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Preface

Nanophotonics is a burgeoning branch of modern optics. It promises to revolutionize
many fields of physics and engineering since it is commonly understood as an en-
abling technology. It has impact on the evolution of science in general by supporting
it with new and refined tools, e.g. novel microscopic techniques as used in biology or
medicine; but allows foremost also for the implementation of applications that were
unimaginable just some time ago, e.g. cloaking devices that conceal objects from
external observers. Most notably, the key ability that makes nanophotonics such
unique is to provide means to steer the propagation and the distribution of electro-
magnetic fields on length scales much smaller than the wavelength by relying on
suitably tailored nanomaterials. To observe significant interactions, resonances are
exploited in many cases that are evoked due to specific material properties, dimen-
sions, symmetries, and geometrical arrangements of the involved constituents; or a
combination thereof.

The technology, both in experiment and theory, to achieve and to describe nano-
materials relies in many cases on the periodic arrangement of an identical unit cell.
That seems to be advantageous since it allows to eliminate scattering losses, to sim-
ulate the optical response by taking into account only a single unit cell and appro-
priate boundary conditions, it allows to simplify the fabrication that is accomplished
in most cases by means of top-down technologies, and it permits to detect a notice-
able signal from fabricated systems in the far-field by measuring quantities that are
linked to an ensemble of many unit cells and not just to the response of an individual
constituent. All these aspects were instrumental in the development of materials that
drove the evolution of nanophotonics, but it constitutes nowadays also an obstacle
that hinders its further progress. For example, it is difficult to imagine that with top-
down technologies it will be possible to fabricate nanooptical devices that exploit
the peculiarities of light propagation in the bulk material and not just the interaction
of light with a frequency selective surface. It is difficult to imagine that a true local-
ization of light in spatial domains significantly smaller than the wavelength using a
spatially extended source can be achieved with a periodic structure that likely leads
to a periodic localization in space or, as a last example, in the field of metamaterials
were it is the aim to tailor effective properties as probed by an external source, it
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vi Preface

will be difficult to achieve an isotropic material response. The periodicity at which
the unit cells are usually arranged in space will be similarly probed by the external
source and it will leave its signature.

To overcome such limitation and to implement new functionalities, the field of
amorphous nanophotonics is just about to emerge. The Leitmotif here is to exploit
self-organization mechanisms that rely on bottom-up approaches for the fabrication
of nanooptical systems. In result, the structures are predominantly characterized by a
deterministic unit cell with tailored geometries; but the spatial arrangement of many
of these unit cells forming the material is not controlled with arbitrary precision.
Instead of a periodic tiling, the structures appear either amorphous or random. The
goal of amorphous nanophotonics along with some explanations is illustrated at a
selected example in Fig. 1. Detrimental for the immediate use of such structures
in applications is the lack of a sufficiently developed language in which we can
discuss on theoretical grounds the optical properties of such system, is the lack of a
technology to fabricate amorphous nanophotonical systems and a lack of methods to
access in an actual experiment the properties of systems alike. However, the promise
of major applications with groundbreaking impact, as outlined also in depth in this
book, constitutes a strong motivation to explore this field.

Since major efforts were already devoted in the past to close this gap and to es-
tablish a language in which we can access, discuss and explore amorphous nanopho-
tonic systems, this book is intended to make the case for scientists working on or
are even just interested in this field. Selected contributors to this book have been
collaborating in the Nanogold project funded under the FP7 of the European Union,
a project that brought together material scientists that explore bottom-up methods
for the fabrication of new nanomaterials and physicists working in the field of meta-
materials, to merge both streams and to advance both fields. Many more colleagues
well beyond the people involved in this project contributed finally to this book to
make it bold and sound.

This book is understood as a seminal reference as well as the inaugural docu-
ment in which the stage is set for the field of amorphous nanophotonics. It aims at
covering aspects that enable scientists to enter and work efficiently in this field and
gives indications on perspective applications. The book is roughly divided into four
sections; each containing a different number of chapters.

The first section contains two chapters. They provide a broader overview over
selected subjects from either an experimental or a theoretical point of view, respec-
tively. The first chapter, written by Alastair Cunningham and Thomas Bürgi, pro-
vides a detailed overview over experimental means for the bottom-up organization
of metallic nanoparticles. Although not all amorphous nanostructures rely on metal-
lic nanoparticles, their use is often preferred since the localized surface plasmon
polariton they sustain guarantees a significant light matter interaction. It is more-
over a prominent constituent where the isolated unit cell already sustains a strong
response. However, by arranging these metallic nanoparticles by various method-
ologies spatially in a suitable manner, a response does emerge that is not observed
in the individual element. This experimentally oriented chapter is complemented
by a chapter written from a theoretical perspective by Filiberto Bilotti and Sergei
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Fig. 1 Conceptual idea of how bottom-up nanofabrication techniques are used to fabricate an
amorphous metamaterial; a referential example for a system from the field of amorphous nanopho-
tonics. In this artistic view the process goes from the top to the bottom. Each stage represents a
different lengths scale and should be seen as different magnification. In a first step, suitable ingre-
dients on a molecular or nanometric scale are combined according to a chemical receipt. It leads
to the formation of a unit cell that may possess a complicated geometry that can, however, be well
controlled. In the present example, metallic nanoparticles decorate a dielectric core particle. The
scattering response of such structure is dominated by a magnetic dipole, a response not available
in nature. The geometry of this basic unit cell is the last item that can be controlled with high
precision. The fabrication in solution allows for the realization of large scale quantities, i.e. an
entire material is available immediately, but it comes at the expense that the arrangement of these
meta-atoms in space cannot be controlled anymore. The resulting structure will be amorphous. This
however, brings also a lot of advantages which are beneficially exploited. The available material,
e.g., is isotropic since no directional preference exists. An isotropic material with a negative index
of refraction, as achievable in principle, would be the Holy Grail that can be used in many appli-
cations. Detrimental would be only, as indicated in the figure as well, that the strongly dispersive
nature would only allow for the observation of this effect at a narrow frequency range; although
concepts exist to extend this spectral domain. With the present state-of-the-art we are not yet at the
bottom part of this figure, but a majority of steps in this direction were already successfully gone.
The documentation of this progress is one of the purposes of this book

Tretyakov. There, a broader overview on possible applications is given that base
on amorphously arranged metallic nanoparticles. Emphasis in this chapter is put
on metamaterials but eventually the possibilities for applications well beyond are
equally documented.

The second section contains three chapters that discuss issues concerning the the-
oretical and numerical analysis of amorphous nanophotonical systems. If, in stark
contrast to periodic structures, the constituents are no longer periodically arranged
in space, novel approaches have to be put in place. Therefore, the first chapter in
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this section, written by Ari Sihvola and Henrik Wallén, gives an overview over ho-
mogenization techniques for amorphous nanomaterials. The insights documented in
this chapter enable scientists to replace conceptually their complicated structured
amorphous materials by a homogeneous one preserving its electromagnetical prop-
erties. Although, such homogenization techniques clearly have their limitations, as
discussed in depth in the chapter, they allow to consider amorphous materials in
the design of functional devices. The impact of such contribution cannot be esti-
mated high enough. The second chapter in this section, written by Stefan Mühlig
and Carsten Rockstuhl, outlines an approach to discuss properties of amorphous
nanophotonical materials on the base of the scattering response of its constituents.
The main ingredient is the expansion of the rigorously calculated scattered field
into electromagnetic multipoles. Such analysis allows for a profound discussion of
what properties will emerge in the bulk amorphous media. If only a few multipoles
contribute, e.g. the electric and/or the magnetic dipole, homogenization methods
as introduced in the previous chapter can be applied. For constituents that do not
obey this requirement, i.e. where the scattering response is dominated by a mul-
titude of multipoles, the computational strategy as discussed in depth in the third
chapter of this section, written by Vassilios Yannopapas, Alexandros G. Vanakaras,
and Demetri J. Photinos, can be used to explore the nanooptical system. There, it
is described how the T-matrix of an individual constituent, i.e. a matrix containing
information on how an arbitrary incident field is scattered into the far-field, is calcu-
lated and how it is used in a subsequent analysis of the optical properties of a media
made from many such constituents. The technique they describe permits to hierar-
chically treat amorphous nanophotonical materials where, in analogy to Fig. 1, the
view of the description is successively narrowed.

The third section contains two chapters which are devoted to the introduction
of experimental means to measure in a quantitative sense the optical properties of
amorphous systems. The first of these two chapters, written by Christian Helgert
and Thomas Pertsch, discusses far-field characterization techniques. There, empha-
sis is put on the question how the amorphous character of the sample contributes
to the measurable spectra. The discussion of the impact in the far-field is comple-
mented by a chapter from Worawut Khunsin and Ralf Vogelgesang, which focuses
on the near-field characterization. It is the intention to suggest that most notably the
combination of both approaches provides a comprehensive picture on the optical
properties of amorphous systems and how they can be used in potential applica-
tions.

This aspect, what to do actually with amorphous nanooptical systems, is dis-
cussed from a multitude of perspectives in the fourth section. It contains six further
chapters. In the chapter from Keiichi Edagawa it is concisely shown under which
conditions purely dielectric amorphous nanostructures do possess a photonic band
gap. For frequencies inside such band gap, the propagation of electromagnetic fields
is suppressed. However, it is not just the complete suppression but also the light
diffusion and the ability to localize light in tiny spatial domains that are strongly
affected, and actually enabled, by amorphous photonic materials. In the chapter that
follows, written by Hui Cao and Heeso Noh, it is then shown how the localization
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of light in dielectric amorphous materials, once infiltrated with a suitable gain me-
dia, can be used to set-up novel lasers. Contrary to ordinary lasers where the light
is spatially confined by mirrors forming a cavity, the formation of the cavity is pro-
moted only by the amorphous material. In this chapter, among others, numerical and
experimental results are nicely fused to provide a comprehensive picture. Applica-
tions of amorphous dielectric materials are not just found in technological devices
made by mankind, but are also found in nature. The ability of amorphous nanos-
tructures to strongly affect the visual appearance, i.e. the color an object possesses,
was beneficial in the process of evolution. It led for example to their integration into
the skin of various biological systems. A broad overview on this subject is given
in the chapter by Stephen Luke and Peter Vukusic. A common theme that will be
highlighted in this chapter is the ability of naturally occurring amorphous nanostruc-
tures to appear white, i.e. all wavelengths are scattered on a comparable strength.
This ability, to strongly scatter the light of all wavelengths, is equally discussed
in a chapter that follows but with a completely different point of view. This chap-
ter, written by Franz Joseph Haug, details the scattering properties of amorphously
textured surfaces with critical features down to a few tens of nanometers and their
application in a thin-film solar cell to enhance the absorption of light. This is an
application of paramount importance since any share of light that is additionally
absorbed, promotes a higher efficiency of the solar cell. And since a solar cell can-
not be optimized in its operation for just a single wavelength, the ability of these
textured surface to strongly scatter the light at nearly all wavelengths is particularly
important; explaining actually the success such textures do have already in commer-
cial devices.

And to avoid the impression that only amorphous nanophotonical materials made
from dielectrics are used in applications, the last two chapters in this fourth section
are devoted to the use of structure containing metallic amorphous nanomaterials. In
the chapter written by Roberto Caputo and co-workers from the University of Cal-
abria, they detail how to make systems containing metallic nanoparticles integrated
into self-organized soft materials active, i.e. they do change their properties upon an
external stimulus. This paves the way, as outlined in this chapter, for applications
such as tunable perfect absorbers and for novel sensor concepts; and their potentially
use in a range of other innovative devices in diverse fields such as opto-electronics
or opto-fluidics. In a final chapter Jose Dintinger and Toralf Scharf will detail the
application and use of nanoparticle cluster matter to create artificial electromagnetic
response with application to thin film optical devices.

It is our sincere hope that with the broad overview over all aspects related to
the field of amorphous nanophotonics, we provide the necessary stimulus to signif-
icantly advance the entire field in the mid- and long-term. Our sincere thank goes
at first to all the colleagues that have contributed to this book. Without their support
and their passion for amorphous nanophotonics, this book and this field would not
be where it is today. We would also like to thank our colleagues at Springer that sup-
ported us in all stages of the preparation of this book and its careful edition; most
notably Dr. habil. Claus E. Ascheron. We would like to thank the European Union
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that funded some of the research in the project Nanogold that found its way into that
book.

Carsten Rockstuhl
Toralf Scharf

Jena, Germany
Neuchâtel, Switzerland
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Chapter 1
Bottom-up Organisation of Metallic
Nanoparticles

Alastair Cunningham and Thomas Bürgi

Abstract This chapter deals with bottom-up strategies that allow one to prepare
amorphous assemblies of metal nanoparticles. Within these assemblies the nanopar-
ticles couple to each other, affecting the effective electromagnetic properties of the
materials. As a consequence, besides the properties of the individual particles, pa-
rameters such as number of individual particles within the assembly, geometry of the
assembly and average distance between particles within the assembly can be used to
design the optical properties of a material. It is therefore highly desirable to control
these parameters with high precision, which is the art of self-assembly. Compared to
top-down lithographic methods the bottom-up self-assembly approach is cheap and
enables the fabrication of large area two-dimensional or three-dimensional samples,
making it attractive for applications. In the following, after an introduction, different
strategies that were used in the past to assemble nanoparticles into defined structures
are briefly discussed. Such strategies rely on templates such as liquid crystals, DNA
or surfactants. A versatile approach, which relies on charge-driven self-assembly
mediated by charged surfaces and polyelectrolytes, is then discussed in more detail.
This approach easily allows one to build large scale amorphous layered structures
of nanoparticles with high control of parameters such as distance between particles
within one layer and distance between the layers. The method is not restricted to
flat surfaces and can be used to coat for example silica beads, resulting in core–shell
structures. An attempt has also made to rationalise the observed optical properties
in terms of coupling between particles within the different assemblies, thus paving
the way to the design of materials with novel electromagnetic properties.
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1.1 Introduction

1.1.1 Bottom-up vs. Top-down

The term ‘nanotechnology’ was first coined in 1974 [1] and since then the drive to
produce structures of increasingly small dimensions and explore their unique prop-
erties has not abated. There are few aspects of modern life that do not rely on,
at least in some part, the scientific breakthroughs in fabricating smaller structures
that have been made in the last few decades, with nanotechnology now pervad-
ing our lives to an extent that very few, with some notable exceptions [2], could
have predicted. The advances in down-scaling that have been made, have been
applied to a wide range of disciplines, and have played a prominent role in the
fields of information technology [3], renewable energy generation [4], medicine and
health care [5]. In general, the approaches to fabricate these structures can largely
be divided into two categories; top-down and bottom-up techniques [6]. The fast
rate of down-scaling achieved over the last few decades, in some cases advancing
at almost exponential rates, can largely be attributed to the top-down techniques,
loosely defined as being the fabrication of structures from larger precursors. This
can be thought of as being more of a sculpting approach, with typical examples
of top-down technologies including lithographic methods, the most technologically
advanced of which is arguably electron-beam lithography [7], and etching meth-
ods, which can vary from wet-chemical etches [8] to focused ion beam [9] and
laser ablation [10]. While there is still an important role to be played by top-down
methods, there are inherent limitations associated and these limits, if they have not
been already, are on the verge of being reached. One notable drawback is the mini-
mum feature sizes that are accessible using such techniques. In addition, such tech-
niques tend to be cumbersome and slow, requiring prohibitively expensive equip-
ment to produce small scale and, often uniquely, two-dimensional structures. None
of these disadvantages, on the other hand, are suffered by the more novel and ver-
satile bottom-up techniques which are increasingly being applied to produce struc-
tures of even smaller scale and more complex architecture than has previously been
achievable. As the name suggests, the bottom-up approach involves the fabrica-
tion of structures from smaller units, using the properties that they possess to in-
duce their self-assembly in the desired manner. Despite these terms first being used
in connection with nanotechnology in the late 1980s this building block approach
to materials synthesis, often likened to the construction of objects with Lego, is
still in its nascent stage and only the surface of what is accomplishable has been
scratched.

Evidence for the efficacy of these techniques can be gathered through the obser-
vation of nature, which is also seen to follow a bottom-up approach. The organisa-
tion of molecules to form progressively larger structures, from cells and DNA up to,
and including, metre scale biological organisms, in a hierarchical manner show the
effectiveness that such approaches can provide. Indeed the entire field of biomimet-
ics seeks to take advantage of structures found in nature which have evolved over
a long period of time and, as the name suggests, use them as models or blue-prints
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which can then be reproduced using innovative chemical methods. Despite being
distinct from the type of bottom-up fabrication techniques which will be discussed
at greater length here, the case of biomimetics also introduces another interesting
aspect of structure fabrication. In general, for useful functional structures to be fab-
ricated, a degree of organisation must be available at two discrete levels; both at
the nanoscale and at the mesoscale. After the initial self-assembly step which re-
sults in the formation of a unit, it is then typically necessary to induce, chemically
or otherwise, the organisation of these units into an ordered structure which can
then be used in applications. It is important to note that a perfect long range or-
der in all three dimensions of space is seldom achieved using self-assembly tech-
niques. However, and most importantly, in the context of the materials discussed
here this is not a prerequisite for obtaining functionality or attractive electromag-
netic properties. The latter are more closely linked to the properties of the individ-
ual entities and their short range ordering within larger units meaning that amor-
phous structures hold substantial potential. A whole host of techniques exist in the
ever increasing toolkit of the materials scientist that permits both the fabrication of
nanoscale materials and their organisation into larger scale architectures in a con-
trolled manner. An exhaustive list of these is, due to the inter-disciplinary and fast-
moving nature of the field, extremely difficult to produce and even more difficult
to discuss in great detail. However an effort will be made to provide an introduc-
tion to some of the more important bottom-up methods with particular attention
being paid to the fabrication, application and organisation of metallic nanoparti-
cles.

1.1.2 Metallic Nanoparticles and Their Applications

The wide ranging catalogue of metallic nanoparticles which can now be routinely
prepared, and in many cases are now commercially available, has garnered in-
creasing interest as their use in a broad variety of applications has become ap-
parent. This is largely due to their particular optical properties, more specifically
the fact that they support a localised surface plasmon resonance (LSPR). This ef-
fect, which has been widely studied and documented [11], describes the coher-
ent dipolar oscillation of the surface electrons present in a nanoparticle when ex-
cited by electromagnetic radiation of a particular frequency. This manifests itself
as a strong extinction of the incident radiation which, depending on the mate-
rial, exists in the visible part of the electromagnetic spectrum. The effect was first
modelled by Gustav Mie in 1908 who solved Maxwell’s equations for light in-
teracting with spherical metallic nanoparticles. His equation, shown below, which
includes both the scattering and absorption, holds true when dipolar oscillations
of the conduction electrons are considered in the limiting case where the wave-
length of the incident radiation is significantly greater than the size of the metallic
nanoparticles.
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Cext = 24π2R3ε
3/2
m

λ

ε2

(ε1 + 2εm)2 + ε2
2

(1.1)

where

Cext = extinction cross-section
R = particle radius
εm = dielectric constant of the surroundings
ε = ε1 + iε2 = complex dielectric constant of bulk metal
λ= wavelength of incident radiation

Evidently, the maximum extinction occurs when ε1 = −2εm thus defining the posi-
tion of the LSPR peak. The pioneering work which Mie executed is not limited to
nanospheres and can also be modified to describe nanoparticles of other geometries
such as rods [12].

These optical properties have made the use of metallic nanoparticles attractive
to a number of fields interested in using them in applications. As shown in (1.1),
the position of the LSPR peak is altered depending on the dielectric constant of the
surrounding material. As such the particles can be thought of as probes that can ac-
curately return information, observed as red or blue-shifts of the LSPR peak, on the
refractive index, and therefore composition, of their surrounding medium. A host of
sensing applications, where colour changes observed in the metallic nanoparticles
can indicate trace changes in concentration of analytes, can be envisaged with many
already both in use and development [13]. A comprehensive review of nanostruc-
tured plasmonic sensors can be found in Ref. [14].

One specific area of interest where sensing and metallic nanoparticles are con-
cerned is in the field of surface enhanced Raman scattering (SERS). This effect was
discovered in 1974 by Fleischmann [15] and relies on the extremely strong elec-
tromagnetic fields that exist in the nanogaps between metallic nanoparticles. This
facilitates massive enhancements of the Raman signal, on the order of 1014–1015

more than that observed under normal conditions [16], which is sufficient to allow
the detection of single molecule analytes. This is extremely useful as the Raman
signal can return detailed information on the vibrational levels of the analyte, al-
lowing the technique to be used for both detection and structure determination [13].
SERS has now developed to the extent that spectra can be measured in vivo [17].
In principle this could facilitate faster acquisition times and was a significant break-
through for the use of metallic nanoparticles in medical and biological applications.
A more detailed discussion of the enhancement mechanism observed and specific
SERS applications can be found in Refs. [18] and [19].

Biomedical studies of metallic nanoparticles began in the 1970s following the
discovery of immunogold labelling [20]. Since then a wide array of biological sens-
ing applications have been developed [5, 21]. Gold nanoparticles, used for med-
ical diagnostics have even become commercialised where they form an integral
part of certain pregnancy tests which are currently on the market. However metallic
nanoparticles are not limited to sensing applications. One major reason for the wide-
spread use of gold nanoparticles for biomedical applications is their relatively low
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cytotoxicity which makes them particularly suitable for in vivo applications such
as drug delivery [22], bioimaging [23] and cancer therapy [24]. An innovative form
of cancer therapy involves suitably modified gold nanoparticles, functionalised with
antibodies that recognise antigens expressed by cancerous cells and allows them to
specifically bind to these cells [24]. The excitement of the LSPR through irradiation
with a suitable source results in the fast conversion of the absorbed energy to heat
which, as the particles are localised at the cancerous cells, is sufficient to destroy
these cells whilst leaving healthy ones undamaged. In addition to the control over
the surface chemistry that is required it is also necessary to push the LSPR of the
nanoparticles into the infra-red region of the electromagnetic spectrum as otherwise
the incident radiation used to excite the LSPR would be absorbed by the first few
millimetres of skin. Infra-red radiation, on the other hand, can penetrate significantly
further and facilitates the excitement of the plasmon resonance of particles that are
located at the cancerous cells. By using gold nanorods, the position of whose lon-
gitudinal plasmon resonance can be readily tuned in the growth process through
altering the aspect ratio of the particle, this problem can be overcome.

As well as being able to use nanoparticles in diagnostics and in the treatment of
medical conditions they have also found a niche application in measuring nanoscale
distances, particularly in biological samples, and can be thought of as being ‘plas-
monic rulers’ [25]. The system is based on the strength of the coupling between a
pair of metallic nanoparticles which is itself strongly dependent on the distance be-
tween them. Stronger and weaker coupling manifests itself as red and blue shifts of
the LSPR peak respectively and after adequate calibration it is possible to correlate
these shifts in the optical properties to the separation of the nanoparticles. Dynamic
separations of up to 70 nm can be monitored allowing information on both distance
and configuration to be elucidated [25]. A number of advantages exist over other
methods used to determine molecular distances such as Förster resonance energy
transfer measurements. Here, low and fluctuating signal intensities along with lim-
ited observation times and upper measurement limits of approximately 10 nm mean
that plasmonic solutions such as the ones described may be more appropriate in
certain situations [25]. However, certain issues, including the extent to which the
adsorption of nanoparticles to biomolecules affects their overall structure have not
been unequivocally resolved. Despite this, the power and potential that plasmonic
rulers possess with respect to structure elucidation is clear to see.

An equally important field which makes use of metallic nanoparticles is that of
catalysis. Despite being historically considered as merely a chemically inert metal,
supported gold nanoparticles were first found to reduce the activation energy for the
oxidation of CO around two decades ago [26]. The high surface area, and therefore
number of active sites, provides obvious advantages. There exists a strong depen-
dence of catalytic activity on particle size, with a large decrease in activity for parti-
cles larger than 6–10 nm being observed [26]. Therefore one of the major challenges
facing the field is finding a means to maintain particle stability under the reaction
conditions required. A more recent study, and direct utilisation of the plasmonic
properties of metallic nanoparticles, researches the catalytic properties that are in-
duced upon the localised heating produced when the particles are in resonance [27].
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Here, a solvent mixture of ethanol and water was passed through a microfluidic cell
constructed with an array of gold nanoparticles. When excited with a low power
laser the heat produced at the surface of the particles was sufficient to catalyse the
breakdown of the solvents and the formation of CO2, CO and H2 [27].

Plasmonic structures can also be used to increase the efficiencies of photochem-
ical and photoelectrochemical processes [28]. A number of mechanisms resulting
in the increased efficacy of these reactions have been proposed. For example it has
been suggested that accelerated reaction rates occur due to the enhanced electromag-
netic fields that exist at the surfaces of, and particularly in the nanogaps between,
metallic nanoparticles by elevating the molecules involved in the reactions to excited
electronic states. The metallic nanostructures essentially act as optical antennas that
harvest photons and then concentrate the electromagnetic field produced to excite
target molecules in the vicinity. It has also been proposed that other effects asso-
ciated with excited plasmon resonances such as localised heating and mechanical
oscillation may also play a role in increasing the efficiency of these reactions [28].
The first experimental observation of this effect was reported in 1983 [29] and in
more recent studies remarkable enhancements of molecular excitement have been
reported [30]. Such systems have potential applications in the development of or-
ganic solar cells and photoelectrochemical biosensing devices [30].

An additional application of metallic nanoparticles structured by bottom-up tech-
niques, and of particular pertinence to the work outlined in this book, is in the field
of metamaterials, where they are of fundamental importance. This term is loosely
used to describe materials which possess electromagnetic properties which do not
exist in nature and the application of bottom-up techniques offers the opportunity to
create structures with feature sizes that would be otherwise inaccessible with tradi-
tional top-down methods. The term metamaterial, with the prefix taken from Greek
and meaning literally “beyond”, first appeared in literature as recently as the year
2000 when Smith et al. published their seminal paper on a composite medium with
simultaneously negative permeability and permittivity in the microwave range of
the electromagnetic spectrum [31]. Since then the field has exploded, however the
potential contribution that metallic nanoparticles have to make to this field is only
beginning to be tapped. The down-scaling of structures which have been proven to
exhibit exciting novel properties such as negative refractive indices [32], cloaking
[33] and perfect lensing [34], in the microwave and infra-red regimes of the electro-
magnetic spectrum is necessary to push these properties into the visible range. With
the obvious benefits that this would entail, increasing efforts, some of which will
be outlined in the main body of this chapter, are being made to further develop the
application of metallic nanoparticles to the field of metamaterials.

1.1.3 Coupling Properties of Metallic Nanoparticles

As shown, metallic nanoparticles undoubtedly have many applications, both cur-
rent and future. The majority of these applications rely on the LSPR that the parti-
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Fig. 1.1 Schematic showing
hybridisation of plasmons of
two approaching metallic
nanoparticles. Red crosses
indicate dark modes that only
offer a weak excitation for the
present configuration

cles support, allowing them to, amongst other things, sense, heat, catalyse and im-
age. The position of the LSPR peak, as discussed above and succinctly summarised
in (1.1), is dependent on a number of factors including the particle size and shape
as well as the refractive index of the surrounding medium localised at the surface
of the particle. However one important factor that is not considered in the equation,
which analyses only a single particle, is the effect that other particles have over one
another. This effect, also known as coupling, can be exploited by finding means,
chemical or otherwise, to order metallic nanoparticles into specific configurations
or structures. This is an additional, more flexible, method of fine-tuning the optical
properties of systems and will be discussed in more detail in the following.

Coupling between metallic nanoparticles is very well summed up by plasmon
hybridisation theory. This physically intuitive method, developed in 2003 by Peter
Nordlander et al. [35], uses similar constructs to those used in molecular orbital the-
ory to describe the optical changes that occur when two metallic nanoparticles are
brought together to the extent where they begin to interact. The plasmonic response
of a more complex structure is constructed from the interactions that exist between
its constituent elements, forming hybridised modes in much the same manner that
molecular orbitals are composed from the atomic wave-functions of the individ-
ual atoms that form molecules. This interaction can be considered in its simplest
form as the coupling of two nearby dipoles, although depending on the size of the
nanoparticles and their distance of approach higher multipole moments can also be
considered. Hybridisation theory predicts two distinct classes of eigenmodes for a
structure of two strongly coupled metallic spheres, i.e. a dimer. The first is associ-
ated with an in phase oscillation of the electric dipole in both spheres and is therefore
termed a ‘bright’ eigenmode since it can radiate into the far field. The second class
requires a 180◦ out of phase oscillation of the electric dipoles of both spheres. These
eigenmodes are termed ‘dark’ since they cannot radiate into the far field and play an
important role in the field of metamaterials as the out of phase oscillation of electric
dipoles can be related in some cases to a magnetic dipole moment which is the key
component in many predicted applications of metamaterials.

The method of constructing hybridised plasmonic modes through the combina-
tion of two or more resonant elements is illustrated in the plasmon hybridisation
diagram shown in Fig. 1.1 and depicts the theory applied to a dimer of two metallic
nanopsheres.

Shown are the individual nanoparticles with the dipoles that they support, the
directions of which are dependent on the direction and polarisation of the incident
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electromagnetic radiation which drives the free electrons of the metal into reso-
nance. Similarly to molecular orbital theory these dipoles are combined in bonding
and anti-bonding fashions and result in the splitting of the modes to give hybridised
modes of lower and higher energy respectively. The interaction of two equal spheres
results in four hybridised plasmonic modes in the coupling regime. Because of sym-
metry considerations, only two of these modes display a net dipole moment and will
show a strong scattering of light into the far-field at relevant frequencies and angles
of incidence. Conversely, both the antibonding mode for incident light parallel to the
main axis of the dimer (σ ∗) and the bonding mode for incident light perpendicular
to the main axis of the dimer (π) have no net dipole moment and are known as dark
modes (noted in Fig. 1.1 with red crosses) that can only be observed by breaking
the symmetry of the system and for large spheres with extremely small interparticle
distances. These dark modes contribute predominately to the absorption of the sys-
tem because the resulting quadrupole moments offer only a weak coupling to the far
field.

Plasmon hybridisation theory can be used to model systems both quantitatively
and qualitatively and has proven to be an invaluable tool both in explaining the opti-
cal changes observed, for example spectroscopically, and in designing new systems
which should have specific optical properties. It is in no way restricted to simply
describing nanospheres and has been applied to nanoparticles of a wide range of
different forms such as asymmetric dimers, thin metallic films, systems of metallic
nanoshells, nanorods and nanostars [16]. Under certain situations it has also been
shown to be applicable to large-scale systems, being used to describe the coupling
between cm2 scale arrays of metallic nanoparticles [36].

1.1.4 Bottom-up Organisation of Metallic Nanoparticles

The large potential for using bottom-up methods to organise metallic nanoparticles
into assemblies that could be used as functional materials with practical applica-
tions has meant that significant amounts of research effort have been focused in this
direction in recent years. Some examples illustrating the principal methods used to
achieve this will be given here. As will be shown, the assembly of metallic nanopar-
ticles relies on surface chemistry and self-assembly principles using biomolecules,
surfactants, mesogens or polymers and makes use of intermolecular (interparti-
cle) interactions. It is therefore logical that the bottom-up organisation of metallic
nanoparticles is a research area where the border between physics and chemistry
needs to be crossed.

Self-assembly is closely linked with the liquid-crystalline state of matter and it
is therefore not surprising that liquid crystals have been used in order to organise
gold nanoparticles [37]. Two principal strategies can be followed. In the first one
the nanoparticles are simply mixed into the liquid crystal thus forming an physical
mixture. The nanoparticles need to be functionalised in order to be stable and soluble
in the liquid crystal [38]. The second strategy relies on the chemical bonding of
the mesogenic unit to the nanoparticle. Whereas the first strategy is easier it often
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Fig. 1.2 Left-handed gold nanoparticle double helices were prepared using a method that allows
simultaneous synthesis and assembly of discrete nanoparticles. Left: schematic principle of the
method, right: electron microscopy images of the assembled structures. Reprinted with permission
from Ref. [42]. Copyright 2008 American Chemical Society

suffers from low filling fractions. For both strategies the assembly of relatively large
nanoparticles, i.e. particles that exhibit a plasmon resonance, is difficult. In some
cases the metallic inclusions have been as large as 7 nm in diameter, which are large
enough to support LSPRs [39].

The bottom-up assembly of metallic nanoparticles has also been further ad-
vanced through the use of biomolecules such as strands of DNA, which themselves
are formed through self-assembly processes. The formation of ordered structures
in such a way, using DNA as a molecular substrate for nanoparticle deposition,
has facilitated the production of a number of different metallic nanoparticle archi-
tectures. One early example was the formation of dimers and trimers which was
achieved through the functionalisation of gold nanocrystals with single stranded
DNA oligonucleotides of defined length and sequence and assembling them on
a complementary single stranded DNA template [40]. This work introduced the
possibility of using oligonucleotides to self-organise metallic nanoparticles into
well-defined and homogeneous structures. More recently metallic nanoparticle het-
erodimers comprising both gold and silver nanoparticles fabricated in a similar man-
ner were shown to be SERS active [41]. Precise nanogap engineering was achieved
through the controlled growth of silver layers on top of the original gold nanopar-
ticles and single molecule sensitivity was shown when dyes were analysed using
SERS. This advance is further evidence of such work being of fundamental impor-
tance to several fields of scientific research.

Similarly the use of a chemically modified peptide substrate to reduce a gold
salt, forming gold nanoparticles along the backbone, has been shown to result in
left-handed double helix arrangements of the nanoparticles (see Fig. 1.2) [42]. The
introduction of chirality into structures in such a manner results in optically active
arrangements of resonant elements that allow the further tuning of the optical prop-
erties of such materials.

Resting with the use of macromolecules in the ordering of metallic nanoparti-
cles, pseudo block copolymer systems have also been employed to this end [43].
Gold nanorods selectively functionalised at their ends with polymer chains, result-
ing in a ‘pom-pom’ structure reminiscent of an ABA tri-block copolymer, can be
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induced to organise the nanorods either end to end or side by side. This interchange-
able organisation can be controlled by altering the molecular weight of the polymer
chains or by simply altering the percentage composition of the solvent. The dif-
ferent affinities that the polymers at the ends of the gold nanorods and the CTAB
molecules (CTAB: cetyltrimethylammonium bromide) along their lengths have for,
for example, water, provokes the redistribution of the polymer chains and stimulates
the organisation of the nanorods in different manners as the concentration of wa-
ter in the predominantly organic solvent is increased. A more in-depth discussion
of the ramifications that such differing organisations of gold nanorods have on the
optical properties, considered through the eyes of plasmon hybridisation theory, can
be found in Ref. [44].

Additional degrees of order compared with the systems previously discussed
arise from the formation of binary nanoparticle superlattices from colloidal crystalli-
sation methods which can result in impressively large crystals containing metallic
nanoparticle inclusions [45]. Here, steric repulsion and van der Waals, electrostatic,
and substrate–particle interactions, amongst others, all combine to determine the
crystal structure where the type of control over particle size, shape and composition
outlined previously allows materials with tunable physical and chemical properties
to be manufactured.

It would be easy to assume, on the other hand that less ordered systems would
result from the agglomeration of nanoparticles. In general this is true and such ag-
gregation, which can occur for a variety of reasons, is normally to be avoided. How-
ever the controlled aggregation of colloidal gold nanospheres has been used to se-
lectively produce dimers and trimers, which were subsequently used to catalyse the
formation of ZnO nanowires in solution [46]. The aggregation, occurring as a result
of a reduction of the electric double layer, is achieved through the addition of HCl
and the particles are simultaneously stabilised by encapsulating polymers. An op-
timal pH for dimer formation was found to exist and high yields could be isolated
upon enrichment by density gradient centrifugation. This control over the aggre-
gation kinetics provides a route to the fabrication of ensembles with well-defined
nanoparticle inclusions.

The hierarchical organisation of plasmonic nanoparticles at different length
scales can also lead to interesting optical properties [47]. Such organisation has been
observed within metal nanoparticle–surfactant composites, more precisely in a mix-
ture of gold nanoparticles with triethyleneglycolmono-11-mercaptoundecylether
(EGMUDE) in water [48]. EGMUDE consists of a thiol, used to anchor to the gold
nanoparticle surface, a hydrophobic alkyl chain and a hydrophilic ethyleneglycol
part. After addition of EGMUDE to preformed GNPs a fast colour change from
purple to dark blue and sedimentation is observed, which is usually indicative of
nanoparticle agglomeration. However, after some time (several hours without shak-
ing) the sample changed colour again. UV-visible spectra showed a strongly red-
shifted plasmon resonance (see Fig. 1.3) and dynamic light scattering revealed the
formation of larger amorphous assemblies of gold nanoparticles, which was then
also confirmed by transmission electron microscopy (TEM, see Fig. 1.3). These
entities represent hierarchical structures composed of gold nanoparticles clustered
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Fig. 1.3 Transmission electron microscopy (TEM) image and UV-vis spectra of gold nanoparticle
(40 nm) EGMUDE assemblies [48]. Reproduced by permission of the PCCP Owner Societies

together into larger aggregates of about one micron. Several of these entities again
cluster together to even larger units. The assembly of the nanoparticles is guided
by the EGMUDE, which also stabilises the particles. In order to better understand
the optical response calculations were performed on analogous structures by ap-
plying analytical solutions of Maxwell’s equations for particles with a spherical
symmetry, well-known as Mie-theory, which was extended to handle aggregates of
spheres [49]. With this method one can calculate all quantities of interest for clus-
ters consisting of arbitrarily arranged nanoparticles with a spherical shape. Such
calculations very well reproduced the shifted plasmon resonance and furthermore
indicated that the dominating contribution to this spectral feature arises from a mag-
netic dipole oscillation that is induced due to the spherical shape of the fabricated
supramolecular clusters.

By combining top-down and bottom-up techniques it is also possible to exploit
the advantages of both, resulting in substrates with metallic nanoparticles that self-
assemble into structures that also exhibit long range order. Two-dimensional square
arrays of gold nanoparticle clusters can be prepared, for example, by inducing their
template directed self-assembly into holes prepared by laser interference lithogra-
phy [50]. These hybrid techniques can be implemented when required and provide
an additional layer of flexibility when it comes to preparing structures of a particular
design.

This introduction has given a small snapshot of some of the principal bottom-up
self-assembly routes towards nanoparticle organisation and is by no means compre-
hensive. As shown, the field of bottom-up assembly of metallic nanoparticles is con-
siderably developed in terms of what is achievable and the wide range of methods
that exist to accomplish design goals set. However, at the same time the continual
introduction of new techniques and their combination with existing ones means that
this is an extremely fast moving area of research that makes notable advances on
an extremely quick basis. This means that only the surface has been scratched in



12 A. Cunningham and T. Bürgi

terms of what can be achieved with respect to metallic nanoparticles structures and
highlights both the power and versatility of the techniques discussed.

Of course, one of the principal advantages of the bottom-up approach is its flex-
ibility and often a combination or variation of one or more of the techniques dis-
cussed above is required to achieve the desired results. Indeed, one could argue
that problems of either a scientific or practical nature should be considered on a
case by case basis when searching for bottom-up solutions. As such, the power
of the bottom-up approach will be illustrated in this chapter through the detailed
discussion of two particular examples in more detail which exemplify the control
which can be achieved at both length scales introduced above; the nanofabrica-
tion of metallic nanoparticles using colloidal nanochemistry and their mesoscale
organisation using surface chemistry and polymer self-assembly techniques. These
case studies, showing the fabrication of layered arrays of metallic nanoparticles and
core–shell nanoclusters, will demonstrate that both size and structure can be at least
equally as important as composition in terms of tailoring the optical properties of
such materials.

1.2 Manipulation of Metallic Nanoparticles at the Nanoscale

For the metallic nanoparticles discussed in the introduction to be of any practical
use, for example in the construction of metamaterials with specific properties or
functional optical devices, they must first be incorporated, or organised, into struc-
tures which take advantage of the particular optical properties that they possess,
of which the most important is the exhibition of an LSPR [51]. The fabrication of
these particles can be traced back several centuries from when they were used to give
stained glass ornaments and windows their characteristic hues [52]. The beginnings
of this field in true scientific terms, however, was in 1857 when Faraday, thought of
by some as being the father of modern nanoscience, first prepared and characterised
colloidal gold nanoparticles in a controlled manner [53]. Very similar methods [54]
to that which Faraday developed are still currently used to produce nanoparticles
although today a much larger gamut of preparation techniques can now be drawn
upon by modern materials scientists to prepare a wide variety of nanoparticles of
differing shapes, sizes and materials [55, 56]. However, merely synthesising a batch
of metallic nanoparticles, whilst interesting in its own right, is not sufficient in order
to fully exploit their optical properties. For this to be achieved it is first necessary
for a degree of control to be assumed over a number of important material param-
eters, not least of which is the morphological organisation of the nanoparticles at
the nanoscale. This is where the major challenge lies for nanochemists looking to
make advancements in the field. The development of novel and innovative meth-
ods combined with the exploitation of pre-existing ones is vital if the manipulation
of metallic nanoparticles at this scale is to be successfully realised. Yet even the
large degree of control over geometrical arrangement, which can now be routinely
realised with impressive results using techniques such as electron beam lithography
[57] and direct laser writing [58], is not entirely sufficient where the fabrication of



1 Bottom-up Organisation of Metallic Nanoparticles 13

functional optical devices is concerned. For this to be accomplished it is also neces-
sary to be able to expand such structures to utilisable scales in each dimension. In
the modern world the importance of the efficient fabrication of large area, homoge-
neous structures is self-evident with the ubiquitous financial constraints that exist.
In addition, the expansion of such structures into the third dimension is equally im-
portant if metamaterials with effective medium parameters are to be realised [59].

As mentioned in the introduction, a single solution to both of these problems
is to use a bottom-up approach whereby small building blocks, in this case metal-
lic nanoparticles, are coerced, through the application of chemical techniques, into
self-organising into desirable structures. Of course, as with any emerging field, there
remain some difficulties with employing this approach which are unavoidable. The
loss, or reduction, of order that is achievable through the use of more traditional
nanofabrication techniques makes the modelling of the optical properties of such
materials significantly more challenging. However this loss of order can also be
considered as advantageous as strong spatial dispersion hampering the unambigu-
ous introduction of effective material parameters is no longer an issue. Additional
benefits that arise through the application of the self-assembly route include the fab-
rication of previously inaccessible feature sizes [60], the facile and homogeneous
deposition of nanoparticles onto large scale (cm2) substrates [36] and the ready
possibility of extending structures into the third dimension [36]. These advantages
largely outweigh any disadvantages that exist and allow the preparation of larger
scale structures constructed from smaller scale resonant elements at significantly
reduced costs. Prior to devising fabrication routes it is first necessary to have an ar-
chitecture in mind that would be of interest to the community. These are generally
conceived in collaboration with theoreticians and this design process, which is out-
with the scope of this chapter but discussed in detail in other chapters of this book,
generally results in a trade-off between what is structurally desirable and what is
presently technologically achievable.

As previously mentioned, the primary reason that metallic nanoparticles are of
such interest is that they can support an LSPR at optical frequencies. The optical
properties of an ensemble of two or more of these particles, approaching to within
certain well-defined distances, can be significantly affected [16]. This effect, known
as coupling, allows the LSPR to be manipulated and tuned with a high degree of con-
trol and gives rise to a new range of materials classed as plasmonic molecules. One
such design that takes advantage of this effect is layered arrays of amorphously ar-
ranged metallic nanoparticles separated by well-defined and controllable distances.
Structures such as this can be fabricated using true bottom-up approaches [36, 61]
or, with less precision, through the use of other deposition techniques such as spin-
coating [62].

1.2.1 Gold Nanoparticle Preparation

One method that can be used to deposit an array of, for example, gold nanoparti-
cles on a large scale planar substrate such as glass or silicon is to exploit the in-
herent surface charge that exists on the particles when produced by the Turkevich
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Fig. 1.4 Two step substrate
functionalisation process
using silica chemistry

method [63]. This method is generally accepted as being one of the most efficient
means to produce spherical, monodisperse gold particles with a size range in the
order of 9–120 nm in diameter [64]. Their distinctive surface charge arises from
the citrate molecules which fulfil two important roles in the particle growth reac-
tion. They firstly reduce the gold ions present in solution to produce atomic gold
and secondly cap the particles that are produced, forming a protective monolayer at
the surface which prevents their aggregation due to the repulsive forces generated
between two like-charged particles. The negative surface charge of the particles re-
sults from deprotonated carboxylic acid groups within the molecule and is therefore
clearly pH dependent. The citrate molecules, or rather their concentration relative
to that of the initial gold salt, are also crucial in determining the overall size of
the particles with greater relative concentrations of citrate resulting in smaller par-
ticles and vice versa, the greater specific surface area exhibited by smaller particles
necessitating more citrate molecules to completely encapsulate all of the particles.

1.2.2 Substrate Functionalisation

In order to induce an electrostatic attraction between the gold nanoparticles and any
substrate the surface of this substrate must necessarily possess an opposite charge,
in this case positive. Glass and silicon, perhaps two of the most useful substrate
materials, in terms of availability, cost and perhaps most importantly ease of char-
acterisation and functionalisation, do not, however, exhibit a strong charge. As such,
prior to the deposition of any particles, it is first required that the surface chemistry
of the substrate be modified in such a way that a positive charge be exposed at the
surface. This is readily achievable through the application of what is known as sil-
ica chemistry, a topic that has been comprehensively documented by Ralph Iler in
his book: The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface
Properties and Biochemistry of Silica [65]. In brief, a suitable substrate, which has
first undergone a rigorous cleaning procedure involving piranha solution, such as
the ones under discussion here can be modified in a facile two-step reaction. In the
first step a trifunctional organosilane for example, a trimethoxy- or trichlorosilane
is hydrolysed to a silanol in what is a base-catalysed reaction. The silanol molecules
then undergo a condensation reaction with the hydroxyl groups at the surface of the
substrate to form a network, as illustrated in Fig. 1.4, which can be set in place using
a baking step.
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Fig. 1.5 N -[3-(Trimethoxysilyl)propyl]ethylenediamine—an example of a typical silane com-
pound used to functionalise glass and silicon substrates. Following functionalisation the terminal
amine group is exposed and completely alters the surface chemistry of the substrate

An enormous degree of flexibility exists here due to the wide range of silane com-
pounds that are either commercially available or are relatively easy to prepare. In
this specific case a trimethoxysilane with a terminal amine group, shown in Fig. 1.5,
was chosen. At neutral pH this group is protonated, thus inducing the required elec-
trostatic attraction between substrate and particles.

1.2.3 Fabrication of Gold Nanoparticle Arrays

When such a substrate, functionalised in such a manner, is exposed to a solution
of gold nanoparticles the attractive forces between the two results in the particles
adsorbing over a period of several hours until they form a complete array of well
dispersed and approximately equally spaced resonant entities at the surface. A glass
substrate which has such an array of gold nanoparticles adsorbed at the surface dis-
plays a characteristic pink colour which originates from the strong extinction peak
that exists at around 520 nm—the LSPR wavelength. An example of this is shown
in Fig. 1.6a. The colour is surprisingly strong, given that only a single layer of
nanoparticles, with a diameter of around 20 nm, has been adsorbed at a relatively
low density or filling fraction. The filling fraction of particles at the surface is again
governed by the electrostatic repulsion that exists between them and prevents a sec-
ond particle from closely approaching one that is already adsorbed at the surface.
The particles, which are at least to some extent mobile at the surface, are capable of
rearranging to find an organisation representing a low energy state. This is of course
why, post-deposition, we observe the particles at reasonably well defined distances
from one another, as can be observed in the SEM micrograph shown in Fig. 1.6b.
No long range order, however, is perceived which, as can be expected, is due to the
random adsorption processes. The amorphous order observed, however, is largely
outweighed by other advantages. The only limitations in terms of overall substrate
size that can feasibly be coated that exist are of a practical nature. The arrays are vir-
tually defect free and as such this technique quite easily lends itself to applications
on relatively large scales.

Detailed analysis of the SEM micrograph shown in Fig. 1.6b using image pro-
cessing programs such as ImageJ [66] allow such arrays to be more fully charac-
terised. It is possible to count thousands of particles over relatively large areas to
achieve accurate average values for important material parameters such as particle
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Fig. 1.6 (a) Photograph of single array of gold nanoparticles deposited on a functionalised glass
microscope slide. (b) Corresponding SEM micrograph showing organisation of a single array of
gold nanoparticles on a Si substrate which had been previously functionalised

density and size. Such an analysis reveals that the particles deposit at the surface
with an average density of around 850 particles/µm2 which equates to a filling frac-
tion of 27 % [36]. While such a relatively low surface coverage can result in a strong
colouration of substrates there may be instances whereby it could be desirable to
have surfaces that were coated to either a greater or lesser extent. For example some
simulations [67] suggest that for a sufficiently high dispersion to be achieved the
filling fraction of arrays of metallic nanoparticles, such as the one under discussion
here, should be higher than 30 %. For smaller filling fractions the large magnitude of
the permittivity, necessary to observe Mie-resonance for sufficiently small spheres,
is not achieved.

1.2.4 Controlling Nanoparticle Density

Lower density arrays are relatively straightforward to produce. As the deposition
process occurs over a relatively long time-scale it is sufficient to merely reduce the
number of interactions that occur between particles and substrate to create arrays
with a lower filling fraction. This can be accomplished in a variety of manners, per-
haps most simply by either diluting the solution from which the gold nanoparticles
are deposited, or reducing the deposition time.

Creating gold nanoparticle arrays of higher density, on the other hand, is not as
straightforward and requires a more considered approach. As previously mentioned,
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the primary barrier to a closer packing of the particles at the substrate is the negative
charge that they possess, introducing an electrostatic repulsion between them. In
order to induce a higher filling fraction a means of removing or mitigating, at least
partially, this repulsion must be found. One option available is through the care-
ful regulation of the electric double layer that exists in the volume surrounding each
nanoparticle [68]. The electric double layer can be defined as the volume of solution
containing an excess of ions which balance the surface charge. This volume can it-
self be considered as being composed of two distinct regimes: the Stern layer which
denotes the molecular layer of ions of an opposite charge to that of the surface; and
the diffusive layer which extends into the bulk of the solution. The distance that the
electric double layer extends from the surface of the gold nanoparticles is governed
by a number of factors including temperature, pH and, importantly, the concen-
tration of ions in solution. Factors such as these ultimately control the maximum
density of particles that can be deposited on a charged substrate. For example, the
addition of salt to the gold nanoparticle solution contracts the electric double layer
and arrays of higher filling fraction are obtained. On the other hand, by reducing the
concentration of ions in solution using techniques such as dialysis or centrifugation,
the electric double layer would expand and lower density arrays result.

Rather than reducing the mutual repulsion between nanoparticles by regulating
the distance that the electric double layer extends from their surface an additional
approach is the removal, at least to some extent, of the citrate molecules that cause
this repulsion in the first instance. One means of realising this is through making
use of the strong sulphur—gold bond and the high affinity that thiol molecules have
for gold [69]. When an array of gold nanoparticles is exposed to a solution of thiol
molecules a proportion of the citrate capping molecules, largely dependent on the
relative concentrations of the two ligands, will be replaced in an exchange reac-
tion. As such, the pre-existing negative charge on the particles is, at least partially,
removed along with the barrier to closer approach and reorganisation at the sur-
face [70]. This part replacement of the citrate molecules which previously formed
a protective shell at the surface of the nanoparticles results in a number of changes
which can be observed in terms of the organisation and morphology of the gold
nanoparticle array. Disadvantageously, a number of gold nanoparticles are solu-
bilised and desorb from the surface as their electrostatic attraction to the substrate
is diminished. This, due to the high affinity that the thiol molecules have for gold,
is unavoidable. However, the same removal of charge which causes this desorption
of a small proportion of the nanoparticles also induces a reorganisation of the ones
that remain at the surface. This has a number of consequences in terms of chang-
ing optical and morphological characteristics of the sample as well as opening up
a number of possibilities with respect to a flexibility of structure fabrication and
meeting design goals. Where previously, as shown in Fig. 1.6b, an array of well-
separated gold nanoparticles is formed, when the barrier to reorganisation has been
removed the particles increase in mobility and tend to aggregate into small chains
and clusters of around 5–10 particles. This process is thought to be driven by the en-
ergetically favourable, formation of bilayers of the relatively long alkyl chains that
form the second functionality of the thiol molecules employed in this work, namely
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Fig. 1.7 SEM micrographs depicting various stages of the deposition and reorganisation process
as described in the main body of the text. Shown are the morphology that could be expected after
(a) the first deposition, (b) the first reorganisation, (c) the second deposition, (d) the second reor-
ganisation, (e) the third deposition and (f) the fourth deposition. An increase in particle density as
well as the introduction of a degree of order can clearly be observed

1-dodecanethiol. Crucially, any coalescence of the particles is prevented by the bi-
layers of the thiol molecules that are formed as they are drawn together which is
essential in terms of maintaining the LSPR that they exhibit. The thiol molecules, or
more importantly the length of the alkyl chain, also determine the closest distance
to which the gold nanoparticles can approach one another which in this case is on
the order of 1–2 nm. A by-product of forming these clusters, along with the desorp-
tion of a limited number of particles, is the appearance of large areas of void space
at the surface of the substrate. Where previously the particles were well-dispersed
and equally spaced indicating that a steady state had been reached and a maximum
surface coverage, under these particular conditions, had been attained this is now
clearly not the case. It is possible, as the void areas at the surface remain func-
tionalised with the silane compound, to subject the substrate to a second deposition
process, thus filling in these areas with arrays of particles identical in morphological
form to that of the original. This array will in turn, if exposed to the same thiol so-
lution, undergo an identical mobilisation and reorganisation process, forming larger
clusters of closely packed gold nanoparticles. This process can be easily followed
using scanning electron microscopy, as shown in Fig. 1.7, and if repeated several
times results in a much higher density array of gold nanoparticles which, in small
domains at least, are organised in a close-packed manner. This is clearly a significant
improvement on the previous situation if higher density arrays of metallic nanopar-
ticles are required to give, for example, specific optical properties.

The increase in filling fraction and order after this process is carried out is clear to
the eye when SEM images are compared and contrasted. However, it is also possible
to quantify these changes by analysing the micrographs using the image processing
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Fig. 1.8 Radial distribution functions (a) before and (b) after reorganisation and deposition pro-
cesses. The corresponding SEM micrographs are shown in the insets

program ImageJ [66]. Figure 1.8a shows the radial distribution function for a low
density array of gold nanoparticles before it has undergone the reorganisation and
deposition process while Fig. 1.8b shows the radial distribution function after 5 cy-
cles of reorganisation and filling have been completed. In both cases the correspond-
ing SEM image is shown in the inset. The radial distribution function is a means of
measuring the correlation between particles within a system or, more specifically, a
measure of, the probability of finding a particle at a distance r away from a given
reference particle. A peak indicates an increased prospect of finding particles at that
given distance from a central reference particle while an intensity of 1 corresponds
to the average particle density. An intensity of less than one reveals that there is a
diminished probability of finding a particle at this distance. Focusing on the low-
density situation shown in Fig. 1.8a and considering moving radially away from a
central reference particle several important features can be noted. Firstly, the trough
at short distances indicates that, as expected, there is a low probability of finding
particles, which are amorphously arranged, close to others. One prominent peak, at
a distance which corresponds to the average separation between any given particle
and its nearest neighbours, is then observed before another trough corresponding
to a second region of reduced probability is seen. Outwith this radius the distribu-
tion function tends to 1, showing that no additional order can be discerned. Two
important differences can be noted, however, in Fig. 1.8b. Again moving radially
away from a central reference particle it can be seen that the first peak occurs at
a much smaller distance. This is a mark of closer packing and a good indicator of
overall filling fraction. Secondly, several, perhaps as many as 5, peaks can now be
discerned, showing that there is a considerable increase in the order observed in this
sample.

The morphological changes described, at each stage of the process, result in sig-
nificantly differing optical properties that can be tracked by UV-vis spectroscopy.
The individual particles in the case of the low density array are suitably well-
separated and have no significant influence over one another. The strength of cou-
pling decreases exponentially as two resonant particles are moved away from one
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another and an appreciable interaction is only observed when they are brought to
within a distance of approximately one particle diameter. As such, in the low den-
sity case the optical properties of the array are not substantially different from that
of the individual particle. However, upon each reorganisation step, in the process of
fabricating structures of higher filling fraction, nanoparticles are brought to within
this coupling limit, therefore altering the optical properties. This is manifested as a
significant red-shift of the LSPR of up to 100 nm over 5 reorganisation steps.

1.2.5 Extending into Third Dimension—The Bulk-Assembly
of Polyelectrolyte Layers and Multiple Gold Nanoparticle
Arrays

As has been shown, a significant amount of control is afforded over the organi-
sation of gold nanoparticles within a single planar array. However, for a variety
of applications it is also extremely desirable to extend these gold nanoparticle ar-
rays into the third dimension. A suitable technique for achieving this is through the
build-up of layers of charged polymers, or polyelectrolytes, which exploit the same
electrostatic forces that were originally used to deposit the nanoparticles on the sub-
strate [71]. A wide range of polyelectrolytes, each with their own specific properties,
exist [72]. However, two typical polymers chosen for their versatility, and the ones
used in this work are the anionic poly(sodium 4-styrenesulfonate) and the cationic
poly(allylamine hydrochloride). The process of polyelectrolyte deposition necessi-
tates a charged surface of some description. In the case under discussion here this
charge comes from either the silane functionalised substrate or the gold nanopar-
ticles themselves. When the surface is immersed in a solution of the polymer the
polymer becomes bound through multiple electrostatic interactions. A monolayer is
formed and excess charge on the exterior allows, after a washing step to remove any
excess, the process to be repeated through immersion in a solution of oppositely
charged polymer. This deposition and wash cycle can be repeated as many times
as required with the possibility of building up truly three dimensional systems re-
alised. Arrays of gold nanoparticles can be included at any stage of the process, the
only prerequisite being, of course, that they be sandwiched by polymers of an op-
posite charge. The minimum array separation is therefore imposed by the thickness
of one polymer layer which is thought to be on the order of 1–2 nm [36, 61, 73].
A graphical representation of a similar system to that described above is shown in
Fig. 1.9.

