-IDC algorithm. Note that, ΨH(x) is 2-uniformly convex w.r.t.
L1 norm and hence can be applied directly in our framework.

Above, we assume p and q to be dual pairs, i.e., q = p∗. However, similar to
[20], selecting non-dual (p, q) pair can lead to tighter bounds for certain settings.
We defer the details for non-dual (p, q) pairs to the full version of the paper [16].

4 Applications

In this section, we discuss some of the applications of our MD-IDC, and show
that by selecting an appropriate potential function Ψ for a given application, we
can obtain significantly more accurate answers than [13,15]. In particular, we
provide two concrete applications and show that we can devise problem specific
potential functions to outperform the existing methods of [13,15].

4.1 Online Cut-Query Release

In this section, we consider the problem of releasing cut-queries over a private bi-
partite graph. Specifically, let G = (V1, V2, E) be an undirected bi-partite graph
and let S ⊆ V2 be a subset of nodes. The goal here is to release cut (S, S̄) while
preserving privacy. The cut query answers the following question: how “well-
connected” are the nodes of V1 are to S ⊆ V2. For simplicity of exposition we
assume S ⊆ V2; for S ⊆ V2 ∪ V1, similar results can be obtained easily.

For online cut-query release, the “dataset” is given by the adjacency matrix
of G, i.e., X∗ ∈ R|V1|×|V2|. X∗

ij = 1, ∀(i, j) ∈ E, 1 ≤ i ≤ |V1|, 1 ≤ j ≤ |V2|
and is zero otherwise. Similarly, a cut query is given by F ∈ R|V1|×|V2|, where
Fij = 1, ∀i ∈ S, j ∈ S̄. Hence, the cut size is given by C(S,G) = 〈X∗, F 〉.

Note that, we want to guarantee privacy for each edge in the graph. Hence,
removing or adding an edge from X leads to an “adjacent” dataset X ′. Also,

Mirror Descent Based Database Privacy 587

γ = ‖X−X ′‖1 ≤ 1. We seek an algorithm that answers queries accurately while
providing (ε, δ, γ = 1)-differential privacy. For this problem, we use Algorithm 1
(Algorithm OQR) with our generic MD-IDC.

For MW-IDC [15], using Theorem 3 and k = O(|V2||S|), (ignoring privacy
parameters (ε, δ) and failure probability β) the error in each query is given by:

ErrMW = O
(√

ζ∞|E||S| log(|V1||V2|)
)
, ζ∞ = max

t
‖Ft‖∞ = 1. (2)

Now, for FK-IDC [13], Theorem 3 provides the following bound:

Err FK = O

(√
ζ2|E|1/2|S| log(|V2|)

)
, ζ2 = max

t
‖Ft‖2. (3)

Similar to the previous section, we can select a different Lp-norm potential func-
tion for our MD-IDC, than the one used by MW-IDC, FK-IDC. However, for
this problem, that does not lead to an improvement over MW-IDC and FK-IDC.
Instead, with the intent of exploiting the structure of the adjacency matrix, we
select group-norm based potential functions (see Definition 1). Of particular in-
terest is the (2, p)-norm, where p ≈ 1. Similar to Lp norms, it can be shown that
Ψ2,p(X) = 1

p−1‖x‖22,p is 2-uniformly convex w.r.t. ‖ · ‖2,p, 1 < p ≤ 2. Note that,

this function is same as the “Group Lasso” regularizer [22] and is known to be
useful for recovering vectors with shared sparsity. For our problem, this function
is useful for the case where degrees of nodes in the graph have heavy variation.

Using Theorem 3, error incurred by MD-IDC with (2, p)-norm function is:

ErrMD−IDC = O

(√
ζ2,p∗‖X∗‖2,p|S| log(|V2|)

)
, (4)

where ζ2,p∗ = maxt ‖Ft‖2,p∗ and p∗ = p/(p− 1). Note that, the error bound for
our group-norm based MD-IDC is in general incomparable to the corresponding
bounds by MW-IDC or FK-IDC. However for several specific problems, group-
norm based MD-IDC outperforms both MW-IDC and FK-IDC. Below, we pro-
vide two such examples.

Imbalanced Bi-partite Graph: Consider a bi-partite graph where the node
sets V1 and V2 are of equal cardinality, i.e., |V1| = |V2| = V . Let V1 be divided
into two sets V1 = {A,B}. Let |A| = |V |3/4 and let each node of A be connected
to every node of V2, while each node of B is connected to only |V |1/2 nodes of
B. That is a small number of nodes are highly connected, while the remaining
nodes are sparsely connected. Recall that the cut-queries are over a set S ⊆ V2.

Note, that for the above mentioned family of graph |E| = O(|V |7/4). Hence,
bounds for MW-IDC and FK-IDC are given by:

ErrMW = Õ(|V |7/8|S|1/2), Err FK = Õ(|V |11/16|S|3/4) (5)

Similarly, the error incurred by (2, p = log |V |
log |V |−1)-norm based MD-IDC is:

Err
2, log |V |

log |V |−1

= Õ(|V |5/8|S|3/4).

588 P. Jain and A. Thakurta

Hence, if |S| = o(|V |), then:
Err

2, log |V |
log |V |−1

= o(1)ErrMW , Err
2, log |V |

log |V |−1

= o(1)Err FK .

Also, note that the error incurred by a trivial response of 0 for each query is
bounded by: |V ||S|. Similarly, standard randomized response leads to O(|V |3/2)
error. Hence, our error guarantees are better than the trivial baselines as well.

Power-Law Distributed Bi-partite Graph: Next, we consider a more practi-
cal scenario where degrees of nodes in V1 follow a power-law distribution. Several
graphs that arise in practice have been shown to follow a power-law distribution.
For simplicity, we assume |V1| = |V2| = |V |. Now, power-law distribution assump-

tion implies: E[Number of nodes with degree i] = i−β∑|V |
i=j j

−β
|V |, where β > 0 is

a parameter of the distribution. For simplicity, we drop expectation from the
above statement and assume the following deterministic statement:

Number of nodes with degree i = i−β∑|V |
i=j j

−β
|V |.

If 1 < β < 2, it can be shown that: |E| = O(|V |3−β). Hence, using (2), (3):

ErrMW = Õ(|V |3/2−β/2|S|1/2), Err FK = Õ(|V |1−β/4|S|3/4).

Similarly, using (4), for 1 < β < 3/2: ErrMD−IDC = Õ(|V |3/4−β/2|S|3/4). Hence,
using the fact that |S| ≤ |V | and assuming 1 < β < 3/2:

Err
2, log |V |

log |V |−1

= o(1)ErrMW , Err
2, log |V |

log |V |−1

= o(1)Err FK .

Finally, we compare the above mentioned error bounds with the error incurred
by a trivial response of 0. For this trivial response, the error is bounded by:
min{|S||V |, |E|} = min{|S||V |, |V |3−β}. Hence, if |S| ≥ |V |1− 2

3β , then Err 2, log V
log V −1

is smaller than the error incurred by the trivial response. Similarly, randomized
response incurs O(|V |3/2) error. Hence, if |S| = o(|V |), then our proposed MD-
IDC obtains better error bounds.

Finally, we note that while our results are for online cut-queries, they can also
be used for releasing sanitized differentially private graphs which are accurate
for cut queries. However, our algorithm would require to process all O(|V ||S|)
cut-queries. We leave further investigation of our MD-IDC method for release of
sanitized differentially-private graphs as future work.

4.2 Online Query Release over Low-Rank Matrix

In this section, we consider the problem of releasing response to linear queries
where the dataset is a low-rank matrix. Let X∗ ∈ Rm×n be a rank-r matrix and
let Ft ∈ Rm×n be a linear query. Then, the response to the query is: 〈Ft, X∗〉.
A Practical Scenario: let X∗ be a user-movie rating matrix, i.e., X∗

i,j is the
rating user i provides for movie j. And the queries answer questions of the form:
“what is the average rating for comedy movies for users from Seattle”.

We can directly apply Algorithm OQR (Algorithm 1) to release response to
these queries, while providing privacy guarantees for each individual entry in
X∗. Assuming ‖X∗‖∞ = 1, for any adjacent dataset X ′, ‖X∗ −X ′‖1 ≤ 1 = γ.
Recall that, ‖X‖p represents Lp norm of vectorized X .

Mirror Descent Based Database Privacy 589

Similar to the previous section, we provide a potential function for our MD-
IDC that provides better error guarantees than MW-IDC and FK-IDC. Note
that, the matrixX∗ can have negative entries as well, hence multiplicative weight
based algorithm from [15] cannot be applied directly.

Using Theorem 3 with FK-IDC, we obtain the following error bound for an-
swer k-queries (ignoring privacy parameters (ε, δ) and failure probability β):

Err FK = Õ
(√

ζ2‖X∗‖F log k
)
, where ζ2 ≤ maxt ‖Ft‖F .

In the previous section, we used group-norm based potential functions as they are
more well-suited for exploiting degree structure of the graphs. In this section, we
use another popular class of potential functions based on the Schatten-p norm (see
Definition 2) that is more well-suited to exploit the spectral structure ofX∗.

Similar to Lp norm, it is known that ΨSp(X) = 1
p−1‖X‖2Sp

, ∀1 < p ≤ 2, is

2-strongly convex w.r.t. ‖ · ‖Sp [17]. Hence using Theorem 3, the error incurred
by Algorithm 1 with MD-IDC and with potential function ΨSp is bounded by:

Err Sp = Õ
(√

ζS∗
p
‖X∗‖Sp log(k)

)
, (6)

where p∗ = p
p−1 and ζS∗

p
= maxt ‖Ft‖Sp∗ . Note that, for p = 2, S2 is the

Frobenius norm and hence in that case, the above bound is same as Err FK .
Now, for the case of low-rank matrices, Schatten-1 norm (or “trace” norm) is

a popular regularization as it generally preserves the low-rank structure. Below,
we show for a large class of queries using trace norm based MD-IDC indeed
achieves better error bounds than both MW-IDC and FK-IDC. Specifically, let
p = logmn

logmn−1 ≈ 1. Then, using (6) and ‖X∗‖S1 ≤
√
r‖X∗‖F we get:

Err S1 = Õ
(√√

rζS∗
p
‖X∗‖F log(k)

)
, (7)

where p∗ = log(mn). Hence, if
√
r‖Ft‖Slog mn

< ‖Ft‖F , ∀t, then Err S1 < Err FK .

Now, ‖Ft‖Slogmn
≤ eσFt

1 , where σFt
1 is the largest singular value of Ft. Similarly,

‖Ft‖F =
√∑

i(σ
Ft

i)2, where σFt

i is the i-th singular value of Ft.

Now, if each query Ft is a rank-1 query, then,
√
r‖Ft‖Slog mn

> ‖Ft‖F for
r > 1. Hence, in this case, Frobenius-norm based potential function leads to
tighter bounds. However, if the queries have “spread-out” spectrum, then trace-
norm based potential function is more accurate.

A concrete example of such a case is when each element of Ft is sampled
uniformly from a standard Gaussian, i.e., Ft(i, j) ∼ N(0, 1). In this case, using
Corollary 5.35 of [21] and assuming m > 4n, we get (w.h.p.):

√
n ≤ σFt

n ≤
σFt
1 ≤ 3

√
n. Hence, r(σFt

1)2 ≤ 9rn ≤ 9r 1
n (σ

Ft
n)2. That is,

√
r‖Ft‖Slogmn

≤
3e
√
r/n‖Ft‖F . Hence, for r = o(n), Err S1 = o(1)Err FK . In typical appli-

cations, r is a constant. Hence, Err S1 is a factor of
√
n smaller than Err FK .

Note that, random queries Ft are used extensively in the domain of compressed
sensing [3] and can be used to recover low-rank matrix X∗ accurately. Hence,
our result provides a method to recover matrixX∗ approximately (with bounded
error) without compromising accuracy of any single entry.

590 P. Jain and A. Thakurta

References

1. Beck, A., Teboulle, M.: Mirror descent and nonlinear projected subgradient meth-
ods for convex optimization. Oper. Res. Lett. 31(3), 167–175 (2003)

2. Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive
database privacy. In: STOC (2008)

3. Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: uni-
versal encoding strategies? IEEE Transactions on Information Theory (2006)

4. Dinur, I., Dwork, C., Nissim, K.: Revealing information while preserving privacy,
full version of [5] (2010) (in preparation)

5. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: PODS,
pp. 202–210. ACM (2003)

6. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our Data, Our-
selves: Privacy Via Distributed Noise Generation. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)

7. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in
Private Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006)

8. Dwork, C., McSherry, F., Talwar, K.: The price of privacy and the limits of LP
decoding. In: STOC, pp. 85–94. ACM (2007)

9. Dwork, C., Rothblum, G.N., Vadhan, S.P.: Boosting and differential privacy. In:
FOCS (2010)

10. Frieze, A.M., Kannan, R.: A simple algorithm for constructing szemere’di’s regu-
larity partition. Electr. J. Comb. (1999)

11. Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and auxiliary
information in data privacy. In: KDD 2008: Proceeding of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 265–273.
ACM (2008)

12. Gupta, A., Hardt, M., Roth, A., Ullman, J.: Privately releasing conjunctions and
the statistical query barrier. In: STOC (2011)

13. Gupta, A., Roth, A., Ullman, J.: Iterative constructions and private data release.
CoRR, abs/1107.3731 (2011)

14. Hardt, M., Ligett, K., McSherry, F.: A simple and practical algorithm for differen-
tially private data release. CoRR, abs/1012.4763 (2010)

15. Hardt, M., Rothblum, G.N.: A multiplicative weights mechanism for privacy-
preserving data analysis. In: FOCS (2010)

16. Jain, P., Thakurta, A.: Mirror descent based database privacy. Technical Report
NAS-TR-0159-2012, Pennsylvania State University (April 2012)

17. Kakade, S.M., Shalev-Shwartz, S., Tewari, A.: On the duality of strong convexity
and strong smoothness: Learning applications and matrix regularization. Informal
Publication (2009)

18. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What
can we learn privately? In: FOCS (2008)

19. Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In:
STOC (2010)

20. Srebro, N., Sridharan, K., Tewari, A.: On the universality of online mirror descent.
CoRR, abs/1107.4080 (2011)

21. Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices.
CoRR, abs/1011.3027 (2010)

22. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society, Series B 68, 49–67 (2007)

Analysis of k-Means++ for Separable Data

Ragesh Jaiswal and Nitin Garg

Department of Computer Science and Engineering,
IIT Delhi, New Delhi, India

{cs5070222,rjaiswal}@cse.iitd.ac.in

Abstract. k-means++ [5] seeding procedure is a simple sampling based
algorithm that is used to quickly find k centers which may then be used
to start the Lloyd’s method. There has been some progress recently on
understanding this sampling algorithm. Ostrovsky et al. [10] showed that

if the data satisfies the separation condition that
Δk−1(P)

Δk(P)
≥ c (Δi(P) is

the optimal cost w.r.t. i centers, c > 1 is a constant, and P is the point
set), then the sampling algorithm gives an O(1)-approximation for the
k-means problem with probability that is exponentially small in k. Here,
the distance measure is the squared Euclidean distance. Ackermann and
Blömer [2] showed the same result when the distance measure is any
μ-similar Bregman divergence. Arthur and Vassilvitskii [5] showed that
the k-means++ seeding gives an O(log k) approximation in expectation
for the k-means problem. They also give an instance where k-means++
seeding gives Ω(log k) approximation in expectation. However, it was
unresolved whether the seeding procedure gives an O(1) approximation

with probability Ω
(

1
poly(k)

)
, even when the data satisfies the above-

mentioned separation condition. Brunsch and Röglin [8] addressed this
question and gave an instances on which k-means++ achieves an approx-
imation ratio of (2/3−ε) · log k only with exponentially small probability.

However, the instances that they give satisfy
Δk−1(P)

Δk(P)
= 1+ o(1). In this

work, we show that the sampling algorithm gives an O(1) approximation
with probability Ω

(
1
k

)
for any k-means problem instance where the point

set satisfy separation condition
Δk−1(P)

Δk(P)
≥ 1+γ, for some fixed constant

γ. Our results hold for any distance measure that is a metric in an ap-
proximate sense. For point sets that do not satisfy the above separation
condition, we show O(1) approximation with probability Ω(2−2k).

1 Introduction

The k-median problem with respect to a point domain X and a distance measure
D : X × X → R≥0, is defined as follows:

Given a set P ⊆ X of n points, find a subset C ⊆ X of k points (these
are called centers) such that the objective function

φC(P) =
∑
p∈P

min
c∈C

D(p, c)

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 591–602, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

592 R. Jaiswal and N. Garg

is minimized. For X = Rd and D(x, y) = ||x− y||2, the problem is called
the k-means problem.

k-means++ seeding is a simple sampling algorithm that is used to quickly find k
centers that is then used to start the Lloyd’s method. This sampling procedure
is extremely simple and can be described as follows:

(SampAlg) Pick the first center uniformly at random from P . Choose a
point p ∈ P to be the ith center for i > 1 with probability proportional
to the distance of p from the nearest previously chosen centers, i.e., with

probability minc∈C D(p,c)
φC(P) .

There has been some recent progress in understanding the above sampling pro-
cedure. However, even this simple procedure is not fully understood. There are
a number of important questions that are unresolved. Next, we give the current
state of understanding and discuss some of the unresolved questions.

Previous work. The non-uniform sampling technique defined above was first
analysed by Ostrovsky et al. [10] for the k-means problem. They showed that if

the given data is separable in the sense that
Δk−1(P)
Δk(P) ≥ c > 1, for some fixed

constant c, then the sampling algorithm gives an O(1) approximation with prob-
ability exponentially small in k. After this, Arthur and Vassilvitskii [5] showed
that the algorithm gives an O(log k) approximation in expectation for any data
set. They also give a problem instance where the algorithm gives an approxima-
tion of Ω(log k) in expectation. However, for the instance that they construct,
the sampling algorithm gives an O(1) approximation with constant probability.
The sampling algorithm may be regarded as useful as long as we can show that

it gives an O(1) approximation with probability Ω
(

1
poly(k)

)
. This is because we

may repeat O(poly(k)) times and take the best answer. Some initial progress
towards this question was by Aggarwal [3] et al. and Ailon et al. [4] who showed
that sampling more than k centers gives an O(1) pseudo-approximation with
constant probability. However, the basic question whether we can get an O(1)

approximation with probability Ω
(

1
poly(k)

)
remained unresolved. In a recent

paper, Brunsch and Röglin [8] gave a problem instance where the sampling algo-
rithm gives a (2/3− ε) · logk approximation with probability exponentially small
in k. This resolves the question for the case when the data is not assumed to be
separable in the sense of Ostrovsky et al. [10]. However, the example that they

construct satisfies
Δk−1(P)
Δk(P) ≤ 1+o(1) and hence does not satisfy the separability

condition in the spirit of Ostrovsky et al.
Most of the above-mentioned results are for the k-means problem where the

data set consists of points in Rd and the distance measure is the squared Eu-
clidean distance. There are multiple instances in Machine Learning where the
goal is to solve the problem with respect to other distance measures. Some ex-
amples include the Kullback-Leibler divergence, Mahalanobis distance, Itakura-
Saito divergence. We can ask the same questions for the k-median problem with

Analysis of k-Means++ for Separable Data 593

respect to these distance measures. Ackermann and Blömer [2] analysed the
sampling algorithm, SampAlg, with respect to a general class of distance mea-
sures called the μ-similar Bregman divergences. They show that if the data
set satisfies the separation condition in the spirit of Ostrovsky et al., (that is
Δk−1(P)
Δk(P) ≥ c > 1), then SampAlg gives an O(1)-approximation with probability

Ω(2−2k).
In our work, we analyse the sampling algorithm for the case that the data is

separable, i.e.,
Δk−1(P)
Δk(P) ≥ c for some constant c > 1. This separability condition

has been argued to be reasonable when using k-means objective to cluster data
since the condition implies that the data is “well-clusterable”.

Our contribution. We show that given a data set that is separable, i.e., Δk−1(P)
Δk(P) ≥

1 + γ, for some constant γ, SampAlg gives an O(1) approximation with proba-
bility Ω(1/k). Our analysis works for the k-median problem with respect to any
distance measure that is a metric in some approximate sense. We will look at
some conditions that the distance measure needs to satisfy below.

Definition 1 (α-approximate symmetry). Let 0 < α ≤ 1. Let X be some
data domain and D be a distance measure with respect to X . D is said to satisfy
the α-approximate symmetry property if the following holds:

∀x, y ∈ X , α ·D(y, x) ≤ D(x, y) ≤ (1/α) ·D(y, x). (1)

Definition 2 (β-approximate triangle inequality). Let 0 < β ≤ 1. Let X
be some data domain and D be a distance measure with respect to X . D is said
to satisfy the β-approximate triangle inequality if the following holds:

∀x, y, z ∈ X , D(x, z) ≤ (1/β) · (D(x, y) +D(y, z)). (2)

Definition 3 (Centroid property). A distance measure D over space X is
said to satisfy the centroid property if for any subset P ⊆ X and any point c ∈ X ,
we have: ∑

p∈P
D(p, c) = Δ1(P) + |P | ·D(m(P), c),

where m(P) =
∑

p∈P p

|P | denotes the mean of the points in P . Also, as mentioned

earlier, Δ1(P) denote the optimal cost with respect to 1 center.

Note that in the k-means problem, X = Rd and D(x, y) = ||x − y||2. This
distance measure satisfies α-approximate symmetry and β-approximate triangle
inequality for α = 1 and β = 1/2. The squared Euclidean distance also satisfies
the Centroid property. Note that the squared Euclidean distance is not the only
distance measure, used for clustering in practice, that satisfies these properties.
Mahalanobis distance also satisfies the above properties. A class of distance mea-
sures called Bregman divergences that are used frequently in Machine Learning is
known to satisfy the Centroid property. Furthermore, an important sub-class of
Bregman divergences, called μ-similar Bregman divergences, is known to satisfy

594 R. Jaiswal and N. Garg

all of the above properties (see [1] for an overview of Bregman divergences). We
can now give our main result using the above definitions:

Theorem 1 (Main Theorem). Let 0 < α, β ≤ 1 and γ = 32
(αβ)4 be constants.

Let D be a distance measure over space X such that D satisfies α-approximate
symmetry, β-approximate trianlge inequality, and the Centroid property. Let P ⊆
X be any set of n points from the space X such that the following holds:

Δk−1(P)

Δk(P)
≥ 1 + γ, (3)

where Δi(P) is defined to be the optimal value of the objective function with i

centers, i.e., Δi(P) = minC,|C|=i

[∑
p∈P minc∈C D(p, c)

]
. Then SampAlg gives

an O(1)-approximation with probability Ω(1/k).

We also show that when the data is not given to be separable, then SampAlg
gives an O(1) approximation with probability Ω(2−2k). Note that this is for any
k-median instance with respect to any distance measure that satisfy α-symmetry
and β-triangle inequality 1. This is an improvement over the result by Ackermann

Blömer [2] who get a similar result though for separable data, i.e. Δk−1(P)
Δk(P) ≥ c

for some fixed constant c. We discuss this result in Section 3.

Techniques. Here is an outline of the proof of our Main Theorem. Let {A1, ..., Ak}
denote the points in the optimal clustering. From the Centroid property, we
know that the centroids {c1, ..., ck} of {A1, ..., Ak} are the optimal centers. Let
dij = D(ci, cj) and let Tmin = mini�=j [|Ai| · dij]. Let C′ denote any set of i
points chosen by the first i iterations of the algorithm. Let j be the index of
an optimal cluster such that no point in C′ belongs to Aj . We will first argue
that φC′(Aj) ≥ d · Tmin (for some constant d) by showing that if this were not
the case, then the separability condition is violated. Let Xi denote the points
in those optimal clusters such that C′ has a point from that cluster and let
X̄i denote the remaining points. From the previous argument, we know that
φC′(X̄i) ≥ (k − i) · d · Tmin. On the other hand, we can argue that the expected
cost of the centers C′ w.r.t. Xi is at most d′ · Δk(P) (for some constant d′).
Then we show that the probability of picking the (i + 1)th point from X̄i is at

least k−i
k−i+1 . Note that this probability is proportional to φC′ (X̄i)

φC′(P) and if this were

smaller than k−i
k−i+1 , then

Tmin

Δk(P) ≤ d′′ (for some constant d′′) but this contradicts

with the separability condition. So, the probability that we pick points from each
optimal cluster is Ω(1/k) (using telescoping product). Conditioned on this event,
we will argue that the expected cost is at most some constant times the optimal.

We now focus on the proof of our Main Theorem

2 Proof of Theorem 1

Let A1, ..., Ak denote the optimal clusters, i.e., the point set P is partitioned
into subsets A1, ..., Ak such that all points in Ai are in the ith cluster as per

1 The Centroid property is not required for this result.

Analysis of k-Means++ for Separable Data 595

the optimal k-median clustering. Let COPT = {c1, ..., ck} be the optimal cluster
centers. So, ∀i �= j, p ∈ Aj , D(p, ci) ≥ D(p, cj). For any set of centers C, we
denote the distance of a point p to it nearest center in C with D(p, C). For any

optimal cluster Ai, let ri =
∑

p∈Ai
D(p,ci)

|Ai| .

We will need the following two basic lemmas. These are generalizations of
Lemmas 3.1 and 3.2 in [5].

Lemma 1. Consider any optimal cluster Ai. Let c be a point chosen from Ai
uniformly at random. Then we have Exp[φ{c}(Ai)] ≤ 2

αβ · φ{ci}(Ai).

Proof. The expected cost may be written as:

Exp[φ{c}(Ai)] =
∑
p∈Ai

1

|Ai|
·
∑
q∈Ai

D(q, p)

≤
∑
p∈Ai

1

|Ai|
·
∑
q∈Ai

(1/β) · (D(q, ci) +D(ci, p))

≤
∑
p∈Ai

1

|Ai|
·
∑
q∈Ai

(1/β) · (D(q, ci) + (1/α) ·D(p, ci))

=
∑
p∈Ai

1

|Ai|
·
[
φ{ci}(Ai)

β
+

|Ai|
αβ

·D(p, ci))

]
≤ 2

αβ
· φ{ci}(Ai)

��

Lemma 2. Let C be any set of centers. Consider any optimal cluster Ai. Let c
be a center chosen using non-uniform sampling with respect to the set C and let
C′ = C ∪ {c}. The we have Exp[φC′(Ai)|c ∈ Ai] ≤ 4

(αβ)2 · φ{ci}(Ai).

Proof. The probability that we choose a point p ∈ Ai to be c, conditioned on the

fact that c is chosen from Ai is given by D(p,C)∑
q∈Ai

D(q,C) . Once we choose p to be

c, then any point q′ ∈ Ai contributes min(D(q′, C), D(q′, c)) to the cost. Using
these two observations, we get the following:

Exp[φC′(Ai)|c ∈ Ai] =
∑
p∈Ai

D(p, C)∑
q∈Ai

D(q, C)
·
∑
q′∈Ai

min(D(q′, C), D(q′, p)) (4)

From β-approximate triangle inequality, we have thatD(p, C) ≤ (1/β)·(D(p, q′′)+
D(q′′, C)) for all q′′ ∈ Ai. So, we have

D(p, C) ≤ 1

β|Ai|
·

⎛⎝ ∑
q′′∈Ai

D(p, q′′) +
∑
q′′∈Ai

D(q′′, C)

⎞⎠ (5)

596 R. Jaiswal and N. Garg

Using above in (4), we get the following:

Exp[φC′(Ai)|c ∈ Ai] ≤
1

β|Ai|
·
∑
p∈Ai

∑
q′′∈Ai

D(p, q′′)∑
q∈Ai

D(q, C)
·
∑
q′∈Ai

D(q′, C) +

1

β|Ai|
·
∑
p∈Ai

∑
q′′∈Ai

D(q′′, C)∑
q∈Ai

D(q, C)
·
∑
q′∈Ai

D(q′, p)

=
1

β|Ai|
·
∑
p∈Ai

∑
q′′∈Ai

D(p, q′′) +
1

β|Ai|
·
∑
p∈Ai

∑
q′∈Ai

D(q′, p)

≤ 1

β|Ai|
·
∑
p∈Ai

∑
q′′∈Ai

D(p, q′′) +
1

αβ|Ai|
·
∑
p∈Ai

∑
q′∈Ai

D(p, q′)

(using (1))

≤ 2

αβ
· 1

|Ai|
∑
p∈Ai

∑
q∈Ai

D(p, q)

≤ 2

αβ2
· 1

|Ai|
∑
p∈Ai

∑
q∈Ai

(D(p, ci) +D(ci, q)) (using (2))

≤ 2

(αβ)2
· 1

|Ai|
∑
p∈Ai

∑
q∈Ai

(D(p, ci) +D(q, ci)) (using (1))

=
4

(αβ)2
· φ{ci}(Ai)

��

The above lemma says that conditioned on picking the next center from a cluster
Ai, the expected cost of this cluster with respect to the currently chosen centers
is within O(1) factor of the optimal. So, in general once we pick a center from an
optimal cluster, there is good chance that we may be able to “forget” about this
cluster in the future as we already have a constant approximation with respect
to this cluster. The issue might be that the given a current set of centers C, the
probability of sampling the next center from a given cluster might be very small.
We show that if this happens, then the separation condition is violated.

Let Ci = {c′j1 , ..., c′ji} be the centers chosen in the first i steps of the sampling
algorithm, where Ji = {j1, ..., ji} denotes the subset of indices of the optimal
cluster to which the centers belongs. Let Xi = ∪j∈JiAj . Let Ei be the event that
Ji contains i distinct indices, i.e., the cardinality of Ji is i. We will later show
that ∀i, P r[Ei] ≥ k−i+1

k .
First, we show that the expected cost of Ci with respect to the point set Xi

is at most some constant times the cost of COPT with respect to Xi.

Lemma 3. ∀i,Exp[φCi(Xi) | Ei] ≤ 4
(αβ)2 · φCOPT (Xi).

Proof. The proof follows from Lemmas 1 and 2. ��

Analysis of k-Means++ for Separable Data 597

In the next Lemma, we get a lower bound on the probability that the cost of
the solution given by the sampling algorithm is at most some constant times the
cost of the optimal solution.

Lemma 4. Pr
[
φCk

(P) ≤ 8
(αβ)2 · φCOPT (P)

]
≥ (1/2) ·Pr[Ek].

Proof. Given that event Ek happens, we have Xk = P and from Lemma 3, we
get that Exp[φCk

(P) | Ek] ≤ 4
(αβ)2 · φCOPT (P). By Markov, we get that

Pr
[
φCk

(P) > (8/(αβ)2) · φCOPT (P) | Ek
]
≤ 1/2.

Removing the conditioning on Ek we get the desired Lemma. ��

Now, all we need to show is that Pr[Ek] ≥ 1/k. This trivially follows from
Lemma 6 that shows that Pr[Ei+1 | Ei] ≥ k−i

k−i+1 .

We will need the some additional definitions. Let X̄i = P \Xi. Let J̄i = [k]\Ji.
Note that conditioned on Ei happening, |J̄i| = k− i. For any s ∈ J̄i let Is denote
the index t ∈ Ji such that D(cs, c

′
t) is minimized. Let Vs = D(cs, cIs). We know

that

D(c′Is , cIs) ≤ D(c′Is , cs) and Vs ≤ (1/β) · (D(cs, c
′
Is) +D(c′Is , cIs))

The first inequality is due to the fact that c′Is ∈ AIs (hence is c′Is is closer to the
center of AIs than of As). The above inequality gives us the following:

Vs ≤ (1/β) · (D(cs, c
′
Is) + (1/α) ·D(cs, c

′
Is)) ≤

2

αβ
·D(cs, c

′
Is) (6)

Let Ts = |As| · Vs. Let Tmin = mini�=j |Ai| ·D(ci, cj). Note that

∀s ∈ J̄i, Ts ≥ Tmin. (7)

Using the above definitions we can show the following Lemma.