Additionally, the finite thickness of each polymer layer, which is itself depen-
dent on a number of factors such as polymer type, ionic strength of the solution
and molecular weight, allows thin films of extremely precise thicknesses to be
constructed. This has obvious implications when used in combination with gold
nanoparticles of finite separation as the coupling strength, and therefore the fre-
quency of the LSPR are largely dependent on the distance between them. Although
the situation is slightly more complicated, this holds true when large scale arrays,
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Fig. 1.9 Graphical
representation of two gold
nanoparticle arrays deposited
on a glass substrate and
separated by a well-defined
number of polyelectrolytes.
Adapted with permission
from [36]. Copyright (2011)
American Chemical Society

Fig. 1.10 Red-shift upon addition of a second layer of GNPs as a function of layer separation. Both
experimental (squares) and simulated (blue solid line) data are shown for particles of (a) 10 nm
radius and (b) 20 nm radius. Adapted with permission from [36]. Copyright (2011) American
Chemical Society

rather than individual nanoparticles, are considered and offers a means of tuning the
optical properties of such systems. Further advantages offered by this method in-
clude that unlike the Langmuir-Blodgett technique [74], for example, the deposition
of polyelectrolytes can be applied to surfaces of virtually any topology and that the
deposition occurs extremely quickly, over a period of seconds. In addition, similarly
to the size of the initial substrate functionalised, only practical limitations exist both
in terms of how many gold nanoparticle arrays are deposited and their relative sepa-
rations. This, along with the flexibility that is offered, whereby a variety of different
sample architectures can be conceived, all adds to the versatility of the method.

When two gold nanoparticle arrays are fabricated in such a manner that they are
separated by well-defined distances, the magnitude of the dominant resonance is
strongly dependent on the extent of that separation. This can be seen in Fig. 1.10a
which shows the red-shift of the LSPR that is induced upon the deposition of a sec-
ond gold nanoparticle array (both comprised of gold nanoparticles of radius 10 nm)
as a function of the number of polyelectrolyte layers that separate them [36]. The
red-shift is seen to decrease with increasing layer separation until the particles are
moved outwith the coupling limit. An excellent agreement is observed between ex-
perimental (squares) and simulated (solid line) results.

Figure 1.10b also shows the effect that particle size has on systems such as these
with larger particles, of 20 nm radius, being used to fabricate the same structure. It
can be seen that the interaction between particles, as would be expected from the-
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oretical studies [75], is even stronger and extends further for larger particles. This
is a result of coupling limits essentially being a function of particle size. A more
pronounced red-shift is observed for comparable separations when larger particles
are used. Again, an excellent agreement between experimental (squares) and simu-
lations (solid line) exists. Additionally, it can be seen that in this case, larger separa-
tions are required to shift the distinct arrays of particles outwith the coupling limits.
This further increase of polyelectrolyte layers results in a reduction of the interac-
tion of the gold nanoparticles and the optical response should again be dominated
by that of a single particle with no observable red-shift. In addition to being affected
by inter-particle coupling the LSPR that is exhibited by the gold nanoparticle arrays
is also influenced by changes in the refractive index of the surrounding medium. An
overall increase in dielectric constant results in the peak position shifting to higher
wavelengths [76] in an effect that decreases exponentially from the surface of the
particles [75]. As such the resonance frequency will shift upon the deposition of
the polyelectrolyte layers themselves [36], an effect that should be taken into ac-
count when considering the resulting changes in optical properties observed upon
the deposition of additional gold nanoparticle arrays.

All of the techniques, outlined in previous sections, that allow a great degree of
control over the filling fraction of the particles deposited directly on a substrate, re-
main equally applicable to subsequent arrays that have been deposited on polyelec-
trolyte layers. This adds to the flexibility offered by such fabrication techniques, one
of the major advantages of bottom-up technologies.

1.2.6 Observation of Plasmon Splitting

As outlined in the Introduction, the coupling of two spheres can be described with
the principles of plasmon hybridisation theory, shown schematically in Fig. 1.1.
The addition of a second array of gold nanoparticles results in a splitting of the
single resonance into two, where the dominant one is strongly red-shifted. As the
optical response within a single GNP layer was dominated by the LSPR of a single
sphere, this red-shifted resonance is governed by the mutual coupling of spheres
from distinct GNP layers.

When GNP array separation is extremely small, for example by depositing only
a single polyelectrolyte layer between two arrays, a rather amorphous structure con-
taining a variety of dimer orientations relative to the incident wave vector results.
In such a configuration, all of the bonding and antibonding eigenmodes can be ex-
cited [77]. Importantly, only the eigenmodes with a resulting dipole moment domi-
nate the extinction spectra. As a consequence, both such modes should be simulta-
neously excited and the LSPR should split into two individual and resolvable reso-
nances. This has been both observed experimentally and predicted by simulation as
can be seen in Fig. 1.11 [36]. The simulated trace is shown (dashed line, right-hand
axis) in addition to both the measured optical response from a single array of GNPs
(lower solid line, left-hand axis) and the splitting is observed when a second layer
of GNPs is deposited with only one polyelectrolyte separating layer between (upper
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Fig. 1.11 Evolution of longitudinal plasmon peak at shorter GNP (radius 10 nm) layer separa-
tions. Shown are the optical responses of a single array of GNPs measured on a glass substrate
(lower solid line, left-hand axis) and both the experimental (left-hand axis, upper solid line) and
simulated (right-hand axis, dashed line) spectra of a double array of GNPs with one separating
polyelectrolyte layer. Adapted with permission from [36]. Copyright (2011) American Chemical
Society

solid line, left-hand axis). Both eigenmodes with a resulting dipole moment, π∗ and
σ (Fig. 1.1), can be observed with the π∗(σ ) coupled plasmon being observed at
shorter (longer) wavelengths.

1.2.7 Asymmetric Arrays of Metallic Nanoparticles

One of the more recent applications of plasmonic nanostructures can be found in the
field of metamaterials where they are increasingly being used to facilitate the down-
scaling of structures that exhibit properties such as a dispersive permeability [78, 79]
or permittivity that are exploited for cloaking applications [80] and negative refrac-
tive index materials. Such down-scaling is necessary if these properties are going
to be routinely observed and utilised at optical frequencies. The dark eigenmodes
described in the introduction to this chapter play an important role in this field as
the out of phase oscillation of electric dipoles can be related in some cases to a mag-
netic dipole moment which is the key component in many predicted applications of
metamaterials.

One way to excite dark eigenmodes is to use structures that exhibit a consider-
able amount of asymmetry. The majority of studies of metallic nanoparticles which
show asymmetry in either size, shape, or composition has been limited to discus-
sions, both theoretical [81–83] and experimental [84], relating to interactions be-
tween low numbers of isolated particles. However in an extension to the work with
gold nanoparticles outlined in previous sections [36], it has been shown that it is
possible to fabricate large-scale arrays of metallic nanoparticles which display suf-
ficient asymmetry to allow one to excite these dark modes. A net dipole moment is
now displayed in each of the four modes shown in Fig. 1.1, meaning that all modes
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Fig. 1.12 (a) Schematic representation of the structure under study showing Au and Ag nanopar-
ticle arrays separated by several polyelectrolyte layers of alternating charge. (b) Structure under
investigation in the simulations consisting of a heterodimer of one Au and one Ag nanoparticle. The
structure is illuminated by a plane wave propagating along the z direction. Geometrical parameters
and polarisation of the incident field are described in the text

can be excited at normal incidence, unlike in the system constructed with homoar-
rays of nanoparticles. Strongly coupled gold and silver nanoparticle arrays induce
the required asymmetry due to the shifted LSPR frequencies of the nanoparticles of
different composition.

A representation of the principal structure under study in the experimental work
is shown in Fig. 1.12a. The two strongly coupled metallic nanoparticle arrays, de-
posited sequentially on a substrate are separated by an odd integral number of poly-
electrolyte layers. Simulations related to this work were performed on an arrange-
ment of two nanoparticles, which could also be considered as a heterodimer, the
geometrical configuration of which is shown in Fig. 1.12b.

The silver nanoparticles are prepared in a manner very similar to that of the
gold nanoparticles, using a technique known as the Lee-Meisel method [85]. Essen-
tially, a solution of silver salt is reduced by the addition of sodium citrate, which
then additionally caps the particles, thus inducing a negative surface charge. Silver
nanoparticles produced by the Lee-Meisel method exhibit a wider range of particle
sizes and shapes, and do not form as homogeneous an array when deposited on a
substrate when compared to the Turkevich method used for gold nanoparticles. This
renders the spectral interpretation of the ensembles more challenging. However, the
dominating resonances of the system can be fully described by considering a dimer
consisting of one gold nanoparticle and one silver nanoparticle from each array, as
shown in Fig. 1.12b. Therefore, the identification of peaks that correspond uniquely
to the interaction between the distinct arrays of gold and silver nanoparticles and the
detection of dark modes is possible for the structure under investigation.

Figure 1.13a depicts the measured extinction spectra for gold and silver nanopar-
ticle arrays separated by a range of different numbers of polyelectrolyte layers. Two
resonances with distinct spectral behaviour are observed. The resonance at longer
wavelengths is shifted to the red for a decreasing number of separating polyelec-
trolyte layers. Furthermore, the peak amplitude of this resonance stays nearly con-
stant. Conversely, the resonance at shorter wavelengths offers a nearly constant res-
onance position whereas the peak amplitude depends on the number of polyelec-
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Fig. 1.13 (a) Measured and (b) simulated extinction spectra for strongly coupled gold–silver
nanoparticle layers for different numbers of separating polyelectrolyte layers

trolyte layers. Increasing the number of polyelectrolyte layers, thus decreasing the
coupling between particles, results in an enhancement of the peak amplitude. There
is an additional resonance, which can be identified just below 700 nm, present in the
experimental spectra which results from small aggregates in the silver nanoparticle
array. This band, however, does not contribute to one of the four hybridised reso-
nances, shown in Fig. 1.1, that result from the mixing and splitting of modes when
two nanoparticle arrays are brought together and can therefore be neglected from
subsequent discussions.

The results of the numerical simulations are shown in Fig. 1.13b. The qualita-
tive behaviour of the two resonances as observed in the experiments is entirely re-
produced in the simulations. Both simulations and experiments show an increasing
peak amplitude for a greater array separation, or in other words, a reduced coupling
of the spheres. One explanation of this trend could be the excitation of a dark eigen-
mode at this wavelength. If the particles are strongly coupled, the eigenmode cannot
radiate into the far-field and therefore the amplitude of the extinction is suppressed.
If the coupling is reduced the excitation into the far-field is increased and therefore
the amplitude of the peak extinction should be enhanced, as is observed in both
experiments and simulations.

To facilitate a clear identification of the excited eigenmodes of the structure and
to reveal their properties in terms of the hybridisation scheme, shown in Fig. 1.1, the
simulated results of the heterodimer can be further interpreted. In Mie theory, one
has direct access to all excited multipole moments of every sphere in a system of
spheres that is illuminated by an incident field. The reason is that the scattered fields
of all spheres involved are decomposed into the eigenfuntions of the Helmholtz
equation and this expansion is comparable to a multipole expansion in spherical co-
ordinates. Therefore, the excited electric dipole moments, and their phase relation
to each other, of the two spheres of the simulated heterodimer can be revealed di-
rectly from Mie theory. A detailed discussion can be found in Refs. [86] and [87].
Sketches of the electric dipoles at the two resonance positions for a single separating
polyelectrolyte layer are shown in Fig. 1.14c and Fig. 1.14d.
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Fig. 1.14 Illustration of the asymmetric (a, c) and symmetric (b, d) eigenmodes for the dimer
structure separated by one polyelectrolyte layer. (a) and (b) show the magnitude of the electric
field (normalised to the incident field) for both resonances as well as the vectorial character of the
internal fields. The lengths of the white arrows decode the magnitude of the internal field at this
position and the direction shows the contribution of the x- and the y-component of the internal
field to its magnitude. (c) and (d) depict the excited electric dipoles at both resonances of the
gold and the silver sphere as they contribute to the scattered field. These dipoles are sketched as
blue arrows coinciding with the origin of the respective sphere. The third arrow (at x = 20 nm)
shows the polarisation of the incident field at the respective time where the snapshot is taken.
All xy-cross sections shown include the centre of the gold sphere. One polyelctrolyte layer, as
defined in Fig. 1.12b and in the text, has been chosen to separate the particles. Illumination is in
the z-direction, i.e. normal to the plane shown

For the long wavelength resonance, shown in Fig. 1.14d, the in-phase oscillation
of the electric dipoles is clearly observed which indicates the excitation of the bright
σ eigenmode. However, the excited electric dipoles are not strictly oscillating along
the connection line of the spheres, but are also rotating around the origin of the
spheres. This is an effect of the polarisation of the incident field which is parallel
to a diagonal in the xy-plane. This excited eigenmode is dominated by an in-phase
oscillation of both electric dipoles and is therefore a bright mode. In addition, as
is well-known for σ eigenmodes of dimers, the electric field is largely enhanced
in-between both spheres as can be seen in Fig. 1.14b which shows the magnitude
of the electric field and the vectorial character of the internal electric fields of both
spheres. The in-phase oscillation of the σ eigenmode can also be observed. The
short wavelength resonance, shown in Fig. 1.14c, offers a completely different pic-
ture of the excited dipoles in the silver and the gold sphere. Their oscillation can
be understood as an interference of the σ ∗ and π∗ eigenmode from Fig. 1.1. Here,
the excited dipoles in Fig. 1.14c are oscillating 180◦ out of phase along the connec-
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tion line of the spheres (the x direction) and in-phase parallel to the connection line
(the y direction). This interference is again an effect of the chosen polarisation of
the incident field which allows both types of eigenmodes to be excited at the same
time. As such, in the experiments, where the dimers exhibit an amorphous orien-
tation, both eigenmodes (σ ∗ and π∗) should interfere for every heterodimer at this
wavelength. The overall behaviour of the eigenmode excited at shorter wavelengths
offers an out-of phase oscillation of the electric dipoles of the involved spheres, and
is therefore identified as a dark eigenmode. Furthermore, the asymmetric character
of this eigenmode is clearly seen in Fig. 1.14a, which shows the magnitude of the
electric field and the vectorial internal fields. The explanation, given previously, of
the increasing peak amplitude in extinction (see Fig. 1.13) for an increasing number
of polyelectrolyte layers is in full agreement with these conclusions.

1.2.8 Core–Shell Nanoclusters

It is not only planar organisations of metallic nanoparticles which are of interest to
the metamaterials community. Spherical arrangements, otherwise known as core–
shell nanoclusters, have also stimulated a great deal of discussion in the literature,
both of a theoretical [47, 78, 80] and experimental [88–90] nature. Such materials
have garnered intense interest as they have highly tunable optical properties and
it has been proposed that they allow advancements towards materials with double
negative properties [78].

The usefulness of such structures to the metamaterials community is largely
due to the electromagnetic properties that they possess. As has been already out-
lined, when two coupled plasmonic nanospheres are considered using the hybridi-
sation model described in Fig. 1.1 both symmetric and antisymmetric hybridised
modes result. The antisymmetric resonances are strongly sub-radiant and will be
perceived as magnetic dipoles in the far-field. This magnetic response is an im-
portant element where many further applications are concerned [91, 92]. While
structures with strong magnetic dipolar responses can be fabricated by top-down
techniques [93, 94], the disadvantages which this entails, not least of which are
the difficulties involved in creating bulk materials and assigning effective material
parameters, indicate that bottom-up techniques should, at least, be considered as a
means of making advancements in the field.

While several bottom-up preparative routes resulting in such structures exist [88–
90], given all of the advantages related to electrostatic self-assembly outlined in
previous sections, perhaps the most facile and flexible method is an extension of
that used to construct planar arrays of gold nanoparticles. In a development to tech-
niques that have already been outlined, by replacing the large-scale planar substrates
with smaller scale spherical ones it is possible to create solutions of such core–shell
nanoclusters. It is also possible to apply the principles described in these syntheses
to other systems, for example those including semiconductor and magnetic nanopar-
ticles.
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Fig. 1.15 Scanning electron
micrographs of fabricated
core–shell clusters. An
amorphous arrangement of
core–shell clusters is shown
with the inset depicting a
zoomed in view showing a
single core–shell cluster.
Adapted with permission
from [79]. Copyright (2011)
American Chemical Society

In order to induce the electrostatic attraction between substrate and particle it is
first necessary, as before, to functionalise the surface of the substrate. This is regard-
less of the size or form of the substrate. Fortunately, it is possible to functionalise
microspheres of silica using the same reaction as was described in previous sections
for planar glass or silicon substrates, albeit under slightly different conditions [79].
This colloidal nanochemistry approach requires additional purification steps, such
as centrifugation, however large parallels remain between the two methods. Fig-
ure 1.15 shows SEM images of core–shell nanoclusters that have been fabricated by
such a method [79].

It can be seen that the dielectric spheres are coated with a large number of iso-
lated, non-touching gold nanoparticles. The organisation of the gold nanoparticles
results in large changes in the optical properties when compared to isolated units
which are uncoupled to others. This is shown in Fig. 1.16 which highlights both ex-
perimental (a) and simulated (b) results [79]. All traces in Fig. 1.16 are normalised
to their respective maxima in the region under study.

Immediately apparent in the experimental spectra shown in Fig. 1.16a is the large
red-shift, from around 520 nm to around 670 nm, of the LSPR that is induced upon
the organisation of the gold nanoparticles, shown as solid red traces, into a spher-
ical geometry, depicted in the extinction spectra as dashed blue traces. This is in
excellent agreement with the simulated spectra shown in Fig. 1.16b where the ex-
tent of the red-shift is reproduced almost exactly. Any slight deviations could be
explained by the fact that in the simulations only a single core–shell nanocluster is
considered, compared to the situation in the case of the experimental work where
a large ensemble in solution are measured spectroscopically. Here, there will be a
certain degree of polydispersity in relation to both the dielectric core and metallic
shell spheres. Additionally the organisation of the metallic nanoparticles, while to a
large extent comparable, is not identical on each of the individual structures. These
slight differences in geometrical parameters can clearly not be taken into account in
a simulation of a solitary core–shell nanocluster. Despite any discrepancy between
the experimental and simulated spectra, with respect to the strongly red-shifted res-
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Fig. 1.16 (a) Measured extinction spectrum of fabricated core–shell clusters in solution (blue
dashed trace). For comparison, the extinction spectrum of a solution of gold nanospheres is shown
(red solid trace). (b) Simulated extinction spectra of core–shell clusters in solution (blue dashed
trace) and a single gold nanosphere (red solid trace). The inset shows a sketch of the structure
under investigation (scale bar = 100 nm). Adapted with permission from [79]. Copyright (2011)
American Chemical Society

onance, the agreement is convincing. However, one major difference between the
two traces can be discerned. A peak in the experimental spectra at the same wave-
length as the LSPR of an isolated particle is not reproduced in the simulations. This
is caused by excess gold nanoparticles in solution which result from the fabrication
process. It is thought that to ensure the cores remain covered an excess of ‘free’ gold
nanoparticles must be present. This could be as a result of an equilibrium existing
between the gold nanoparticles at the surface of the dielectric cores and those in
solution. These particles are not considered in the simulations and account for this
difference between the experimental and simulated data.

It has been proposed that such structures exhibit a strong isotropic magnetic re-
sponse [78]. This magnetism can be explained by assuming that the shell of metal-
lic nanospheres acts, in effect, as a medium with an extremely high permittivity at
wavelengths slightly above the collective plasmonic resonance. The large permittiv-
ity in turn evokes Mie resonances. For the lowest order one, the electric displace-
ment field rotates in a plane perpendicular to the polarisation of the incident mag-
netic field, meaning that this mode can be associated with a magnetic dipole con-
tribution. That the core–shell nanoclusters exhibit artificial isotropic magnetism can
be confirmed through simulations, which have proven to be in excellent agreement
with experimental results, by deconstructing the extinction spectra and examining
the contribution of the respective multipole moments to the scattered field of the
structures. Further details of this process, which is outwith the scope of this chapter,
can be found in Ref. [78].

The fabrication of these structures is extremely flexible and a number of possibil-
ities to fine tune the architecture, and therefore the optical properties, are available.
For instance, a wide range of sizes of both the dielectric core and the surrounding
gold nanoparticles can be accessed. Additionally, while the fabrication above re-
lates to a coating of gold nanoparticles on a SiO2 core sphere different elements
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Fig. 1.17 (a) Extinction spectra showing an array of SiO2 microshperes deposited on a charged
glass substrate both pre- (blue trace) and post- (red trace) functionalisation with gold nanoparti-
cles. (b) SEM micrographs of an array of core–shell nanoclusters deposited on a charged silicon
substrate

can be brought together in a similar manner. Structures using polymer, or metallic,
core spheres coated with nanoparticles of a variety of different materials and func-
tionalities can be envisaged. The only prerequisite for their fabrication is that an
attraction, of either a physical or chemical nature, exists between the two. In this
work the widespread applicability of electrostatic interactions has been highlighted.

This electrostatic approach can also be used to produce large-scale arrays of
core–shell nanoclusters deposited on planar substrates. Such a step is required if
systems like this are to be incorporated into functional optical devices. In addition,
pre-depositing functionalised SiO2 cores on a planar substrate prior to their coat-
ing with metallic nanoparticles could prove to be a promising route to reducing or
eliminating the excess particles in solution which existed in the previous fabrication
approach. Shown in Fig. 1.17a are extinction spectra which again highlight the pos-
sibilities of creating systems with tunable optical properties simply through the or-
ganisation and ordering of metallic nanoparticles. The lower, blue, trace corresponds
to a single layer of silica microspheres which have been adsorbed on a substrate.
The deposition of the spheres, which are charged positively after a functionalisation
step, self-assemble at the glass substrate surface which has itself been coated in a
negatively charged polymer. The upper, red, trace corresponds to the same array of
microspheres after gold nanoparticles have been deposited at the surface. The argu-
ments, given previously, for the exhibition of a strong isotropic magnetic response
and for the large red-shift of the LSPR, when compared to that of an isolated parti-
cle, remain unchanged. However, the large step that has been taken, from structures
that exist purely in colloidal form to the formation of large scale single layers show
the versatility and applicability of the bottom-up techniques used. The two SEM im-
ages shown in Fig. 1.17b give an idea of what is achievable. The larger image shows
that arrays can be created on a suitably large scale while the image in the inset shows
that, at least in small domains, a degree of order can be achieved. Additionally, it
should also be possible to combine such methods with the layer by layer assembly
outlined previously, allowing the construction of truly bulk optical materials.
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1.3 Conclusions

The examples of bottom-up techniques used to organise metallic nanoparticles into
structures with tailored optical properties described in detail in the previous section
highlight the process of taking a design and discovering ways to realise it. Addi-
tionally, the large extent to which simulations can now be relied upon to give an
accurate reflection of the true experimental situation means that these simulations
can now be used as an effective design tool, allowing theoreticians to propose struc-
tures with desirable properties that can then be realised through chemical methods.
In most cases there will exist several fabrication routes, exploiting different interac-
tions of a chemical and physical nature, which will result in the same structure. This
fabrication process, where the myriad of combinations that exist mean that, within
certain practical limits, possible structures are only really restricted by the imagina-
tion. After different fabrication routes have been identified the onus is then placed
on the materials scientist to determine which course provides the best scientific re-
sults while also taking into consideration other factors such as cost effectiveness and
time efficiency.

An attempt has been made to give an introduction to the wide variety of bottom-
up fabrication techniques that can be used to organise metallic nanoparticles into
structures that could be put to practical use in functional devices or applications.
Additionally, an overview of the areas to which nanoparticles such as these can
be applied has also been given. The wide range of these applications, from purely
decorational through to biomedical and metamaterials, shows the versatility and
flexibility of such systems and that they can be put to practical use in a broad array
of areas, the full scope of which is yet to be fully realised.

In particular, a wide range of applications could be envisaged for the two systems
discussed in more detail in the last section, more specifically in the fields of meta-
materials and plasmonics. The extent to which the optical properties of such systems
can be tailored to meet particular requirements, as well as the means used to mod-
ify them has been described in detail. The flexibility of several material parameters
of the structure, whereby metallic nanoparticles of different size, composition and
shape can be deposited on functionalised substrates of varying form and the ability
to control the distance between them to within almost nanometre precision means
that such systems could have roles to play in a variety of different applications. For
example, the suitability of the planar arrays of metallic nanoparticles for applica-
tions in SERS has been investigated and it has been shown that the distance be-
tween the two arrays of particles, which can be controlled by changing the number
of polyelectrolyte layers deposited between them, has a large effect on the enhanced
Raman signal. As the distance between the two arrays is increased the electromag-
netic field focused in the nanogap, which is the principal cause of enhancements
observed, decreases and the Raman signal is seen to decrease accordingly.

Alternatively, taking the structure of radio frequency Yagi-Uda antennas as in-
spiration it has been proposed that the close correspondence between this and the
stratified arrays of metallic nanoparticles could give rise to waveguides for single
photon and single plasmon sources [95]. Similar comparisons have been drawn in
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other publications [96, 97], taking well-developed technology and down-scaling it
to achieve nano-scale equivalents with plasmonic inclusions that result in structures
that could be included in nanophotonic and nanoelectronic devices. The ability to
prepare many layers of metallic nanoparticles with controllable distances between
them makes these applications a very real possibility. Taking motivation from other
related theoretical studies, nanolenses constructed of chains of nanoparticles pro-
gressively diminishing in size and separation could also be made a reality. The focus
of this nanolens or ‘hottest spot’ would exist in the gap separating the two small-
est nanoparticles where the electromagnetic fields are further enhanced compared
to what is normally seen in a simple dimer due to the multiplicative, cascade effect
of its geometry [98]. Other possible applications of the layered arrays of nanoparti-
cles include superlensing, one of the holy grails of metamaterials research, whereby
the diffraction limit, which is an inherent limit present in all conventional optical
devices, is broken. One of the first experimental observations of superlensing came
in 2004 whereby images significantly narrower that those predicted by the diffrac-
tion limit were formed [34]. However this work was conducted in the microwave
region of the electromagnetic spectrum and as has been outlined throughout this
text, the control offered by novel bottom-up techniques permits these structures to
be down-scaled and similar properties to be observed in the visible regime.

A massive range of potential sensing applications for such systems also exists.
The sensitivity of the LSPR to localised changes in refractive index means that a
huge variety of analytes can be accurately and precisely measured. When com-
bined with the almost limitless catalogue of surface chemistry modifications that
are accessible which introduces the additional dimension of selectivity. Other cut-
ting edge sensing applications using structures such as the one under discussion
could include the incorporation of, for example, thermally responsive polymers,
which would result in a plasmonic system with temperature dependent optical prop-
erties [99]. Alternatively, by preparing the layered arrays of gold nanoparticles on
softer substrates such as PDMS rather than glass or silicon pressure sensors, where
the optical response varies with stretching or compression, resulting in a deforma-
tion of the nanoparticle organisation and shifts in the optical properties, could be
envisaged.

These practical applications are in addition to the pure scientific insight that
can be achieved from studying different architectures of gold nanoparticles. As
was shown in the detailed study of core–shell nanoclusters [79] they exhibit arti-
ficial isotropic magnetism in the visible spectral domain—a key element of many
metamaterials applications. One such application is the construction of cloaking de-
vices [80]. It has been shown theoretically that very similar structures to the core–
shell nanoclusters shown in the main body of this chapter should, to a certain extent,
attenuate the scattering response of the internal dielectric core sphere. For this to be
achieved it is necessary for the system to be constructed using relatively small core
spheres decorated with silver nanoparticles, whose optical properties are signifi-
cantly different from their gold counterparts.

This chapter has given a glimpse of what is currently achievable in the field of
bottom-up self-assembly of metallic nanoparticle structures with a degree of focus
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given to their applicability in the preparation of metamaterials at optical frequencies.
Specific methods of creating a wide variety of metallic nanoparticles with a wide
range of optical properties have been introduced along with the means to organise
them and control their optical properties. These means can be built upon, improved
and combined with others to make other structures with exciting possibilities equally
achievable. This flexibility, allowing for the inclusion of almost any charged species
in the layered arrays of metallic nanoparticles for example, is a signature element
of the bottom-up approach and, along with the high degree of control achievable,
is one of the major advantages of this approach. Using self-assembly at all levels,
from the nanoscale to the macroscale, several material parameters, such as particle
composition, size and separation, can be manipulated with impressive precision. In
addition, the simplicity and robustness of the approach, coupled with the large-scale
of the substrates that can be produced, opens up the possibility of integrating such
structures into functional devices and components, which should be the goal if the
fruits of such research is to continue having a positive impact on our lives.
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Chapter 2
Amorphous Metamaterials and Potential
Nanophotonics Applications

Filiberto Bilotti and Sergei Tretyakov

Abstract In this chapter we discuss potential applications of amorphous electro-
magnetic metamaterials. We have selected applications where the amorphous nature
(random positioning of inclusions or random variations of inclusion dimensions and
shape) does not lead to significant performance degradation or even leads to some
advantageous properties. Special emphasis is on applications in cloaking and in su-
perlensing devices. The potential use of amorphous metamaterials has the obvious
practical advantage such as the possibility to manufacture the necessary nanostruc-
tures using large-scale self-assembly techniques that are described to some extent in
other chapters of this book.

2.1 Introduction

In this chapter, we summarize the useful properties of applications which can be
potentially realized on the base of amorphous metamaterials. We have identified
a number of applications where the amorphous nature of metamaterials does not
lead to performance degradation (as compared to metamaterials formed by regular,
periodical lattices of inclusions) or even brings improvements of performance. For
each of the foreseen applications, we present: (a) the physical mechanism behind
the operation, (b) the analytical validation of the physical expectations, (c) and,
whenever possible, the numerical validation of the analytical models through proper
full-wave simulations.

In the last decade, a number of metamaterials showing unusual and useful
electromagnetic properties have been realized and tested. These structures are
usually composed of small individual resonant inclusions arranged in two- or
three-dimensional periodic arrays. However, most recently, random or amorphous
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metamaterials start attracting more attention. This is due to novel technological pos-
sibilities to manufacture amorphous structures cheaply and on a large scale with
self-assembly techniques. It is generally accepted that the fundamental electromag-
netic properties of both regular and random arrays are quite similar if the distances
between inclusions are electrically small in comparison with the wavelength of
waves propagating or decaying in the structure. The main difference in electromag-
netic response is assumed to come from extra scattering loss in amorphous com-
posites due to scattering on inhomogeneities of the lattice. This apparently results
in additional loss, and for this reason regular metamaterial lattices have been the
preferred choice if low-loss response is desired. However, if a random array is ef-
fectively homogeneous at the wavelength scale, there are no additional scattering
losses, just like in ideally periodical grids. Moreover, as it will be clear from the
following, in some situations the electromagnetic properties of random structures
may bring advantages in practical applications of these materials.

The first section is a presentation of spherical and cylindrical invisibility cloaks,
allowing strong reduction of the visibility of objects with small and moderate elec-
trical (optical) sizes. Among the different known approaches to cloaking, we have
focused our attention to the scattering cancellation technique, which can be easily
implemented with amorphous metamaterials. Some applications of the cloaking de-
vices that can be realistically obtained with the available materials are presented in
turn, with particular emphasis on the reduction of the noise in near-field scanning
optical microscopy systems. The second section is the presentation of planar spatial
filters consisting of metamaterial slabs exhibiting near-zero values of the real part
of the permittivity function. Such filters can be used to convert a broad optical beam
into a directive one and are, thus, potentially useful for beaming applications. The
third section presents novel sub-wavelength imaging devices. Particularly, the de-
sign and implementation of a real-time superlens capable to resolve the details of a
source which are finer than the illuminating light wavelength is presented.

2.2 Cloaking Devices

2.2.1 General Concepts

In this section, we describe possible use of amorphous metamaterial structures as
cloaking devices to reduce the visibility of nanosized objects. Cloaking of a particle
means to put a cover around it in order to reduce its total scattering cross section
(i.e., the ideal cloak reduces the total power scattered in all directions to zero, which
implies also absence of absorption). According to this definition, thus, a cloaked
object becomes invisible.

Several approaches to cloaking based on different physical mechanisms have
been proposed in the last few years [1–15]. One of these approaches, referred to as
scattering cancellation, consists in the compensation of the scattering produced by
an illuminated object by covering it with a cover made of a suitable material. If prop-
erly designed, the scattering by the cover, in fact, compensates the one due to the
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object, making the object itself invisible. As was demonstrated in [5], to cloak a di-
electric object, the material of the cover should be characterized by proper values of
the real part of the relative permittivity function at the operating frequency (smaller
than unity, usually negative or near-zero). However, whatever the material constitut-
ing the object (i.e. either a plasmonic or a dielectric one) is, it has been demonstrated
that the cover can be made of a material exhibiting near-zero values (i.e. the modulus
is between 0 and 1) of the real part of the relative permittivity function.

2.2.2 Cloak Design Using Metamaterials

Such cloaking materials can be fabricated as composites formed by metal nanopar-
ticles. Let us consider as a first example an appropriate arrangement of gold
nanospheres. Let us assume that we are allowed to describe the dispersive per-
mittivity of gold in the visible frequency range by the Drude dispersion func-
tion with the following effective bulk properties: εb = 9, ωp = 1.38 × 1016 rad/s,
τ = 1.2 × 10−14 s. εb is the permittivity at infinite frequency. Of course, it is not
the actual physical value of the relative permittivity at infinite frequency, but rather
a fitting parameter used to match the Drude dispersion with the gold permittivity
within the visible frequency range. From the physical point of view, this parameter
models low-frequency contributions from all oscillators with resonances at higher
frequencies. ωp is the plasma frequency, depending on the electron density of bulk
gold; τ is the average time between two consecutive collisions of free electrons in
bulk gold. However, considering that the size of the gold spheres is in the nanometer
scale, free electrons experience a different collision frequency with respect to their
bulk counterparts, especially when the size of the sphere becomes comparable to
the electron mean free path. Therefore, the complex relative permittivity function
of gold for the nanosphere case could be expressed, in the first approximation, as
follows [16]:

ε(ω)= εb − ω2
p

ω(ω+ iτ−1 + iυF /R)
(2.1)

where vF = 1.4 × 106 m/s the Fermi velocity of gold and R the radius of the
nanospheres.

Now, let us assume that the sphere radius is small compared to the operation
wavelength and consider an arrangement of such spheres in a non-absorbing back-
ground medium, whose refraction index is nm. With f being the fraction of the
background volume occupied by the gold nanospheres and assuming that f is suffi-
ciently small, it is possible to homogenize the arrangement of the gold nanospheres
according to the Maxwell-Garnett model as an effective medium with the following
equivalent permittivity [17]:

εe(ω)= n2
m

ε(ω)(1 + 2f )+ 2n2
m(1 − f )

ε(ω)(1 − f )+ n2
m(2 + f )

(2.2)

Here ε is the permittivity function of the single nanosphere, as introduced above.
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Fig. 2.1 Real part
(continuous line) and
imaginary part (dashed line)
of the effective permittivity of
a gold nanosphere
arrangement with f = 0.27

In order to show an example, let us assume that the host medium is simply the
vacuum and that we would like to obtain for the nanosphere arrangement a real
part of the relative permittivity equal to εe = 0.2 at a given frequency in the vis-
ible. Fixing the frequency at 700 THz, the corresponding filling factor, needed to
match the required value of the real permittivity, is f = 0.27. The corresponding
real and imaginary parts of the effective permittivity of the gold sphere arrangement
are reported in Fig. 2.1.

With this preliminary step, we have demonstrated that, by using an arrangement
(not necessarily ordered) of gold nanospheres, it is possible to implement a mate-
rial with near-zero values of the real relative permittivity in the optical frequency
range.

In the following, we apply the material design procedure now outlined to the
design of a cloak for a cylindrical nanoparticle. Let us consider a dielectric object
(εd = 2) with a cylindrical shape (a = 50 nm, L= 500 nm), as reported in Fig. 2.2a.
The total scattering cross section of such a cylinder, when illuminated by a plane-
wave with a radial wave vector and an electric field directed along the cylinder axis,
is reported in the continuous line plot of Fig. 2.3. As evident, the total scattering
cross section of the cylinder increases with the frequency, since the object becomes
electrically larger.

In order to minimize the total scattering cross section of the cylindrical object, it
has been demonstrated that the same cloaking rules of the unbounded cylinder can
be used [7]. According to these rules, assuming that the cloak is a cylindrical shell
with the external radius ac and internal radius a (see Fig. 2.2a), provided that ac
is electrically small, the relation between the geometrical dimensions a, ac and the
real relative permittivities of the object and the cloak εd , εc is given by [5]:

a

ac
=
√
εc − 1

εc − εd
(2.3)
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Fig. 2.2 Finite-length
dielectric cylinder covered by
a homogeneous (a) and a
nanosphere based (b) cloak.
εd = 2, a = 50 nm,
L= 484 nm (around one
wavelength at 700 THz)

Fig. 2.3 Total scattering
cross section of the bare
dielectric cylinder
(continuous line) and of the
cylinder covered by a cloak
consisting of 156 gold
nanospheres (dashed line)

Assuming now that ac = 75 and a = 50 nm, which leads to cloak thickness of
25 nm, the cloaking condition is verified if εc = 0.2. Therefore, in order to cloak
the given cylinder at a given frequency, it is necessary to cover it with a material
cover having thickness 25 nm and the real relative permittivity εc = 0.2.

Considering the results we have shown above for the arrangement of gold
nanospheres for the filling fraction of f = 0.27, we are able to cloak the cylinder at
around 700 THz. The cover can be designed by considering an ordered distribution
of spheres as reported in Fig. 2.2b so that the spheres, having the diameter of 25 nm,
occupy the fraction f = 0.27 of the total volume of the cover. In order to do that, it
is possible to use 156 nanospheres arranged in 12 columns with 13 spheres for each
column and with the angular separation of 30◦ between two adjacent columns. Con-
sidering the previous homogenized model of the nanosphere, the structure reported
in Fig. 2.2b is equivalent to the one reported in Fig. 2.2a.
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Fig. 2.4 Time-domain distribution of the y-component of the electric field at a given time instant
(up) and electric field phase distribution (down) at the cloak frequency (around 700 THz) on the
y = 0 plane for the (a) bare and (b) covered cylinder

The structure has been simulated by launching a plane-wave with the electric
field directed along the cylinder axis and the obtained total scattering cross section
versus frequency is reported in Fig. 2.3. As expected, at around the cloak design
frequency of 700 THz the observability of the cylinder is highly reduced, due to
the presence of the gold nanospheres. The amplitude and phase field maps reported
in Fig. 2.4 confirm the reduced observability of the cylinder. Field maps, in fact,
reveal a field distribution outside the cylinder similar to the one of the impinging
plane-wave.

In addition, in order to consider the effect of possible misalignments due to fab-
rication errors/tolerances or due to the amorphous arrangement of gold nanospheres
around the cylinder, we show in Fig. 2.5 three different geometries with increas-
ing level of disorder in the sphere arrangement. We have divided the 156 spheres
in seven independent subsets. The first subset has not been moved with respect to
its original position. The second and the third subsets have been shifted along the
y-axis of a quantity ±Δ, respectively. The fourth and the fifth subsets have been
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Fig. 2.5 Covered cylinder
after the geometrical
perturbation of the
nanosphere arrangement for
(a) Δ= 3 nm, (b) Δ= 6 nm,
and (c) Δ= 9 nm

Fig. 2.6 Total scattering
cross section of the covered
cylinder for different values
of Δ

shifted, in the same direction, by ±Δ/2, respectively. Finally, the last two subsets
have been rotated with respect to their original position by an angular quantity cor-
responding to an arc of ±Δ, respectively. Since the homogenization conditions are
preserved in all the three cases, the behavior of the cloak does not have to depend on
the ordered alignment of the sphere but rather on their filling fraction. The results
reported in Fig. 2.6 confirm this behavior, opening the door to the design of visible
cloaks for cylindrical objects by the amorphous arrangement of gold nanospheres.

So far, we have considered gold as described by a Drude model and assumed that
the homogenization rules are valid for the used filling fraction. However, measured
real gold electrical properties differ from the ones of the Drude model, especially for
what concerns the loss level at the frequency range around and above 700 THz (sim-
ilar considerations apply also for silver). In addition, the role of the filling fraction
and its validity limitations in homogenization models need further discussion.
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Fig. 2.7 Real and imaginary
parts of the effective
permittivity for an array of
gold nanospheres embedded
in a silica matrix for different
values of the filling volume
fraction

For a more appropriate analysis, in the following we replace Drude permittiv-
ity with measured dispersive permittivity for some common noble metals [18] and
we repeat the previous exercise. Complex effective permittivities of arrays of gold
nanospheres with different values of the filling volume fraction and embedded in
a silica matrix are shown in Fig. 2.7 (please, note, that vacuum used in the previ-
ous examples has been replaced here by a more realistic dielectric support). With
the indicated filling volume fractions (compatible with the limitations presented in
[19]), we are able to bring the required epsilon near-zero behavior down to optical
frequencies. As evident from Fig. 2.7 (see the imaginary part plot), however, losses
are clearly too high to guarantee good performances of the devices realized through
such an artificial material and, thus, the proposed solution is to be discarded. This
unlucky exercise, however, tells us about the role of the filling volume fraction.
Higher values of f are, in fact, not compatible with the limitations reported in [19]
and lead to an epsilon near-zero behavior at higher frequencies. Lower values of f ,
instead, reduce the resonance effect of the plasmonic spheres and, consequently, the
values of the real part of the effective permittivity are not in the epsilon near-zero
range anymore. Therefore, the values of the filling volume fraction here considered
are the ones optimizing the two opposite trends now described and keeping the re-
quired near-zero behavior at optical frequencies.

As documented in [18], a way to reduce the losses at optical frequencies is to
replace gold with silver. The results presented in Fig. 2.8 confirm that losses are
significantly reduced but the near-zero frequency band is now shifted towards the
near-UV. Please note that, due to the different plasma frequencies of gold and silver,
the values of the filling volume fraction required to have the near-zero behavior at
optical frequencies are now rather low compared to the ones required in the case of
gold nanospheres.

A possible solution to bring the required near-zero behavior to optical frequen-
cies with a reasonable level of losses is reported in [20] and shown in the following.
We may use an array of core–shell nanospheres with a plasmonic shell and a di-
electric core. Such a structure allows lowering the near-zero frequency range, due to
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Fig. 2.8 Real and imaginary
parts of the effective
permittivity for an array of
silver nanospheres embedded
in a silica matrix for different
values of the filling volume
fraction

Fig. 2.9 Unit-cell of the
designed artificial material
slab. The thickness of the slab
is d = 0.17λ0 at the design
frequency

the hybridization of the two plasmons arising at the two metal-dielectric interfaces.
This phenomenon leads, in fact, to two new resonances of the particle, one of which
is at a lower frequency compared to that of the plasmonic material itself [21]. The
core–shell resonances can be tuned varying the shell thickness, as well as changing
the material of the core (and of the shell). The complex effective permittivity of the
artificial material can be analytically expressed by inserting the polarizability of a
single core–shell nanoparticle into the Clausius-Mossotti homogenization formula
as:

εeff = −(εm{2(f − 1)εm
[
(β + 2)εr1 + εr2 − βεr2

]+ (2f + 1)εr1
[
2(β − 1)εr1

− (2β + 1)εr2
]})/(

(f + 2)εm
[
(β + 2)εr1 + εr2 − βεr2

]
+ (f − 1)εr1

[
2(β − 1)εr1 − (2β + 1)εr2

])−1
, (2.4)

where εr2 and εr1 are core and shell relative permittivities, respectively, a2 and a1
the core and the shell radius, respectively, and β = a2/a1 (see Fig. 2.9).
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Fig. 2.10 Real and
imaginary part of the effective
permittivity for an array of
core–shell nanospheres
embedded in a silica matrix
with β = 0.296 and f = 0.3

Fig. 2.11 (From [12])
Schematic of the dielectric
sphere to be cloaked
surrounded by metallic
nanoparticles (right) forming
an effective invisibility shell
(left) described by its
effective permittivity εs and
effective polarization vector
(dashed arrows)

By using this formula, we can now design an artificial material consisting of
an array of nanospheres formed by a silver shell and a silica core, embedded in
a silica matrix. The single nanoparticle has an overall radius of 15 nm and the β
factor is assumed equal to 0.296 in order to guarantee a reasonable thickness of the
silver shell. Silver is modeled by using its measured bulk permittivity [18], while a
constant permittivity equal to 2.137 is assumed for the silica. The resulting complex
effective permittivity is shown in Fig. 2.10. We observe that the near-zero behavior
(with a reasonable amount of losses) is obtained quite far away from the resonance
(around 740 THz) and, thus, the analytical model can be reasonably used.

The homogenized material here designed can be now successfully used to cloak
the cylinder of Fig. 2.2. Further details about the actual cloak design by using this
new kind of homogenized material are reported in [22].

The results presented so far, of course, are also valid in the case of electri-
cally small spherical objects, where appropriate shell-cluster structures may act as
a cloaking device for a finite range of frequencies [12]. Let’s consider, for instance,
clusters, which consist of an amorphous arrangement of metallic (silver) nanoparti-
cles, which could be approximated in the quasistatic limit by an effective medium,
having interesting properties such as a negative or very low permittivity in the op-
tical domain with moderate losses. The effective properties of a shell made of such
small spheres using the Maxwell–Garnett formula have been discussed before. In
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Fig. 2.12 Numerical calculation of the total scattering efficiency for two different permittivities
of the dielectric core sphere as a function of frequency [(a) εc = 2.25, (b) εc = 8]. The lines then
have following meaning: red dotted line, bare sphere; blue solid line, core–shell system rigorously
calculated where the fine details of the structure are accounted for; green dashed line, homogeneous
core–shell system where the shell is described by the Maxwell–Garnett approximation. Note the
very good agreement in the frequency domain of effective cloaking around 900 THz. Reprinted
with permission from [12], Copyright 2011, ACS

[12] is has been numerically shown that a dielectric core sphere can be made almost
invisible around the frequency of 910 THz (where near-zero behavior and reason-
able losses can be obtained) with a scattering reduction of more than 75 percent.
The considered geometry is reported in Fig. 2.11, while the corresponding scatter-
ing performance in Fig. 2.12.

2.2.3 Cloaking Applications

Electromagnetic cloaking opens the door to several interesting applications, includ-
ing resolution enhancement of near-field scanning optical microscope (NSOM) sys-
tems and manipulation of optical forces. In the following we will briefly describe
such applications with some details.

NSOM systems allow to go beyond the diffraction limit and to obtain high-
resolution images of nanoparticles, optically small samples, corrugated surfaces,
etc. NSOM operation relies on a metallic tip scanning the sample/surface to get
the high-resolution image. Depending on the tip classes, the image acquisition is
performed by using different techniques. Basically, there exist two different probe
types: aperture and aperture-less tips [23]. Here we are interested in the latter, con-
sisting of a solid metallic tip working in the so-called scattering mode [23]: when
illuminated by an external source, the strong scattered field due to the tip end inter-
acts with the sample and enhances its near-field features, allowing the acquisition of
a high-resolution image in the far field. However, since the illuminating beam can-
not be collimated at scales comparable to the tip end dimensions, the whole probe
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Fig. 2.13 Operation of (a) a regular aperture-less NSOM tip and (b) an NSOM tip partially cov-
ered by a material exhibiting a near-zero value of the real permittivity. Reprinted with permission
from [25], Copyright 2011, OSA

body produces an undesired scattering contribution, strongly affecting the image
resolution (see Fig. 2.13a). At different scales, this is true in the case of both passive
and active samples, whose scattered field is either at the same or at a different fre-
quency with respect to the illuminating source, respectively [24]. In [25] it has been
shown that the scattering cancellation approach can be successfully used to enhance
the resolution of NSOM systems based on aperture-less tips, due to its peculiarity
to preserve the interaction between the illuminating field and the object to hide.

The operation of the NSOM tip proposed in [25] is sketched in Fig. 2.13b. The
cloak covers the aperture-less NSOM probe, except its very tip, in order to preserve
the needed strong tip-sample interaction. In this way, while keeping the operation
mechanism of the probe, it is possible to cancel out the unwanted scattering from the
whole probe, increasing, thus, the signal-to-noise ratio in the far-field. In order to
prove this concept, the authors of [25] decided to work at mid-infrared frequencies
and precisely at around 10.3 µm, where silicon carbide (SiC), which is a material
widely used in electronics, naturally exhibits the required near-zero valued real per-
mittivity [26]. In addition, at such frequencies, a few light sources are also available,
such as the CO2 laser, whose operation can be tuned from around 9.2 up to 11.4 µm.
In Fig. 2.14, the field maps at the design frequency in the cases of covered and un-
covered tips are reported. The reduction of the unwanted scattering by the tip and
the preserved interaction between the tip end and a possible object to be placed in
its proximity are evident.

In Fig. 2.15, the desired and the unwanted field components are plotted as func-
tions of the wavelength in the cases of uncovered and partially covered tips. Again,
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Fig. 2.14 Electric field amplitude distribution due to an unit-amplitude uniform plane-wave il-
luminating the regular aperture-less gold NSOM tip (a) and a covered gold NSOM tip (b). The
field amplitude is plotted at the design frequency of 10.3 µm. Reprinted with permission from [25],
Copyright 2011, OSA

Fig. 2.15 Amplitudes of the total (incident + scattered) electric field components at some ref-
erence points along the tip body in the case of a regular aperture-less gold NSOM tip (a) and a
covered tip (b) as a function of the wavelength. Reprinted with permission from [25], Copyright
2011, OSA

the amplitude of the undesired field components is dramatically reduced by using
the cloak, while the desired field component is still the dominant one.

The same concept can be demonstrated at different wavelengths, such as near-
infrared (NIR) and visible frequencies, but in that case, due to the lack of natural
materials with a near-zero permittivity, the design requires fabrication of proper
artificial materials, as shown in the previous examples of the cloaked cylinders.
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Fig. 2.16 Bare (left) and
cloaked (right) cone.
Geometrical parameters:
h= 484 nm, RB = 50 nm and
Rb = 30 nm. Reprinted with
permission from [20],
Copyright 2012, Elsevier

Fig. 2.17 Total scattering
cross-section of the bare cone
(black solid line) and of the
cloaked one for different
values of the volume filling
fraction f . Reprinted with
permission from [20],
Copyright 2012, Elsevier

A possible design has been recently presented in [20] by using the homogenized
material made of the core–shell silver nanospheres documented above. The corre-
sponding geometry and results are shown in Figs. 2.16, 2.17, and 2.18.

Another interesting application field of metamaterial cloaking is in the reduc-
tion and manipulation of optical forces and torques. When object dimensions ap-
proach the nanoscale, optical forces, which are usually neglected in everyday expe-
rience, come into play, and their contribution cannot be neglected any more. Typ-
ically, light forces exerted on electrically small particles are explained in terms
of gradient and scattering forces. The former are directly related to the interac-
tion between the external field and the induced dipole, which is drawn by the
field intensity gradients. The latter are related to the momentum transfer between
the scattered field and the illuminated particle, being proportional to the Poynting
vector. Since both these forces are inherently associated to the scattering prop-
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Fig. 2.18 Time-domain distribution of the y-component of the electric field at a given time instant
(up) and electric field phase distribution (down) for the cases of the bare (a) and cloaked cone (b).
The plots show the field distribution at the cloak frequency of 740 THz on a plane parallel to the xz
plane placed at the half height of the cone. Reprinted with permission from [20], Copyright 2012,
Elsevier

erties of the object, a cloak placed around a nanoparticle and causing the re-
duction, or even suppression, of the total scattered field, may open the door to
unusual particle manipulation. In [27], it has been recently shown that, follow-
ing the formulation based on Maxwell’s stress tensor, the total optical force ex-
erted on a nanoparticle can be written as the sum of three contributions: the ra-
diation pressure, the gradient force and another term which is usually related to
the electromagnetic field spin density. These three contributions are proportional
to either the real part or the imaginary part of the object polarizability. There-
fore, if we are able through a proper cloak to reduce or even suppress both the
real and the imaginary parts of the polarizability, we are able in principle to re-
duce or suppress all the optical forces exerted on the nanoparticle. As an exam-
ple, we show in Fig. 2.19 what happens to a cloaked spherical particle immersed
in a field distribution generated by two orthogonal standing waves. The uncloaked
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Fig. 2.19 (a) Spherical nanoparticle immersed in a field distribution generated by a pair of orthog-
onal standing waves. Arrows represent the strength and direction of the gradient force exerted on
the sphere. (b) Cloaked spherical nanoparticle immersed in the same field distribution

particle experiences a gradient force which tends to move the particle towards the
light spots, while the cloaked particle does not feel any force and keeps its motion
state.

Metamaterial cloaks can be also used to manipulate the torque exerted on elon-
gated nanoparticles. The idea is briefly sketched in Fig. 2.20. Elongated nanopar-
ticles are anisotropic structures characterized by a polarizability tensor. The po-
larizability along the longitudinal direction is greater than the ones in the trans-
verse plane and, consequently, when the particle is illuminated by a given elec-
tromagnetic field, it tends to be aligned with the major axis along the electric
field vector. This represents the stable equilibrium position for the particle, while
the orientations along the minor axes (i.e. the ones in the transverse plane) repre-
sent unstable equilibrium positions. In [27], it has been shown that metamaterial
cloaks can be successfully used to obtain unusual equilibrium positions, making
stable positions unstable ones, and vice versa. Particularly, it has been shown that
the material properties of the cloak can be used to make the longitudinal polar-
izability (in both real and imaginary parts) of an elongated particle smaller than
the transverse ones. In this way, the stable equilibrium position of the particle is
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Fig. 2.20 (a) Rotation and
stable equilibrium position of
an elongated nanoparticle
illuminated by an
electromagnetic field.
(b) Unusual rotation and
stable equilibrium position of
a cloaked elongated
nanoparticle illuminated by
an electromagnetic field

the one with a minor axis directed along the electric field. A simple example is
sketched in Fig. 2.20, while the interested reader may find the analytical details
in [27].

2.3 Beaming and Spatial-Filtering Devices

2.3.1 General Concepts

Metamaterials exhibiting near-zero values of the real permittivity have been recently
proposed as good candidates to obtain innovative spatial filtering and beaming de-
vices. The very basic intuitive concept is sketched in Fig. 2.21, where a ray ap-
proximation has been used [28]. An electrically small aperture is assumed as a light
source radiating in presence of a dielectric slab. If a regular dielectric is used (see
Fig. 2.21a), the individual spectral components experience reflection and transmis-
sion, according to Snell’s laws, the transmitted rays are rather sparse, and the result-
ing radiation pattern is rather broad. In contrast, when the dielectric slab is made
by an artificial material whose real part of the permittivity function is characterized
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Fig. 2.21 Heuristic
ray-theory interpretation of
the behavior of an
electromagnetic source
radiating in presence of
(a) a regular dielectric slab
and (b) a metamaterial slab
characterized by near-zero
values of the effective real
permittivity

by near-zero values, the refraction index is also near zero and Snell’s laws return
a transmission angle close to broadside, whatever the spectral component is (see
Fig. 2.21b). In other words, only a few spectral components around the broadside
emerge from the slab, resulting in a very directive beam.

An alternative way to look at the same phenomenon is the following: though all
the rays generated by the source traverse different geometrical distances within the
slab, according to the different angles, the electrical distances are, instead, nearly
the same, due the near-zero value of the refraction index. Therefore, the different
ray contributions emerging at the upper boundary between the slab and the vacuum
are characterized by the same phase and, thus, radiate coherently towards a given
direction, resulting in a very directive beam.

This concept can be easily generalized to the case reported in Fig. 2.22. In prin-
ciple, with the use of near-zero permittivity materials, it is possible to manipulate
a given impinging phase front and transform its phase distribution into a desired
shape by properly tailoring the exit side of the metamaterial slab.

This, of course, may have important implications in imaging and communica-
tions technology, since it can be speculated that, by designing the conformal face
of the exit side, it is possible to engineer the phase front shape to a given desired
pattern, independent of the form of the impinging wave. Typical applications may
be found in the design of beaming devices (i.e. devices capable to manipulate the
radiation properties of the sources in such a way to produce directive beams point-
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Fig. 2.22 A curved phase
front impinges on an
epsilon-near-zero (ENZ)
material in its entrance side
(left). At the exit side (right),
the phase front is conformal
to the exit surface, in this case
a planar phase front, due to
the small phase variation
inside the material

ing in a desired direction), spatial filters (i.e. devices which allow transmission of
some angular components of the source spectrum, reflecting back all the remaining
ones), phase pattern forming devices (i.e. devices capable to tailor the phase-front
of an electromagnetic source), lenses, etc.

2.3.2 Spatial Filters and Beaming Devices Obtained Using
Amorphous Metamaterials

Going beyond the ray approximation, in [29] it has been analytically demonstrated
that metamaterial slabs characterized by near-zero values of the real permittivity,
can be effectively used to create arbitrary phase patterns for a given polarization. In
particular, considering a planar metamaterial slab, the working polarization is the
TM one, characterized by the magnetic field parallel to the slab interfaces. Under
this assumption, in [29] it has been demonstrated that the slab allows the trans-
mission of a few angular components around the broadside direction, while reflects
back in-phase (i.e. as a perfect magnetic conductor does) all the remaining angular
components. The dual phenomenon has been verified in [30], considering the case
of a metamaterial slab characterized by near-zero values of the real permeability
illuminated by a TE polarized wave (i.e. having the electric field parallel to slab
interfaces). In this case, the slab reflects back out-of-phase (i.e. as a perfect elec-
tric conductor does) all the angular components not allowed to pass through the
material.

In the extreme case of exactly zero values of either permittivity or permeabil-
ity, it has been demonstrated that only the normal angular component is allowed
to pass through the slab and be transmitted. By playing with the near-zero values
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Fig. 2.23 Electric field distribution generated by an electric current line placed at the interface
between free-space and a tiny slab characterized by different values of near-zero real permeability

of the permittivity or permeability it is possible to control the range of the pass-
ing angular components, as shown in Fig. 2.23. Additional degrees of freedom are
given by the distance between the source and the first slab interface and by the slab
thickness.

In the following, we show that by using the materials produced with self-
assembly techniques it is possible to implement filtering/beaming devices. In
Fig. 2.24a, the magnetic field distribution produced by a vertical electric dipole in
free space at the frequency of 700 THz is reported. When placing in front of the
source a finite slab made of an isotropic, homogeneous material characterized by
near-zero values of the real permittivity around 700 THz, the pattern distribution is
the one reported in Fig. 2.24b. The phase front is now significantly changed com-
pared to the one of the source alone and the beam is more directive, according to the
concepts presented in the previous sub-section.

As already mentioned in the case of cloaking devices, in order to implement a
structure behaving as the one reported in Fig. 2.24b, it is possible to use a proper
arrangement of spherical gold particles, as the one shown in Fig. 2.24c. More in
details, 5184 gold nanospheres with the diameter of 25 nm are arranged in 9 layers.
Each layer is made of 576 spheres, organized in a 24 × 24 2D array, with both
periodicities equal to 6 nm. The distance between two adjacent layers is set to 2 nm.
By using the Drude model approximation for gold, according to the homogenization
rule reported in Sect. 2.1, this finite 3D arrangement of gold nanoparticles exhibits
a real permittivity crossing the zero value at around 700 THz.

As evident from the results of Fig. 2.24c, the behavior of the finite 3D arrange-
ment of gold nanospheres is very similar to the one of the ideal homogeneous meta-
material slab, opening the door to the possible implementation of working filter-
ing/beaming devices operating at optical frequencies.

Also in this case, we can consider more realistic designs by involving the mea-
sured permittivity of gold. As it happened for the cloak case, when we do that, losses
completely kill the function of the homogenized material. However, as documented
in the previous sections, it is possible to replace gold with silver and the nanospheres
with core–shell nanospheres and obtain a near-zero behavior with reasonable losses
within the visible. The same artificial material proposed in [20] and used for the
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Fig. 2.24 Magnetic field distribution generated by an electric dipole in the case of the source
radiating (a) in free space at 700 THz; (b) in close proximity of an ideal finite 3D metamaterial slab
made of a material characterized by a near-zero real permittivity at 700 THz; (c) in close proximity
of a real 3D arrangement of gold nanospheres behaving as a near-zero permittivity material at the
design frequency of 700 THz

cloaks reported in the previous section, has been used also to design a spatial filter.
The interested reader may refer to [20] for further design details and implementation
examples.
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2.4 Superlens Devices

In this section, we describe the possible use of amorphous metamaterials in su-
perlens applications. Superlens devices are imaging devices that can resolve sub-
wavelength features of objects, overcoming the diffraction limit of resolution. Func-
tionally analogous to near-field scanning microscopes in terms of resolving sub-
wavelength detail, superlenses are more similar to usual lenses because they form
images in the image plane like a usual lens. In fact, the importance of superlenses
is related to the improvement of existing near-field scanning optical microscopes
(NSOM). Another important feature of superlenses is that the field strength of the
evanescent part of the source spectrum can be enhanced in the device due to res-
onant excitation of localized eigenmodes. Some superlenses can transform evanes-
cent fields into propagating modes, which are further optically processed by con-
ventional microscopes. Such superlenses have been called hyperlenses. The most
well-known superlens is a parallel-plate slab made of a material with both permit-
tivity and permeability equal to minus unity [31]. However, even small losses mit-
igate the enhancement of evanescent waves, and the practical realization of such
materials with reasonably small amount of losses is a challenge, especially at op-
tical frequencies. Fortunately, there exist alternative designs that can be potentially
realized with inexpensive self-assembly techniques and amorphous metamaterials,
which we discuss next.

2.4.1 Superlenses Based on Two Grids of Plasmonic Nanoparticles

The main idea of this design [32, 33] is to utilize meta-surfaces instead of artificial
bulk materials. This follows from the fact that the key physical phenomenon used
to enhance evanescent fields and restore near fields at a distance from the source is
a surface plasmon resonance [32]. Thus, two properly designed metasurfaces can
replace two interfaces between an exotic metamaterial and free space. In paper [33]
it was shown that necessary surface properties can be achieved in the visible using
planar grids of resonant plasmonic nanoparticles. In the microwave frequency range,
resonant particles made of thin copper wire were used in [32].

Figure 2.25 illustrates the basic setup and a typical dispersion curve of one grid
which is suitable for desired device operation. The “flat” region of the curve is in-
strumental for the target superlens functionality: In this case eigenwaves with a wide
range of large spatial frequencies can be excited by a subwavelength source at the
corresponding frequency.

Numerical estimations (see Fig. 2.26) show an example of near-field distribu-
tions in the image plane when the lens is excited by two point sources separated
by 162.5 nm (about 0.3λ). The lens dimensions and parameters are the same as
in Ref. [33]: silver spherical nanoparticles of the radius 28 nm, the grid period is
65 nm.

The comparison of the performance of the device with ideally periodical arrays
of identical particles (left) with the case of randomly positioned inclusions shows
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Fig. 2.25 Conceptual geometry of a superlens based on grids on plasmonic nanoparticles
(reprinted with permission from [33], Copyright 2006, ACS) and typical dispersion curve of each
of the two grids (reprinted with permission from [37], Copyright 2011, ACS)

Fig. 2.26 Calculated electric field distributions (normalized field intensity) in the image plane of a
superlens formed by two parallel grids of plasmonic nanoparticles. The source is a set of two point
electric dipoles orthogonal to the lens plane. Fields are normalized to the maximum value. Left:
Regular grids; Right: Positions of particles in the arrays have been randomized with the standard
deviation equal to 1 nm

no degradation in performance. This is further illustrated by Fig. 2.27, where the
image-plane field distribution is plotted in the y = 0 plane for regular grids (thick
grey curve) and for a number of realizations of random grids (standard deviation of
the position is 2 nm in this example). This picture also shows the field distribution
at the same distance from the sources in case of the absence of the grids (red dashed
curve). It is obvious that the lens significantly enhances the field strength in the
image plane due to resonant excitation of surface modes of the arrays. We can con-
clude that for this application the use of amorphous grids of plasmonic nanoparticles
is most appropriate. In fact we expect that with proper optimization the performance
of superlenses with random grids may even be better than with ideal regular arrays.
Reference [33] provides analytical formulas for calculation of dispersion curves and
describes the numerical technique implemented as a MATLAB code which can be
used for numerical optimization of the structure. Superimaging properties of arrays
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Fig. 2.27 Calculated electric field distributions (normalized intensity) in the image plane of a
superlens formed by two parallel grids of plasmonic nanoparticles (the plane y = 0). The source
is a set of two point electric dipoles orthogonal to the lens plane, same as in Fig. 2.26. Thick grey
curve: regular grids; Thin lines: several realizations of random grids: Red dashed curve: the fields
in the absence of the lens. The standard deviation of the particle position is 1 nm in the left panel
and 2 nm in the right panel

of plasmonic nanoparticles were more recently confirmed by full-wave simulations
of realistic structures [34, 35]. Other periodic or amorphous sub-wavelength pat-
terned surfaces can also have flat regions in the surface mode dispersion curves,
making them suitable for superimaging. For example, superimaging was demon-
strated in Ref. [36] (in simulations and microwave experiments) with the use of
fractal patterning.

2.4.2 Near Field Enhancement and Focusing Using Multilayer
Arrays of Plasmonic Nanoparticles

Also multi-layered 3D arrays of plasmonic nanoparticles have important potential
applications. They can be possibly used for two purposes: near-field enhancement
of electromagnetic fields and sub-wavelength focusing and concentration of fields.
Recently, paper [37] analyzed and stressed certain properties which show how to
control these phenomena. Although such 3D arrays of nanoparticles do not form
imaging devices in the usual sense of this term (measuring the field distribution
in the “image plane” it is not possible to uniquely reconstruct the distribution of
possibly volumetrically distributed sources), the fields can be effectively concen-
trated in sub-wavelength areas far away from the field sources. Presence of in-
terference maxima at some lower level also make the super-resolution application
still challenging. On the other hand, resonant enhancement and translation of sub-
wavelength features at electrically long distances has been clearly demonstrated nu-
merically.

Figure 2.28 shows a numerical example of a structure capable for transformation
of strong near-field spikes at electrically long distances.
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Fig. 2.28 Typical dependence of the electric field strength along the structure depth (left) and
typical field pattern in the “image plane” for the case of two point sources in the source plane. Note
strongly enhanced near fields and the presence of interference maxima. Reprinted with permission
from [37], Copyright 2011, ACS

Fig. 2.29 A linear array of plasmonic nanoparticles as a subwavelength microscope sensor. The
line shows the electric-field profile to be determined by the microscope. The probe is stationary.
Reprinted with permission from [38], Copyright 2008, AIP

2.4.3 Real-Time Sub-wavelength Imaging Using a Single Grid
of Plasmonic Nanoparticles

In the known sub-wavelength imaging devices the only means to actually measure
the image-plane near-field distributions at the sub-wavelength scale is the scanning
near-field microscope that uses a small moving probe (an exception is the hyper-
lenses, which transform evanescent modes into propagating ones). The main fun-
damental practical problem associated to this property is that it is not possible to
acquire an image in real time, as it is necessary to make a mechanical scan over the
whole surface, and this is a slow process.

Here we describe one recently proposed technique which is capable to provide
real-time superimaging and can be potentially realized with both regular and random
grids of nanoparticles.

The idea of the device [38] is to use the known (pre-calculated or pre-calibrated)
eigenmode spectrum of an array of subwavelength-sized resonant particles (or any
other resonant sub-wavelength patterned surface, including amorphous structures)
as a sensor, as illustrated in Fig. 2.29. The array is positioned close to the object
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Fig. 2.30 An example
dispersion curve of a periodic
structure (a). On the
horizontal axis q = kt d is the
transverse wave number
normalized to the grid
period d . (b) Transmission
through a pair of resonating
arrays at a given frequency as
a function of q . Reprinted
with permission from [38],
Copyright 2008, AIP

under test and illuminated by a frequency-sweeping probe electromagnetic wave.
The array response is measured by one or two stationary probes in the vicinity of
the array. The measured amplitudes and phases of the excited eigenwaves allow
restoration of the spatial spectrum of the field which illuminates the array (that is,
the spatial spectrum of the field scattered by the object under test). It is also possible
to benefit from the effect of restoration of evanescent field components in a pair
of grids of resonant particles as in the superlens based on two plasmonic surfaces
(Fig. 2.30).

Typical dispersion curve of a resonant array designed for the use as a sensor
shown in Fig. 2.30 corresponds to the transmission coefficient at a fixed frequency
which exhibits high transmission for the resonant mode at this frequency and low
transmission at all other, non-resonant, wave numbers.

Scanning the frequency from ωmin up to ωmax we can sequentially excite the sur-
face modes of all possible kt ranging from 0 to ktmax = π/d . The amplitude of an
excited mode is proportional to the amplitude of the corresponding spectral com-
ponent of the incident field. We can find the amplitude of the mode from a field
measurement done only at a single point in the image plane. To realize the device,
it is necessary to provide strong excitation of many modes of the grid, thus, the lim-
iting factor is the loss level in the particles. The spatial resolution is limited by the
distance between the particles. Strict periodicity and planarity of the grid are not
essential, because the spectrum of the grid needs to be pre-calibrated in any case.
The single particles of the grid sensor should have as high quality factor as possible.
As to the level of interparticle coupling (determined mainly by the average distances
between the nanoparticles), we expect that there exists an optimum for the desired
performance, to be optimized numerically (for very small coupling all the spheres
resonate at nearly the same frequency). For optical applications, the practical chal-
lenge will be realization of (stationary) probes which can measure both amplitude
and phase of light. The measurement speed is determined by the time during which
the frequency scan over the resonant band of the grid can be completed.
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2.5 Conclusions

This chapter has presented an overview of potential applications and potential de-
vice properties, starting from the technologically achievable nanostructures, manu-
factured by novel self-assembly techniques. A number of potential applications have
been identified and analyzed in detail. In particular, it has been found that realiza-
tions of cloaking devices based on the field-cancellation technique, optical beaming
devices, and optical superlenses become feasible with the current nanofabrication
techniques used to realize amorphous metamaterial structures.
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Chapter 3
Homogenization of Amorphous Media

Ari Sihvola and Henrik Wallén

Abstract This chapter focuses on the homogenization of two-phase mixtures. The
materials that form the mixture are assumed to be isotropic but they can be plas-
monic (having negative real part of the permittivity) and/or lossy (complex-valued).
The geometrical arrangements that are analyzed can be regular, disordered, or totally
random morphologies. Classical mixing rules are presented and applied to various
type of mixtures, and their predictions are tested and compared against computa-
tional simulations. Among the phenomena that are discussed in detail are the emer-
gence of resonances and complex-valued responses from lossless components, as
well as the effect of mixing process on the dispersive behavior of materials. Such
homogenization of mixtures is a valuable means to assign effective properties to
amorphous nanophotonic materials with sufficiently small unit cells, since it helps
in analyzing emerging physical phenomena, and makes such materials available in
the design process of a functional device.

3.1 Introduction

Interaction of electromagnetic fields with nanostructured materials is a complicated
process. The essential factors determining the character of this interaction, in addi-
tion to the morphology of the medium structure, are the frequency of the temporal
variation of the field and the electromagnetic response of the microscopic elements
composing the mixture.

Nanotechnological products have very small spatial scales. The physical size of
the elements and their interdistances is typically of the order of tens of nanometers.
This means that for waves in the optical and infrared spectral range, the structural
inhomogeneity of the medium is often much smaller than the spatial wavelength
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of the waves that illuminate the medium. Therefore the electromagnetic response of
the medium can be averaged over a volume that covers a large amount of polarizable
inclusions in the medium. This homogenization, however, has to be performed in a
manner that respects the field interaction between the neighboring scatterers.

This is the domain of mixing rules. Mixing rules are formulas that predict effec-
tive macroscopic parameters for heterogeneous materials. Mixing rules have been
treated extensively in the classical materials modeling literature and they have also
been shown, in many cases, to match experimentally with the measured macro-
scopic properties of mixtures. In the present chapter, the applicability of mixing and
homogenization principles will be evaluated in the context of regularly-ordered and
amorphous nanostructured materials.

In connection with material characterization of complex plasmonic composites,
there are certain important aspects that affect the predictive power of mixing prin-
ciples which are transferred from the domain of positive-permittivity and low-loss
dielectric mixtures. First of all, the response of materials used in composites, like
noble metals or various semiconductors, is utterly different from their behavior at
other spectral ranges. The free-electron plasma model for conductors leads to neg-
ative real parts for the permittivity, and the loss factor may be surprisingly high for
certain materials at particular frequencies. Such material responses create additional
challenges for a stable modeling procedure.

Another issue which has a very strong effect on the macroscopic behavior of ma-
terial mixtures is the regularity of the structure. If the medium has a deterministic
lattice structure, its response to electromagnetic excitation is in principle exactly
calculable, at least numerically to any desired accuracy. Of course also any given
sample of inhomogeneous media can be exposed to a computational analysis and
its macroscopic response functions can be enumerated. However, the calculated re-
sult only gives one “measurement” of the collective macroscopic property for the
mixture with random internal structure. For geophysical media like snow and sand,
the internal geometry cannot be described in other than probabilistic terms, and yet
there are mixing rules that manage to predict the effective dielectric properties of
such materials. Are these formulas generalizable to amorphous nanostructures that
display plasmonic behavior?

This chapter treats mixtures and inhomogeneous structures that can be complex,
not only in geometrical shape and regularity, but also in terms of the material re-
sponse of the constituent components of the mixture. When inclusions with strongly
dispersive dielectric response are dispersed in another dielectric medium to form an
amorphous mixture, the macroscopic continuum very often displays a qualitatively
different dispersive character. In this sense a nanostructured medium deserves the
label “metamaterial” [1]: its material parameters are different from those of its con-
stituent phases.

As to the notation, the convention of exp(jωt) for the time-harmonic signal with
angular frequency ω is followed. The sign of the imaginary part of the permittivity
of lossy materials corresponds to power balance, and the choice leads to negative
values for the imaginary part of the permittivity for dissipative media. The nota-
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tion εeff = ε′eff − jε′′eff is therefore followed in this chapter. Furthermore, ε denotes
relative permittivity and is a dimensionless (possibly complex) number.

3.2 Mixing Rules

A long history exists for mixing rules, in other words formulas with which the
macroscopic effective permittivity (or another material parameter) can be computed
from the knowledge of the characteristic parameters of the mixing constituents and
geometrical and structural information of a given inhomogeneous sample. The old-
est mixing rules for dielectric and optical characterization of materials date from the
mid-19th century [2].

In the following section, various mixing principles are introduced. The permittiv-
ities of the components are taken to be constants with respect to external parameters
like the frequency of the excitation. Hence the dependence of the dielectric response
on frequency is not directly visible in the formulas. Later, in Sect. 3.6, the explicit
effect of the frequency dependence of the constituent permittivities on the dispersion
of the mixture is discussed in more detail.

3.2.1 Maxwell Garnett Formula

One of the simplest mixing rules is the following relation between the parameters
of the mixture and the effective permittivity εeff:

εeff = εe + 3εep
εi − εe

εi + 2εe − p(εi − εe)
(3.1)

which applies for a mixture where spherical inclusions with permittivity εi occupy
a volume fraction p in a host matrix that is characterized by permittivity εe.

This relation is very often called Maxwell Garnett (MG) formula [3] in the litera-
ture and because of its simplicity combined with its sometimes astonishing accuracy,
it is very widely applied to predict the macroscopic permittivity of a mixture where
the inclusion size is considerably smaller than the wavelength.

Since the environment and inclusions are treated non-symmetrically in the MG
mixing formula (3.1), an obvious generalization is to switch their roles as host and
guest in the manner

εi ↔ εe, p→ 1 − p (3.2)

This leads to the so-called complementary Maxwell Garnett formula. In this case
the effective permittivity is given by the equation

εeff = εi + 3εi(1 − p)
εe − εi

εe + 2εi − (1 − p)(εe − εi)

= εe + p(εi − εe)
2εi + εe

3εi − p(εi − εe)
(3.3)
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which predicts different values for the effective permittivity for the same mixture
as (3.1).

3.2.2 Hashin–Shtrikman Bounds

The two mixing rules (3.1) and (3.3) are fundamental in the sense that they are very
often given as upper and lower bounds for a mixture with given structural values.
These bounds apply for statistically homogeneous and isotropic multiphase materi-
als. They are often called Hashin–Shtrikman bounds [4]. A more extensive treatment
of theories for bounds of effective parameters of composites is given in [5].

An essential terminological classification of heterogeneities is the distinction be-
tween so-called raisin-pudding and Swiss-cheese mixtures. In the raisin-pudding
case, the inclusions generate positive dipole moments into the environment, in other
words εi > εe. Correspondingly, Swiss-cheese means the complementary case such
that the inclusions are like holes in a solid environment (εi < εe), causing negative
dipole moments.

In connection with these two mixture types, the roles of the two Hashin–
Shtrikman bounds have to be inverted. For raisin-pudding mixtures, the MG formula
(3.1) is the lower bound for εeff and the complementary MG rule (3.3) is the upper
limit. For the Swiss-cheese case, the situation is the opposite.

3.2.3 Bruggeman Formula

Another widely-used mixing formula is the Bruggeman mixing rule [6], especially
popular in applications where materials to be modeled are random in structure, like
in the theory of disordered composite materials and modeling of natural and geo-
physical media. The Bruggeman relation is the following, here again written for
three-dimensionally spherical mixing geometry:

(1 − p)
εe − εeff

εe + 2εeff
+ p

εi − εeff

εi + 2εeff
= 0 (3.4)

In this implicit form for εeff, the Bruggeman relation emphasizes the symmetry
between the two constituents of the mixture, εi and εe. The normalized polariza-
tions against the effective medium are balanced by weighing with the volume frac-
tions of the component phases, which is an apparent interpretation of the formula
(3.4). Hence the Bruggeman mixing formula is self-complementary: the operation
εi ↔ εe,p → 1 − p on (3.4) retains the same mixing relation. Due to this equality
between the two phases, either one can be seen to be a guest phase embedded into
the other’s host environment, and subsequently a generalization of the Bruggeman
mixing rule into multiphase mixtures is straightforward.
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3.2.4 Lord Rayleigh Formula and Extensions

It is a well-accepted fact that Maxwell Garnett formula (3.1) seems to work reason-
ably well for isotropic mixtures with regularly latticed inclusion spheres that do not
occupy a very large volume of the total space. Furthermore, if the dielectric con-
trast between the components forming the mixture is moderate, the accuracy is even
better.

For non-dilute mixtures where the volume fraction of inclusions increases, more
accurate estimates than the Maxwell Garnett prediction are needed. For the regular
(simple cubic) lattice, a series of improved expansions for εeff have been presented
in the literature. Of these, the Lord Rayleigh mixing formula [7] dates already from
the 19th century:

εeff = εe + p
3εe

εi+2εe
εi−εe

− p− 1.305 εi−εe
εi+4εe/3

p10/3
(3.5)

This equation extends the predictive power of MG rule into higher volume fractions
in p. However, due to the fixed positions of the uniform spheres there is a maximum
packing density which gives the upper limit π/6 ≈ 52.4 % for the volume fraction
of the inclusion spheres.

An even more advanced generalization of the mixing principles for simple-cubic
lattice of spheres has been presented by McPhedran and McKenzie [8]. The result
is written for the effective conductivity of the mixture but due to the duality of
the conductivity and permittivity problems, the result is directly applicable for the
dielectric mixture that has the same geometry.

3.2.5 Examples

To illustrate how the predictions of the different mixing rules differ from each other,
Fig. 3.1 shows the effective permittivity of a mixture with a dielectric parameters
εi = 20 and εe = 1. The dielectric contrast is high enough to display the particular
features of the four mixing models.

Maxwell Garnett mixing rule gives the lowest prediction for εeff. Lord Rayleigh
formula follows it to surprisingly high volume fractions but at around p = 0.4, the
predictions start to deviate strongly. It is worth noting that the maximum volume
fraction for a three-dimensional simple cubic lattice (52.4 %) is deliberately over-
taken in the figure to show a warning example what may happen if the assumptions
of a given mixing formula are violated. The Lord Rayleigh curve not only disregards
the generous Hashin–Shtrikman bounds but also leaves them behind with increasing
slope.

Also the Bruggeman prediction approaches asymptotically Maxwell Garnett for
low volume fractions but the difference is conspicuous for large p values. However,
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Fig. 3.1 The effective
permittivity for an ordinary
positive-permittivity mixture
with εi = 20 and εe = 1,
varying volume fraction p,
and spherical inclusions,
according to various mixing
models: Maxwell Garnett,
Rayleigh, Bruggeman, and
complementary Maxwell
Garnett. Notice that the
Rayleigh formula is also
plotted using larger values for
p than applicable (52.4 %)

Fig. 3.2 The effective
permittivity of dry snow as
function of its density.
Measurements [10] fall
between the Maxwell Garnett
and complementary Maxwell
Garnett bounds, and match
quite closely the Bruggeman
estimate

both Bruggeman and Lord Rayleigh (below the touching-sphere limit) fall every-
where between the MG and complementary MG results, which are the Hashin–
Shtrikman bounds for this raisin-pudding mixture.

Figure 3.2 shows the application of the Hashin–Shtrikman bounds to the per-
mittivity of a real-world material, dry snow. Snow is treated as a two-component
mixture of air and ice. The volume fraction of ice is linearly proportional to snow
density �snow as p = �snow/�ice with the density of ice being �ice = 0.917 g/cm3.
The dielectric response of ice is astonishingly low-loss and dispersionless over a
very broad frequency band from the megahertz range up to tens of gigahertz [9],
and in the results of Fig. 3.2, the value εi = 3.17, typical in the microwave range, is
used.

The set of measurements at around 1 GHz by Christian Mätzler (University of
Bern, Switzerland) are also plotted [10]. Even if the microstructure of dry snow
is irregular and certainly not consisting of spherical inclusions, the experimental



3 Homogenization of Amorphous Media 73

Fig. 3.3 Effective
permittivity in the complex
plane using different mixing
formulas for the case of
highly lossy inclusions:
εi = 2 − j 10 and εe = 1. The
volume fraction is 0<p < 1,
except for the Rayleigh
formula where 0<p < π/6

values can be seen to fall close to the average curve of the two bounds (3.1) and
(3.3). The Bruggeman prediction seems to be very accurate for the permittivity of
dry snow.

Although the example with snow may give an impression that the statistical
variation of the permittivity of random samples of mixtures is quite tightly con-
trolled by the bounds, the situation looks very different for heterogeneous media
with negative-permittivity components. In fact, also the case of highly lossy dielec-
tric mixtures displays very peculiar behavior as far as these limits are concerned.

For the lossless mixtures in Figs. 3.1 and 3.2, the upper bound at a given volume
fraction 0<p < 1 is clearly smaller than the inclusion permittivity εi and the lower
bound larger than the permittivity of the environment εe (in the Swiss-cheese case,
the bounds would of course be inverted). It would be counter-intuitive to expect a
mixture display larger (or smaller) permittivity than either of its components.

However, this is in a certain sense what happens for mixtures where one of the
components is sufficiently lossy. Similarly to the convention of including dielectric
losses into the imaginary part of bulk permittivities, also the homogenized, effec-
tive permittivities can be treated as complex-valued numbers computable from the
same mixing rules that were written for real-valued material parameteres. Figure 3.3
shows the prediction of the various mixing rules for the case εi = 2 − j 10, εe = 1.
The curves show the path of εeff in the complex plane as p increases from 0 to 1.
There we can observe not only the astonishingly different behaviors of the four
mixing principles but also the fact that the real part of the effective permittivity can
exceed by a large margin the real part of the inclusion permittivity (ε′eff,max ≈ 4.91
and ε′i = 2). This prediction is from the MG formula; however, also the Bruggeman
result breaks the upper limit of max{ε′i, ε′e} with ε′eff,max ≈ 2.07.

Nevertheless, the characteristics of MG and complementary MG formulas as
boundaries for complex εeff remain: indeed, these Hashin–Shtrikman bounds sep-
arate a region in the complex plane in which the effective permittivity has to be
located of various mixtures determined by given complex values εe and εi and the
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volume fraction p. As the figure shows, both Bruggeman and Lord Rayleigh curves
restrict themselves within this region.

3.2.6 Geometrical Structure and Anisotropy

The previous mixing relations were based on the assumption that the inclusions are
spherical. The sphere is an important canonical shape which is also a natural form in
small scales, for example in connection with liquid particles for which the surface
area is being minimized by tensional forces. However, often one also encounters
natural and artificial materials for which the internal geometry is more complicated.

An accurate solution for the effective permittivity of a mixture with complicated
microstructure inevitably requires a computational approach. However, to some ex-
tent one can retain the simplicity of closed-form mixing rules and still relax the as-
sumption of spherical inclusions. For example, many of the mixing formulas can be
written also for cases where the inclusions are ellipsoidal in shape [11]. To describe
the shape of an ellipsoid, two additional geometrical parameters are required. This
means that the dielectric response needs to be described with additional parameters,
so-called depolarization factors. These depolarization factors appear consequently
in the mixing formulas. Obvious special cases of ellipsoids are a needle and a disk.

The question of disorder in mixtures becomes more intricate in connection with
non-symmetrical inclusions, like ellipsoids. In totally random mixtures, the inclu-
sions’ locations are not fixed to a lattice position and also their orientations do not
have any preferred alignment. This leads to isotropy and the dielectric response of
the mixture does not depend on the direction of the electric field vector. However, if
the ellipsoids are all aligned, the macroscopic response depends on the direction of
the excitation.

This type of homogenized anisotropy where the inclusion may be randomly
positioned but they are orientationally ordered can be termed geometry-induced
anisotropy. Of course, there is another potential reason, too, for anisotropy in mix-
tures: anisotropy can be intrinsically contained in the phases.

Some generalizations exist of basic mixing principles, like MG and Bruggeman,
for anisotropic phases. Often the appearance of these anisotropic mixing rules is
very similar to their isotropic counterparts, only the material parameters have to be
replaced by dyadic quantities [11].

Into an even more general material response, electromagnetics literature con-
tains several models and rules to homogenize mixtures that contain chiral [12], non-
reciprocal [13], other magnetoelectric, and bianisotropic components phases [14].

3.2.7 Two-Dimensional (2D) Mixtures

A special case involving ellipsoidal inclusions is the case of two-dimensional mix-
tures. Assume that the inclusions are needle-shaped in such a limit that the circular
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cross-section becomes negligible in comparison with the length of the needle. If
such circular cylinders are all aligned, embedded in a dielectric environment, the
mixture is certainly anisotropic. However, in the transversal plane perpendicular
to the axes, the medium can be considered a two-dimensional mixture, and in this
plane, the homogenized mixture is again isotropic.

The previous three-dimensional mixing rules can be rewritten for this two-
dimensional case, the differences mostly being that the depolarization factor of a
sphere (1/3) is replaced by that of a circle (1/2).

For two-dimensional mixtures, the Maxwell Garnett formula reads

εeff = εe + 2εep
εi − εe

εi + εe − p(εi − εe)
(3.6)

and the complementary Maxwell Garnett rule is the following

εeff = εi + 2εi(1 − p)
εe − εi

εe + εi − (1 − p)(εe − εi)

= εe + p
ε2

i − ε2
e

2εi − p(εi − εe)
(3.7)

These relations are the Hashin–Shtrikman bounds in two dimensions.
The Bruggeman rule in this case looks like

(1 − p)
εe − εeff

εe + εeff
+ p

εi − εeff

εi + εeff
= 0 (3.8)

and the 2D Lord Rayleigh formula is the following:

εeff = εe + 2pεe
εi+εe
εi−εe

− p− εi−εe
εi+εe

(0.3058p4 + 0.0134p8)
(3.9)

For the Lord Rayleigh case which focuses on the regular square lattice, the maxi-
mum filling ratio before the circles overlap is pmax = π/4 ≈ 78.5 %. This is appar-
ently higher than the corresponding upper limit in the 3D case (52.4 %).

Furthermore, to improve the accuracy of the 2D Lord Rayleigh formula, an exact
solution for the square lattice case in a series expansion form has been presented
in [15].

3.3 Limitations and Applicability

It is evident that mixing rules with such simplicity in appearance as presented above
suffer from limitations which need to be kept in mind when they are applied to
different homogenization problems. In particular in connection with metamaterials,
this is utterly important.
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For positive-permittivity mixtures, the various mixing rules were shown above
to agree reasonably well for certain ranges of structural and material parameters.
On the other hand, for high-loss mixtures the predictions could go greatly apart.
However, it is in connection with homogenization problems of mixtures where the
components have permittivities of opposite signs where various mixing models re-
sult in really qualitative differences.

A look at the MG formulas in their three- (3.1) or two-dimensional (3.6) forms
reveals that if εi and εe are of different signs, the denominator may vanish. This
means that the effective permittivity grows without limit. The exact relations when
such singularities happen are

εi/εe = −2 + p

1 − p
(3D) (3.10)

εi/εe = −1 + p

1 − p
(2D) (3.11)

In addition, the complementary MG formulas (3.3) and (3.7) can grow towards in-
finity. This takes place at a different condition:

εi/εe = − p

3 − p
(3D) (3.12)

εi/εe = − p

2 − p
(2D) (3.13)

As to the Lord Rayleigh formulas (3.5) and (3.9), there are two singularities for
the effective permittivity that correspond to certain (negative) values of the ratio
εi/εe.

However, the situation for the Bruggeman formulas is radically different. To
compute εeff from (3.4) and (3.8) leads to solving a second-order equation which
involves a square root. The sign of the root is obvious in the case of positive values
for the real parts of εi and εe. However, when they are of opposite signs, the branch
of the square root needs to be chosen such that the resulting εeff has non-positive
imaginary part (ε′′eff ≥ 0) in order to avoid active character for the homogenized
mixture.

Indeed this is a very peculiar prediction by the Bruggeman formula. For certain
combinations of negative and positive values for εi and εe, the solution for εeff be-
comes a complex number, even if the two component permittivities are purely real.
In other words, according to Bruggeman model, lossless ingredients can make a
lossy end product.

To illustrate these two qualitatively new phenomena that mixing of complex in-
clusions brings about (either infinities in the Maxwell Garnett and Lord Rayleigh
case, or complex-valued permittivities in the Bruggeman case), Figs. 3.4 and 3.5
display the required conditions as functions of the parameters of the mixture. The
singularity locations (3.10) and (3.12) are shown as curves in the plots, whereas
the shaded region corresponds to mixture parameters for which the Bruggeman rule
predicts complex-valued εeff.
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Fig. 3.4 Singularity
locations for the 3D Maxwell
Garnett formula (black line)
and 3D Rayleigh formula
(gray line), and their
complementary versions
(dashed lines). Inside the
shaded region, the
Bruggeman formula gives
complex εeff, although both εi
and εe are assumed real

Fig. 3.5 Similarly as Fig. 3.4
using the 2D versions of the
mixing formulas. Note the
symmetric appearance of the
shape of the curves compared
to the 3D case, Fig. 3.4

The two figures show the situation in three- and two-dimensional mixing cases.
Even though the general appearance is similar, it is noteworthy that the 2D figure is
clearly more symmetric than the 3D figure, especially in this case when the vertical
axis for the permittivity ratio is logarithmic. This is consistent with a result of a par-
ticular duality principle that is only valid for two-dimensional mixtures [16]. When
one of the component permittivities is changed to its reciprocal value, the same thing
happens to the effective permittivity. More exactly, the following is easily seen to
hold:

εeff(εi, εe,p) εeff
(
ε2

e/εi, εe,p
)= ε2

e (3.14)

when a two-dimensional mixing rule (3.6) or (3.7) is applied for the function εeff.
The singularities of the Maxwell Garnett and complementary Maxwell Gar-

nett predictions can also be interpreted in light of their role as Hashin–Shtrikman
bounds. If an upper bound becomes infinite, its restrictive power vanishes. In this
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sense it is symptomatic that the gray area showing the problematic Bruggeman re-
gion is at its widest at around the same parameter region where the singularities
push away the Hashin–Shtrikman bounds. When there are no finite boundaries, the
limitations vanish.

3.4 Order and Disorder

Mixtures with well-defined and ordered microstructure can be modeled—at least
numerically—to predict the effective permittivity up to a very good accuracy. How-
ever, the description of an amorphous heterogeneity requires many more degrees of
freedom. Therefore the question about the exact value for the effective permittivity
of a sample with given component permittivities and volume fractions cannot be
answered exactly if the distribution of the inclusions in the mixture is random. The
predictions for the effective permittivity are very much dependent on the magnitude
of the randomness, in other words whether the inclusions are allowed to change po-
sitions to the extent that they touch their neighbors and form clusters. In addition,
the characteristics of the homogenization are very strongly dependent on whether
the mixing happens between phases of permittivities of the same or different sign.
In other words, plasmonic mixing has different characteristics compared with pure-
dielectric mixtures.

3.4.1 Ordered Mixtures

For the ordered mixture with simple cubic lattice structure in three dimensions,
Maxwell Garnett and Lord Rayleigh formulas and their generalizations provide an
increasingly accurate estimate for the effective permittivity. The situation is sim-
ilar for two-dimensional mixtures where the square-lattice mixture is computable
either approximately from (3.6), (3.9), or to any desired accuracy from the series
solution [15].

Figure 3.1 showed the monotonously increasing curves of εeff of a positive-
permittivity mixture as functions of the volume fraction p. For sufficiently large
values of p, their predictions start to differ from each other. However, more marked
differences between these models become visible when plasmonic mixtures are an-
alyzed.

Figure 3.6 displays the effective permittivity of a regular 2D mixture according to
various models. The volume fraction is kept constant (p = 60 %) but the inclusion
permittivity εi varies. As discussed above, there are singularities for certain values
for negative εi (here the environment is assumed free space, εe = 1). The curves
show one resonance for MG and two for Lord Rayleigh, quantitatively in agreement
with the results in Fig. 3.5.

For this rather high volume fraction of 60 %, the prediction of the Maxwell Gar-
nett formula is clearly inaccurate. Lord Rayleigh gives a much better estimate for
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Fig. 3.6 Effective
permittivity for the 2D case:
negative-permittivity circular
cylinders in free-space
environment εe = 1. Varying
εi , fixed p = 60 %. The three
curves refer to the series
solution (Ser), Rayleigh
formula (Ra), and Maxwell
Garnett formula (MG)

this resonance around εi ≈ −5, although the slight deviation from the exact series
solution is distinguishable.

The neighboring inclusions are rather close to each other in this structure (the
minimum distance between neighboring boundaries is only approximately one-
eighth of the diameter of the inclusion). This fact gives rise to plasmonic interaction
effects which are the reason for the very rich singularity region in the series solution
around the second resonance at εi ≈ −1.

The success of Bruggeman mixing rule to explain the plasmonic behavior of this
regular mixture is poor, due to its prediction of complex-valued effective permittiv-
ity (see Fig. 3.5), and hence it is not shown in Fig. 3.6.

3.4.2 Effect of Disorder

The calculation of the effective permittivity of a non-regular mixture sample re-
quires numerical efforts. As an example of such studies, Figs. 3.7–3.9 show results
of a computational effort on three-dimensional mixtures with quasi-random struc-
tures [17].

In [17], the samples were generated by randomly positioning spherical inclusions
into a homogeneous environment up to a given volume fraction p. Using a finite
difference method, the electrical field distribution of each sample was solved. From
the field solution, the effective permittivity was determined. The contrast between
the inclusion and host phases was rather high, εi = 51εe.

Two different type of mixtures were created. In the first case, the inclusions were
not allowed to touch each other. All spheres were separate. In the other case, over-
lapping was permitted, in other words when a position for a new inclusion was ran-
domly generated and it happened to be located close enough with an already existing
sphere, the result was a cluster of two particles. Eventually, also more complicate
clusters could arise in the high volume fraction end.
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Fig. 3.7 Simulation results
of three-dimensional random
raisin-pudding mixtures from
[17] along with basic mixing
models. The relative
permittivities are εi = 51 and
εe = 1. The inclusions are all
separate spheres which are
not allowed to overlap with
each other. This limits the
achievable volume fractions
for the inclusion phase well
below the regular packing
limit

Fig. 3.8 Similarly to
Fig. 3.7, but in the
simulations clustering is
allowed. In other words, the
inclusions may touch each
other

Fig. 3.9 Similarly to
Fig. 3.8, but for the whole
volume fraction range
0<p < 1. Inclusion
clustering is allowed, and is
in fact compulsory for high
volume fractions. The
simulations tend to stay
between the Maxwell Garnett
and Bruggeman results, see
[17] for a more detailed
empirical model to match the
computational data
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The illustrations show that the two types of disordered mixtures have clearly dif-
ferent macroscopic permittivity characteristics. The case when the randomly placed
inclusions are separate (Fig. 3.7) follows approximately the Maxwell Garnett curve.
In fact, the results in the figure are slightly higher than the MG prediction. This
is to be expected because of the minimum-bound nature of MG formula for this
raisin-pudding mixture (εi > εe).

However, when the inclusion phase can form clusters in the mixture (Fig. 3.8), the
effective permittivity in the average is clearly higher than in the first scenario. This
can be explained with the observation that since some of the inclusions are no longer
spherical but rather elongated doublets or even more complicated clusters, and on
the other hand non-spherical particles have always a larger polarizability in average
than spheres [18], also the macroscopic permittivity will be increased. A coarse
conclusion of the second scenario is that the computed results follow approximately
the Bruggeman curve.

Note also that the complementary MG formula cannot explain at all the simula-
tions. This is understandable because the simulation samples are of raisin-pudding
type (εi > εe) and the complementary MG model applies to the Swiss-cheese struc-
ture.

Figure 3.9 displays the simulations and εeff computations over the whole range
of volume fractions 0<p < 1. Clustering of the inclusions is allowed. (For random
mixtures and equisized spheres, it is very difficult if not impossible to arrive at
volume fractions over around 30 % without clustering.) Interestingly, even if the
simulations seem to stay close to the Bruggeman estimate for sparse mixtures, the
results tend to fall between the MG and Bruggeman predictions in the dense end of
structures.

3.4.3 Disorder and Plasmonics

It is to be expected that the combination of disorder and plasmonics causes special
challenges, especially concerning the issue of the effect of non-regularity on the res-
onance structure. Again, only a computational approach can provide reliable results
for εeff in the case of negative-permittivity inclusions.

Figure 3.10 shows the computed macroscopic permittivity of a slightly disor-
dered two-dimensional mixture where the inclusion disks have negative permittivity
and the host environment is free space. The volume fraction is p = 0.15.

Using the finite element method and the COMSOL Multiphysics software, the
quasistatic effective permittivity is determined as function of the negative inclu-
sion phase permittivity εi. Note that due to the lacking 90◦ rotation symmetry, two
perpendicular electric field excitations (x and y) lead to different estimates for the
effective permittivity. For more details of the computational procedure, see [19].

The volume fraction 15 % is not very high, and hence the MG and Lord Rayleigh
predictions predict quite similar results, although of course the second resonance at
εi ≈ −1 is missing from the MG curve. As to the agreement with simulations, the
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Fig. 3.10 Simulations and
mixing models for a slightly
disordered two-dimensional
structure with plasmonic
disks in free space
environment (εe = 1). The
volume fraction is p = 15 %.
Note that due to
non-regularity of the
simulated structure (shown as
inset), the numerically
computed effective
permittivity is not the same
for x- and y-polarized field
excitations

illustrations for εeff show that outside the plasmonic resonances, there is a rather
good agreement with the mixing rule and the numerical computations. However,
around the resonances and between them, the differences can be very large.

It is especially noteworthy that although the anisotropy of the structure is geo-
metrically very modest (the positions of the inclusions are also shown in the figure),
the two permittivity components may be strongly different within the resonance re-
gion. For corresponding results from another disordered sample where the volume
fraction of the plasmonic inclusions is higher, see [19].

3.5 Inclusion Shape Effects

The previous examples were dealing with spherical inclusions (spheres for the 3D
case, and disks in 2D). The singularity behavior for such mixtures is dimension-
dependent, as is evident from (3.10) and (3.11) which give different resonance con-
ditions depending on the dimension of the space. When the mixture becomes more
dense, more and stronger resonances appear.

When the mixture consists of non-spherical inclusions, the plasmonic response
becomes naturally more complex. For example, for ellipsoidal inclusion, the dipole
moment response of an individual particle is determined by its depolarization factors
as mentioned in Sect. 3.2.6. The range of singularities will be affected by these
parameters.

It is interesting that there exists an exact solution for a very extreme two-
dimensional system: a mixture where the inclusions are square-shaped and occupy
a volume fraction p = 1/4 of the area in a regular square lattice [20, 21]. For this
case, the effective permittivity is

εeff =
√
εe + 3εi

εi + 3εe
(3.15)
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Fig. 3.11 The effective
permittivity of a regular
two-dimensional lattice of
squares according to the
result (3.15). The volume
fraction of inclusions is
p = 25 % and the background
permittivity εe = 1. Note the
purely imaginary prediction
for εeff in the range
−3< εi <−1/3

This result is displayed in Fig. 3.11.
The effective permittivity (3.15) shares the special property with Bruggeman

mixing rule that within a certain range for negative values of εi/εe, it predicts
complex values for εeff. In particular, εeff is purely imaginary for the values −3<
εi/εe < −1/3. Numerical computations to determine εeff for this square structure
both with finite element method and in [21] the mode-matching method reconstruct
very accurately the analytic result over the ranges when εeff is real. However, in the
region −3< εi/εe <−1/3, the numerical methods result in a wildly resonating real
part for εeff instead of the smooth branch behavior of (3.15). The character of this
mixture is truly peculiar within this particular region: depending on the model, ei-
ther having purely imaginary permittivity, or displaying a non-convergent, strongly
singular response. Both are solutions that are intuitively difficult to accept.

3.6 Dispersion

In connection with broadband applications of metamaterials, dispersion is essential.
Dispersion is related to the frequency dependence of the response of the system.

The dielectric response of bulk materials often follows certain basic dispersion
models, at least within a limited frequency range. Among these models the most
important are Drude model (often associated with noble metals), Lorentz model (in
solid state media), and Debye model (for liquids with polar molecules), each with
their own characteristic frequency-dependent permittivity function.

3.6.1 Effects of Mixing on Dispersion

A look at any of the mixing rules described above is enough to convince that the
frequency dependence of the macroscopic permittivity may differ strongly from the
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dispersive properties of the components. Mixing rules are always non-linear func-
tions of the permittivities of the phases. It is therefore a very interesting fact that
sometimes the mixture permittivity may obey a frequency function according to
one of the basic dispersion models above.

For example, according to the Maxwell Garnett mixing model, a mixture where
the inclusions follow the Debye frequency model and the environment is disper-
sionless turns out to be also a Debye-type mixture [11]. In other words, a cloud or
rain (water droplets in air) follows the same frequency model as water. Of course,
the model parameters are functions of the component permittivity parameters and
volume fraction. One interesting feature of the Debye mixture is that the frequency
range where the dispersion happens becomes pushed to over ten times higher fre-
quencies!

Another interesting case is when mixing brings forth a dispersion model that is
not present in the components. This happens—again according to the Maxwell Gar-
nett model—when in a dispersionless environment (εe is constant with frequency,
here assumed free space) the inclusion phase follows the Drude model with the an-
gular frequency ω:

εi(ω)= 1 − ω2
p

ω2 − jων
(3.16)

Here ωp is the plasma frequency, ν is the damping frequency, a measure of
losses. Above the dispersive frequency band, εi(ω) approaches the free-space
value 1.

Combination of (3.16) with (3.1) shows that the effective permittivity follows the
Lorentz resonance model

εeff(ω)= 1 + ω2
p,eff

ω2
0,eff −ω2 + jωνeff

(3.17)

Here, the plasma frequency of the mixture is proportional to the plasma frequency
of the Drude inclusion phase: ωp,eff = √

pωp. The effective damping frequency
remains the same as that in the inclusions: νeff = ν. In addition, the resonance fre-
quency in this Lorentz model ω0,eff depends on the mixture parameters in the fol-
lowing way:

ω0,eff

ωp
=
√

1 − p

3
(3.18)

Hence the resonance due to the Drude inclusions takes place at frequencies be-
low the plasma frequency of these inclusions, and its position can be tuned with
the volume fraction p. To gain more degrees of freedom in dispersion engi-
neering of plasmonic composites, the metallic spheres can be embedded in an-
other host medium with permittivity εe. Formulas for such mixtures can be found
in [11].
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Fig. 3.12 A 3D mixture of
metallic spheres in free space.
The frequency dependence of
the Drude spheres ε′i, ε′′i and
the Lorentzian curves for the
effective permittivity ε′eff, ε

′′
eff

are shown. In addition to the
main Lorentzian resonance,
the figure shows that Lord
Rayleigh mixing rule predicts
also another, smaller and
more narrow-band resonance
at higher frequencies

3.6.2 Example of Mixtures Containing Drude Components

As an example of the resonance-generating mixture of Drude inclusions in neutral
host material, Fig. 3.12 shows the frequency dependence of the effective permit-
tivity over the interesting frequency band. Metallic spheres occupy a volume frac-
tion p = 1/3 in the host medium (3D mixture). The environment is assumed free
space (εe = 1) and the inclusions follow Drude dispersion (3.16) with loss factor
ν = ωp/50.

In order to have a more realistic view of the global dispersion of the mixture, the
Lord Rayleigh model is used to compute the results in Fig. 3.12. Hence, in addition
to the strong resonance according to (3.18) around ω ≈ 0.45ωp, another resonance,
although smaller in amplitude, appears at a somewhat higher frequency. This is due
to the singularity region when the inclusion permittivity is around εi ≈ −1 predicted
by Lord Rayleigh formula. Figure 3.12 displays also the bulk inclusion permittivity
function εi(ω) showing the monotonous increase from negative values of the real
part of the inclusion permittivity.

The analysis above focused on the mixing case of the raisin-pudding model (it
was the inclusion phase which contained the intrinsic dispersion). The complemen-
tary Swiss-cheese mixture where spherical holes are carved into bulk metal does not
obey any of the simple dispersion models. However, as discussed in more detail in
[19], such a mixture can offer better potential than the raisin-pudding configuration
in the design of low-loss plasmonic metamaterials.

3.7 Conclusions

The calculation of the effective permittivity of heterogeneous materials is a very
fundamental problem in mathematical physics in general, and in electromagnetics
in particular. Electromagnetics literature contains several classical homogenization
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results, the oldest of which date already from the 19th century. There is still a need
for useful homogenization models, and with the strong research activity on complex
media and metamaterials, this demand is growing.

As was discussed in the present chapter, the effective permittivity of mixtures
displays qualitatively very interesting phenonema that are not present in the compo-
nent materials but rather emerge from the mixing process. This happens particularly
when plasmonic mixtures are treated. And for disordered mixtures the effective per-
mittivity response becomes furthermore complicated. Numerical computations are
needed to evaluate the predictive power of classical mixing rules. The results showed
that also for plasmonic and even disordered mixtures, for certain parameter ranges
the easy-to-use mixing formulas were able to produce reasonable accurate estimates
for the true macroscopic permittivity.

The results for the permittivity characterization of dielectric mixtures are appli-
cable in many other fields of physics of materials, like, for example, in calculating
the effective magnetic, conductivity, and elastic responses of heterogeneous media.

In summary, mixing rules definitely have a role in the analysis and design of
amorphous nanomaterials. The predictions for the effective material parameters for
plasmonic composites for ideal and lossless inclusions was seen to lead to singu-
larities and other unexpected types of behavior. However, when the mixing models
were taken with plasmonic material having realistic loss mechanisms (Sect. 3.6),
the extremities of the variations of the effective permittivity vanished. In the model-
ing of amorphous nanophotonic materials with sufficiently small unit cells, mixing
formulas hence make valuable tools. They help in analyzing physical phenomena
that emerge from the complex microstructure, and thus provide a path towards the
design of functional nanotechnological devices.
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Chapter 4
Multipole Analysis of Self-assembled
Metamaterials

Stefan Mühlig and Carsten Rockstuhl

Abstract We provide here a review on the theoretical description of the interac-
tion of light with metamaterials fabricated by chemical self-assembling processes.
Unique to the metamaterials accessible with such approaches is the amorphous
arrangement of the unit-cells in space. This is in striking contrast to most of the
structures previously considered, i.e. metamaterials fabricated by top-down process
that usually lead to periodically arranged unit-cells. In consequence, novel concepts
have to be established to describe the light interaction with their metamaterials and
novel design rules have to be developed to suggest metamaterials that shall provide
a desired optical response. A theoretical description based on Cartesian multipole
moments is outlined in this chapter that fully satisfies these requirements. The de-
scription of the scattering response of the unit-cells is revealed as to be essential
to understand amorphous metamaterials. Based on mixing rules, the propagation of
light in amorphous metamaterials is properly described in terms of excited multipole
moments of their unit-cells. The theoretical framework we outline here provides the
methodology to discuss amorphous metamaterials and constitutes therefore an in-
dispensable tool for the future development of optical components exploiting amor-
phous nanooptical materials.

4.1 Introduction

In the last decade the fusion of the fields of colloidal nanochemistry and nanoop-
tics has been evolving to form an entirely new area of research which focuses on
self-assembled nanooptical and nanophotonical structures. Chemical self-assembly
processes are exploited to fabricate nanostructures required for nanooptical appli-
cations. A primary goal of these bottom-up processes is the fabrication of materials
tailored at the nanoscale to affect optical properties in the visible and near infrared

S. Mühlig (B) · C. Rockstuhl
Abbe Center of Photonics, Institute of Condensed Matter Theory and Solid State Optics,
Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
e-mail: stefan.muehlig@uni-jena.de

C. Rockstuhl
e-mail: Carsten.Rockstuhl@uni-jena.de

C. Rockstuhl, T. Scharf (eds.), Amorphous Nanophotonics,
Nano-Optics and Nanophotonics, DOI 10.1007/978-3-642-32475-8_4,
© Springer-Verlag Berlin Heidelberg 2013

89

mailto:stefan.muehlig@uni-jena.de
mailto:Carsten.Rockstuhl@uni-jena.de
http://dx.doi.org/10.1007/978-3-642-32475-8_4


90 S. Mühlig and C. Rockstuhl

regime. These self-assembled metamaterials (MMs) are usually made of resonant
unit-cells smaller than the wavelength of interest. In an obvious analogy to real
materials that are made of atoms, these resonant unit-cells are termed meta-atoms.
The excitation of localized surface plasmon polariton resonances (LSPRs) in plas-
monic nanoparticles (NPs) is one way to promote the desired resonances. Individual
but also strongly coupled ensembles of NPs are considered to cause a desired scat-
tering response. Most notably, these meta-atoms should sustain electric as well as
magnetic resonances to cause eventually materials with an electric or magnetic dis-
persion. Therewith, optical properties are in reach which cannot be found in nature.
The final materials are then achieved by arranging the resonant meta-atoms in either
a periodic or amorphous manner to form the MM.

Pioneering work by Alivisatos et al. [1] and Feldheim et al. [2] demonstrated the
assembly of two plasmonic NPs, often termed a dimer, with a controlled distance
to each other using DNA and molecular linkers, respectively. Such a plasmonic
dimer could be seen as a possible meta-atom for a self-assembled MM. There-
with, the fabrication of MMs exploiting self-assembly processes based on colloidal
nanochemistry came into reach. The field of self-assembled MMs evolved during
the last ten years and today there exists a multitude of chemical processes to assem-
ble plasmonic NPs [3–6] into well-ordered nanooptical structures. Some of them
are reviewed in devoted chapters in this book, e.g. in the chapter from Bürgi and
co-worker.

Concerning the optical properties of the fabricated self-assembled MMs and their
theoretical description one should distinguish between two distinct groups. The first
group includes self-assembled MMs offering long-range order, i.e. there exists a
specific spatial arrangement between a huge number of meta-atoms. It has to be
stressed that this group is not restricted to a periodic or a quasiperiodic arrangement
of the meta-atoms as would be suspected from crystallography. As long as there
exists any ordering between the meta-atoms the fabricated MM shall belong to this
group. For example, if the meta-atoms are arranged along chains, but these chains
do not offer any specific geometry, the MMs constitutes to the long-range order
group. Furthermore, the optical response of these MMs should be affected by the
resonances of the single meta-atom and from a collective interaction caused by the
specific spatial order. The second group includes all self-assembled MMs that ex-
hibit a specific spatial arrangement only on the short-range scale, which is essential
to built up meta-atoms possessing a response deviating from that of an isolated NP.
The spatial arrangement of the meta-atoms in space is amorphous. In this group the
optical response of the entire MM is, as will be proven later on, primarily dominated
by the resonances of the meta-atoms itself. For both introduced groups, MMs can be
found that are fully three-dimensional as well as MMs offering just two-dimensional
ordering existing on a substrate.

Regarding the group of long-range order self-assembled MMs, manifold chemi-
cal processes were introduced in literature to fabricate them. Block-copolymer self-
assembly [7–11] is one prominent candidate. The block-copolymers consist of two
or more distinct polymer blocks which are covalently bound to each other. They
self-assemble into different geometries depending (in the most simple case) on
one geometrical parameter like the length of one polymer chain [8]. Loading this
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block-copolymer host with resonant NPs forms the MM. In most of the cases the
self-assembled structures are two-dimensional and therefore the fabricated MMs
appear planar. Incorporating plasmonic NPs into liquid crystals presents another
and effective way of achieving MMs offering long-range order [12]. The tunable
anisotropy of liquid crystals can be exploited to precisely control the resonances of
the incorporated NPs. Here, fully three-dimensional samples [13] as well as stacked
layers of liquid crystal lamellae [14] have been demonstrated. Applying DNA to
self-assemble MMs is usually related to the short-range group, since the DNA is
normally used to connect two NPs with a well defined distance to each other. This
fabrication technique is hard to adapt to long-range ordering. However, it has been
recently demonstrated that due to hybridization interactions of DNA strands spher-
ical NPs can be assembled into highly periodic three-dimensional lattices [15] like,
e.g., face-centered cubic and body-centered cubic ones. Furthermore, by combin-
ing different manufacturing techniques like evaporation [16] or substrate patterning
[17] with DNA controlled assembly the formation of two-dimensional long-range
order MMs has been demonstrated. Apart from this, the use of polymer-ligands
in combination with a drying-mediated entropy-driven process on an interface can
be exploited to assemble spherical NPs [18] or nanorods [19] into two-dimensional
long-range order structures. The process of evaporating a solution including the NPs
can be seen as another commonly used technique to self-assemble long-range order
MMs. Ultra large-scale arrays could be fabricated by the evaporation of NPs in a bi-
nary solvent mixture onto a substrate [20]. An additional pattering of the substrates
enables a more sophisticated geometry of the entire structure [21]. Two-dimensional
arrays of cylinders [22] or stripes [26] made of densely packed metallic NPs offering
a magnetic resonance in the visible or even more complex structures like arrays of
rings of NPs [23] were fabricated. Another way to self-assemble three-dimensional
MMs with long-range order is induced by the geometry of the single NPs. Recently,
it has been demonstrated that polyhedral silver NPs can assemble into densest pack-
ings and exotic lattices by a sedimentation process [24]. Surprisingly, even qua-
sicrystalline structures could be fabricated by chemical self-assembling processes
[25]. Therefore, binary NP mixtures (consisting of Au and metal oxide NPs) were
investigated and assembled due to the interplay of entropy-driven crystallization and
interparticle interactions.

Concerning these manifold long-range order self-assembled MMs one has to
mention the following points. At first, most of the MMs can be solely fabricated
in a planar fashion on a substrate. Therefore, mostly two-dimensional MMs can
be achieved and only a minor part of chemical self-assembly processes allows the
fabrication of fully three-dimensional MMs offering long-range order [15, 24]. At
second, in most of the cases, the meta-atoms of these MMs are made of single NPs.
The arrangement of complex meta-atoms consisting of a desired arrangement of a
few numbers of NPs, is still a challenging task. Most notably the latter restriction
hampers the design of MMs whose optical properties are different from the isolated
NPs. A few examples have been demonstrated, where the self-assembled structure
really offers different optical properties compared to an diluted solution of the NPs,
e.g., the demonstration of a magnetic response of an array of metal stripes [26].
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Fig. 4.1 Self-assembled MMs offering long-range order. (a) Scanning force micrograph of
self-assembled TiO2 NPs using block-copolymers. Reprinted with permission from [11], ©2011
by American Chemical Society (further ACS). (b) Scanning electron micrograph (SEM) of
self-assembled Ag truncated octahedra NPs into their densest lattice by sedimentation. Reprinted
with permission from [24], ©2011 by Macmillan Publishers Limited. (c) Transmission electron
micrograph (TEM) of a self-assembled dodecagonal quasicrystal made of binary mixture of Au
and Fe2O3 NPs. Reprinted with permission from [25], ©2009 by Macmillan Publishers Limited

Contrary to the group of long-range order self-assembled MMs, chemical pro-
cesses are exploited to assemble the NPs within a single meta-atom into a desired
spatial arrangement. The chemical processes of the group of short-range order self-
assembled MMs are outlined in the following. The evaporation of a solution includ-
ing the NPs can be applied to assemble them onto a substrate into a desired geom-
etry of the meta-atom. Therefore, the NPs are often coated with a specific polymer
defining the inter-particle distances and therewith the optical coupling strength [27].
Magnetic resonances in trimers [28] and Fano-resonances in heptamers [27] and
quadrumer clusters [29] fabricated by evaporation have been demonstrated. Another
prominent short-range order self-assembling process is the arrangement of NPs us-
ing DNA [30]. First principle demonstrations by Alivisatos et al. [1] and Mirkin et
al. [31] have shown the arrangement of two NPs and the fabrication of an aggregate
of NPs with DNA, respectively. This concept has been developed further [32] al-
lowing the assembly of more complex meta-atoms like NP trimer and tetramer com-
plexes [33], the arrangement of binary mixtures of NPs [34], dimers made of asym-
metric NPs [35], heteropentamer NP complexes to observe Fano resonances [36]
and chains of NPs [37]. These meta-atoms are all planar fashioned onto a substrate
but of course it is possible to built-up fully three-dimensional meta-atoms, though it
is more challenging. For example, the assembling of asymmetric meta-atoms using
three-dimensional Janus-particles as a starting point was demonstrated [38]. Fur-
thermore, a DNA guided crystallization allows fabricating three-dimensional struc-
tures of gold NPs [39]. The fabrication of DNA scaffolds yields three-dimensional
meta-atoms, e.g., pyramids of gold NPs can be assembled [40]. Apart from the ex-
perimental demonstration of DNA assembled NPs some theoretical considerations
are reported [41], too. The application of organic molecular linkers to assemble the
NPs offers another possibility for short-range ordering. Depending on the symme-
try of the molecular linker, the NPs can be ordered to dimers [2], trimers, pyramidal
structures [42], or to larger aggregates with a well-defined outer shape [43]. Another
way to assemble the NPs are electrostatic forces [44]. These forces can be evoked
between charged plasmonic NPs and oppositely charged NPs or other chargeable
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Fig. 4.2 Self-assembled MMs offering short-range order. (a) Plasmonic core-shell clusters of-
fering a magnetic dipole response made of Au NPs attached to a dielectric core by electrostatic
forces. Reprinted with permission from [49], ©2011 by ACS. (b) SEM image of a self-assembled
Au NP chain by DNA. Reprinted with permission from [37], ©2011 by ACS. (c) TEM image of
a self-assembled Au NPs into a chiral pyramidal structure by DNA. Reprinted with permission
from [40], ©2009 by ACS. (d) TEM image of a self-assembled quadrumer cluster (offering Fano
resonances) made of Au NPs by evaporation. Reprinted with permission from [29], ©2010 by ACS

substances, e.g. polymer layers [45]. Various two-dimensional meta-atoms can be
fabricated like, e.g., dimers [46] or asymmetric dimers [47] made of plasmonic NPs.
The advantage of this technique is its simple adaptability for all chargeable par-
ticles like, e.g., nanorods [48], independently of most of the other chemical and
physical properties. Details thereof are given in other chapters in that book. Fur-
thermore, the chemical process can be adapted to fabricate fully three-dimensional
meta-atoms, like silica cores covered with tiny plasmonic nanospheres offering an
isotropic magnetic response in the visible [49] or huge local field enhancements
suitable for surface enhanced Raman scattering [50, 51]. Apart from that, by con-
trolling the directional solidification of eutectics, Pawlak et al. have demonstrated
the self-assembling of split-ring resonator (SRR) like nanostructures [52] which are
well-known from lithographical top-down fabrication processes and are one promis-
ing candidate offering a magnetic response in the visible. Recently, the formation of
meta-atoms using liquid crystals (which is normally exploited for long-range order-
ing) was demonstrated [53]. Therefore, defect states were introduced into the liquid
crystal host to place the NPs at defined positions.