Lemma 5. φCi(X̄i) ≥ (k − i) · (αβ)2

8 · Tmin

Proof. For any s, let Ains denote those data points that are closer to the center
cs than any data point that does not belong to As, i.e.,

Ains = {p|p ∈ As and ∀q /∈ As, D(p, cs) ≤ D(p, q)}

Let the remaining points in As be denoted by Aouts , i.e., Aouts = As \Ains . Next,
we will argue that if the data is separable,i.e., Δk−1(P)/Δk(P) ≥ 1 + γ, then
|Ains | ≥ |Aouts |.

Claim. Let γ = 32
(αβ)4 . If Δk−1(P)/Δk(P) > 1 + γ, then ∀s, |Ains | ≥ |Aouts |.

598 R. Jaiswal and N. Garg

Proof. Consider any point p ∈ Aouts . Let N [p] denote the point /∈ As that is
nearest to p and let I[p] denote the index of the cluster to which N [p] belongs.
We note that the following inequalities hold:

D(p, cI[p]) ≤
1

β

(
D(p,N [p]) +D(N [p], cI[p])

)
(using (2))

≤ 1

β

(
D(p, cs) +D(N [p], cI[p])

)
(since D(p,N [p]) ≤ D(p, cs))

≤ 1

β
(D(p, cs) +D(N [p], cs)) (since D(N [p], cI[p]) ≤ D(N [p], cs))

≤ 1

β

(
D(p, cs) +

1

β
(D(N [p], p) +D(p, cs))

)
(using (2))

≤ 1

β

(
(1 +

1

β
)D(p, cs) +

1

αβ
D(p,N [p])

)
(using (1))

≤ 1

β

(
(1 +

1

β
)D(p, cs) +

1

αβ
D(p, cs)

)
(since D(p,N [p]) ≤ D(p, cs))

≤ 3

αβ2
D(p, cs) (8)

For the sake of contradiction, let us assume that |Ains | < |Aouts |. Let f be any
one-one function that maps data points in Ains to data points in Aouts .

For any point p ∈ Ains , the following inequalities hold:

D(p, cI[f(p)]) ≤ 1

β

(
D(p, f(p)) +D(f(p), cI[f(p)])

)
(using (2))

≤ 1

β

(
1

β
(D(p, cs) +D(cs, f(p))) +D(f(p), cI[f(p)])

)
(using (2))

≤ 1

β

(
1

β

(
D(p, cs) +

1

α
D(f(p), cs)

)
+D(f(p), cI[f(p)])

)
(using (1))

≤ 1

β

(
1

β

(
D(p, cs) +

1

α
D(f(p), cs)

)
+

3

αβ2
D(f(p), cs)

)
(using (8))

=

(
1

β2
D(p, cs) +

4

αβ2
D(f(p), cs)

)
(9)

Using (8) and (9), we get the following:∑
p∈Ain

s

D(p, cI[f(p)]) +
∑

p∈Aout
s

D(p, cI[p]) ≤ 1

β2

∑
p∈Ain

s

D(p, cs) +
4

αβ2

∑
p∈Ain

s

D(f(p), cs)

+
3

αβ2

∑
p∈Aout

s

D(p, cs)

≤ 1

β2

∑
p∈Ain

s

D(p, cs) +
7

αβ2

∑
p∈Aout

s

D(p, cs)

≤ 8

αβ2

∑
p∈As

D(p, cs) =
8

αβ2
|As|rs (10)

Analysis of k-Means++ for Separable Data 599

The second inequality above is due to the fact that f is one-one. Using (10), we
get that

φ{c1,...,ck}\cs(P)

φ{c1,...,ck}(P)
=

∑
t∈[k]\{s} |At| · rt + 8

αβ2 · |As| · rs∑
t∈[k] |At| · rt

≤ 8

αβ2

This contradicts with the fact that Δk−1(P)/Δk(P) ≥ 1 + γ = 1 + 32
(αβ)4 . This

concludes the proof of the claim. ��

We use the above claim to prove the Lemma. For any s ∈ J̄i and p ∈ Ains we
have

1

β
(D(p, Ci) +D(cs, p)) ≥ D(cs, Ci) (using (2))

⇒ 1

β

(
D(p, Ci) +

1

α
D(p, cs)

)
≥ D(cs, Ci) (using (1))

⇒ 1

β

(
D(p, Ci) +

1

α
D(p, Ci)

)
≥ D(cs, Ci) (using definition of Ains)

⇒ 2

αβ
D(p, Ci) ≥ D(cs, Ci)

⇒ D(p, Ci) ≥
αβ

2
D(cs, Ci)

⇒ D(p, Ci) ≥
αβ

2
D(cs, c

′
Is)

⇒ D(p, Ci) ≥
(αβ)2

4
D(cs, cIs) (using (6))

⇒ D(p, Ci) ≥
(αβ)2

4
Vs

From this we get the following:∑
p∈Ain

s

D(p, Ci) ≥
(αβ)2

4
· |As|

2
· Vs (since |Ains | ≥ |As|/2 from previous claim)

⇒
∑
p∈As

D(p, Ci) ≥
(αβ)2

8
· Tmin (using (7))

⇒
∑
s∈J̄i

∑
p∈As

D(p, Ci) ≥ (k − i) · (αβ)
2

8
· Tmin (since |J̄i| ≥ (k − i))

⇒ φCi(X̄i) ≥ (k − i) · (αβ)
2

8
· Tmin

This concludes the proof of Lemma 5. ��

600 R. Jaiswal and N. Garg

Lemma 6. ∀i,Pr[Ei+1 | Ei] ≥ k−i
k−i+1

Proof. Pr[Ei+1 | Ei] is just the conditional probability that the (i+ 1)th center
is chosen from the set X̄i given that the first i centers are chosen from i different
optimal clusters. This probability can be expressed as

Pr[Ei+1 | Ei] = Exp

[
φCi(X̄i)

φCi(P)
| Ei
]

(11)

For the sake of contradiction, let us assume that

Exp

[
φCi(X̄i)

φCi(P)
| Ei
]
= Pr[Ei+1 | Ei] <

k − i

k − i+ 1
(12)

Applying Jensen’s inequality, we get the following:

1

Exp
[
φCi

(P)

φCi
(X̄i)

| Ei
] ≤ Exp

[
φCi(X̄i)

φCi(P)
| Ei
]
<

k − i

k − i+ 1

This gives the following:

1 +
1

k − i
< Exp

[
φCi(P)

φCi(X̄i)
| Ei
]

= Exp

[
φCi(Xi) + φCi(X̄i)

φCi(X̄i)
| Ei
]

= 1 +Exp

[
φCi(Xi)

φCi(X̄i)
| Ei
]

⇒ 1

k − i
≤ Exp

[
φCi(Xi)

(αβ)2

8 · (k − i) · Tmin
| Ei

]
(using Lemma 5)

≤ Exp[φCi(Xi) | Ei]
(αβ)2

8 · (k − i) · Tmin

≤
4

(αβ)2 · φCOPT (P)

(αβ)2

8 · (k − i) · Tmin
(using Lemma 3)

⇒ Tmin
φCOPT (P)

≤ 32

(αβ)4
(13)

Let Imin be the index for which minj �=Imin(|AImin |D(cImin , cj)) is minimized.
Note that Tmin = minj �=Imin(|AImin |D(cImin , cj)). Consider the set
C′ = ∪s�=Imin{cs}, i.e., all centers except the center of the Ithmin cluster. We will
compute the cost of C′ with respect to P :

φC′(P)

φCOPT (P)
≤ φCOPT (P) + Tmin

φCOPT (P)
(using Centroid property)

≤ 1 +
32

(αβ)4
(using (13))

This contradicts with the fact that P satisfies Δk−1(P)
Δk(P) > 1 + 32

(αβ)4 . ��

Analysis of k-Means++ for Separable Data 601

3 Analysis of SampAlg without Separation Condition

In this section, we will show that SampAlg gives an O(1) approximation with
probability Ω(2−2k) for any data set. This holds with respect to any distance
measure that satisfies the α-symmetry and β-triangle inequality. Note that the
Centroid property is not required. This is stated more formally in the next
Theorem.

Theorem 2. Let 0 < α, β ≤ 1 be constants. Let D be a distance measure over
space X such that D satisfies α-approximate symmetry and β-approximate tri-
angle inequality. Let P ⊆ X be any set of n points from the space X . Then
SampAlg gives an O(1)-approximation with probability Ω(2−2k).

Proof. We will use the definitions and notations from the previous Section. Given
a set of centers Ci, we say that an optimal cluster Aj is “covered” if there exists
a center c′ ∈ C such that φ{c′}(Aj) ≤ 8

(αβ)2φ{cj}(Aj). Note that if there is a

set of centers C′ such that all the optimal clusters are covered, then φC′(P) ≤
8

(αβ)2φCOPT (P). We will show that, with probability Ω(2−2k), either Ck covers

all the optimal clusters or gives a constant approximation. Recall that Ci denotes
the set of centers after i centers are picked. Let Ri denote the set of indices of
optimal clusters that are covered by Ci. Let Yi = ∪j∈RiAj and Ȳi = P \ Yi. The
probability that (i + 1)th chosen center covers a previously uncovered cluster

is given by
φCi

(Ȳi)

φCi
(P) . Suppose that

φCi
(Ȳi)

φCi
(P) < 1/2. This implies that φCi(Ȳi) <

φCi(Yi). This further implies that

φCi(P) = φCi(Ȳi) + φCi(Yi) < 2φCi(Yi) ≤
16

(αβ)2
φCOPT (Yi) ≤

16

(αβ)2
φCOPT (P).

The above basically means that the current set of centers already gives a constant
approximation with respect to the entire point set P . Choosing more centers will

only lower the cost. On the other hand, if
φCi

(Ȳi)

φCi
(P) ≥ 1/2, then this implies that

with probability at least 1/2 the (i + 1)th center is from one of the uncovered
clusters. Conditioned on this, from Lemma 2 we know that with probability at
least 1/2, the newly chosen center covers a previously uncovered cluster. So, with
probability at least 1/4, a new cluster gets covered in step (i+ 1).

So, either the set of chosen centers Ck gives an approximation factor of 16
(αβ)2

or with probability at least 2−2k covers all optimal clusters. The latter implies
that Ck gives 8

(αβ)2 approximation. So, in summary, SampAlg gives an 16
(αβ)2 -

approximation with probability at least 2−2k. ��

4 Conclusions and Open Problems

In this paper, we have shown that given that the data is separable in the spirit of

Ostrovsky et al. [10], i.e.,
Δk−1(P)
Δk(P) ≥ 1+γ1 (for some fixed constant γ1), then the k-

means++based sampling algorithmSampAlg gives anO(1) approximationwith

602 R. Jaiswal and N. Garg

probability Ω(1/k). On the other hand, Brunsch and Röglin [8] gave an instance
whereSampAlggives (2/3−ε) logk approximationwithprobability exponentially

small in k. However, their instance is not separable, i.e., Δk−1(P)
Δk(P) = 1 + γ2, where

γ2 = o(1) and use high dimension. Some interesting open questions are:

– How does SampAlg behave when 1 + γ2 ≤ Δk−1(P)
Δk(P) ≤ 1 + γ1?

– How does SampAlg behave for planar k-median instances (or in general low
dimensional instances)?

The planar (dimension = 2) k-means problem was shown to be NP-hard by
Mahajan et al. [9]. The lower-bound instances constructed by Arthur and Vas-
silvitskii [5], Aggarwal et al. [3], and Brunsch and Röglin [8] use high dimension.
So, it may be possible that SampAlg gives O(1) with high probability for any
planar k-means instances. Another interesting direction is to explore the behav-
ior of SampAlg when the data satisfies (c, ε)-closeness property of Balcan et al.
[6]. This property was argued to be weaker than the separability condition of
Ostrovsky et al. [10].

References

1. Ackermann, M.R.: Algorithms for the Bregman k-Median Problem. PhD thesis,
University of Paderborn, Department of Computer Science (2009)

2. Ackermann, M.R., Blömer, J.: Bregman Clustering for Separable Instances. In:
Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 212–223. Springer, Heidelberg
(2010)

3. Aggarwal, A., Deshpande, A., Kannan, R.: Adaptive Sampling for k-Means Cluster-
ing. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM
2009. LNCS, vol. 5687, pp. 15–28. Springer, Heidelberg (2009)

4. Ailon, N., Jaiswal, R., Monteleoni, C.: Streaming k-means approximation. In: Ad-
vances in Neural Information Processing Systems, vol. 22, pp. 10–18 (2009)

5. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Pro-
ceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2007), pp. 1027–1035 (2007)

6. Balcan, M.-F., Blum, A., Gupta, A.: Approximate clustering without the approxi-
mation. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 2009), pp. 1068–1077 (2009)

7. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman diver-
gences. Journal of Machine Learning Research 6, 1705–1749 (2005)

8. Brunsch, T., Röglin, H.: A Bad Instance for k-Means++. In: Ogihara, M., Tarui,
J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 344–352. Springer, Heidelberg (2011)

9. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The Planar k-Means Problem
is NP-Hard. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431,
pp. 274–285. Springer, Heidelberg (2009)

10. Ostrovsky, R., Rabani, Y., Schulman, L.J., Swamy, C.: The effectiveness of lloyd-
type methods for the k-means problem. In: Proc. 47th IEEE FOCS, pp. 165–176
(2006)

A Sharper Local Lemma

with Improved Applications

Kashyap Kolipaka, Mario Szegedy, and Yixin Xu

Department of Computer Science
Rutgers, The State University of New Jersey
{kolipaka,szegedy,yixinxu}@cs.rutgers.edu

Abstract. We give a new family of Lovász Local Lemmas (LLL), with
applications. Shearer has given the most general condition under which
the LLL holds, but the original condition of Lovász is simpler and more
practical. Do we have to make a choice between practical and optimal?
In this article we present a continuum of LLLs between the original and
Shearer’s conditions. One of these, which we call Clique LLL (CLLL),
particularly stands out, and is natural in those settings, where the event
space is defined with discrete independent random variables (á la Moser
and Tardos). Using this version we get improved bounds in applications
for Acyclic Edge Coloring and Non-repetitive Vertex Coloring.

Keywords: Lovász Local Lemma, Independent set polynomial, Hard-
core lattice model, Graph coloring.

1 Introduction

The setting for the Lovász Local Lemma(LLL) has a collection of bad events
{A1, A2, . . . , An} and a dependency graph G on the node set [n] = {1, 2, . . . , n}.
For i ∈ [n], let N(i) denote the set of neighbors of the node i. The dependency
graph gives the information that the event Ai is independent of the system
of events generated by {Aj | j /∈ N(i)}. The motivation for the LLL is to find
sufficient conditions such that Prob(

⋂
i∈[n]Ai) > 0. The idea of the Local Lemma

was first circulated by Laci Lovász in the early 1970s, in an unpublished note.
It was first published in [EL75] and was subsequently sharpened in a result of
Spencer [Spe77] to the following popular form:

Theorem 1 (Original LLL [EL75, Spe77]). If there exist xi ∈ (0, 1) (i ∈
[n]), such that

∀i ∈ [n] : Prob(Ai) ≤ xi
∏

j∈N(i)

(1− xj),

then Prob(A1 ∧ . . . ∧ An) > 0.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 603–614, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

604 K. Kolipaka, M. Szegedy, and Y. Xu

1.1 The Variable Framework

In most applications of the LLL the events are determined by a set of independent
discrete random variables, vbl = {v1, v2, . . . , vm}. Each event Ai is completely
determined by some subset of variables, vbl(i) ⊆ vbl. The dependency graph in
such applications is constructed in a canonical way by adding the edge (i, j) if
and only if vbl(i) ∩ vbl(j) �= ∅. We will call this setting of the LLL the variable
framework. LLL has many applications in this framework besides the well-known
k-SAT.

Acyclic Edge Coloring. Given an undirected graphG, an acyclic edge coloring
is a proper edge coloring such that no cycle is 2-edge-colored. The acyclic edge
chromatic number of G is the minimum number of colors in an acyclic edge
coloring of G and is denoted by a′(G). Let a′(d) denote the maximum value
a′(G) over all graphs with max-degree at most d. Acyclic colorings were studied
in a series of works [AMR91, Grü73, MR98, MNS07]. Alon, McDiarmid and
Reed [AMR91] consider acyclic edge colorings and among other things, use the
LLL to prove that a′(d) < 64d. This bound was later improved by Molloy and
Reed [MR98] to 16d, again using the LLL. It is known that a′(d) ≥ d + 2 and
Alon, Sudakov and Zaks [ASZ01] conjecture that in fact a′(d) = d+2. They also
prove the conjecture for graphs with girth Ω(d log d). In further efforts towards
proving this conjecture, Muthu, Narayanan and Subramanian [MNS07] showed
that a′(d) < 4.52d for graphs with girth at least 220 and a′(d) < 6d for graphs
with girth at least 9. More recently, Haeupler, Saha and Srinivasan [HSS10]
made all the above results constructive by extending the algorithm of Moser
and Tardos [MT10] to the case of an exponential number of events.

Non-repetitive Vertex Coloring. Given an undirected graph G, a nonrepet-
itive vertex coloring is a proper coloring of the vertices of G such that there
is no simple path with an even number of vertices, such that, the sequence of
colors in the first half is same as the sequence of colors in the second half. The
minimum number of colors in such a coloring for G is called the Thue number
of G, denoted by π(G). The original result regarding Thue numbers was due
to Thue in [Thu06] who proved that π(G) ≤ 4 if G is a tree. There have been
several works related to the Thue numbers in [AG08, BGK+07, Cur05, Gry08].
A special case of interest for Thue numbers is when the degrees are bounded by
d. Let π(d) = max{π(G) | max-degree of G ≤ d}. Alon, Grytczuk, Hauszczak

and Riordan [AGHR02] proved that π(d) is in O(d2) and Ω(d2

log d). Their proof of

the upper bound uses the LLL. Grytczuk in [Gry07] shows that this can be im-
proved to 16d2, which is basically the same random coloring as [AGHR02] with
a more optimized application of the LLL. In a recent development, Dujmovic,
Joret, Kozik and Wood [DJKW12] have shown that π(d) ≤ (1 + o(1))d2, using
the entropy-compression method of Moser and Tardos [MT10].

A Sharper Local Lemma with Improved Applications 605

1.2 Shearer’s Bound

Given the variety of applications of the LLL, it is natural to ask if we could
get even better bounds for the listed problems by improving on the LLL. The
conditions given in Theorem 1 are indeed not optimal for a fixed graph. Shearer
found the exact characterization of those sequences p = (p1, . . . , pn) of probabil-
ities for which Prob(A1 ∧ . . . ∧ An) > 0 whenever Prob(Ai) = pi, and {Ai}ni=1

has dependency graph G [She85, SS06]. To describe this characterization, let
Indep(G) denote the set of all independent sets of G, including the empty set,
and define the quantities

qI = qI(G, p) =
∑

J∈Indep(G), I⊆J
(−1)|J|−|I|

∏
i∈J

pi (1)

for any I ∈ Indep(G).

Theorem 2 (Shearer, [She85]). Let G be a dependency graph on [n]. Then
for a vector p = (p1, . . . , pn) of non-zero probabilities the following are equivalent:

1. For every system {Ai}ni=1 of events with Prob(Ai) = pi (1 ≤ i ≤ n) with
dependency graph G it holds that Prob(A1 ∧ . . . ∧ An) > 0;

2. qI(G, p) > 0 for all I ∈ Indep(G).

Furthermore, when the above holds, there exists {Bi}ni=1 such that Prob(Bi) = pi
(1 ≤ i ≤ n) with dependency graph G such that for every independent set I of
G:

Prob(
∧
i∈I

Bi ∧
∧
i�∈I

Bi) = qI(G, p).

This is the unique instance that minimizes Prob(A1 ∧ . . . ∧An), and it also has
the property that all neighboring events are disjoint. We call this the extreme
instance.

Shearer’s Bound and Statistical Mechanics. The symmetric Shearer bound
pc(G) for a graph G is the smallest p > 0 such that (G, (p, p . . .)) does not satisfy
Shearer’s condition. Scott and Sokal [SS06] show that pc is a point of singular-
ity in the hard-core lattice gas model, where some thermodynamic quantities
are known to exhibit non-trivial behavior. The hard-core lattice gas model deals
with infinite graphs, among which the integer lattices are of special interest. Sev-
eral techniques for computing pc have been developed in statistical mechanics. A
couple of examples are transfer matrix analysis and phenomenological renormal-
ization [Gut87, Woo85, Tod99]. In fact, using the transfer matrix analysis, Todo
[Tod99] has computed the amazingly precise estimate of pc = 0.11933888188(1)
for the square lattice, Z2. The above methods are quite complex and require
knowledge of involved tools from statistical mechanics. In [SS06], Scott and Sokal
use the LLL to estimate pc, proving a lower bound of ≈ .105468 on pc(Z2). We
use our results to improve on this LLL-based lower bound on pc(Z2).

606 K. Kolipaka, M. Szegedy, and Y. Xu

1.3 Our Results

Shearer’s condition (Theorem 2) is optimal because it uses all the global infor-
mation regarding the structure of the dependency graph. In contrast the original
LLL (Theorem 1) only uses minimalistic local structural information. Our main
result is that we give a hierarchy of LLLs, increasingly complex, that use an
increasing amount of local information in a non-trivial way, and on limit give
Shearer’s bound. Here are our results:

Clique Lovász Local Lemma (CLLL). First we present a special and very
important member of our hierarchy that we call CLLL. The CLLL is a gener-
alization of the LLL and it is especially useful when the neighborhoods of the
nodes can be decomposed into a small number of cliques. This is the case in the
variable framework, where the cliques correspond to the variables. The CLLL is
described in Section 2.

We are aware of only one improvement, by Bissacot, Fernandez, Procacci and
Scoppola [BFPS11], that lies between the conditions of Theorem 1 and Theorem
2, but this is not as user-friendly as the CLLL. We also show better bounds,
which at the same time are achieved in a much more straightforward manner
than using the version from [BFPS11]. Their proof uses relatively heavy tools
from multivariate complex analysis. In contrast, we give a direct and elemen-
tary proof by modifying the original proof of Lovász [Spe77]. Our more general
decomposition theorem follows the same lines.

Algorithmic Aspects. In a recent exciting development Moser [Mos09], Moser
and Tardos (MT) [MT10], improving on a long sequence of earlier results that
started with the work of Jozsef Beck [Bec91, Alo91, MR98, CS00, Sri08], show
that the original LLL can also be made fully efficient. Pegden [Peg11] later proved
the convergence of the MT algorithm with an explicit bound on running time
for the LLL of [BFPS11]. In [KS11], Kolipaka and Szegedy have shown that the
MT algorithm works efficiently up-to Shearer’s bound. They also give a formula
for the running time that we will exploit in this paper. Relying on [KS11] we
show that in the case of CLLL a nice formula can be obtained similar to that in
MT.

Improved Bounds for Coloring Problems. Using the CLLL in a straight-
forward way we improve bounds for the following problems.

1. Acyclic Edge Coloring. We prove that a′(d) ≤ 8.6d. This improves on a
previous bound of 9.62d by Ndreca, Procacci and Scoppola [NPS10] who in
turn improved on the bound of 16d as shown by Molloy and Reed [MR98].

2. Non-repetitive Vertex Coloring. We show that π(d) ≤ 10.4d2. This
improves on the previous bound of 16d2 by Grytczuk [Gry07].

A Family of Lovász Local Lemmas. We show that there is a family of
LLLs, where each lemma in the family corresponds to a decomposition of the
dependency graph G into vertex-induced subgraphs that cover all the edges of G.
In general, the complexity of the constraints in our LLL hierarchy depends on the

A Sharper Local Lemma with Improved Applications 607

size and structure of the parts of the decomposition. When the induced subgraphs
are simply the edges of G, we get the original LLL (in fact a strictly better result)
and if there is only one induced subgraph, then we get Shearer’s condition, which
is the best possible. This family is the result of the decomposition theorem
described in Section 4.

Lower Bounds for pc(Z2). The standard statistical mechanics tools used to
estimate pc(Z2) are complicated and require heavy computations. Our approach
to lower bound pc(Z2) is to use better decompositions to get close to the sym-
metric Shearer bound. We apply the decomposition theorem for a very simple
decomposition and prove that pc(Z2) ≥ 0.1101. This improves on the LLL-based
lower bound of 0.1054 due to [SS06]. This is described in Section 4.1.

Note on Lopsidependency. In [ES91], Erdős and Spencer introduced the no-
tion of lopsidependency graph. This a generalization of the notion of dependency
graph, wherein the mutual independence between non-neighbors is replaced by
the more general (and weaker) condition: for every i ∈ [n] and a set S of its
non-neighbors, we have Prob(Ai |

⋂
j∈S Aj) ≤ Prob(Ai). It can easily be shown

that the statements of Theorem 1 and Theorem 2 are true for this case as well.
We would like to note that this is also the case with our proofs of the CLLL and
the decomposition theorem.

2 The Clique Lovász Local Lemma (CLLL)

Theorem 3 (Clique LLL). Let {A1, A2, . . . , An} be a set of events with depen-
dency graph G and let {K1,K2, . . . ,Km} be a set of cliques in G covering all the
edges (not necessarily disjointly). If there exist a set of vectors {x1, x2, . . . , xm}
from (0, 1)n such that following conditions are satisfied,

– ∀v ∈ [m] :
∑

i∈Kv
xi,v < 1,

– ∀i ∈ [n], ∀v such that i ∈ Kv :

Prob(Ai) ≤ xi,v
∏

u�=v:Ku�i
(1−

∑
j∈Ku\{i}

xj,u),

then:

1. Prob(
⋂
i∈[n]Ai) ≥

∏
v∈[m](1−

∑
i∈Kv

xi,v) > 0,
2. In the variable framework, the running time of the algorithm of Moser and

Tardos [MT10] is at most,∑
i∈[n]

min
v:Kv�i

xi,v
1−

∑
j∈Kv

xj,v
.

Proof (of Statement 1). For ease of exposition, we will denote
⋂
i∈S Ai with AS .

We will use induction on |S| to prove that,

∀i ∈ [n], ∀Kv � i, ∀S ⊆ G \Kv : Prob(Ai | AS) ≤ xi,v. (2)

608 K. Kolipaka, M. Szegedy, and Y. Xu

It is obviously true for S = ∅. Suppose it is true for all sets of size at most s.
Let |S| = s+ 1, X = S ∩N(i), Y = S \N(i). Then

Prob(Ai | AS) =
Prob(Ai ∩ AX ∩ AY)

Prob(AX ∩ AY)
≤ Prob(Ai)

Prob(AX | AY)
.

The inequality uses the fact, Prob(Ai | AY) ≤ Prob(Ai), which is true in both
the dependency and lopsidependency graphs (Section 1.3). For each Ku � i,
let Xu = Ku ∩ X . Since X contains only neighbors of i that are not in Kv

and all edges incident on i are covered by some clique Ku � i, we have, that
X ⊆

⋃
u�=v:Ku�iKu. Then using the chain rule

Prob(AX | AY) ≥
∏

u�=v:Ku�i
Prob(AXu | AYu) where Yu ⊆ S \Ku.

Since Xu, Yu are disjoint subsets of S, if Xu �= ∅ then |Yu| < |S| = s + 1. Also,
by definition Yu ⊆ G \ Ku. Therefore using the induction hypothesis we can
conclude that for every j ∈ Xu, we have Prob(Aj | AYu) ≤ xj,u. By applying
the union bound for each Xu we have

Prob(AX | AY) ≥
∏

u�=v:Ku�i
(1−

∑
j∈Xu

xi,u) ≥
∏

u�=v:Ku�i
(1−

∑
j∈Ku\{i}

xj,u)

which gives (2).
The result now follows from an easy of application of the chain rule and then

the union bound. Let S1, S2, . . . , Sm be the sequence of subsets of vertices given
by: S1 = K1 and ∀1 ≤ v < m,Sv+1 = Kv+1 \∪v=1S. Also, let S>v = ∪m=v+1S.
It is easy to see that S1 ∪ S2 ∪ . . . Sm = [n], therefore,

Prob(A[n]) =

m∏
v=1

Prob(ASv | AS>v)

Clearly, S>v ⊆ G \Kv. Therefore using (2), we have Prob(Ai | AS>v) ≤ xi,v for
every node i ∈ Sv. Using the union bound here for the events, (Ai | AS>v), for
all i ∈ Sv gives the result.

Proof (of Statement 2). It can be easily shown that if the probabilities satisfy the
conditions of the theorem, they also satisfy the Shearer condition for the graph.
Now, [KS11] prove that when the probabilities satisfy Shearer’s condition, the

running time of the Moser and Tardos algorithm is at most
∑

i∈[n]
q{i}(G,p)
q∅(G,p)

.

Using Theorem 2 this can be written as,∑
i∈[n]

q{i}
q∅

=
∑
i∈[n]

Prob(Bi |
⋂
j �=iBj)

1− Prob(Bi |
⋂
j �=iBj)

where {B1, B2, . . . , Bn} are the events of the extreme instance. Now let Kv be
any clique that contains i. Then,

Prob(Bi |
⋂
j �=i

Bj) ≤
Prob(Bi | B[n]\Kv

)

Prob(BKv\{i} | B[n]\Kv
)

A Sharper Local Lemma with Improved Applications 609

Using (2) then gives Prob(Bi |
⋂
j �=iBj) ≤ xi,v

1−
∑

j∈Kv\{i} xj,v
, giving the required

result.

2.1 CLLL vs. Previous LLLs

First we should mention that CLLL always yields better bounds than Theorem
1, the original LLL. This can be immediately seen if we let the cliques in the
decomposition be the individual edges. Let (x1, x2, . . . , xn) be numbers that
satisfy Theorem 1 For every edge e = (i, j), set xi,e = xi and xj,e = xj when
xi + xj < 1 and xi,e = 1− xj and xj,e = 1− xi when xi + xj > 1. If xi + xj = 1
setting xi,e = xi − ε, xj,e = xj for an arbitrarily small ε > 0 (and then consider
the bounds as ε goes to zero). In all the above cases the upper bound on Prob(Ai)

given by the CLLL is at least
xi

∏
j∈N(i)(1−xj)

maxj∈N(i)(1−xj)
, which is greater than the bound

from the Theorem 1.
CLLL has the nice property that for graphs with maximum degree d we obtain

the optimal (d− 1)d−1/dd bound, while Theorem 1 gives only dd/(d+ 1)d+1. It
also gives the correct (union) bound when G is a clique, a natural extreme case,
where Theorem 1 fails to work. CLLL gives better bounds than the LLL version
of Bissacot, Fernandez, Procacci and Scoppola [BFPS11] for all examples we
have studied, it has a simpler proof, and it is more natural to apply.

3 Applications of the Clique Lovász Local Lemma

The applications in this section will correspond to the variable framework de-
scribed in Section 1.1. The events are determined by a set of independent discrete
random variables vbl = {v1, v2, . . . , vm}. To apply the Clique LLL in this frame-
work, we observe that each variable v ∈ vbl corresponds to a clique Kv in the
dependency graph formed by the nodes {i | vbl(i) � v}. This describes a canon-
ical way to decompose the dependency graph in the variable framework into
cliques {K1,K2, . . . ,Km}.

3.1 Acyclic Edge Coloring

The main tool in the previous results ([AMR91], [MR98], [NPS10]) results is
the asymmetric version of the LLL and hence we are able to improve upon the
results in a straightforward way. Our proof is essentially the same as [AMR91]
and [MR98] except we now use the Clique LLL.

Theorem 4. a′(d) ≤ 8.6d.

Proof. Each edge of G is independently assigned a color from {1, 2, . . . , k} uni-
formly at random. For the application of the LLL, we identify the following types
of bad events:

1. The edges in a path of length 2 are assigned the same color. We denote the
set of all such events by B1. Also, if A1 ∈ B1,Prob(A1) =

1
k .