To sum up the group of short-range order self-assembled MMs, one has to con-
clude the following points. At one hand, the exploited chemical processes allow the
assembling of complex meta-atoms in either two or three dimensions. This allows
to observe complex optical responses, e.g., Fano resonances or a magnetic response
of the meta-atom. This is in contrast to the long-range order group, where normally
the optical response does not differ from a material consisting of diluted NPs. At
the other hand, unfortunately, these self-assembling processes enable no control for
long-range ordering which is the spatial arrangement of the meta-atoms. Therefore,
the meta-atoms appear in most cases in an amorphous fashion on a substrate or in
solution.

Both groups of long-range and short-range order self-assembled MMs require a
completely different theoretical approach to describe their optical properties when
compared to MMs fabricated by top-down techniques. The meta-atoms of self-
assembled MMs are made of several separated NPs instead of one bulk material
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with a well-defined outer shape (like a SRR). Therefore, completely new design
rules have to be developed to achieve a desired optical response. Furthermore, the
lack of periodicity between the meta-atoms for the short-range order group (which
is the more promising group to achieve a complex optical response) hampers the
theoretical description of these MMs. Periodic boundary conditions that simplify
the numerical treatment, e.g., are no longer applicable to simulate the structures.
These two major tasks, the development of new design rules and the description
of the light propagation in MMs with an amorphous arrangement of complex self-
assembled meta-atoms, are at the focus of this book chapter. The chapter is arranged
as follows.

In Sect. 4.2 a short review of top-down MMs is given and the advantages and
disadvantages are shortly summarized in comparison to self-assembled MMs. This
certainly helps to appreciate the advantages of bottom-up MMs. Afterwards, the
focus lies on the theoretical description of self-assembled amorphous MMs. The
framework of a multipole analysis of meta-atoms is introduced in Sect. 4.3.2; the
optical response of representative examples of meta-atoms is discussed within this
framework and new design rules are developed in Sect. 4.3.3. The accessibility of an
isotropic magnetic response in the visible is outlined. In Sect. 4.3.4 the light propa-
gation in self-assembled MMs with amorphously arranged meta-atoms is discussed
and two different approaches are compared to each other.

4.2 Periodic Metamaterials

To motivate research on amorphous MMs as well as to understand basic guidelines
for the design of meta-atoms, it is useful to reflect for a moment on traditional MMs
made from deterministic unit-cells. They are usually fabricated with top-down fabri-
cation processes and are arranged in a periodic lattice [54]. Some selected structures
are shown in Fig 4.3. Such top-down MMs were essential to evolve the field of MMs
towards a mature discipline after the first applications on how to use MMs were sug-
gested [55, 56]. They were the key component to implement materials that sustain
the desired response on a first glance. But they also possess limitations bottom-up,
self-assembled MMs promise to lift.

To achieve properties that strongly deviate from the mere spatial average of the
meta-atom constituents, resonances have to be incorporated such that light strongly
interacts with matter. Whereas in self-assembled MMs these initial resonances are
usually contributed by LSPRs of metallic NPs, in top-down MMs made from met-
als the resonances are equally contributed by LSPRs but sustained by NPs with a
much more complicated, fully deterministic geometry [57]. Elongated nanowires
with a rectangular cross section or thin metallic discs might serve as examples for
canonical geometries [58]. Their scattering response is dominated by an electric
dipole; hence leading to a dispersion in the effective permittivity. The advantage of
elongated nanowires when compared to nanopsheres is the tunability of the spectral
position of the resonances across a large spectral domain by modifying geometrical
parameters, e.g. the aspect ratio of the naowires [59]. The disadvantage is that with
a strongly modified aspect ratio, the individual meta-atom no longer possesses an
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Fig. 4.3 Electron micrographs of top-down MMs periodically arranged on a substrate. (a) Split
ring resonator array offering a magnetic resonance at 200 THz. Reprinted with permission from
[68], ©2005 by American Physical Society. (b) Swiss cross metamaterial offering polarization-in-
dependent negative-index at 1.4 µm. Reprinted with permission from [60], ©2008 by Optical So-
ciety of America. (c) Periodically arranged gold helix structure that exhibits a broadband chiral
response in the near infrared. Reprinted with permission from [69], ©2009 by American Associa-
tion for the Advancement of Science

isotropic response. Instead, at least a biaxial anisotropic response is observed, i.e. the
polarizability of the meta-atoms is different for all three main axes. The geometry
can be tuned to be polarization independent at normal incidence, i.e. for a unit cell
with a C4 symmetry, but it will lead at most to a uniaxial anisotropic response [60].

To achieve meta-atoms that possess a response beyond an electric dipole, most
MMs working in the visible rely on strongly coupled two NPs that sustain an elec-
tric dipolar resonance at the same frequency. The theory of plasmon hybridization
suggests that in the strong coupling regime the individual modes at the same fre-
quency are splited into two modes at different frequencies if the dipoles are oriented
perpendicular to the connection line of the NPs [61]. The low (high) energy mode is
called anti-symmetric (symmetric) since the currents in the two NPs oscillate π out
of (in) phase. The anti-symmetric character, as will be detailed below, is associated
with a scattering response that is dominated by a magnetic dipole and/or an electric
quadrupole. The symmetric mode where the currents in the coupled NPs oscillate in
phase, possesses a scattering response that is dominated by an electric dipole since
contribution from the two particles reinforce. With that basic operational principle,
various top-down metamaterials have been suggested across a wide spectral domain;
ranging from the GHz down to the blue end of the visible. The basic understanding
that two currents in the unit cell that flow π out of phase induce a scattering re-
sponse dominated by a magnetic dipole can also be applied to explain the scattering
response of other meta-atoms, e.g. the SRR, as detailed later in this chapter.

The success of top-down MMs can be found in their conceptual simple way of
fabrication and their ability to allow for basic investigations of many effects dis-
cussed in the context of MMs. Examples are the evidence of a negative index [62],
of negative refraction [63], negative group velocity [64], and on their imaging per-
formance [72]. To this end, the application of laser beam writing, electron-beam
lithography, or focused ion beam milling has been reported for their fabrication
[54]. All these methods, however, are limited to the fabrication of planar structures
with a thickness of only a few tens of nanometers for each functional layers. Pos-
sibilities exist, however, to extend this thickness, though fully bulk materials are



96 S. Mühlig and C. Rockstuhl

out of reach. Referential examples for techniques to extend the thickness are the
stacking of functional layers that are individually fabricated or the structuring of a
complicated sequence of alternating layers of metals and dielectrics with an identi-
cal lateral geometry with a given top-down fabrication process [65, 66]. However,
this led in the past only to MMs comprising a few hundreds of nanometers in thick-
ness; and technological challenges render it questionable to achieve bulk MMs with
these approaches. Therefore, MMs fabricated with these methods are necessarily
meta-surfaces. Conceptually fundamentally new approaches are required to over-
come these limitations.

Moreover, the proximity effect strongly affects the achievable resolution for fab-
ricated meta-atoms and a great degree of sophistication has to be put in place to pre-
compensate associated detrimental effects. This, however, is only feasible if each
meta-atom is written with an identical environment. This led to the fabrication of
strictly periodically arranged unit cells in space which causes additional problems.
First, it is difficult, if not to say impossible to achieve isotropic MMs [67]. Although
MM might possess a polarization independent response at normal incidence, e.g.
by choosing a C4 symmetry, the challenge to fabricate a meta-atom with identical
geometrical details in the third spatial dimension, i.e. normal to the substrate on
which the MM is fabricated, is not solved yet. Second, the periodic arrangement of
the meta-atoms causes often strong spatial dispersion, a property which denies the
introduction of biaxial anisotropic constitutive relations [70]. To do so, only weak
spatial dispersion or a weak non-locality would have been required. This constitutes
a major limitation and might be taken as the reason why many of the envisioned
applications are not yet implemented.

In conclusion, many of the basic functionalities of MMs have been proven with
structures fabricated with top-down processes, but the limitations indicated above
have to be lifted to further advance the field. Self-assembled amorphous MMs are
promising to nullify at least problems associated by the periodic arrangement of the
meta-atoms as outlined in the next section. The challenge to discuss the properties of
such amorphous MMs is the restriction on the scattering response of the individual
meta-atom. It is the primary and sole source of information and at the heart of the
following sections.

4.3 Amorphous Metamaterials

As outlined in Sect. 4.1 self-assembled MMs can offer long-range or short-range
order and especially the last part leads to complex meta-atoms with desired opti-
cal properties. The arrangement and orientation of these meta-atoms is completely
amorphous, forming an amorphous MM, since the self-assembling process only
takes place at length scales to assemble the single meta-atoms. This evokes several
advantages and disadvantages compared to periodic MMs which are in most of the
cases fabricated by top-down processes (cf. Sect. 4.2). The amorphous orientation
of the meta-atoms solves one major problem of the periodic MMs which is spatial
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dispersion. The optical response of an amorphous MM is completely isotropic since
the propagating electromagnetic field would probe independent of the propagation
direction and polarization state always the same material. This isotropy is one key
feature which is required for many predicted applications of MMs. For example
the well-known perfect lens, predicted by Pendry [71], requires a MM offering a
negative refractive index independently on the spatial wavevector component that
has to pass the lens. This requires a MM characterized by isotropic material pa-
rameters or it can be circumvented by using complex layered periodic MMs which
provide at least an isotropic optical response, though material parameters cannot
be assigned to [72]. This problem could be easily solved by amorphous MMs ex-
hibiting the desired optical properties. In opposite to the striking advantage of the
amorphous arrangement of the meta-atoms, it strongly hampers their theoretical de-
scription. In principle, every meta-atom of the MM, or at least the part that is illu-
minated by the incident field, has to be considered in the simulations of the optical
response of the MM. This is in most of the cases impossible or requires computa-
tional resources in excess. Well established techniques such as periodic-boundary
conditions for periodic MMs that reduce the simulation of the entire MM to that of
a single meta-atom are no longer applicable for amorphous MMs. Therefore, other
numerical techniques has to be evaluated to properly describe the interaction of light
with amorphous MMs and evaluate design rules for them.

The description of light propagation in amorphous MMs presented in this chapter
is based on the scattering response of the single meta-atom. Therefore, to start with,
a compact outline about measuring the optical response of meta-atoms is given in
Sect. 4.3.1. Afterwards, in Sect. 4.3.2 a multipole analysis of meta-atoms is intro-
duced, allowing the numerical description of the scattering response of arbitrarily
shaped meta-atoms in terms of multipole moments. The subsequent Sect. 4.3.3 dis-
cusses several meta-atoms in terms of their excited multipole moments and outlines
the advantages of the introduced formalism. In the last Sect. 4.3.4 the light propa-
gation in amorphous MMs is discussed in detail.

4.3.1 Optical Response of Single Meta-atoms

The challenge to access on experimental grounds the optical properties of individual
meta-atoms is linked to their nanometric extension. This causes the absolute scat-
tering response to be extremely weak and difficult to detect. Moreover, due to the
strong localization in space, a possible scattering signal diffracts and it is difficult
to reconstruct its angular distribution. Therefore, most experiments are performed
while using periodic arrays of meta-atoms, i.e. the structure forms a grating. Then,
transmission (reflection) into the zeroth diffraction order can be measured to quan-
tify at least the scattering in forward (backward) direction. Detrimental is that results
are occasionally exposed by artifacts due to the lattice, i.e. grating resonances such
as Wood or Rayleigh anomalies, and it does not always help to disclose the multipo-
lar character of the scattered field. Moreover, resonances which do not couple to free
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space, i.e. dark modes, are not probed. To circumvent some of these problems, a few
experimental techniques were developed to measure in an experiment quantities of
individual meta-atoms.

Probably the most direct approach to probe the optical properties of individual
meta-atoms has been introduced by Husnik et al. [73]. They suggested and applied
a technique to measure the extinction cross section of individual meta-atoms using
a modulation technique. The extinction cross section is the sum of the scattered
and the absorbed light normalized to the incident power onto the geometrical cross
section of the meta-atom, i.e. the amount of incident light that is not transmitted
in forward direction. Regarding the example of SRRs, they have been proven that
the extinction cross sections can be eight times the geometrical cross sections at the
frequency of the fundamental resonance. The experimental results were in excellent
agreement with microscopic simulations of a plane wave scattered at an individual
SRR; taking into account all the minuscule details of their geometry as extracted
from scanning electron micrographs. The supporting simulations could also reveal
that one third of the extinction cross section was associated with the absorption of
light while the remaining two third were scattered. The advantage of the method
is its ability to measure spectrally resolved quantities that characterize individual
meta-atoms. But with these quantities, i.e. the extinction cross section, the character
or the nature of the individual resonance cannot be resolved for and, moreover, only
resonances can be accessed that can be also excited with free space radiation. Only
the presence of such resonance is detected and its strength. Supporting simulations
are required to further understand the meta-atoms.

To circumvent some of these limitations, measurements with an apertureless
scanning near-field optical microscope (a-SNOM) can be performed [74]. Although
aperture-SNOMs can be used as well, their finite spatial resolution usually denies
an application to probe the near-field properties of meta-atoms. The a-SNOM usu-
ally measures close to an object the near-field upon plane wave excitation. In most
cases only the component in longitudinal direction, i.e. normal to the substrate, is
measured since the tips used in a-SNOMs only scatter that specific component into
the far-field. Details of the method are discussed in another chapter of this book
by Vogelgesang and co-worker. The main advantage of such techniques is to pro-
vide comparison to quantities usually used to discuss and classify the resonances
of meta-atoms, e.g. SRRs. The disadvantage of being spectrally not always flexi-
ble can be circumvented by scaling the geometries of the individual elements such
that resonance frequencies are supported at the frequency of operation for the a-
SNOM. A further disadvantage with a-SNOMs is the illumination of the sample at
oblique incidence. This causes the incident field to have a phase variation across
the meta-atom. This is not a major problem and can be taken into account in sup-
porting simulations, but the understanding of the measured field distributions is less
intuitive.

To access optically the radiation patterns of individual meta-atoms the use of
Fourier microscopy in a dark-field confocal setup that relies on an objective with
a high numerical aperture has been suggested [75]. In that method the individual
meta-atoms on top of a glass substrate are usually illuminated from the substrate
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with an oblique beam possessing an angle larger than the angle necessary for total
internal reflection. The angular distribution of the scattered field is then measured
in a 2f -configuration. An objective with a large numerical aperture ensures that
the scattered light can be measured over a large angular domain. The problem of
having a spread of photons across the detector which leads to small signals can be
circumvented by using a high power supercontinuum light source that is spectrally
tuned by an acousto-optical filter.

A last optical method that can be used to probe for specific eigenmodes consists
in using tailored light fields for the illumination and measuring the reflected and/or
transmitted light [76]. Here the idea is that the eigenmodes sustained by the meta-
atoms possess a well defined electric and magnetic field distribution in space. The
excitation strength of the resonance strongly depends on the spatial overlap of the
incident field with that of the eigenmode. The use of, e.g., tailored illumination with
no electric but only a strong magnetic field can suppress the electric dipolar scat-
tering response that otherwise would have dominated the scattered signal in favor
of a much weaker magnetic dipole. Varying the incidence field, hence varying the
excitation condition for the meta-atoms under consideration, allows, in principle, to
entirely map the scattering matrix of individual meta-atoms. It will include infor-
mation on how strong an incident electric dipolar field is scattered into an electric
dipole, magnetic dipole; and in turn any other electro-magnetic multipolar contribu-
tions.

To probe for all resonances a meta-atom may sustain, i.e. also those which can-
not be excited by free space radiation, other methods have to be put in place [77].
A prominent technique is electron energy loss spectroscopy (EELS) (cf. Fig. 4.4).
In this technique electron beams are transmitted through the samples, that are re-
quired to be thin, and the spatially resolved electron energy loss spectra is recorded.
While the electron traverses the structure, it can couple to the normal component
of the electric field of the eigenmodes as sustained by the meta-atoms at discrete
frequencies; and the electron hence looses some of its energy. After obtaining a
three-dimensional data-set (energy and two transversal coordinates), various inspec-
tions of the data are useful. For example, the amplitude of the EELS spectra can be
spatially looked at for a fixed frequency depending on the transversal coordinates
to glimpse the spatial distribution of eigenmodes. Impressive results have been ob-
tained with EELS while probing for resonances of single SSRs. Resonances of or-
ders up to seven were witnessed, well beyond an order usually seen in far-field
optical spectroscopy. These higher order modes usually do not couple well to free
space and cannot be probed in consequence with far-field technique. But they can
be seen using EELS due to the local excitation. Disadvantages of EELS are the only
indirect measurement of quantities linked to the field distribution of the eigenmodes
and the requirement of thin samples that the electrons can pass through.

To conclude this section on various experimental strategies to probe for prop-
erties of individual meta-atoms, it remains to be said that various approaches have
been developed in the past for that purpose. They all possess advantages and disad-
vantages; but taking them together may provide quite comprehensive insights into
the absolute scattering strength, the angular distribution of the scattered light, and
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Fig. 4.4 Direct measurement of SRR resonances by EELS. Upper row: Calculated field distribu-
tions of the lowest three order resonances of a gold SRR with 200 nm arm and base lengths under
normal incidence. Only the electric field component perpendicular to the SRR plane is shown.
The white arrows indicate the polarization of the incident field. Lower row: Corresponding EELS
maps of the lowest three order resonances for a fabricated SRR with identical dimensions. The
EELS maps nicely correspond to the calculated field distributions of the upper row. Reprinted with
permission from [77], ©2011 by Optical Society of America

the field distribution of individual resonances sustained by the meta-atoms. These
meta-atoms constitute the heart of amorphous MMs. However, in all cases support-
ing theoretical considerations and simulations have to be put in place to fully un-
derstand their properties. How to explore these scattering properties on theoretical
grounds is discussed in the following sections.

4.3.2 Multipole Analysis of Meta-atoms

As outlined in the previous sections the aim of this book chapter is the understanding
of light propagation in amorphous MMs based on excited multipole moments of
the corresponding meta-atoms. Therefore, prior the consideration of the problem
how light interacts with amorphous MMs, a formalism needs to be introduced to
describe how light interacts with the individual meta-atom. This is performed by
accessing the scattered multipole moments of the meta-atoms which is done in this
section. Furthermore, it is shown that the understanding of the scattering response
of the meta-atoms plays a pivotal role to develop design rules for self-assembled
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MMs and it can be used to assign material parameters to these structures; just to
mention the most prominent issues. However, a theoretical description of the meta-
atoms in terms of multipole moments is not just linked to the field of self-assembled
amorphous MMs. Quite the contrary, it is important for the field of periodic top-
down MMs to distinguish between resonances evoked by the meta-atoms itself and
by their periodical arrangement.

Several theoretical models have been developed to describe the scattering re-
sponse of a given meta-atom. One way is a description based on LC circuits well-
known from quasistatic electrodynamics. Here the meta-atom is replaced by coupled
LC circuits depending on the given geometry [78, 79]. The basic features regarding
the observed resonances in the quasistatic limit can be explained by this model in a
very intuitive manner. However, since the LC circuits are not based on a full electro-
dynamical treatment of Maxwell’s equations, in some cases several problems arise,
e.g., an infinite speed of light in the LC models as well as a violation of energy con-
servation [80, 81]. These limitations can be lifted, e.g., by treating the meta-atoms
as magnetoelectric point scatterers and converting the quasistatic LC circuit model
into a full electrodynamical model by considering radiation damping effects [81].
However, the parameters of the assumed LC circuit such as the impedances and the
capacitances are not given by theory. Experimental results such as measured extinc-
tion spectra have to be put forward. Therewith, the free parameters of the LC circuit
model are fitted to match the experimental results. Furthermore, since the theoret-
ical description is based on dipoles, no insight is given to higher order multipole
moments excited in the meta-atom that contribute to the scattering response.

Another way is the description of the meta-atom by coupled oscillators [82].
Therefore, the meta-atom is assumed to consists of several plasmonic entities in
which a current oscillates. A multipole expansion technique relates these coupled
oscillators to an electric and magnetic dipole and higher order multipole moments.
Though this description provides access to all excited multipole moments in a meta-
atom, it still needs experimental or numerical results to fit the unknown parameters
of the model such as the coupling strengths.

The previously mentioned theoretical descriptions of the meta-atoms are based
on analytical formulas. Unfortunately, this requires in most of the cases some fit-
ting procedure where the assumed free parameters of the analytical description (e.g.
the capacity in the LC model) are assigned according to experimentally measured
spectra. In contrast to the analytical treatment of the meta-atom, Maxwell’s equa-
tions can be solved numerically in the frequency or time domain by well-established
techniques such as the finite-difference time-domain (FDTD) method or the finite-
element method (FEM). The numerical solution yields the electromagnetic field and
therewith the scattering response of the meta-atom can be derived. The advantage
of the numerical treatment is the prevention of any assumptions to the system (such
as assuming the meta-atoms as pure dipoles) and furthermore no free parameters
have to be fitted. Contrariwise, it is quite challenging to develop a deep physical
understanding of the meta-atom and to explain the observed resonances. Of course
it is possible by interpreting the near-field components of the meta-atom, as shown
in Refs. [83, 84], but in general, the physical origin of the excited eigenmodes in the
meta-atom cannot be extracted.
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Therefore, it is important to reduce the complexity of the simulated field-
distributions to theoretical descriptions of the problem that could be physically inter-
preted. The so-called T-matrix method [85–87] provides exactly such a description.
It is based on a full set of eigenfunctions in spherical coordinates which are the
vector spherical harmonics (VSH). The incident and the scattered field of the meta-
atom are expanded into this set of eigenfunctions by an infinite series with complex
expansion coefficients. The T-matrix relates the coefficients of the incident field p
to the coefficients of the scattered field a (in this short notation p and a are vectors
including all the coefficients)

a = T̂ · p. (4.1)

Obviously, the T-matrix includes all information of the meta-atom; for every inci-
dent field the scattered field can be easily extracted by a matrix multiplication. In
general, the entire T-matrix includes still too much information (or in other words
the complexity of the problem is still too high) for most of the meta-atoms. In prin-
ciple, in the experiments only a few angles of incident are important and it is enough
to consider the two independent polarizations. Furthermore, it is quite challenging
to calculate the entire T-matrix for a given meta-atom. Analytical formulas exist
only for highly symmetric scatterers such as, e.g., spheres [88] or ellipsoids [89].
Apart form that the T-matrix has to be computed numerically [90]. However, ev-
ery incident field for which the meta-atom is illuminated yields to solely one row
of the T-matrix (assume that the meta-atom is illuminated by a field that can be
entirely described by one VSH; this is identical to a vector p including predomi-
nantly zeros and one nonzero entry). Furthermore, the T-matrix is normally written
down in spherical coordinates which makes it more difficult to interpret the entries
and reveal a deeper physical understanding of the meta-atom compared to Cartesian
coordinates.

In the following a formalism is introduced which is based on the T-matrix method
and called multipole analysis of meta-atoms [91]. For an arbitrary incident field
it will be shown how the Cartesian multipole moments contributing to the scat-
tered field can be extracted from numerical simulations. In analogy to the T-matrix
method all fields are expanded in VSH that consist of two orthogonal sets of eigen-
functions labeled N and M spanning the entire space in spherical coordinates. The
scattered field reads as

Esca(r, θ,ϕ)=
∞∑
n=1

n∑
m=−n

k2Enm
[
anmNnm(r, θ,ϕ)+ bnmMnm(r, θ,ϕ)

]
, (4.2)

where k is the wavenumber in freespace, anm and bnm are the complex expansion
coefficients of the scattered field (from now on we will call them scattering coeffi-
cients) and Enm is a scaling factor. The analytical formulas of Enm as well as for
the VSH N and M can be found in Ref. [91]. For a given incident field and highly
symmetric meta-atoms, e.g. spheres or ellipsoids, analytical formulas can be derived
to obtain the scattering coefficients anm,bnm [92, 93]. For example the well-known
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Mie coefficients connect the expansion coefficients of the incident field [for a de-
composition into VSH similar to (4.2)] to the scattering coefficients for a sphere
of arbitrary permittivity and permeabilty [94]. If the meta-atom is more complex
shaped, the scattering coefficients have to be provided by a numerical treatment
[95]. Therefore the scattering response is simulated by a suitable numerical tech-
nique (e.g. the FDTD method). Afterwards, the electromagnetic fields are projected
onto the VSH by the following means [91]

anm =
∫ 2π

0

∫ π
0 E(r = a)N∗

nm(r = a) sin θdθdϕ∫ 2π
0

∫ π
0 |Nnm(r = a)|2 sin θdθdϕ

,

bnm =
∫ 2π

0

∫ π
0 E(r = a)M∗

nm(r = a) sin θdθdϕ∫ 2π
0

∫ π
0 |Mnm(r = a)|2 sin θdθdϕ

.

(4.3)

The asterisk indicates a complex conjugation and the integral is calculated on a
surface of a virtual sphere with radius a enclosing the entire meta-atom.

The expansion of the scattered field into the VSH with complex amplitudes in
(4.2) is identical, except some prefactors, to a multipole expansion in spherical coor-
dinates. Hence, by having the scattering coefficients from (4.3) at hand the multipole
moments generating the scattered field of the meta-atom are known. In the follow-
ing these multipole moments are transformed into Cartesian coordinates since it
appears the natural choice to discuss most of the meta-atoms. The transformation
from spherical to Cartesian coordinates can be obtained by comparing the far-field
expansion of the scattered fields in both coordinate systems, as demonstrated in
Ref. [91]. After some cumbersome but straightforward calculations, the following
transformation rules for the lowest two multipole moments (the electric dipole p
and the magnetic dipole m) can be found

p =
⎛
⎝pxpy
pz

⎞
⎠= C0

⎛
⎝ (a11 − a1−1)

i(a11 + a1−1)

−√
2a10

⎞
⎠ , m = cC0

⎛
⎝ (b11 − b1−1)

i(b11 + b1−1)

−√
2b10

⎞
⎠ , (4.4)

with C0 =
√

6πi
cZ0k

where c is the velocity of light in vacuum and Z0 the free space
impedance. As expected, only the lowest order of multipole moments in spherical
coordinates [n= 1 in (4.2)] contribute to the electric and magnetic dipole in Carte-
sian coordinates. Furthermore, as can be seen by the transformation of higher order
multipole moments (such as the electric quadrupole, which is not presented here)
the VSH N and M address the electric and magnetic multipole moments [91], re-
spectively. This is indicated already by (4.4) where solely the scattering coefficients
a1m contribute to the electric dipole moment p the b1m to the magnetic dipole m.

The understanding of the scattering response of the meta-atom in terms of Carte-
sian multipole moments requires a formalism where the influence of different mul-
tipole moments at certain frequencies can be extracted. One possible way is to con-
sider the scattering cross section Csca of the meta-atom in the frequency range of
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interest and to identify resonances thereof with resonant multipole moments. There-
fore, the Cartesian multipole moments from (4.4) have to be linked to Csca . This can
be easily done by inverting the transformation rules from (4.4) and applying the an-
alytical formula of the Csca in terms of the scattering coefficients [91]. Considering
only contributions of the electric dipole moments yields

Csca = 2k2

C2
0

(
1

2
|px + ipy |2 + |pz|2 + 1

2
|px − ipy |2

)
+ · · · (4.5)

It is worth mentioning that, of course, the contribution of every higher order mul-
tipole moment to Csca can be extracted by exactly the same formalism; though in
the case of most of the meta-atoms no higher order contributions than electric or
magnetic quadrupoles play an important role.

To sum up, a formalism was introduced allowing the description of the scatter-
ing response of arbitrary meta-atoms in terms of Cartesian multipole moments. The
scattered field of the meta-atom has to be simulated by a related numerical technique
and afterwards it is projected to the VSH yielding the scattering coefficients. These
scattering coefficients can be transformed to Cartesian multipole moments and their
contribution to Csca can be derived. Therewith, it is possible to relate resonances
in the scattering response of single meta-atoms to excited Cartesian multipole mo-
ments. The applications and advantages of this multipole analysis of meta-atoms are
revealed by some exclusive examples in the next section.

4.3.3 Exclusive Meta-atom Geometries

The aim of this section is to demonstrate the advantages of the multipole analysis
of meta-atoms by presenting an exclusive set of different meta-atom geometries. It
is shown that a physical understanding of the optical response of arbitrarily shaped
meta-atoms can be derived by the formalism introduced in Sect. 4.3.2. The im-
portance of revealing the contribution of the multipole moments to the scattering
response for developing design rules for self-assembled MMs is outlined. In advan-
tage, this section serves as a primary step for the description of light propagation in
self-assembled amorphous MMs which is discussed in detail in Sect. 4.3.4.

As outlined in Sect. 4.1 a big portion of self-assembled MMs is made of NP of-
fering a spherical shape (cf. Figs. 4.1 and 4.2). Therefore, the first part of this section
is devoted to meta-atoms made of properly arranged resonant nanospheres. This im-
plicates a huge numerical advantage. The scattering coefficients of these meta-atoms
can be simulated by an extension of Mie-theory [92, 93] which is a quasi-analytical
solution of Maxwell’s equations. Therefore, the overlap integrals of (4.3) have not
to be computed explicitly. The second part of this section deals with two exclu-
sive examples of meta-atoms, namely the cut-plate pair and the split-ring resonator
(SRR), that are commonly fabricated by top-down fabrication processes. Here, the
scattering response of the meta-atoms was computed by FDTD simulations and the
Cartesian multipole moments are derived by the formalism described in Sect. 4.3.2.
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Fig. 4.5 Cartesian multipole moments (as they contribute to the scattering cross section) of
meta-atoms made of resonant nanopsheres as a function of the wavelength; p is electric dipole, m
is magnetic dipole, EQ is electric quadrupole,MQ is magnetic quadrupole. (a) A silicon sphere of
200 nm radius is illuminated by a plane wave as sketched. The introduced coordinate system and
illumination scenario are identical for (b). (b) Cartesian multipole moments of a meta-atom made
of two gold spheres (40 nm radii and 5 nm separation) embedded in a usual dielectric (ε = 2.25)

The multipole moments of meta-atoms made of nanospheres are presented in
Figs. 4.5 and 4.6. All multipole moments are sketched as they contribute to the
scattering cross section [cf. (4.5)], in other words the sum of all shown multipole
moments for a specific meta-atom yields the entire scattering cross section. Ex-
clusive examples are discussed where the focus lies on meta-atoms fabricated by
self-assembly offering a magnetic dipole response. The magnetic dipole response
of these meta-atoms is important for manifold predicted applications, e.g., on the
field of transformation optics [96]. Various meta-atom designs are presented and
advantages and disadvantages are outlined. Especially, it is shown that the designs
of meta-atoms of self-assembled MMs are completely different compared to com-
monly top-down MMs.

In Fig. 4.5 (a) the Cartesian multipole moments of a silicon sphere with 200 nm
radius in the near infrared are shown. In this wavelength regime the permittivity
of silicon can be assumed to be a real valued constant of ≈12 [97]. The expected
separation of the multipole resonances of a high permittivity dielectric sphere can
be observed. The first order resonance (which appears at the lowest frequencies or
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Fig. 4.6 Cartesian multipole moments (as they contribute to the scattering cross section) of
meta-atoms made of resonant nanopsheres as a function of the wavelength; p is electric dipole,
m is magnetic dipole, EQ is electric quadrupole. (a) The meta-atom made of amorphously ar-
ranged silver nanospheres (6 nm radii) arranged into a spherical shape (75 nm radius) surrounded
by a dielectric with permittivity ε = 2.6 is illuminated by a plane wave as sketched. The introduced
coordinate system and illumination scenario are identical for (b). (b) Meta-atom made of a silica
core sphere (130 nm radius) where approximately 350 gold nanospheres (10 nm radii) are forming
a shell; the meta-atom is dissolved in water

longest wavelengths) is a pure magnetic dipole resonance [98, 99] at about 1500 nm
in Fig. 4.5 (a). The next order resonance (when going to shorter wavelengths) is
dominated by an electric dipole at approximately 1100 nm. Both dipolar resonances
are broad compared to the magnetic quadrupole resonance at about 1000 nm. In
principle, the magnetic dipole resonance at 1500 nm should be sufficient to fabri-
cate a MM out of somehow in space arranged silicon spheres that exhibits a sig-
nificant response to the magnetic field. The magnetic dipole resonances are exited
when the wavelength inside the nanosphere is comparable to its diameter [100].
Therefore, the nanospheres have to be made of a material offering a huge real part
of the permittivity [100–106]. Unfortunately, such materials do not exist for the
visible regime. Materials like the discussed silicon nanosphere or silicon carbide
nanospheres [107, 108] offer a magnetic resonance only in the near infrared regime.
Therefore, novel concepts needs to be developed for the visible domain.

One possibility to achieve a magnetic dipole resonance in the visible is shown
in Fig. 4.5 (b). Here, the meta-atom consists of two strongly coupled gold spheres,
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a plasmonic dimer. The LSPR of the single gold sphere is dominated by an elec-
tric dipole contribution and can be excited in the visible. By properly illuminating
the coupled spheres both electric dipole moments of the single spheres can be ex-
ited to oscillate 180◦ out of phase [as sketched in Fig. 4.5 (b)] causing a magnetic
dipole resonance of the entire structure [109, 110]. This resonance can be observed
at around 600 nm in Fig. 4.5 (b). Unfortunately, the contribution of the electric
quadrupole at this wavelength is not negligible. This may cause problems to de-
scribe a MM made of these meta-atoms by simple constitutive relations relying on
homogeneous material parameters [70]. The impact of such a quadrupole contribu-
tion is discussed in the next section. Furthermore, a meta-atom consisting of two
coupled spheres offers an anisotropic optical response and only for the presented
illumination scenario the magnetic dipole resonance can be excited [91]. Of course
an isotropic magnetic resonance could be achieved by a random arrangement of the
dimers in space forming an amorphous MM. Anyhow, the influence of the magnetic
dipole resonance on the scattering of the amorphous MM gets lowered. The reason
is that the magnetic dipole resonance is evoked only for one of the three independent
orientations of the dimers to the incident field.

The two meta-atoms presented in Fig. 4.6 (a) and (b) circumvent the problem
of an anisotropic response. They offer a spherical shape by their own yielding
an isotropic response of the meta-atom. In Fig. 4.6 (a) the meta-atom consists of
an amorphous arrangement of silver nanospheres offering a spherical outer shape
[43, 111, 112]. The observed magnetic resonance at about 550 nm can be understood
as follows. A material made of densely packed silver nanospheres can be described
by an effective permittivity that offers a Lorentzian line shaped resonance which is
dictated by the LSPR of the single nanosphere. Forming a sphere out of such a ma-
terial is somehow identical to the situation in Fig. 4.5 (a). The resulting meta-atom
can be understand as a homogeneous sphere which exhibits (due to the Lorentzian
line shaped permittivity) wavelengths ranges where the real part of the permittivity
is much larger than one. Therefore, as for the silicon sphere, a magnetic dipole reso-
nance of the structure is possible [113]. The advantages compared to the previously
discussed meta-atoms are the following. At first the magnetic dipole resonance ap-
pears in the visible compared to the silicon sphere. At second the response is fully
isotropic due to the spherical shape of the meta-atom avoiding disadvantages of an
anisotropic response, like for the plasmonic dimer. However, the excited magnetic
dipole resonance does not dominate the scattering spectra, there is still a dominating
influence of the electric dipole of the meta-atom [cf. Fig. 4.6 (a)].

One way to enhance the influence of the magnetic dipole resonance is shown for
the presented meta-atom in Fig. 4.6 (b). The meta-atom is a core-shell cluster where
the silica core sphere is decorated by a huge number of gold nanospheres [49]. The
appearance of a magnetic dipole resonance at around 700 nm can be understood as
follows. The optical response of the single gold nanospheres is dominated by the
excitation of an electric dipole oscillation at the LSPR. By illuminating the core-
shell cluster in Fig. 4.6 (b) by an external plane wave all these dipoles can oscillate in
phase around the core sphere causing a current [sketched in Fig. 4.6 (b) by the arrow]
that can be associated with a magnetic dipole [114]. In contrast to the meta-atom in
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Fig. 4.7 Cartesian multipole amplitudes (p is electric dipole,m is magnetic dipole, EQ is electric
quadrupole) of two selected meta-atoms commonly fabricated by top-down fabrication processes
as a function of the wavelength. (a) The shown meta-atom (a cut-plate pair) consists of two strongly
coupled gold plates (180 nm lateral dimension and 30 nm thickness) with a MgO layer in between
(same lateral dimensions and 45 nm thickness). The cut-plate pair is illuminated by a plane wave
as sketched. The introduced coordinate system and illumination scenario is identical for (b) where
the multipole amplitudes for a SRR made of gold (300 nm arm and base length; 40 × 40 nm
geometrical cross section) are shown

Fig. 4.6 (a) the magnetic dipole resonance of the core-shell cluster dominates the
scattering response of the meta-atom. One reason is the reduced amount of metal
in the meta-atom design yielding more pronounced resonances due to the lowered
absorption. Therefore, the presented core-shell cluster can be seen as one prominent
candidate offering an isotropic magnetic response in the visible domain.

In the second part of this section meta-atoms are in the focus which are com-
monly fabricated by top-down fabrication processes. The multipole amplitudes of
the so-called cut-plate pair [95] can be seen in Fig. 4.7 (a). By comparing the multi-
pole response with that of the previously discussed plasmonic dimer [cf. Fig. 4.5 (b)]
one can draw the following conclusion. The excited multipole moments and their
relative resonance positions to each other are similar for both meta-atoms. At short
wavelengths a broad electric dipole resonance is excited. The magnetic dipole reso-
nance and a contribution of an electric quadrupole can be observed at longer wave-
lengths in Fig. 4.7 (a) and Fig. 4.5 (b). This outlines one of the advantages of the
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multipole analysis. Though both considered geometries are totally different, their
multipole response looks similar and therefore the physical origin of the observed
multipole resonances should be the same, which is indeed the case. As for the plas-
monic dimer structure electric dipoles are excited in both metal plates of the cut-
plate pair. Their out of phase oscillation at a specific wavelength can be associated
with a magnetic dipole. Furthermore, the multipole analysis allows for a compari-
son of both meta-atoms. For example the quadrupole contributions at the magnetic
resonance are different for both meta-atoms and it is weaker for the cut-plate pair.
Therefore, the cut-plate pair serves as a more prominent candidate to describe the
propagation of light in a MM by simple constitutive relations since the quadrupole
is negligible small [95]. Problems arising from the quadrupole moment like spatial
dispersion should not dominate the optical response as shown in the next section.

The second geometry presented in Fig. 4.7 (b) shows the multipole moments of
a split-ring resonator (SRR) under illumination parallel to its base [91, 95]. Clearly,
the first order resonance at around 2200 nm can be identified with a contribution
of the desired magnetic dipole moment. Contrary to most of the observations in lit-
erature, a second dipole moment contributes at this wavelength range which is the
electric dipole parallel to the wavevector of the incident field. This electric dipole
can be associated with a current oscillation in the SRR base. It is caused by a con-
ductive coupling of the excited currents in the SRR arms. If they are oscillating
out of phase, which causes the observed magnetic dipole resonance, a current is
generated in the base of the SRR. Normally, the electric dipole contribution due to
this current is not observed in regular lattices of SRRs since it does radiate neither
in forward nor in backward direction. Anyhow, it has to be taken into account for
randomly arrange SRRs as they were currently investigated [52]. This causes more
complicated constitutive relations to describe the light propagation in such systems.
By considering extended designs (derived from the presented multipole analysis) of
meta-atoms consisting of several SRRs, the contribution of the mentioned electric
dipole to the first order resonance could be totally suppressed [95]. The second or-
der resonance at about 1200 nm is identified with an electric dipole parallel to the
incident field. Here the current in both SRR arms are oscillating in phase. Therefore,
no current is generated in the base and the electric dipole parallel to the base does
not exist. The third order resonance of the SRR at 900 nm exhibits contributions
from several dipole and quadrupole moments. This hampers the description of the
SRR at this wavelengths by simple constitutive relations.

To sum up, in this section the multipole analysis of meta-atoms has been inten-
sively discussed by several exemplarily geometries. The first part was devoted to
magnetic dipole resonances in self-assembled MMs. By starting from a single di-
electric sphere more challenging geometries were developed offering an isotropic
magnetic dipole response in the visible domain. The second part of this section pre-
sented the multipole response of the cut-plate pair and the SRR that are commonly
fabricated by top-down fabrication process. Here, the advantages of the multipole
analysis for comparing different meta-atom geometries as well as identifying unex-
pected multipole contributions to resonances were presented.
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4.3.4 Light Propagation in Amorphous Metamaterials

The introduction of self-assembled MMs in Sect. 4.1 clearly reveals that most of
these MMs offer solely short-range ordering which is required to fabricate the sin-
gle meta-atoms. The arrangement of these meta-atoms in space forming the entire
MM is in most of the cases fully amorphous. The advantage of this amorphous ar-
rangement is its isotropic optical response. Therefore, the light propagation through
this amorphous MMs does not depend on the polarization state and the angle of
incidence of the illuminating field. In contrary, such amorphous ordering of the
meta-atoms hampers the theoretical description on how light propagates in these
MMs. In the case of periodically arranged meta-atoms, as they usually appear for
top-down fabrication processes, periodic boundary conditions can be introduced. In
principle, this reduces the complexity of the problem to the question on how light
interacts with the single meta-atom. The aim of this section is to introduce exactly
such an reduction of the highly complex problem of light propagation in amorphous
self-assembled MMs by exploiting the previously introduced multipole analysis of
meta-atoms in Sects. 4.3.2 and 4.3.3.

One common way to describe the light propagation in MMs is to assume them
acting like a homogeneous material. As long as this assumption holds, i.e. the meta-
atoms are small enough to offer solely electric and magnetic dipole responses, one
could introduce so-called effective parameters and replace the MM by a homoge-
neous material assigning these parameters. To retrieve the effective parameters one
way is to consider reflection R and transmission T of a slab made of the MM. The
important point is that R and T are required in amplitude and phase. As long as the
assumption of a homogeneous material holds, the inversion of the analytical Fresnel
formulas for reflection and transmission on a homogeneous slab yields the effective
parameters [115, 116]. This procedure is of course not restricted to periodic MMs
since the only requirement is the availability of the complex reflection and trans-
mission. Anyhow, measuring the phase of R and T for a MMs slab remains still a
challenging experimental task, and only a few approaches on solutions can be found
in literature [64, 117–119]. Therefore, in most of the cases the amplitudes of R and
T are measured and the phase information is taken from simulations of the samples.
For periodic MMs these simulations, as mentioned previously, can be done by ex-
ploiting the periodicity of the system. This allows, e.g., to treat the light propagation
in terms of Bloch-waves in periodic materials and the effective parameters can be
directly related to the fundamental Bloch eigenmode of the system [120–122]. This
treatment, in principle, reduces the complexity of the problem to the solution of the
scattering problem of the single unit-cell which is the meta-atom. If the arrangement
of these meta-atoms is not periodic, meaning amorphous in general, then one pos-
sibility to rigorously simulate the light propagation in such an amorphous MM slab
are large scale simulations with a so-called supercell ansatz. Here the amorphous
arrangement of the meta-atoms is taken fully into account in simulations until some
fixed lateral extension of the MM slab. This so-called supercell is then periodically
continued along the lateral dimensions of the slab. If the lateral extension of the
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Fig. 4.8 (a) Supercell geometry and illumination scenario for amorphously arranged cut-plate
pairs. The geometrical parameters of the cut-plate pairs are identical to Fig. 4.7 (a). (b) Respective
amplitude of the transmission for the supercell from (a) and for periodically arranged cut-plate
pairs

supercell is large enough (compared to the wavelength) the periodicity of the sys-
tem will not influence the optical response. An example for a supercell including
cut-plate pairs amorphously arranged in 4 layers can be seen in Fig. 4.8 (a). The
amorphous arrangement of the cut-plate pairs is as follows. They are all orientated
in the same direction concerning the incident field identical to Fig. 4.7 (a). This al-
lows the excitation of the magnetic resonance. Furthermore, the supercell consists
of four layers of amorphously arranged cut-plate pairs with a fixed distance between
adjacent layers. In other words, the amorphous arrangement takes only place inside
the four layers. More details can be found in Ref. [123].

The respective amplitudes of the transmission spectra received from large-
scale FDTD simulations considering the presented supercell [95] can be seen in
Fig. 4.8 (b). For comparison the transmission is shown for a periodical arrangement
of the cut-plate pairs. By comparing the shown transmission spectra with the mul-
tipole amplitudes of the single cut-plate pair from Fig. 4.7 (a) one can conclude
the following points. The resonance at around 1100 nm in transmission should be
caused by the magnetic resonance of the cut-plate pair. Furthermore, the second
resonance in transmission at about 700 nm can be clearly related to the electric res-
onance of the cut-plate pair. By comparing the resulting transmission spectra for
a periodic and an amorphous arrangement of the meta-atoms in Fig. 4.8 (b) one
can see that the transmission spectra of the magnetic resonance is nearly identical
whereas there are remarkable differences for the electric resonance. Here the am-
plitude is lowered and the width is increased for the amorphous arrangement. This
was later explained by the ratio of the average distance of particles to the wave-
length which is close to unity for the electric resonance and with the much smaller
radiation loss of the magnetic resonance. This causes a strongly reduced interaction
among all the particles at this wavelength since the magnetic resonance is rather
dominated by absorption.

With the complex transmission and reflection (not shown here) spectra from
large-scale simulations for the amorphous MM at hand, it is possible to assign ef-
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Fig. 4.9 Real part of the assigned effective permeability (a) and permittivity (b) to the amorphous
MM slab consisting of cut-plate pairs from Fig. 4.8 (a). The solid lines refer to results obtained
by the Clausius-Mossotti equation and the dashed lines to the inversion of complex reflection and
transmission

fective parameters as described previously. However, a reduction of the simulation
issue to considering solely the single cut-plate pair like for periodic MMs would be
highly desirable. One possible way of doing this is to exploit mixing rules as they
are discussed in detail in other chapters of this book, e.g. by Sihvola and co-workers.
The most common ansatz is to use the Clausius-Mossotti equation which relates the
polarizability of a molecule (in the introduced nomenclature this is the meta-atom)
to an effective permittivity and permeability of the MM in the following way

εeff = ε0
3 + 2Nαe

3 −Nαe
, μeff = μ0

3 + 2Nαm

3 −Nαm
, (4.6)

where ε0 and μ0 are the permittivity and permeability of the surrounding, N is the
volume filling fraction of the meta-atoms, and αe, αm are the electric and magnetic
polarizability, respectively. The electric polarizability is linked to the electric dipole
of the meta-atoms by the electric field at the origin αe = p/E(r = 0). The same
holds for the magnetic polarizability by applying the magnetic field. In other words,
the Clausius-Mossotti equation relates the dipolar response of single meta-atoms to
effective parameters of the corresponding amorphous MM. Obviously, one restric-
tion to apply this equation is that the meta-atom should exhibit only electric and
magnetic dipole amplitudes at the considered wavelength domain. This could be
easily verified by the introduced multipole analysis of meta-atoms and it was indeed
the case for the cut-plate pair, cf. Fig. 4.7 (a).

The comparison of both introduced methods to assign effective parameters to
amorphous MMs [via complex R and T or by (4.6)] can be seen in Fig. 4.9.

An almost perfect agreement between both methods can be observed for the ef-
fective permeability presented in Fig. 4.9 (a). Here the resonance positions, their
strengths and the widths nicely fell together. Of course some minor wiggling of the
effective permeability at off-resonance wavelengths for inverting R and T is not
reproduced by the Clausius-Mossotti equation. This is obvious since for Clausius-
Mossotti no fine details of the ordering of the cut-plate pairs is taken into account.
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Anyhow, this small wiggling should only weakly influence the light propagation in
the amorphous MM. For the assigned effective permittivity in Fig. 4.9 (b) almost
the same trend could be observed for both applied methods. The resonance posi-
tions of the effective permittivity are slightly different but the resonance strengths
as well the widths appear to be comparable. As for the effective permeability there
exist some fine details for the effective permittivity by inverting R and T which are
not reproduced by Clausius-Mossotti. The presented effective parameters in Fig. 4.9
demonstrate that the light propagation through a slab of an amorphous MM can be
properly described by exploiting the Clausius-Mossotti equation instead of perform-
ing large-scale simulations to obtain R and T .

To sum up, a method was introduced to describe the light propagation in amor-
phous self-assembled MMs. It is based on the assumption that the MM could be
described by homogeneous material parameters. Based on the introduced multi-
pole analysis of meta-atoms in Sects. 4.3.2 and 4.3.3 effective parameters were
assigned using the Clausius-Mossotti equation. The validity of this approach was
counterchecked by rigorous large-scale simulations of the transmission and reflec-
tion of a MM slab consisting of amorphously arranged cut-plate pairs. With the
introduced approach the complexity of the description of light propagation through
amorphous MMs could be reduced to simulating the scattering response of the sin-
gle meta-atoms and performing a multipole analysis.

4.4 Conclusion

The theoretical description of the interaction of light with amorphous MMs fab-
ricated by self-assembly processes was outlined. The optical response of the sin-
gle meta-atoms was identified as the most important information to understand and
provide deep physical insights into the optical response of amorphous MMs. A for-
malism, called the multipole analysis of meta-atoms, was introduced. It allows the
identification of contributions of Cartesian multipole moments to resonances of the
scattering response of arbitrarily shaped meta-atoms. Advantages of this formalism
were outlined by discussing exclusive examples of MMs fabricated by bottom-up as
well as top-down processes. Based on the multipole analysis of meta-atoms one pos-
sible way of describing the light propagation in amorphous MMs was introduced.
Therefore, mixing rules, as also intensively discussed in other chapters of this book
were exploited to assign effective parameters to amorphous MMs.
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Chapter 5
Electrodynamic Theory of Three-Dimensional
Metamaterials of Hierarchically Organized
Nanoparticles

Vassilios Yannopapas, Alexandros G. Vanakaras, and Demetri J. Photinos

Abstract To date, the most promising candidate structures for exhibiting photo-
induced magnetism and negative refractive index in the optical regime are the so
called Mie resonance-based metamaterials which consist of scatterers of simple ge-
ometrical shape, e.g., spherical or cylindrical, and are made of a high-index mate-
rial. When such a structure is illuminated by an electromagnetic wave of frequency
around the Mie resonance of a single scatterer, strong polarization currents are gen-
erated within the surface of the scatterers resulting in a macroscopic magnetization
of the metamaterial. Due to the lack of naturally occurring materials with high re-
fractive index in the optical regime, one can envisage a metamaterial which consists
of meta-atoms that are clusters of metallic nanoparticles wherein strong polariza-
tion currents can also be induced under illumination. These type of metamaterials
are hierarchically organized as they possess two length scales: the inter-particle dis-
tance within the cluster and the inter-cluster separation within the metamaterial. The
nanoparticle clusters can be formed by direct or template-assisted self-organization
and are generally amorphous due to the random positioning of the nanoparticles
in air or within a cavity. The amorphous arrangement of such strongly scattering
objects constitutes a major challenge for the field of theoretical and computational
nanophotonics. In order to tackle this computational problem in the framework of
metamaterials, we adopt a hierarchical theoretical strategy in proportion to the hi-
erarchical organization of such structures. To this end, we develop a layer-multiple-
scattering formalism for electromagnetic waves in order to model the optical re-
sponse of metamaterials formed as collections of cavities filled by amorphous clus-
ters of hierarchically organized spherical nanoparticles. It is based on a three-stage
process where we take fully into account all the multiple-scattering processes expe-
rienced by photons: (a) among the particles of the cluster inside the cavity, (b) be-
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tween the cluster and the cavity and (c) among the cavities (containing the clusters)
within the metamaterial. We demonstrate the applicability of the method to the case
of a silica-inverted opal whose voids contain clusters of gold nanoparticles. We find,
in particular, such a metamaterial acts as a super absorber over a wide frequency
range, from 2–4 eV.

5.1 Introduction

Metamaterials are man-made structures with electromagnetic (EM) properties
which are not met in naturally occurring materials, such as artificial magnetism
[1], negative refractive index (NRI) [2], near-field amplification [3], cloaking [4],
and perfect absorption [5]. The magnetic response stems from the induction of
strong currents within the metamaterials when illuminated externally and can lead
to strong paramagnetic (permeability μ> 1) and diamagnetic response (permeabil-
ity μ < 1 or even μ < 0) in frequency regions where such a response is not met in
naturally occurring materials, like the near-infrared and optical regions. Magnetic
activity in these regions of the EM spectrum is of great technological importance
since it allows for the realization of devices such as compact cavities, adaptive se-
lective lenses, tunable mirrors, isolators, converters, optical polarizers, filters, and
phase shifters [6, 7].

Ever since the concept of NRI metamaterials was introduced [2], the holy grail
of research in this discipline has been the realization of an artificial material with
negative refractive index in the visible regime. To this end, top-down technologies
and lithographic techniques have been employed for the realization of optical meta-
materials [8–15]. However, fabrication restrictions in the top-down approaches have
limited the operating wavelength of the produced metamaterials up to the near in-
frared regime. Bottom-up approaches based on self-assembly technology allow for
the realization of true optical metamaterials with the promise of lower cost, high
throughput, and small sensitivity to damage or fabrication errors.

Optical metamaterials based on lithographic design are usually miniatures of
their microwave counterparts being periodic arrays of LC circuits such as metal-
lic split-ring resonators [16–18] and their variations. A viable alternative to the
mainstream LC circuit-based metamaterials are the so-called Mie resonance-based
metamaterials: periodic lattices consisting of scatterers of simple geometry such as
two-dimensional (2D) arrays of cylinders [19, 20] or three-dimensional (3D) arrays
of spherical particles [21–30] exhibiting strong magnetic activity as well as NRI
in the microwave and infrared regimes (for a recent review see [31]). The emer-
gence of magnetic response in these structures relies on a different mechanism from
the excitation of an LC resonance. Namely, the materials which the particles are
made of must exhibit a certain type of internal resonance around which the electric
permittivity (dielectric function) of the material assumes very high values. Such a
resonance might be a phonon-polariton or an exciton-polariton resonance and the
corresponding materials can be ionic solids or polar semiconductors. When an array
of particles made of such a resonant material is illuminated by an EM wave of fre-
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Fig. 5.1 Schematic of a 2D
array of cylindrical cavities in
a dielectric material
containing amorphous
clusters of metallic
nanoparticles

quency around the Mie resonance of the particles, strong polarization currents are
generated within the particles resulting in a macroscopic magnetization of the array
of particles.

Proof-of-concept experiments demonstrating magnetic activity and/or NRI in
Mie resonance-based metamaterials have been conducted in the millimeter [32–38]
and infrared regimes [39]. Scaling down the above designs to the near infrared and
optical regimes requires materials with high permittivity in these regimes which,
however, are particularly rare.

Recently, a bottom-up approach for realizing Mie-resonance based metamaterials
in the optical regime has been proposed [40–42] wherein the required high-dielectric
material is formed by the self-organization of metallic nanoparticles of a few nm in
radius. Such metamaterials have been realized by template-assisted colloidal self-
organization wherein clusters of metallic nanoparticles reside within the voids of a
2D periodically perforated dielectric slab [43] (see Fig. 5.1) or within the trenches
of a 1D grating [44]. The resulting structure does not demonstrate significant mag-
netic response due to the large size of the gold nanoclusters (390–420 nm). Further
shrinking of the cluster size is not feasible due to the restrictions imposed by the
lithographic patterning of the template which hosts the nanoparticles [43]. Thus, the
original bottom-up approach of [40] which is based solely on self-organization of
the nanoparticles via their functionalization with liquid-crystalline molecules (e.g.,
dendrimers, mesogens) appears to be the most viable solution for implementing
the idea of a periodic metamaterial consisting of nanoclusters. To this end, arrays
of nanostrings of gold nanoparticles coated with nematogenic ligands have already
been reported [45].