610 K. Kolipaka, M. Szegedy, and Y. Xu

2. An even length cycle C is properly 2-edge-colored. The set of all such events
corresponding to a cycle of length 2� (� > 1) is denoted by B and if A ∈
B,Prob(A) ≤ 1

k2�−2 .

Clearly, an edge coloring is acyclic if and only if none of the above events occur.
We will prove that if k ≥ 9d, the conditions of theorem 3 can be satisfied and
hence there is a positive probability that the edge coloring is acyclic. The random
variables that determine an event are the colors of the corresponding edges. For
each event Ai ∈ Bi and edge e that effects it we set xAi,e = xi =

c
(1+ε)

1
(2d−2) if

i = 1 otherwise if i > 1 we set xAi,e = xi =
c

(1+ε)i
1

d2i−2 , while for some ε it will

be determined later.
Now the number of cycles of length 2i that contain any given edge is at most

d2i−2 and the number of length 2 paths that contain any given edge is at most
(2d− 2). Therefore edge e is contained in at most d2i−2 events from Bi for i > 1
and (2d− 2) events from B1. To prove the theorem, it is enough to have

∀e ∈ Ai : xAi,e

∏
e′∈Ai\{e}

(1−
∑
e′∈A

xA,e′) ≥ Prob(Ai),

that is,

xi(1 − c

∞∑
j=1

(1 + ε)−j)2i−1 ≥ Prob(Ai).

From the above, it is enough to have ε > c and k
d ≥ min{(1+ ε)(1+ 1

ε−c)
3
2 , 2c (1+

ε)(1 + 1
ε−c)}. Minimizing over ε, c, it is easy to verify that k ≥ 8.6d is enough to

satisfy the condition.

3.2 Non-repetitive Vertex Coloring

Wewill be concerned with the upper bound on π(d) (Section 1.1). Alon, Grytczuk,
Hauszczak and Riordan [AGHR02] prove that π(d) is O(d2) using the LLL.
Grytczuk in [Gry07] shows that this can be improved to 16d2, which is basically
the same random coloring as [AGHR02] with a more optimized application of the
LLL. We use the same random coloring and replace the application of LLL with
the Clique LLL.

Theorem 5. π(d) < 10.4d2.

Proof. Suppose we assign colors from {1, 2, . . . k} to the vertices of G indepen-
dently and uniformly at random. For every simple path P of length 2�− 1 (with
2� vertices) we say that a bad event occurs if the sequence of colors in the first
half of P is the same as the second half. We denote the set of bad events cor-
responding to paths of length 2�− 1 by B. It is easy to see that probability of
any event in B is 1

k�
. Let ε > 0 be a constant, which we will set later. For each

A ∈ B, a vertex v in the path corresponding to A we set,

x,v = x =
1

(6d2)
.

A Sharper Local Lemma with Improved Applications 611

For every vertex v, the number of paths of length 2�− 1 containing v is at most
�d2. Therefore to prove the theorem it is enough to have,

x,v
∏

u∈vbl�\{v}
(1−

∑
j:vbl(j)�u

xj,u) ≥ Prob(A),

that is,

x(1−
∞∑
j=1

j6−j)2−1 =
1

(6d2)
(1 − 6

25
)2−1 ≥ Prob(A) =

1

k
.

It is easy to verify that it is enough to have k ≥ 10.4d.

4 Decomposition Theorem

In this section we will prove the decomposition theorem, a generalization of the
Clique LLL. We have shown via the Clique LLL (Theorem 3) how to achieve
sharper bounds by using more local information, namely that the neighborhood
of a node can be covered by a small number of cliques. The decomposition
theorem bridges the gap between Shearer’s bound and the LLL by enabling the
use of even more local information about a dependency graph. An example where
this is useful is to estimate the Shearer bounds for multidimensional infinite grids.
We will describe the application to 2-dimensional grid later in Section 4.1.

Definition 1 (Graph Decomposition). Given an undirected graph G, a set
of induced subgraphs {G1, G2, . . . , GT } is called a decomposition if they cover
all its edges. The Gis will be called the parts of the decomposition.

Theorem 6 (Decomposition Theorem). Let {A1, A2, . . . , An} be a set of
events with dependency graph G. If {G1, G2, . . . GT } is a decomposition of G
and {x1, x2, . . . , xT } are vectors in (0, 1)n with the following properties:

– ∀j ∈ [T], ∀I ∈ Indep(Gj) : qI(Gj , xj) > 0
– ∀i ∈ [n], Gj � i,

Prob(Ai) ≤ xi,j
∏

 �=j:G��i

q∅(G \ {i}, x)
q∅(G \N+(i), x)

then Prob(
⋂n
i=1Ai) ≥

∏
j∈[T] q∅(Gj , xj) > 0.

Proof. For ease of exposition, we will denote
⋂
i∈S Ai with AS . We will use

induction on |S| to prove that,

∀i ∈ [n], Gj � i, S ⊆ G \Gj : Prob(Ai | AS) ≤ xi,j . (3)

Using (3) along with the chain rule (similar to Theorem 2) will then give the
required result. Therefore we will now prove (3). It is obviously true for S = ∅,

612 K. Kolipaka, M. Szegedy, and Y. Xu

now suppose it is true for all sets of size at most s. Let |S| = s + 1. The result
clearly holds if S∩N(i) = ∅. Therefore we can assume without loss in generality
that S ∩N(i) �= ∅. Let X = S ∩N(i), Y = S \N(i). Then,

Prob(Ai | AS) =
Prob(Ai ∩ AX ∩ AY)

Prob(AX ∩ AY)
≤ Prob(Ai)

Prob(AX | AY)
.

For each � �= j set X = G∩X . Since X contains only neighbors of i that are not
in Gj and all edges incident on i are covered by some graph in the decomposition,
X ⊆

⋃
 �=j:G��iG. Using the chain rule, Prob(AX | AY) is at least,∏

 �=j:G��i
Prob(AX�

| AY�∪Z�
) =

∏
 �=j:G��i

Prob(AX�∪Y�
| AZ�

)

Prob(AY�
| AZ�

)

where Y ⊆ G \ N+(i), Z ⊆ G \ G. Since X, Z are disjoint subsets of S, if
X �= ∅, then |Z| < |S| = s + 1. Also by definition, Z ⊆ G \ G. Therefore by
the inductive hypothesis,

∀i′ ∈ G : Prob(Ai′ | AZ�
) ≤ xi′,.

But we also know that x satisfies Shearer’s condition for G \ {i}. Therefore,
the events (Ai′ | AZ�

), i′ ∈ G \{i} satisfy the Shearer condition. We will then be
done by the following lemma (the proof of which will appear in the full version).

Lemma 1. Suppose {A1, A2 . . . An} is a set of events with dependency graph G
and x ∈ (0, 1)n such that ∀i ∈ [n] : Prob(Ai) ≤ xi and (G, x) satisfy Shearer’s
condition. If H is an induced subgraph of G and Y ⊆ V (H) then,

Prob(A[n]\V (H) | AY) ≥
q∅(G, x)

q∅(H, x)
.

4.1 Lower Bounds for pc(Z2)

Imagine the unit squares in Z2 to be colored in a black and white chess board
pattern. We decompose this graph using the white unit squares as the parts of
the decomposition. Clearly all the edges are covered by this decomposition and
each node is present in exactly two parts.

Suppose g is a node in Z2 that is contained in the unit squares W1,W2. Let
xg,W1 = xg,W2 = x. The Shearer polynomials are, q∅(W1, x) = q∅(W2, x) =
1− 4x+2x2. Also, q∅(W1 \ {g}, x) = 1− 3x+x2 and q∅(W1 \N+(g), x) = 1−x.
Therefore to get a lower bound, it is enough to maximize,

x
(1− 3x+ x2)

(1− x)
, subject to 1− 4x+ 2x2 > 0, x ∈ (0, 1).

Using Mathematica we get pc(Z2) > 2− 2
22/3

> 0.1101. With a slightly more com-
plex decomposition we got an even better bound of 0.113. This can be improved
by a series of increasingly more complex decompositions.

A Sharper Local Lemma with Improved Applications 613

Acknowledgement. We thank Donald Knuth for the references to Theorem
1, for catching an important typo in the first write-up and for pointing out the
importance of treating the lopsided case as well. We would also like to thank the
anonymous referees for numerous detailed comments and suggestions.

References

[AG08] Alon, N., Grytczuk, J.: Breaking the rhythm on graphs. Discrete Mathe-
matics 308(8), 1375–1380 (2008)

[AGHR02] Alon, N., Grytczuk, J., Haluszczak, M., Riordan, O.: Nonrepetitive color-
ings of graphs. Random Struct. Algorithms 21(3-4), 336–346 (2002)

[Alo91] Alon, N.: A parallel algorithmic version of the Local Lemma. In: FOCS,
pp. 586–593 (1991)

[AMR91] Alon, N., McDiarmid, C., Reed, B.A.: Acyclic coloring of graphs. Random
Struct. Algorithms 2(3), 277–288 (1991)

[ASZ01] Alon, N., Sudakov, B., Zaks, A.: Acyclic edge colorings of graphs. Journal
of Graph Theory 37(3), 157–167 (2001)

[Bec91] Beck, J.: An algorithmic approach to the Lovász Local Lemma. i. Random
Struct. Algorithms 2(4), 343–366 (1991)

[BFPS11] Bissacot, R., Fernndez, R., Procacci, A., Scoppola, B.: An improvement of
the Lovász Local Lemma via cluster expansion. Combinatorics, Probability
and Computing, FirstView, 1–11 (2011)

[BGK+07] Bresar, B., Grytczuk, J., Klavzar, S., Niwczyk, S., Peterin, I.: Nonrepetitive
colorings of trees. Discrete Mathematics 307(2), 163–172 (2007)

[CS00] Czumaj, A., Scheideler, C.: Coloring non-uniform hypergraphs: a new al-
gorithmic approach to the general Lovász Local Lemma. In: SODA, pp.
30–39 (2000)

[Cur05] Currie, J.D.: Pattern avoidance: themes and variations. Theor. Comput.
Sci. 339, 7–18 (2005)

[DJKW12] Dujmovic, V., Joret, G., Kozik, J., Wood, D.R.: Nonrepetitive colouring
via entropy compression. CoRR, abs/1112.5524 (2012)

[EL75] Erdös, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and
some related questions. In: Hajnal, A., Rado, R., Sos, V.T. (eds.) Infinite
and Finite Sets (to Paul Erdos on his 60th birthday), pp. 609–627 (1975)

[ES91] Erdös, P., Spencer, J.: Lopsided Lovász Local Lemma and latin transver-
sals. Discrete Applied Mathematics 30(2-3), 151–154 (1991)

[Grü73] Grünbaum, B.: Acyclic colorings of planar graphs. Israel Journal of Math-
ematics 14, 390–408 (1973)

[Gry07] Grytczuk, J.: Nonrepetitive colorings of graphs: A survey. Int. J. Math.
Mathematical Sciences 2007 (2007)

[Gry08] Grytczuk, J.: Thue type problems for graphs, points, and numbers. Discrete
Mathematics 308(19), 4419–4429 (2008)

[Gut87] Guttmann, A.J.: Comment: Comment on ’the exact location of partition
function zeros, a new method for statistical mechanics’. Journal of Physics
A Mathematical General 20, 511–512 (1987)

[HSS10] Haeupler, B., Saha, B., Srinivasan, A.: New constructive aspects of the
Lovasz Local Lemma. In: FOCS, pp. 397–406 (2010)

[KS11] Kolipaka, K.B.R., Szegedy, M.: Moser and Tardos meet Lovász. In: STOC,
pp. 235–244 (2011)

614 K. Kolipaka, M. Szegedy, and Y. Xu

[MNS07] Muthu, R., Narayanan, N., Subramanian, C.R.: Improved bounds on acyclic
edge colouring. Discrete Mathematics 307(23), 3063–3069 (2007)

[Mos09] Moser, R.A.: A constructive proof of the Lovász Local Lemma. In: STOC,
pp. 343–350 (2009)

[MR98] Molloy, M., Reed, B.A.: Further algorithmic aspects of the Local Lemma.
In: STOC, pp. 524–529 (1998)

[MT10] Moser, R.A., Tardos, G.: A constructive proof of the general Lovász Local
Lemma. J. ACM 57(2) (2010)

[NPS10] Ndreca, S., Procacci, A., Scoppola, B.: Improved bounds on coloring of
graphs (2010)

[Peg11] Pegden, W.: An improvement of the Moser-Tardos algorithmic local lemma.
CoRR, abs/1102.2853 (2011)

[She85] Shearer, J.B.: On a problem of Spencer. Combinatorica 5(3), 241–245
(1985)

[Spe77] Spencer, J.: Asymptotic lower bounds for Ramsey functions. Discrete Math-
ematics 20, 69–76 (1977)

[Sri08] Srinivasan, A.: Improved algorithmic versions of the Lovász Local Lemma.
In: SODA, pp. 611–620 (2008)

[SS06] Scott, A.D., Sokal, A.D.: On dependency graphs and the lattice gas. Com-
binatorics, Probability & Computing 15(1-2), 253–279 (2006)

[Thu06] Thue, A.: Über unendliche Zeichenreihen. Norske Vid Selsk. Skr. I. Mat.
Nat. Kl. Christian 7, 1–22 (1906)

[Tod99] Todo, S.: Transfer-matrix study of negative-fugacity singularity of hard-
core lattice gas. International Journal of Modern Physics C 10, 517–529
(1999)

[Woo85] Wood, D.W.: The exact location of partition function zeros, a new method
for statistical mechanics. Journal of Physics A: Mathematical and Gen-
eral 18(15), L917 (1985)

Finding Small Sparse Cuts by Random Walk

Tsz Chiu Kwok and Lap Chi Lau

The Chinese University of Hong Kong

Abstract. We study the problem of finding a small sparse cut in an
undirected graph. Given an undirected graph G = (V,E) and a param-
eter k ≤ |E|, the small sparsest cut problem is to find a set S ⊆ V with
minimum conductance among all sets with volume at most k. Using ideas
developed in local graph partitioning algorithms, we obtain the following
bicriteria approximation algorithms for the small sparsest cut problem:

– If there is a set U ⊆ V with conductance φ and vol(U) ≤ k, then
there is a polynomial time algorithm to find a set S with conductance
O(

√
φ/ε) and vol(S) ≤ k1+ε for any ε > 1/k.

– If there is a set U ⊆ V with conductance φ and vol(U) ≤ k, then
there is a polynomial time algorithm to find a set S with conductance
O(

√
φ log k/ε) and vol(S) ≤ (1 + ε)k for any ε > 2 log k/k.

These algorithms can be implemented locally using truncated random
walk, with running time almost linear to k.

1 Introduction

For an undirected graph G = (V,E), the conductance of a set S ⊆ V is defined
as φ(S) = |δ(S)|/vol(S), where δ(S) is the set of edges with one endpoint in
S and another endpoint in V − S, and vol(S) =

∑
v∈S d(v) where d(v) is the

degree of v in G. Let n = |V | and m = |E|. The conductance of G is defined
as φ(G) = minS:vol(S)≤m φ(S). The conductance of a graph is an important

parameter that is closely related to the expansion of a graph and the mixing
time of a random walk [9]. Finding a set of small conductance, called a sparse
cut, is a well-studied algorithmic problem that has applications in different areas.
Several approximation algorithms are known for the sparsest cut problem. The
spectral partitioning algorithm by Cheeger’s inequality [7,1] finds a set of of
conductance

√
φ(G) with volume at most m. The linear programming rounding

algorithm by Leighton and Rao [11] finds a set of conductance O(φ(G) log(n))
with volume at most m. The semidefinite programming rounding algorithm by
Arora, Rao and Vazirani [5] finds a set of conductance O(φ(G)

√
log(n)) with

volume at most m.
Recently there has been much interest in studying the small sparsest cut prob-

lem, to determine φk(G) = minS:vol(S)≤k φ(S) for a given k, and to find a set of

smallest conductance among all sets of volume at most k. This is also known as
the expansion profile of the graph [13,16]. There are two main motivations for
this problem. One is the small set expansion conjecture [15], which states that for

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 615–626, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

616 T.C. Kwok and L.C. Lau

every constant ε > 0 there exists a constant δ > 0 such that it is NP-hard to dis-
tinguish whether φδm(G) ≤ ε or φδm(G) ≥ 1− ε. This conjecture is shown to be
closely related to the unique games conjecture [15], and so it is of interest to un-
derstand what algorithmic techniques can be used to estimate φk(G). There are
bicriteria approximation algorithms for this problem using semidefinite program-
ming relaxations: Raghavendra, Steurer and Tetali [16] obtained an algorithm
that finds a set S with vol(S) ≤ O(k) and φ(S) ≤ O(

√
φk(G) log(m/k)), and

Bansal et.al. [6] obtained an algorithm that finds a set S with vol(S) ≤ (1 + ε)k
and φ(S) ≤ O(f(ε) φk(G)

√
logn log(m/k)) for any ε > 0 where f(ε) is a function

depends only on ε.
There are also algorithms for finding a small sparse cut using the eigenvalues

and eigenvectors of the Laplacian matrix: Arora, Barak and Steurer [4] gave a
random walk based algorithm that returns a set of conductance O(

√
λn100ε/ε)

with size O(n1−ε) for 0 < ε < 1, where λi is the i-th smallest eigenvalue of the
Laplacian matrix of the graph. Lee, Oveis Gharan and Trevisan [10] and Louis,
Raghavendra, Tetali and Vempala [12] gave spectral algorithms that return a set
of conductance O(

√
λn/k log(n/k)) with size O(k). We note that these results

give sufficient conditions to find a small sparse cut efficiently, but they do not
imply a bicriteria approximation algorithm for the small sparsest cut problem.
Recently there is also a random walk based algorithm for finding a balanced
separator with conductance O(

√
φ) in nearly linear time [19] where φ is the

conductance of the optimal balanced separator, but this result does not apply
directly for the small sparsest cut problem.

Another motivation is the design of local graph partitioning algorithms in
massive graphs. In some situations, we have a massive graph G = (V,E) and a
vertex v ∈ V , and we would like to identify a small set S with small conductance
that contains v (if it exists). The graph may be too big that it is not feasible to
read the whole graph and run some nontrivial approximation algorithms. So it
would be desirable to have a local algorithm that only explores a small part of
the graph, and outputs a set S with small conductance that contains v, and the
running time of the algorithm depends only on vol(S) and polylog(n). All local
graph partitioning algorithms are based on some random walk type processes.
The efficiency of the algorithm is measured by the work/volume ratio, which is
defined as the ratio of the running time and the volume of the output set. Spiel-
man and Teng [18] proposed the first local graph partitioning algorithm using

truncated random walk, that returns a set S′ with φ(S′) = O(φ1/2(S) log3/2 n)
if the initial vertex is a random vertex in S, and the work/volume ratio of the
algorithm is O(φ−2(S)polylog(n)). Anderson, Chung, Lang [2] used local pager-
ank vectors to find a set S′ with φ(S′) = O(

√
φ(S) log k) and work/volume

ratio O(φ−1(S)polylog(n)), if the initial vertex is a random vertex in a set S
with vol(S) = k. Anderson and Peres [3] used the volume-biased evolving set
process to obtain a local graph partitioning algorithm with work/volume ratio
O(φ−1/2polylog(n)) and a similar conductance guarantee as in [2]. Note that the
running time of these algorithms would be sublinear if the volume of the output
set is small, which is the case of interest in massive graphs.

Finding Small Sparse Cuts by Random Walk 617

1.1 Main Results

We show that the techniques developed in local graph partitioning algorithms
[18,8] can be used to obtain bicriteria approximation algorithms for the small
sparsest cut problem. We note that the algorithm in Theorem 1 is the same
as the algorithm of Arora, Barak and Steurer [4], but we adapt the analysis in
local graph partitioning algorithms to prove a tradeoff between the conductance
guarantee and the volume of the output set.

Theorem 1. Given an undirected graph G = (V,E) and a parameter k, there
is a polynomial time algorithm to do the following:

1. Find a set S with φ(S) = O(
√
φk(G)/ε) and vol(S) ≤ k1+ε for any ε > 1/k.

2. Find a set S with φ(S) = O(
√
φk(G) log k/ε) and vol(S) ≤ (1 + ε)k for any

ε > 2 log k/k.

For the small sparsest cut problem, when k is sublinear (k = O(mc) for c < 1),
the performance guarantee of the bicriteria approximation algorithm in Theo-
rem 1(2) is similar to that of Raghavendra, Steurer and Tetali [16]. Also, when
k is sublinear, the conductance guarantee of Theorem 1(1) is independent of n,
which matches the performance of spectral partitioning while having a bound
on the volume of the output set. These show that random walk algorithms can
also be used to give nontrivial bicriteria approximations for the small spars-
est cut problem. We note that the result of Anderson and Peres [3] implies a
similar statement to Theorem 1(2), with the same conductance guarantee and
vol(S) = O(k). The algorithms in Theorem 1 can also be implemented locally
by using the truncated random walk algorithm.

Theorem 2. For an undirected graph G = (V,E) and a set U ⊆ V , given
φ ≥ φ(U) and k ≥ vol(U), there exists an initial vertex such that the truncated
random walk algorithm can find a set S with φ(S) ≤ O(

√
φ/ε) and vol(S) ≤

O(k1+ε) for any ε > 2/k. The runtime of the algorithm is Õ(k1+2εφ−2).

When k is sublinear, the conductance guarantee of Theorem 2 matches that
of spectral partitioning, improving on the conductance guarantees in previous
local graph partitioning algorithms. However, we note that our notion of a local
graph partitioning algorithm is much weaker than previous work [18,2,3], as they
proved that a random initial vertex u will work with a constant probability, while
we only prove that there exists an initial vertex that will work and unable to
prove the high probability statement.

In Section 4 we discuss a connection to the small set expansion conjecture.

Independent Work. Oveis Gharan and Trevisan [20] proved Theorem 1 in-
dependently. They also proved a stronger version of Theorem 2, with a faster
running time (Õ(k1+2εφ−1/2)) and also the algorithm works for a random initial
vertex in S with constant probability. We note that their result implies that our
truncated random walk algorithm will also succeed with constant probability if
we start from a random initial vertex in S.

618 T.C. Kwok and L.C. Lau

1.2 Techniques

The techniques are from the work of Spielman and Teng [18] and Chung [8]. Our
goal in Theorem 1(1) is equivalent to distinguish the following two cases: (a)
there is a set S with vol(S) ≤ k and φ(S) ≤ ϕ, or (b) the conductance of every
set of volume at most ck is at least Ω(

√
ϕ) for some c > 1. As in [18], we use the

method of Lovász and Simonovits [14] that considers the total probability of the
k edges with largest probability after t steps of random walk, call this number
Ct(k). In case (a), we use the idea of Chung [8] that uses the local eigenvector of
S of the Laplacian matrix to show that there exists an initial vertex such that
Ct(k) ≥ (1 − ϕ

2)
t. In case (b), we use a result of Lovász and Simonovits [14] to

show that Ct(k) ≤ 1
c +

√
k(1−Mϕ)t for a large enough constant M , no matter

what is the initial vertex of the random walk. Hence, say when c ≥ k0.01, by
setting t = Θ(log k/ϕ), we expect that Ct(k) is significantly greater than 1/c
in case (a) but at most 1/c plus a negligible term in case (b), and so we can
distinguish the two cases. To prove Theorem 2(1), we use the truncated random
walk algorithm as in [18] to give a bound on the runtime. Theorem 1(2) is a
corollary of Theorem 1(1).

2 Finding Small Sparse Cuts

The organization of this section is as follows. First we review some basics about
random walk in undirected graphs. Then we present our algorithm in Theorem 1
and the proof outline, and then we present the analysis and complete the proof
of Theorem 1.

2.1 Random Walk

In the following we assume G = (V,E) is a simple unweighted undirected con-
nected graph with n = |V | vertices and m = |E| edges. Our algorithms are
based on random walk. Let p0 be an initial probability distribution on vertices.
Let A be the adjacency matrix of G, D be the diagonal degree matrix of G, and
W = 1

2 (I +D−1A) be the lazy random walk matrix. The probability distribu-
tion after t steps of lazy random walk is defined as pt = p0W

t. (For convenience,
we use pt to denote a row vector, while all other vectors by default are column
vectors.) For a subset S ⊆ V , we use pt(S) to denote

∑
u∈S pt(u).

To analyze the probability distribution after t steps of lazy random walk,
we use the method developed by Lovász and Simonovits [14] as in other local
graph partitioning algorithms [18,2]. We view the graph as directed by replacing
each undirected edge with two directed edges with opposite directions. Given
a probability distribution p on vertices, each directed edge e = uv is assigned
probability q(e) = p(u)/du. Let e1, e2, . . . , e2m be an ordering of the directed
edges such that q(e1) ≥ q(e2) ≥ . . . ≥ q(e2m). The curve introduced by Lovász
and Simonovits C : [0, 2m] → [0, 1] is defined as follows: for integral x, C(x) =∑x

i=1 q(ei); for fractional x = "x#+r, C(x) = (1−r)C("x#)+rC(�x�). Let Ct be

Finding Small Sparse Cuts by Random Walk 619

the curve when the underlying distribution is pt. Let v1, v2, . . . , vn be an ordering
of the vertices such that pt(v1)/d(v1) ≥ pt(v2)/d(v2) ≥ . . . ≥ pt(vn)/d(vn). Then

Ct(
∑j

i=1 d(vi)) =
∑j

i=1 pt(vi) for all j ∈ [n]. We call the points xj =
∑j

i=1 d(vi)
extreme points, and note that the curve is linear between two extreme points.
We also call the sets St,j = {v1, . . . , vj} for 1 ≤ j ≤ n the level sets at time t.

The curve Ct is concave, and it approaches the straight line x/(2m) when pt
approaches the stationary distribution. Lovász and Simonovits [14] analyzed the
convergence rate of this curve to the straight line based on the conductances of
the level sets.

Lemma 1 (Lovász-Simonovits [14]). Let x = xj ≤ m be an extreme point
at time t and S = St,j be the corresponding level set. If φ(S) ≥ ϕ, then Ct(x) ≤
1
2 (Ct−1(x− ϕx) + Ct−1(x+ ϕx)).

2.2 Algorithm

Our algorithm is simple and is the same as in Arora, Barak and Steurer [4]. For
each vertex v, we use it as the initial vertex of the random walk, and compute
the probability distributions pt for 1 ≤ t ≤ O(n2 logn). Then we output the set
of smallest conductance among all level sets St,j (of all initial vertices) of volume
at most ck, where in Theorem 1(1) we set c = kε and in Theorem 1(2) we set
c = 1 + ε. Clearly this is a polynomial time algorithm.

To analyze the performance of the algorithm, we give upper and lower bound
on the curve based on the conductances. On one hand, we use Lemma 1 to prove
that if all level sets of volume at most ck are of conductance at least φ1, then

the curve satisfies Ct(x) ≤ ft(x) :=
x
ck +

√
x(1 − φ2

1

8)t for all x ≤ k. Informally,
this says that if φ1 is large, then Ct(k) is at most 1/c plus a negligible term
when t is large enough. This statement holds regardless of the initial vertex of
the random walk. On the other hand, if there exists a set S of volume at most
k with conductance φ2, then we use the idea of Chung [8] that uses the local
eigenvector of S of the Laplacian matrix to show that there exists an initial
vertex for which Ct(k) ≥ (1 − φ2

2)t. Informally, this says that if φ2 is small,
then Ct(k) is significantly larger than 1/c if c is large. Finally, by combining the
upper and lower bound for Ct(k) and choosing an appropriate t, we show that
φ1 ≤ O(

√
φ2) when c = kε and φ1 ≤ O(

√
φ2 log k) when c = 1 + ε. Hence the

algorithm can find a level set with the required conductance.

2.3 Upper Bound

We prove the upper bound using Lemma 1. We note that the following statement
is true for any initial probability distribution, in particular when p0 = χv for
any v.

Theorem 3. Suppose for all t′ ≤ t and i ∈ [n], we have φ(St′,i) ≥ φ1 whenever

vol(St′,i) ≤ l ≤ m. Then the curve satisfies Ct(x) ≤ ft(x) :=
x
l +

√
x(1 − φ2

1

8)t

for all x ≤ 2m.

620 T.C. Kwok and L.C. Lau

Proof. Let the extreme points xi satisfy 0 = x0 ≤ x1 ≤ x2 ≤ . . . ≤ xi ≤ l < xi+1.
Note that Ct is linear between extreme points and between xi and l, and ft is
concave. So we only need to show the inequality for extreme points and for
x ≥ l. When x ≥ l, the inequality always hold as ft(x) ≥ 1 ≥ Ct(x) for any
t. Now we would prove by induction. When t = 0 the inequality is trivial as
f0(x) ≥ 1 ≥ C0(x) for all x ≥ 1. When t > 0 and x is an extreme point,

Ct(x) ≤
1

2
(Ct−1(x− φ1x) + Ct−1(x+ φ1x)) (by Lemma 1)

≤ 1

2
(ft−1(x − φ1x) + ft−1(x+ φ1x)) (by induction)

=
x

l
+

1

2

√
x(1− φ2

1

8
)t−1(

√
1− φ1 +

√
1 + φ1)

≤ x

l
+
√
x(1− φ2

1

8
)t,

where the last inequality follows from Taylor expansions of
√
1− φ1 and

√
1 + φ1.

2.4 Lower Bound

The idea is to use the local eigenvector of S of the normalized Laplacian matrix
to show that there is an initial distribution such that pt(S) ≥ (1− φ2

2)t.

Theorem 4. Assume S ⊆ V where vol(S) ≤ m and φ(S) ≤ φ2. Then there
exists a vertex v such that if p0 = χv, then pt(S) ≥ (1− φ2

2)t.

Proof. Let L = D− 1
2LD− 1

2 be the normalized Laplacian matrix, where L =
D − A is the Laplacian matrix of the graph. For any matrix M with rows and
columns indexed by V , let MS be the |S| × |S| submatrix of M with rows and
columns indexed by the vertices in S. Consider the smallest eigenvalue λS of LS
and its corresponding eigenvector vS . Let χS be the characteristic vector of S.
We have

(D
1
2

S1)
TLS(D

1
2

S1) = 1TLS1 =
∑

e=uv∈E
(χS(u)− χS(v))

2 = |δ(S)|.

So, by the Courant-Fischer theorem,

λS ≤ (D
1
2

S1)
TLS(D

1
2

S1)

‖D
1
2

S1‖22
=

|δ(S)|
vol(S)

≤ φ2.

We assume without loss of generality that S is a connected subgraph. Then,
by the Perron-Frobenius theorem, the eigenvector vS can be assumed to be

positive, and we can rescale vS such that D
1
2

S vS is a probability distribution. Let
pt,S denote the restriction of pt on S. We set the initial distribution p0 such that

Finding Small Sparse Cuts by Random Walk 621

p0,S = (D
1
2

S vS)
T , and p0,V−S = 0. We would show that pt,S ≥ (1 − λS

2)tp0,S by
induction. Clearly the statement is true when t = 0. For t > 0, we have

pt,S ≥ pt−1,SWS

= pt−1,S · (IS +D−1
S AS)

2

≥ (1− λS
2
)t−1vTSD

1
2

S

(IS +D−1
S AS)

2
(by induction)

= (1− λS
2
)t−1vTS (I −

LS
2

)D
1
2

S

= (1− λS
2
)tvTSD

1
2

S

= (1− λS
2
)tp0,S .

Therefore,

pt(S) = pt,S(S) ≥ (1− λS
2
)tp0,S(S) ≥ (1− φ2

2
)t.

Since random walk is linear and vS is a convex combination of χv where v ∈ S,
there exists a vertex v ∈ S such that if p0 = χv, then pt(S) ≥ (1 − φ2

2)t.

2.5 Proof of Theorem 1

We combine the upper bound and the lower bound to prove Theorem 1. We note
that Theorem 1 is trivial if φk(G) ≥ ε, and so we assume φk(G) < ε. We also
assume ε ≤ 0.01, as otherwise we reset ε = 0.01 and lose only a constant factor.

The algorithm is simple. Set T = εk2 log k/4. For each vertex u, set p0 = χu
and compute St,i for all t ≤ T and i ∈ [n]. Denote these sets by St,i,u to specify
the starting vertex u. Output a set S = St,i,u that achieves the minimum in
minvol(St,i,u)≤k1+ε φ(St,i,u). Clearly the algorithm runs in polynomial time.

We claim that φ(S) ≤ 4
√
φk(G)/ε. Suppose to the contrary that the algorithm

does not return such a set. Consider t = ε log k
2φk(G) ; note that t ≤ T as φk(G) ≥ 1/k2

for a simple unweighted graph. Applying Theorem 3 with l = k1+ε, for any
starting vertex u, we have

Ct(k) ≤
k

k1+ε
+
√
k(1 − 2

φk(G)

ε
)t

≤ k−ε +
√
k exp(−2

φk(G)

ε

ε log k

2φk(G)
)

= k−ε +
√
k exp(− log k)

= k−ε + k−
1
2 .

On the other hand, suppose S∗ is a set with vol(S∗) ≤ k and φ(S∗) = φk(G).
Then Theorem 4 says that there exists a starting vertex u∗ ∈ S∗ such that

pt(S
∗) ≥ (1− φk(G)

2
)t

622 T.C. Kwok and L.C. Lau

≥ exp(−φk(G)t) (for φk(G) < 0.01)

= exp(−1

2
ε log k)

= k−
ε
2

> k−ε + k−
1
2 (for k ≥ 1

ε
and ε ≤ 0.01)

This is contradicting since Ct(k) ≥ pt(S
∗) for that starting vertex, completing

the proof of Theorem 1(1).
Now we obtain Theorem 1(2) as a corollary of Theorem 1(1). Set ε′ = ε

2 log k .

Then k1+ε
′ ≤ (1 + ε)k. By using Theorem 1(1) with ε′, we have Theorem 1(2).

3 Local Graph Partitioning

To implement the algorithm locally, we use truncated random walk as in [18].
Let q0 = χv. For each t ≥ 0, we define p̃t by setting p̃t(v) = 0 if qt(v) < εd(v) and
setting p̃t(v) = qt(v) if qt(v) ≥ εd(v), and we define qt+1 = p̃tW . Then, we just
use p̃t to replace pt in the algorithm in Section 2. To prove that the truncated
random walk algorithm works, we first show that p̃t is a good approximation
of pt and can be computed locally. Then we show that the curve defined by p̃t
satisfies the upper bound in Theorem 3, and it almost satisfies the lower bound
in Theorem 4. Finally we combine the upper bound and the lower bound to
prove Theorem 2.

3.1 Computing Truncated Distributions

Lemma 2. There is an algorithm that compute p̃t such that p̃t ≤ pt ≤ p̃t(v)+εtd
for every 0 ≤ t ≤ T , with time complexity O(T/ε), where d is the degree vector.

Proof. First we prove the approximation guarantee. By induction, we have the
upper bound

p̃t ≤ qt = p̃t−1W ≤ pt−1W = pt.

Also, by induction, we have the lower bound

pt = pt−1W ≤ (p̃t−1 + ε(t− 1)d)W = qt + ε(t− 1)d ≤ p̃t + εtd.

Next we bound the computation time. Let St be the support of p̃t. In order to
compute qt+1 from p̃t, we need to update each vertex v ∈ St and its neighbors.
Using a perfect hash function, the neighbors of a vertex v can be updated in
O(d(v)) steps, and thus qt+1 and p̃t+1 can be computed in O(vol(St)) steps.
Since each vertex v ∈ St satisfies p̃t ≥ εd(v), we have vol(St) =

∑
v∈St

d(v) ≤
pt(St)/ε ≤ 1/ε, and this completes the proof.

Finding Small Sparse Cuts by Random Walk 623

3.2 Approximate Upper Bound

We use the truncated probability distributions to define the curve C̃t. Note that
p̃t may not be a probability distribution and C̃t(2m) may be less than one. And
we define the level sets S̃t,i = {v1, v2, . . . , vi} when we order the vertices such

that p̃t(v1)/d(v1) ≥ p̃t(v2)/d(v2) ≥ . . . ≥ p̃t(vn)/d(vn). We show that C̃t would
satisfy the same upper bound as in Theorem 3.

Lemma 3. Suppose for all t ≤ T and i ∈ [n], we have φ(S̃t,i) ≥ φ1 whenever

vol(S̃t,i) ≤ l ≤ m. Then C̃t(x) ≤ ft(x) :=
x
l +

√
x(1− φ2

1

8)t for all x ≤ 2m.

Proof. Let x̃i =
∑

v∈S̃t,i
d(v) be the extreme points defined by p̃t′ . By the same

proof as in Theorem 3. it suffices to prove that Lemma 1 still holds after replacing
pt by p̃t. It means that we need to show if x = x̃i ≤ m is an extreme point (at
time t), S = S̃t,j is the corresponding set of vertices and vol(S) ≥ φ, then

C̃t(x) ≤ 1
2 (C̃t−1(x − φx) + C̃t−1(x + φx)). This is true since the curve defined

by qt = p̃t−1W is less than 1
2 (C̃t−1(x − φx) + C̃t−1(x + φx)) by Lemma 1, and

p̃t ≤ qt.

3.3 Proof of Theorem 2

Suppose U is a subset of vertices with vol(U) ≤ k and φ(U) ≤ ϕ, where 1
ε ≤

k ≤ m. We would prove that given k and ϕ and an initial vertex u in U with
pt(U) ≥ 1

c (1 −
φ
2)
t for a constant c > 1, the truncated random walk algorithm

will output a set S with vol(S) ≤ O(k1+ε) and φ(S) ≤ 8
√
ϕ/ε. The running

time of the algorithm is O(ε2k1+2ε log3 k/ϕ2).
For concreteness we set c = 4 in the following calculations. Set T = ε log k

2ϕ

and ε′ = k−1−ε

20T . Applying Lemma 2 with T and ε′, we can compute all p̃t and

thus S̃t,i for all t ≤ T and i ∈ [5k1+ε] in O(T log k/ε′) = O(ε2k1+ε log3 k/ϕ2)
steps (with an additional log k factor for sorting). By Lemma 2, the starting
vertex u will give p̃T (U) ≥ 1

4 (1 − ϕ
2)
T − ε′Tvol(U). We claim that one of the

set S = St,i must satisfy vol(S) ≤ 5k1+ε and φ(S) ≤ 8
√
ϕ/ε. Otherwise, setting

φ1 ≥ 8
√
ϕ/ε, we have

p̃T (U) ≥ 1

4
(1− ϕ

2
)T − ε′Tvol(U)

≥ 1

4
exp(−ϕT)− k−ε

20
(for φ < 0.01)

=
k−

ε
2

4
− k−ε

20

>
k−ε

5
+ k−

1
2 (using k−

ε
2 > k−ε + 4k−

1
2 for k ≥ 1

ε
and ε ≤ 0.01)

≥ k

5k1+ε
+
√
k(1− φ2

1

8
)T

≥ C̃T (k),

which is a contradiction, completing the proof of Theorem 2.

624 T.C. Kwok and L.C. Lau

4 Concluding Remarks

We presented a bicriteria approximation algorithm for the small sparsest cut
problem with conductance guarantee independent of n, but the volume of the
output set is k1+ε. We note that if one can also guarantee that the volume of
the output set is at most Mk for an absolute constant M , then one can disprove
the small set expansion conjecture, which states that for any constant ε there
exists a constant δ such that distinguishing φδm(G) < ε and φδm(G) > 1 − ε is
NP-hard. This can be viewed as an evidence that our analysis is almost tight,
or an evidence that the small set expansion problem is not NP-hard. We note
that this is also observed by Raghavendra, Stuerer and Tulsiani [17].

More formally, suppose there is a polynomial time algorithmwith the following
guarantee: given G with φk(G), always output a set S with φ(S) = f(φk(G))
and vol(S) = Mk where f(x) is a function that tends to zero when x tends to
zero (e.g. f(x) = x1/100) and M is an absolute constant. Then we claim that
there is a (small) constant ε such that whenever φk(G) < ε there is a polynomial
time algorithm to return a set S with φ(S) < 1− ε and vol(S) ≤ k.

We assume that G is a d-regular graph, as in [15] where the small set expansion
conjecture was formulated. Suppose there is a subset U with |U | = k and φ(U) <
ε. First we use the algorithm to obtain a set S with φ(S) ≤ f(ε) and assume
|S| = Mk (instead of |S| ≤ Mk). Next we show that a random subset S′ ⊆ S
of size exactly k will have φ(S′) < 1− ε with a constant probability for a small
enough ε. Let E(S) be the set of edges with both endpoints in S. Each edge in
E(S) has probability 2(1

M)(1− 1
M) to be in δ(S′). So, the expected value of

|δ(S′)| ≤ |δ(S)|+ 2(
1

M
)(1 − 1

M
)|E(S)|.

By construction vol(S′) = kd, and so the expected value of

φ(S′) ≤ |δ(S)|
kd

+
2(1
M)(1− 1

M)|E(S)|
kd

.

Note that |E(S)| ≤ Mkd/2 and |δ(S)|/kd = Mφ(S) ≤ Mf(ε), so the expected
value of

φ(S′) ≤ Mf(ε) + 1− 1

M
.

For a small enough ε depending only onM , the expected value of φ(S′) ≤ 1−10ε.
Therefore, with a constant probability, we have φ(S′) < 1 − ε. This argument
can be derandomized using standard techniques.

We show that random walk can be used to obtain nontrivial bicriteria ap-
proximation algorithms for the small sparsest cut problem. We do not know of
an example showing that our analysis is tight. It would be interesting to find
examples showing the limitations of random walk algorithms (e.g. showing that
they fail to disprove the small set expansion conjecture).

Finding Small Sparse Cuts by Random Walk 625

References

1. Alon, N., Milman, V.: Isoperimetric inequalities for graphs, and superconcentra-
tors. Journal of Combinatorial Theory, Series B 38(1), 73–88 (1985)

2. Anderson, R., Chung, F.R.K., Lang, K.J.: Local graph partitioning using PageRank
vectors. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 475–486 (2006)

3. Anderson, R., Peres, Y.: Finding sparse cuts locally using evolving sets. In: Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC),
pp. 235–244 (2009)

4. Arora, S., Barak, B., Steurer, D.: Subexponential algorithms for unique games
and related problems. In: Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 563–572 (2010)

5. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph
partitioning. In: Proceedings of the 36th Annual ACM Symposium on Theory of
Computing (STOC), pp. 222–231 (2004)

6. Bansal, N., Feige, U., Krauthgamer, R., Makarychev, K., Nagarajan, V., Naor, J.,
Schwartz, R.: Min-max graph partitioning and small set expansion. In: Proceed-
ings of the 52nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 17–26 (2011)

7. Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Prob-
lems in Analysis, pp. 195–199. Princeton University Press (1970)

8. Chung, F.: A Local Graph Partitioning Algorithm Using Heat Kernel Pagerank.
In: Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427,
pp. 62–75. Springer, Heidelberg (2009)

9. Horry, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bul-
letin of the American Mathematical Society 43(4), 439–561 (2006)

10. Lee, J.R., Oveis Gharan, S., Trevisan, L.: Multi-way spectral partitioning and
higher-order Cheeger inequalities. In: Proceedings of the 44th Annual Symposium
on Theory of Computing (STOC), pp. 1117–1130 (2012)

11. Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorem and their use
in designing approximation algorithms. Journal of the ACM 46(6), 787–832 (1999)

12. Louis, A., Raghavendra, P., Tetali, P., Vempala, S.: Many sparse cuts via higher
eigenvalues. In: Proceedings of the 44th Annual ACM Symposium on Theory of
Computing (STOC), pp. 1131–1140 (2012)

13. Lovász, L., Kannan, R.: Faster mixing via average conductance. In: Proceedings of
the 31st Annual ACM Symposium on Theory of Computing (STOC), pp. 282–287
(1999)

14. Lovász, L., Simonovits, M.: The mixing time of Markov chains, an isoperimetric
inequality, and computing the volume. In: Proceedings of the 31st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 346–354 (1990)

15. Raghavendra, P., Steurer, D.: Graph expansion and the unique games conjecture.
In: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing
(STOC), pp. 755–764 (2010)

16. Raghavendra, P., Steurer, D., Tetali, P.: Approximations for the isoperimetric and
spectral profile of graphs and related parameters. In: Proceedings of the 42nd
Annual ACM Symposium on Theory of Computing (STOC), pp. 631–640 (2010)

17. Raghavendra, P., Steurer, D., Tulsiani, M.: Reductions between expansion prob-
lems. In: Proceedings of the 27th Annual IEEE Conference on Computational
Complexity, CCC (2012)

626 T.C. Kwok and L.C. Lau

18. Spielman, D.A., Teng, S.-H.: A local clustering algorithm for massive graphs and its
applications to nearly-linear time graph partitioning. CoRR, abs/0809.3232 (2008)

19. Orecchia, L., Sachdeva, S., Vishnoi, N.K.: Approximating the exponential, the
Lanczos method, and an Õ(m)-time spectral algorithm for balanced separator.
In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing
(STOC), pp. 1141–1160 (2012)

20. Oveis Gharan, S., Trevisan, L.: Approximating the expansion profile and almost
optimal local graph clustering. CoRR, abs/1204.2021 (2012)

On Deterministic Sketching and Streaming

for Sparse Recovery and Norm Estimation

Jelani Nelson1,�, Huy L. Nguy˜̂en1,��, and David P. Woodruff2

1 Princeton University, USA
{minilek,hlnguyen}@princeton.edu

2 IBM Almaden Research Center, San Jose, USA
dpwoodru@us.ibm.com

Abstract. We study classic streaming and sparse recovery problems
using deterministic linear sketches, including 1/1 and ∞/1 sparse re-
covery problems, norm estimation, and approximate inner product. We
focus on devising a fixed matrix A ∈ Rm×n and a deterministic recov-
ery/estimation procedure which work for all possible input vectors simul-
taneously. We contribute several improved bounds for these problems.

– A proof that ∞/1 sparse recovery and inner product estimation
are equivalent, and that incoherent matrices can be used to solve
both problems. Our upper bound for the number of measurements
is m = O(ε−2 min{log n, (log n/ log(1/ε))2}). We can also obtain
fast sketching and recovery algorithms by making use of the Fast
Johnson-Lindenstrauss transform. Both our running times and num-
ber of measurements improve upon previous work. We can also ob-
tain better error guarantees than previous work in terms of a smaller
tail of the input vector.

– A new lower bound for the number of linear measurements required
to solve 1/1 sparse recovery. We show Ω(k/ε2+k log(n/k)/ε) mea-
surements are required to recover an x′ with ‖x − x′‖1 ≤ (1 +
ε)‖xtail(k)‖1, where xtail(k) is x projected onto all but its largest
k coordinates in magnitude.

– A tight bound of m = Θ(ε−2 log(ε2n)) on the number of measure-
ments required to solve deterministic norm estimation, i.e., to recover
‖x‖2 ± ε‖x‖1.

For all the problems we study, tight bounds are already known for the
randomized complexity from previous work, except in the case of 1/1
sparse recovery, where a nearly tight bound is known. Our work thus
aims to study the deterministic complexities of these problems.

1 Introduction

In this work we provide new results for the point query problem as well as sev-
eral other related problems: approximate inner product, �1/�1 sparse recovery,

� Supported by NSF grant CCF-0832797.
�� Supported in part by NSF grant CCF-0832797 and a Gordon Wu fellowship.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 627–638, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

628 J. Nelson, H.L. Nguy˜̂en, and D.P. Woodruff

and deterministic norm estimation. For many of these problems efficient ran-
domized sketching and streaming algorithms exist, and thus we are interested in
understanding the deterministic complexities of these problems.

1.1 Applications

Here we give a motivating application of the point query problem; for a formal
definition of the problem, see below. Consider k servers S1, . . . , Sk, each holding
a database D1, . . . , Dk, respectively. The servers want to compute statistics of
the union D of the k databases. For instance, the servers may want to know the
frequency of a record or attribute-pair in D. It may be too expensive for the
servers to communicate their individual databases to a centralized server, or to
compute the frequency exactly. Hence, the servers wish to communicate a short
summary or “sketch” of their databases to a centralized server, who can then
combine the sketches to answer frequency queries about D.

We model the databases as vectors xi ∈ Rn. To compute a sketch of xi, we
compute Axi for some A ∈ Rm×n. Importantly, m � n, and so Axi is much
easier to communicate than xi. The servers compute Ax1, . . . , Axk, respectively,
and transmit these to a centralized server. Since A is a linear map, the cen-
tralized server can compute Ax for x = c1x

1 + . . . ckx
k for any real numbers

c1, . . . , ck. Notice that the ci are allowed to be both positive and negative, which
is crucial for estimating the frequency of record or attribute-pairs in the differ-
ence of two datasets, which allows for tracking which items have experienced a
sudden growth or decline in frequency. This is useful in network anomaly de-
tection [11,17,24,32,37], and also for transactional data [16]. It is also useful for
maintaining the set of frequent items over a changing database relation [16].

Associated with A is an output algorithm Out which given Ax, outputs a
vector x′ for which ‖x′ − x‖∞ ≤ ε‖xtail(k)‖1 for some number k, where xtail(k)
denotes the vector x with the top k entries in magnitude replaced with 0. Thus
x′ approximates x well on every coordinate. We call the pair (A,Out) a solution
to the point query problem. Given such a matrix A and an output algorithm
Out, the centralized server can obtain an approximation to the value of every
entry in x, which depending on the application, could be the frequency of an
attribute-pair. It can also, e.g., extract the maximum frequencies of x, which
are useful for obtaining the most frequent items. The centralized server obtains
an entire histogram of values of coordinates in x, which is a useful low-memory
representation of x. Notice that the communication is mk words, as opposed to
nk if the servers were to transmit x1, . . . , xn.

Our correctness guarantees hold for all input vectors simultaneously using one
fixed (A,Out) pair, and thus it is stronger and should be contrasted with the
guarantee that the algorithm succeeds given Ax with high probability for some
fixed input x. For example, for the point query problem, the latter guarantee is
achieved by the CountMin sketch [15] or CountSketch [13]. One of the reasons
the randomized guarantee is less useful is because of adaptive queries. That is,
suppose the centralized server computes x′ and transmits information about x′

to S1, . . . , Sk. Since x′ could depend on A, if the servers were to then use the

On Deterministic Sketching and Streaming 629

same matrix A to compute sketches Ay1, . . . , Ayk for databases y1, . . . , yk which
depend on x′, then A need not succeed, since it is not guaranteed to be correct
with high probability for inputs yi which depend on A.

1.2 Notation and Problem Definitions

Throughout this work [n] denotes {1, . . . , n}. For q a prime power, Fq denotes
the finite field of size q. For x ∈ Rn and S ⊆ [n], xS denotes the vector with
(xS)i = xi for i ∈ S, and (xS)i = 0 for i /∈ S. The notation x−i is shorthand for
x[n]\{i}. For a matrix A ∈ Rm×n and integer i ∈ [n], Ai denotes the ith column of
A. For matrices A and vectors x, AT and xT denote their transposes. For x ∈ Rn

and integer k ≤ n, we let head(x, k) ⊆ [n] denote the set of k largest coordinates
in x in absolute value, and tail(x, k) = [n]\head(x, k). We often use xhead(k) to
denote xhead(x,k), and similarly for the tail. For real numbers a, b, ε ≥ 0, we use
the notation a = (1 ± ε)b to convey that a ∈ [(1 − ε)b, (1 + ε)b]. A collection of
vectors {C1, . . . , Cn} ∈ [q]t is called a code with alphabet size q and block length
t, and we define Δ(Ci, Cj) = |{k : (Ci)k �= (Cj)k}|. The relative distance of the
code is maxi�=j Δ(Ci, Cj)/t.

We now define the problems that we study in this work, which all involve
some error parameter 0 < ε < 1/2. We want to design a fixed A ∈ Rm×n and
deterministic algorithm Out for each problem satisfying the following.

Problem 1: In the �∞/�1 recovery problem, also called the point query prob-
lem, ∀x ∈ Rn, x′ = Out(Ax) satisfies ‖x − x′‖∞ ≤ ε‖x‖1. The pair (A,Out)
furthermore satisfies the k-tail guarantee if actually ‖x− x′‖∞ ≤ ε‖xtail(k)‖1.

Problem 2: In the inner product problem, ∀x, y ∈ Rn, α = Out(Ax,Ay) satisfies
|α− 〈x, y〉 | ≤ ε‖x‖1‖y‖1.

Problem 3: In the �1/�1 recovery problem with the k-tail guarantee, ∀x ∈ Rn,
x′ = Out(Ax) satisfies ‖x− x′‖1 ≤ (1 + ε)‖xtail(k)‖1.

Problem 4: In the �2 norm estimation problem, ∀x ∈ Rn, α = Out(Ax) satisfies
|‖x‖2 − α| ≤ ε‖x‖1.

We note that for the first, second, and fourth problems above, our errors are
additive and not relative. This is because relative error is impossible to achieve
with a sublinear number of measurements. If A is a fixed matrix with m < n,
then it has some non-trivial kernel. Since for all the problems above an Out
procedure would have to output 0 when Ax = 0 to achieve bounded relative
approximation, such a procedure would fail on any input vector in the kernel
which is not the 0 vector.

For Problem 2 one could also ask to achieve additive error ε‖x‖p‖y‖p for
p > 1. For y = ei for a standard unit vector ei, this would mean approximating
xi up to additive error ε‖x‖p. This is not possible unless m = Ω(n2−2/p) for
1 < p ≤ 2 and m = Ω(n) for p ≥ 2 [21]. For Problem 3, it is known that the
analogous guarantee of returning x′ for which ‖x − x′‖2 ≤ ε‖xtail(k)‖2 is not
possible unless m = Ω(n) [14].

630 J. Nelson, H.L. Nguy˜̂en, and D.P. Woodruff

1.3 Our Contributions and Related Work

We study the four problems stated above, where we have the deterministic guar-
antee that a single pair (A,Out) provides the desired guarantee for all input
vectors simultaneously. We first show that point query and inner product are
equivalent up to changing ε by a constant factor. We then show that any “inco-
herent matrix” A can be used for these two problems to perform the linear mea-
surements; that is, a matrix A whose columns have unit �2 norm and such that
each pair of columns has dot product at most ε in magnitude. Such matrices can
be obtained from the Johnson-Lindenstrauss (JL) lemma [29], almost pairwise in-
dependent sample spaces [7,38], or error-correcting codes, and they play a promi-
nent role in compressed sensing [18,36] and mathematical approximation theory
[25]. The connection between point query and codes was implicit in [22], though
a suboptimal code was used, and the observation that the more general class
of incoherent matrices suffices is novel. This connection allows us to show that
m = O(ε−2 min{logn, (logn/ log(1/ε))2}) measurements suffice, and where Out
and the construction of A are completely deterministic. Alon has shown that any
incoherent matrix must havem = Ω(ε−2 logn/ log(1/ε)) [6]. Meanwhile the best
known lower bound for point query is m = Ω(ε−2 + ε−1 log(εn)) [19,20,27], and
the previous best known upper bound wasm = O(ε−2 log2 n/(log 1/ε+log logn))
[22]. If the construction of A is allowed to be Las Vegas polynomial time, then
we can use the Fast Johnson-Lindenstrauss transforms [2,3,4,34] so that Ax can
be computed quickly, e.g. in O(n logm) time as long as m < n1/2−γ [3], and
with m = O(ε−2 logn). Our Out algorithm is equally fast. We also show that
for point query, if we allow the measurement matrix A to be constructed by a
polynomial Monte Carlo algorithm, then the 1/ε2-tail guarantee can be obtained
essentially “for free”, i.e. by keeping m = O(ε−2 logn). Previously the work [22]
only showed how to obtain the 1/ε-tail guarantee “for free” in this sense of not
increasing m (though the m in [22] was worse). We note that for randomized
algorithms which succeed with high probability for any given input, it suffices
to take m = O(ε−1 logn) by using the CountMin data structure [15], and this
is optimal [30] (the lower bound in [30] is stated for the so-called heavy hitters
problem, but also applies to the �∞/�1 recovery problem).

For the �1/�1 sparse recovery problem with the k-tail guarantee, we show
a lower bound of m = Ω(k log(εn/k)/ε + k/ε2). The best upper bound is
O(k log(n/k)/ε2) [28]. Our lower bound implies a separation for the complexity of
this problem in the case that one must simply pick a random (A,Out) pair which
works for some given input x with high probability (i.e. not for all x simultane-
ously), since [39] showed an m = O(k logn log3(1/ε)/

√
ε) upper bound in this

case. The first summand of our lower bound uses techniques used in [9,39]. The
second summand uses a generalization of an argument of Gluskin [27], which was
later rediscovered by Ganguly [20], which showed the lower bound m = Ω(1/ε2)
for point query.

Finally, we show how to devise an appropriate (A,Out) for �2 norm estimation
with m = O(ε−2 log(ε2n)), which is optimal. The construction of A is random-
ized but then works for all x with high probability. The proof takes A according

On Deterministic Sketching and Streaming 631

to known upper bounds on Gelfand widths, and the recovery procedure Out re-
quires solving a simple convex program. As far as we are aware, this is the first
work to investigate this problem in the deterministic setting. In the case that
(A,Out) can be chosen randomly to work for any fixed x with high probability,
one can use the AMS sketch [8] with m = O(ε−2 log(1/δ)) to succeed with prob-
ability 1− δ and to obtain the better guarantee ε‖x‖2. The AMS sketch can also
be used for the inner product problem to obtain error guarantee ε‖x‖2‖y‖2 with
the same m.

Due to space constraints, many of our proofs are omitted or abbreviated. Full
proofs can be found in the full version.

2 Point Query and Inner Product Estimation

We first show that the problems of point query and inner product estimation
are equivalent up to changing the error parameter ε by a constant factor.

Theorem 1. Any solution (A,Out′) to inner product estimation with error pa-
rameter ε yields a solution (A,Out) to the point query problem with error pa-
rameter ε. Also, a solution (A,Out) for point query with error ε yields a solution
(A,Out′) to inner product with error 12ε. The time complexities of Out and Out′

are equal up to poly(n) factors.

Proof: Let (A,Out′) be a solution to the inner product problem such that
Out′(Ax,Ay) = 〈x, y〉 ± ε‖x‖1‖y‖1. Then given x ∈ Rn, to solve the point
query problem we return the vector with Out(Ax)i = Out′(Ax,Aei), and our
guarantees are immediate.

Now let (A,Out) be a solution to the point query problem. Given x, y ∈ Rn,
let x′ = Out(Ax), y′ = Out(Ay). Our estimate for 〈x, y〉 is Out′(Ax,Ay) =〈
x′head(1/ε), y

′
head(1/ε)

〉
. Correctness is proven in the full version.

Since the two problems are equivalent up to changing ε by a constant factor, we
focus on point query. We first have the following lemma, stating that any inco-
herent matrix A has a correct associated Out procedure (namely, multiplication
by AT). An incoherent matrix, is an m × n matrix A for which all columns Ai
of A have unit �2 norm, and for all i �= j we have | 〈Ai, Aj〉 | ≤ ε.

Lemma 1. Any incoherent matrix A with error parameter ε has an associated
poly(mn)-time deterministic recovery procedure Out for which (A,Out) is a so-
lution to the point query problem. In fact, for any x ∈ Rn, given Ax and i ∈ [n],
the output x′i satisfies |x′i − xi| ≤ ε‖x−i‖1.

It is known that any incoherent matrix has m = Ω((log n)/(ε2 log 1/ε)) [6], and
the JL lemma implies such matrices with m = O((log n)/ε2) [29]. For exam-
ple, there exist matrices in {−1/

√
m, 1/

√
m}m×n satisfying this property [1],

which can also be found in poly(n) time [41] (we note that [41] gives running
time exponential in precision, but the proof holds if the precision is taken to

632 J. Nelson, H.L. Nguy˜̂en, and D.P. Woodruff

be O(log(n/ε)). It is also known that incoherent matrices can be obtained from
almost pairwise independent sample spaces [7,38] or error-correcting codes, and
thus these tools can also be used to solve the point query problem. The connec-
tion to codes was already implicit in [22], though the code used in that work
is suboptimal, as we will show soon. Below we elaborate on what bounds these
tools provide for incoherent matrices, and thus the point query problem.

Incoherent matrices from JL: The upside of the connection to the JL lemma is
that we can obtain incoherent matrices A such that Ax can be computed quickly,
via the Fast Johnson-Lindenstrauss Transform introduced by Ailon and Chazelle
[2] or related subsequent works. The JL lemma states the following.

Theorem 2 (JL lemma). For any x1, . . . , xN ∈ Rn and any 0 < ε < 1/2,
there exists A ∈ Rm×n with m = O(ε−2 logN) such that for all i, j ∈ [N] we
have ‖Axi −Axj‖2 = (1 ± ε)‖xi − xj‖2.

Consider the matrix A obtained from the JL lemma when the set of vectors is
{0, e1, . . . , en} ∈ Rn. Then columns Ai of A have �2 norm 1±ε, and furthermore
for i �= j we have | 〈Ai, Aj〉 | = (‖Ai−Aj‖22−‖A‖2i −‖A‖2j)/2 = ((1± ε)22− (1±
ε)−(1±ε))/2 ≤ 2ε+ε2/2. By scaling each column to have �2 norm exactly 1, we
still preserve that dot products between pairs of columns are O(ε) in magnitude.

Incoherent matrices from almost pairwise independence: An ε-almost pairwise
independent sample space a set S ⊆ {−1, 1}n satisfying the following. For any
i �= j ∈ [n], the �1 distance between the uniform distribution over {−1, 1}2 and
the distribution of xi, xj when x is drawn uniformly at random from S is at most

ε. A matrix whose rows are the elements of S, divided by a scale factor of
√
S,

is incoherent. Details are in the full version, but we do not delve deeper since
this approach does not improve upon the bounds via JL matrices.

Incoherent matrices from codes: Finally we explain the connection between inco-
herent matrices and codes. A connection to balanced binary codes was made in
[6], and to arbitrary codes over larger alphabets without detail in a remark in [5].
Though not novel, we elaborate on this latter connection for the sake of complete-
ness. Let C = {C1, . . . , Cn} be a code with alphabet size q, block length t, and
relative distance 1−ε. The fact that such a code gives rise to a matrix A ∈ Rm×n

for point query with error parameter ε was implicit in [22], but we make it ex-
plicit here. We let m = qt and conceptually partition the rows of A arbitrarily
into t sets each of size q. For the column Ai, let (Ai)j,k denote the entry of Ai
in the kth coordinate of the jth block. We set (Ai)j,k = 1/

√
t if (Ci)j = k, and

(Ai)j,k = 0 otherwise. Each column has exactly t non-zero entries of value 1/
√
t,

and thus has �2 norm 1. Furthermore, for i �= j, 〈Ai, Aj〉 = (t−Δ(Ci, Cj))/t ≤ ε.
The work [22] instantiated the above with the following Chinese remainder

code [35,42,44], which yieldedm = O(ε−2 log2 n/(log 1/ε+log logn)). We observe
here that this bound is never optimal. A random code with q = 2/ε and t =
O(ε−1 log n) has the desired properties by applying the Chernoff bound on a pair

On Deterministic Sketching and Streaming 633

of codewords, then a union bound over codewords (alternatively, such a code is
promised by the Gilbert-Varshamov (GV) bound). If ε is sufficiently small, a
Reed-Solomon code performs even better. That is, we take a finite field Fq for
q = Θ(ε−1 logn/(log logn+ log(1/ε))) and q = t, and each Ci corresponds to a
distinct degree-d polynomial pi over Fq for d = Θ(log n/(log logn + log(1/ε)))
(note there are at least qd > n such polynomials). We set (Ci)j = pi(j). The
relative distance is as desired since pi−pj has at most d roots over Fq and thus can
be 0 at most d ≤ εt times. This yields qt = O(ε−2(logn/(log logn+ log(1/ε))2),

which surpasses the GV bound for ε < 2−Ω(
√
logn), and is always better than

the Chinese remainder code. We note that this construction of a binary matrix
based on Reed-Solomon codes is identical to one used by Kautz and Singleton
in the different context of group testing [33].