The theoretical modeling of the above metamaterials relies on treating the EM re-
sponse of the amorphous cluster of nanoparticles as a homogeneous body ‘cropped’
out of an infinite metamaterial [40–44]. This approach is potentially valid only when
the metallic nanoparticles are small enough (few nm) and the corresponding aggre-
gates are sufficiently large (several hundreds of nm) so that surface effects are negli-
gible. For small aggregates containing tens or few hundreds of metallic nanopar-
ticles, most particles reside at the surface of the cluster rendering an effective-
medium approach inadequate. Furthermore, this approach does not account for sev-
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eral phenomena such as the actual dependence of the effective parameters (εeff,
μeff) on the positioning of the nanoparticles within the cluster, surface roughness,
nanoscale polarization currents, etc. In the present study we aim at presenting a
first-principles study of the EM response of periodic structures of cavities contain-
ing amorphous clusters (aggregates) of nanoparticles by accurately taking into ac-
count all the multiple-scattering processes involved: (a) among the gold nanopar-
ticles within the cluster, (b) between the cluster and the cavity, and (c) among the
repeating units (cavity+nanocluster) of the metamaterial. The positions of the gold
particles within the aggregates are taken from a rigorous Monte-Carlo simulation of
the self-organization of these particles under the spherically confining potential of
the cavity. The multiple-scattering theory of light within a single nanocluster+cavity
provides a total scattering matrix. Having found the latter matrix, we embed it within
the existing layer-multiple-scattering (LMS) formalism [46–48] which provides us
with the transmittance, reflectance and absorbance of light incident on one or many
two-dimensional lattices (planes) of clusters. Alternatively, the EM response can be
studied by means of the complex frequency band structure of an infinitely periodic
metamaterial of clusters of particles. Besides the apparent application of the present
work in metamaterials realized by template-assisted self-assembly, the formalism
presented here constitutes a significant extension of the existing LMS formulations
[47–49] enabling the study of periodic structures with more than one scatterers in
the unit cell.

In case where randomness is evident in the spatial arrangement of the clusters
within the metamaterial as well, e.g., we may have amorphous clusters of NPs oc-
cupying randomly the positions of a three-dimensional lattice, one can extend the
above cluster-LMS formalism to non-periodic metamaterials of NP clusters by em-
ploying the average T -matrix approximation.

5.2 Theory

5.2.1 Multipole Expansion of the EM Field

Consider a harmonic EM wave, of angular frequency ω which is described by its
electric-field component

E(r, t)= Re
[
E(r)exp(−iωt)

]
. (5.1)

In a homogeneous medium characterized by a dielectric function ε(ω)ε0 and a mag-
netic permeability μ(ω)μ0, where ε0, μ0 are the electric permittivity and magnetic
permeability of vacuum, Maxwell’s equations imply that E(r) satisfies a vector
Helmholtz equation, subject to the condition ∇ ·E = 0, with wave number q = ω/c,
where c = 1/

√
μεμ0ε0 = c0/

√
με is the velocity of light in the medium. The

spherical-wave expansion of E(r) is given by [50]

E(r)=
∞∑
l=1

l∑
m=−l

{
aHlmfl(qr)Xlm(r̂)+ aElm

i

q
∇ × [fl(qr)Xlm(r̂)

]}
, (5.2)
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where aPlm (P = E,H ) are coefficients to be determined. l is the total angular mo-
mentum number andm the azimuthal number. Xlm(r̂) are the so-called vector spher-
ical harmonics [50] and fl may be any linear combination of the spherical Bessel
function, jl , and the spherical Hankel function, h+

l . The corresponding magnetic
induction, B(r), can be readily obtained from E(r) using Maxwell’s equations,

B(r)=
√
εμ

c0

∞∑
l=1

l∑
m=−l

{
aElmfl(qr)Xlm(r̂)− aHlm

i

q
∇ × [fl(qr)Xlm(r̂)

]}
, (5.3)

and we shall not write it down explicitly in what follows.

5.2.2 Scattering by a Single Scatterer

In this subsection we summarize the solution to the problem of EM scattering from
a single sphere (Mie scattering theory [50, 51]) along with an extension to the case
of irregular (nonphysical) solutions which are necessary for a wave emitted by the
center of the sphere. We will make use of the compact notation of Ref. [52] for the
eigenfunctions and the angular-momentum indices which allows for easier computer
coding.

We consider a sphere of radius S, with its center at the origin of coordinates, and
assume that its electric permittivity εs and/or magnetic permeability μs are different
from those of the surrounding homogeneous medium, εh, μh. An EM plane wave
incident on this scatterer is described, respectively, by (5.2) with fl = jl (since the
plane wave is finite everywhere) and appropriate coefficients a0

L, where L denotes
collectively the indices P lm. That is,

E0(r)=
∑
L

a0
LJL(r) (5.4)

where

JElm(r)= i

qh
∇ × jl(qhr)Xlm(r̂), JHlm(r)= jl(qhr)Xlm(r̂) (5.5)

and qh = √
εhμhω/c0. The coefficients a0

L depend on the amplitude, polarization
and propagation direction of the incident EM plane wave [46–48, 50].

Similarly, the wave that is scattered from the sphere is described by (5.2) with
fl = h+

l , which has the asymptotic form appropriate to an outgoing spherical wave:
h+
l ≈ (−i)l exp(iqhr)/iqhr as r → ∞, and appropriate expansion coefficients a+

L .
Namely,

E+(r)=
∑
L

a+
LHL(r) (5.6)

where

HElm(r)= i

qh
∇ × h+

l (qhr)Xlm(r̂), HHlm(r)= h+
l (qhr)Xlm(r̂). (5.7)

The wavefield for r > S is the sum of the incident and scattered waves, i.e.,
Eout = E0 + E+. The spherical-wave expansion of the field EI for r < R (inside
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the sphere) is obtained in a similar manner by the requirement that it be finite at the
origin (r = 0), i.e.,

EI (r)=
∑
L

aILJsL(r) (5.8)

where JsL(r) are given from (5.5) by replacing qh with qs = √
εsμsω/c0.

By applying the requirement that the tangential components of E and H be con-
tinuous at the surface of the scatterer, we obtain a relation between the expansion
coefficients of the incident and the scattered field, as follows:

a+
L =

∑
L′
TLL′ a0

L′ , (5.9)

where TLL′ are the elements of the so-called scattering transition T -matrix [51].
Equation (5.9) is valid for any shape of scatterer; for spherically symmetric scatter-
ers each spherical wave scatters independently of all others, which leads to a transi-
tion T -matrix that does not depend on m and is diagonal in l, i.e., TLL′ = TLδLL′ ; it
is given by

TEl(ω)=
[
jl(qsr)

∂
∂r
(rjl(qhr))εs − jl(qhr)

∂
∂r
(rjl(qsr))εh

h+
l (qhr)

∂
∂r
(rjl(qsr))εh − jl(qsr)

∂
∂r
(rh+

l (qhr))εs

]
r=S

(5.10)

THl(ω)=
[
jl(qsr)

∂
∂r
(rjl(qhr))μs − jl(qhr)

∂
∂r
(rjl(qsr))μh

h+
l (qhr)

∂
∂r
(rjl(qsr))μh − jl(qsr)

∂
∂r
(rh+

l (qhr))μs

]
r=S

. (5.11)

The expansion coefficients aIL of the field inside the spheres are given in terms of
a0
L by a similar expression

aIL =
∑
L′
CLL′ a0

L′ . (5.12)

The C-matrix is also independent of m and diagonal in l, i.e., CLL′ = CLδLL′ ; it is
given in terms of TLL′ by

CEl(ω)=
√
εhμs

εsμh

[
jl(qhS)

jl(qsS)
+ h+

l (qhS)

jl(qsS)
TEl

]
(5.13)

CHl(ω)= jl(qhS)

jl(qsS)
+ h+

l (qhS)

jl(qsS)
THl (5.14)

In a similar manner one can define a wave which is infinite at the origin and
matches continuously an outgoing spherical wave of given L outside the sphere.
This definition is needed in order to solve the scattering problem from a source
radiating from the center of the sphere. For this purpose, the electric field outside
the sphere is written as

E0(r)=
∑
L

b0
LHL(r) (5.15)

and inside the sphere as
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EI (r)=
∑
L

[
bILJsL(r)+ bI+L Hs

L(r)
]

(5.16)

where Hs
L(r) is given by (5.7) with qs instead of qh. Again, by requiring that the tan-

gential components of the electric and magnetic fields be continuous on the surface
of the sphere, one can express bIL and bI+L in terms of b0

L as follows

bI+L =
∑
L′
QLL′ b0

L′ , bIL =
∑
L′
PLL′ b0

L′ , (5.17)

where, similar to the T -matrix, QLL′ and PLL′ are diagonal in l and do not depend
on m. They are provided by

QEl(ω)=
√
εhμs

εsμh

[
h+
l (qhS)

h+
l (qsS)+ jl(qsS)VEl

]
(5.18)

QEl(ω)= h+
l (qhS)

h+
l (qsS)+ jl(qsS)VHl

(5.19)

PEl(ω)= VElQEl (5.20)

PHl(ω)= VHlQHl (5.21)

and

VEl(ω)=
[
h+
l (qsr)

∂
∂r
(rh+

l (qhr))εs − h+
l (qhr)

∂
∂r
(rh+

l (qsr))εh

h+
l (qhr)

∂
∂r
(rjl(qsr))εh − jl(qsr)

∂
∂r
(rh+

l (qhr))εs

]
r=S

(5.22)

VHl(ω)=
[
h+
l (qsr)

∂
∂r
(rh+

l (qhr))μs − h+
l (qhr)

∂
∂r
(rh+

l (qsr))μh

h+
l (qhr)

∂
∂r
(rjl(qsr))μh − jl(qsr)

∂
∂r
(rh+

l (qhr))μs

]
r=S

. (5.23)

5.2.3 Multiple-Scattering by a Collection of Spheres

Next we consider a collection of Ns nonoverlapping spherical scatterers centered at
sites Rn in a homogeneous host medium. An outgoing vector spherical wave about
Rn′ can be expanded in a series of incoming vector spherical waves around Rn as
follows

HL′(r − Rn′)=
∑
L

Ωnn′
LL′JL(r − Rn). (5.24)

An outgoing vector spherical wave about Rn′ can be expanded in a series of outgoing
vector spherical waves around Rn as follows

HL′(r − Rn′)=
∑
L

Ξnn′
LL′HL(r − Rn) (5.25)

and similarly for incoming vector spherical waves

JL′(r − Rn′)=
∑
L

Ξnn′
LL′JL(r − Rn). (5.26)
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Explicit formulae for the matrices Ω and Ξ are given in the appendix. These matri-
ces do not depend on the material properties of the scatterers but on their particular
arrangement in space. From (5.24) we can express an outgoing EM wave about Rn′ ,∑

L′ b+n′
L′ HL′(r − Rn′), as an incoming EM wave about Rn,

∑
L b

′n
L JL(r − Rn), as

follows

b
′n
L

(
n′)=

∑
L′
Ωnn′
LL′b+n′

L′ . (5.27)

The wave scattered from the sphere at Rn is determined by the total incident wave
on that sphere, i.e.,

b+n
L =

∑
L′
T nLL′

[
a0n
L′ +

∑
n′ �=n

b
′n
L′
(
n′)], (5.28)

where T n
LL′ = T nLδLL′ is the T -matrix for the sphere at Rn and a0n

L are the spherical-
wave expansion coefficients of an externally incident wave. Equation (5.28) can be
written as ∑

n′L′

[
δnn′δLL′ −

∑
L′′
T nLL′′Ωnn′

L′′L′

]
b+n′
L′ =

∑
L′
T nLL′a0n

L′ . (5.29)

The above equation is the basic equation of multiple scattering and can be solved
either by standard linear-system numerical solvers or iteratively [53]. The solution
provides the scattering wave b+n

L outgoing from each sphere of the collection for
a given externally incident wave a0n

L . Having calculated b+n
L from (5.29) one can

readily find the coefficients b
′n
L (n

′) from (5.27) and therefore the total incident wave
to each sphere of the collection given by the square brackets of (5.28). Using the
total incident wave as input to (5.12) one can determine the multipole coefficients
aI nL within each sphere of the collection. The corresponding electric field is given
similarly to (5.16).

The electric field outside the spheres, Eout , is written as the sum of the scattered
field from all spheres plus the incident wave field, i.e.,

Eout (r)= Esc(r)+ E0(r) (5.30)

where the incident field E0 is given by (5.4) and Esc is given as follows

Esc(r)=
Ns∑
n=1

∑
L

b+n
L HL(r − Rn). (5.31)

For studying a metamaterial of clusters of NPs, we need to extend the existing
LMS with the theory presented so far. The LMS method is an efficient computa-
tional method for the study of the EM response of three-dimensional photonic struc-
tures consisting of nonoverlapping spheres [46–48] and axisymmetric nonspherical
particles [49]. It applies equally well to non-absorbing systems and to absorbing
ones. Its chief advantage over the other existing numerical methods lies in its effi-
cient and reliable treatment of systems containing strongly dispersive materials such
as Drude-like and polaritonic materials.
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Fig. 5.2 Matrices involved in the calculation of the total scattering matrix Tcav+cl of a cluster of
particles within a cavity. A plane wave (corresponding to multipole coefficients a0) incident on the
cavity (without the cluster) is either scattered off the cavity via Tcav or enters the cavity via Ccav .
A spherical wave (corresponding to multipole coefficients b0) outgoing from the center of the
cavity is either scattered back at the boundary of the cavity via Pcav or escapes the cavity via Qcav .
The scattering matrix of the cluster is Tcl . (Reprinted from V. Yannopapas and A. G. Vanakaras,
Phys. Rev. B 84, 085119 (2011). With permission)

In order to incorporate a cluster of spherical scatterers within the existing LMS
code as single scattering entity we need to calculate the scattering T -matrix T cl

LL′ of
the entire cluster. It can be shown that the scattering matrix T cl

LL′ assumes the form
[52]

T clLL′ =
∑
nn′

∑
L′′L′′′

Ξ0n
LL′′

[[I − TΩ]−1T
]nn′
L′′L′′′Ξ

n′0
L′′′L′ , (5.32)

where the matrix [I − TΩ] is the one appearing in the left-hand side of (5.29). T cl
LL′

contains nondiagonal elements in general. We note that alternative formulations of
the EM scattering by a finite number of scatterers have been developed in the past
[54–60]. However, the formalism presented above is suitable for embedding the T -
matrix of (5.32) in the existing LMS formalism.

5.2.4 Multiple-Scattering in a Spherical Cavity

We consider a cluster of scatterers described by a T -matrix T cl embedded within
a spherical cavity (see Fig. 5.2) which is associated with a scattering matrix T cav .
The system of the cavity containing the cluster of scatterers is illuminated by a wave
of the form of (5.4) with multipole coefficients a0

L. This wave can be directly scat-
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tered off the cavity producing an outgoing wave of the form of (5.6) with multipole
coefficients a+

L given by

a+
L =

∑
LL′

T cavLL′ a0
L′ (5.33)

or, it can enter the cavity producing a wave in the manner of (5.12),∑
LL′

CcavLL′a0
L′ , (5.34)

which is incident on the cluster of scatterers. The above wave is scattered off the
cluster via Tcl and then escapes the cavity via the matrix Qcav [first of (5.17)]. So,
the second contribution to the scattering waves of the cavity+clusters amounts to∑

L′

[
QcavTclCcav]

LL′a
0
L′ . (5.35)

However, the wave outgoing from the cluster
∑

L′ [TclCcav]LL′a0
L′ can be scat-

tered at the inner surface of the cavity and return back to the cluster via the matrix
Pcav [second of (5.17)] producing this way a new incident field on the cluster. The
latter is again scattered off the cluster via Tcl and escape the cavity via Qcav pro-
ducing a wave of the form∑

L′

[
QcavTclPcavTclCcav]

LL′a
0
L′ . (5.36)

It can be easily understood that this process can be repeated infinite times giving
rise to a series of multiple-scattering events∑

L′

[
QcavTclCcav + QcavTclPcavTclCcav

+ QcavTclPcavTclPcavTclCcav + · · ·]
LL′a

0
L′

=
∑
L′

[
QcavTcl[I + PcavTcl + PcavTclPcavTcl + · · ·]Ccav]

LL′a
0
L′

=
∑
L′

[
QcavTcl[I − PcavTcl]−1Ccav]

LL′a
0
L′ . (5.37)

The scattering matrix of the system cavity+clusters Tcav+cl is the sum of (5.33) and
(5.37), i.e.,

Tcav+cl = Tcav + QcavTcl[I − PcavTcl]−1Ccav. (5.38)

5.2.5 Multiple-Scattering Within a 2D Plane of Scatterers

The structures we are interested in usually contain more than one plane of scatterers
but, to begin with, we consider just one plane, at z= 0, in which case the scatterers,
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which do not overlap with each other, are centered on the sites Rn of a given 2D
lattice. We define the 2D reciprocal vectors g, and the surface Brillouin zone (SBZ)
corresponding to this lattice in the usual manner [47, 48].

Let the plane wave, described by (5.1), be incident on this plane of scatterers. We
can always write the component of its wavevector parallel to the plane of scatterers,
as follows

q‖ = k‖ + g′ (5.39)

where the reduced wavevector k‖ lies in the SBZ and g′ is a certain reciprocal
vector. In what follows we shall write the wavevector of a plane wave of given
q = √

με ω/c and given q‖ = k‖ + g as follows

K±
g = (k‖ + g, ±[q2 − (k‖ + g)2

]1/2) (5.40)

where the +,− sign defines the sign of the z component of the wavevector. We note
that when q2 < (k‖ + g)2, the above defines a decaying wave; the positive sign in
(5.40) describes a wave propagating or decaying to the right and the negative sign
describes a wave propagating or decaying to the left.

We write the electric field of the incident wave in the form

Es
′
in(r)=

2∑
i′=1

[Ein]s′g′i′ exp
(
iKs′

g′ · r
)
êi′ (5.41)

where s′ = +(−) corresponds to a propagating or decaying wave incident on the
plane of spheres from the left (right), and ê1, ê2 are the polar and azimuthal unit
vectors, respectively, which are perpendicular to Ks′

g′ . In the same manner [according
to (5.40)] we define, for given k‖ and q , a wavevector Ks

g and the corresponding êi
for any g and s = ±. In this way we can expand the electric-field component of
an EM wave into p- and s-polarized transverse plane waves, i.e. polarized along ê1
and ê2, respectively. We note that, in the case of a decaying wave, the unit vectors
ê1 and ê2 are complex but they are still orthonormal (êi · êj = δij , i, j = 1,2). The
coefficients a0

L in the expansion (5.4) of the plane wave (5.41) can be written in the
following form

a0
L =

2∑
i′=1

A0
L;i′
(
Ks′

g′
)[Ein]s′g′i′, for P =E,H (5.42)

where the coefficients A0
L are provided by

A0
Elm

(
K̂s′

g′
)= 4π il (−1)m+1

√
l(l + 1)

{
i
[
αml e

iφ Y−m−1
l

(
K̂s′

g′
)− α−m

l e−iφ Y−m+1
l

(
K̂s′

g′
)]

ê1

− [αml cos θ eiφ Y−m−1
l

(
K̂s′

g′
)+m sin θ Y−m

l

(
K̂s′

g′
)

+ α−m
l cos θ e−iφ Y−m+1

l

(
K̂s′

g′
)]

ê2
}
, (5.43)
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and

A0
Hlm

(
K̂s′

g′
)= 4π il (−1)m+1

√
l(l + 1)

{[
αml cos θ eiφ Y−m−1

l

(
K̂s′

g′
)

+m sin θ Y−m
l

(
K̂s′

g′
)+ α−m

l cos θ e−iφ Y−m+1
l

(
K̂s′

g′
)]

ê1

+ i
[
αml e

iφ Y−m−1
l

(
K̂s′

g′
)− α−m

l e−iφ Y−m+1
l

(
K̂s′

g′
)]

ê2
}
, (5.44)

where θ , φ are the angular variables (K̂s′
g′) of Ks′

g′ .
Because of the 2D periodicity of the plane of scatterers, the wave scattered from

it, when the wave (5.41) is incident upon it, has the following form

Esc(r)=
∑
Rn

exp(ik‖ · Rn)
∑
L

b+
LHL(rn) (5.45)

where rn = r − Rn. The coefficients b+
L , which depend linearly on the amplitude of

the incident wave, can be written as follows

b+
L =

2∑
i′=1

B+
L;i′
(
Ks′

g′
)[Ein]s′g′i′ . (5.46)

We obtain B+
L in terms of the coefficients A0

L of (5.43) and (5.44), by solving the
following system of linear equations [47, 48]

∑
L′

[
δLL′ −

∑
L′′
TLL′′ΩL′′L′

]
B+
L′;i′

(
Ks′

g′
)=

∑
L′
TLL′A0

L′;i′
(
Ks′

g′
)
. (5.47)

The matrix elements ΩLL′ depend on the geometry of the plane, on the reduced
wavevector k‖ and on the frequency ω of the incident wave. They are the Fourier
transform of the Ωnn′

LL′ introduced in Sect. 5.2.3 (explicit relations of which are pro-
vided in the Appendix). The scattering matrix TLL′ for a single sphere is provided
by (5.10) and (5.11). For a cluster of spheres, TLL′ is provided by (5.32) or (5.38)
depending on whether the cluster is placed within a cavity or not.

Finally, the scattered wave (5.45) is expressed as a sum of plane waves as follows

Essc(r)=
2∑
i=1

∑
g

[Esc]sgi exp
(
iKs

g · r
)
êi (5.48)

where the superscript s = +(−) holds for z > 0 (z < 0). Though the scattered wave
consists, in general, of a number of diffracted beams corresponding to different g
vectors, only beams for which Ks

gz is real constitute propagating waves. The coeffi-
cients in (5.48) are given by

[Esc]sgi =
∑
L

�L;i
(
Ks

g
)
B+
L;i
(
Ks′

g′
)

(5.49)

where �L;i (Ks
g) are provided by
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�Elm
(
Ks

g
)= 2π(−i)l

qA0K
+
gz

√
l(l + 1)

{
i
[
α−m
l eiφ Ym−1

l

(
K̂s

g
)− αml e

−iφ Ym+1
l

(
K̂s

g
)]

ê1

− [α−m
l cos θ eiφ Ym−1

l

(
K̂s

g
)−m sin θ Yml

(
K̂s

g
)

+ αml cos θ e−iφ Ym+1
l

(
K̂s

g
)]

ê2
}
, (5.50)

�Hlm
(
Ks

g
)= 2π(−i)l

qA0K
+
gz

√
l(l + 1)

{[
α−m
l cos θ eiφ Ym−1

l

(
K̂s

g
)

−m sin θ Yml
(
K̂s

g
)+ αml cos θ e−iφ Ym+1

l

(
K̂s

g
)]

ê1

+ i
[
α−m
l eiφ Ym−1

l

(
K̂s

g
)− αml e

−iφ Ym+1
l

(
K̂s

g
)]

ê2
}
, (5.51)

where θ , φ denote the angular variables (K̂s
g) of Ks

g. We note that the z component of
Ks

g (denoted byKs
gz) can be real or imaginary. We point out that, according to (5.49),

[Esc]sgi depend on the incident plane wave through the coefficientsB+
L;i′(K

s′
g′). These

coefficients are to be evaluated for an incident plane wave with parallel wavevector
k‖ + g′, incident from the left (right) corresponding to s′ = +(−), with an electric
field, along the i′th direction, of magnitude equal to unity. In other words, B+

L;i′(K
s′
g′)

are calculated from (5.47) by substituting in the right-hand side of this equation
A0
L;i′(K

s′
g′) from (5.43) and (5.44).

For example, when a plane wave (5.41) is incident on the plane of scatterers
from the left, the transmitted wave (incident+scattered) on the right of the plane of
scatterers is given by

E+
tr (r)=

2∑
i=1

∑
g

[Etr ]+gi exp
(
iK+

g · r
)
êi , z > 0 (5.52)

with

[Etr ]+gi = [Ein]+g′iδgg′ + [Esc]+gi =
∑
i′
M++

gi;g′i′ [Ein]+g′i′ (5.53)

and the reflected wave by

E−
rf (r)=

2∑
i=1

∑
g

[Erf ]−gi exp
(
iK−

g · r
)
êi , z < 0 (5.54)

with

[Erf ]−gi = [Esc]−gi =
∑
i′
M−+

gi;g′i′ [Ein]+g′i′ . (5.55)

Similarly, we can define the transmission matrix elementsM−−
gi;g′i′ and the reflection

matrix elements M+−
gi;g′i′ for a plane wave incident on the plane of scatterers from

the right. Using (5.49) we obtain

Mss′
gi;g′i′ = δss′δgg′δii′ +

∑
L

�L;i
(
Ks

g
)
B+
L;i′
(
Ks′

g′
)
. (5.56)
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Fig. 5.3 Schematic definition
of the scattering Q-matrices
of two finite slabs. For the
calculation of the scattering
matrix of the pair of slabs one
takes into account all the
multiple-scattering paths
between the two constituent
slabs

The matrix elements Mss′
gi;g′i′ obey the following symmetry relation [47, 48]

M−s−s′
gi;g′i′ = (−1)i+i′Mss′

gi;g′i′ . (5.57)

The transmission/reflection matrices of a stack of planes of scatterers with the
same 2D periodicity parallel to the xy plane are obtained from the transmis-
sion/reflection matrices of the individual planes [47, 48]. We express the waves on
the left of a given plane of scatterers with respect to an origin, Al , on the left of the
plane at −dl from its center and the waves on the right of this plane with respect to
an origin, Ar , on the right of the plane at dr from its center. With the above choice
of origins the transmission/reflection matrix elements of a plane of scatterer become

QI
gi;g′i′ =M++

gi;g′i′ exp
(
i
(
K+

g · dr + K+
g′ · dl

))
QII

gi;g′i′ =M+−
gi;g′i′ exp

(
i
(
K+

g · dr − K−
g′ · dr

))
(5.58)

QIII
gi;g′i′ =M−+

gi;g′i′ exp
(−i

(
K−

g · dl − K+
g′ · dl

))
QIV

gi;g′i′ =M−−
gi;g′i′ exp

(−i
(
K−

g · dl + K−
g′ · dr

))
In what follows we shall write the above matrix elements in compact form as fol-
lows: QI, QII, QIII, and QIV which implies a definite sequence in the ordering of
the indices: g11, g12, g21, g22, . . . .

5.2.6 Multiple-Scattering Within a Slab of Many 2D Planes
of Scatterers

We obtain the transmission and reflection matrices of two successive 2D planes
of scatterers, 1 and 2, by combining the matrices of the two elements, as shown
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schematically in Fig. 5.3. It is worth noting that each element need not be exclusively
a single plane of scatterers but it may comprise many 2D planes of identical or
different scatterers wherein each scatterer may be a single sphere or a cluster of
spheres. One can easily prove that the transmission and reflection matrices for the
pair of elements, denoted by Q(1,2) are

QI(1,2)= QI(2)
[
I − QII(1)QIII(2)

]−1QI(1)

QII(1,2)= QII(2)+ QI(2)QII(1)
[
I − QIII(2)QII(1)

]−1QIV(2)
(5.59)

QIII(1,2)= QIII(1)+ QIV(1)QIII(2)
[
I − QII(1)QIII(2)

]−1QI(1)

QIV(1,2)= QIV(1)
[
I − QIII(2)QII(1)

]−1QIV(2)

All matrices refer of course to the same ω and k‖. We note in particular that the
waves on the left (right) of the pair of elements are referred to an origin at −dl(1)
(+dr (2)) from the center of the 1st (2nd) element.

It is obvious that we can repeat the process to obtain the transmission and re-
flection matrices of three elements, by combining those of the pair of elements with
those of the third element; and that we can in similar fashion repeat the process to
obtain the scattering matrices of a slab consisting of any finite number of elements.
However, a slab may consist of a number of identical elements stacked together
along the z-axis (normal to the surface of the slab). We assume that the slab consists
of 2N elements, where N = 0,1,2, . . . .

Having calculated the Q-matrix elements of a single element, we obtain those
of the slab, by a doubling-layer scheme as follows: we first obtain the Q-matrix of
two consecutive elements in the manner described above; then, using as units the
Q-matrix of a pair of elements, we obtain those of four consecutive elements, and
in this way, by doubling the number of elements at each stage we finally obtain the
Q-matrix elements of the 2N elements of the slab.

In summary, for a plane wave
∑

i[Ein]+g′i exp(iK+
g′ · (r − AL))êi , incident on the

slab from the left, we finally obtain a reflected wave
∑

gi[Erf ]−gi exp(iK−
g · (r −

AL))êi on the left of the slab and a transmitted wave
∑

gi[Etr ]+gi exp(iK+
g · (r −

AR))êi on the right of the slab, where AL (AR) is the appropriate origin on the left
(right) of the slab. We have

[Etr ]+gi =
∑
i′
QI

gi;g′i′ [Ein]+g′i′ (5.60)

[Erf ]−gi =
∑
i′
QIII

gi;g′i′ [Ein]+g′i′ (5.61)

where the Q-matrix elements are those of the whole slab.
When we have calculated the transmitted wave (5.60) and the reflected wave

(5.61), corresponding to the given incident wave, we can obtain the transmittance
T and the reflectivity R of the slab. T (R) is defined as the ratio of the flux of
the transmitted (reflected) wave to the flux of the incident wave. Integrating the
Poynting vector over the xy-plane, on the appropriate side of the slab, and taking
the time average over a period T = 2π/ω, we obtain
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T =
∑

g,i[Etr ]+gi ([Etr ]+gi )∗K+
gz∑

i[Ein]+g′i ([Ein]+g′i )
∗K+

g′z (5.62)

R=
∑

g,i[Erf ]−gi ([Erf ]−gi )∗K+
gz∑

i[Ein]+g′i ([Ein]+g′i )
∗K+

g′z

where the ∗ sign denotes complex conjugation as usual. If the structure contains
light-absorbing materials, the requirement of energy conservation implies that the
absorbance A of the slab is

A = 1 − T −R (5.63)

5.2.7 Amorphous Metamaterial of Clusters of Nanoparticles

We next consider the case where the metamaterial is amorphous in the manner of
substitutional disorder, i.e. the metamaterial is a periodic lattice whose sites, how-
ever, are randomly occupied by scatterers of different shape, material and/or size. In
order to study the EM response of such an amorphous metamaterial, the average T -
matrix approximation (ATA) can be employed within the cluster-LMS framework.
The ATA method which has been originally introduced for the study of the electron
properties of disordered metals and surfaces [61, 62], has been also employed for
the study of the optical properties of random 2D [63, 64] and 3D [65, 66] photonic
alloys of spherical scatterers. In the ATA approach, the actual disordered crystal is
replaced by an effectively periodic one whose lattice sites are occupied by same
scatterers of an average T -matrix. More specifically, one assumes that actual ran-
dom system consists of scatterers of type A with concentration CA and of scatterers
B with concentration CB . If the EM response of the scatterers A is described by a
scattering T -matrix T A

LL′ and the response of scatterers B by T B
LL′ , then the T -matrix

T ATA
LL′ of the effective scatterers of the ATA periodic crystal is given by

T ATALL′ = CAT
A
LL′ +CBT

B
LL′ . (5.64)

Obviously, CA + CB = 1. ATA provides the correct configurational average of all
scattering events off the same site, i.e. the average over all possible configurations
of a substitutional alloy [62]. As such, the ATA c-LMS provides reasonably good re-
sults for moderate scattering regimes such as the subwavelength regime we consider
here.

5.3 An Example: 3D Metamaterial of Air Cavities Containing
Clusters of Gold Nanoparticles

We consider a metamaterial made of air cavities in silica (SiO2) where each cav-
ity contains a cluster of 100 nonoverlapping gold (Au) nanoparticles (see Fig. 5.4).
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Fig. 5.4 3D orthorhombic metamaterial made of air cavities in silica containing clusters of gold
nanoparticles. Each cluster consists of 100 nonoverlapping gold nanoparticles of radius S = 8.8 nm
in a nearly close-packed arrangement, with cluster radius 42.67 nm. Each cluster is placed at a cen-
ter of a cavity of radius 44 nm. The metamaterial is viewed as a succession of (001) planes (square
lattices) of clusters of gold NPs, parallel to the xy-plane. The lattice constant of each square lattice
is ax = ay = 85.22 nm whilst the lattice constant in the z-direction is az = 87.86 nm. (Reprinted
from V. Yannopapas and A. G. Vanakaras, Phys. Rev. B 84, 085119 (2011). With permission)

The positions of the gold particles within a cluster are taken from a Monte-Carlo
simulation of the self-organization of these particles under a spherically confining
potential. All particles have the same radius S = 8.8 nm; the average radius of the
cluster is Scl = 42.67 nm whilst the cavity radius Scav = 44 nm. The average inter-
particle gap is about 1.2 nm. The dielectric function of a single gold nanoparticle is
taken from experiment [67] with corrections accounting for the electron scattering
at the boundaries of a nanoparticle [see Eqs. (3)–(4) of [68]]. The metamaterial is a
slightly elongated cubic (orthorhombic) lattice viewed as a succession of 2D square
lattices of the above clusters of gold NPs, parallel to the xy-plane [see Fig. 5.4]. The
lattice constant of the 2D square lattice is ax = ay = 85.22 nm whilst the lattice con-
stant in the z-direction is az = 87.86 nm. Note in passing that we have deliberately
assumed an orthorhombic crystal in order to demonstrate the applicability of the
presented formalism which can treat on equal footing the effects of inhomogeneity,
dispersion, anisotropy and disorder in the metamaterials under study without any
approximations.

In Fig. 5.5 we show the transmittance, reflectance and absorbance spectra for
light incident normally on 8 planes of cavities of gold clusters. The nanoparticles
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Fig. 5.5 Transmittance (T),
reflectance (R), and
absorbance (A) spectra for
light incident normally on a
slab of the metamaterial of
Fig. 5.4 consisting of 8 unit
planes

Fig. 5.6 Photon dispersion
lines for a 3D nonperiodic
metamaterial made of air
cavities in silica containing
clusters of gold NPs of 8 nm
radius with different amounts
of disorder C, as calculated
by the ATA c-LMS method.
The NP clusters are the same
as those of Fig. 5.3

are small enough (8.8 nm radius) so that taking into account only dipole terms
(lmax = 1) in the multipole expansion of the EM field [see (5.2) and (5.3)] suffices
for achieving convergence in the absorption spectra [69]. In the plane-wave expan-
sion of the EM field [see (5.48)] we have considered 21 reciprocal-lattice vectors.
As it is evident from Fig. 5.5, there appears a distinct local plateau from 2–4 eV
wherein the absorbance is about 95 %. The enhanced absorbance is due to the ex-
citation of surface plasmons on each single gold nanoparticle; the interaction of the
surface plasmons of each nanoparticle leads to a surface-plasmon frequency band
which gives rise to the broad plateau of the absorbance appearing in Fig. 5.5. We
note that, due to the absorption performance depicted in Fig. 5.5, the metamate-
rial under study behaves as super absorber [70] promising important application in
thermophotovoltaic cells [68, 71–75].

In Fig. 5.6 we show the dispersion lines for infinite (bulk) amorphous metamate-
rials of clusters of NPs, i.e., the cavities+clusters are randomly positioned in space
following the substitutional model of disorder described in Sect. 5.2.7 (type-A scat-
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terer is a cavity+NP cluster and type-B is just the silica host—unoccupied lattice
site). With C we denote the % fraction of the sites being occupied quantifying this
way the amount of disorder. Obviously, for C = 1 we have a periodic metamaterial.
With Re (Im) we depict the real (imaginary) lines, i.e., frequency (in eV units) as a
function of the �kz (�kz), respectively. For frequencies below 1.6 eV, �kz is smaller
than 10−3 and this is why the imaginary dispersion lines are not shown below this
frequency. It is obvious that for frequencies below 2.2 eV the real frequency lines,
which describe the wave propagation within the metamaterial, are independent of
the amount of disorder. Also, above 2.2 eV, �kz assumes different values for differ-
ent C but, the slopes (describing the phase velocity of light within the metamaterial)
are practically the same. These two effects reflect the subwavelength nature of the
metamaterials under study. On the other hand, the imaginary frequency lines, which
describe the wave attenuation within the metamaterial, dependent relatively more
on the amount of disorder.

Finally, a note on the possible realization of the metamaterial under study. As
stated in the introduction, 1D and 2D lattices decorated by clusters of metallic NPs
have already been realized by template-assisted colloidal self-organization. Namely,
clusters of metallic NPs have been deposited within the voids of a 2D periodically
perforated dielectric slab [43] or within the trenches of a 1D grating [44]. Here, we
have a 3D metamaterial made of air cavities containing clusters of metallic nanopar-
ticles. In this case, a template-assisted colloidal self-assembly should be applied to
3D dielectrics with spherical voids such as inverted opals. The latter are fcc photonic
crystals of air holes in a dielectric host such as SiO2, TiO2 or Si [76]. By infiltrating
the air holes with gold NPs one can realize the metamaterial of Fig. 5.4. Alterna-
tively, a bottom-up self-assembly technique without the need of a (lithograpically
fabricated) template can be employed [77, 78]. Namely, highly stable gold NPs are
synthesized by the Turkey-Frens method [80] which are dispersed within an aqueous
solution. By adding a ligand molecule within the solution, the NPs start to agglom-
erate into supramolecular clusters [77].

5.4 Conclusions

The development of a rigorous electrodynamic theory for the theoretical study of
amorphous electromagnetic structures such as disordered metamaterials wherein the
randomness lies in multiple length scales, constitutes a major challenge for the field
of theoretical and computational nanophotonics. In order to tackle efficiently this
computational problem without resorting to any kind of approximations, we have
employed a hierarchical theoretical strategy wherein we employ an EM multiple-
scattering formalism for each length scale. The connection between the different
scales has been realized via the concept of the scattering T -matrix. The above hi-
erarchical strategy has been focused on metamaterials of amorphous clusters of
nanoparticles embedded or not within a cavity. Namely, we have taken into ac-
count all the multiple-scattering events experienced by the EM waves: scattering
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within the cluster of nanoparticles, between the cluster and the cavity boundaries,
and among the clusters of nanoparticles within the metamaterial. As a case study,
we have applied the presented formalism to the case of a lattice of air voids in silica
containing clusters of gold nanoparticles. Thick slabs of the above metamaterial act
as super absorbers exhibiting a very broad plateau of 95 % light absorption promis-
ing application in thermophotovoltaic cells.
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Appendix

The matrix Ω for a vector field is given by [52, 79]

Ωnn′
Elm;El′m′ =Ωnn′

Hlm;Hl′m′ = (ψlψl′)
−1[2α−m

l α−m′
l′ Gl′m′−1;lm−1(Rnn′ ;qh)

+mm′Gl′m′;lm(Rnn′ ;qh)
+ 2αml α

m′
l′ Gl′m′+1;lm+1(Rnn′ ;qh)

]
(5.65)

Ωnn′
Hlm;El′m′ = −Ωnn′

Elm;Hl′m′ = (2l + 1)(ψlψl′)
−1

× [−2α−m′
l′ γml Gl′m′−1;l−1m−1(Rnn′ ;qh)

+m′ζml Gl′m′;l−1m(Rnn′ ;qh)
+ 2αm

′
l′ γ

−m
l Gl′m′+1;l−1m+1(Rnn′ ;qh)

]
(5.66)

where

ψl =
√
l(l + 1) (5.67)

αml = 1

2

[
(l −m)(l +m+ 1)

]1/2 (5.68)

γml = 1

2

[
(l +m)(l +m− 1)

]1/2/[
(2l − 1)(2l + 1)

]1/2 (5.69)

ζml = [(l +m)(l −m)
]1/2/[

(2l − 1)(2l + 1)
]1/2

. (5.70)

GLL′(Rnn′ ;qh) transforms an outgoing scalar spherical wave about Rn′ to a series
of incoming scalar spherical waves around Rn. It is given by

Glm;l′m′(Rnn′ ;qh)= 4π
∑
l′′m′′

(−1)(l−l′−l′′)/2(−1)m
′+m′′

×Blm
(
l′′m′′; l′m′)h+

l′′(qhRnn′)Yl′′−m′′(R̂nn′) (5.71)

with

Blm
(
l′′m′′; l′m′)=

∫
dΩYlm(r̂)Yl′−m′(r̂)Yl′′m′′(r̂). (5.72)

Ylm(r̂) are the usual scalar spherical harmonics [50].
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The matrix Ξ for a vector field is given by [52, 79]

Ξnn′
Elm;El′m′ =Ξnn′

Hlm;Hl′m′ = (ψlψl′)
−1[2α−m

l α−m′
l′ ξl′m′−1;lm−1(Rnn′ ;qh)

+mm′ξl′m′;lm(Rnn′ ;qh)
+ 2αml α

m′
l′ ξl′m′+1;lm+1(Rnn′ ;qh)

]
(5.73)

Ξnn′
Hlm;El′m′ = −Ξnn′

Elm;Hl′m′ = (2l + 1)(ψlψl′)
−1

× [−2α−m′
l′ γml ξl′m′−1;l−1m−1(Rnn′ ;qh)

+m′ζml ξl′m′;l−1m(Rnn′ ;qh)
+ 2αm

′
l′ γ

−m
l ξl′m′+1;l−1m+1(Rnn′ ;qh)

]
. (5.74)

ξLL′(Rnn′ ;qh) transforms an outgoing (incoming) scalar spherical wave about Rn′
to a series of outgoing (incoming) scalar spherical waves around Rn [see (5.25) and
(5.26)]. It is given by

ξlm;l′m′(Rnn′ ;qh)= 4π
∑
l′′m′′

(−1)(−l+l′+l′′)/2(−1)m
′+m′′

×Blm
(
l′′m′′; l′m′)jl′′(qhRnn′)Yl′′−m′′(R̂nn′). (5.75)
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Chapter 6
Deterministic Amorphous Metamaterials
and Their Optical Far-Field Response

Christian Helgert and Thomas Pertsch

Abstract We review the optical far-field response of artificially structured media—
metamaterials—and the impact of deterministic amorphization thereon. The inter-
est on such deterministic amorphous metamaterials recently emerged because they
may bridge a conceptional gap between bottom-up and top-down fabricated meta-
materials. Artificial amorphization can be implemented by means of mathematical
algorithms governed by randomization or disorder parameters that assign an indi-
vidual position to each single building-block, i.e. each meta-atom, of a large as-
sembly. These meta-atoms sustain characteristic and shape-dependent optical reso-
nances which, as consistently confirmed in experiments, show different sensitivities
to deterministic amorphization. In consequence, the widely alleged necessity of a
periodic lattice can be relaxed in many cases. This newly emerging direction of
nanophotonic research offers novel interdisciplinary approaches to tailor the elec-
tromagnetic properties of artificial composites with elevated structural complexities.

6.1 Introduction

The development of artificial materials which can control the flow of electromag-
netic waves in unprecedented ways has evoked a great interest in modern nanopho-
tonics. The fabrication of nano-sized structures has provided us means to create
artificial materials that have no natural counterparts. The subclass of these materials
which probably attracted the highest attention are the so-called metamaterials [1–4].
These man-made media are composed of nanostructured elements in the same sense
as natural matter consists of atoms. Therefore and throughout this chapter these
structural elements will be termed meta-atoms [5]. Ideally, they are supposed to be
considerably smaller than the wavelength of the interacting electromagnetic fields.
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The meta-atoms themselves are made of conventional materials such as noble met-
als, but their specifically tailored shapes and arrangements promote their consti-
tuting ensembles to a superior level of structural organization of matter. Most meta-
atoms are made of metallo-dielectric composites in order to support resonant surface
plasmon polariton eigenmodes. Since nanofabrication technology practically facili-
tates to create meta-atoms according to predefined designs [6–8], their electromag-
netic response can be tailored on purpose. The characterization and understanding
of such nano-optical systems classically rely on the interpretation of their far-field
spectral properties. Specifically, distinctive dips and/or peaks in the transmittance
and reflectance spectra of metamaterials are mostly caused by increased (or res-
onant) scattering or absorptive responses. Such resonances lend themselves to be
connected to the characteristic electromagnetic eigenmodes which are sustained by
the meta-atoms [9]. Since far-field characterization tools are well established, com-
mercially available and thus relatively easy to apply for measurement purposes, this
approach allows for a straightforward understanding of the working principle of
many metamaterials.

This chapter is devoted to the far-field response of a particularly fascinating class
of metamaterials, which meet the characteristics of an amorphous, rather than pe-
riodic or crystalline, arrangement of their meta-atoms. By definition, “amorphous”
refers to a conglomerate whose constituents inhibit a limited degree of short-range
order, while long-range order is completely absent. The most prominent example
of a classical amorphous material is glass, which is known as an amorphous solid
that transforms into a liquid upon heating it through the glass transition. Thus, the
term “amorphous metamaterials” refers to artificial media whose meta-atoms are
arranged in a disordered or randomized way, without any mutual long-range order.
Such amorphous arrangements are quite naturally achieved when a metamaterial
fabrication technique is based on a so-called bottom-up process [10–12]. Bottom-up
nanofabrication approaches employ or may be complemented by self-organization,
functionalization and external control parameters like heat, mechanical stress, chem-
ical additives or prepatterned surfaces to create and assemble meta-atoms. This
field of nanostructuring techniques has attracted a continuously increasing inter-
est because of the rich assembling behavior and the collective properties that can
potentially be engineered [13–29]. The further usage of bottom-up approaches is
very likely to expand with regard to amorphous metamaterials for nanooptics in the
near future [30–43]. Selected examples of bottom-up metamaterials are depicted
in Fig. 6.1. Many bottom-up processes generate useful nanopatterns but are not di-
rectly applicable to optical metamaterial fabrication. However, they can be upgraded
by exploiting complementary nanopattern transfer steps including noble metal de-
position [44–48]. This selection of studies devoted to amorphous metamaterials,
which is by no means exhaustive, illustrates the emerging research focus on this
topic and is accompanied by former efforts to understand localization, transport and
wave scattering phenomena in randomized media [49–52].

Nevertheless, one considerable shortcoming is the generally irreproducible, i.e.
non-deterministic nature of bottom-up fabrication processes, in the sense that a num-
ber of uncontrollable (or even unconceivable) side conditions and process param-
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Fig. 6.1 Selected examples of bottom-up fabricated metamaterials with their constituting
meta-atoms in amorphous arrangements. (a) Two distinctively separated layers made of gold
nanoparticles with radii of 10 nm. Reprinted with permission from [42], Copyright 2011, Amer-
ican Chemical Society. (b) Core–shell (dielectric-gold) clusters fabricated by electrostatic as-
sembly. Reprinted with permission from [41], Copyright 2011, American Chemical Society.
(c) SrTiO3-TiO2 eutectic microstructures. Reprinted with permission from [36], Copyright 2010,
Wiley-VCH. (d) Assembly of gold nanosphere dimers formed by amphiphilic polymer brushes,
along with a low fraction of monomers and other multimers. Reprinted with permission from [43],
Copyright 2011, American Chemical Society. (e) Dispersed silver nanoparticles obtained by the re-
duction of a silver salt. Reprinted with permission from [40], Copyright 2010, Wiley-VCH. (f) Gold
nanowires grown out of an alumina nanotemplate. Reprinted with permission from [53], Copyright
2008, American Institute of Physics. (g) Upright gallium phosphide nanowires fabricated by met-
al-organic vapor phase-epitaxy. Reprinted with permission from [32], Copyright 2008, Wiley-VCH

eters may affect the overall outcome. We will show in the following that amor-
phous metamaterials can be investigated comprehensively by experiments based
on simple mathematical design guidelines, or with other words, based on a deter-
ministic background. Complementary to the “classical”, bottom-up route towards
amorphous metamaterials, this chapter will give an introduction to the more re-
cent developments of deterministic amorphous metamaterials. A method, algo-
rithm or model is said to be deterministic when its result is entirely determined
by its initial state and inputs, and is neither random nor stochastic. Consequently,
a deterministic amorphous metamaterial is a structure, whose state and degree
of amorphization can be tailored intentionally during fabrication. In this sense,
when fabricating a deterministic amorphous metamaterial, the final result includ-
ing the size, shape and the very arrangement of each single meta-atom should
be predictable and controllable within very narrow fabrication tolerances, an as-
pect which regrettably rarely applies to bottom-up nanofabrication methods. Re-
cent studies performed by the Dal Negro group exemplified by highly involved
aperiodic patterns [54–56], how deterministic approaches offer a superior level of
control and information on the optical far-field properties of nanoplasmonic sys-
tems. In this discussion, we will mostly focus on the deterministic transition from
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periodic towards amorphous metamaterials [57–60], thus bridging a gap between
the historically well separated areas of bottom-up and top-down fabrication tech-
niques.

6.2 Transition from Periodic to Amorphous Meta-atom
Arrangements

To date, most contemporary metamaterials have been investigated with their consti-
tuting meta-atoms ordered on a periodic lattice. It remained rather unclear whether
their optical properties could be retained if this lattice was broken and the meta-
atoms were put in an amorphous arrangement. This state of the art is mainly due
to two reasons. First, the limited resources of contemporary computational facilities
call for adapted and time-efficient numerical algorithms. In a periodic structure, it
is often sufficient to compute the response of a single unit cell and employ periodic
boundary conditions to mimic periodicity. Second, since many contemporary meta-
material fabrication techniques rely on lithographic methods, the lithographic data
preparation is considerably facilitated if a unit cell can be repeated on a periodic
lattice.

Thus the approaches described here inhibit a fundamental difference to previous
investigations of strictly periodic optical metamaterials. An amorphous metama-
terial cannot be treated straightforward by standardized numerical methods which
would strictly rely on a periodic arrangement of the meta-atoms. Rather, the descrip-
tion of the interaction of light with an amorphous metamaterial exhibits a many-
body problem which is often impractical to treat numerically, though not impos-
sible [61, 62]. As a result, direct comparisons between experimentally available
disordered systems containing a large number of constituents and their rigorous nu-
merical treatment are comparably rare in the present literature [57, 61–64]. In the
studies summarized here, we present different realizations of deterministic amor-
phous metamaterials and correlate the scattering response of the individual meta-
atoms to the averaged far-field response of the ensemble. For one particular case,
effective optical properties for amorphous metamaterials based on rigorous numer-
ical simulations are introduced.

6.2.1 A Deterministic Algorithm for Amorphous Structures

First we give the technical details along with the assessment of an algorithm that al-
lows for the deterministic and quasi-continuous amorphization of two-dimensional
metamaterials whose meta-atoms are assembled on a plane area. While we restrict
ourselves to the mathematical notation as implemented in [57, 58, 63], we note that
similar approaches using slightly different parametrization sets have been utilized in
other optical systems, including photonic crystals [52, 65–67], nanoapertures [68–
70], nanoantennas [71], and plasmonic metamaterials [55, 59, 60, 72, 73]. In any
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case, the output of the algorithm is a data set containing the intended position of
each single meta-atom, whose actual shape and composition must not be specified
at this stage. This data set can be used to lithographically define an amorphous
metamaterial. For instance, using state-of-the-art electron-beam lithography for the
fabrication of the metamaterial samples, it is possible to precisely control the po-
sitions of the meta-atoms within a typical accuracy of 1 nm. Hence deterministic
amorphization algorithms along with an advanced nanofabrication technology pro-
vide powerful and highly versatile tools for introducing a well-defined degree of
artificial disorder and amorphization into a metamaterial.

In the following, the xy-plane is supposed to be the main lateral plane where
the meta-atoms are assembled, while z denotes the principal propagation direction
of light. In general, positional disorder in a planar metamaterial can be introduced
by adding a random displacement to the position of each meta-atom in each lateral
direction independently. Here we choose the displacements �x and �y such that
they are uniformly distributed within the intervals

�x,�y ∈
[
−Dp

2
,+Dp

2

]
, (6.1)

where p is the lattice constant of the referential periodic system in either lateral
direction (p = px = py ). D is a dimensionless disorder parameter to control and
quantize the degree of disorder. With other words, D = 0 corresponds to a periodic
lattice arrangement while for D = 1 the center position of each meta-atom can ran-
domly extend between the boundaries of the former unit cell. If D is larger than
one, each meta-atom can even be placed beyond those boundaries. For practical rea-
sons, a minimum interparticle separation dmin between adjacent meta-atoms has to
be enforced. The reason for this is twofold: First, the undesired proximity effect
in lithographic methods [74] may lead to the deformation and merging of adjacent
structures during fabrication, if they are too closely spaced. Second, the plasmonic
resonance properties of the individual meta-atoms would be predominantly affected
by evanescent coupling. For the studies reported here, we want to focus on the scat-
tering properties of the meta-atoms, explicitly excluding the regime of evanescent
coupling. However, the practical requirement for dmin does not pose a strong restric-
tion on the general applicability of the algorithm, because dmin appropriately reflects
the physical situation of hard spheres in standard routines to fabricate self-organized
metamaterials, given that conglomeration is prohibited [46].

In practice, the algorithm works in the following way: Starting from a periodic
lattice, each meta-atom is given a number. Then, the order of all positions (x, y) of
all meta-atoms is randomized, resulting in a randomized renumbering. This random-
ization of the order of placement itself ensures that the positions of all meta-atoms
are not correlated [65]. At next, a displacement pair �x and �y is generated fol-
lowing (6.1) and added to the first (x, y) pair. The corresponding meta-atom has
now been given a new position, which is memorized and kept fixed. Thus and due
to the minimum interparticle distance dmin, a “forbidden zone” around this meta-
atom is created, which can no more be occupied by another meta-atom. After that,
the positions of all other meta-atoms on the renumbered list are subsequentially
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Fig. 6.2 Top view scanning electron microscope images of meta-atoms arranged with implemen-
tations of different values of disorder D

randomized. If the placement of one meta-atom violates the restriction enforced on
dmin with respect to any other meta-atom already fixed, this specific pair of �x and
�y is rejected and a new pair within [−D/2p,D/2p] can be generated. The final
result is a rearrangement of all meta-atoms governed by D and dmin. We performed
numerous test runs of this algorithm, confirming that it converged quickly as long
as dmin was not chosen too large.

After implementing the algorithm in a numerical code, two-dimensional coordi-
nate sets of disordered meta-atoms corresponding to different values of D can be
generated. Figure 6.2 shows six scanning electron microscope images of fabricated
metamaterials where each bright dot represents a single meta-atom, whose specific
shape will be specified later in Sect. 6.3.3. While D varies, dmin was kept constant
to about one third of the lateral size of a single meta-atom [57, 63]. The choice of
this specific value turned out to be a good compromise between two counteracting
aspects: On the one hand, smaller values of dmin result in the unintentional merging
of a rather big number of adjacent meta-atoms during fabrication. On the other hand,
if dmin was too large the disorder algorithm fails to converge. In addition to that, the
larger dmin the stronger is the enforcement of the periodicity which is actually to be
perturbed.

6.2.2 Statistical Assessment of an Amorphous System

Now we will classify the “randomness” in our metamaterial and verify that really
amorphous structures are created with this algorithm. As defined above, the con-
stituents of an amorphous medium may exhibit a finite degree of short-range order
and practically no long-range order. Among various mathematical means, the most
appropriate one to classify positional disorder is the radial distribution function, also
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called pair correlation function g(r) [75, 76]. This dimensionless quantity can be
calculated for any system containing a large number of particles at fixed positions,
just like our meta-atoms. The parameter r denotes the radius of a circle which is
normalized to the interparticle separation in a referential periodic system. The pair
correlation function g(r) then describes how the particle density varies as a function
of the distance from an arbitrary meta-atom. Hence g(r) offers a statistical mapping
of the distances between the centers of pairs of particles [77]. Applied to the situ-
ation of two dimensions, it is evaluated by counting the numbers of particles that
lie within a circular shell, dr , of radius r from an arbitrary origin in the plane. The
absolute value of dr must be chosen sufficiently small with respect to r to ensure a
reasonable spatial discretization. In the present case r/dr � 10 was required. The
counting of particles within a circular shell area da = 2πrdr is repeated for a range
of radii and a large number of arbitrary points selected as the origin. The statistical
average of these numbers, normalized with respect to the average particle number
density 〈ρ〉 and the sampling area da for a particular radial distance r , gives the pair
correlation function

g(r)= 1

〈ρ〉
dn(r, r + dr)

da(r, r + dr)
. (6.2)

This formula is a valuable means for our purpose in that its characteristic fea-
tures allow to distinguish between, e.g., periodic, randomized and amorphous par-
ticle assemblies. In periodic structures g(r) shows not only one peak at r = 1 (cor-
responding to short-range order) but also higher order peaks at higher values of r
(corresponding to long-range order). On the other hand, long-range order should
be completely absent in a truly amorphous structure. Therefore, if our metamate-
rial is really amorphous, we expect only one discernible peak around r = 1 and a
smooth evolution for large r converging to g(r → ∞) = 1. For completeness it is
noteworthy that g(r) of a fully randomized structure will not show any features at
all indicating the lack of both short- and long-range order [76]. Such a structure
could be implemented in our case by setting dmin equal to zero while D is suffi-
ciently large. However, this consideration is practically not relevant due to the finite
extension of any physical meta-atom.

The pair correlation function g(r) was calculated for a sufficiently large section
of the arrangements depicted in Fig. 6.2. The results are shown in Fig. 6.3. As ex-
pected, g(r) displays discrete peaks for the periodic arrangement (Fig. 6.3a). With
increasing D, those peaks are gradually reduced and smeared out (note that the
y-axes scale differently in the subfigures of Fig. 6.3). Though there is no distinct
threshold between a partially disordered and an amorphous system, it can be clearly
seen in Fig. 6.3e and f that for large values of D only the first peak around r = 1
survives while g(r > 1) gives a noisy signal with a mean value around one. Note
that the principal behavior of g(r) will always support this statement, although its
actual values depend on the individual implementation of disorder which can vary
for a given D. Short-range correlation is present because the particles were not al-
lowed to take positions in the ultimate vicinity of other particles. Consequently, g(r)
is identical to zero for small values of r , i.e. g(r)= 0 for all r smaller than the sum
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Fig. 6.3 Pair correlation function g(r) for a two-dimensional assembly of meta-atoms with dif-
ferent degrees of disorder D as outlined in the text. (a) Periodic, (b)–(d) partially disordered and
(e)–(f) amorphous system. Note that the y-axis scales differently in (a)–(f)

of dmin and the lateral size of a meta-atom. Correlation functions of that type are
a clear indication of amorphous structures [78]. It is therefore proven that (6.1) to-
gether with the side condition dmin > 0 can mimic the transition of a metamaterial
from a periodic (or crystalline) to an amorphous state.