Time m Details Explicit?

O((n log n)/ε2) O(ε−2 log n) A ∈ {−1/
√
m, 1/

√
m}m×n [1,41] yes

O((n log n)/ε) O(ε−2 log n) sparse JL [31], GV code no

O(nd log2 d log log d/ε) O(d2/ε2) Reed-Solomon code yes

Oγ(n logm+m2+γ) O(ε−2 log n) FFT-based JL [3] no

O(n log n) O(ε−2 log5 n) FFT-based JL [4,34] no

Fig. 1. Implications for point query from JL matrices and codes. Time indicates
the running time to compute Ax given x. In the case of Reed-Solomon, d =
O(log n/(log log n+ log(1/ε))). We say the construction is “explicit” if A can be com-
puted in deterministic time poly(n); otherwise we only provide a polynomial time Las
Vegas algorithm to construct A.

In Figure 1 we elaborate on what known constructions of codes and JL ma-
trices provide for us in terms of point query. In the case of running time for the
Reed-Solomon construction, we use that degree-d polynomials can be evaluated
on d + 1 points in a total of O(d log2 d log log d) field operations over Fq [43,
Ch. 10]. In the case of [3], the constant γ > 0 can be chosen arbitrarily, and
the constant in the big-Oh depends on 1/γ. We note that except in the case
of Reed-Solomon codes, the construction of A is randomized (though once A
is generated, incoherence can be verified in polynomial time, thus providing a
poly(n)-time Las Vegas algorithm).

Note that Lemma 1 did not just give us error ε‖x‖1, but actually gave us
|xi − x′i| ≤ ε‖x−i‖1, which is stronger. We now show that an even stronger
guarantee is possible. We will show that in fact it is possible to obtain ‖x−x′‖∞ ≤
ε‖xtail(1/ε2)‖1 while increasing m by only an additive O(ε−2 log(ε2n)), which is
less than our original m except potentially in the Reed-Solomon construction.
The idea is to, in parallel, recover a good approximation of xhead(1/ε2) with error
proportional to ‖xtail(1/ε2)‖1 via compressed sensing, then to subtract from Ax
before running our recovery procedure. We now give details.

We in parallel run a k-sparse recovery algorithm which has the following
guarantee: there is a pair (B,Out′) such that for any x ∈ Rn, we have that
x′ = Out′(Bx) ∈ Rn satisfies ‖x′ − x‖2 ≤ O(1/

√
k)‖xtail(k)‖1. Such a matrix

634 J. Nelson, H.L. Nguy˜̂en, and D.P. Woodruff

B can be taken to have the restricted isometry property of order k (k-RIP), i.e.
that it preserves the �2 norm up to a small multiplicative constant factor for all
k-sparse vectors in Rn.1 It is known [26] that any such x′ also satisfies the guar-
antee that ‖x′head(k) − x‖1 ≤ O(1)‖xtail(k)‖1, where x′head(k) is the vector which

agrees with x′ on the top k coordinates in magnitude and is 0 on the remaining
coordinates. Moreover, it is also known [10] that if B satisfies the JL lemma for
a particular set of N = (en/k)O(k) points in Rn, then B will be k-RIP. The
associated output procedure Out′ takes Bx and outputs argminz|Bx=Bz‖z‖1 by
solving a linear program [12]. All the JL matrices in Figure 1 provide this guar-
antee with O(k log(en/k)) rows, except for the last row which satisfies k-RIP
with O(k log(en/k) log2 k log(k logn)) rows [40].

Theorem 3. Let A be an incoherent matrix A with error parameter ε, and let
B be k-RIP. Then there is an output procedure Out which for any x ∈ Rn, given
only Ax,Bx, outputs a vector x′ with ‖x′ − x‖∞ ≤ ε‖xtail(k)‖1.

Proof: Given Bx, we first run the k-sparse recovery algorithm to obtain a
vector y with ‖x − y‖1 = O(1)‖xtail(k)‖1. We then construct our output vector
x′ coordinate by coordinate. To construct x′i, we replace yi with 0, obtaining the
vector zi. Then we compute A(x−zi) and run the point query output procedure
associated with A and index i. The guarantee is that the output wi of the point
query algorithm satisfies |wii − (x− zi)i| ≤ ε‖(x− zi)−i‖1, where

‖(x− zi)−i‖1 = ‖(x− y)−i‖1 ≤ ‖x− y‖1 = O(1)‖xtail(k)‖1,

and so |(wi + zi)i − xi| = O(ε)‖xtail(k)‖1. If we define our output vector by
x′i = wii + zii and rescale ε by a constant factor, this proves the theorem.

By setting k = 1/ε2 in Theorem 3 and stacking the rows of a k-RIP and inco-
herent matrix each with O((log n)/ε2) rows, we obtain the following corollary.

Corollary 1. There is an m × n matrix A and associated output procedure
Out which for any x ∈ Rn, given Ax, outputs a vector x′ with ‖x′ − x‖∞ ≤
ε‖xtail(1/ε2)‖1. Here m = O((log n)/ε2).

It is also possible to obtain a tail-error guarantee for inner product.

Theorem 4. Suppose 1/ε2 < n/2. There is an (A,Out) with A ∈
Rm×n for m = O(ε−2 logn) such that for any x, y ∈ Rn, Out(Ax,Ay)
gives an output which is 〈x, y〉 ± ε(‖x‖2‖ytail(1/ε2)‖1 + ‖xtail(1/ε2)‖1‖y‖2) +
ε2‖xtail(1/ε2)‖1‖ytail(1/ε2)‖1.

Here we state a lower bound for the point query problem. The proof can be found
in the full version and follows from the works [20,27] and volume arguments as
used in [9].

1 Unfortunately currently the only known constructions of k-RIP constructions with
the values of m we discuss are Monte Carlo, forcing our algorithms in this section
with the k-tail guarantee to only be Monte Carlo polynomial time when constructing
the measurement matrix.

On Deterministic Sketching and Streaming 635

Theorem 5. Let 0 < ε < ε0 for some universal constant ε0 < 1. Suppose 1/ε2 <
n/2, and A is an m×n matrix for which given Ax it is always possible to produce
a vector x′ such that ‖x− x′‖∞ ≤ ε‖xtail(k)‖1. Then m = Ω(k log(n/k)/ log k+
ε−2 + ε−1 logn).

3 Lower Bounds for �1/�1 Recovery

Recall in the �1/�1-recovery problem, we would like to design a matrix A ∈ Rm×n

such that for any x ∈ Rn, given Ax we can recover x′ ∈ Rn such that ‖x−x′‖1 ≤
(1 + ε)‖xtail(k)‖1. We now show two lower bounds.

Theorem 6. Let 0 < ε < 1/
√
8 be arbitrary, and k be an integer. Suppose

k/ε2 < (n− 1)/2. Then any matrix A ∈ Rm×n which allows �1/�1-recovery with
the k-tail guarantee with error ε must have m ≥ min{n/2, (1/16)k/ε2}.

Proof: Without loss of generality we may assume that the rows of A are
orthonormal. This is because first we can discard rows of A until the rows re-
maining form a basis for the rowspace of A. Call this new matrix with potentially
fewer rows A′. Note that any dot products of rows of A with x that the recovery
algorithm uses can be obtained by taking linear combinations of entries of A′x.
Next, we can then find a matrix T ∈ Rm×m so that TA′ has orthonormal rows,
and given TA′x we can recover A′x in post-processing by left-multiplication
with T−1. We henceforth assume that the rows of A are orthonormal. Since
A · 0 = 0, and our recovery procedure must in particular be accurate for x = 0,
the recovery procedure must output x′ = 0 for any x ∈ ker(A). We consider

x = (I − ATA)y for y =
∑k

i=1 σieπ(i). Here π is a random permutation on
n elements, and σ1, . . . , σk are independent and uniform random variables in
{−1, 1}. Since x ∈ ker(A), which follows since AAT = I by orthonormality
of the rows of A, the recovery algorithm will output x′ = 0. Nevertheless, in
the full version we show that unless m ≥ min{n/2, (1/16)k/ε2}, we will have
‖x‖1 > (1 + ε)‖xtail(k)‖1 with positive probability so that by the probabilistic
method there exists x ∈ ker(A) for which x′ = 0 is not a valid output.

We now give another lower bound via a different approach. As in [9,39], we
use 2-party communication complexity to prove an Ω((k/ε) log(εn/k)) bound
on the number of rows of any �1/�1 sparse recovery scheme. The main difference
from prior work is that we use deterministic communication complexity and a
different communication problem.

We show how to use a pair (A,Out) with the property that for all vectors
z, the output z′ of Out(Az) satisfies ‖z − z′‖1 ≤ (1 + ε)‖ztail(k)‖1, to construct
a correct protocol for the equality function on strings x, y ∈ {0, 1}r for r =
Θ((k/ε) logn log(εn/k)), where the communication is an O(log n) factor larger
than the number of rows of A. We then show how this implies the number of
rows of A is Ω((k/ε) log(εn/k)). Details are in the full version.

Theorem 7. Any matrix A which allows �1/�1-recovery with the k-tail guaran-
tee with error ε satisfies m = Ω((k/ε) log(εn/k)).

636 J. Nelson, H.L. Nguy˜̂en, and D.P. Woodruff

4 Deterministic Norm Estimation and the Gelfand Width

Theorem 8. For 1 ≤ p < q ≤ ∞, let m be the minimum number such that

there is an n − m dimensional subspace S of Rn satisfying supv∈S
‖v‖q

‖v‖p
≤ ε.

Then there is an m×n matrix A and associated output procedure Out which for
any x ∈ Rn, given Ax, outputs an estimate of ‖v‖q with additive error at most
ε‖v‖p. Moreover, any matrix A with fewer rows fails to perform this task.

Proof: Consider a matrix A whose kernel is such a subspace. For any sketch z,
we need to return a number in the range [‖x‖q − ε‖x‖p, ‖x‖q + ε‖x‖p] for any x
satisfying Ax = z. Assume for contradiction that it is not possible. Then there
exist x and y such that Ax = Ay but ‖x‖q−ε‖x‖p > ‖y‖q+ε‖y‖p. However, since
x−y is in the kernel of A, ‖x‖q−‖y‖q ≤ ‖x−y‖q ≤ ε‖x−y‖p ≤ ε(‖x‖p+‖y‖p).
Thus, we have a contradiction. This argument also shows that given the sketch
z, the output procedure can return minx:Ax=z ‖x‖q + ε‖x‖p. This is a convex
optimization problem that can be solved in polynomial time using the ellipsoid
algorithm; details are in the full version.

For the lower bound, consider a matrix A with fewer than m rows. Then in
the kernel of A, there exists v such that ‖v‖q > ε‖v‖p. Both v and the zero
vector give the same sketch (a zero vector). However, by the stated requirement,
we need to output 0 for the zero vector but some positive number for v. Thus,
no matrix A with fewer than m rows can solve the problem.

The subspace S of highest dimension of Rn satisfying supv∈S
‖v‖q

‖v‖p
≤ ε is related

to the Gelfand width, a well-studied notion in functional analysis. For p < q,
the Gelfand width of order m of �p and �q unit balls in Rn is defined as the

infimum over all subspaces A ⊆ Rn of codimension m of supv∈A
‖v‖q

‖v‖p
. Using

known bounds for the Gelfand width for p = 1 and q = 2 [19,23], we obtain the
following corollary.

Corollary 2. Assume that 1/ε2 < n/2. There is an m×n matrix A and associ-
ated output procedure Out which for any x ∈ Rn, given Ax, outputs an estimate
e such that ‖x‖2 − ε‖x‖1 ≤ e ≤ ‖x‖2 + ε‖x‖1. Here m = O(ε−2 log(ε2n)) and
this bound for m is tight.

Acknowledgments. We thank Raghu Meka for answering several questions
about almost k-wise independent sample spaces. We thank an anonymous re-
viewer for pointing out the connection between incoherent matrices and ε-biased
spaces.

References

1. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with
binary coins. J. Comput. Syst. Sci. 66(4), 671–687 (2003)

2. Ailon, N., Chazelle, B.: The fast Johnson-Lindenstrauss transform and approximate
nearest neighbors. SIAM J. Comput. 39(1), 302–322 (2009)

On Deterministic Sketching and Streaming 637

3. Ailon, N., Liberty, E.: Fast dimension reduction using Rademacher series on dual
BCH codes. Discrete & Computational Geometry 42(4), 615–630 (2009)

4. Ailon, N., Liberty, E.: Almost optimal unrestricted fast Johnson-Lindenstrauss
transform. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 185–191 (2011)

5. Alon, N.: Problems and results in extremal combinatorics - I. Discrete Mathemat-
ics 273(1-3), 31–53 (2003)

6. Alon, N.: Perturbed identity matrices have high rank: Proof and applications.
Combinatorics, Probability & Computing 18(1-2), 3–15 (2009)

7. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple construction of almost
k-wise independent random variables. Rand. Struct. Alg. 3(3), 289–304 (1992)

8. Alon, N., Matias, Y., Szegedy, M.: The Space Complexity of Approximating the
Frequency Moments. JCSS 58(1), 137–147 (1999)

9. Ba, K.D., Indyk, P., Price, E., Woodruff, D.P.: Lower bounds for sparse recovery.
In: SODA, pp. 1190–1197 (2010)

10. Baraniuk, R., Davenport, M.A., DeVore, R., Wakin, M.: A simple proof of the
Restricted Isometry Property. Constructive Approximation 28(3), 253–263 (2008)

11. Barbará, D., Wu, N., Jajodia, S.: Detecting novel network intrusions using Bayes
estimators. In: Proceedings of the 1st SIAM International Conference on Data
Mining (2001)

12. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Trans. Infor-
mation Theory 52(2), 489–509 (2006)

13. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
Theor. Comput. Sci. 312(1), 3–15 (2004)

14. Cohen, A., Dahmen, W., DeVore, R.A.: Compressed sensing and best k-term ap-
proximation. J. Amer. Math. Soc. 22, 211–231 (2009)

15. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

16. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most fre-
quent items dynamically. ACM Trans. Database Syst. 30(1), 249–278 (2005)

17. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency Estimation of Internet
Packet Streams with Limited Space. In: Möhring, R.H., Raman, R. (eds.) ESA
2002. LNCS, vol. 2461, pp. 348–360. Springer, Heidelberg (2002)

18. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition.
IEEE Trans. Inform. Th. 47, 2558–2567 (2001)

19. Foucart, S., Pajor, A., Rauhut, H., Ullrich, T.: The Gelfand widths of p-balls for
0 < p ≤ 1. Journal of Complexity 26(6), 629–640 (2010)

20. Ganguly, S.: Lower Bounds on Frequency Estimation of Data Streams (Extended
Abstract). In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR
2008. LNCS, vol. 5010, pp. 204–215. Springer, Heidelberg (2008)

21. Ganguly, S.: Deterministically Estimating Data Stream Frequencies. In: Du, D.-
Z., Hu, X., Pardalos, P.M. (eds.) COCOA 2009. LNCS, vol. 5573, pp. 301–312.
Springer, Heidelberg (2009)

22. Ganguly, S., Majumder, A.: CR-precis: A Deterministic Summary Structure for
Update Data Streams. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007.
LNCS, vol. 4614, pp. 48–59. Springer, Heidelberg (2007)

23. Garnaev, A.Y., Gluskin, E.D.: On the widths of the Euclidean ball. Soviet Math-
ematics Doklady 30, 200–203 (1984)

24. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: Quicksand: Quick
summary and analysis of network data. DIMACS Technical Report 2001-43 (2001)

638 J. Nelson, H.L. Nguy˜̂en, and D.P. Woodruff

25. Gilbert, A.C., Muthukrishnan, S., Strauss, M.: Approximation of functions over
redundant dictionaries using coherence. In: SODA, pp. 243–252 (2003)

26. Gilbert, A.C., Strauss, M.J., Tropp, J.A., Vershynin, R.: One sketch for all: fast
algorithms for compressed sensing. In: STOC, pp. 237–246 (2007)

27. Gluskin, E.D.: On some finite-dimensional problems in the theory of widths. Vestn.
Leningr. Univ. Math. 14, 163–170 (1982)

28. Indyk, P., Ružić, M.: Near-optimal sparse recovery in the L1 norm. In: FOCS,
pp. 199–207 (2008)

29. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert
space. Contemporary Mathematics 26, 189–206 (1984)

30. Jowhari, H., Saglam, M., Tardos, G.: Tight bounds for Lp samplers, finding dupli-
cates in streams, and related problems. In: PODS, pp. 49–58 (2011)

31. Kane, D.M., Nelson, J.: Sparser Johnson-Lindenstrauss transforms. In: SODA,
pp. 1195–1206 (2012)

32. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A simple algorithm for finding fre-
quent elements in streams and bags. ACM Trans. Database Syst. 28, 51–55 (2003)

33. Kautz, W.H., Singleton, R.C.: Nonrandom binary superimposed codes. IEEE
Trans. Inf. Theory 10, 363–377 (1964)

34. Krahmer, F., Ward, R.: New and improved Johnson-Lindenstrauss embeddings via
the Restricted Isometry Property. SIAM J. Math. Anal. 43(3), 1269–1281 (2011)

35. Krishna, H., Krishna, B., Lin, K.-Y., Sun, J.-D.: Computational Number The-
ory and Digital Signal Processing: Fast Algorithms and Error Control Techniques.
CRC, Boca Raton (1994)

36. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE
Trans. Signal Process. 41(12), 3397–3415 (1993)

37. Misra, J., Gries, D.: Finding repeated elements. Sci. Comput. Program. 2(2),
143–152 (1982)

38. Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput. 22(4), 838–856 (1993)

39. Price, E., Woodruff, D.P.: (1 + eps)-approximate sparse recovery. In: FOCS,
pp. 295–304 (2011)

40. Rudelson, M., Vershynin, R.: On sparse reconstruction from Fourier and Gaussian
measurements. Communications on Pure and Applied Mathematics 61, 1025–1045
(2008)

41. Sivakumar, D.: Algorithmic derandomization via complexity theory. In: STOC,
pp. 619–626 (2002)

42. Soderstrand, M.A., Jenkins, W.K., Jullien, G.A., Taylor, F.J.: Residue Number
System Arithmetic: Modern Applications in Digital Signal Processing. IEEE Press,
New York (1986)

43. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press (1999)

44. Watson, R.W., Hastings, C.W.: Self-checked computation using residue arithmetic.
Proc. IEEE 4(12), 1920–1931 (1966)

A New Upper Bound on the Query Complexity

for Testing Generalized Reed-Muller Codes

Noga Ron-Zewi1,� and Madhu Sudan2

1 Department of Computer Science, Technion, Haifa
nogaz@cs.technion.ac.il

2 Microsoft Research New England, Cambridge, MA
madhu@mit.edu

Abstract. Over a finite field Fq the (n, d, q)-Reed-Muller code is the
code given by evaluations of n-variate polynomials of total degree at most
d on all points (of Fn

q). The task of testing if a function f : Fn
q → Fq is

close to a codeword of an (n, d, q)-Reed-Muller code has been of central
interest in complexity theory and property testing. The query complexity
of this task is the minimal number of queries that a tester can make
(minimum over all testers of the maximum number of queries over all
random choices) while accepting all Reed-Muller codewords and rejecting
words that are δ-far from the code with probability Ω(δ). (In this work
we allow the constant in the Ω to depend on d.)

For codes over a prime field Fq the optimal query complexity is well-
known and known to be Θ(q�(d+1)/(q−1)), and the test consists of testing
if f is a degree d polynomial on a randomly chosen (�(d + 1)/(q − 1)�)-
dimensional affine subspace of Fn

q . If q is not a prime, then the above
quantity remains a lower bound, whereas the previously known upper
bound grows to O(q�(d+1)/(q−q/p)) where p is the characteristic of the
field Fq. In this work we give a new upper bound of (cq)(d+1)/q on the
query complexity, where c is a universal constant. Thus for every p and
sufficiently large q this bound improves over the previously known bound
by a polynomial factor.

In the process we also give new upper bounds on the “spanning
weight” of the dual of the Reed-Muller code (which is also a Reed-Muller
code). The spanning weight of a code is the smallest integer w such that
codewords of Hamming weight at most w span the code. The main tech-
nical contribution of this work is the design of tests that test a function
by not querying its value on an entire subspace of the space, but rather
on a carefully chosen (algebraically nice) subset of the points from low-
dimensional subspaces.

1 Introduction

In this work we present new upper bounds on the query complexity of testing
Reed-Muller codes, the codes obtained by evaluations of multivariate low-degree

� Research conducted in part while this author was an intern at Microsoft Research
New-England, Cambridge, MA, and supported in part by the Israel Ministry of
Science and Technology.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 639–650, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

640 N. Ron-Zewi and M. Sudan

polynomials, over general fields. In the process we also give new upper bounds
on the spanning weight of Reed-Muller codes. We explain these terms and our
results below.

We start with the definition of Reed-Muller codes. Let Fq denote the finite
field on q elements. Throughout we will let q = ps for prime p and integer s. The
Reed-Muller codes have two parameters in addtion to the field size, namely the
degree d and number of variables n. The (n, d, q)-Reed-Muller code RM[n, d, q] is
the set of functions from Fnq to Fq that are evaluations of n-variate polynomials
of total degree at most d.

1.1 Testing Reed-Muller Codes

We define the notion of testing the “Reed-Muller” property as a special case of
property testing. We let {Fnq → Fq} denote the set of all functions mapping Fnq
to Fq. A property F is simply a subset of such functions. For f, g : Fnq → Fq we
say the distance between them δ(f, g) is the fraction of points of Fnq where they
disagree. We let δ(f,F) denote the minimum distance between f and a function
in F . We say f is δ-close to F if δ(f,F) ≤ δ and δ-far otherwise.

A (k, ε)-tester for the property F ⊆ {Fnq → Fq} is a randomized algorithm
that makes at most k queries to an oracle for a function f : Fnq → Fq and accepts
if f ∈ F and rejects f �∈ F with probability at least εδ(f,F).

For fixed d and q, we consider query complexity of testing the property of being
a degree d multivariate polynomial over Fq. Specifically, the query complexity
k = k(d, q), is the minimum integer such that there exists an ε such that for all
n there is a (k, ε)-tester for the RM[n, d, q] property. (So the error ε of the tester
is allowed to depend on q and d, but not on n.)

The query complexity of low-degree testing is a well-studied question and
has played a role in many results in computational complexity including in the
PCP theorem ([ALM+98] and subsequent works), and in the works of Viola and
Wigderson [VW08] and Barak et al. [BGH+11]. Many of these results depend
not only on a tight analysis of k(d, q) but also a tight analysis of the parameter
ε, but in this work we only focus on the first quantity. Below we describe what
was known about these quantities.

For the case when d is (sufficiently) smaller than the field size, the works of
Rubinfeld and Sudan [RS96] and Friedl and Sudan [FS95] show that k(d, q) = d+
2 (provided d < q−q/p). For the case when q = 2 and d is arbitrary, this quantity
was analyzed in the work of Alon et al [AKK+05] who show that k(d, 2) = 2d+1

(exactly). Jutla et al [JPRZ09] and Kaufman and Ron [KR06] explored this
question for general q and d (the former only considered prime q) and showed
that k(d, q) ≤ q�(d+1)/(q−q/p)�. In [KR06] it is also shown that the bound is tight
(to within a factor of q) if q is a prime. However for the non-prime case the only
known lower bound on the query complexity was k(d, q) ≥ q(d+1)/(q−1) (which
is roughly the upper bound raised to the power of (p − 1)/p). (In the following
sections we describe the conceptual reason for this gap in knowledge.)

A New Upper Bound on the Query Complexity 641

In this work we give a new upper bound on k(d, q) which is closer to the lower
bound when p is a constant and d and q are going to infinity. We state our main
theorem below.

Theorem 1 (Main). Let q = ps for prime p and positive integer s. Then there
exists a constant cq ≤ 3q4 such that for every d and n, the Reed-Muller code
RM[n, d, q] has a (k,Ω(1/k2))-local tester, for k = k(d, q) ≤ cq ·

(
2p−1 + p −

1
)(d+1)/(q(p−1))

q(d+1)/q. In particular k(d, q) ≤ 3q4 · (3q)(d+1)/q.

We note that when p goes to infinity the bound on k(d, q) tends to cq ·(3q)(d+1)/q.
We also note that the constant cq is not optimized in our proofs and it seems
quite plausible that it can be improved using more careful analysis. The more
serious factor (especially when one considers a constant q and d → ∞) is the
constant factor multiplying q in the base of the exponent. Our techniques do
seem to be unable to improve this beyond (2p−1 + p− 1)1/(p−1) which is always
between 2 and 3 (while the lower bounds suggest a constant which is close to 1).

We note that the above result does not compare well with previous bounds
if one take the “soundness” parameter (ε) into account. Previous results by
Bhattacharyya et al. [BKS+10] for q = 2 and Haramaty et al. [HSS11] for general
q give a (k′, ε0)-local tester for ε0 depending only on q (but independent of d)

and k′ = q�
d+1

q−q/p
�. To get such a soundness independent of d, Theorem 1 yields

a (k3, ε1)-local tester for ε1 being some universal constant. Thus for small q and
growing d this is worse than the results of [BKS+10, HSS11]. However for d and
q growing at the same rate (for instance) our result does give the best bounds
even if we want the soundness to be some absolute constant.

Theorem 1 is proved by proving that the Reed-Muller code RM[n, d, q] has a
“k-single-orbit characterization” (a notion we will define later, see Definition 2
and Theorem 3). This will imply the testing result immediately by a result of
Kaufman and Sudan [KS07].

1.2 Spanning Weight

It is well-known (cf. [BHR05]) that the query complexity of testing a linear code
C is lower bounded by the “minimum distance” of its dual, where the minimum
distance of a code is the minimum weight of a non-zero codeword. (The weight
of a word is simply the number of non-zero coordinates.) Applied to the Reed-
Muller code RM[n, d, q] this suggests a lower bound via the minimum distance
of its dual, which also turns out to be a Reed-Muller code. Specifically the dual
of RM[n, d, q] is RM[n, n(q − 1)− d− 1, q]. The minimum distance of the latter
is well-known and is (roughly) q(d+1)/(q−1) and this leads to the tight analysis
of the query complexity of Reed-Muller codes over prime fields.

Over non-prime fields however this bound has not been matched, so one could
turn to potentially stronger lower bounds. A natural such bound would be the
“spanning weight” of the dual code, namely the minimum weight w such that
codewords of the dual of weight at most w span the dual code. It is easy to
show that to achieve any positive ε (even going to 0 as n → ∞) a (k, ε)-local

642 N. Ron-Zewi and M. Sudan

tester must make at least w queries (on some random choices), where w is the
spanning weight of the dual. Somewhat surprisingly, the spanning weight of the
Reed-Muller code does not seem well-understood. (Some partial understanding
comes from [DK00].). Since for a linear code, the spanning weight of its dual
code is a lower bound on the query complexity of the code, our result gives new
upper bounds on this spanning weight. Specifically, we have

Corollary 1. Let q = ps for prime p and positive integer s. Then there exists a
constant cq ≤ 3q4 such that for every d and n, the Reed-Muller code RM[n, n(q−
1)− d− 1, q] has a spanning weight of at most cq ·

(
2p−1 + p− 1

)(d+1)/(q(p−1)) ·
q(d+1)/q ≤ 3q4 · (3q)(d+1)/q.

1.3 Qualitative Description and Techniques

Our tester differs from previous ones in some qualitative ways. All previously
analyzed testers for low-degree testing roughly worked as follows: They picked
a large enough dimension t (depending on q and d, but not n) and verified that
the function to be tested was a degree d polynomial on a random t-dimensional
affine subspace. The final aspect was verified by querying the function on the
entire t-dimensional space, thus leading to a query complexity of qt. The minimal
choice of the dimension t that allows this test to detect functions that are not
degree d polynomials with positive probability is termed the “testing dimension”
(see, for instance, [HSS11]), and this quantity is well-understood, and equals
tq,d = �(d+ 1)/(q − q/p)�.

Any improvement to the query complexity of the test above requires two
features: (1) For some choices of the tester’s randomness, the set of queried
points should span a tq,d dimensional space. (2) For all choices of the tester’s
randomness, it should make o(qtq,d) queries. Finding such a useful subset of Fnq
turns out to be a non-trivial task. The fortunate occurence that provides the
basis for our tester is that such sets of points can indeed be found, and even (in
retrospect) systematically.

To illustrate the central idea, consider the setting of n = 2, d = q − 1 and
q = 2s for some large s. While the naive test would query the given function
f : F2

q → Fq at all q2 points, we wish to query only O(q) points. Our test,
for this simple setting is the following: We pick a random affine-transformation
T : F2

q → F2
q and test that the function f ◦ T has a zero “inner-product” with

the function g : F2
q → Fq given by g(x, y) = 1

y ((x + y)q−1 − xq−1). Here “inner-

product” is simply the quantity
∑

α,β∈Fq
(f ◦ T)(α, β)g(α, β). It can be verified

that the function g is zero very often and indeed takes on non-zero values on at
most 3q = O(q) points in F2

q. So querying f(α, β) at these O(q) points suffices.
The more interesting question is: Why is this test complete and sound?

Completeness is also easy to verify. It can be verified, by some simple manip-
ulations that any monomial of the form xiyj with i + j < q has a zero inner
product with g and by linearity of the test it follows that all polynomials of total
degree at most d have a zero inner product with g. Since the degree of functions

A New Upper Bound on the Query Complexity 643

is preserved under affine-transformations, it then follows that f ◦T also has zero
inner product with g for every polynomial f of total degree at most d.

Finally, we turn to the soundness. Here we appeal to the emerging body of
work on affine-invariant linear properties (linear properties that are preserved
under affine-transformations), which allows us to focus on very specific mono-
mials and to verify that their inner product with g is non-zero. In particular,
we use a “monomial extraction” lemma (from [KS07]) which allows us to focus
on the behavior of our tests only on monomials, as opposed to general polyno-
mials. Further the theory also allows us to focus on specific monomials due to
a “monomial spread” lemma which we use to prove that every affine-invariant
family which contains some monomials of degree greater than d also contains
some canonical monomials of degree slightly larger than d. In the special case
of polynomials of degree at most q − 1, these lemmas allow us to focus on only
bivariate monomials of degree q, namely the monomials xiyq−i for 1 ≤ i ≤ q− 1
and for these monomials one can again verify that their inner product with g
is non-zero. Using the general methods in the theory of affine-invariant prop-
erty testing, one can conclude that all polynomials of degree greater than d are
rejected with positive probability.

Extending the above result to the general case turns out relatively clean, again
using methods from the study of testing of affine-invariant linear properties.
The extension to general n is immediate. Extending to other degrees involves
some intuitive ways of combining tests, with analysis that get simplified by
the emerging theory. These combinations yield the query complexity of roughly
(3q)(d+1)/q. We however attempt to reduce the constant in front of q in the base
of this expression and manage to get an expression that tends to 2 when p goes
to infinity. In order to do so we abstract the function g as being the derivative of
the function xq−1 in direction y, and extend it to use iterative derivatives. This
yields the best tests we give in the paper.