6.3 Far-Field Properties of Deterministic Amorphous
Metamaterials

The optical properties of metamaterials are predominantly determined by the meta-
atoms they are composed of. These meta-atoms act as strongly scattering entities
sustaining eigenmodes for interacting electromagnetic waves. In order to maximize
the efficiency of the scattering mechanism, noble metals are often incorporated into
the meta-atoms to provide loosely bound or free charge carriers which may reso-
nantly interact with external electromagnetic fields, giving rise to localized surface
plasmon polaritons [79]. Accordingly, a meta-atom may be represented by an ar-
bitrarily complex charge density distribution. By means of semi-analytical models
it was shown how the characteristic near-field distributions of the eigenmodes of
meta-atoms can be used for the classification and identification of molecular multi-
pole moments [80–84]. Multipolar near-fields can be rigorously decomposed into a
series of tensorial electromagnetic moments, e.g. contributions of first order (electric
dipole), second order (magnetic dipole and electric quadrupole), third order (mag-
netic quadrupole and electric octupole), et cetera [85]. For detailed properties of the
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associated electromagnetic near-fields of these multipoles, the reader may conve-
niently resort to Chap. 7 written by Worawut Khunsin and Ralf Vogelgesang within
this book. In the optical far-field spectra however, the footprints of the electromag-
netic multipolar contributions are detectable as distinctive peaks and dips. It is then
the task of the observer to attribute these spectral characteristics to the respective
multipolar moments, for which complementary information like numerical simula-
tions or optical near-field measurements are usually helpful if not necessary. In the
following we will classify three deterministic amorphous metamaterials according
to their wavelength operation regimes and relate their respective sensitivities against
positional disorder to the coupling mechanisms of the excited electromagnetic mul-
tipoles.

6.3.1 Amorphous Metamaterials for Microwaves

In a study from Papasimakis et al., the concept of electromagnetically coupled and
uncoupled ensembles of meta-atoms was introduced under the terminology “coher-
ent” and “incoherent” metamaterials. The approach was underpinned by microwave
experiments on specifically selected meta-atoms, forming either periodic or amor-
phous metamaterials [58]. These two kinds of structures, namely asymmetrically
split rings and double concentric rings, represent antipodes for coherent and inco-
herent metamaterials and are schematically depicted in Fig. 6.4. In this context, a
coherent metamaterial is defined to consist of meta-atoms exhibiting a collective
far-field response, which is supported by the mutual interaction of scattered waves
upon resonant excitation. Naturally, such a coherent response is sensitive to a rear-
rangement of the meta-atoms. Contrariwise, the meta-atoms of an incoherent meta-
material show an individual response, support only marginal short- and long-range
interactions with their neighbors, and thus are virtually insensitive to positional dis-
order and amorphization.

The deterministic approach to introduce disorder into these microwave metama-
terials is governed by a disorder control parameterD analogous to the one defined in
Sect. 6.2.1. The experimental proofs of different sensitivities of concentric rings and
asymmetrically split rings to such deterministic disorder are summarized in Fig. 6.5.
In both cases, a resonant dip in the spectra denotes the position of the characteristic
resonance of the respective meta-atoms on a periodic grid (D = 0). For the meta-
material composed of double concentric rings this resonant dip remains unaltered
and robust with increasing disorder, including also the fully amorphous state corre-
sponding to a value ofD larger than one (Fig. 6.5a). This observation does not apply
for the asymmetrically split ring metamaterial, where the respective dip smoothens
out rapidly with an increasing value of D and finally vanishes almost completely
for the amorphous modification of the metamaterial (Fig. 6.5b).

These completely oppositional characteristics can be explained on the basis of the
dominant electromagnetic multipole of the main resonances sustained by the meta-
atoms [58]. In both cases, magnetic dipoles oriented perpendicular to the plane of
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Fig. 6.4 Schematics of metamaterials composed of concentric rings (top row) and asymmetrically
split rings (bottom row), with a increasing degree of positional disorder D from the left to the
right. The definition of the disorder parameter D in [58] is identical to the one given in Sect. 6.2.1.
The two subfigures on the right represent deterministic amorphous metamaterials. Reprinted with
permission from [58], Copyright 2009, American Physical Society

the metamaterials are excited. However, while for the concentric rings these mag-
netic dipoles stem from antisymmetric electron currents in the two rings and point
in opposite directions, they are oscillating perfectly in phase for regularly arranged
asymmetric split rings (see insets in Fig. 6.5). Thus in the first case the interactions
between the meta-atoms (both of electric dipole and magnetic dipole type) are neg-
ligible. The resonance shows the footprint of the individual structure and the collec-
tive response of the metamaterial is merely the sum of these individual meta-atom
contributions (regardless of the actual arrangement), giving rise to the interpretation
as an incoherent response. In the latter case, the electron currents induced in the up-
per and lower arcs of the rings create in-phase, coherent magnetic dipole moments.
Increasing disorder leads to an increase of scattering losses, a decrease of the exci-
tation strength of the collective resonance and ultimately cancels out the magnetic
response when a complete amorphization is reached. These observations are in full
agreement with the results of an earlier study on disorder in microwave metamateri-
als composed of double concentric rings and double split-ring resonators by Aydin
et al. [72]. In this work, however, the authors restricted themselves to the case of
comparably small perturbations of a periodic lattice mimicking typical fabrication
tolerances and effectively excluded completely amorphous metamaterials.

We would like to point out that the terms “coherent” and “incoherent” as intro-
duced by Papasimakis et al. refer rather to an abstract concept of metamaterials in
general than to a distinctive class of physical structures. In Sect. 6.3.3 it will be
shown that a particular metamaterial may optically respond either in a coherent or
an incoherent way at different excitation wavelengths, depending on the actually
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Fig. 6.5 Measured reflectances as functions of the frequency and the disorder parameter D for
(a) arrays of concentric rings and (b) asymmetrically split rings. Large values of D correspond to
amorphous metamaterials. The two marked cross sections show reflectance profiles at D1 = 0.07
(dashed line) and D2 = 0.40 (solid line), respectively. The current distributions inside the accord-
ing meta-atoms are shown in the insets. Reprinted with permission from [58], Copyright 2009,
American Physical Society

excited eigenmode. Hence, one may denote a specific resonance of a metamate-
rial (under differentiated excitation conditions) to be of “coherent” or “incoherent”
nature rather than a whole subclass of metamaterials.

6.3.2 Amorphous Metamaterials for Terahertz Waves

The so-called “split-ring resonator” is considered as one of the most prototyp-
ical meta-atoms ever, since it has been the primary structure to study artificial
magnetism at any range of the electromagnetic spectrum down to wavelengths of
about 800 nm [86–89]. The resonances of split-ring resonators at normal light inci-
dence are commonly understood as their odd and even plasmon-polaritonic eigen-
modes, whose excitation conditions depend on the orientation of the incident electric
field [9].

In their study, Singh et al. performed far-field measurements on periodic and
randomized (or amorphous) single and double split-ring resonators and experimen-
tally verified different sensitivities on positional disorder of their respective eigen-
modes [59]. The authors fabricated four sets of samples as shown in Fig. 6.6, dif-
ferentiating the cases of single and double split-ring resonators positioned on peri-
odic or amorphous grids, respectively. Upon illuminating these metamaterials under
normal incidence and depending on the polarization state, either the odd or even
eigenmodes of the structures were excited. The key findings of this work can be
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Fig. 6.6 Microscope images
of THz metamaterials
composed of (a) periodic
single split-ring resonators,
(b) amorphous single
split-ring resonators,
(c) periodic double split-ring
resonators, and
(d) amorphous double
split-ring resonators.
Reprinted with permission
from [59], Copyright 2010,
IOP Publishing

summarized as follows: The lowest order odd eigenmode of an assembly of split-
ring resonators (historically often referred to as an LC resonance [87, 88]), which
is excited when the incoming electric field is polarized parallel to the split-ring gap,
is nearly independent of the very arrangement of the meta-atoms. Differently, when
the electric field of the incoming radiation is oriented perpendicular to the split-ring
gaps, the next order odd eigenmode and the lowest order even eigenmode are ex-
cited. These modes, which are characterized by in-plane electric dipole oscillations,
turned out to be seriously affected if disorder is introduced into the arrangement of
the split-ring resonators, causing the strength of the observable far-field spectra to
decrease considerably [59].

The authors interpreted the persistence of the lowest order odd eigenmode on
the basis of an LC circuit model, whose detailed analysis however is beyond the
scope of this chapter. In addition, the vulnerability of an ensemble of electric dipole
oscillations to positional disorder is physically intuitive, since the strong dipolar
coupling between adjacent split-ring resonators is diminished in a complicated way.
We note that only a limited number of samples has been considered in the work
by Singh et al., leaving room for further studies on split-ring resonators with a de-
terministic and more continuous tuning of the degree of disorder. However, in the
next section we will consider this full transition from a periodic to an amorphous
metamaterial for the case of another meta-atom supporting similar mode features as
split-ring resonators. In this context we give a unifying approach in showing how
the general sensitivity of distinct eigenmodes of arbitrary meta-atoms on disorder
can be consistently explained by an analysis of the respective scattering response
and the absorption levels.



6 Deterministic Amorphous Metamaterials 155

Fig. 6.7 Schematic of a cut-wire pair meta-atom excited at (a) the symmetric (S) and (b) the
antisymmetric (AS) plasmonic eigenmode. The wave vector k denotes the light propagation di-
rection and E the polarization of the electric field. The arrows represent the (a) in-phase and
(b) out-of-phase oscillations of the current densities in the metal wires. (c) Simulated prototyp-
ical spectrum showing the two resonances corresponding to the symmetric (S) and antisymmetric
(AS) mode in transmittance t and reflectance r

6.3.3 Amorphous Metamaterials for Optical Wavelengths

The previous sections were devoted to a series of studies on disordered and amor-
phous metamaterials in each of which only one single electromagnetic multipole
was excitable and detectable under fixed illumination conditions such as incoming
polarization and angle of incidence. The focus was put on asymmetrically split rings,
double concentric rings and split-ring resonators [58, 59, 72]. It is imperative to ex-
tend those studies toward more complex meta-atoms that support also higher order
multipoles for a given light input scheme (polarization and angle of incidence) to
develop a comprehensive understanding of disordered metamaterials. The simplest
structure that fulfills this goal is the cut-wire pair [90]. This meta-atom received an
enormous attention from the community since both an electric quadrupole and a
magnetic dipole can be excited at normal incidence. The cut-wire pair is therefore
regarded as one of the key building blocks to obtain a magnetic response at optical
frequencies [91–93].

In the following we consider a cut-wire pair as a structure consisting of two
nanoscale metallic wires which are separated by a dielectric spacer. The plasmonic
properties of this meta-atom can be schematically understood by a plasmon hy-
bridization model [94], as illustrated in Fig. 6.7. Each metallic cut-wire supports a
localized plasmon polariton. In a dimer system (two cut-wires in close proximity),
the strong coupling of plasmonic modes causes a hybrid splitting of the resonance
into a symmetric and an antisymmetric mode [80, 94]. Since for the high-frequency
symmetric mode the current densities in both arms are in phase, it effectively acts
as an electric dipole. By contrast, the current densities in both arms oscillate π out-
of-phase for the low-frequency antisymmetric mode evoking an electric quadrupole
and a magnetic dipole moment [80, 81]. In an ensemble of meta-atoms, the two
modes translate into the far-field response by dips in the transmittance and peaks in
the reflectance, although the latter is rather weak for the antisymmetric eigenmode
(Fig. 6.7).
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We fabricated cut-wire pair metamaterials on a silica substrate by electron-
beam lithography and noble metal lift-off technique [8]. For this study we required
the meta-atoms to be four-fold rotationally symmetric to suppress a polarization-
dependent response for normal incidence illumination. Despite of their quadratic
footprint in our implementation, we will consistently use the expression cut-wire
pairs in the following. Each cut-wire pair consisted of two 30 nm gold layers sep-
arated by 45 nm of magnesia with side lengths sx,y of 180 nm in both lateral
directions. For reference, a perfectly periodic sample (D = 0) with lattice con-
stants px,y = 512 nm was fabricated. The corresponding area filling fraction of
f = s2

x,y/p
2
x,y ≈ 12.4 % remained unaltered on average for all samples by keeping

the number of meta-atoms and hence their average density constant. Eleven differ-
ent samples with different values of D ranging from 0 to 1000 were fabricated on
the same wafer. Each sample had an area footprint of 3 mm × 3 mm, from which
a selection of scanning electron microscopy images was shown in Fig. 6.2. As we
outlined in Sect. 6.2.2, this set represents a gradual transition from a periodic to an
amorphous planar metamaterial.

The optical properties of all samples were characterized by transmission and
reflection spectroscopy. At normal incidence virtually identical spectra have been
obtained for both linear polarization states parallel to either lattice vector, which is
in agreement with the symmetry of quadratic cut-wire pair meta-atoms. The investi-
gated spectral domain spanned wavelengths between 0.5 µm and 1.2 µm, comprising
the two principal resonances of the metamaterial. The spectral results are shown in
Fig. 6.8. We note that the low signal-to-noise ratio in the wavelength range from
0.9 µm to 1.0 µm in the reflection spectra is due to low sensitivity of the detec-
tor and does not bear any physical meaning. For the periodic arrangement (D = 0)
two dips appear in the transmission spectrum (Fig. 6.8a) situated at wavelengths of
0.8 µm and 1.05 µm which are related to the symmetric and antisymmetric plasmon
polariton eigenmodes of the meta-atom, respectively. The former is also confirmed
by a noticeable peak in reflection (Fig. 6.8b) at 0.8 µm. A considerably different
sensitivity of the two resonances was observed for an increasing degree of disor-
der. While the antisymmetric resonance at λ= 1.05 µm almost perfectly sustains in
width and magnitude even for D = 1000, the symmetric resonance blue shifts by
about 30 nm, broadens and its magnitude decays already at a low level of disorder
D = 1.

These astoundingly different characteristics can be explained by considering the
absorption levels of the respective cut-wire pair eigenmodes and the chosen average
interparticle distance. In a model developed by Albooyeh et al. [95], the reflective,
transmissive and absorptive properties of meta-atoms both on periodic and amor-
phous grids were analyzed. The theory provides a unifying answer to the observed
strong differences in resonance broadening and decay at electrically and/or mag-
netically resonant responses, such as the cut-wire pairs with symmetric and anti-
symmetric resonances as observed in Figs. 6.7 and 6.8. With the assumptions of
an optically dense array of meta-atoms, arranged with an average interparticle dis-
tance r , the negligence of bi-anisotropic coupling, and the assumption that the meta-
atoms sustain both electric and magnetic resonances with Lorentzian line-shapes at
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Fig. 6.8 Measured (a) transmittance and (b) reflectance as functions of the wavelength and the
disorder parameter D (logarithmic scale). Both spectra are recorded for discrete values of D and
interpolated to guide the eye. The black dotted lines indicate the positions of the symmetric (S) and
antisymmetric (AS) resonance. Reprinted with permission from [57], Copyright 2009, American
Physical Society

distinct (spectrally well separated) wavelengths, the following inequality which has
to hold close to the respective resonance frequency can be derived [95]:

ω0e,m
Γe,m

Ae,m
+ k0r

2
� k3

0r
3

6π
. (6.3)

Herein, ω0e,m, Γe,m,Ae,m and k0 = ω
√
ε0μ0 denote, respectively, the corresponding

resonance frequencies, the dissipation losses in the meta-atoms, the resonance am-
plitudes and the wave number in the surrounding space. The subscripts distinguish
between the electric (e) and magnetic (m) resonance case. While r corresponds to
the lattice period p for the situation of a periodic arrangement of the meta-atoms, it
can be considered an averaged particle distance in the amorphous case. If the con-
dition formulated in (6.3) is satisfied, the effect of the specific arrangement of the
meta-atoms on the resonance lineshape would be negligible, and accordingly the re-
sponse of periodic and amorphous metamaterials would be similar. Physically, this
condition is fulfilled if absorption (the first term of the left-hand side) and coherent
plane-wave reflection (created by surface-averaged currents [96] and corresponding
to the second term of the left-hand side) dominate over scattering (the right-hand
side term). This is particularly true for weak resonances with high dissipative losses,
and small interparticle distances r .

Applying this analysis to the cut-wire pairs considered here, the interparticle dis-
tances r and thus surface-induced plane waves are nearly identical for both reso-
nances, i.e. the wavelengths were they are supported do not differ too significantly.
However, we find a pronounced difference in the ratio of the absorption and the scat-
tering losses at the respective resonance frequencies. At the symmetric resonance,
associated with dominating electric dipole scattering, it was found that (6.3) is not
satisfied, i.e. scattering effects are strong and clearly dominating [57, 95]. Note that
electric dipolar resonances in general do couple well to the free space radiation,
hence a large scattered field is generated. Upon the transition from the periodic
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to the amorphous state, these scattering losses lead to a strong homogeneous line
broadening and resonance damping, as observed in Fig. 6.8. Similar observations
had been firstly predicted by Haynes et al. and were ascribed to radiative dipolar
coupling (which has a 1/r dependence on the interparticle distance r) and dipole
scattering retardation (which multiplies the dipole scattered field by eikr ) [97]. With
the terminology as introduced in Sect. 6.3.1, we witness a collective, coherent re-
sponse of the meta-atoms at the symmetric resonance.

Complementary results are obtained when these arguments are applied to the an-
tisymmetric low frequency mode (Fig. 6.7b). In this situation both sides in (6.3) can
be estimated to be of the same order, i.e. the absorption is so strong that the effects
of scattering play only a minor role. The higher absorption is an intrinsic feature
of higher order electromagnetic multipolar resonances. They couple less efficiently
to free space radiation which causes non-radiative losses usually to dominate over
radiative losses, i.e. these resonances are dominated by absorption. Therefore, the
meta-atoms scatter considerably more weakly at the anti-symmetric resonance than
at the symmetric resonance. This of course strongly reduces any interference ef-
fect of the external field and the scattered field from all the other meta-atoms which
might have driven the meta-atoms all with a slightly different phase. In consequence,
the spectral response is independent of the arrangement, namely periodic or amor-
phous. In other words, at the antisymmetric resonance the meta-atoms respond in an
individual, non-coherent manner to the external excitation [58].

It is noteworthy that the physical phenomena leading to resonance damping are
the same for electrically or magnetically resonant meta-atoms. In principal, although
not achieved to date, it should be possible to design arrays of electric scatterers
which give nearly the same response in periodic and amorphous arrangements, pro-
vided that their scattering losses are designed to be much smaller than the dissipa-
tion losses. Alternatively, the average interparticle distance r could be minimized to
satisfy condition (6.3).

6.3.4 Large-Scale Numerical Simulations of Amorphous Systems

To compare these spectra from Fig. 6.8 with theoretical predictions, numerical sim-
ulations of the system for no (D = 0.0), moderate (D = 0.3), and high (D = 3.0)
positional disorder were performed [57, 63]. In the case of non-periodic opti-
cal systems, the method of choice to solve Maxwell’s equations rigorously is the
finite-difference time-domain (FDTD) method [98]. In brief, for this technique the
Maxwell’s equations in the temporal domain and relations connecting polarization
and conduction with the electric field are directly discretized in space and time on
the so-called Yee-grid.

For the system described in this section, we discretized comparably large super-
cells (7 µm × 7 µm), each containing 196 meta-atoms, with a spatial resolution of
5 nm. These supercells were truncated by periodic boundaries in the lateral dimen-
sions whereas perfectly matched layers were used along the light propagation di-
rection. A Drude model with adjusted plasma frequency and damping constant was
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Fig. 6.9 Optical near-fields of amorphous cut-wire pair metamaterials obtained by supercell
FDTD simulations. The figures show the modulus of the electric field 10 nm above the meta-atoms
for a y-polarized plane wave illumination at normal incidence. (a) Amorphous structure with dis-
order parameter D = 3.0 at the symmetric resonance (λ= 0.8 µm). (b) Amorphous structure with
disorder parameter D = 3.0 at the anti-symmetric resonance (λ = 1.1 µm). Note that the color
scale is differently chosen in the two subfigures. Dark and bright colors mark spots of low and high
electric fields, respectively. Reprinted with permission from [63], Copyright 2011, Springer

implemented to simulate induced currents. Then, this adapted FDTD method solves
the wave equations in the time domain, meaning that each wavelength has to be
treated separately. The temporal evolution of a system must be computed sufficiently
long to obtain the steady-state field. After imposing a spatial Fourier-transform on
this field and extracting the transmitted zeroth order diffraction efficiency from the
scattering background, the complex transmission coefficient of the system under
consideration is obtained for one single wavelength. An equivalent treatment is ap-
plied to the reflected field, where in addition the incident field must be subtracted. In
order to obtain a spectrally resolved response, this procedure is repeated for a finite
number of discrete wavelengths. Besides the transmission and reflection spectra,
this treatment provides also the spatially resolved optical near-fields of the system
under consideration, as exemplarily shown in Fig. 6.9. A detailed discussion of this
numerical technique is beyond the scope of this section, but can be found in [61, 62].

The two plasmonic resonances of interest are confirmed to appear at the wave-
lengths 0.8 µm and 1.1 µm for D = 0.0. Their identification as the symmetric and
antisymmetric eigenmodes of the cut-wire pair structure is supported by a close in-
vestigation of the near-field at the resonant wavelengths (Fig. 6.9). The full spectral
evolution is summarized for no (D = 0.0), moderate (D = 0.3), and high disorder
(D = 3.0) in Fig. 6.10. First we note that the antisymmetric resonance appears at
slightly longer wavelengths in comparison to the experiment, which is most likely
due to small deviations from the topography of the meta-atoms. Owing to the huge
computational effort required by the FDTD method it is usually possible to perform
geometry parameter scans on such large spatial domains. Nevertheless, all experi-
mental observations in transmission and reflection that occur for an increasing de-
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Fig. 6.10 Simulated (a) transmittance, (b) reflectance, (c) transmission phase delay and (d) reflec-
tion phase delay of the cut-wire pair metamaterial as functions of the wavelength andD. Reprinted
with permission from [57], Copyright 2009, American Physical Society

gree of disorder are fully reproduced. With D increasing, the symmetric resonance
at 0.8 µm broadens, blue shifts, decays, and nearly vanishes already for D = 3.0.
This evolution does not apply for the antisymmetric eigenmode at 1.1 µm. While
D increases, the dip in the transmitted amplitude and its corresponding phase evo-
lution retain their strength and width almost unaffected. Thus it is confirmed that
the antisymmetric eigenmode is nearly invulnerable to deterministic amorphization
for this particular implementation [57] and supports all findings of the analytical
model [95]. Similar conclusions were drawn by Guida et al. for magnetic eigen-
modes in disordered metamaterials composed of silver square nanospirals, however
the authors did not monitor the whole transition into an amorphous arrangement
of meta-atoms but restricted their study to comparably small degrees of positional
disorder [60].

6.3.5 Effective Optical Properties of Amorphous Metamaterials

Thanks to the fact that the FDTD delivers not only amplitude (Figs. 6.10a and b)
but also phase information of the optical far-field (Figs. 6.10c and d) and based on
the good agreement between measurements (Fig. 6.8) and simulations (Fig. 6.10),
the computed complex spectra allowed us to determine effective material proper-
ties for the periodic, the weakly disordered, and the amorphous metamaterial. This
complete set of data allows for calculating effective optical far-field properties of an
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amorphous metamaterial by using the standard retrieval algorithm [99, 100]. Con-
cerning this technique, a grain of salt is due. Effective optical properties such as
εeff(ω) and μeff(ω) have been extensively applied to quantify the performance of
numerous metamaterials. As a first order approximation, they serve as a convenient
means to describe the light-matter interaction in a simplified way in order to gain
preliminary insight into the underlying physics in such complex and heterogeneous
nanostructures. However, it is now well established that the concept of effective op-
tical properties may not accurately reflect the complicated constitutive relations of
mesoscopic and complexly shaped nanostructures [101, 102]. Particularly, the im-
plications of strong spatial dispersion [103] in optical metamaterials have been con-
firmed by numerous experimental observations [104–109]. Nowadays the assign-
ment of effective optical properties is applied with increasing reluctance [110–113]
while alternative optical target functions will be essential for a physically meaning-
ful description [114, 115]. Within a historical context we will show and discuss in
the following the effective optical properties of the amorphous cut-wire pair meta-
material, implying that the limits of their validity must always be carefully borne in
mind.

In Fig. 6.11 we attribute effective properties to the metamaterial along its tran-
sition from a periodic to an amorphous state. From those properties similar conclu-
sions can be drawn as for the transmission and reflection spectra. Firstly, the high
frequency resonance at λ= 0.8 µm that induces a Lorentzian dispersion in the effec-
tive permittivity εeff(λ) strongly decreases with increasing disorder D (Figs. 6.11a
and b). Since the electric dipoles excited in the meta-atoms cease to oscillate in
phase, the resonance is homogeneously broadened, causing a degradation of the
induced dispersion. Our second important finding concerns the persistence of the
antisymmetric resonance of μeff(λ) at λ= 1.1 µm, whose strength, line shape, and
width are preserved practically independently of D. Since this resonance is usu-
ally employed as a “magnetic resonance” in metamaterial designs [91–93], one may
conclude that the effective magneto-optical properties of many current left-handed
metamaterials are only marginally affected by the very arrangement of the meta-
atoms, provided that condition (6.3) is fulfilled.

6.3.6 Top-Down and Bottom-Up Amorphous Metamaterials

A “top-down” fabrication scheme accounts for a method in which the entire struc-
ture is created starting from a predefined arrangement, e.g. a stack of layers, that is
sequentially processed, typically by electron, photon or ion beam lithography. On
the other hand, “bottom-up” approaches refer to schemes which start with entities
at a smaller scale than the final structure, where regularly ordered lattices cannot be
simply realized without additional efforts [20, 36, 44–46]. Hence, the meta-atoms
in bottom-up fabricated metamaterials are almost inevitably put in an amorphous
arrangement, as exemplarily illustrated in Fig. 6.1.
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Fig. 6.11 Wavelength-dependent effective optical properties of the periodic (D = 0.0), the weakly
disordered (D = 0.3), and the amorphous cut-wire pair metamaterial (D = 3.0). (a) Real and
(b) imaginary parts of the effective electric permittivity εeff(λ). (c) Real and (d) imaginary parts of
the effective magnetic permeability μeff(λ). Reprinted with permission from [57], Copyright 2009,
American Physical Society

In the preceding sections it was numerically, analytically and experimentally
shown that the optical resonances of some specific types of meta-atoms may be-
come invulnerable to positional disorder and deterministic amorphization [57–60].
Among these resonances is the so-called magnetic resonance in planar metamateri-
als, which has been frequently implemented in the design for left-handedness [91–
93]. This finding, though experimentally realized by deterministic top-down fabri-
cation schemes, establishes a previously missing link to metamaterials fabricated by
bottom-up approaches, like chemical syntheses or self-assembling nanofabrication
methods. Nowadays the vast majority of optical metamaterials is fabricated using
top-down approaches, which often inhibit costly and time consuming serial writing
processes such as electron-beam lithography. Moreover, it seems elusive to fabricate
true bulk metamaterials by a sequential stacking of single functional layers [116–
119]. This situation hinders the transfer of fundamental concepts from an academic
into an industrial environment where true applications shall be implemented.

Accordingly, quick and reliable fabrication schemes based on self-assembling
or chemically randomized processes will ease the applicability of large-scale meta-
materials. From our findings we can conclude that a magnetic resonance will most
likely be retained if the top-down fabrication of metamaterials was substituted by
bottom-up approaches. Moreover, in order to incorporate a potentially left-handed
metamaterial into an imaging application, it ought to show a weak spatial disper-
sion [120]. However, the mesoscopic arrangement of meta-atoms in most of the
present metamaterials causes inevitably a high degree of anisotropy and strong spa-
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tial dispersion [101, 121–123]. These constraints can be possibly lifted by employ-
ing amorphous metamaterials, provided that the meta-atoms obey to the quasi-static
limit [124]. Accordingly, true optical isotropy is anticipated for sufficiently small
meta-atoms that are randomly arranged in space [125, 126]. Thus the results pre-
sented here are especially valuable for the so far elusive prediction of optical prop-
erties of bottom-up fabricated metamaterials.

6.4 Conclusions

One of the multiple fascinating branches of the rapidly evolving field of optical
metamaterial fabrication has spread into the field of chemically synthesized mix-
tures and amorphous conglomerates of artificial nanocomposites. Along with this
evolution, a number of deterministic experiments relying on far-field spectroscopy
in various wavelength regimes have consistently confirmed astoundingly different
sensitivities of the characteristic resonances of optical metamaterials against posi-
tional disorder. We have reviewed how deterministic amorphous metamaterials can
offer information on the transition from a periodic or crystalline optical medium
to its amorphous counterpart. In particular, the key to understand the coupling of a
resonantly excited meta-atom with its nearest neighbors is an analytical model of
the optical scattering response and the level of dissipation loss at the particular elec-
tromagnetic eigenmode. With this conceptual approach it can be clearly predicted
whether a particular metamaterial is affected by a disordered or amorphous arrange-
ment of its building-blocks or not. These exciting findings establish a long-term
aspired link between bottom-up and top-down fabricated metamaterials and offer
a new platform to investigate a large variety of amorphous composites in terms of
their electromagnetic properties.
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Chapter 7
Recent Advances in Nearfield Optical Analysis
and Description of Amorphous Metamaterials

Worawut Khunsin and Ralf Vogelgesang

Amorphous metamaterials, a system of conglomerated plasmonic atoms arranged in
a nondeterministic way, is an emerging class of nanostructured plasmonic material
that is easily fabricated in large quantities and over macroscopic areas. It consists of
individual, nominally identical, plasmonic resonators, whose spatial arrangement is
random. These elements have been studied intensely over the last decade on a sin-
gle particle level. Investigations of dimers and more complex plasmonic molecules
created from such elements have lead to a thorough understanding of their nearfield-
mediated interactions. Adding more plasmonic particles augments the degree of
control over the ensemble response. When plasmonic particles are arranged in an
array, 1D, 2D or 3D, additional optical features arising from periodic arrangement
of the particles appear, adding further complexity to the system. The behavior of
these periodically arranged particles is relatively easily captured in exact theoret-
ical calculations using periodic boundary condition. On the contrary, the study of
amorphous plasmonics has received much less attention, at least partially due to
high computational costs that severely limit an exact treatment. At the same time,
successful approximate descriptions of the ensemble behavior are largely missing.
In this chapter, we review studies on plasmonic near-field interaction, starting from
basic system of dimers, to periodic, and to completely disordered arrangement. We
briefly review various fabrication techniques, and discuss in depth the use of Aper-
tureless Scanning Nearfield Microscopy in amorphous plasmonics. Finally, we pro-
pose a metaglass theory that provides an explicit analytical model description of a
homogenized effective medium response of amorphous plasmonic systems.
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7.1 Introduction

Plasmonics deals with the interaction of light and free electrons in metals. At the
interface between a dielectric and a metal this results in wave-like phenomena along
the interface, called Surface Plasmon Polaritons (SPP). At extended interfaces SPPs
are traveling waves, whereas in confined structures like metallic colloids they ap-
pear as standing waves. The resulting plasmonic particle resonances are referred to
as Localized Surface Plasmon Resonances (LSPR). At extended planar interfaces
the parallel wavevector of traveling SPPs is usually different from that of photonic
modes in the dielectric medium, which prevents their direct coupling [1]. Corre-
spondingly, their fields are bound to the interface, decaying evanescently in the nor-
mal direction.

In order to excite SPPs with photons the momentum mismatch has to be com-
pensated. Many schemes have been proposed for this purpose; most notable are
the Kretschmann [2] or Otto [3] configurations and the grating approach. The for-
mer employ back-side illumination through a material of higher index of refrac-
tion (n), or coupling of evanescent fields available in total internal reflection. The
latter method relies on augmentation of the wavevector of the exciting radiation
with a grating or nanoscale discontinuity fabricated on top of the metal film to be
excited. The excitation of LSPRs, on the other hand, is not as strictly governed by
wavevector matching conditions as SPPs, because the finite particle size ensures the
presence of a broad range of field components in reciprocal space. Coupling of pho-
tonic modes—i.e. excitation by and emission into photons—generally is possible.
However, the coupling strength depends on various factors, such as material, size,
shape, environment, frequency, and angle of incidence. Each of these gives rise to a
continuously tunable response with characteristic resonant behavior.

One of the first to study plasmonic excitations of metallic structures was
R.W. Wood. Already in 1902 he uncovered not only the celebrated Wood anomaly
in metal gratings [4], but also the much less known is his attribution of the brilliant
colors of metallic particles observed in transmission to LSPRs [5, 6]. The theoreti-
cal description was put on firm ground in 1908 by G. Mie’s seminal explanation of
light scattering by spherical particles [7].

Before the 1980ies, controlled fabrication of metallic nanostructures had long
been a difficult issue. Important discoveries have been made with colloidal parti-
cles, whose optical properties Kreibig and Zacharia explicitly attributed to surface
plasmons in 1970 [8]. Another important route to subwavelength scale structured
surfaces was statistical roughening by non-uniform etching processes. The phe-
nomenon of surface-enhanced Raman scattering (SERS), discovered by Fleischman
et al. in 1974 [9], continues to drive research to this day. Attempts to reproduce the
scattering efficiency found in large, statistically patterned metallic surface areas with
man-made structures still fall short by orders of magnitude. Evidently, this random
nature of such metal surfaces holds a large potential for scientific discoveries.

The advances in nanofabrication techniques in recent decades have resulted in
single nanoparticles now being available in tremendously diverse sizes and shapes.
The possibility of deliberately placing them on different substrates offers unprece-
dented degrees of freedom to engineer plasmonic responses of individual as well as
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extended arrays of nanostructures. From a close analogy to chemical materials and
made possible by advanced nanofabrication technology, the science of metamateri-
als emerged in the last decade. In such materials the role of an atom is played by
individual metallic particles, whose particle plasmons may hybridize with that of
other meta-atoms, if in close proximity. The aggregation to larger meta-molecules
follows much the same rules as the construction of chemical molecules [10]. Simi-
larly, extended periodic arrangements of such individual units form what might be
called metacrystals, which exhibit Bloch-type modes and band structures, just like
crystalline solids [11].

A class of metamaterials that has not received much attention so far is the equiv-
alent of glassy, amorphous solids. As we have alluded to above, large areas (or
volumes) of randomly varied plasmonic structures are at the heart of fascinating
effects like SERS. One may expect to find qualitatively different behavior in such
metaglass on the macro- and microscopic level. In this chapter we report on recent
progress in the study of nearfield optical properties of plasmonic nanostructured
ensembles consisting of deterministic (regular) and nondeterministic (amorphous)
arrangements of meta-atoms. In the last part we will also outline a possible theoret-
ical description of the global or average behavior of a random metamaterial based
on an analogy to the treatment of x-ray diffraction in amorphous solids.

7.2 Deterministic vs. Amorphous/Glassy Plasmonic Systems

At the single particle level, LSPRs have been engineered through variation in size,
shape and composition of the nanoparticles [12–15]. For aggregate ensembles, ad-
ditional degrees of control are afforded by the deliberate placement of particles rel-
ative to each other. By varying coupling distance [16–25] and spatial arrangement
[26, 27] rich optical feature variations are obtained, which are not possible with
single particles [28]. In particular, clusters of plasmonic nanoparticles have been
exploited as a platform to demonstrate plasmonic Fano resonance [29, 30], elec-
tromagnetically induced transparency [31] and metamolecular structures like plas-
monic oligomers [32–35].

A natural extension of meta-molecules is their repeated arrangement in one, two,
and three dimensions. As in solid state theory, the placement can be in the form of
a deterministic arrangement—periodic like crystals or aperiodic like quasi-crystals.
Or it may be fully non-deterministically disordered. We refer to the latter class as
amorphous metamaterials or metaglass, again in close analogy to solid state theory.

One immediate distinction from atomic crystals emerges, when we consider the
dominant interaction mechanisms: in the solid state we are dealing with short-
ranged overlaps between orbitals of neighboring atoms or molecules. Typically,
a short ranged, hopping-type interaction is sufficient and long-range interactions are
efficiently screened. In contrast, optical fields are usually not efficiently screened
in metamaterials, and we should expect having to consider both near- and farfield
interactions.



172 W. Khunsin and R. Vogelgesang

Plasmonic clusters consisting of a small number of nanoparticles are success-
fully described in terms of plasmon mode hybridization [10, 30, 36, 37], which
are strongly mediated by nearfield interactions, very similar to the aforementioned
bonding of chemical molecular orbitals. However, in metamaterials the optical
farfields give rise to non-negligible long-range interactions. Thus, we can expect
the properties of extended plasmonic [38] arrays to be greatly enriched by scatter-
ing contributions from distant particles [38–41].

7.2.1 Plasmonic Arrays

Plasmonic arrays studied so far include linear [42–49] and two dimensional
[47, 50–54] arrays of metal nanoparticles. The third dimension is considerably
harder to investigate with current manufacturing technology [55–58]. Using an array
of silver nanoparticles, Zhao et al., showed that for polarization parallel to the plane
of the array the plasmon resonance first blue and then red shifts for decreasing lattice
spacing, in contrast to the monotonous red shifts observed in isolated dimers [52].
The authors assigned the blue shift to long-range radiative dipolar coupling ∝ 1/r ,
whereas the red shift is due to short-range dipolar coupling which varies as ∝ 1/r3.
The authors further showed that the coherent interaction between the LSPR of the
nanoparticles and the photonic mode of the array lead to extremely narrow line
shapes in extinction spectra of the system. Based on a similar system, Zou and
Schatz demonstrated theoretically that electromagnetic field enhancement of about
seven orders of magnitude is possible [59]. In 2008, Kravets and co-workers [53]
demonstrated experimentally using an array of gold dots that these sharp resonances
are observed at Rayleigh’s cutoff wavelengths for Wood anomalies and are due to
diffraction coupling of LSPRs. Almost simultaneously, similar experimental work
was reported for the case of nanorod arrays made of gold by Auguie and Barnes [60].

Exploiting the coupling between LSPRs via diffraction resonances of the array,
Giannini et al. demonstrated the existence of hybrid lattice surface mode (LSM)
and showed that the radiative LSM can enhance spontaneous emission of a fluores-
cence dye embedded in the PVB (Polyvinyl butyral) layer that covers the nanoan-
tennas [54]. Recently, Zhou and Odom reported a new mechanism to localized light
using subradient out-of-plane LSM sustained by a two-dimensional array of large
nanoparticles [61].

7.2.2 Metaglass

In contrast to regular plasmonic arrays, metaglass is still largely unexplored. One
of the first studies on amorphous plasmonic structures was the work reported by
Rindzevicius and co-workers [62], in which the authors studied long-range refrac-
tive index sensing using plasmonic nanostructures consisting of gold nanodisks ar-
ranged in an amorphous manner. The authors observed an oscillatory shift of the
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plasmon resonance as a function of dielectric layer coating thickness, the magni-
tude of which is larger than shifts calculated using simple image-dipole coupling
models. Although the authors did not consider coherent interactions of neighbor-
ing particles, the finding represents an important step in understanding the optical
behavior of metaglass.

Among the first contributions that touched upon the coherent interaction of
scattered fields from surrounding metal nanoparticles were those by Helgert et
al. [63], and Papasimakis et al. from 2009 [64]. The former concentrated on the
influence of structural disorder on electric and magnetic resonances of a system
consisting of meta-atoms made of circular cut-wire pairs [65]. Interestingly, they
found that the electric resonance degrades strongly as disorder increases, whereas
the magnetic resonance is robust even in the case of high disorder approaching
a glassy arrangement of the meta-atoms. This observation is explained based on
the coherent superposition of direct excitation with scattered fields from all meta-
atoms. As disorder increases, scattered fields from individual meta-atoms loose their
fixed relative phase relationship, which results in homogeneous line broadening
and resonance damping. Papasimakis’s work on the influence of structural disor-
der on optical properties of coherent and incoherent metamaterials confirms the
finding. In brief, these two seminal contributions strongly suggest the importance
of coherent and collective interaction between meta-atoms spatially distributed in
space [66].

In addition to coherent interaction of neighboring particles, the importance of
the phase retardation associated with excitation at oblique incidence [38, 67] and
of interference effects between direct excitation and coherently scattered fields [68]
offer additional degrees of freedom to the control of ensemble properties. The tun-
ing in the former is achieved by varying the angle of incidence, while the latter
can be achieved, for instance, by changing the path length of the direct excitation
beam [69].

In Sect. 7.4 of this chapter we discuss recent experimental results in amor-
phous nanoplasmonic system [38], where it is demonstrated how collective long-
rage coherent interactions in metaglass extend their influence far beyond the average
nearest-neighbor distance. This suggests a route to controlling the electromagnetic
nearfield structure by using an excitation beam of specific field distribution profiles.
Such ability to engineer nearfield structure through farfield means could be advanta-
geous in the deterministic localization of plasmonic fields for application in SERS,
for example.

In terms of theoretical investigations, metaglass still presents considerable chal-
lenges. Due to the nondeterministic arrangement of its constituent particles, numer-
ical simulations often require extensive computational resources beyond currently
available capacities. This greatly limits the development in the field and calls for an-
alytical approaches to the problem. In Sect. 7.5, we propose an averaging procedure
that may be useful to describe the ensemble behavior of metaglass. We note that the
term “metaglass” underlines this effective medium approach, which largely follows
that of the theory of x-ray diffraction in amorphous media.
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7.3 Experimental Approach

7.3.1 Fabrication of Nanostructures

We briefly outline the variety of synthesis methods available for fabricating metal
nanostructures on supporting substrates; comprehensive reviews are available else-
where [12, 70]. The advance in nanofabrication techniques greatly facilitates craft-
ing plasmonic nanostructures to study the effects of size, shape, material, and en-
vironment on their plasmonic response. For the study of coupling and plasmonic
mode hybridization, particularly in more complex plasmonic structures, the most
commonly employed methods are electron beam lithography (EBL) and focus ion
beam (FIB) milling. In recent years two other techniques have received increasing
attention: soft lithography (SL) [71] and nanosphere lithography (NSL) [72–76].

In soft lithography, plasmonic structures are generated through the use of an
elastomeric stamp as the pattern transfer element. Nanosphere lithography, on the
other hand, utilizes self-assembled nanospheres as a mask for metal deposition. The
nanosphere mask can easily be removed, for example, by sonicating the sample in
an appropriate solvent. The advantage of this technique over SL is that no master
stamp is required, which is usually made by a lithography process followed by etch-
ing. A variation of nanosphere lithography that is able to fabricate various plasmonic
nanostructures not directly possible by NSL is the so-called Hole-Mask Colloidal
Lithography (HCL). In HCL, nanospheres or colloidal nanoparticles are used as the
primary mask for the creation of a second, holey mask. The technique has recently
been used to produce metaglass and metamaterial structures consisting of gold dipo-
lar disks [74] and split ring resonators [76]. The major advantages of SL and NSL
techniques lie in their ability to fabricate large area metaglass at low cost, as they
use only simple and fast steps. Indeed, amorphous plasmonics nanostructures can
be produced easily over areas as large as cm2 or more, in contrast to the serial fab-
rication of positionally controlled regular arrays over sub-mm2 area.

As such, metaglass is also very attractive for economically viable applications
that can even be made on a flexible substrate using the SL and NSL techniques
mentioned above. Potential uses of metaglass have been demonstrated in long-range
refractive index sensing [62, 77], in broadband and omni-directional antireflection
coating with prospective use in solar cell [78, 79]. Recently, its potential in ultrahigh
nanorods biosensing has been demonstrated by Kabashin and co-workers [80].

7.3.2 Experimental Investigation Techniques

The easiest and straight forward technique to characterize optical property of plas-
monic structures is farfield spectroscopy, such as extinction or reflection spec-
troscopy. However, much of what takes place in the nearfield zone does not have a
signature in farfield spectra. Hence, there has been increasing interest in the nearfield
interactions of amorphous materials [81]. This applies particularly to the study of
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Fig. 7.1 Schematic of the
aSNOM setup. Reprinted
with permission from [86].
Copyright (2012), American
Institute of Physics

mode hybridization, where charge distribution in coupled plasmonic nanostructures
is of primary interest [82].

Scanning Nearfield Optical Microscopy (SNOM) [83] comes in handy for prob-
ing the localized fields around the particles. The two main variations are aperture-
based SNOM and apertureless or scattering SNOM. In the former, metal coated
tapered optical fibers are typically used to collect the nearfield signal, whereas in
the latter case an AFM tip acts as a local scatterer, which converts bound nearfield
into the propagating farfield that can be detected by usual farfield means. The pri-
mary drawback of the fiber SNOM is a necessary trade-off between the amount of
light collected through the aperture and the optical resolution obtainable. Usually,
the resolution obtained in fiber SNOM is between 50 nm and 100 nm. In contrast,
in apertureless SNOM or aSNOM the resolution is only limited by the size of the
local scatterer, which is easily sharper than 10 nm in commercially available AFM
tips [84].

Over the last years many important advances have been made in the understand-
ing and implementation of aSNOM [84–86], including the important considera-
tions of geometry of the tip scatterer [87], anharmonicity of tip oscillation [85],
tip-substrate interaction [88], interferometric amplification [89], data analysis of de-
tected signal [90], and the parasitic background suppression [86]. Here, we give a
brief review of the crossed-polarization aSNOM setup. We note here that although
the description given below pertains to a specific type of experimental setup, the
basic principles and techniques are quite general and are applicable to other setups,
as well, particularly those that require high signal-to-noise fidelity.

The cross-polarization aSNOM setup is based on a commercial atomic force mi-
croscope fitted with a dielectric silicon tip of nominal apex diameter of less than
10 nm. The polarization of the excitation source is set by the polarizer to excite the
sample with s-polarized light. The signal scattered back by the tip is mixed with
a reference beam to achieve interferometric amplification. A Mach-Zehnder inter-
ferometry configuration provides independent control of the two optical paths, the
signal and the reference arm, respectively (see Fig. 7.1). A homodyne scheme is
used in our setup to allow measurement of both the amplitude and the phase differ-
ence between the signal (S0) and reference (S90) beam via two measurements with
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Fig. 7.2 Typical polarization scan (x-axis: polarizer, y-axis: analyzer): (a) optical amplitude and
(b) optical phase according to (7.1) obtained with the sample retracted from the tip. Reprinted with
permission from [86]. Copyright (2012), American Institute of Physics

90 degrees out-of-phase of the reference beam. The total optical amplitude (S) and
phases (φ) can be obtained from the complex measured signal S0 and S90 as follows:

S =
√
S2

0 + S2
90,

tanφ = S0

S90
.

(7.1)

Two important aspects for obtaining background-free imaging of plasmonic
nearfield signals are (1) confocal arrangement for the detection path and (2) the
cross polarization scheme. The confocal setup is achieved with single mode optical
fibers that conveniently serve also as spatial filters leading to much reduced para-
sitic background radiation and improved interferometric visibility. Unfortunately,
the parasitic background cannot be eliminated entirely through the confocal setup.
On the one hand, it is known that a modulation-demodulation scheme is used to
filter the nearfield signal from parasitic background signals, e.g., by filtering the
optical signal at a suitable harmonic of the AFM vibration resonance frequency. On
the other hand, we put forward the use of a cross polarization scheme in which the
excitation and the detected signal are cross polarized. Such a configuration has been
demonstrated to routinely yield near-perfect background suppression [38, 91–94].
The theoretical ground for the background suppression is explained below in terms
of a phase singularity in the polarizer scan [86].

Figure 7.2 shows a typical experimental cross polarization scan. It is recorded on
the bare probe tip, with the sample being absent. The zero background condition is
obtained slightly off the ideal polarizer/analyzer angles of 0◦/90◦ because of imper-
fect shape of the AFM tip, the imperfect Gaussian profile of the illumination beam,
and/or other experimental imperfections.

The emergence of a phase singularity in such a cross-polarization scan can be
understood with the Jones formalism. The scattered signal from the tip is modeled
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Fig. 7.3 Simulation of cross-polarization scan using (7.4). Reprinted with permission from [86].
Copyright (2012), American Institute of Physics

using a polarization ellipsoid with two orthogonal tip modes in response to the exci-
tation beam. For simplicity, the off-diagonal elements of the Jones matrix describing
the tip backscattering are zero in a symmetric idealized system:

T =
(
αs 0
0 αp

)
, (7.2)

where the complex-valued coefficients αα describe the strength of the tip scattering
of the two modes. The instrumental function of the linear polarizer and analyzer are
described by

P(θ)=
(

cos(θ) cos(θ) cos(θ) sin(θ)
sin(θ) cos(θ) sin(θ) sin(θ)

)
. (7.3)

The detected signal at the detector is then dependent on polarizer/analyzer angles
and the characteristic of light scattered by the tip:

Eout = P(θout) · T · P(θin) ·Ein. (7.4)

Sample images of signal strengths simulated with (7.4) are shown in Fig. 7.3, which
demonstrate how the phase singularity comes about and how an imperfect tip shape
may alter its appearance both in amplitude and phase.

When the polarizer and analyzer are set at the phase singularity position, faith-
ful nearfield information free from parasitic background even from complex plas-
monic structures can be obtained. The beauty of this technique is that commercial
AFM tips are normally manufactured and optimized for their mechanical response.
As such, they contain unavoidable shape deformation, which significantly and ad-
versely affect the optically scattered signal. With the ability to adjust the excitation
and detection beam properties to obtain the perfect cross-polarization configuration,
the fidelity and reproducibility of aSNOM experiments are greatly improved.
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Finally, we point out two additional advantages of the cross-polarization scheme.
First, such a scheme can be envisioned to be used in conjunction with specially fab-
ricated tips that are tilted with respect to the surface normal. Such a configuration
should allow similar background-free measurements of field components in other
directions, by using a tilted tip. Through a combination of successive measurements
at different tip angles a systematic reconstruction thus becomes possible for the en-
tire electric field vectors. Second, the scheme can also be used to characterize the
polarizability tensor of an unknown AFM tip. A promising application of this might
be in the implementation of a fast screening procedure to characterize the optical
property of commercial AFM tips with potential use in aSNOM, Tip-enhanced Ra-
man Scattering, and etc.

7.4 Evidence for Long-Range Interactions in Nearfield Optical
Maps of Metaglass

Broadly speaking, the options for exciting nanoplasmonic resonances are firstly di-
rect excitation by some farfield source, and secondly indirect nearfield excitation
by neighboring plasmonic structures. In the case of large arrangements of many in-
dividual plasmonic nanostructures the interaction between neighboring plasmonic
structures become quite complex. In such a disordered system, nearfield interaction
varies locally and light localization as well as its propagation will exhibit strong sta-
tistical dependency on the arrangement of each individual plasmonic structure. Such
a system provides a new possibility to ‘engineer’ interaction of light at nanoscale
through, for example, spatially modulated beam profile as we discuss below. In par-
ticular, we describe below how an amorphous arrangement of plasmonic structures
can support another non-negligible means for excitation, namely an indirect long-
range excitation. Evidence is found for a long-range collective and coherent in-
fluence on each particle of a metaglass from its entire active neighborhood. This
influence extends far beyond distances that have been reported for the interaction in
isolated dimer systems [18–24, 27].

The structures under study are metaglass made of gold nanodisks with varying
density or inter-particle distances. The nanodisks are fabricated using HCL [74] with
a nominal diameterD = 190 nm and height h= 25 nm. These particular dimensions
support a broad dipolar resonances centered at λ = 780 nm, which appears as a
pronounced dip in the farfield transmission spectra (Fig. 7.4).

Additional spectral features are observed at 1570 nm and 2230 nm. They are
due to dipole excitations of conglomerated dimers and larger clusters, respectively.
For the low coverage the nanodisks in the array are essentially non-interacting [94].
Decreasing the inter-particle spacing, thus increasing neighbor interaction, does not
show the typical red shift of the dipole resonance normally observed in dimer sys-
tems. A slight distribution in sizes among the ensemble of disks and increased
nearfield interaction manifest themselves as inhomogeneous broadening of the
transmission suppression at the dipole excitation.
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Fig. 7.4 Experimental
farfield transmission spectra.
The average center-to-center
distance between nearest
neighbor gold disks is about
388 nm, 315 nm, and 228 nm
for low, medium and
high-density samples,
respectively. These numbers
correspond to a factor of 2.05,
1.65, and 1.2 times the
corresponding disk
diameter D. Adapted with
permission from [38].
Copyright (2011) American
Chemical Society

The comparatively mundane farfield behavior is in stark contrast to what is ob-
served in nearfield microscopic scans, such as those shown in Fig. 7.5. The local
properties of this metaglass are analyzed by our cross-polarization aSNOM intro-
duced in the previous section [86]. The results are compared with a large-scale
finite-difference time-domain (FDTD) simulation [95] that takes fully into account
the exact details of the samples. In order to obtain reliable statistics, aSNOM char-
acterizations are performed on extended areas of 10 µm by 10 µm (containing about
3000 disks in total). The spatial resolution is set to 20 nm.

For ease of viewing, cut-outs of 3 µm by 3 µm in size are shown in Fig. 7.5. Three
samples having different particle density were characterized as denoted on the top
as low, medium and high-density arrays, respectively. The top row shows AFM to-
pographs, whereas the second and third rows show the corresponding measured and
simulated amplitudes of the E-field component of the nearfields normal to the sur-
face. A glance at the nearfield images reveals that the in-plane dipole orientations
are predominantly dictated by the polarization of the exciting radiation, but a varia-
tion in the dipole orientations exists and is higher for denser samples. The full-area
FDTD simulations show a similar trend, and in both experiment and simulation a
variation in dipole excitation strength is observed with features akin to plasmonic
hot spots [96].

A closer look at the dipole orientation reveals a significant statistical differ-
ence between the experimental and simulated results. Noticeably, the simulated
dipole orientations show a much stronger fluctuation, which is already discernible
for the low density array. Here, the average nearest-neighbor distance is the range
where nearfield coupling becomes less important than far-field dipole-dipole inter-
action [97]. The variation in local dipole orientation must therefore be attributed to
a different factor, namely the total coherent contribution of fields scattered by all
surrounding disks.
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Fig. 7.5 (a–c) AFM topography of the three metaglasses under investigation, labeled according
to nanodisk area density; (d–f) experimentally measured nearfield amplitudes; (g–i) simulated
nearfield amplitude taken at 20 nm above the sample surface consisting of the exact same disk
arrangement as those in panels (a–c). The excitation wavelength is 897.8 nm. The polarization and
the in-plane wavevector of the exciting radiation are indicated on the top-right corner of the fig-
ure. The scale bar applies to all subfigures. Adapted with permission from [38]. Copyright (2011)
American Chemical Society

To approach the properties of a metaglass system at a quantitative level, we con-
sider in-plane dipole moments P = (px,py) for each nanodisk, which can be conve-
niently defined as a function over all pixels of a micrograph that belong to the disk
area:

P = 1

N

N∑
i=1

(
Ei − 〈E〉) · (Xi − 〈X〉). (7.5)

Here, Xi is the location of the i-th pixel and 〈 〉 denotes an average over all N
pixels. Ei is the z-component of the electric field. As the metaglass exhibits short-
range order, a natural choice for a statistically meaningful variable is the nearest
neighbor inter-particle distance. In the following, it is correlated with the in-plane
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Fig. 7.6 Dipole orientation as a function of nearest-neighbor separation (multiple of diameters)
for (a) experiment and (b) simulation. Red, green, and blue colors represent data points obtained
from low, medium, and high density samples, respectively. (c) Standard deviation of dipole orienta-
tions as a function of nearest-neighbor separation. The simulation is undertaken with a plane wave
illumination of the whole sample (solid circles). In the experiment the sample is excited by focused
radiation (spot size of 1.7 µm, open circles). Adapted with permission from [38]. Copyright (2011)
American Chemical Society

dipole orientation, which can be extracted from P with a variant of the Stokes for-
malism,

I = |px |2 + |py |2,
Q= |px |2 − |py |2,
U = 2�(pxp̄y),
V = 2�(pxp̄y).

(7.6)

It allows to write the in-plane angle of the dipole as

θ = 1

2
arctan

(
U

Q

)
. (7.7)

The results extracted from the measured and corresponding simulated data are
shown in Figs. 7.6a and 7.6b, respectively. A general trend emerges: the distri-
bution of dipole orientations is wider for the simulated data than for the measured
data.

To further condense the information, Fig. 7.6c plots the standard deviation of
dipole orientations against nearest-neighbor distance. For a center-to-center nearest-
neighbor distance of more than about 2.5 to 3 times the nanodisk diameter the dipole
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Fig. 7.7 Schematics showing illumination configuration used in the (a) experiment and (b) sim-
ulation. Polarization and wave vector of the exciting radiation are as indicated. Orange shaded
region represents the illuminated area, dark red—total measured area (in the experiment), and
grey—unprobed region. Adapted with permission from [38]. Copyright (2011) American Chemi-
cal Society

orientation is close to that of an isolated nanodisk, i.e., with θ = 0◦. For smaller
inter-particle distances, however, the spread in dipole orientations increases until it
encompasses the possible range, −90◦ ≤ θ ≤ +90◦, for nearly-touching and con-
nected dimers (data points left of the red dotted line in Fig. 7.6a and b). Evidently,
the disagreement between experiment and simulation becomes even more apparent
when the gap between nearest-neighbors becomes nearly zero. The amorphous ar-
rangement of the nanodisks implies a largely varied coupling of the surface charges
between particle pairs. It may exhibit attractive as well as repulsive components that
reduce or enhance the dipole moment of individual particles [18]. The observed
behavior exhibits a trend similar to that reported in Ref. [19], and is supported
by a smaller effect of repulsive interactions compared to that of attractive inter-
actions [18], which is primarily due to a larger separation between charges forming
the repulsive forces.

What is the reason for the observed discrepancy between experiment and simu-
lation? Excitation wavelength, angle of incidence, and sample topography are the
same and thus are not responsible for the observation. However, a crucial difference
emerges when consider the exact geometry of excitation between experiment—
which uses focused beams—and the simulation, where a plane wave excitation is
used. Thus the active, directly illuminated area is much larger in the simulation.
Figure 7.7 illustrates the conditions in (a) experiment and (b) simulation. An im-
mediate consequence of this difference is the vastly different numbers of disks in
experiment and simulation that contribute with (first-order) scattered fields to the
indirect excitation of the central disk. A simple geometrical argument now suggests
as a general rule for randomly arranged scatterers that larger illumination area im-
plies increased variability in the local response.

As mentioned above, the behavior of any chosen particle is a result of the collec-
tive influence of scattered fields from all the neighboring active particles. To under-
stand the magnitude of this effect, one may consider a first-order Born approxima-
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tion of the total scattered field Esca. It is the convolution of the Green function G
with the direct excitation Eexc:

Esca(r)=
∫
V

G
(
r, r′)ω2μ0δε

(
r′)Einc

(
r′)d2r ′, (7.8)

where, δε(r′) are the scattering particles distributed in space. In terms of scattering
geometry it is crucial that the free space propagator is proportional to the inverse
distance R = |r − r′|. (The appropriate Green function for a substrate-air interface
behaves similarly.) Therefore, G(r, r′) ∝ exp(ιkR)/4πR sums up to a term on the
order of unity, when integrated over any ring area A = 2πR�r of uniformly dis-
tributed particles: |G|A ∝�r . However, the ring’s radius R cancels out. Thus, the
sum over any ring of randomly arranged scatterers generally is significant (being
somewhat diminished by coherence) regardless of the size of this ring. An extended
description of the theory can be found in Sect. 7.5 of this chapter.