Organization. In Section 2 we introduce some of the standard background ma-
terial from the study of affine-invariant linear properties and use the theory to
provide restatements of our problem. In Section 3 we introduce the main nov-
elty of our work, which provides a restricted version of our test while achieving
significant savings over standard tests. In the full version of this paper [RS12]
we show how to build on the test from Section 3 to get a tester for the general
case. Due to space limitations many proofs are omitted from this version. They
may also be found in the full version.

2 Background and Restatement of Problem

We start by introducing some of the background material that leads to some
reformulations of the main theorem we wish to prove. We first introduce the
notions of “constraints” and “(single-orbit) characterizations”, which leads to a
first reformulation of our main theorem (see Theorem 3). We then give some suf-
ficient conditions to recognize such characterizations, and this leads to a second
reformulation of our main theorem (see Theorem 4).

644 N. Ron-Zewi and M. Sudan

2.1 Single-Orbit Characterizations

In this section we use the fact that Reed-Muller codes form a “linear, affine-
invariant property”.We recall these notions first. Given a finite field Fq a property
is a set of functions F mapping Fnq to Fq. The property is said to be linear if it is an
Fq-vector space, i.e., ∀f, g ∈ F and α ∈ Fq we have αf + g ∈ F . The property is
said to be affine-invariant if it is invariant under affine-transformations of the do-
main, i.e., ∀f ∈ F it is the case that f ◦T is also inF for every affine-transformation
T : Fnq → Fnq given by T (x) = A · x + β for A ∈ Fn×nq , β ∈ Fnq .

1 It can be easily
verified that RM[n, d, q] is linear and affine-invariant for every n, d, q.

The main tool used so far for constructing testers for affine-invarinat linear
properties is a structural theorem which shows that every linear affine-invariant
property that is k-single characterizable is also k-locally testable. In order to
describe the notion of single-orbit characterizability we start with a couple of
definitions.

Definition 1 (k-constraint, k-characterization). A k-constraint C =
(α,
{
λi
}r
i=1

) on {Fnq → Fq} is given by a vector α = (α1, . . . , αk) ∈ (Fnq)
k

together with r vectors λi = (λi,1, . . . λi,k) ∈ Fkq for 1 ≤ i ≤ r. We say that

the constraint C accepts a function f : Fqn → Fq if
∑k

j=1 λi,jf(αj) = 0 for all
1 ≤ i ≤ r. Otherwise we say that C rejects f .

Let F ⊆ {Fqn → Fq} be a linear property. A k-characterization of F is a
collection of k-constraints C1, . . . , Cm on {Fnq → Fq} such that f ∈ F if and
only if Cj accepts f , for every j ∈ {1, . . . ,m}.

It is well-known [BHR05] that every k-locally testable linear property must have
a k-characterization. In the case of affine-invariant linear families some special
characterizations are known to lead to k-testability. We describe these special
characterizations next.

Definition 2 (k-single-orbit characterization). Let C =
(
α,
{
λi
}r
i=1

)
be a k-constraint on {Fnq → Fq}. The orbit of C under the set
of affine-transformations is the set of k-constraints {T ◦ C}T ={((

T (α1), . . . , T (αk)
)
,
{
λi
}r
i=1

)
| T : Fnq → Fnq is an affine-transformation

}
.

We say that C is a k-single-orbit characterization of F if the orbit of C forms
a k-characterization of F .

The following theorem, due to Kaufman and Sudan [KS07], says that k-single-
orbit characterization implies local testability.

Theorem 2 (Single-orbit characterizability implies local testability,
[KS07, Lemma 2.9]). Let F ⊆

{
Fnq → Fq

}
be an affine-invariant linear fam-

ily. If F has a k-single-orbit characterization, then F has a (k,Ω(1/k2))-local
tester.

1 We note that as in [KS07] we do not require A to be non-singular. Thus the affine-
transformations we consider are not necessarily permutations from Fn

q to Fn
q .

A New Upper Bound on the Query Complexity 645

In view of the above theorem, it suffices to find a single-orbit characterization of
RM[n, d, q] to test it. The following theorem, which we prove in the rest of this
paper, thus immediately implies Theorem 1.

Theorem 3. Let q = ps for prime p, and let n, d be arbitrary positive integers.
Then the Reed-Muller code RM[n, d, q] has a k-single-orbit characterization for

k ≤ cq ·
(
2p−1 + p− 1

)(d+1)/(q(p−1)) · q(d+1)/q where cq ≤ 3q4.

2.2 Constraints vs. Monomials

One of the main simplifications derived from the study of affine-invariant lin-
ear properties is that it suffices to analyze the performance of constraints on
“monomials” as opposed to general polynomials. This allows us to rephrase our
target (a single-orbit characterization of RM[n, d, q]) in somewhat simpler terms.
Below we describe some of the essential notions, namely the “degree set”, the
“border set” and the relationship of these to single-orbit characterizations. This
leads to a further reformulation of our main theorem as Theorem 4. Variations
of most of the results and notions presented in this section appeared in previous
works [KS07, GKS09, BS11, BGM+11]. In all the above works, with the excep-
tion of [KS07], the notions were specialized to the case of univariate funcions
mapping Fqn to Fq that are invariant over the set of affine-transformations over
Fqn . In this work we focus on these notions in the context of affine-invariant
linear properties over the domain Fnq .

Let F ⊆ {Fnq → Fq} be a linear affine-invariant family of functions. Note
that every member of {Fnq → Fq} can be written uniquely as a polyno-
mial in Fq[x1, x2, . . . , xn] of degree at most q − 1 in each variable. For a

monomial
∏n
i=1 x

di
i over n variables, we define its degree to be the vector

d = (d1, d2, . . . , dn) and we define its total degree to be
∑n

i=1 di. For a function
f : Fnq → Fq we denote its support, denoted supp(f), to be the set degrees in the

support of the associated polynomial. I.e., supp(f) = {d ∈ {0, . . . , q−1}n|cd �= 0}
where f(x) =

∑
d cdx

d. The degree set Deg(F) of F is simply the union of the
supports of the functions in F , i.e., Deg(F) = ∪f∈F supp(f).

While the degree set of the Reed-Muller codes are natural to study, they are
also natural in more general contexts. The following lemma from [KS07] says
that every affine-invariant linear property from Fnq to Fq is uniquely determined
by its degree set.

Lemma 1 (Monomial extraction lemma, [KS07, Lemma 4.2]). Let F ⊆{
Fnq → Fq

}
be an affine-invariant linear property. Then F has a monomial basis,

that is, F is the set of all polynomials supported on monomials of the form xd

where d ∈ Deg(F).2

2 Our language is somewhat different from that of [KS07]. After translation, their

lemma says that all monomials xd are contained in F . The other direction saying
F is contained in the span of such monomials is immediate from the definition of
Deg(F).

646 N. Ron-Zewi and M. Sudan

One main structural feature of the degree sets of affine-invariant linear properties
is that they are p-shadow-closed. Before giving the definition of a shadow-closed
set of degrees we need to introduce a bit of notation. For a pair of integers a, b
let a =

∑
j ajp

j , b =
∑

j bjp
j be their base-p representation, respectively. We

say that b is in the p-shadow of a, and denote this b ≤p a, if bj ≤ aj for all j.
For a pair of integer vectors d = (d1, d2, . . . , dn), e = (e1, e2, . . . , en) we say that
e ≤p d if ei ≤p di for every i.

Definition 3 (Shadow-closed set of degrees). For a vector of integers d =
(d1, d2, . . . , dn) of length n, the p-shadow of d is the set Shadowp(d) = {e =
(e1, e2, . . . , en) | e ≤p d}. For a subset S of integer vectors of length n we let
Shadowp(S) =

⋃
d∈S Shadowp(d). Finally, we say that S is p-Shadow-closed if

Shadowp(S) = S.

Lemma 4.6 in [KS07] says that the degree set of every affine-invariant linear
property over Fnq is p-shadow-closed. This motivates the notion of a “border”
set, the set of minimal elements (under ≤p) that are not in Deg(F).

Definition 4 (Border). For an affine-invariant linear family F ⊆
{
Fnq → Fq

}
,

its border set, denoted Border(F), is the set

Border(F)={e ∈ {0, . . . , q−1}n|e /∈ Deg(F) but ∀e′ ≤p e, e′ �= e, e′ ∈ Deg(F)}.

The relationship between the degree set and the border set of an affine-invariant
linear family and single-orbit characterizability is given by the following lemma.
This lemma says that for an affine-invariant linear family, in order to establish
k-single-orbit characterizability it suffices to exhibit a k-constraint whose orbit

accepts all monomials of the form xd for d ∈ Deg(F) and rejects all monomials of

the form xb for b ∈ Border(F). It is similar in spirit to Lemma 3.2 of [BGM+11]
which shows that a similar result holds for affine-invariant linear properties over
Fqn .

Lemma 2. Let F ⊆ {Fnq → Fq} be an affine-invariant linear property and let
C be a constraint. Then C is a single-orbit characterization of F if the orbit of

C accepts every monomial xd for d ∈ Deg(F) and rejects every monomial xb for
b ∈ Border(F).

Proof omitted in this version.
In order to describe the border of the Reed-Muller family we shall use the

following definition.

Definition 5. For integer d, let d0, d1, . . . , be its expansion in base-p, i.e., dj’s
satisfy 0 ≤ dj < p and d =

∑∞
j=0 djp

j. Let bi(d) = pi +
∑∞

j=i djp
j.

Note that bi(d) > d for every i and conversely, for every integer e > d there
exists an i such that bi(d) ≤p e. The bi(d)’s are useful in describing the border
monomials of the Reed-Muller family, as formalized below.

A New Upper Bound on the Query Complexity 647

Proposition 1. For every n, d, q, where q = ps for a prime p, we have

Deg(RM[n, d, q]) =

⎧⎨⎩d = (d1, . . . , dn) ∈ {0, . . . , q − 1}n |
n∑
j=1

dj ≤ d

⎫⎬⎭ and

Border(RM[n, d, q]) ⊆⎧⎨⎩e = (e1, . . . , en) ∈ {0, . . . , q − 1}n |
n∑
j=1

ej = bi(d) for some 0 ≤ i ≤ s

⎫⎬⎭ .

Proof omitted.
Combining Lemma 2 and Proposition 1 we have that Theorem 3 follows im-

mediately from Theorem 4 below.

Theorem 4. Let q = ps for a prime p. Then there exists a k-constraint C whose
orbit accepts all monomials of total degree at most d and rejects all monomials of

total degree bi(d) for 0 ≤ i ≤ s, for k ≤ 3q4 ·
(
2p−1+p−1

)(d+1)/(q(p−1)) ·q(d+1)/q.

The rest of this paper will be devoted to proving Theorem 4.

3 Canonical Monomials and a New Constraint

In this section we introduce the notion of “canonical monomials” of a given
degree — very simplified monomials that appear in every affine-invariant linear
property containing monomials of a given degree. We then give a constraint
that rejects canonical monomials of some special degrees, while accepting all
monomials of lower degrees. In the full version of this paper [RS12], we show
how to use this to build a constraint whose orbit accepts all monomials of total
degree at most d while rejecting all monomials of total degree bi(d), which suffices
to get Theorem 4.

Definition 6 (Canonical monomials). Let q = ps for a prime p. The canoni-

cal monomial of (total) degree d over Fq is the monomial
∏
i=1 x

di
i which satisfies∑

i=1 di = d, di = q−q/p for all 2 ≤ i ≤ �, 0 ≤ d1 ≤ q−1 and d1+q−q/p > q−1.

We note that [HSS11] used a different canonical monomial (cf. Definition 4.1.,
[HSS11]) for the construction of their improved tester for the Reed-Muller codes.
Our different choice of canonical monomial is needed to construct single-orbit
characterizations which improve on those given in [HSS11] in terms of the number
of queries. The main property of the canonical monomial, that we will use in the
full version of tihs paper to prove Theorem 4 is that every affine-invariant linear
family that contains any monomial of total degree d also contains the canonical
monomial of degree d. This will imply in turn that if we can find constraints
that reject this canonical monomial their orbit will reject every monomial of
total degree d.

648 N. Ron-Zewi and M. Sudan

3.1 A New Constraint on Monomials of Total Degree < p(q − q/p)

The main technical novelty in our paper is a k-constraint C that accepts all
monomials of total degree strictly less than p(q − q/p) in p variables but rejects
the canonical monomial of degree p(q− q/p) (note that the latter monomial also
has p variables) for k = (2p−1+p−1)qp−1. We state the lemma below and devote
the rest of this section to proving this lemma.

Lemma 3 (Main technical lemma). For every q which is a power of a prime
p there exists a k-constraint C which accepts all monomials of total degree smaller
than p(q−q/p) in p variables and rejects the canonical monomial (in p variables)
of degree p(q − q/p) over Fq, where k = (2p−1 + p− 1)qp−1.

It will be convenient for us to represent the constraint C as a p-variate polynomial
over Fq. More precisely, suppose that g(x) is a p-variate polynomial g(x) ∈
Fq[x1, x2, . . . , xp] that is non-zero on at most k points in Fpq . We associate with

g(x) the k-constraint C = (α, λ), α = (α1, . . . , αk) ∈ (Fpq)
k, λ = (λ1, . . . , λk) ∈

Fkq , where the vector α consists of all points in Fpq on which g(x) is non-zero and
λj = g(αj) for all 1 ≤ j ≤ k. Clearly, for every function f : Fpq → Fq it holds
that

k∑
j=1

λjf(αj) =
∑

β1,...,βp∈Fq

g(β1, . . . , βp) · f(β1, . . . , βp) (1)

Thus we reduce the task of finding a k-constraint which accepts all monomials of
total degree smaller than p(q−q/p) and rejects the canonical monomial of degree
p(q− q/p) to the task of finding a p-variate polynomial g(x) ∈ Fq[x1, x2, . . . , xp]
with at most k non-zero points in Fpq such that

∑
β1,...,βp∈Fq

g(β1, . . . , βp) ·
M(β1, . . . , βp) = 0 for every monomial in p variables of total degree smaller
than p(q − q/p) and

∑
β1,...,βp∈Fq

g(β1, . . . , βp) ·M(β1, . . . , βp) �= 0 when M(x)

is the canonical monomial of degree p(q − q/p).
We start by describing a polynomial P (x) that will satisfy the conditions we

expect in g above. The best way to describe this polynomial is via the notion of
directional derivatives. Let f : Fq → Fq be a function. Define the derivative of f
in direction y ∈ Fq as fy(x) = f(x+ y)− f(x). Define the iterated derivatives as

fy1,...,yd(x) = (fy1,...,yd−1
)yd(x) =

∑
I⊆[d]

(−1)|I|+1f

(
x+

∑
i∈I

yi

)
.

Let f(x) be the polynomial f(x) = xq−1
p . Our polynomial P (x) will be defined

as follows.

P (x) =
fx1,...,xp−1(xp)

x1 · · ·xp−1
=

∑
I⊆[p−1](−1)|I|+1(xp +

∑
i∈I xi)

q−1

x1 · · ·xp−1
. (2)

To see that P (x) is indeed a polynomial we need to show that fx1,...,xp−1(xp) is
divisible by x1 · · ·xp−1. We omit the proof here.

A New Upper Bound on the Query Complexity 649

In order to prove our main technical Lemma 3 it suffices to show that the
number of non-zero points of P (x) in Fpq is at most (2p−1 + p − 1)qp−1, that it
accepts all monomials in p variables of total degree smaller p(q− q/p), and that
it rejects the canonical monomial of degree p(q − q/p). We assert these three
claims in Lemmas 4, 5 and 6 below, respectively. Given these three lemmas our
main technical Lemma 3 is immediate. We start with bounding the number of
non-zeros of P (x).

Lemma 4. The number of non-zero points of P (x) in Fpq is at most (2p−1+p−
1)qp−1.

Lemma 5. Let C be the constraint associated with P (x). Then C accepts all
monomials in p variables of total degree smaller than p(q − q/p).

Lemma 6. Let C be the constraint associated with P (x). Then C rejects the
canonical monomial of degree p(q − q/p) over Fq.

Given Lemmas 4, 5 and 6 the proof of Lemma 3 is immediate.

Proof (Proof of Lemma 3). Let P (x) be the polynomial given in (2), and let C be
the constraint on

{
Fpq → Fq

}
associated with P (x). From Lemma 4 we have that

the number of non-zero points of P (x) in Fpq is at most (2p−1 + p− 1)qp−1, and

hence C is a
(
(2p−1 + p− 1)qp−1

)
-constraint. Lemma 5 implies that C accepts

all monomials of total degree smaller than p(q − q/p), while Lemma 6 implies
that C rejects the canonical monomial of degree p(q − q/p).

Acknowledgements. We would like to thank Amir Shpilka for suggesting that
our tests are related to directional derivatives.

References

[AKK+05] Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing Reed-
Muller codes. IEEE Transactions on Information Theory 51(11), 4032–4039
(2005)

[ALM+98] Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification
and the hardness of approximation problems. Journal of the ACM 45(3),
501–555 (1998)

[BGH+11] Barak, B., Gopalan, P., H̊astad, J., Meka, R., Raghavendra, P., Steurer,
D.: Making the long code shorter, with applications to the unique games
conjecture. CoRR, abs/1111.0405 (2011)

[BGM+11] Ben-Sasson, E., Grigorescu, E., Maatouk, G., Shpilka, A., Sudan, M.:
On Sums of Locally Testable Affine Invariant Properties. In: Goldberg,
L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM 2011.
LNCS, vol. 6845, pp. 400–411. Springer, Heidelberg (2011)

[BHR05] Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: Some 3CNF properties are
hard to test. SICOMP: SIAM Journal on Computing 35 (2005)

[BKS+10] Bhattacharyya, A., Kopparty, S., Schoenebeck, G., Sudan, M., Zuckerman,
D.: Optimal testing of Reed-Muller codes. In: FOCS, pp. 488–497. IEEE
Computer Society (2010)

650 N. Ron-Zewi and M. Sudan

[BS11] Ben-Sasson, E., Sudan, M.: Limits on the Rate of Locally Testable Affine-
Invariant Codes. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P.
(eds.) APPROX/RANDOM 2011. LNCS, vol. 6845, pp. 412–423. Springer,
Heidelberg (2011)

[DK00] Ding, P., Key, J.D.: Minimum-weight codewords as generators of generalized
Reed-Muller codes. IEEE Transactions on Information Theory 46(6), 2152–
2158 (2000)

[FS95] Friedl, K., Sudan, M.: Some improvements to total degree tests. In:
Proceedings of the 3rd Annual Israel Symposium on Theory of Com-
puting and Systems, January 4-6, pp. 190–198. IEEE Computer So-
ciety, Washington, DC (1995) Corrected version available online at,
http://people.csail.mit.edu/madhu/papers/friedl.ps

[GKS09] Grigorescu, E., Kaufman, T., Sudan, M.: Succinct Representation of Codes
with Applications to Testing. In: Dinur, I., Jansen, K., Naor, J., Rolim,
J.D.P. (eds.) APPROX/RANDOM 2009. LNCS, vol. 5687, pp. 534–547.
Springer, Heidelberg (2009)

[HSS11] Haramaty, E., Shpilka, A., Sudan, M.: Optimal testing of multivariate poly-
nomials over small prime fields. In: Ostrovsky, R. (ed.) FOCS, pp. 629–637.
IEEE (2011)

[JPRZ09] Jutla, C.S., Patthak, A.C., Rudra, A., Zuckerman, D.: Testing low-degree
polynomials over prime fields. Random Struct. Algorithms 35(2), 163–193
(2009)

[KR06] Kaufman, T., Ron, D.: Testing polynomials over general fields. SIAM Jour-
nal of Computing 36(3), 779–802 (2006)

[KS07] Kaufman, T., Sudan, M.: Algebraic property testing: The role of invariance.
Electronic Colloquium on Computational Complexity (ECCC) 14(111)
(2007)

[RS96] Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with
applications to program testing. SIAM Journal on Computing 25(2), 252–
271 (1996)

[RS12] Ron-Zewi, N., Sudan, M.: A new upper bound on the query complexity for
testing generalized Reed-Muller codes. Electronic Colloquium on Computa-
tional Complexity (ECCC) 19, 46 (2012)

[VW08] Viola, E., Wigderson, A.: Norms, xor lemmas, and lower bounds for poly-
nomials and protocols. Theory of Computing 4(1), 137–168 (2008)

http://people.csail.mit.edu/madhu/papers/friedl.ps

A Combination of Testability and Decodability

by Tensor Products�

Michael Viderman

Computer Science Department
Technion — Israel Institute of Technology

Haifa, 32000, Israel
viderman@cs.technion.ac.il

Abstract. Ben-Sasson and Sudan (RSA 2006) showed that taking the
repeated tensor product of linear codes with very large distance results in
codes that are locally testable. Due to the large distance requirement the
associated tensor products could be applied only over sufficiently large
fields.

In this paper we improve the result of Ben-Sasson and Sudan and
show that for any linear codes the associated tensor products are locally
testable.

Moreover, a combination of our result with the result of Spielman
(IEEE IT, 1996) implies a construction of linear codes (over any field)
that combine the following properties:

– have constant rate and constant relative distance;
– have blocklength n and are testable with nε queries, for any constant

ε > 0;
– linear time encodable and linear-time decodable from a constant

fraction of errors.

Furthermore, a combination of our result with the result of Guruswami
et al. (STOC 2009) implies a similar corollary for list-decodable codes.

Keywords: Tensor products, locally testable codes, locally correctable
codes, efficient decoding.

1 Introduction

Over the last decades coding theory and complexity theory have benefited from
numerous interesting interconnections. Recent major achievements in complexity
theory, e.g., showing IP = PSPACE [38,45,46] and giving a PCP characteriza-
tion of NP [3,4] have strongly relied on connections with coding theory either
explicitly or implicitly.

Most of the well-studied and practically used codes are linear codes. A linear
code C ⊆ Fn is a linear subspace over the field F, where n is called the block-
length of C and dim(C) denotes the dimension of the code. The rate of the code is

� The research was partially supported by the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement number 240258 and by
grant number 2006104 by the US-Israel Binational Science Foundation.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 651–662, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

652 M. Viderman

defined by rate(C) = dim(C)
n . We define the distance between two words x, y ∈ Fn

to be Δ (x, y) = |{i | xi �= yi}| and the relative distance to be δ(x, y) = Δ(x,y)
n .

The distance of the code C is defined by Δ (C) = minx �=y∈C Δ (x, y) and its

the relative distance is denoted δ(C) = Δ(C)
n . Typically, one is interested in the

codes whose distance is linear in the blocklength.
The central algorithmic problem in coding theory is the explicit construction

of error-correcting codes with best possible parameters together with fast en-
coding and decoding algorithms. These features were proved to be useful also in
cryptography and computational complexity (see e.g., [50, Section 1]).

Besides the efficient encoding/decoding algorithms there are interesting well-
studied properties: local testing and local decoding (correction). The combina-
tion of these properties is highly useful, e.g., PCPs based on the Hadamard code
[3] relied on the fact that the Hadamard code is testable with 3 queries [35] and
locally decodable (correctable) with 2 queries.

Given the fact that error-correcting codes play an important role in complexity
theory, and in particular, in different interactive protocols (see e.g., [7]), it might
be helpful to develop a general scheme for constructing error-correcting codes
that combine several different properties. E.g., it might be helpful to have high-
rate codes which combine such properties as local testing, efficient encoding and
decoding from a constant fraction of errors. This is what we do in this paper.
In the rest of the introduction we provide a brief background and explain our
contribution.

Locally Testable Codes. Locally testable codes (LTCs) are error correcting codes
that have a tester, which is a randomized algorithm with oracle access to the
received word x. The tester reads a sublinear amount of information from x and
based on this “local view” decides if x ∈ C or not. It should accept codewords
with probability one, and reject words that are far (in Hamming distance) from
the code with noticeable probability.

LTCs were implicit already in [6] (cf. [22, Sec. 2.4]) and they were explic-
itly studied by Goldreich and Sudan [24]. By now several different constructions
of LTCs are known including codes based on low-degree polynomials over fi-
nite fields [2,35,3], constructions based on PCPs of proximity/assignment testers
[9,19]1 and sparse random linear codes [15], [29], [31]. In this paper we study
a different family of LTC constructions, namely, tensor codes. Given two linear
error correcting codes C ⊆ Fn1 , R ⊆ Fn2 over a finite field F, we define their
tensor product to be the subspace R⊗C ⊆ Fn1×n2 consisting of n1×n2 matrices
M with entries in F having the property that every row of M is a codeword of
R and every column of M is a codeword of C. In this case, we say that C and
R are base-codes. If C = R we use C2 to denote C ⊗ C and for i > 2 define
Ci = C ⊗ Ci−1. Note that the blocklength of Ci is ni1.

1 As was pointed out in [24], not all PCP constructions are known to yield LTCs, but
some of them (e.g., PCPs of proximity/assignment testers) can be adapted to yield
LTCs.

A Combination of Testability and Decodability by Tensor Products 653

Recently, tensor products were used to construct new families of LTCs [12,37],
new families of list-decodable codes [25], and to give an alternative proof [38]2

for IP=PSPACE theorem of [45,46].
Ben-Sasson and Sudan [12] suggested to use tensor product codes as a means

to construct LTCs combinatorially. Let C ⊆ Fn1 be a linear code and let us
consider the following approach. Suppose that the task is to test whether an
input word M ∈ Fn1×n1 belongs to C2, where M is far from C2. One could
expect that in this case the typical row/column of M is far from C, and hence
the tester for C2 can choose a random row (or column) of M . Then this selected
row/column could be tested on being in C. However, as was shown in [51,23,17]
this approach fails in general and is known to work only under assumptions that
C has some non-trivial properties [20,13,14] (see also [36]).

In spite of this fact, Ben-Sasson and Sudan [12] showed that taking the re-
peated tensor products of any code C ⊆ Fn with sufficiently large distance re-
sults in a locally testable code with sublinear query complexity. Although it was
not explicitly stated in [12], it follows that [12, Theorem 2.6] gives the following
result.

Theorem 1 (Informal). For every ε > 0 there exists a sufficiently large field

F = F(ε) such that letting m = � 2
ε � for every C ⊆ Fn, if

(
Δ(C)−1

n

)m
≥ 7

8 then

Cm is testable with N ε queries, where N = nm is the blocklength of Cm. The
rejection probability of the tester depends on m.

It remained unclear if the assumption about the very large distance of the base
codes is necessary. Moreover, the requirement on the distance of the base code
(Δ (C)) is dependent on the number of tensor products (m) one should apply.
Note that for smaller query complexity (relative to the blocklength) more tensor
product operations should be applied. Thus the distance of the base code must
be increased when the number of queries is decreased. We notice also that the
assumption of largerΔ (C) implies a larger underlying field F. As a consequence,
a similar theorem to Theorem 1 could not be argued for a fixed field, like the
binary field.

We show that no assumptions about the base codes (or underlying fields) are
needed. I.e., we prove the following result (stated formally in Theorem 3).

Theorem 2 (Informal). For every ε > 0 and for every field F letting m = � 2
ε �

it holds that for every C ⊆ Fn we know that Cm is testable with N ε queries,
where N = nm is the blocklength of Cm. The rejection probability of the tester
depends on Δ (C) and m.

This contrasts with the previous works on the combinatorial constructions of
LTCs due to Ben-Sasson and Sudan [12] and Meir [37] which required very large

2 Meir [38] showed that the “multiplication” property and the “sum-check” protocol
can be designed by tensor products. We consider this surprising, since previously
such features were achieved only by low degree polynomials.

654 M. Viderman

base-code distance, and as a consequence required the large field size. Further-
more, our proof is much simpler than the proof provided in [12] and simultane-
ously we obtain some quantitative improvements in the related parameters.

Efficient encoding and decoding. Let us ask the following natural question.
Whether tensor products of codes can be encoded efficiently? It is quite sim-
ple to show that if the code C has an efficient (linear time) encoder then Cm

has an efficient (linear time) encoder.
Let us turn to the decoding properties of the tensor products, e.g., the natural

question here would be whether tensor products of codes preserve the decoding
properties provided that the base codes are efficiently decodable. Gopalan et al.
[25] showed that tensor products preserve the list-decoding properties, i.e., if
C is list-decodable in polynomial time then Cm is list-decodable in polynomial
time.3 Our contribution to this question is as follows. In the full version we show
that if C is decodable from a constant fraction of errors in linear time then Cm

is decodable from a constant fraction of errors in linear time.
Then, we show (Corollaries 2, 3) that a combination of our results with the

results of [48,25] implies the construction of constant-rate codes which are both
testable with sublinear query complexity, linear-time encodable and efficiently
decodable (or list-decodable) from the constant fraction of errors.

Tensor product of codes preserves the local decoding (correction) properties. In-
formally, locally decodable codes (LDCs) and locally correctable codes (LCCs)
are error-correcting codes that allow to retrieve each message (codeword) bit
using a small number of queries even after a constant fraction of it is adversely
corrupted. The most famous LDCs (LCCs) include Hadamard and Reed-Muller
codes [41]. In theoretical computer science, locally decodable codes have played
an important part in the Proof-Checking Revolution [33], [34], [45], [6], [7], [4],
[3] as well as in other fundamental results in complexity theory [8], [28], [5], [49],
[44].

In Section 3.3 we prove that tensor product of codes preserve the local correc-
tion property. That means if C is an LCC with query complexity q then C2 is
an LCC with query complexity q2. On the one hand, this observation discovers
additional families of locally correctable codes and on the other hand, it sug-
gests a simple way to combine two different properties: local correction and local
testing.

2 Preliminaries

All codes discussed in this paper are linear. Throughout this paper, we let
[n] = {1, . . . , n}. For w ∈ Fn let supp(w) = {i|wi �= 0}, |w| = |supp(w)| and
wt(w) = |w|

n . For x ∈ Fn and a linear code C ⊆ Fn, let δ(x,C) = min
y∈C

{δ(x, y)}

3 The main focus in [25] was done on the designing polynomial-time list-decoding
algorithms and on the combinatorial bounds for the list-decoding tensor products of
codes and interleaved codes.

A Combination of Testability and Decodability by Tensor Products 655

denote the relative distance of x from the code C. If δ(x,C) ≥ ε we say that
x is ε-far from C, and otherwise we say that x is ε-close to C. We let C⊥ =
{u ∈ Fn | ∀c ∈ C : 〈u, c〉 = 0} be the dual code of C, where 〈u, c〉 denotes the
vector inner product between u and c.

For w ∈ Fn and S = {j1, j2, . . . , jm} ⊆ [n], where j1 < j2 < . . . < jm,
we let w|S = (wj1 , . . . , wjm) be the restriction of w to the subset S. We let
C|S = {c|S | c ∈ C} denote the restriction of the code C to the subset S.

2.1 Tensor Product Codes

The definitions appearing here are standard in the literature on tensor-based
LTCs (e. g. [20], [12], [37], [14], [51]).

For x ∈ FI and y ∈ FJ we let x ⊗ y denote the tensor product of x and y
(i. e., the matrix M with entries M(i,j) = xi ·yj where (i, j) ∈ I×J). Let R ⊆ FI

and C ⊆ FJ be linear codes. We define the tensor product code R⊗C to be the
linear space spanned by words r ⊗ c ∈ FJ×I for r ∈ R and c ∈ C.

We let C1 = C and Ct = Ct−1⊗C for t > 1. Note by this definition, C20 = C
and C2t = C2t−1 ⊗ C2t−1

for t > 0. We also notice that for a code C ⊆ Fn

and m ≥ 1 it holds that rate(Cm) = (rate(C))m, δ(Cm) = (δ(C))m and the
blocklength of Cm is nm.

The main drawback of the tensor product operation is that this operation
strongly decreases the rate and the distance of the base codes. We refer the
reader to [37] which showed how one can use tensor products and avoid the
decrease in the distance and the strong decrease in the rate.4

2.2 Locally Testable Codes (LTCs)

A standard q-query tester for a linear code C ⊆ Fn is a randomized algorithm
that on the input word w ∈ Fn picks non-adaptively a subset I ⊆ [n] such that
|I| ≤ q. Then T reads all symbols of w|I and accepts if w|I ∈ C|I , and rejects
otherwise (see [10, Theorem 2]). Hence a q-query tester can be associated with
a distribution over subsets I ⊆ [n] such that |I| ≤ q.