To appreciate how this argument can explain the observed differences between
experiment and simulation, the area of direct excitation may be thought as split into
a sequence of concentric rings, each of the same width. Hence, each contributes to
(7.8) with a similar magnitude and the total field at the center becomes less and less
predictable, the larger the total area of all excited rings. To verify how the over-
all statistical behavior depends on the illumination size, we performed a series of
experiments with different focus spot size.

Straightforwardly, different focus spot sizes can be obtained through the use of
an iris aperture that controls the illumination beam width. The cross-sectional area
of a well focused Gaussian beam is

4M2λf

πD
, (7.9)

whereM2 ≈ 1 is the beam mode parameter, f—the focal length of the aspheric lens
(10 mm), λ—the wavelength (here 898 nm) and D—the diameter of the excitation
beam. The excitation intensity was kept constant while varying the beam diameter.

Figure 7.8a shows the results obtained from the experiment with varying exci-
tation spot size: clearly, larger spot sizes result in wider spreads of in-plane dipole
orientations. In the present case, the experimentally observed standard deviations
approach those obtained from simulation for a spot size of about 4 µm. Besides the
increased area of directly excited nanodisks that contribute the total variation of in-
plane dipole orientations, the increasingly plane-wave like character of less strongly
focused excitation radiation may also be a factor in the improving correspondence
between experimental and simulated results.

At this point, one may wonder what results a simulation with a Gaussian focus
beam as the input will give. Although this simulation will provide a direct compar-
ison with experiment; however, this is not worth the effort for a number of reasons.
Firstly, a single illumination only allows the extraction of information from a single
spatial point, i.e., at the center of the Gaussian beam that is assumed to coincide
with the AFM tip position. The extracted information represents one single pixel of
data and for our investigation a single image similar to that shown in Fig. 7.5d, e or f
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Fig. 7.8 (a) Standard deviation of dipole orientations as a function of center-to-center distance.
The full-area FDTD simulation is represented by a blue line. The experimental results (green line)
are the same as those shown in Fig. 7.6c (open circles); they were obtained with a focus spot size
of 1.7 µm. Measured data obtained from measurements with varying focus spot sizes are shown
as scattered plot with the corresponding focus sizes indicated. (b) A zoom-in of the area enclosed
by the dashed rectangle in panel (a). Blue scattered plots represent cut-out simulation domains
obtained by sub-dividing the full-area simulation into equally sized N ×N sub-domains. Adapted
with permission from [38]. Copyright (2011) American Chemical Society

would require one million full-area simulations; hence, three such images would re-
quire three times as much computational effort. This heavy computational demand
is beyond current computational feasibility. Secondly, we would like to stress that
the evolution of such systems is one of the rare examples where simulations can-
not help anymore but only devoted experiments provide an answer. We also note
that the effect of changing the simulation size to match the width of illumination
focus by subdividing the full-area simulation into equally sized cut-outs can be in-
vestigated without much additional effort. Interestingly, however, the results thus
obtained show a negligible effect (Fig. 7.8b): the statistics rarely departs from that
of the full-area simulation. Most probably this is due to the fact that in such cut-
out simulations the imposed periodic boundary conditions yield a strong interaction
regime which is similar to the case of full-area simulation.

Metaglass thus shows significantly more varied nearfield behavior than that
found in farfield spectra. It indicates strong coherent neighbor interaction well be-
yond distances of a typical dimer system. In addition to the average nearest neighbor
separation, control of the external illumination structure has a profound influence on
the optical nearfields. In particular, by increasing the focus size we demonstrate that
variability of the local nearfield response also increases.

The finding is of immediate interest to the field of hot-spot and energy concentra-
tion engineering. An ability to vary the local response of plasmonic entity through
specially configured farfield excitation has potential applications, for example, in
enhanced Raman scattering spectroscopy. The work also indicates that the very
high field enhancements achieved in SERS [98–100] might not have their origin
in the very local surrounding alone, but originate also from coherent interactions of
a larger region [68].
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Finally, we note the direct relevance in the context of earlier work on energy
localization, which have been demonstrated in the temporal domain based on po-
larization pulse shaping [101], and through the use of purposefully tailored struc-
tures [102]. Recently, localization control has also been achieved in the spatial do-
main via coherent superposition of higher-order beams [103] and spatially-tailored
phase profiles [104, 105]. Very similar spatial and/or temporal excitation beam pro-
filing should also provide good control of local responses in metaglass, which
thus could serve as an inexpensive, yet versatile platform for hot spot engineer-
ing.

7.5 Metaglass Theory

Amorphous media show no long-range, but may show short-range order. In con-
trast to periodic systems, one does not expect to be able to formulate the eigenmode
spectrum in terms of Bloch modes. Nevertheless, it is a well-known fact that sound
waves, for instance, can travel very well also through amorphous media like liq-
uids or glass. When the wavelength is significantly longer than the characteristic
scale of disorder in the medium’s substructure the medium should be describable by
effective material parameters. This is indeed the case in typical amorphous metama-
terials. Here, we sketch a procedure to derive an effective medium description for
metaglass.

Our intent is to elucidate the main features of the optical response of amorphous
media by an explicit analytic model. A number of simplifying assumptions are nec-
essary, which we expect can be lifted in a more quantitative approach. We begin
by introducing what is frequently referred to as the coupled-dipole model. Its ex-
act solution is well known, but does not yield much intuitive understanding. In a
second step, therefore we apply an averaging procedure to this model to arrive at a
homogenized description of amorphous metamaterials.

7.5.1 Exact Eigenmodes of a Random System of Dipole Scatterers

Here we briefly review the coupled-dipole model for a random arrangement of point-
like scatterers. It assumes a time-harmonic model, in which all phenomena oscillate
in time with the same factor exp(−ιωt). The interaction between individual meta-
atoms is mediated by the Green function of the background medium, GB(r, r′),
which is in general a complex function of the angular frequency ω as well as dimen-
sionality and geometry, for example of the substrate. To keep the treatment explicit
and accessible, in the following we shall assume as background medium isotropic
3-dimensional space, in which case
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gB
(
r, r′;ω)= exp(ιk|r − r′|)

4π |r − r′| ,

GB

(
r, r′;ω)

ij
= −

{
1ij + ∇i∇j

k2

}
gB
(
r, r′;ω),

k2 = ω2εBμB,

(7.10)

where εB and μB are the dielectric constant and permeability of the background
medium, respectively. As meta-atoms we assume particles that may be viewed as
point-like, anisotropic dipole scatterers. Their polarizability tensor is approximated
by that of an oblate spheroid of height h and diameter d . In the formulation of
Venermo and Sihvola [106], these determine the geometrical anisotropy factor Nz
as

Nz(d,h)= 1 + s2

s3

(
s − arctan(s)

)
,

s =
√(

d

h

)2

− 1.

(7.11)

The in-plane and normal polarizabilities are then

αxy = 3V ε0εmed
ε− εmed

εmed + 1
2 (1 −Nz)(ε− εmed)

,

αz = 3V ε0εmed
ε− εmed

εmed +Nz(ε− εmed)
.

(7.12)

An example of the spectral dependence of an individual meta-atom’s polarizability
is presented in Fig. 7.9. The geometric and material parameters are chosen such that
they correspond well to the nanodisks discussed in Sect. 7.4. The dielectric constant
is described with the values of Johnson and Christy [107], fitted by a Drude model
with two critical point functions [108].

Clearly, the doubly degenerate in-plane dipole resonance at ≈780 nm dominates
the optical response, whereas the dipole in normal direction shows only a very weak
resonance around ≈510 nm.

In the coupled-dipole model, an arbitrary system of such meta-atoms is easily cal-
culated. A large number of meta-atoms, i = 1,2, . . . ,N are located at positions ri .
Note that these locations may be periodic, but for our present purposes we con-
sider them randomly distributed over the flat surface of the substrate. At this point,
we also disregard any short-range ordering effects, as are frequently encountered in
hard-sphere or hard-disk models.

The general oscillation amplitude ui of each scattering meta-atom is the response
to the total field at its location E = Eexc + Esca, which is the sum of the excitation
and scattering response,

ui = χ i · E(ri ). (7.13)

Here χ i = ω2μ0αi is the susceptibility tensor of the i-th oscillator. For each ex-
cited oscillator a scattered wave emerges from it. Its travel through the background
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Fig. 7.9 The polarizabilities
αxx = αyy (in black) and αzz
(in red) of a gold nanodisk,
modeled as an oblate
spheroid of diameter
d = 190 nm and height
h= 18 nm in a dielectric
medium εmed = (1 + 2.25)/2

medium is described with the help of the background medium’s Green propagator
as

GB(r, ri ) · ui . (7.14)

The final step in evaluating the response of the whole system of scatterers is to
consider all the mutual couplings between all scatterers. In contrast to hopping-
type, short-range only interactions, this leads to a densely populated system matrix.
The total field at oscillator i is thus due to the direct excitation field as well as the
superposition of all other oscillators’ scattered fields:

E(ri )= Eexc(ri )+
∑
(j �=i)

GB(ri , rj ) · χ j · E(rj ). (7.15)

By adopting the abbreviation that quantities at oscillator i shall be designated by
the index, we write the self-consistent condition for the system response matrix Mij

as

Eexc,i =
∑
j

Mij · Ej , (7.16a)

Mij = (δij − 1)GB,ij · χ j + δij . (7.16b)

For a given excitation field and distribution of meta-atoms, we obtain first the
total fields Ei at each scatterer with (7.16a) and (7.16b) and then the total field
at arbitrary locations with (7.15). Without external excitations, i.e., vanishing left-
hand-side in (7.16a), we may solve for the eigenvalues and eigenvectors of the whole
scattering system. This yields the exact eigenmodes.
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The analysis of exact eigenmodes is a formidable undertaking for a random meta-
material arrangement. Generally it does not yield the equivalent of a generic disper-
sion relation as for continuous or periodic media. Instead, the exact description is
always connected to the specific system at hand and it is difficult to generalize the
random medium’s properties in a statistical sense.

In light of these considerations, we should tackle the problem in a different fash-
ion, i.e., to devise an “average medium” description. Similar to the statistical ap-
proach in many-particle physics, which in the end yields a statistical, average, or
effective description in terms of extensive and intensive variables, i.e., properties of
the individual constituent particle and their statistical distribution parameters, like
density.

As we will outline in the following, such a description may indeed be success-
ful. The central elements of this model are a representative central scatterer and
a surrounding sea of scatterers, which may be regarded as a continuous averaged
medium in the long-wavelength limit. That is, on a scale much larger than the aver-
age nearest-neighbor distance, we expect this medium to support plane (as well as
circular or spherical) waves just like any continuous medium.

7.5.2 Recovering a Dispersion Relation for Metaglass

In anticipation, we consider eigenmodes of the averaged random medium of the
plane-wave type,

Ei = E0 · exp(ιKri ), (7.17)

where E0 is the field amplitude and K—the wavevector. Note that in the following
we will concentrate on a two-dimensional scenario. The three-dimensional variant
follows an analogous treatment. Also, we cannot, at this point, make any further
statements regarding the relation of E0 and K. In particular, one cannot fix a priori
the relative orientation, whether they are orthogonal or parallel to each other, corre-
sponding to transverse and longitudinal waves, or if they may be skewed. To obtain
a self-consistent description of such waves, we calculate the average or represen-
tative behavior of a particle in the random system, i.e., the average of (7.16a) and
(7.16b) over all sites. In the absence of any excitation field this yields the average
eigenmodes of the system and thus the dispersion relation of the average random
medium. However, we may expect that an exact solution is not feasible.

In the spirit of an approximate plane wave being a near-resonant response to an
external excitation, we consider therefore how the response according to (7.16a) and
(7.16b) is to a plane wave excitation, Eexc(r) = Eexc,0 · exp(ιKr). After averaging
over all meta-atoms, we obtain

Eexc,0 =
[

1

N

∑
i

∑
j

Mij · exp
(
ιK(rj − ri )

)] · E0. (7.18)
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If relation (7.18) holds exactly, this establishes a direct relation for the response
amplitude E0 to a given excitation Eexc. However, a priori, there is no evidence that
justifies (7.17). We may, therefore, regard (7.18) as a test for its validity. Also note
that it would eliminate the need to study many specific individual scatterers and their
respective individual neighborhoods by passing from Eexc to E0 directly.

Unfortunately, though, the exact discrete distribution of the scatterers still enters
through the summations over locations. Therefore, we ought to strive to replace
these summations by integrating over an appropriate average distribution. Such
discrete-to-continuous substitutions have been used extensively in the past, notably
in the theory of x-ray diffraction from amorphous media. They provide guidance for
our current development. Specifically, we now outline how the discrete distribution
of point scatterers is transformed into an average radial density description.

7.5.3 Radial Density Function (RDF)

The main distinction of glassy system is the complete absence of long-range order
usually accompanied by perfect isotropy. A meaningful statistical description there-
fore depends only on distances, and not on orientation. In order to make the discrete
summation equation (7.18) treatable, we convert it to an integral expression with
the help of a distance correlation function. In effect, we construct a homogenized
medium.

The concept of radial density is mainly used in the analysis of three-dimensional
amorphous crystals. We therefore consider the familiar three-dimensional RDF first
and translate the formulation to the two-dimensional case. The average radial num-
ber density function for a volume distribution of random scatterers is given by

ρV (R)= lim
dr→0+ lim

N→∞
1

N

∑
i

[
1

4πR2 · dr

[∑
j

(∣∣|ri − rj | −R
∣∣< dr

2

)]]
,

(7.19)

where the term (||ri − rj | − R|< dr
2 ) is a Boolean counter. It contributes 1, if the

(center-to-center) distance between oscillators i and j is in the range R − dr
2 · · ·

R + dr
2 and 0 otherwise. ρV (R) is a continuous function. For large arguments,

ρV (R) will approach the large scale volume number density, limR→∞ ρV (R)= ρN .
For short distances, a short-range order might be present in the sample, giving rise to
systematic deviations from the constant value. It should be normalized to integrate
out over the long range according to∫ π

0

∫ 2π

0

∫ R

0
ρV (r) sin(θ)r2 dr dφ dθ =N, (7.20)

where N is the number of scatterers contained in a large sphere of radius R.
In the following, we will be dealing with a random distribution of scatterers

on a substrate, which are confined to a single plane, say z = 0. For this case,
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Fig. 7.10 Sample
distribution of 1600 disks
with an average density of
ρN = 4 µm−2 in a square of
length L= 20 µm

we introduce the areal number density according to ρA(r) dAdz = ρV (r) dV or
ρA(r)δz= ρV (r) · 2r . Alternatively, we may think of

ρA(R)= lim
dr→0+ lim

N→∞
1

N

∑
i

[
1

2πR · dr

[∑
j

(∣∣|ri − rj | −R
∣∣< dr

2

)]]
. (7.21)

One can also deal with a random distribution of scatterers on a line in an analogous
fashion.

7.5.4 Example for a Simulated and Analytical RDF

In applications of RDF’s it is crucial that an analytical form is available. Before we
discuss the dispersion relation of amorphous media, we illustrate here the case of
the two-dimensional hard-sphere model—appropriate for disk-like scatterers. That
is, their center location is random, but never closer than one diameter to the nearest
neighbor disk. A reasonable simulation is straightforward to implement with Monte
Carlo methods, as illustrated in Fig. 7.10.

From this discrete distribution, we obtain an approximate radial distribution func-
tion as the probability histogram Hi of all the distances between pairs of scatterers.
The N(N − 1)/2 distinct pairs are binned into intervals of width dR (Ri = i · dR).
The radial density function extracted from this histogram essentially counts the
number of pairs in the interval Ri . . .Ri+1, as shown in Fig. 7.11,

ρi = HiN

2πRi dR
. (7.22)
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Fig. 7.11 Histogram of the
simulated radial distribution
function. For distances
significantly larger than one
disk diameter, the distribution
approaches the global average
number density. The dropping
tail at the largest distances
(here beyond ∼28 diameters)
stems from the finite size of
the simulation area

Analytical expressions for the radial distribution function have been developed
already in the early days of x-ray scattering analysis of disordered solids. Following
Nijboer and van Hove [109], we assume a two dimensional hard sphere gas and set

g0(r)=
{

0 if r < d
1 otherwise.

(7.23)

The general RDF is then expanded in powers of the global density as

g(r)= g0(r)
(
1 + ρNg1(r)+ ρ2

Ng2(r)+ · · ·). (7.24)

In the hard sphere model the first correction term represents simply the overlap
area of two circles, whose centers are spaced apart by r . This can be evaluated by
elementary trigonometry [110]:

g1(r)= 2d2 Re

(
arccos

(
r

2d

)
−
√

1 − r2

4d2
· r

2d

)
. (7.25)

The higher order terms are rather more complicated to evaluate.
Figure 7.12 illustrates the adequacy of this approximation for the kinds of num-

ber densities typically encountered in realistic metaglass. Due to the hard spheres
assumption, the density must be zero for center-to-center distances smaller than
the disk diameter. Some of that eliminated density is re-distributed to the interval
r = 1d . . .2d—the phenomenon known as short-range order. For larger distances
the statistical distribution simply fluctuates—due to the finite total number of simu-
lated disks—around the global average value. For our present purposes, the follow-
ing approximation to the radial number density function is sufficient:

RDF(r)= g(r) · ρN. (7.26)
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Fig. 7.12 Left: the three lowest order terms in the radial density function for the hard disk model
(black, red, blue) as well as their sum (green). Right: comparison of the analytical description
(black line) with the simulated histogram (orange area) for the radial density function of Fig. 7.10

7.5.5 Homogenization of the Discrete Medium

With an analytical radial density function at hand, we are now ready to replace the
discrete version of (7.18):

Eexc,0 =
[

1 + 1

N

∑
i

∑
j

(δij − 1)GB,ij · χ j · exp
(
ιK(rj − ri )

)] · E0, (7.27)

with a smoothed or averaged version:

Eexc,0 =
[

1 −
∫ 2π

0

∫ ∞

0
GB(r,φ)χ exp

(
ιKr cos(φ)

)
ρA(r)r dr dφ

]
· E0. (7.28)

Here, the representative scatterer is thought to reside at the center, φ is the angle
between the wavevector K and the scattering element at r = (x, y,0).

The expression in square brackets in (7.28) represents a key result: the closer to
zero, the stronger the response E0. This situation may be regarded as approaching
a resonant response. In fact, vanishing of this term is the condition for an eigen-
mode of the system. That is, in order to extract the dispersion relation for such a
homogenized random medium, we need to find the wavenumber K that fulfills

0 = 1 −
∫ 2π

0

∫ ∞

0
GB(r,φ)χ exp

(
ιKr cos(φ)

)
ρA(r)r dr dφ. (7.29)

Note the tensorial character of this equation. As there are three vector components
available to E0, we can expect there will be three independent branches to the dis-
persion relation.
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7.5.6 Analytic Dispersion Relations of Plane Waves
in Two-Dimensional Metaglass

The plane wave dispersion of a metaglass is the relation of average eigenmode
wavevectors K to the frequency ω = c0k. To find the (average) eigenmodes of a
random system, we need to solve (7.29) in a self-consistent fashion:

0 = 1 −
∫ 2π

0

∫ ∞

0
GB(r,φ)

k2

ε0

⎛
⎝αxx 0 0

0 αyy 0
0 0 αz

⎞
⎠ exp

(
ιKr cos(φ)

)
RDF(r)r dr dφ,

(7.30)

where both the particle polarizabilities αxx,αyy,αz and the Green dyadic GB are
functions of frequency. In the z= 0 plane, with r = r(cos(φ), sin(φ),0), the Green
dyadic equation (7.10) assumes simpler form

GB(r) =
⎡
⎣G0 −G1

⎛
⎝ cos(φ)2 cos(φ) sin(φ) 0

cos(φ) sin(φ) sin(φ)2 0
0 0 0

⎞
⎠
⎤
⎦gB(r),

G0 = k2r2 + ιkr − 1

k2r2
,

G1 = k2r2 + 3ιkr − 3

k2r2
.

(7.31)

This can be further simplified, if we express the φ-integrations with the help of
an integral representation of Bessel functions,

∫ 2π
0 exp(ιKr cos(φ)) cos(nφ)dφ =

2πιnJn(Kr). Equation (7.30) then reads

0 = ε0

2πk2

⎛
⎝αxx 0 0

0 αyy 0
0 0 αz

⎞
⎠

−1

−
∫ ∞

0

⎡
⎣G0J0 − G1

2

⎛
⎝J0 − J2 0 0

0 J0 + J2 0
0 0 0

⎞
⎠
⎤
⎦gB · RDF · r dr. (7.32)

We realize that the three polarizations are decoupled for this planar amorphous sys-
tem. For a given excitation frequency ω = c0k three different wavenumbers K of
the correspondingly polarized in-plane modes may be found with the help of (7.32),
as illustrated in Fig. 7.13.

One way to represent the resulting dispersion at least approximately is to con-
sider the inverse absolute value of the right-hand-side of (7.32). The in-plane trans-
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Fig. 7.13 The three linear polarization states available for plane-wave-like modes in a 2-dimen-
sional metaglass: transverse-parallel (TP), transverse-perpendicular (TS), and longitudinal (L)

verse, out-of-plane transverse, and longitudinal branches of the dispersion are thus
described, respectively, by

DTP (ω,K) =
(

ε0

2πk2αxx

−
∫ ∞

0

[
G0J0 − G1

2
(J0 + J2)

]
gB · RDF · r dr

)−1

,

DT S(ω,K) =
(

ε0

2πk2αyy

−
∫ ∞

0

[
G0J0 − G1

2
(J0 − J2)

]
gB · RDF · r dr

)−1

,

DL(ω,K) =
(

ε0

2πk2αzz
−
∫ ∞

0
G0J0gB · RDF · r dr

)−1

.

(7.33)

The emergence of longitudinal modes might appear surprising at first, since in a
homogeneous, isotropic bulk medium they are allowed only in the case of vanishing
dielectric constant. Here, however, we are dealing with a flat two-dimensional sheet-
like medium, embedded in a three dimensional background medium. Only inside the
sheet is the field longitudinal, in the surrounding host medium, the field lines also
carry transverse components.

7.5.7 Discussion of a Typical Two-Dimensional Metaglass

According to (7.28), the terms in (7.33) represent the response amplitudes to a unit
excitation of the respective polarization. That is, they are closely related to the ab-
sorption spectra of the two-dimensional metaglass. In case of a resonant divergence,
they describe the excitation of an eigenmode in the dispersion.

Figure 7.14 shows a typical dispersion map obtained with (7.33) for a density
of 5 meta-atoms per square micrometer. The brighter shaded areas of near-resonant
solutions to (7.33) display a behavior for the whole system that resembles that of
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Fig. 7.14 Typical dispersion
map calculated with (7.33).
Here, the TP case is shown
for a particle density of
5/µm2. The grayscale is
proportional to the negative
logarithm of DTP . Black
indicates far off-resonant
excitations, whereas white
zones are close to resonant
modes. The slanted and
horizontal dotted lines
represent the light line in
vacuum and the resonant
energy level of an individual
meta-atom, respectively. The
vertical dashed line is located
at K = 2π/d , where d is the
diameter of the meta-atoms

an anti-crossing between two independent systems: the free space photonic modes
with the light line as their dispersion and the system of localized particle resonance,
whose dispersion is flat in k-space.

In conventional transmission or reflection spectroscopy, the parallel wavenum-
bers are limited to the triangle left of the light line. The dispersion right of the
light line resembles the case of surface plasmons bound to an interface between a
metal and a dielectric. To excite modes in this part of the dispersion map, the same
techniques can be employed as for surface plasmons, viz., Kretschmann and Otto
configuration, and thin film metaglasses should be similarly beneficial for sensing
applications. With the help of maps such as calculated from (7.33) the optimal op-
eration wavenumber and energy can be found.

In Fig. 7.15 we illustrate the rich phenomena that can be encountered upon vari-
ation of the polarization state and number density.

First we notice the relatively flat dispersions for TS modes, whose polarization
is perpendicular out-of-plane. This is a direct consequence of the constituent meta-
atoms’ weak and broad polarizability in the z-direction (see Fig. 7.9). For low num-
ber densities—at 1/µm2 or less—we find for the TP and L polarizations a prominent
band of near-resonant modes around the individual particles’ in-plane resonance
energy. Except for wavenumbers very close to the light line, however, not much
variation is observed. Evidently, the radiative long-range interactions are not strong
enough to evoke a pronounced average coherent effect in the metaglass.

As we progress to number densities of 5/µm2 or higher, we notice more dramatic
changes to the dispersion maps. At this density the average area occupied by one
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Fig. 7.15 Several dispersion maps evaluated with (7.33). The same dimensions are applied as with
Fig. 7.14. Horizontally, the wavenumbers range from 0 to 45.6 inverse micrometer; vertically, the
energies range from 0 to 3 eV. The grey scales for each map is individually normalized

meta-atom is a square with a side length of 2.4 times its diameter. This correlates
well with the inter-particle distances that have been found to induce significant hy-
bridization and resonance energy shifting in isolated dimers. Apparently, similar
effects begin to play a role when the average nearest neighbor distance becomes
significantly less than two or three particle diameters. Notably, the TP polarization
becomes progressively forbidden on the light line and develops a continuous band
of nearly resonant modes, whose spatial wavenumbers are exclusively on the right
side of the light line. That is, these modes will not radiate strongly into photonic
modes but progress in the plane of the metaglass. It must be underlined, though,
that for wavenumbers beyond the value corresponding to an inverse particle di-
ameter (k > 2π/d) the associated wavevectors correspond to features smaller than
the particle size. This is analogous to reaching the edge of a Brillouin zone in pe-
riodic systems, where wavevectors of magnitudes outside the first Brillouin zone
are shifted back by the diameter of the Brillouin zone. In the case of metaglass—
without explicit periodicity—it is an interesting question how far the analogy be-
tween periodic dispersion curves and the dispersion maps introduced here can be
taken.
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7.6 Conclusion and Perspective

Metaglasses are a rising class of functional nanostructured materials that offer ad-
ditional advantages over deterministic arrays of similar constituents. One promising
application of amorphous plasmonic is in sensors and SERS. Another prospective
use is in the area of dynamically engineered light localization through structured
profile of farfield excitation. Furthermore, metaglass offers practical advantages
over deterministic counterparts through its simple, fast, low-cost and large-scale
fabrication techniques such as SL and NSL, as opposed to expensive and time-
consuming EBL and FIB, and even photolithography method.

We showed in Sect. 7.4 how the sole study of farfield properties does not yield a
complete picture. For the additional study of the highly variable nearfields, SNOM is
perfectly suitable. In our own nearfield investigations, we uncovered direct evidence
for long-range indirect interactions in metaglass. This further stresses the important
role of collective phenomena in photonic nanostructures [28].

Due to the non-deterministic arrangement of individual particles, random or
amorphous systems do not lend themselves to periodic boundary condition usually
applied in simulation of deterministic ordered array to cut down on simulation cost
by simulating only the irreducible symmetry volume. The lack of a unit cell in amor-
phous systems implies an enormous increase in computational resources needed for
their direct simulation. Currently even a square millimeter sized area is not feasible.
Hence, we put forward an analytical theory that aims to predict the average behav-
ior of metaglass. In this theory, individual plasmonic particles are assumed to be
uniformly distributed over space such that there is no long-range order. When each
such meta-atom is assumed a point dipole that interacts with all others through an
appropriate Green propagator, it is straightforward to derive an effective medium
description of the system. From this the overall response of the metaglass including
its dispersion relation is calculated.

Amorphous plasmonic metamaterials with their low-cost, fast, and large-area
fabrication are excellent candidates for viable economic application, specifically
in sensing and light localization applications. Further research in this direction in-
cludes, for example, extending the study of amorphous plasmonic into 3D struc-
tures, for instance, using a low-cost self assembly of core-shell metallic-dielectric
particles. Another interesting, more fundamental direction of research may be de-
liberate, continuous transitions from deterministic periodic structures to partially
disordered and finally fully amorphous structures. The corresponding control over
the radial density function (and its reciprocal space equivalent) might be exploited
for example in the spatial management of a broad spectrum of wavelengths, such as
in efficiency enhanced solar cells.
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Chapter 8
Structure and Properties of Photonic
Amorphous Diamond

Keiichi Edagawa

Abstract Photonic band gap (PBG) formation and light propagation properties of
an amorphous photonic structure named “photonic amorphous diamond (PAD)” are
reviewed in this chapter. It has been demonstrated numerically and experimentally
that a full three-dimensional (3D) photonic band gap is formed in the photonic amor-
phous diamond, in spite of complete absence of lattice periodicity. This proves that
lattice periodicity is not essential to the realization of a 3D photonic band gap. The
3D photonic band gap in photonic amorphous diamond is clean with no trace of
localized photonic states within it. This clean 3D photonic band gap should enable
strong light confinement at an introduced defect, which has actually been demon-
strated numerically. The 3D photonic band gap in photonic amorphous diamond
is completely isotropic, regardless of the wavevector orientation and polarization
direction, which, in principle, cannot be realized in conventional photonic crystals.
In passbands, the photonic amorphous diamond exhibits diffusive light-propagation,
where the scattering strength increases significantly as the frequency approaches the
band edge. In frequency ranges near the band edge, the scattering strength is so high
that light localization is realized. We discuss new insights given by these findings
into the physical origin of photonic band gaps and issues such as light diffusion and
localization in photonic materials.

8.1 Introduction

In 1987, Yablonovitch [1] and John [2] proposed the idea that a three-dimensional
(3D) photonic band gap (PBG), in which electromagnetic wave propagation is for-
bidden in all directions, can be realized in artificial periodic dielectric structures,
namely, photonic crystals. The 3D PBG was predicted to enable 3D light confine-
ment within a wavelength-sized volume without accompanying substantial loss,
which is difficult to be achieved by other media. Since such strong light confine-
ment will enhance various light-matter interactions and also will realize very ef-
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ficient nanophotonic devices, the photonic crystals have gained broad interest and
have been studied extensively [3].

Because Bragg scattering of light due to lattice periodicity was considered to be
the origin of the PBG formation, it was previously believed that lattice periodicity
is indispensable for the realization of PBGs. However, in 2001, a photonic amor-
phous structure consisting of dielectric cylinders were shown to form a 2D PBG for
the TM polarization [4]. Since then, the formation of 2D TM PBGs have been re-
ported in this type of amorphous structures [5–7], and the formation mechanism of
such PBGs has been discussed in terms of evanescent coupling of Mie resonances
of individual dielectric cylinders [5–11]. This mechanism is closely related with the
tight-binding model [5, 8, 9] frequently used for the explanation of the electronic
band-gap formation in semiconductors. Recently, the formation of a sizable “com-
plete” 2D PBG (PBG both for TM and TE modes) has been shown to be realizable
in 2D photonic amorphous structures [7].

On the other hand, it is, in principle, much more difficult to form complete 3D
PBGs. With regard to photonic crystals, only a limited number of structures, includ-
ing diamond and diamond-related structures, have been shown to form sizable 3D
PBGs [12]. As for photonic amorphous structures, considerable suppression of pho-
tonic density of states have recently been shown to occur in the systems of randomly
arranged dielectric spheres [13–15], the mechanism of which has been explained
based on the Mie resonances of the spheres. However, it remains to be clarified
whether complete 3D PBGs can be realized in these systems. The calculations of
photonic density of states for random close packing of dielectric spheres with a su-
percell periodicity by Dong et al. [14], and by Liew et al. [15] have shown only a
reduction of the states, i.e., a pseudogap. In contrast, the density of states calculated
by Rockstuhl and Lederer [13] for a series of finite-size systems of randomly ar-
ranged dielectric spheres has shown an exponential decrease with the system size,
which is claimed to indicate the formation of a complete 3D PBG in the infinite
structure.

On the other hand, the formation of a complete 3D PBG has been confirmed in an
amorphous network structure of dielectrics by the density-of-states calculations us-
ing a supercell structure [16]. Subsequently, the 3D PBG formation has been demon-
strated by microwave transmission experiments [17]. This structure has a diamond-
like local tetrahedral configuration and is therefore named “photonic amorphous
diamond (PAD)”. It has been shown that the 3D PBG in PAD is clean with no trace
of localized photonic states within it [16–18]. This indicates that strong light con-
finement is realizable in the PAD as well as conventional photonic crystals, which
has actually been demonstrated numerically [18]. More recently, Liew et al. have
numerically shown the 3D PBG formation in a PAD-like structure [15].

Light propagation in random media has been a long-standing subject in op-
tics [19, 20]. In random media, light undergoes multiple scattering. Then, light
propagates diffusively as long as the scattering is not very strong. As the scattering
intensifies, i.e., the scattering mean free path l reduces, light interference intensifies,
leading to a halt of diffusive light propagation. This phenomenon is known as the
Anderson localization of light [19, 21–29].
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Fig. 8.1 The CRN structure constructed by Barkema and Mousseau [32] (a) and the crystalline
diamond structure (b)

In the passbands, the PAD exhibits diffusive light-propagation, where the scat-
tering strength increases significantly as the frequency approaches the band edge.
In frequency ranges near the band edge, the scattering strength is high enough for
light localization to be realized. Numerical studies have shown that localized states
are indeed formed near the band edges. The formation of localized photonic states
near the band edges in the PAD is analogous to the formation of localized electronic
states in amorphous semiconductors.

In this chapter, we review PBG formation and light propagation properties of
PAD. This chapter is organized as follows. In Sect. 8.2, the structure of PAD and
its characteristics are explained. In Sect. 8.3, finite-difference time-domain (FDTD)
calculations of photonic eigenstates in PAD are presented. In Sect. 8.4, light propa-
gation properties of PAD are described, mainly focusing on the results of microwave
transmission measurements. Finally, Sect. 8.5 is devoted to concluding remarks.

8.2 Structure

The PAD structure is based on the continuous random network (CRN) model [30–
32], which has been developed to represent an atomic-structure of amorphous Si or
Ge. An example of a CRN structure is shown in Fig. 8.1(a), which should be com-
pared with the atomic-structure of crystalline Si or Ge, i.e., the crystalline diamond
structure in Fig. 8.1(b). The requirement of the CRN model is simply that it should
be a random network in which all the junction points are fourfold. The quality of
the model can be evaluated by the amount of local strain, as measured by the degree
of deviations from the regular-tetrahedral configuration; the “ideal” CRN structure
should be characterized by the lowest spread in the bond-length and bond-angle
distributions around those values in the crystalline diamond structure.
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Fig. 8.2 Shematics of the elemental process to generate CRN structures in the WWW-algo-
rithm [31]

In 1985, Wooten, Winer and Weaire [31] proposed an efficient algorithm to gen-
erate CRN structures of high-quality, which has been widely used since then. This
WWW-algorithm starts from the crystalline diamond structure (Fig. 8.1(b)). First,
we randomly pick up a local structure shown in Fig. 8.2(a), and transpose the bonds
as in Fig. 8.2(b). This bond transposition preserves the fourfold connectivity of the
network. After the bond transposition, the structure is relaxed with an interatomic
potential such as the Keating potential [33] that favors the local regular-tetrahedral
configuration:

E = 3

16
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d2

∑
〈ij〉

(
rij · rij − d2)2 + 3

8

β

d2

∑
〈ijk〉

(
rij · rik + 1

3
d2
)2

, (8.1)

where α and β are the bond-stretching and bond-bending force constants, and d
denotes the equilibrium bond length in the crystalline diamond structure. The re-
laxed configuration is schematically shown in Fig. 8.2(c). This relaxation reduces
the distortion of the two tetrahedrons in the figure but increases the distortion of
the tetrahedrons around them. The elemental process of Figs. 8.2(a)–8.2(c) is se-
quentially repeated for randomly chosen local structures of the type of Fig. 8.2(a).
This results in a CRN structure but it is usually distorted rather severely. To obtain
a CRN structure of high-quality, Wooten et al. [31] have proposed to introduce the
Metropolis acceptance probability:

P =
{

1 (Eb > Ea),

exp[(Eb −Ea)/kBT ] (Eb < Ea),
(8.2)

where Eb and Ea are the total energies of the system before and after the elementary
process of Figs. 8.2(a)–8.2(c), and kBT has the usual meaning. First, we adopt a
high enough temperature, where almost all the trials are accepted. This leads to
a sufficiently randomized CRN structure with a considerably high energy. After
the randomization, we anneal the structure at a relatively low temperature, where
the trials to decrease the energy are mainly accepted, leading to a CRN structure
with less distortion. We may continue the annealing at an even lower temperature if
necessary. By choosing an optimal thermal history, we could obtain an ideal CRN
structure with a minimum distortion.
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Fig. 8.3 Bond-length distribution (a) and bond-angle distribution in the CRN structure (b)

In our study, we used the CRN structure constructed and provided by Barkema
and Mousseau [32], where an improved algorithm is adopted. Here, we start from
a random configuration, instead of the crystalline diamond structure. This guaran-
tees that the constructed structure is not contaminated by any memory of the initial
crystalline structure. Therefore, this CRN structure cannot be regarded as a disor-
dered diamond-crystal; the network topology is completely different from that in
the diamond-crystal, and no trace of lattice periodicity should get into it. This struc-
ture consists of a periodic arrangement of a cubic supercell with the size (11.5d)3.
The supercell contains 1000 atoms. The CRN structure shown in Fig. 8.1(a) corre-
sponds to a part of this structure. Indeed, we can see no trace of periodic order of
the diamond-lattice whereas we notice a definite local tetrahedral order.

The presence of the local tetrahedral order can be verified by calculating the
bond-length and bond-angle distributions in the CRN structure. The bond-length
distribution in Fig. 8.3(a) shows a sharp peak at d with the full-width-at-half-
maximum (FWHM) value of about 0.1d . The bond-angle distribution in Fig. 8.3(b)
also shows a considerably small spread around the ideal value of 109 deg; the
FWHM value of the peak is around 20 deg. From these two facts, we can conclude
that this CRN structure is of high-quality, i.e., it has a good local regular-tetrahedral
order.

On the other hand, the absence of long-range order is evidenced by the features
in the radial distribution function and the diffraction intensity function calculated in
Figs. 8.4(a) and 8.4(b). Here, the radial distribution function f (r) is defined as the
average point density in the spherical shell (r, r + dr) around an arbitrarily selected
point. In Fig. 8.4(a), f (r) is normalized to the average point density f0 in the whole
structure. We notice in Fig. 8.4(a) that the first peak at r = d is very sharp. This peak
represents the bond-length distribution already presented in Fig. 8.3(a). The second
peak at r ≈ 1.7d is also relatively sharp but the subsequent peaks at r ≈ 2.4d and
3d are very broad; they are marginally observed. Then, no peaks can be detected
in the range r > 3.5d . This indicates that this CRN structure has no order in the
range beyond r ≈ 3.5d . It should be noted that the range r > 3.5d corresponds to
r > 1.5a, where a = 4d/

√
3 denotes the lattice constant of the crystalline diamond.
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Fig. 8.4 Radial distribution function (a) and diffraction intensity function (b) for the CRN struc-
ture. In (b), the Bragg peak positions for the diamond crystal are also shown

This verifies the fact that this CRN structure has no trace of the diamond-lattice
periodicity.

Figure 8.4(b) presents the diffraction intensity function defined as

I (S)≡
∣∣∣∣∣ 1

N

N∑
j=1

exp(iS · rj )

∣∣∣∣∣
2

(8.3)

where S is the scattering vector, N is the number of points and rj denotes the po-
sition of the j th point. Because of the isotropy of the structure, I (S) only depends
on S = |S|. In Fig. 8.4(b), the peak positions for the crystalline diamond structure
are also shown. I (S) in Fig. 8.4(b) shows no sharp peaks, indicating the absence
of long-range order; we can only see broad peaks that reflect the short-range order.
The FWHM value of the first peak at S = 4.7d−1 is �S ≈ 2.0d−1. Then, the cor-
relation length ξ (the range in which the structural order is kept) can be evaluated
to be ξ = 2π/�S ≈ πd , which is consistent with the result of the radial distribution
function in Fig. 8.4(a).

We modeled the PAD structure by connecting the tetrahedral bond in the CRN
structure with dielectric rods in air background (see Fig. 1(a) in Ref. [16]). For
comparison, we also constructed a structure by connecting the tetrahedral bonds
in the crystalline diamond structure with dielectric rods, which we hereafter call
photonic crystalline diamond (PCD) structure (see Fig. 1(b) in Ref. [16]). The PCD
structure is known to be the best 3D PBG structure [12, 34]; it exhibits the largest
3D PBG among all the photonic crystals studied thus far. One might regard PAD
and PCD as the photonic versions of amorphous and crystalline Si, respectively, in
electronic systems.

8.3 Photonic Eigenstates

In this section, we present FDTD calculations of the frequency distribution and
electromagnetic field distributions of photonic eigenstates in PAD [16, 17]. In
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Sect. 8.3.1, the computational method that we adopted is explained in detail. Subse-
quently, the results and discussion on the frequency distribution and electromagnetic
field distributions of photonic eigenstates are given in Sects. 8.3.2 and 8.3.3, respec-
tively. The calculated frequency distributions of eigenstates has proved the forma-
tion of a 3D PBG in PAD. On the other hand, the calculated field distributions of
eigenstates have indicated the features of dielectric and air bands for the two bands
below and above the gap, respectively. The formations of localized photonic states
have also been indicated by these calculations.

8.3.1 Computational Method

As described in Sect. 8.2, our PAD structure consists of a periodically arranged
supercell. This is convenient for examining whether or not a PBG is formed. The
method that we adopted is an “order-N” method originally developed by Chan et
al. [35], which is suitable for the systems requiring a large supercell. Besides PAD,
we have also made calculations for PCD for comparison. The cubic supercell in the
PAD structure has the size (11.5d)3. For PCD, we used a crystalline diamond struc-
ture with a fictitious supercell of (5a)3 = (11.5d)3. Using this fictitious supercell
structure for PCD enables us to compare the results obtained under exactly the same
conditions for PAD and PCD. We assumed that the refractive index of rods was
n = 3.0, and the absorption was neglected, i.e., κ = 0 (κ : extinction coefficient).
The rod radius was assumed to be r = 0.26d . Then, the volume fraction of the rod
in the structure is 22 %. These conditions correspond to those in the experiments
described in Sect. 8.4.1.

In this method, we calculate the time evolutions of the magnetic and electric
fields, H(r, t) and E(r, t), by an FDTD method to find the steady states, i.e., eigen-
states in the system. Here, the initial fields must have nonzero projections onto all
the eigenstates in the frequency range of interest. The eigenstates in our structures
should satisfy the boundary conditions of the Bloch theorem:

H(r + ai , t)= eik·aiH(r, t) and E(r + ai , t)= eik·aiE(r, t) (8.4)

where ai (i = 1,2 and 3) represent the translational vectors of the cubic supercell,
and k is the Bloch wave vector within the first Brillouin zone. Considering these
facts and the requirement of transverse-wave for H, we selected the initial fields [9]:

Hk(r,0)=
∑

|G|<Gmax

HGe
i(k+G)·r+iφG and Ek(r,0)= 0 (8.5)

where {G} are the reciprocal-lattice vectors corresponding to the direct-lattice
spanned by ai (i = 1,2 and 3), and φG is a random phase. HG is a unit vector,
where the direction of HG is randomly chosen within the plane perpendicular to
(k+G). We adopted a sufficiently large value forGmax to cover the frequency range
of interest. The time evolutions of the fields Hk(r, t) and Ek(r, t) were calculated
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Fig. 8.5 Spectral intensities calculated for PAD (a) and PCD (b)

by an FDTD method under the boundary conditions of (8.4), where the supercell
was discretized into 1413 meshes and we typically used 214 time steps with each
step of about 0.05d/c (c: speed of light). The calculated time evolutions Hk(r, t)
and Ek(r, t) were Fourier-transformed into frequency-domain to obtain H̃k(r,ω)
and Ẽk(r,ω), where we used a Blackman function as the window function. These
functions give the field distributions of the eigenstate at k and at ω. In actual fact,
H̃k(r,ω) and Ẽk(r,ω) were calculated for a subset of 1413 points due to the mem-
ory limitation. For example, for the calculations of (8.6), (8.7) and (8.8), we selected
typically 423 evenly distributed points {ri} in the supercell.

For the frequency distributions of the eigenstates, we calculated the function:

Ik(ω)=
∫
Vtot

∣∣Ẽk(r,ω)
∣∣2 dr, (8.6)

where Vtot is the total volume of the system. This function should consist of peaks
at the eigenstate frequencies at k in the first Brillouin zone. In principle, we need to
calculate Ik(ω) for all the k-vectors in the zone to pick up all the eigenfrequencies.
However, we found that only the Ik(ω) for k = 0 (Γ -point sampling) is necessary to
identify the gap because the supercell is large enough, as shown in Sect. 8.3.2. Also
for the field distributions H̃k(r,ω) and Ẽk(r,ω) of the eigenstates, the difference
among the fields for different k-vectors was found to be negligible, and therefore
it is enough to examine the results for k = 0 only. For PCD, the photonic band
structure was calculated also by a plane-wave expansion method using a software
“BandSOLVE” (RSoft Design Group, Inc.).

8.3.2 Frequency Distribution of Photonic Eigenstates

Figures 8.5(a) and 8.5(b) show the spectral intensities (Ik=0(ω) in (8.6)) calculated
for PAD and PCD, respectively. First, the spectral intensity for PCD in Fig. 8.5(b)
should be compared with the photonic band structure calculated by a plane-wave
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Fig. 8.6 (a) Photonic band structure of PCD calculated by a plane-wave expansion method;
(b) a schematic drawing of the same band structure using the reduced zone

method in Fig. 8.6(a). As described in Sect. 8.3.1, we used a fictitious supercell of
(5a)3 in the calculation of the spectrum in Fig. 8.5(b). This is 4×53 times larger than
the volume of the primitive unit cell of the fcc diamond lattice. This fact indicates
that the volume of the first Brillouin zone is reduced by the factor (4 × 53)−1. Then,
we can redraw the band-structure in the reduced zone, as schematically shown in
Fig. 8.6(b). Here, each branch in the band-structure in the original zone is broken
up into 4 × 53 pieces, which have fallen into the reduced zone. As a matter of
course, this is merely a different drawing of physically the same band structure. The
spectrum in Fig. 8.5(b) should consist of the peaks at the eigenfrequencies at k = 0
in the reduced zone in Fig. 8.6(b). We should note here that the eigenfrequencies at
k = 0 in the reduced zone correspond to those at 4×53 k-points in the original zone;
the larger the supercell is, the more eigenfrequencies we can pick up. In Fig. 8.5(b),
we notice well-isolated peaks in the low frequency region below ωd/2πc ≈ 0.17.
In contrast, above ωd/2πc≈ 0.17, the peaks are so dense that the spectrum appears
to be a continuous curve with spikes on them. This is because in a higher frequency
region more branches fall into the reduced zone. Thanks to such a continuous feature
in the spectrum above ωd/2πc ≈ 0.17, we can identify unambiguously the gap in
the range ωd/2πc = 0.250–0.308. The gap width to the midgap frequency ratio
(�ω/ωc) is 21 %. This frequency range agrees quite well with the gap frequency
range shown in the band-structures in Figs. 8.6(a) and 8.6(b), indicating the validity
of the present calculations.

The spectrum for PAD in Fig. 8.5(a) shows similar features to that for PCD in
Fig. 8.5(b); we have isolated peaks in the frequency range below ωd/2πc ≈ 0.17
and a continuous curve in the range above ωd/2πc ≈ 0.17. A clear spectral gap is
seen in the range ωd/2πc= 0.260–0.292 (�ω/ωc = 12 %). The position of the gap
is approximately the same as that for PCD, indicating that the supercell periodicity
is not relevant to the PBG formation in PAD. The gap depth is also nearly the same
as that of PCD, which is 10−9–10−10. This fact indicates that the gap in PAD is as
clean as that in PCD, with no trace of localized-state formations in the gap. It should
be noted that the selection of the window function used for Fourier transformation is
important to attain high resolution. The gap depth calculated by use of a rectangular
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function in Ref. [16] was around 10−3. The Blackman function that we used here
has largely improved the resolution. The cleanness of the gap is critically important
in realizing strong light confinement. The possibility to realize such a strong light
confinement by PAD is discussed in more detail in Sect. 8.4.3.

8.3.3 Electromagnetic Field Distributions of Photonic Eigenstates

In this subsection, we examine the characteristic features of electromagnetic field
distributions of photonic eigenstates, focusing on the light localization and the pic-
ture of dielectric and air bands, by which the physical origin of the photonic band-
gap formation is often explained in conventional photonic crystals.

To evaluate quantitatively the degree of localization of the photonic eigenstates,
we calculated the inverse participation ratio (IPR) defined as

IPR ≡
∫
Vtot

|Ẽ(r)|4 dr

(
∫
Vtot

|Ẽ(r)|2 dr)2
· Vtot, (8.7)

where |Ẽ(r)|2 ≡ |Ẽk=0(r,ω)|2 is the intensity distribution of the electric field of
the eigenstate (see Sect. 8.3.1), and Vtot is the total volume of the system. When
|Ẽ(r)|2 is concentrated in a portion V0 of the total volume Vtot (|Ẽ(r)|2 = const. �= 0
for r ∈ V0 and |Ẽ(r)|2 = 0 for r /∈ V0), IPR = Vtot/V0. This indicates that IPR = 1
when the electric-field intensity |Ẽ(r)|2 is constant throughout the total volume Vtot
and that IPR increases when |Ẽ(r)|2 is concentrated in a small volume. Therefore,
the IPR can be employed as a measure of the localization of the eigenstates. The cal-
culated IPR values are plotted against frequency in Figs. 8.7(a) and 8.7(d) for PAD
and PCD, respectively. In Fig. 8.7(a), peaks of IPR are apparent at the band edges.
The field distributions |Ẽ(r)|2 at the frequencies ωd/2πc= 0.263 and 0.287, which
correspond to the two peaks in IPR for PAD, are shown in Figs. 8.8(a) and 8.8(b), re-
spectively. These are field distributions on a two-dimensional cross section cut from
the 3D structure. The regions surrounded by thick black lines correspond to the di-
electric components. We see that the electric-field intensity |Ẽ(r)|2 is concentrated
in a small area, thereby exhibiting the feature of localization. It is also apparent that
a peak exists at one of the band edges for PCD in Fig. 8.7(d); however, it is very
small and no feature of localization was able to be identified in the corresponding
field distributions.

In textbooks [36, 37], the physical origin of photonic band gap formation in pho-
tonic crystals is often explained in the picture of dielectric and air bands. Here, let us
consider a simple one-dimensional photonic crystal consisting of alternate stacking
of dielectric and air layers. At the edge of the Brillouin zone with k = π/a (a: pe-
riod), the eigenstates are stationary waves with a wavelength 2a. We have two ways
to position such a wave so as to conform to the symmetry: in one way the maximum
points of |Ẽ(r)|2 sit at the dielectric part and in the other they sit at the air part. The
eigenfrequency of the former should be lower than that of the latter, leading to the
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Fig. 8.7 Frequency dependences of inverse participation ratio (a), concentration factor (b) and
spectral intensity (c) for PAD, and those (d–f) for PCD

formation of a gap. To examine whether this picture can also be applied to PAD, we
have evaluated the concentration factor (CF) of the electric field in the air region,
which is defined as

CF ≡
∫
Vair

|Ẽ(r)|2 dr∫
Vtot

|Ẽ(r)|2 dr
, (8.8)

for the photonic eigenstates in PAD and PCD. Here, Vair and Vtot represent the
air volume and total volume, respectively. If the electric field is distributed evenly
for the dielectric and air regions, CF should equal the volume fraction of the air
part, that is, 78 %. The frequency dependences of CF for PAD and PCD are plot-
ted in Figs. 8.7(b) and 8.7(e), respectively. At the lower-band top, CF is approxi-
mately 65 % for both PAD and PCD. As the frequency decreases, CF increases and
approaches to the volume fraction value of 78 %. On the other hand, at the higher-
band bottom, CF is approximately 93 %, much higher than the volume fraction
value. Typical field distributions at frequencies near the lower-band top for PAD
and PCD are shown in Figs. 8.8(c) and 8.8(d), respectively. The tendency of the
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Fig. 8.8 (a) and (b): The electric field distributions at ωd/2πc = 0.263 and 0.287 for PAD, re-
spectively, which correspond to the two peaks of inverse participation ratio shown in Fig. 8.7(a);
(c) and (d): those at 0.251 for PAD, and at 0.240 for PCD, respectively, both of which are near
the lower-band top; (e) and (f): those at 0.301 for PAD and at 0.316 for PCD, respectively, near
the higher-band bottom. The regions surrounded by thick black lines correspond to the dielectric
components
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electric fields concentrating on the dielectric regions is clearly seen in these field
distributions. On the other hand, typical field distributions at frequencies near the
higher-band bottom for PAD and PCD are presented in Figs. 8.8(e) and 8.8(f), re-
spectively. Here, in contrast to the field distributions in Figs. 8.8(c) and 8.8(d), the
electric field intensity is obviously low in the dielectric regions. These results clearly
show that the picture of the dielectric and air bands can be applied also to the gap
formation in PAD, despite the complete absence of lattice periodicity.

In 3D photonic crystals, the structures in which both dielectric and air regions
form connected and percolating networks are known to favor the gap formation [12,
15, 34, 38]. Actually, our PAD, as well as PCD, has such a structure. The importance
of the connected network structure for gap formation should be related to the vector
nature of electromagnetic fields; in order for the field to be confined in dielectric or
air region to realize dielectric or air band, each region must be a connected network
to accommodate the continuous field lines [36]. Actually, we have confirmed an
extreme fragility of bandgap against the segmentation of the dielectric network for
PAD and PCD by numerical calculations. When the dielectric network has been
segmented, there is no longer continuous pathway to accommodate the whole E
field lines in the dielectric regions; they are forced to penetrate the air regions. This
should raise the eigenfrequency at the lower-band top, leading to the closing of the
gap.

On the contrary, we should note that some photonic crystals consisting of isolated
dielectric spheres also form a complete 3D PBG. Actually, photonic crystalline di-
amond structures of isolated (not touching) dielectric spheres (sphere-PCDs) form
3D PBGs [39]. However, in these sphere-PCDs, the gap between the second and
third bands (2–3 gap) seen for the network-PCD (see Fig. 8.6) is closed, as long
as the refractive index of the spheres is not extremely high. Instead, they form a
8–9 gap. The formation mechanism of the 8–9 gap should be considerably differ-
ent from that of the 2–3 gap. Recently, we have found a PBG formation in a high
frequency region for a sphere-PAD, which should correspond to the 8–9 gap in the
sphere-PCD.

8.4 Light Propagation Properties

In this section, we describe light propagation properties of PAD, mainly focusing
on the results of microwave transmission measurements [17]. We have observed
the frequency range with severely reduced transmission, which corresponds to a
PBG. The PBG has been found to be isotropic, regardless of the light polarization
direction. In passbands, the PAD has exhibited diffusive light propagation, where
the scattering strength increases significantly as the frequency approaches the band
edge. In Sect. 8.4.1, we describe the procedures and the results of microwave trans-
mission experiments. In Sect. 8.4.2, we analyze the transmission spectra to examine
a diffusive light propagation in passbands. In Sec. 8.4.3, we present FDTD calcula-
tions of light evanescence in the band gap. Here, we also demonstrate a strong light
confinement in PAD.
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Fig. 8.9 Fabricated PAD structures (a–c), and PCD structures (d and e)

8.4.1 Microwave Transmission Experiments

PAD and PCD structures were fabricated by a selective laser sintering (SLS)
method [40]. Figures 8.9(a)–8.9(c) show the PAD structures while Figs. 8.9(d)
and 8.9(e) present the PCD structures. The rod length and diameter are d ≈ 3 mm
and r ≈ 0.78 mm (0.26d), respectively. The size of the fabricated structures is ap-
proximately x × y × z = 70 × 70 × 35 mm3 (23.3 × 23.3 × 11.7d3). Microwave
signals were incident on the x–y plane, along the z-axis. The PAD structure is de-
fined as a periodic arrangement of a cubic supercell with the size (11.5d)3 (see
Sect. 8.2). The three PAD samples of Figs. 8.9(a)–8.9(c) have different orientations,
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cut out of the infinite periodic supercell structure. The two PCD structures have the
z directions along [100] (d) and [111] (e) of the diamond crystal.

Mixtures of nylon (PA12) powders (typically 50 µm in diameter) and TiO2 pow-
ders (75–100 µm in diameter) were used for fabrication. TiO2 powders were added
to increase the refractive index n of the rods. The rod had a porosity of approxi-
mately 40 %. The fabricated structures were soaked in water for 24 h, dried for 2 h,
and cooled to 268 K. This resulted in the formation of ice in the pores of the rods,
leading to a further increase in the refractive index n. Ice is suitable for increasing
n without increasing the extinction coefficient κ . The final n value of the rods was
determined experimentally to be 3.0. The volume fraction of the rod in the con-
structed structures is 22 % and the rest is air. Then, the volume-weighted average
n̄ of refractive index is approximately 1.4. The values of κ of nylon, TiO2 and ice
are 3 × 10−2,2 × 10−3 and 3 × 10−3, respectively, in the GHz range. This indicates
that the κ value of the rods is approximately 2 × 10−2. Then, the (1/e)-absorption
length La in the structure can be estimated to be 1.7 m for 30 GHz microwaves,
which is so long that the effect of absorption is negligible.

For microwave transmission measurements, we employed a free-space method
using a vector network analyzer (HP Model 8722D, Agilent Technologies) in
the frequency range 18–35 GHz in the configuration schematically shown in
Fig. 8.10(a). Conical horns with Teflon microwave lenses were positioned 163 mm
in front of and behind the sample. Linearly polarized microwave radiation was emit-
ted from one horn (transmitter), and the parallel- and cross-polarized components of
the transmitted field were detected using the other horn (receiver) by changing the
relative orientations of the mode selectors attached to the two horns, as schemat-
ically shown in Figs. 8.10(b) and 8.10(c). The transmittances Tp and Tc of the
parallel- and cross-polarized components, respectively, were obtained by normal-
izing the measured intensities to the intensity of the parallel component measured
before mounting the sample. The background level was evaluated to be 3 × 10−6.
10–20 measurements were performed by changing the x–y positions of the sample
to obtain the averaged spectra. Not only the intensity but also the phase of the trans-
mitted waves, i.e., the complete complex transmission spectra were measured. They
were used for the calculation of the response to an input pulse, the results of which
are presented in Sect. 8.4.2.