Definition 1 (Tester of C and Test View). A q-query tester D is a distri-
bution D over subsets I ⊆ [n] such that |I| ≤ q. Let w ∈ Fn (think of the task
of testing whether w ∈ C) and let I ⊆ [n] be a subset. We call w|I the view of
a tester. If w|I ∈ C|I we say that this view is consistent with C, or when C is
clear from the context we simply say w|I is consistent.

Although the tester in Definition 1 does not output accept or reject, the way
a standard tester does, it can be converted to output accept, reject as follows.

4 Meir [37] demonstrated how one can combine the tensor product operation with
two additional operations: random projections and distance amplification. In this
way, on the one hand repeated tensor products could be applied, while on the other
hand these supplementary operations prevent the distance loss and the strong rate
reduction.

656 M. Viderman

Whenever the task is to test whether w ∈ C and a subset I ⊆ [n] is selected by
the tester, the tester can output accept if w|I ∈ C|I and otherwise output reject.

When considering a tensor code Cm ⊆ Fn
m

, an associated tester will be a
distribution over subsets I ⊆ [n]m. We identify [nm] with [n]m.

Definition 2 (LTCs). A code C ⊆ Fn is a (q, ε)-LTC if it has a q-query tester
D such that for all w ∈ Fn, we have Pr

I∼D
[w|I /∈ C|I] ≥ ε · δ(w,C).

Note that given a code C ⊆ Fn, the subset I ⊆ [n] uniquely defines C|I .

3 Main Results

The main result of this paper is stated in Theorem 3. Informally, Theorem 3
says that tensor products of third and higher powers of any linear code over any
field are locally testable with sublinear query complexity. This theorem is quite
powerful and we shall use it later to conclude that tensor products of linear codes
can enjoy the combination of local testability and decodability in a new range
of parameters, which was not previously known.

Theorem 3 (Main Theorem). Let C ⊆ Fn be a linear code and m ≥ 3 be

an integer. Then Cm is a (n2, αm)-LTC, where αm =
(δ(C))2m

18log1.5 m
. Note that the

blocklength of Cm is nm.

The proof of Theorem 3 is omitted due to the space limitations. As was men-
tioned earlier, our analysis is more tight and much simpler than [12].

Remark 1. We would like to point out that for any linear code C ⊆ Fn it holds
that C2 is a (n, 12)-LTC. Note blocklength of C2 is n2. So, in this way we can
easily obtain a simple construction of an LTC with query complexity equal to
the square root of the blocklength. Nevertheless, that is a much more difficult
task to obtain a smaller query complexity via tensor products (see e.g., [12], [13],
[37] for more information).

Usually, in the areas of locally testable and locally decodable codes the main
interest was given to the constant query complexity. Recently, Kopparty et al.
[32] showed the construction of locally decodable codes with sublinear query
complexity and arbitrary high rate (see [32] for the motivation behind this range
of parameters). Since then, the interest in the other range of parameters, and in
particular, in sublinear query complexity has increased.

Tensor Products of Codes Can Have Large Distance. As was said in Section 2.1,
Meir [37] explained that one of the standard procedures for distance amplifica-
tion of the code [1] can be combined together with the repeated tensor product
operations. He also proved that this procedure preserves the local testability of
the underlying code. The simplest way to see this is as follows. Let DistAmp(·)
be a procedure that increases the relative distance of the code C′ ⊆ Fn2 , e.g.,

A Combination of Testability and Decodability by Tensor Products 657

from 0.001 to 0.49. I.e., if δ(C′) ≥ 0.001 then δ(DistAmp(C′)) ≥ 0.49. Moreover,
it holds that if C′ was locally testable then DistAmp(C′) is locally testable,
where the query complexity of the code DistAmp(C′) is increased by only a
constant factor, independent on the other parameters of the code). It can be
readily verified that the distance amplification procedure preserves the encod-
ing time, and in particular, if C′ was linear-time encodable then DistAmp(C′)
is linear-time encodable. Thus, one can pick any linear-time encodable code C
with linear distance, obtain a linear-time encodable LTC C′ = C10 and then
increase its distance by DistAmp(C′). We refer the reader to [37, Section 4.3]
for further information about distance amplification procedures and its affect on
local testability.

In this paper we won’t use any distance amplification procedures and restrict
our attention only to the tensor product operation.

We proceed as follows. In Section 3.1 we explain how local testability can be
combined with decodability, and in particular, we show that tensor products can
be used to provide linear codes of high rate which are locally testable, and at the
same time can be efficiently encoded and decoded. Then, in Section 3.2 we show
that a combination of Theorem 3 with a result of [25] implies asymptotically
good codes that can be encodable in linear time, testable with sublinear query
complexity and list-decodable in polynomial time. Finally, in Section 3.3 we
argue that tensor products preserve the local decoding (correction) properties.
Thus a tensor product of a locally decodable (correctable) code combines both
properties: local testing and local decoding (correction).

3.1 Locally Testable and Linear-Time Encodable and Decodable
Codes

We continue to investigate the “encoding” and “decoding” properties of tensor
products. We show in Corollary 1 a simple construction of LTCs with arbitrary
small sublinear query complexity and arbitrary high rate from any linear code
with sufficiently high rate.

Corollary 1. Let F be any field. Let C ⊆ Fn be a linear code and let m ≥ 3
be a constant. Then Cm ⊆ Fn

m

is a (n2, αm)-LTC, where αm > 0 is a constant
that depends only on m and δ(C). In particular, for every ε > 0, m = � 2

ε �,
N = nm and C ⊆ Fn such that rate(C) ≥ (1 − ε)1/m we have that Cm ⊆ FN

is a (N ε, α)-LTC and rate(Cm) ≥ 1− ε, where α > 0 is a constant that depends
only on ε. Moreover, if C is a linear-time encodable then Cm is a linear-time
encodable.

Remark 2. We notice that there are linear error-correcting codes with arbi-
trary high rate that can be encodable in the linear time (see e.g., [43]5). Thus
Corollary 1 provides a construction of high-rate LTCs with constant relative

5 This result improves the previous result of [27] and presents the construction of linear
codes that lie close to the singleton bound, and have linear time encoding/decoding
algorithms.

658 M. Viderman

distance and arbitrary low sublinear query complexity that can be encoded in
linear time. Moreover, this construction can be taken over any field. To the best
of our knowledge no such results were known before.

We also notice that any simple approach, based on testing of (low-degree)
polynomials [2], to achieve the similar result to Corollary 1 fails. In particular,
let us consider the testing of Reed-Muller codes of degree d and recall that
informally, Reed-Muller codes of degree d can be tested by making ≈ 2d queries.
If d is large then the associated codes must be constructed over a very large
field (depending on the blocklength of the code), since otherwise cannot have
constant relative distance. However, if d is small then the rate of the associated
code is very low. It could also be verified that concatenation of a Reed-Muller
code with a good binary code does not obtain the combination of properties
presented in Corollary 1. Furthermore, the linear-time encoding of the codes
based on high-degree polynomials is problematic.

Next we turn to the decoding properties of tensor products. Let us first recall
the definition of decodable codes.

Definition 3 (Decodable codes). Let C ⊆ Fn be a code and let α < δ(C)/2.
We say that C is decodable from αn errors in time T if there exists a decoder
DC which on the input word w ∈ Fn such that δ(w,C) ≤ α outputs c ∈ C such
that δ(w, c) ≤ α and its running time is upper-bounded by T . If T = O(n) we
say that C is decodable in linear time.

In the full version we show that the tensor product operation preserves the
decoding property. In particular, if C ⊆ Fn is a linear code that is linear time
decodable from α ·n errors then Cm is linear-time decodable from αm ·nm errors
(for every constant m ≥ 1).

A combination of our Theorem 3 together with the results of Spielman [48]
and Guruswami and Indyk [27] implies the following corollary.

Corollary 2. For every constant ε > 0:

1. There exists an (explicit) family of linear error correcting codes C ⊆ FN2
(obtained by tensor products on the codes from [48]) that
– have rate and relative distance Ωε(1),
– linear time encodable and linear time decodable from the constant fraction

(Ωε(1)) of errors,
– are (N ε, α)-LTCs, where α = α(ε) > 0 is a constant.

2. There exist a field F and an (explicit) family of linear error correcting codes
C ⊆ FN (obtained by tensor products on the codes from [43]) that
– have rate at least 1− ε and relative distance Ωε(1),
– linear time encodable and linear time decodable from the constant fraction

(Ωε(1)) of errors,
– are (N ε, α)-LTCs, where α = α(ε) > 0 is a constant.

The proof of Corollary 2 is omitted due to the space limitations. Note that
Corollary 2 presents a construction of error-correcting codes that combines local

A Combination of Testability and Decodability by Tensor Products 659

testability with efficient encoding and decoding algorithms. The difference be-
tween these two bullets of the corollary is in the binary field versus a larger field
and the constant rate versus arbitrary high rate.

3.2 Locally Testable and List-Decodable Codes

In this section we recall some constructions of list-decodable codes. We start by
defining list-decodable codes.

Definition 4 (List-decodable codes). A code C is a (α,L)-list decodable if
for every word w ∈ Fn we have |{c ∈ C | δ(c, w) ≤ α}| ≤ L. The code is said
to be (α,L)-list decodable in time T if there exists algorithm which on the input
w ∈ Fn outputs all codewords c ∈ C such that δ(c, w) ≤ α (at most L codewords).

Gopalan et al. [25] showed that the list-decodability and the running time of
the list-decoder are pretty much preserved in the tensor product operation. In
particular, they proved the following theorem, stated in [25, Theorem 5.8], which
says that tensor products of linear codes that are list-decodable in polynomial
time enjoy this property as well. We use the combination of [25, Theorem 5.8]
and Corollary 1 to conclude Corollary 3.

Corollary 3. Let F be any field. For every constant ε > 0 there exists a code
C ⊆ FN such that

– C is a (N ε, α)-LTC, where α = α(ε) > 0 is a constant,
– C is encodable in linear time and list-decodable (constant list size) in poly-

nomial time from the constant fraction of errors (depending on ε),
– rate(C) = Ωε(1) and δ(C) = Ωε(1).

The proof of Corollary 3 is omitted.

3.3 Tensor Products Preserve Local Correction Properties

Any linear error correcting code C ⊆ Fn can be associated with an encoding
function EC : Fk → Fn that on the message x ∈ Fk returns the codeword
EC(x) ∈ Fn. The words x ∈ Fk are called messages and the elements xi for i ∈ [k]
are called message symbols. Informally, locally decodable codes (LDCs) allow to
recover each message entry with high probability by reading only a few entries of
the codeword even if a constant fraction of it is adversely corrupted. These codes
are related to private information retrieval protocols, initiated by [16]. The best
known constructions of LDCs are due to Yekhanin [52] and Efremenko [21]. On
the other hand, locally correctable codes (LCCs) are error-correcting codes that
allow to retrieve each codeword symbol using a small number of queries even
after a constant fraction of it is adversely corrupted. So, the difference between
LDCs and LCCs is local decoding of message entries vs. codeword entries. It is
also worth pointing out that all linear LCCs are LDCs, however, the opposite
does not hold [30].

In the full version we prove that the tensor product of codes preserves the
local decoding (correction) properties as well as local testability.

660 M. Viderman

Acknowledgements. The author thanks Eli Ben-Sasson for many invaluable
discussions about the “robustness” concept and the possible connections to the
work [40]. We would like to thank Or Meir for helpful discussions. The author
thanks Ronny Roth for pointers to the literature. We thank the anonymous
referees for valuable comments on an earlier version of this article.

References

1. Alon, N., Bruck, J., Naor, J., Naor, M., Roth, R.M.: Construction of asymptoti-
cally good low-rate error-correcting codes through pseudo-random graphs. IEEE
Transactions on Information Theory 38(2), 509 (1992)

2. Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing reed-muller
codes. IEEE Transactions on Information Theory 51(11), 4032–4039 (2005)

3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)

4. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP.
Journal of the ACM 45(1), 70–122 (1998)

5. Arora, S., Sudan, M.: Improved low-degree testing and its applications. Combina-
torica 23(3), 365–426 (2003)

6. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: Proc. 23rd STOC, pp. 21–31. ACM (1991)

7. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-
prover interactive protocols. Computational Complexity 1, 3–40 (1991)

8. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complex-
ity 3, 307–318 (1993)

9. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust PCPs
of proximity, shorter PCPs, and applications to coding. SIAM Journal on Com-
puting 36(4), 889–974 (2006)

10. Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: Some 3CNF Properties Are Hard
to Test. SIAM Journal on Computing 35(1), 1–21 (2005)

11. Ben-Sasson, E., Sudan, M.: Simple PCPs with poly-log rate and query complexity.
In: STOC, pp. 266–275. ACM (2005)

12. Ben-Sasson, E., Sudan, M.: Robust locally testable codes and products of codes.
Random Struct. Algorithms 28(4), 387–402 (2006)

13. Ben-Sasson, E., Viderman, M.: Composition of Semi-LTCs by Two-Wise Tensor
Products. In: Dinur, I., Jansen, K., Naor, J., Rolim, J.D.P. (eds.) APPROX and
RANDOM 2009. LNCS, vol. 5687, pp. 378–391. Springer, Heidelberg (2009)

14. Ben-Sasson, E., Viderman, M.: Tensor Products of Weakly Smooth Codes are
Robust. Theory of Computing 5(1), 239–255 (2009)

15. Ben-Sasson, E., Viderman, M.: Low Rate Is Insufficient for Local Testability. In:
Serna, M., Shaltiel, R., Jansen, K., Rolim, J.D.P. (eds.) APPROX and RANDOM
2010, LNCS, vol. 6302, pp. 420–433. Springer, Heidelberg (2010)

16. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
JACM: Journal of the ACM 45 (1998)

17. Coppersmith, D., Rudra, A.: On the Robust Testability of Product of Codes. Elec-
tronic Colloquium on Computational Complexity (ECCC) (104) (2005)

18. Dinur, I.: The PCP theorem by gap amplification. Journal of the ACM 54(3),
12:1–12:44 (2007)

A Combination of Testability and Decodability by Tensor Products 661

19. Dinur, I., Reingold, O.: Assignment Testers: Towards a Combinatorial Proof of the
PCP Theorem. SIAM Journal on Computing 36(4), 975–1024 (2006)

20. Dinur, I., Sudan, M., Wigderson, A.: Robust Local Testability of Tensor Products
of LDPC Codes. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX
and RANDOM 2006. LNCS, vol. 4110, pp. 304–315. Springer, Heidelberg (2006)

21. Efremenko, K.: 3-query locally decodable codes of subexponential length. In:
Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on The-
ory of Computing, STOC 2009, Bethesda, MD, USA, May 31-June 2, pp. 39–44.
ACM (2009)

22. Goldreich, O.: Short locally testable codes and proofs (survey). Electronic Collo-
quium on Computational Complexity (ECCC) (014) (2005)

23. Goldreich, O., Meir, O.: The Tensor Product of Two Good Codes Is Not Nec-
essarily Robustly Testable. Electronic Colloquium on Computational Complexity
(ECCC) 14(062) (2007)

24. Goldreich, O., Sudan, M.: Locally testable codes and PCPs of almost-linear length.
Journal of the ACM 53(4), 558–655 (2006)

25. Gopalan, P., Guruswami, V., Raghavendra, P.: List decoding tensor products and
interleaved codes. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM
Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31-
June 2, pp. 13–22. ACM (2009)

26. Guruswami, V., Indyk, P.: Linear time encodable and list decodable codes. In:
STOC, pp. 126–135. ACM (2003)

27. Guruswami, V., Indyk, P.: Linear-time encodable/decodable codes with near-
optimal rate. IEEE Transactions on Information Theory 51(10), 3393–3400 (2005)

28. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: De-
randomizing the XOR lemma. In: STOC, pp. 220–229 (1997)

29. Kaufman, T., Sudan, M.: Sparse random linear codes are locally decodable and
testable. In: FOCS, pp. 590–600. IEEE Computer Society (2007)

30. Kaufman, T., Viderman, M.: Locally Testable vs. Locally Decodable Codes. In:
Serna, M., Shaltiel, R., Jansen, K., Rolim, J.D.P. (eds.) APPROX And RANDOM
2010, LNCS, vol. 6302, pp. 670–682. Springer, Heidelberg (2010)

31. Kopparty, S., Saraf, S.: Local list-decoding and testing of random linear codes from
high error. In: Schulman, L.J. (ed.) Proceedings of the 42nd ACM Symposium on
Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, June 5-8, pp.
417–426. ACM (2010)

32. Kopparty, S., Saraf, S., Yekhanin, S.: High-rate codes with sublinear-time decoding.
ECCC - TR10-148 (2010)

33. Lipton, R.J.: Efficient Checking of Computations. In: Choffrut, C., Lengauer, T.
(eds.) STACS 1990. LNCS, vol. 415, pp. 207–215. Springer, Heidelberg (1990)

34. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. Journal of the ACM 39(4), 859–868 (1992)

35. Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applications to
Numerical Problems. JCSS: Journal of Computer and System Sciences 47 (1993)

36. Meir, O.: On the rectangle method in proofs of robustness of tensor products.
Electronic Colloquium on Computational Complexity (ECCC) 14(061) (2007)

37. Meir, O.: Combinatorial Construction of Locally Testable Codes. SIAM J. Com-
put. 39(2), 491–544 (2009)

38. Meir, O.: IP = PSPACE using Error Correcting Codes. Electronic Colloquium on
Computational Complexity (ECCC) 17, 137 (2010)

39. Moshkovitz, D., Raz, R.: Two-query PCP with subconstant error. J. ACM 57(5)
(2010)

662 M. Viderman

40. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In: STOC, pp. 475–484
(1997)

41. Reed, I.S.: A class of multiple-error-correcting codes and the decoding scheme.
IEEE Transactions on Information Theory 4(4), 38–49 (1954)

42. Roth, R.M.: Introduction to coding theory. Cambridge University Press (2006)
43. Roth, R.M., Skachek, V.: Improved Nearly-MDS Expander Codes. IEEE Transac-

tions on Information Theory 52(8), 3650–3661 (2006)
44. Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudo-

random generator. J. ACM 52(2), 172–216 (2005)
45. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)
46. Shen, A.: IP = PSPACE: Simplified proof. J. ACM 39(4), 878–880 (1992)
47. Sipser, M., Spielman, D.A.: Expander Codes. IEEE Transactions on Information

Theory 42(6), 1710–1722 (1996); Preliminary version appeared in FOCS 1994
48. Spielman, D.A.: Linear-time Encodable and Decodable Error-Correcting Codes.

IEEE Transactions on Information Theory 42(6), 1723–1731 (1996); Preliminary
version appeared in STOC 1995

49. Sudan, M., Trevisan, L., Vadhan, S.P.: Pseudorandom generators without the XOR
lemma. J. Comput. Syst. Sci. 62(2), 236–266 (2001)

50. Trevisan, L.: Some applications of coding theory in computational complexity.
Electronic Colloquium on Computational Complexity (ECCC) (043) (2004)

51. Valiant, P.: The Tensor Product of Two Codes Is Not Necessarily Robustly
Testable. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX
2005 and APPROX and RANDOM 2005. LNCS, vol. 3624, pp. 472–481. Springer,
Heidelberg (2005)

52. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length.
J. ACM 55(1) (2008)

Extractors for Turing-Machine Sources

Emanuele Viola�

Northeastern University, Boston MA 02115, USA
viola@ccs.neu.edu

http://www.ccs.neu.edu/home/viola/

Abstract. We obtain the first deterministic randomness extractors for
n-bit sources with min-entropy ≥ n1−α generated (or sampled) by single-
tape Turing machines running in time n2−16α, for all sufficiently small
α > 0. We also show that such machines cannot sample a uniform n-bit
input to the Inner Product function together with the output.

The proofs combine a variant of the crossing-sequence technique by
Hennie [SWCT 1965] with extractors for block sources, especially those
by Chor and Goldreich [SICOMP 1988] and by Kamp, Rao, Vadhan, and
Zuckerman [JCSS 2011].

Keywords: turing machine, independent source, deterministic random-
ness extractor, sampling lower bound, complexity of distributions.

1 Introduction

Turing machines may be the most studied model of computation even after
decades of work on circuits. Following a first wave of worst-case lower bounds
starting in the 60’s (cf. [13]) and continuing to this date, researchers in the
90’s have produced a second type of results. Specifically, Impagliazzo, Nisan,
and Wigderson obtain in [14] average-case lower bounds and pseudorandom
generators.

In this work we are interested in what we see as a third type of lower bounds:
sampling lower bounds. We seek to understand what distributions can be sam-
pled by randomized Turing machines (which take no input).

The first work on sampling complexity may be the one by Jerrum, Valiant, and
Vazirani [15] who define sampling complexity classes and prove reductions among
various problems. An unconditional communication complexity lower bound for
sampling disjointness appears in the work [2] by Ambainis, Schulman, Ta-Shma,
Vazirani, and Wigderson. Goldreich, Goldwasser, and Nussboim study the com-
plexity of sampling in [11] as part of a general study of the implementation of
huge random objects. Aaronson proves in [1] a connection between sampling and
searching problems.

The complexity of sampling is being revisited in a series of recent works
[26,19,9,25,6]. These works establish the first unconditional lower bounds for sev-
eral computational models, such as bounded-depth circuits, and draw several new

� Supported by NSF grant CCF-0845003.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 663–671, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.ccs.neu.edu/home/viola/

664 E. Viola

connections to problems in data structures, combinatorics, and randomness ex-
tractors. The connection to randomness extractors in particular makes progress
along the research direction initiated by Trevisan and Vadhan in [24], and con-
tinued by Kamp, Rao, Vadhan, and Zuckerman in [16], which aims to construct
deterministic randomness extractors for efficiently-samplable distributions.

1.1 Our Results

Our main result is an extractor for sources samplable by Turing machines
running in subquadratic time. For clarity we first review randomized Turing
machines.

In this work, Turing machines have exactly one read-write tape, infinite to the
right only, with exactly one head on it. One may choose {0, 1} as tape alphabet.
The tape is initially blank, that is, all zeros. In one time step, the machine reads
the content of the cell, tosses a coin, and then writes the cell, updates the state,
and moves the head to an adjacent location. Machines never halt, and we are
only interested in a portion of their computation table. A t × t computation
table is a t × t matrix corresponding to a valid computation according to such
rules, with rows being configurations. Each entry specifies the content of the
corresponding tape cell, whether the head is on that cell, and if so what is
the current state and the current coin toss. Since we store the coin tosses in the
entries, all t× t computation tables have equal probability 2−t.

A Turing machine source on n bits running in time t is sampled as follows.
First sample uniformly the t× t computation table. Then output the bottom left
n tape bits.

Theorem 1 (Extractors for Turing-machine sources). For all sufficiently
small α > 0,
there is an explicit extractor E : {0, 1}n → {0, 1}m with output length m = nΩ(1)

and error 2−n
Ω(1)

for n-bit sources with min-entropy ≥ k := n1−α/16 that are

sampled by Turing machines with ≤ 2q := 2n
α/16

states and running in time
≤ t := n2−α.

The above theorem implies sampling lower bounds for somewhat complicated
functions. The next one obtains one for the inner-product function IP .

Theorem 2 (Sampling lower bound for Turing machines). For every
α ∈ (0, 1] and all sufficiently large even n

no Turing machine with ≤ 2q := 2n
α/2

states and running in time ≤ t := n2−α

can sample the distribution

(X1, X2, IP (X1, X2))

where X1 and X2 are uniform and independent over {0, 1}n/2.

Note that this result depends on the ordering of the input bits – if the bits of
X1 and X2 are interleaved then a Turing machine can sample the distribution
in linear time.

Extractors for Turing-Machine Sources 665

1.2 Overview of the Proofs

To prove our results we show that any Turing-machine source contains an inde-
pendent source. More specifically, divide the n bits of the source into r blocks
(or runs) of length � separated by blocks of length b, as in Figure 1. We show
that any Turing-machine source running in subquadratic time is a convex com-
bination of sources Y1Y2 · · ·Yr where the Yi are independent, and each Yi covers
exactly one of the �-bit blocks:

 b b ︸ ︷︷ ︸
Y1

︸ ︷︷ ︸
Y2

︸ ︷︷ ︸
Y3

Fig. 1. Decomposition of Turing-machine source in r = 3 blocks (or runs) or bits
separated by blocks of b bits

Lemma 1 (Turing-machine sources contain independent sources). Let
X be a Turing machine source on n bits running in time t ≥ n with 2q states
and min-entropy k.

For any �, b such that (r − 1)(� + b) + � = n, X is a convex combination of
J ≤ 2r·O(q(lg t)t/b) n-bit sources Sj where each Sj is

Sj = Y1Y2 . . . Yr,

where the Yi are independent, and for every i < r we have �i + b(i − 1) ≤
|Y1Y2 . . . Yi| ≤ �i+ bi.

One can then extract using extractors for independent sources, developed in
an exciting, ongoing line of research; see e.g. [22,8,3,4,21,16,20,7,5,18]. One gets
different results depending on which extractors one uses. However, many of the
available extractors for independent sources require a guarantee on the min-
entropy of each source. By contrast, our given guarantee on the min-entropy of
the Turing-machine source only translates into a guarantee on the total min-
entropy of the independent sources. Thus for our extractor in Theorem 1 we use
the extractors by Kamp, Rao, Vadhan, and Zuckerman [16] which only require
that.

The sampling lower bound for IP in Theorem 2 is obtained by using instead
the result by Chor and Goldreich that the inner product function IP : {0, 1}×
{0, 1} → {0, 1} is a two-source extractor with error ε if the sum of the entropies
of the two sources is > �+ 2 lg(1/ε).[8]

We now elaborate on how we prove that any Turing-machine source contains
an independent source. First, we introduce a variant of the classical crossing-
sequence technique due to Hennie [12] that is suitable for sampling tasks. This
allows us to sample the Turing-machine source by a one-way low-communication
protocol among r players. This is explained in more detail below. Compared
to previous simulations [17, §12] ours has the advantage of incurring no error.
Another difference is that in our setting it is advantageous to have a large number

666 E. Viola

of players. (This is because the number of players corresponds to the number of
independent blocks, and in general the more the independent blocks the easier
the extraction.)

We then use the fact that a source sampled by a one-way low-communication
protocol is a convex combination of independent sources. For 2 players, this fact
originates from the work [2, §7] of Ambainis, Schulman, Ta-Shma, Vazirani, and
Wigderson. Alternatively, one may view the sources sampled by such protocols
as the extension of the source model in [16] where we output blocks instead of
bits.

This concludes the high-level view of the proof. In the next paragraph we
elaborate on how to sample a Turing-machine source by a low-communication
protocol.

From Turing’s Machines to Yao’s Protocols. Let T := (C1, C2, . . . , Ct) be a
distribution on t× t computation tables, where Ci represents the ith column of
the table. We first describe an alternative way to sample T ; then we explain how
this alternative way can be implemented as a low-communication protocol.

The alternative way to sample T comes from the observation that the random
variables C1, C2, . . . are a markov process (or chain). That is, conditioned on Ci,
the random variable C<i of the columns before the ith is independent from the
random variable C>i of the columns after the ith. The alternative way proceeds
by sampling T from left to right one column at the time, each time conditioning
only on the previous column (as opposed to the entire prefix). For example,
one first samples C1 = c1, then samples C2 = c2|C1 = c1, then samples C3 =
c3|C2 = c2, and so on. Let us call the resulting distribution T ?. To see that
T and T ? are the same distribution, note that after conditioning on a column
Ci = ci, T becomes a product distribution: the columns before i are independent
from those after i. This holds because T |Ci = ci is uniform on its support (since
each computation table has probability 2−t), and by locality of computation: if
c<i ci c>i and c′<i ci c

′
>i are in the support of T |Ci = ci, then so is c<i ci c

′
>i.

It is now an exercise to show that for any transcript t = (c1, c2, . . . , ct) we have
Pr[T = t] = Pr[T ? = t]. The solution to the exercise follows.

Pr[T = t] =
∏
i

Pr[Ci = ci|C<i = c<i];

Pr[T ? = t] =
∏
i

Pr[Ci = ci|Ci−1 = ci−1]

=
∏
i

Pr[Ci = ci ∧C<i−1 = c<i−1|Ci−1 = ci−1]

Pr[C<i−1 = c<i−1|Ci−1 = ci−1]

(Since T |Ci−1 = ci−1 is product)

= Pr[T = t].

We then exploit the above alternative way to sample T efficiently by a low-
communication protocol among r players. Refer to Figure 1 for the parameters.
The first player samples one column at a time. After an appropriate number �

Extractors for Turing-Machine Sources 667

of columns, it looks for the first column that has a short description. By locality
of computation, among b columns there must be one that corresponds to a tape
cell that the Turing-machine head scans ≤ t/b times. Since modifications of a
column only occur when the head scans it, this column can be described with
about t/b bits, which is < n for t = n2−α and b = n1−α/2. The player can send
this description to the next player, who can then continue the process.

2 Proofs

Proof (of Lemma 1). We prove this in two stages. In the first, more substan-
tial stage we show how to sample the entire source X using a one-way low-
communication protocol in which Player i outputs a sample covering Yi but
touching no Yj for j �= i. In the second stage we condition on the protocol’s
transcript.

We now proceed to the first stage. Let T = (C1, C2, . . . , Ct) be the uniform
distribution over t× t computation tables.
P1 starts sampling T from left to right, one column at the time. It stops at

the first tape-cell index s1 such that � < s1 ≤ � + b and such that the sample
cs1 of Cs1 contains ≤ t/b states. Since each row only has the state in one cell,
such an s1 is guaranteed to exist. Because changes to tape contents only happen
when the head is on that cell, this column can be described with

O(q(lg t)t/b)

bits. The lg t term arises from specifying the times where the head is on that
cell.
P1 outputs the first s1 output bits of the computation table. It then sends

both the description of cs1 and s1 to P2. This takes O(q(lg t)t/b) + O(lg t) =
O(q(lg t)t/b) bits.
P2 will then continue sampling the computation table from left to right one

column at the time. It stops at the smallest tape-cell index s2 such that (� +
b) + � < s2 ≤ 2(�+ b) and such that the sample cs2 of Cs2 contains ≤ t/b states.
And so on.

This is the end of stage 1.
By conditioning on the communication, we can write the output distribution

as a convex combination of J ≤ 2r·O(q(lg t)t/b) distributions Sj . After conditioning
on the communication, the players’ output are independent and have a fixed
length. Hence each Sj is a product distribution Sj = Y1Y2 . . . Yr where Yi is the
output of Pi. The bounds on the lengths of Y1Y2 . . . Yi follow by inspection.

The following standard claim bounds the entropy loss when selecting a distribu-
tion from a convex combination.

Claim (Entropy Loss in Convex Combo). Let D be a distribution with min-
entropy k that is a convex combination of J = 2j distributions D1, D2, . . . , DJ .
Consider sampling D by first appropriately selecting an index h ≤ J , and then
sampling Dh. For every ε, the probability over the choice of h that Dh has
min-entropy ≤ k − j − lg(1/ε) is ≤ ε.

668 E. Viola

Proof. Suppose the probability is > ε. There is a h ≤ J that is picked with
probability > ε/J such that Dh has min-entropy ≤ k − j − lg(1/ε). This means
that there is some a such that Pr[Dh = a] ≥ 1/2k−j−lg(1/ε). But then Pr[D =
a] > ε/J · 1/2k−j−lg(1/ε) > 1/2k.

We use the following extractor.

Theorem 3 (Theorem 5.1 in [16]). There is a constant β > 0 such that
for every � and δ ≥ 1/�β there is an explicit extractor for min-entropy ≥ δr�
sources over

(
{0, 1}

)r
such that the r blocks of � bits are independent and with

r ≥ 1/(βδ2), with output length m = �Ω(1), and error ε = 2−
Ω(1)

.

Using the techniques in [10,23] one can derive a similar extractor where almost
all the entropy is output, cf. [16, §7]. However we do not pursue this here.

We now prove our main extractor result.

Proof (of Theorem 1). For an α to be determined later, set b := n1−α/2 and
� := n1−α/4. We assume w.l.o.g. that �+b divides n+b. Note r := (n+b)/(�+b) =
Θ(nα/4).

Divide the n bits of the source into r runs of � bits separated by r− 1 runs of
b bits. We apply the extractor from Theorem 3 to the r runs of � bits.

By Lemma 1 we view the source as a convex combination of J ≤ 2O(rq(lg t)t/b)

product sources Sj. By Claim 2 with ε := 2−k/2, if we choose a distribution in
the combination, except with probability ε we obtain a distribution with min-
entropy at least

k −O(rq(lg t)t/b)− lg(1/ε) ≥ k/2−O(rq(lg t)t/b)

=n1−α/16/2−O(nα/4+α/16+1−α/2 lgn) = n1−α/16/2−O(n1−3α/16 lg n)

≥Ω(k).

We assume this is the case and proceed.
By ignoring the r − 1 runs of b bits, we drop (r − 1)b ≤ O(nα/4n1−α/2) =

O(n1−α/4) bits. Since k ≥ n1−α/16, the extractor is applied to a distribution of
entropy that is still Ω(k).

Also, since we ignore the r− 1 runs of b bits, the r runs of � bits to which the
extractor is applied are independent.

The parameter δ in theorem 3 is

δ = Θ(k/r�) = Θ(k/n) = Θ(1/nα/16).

We must have
δ ≥ 1/�β = 1/n(1−α/4)β

for the constant β in the statement of Theorem 3. This is the case for α
sufficiently small.

We also must have
r ≥ 1/(βδ2) = Θ(nα/8/β)

Extractors for Turing-Machine Sources 669

which is true because r = Θ(nα/4) as observed above.

The output length ism = �Ω(1) = nΩ(1). The error of the extractor is 2−
Ω(1)

=

2−n
Ω(1)

.
Combined with the above error of 2−k/2 arising from the convex combination,

we obtain a total error of again 2−n
Ω(1)

.

For the lower bound for sampling inner product we make use of the following
theorem.

Theorem 4 ([8]). Let X1 and X2 be two independent sources on � bits. Suppose
the sum of the min-entropies is ≥ � + 2 lg(1/ε). Then |Pr[IP (X1, X2) = 1] −
1/2| ≤ ε.

We now prove our sampling lower bound for inner product.

Proof (of Theorem 2). Suppose there was such a Turing machine. Consider the
Turing machineM ′ that first samples (X1, X2, IP (X1, X2)) then if IP (X1, X2) =
1 it outputs (X1, X2), otherwise it outputs a uniform n-bit string. M ′ can be
implemented, say, in time O(t) with O(2q) states.

The machine M ′ samples a distribution (X ′
1, X

′
2) with min-entropy k ≥ n−1.

Moreover, because Pr[IP (X1, X2) = 1] approaches 1/2 for large n, we see that
Pr[IP (X ′

1, X
′
2) = 1] approaches 3/4 for large n.

Set b := 0.01n. By Lemma 1, (X ′
1, X

′
2) is a convex combination of sources Sj

such that except with probability 0.01 over the choice of an independent source
from this combination, Sj has min-entropy

≥n−O(1)−O(q(lg t)t/b)− lg(1/0.01)

≥n−O(nα/2(lg n)n1−α −O(1)

≥0.99n.

Moreover, each Sj is Sj = Y1Y2 for independent Y1, Y2 and � ≤ |Y1| ≤ �+b, where
n = 2�+ b. Assume without loss of generality that |Y1| ≥ |Y2|. By conditioning
on the b = 0.01n middle bits (each of which depends on exclusively Y1 or Y2),
we can further write (Y1, Y2) as a convex combination of ≤ 2b sources S′

j where
each S′

j is S
′
j = Y ′

1Y
′
2 where |Y ′

1 | = |Y ′
2 | = n/2 and Y ′

1 , Y
′
2 are independent. Y ′

1Y
′
2

has min-entropy ≥ 0.99n− 0.01n = 0.98n.
This min-entropy is larger than n/2+ 2 lg(100). Hence by Theorem 4 IP will

successfully extract one bit with error 0.01.
Overall, the error of the extracted bit is ≤ 0.01+0.01 = 0.02. This contradicts

the above remark that Pr[IP (X ′
1, X

′
2) = 1] approaches 3/4 for large n.

In this proof the extractor is applied to the whole sample, whereas in the proof
of Theorem 1 it is applied to a projection of it. That was only for convenience.
One could have applied the extractor to the whole sample and then condition
on the values of the runs of b bits.

670 E. Viola

References

1. Aaronson, S.: The equivalence of sampling and searching. In: Computer Science
Symp. in Russia (CSR), pp. 1–14 (2011)

2. Ambainis, A., Schulman, L.J., Ta-Shma, A., Vazirani, U.V., Wigderson, A.:
The quantum communication complexity of sampling. SIAM J. Comput. 32(6),
1570–1585 (2003)

3. Barak, B., Impagliazzo, R., Wigderson, A.: Extracting randomness using few in-
dependent sources. SIAM J. Comput. 36(4), 1095–1118 (2006)

4. Barak, B., Kindler, G., Shaltiel, R., Sudakov, B., Wigderson, A.: Simulating in-
dependence: New constructions of condensers, ramsey graphs, dispersers, and ex-
tractors. J. of the ACM 57(4) (2010)

5. Barak, B., Rao, A., Shaltiel, R., Wigderson, A.: 2-source dispersers for sub-
polynomial entropy and Ramsey graphs beating the Frankl-Wilson construction.
In: ACM Symp. on the Theory of Computing (STOC), pp. 671–680 (2006)

6. Beck, C., Impagliazzo, R., Lovett, S.: Large deviation bounds for decision trees and
sampling lower bounds for AC0-circuits. Electronic Colloquium on Computational
Complexity (ECCC) 19, 42 (2012)

7. Bourgain, J.: More on the sum-product phenomenon in prime fields and its appli-
cations. Int. J. of Number Theory (IJNT) 1, 1–32 (2005)

8. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. SIAM J. on Computing 17(2), 230–261 (1988)

9. De, A., Watson, T.: Extractors and Lower Bounds for Locally Samplable Sources.
In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM
2011. LNCS, vol. 6845, pp. 483–494. Springer, Heidelberg (2011)

10. Gabizon, A., Raz, R., Shaltiel, R.: Deterministic extractors for bit-fixing sources
by obtaining an independent seed. SIAM J. on Computing 36(4), 1072–1094 (2006)

11. Goldreich, O., Goldwasser, S., Nussboim, A.: On the implementation of huge ran-
dom objects. SIAM J. Comput. 39(7), 2761–2822 (2010)

12. Hennie, F.C.: Crossing sequences and off-line turing machine computations. In:
Symposium on Switching Circuit Theory and Logical Design (SWCT) (FOCS),
pp. 168–172 (1965)

13. Hopcroft, J.E., Ullman, J.D.: Formal languages and their relation to automata.
Addison-Wesley Longman Publishing Co., Inc. (1969)

14. Impagliazzo, R., Nisan, N., Wigderson, A.: Pseudorandomness for network algo-
rithms. In: 26th ACM Symp. on the Theory of Computing (STOC), pp. 356–364
(1994)

15. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinato-
rial structures from a uniform distribution. Theoretical Computer Science 43(2-3),
169–188 (1986)

16. Kamp, J., Rao, A., Vadhan, S.P., Zuckerman, D.: Deterministic extractors for
small-space sources. J. Comput. Syst. Sci. 77(1), 191–220 (2011)

17. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University Press
(1997)

18. Li, X.: Improved constructions of three source extractors. In: IEEE Conf. on
Computational Complexity, CCC (2011)

19. Lovett, S., Viola, E.: Bounded-depth circuits cannot sample good codes. Compu-
tational Complexity 21(2), 245–266 (2012)

20. Rao, A.: Extractors for low-weight affine sources. In: IEEE Conf. on Computational
Complexity (CCC), pp. 95–101 (2009)

Extractors for Turing-Machine Sources 671

21. Raz, R.: Extractors with weak random seeds. In: ACM Symp. on the Theory of
Computing (STOC), pp. 11–20 (2005)

22. Santha, M., Vazirani, U.V.: Generating quasi-random sequences from semi-random
sources. J. of Computer and System Sciences 33(1), 75–87 (1986)

23. Shaltiel, R.: How to get more mileage from randomness extractors. Random Struct.
Algorithms 33(2), 157–186 (2008)

24. Trevisan, L., Vadhan, S.: Extracting randomness from samplable distributions. In:
IEEE Symp. on Foundations of Computer Science (FOCS), pp. 32–42 (2000)

25. Viola, E.: Extractors for circuit sources. In: IEEE Symp. on Foundations of Com-
puter Science, FOCS (2011)

26. Viola, E.: The complexity of distributions. SIAM J. on Computing 41(1), 191–218
(2012)

Author Index

Ada, Anil 338
Alon, Noga 350
Arora, Sanjeev 362
Austrin, Per 1, 13
Awasthi, Pranjal 25, 37, 374, 387

Ben-Sasson, Eli 399
Berenbrink, Petra 411
Berman, Piotr 50
Bhaskara, Aditya 423
Bhattacharyya, Arnab 362
Blais, Eric 435
Blum, Avrim 25
Bogdanov, Andrej 447
Boufounos, Petros 61
Braverman, Mark 459
Bshouty, Nader H. 471

Cevher, Volkan 61
Chakrabarti, Amit 483
Chalermsook, Parinya 73
Chan, Ho-Leung 85
Chattopadhyay, Eshan 495
Chekuri, Chandra 98
Cheriyan, Joseph 110
Chuzhoy, Julia 73
Czumaj, Artur 411

Dani, Varsha 505
Dasgupta, Anirban 517
Desai, Devendra 423
Dinitz, Michael 122
Dumitrescu, Adrian 529

Ene, Alina 98
Englert, Matthias 411
Epstein, Leah 134

Fawzi, Omar 338
Fernandes, Cristina G. 146
Friedetzky, Tom 411
Frieze, Alan 541
Friggstad, Zachary 110

Gabizon, Ariel 399, 553
Gao, Zhihan 110

Garg, Nitin 591
Gilbert, Anna C. 61
Goldreich, Oded 565
Guruswami, Venkatesan 158

H̊astad, Johan 170
Hatami, Hamed 338
Haviv, Ishay 182
Hellwig, Matthias 194

Iwata, Satoru 206

Jain, Prateek 579
Jaiswal, Ragesh 591
Jeż, �Lukasz 134
Jha, Madhav 374, 387
Jiang, Minghui 529

Kane, Daniel 435
Kannan, Sampath 73
Khanna, Sanjeev 73
Khuller, Samir 218
Klivans, Adam 495
Kolipaka, Kashyap 603
Kondapally, Ranganath 483
Konrad, Christian 231
Kothari, Pravesh 495
Kumar, Ravi 517
Kwok, Tsz Chiu 615

Lam, Tak-Wah 85
Lampis, Michael 243
Lau, Lap Chi 615
Li, Rongbin 85
Li, Yi 61
Lovett, Shachar 350

Magniez, Frédéric 231
Makarychev, Konstantin 254
Makarychev, Yury 254, 266
Manokaran, Rajsekar 362
Mathieu, Claire 231
Meira, Lúıs A.A. 146
Miyazawa, Flávio K. 146
Molinaro, Marco 374, 387

674 Author Index

Moore, Cristopher 505
Morgenstern, Jamie 25
Moshkovitz, Dana 276

Nagel, Lars 411
Nelson, Jelani 627
Nguy˜̂en, Huy L. 627

O’Donnell, Ryan 1
Olson, Anna 505

Papakonstantinou, Periklis A. 447
Pedrosa, Lehilton L.C. 146
Pitassi, Toniann 13

Raskhodnikova, Sofya 374, 387
Ron-Zewi, Noga 639

Sachdeva, Sushant 362
Saha, Barna 218
Saket, Rishi 288
Sarpatwar, Kanthi K. 218
Sgall, Jǐŕı 134
Shaltiel, Ronen 553
Sheffet, Or 25, 37
Shinkar, Igor 565
Sidiropoulos, Anastasios 266
Sivakumar, D. 517
Souza, Alexander 194
Srinivasan, Srikanth 423
Strauss, Martin J. 61

Sudan, Madhu 639
Svensson, Ola 301
Sviridenko, Maxim 288
Szegedy, Mario 603

Tamaki, Suguru 313
Tetali, Prasad 206
Thakurta, Abhradeep 579
Tripathi, Pushkar 206
Tsourakakis, Charalampos E. 541

Vakilian, Ali 98
van Stee, Rob 134
Viderman, Michael 651
Viola, Emanuele 663

Wan, Andrew 447
Wang, Zhenghui 483
Weinstein, Omri 459
Wenner, Cenny 325
Wilfong, Gordon 122
Woodruff, David P. 627
Wright, John 1
Wu, Yu 13

Xu, Yixin 603

Yaroslavtsev, Grigory 50
Yoshida, Yuichi 313

Zhou, Yuan 158

	Title
	Preface
	Organization
	Table of Contents
	Contributed Talks of APPROX
	A New Point of NP-Hardness for 2-to-1 Label Cover
	Introduction
	Our Results
	Organization

	Preliminaries
	Definitions of Problems
	Gadgets
	Fourier Analysis on Z3

	2-to-1 Hardness
	A Pair of Tests
	Analysis of 4NAT Test

	Hardness of 4NAT
	References

	Inapproximability of Tree width,One-Shot Pebbling, and Related Layout Problems
	Introduction
	Width Parameters of Graphs
	Pebbling Problems
	The Connection: Layout Problems
	Previous Work
	Organization

	Definitions and Preliminaries
	Graph Layout Problems
	Treewidth and Pathwidth
	Small Set Expansion Conjecture

	Brief Overview of Reductions
	Conclusion and Open Problems
	References

	Additive Approximation for Near-Perfect Phylogeny Construction
	Introduction
	Related Work

	Notation and Preliminaries
	A Simple Case: Each Coordinate Determines a Distinct Cut
	Basic Building Blocks
	The Algorithm

	The General Case: Interchangeable Coordinates May Exist
	Discussion and Open Problems
	References

	Improved Spectral-Norm Bounds for Clustering
	Introduction
	Our Contribution
	Notations and Preliminaries
	Formal Description of the Algorithm and Our Theorems
	Organization and Proofs Overview

	Related Work
	Part I of the Algorithm
	Application: The ORSS-Separation

	Part II of the Algorithm
	The Proximity Condition – Part III of the Algorithm

	References

	Primal-Dual Approximation Algorithms for Node-Weighted Network Design in Planar Graphs
	Introduction
	Preliminaries
	Uncrossable Families of Cycles and Proper Functions

	Algorithm
	Generic Local-Ratio Algorithm
	Face Minimal Violation Oracles
	Minimal Pocket Violation Oracles

	18/7 Approximation Ratio with Pocket Oracle
	12/5 Approximation Ratio with Triple Pocket Oracle
	Tight Examples

	References

	What’s the Frequency, Kenneth?: Sublinear Fourier Sampling Off the Grid
	Introduction
	Preliminaries
	The Problem
	Notation
	Main Result

	Analysis
	Recovery Algorithm
	Analysis of Algorithm

	Conclusion
	References

	Improved Hardness Results for Profit Maximization Pricing Problems with Unlimited Supply
	Introduction
	Hardness of UDPMIN and SMP
	The Construction
	Analysis

	Tollbooth Pricing
	Construction
	Analysis

	References

	Online Flow Time Scheduling in the Presence of Preemption Overhead
	Introduction
	Lower Bound
	A (1+)-Speed (1+1)-Competitive Algorithm
	Reduction to Setting without Preemption Overhead
	Analysis of QSRPT* and OPT*

	Multiprocessor Scheduling
	References

	Prize-Collecting Survivable Network Design in Node-Weighted Graphs
	Introduction
	LP Relaxations for Node-Weighted PC-SNDP
	Integrality Gap of Multiroute-LP via Augment-LP

	Integrality Gap of Augment-LP
	References

	Approximating Minimum-Cost Connected T-Joins
	Introduction
	 New Contributions on Min-Cost Connected T-Joins

	Preliminaries
	An LP Relaxation

	A 53-Approximation Algorithm
	An Improved Approximation for Small T
	The Algorithm
	Constructing the Fractional D-Join
	The Correction Vector

	Prize-Collecting Connected T-Joins
	The Primal-Dual Algorithm
	Analysis of the Primal-Dual Algorithm

	Conclusions
	References

	iBGP and Constrained Connectivity
	Introduction
	iBGP
	Constrained Connectivity
	Summary of Main Results
	Related Work

	Preliminaries
	Relationship between iBGP and Constrained Connectivity
	Linear Programming Relaxations

	Algorithms for iBGP and Constrained Connectivity on Kn
	Complexity of iBGP-Sum and iBGP-Degree
	Constrained Connectivity
	Hardness
	Integrality Gap for Constrained Connectivity

	References

	Online Scheduling of Jobs with Fixed Start Times on Related Machines
	Introduction
	Our Results
	Previous Work
	Notation

	Unit Sizes and Weights
	Greedy Algorithms and Upper Bounds
	Lower Bounds

	Constant Competitive Algorithm for Two Input Classes
	Lower Bound for Unit Weights and Variable Sizes
	References

	A Systematic Approach to Bound Factor Revealing LPs and Its Application to the Metric and Squared Metric Facility Location Problems
	Introduction
	Preliminaries
	A New Factor-Revealing Analysis
	=.28em plus .1em minus .1em A First Analysis Using Upper Bound Factor-Revealing Programs
	Improved Factor-Revealing Analysis Using UPFRPs

	Scaling and Greedy Augmentation
	An Optimal Approximation Algorithm
	References

	Approximating Bounded Occurrence Ordering CSPs
	Introduction
	Outline for the Rest of the Paper

	Preliminaries
	Ordering CSPs, Bounded Occurrence Ordering CSPs
	The t-Ordering Version of Ordering CSPs
	Fourier Transform of Boolean Functions

	Finding Good Assignments for Bounded Occurrence Polynomials
	Bounded Occurrence Monotone Ordering Problem
	Bounded Occurrence 3-Ary Ordering CSP with General Pay-Off Functions
	Concluding Remarks
	References

	On the NP-Hardness of Max-Not-2
	Introduction
	Preliminaries
	From Label-Cover to a PCP
	The PCP

	Completeness and Soundness of Main PCP
	Conclusions
	References

	The Remote Set Problem on Lattices
	Introduction
	Our Contribution

	Preliminaries
	Algorithms for the Remote Set Problem
	Proof of Theorem 2
	Extensions of Theorem 2

	On the Complexity of the Covering Radius Problem
	References

	Approximation Algorithms for Generalized and Variable-Sized Bin Covering
	Introduction
	Generalized Bin Covering
	Variable-Sized Bin Covering
	Tight Analysis of NFD in the Unit Supply Model
	Asymptotical Results for Variable-Sized Bin Covering

	References

	Approximating Minimum Linear Ordering Problems
	Introduction
	Results and Techniques
	Prior Work
	Preliminaries

	Supermodular Linear Ordering
	Greedy Algorithm
	Analysis

	Min Sum Vertex Cover Problem
	Randomized Rounding Algorithm
	Analysis

	Submodular Linear Ordering
	Monotone Submodular Functions
	Symmetric Submodular Functions

	References

	New Approximation Results for Resource Replication Problems
	Introduction
	Resource Replication Problem
	 Basic Resource Replication Problem
	 Subset Resource Replication Problem
	Hardness of BRR and SRR

	 Robust Resource Replication Problem
	 Capacitated Basic Resource Replication Problem
	References

	Maximum Matching in Semi-streaming with Few Passes
	Introduction
	Preliminaries
	One-Pass Algorithm on Random Order
	Randomized Two-Pass Algorithm on Any Order
	Deterministic Two-Pass Algorithm on Any Order
	References

	Improved Inapproximability for TSP
	Introduction
	Preliminaries
	Forced Edges

	Intermediate CSPs
	Bounded Occurences
	MAX-1-in-3-SAT

	TSP
	Construction
	From Assignment to Tour
	From Tour to Assignment

	Conclusions
	References

	Approximation Algorithm for Non-boolean MAX k-CSP
	Introduction
	Preliminaries
	Rounding Uniform SDP Solutions
	Rounding Arbitrary SDP Solutions
	Approximation Algorithm for MAX k-CSPd
	References

	Planarizing an Unknown Surface
	Introduction
	Applications
	Overview of the Algorithm
	Related Work
	Preliminaries

	Path Separators in Embedded Graphs
	Computing Path Separators in Arbitrary Graphs
	Computing Planarizing Sets of Paths
	Putting Everything Together
	References

	The Projection Games Conjecture and the NP-Hardness of ln n-Approximating Set-Cover
	Introduction
	Projection Games and The Projection Games Conjecture
	Previous Work
	The Potential Influence of The PGC
	Set-Cover
	Preliminaries

	Set-Cover Hardness
	The New Component
	Following Feige's Reduction

	Open Problems
	References

	New and Improved Bounds for the Minimum Set Cover Problem
	Introduction
	Approximation Algorithm
	Integrality Gap
	Hardness of Approximation
	A Hardness Result for Constraint Satisfaction
	Reduction to Set-Cover
	Proof of Theorem 3
	Limitations to Improving the Hardness Factor

	References

	Hardness of Vertex Deletion and Project Scheduling
	Introduction
	Preliminaries
	Low Degree Influence and ``It Ain't over Till It's over'' Theorem
	Unique Games Conjecture

	Dictatorship Gadgets for Vertex Deletion Problems
	Feedback Vertex Set
	Dag Vertex Deletion Problem

	Discrete Time-Cost Tradeoff Problem
	References

	Approximation Guarantees for the Minimum Linear Arrangement Problem by Higher Eigenvalues
	Introduction
	Preliminaries
	The Minimum Linear Arrangement Problem
	Lasserre Hierarchy of Semidefinite Programs
	Matrix Analysis

	The Main Rounding Algorithm and Its Analysis
	Upper Bounds on the Expected Value
	Proofs of Lemmas

	Lower Bounds for MLA by Eigenvalues
	References

	Circumventing d-to-1 for Approximation Resistance of Satisfiable Predicates Strictly Containing Parity of Width Four
	Introduction
	Our Contributions and Techniques
	Preliminaries
	Basic Notation
	Operators on Probability Spaces
	Influences
	Correlations
	Smooth Label Cover

	Main Theorem
	The Protocol
	Soundness

	Discussion
	References

	Contributed Talks of RANDOM
	Spectral Norm of Symmetric Functions
	Introduction
	Our Results and Proof Overview

	Preliminaries
	Proof of Theorem 1
	Upper Bound
	Lower Bound

	Conclusion and Future Work
	References

	Almost K-Wise vs. K-Wise Independent Permutations, and Uniformity for General Group Actions
	Introduction
	Group Action Uniformity vs. Almost Uniformity

	Almost X-Uniform Distributions are Statistically Close to X-Uniform Distributions
	Random Sets Support X-Uniform Distributions
	Almost X-Uniform Distributions Support X-Uniform Distributions
	Summary and Open Problems
	References

	Testing Permanent Oracles – Revisited
	Introduction
	Related Work
	Overview of the Tester

	Preliminaries
	Testing Approximate Permanent Oracles
	Completeness
	Soundness

	References

	Limitations of Local Filters of Lipschitz and Monotone Functions
	Introduction
	Previous Results on Local Filters
	Our Results and Techniques

	Definitions and Formal Statement of Results
	c-Connectors
	Local Filters for the Lipschitz Property Imply c-Connectors
	Hard Functions for Filter
	Correct Reconstruction of Hard Functions Implies c-Connector

	Local Filters for Monotonicity Imply 1-Connectors
	Hard Functions for Filter
	Correct Reconstruction of Hard Functions Implies 1-Connector

	Lower Bound on the Maximum Outdegree of a c-Connector
	Conclusion and Future Work
	References

	Testing Lipschitz Functions on Hypergrid Domains
	Introduction
	Our Results
	Our Techniques
	Comparison to Previous and Concurrent Work

	BubbleSmooth and Its Analysis
	Description of BubbleSmooth and Proof of Part (1) of Theorem 1.3
	Transfer Graph
	Matchings of Violated Pairs

	Dimension Reduction: Proof of Theorems 1.2 and 1.4
	Algorithms for Testing the Lipschitz Property on Hypergrids
	Estimating the Effective Image Diameter
	Tester for Hypergrid Domains

	References

	Extractors for Polynomials Sources over Constant-Size Fields of Small Characteristic
	Introduction
	Polynomial Sources
	Previous Work and Our Result

	Overview of the Proof
	Preliminaries
	Dimension Expansion of Products
	Frobenius Automorphisms of Fq

	The Main Construction
	References

	Multiple-Choice Balanced Allocation in (Almost) Parallel
	Introduction
	Our Model
	Related Work
	Contributions of This Paper

	Polynomially Many Balls (Theorem 1)
	Preliminaries
	Analysis of Underloaded Bins
	Analysis of Overloaded Bins

	Reducing to Polynomially Many Batches (Theorem 2)
	Basic Definitions and Notation
	Allocation Process and Markov Chains
	Short Memory Theorem
	Using Short Memory Theorem 4 to Prove Theorem 2

	References

	Optimal Hitting Sets for Combinatorial Shapes
	Introduction
	Notation and Preliminaries
	Outline of the Construction
	Hitting Sets for Combinatorial Thresholds
	High Weight Case
	Thresholds with Small Weight (and Small Sized Sets)

	References

	Tight Bounds for Testing k-Linearity
	Introduction
	Preliminaries
	Proof of the General Lower Bound
	Non-adaptive Lower Bound
	Upper Bounds
	References

	Pseudorandomness for Linear Length Branching Programs and Stack Machines
	Introduction
	Results
	Techniques

	Fooling Pairs of Functions with Shared Inputs
	Fooling Branching Programs of Linear Length
	Pseudorandomness for Oblivious Branching Programs
	Arbitrary Linear Size Branching Programs over Large Alphabets

	References

	A Discrepancy Lower Bound for Information Complexity
	Introduction
	Our Results
	Comparison and Connections to Prior Results

	Preliminaries
	Information Theory
	Communication Complexity
	Information + Communication: The Information Cost of a Protocol

	Proof of Theorem 1
	References

	On the Coin Weighing Problem with the Presence of Noise
	Introduction
	Applications

	Lower and Upper Bounds
	Polynomial Time Algorithms
	Conclusion and Open Problems
	References

	Information Complexity versus Corruption and Applications to Orthogonality and Gap-Hamming
	Introduction
	Preliminaries
	Information Complexity versus Corruption
	Information Complexity of Orthogonality and Gap-Hamming
	Proof of the Anti-concentration Lemma
	References

	An Explicit VC-Theorem for Low-Degree Polynomials
	Introduction
	Our Contributions
	Our Contributions: Hardness Result
	Our Approach

	 Preliminaries
	 Discrepancy
	Definition of -Approximations for Boolean Function Classes
	 Hard Functions and Discrepancy

	Constructing Hard Functions on Arbitrary Domains
	 -Approximation from Hard Functions
	 Hardness of Computing -Approximations
	References

	Tight Bounds on the Threshold for Permuted k-Colorability
	Introduction
	The Second Moment Lower Bound
	An Improved First Moment Upper Bound
	An Isoperimetric Inequality
	References

	Sparse and Lopsided Set Disjointness via Information Theory
	Introduction
	Preliminaries
	Sparse Disjointness
	Upper Bounds
	Lower Bounds

	Lopsided Disjointness
	Lower Bounds

	References

	Maximal Empty Boxes Amidst Random Points
	Introduction
	Connections between Empty Boxes and Direct Dominance
	Proof of Theorem 1
	Setup
	Alternating Binomial Sums
	Base Cases for G(n,a,b)
	Partial Fraction Decompositions
	A More Precise Bound

	References

	Rainbow Connectivity of Sparse Random Graphs
	Introduction
	Proof of Theorem 1
	Proof of Theorem 2
	Tree Building
	Coloring the Edges

	Conclusion
	References

	Invertible Zero-Error Dispersers and Defective Memory with Stuck-At Errors
	Introduction
	Background
	Previous Work and Our Results
	Connection to Write Once Memory (WOM)
	Decoding Using Zero-Error Dispersers for Bit-Fixing Sources
	A New Construction of Invertible Zero-Error Dispersers for Bit-Fixing Sources
	Recovering from Stuck-At Errors and Adversarial Errors
	Previous Work and Our Results
	Decoding Using Zero-Error Dispersers for Affine Sources
	A New Construction of Invertible Zero-Error Dispersers for Affine Sources

	Technique
	Conclusion and Open Problems
	References

	Two-Sided Error Proximity Oblivious Testing
	Introduction
	Testing Properties of Distributions
	A Generic Tester for Boolean Distributions and Its Analysis
	Generalization of Theorem 2.2
	POTs Can Test Only Intervals
	Distributions over Larger Domains
	Corollaries to Theorem 2.5

	Graph Properties (in the Adjacency Representation Model)
	The Class of k-Regular Graphs
	Bounded Density of Induced Copies

	References

	Mirror Descent Based Database Privacy
	Introduction
	Notation and Preliminaries
	Problem Definition and Overview
	Online Query Release Mechanism
	Mirror Descent Based IDC

	Applications
	Online Cut-Query Release
	Online Query Release over Low-Rank Matrix

	References

	Analysis of k-Means++ for Separable Data
	Introduction
	Proof of Theorem 1
	Analysis of SampAlg without Separation Condition
	Conclusions and Open Problems
	References

	A Sharper Local Lemma with Improved Applications
	Introduction
	The Variable Framework
	Shearer's Bound
	Our Results

	The Clique Lovász Local Lemma (CLLL)
	CLLL vs. Previous LLLs

	Applications of the Clique Lovász Local Lemma
	Acyclic Edge Coloring
	Non-repetitive Vertex Coloring

	Decomposition Theorem
	Lower Bounds for pc(Z2)

	References

	Finding Small Sparse Cuts by Random Walk
	Introduction
	Main Results
	Techniques

	Finding Small Sparse Cuts
	Random Walk
	Algorithm
	Upper Bound
	Lower Bound
	Proof of Theorem 1

	Local Graph Partitioning
	Computing Truncated Distributions
	Approximate Upper Bound
	Proof of Theorem 2

	Concluding Remarks
	References

	On Deterministic Sketching and Streaming for Sparse Recovery and Norm Estimation
	Introduction
	Applications
	Notation and Problem Definitions
	Our Contributions and Related Work

	Point Query and Inner Product Estimation
	Lower Bounds for 1/1 Recovery
	Deterministic Norm Estimation and the Gelfand Width
	References

	A New Upper Bound on the Query Complexity for Testing Generalized Reed-Muller Codes
	Introduction
	Testing Reed-Muller Codes
	Spanning Weight
	Qualitative Description and Techniques

	Background and Restatement of Problem
	Single-Orbit Characterizations
	Constraints vs. Monomials

	Canonical Monomials and a New Constraint
	A New Constraint on Monomials of Total Degree < p(q - q/p)

	References

	A Combination of Testability and Decodability by Tensor Products
	Introduction
	Preliminaries
	Tensor Product Codes
	Locally Testable Codes (LTCs)

	Main Results
	Locally Testable and Linear-Time Encodable and Decodable Codes
	Locally Testable and List-Decodable Codes
	Tensor Products Preserve Local Correction Properties

	References

	Extractors for Turing-Machine Sources
	Introduction
	Our Results
	Overview of the Proofs

	Proofs
	References

	Author Index