Figures 8.11(a) and 8.11(b) present the spectra of Tp and Tc for PAD, and
Figs. 8.11(c) and 8.11(d) present Tp and Tc for PCD, respectively. First, let us
examine the results for PCD. The blue and red spectra in (c) and (d) are for the
microwave incident directions along [100] and [111], respectively. These spectra
exhibit large decreases reaching 10−4–10−6 in the transmittance. The dip positions
in the spectra for the two incidences are slightly different from each other, indicating
an anisotropic gap formation. In Fig. 8.6(a) in Sect. 8.3.2, we have shown the pho-
tonic band structure calculated for the PCD by a plane-wave expansion method. The
dip positions for the [100] and [111] incidences are expected to correspond to the
bandgaps in the Γ –X and Γ –L directions, respectively. The calculated bandgap po-
sitions in Fig. 8.6(a) are indicated by blue and red bars in Figs. 8.11(c) and 8.11(d),
which indeed agree quite well with the observed dip positions.
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Fig. 8.10 Schematic
illustrations of the
experimental setting for
microwave transmission
measurements. (a) The
illustration of the sample and
apparatus configurations;
(b and c) The illustrations of
the parallel- and
cross-polarized components,
respectively, measured in the
experiments

In the spectra of Tp and Tc for PAD in Figs. 8.11(a) and 8.11(b), respectively, the
six curves are for the three samples with different orientations shown in Figs. 8.9(a)–
8.9(c), and for two mutually orthogonal directions of the incident microwave polar-
izations for each sample. The black bars indicate the frequency range of the 3D
PBG deduced by an FDTD calculation (Fig. 8.7(c)). First, in the spectra of Tc in
Fig. 8.11(b), all the six spectra exhibit clear dips and the frequency ranges of the
dips coincide well. This is in contrast to the case of PCD, in which the two spectra
for the different incident directions show the dips in different frequency ranges. In
addition, the frequency ranges of the dips in Fig. 8.11(b) agree well with that of the
calculated 3D PBG. These facts indicate that the measured dips in Tc in Fig. 8.11(b)
represent an isotropic 3D PBG in PAD. On the other hand, we notice a peculiar
feature in the spectra of Tp in Fig. 8.11(a): the decrease in Tp is not restricted to
the frequency range of the calculated 3D PBG. This feature has been successfully
explained by the existence of a 3D PBG and strong light diffusion outside it, as de-
scribed in detail in the following Sect. 8.4.2. Thus, from this fact, along with the
result of Tc , we finally conclude the experimental substantiation of the formation of
an isotropic 3D PBG in PAD.
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Fig. 8.11 Measured transmission spectra; (a) Tp for PAD, (b) Tc for PAD, (c) Tp for PCD and
(d) Tc for PCD. The six curves in (a) and (b) are for three samples with different orientations, and
for two mutually orthogonal directions of the incident microwave polarizations for each sample.
The blue and red spectra in (c) and (d) are for the microwave incident directions along [100]
and [111] of the diamond lattice, respectively. The black bars in (a) and (b) indicate the frequency
range of the 3D PBG in PAD deduced by an FDTD calculation. The blue and red bars in (c) and
(d) indicate the gap positions of PCD in the Γ –X and Γ –L directions, respectively, deduced by a
photonic band-structure calculation using a plane-wave expansion method

The isotropic nature of the 3D PBG, regardless of the wavevector orientation
and polarization direction, should originate in the structural isotropy, and this is a
unique feature of PAD. In general, anisotropy in the bandgap is inevitable for con-
ventional photonic crystals, as demonstrated for PCD in Figs. 8.11(c) and 8.11(d),
because their structures are inevitably anisotropic. Such anisotropy restricts the ori-
entations of waveguides and other optic devices in designing an optical circuit in
photonic crystals. PAD with a completely isotropic 3D PBG should be free from
such restrictions.

8.4.2 Light Diffusion

In our experimental setting in Fig. 8.10(a), the receiver has a relatively small re-
ceiving angle: approximately −10 dB attenuation at 15◦ deviation. This indicates
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Fig. 8.12 Frequency
dependence of the scattering
mean-free path deduced from
the decay of ballistic
transmission for PAD

that the parallel-polarized component Tp reaching the receiver corresponds pre-
dominantly to the microwaves traveling directly from the transmitter to the receiver
without being scattered; i.e., the ballistic component. On the other hand, the cross-
polarized waves should have experienced scatterings that change the polarization
direction; the component Tc corresponds to the waves that were multiply scattered,
ultimately returning to the direct path between the transmitter and receiver; i.e., the
diffusive component. It should be noted that this does not represent the total intensity
of the diffusively transported waves; rather it corresponds to a small fraction of them
because the diffusively transported waves diverge in various directions. In principle,
at the low frequency limits with sufficiently large wavelengths, the wave propagation
should be entirely ballistic. In the case of PAD, Tp (i.e., the ballistic component) in
Fig. 8.11(a) begins decreasing at ωd/2πc≈ 0.20, which is far from the band edge,
rapidly declining to 10−3 at the band-edge frequency of ωd/2πc≈ 0.26. Above the
gap, the transmission remains at 10−3–10−2. This is in contrast to PCD, in which the
wave propagation is dominantly ballistic within the entire passbands, as evidenced
by large Tp values close to unity in Fig. 8.11(c).

The large reduction in the ballistic component of PAD should be due to the
scattering that changes the propagation and polarization directions of the mi-
crowaves. Here, the scattering mean free path l can be estimated by the relation
Tp = exp(−L/l) (L: sample thickness) [20, 28]. The estimated l is plotted in
Fig. 8.12. At the lowest frequency of ωd/2πc ≈ 0.18, l � d holds and the mi-
crowave transport is dominantly ballistic. As the frequency increases, l decreases
to approach d and the diffusive transport with multiple scattering progressively be-
comes dominant. At the band edge of ωd/2πc≈ 0.26, l reaches 1.7d ≈ 5 mm, and
the transport is diffusive with strong scattering. Above the gap, l ≈ 5–8 mm, indi-
cating that the diffusive transport is dominant. The criterion for the emergence of
Anderson localization is given as 2πl/λ ≈ 1 (Ioffe-Regel (IR) condition), where
λ denotes the light wavelength. Here, the quantity 2πl/λ is estimated to be as
low as three, where we use λ = 10 mm at 30 GHz in air for a rough estimation.
This is only slightly larger than the threshold value of unity in the IR condition.
The quantity 2πl/λ has been evaluated previously for strongly scattering systems
close to the Anderson transition in random media comprising GaAs powders [25]
(2πl/λ= 1.5), macroporous GaP networks [2.4 (Ref. [41]) and 3.2 (Ref. [27])], Ge
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Fig. 8.13 Intensity profiles
(green and red) of transmitted
pulses responding to input
Gaussian pulses given by the
spectra α and β , respectively,
in inset. The intensity profile
(black) of the input pulse is
also shown. The intensities
are normalized to the peak
top values. The exponential
tail I ∝ exp(−t/τ0) is
indicated by a broken line

powders [3 (Ref. [28])], and TiO2 powders [2.5 (Ref. [26]) and 5.6 (Ref. [42])]. The
value 2πl/λ≈ 3 evaluated for our PAD is comparable to these values.

From the measured complex transmission spectra, we have extracted the response
to a pulse input to the PAD. Here, one of the measured spectra of the cross-polarized
component for PAD shown in inset in Fig. 8.13 was multiplied with a Gaussian
envelope of width �ω centered at ωc and then Fourier transformed to give the re-
sponse to an input Gaussian pulse in the time domain. Note that we used here the
complex transmission spectrum, although only its intensity is plotted in the inset.
The results with �ωd/2πc = 0.01 and ωcd/2πc = 0.235 (α in inset), and with
�ωd/2πc = 0.01 and ωcd/2πc = 0.315 (β) are shown in Fig. 8.13 by red and
green lines, respectively. Here, the input pulse profile is shown by a black line.
The transmitted pulses exhibit an exponential tail I ∝ exp(−t/τ0) (broken line)
with τ0 ≈ 1.5 ns in the delay side, which is typical of diffusive transport; the tail
represents the path-length distribution in the diffusive transport. Here, the diffu-
sion constant D can be estimated to be 6.5 × 104 m2/s using the relation [26]:
1/τ0 = π2D/L2 + c/(n̄La). In general, the diffusion constant can be written as
D = vt lt /3 (vt : transport velocity; lt : transport mean free path). Using the values of
the scattering mean free path l in Fig. 8.12 (l ≈ 2.7d ≈ 8 mm at ωcd/2πc = 0.235
and l ≈ 1.7d ≈ 5 mm at ωcd/2πc = 0.315) for a rough estimation, we obtain
vt = 0.08–0.13c. This is comparable to the transport velocity vt previously eval-
uated for strongly-scattering random media [28, 42].

8.4.3 Light Evanescence and Light Confinement

In this subsection, we first present the results of FDTD calculations for the attenua-
tion behavior of the light within the gap for PAD and PCD. Here, the PAD and PCD
structures used for the calculations are the same as those described in Sect. 8.3.1,
except for the refractive index of n= 3.6 (Si) used in the present calculations. Fig-
ure 8.14(a) shows a schematic illustration of the configuration used for the calcu-
lations. Here, the (11.5d)3 cell was placed in a rectangular parallelepiped box with
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Fig. 8.14 Attenuation
behavior of the evanescent
wave with the midgap
frequency for PAD and PCD.
(a) A schematic illustration of
the configuration used for the
calculations; (b) The
dependences of the incident
electromagnetic wave
intensity on the distance from
the surface

absorbing boundaries of perfectly matched layers (PMLs). A plane wave of a Gaus-
sian pulse was generated from the “source plane” located outside of the cell and time
evolutions of the fields were monitored at various points in the cell, from which we
evaluated the spectral intensity at the gap center frequency. Here, we averaged the
intensities over several sampling points near the center of the cell for a given dis-
tance from the incident surface. Figure 8.14(b) shows the dependence of the field
intensity on the distance from the incident surface. Both data show exponential de-
cay, i.e., I = I0 exp(−r/rc) (rc: the attenuation length) with nearly the same rc
(≈0.6d). This fact suggests that strong light confinement is realizable in PAD as
well as conventional photonic crystals such as PCD. To demonstrate this, we have
calculated the mode volume (Vm) and the quality (Q) factor of cavities introduced
in PAD and have compared them with those of a cavity in PCD [18].

In general, cavities introduced in conventional photonic crystals with a 3D PBG
disrupt the lattice periodicity, and form localized cavity modes within the PBG.
Though the PAD lacks lattice periodicity, its structure has a well-defined local order
of tetrahedral configuration, as described in Sect. 8.2. Then, we would expect that
cavities disrupting such an order form localized modes as well. Here, we introduced
a cavity in PAD and PCD by removing a rod from the structures. The spherical
region with radius R containing the cavity at the center was cut out from the struc-
ture. The sphere was placed in a cubic cell with the edge length 2R. The region
outside the sphere and inside the cubic cell was filled with the dielectrics with the
volume-weighted average n̄ of refractive index in the structure, which is n̄ ≈ 1.6.
Then, FDTD calculations were performed with PML absorbing boundary condi-
tions applied to the walls of the cubic cell, where the cavity modes were exited by a
Gaussian pulse with frequency range covering the mode frequencies of interest.
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Fig. 8.15 Electric field distributions of the cavity mode formed in PAD (a) and PCD (b). The left
and right profiles show the field distributions on the two-mutually orthogonal planes, which are
illustrated above the profiles. Here, the missing rods are drawn in red. In the profiles, the position
of the removed rod is indicated by white circles or white lines. Black lines indicate the boundaries
of the dielectric parts

An example of the electric field distribution of the cavity mode formed in PAD is
shown in Fig. 8.15(a), together with that for PCD in Fig. 8.15(b). The left and right
profiles show the field distributions on the two-mutually orthogonal planes (see the
schematic illustrations above the profiles), where the position of the removed rod
is indicated by white circles or white lines. Black lines indicate the boundaries of
dielectric parts. The direction of the electric field vector was found to be approxi-
mately parallel to the rod axis of the missing rod. The cavity modes are monopole
and overall features of the field distributions of them are very similar for PAD and
PCD. We can see that the cavity modes are well confined at and around the missing



222 K. Edagawa

Fig. 8.16 Structure-size
dependences of the Q-factors
calculated for the cavities in
PAD and PCD. For PAD, the
results for three cavities
whose mode-frequencies are
close to the midgap are shown

rod position. To see this more quantitatively, we evaluated the mode volume defined
as

Vm =
∫
ε(r)|Ẽ(r)|2 dr

ε(rmax)|Ẽ(rmax)|2
, (8.9)

where ε is the dielectric constant, and rmax denotes the position at which |Ẽ| is
maximum. We obtained Vm = 0.09–0.11λ3 (λ: wavelength in air) for cavity modes
in PAD and Vm = 0.09λ3 for the cavity mode in PCD. Here, Vm varies depending
on the selection of the rod in PAD while in PCD it is independent of the selection of
the rod because all the rods in PCD are symmetrically equivalent.

The Q-factor of the mode was deduced from the time evolution of the electric
field E(t) at the center of the missing rod according to the theoretical equation:

E(t)= E0 exp
[−iω0

{
1 − (1/2Q)i

}
t
]
, (8.10)

where E0 and ω0 denote the initial field and the resonant frequency, respectively.
Figure 8.16 shows the structure size dependences of the Q-factors of the cavity
modes. For PAD, the results for three cavities whose mode-frequencies are close to
the center of the gap are shown. All the data show exponential increase of Q with
the structure size, i.e., Q=A · exp(B ·R) without any sign of saturation. Here, the
values of A and B are approximately the same for PAD and PCD, and Q ≥ 106 at
R = 4.5a. These facts lead to the conclusion that PAD can confine light as strongly
as PCD.

8.5 Concluding Remarks

We have shown that the PAD forms a complete 3D PBG with no trace of localized
states within it, and that strong light confinement is realizable in PAD as well as
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conventional photonic crystals. The 3D PBG is isotropic, regardless of the light po-
larization direction, which, in principle, cannot be realized in conventional photonic
crystals. In passbands, the PAD exhibits diffusive light propagation, where the scat-
tering strength increases significantly as the frequency approaches the band edge.
Localized photonic states are formed in the vicinity of the band edges.

There are two typical models used for explaining the origin of the electronic
band gaps in solids: “nearly-free electron model” and “tight-binding model.” In the
former, we start from the free electron states, and add a periodic potential as a per-
turbation, resulting in gap formations along the Bragg scattering planes in the k-
space. A similar mechanism can be applied to PBG formations in photonic systems.
Though this has been considered to be the main origin of PBG formations in pho-
tonic crystals, it cannot be applied to the PBG formation in the PAD because of the
absence of lattice periodicity. On the other hand, in the latter, i.e., in the tight-binding
model, we start from isolated localized electronic states. Then, we assume addition-
ally couplings between adjacent states, leading to the formation of electronic bands.
If we start from two localized states with different energies, we obtain two bands,
and under certain conditions an electronic band gap remains between the two bands.
This model requires no long-range structural order. In the photonic systems, the Mie
resonances of isolated dielectric elements may act as the localized states. Actually,
the origin of the 2D TM gaps in photonic amorphous structures consisting of dielec-
tric cylinders can be explained reasonably in terms of the tight-binding-like model
based on the Mie resonances [5–11]. In contrast, it appears to be difficult to apply
this model to the PBG formation in the PAD that consists of a continuous network
structure.

In Sect. 8.3.3, we have shown that the picture of dielectric and air bands can be
applied to the PBG formation in PAD as well. This picture originally comes from
the nearly-free-electron-type model, and therefore the lattice periodicity is assumed
here. The results in Sect. 8.3.3 indicate that in some cases this picture holds even
for amorphous systems. As discussed in Sect. 8.3.3, network structures should be
favorable in this picture because they can feasibly accommodate the continuous field
lines. With regard to the role of fourfold connections of the network, it is not well
understood. In any case, the physical origin of the PBG formation in PAD remains
to be clarified in future.

Another important subject to be tackled in future is the fabrication of PAD in
an optical-wavelength size. Recently, the microfabrication techniques have been
advancing drastically. In particular, the technique of direct laser writing has be-
come widely used for this purpose [43]. This technique allows for the fabrication
of almost arbitrary 3D structures including extremely complex structures like the
PAD. We may also be able to utilize some self-organized structures. For example,
3D random network structures are known to form by viscoelastic phase separa-
tion in soft matters such as polymer solutions, colloidal suspensions, protein solu-
tions, etc. [44] Some of those random networks have been shown to possess local
tetrahedral-bonding configurations like the PAD [45].

The nature may have already fabricated the PAD structure. Zi et al. have found
a random network structure in parrot feather barbs [46]. They have shown that the
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network structure consists mostly of fourfold connections, and therefore it should
be close to our PAD structure. The blue color of the feather has been shown to
originate in the PAD-like structure. A PAD-like network structure is also seen in
kingfisher feather barbs, giving its blue color [47]. Such colorations by disordered
structures are characterized by a noniridescent nature, and have recently attracted
much attention; they are seen in biological systems [14, 46–52] and also in artifi-
cial systems [53–55]. The studies to clarify the coloration mechanisms are now in
progress.
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Chapter 9
Lasing in Amorphous Nanophotonic Structures

Hui Cao and Heeso Noh

Abstract We review the recent experimental and numerical studies on lasing in
photonic nanostructures with short-range order in this chapter. Despite the lack of
long-range order, photonic bandgaps can be formed in such structures, and they are
isotropic. Our numerical studies show that the photonic bandgaps depends not only
on the spatial range of geometric order, but also on the structural topology. The pho-
tonic bandedge modes may be spatially localized, in contrast to those of photonic
crystals. Lasing has been realized experimentally in semiconductor nanostructures
with short-range order. The nature of lasing modes are illustrated, and the lasing
characteristic can be controlled by the short-range order.

9.1 Introduction

Over the past decade lasing has been realized in various types of nanostructures.
The most common one is the photonic crystal (PhC) with periodic modulation of
the refractive index that result in the formation of photonic bandgap (PBG) [1].
The distributed feedback PhC laser relies on the slow group velocity at a photonic
bandedge to enhance light amplification [2]. The PhC defect mode laser utilizes
light localization at a structural defect to minimize the lasing threshold [3, 4]. In
addition to PhCs, lasing action in photonic quasi-crystals with and without defects
has been reported [5–9]. Despite lack of periodicity, the quasi-crystalline photonic
structure has long-range orientational order and can possess a PBG.

The photonic amorphous structure (PAS) has neither long-range translational
order nor orientational order. However, the density of optical states (DOS) may
be depleted through coupled Mie resonances [10–15] or short-range structural or-
der [16, 17]. PBGs also exist in amorphous photonic structures that consist of
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strong Mie scatterers such as dielectric rods or spheres [10–14]. These structures
are termed photonic glasses [15], in analogy to glassy silica, which has an electronic
band gap spanning the entire visible frequency range. In the absence of Mie reso-
nance, Bragg scattering of propagating waves by local domains can produce PBGs
in structures with only short-range positional order. For example, complete PBGs
exist in photonic amorphous diamond structures—three-dimensional (3D) continu-
ous random networks with diamond-like tetrahedral-bonding between particles [16].
Recently hyper-uniform disordered materials with short-range geometric order and
uniform local topology have been shown to posses large PBGs [17]. Unique optical
features of amorphous media have also been investigated experimentally [18].

Despite these studies, little is known about the transition from PhCs to amor-
phous optical materials, e.g., how does the density of optical states (DOS) evolve
as the structural properties of the material change from ordered to amorphous? Is
there a critical size of ordered domains in polycrystalline materials below which the
system becomes optically amorphous? Our recent work aimed to answer the above
questions by mapping out the transition from photonic polycrystalline to amorphous
structures [19]. Moreover, we have performed systematic study on lasing character-
istic in polycrystalline and amorphous structures [20, 21]. It reveals what determines
the lasing frequencies as well as the nature of lasing modes. These studies provide
a physical insight to lasing mechanism in photonic structures lacking long-range
order.

In fact, nature utilizes both crystalline and amorphous photonic structures for
color generation [22–25]. Periodic structures are intrinsically anisotropic, thus the
colors they produce are iridescent (i.e., change with viewing angle). In photonic
polycrystals, the cumulative effect of a large number of randomly orientated crys-
tallites makes the color non-iridescent [26]. Photonic amorphous media can also
produce vivid non-iridescent colors via short-range structural order [27]. Although
the refractive index contrast is usually too low to form PBGs in most biological
systems, the interference of scattered light selects the color whose wavelength cor-
responds to the structural correlation length [28]. Therefore, short-range positional
order can significantly modify photonic properties [29–31], leading to unique ap-
plications [32]. Lately we have utilized the short-range order to enhance optical
confinement and improve the lasing efficiency in PAS.

9.2 Photonic Polycrystals and Amorphous Structures

9.2.1 Photonic Bandgap Effects and Enhanced Light Confinement

We start with the numerical study on PBGs and high-quality (Q) modes in two-
dimensional (2D) photonic structures with short-range positional order.

Structure Generation and Characterization

To create 2D photonic polycrystals and amorphous structures, we have developed
numerical simulation methods to generate N cylinders of circular shape in a square
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box with periodic boundaries. For the purpose of generating configurations with
varying positional order, we assume that the cylinders interact elastically via the
purely repulsive short-range linear spring potential

V (rij )= b

2

(
1 − rij

dij

)2

θ

(
1 − rij

dij

)
, (9.1)

where rij is the center-to-center distance between cylinders i and j , b is the
characteristic energy scale of the interaction, θ(x) is the Heaviside function, and
dij = (di + dj )/2 is the average diameter of cylinders i and j . To vary the degree
of positional order, the cylinders are polydisperse—with a uniform distribution of
diameters between d0 and d0(1 +p), where p is the polydispersity that ranges from
0 to 0.5. The average diameter 〈d〉 = d0(1 + p/2).

Initially d0, or the packing fraction

φ =
(

1

L

)2 N∑
i=1

π

(
di

2

)2

, (9.2)

is set to a small value φ0 = 0.2, and we place N cylinders randomly within a
square of side length L. We then gradually increase the diameters of all cylinders
while maintaining the relative size distribution to create a jammed packing of cylin-
ders [33]. Each increment in diameter is followed by minimization of the total po-
tential energy V = ∑

i>j V (rij ) of the system. The energy minimization process
is similar to moving each cylinder along the direction of the total force on it using
overdamped dynamics. When V drops below a threshold value or the difference
in energy between successive minimization steps is less than a small tolerance, the
minimization process is terminated. If V is zero and gaps exist between cylinders,
the system is unjammed, and it is compressed with a further increase of d0. If V > 0
after the energy minimization process, a large system-spanning number of cylin-
ders are overlapped. To eliminate overlap, the system is decompressed, i.e., d0 is
uniformly decreased for all cylinders. The energy minimization process is repeated
after the decompression step to find the local potential energy minimum. If V = 0,
the system is compressed; if not, the system is decompressed again. The increment
by which the packing fraction of the cylinders is changed at each compression or
decompression step is gradually reduced to zero. Eventually when all of the cylin-
ders are just touching and the net force on each cylinder is nearly zero, the system is
considered “jammed”, and the process to increase the packing fraction is stopped.

For each polydispersity p, we generated at least 100 static, jammed packings
of cylinders from random initial configurations. The values of φ are typically in
the range between 0.82 and 0.85 with varying degrees of positional order. After
generating jammed packings, we reduce the diameters of all cylinders to the same
value D (with φ = 0.5) to eliminate the size polydispersity. Thus, in the final con-
figurations, the structural disorder exists only in the positions of the cylinders with
order decreasing monotonically with increasing p. Figure 9.1 (a) shows the typical
configurations of N = 1024 cylinders generated with p = 0.1 (left), 0.3 (middle),
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Fig. 9.1 (a) Typical configurations of two-dimensional arrays of air cylinders (white) in a dielec-
tric host (black), generated using Protocol 9.1 described in Sect. 9.2.1 with polydispersity p = 0.1
(left), 0.3 (middle), and 0.5 (right). (b) Contour plot of the ensemble-averaged density spatial au-
tocorrelation function C(�r) and (c) Power spectra |f (q)|2 from Fourier transformed density for
the same polydispersities in (a). The scale bars in (b) and (c) are 5D and 1/D, where D is the
diameter of cylinders in (a). Reprinted with permission from [19], Copyright 2008, Wiley-VCH

and 0.5 (right). For p = 0.1, the system contains several domains of cylinders with
crystalline order, but each possesses a different orientation. With increasing p, the
domains have reduced positional order and decrease in size.

To quantify the structural order, we calculate the ensemble-averaged spatial cor-
relation function of the density, the Fourier transform of the density, the radial distri-
bution function g(r), and the local and global bond orientational order parameters.
The spatial autocorrelation function of density ρ(r)= L−2∑N

i=1 θ(r − ri ) is given
by

C(�r)= 〈ρ(r)ρ(r +�r)〉 − 〈ρ(r)〉2

〈ρ(r)〉2
. (9.3)
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Fig. 9.2 (a) Logarithmic plot of the peak amplitudes for the ensemble- and angle-averaged den-
sity spatial autocorrelation function C(�r) for p = 0.1, 0.2, 0.3, 0.4, and 0.5. a = L/N1/2 is
the average distance between adjacent cylinders. The exponential fits of the data (solid lines) give
the decay length ξr . (b) Inset: The first peaks of the angle- and ensemble-averaged Fourier trans-
formed density |f (qa)|2 for p = 0.1 (solid line), 0.2 (dashed line), and 0.4 (short-dashed line),
whose width gives the average domain size ξq . Main panel: ξr (circles) and ξq (squares) versus p.
Reprinted with permission from [19], Copyright 2008, Wiley-VCH

C(�r) is averaged first over the spatial coordinates of the cylinders r within one
configuration, and then over at least 100 independent configurations. A contour plot
of C(�r) is displayed in Fig. 9.1 (b) as a function of increasing p (from left to right)
used to generate the configurations. For p = 0.1, C(�r) displays a large number of
concentric rings and a modulation of the amplitude within a given ring, which indi-
cates strong positional order. As p increases the system becomes more disordered
and isotropic, since the number of visible concentric rings decreases and the ampli-
tude within a given ring becomes more uniform. After integrating C(�r) over the
polar angle, we plot in Fig. 9.2 (a) the peak amplitudes of the rings as a function of
�r/a, where a = L/N1/2 is the average center-to-center distance between neigh-
boring cylinders. The peak amplitudes decay more rapidly with �r at larger p. The
decay is approximately exponential, if we exclude the first peak near �r = a. The
faster decay from the first peak to the second arises from correlations induced by the
just-touching jammed cylinders. The decay length ξr is extracted from the exponen-
tial fit exp[−�r/ξr ] of peak amplitudes after excluding the first peak. As shown in
Fig. 9.2 (b), ξr is smaller for larger p, indicating the range of spatial order becomes
shorter.

We also calculated the spatial Fourier transform of the structures, f (q) =∫
d2r exp[−iq · r]ρ(r), where q is the wavevector. Figure 9.1 (c) displays the

ensemble-averaged power spectra |f (q)|2 for p = 0.1, 0.3 and 0.5, which consist
of concentric rings. The radial width of the rings increases with p, as can be seen
clearly for the first ring (with the smallest radius). The second and third rings are
distinct for p = 0.1, which indicates the six-fold symmetry of the cylinders within
each domain. For p = 0.3 and 0.5, these rings become wider and merge together.
We integrate |f (q)|2 over all directions of q to obtain the intensity as a function of
the amplitude q . The inset of Fig. 9.2 (b) displays the intensity of the first ring versus
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Fig. 9.3 (a) Radial distribution function g(r) for p = 0.1, 0.2, 0.3, 0.4, and 0.5. (b) Local ψl6
(downward triangles) and global ψg6 (upward triangles) bond-orientational order parameters ver-
sus polydispersity p. Reprinted with permission from [19], Copyright 2008, Wiley-VCH

q for p = 0.1, 0.3 and 0.5. The center position of the peak q0 gives the dominant
spatial correlation length s = 2π/q0. The peak becomes broader at larger p. The full
width at half maximum (FWHM) of the peak �q gives the average size of ordered
domains ξq = 2π/�q . As shown in Fig. 9.2 (b), ξq decreases with increasing p,
similar to ξr .

The radial distribution function g(r), plotted in Fig. 9.3 (a) for several values
of p, gives the probability for a cylinder to be located a distance r from another
cylinder at the origin relative to that for an ideal gas. The strong first peak, splitting
of the second peak, and existence of peaks at large r for p = 0.1 indicate that the
structure possesses crystalline order. With increasing p, the peaks are broadened,
decay faster with r , and g(r) resembles that for a dense liquid [34].

In addition to the translational order, we also characterized the orientational or-
der of the configurations. The bond-orientational order parameter ψ6 measures the
hexagonal registry of nearest neighbors [35]. ψ6 can be calculated ‘locally’, which
does not include phase information, or ‘globally’, which allows phase cancella-
tions. Equations (9.4) and (9.5) provide expressions for the global and local bond-
orientational order parameters in 2D structures.

ψ
g

6 = 1

N

∣∣∣∣∣
N∑
i=1

1

mi

mi∑
j=1

e6ıθij

∣∣∣∣∣ (9.4)

ψl6 = 1

N

N∑
i=1

1

mi

∣∣∣∣∣
mi∑
j=1

e6ıθij

∣∣∣∣∣, (9.5)

where θij is the polar angle of the bond connecting the cylinder i to its neighbor
j , and mi denotes the number of nearest neighbors of i. Two cylinders are deemed
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nearest neighbors if their center-to-center distance rij < rmin, where rmin is the lo-
cation of the minimum between the first two peaks in g(r).

As shown in Fig. 9.3 (b), both ψl6 and ψg6 decrease as p increases. ψl6 is larger
than ψg6 , because of the different orientations of the ordered domains. The error
bars represent the standard deviations from 100 configurations. For p = 0.1, there
is a significant fluctuation of ψg6 , because some configurations have only a few dis-
tinct domains while others contain many domains with different orientations. With
increasing p, the number of domains Nd increases, thus the mean and standard de-
viation of ψg6 decrease. For p = 0.5, ψg6 ≈ 0, the structures possess only local bond
orientational order with ψl6 ≈ 0.55 as found in dense liquids [35].

Density of Optical States

We calculate the DOS with transverse electric (TE) polarization using the order-N
method [36]. The magnetic field is parallel to the axis of the air cylinders, and the
electric field exists in the 2D plane. Since the cylinders are generated in a square with
periodic boundary conditions, we can use it as a supercell for the DOS calculation.
For the initial conditions, we choose a superposition of Bloch waves with random
phases for the magnetic field and set the electric field to zero [37]. The temporal
evolution of electromagnetic fields is obtained by solving the Maxwell’s equations
with the finite-difference time-domain (FDTD) method. We record the time series
of fields at 400 positions which are randomly distributed across the structure, and
Fourier transform them to the frequency domain. The sum of their Fourier intensi-
ties (i.e., spectral intensities) consists of a number of peaks that correspond to the
resonant modes. Adding the contributions of many Bloch wave vectors and aver-
aging over many configurations result in a smooth function for the DOS. We have
tested our code by reproducing the DOS for two-dimensional photonic structures in
the literature [37].

In Fig. 9.4, we plot the DOS as a function of the normalized frequency ωa/2πc=
a/λ for the structures generated by the first protocol with p = 0.1, 0.2, 0.3, 0.4, and
0.5, and a triangular lattice (p = 0) with identical density and diameter air cylinders.
The refractive index of the dielectric host in which the air cylinders are embedded
is also varied with n = 3.4, 1.8, and 1.4 from left to right in Fig. 9.4. The values
of n are taken from those of commonly used semiconductors, oxides and polymers.
For n = 3.4 and p = 0, a complete depletion of the DOS from a/λ = 0.235 to
0.365 results from the full PBG between the first and second bands of the triangular
lattice. With the introduction of positional disorder, defect modes are created inside
the gap, and the frequency region of depleted DOS becomes shallower and narrower.
The higher frequency side of the gap (air band edge) is affected more than the lower
frequency side (dielectric band edge). Because the air holes are isolated and the
dielectric host is connected, the dielectric bands below the gap are more robust to
the disorder than the air bands above the gap. For n= 1.8, the PBG of the periodic
structure becomes smaller, and thus the depleted region of the DOS is narrower. For
the perfect crystal with n= 1.4, the first photonic band at the K point (K1) has the
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Fig. 9.4 Density of optical states (DOS) as a function of the normalized frequency ωa/2πc= a/λ

for the 2D structures generated by the first protocol with p = 0.1, 0.2, 0.3, 0.4, and 0.5, and a
triangular lattice (p = 0) of identical density and diameter of air cylinders. The dielectric media,
in which the air cylinders are embedded, have refractive indexes (a) 3.4, (b) 1.8, and (c) 1.4.
Reprinted with permission from [19], Copyright 2008, Wiley-VCH

same energy as the second band at the M point (M2), thus the full PBG disappears.
As a result, the DOS displays a dip, rather than a complete depletion. As shown in
Fig. 9.4, the addition of positional disorder causes the dip in the DOS to become
shallower and eventually disappear at large disorder.

To quantify the strength of the DOS depletion, we introduce the normalized
depth S, which is defined as the ratio of the maximal depth of DOS reduction to
the DOS of a random structure at the same frequency. The density and diameter
of air cylinders as well as the refractive index of the dielectric host in the random
structure are identical to those of the structures under investigation. The DOS of the
random structure increases almost linearly with frequency, similar to that of a ho-
mogeneous 2D dielectric medium. We investigated the dependence of S on various
order parameters, e.g. the local bond orientational order ψl6. S increases gradually
with ψl6. However, the variation depends on the refractive index contrast n, and is
therefore not universal.

To obtain universal behavior for a given degree of positional order, we must ac-
count for the effect of refractive index contrast on the DOS. The refractive index
contrast determines the strength of the PBG, which is reflected in the attenuation
length of Bragg diffraction, or the Bragg length lb. Roughly speaking, the Bragg
length gives an order of magnitude estimate for the minimal size of a periodic struc-
ture that is necessary to form a PBG via Bragg scattering. Since periodic structures
are anisotropic, lb varies with direction. However, since the DOS is a sum of optical
modes in all directions, the relevant Bragg length is an average over all directions.
To obtain the value of lb in the numerical simulations, we place a continuous dipole
source of frequency ωd in the middle of a large triangular array of air cylinders. We
then calculate the electric field intensity at a distance r from the source, and inte-
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Fig. 9.5 (a) Normalized depletion depth of the DOS S for arrays of air cylinders in a dielectric
host of refractive index n versus the ratio of the average domain size ξq to the angle-averaged
Bragg length lb . A linear fit (solid gray line) of the data on the log-log plot for ξq/ lb � 5 gives a
power-law scaling exponent of 0.52. (b) Relative width w of the frequency region where there is a
reduction in the DOS as a function of ξq/ lv , where lv is the frequency- and angle-averaged Bragg
length. The error bars are obtained from the standard deviation of ξq for different configurations
and fitting errors in the FWHM of the DOS reduction zones. Reprinted with permission from [19],
Copyright 2008, Wiley-VCH

grate it over the polar angle. The Bragg length lb is extracted from the exponential
decay of the angle-integrated field intensity I with r .

In Fig. 9.5 (a), we plot the depth S versus the average size of the ordered domains
normalized by the Bragg length, ξq/ lb . All data points for different refractive index
contrasts fall on a single curve. When ξq/ lb is above a threshold value (∼5), S is
almost unity, which implies that the depletion in the DOS is nearly complete as in
a perfect crystal. When ξq/ lb � 5, S decreases rapidly. The drop can be fit by a
straight line on a log-log plot, which reveals a power-law decay with an exponent
∼0.52. This result can be understood qualitatively as follows. If the domain size is
larger than the Bragg length, Bragg scattering in a single domain is strong enough
to form a PBG. The DOS in systems with large ξq/ lb is nearly equal to the DOS of
a perfect crystal, and these structures can be regarded as photonic polycrystals. In
addition, an average over many domains of different orientations makes the direc-
tional DOS isotropic. If the domain size is smaller than the Bragg length, individual
domains are too small to form PBGs. In this case, the effect of Bragg scattering is
reduced due to a limited number of periodic units, and the depletion of the DOS is
weakened. This is the amorphous photonic regime, where short-ranged order leads
to a partial depletion of the DOS. The well-defined threshold in ξq/ lb demonstrates
a clear transition from polycrystalline to amorphous photonic structures.

In addition to the depth of the DOS reduction, we also studied the spectral width
of the reduction region. The relative width w is defined as the ratio of the full width
at half minimum (FWHM) of the dip in the DOS δω to the frequency ω0 at the center
of the dip. Since the Bragg length varies within the spectral region of DOS reduc-
tion, we average its value over the frequency range from ω0 − δω to ω0 + δω. The
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average domain size is normalized by the average Bragg length lv . Figure 9.5 (b)
shows a plot of w versus ξq/ lv for several values of n. Although the curves for dif-
ferent n do not coincide, their trends are similar. As ξq/ lv increases, w first drops
and then rises (except for n= 1.4). The turning point is at ξq/ lv ∼ 1. To understand
this behavior, we first examine the DOS for periodic systems. At n= 3.4, the DOS
is enhanced at the photonic band edges due to the slow group velocity [Fig. 9.4 (a)].
When positional disorder is introduced to the structure, the DOS peak at the air band
edge is quickly lowered and the higher frequency part of the PBG is filled by de-
fect modes. In contrast, the peak at the dielectric band edge decreases more slowly,
because the dielectric bands are more robust against disorder as mentioned earlier.
The gap width is reduced, until the DOS peak at the dielectric band edge diminishes
at a certain degree of disorder. Then the DOS below the dielectric band edge starts
decreasing with further increases in disorder. The DOS reduction region becomes
wider. As n decreases, the strength of DOS reduction by PBGs is weakened, and
δω/ω0 is lowered. At n= 1.4, w no longer rises beyond ξq/ lv ∼ 1; instead it tends
to a plateau.

Enhanced Scattering and Mode Confinement by Short-Range Order

In nature, the refractive index contrast is typically low, nevertheless photonic amor-
phous structures are used to manipulate light scattering and color generation. In
this section, we investigate the effects of short-range order on light scattering and
mode confinement in amorphous structures with low index contrast. We consider the
structures generated by the first protocol with p = 0.5. When we set n = 1.4, the
DOS possesses an extremely shallow dip as shown in Fig. 9.6 (a). For n= 1.2, the
DOS in Fig. 9.6 (e) is nearly featureless. We calculate the resonant modes in these
structures using the finite element method. Instead of periodic boundary conditions,
the structures have finite size and open boundaries. Each structure contains 1024
air cylinders in a dielectric medium. The open boundaries are terminated by per-
fectly matched layers that absorb all outgoing waves. Because of light leakage from
the finite-sized structure, the resonant modes have finite lifetimes. We calculate the
complex frequencies of all resonances ωr + iωi . The amplitude of ωi is inversely
proportional to the lifetime. The quality factor is defined as Q= ωr/2|ωi |. We ob-
tain the maximal quality factors Qm of modes within small frequency intervals, and
plot them in Fig. 9.6 (b, f). Although the dip in the DOS is barely visible at n= 1.4,
Qm is enhanced by a factor of three at a frequency near the center of the dip. Further,
even though there is essentially no dip in the DOS for n= 1.2, Qm displays a peak.
Figure 9.6 (d, h) shows the spatial distributions of electric field intensities |E(x,y)|2
for the modes with maximal Qm (marked by the arrows in Fig. 9.6 (b, f)). It is ev-
ident that the mode of maximal Qm at n = 1.4 is localized within the structure.
For n= 1.2 the mode is more delocalized, but the field intensity near the boundary
(marked by white dashed line) is still weaker than that in the interior. To determine
the degree of localization, we calculate the mode size which is inverse of the inverse
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Fig. 9.6 The DOS (a, e) and maximal quality factors Qm of resonant modes (b, f) for the amor-
phous photonic structures with low refractive index contrast n = 1.4 for (a–d) and 1.2 for (e–h).
Grey backgrounds in (a, e) represent the DOS for 2D homogeneous media. (d, h) Spatial distri-
bution of electric field intensities for the modes of maximal Qm [marked by arrows in (b, f)].
(c, g) Transport mean free path lt (solid line), total scattering cross sections of a single scatterer σt
(dashed line), and the structure factor S(q) at q = 2k (dotted line), where k is the wavevector of
light. Reprinted with permission from [19], Copyright 2008, Wiley-VCH

participation ratio,

s ≡ 1

L2

(
∫ |E(x,y)|2 dx dy)2∫ |E(x,y)|4 dx dy , (9.6)

where a mode uniformly distributed over the sample gives s = 1. We find that the
mode in Fig. 9.6 (d) has s = 0.18 and is thus highly localized, while the one in
Fig. 9.6 (f) has s = 0.44 and is only partially localized.

To illustrate the physical mechanism that leads to mode confinement, we calcu-
late the transport mean free path

1

lt
= π

k6

∫ 2k

0
ρF(q)S(q)q3 dq, (9.7)

where k is the wavevector of light, ρ is the number density of air cylinders, S(q)
is the structure factor, F(q) is the form factor, and q is the spatial frequency. F(q)
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is given by the differential scattering cross section of a single air cylinder in the
dielectric medium. The structure factor is given by

S(q)≡ 1

N

N∑
i,j=1

eiq·(ri−rj ), (9.8)

where ri denotes the center position of the ith cylinder. Since the structures are
isotropic, S(q) is invariant with the direction of q and is only a function of the mag-
nitude q . In Fig. 9.6 (c, g), we show that lt displays a significant drop at a frequency
that coincides with the peak inQm. This indicates that the enhancement of scattering
strength improves mode confinement. In Fig. 9.6 (c, g) we also plot the total scat-
tering cross section σt of a single air cylinder, which increases monotonically with
frequency and does not exhibit any resonant behavior within the frequency range
studied. This behavior suggests that the dip in lt is not caused by Mie resonance of
individual scatterers. Instead, we contend that the short-range order enhances Bragg
backscattering at certain wavelengths and shortens lt . To prove this, we also plot
S(q) for the backscattering q = 2k in Fig. 9.6 (c) and (g). S(q) is peaked near the
dip of lt , which confirms that collective backscattering from local domains of or-
dered cylinders causes a dramatic decrease in lt . Therefore, the spatial confinement
of resonant modes is enhanced by short-range order through constructive interfer-
ence of scattered light that occurs at specific frequencies.

9.2.2 Lasing in Photonic Polycrystalline and Amorphous
Structures

Next we present the experimental study on lasing characteristics in photonic poly-
crystalline and amorphous structures.

Sample Fabrication and Lasing Experiment

The computer generated patterns of polycrystalline and amorphous arrays of circu-
lar holes were transferred to a GaAs membrane. A 190-nm-thick GaAs layer and a
1000-nm thick Al0.75Ga0.25As layer were grown on a GaAs substrate by molecu-
lar beam epitaxy. Inside the GaAs layer there were three uncoupled layers of InAs
QDs equally spaced by 25 nm GaAs barriers. 2D arrays of cylinders were written
on a 300-nm-thick ZEP layer with the electron-beam lithography. The patterns were
transferred to the GaAs layer by chlorine-based inductive-coupled-plasma reactive-
ion-etching with the ZEP layer as a mask. The ZEP layer was subsequently re-
moved in an oxygen plasma cleaning process. Finally the Al0.75Ga0.25As layer was
selectively removed by a dilute HF solution. Figure 9.7 (a, b) shows the top-view
scanning electron microscope (SEM) images of two fabricated patterns. The lateral
dimension of a pattern is 9.3 µm, and it has 1024 air holes. The radius of air holes r
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Fig. 9.7 (a, b) Top-view SEM images of fabricated arrays of air holes in a GaAs membrane. The
scale bar is 2 µm. Ordered domains of different orientations can be seen in (a), but barely in (b).
(c) 2D spatial correlation function C(�r) averaged over five configurations including the pattern
in (b) and equivalent ones. Scale bar = 300 nm. (d) Log-linear plot of the peak amplitude of
azimuthal-averaged spatial correlation function C(�r), squares for the pattern in (a), and circles
for (b). The straight lines are exponential fit, giving the decay length ξ = 2.3a for (a) and 1.4a
for (b). Reprinted with permission from [21], Copyright 2008, Wiley-VCH

is 100 nm. In the pattern of Fig. 9.7 (a), we can clearly see domains of the triangular
lattice of holes, each domain has a different orientation. In Fig. 9.7 (b), the domains
are so small that barely visible.

For qualitative understanding of the short-range order, the 2D spatial correlation
function C(�r) for these patterns were calculated. A typical ensemble-averaged
C(�r) is presented in Fig. 9.7 (c). It consists of rings whose amplitudes decrease
with increasing spatial separation �r ≡ |�r|. Since C(�r) is isotropic, we calcu-
lated the azimuthal-averaged C(�r) for the two patterns in (a, b) and plotted the
peak amplitudes in Fig. 9.7 (d). The first peak away from �r = 0 is produced by the
nearest cylinder, thus its position corresponds to the average spacing a of the nearest
neighbors. The two patterns in Fig. 9.7 (a, b) have a = 290 nm. The faster damping
of C(�r) for the pattern in Fig. 9.7 (b) reflects the spatial correlation is shorter-
ranged. They both fall on straight lines in a log-linear plot, indicating exponential
decays. The decay length ξ = 2.3a, and 1.4a for the patterns in Fig. 9.7 (a, b). Ac-
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Fig. 9.8 (a) Measured spectrum of emission from a pattern of ξ = 4.4a and a = 290 nm at the
incident pump power P = 30 µW. The inset is an optical image of the lasing mode corresponding
to the sharp peak in the emission spectrum. Black dashed square marks the pattern boundary.
(b) Intensity I (black square) and width �λ (blue circle) of the lasing peak in (a) versus the
incident pump power P in a logarithmic plot. The red dotted lines represent linear fit of log I vs.
logP in three regimes, and the numbers next to them are those slopes. Reprinted with permission
from [21], Copyright 2008, Wiley-VCH

cording to our previous study [19] and the calculation results in the next section, the
pattern in Fig. 9.7 (a) is polycrystalline and (b) amorphous.

In the lasing experiments, the samples were cooled to 10 K in a continuous-
flow liquid Helium cryostat, and optically pumped by a mode-locked Ti:Sapphire
laser (pulse width ∼200 fs, center wavelength ∼790 nm, and pulse repetition rate
∼76 MHz). A long working distance objective lens (numerical aperture =0.4) fo-
cused the pump light to a pattern at normal incidence. The diameter of pump spot
on the sample surface was about 2 µm. The emission from the sample was collected
by the same objective lens. The emission spectrum was measured by a high res-
olution spectrometer with a liquid-nitrogen-cooled coupled-charged-device (CCD)
array detector. Simultaneously the spatial distribution of emission intensity across
the sample surface was projected onto a thermoelectric-cooled CCD camera.

Figure 9.8 (a) is part of a time-integrated spectrum of emission from a polycrys-
talline pattern (ξ/a = 4.4, a = 290 nm). It features a sharp peak on top of a broad
QD emission band. Figure 9.8 (b) plots the intensity I and linewidth �λ of this
peak as a function of the incident pump power P . The variation of log I with logP
exhibits a S-shape with two kinks. The slopes in the three regimes separated by the
two kinks were obtained from curve fitting and written on the graph. In the first
and last regimes, the slopes of log I over logP are very close to unity, indicating
a linear growth of I with P . The second regime has a slope of 5.44, meaning I
scales as P 5.44. The first regime corresponds to spontaneous emission of QDs to
a resonant mode, thus the intensity increases linearly with the pump power. When
the pump is high enough, the emission peak grows superlinearly as a result of light
amplification by stimulated emission. This is the second regime. In the third regime,
lasing occurs in this mode, and the gain saturation reduces the slope to one. Also
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Fig. 9.9 (a) Evolution of emission spectra of a pattern with ξ/a = 1.4 and a = 270 nm as the pump
power increases (from bottom to top). Inset is an optical image of the lasing mode at λ= 970 nm.
(b) Intensity and width of the emission peak at λ = 970 nm as a function of the pump power.
Reprinted with permission from [21], Copyright 2008, Wiley-VCH

seen in Fig. 9.8 (b), the spectral width �λ of the peak first drops quickly with in-
creasing P , then levels off and increases slightly at higher P . The rapid decrease
of �λ is expected at the onset of lasing oscillation. The gradual increase above the
lasing threshold results from the hot carrier effect. Due to the short pulse pumping,
the carrier density keeps changing in time. It causes a temporal change of the re-
fractive index, and consequently a continuous red-shift of lasing frequency [38, 39].
In our time-integrated measurement of lasing spectrum, the transient frequency shift
results in a broadening of the lasing line. Such broadening increases with the hot car-
rier density and becomes dominant at high pumping level. The inset of Fig. 9.8 (a)
is an optical image of the lasing mode, revealing its strong localization inside the
pattern whose boundary is marked by the black dashed line.

We also realized lasing in photonic amorphous structures. As seen in Fig. 9.9 (a),
there are many peaks of comparable height in the emission spectra of a pattern with
ξ = 1.4a. Figure 9.9 (b) is a plot of the intensity and width of an emission peak
at λ = 970 nm versus the pump power. The rapid increase of peak intensity and
dramatic reduction of the peak width illustrates the onset of lasing action. A tun-
able interference filter was placed in front of the CCD camera to select this lasing
mode for imaging. Inset of Fig. 9.9 (a) are the optical images of two lasing modes.
The left one is spatially localized inside the pattern whose boundary was drawn by
the dashed line. The double-peaked intensity distribution of the mode on the right
is similar to that of a 2D necklace state in [40], suggesting it is a hybrid of two
localized states. Further study is needed to confirm it is a necklace state [40, 41].

As we moved the pump beam spot across a pattern, new lasing peaks replaced
the existing ones, and they have distinct frequencies. This phenomena indicate that
resonant modes are localized in different positions of the samples, and brought to
lasing when overlapped with the pump spot. We repeated the lasing experiment on
several patterns with different arrangement of air holes but same ξ/a, and found the
lasing peaks varied from pattern to pattern. We measured the patterns of different
ξ/a and recorded the lasing wavelengths. Figure 9.10 plots the wavelengths of las-
ing peaks for five values of ξ/a. For a fixed ξ/a, there is a wide spread of lasing
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Fig. 9.10 Measured
wavelengths of lasing peaks
for patterns of different
domain size ξ . The average
spacing of
nearest-neighboring air holes
is a = 290 nm. Reprinted
with permission from [21],
Copyright 2008, Wiley-VCH

wavelengths due to the broad QD gain spectra. Nevertheless, it is evident that the
lasing peaks shift to shorter wavelength as the average domain size ξ decreases.

Numerical Simulation of Lasing Modes

To explore the nature of lasing modes in photonic polycrystalline and amorphous
structures, we performed numerical simulation. The perforated GaAs membrane is
approximated as a 2D array of infinitely long air cylinders embedded in a uniform
dielectric host with an effective index of refraction nw . The value of nw was ob-
tained in the following steps. First we calculated the photonic band structure of a
triangle lattice of air holes in a free-standing GaAs membrane of thickness 190 nm
using the plane wave expansion method [42]. The density and size of air holes were
identical to those of the fabricated samples. Next we calculated the photonic band
structure of the approximate 2D system with nw as a parameter. By adjusting the
value of nw , we matched the center frequency of the fundamental PBG obtained in
the above two cases. In our calculation, we considered only the transverse-electric
(TE) polarization (electric field perpendicular to the air cylinder axis), because ex-
perimentally the laser emission is TE polarized due to stronger gain of the InAs QDs
for the TE polarized light.

Using the finite-difference frequency-domain (FDFD) method, we calculated the
resonant modes with long lifetime in the passive structures. Due to the finite size of a
pattern, light may escape through the open boundary. The outgoing wave is absorbed
by the perfectly matched layer that surrounds the pattern. The resonant modes have
finite lifetime, and their frequencies are complex numbers ωr + iωi . The magnitude
of ωi is inversely proportional to the mode lifetime. The quality factor is defined as
Q= ωr/2|ωi |. We calculated the complex frequencies of TE modes, and found the
highest quality factorQm within small frequency bins. Figure 9.11 (a) plotsQm ver-
sus the normalized frequency a/λ for ξ/a = 2.3 and 1.4. Qm drops quickly as ξ/a
decreases. Nevertheless, it reaches the maximum at the same frequency a/λ= 0.3
for different ξ/a. This result can be explained by the DOS shown in Fig. 9.11 (b).
For ξ/a = 2.3, there is a significant depletion of DOS, almost comparable to that of
a PhC. The system can be regarded as a photonic polycrystal, as individual domains
are large enough to form the PBG via Bragg scattering. Defect modes are formed
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Fig. 9.11 (a) FDFD calculation of approximate 2D structures (nw = 2.73) giving the maximal
quality factor Qm versus the normalized frequency a/λ for ξ/a = 2.3 (blue circle) and 1.4 (black
square). (b) Calculated DOS for ξ/a = 2.3 (top) and 1.4 (bottom). The curves are shift vertically
for clarification. Calculated spatial intensity distribution of the highest-Qm mode for ξ/a = 2.3 (c)
and 1.4 (d). They are marked with circles in (a). Reprinted with permission from [21], Copyright
2008, Wiley-VCH

inside the PBG. The closer their frequencies to the center of PBG, the higher their
quality factors. Therefore, the highest-Q resonances in the photonic polycrystal are
defect modes. They are strongly localized in space, as can be seen from a typical
mode profile in Fig. 9.11 (c). The mode size, computed from the inverse partici-
pation ratio of the field distribution, is about 0.6 µm. When ξ/a is reduced to 1.4,
Bragg scattering from each domain is not enough to produce a PBG. Consequently,
the DOS has a dip instead of a gap. In this photonic amorphous structure, the peak
of Qm coincides with the dip of DOS. The reduction in DOS results from the short-
range order, which enhances optical confinement and produces the maximum of
Qm [19, 20]. It leads to the maximum ofQm. The spatial profile of a typical high-Q
resonance is shown in Fig. 9.11 (d). The mode size is about 1.0 µm, much smaller
than the lateral size of the structure (9.3 µm). This means the mode is still localized
spatially, but the degree of localization is less than the defect mode in a polycrys-
tal [Fig. 9.11 (c)]. The maximal Qm drops quickly as the average domain size ξ
decreases.
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In our experiment the optical gain is distributed nonuniformly across the sample,
because the pump spot diameter (∼2 µm) is smaller than the lateral dimension of
the pattern (9.2 µm). Only the QDs inside the pump area are excited and provide
optical gain. When light scattering is weak, the lasing modes may be very different
from the resonant modes of the passive systems [43–45]. However, our samples have
strong scattering, the transport mean free path is estimated [46] at a/λ= 0.30 to be
0.36 µm in the polycrstalline sample (ξ/a = 2.3) and 0.53 µm in the amorphous
structure (ξ/a = 1.4). We extracted the localization length ξL in these structures
by placing a monochromatic source at the center and calculating the steady-state
field distribution. From the decay of the field intensity away from the source, we get
ξL = 0.38 µm at a/λ= 0.30 in the sample of ξ/a = 2.3, and 0.46 µm in the sample
of ξ/a = 1.4. Since the localization length is much smaller than the system size,
the resonant modes are strongly confined within the structures. The typical size of
high-Q modes is smaller than or comparable to the pump spot size, thus the lasing
modes correspond to the high-Q modes inside the pump area.

According to the 2D calculation results, the frequencies of the highest-Q modes
are the same for polycrystalline and amorphous structures, thus the lasing modes
should not shift in frequency as ξ changes. This prediction contradicts the exper-
imental data in Fig. 9.10, because light leakage in the third dimension is ignored
in the calculation of 2D structures. Although light is confined in the free-standing
GaAs membrane by index guiding, it can escape from the top or bottom surfaces
of the membrane to the surrounding air. To account for this leakage, we performed
the three-dimensional (3D) finite-difference time-domain (FDTD) calculation. The
structural parameters used in the calculation are identical to those of the fabricated
samples.

We calculated the high-Q resonances of TE polarization in the absence of gain
or absorption. The quality factors Qt of all modes within the frequency range of
interest were found and plotted versus the normalized frequency a/λ in Fig. 9.12
for ξ/a = 2.3 and 1.4. The values of Qt are orders of magnitude lower than those
in Fig. 9.11 (c) for the same value of ξ/a. This result illustrates that the vertical
leakage of light is much larger than the lateral leakage for the high-Q resonances.
Such strong vertical leakage results from tight confinement in the lateral dimension.
Namely, spatial localization of a mode in the xy-plane (parallel to the membrane)
results in a broad distribution of in-plane wavevector k|| (projection of k vector to
the xy-plane). The k|| components within the light cone (|k||| ≤ ω/c) can escape
from the membrane in the ±z directions (normal to the membrane). The vertical
leakage rate is characterized by the out-of-plane energy loss per optical cycle Q−1

v ,
and the lateral by Q−1

h . The total loss is described by Q−1
t =Q−1

h +Q−1
v .

For the amorphous structure of ξ/a = 1.4, the mode of maximal Qt at a/λ �
0.32 has Qh = 4.88 × 104, and Qv = 1.62 × 103. Thus, the vertical leakage rate
is an order of magnitude larger than the lateral one. In a polycrystalline structure,
the tighter in-plane confinement of defect modes within the PBG makes the vertical
leakage even stronger. Consequently, the modes at the center of PBG no longer have
the highest Qt , even though their Qh is maximal. The highest Qt modes are away
from the PBG center, as shown in Fig. 9.12 for ξ/a = 2.3. These modes are less
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Fig. 9.12 3D FDTD calculation of resonances in the perforated GaAs membrane giving their
quality factor Qt as a function of the normalized frequency a/λ for ξ/a = 2.3 (a) and 1.4 (b).
Reprinted with permission from [21], Copyright 2008, Wiley-VCH

confined in-plane, meaning their Qh is lower. The larger spread in the xy-plane
narrows the k|| distribution. The k|| components within the light cone is reduced, so
is the out-of-plane leakage. The maximal-Qt mode at a/λ= 0.3 has Qh = 7.55 ×
104, and Qv = 3.87 × 103. Although its Qh is lower than that of the defect modes
at a/λ = 0.32 (PBG center), the Qv is higher, so is the Qt . Intuitively, the mode
at the higher frequency side of the PBG center, i.e., at a/λ = 0.34, should have
comparable Qt to the maximal-Qt mode at the lower frequency side (a/λ= 0.30),
as their spectral distance to the PBG center is the same. However, the Qt is lower
at a/λ = 0.34, as seen in Fig. 9.12. This is because the air holes are isolated and
the dielectric medium is connected in the membrane. The dielectric band edge at
the lower frequency side of PBG is more robust to disorder, as evident in the DOS
shown in Fig. 9.11 (b). Consequently, light confinement is stronger in the lower
frequency part of the PBG, giving higher Qt at a/λ= 0.3.

The 3D numerical simulation reveals that the maximal-Qt modes shift to higher
frequency as ξ decreases. This prediction agrees with the experimental observation
that the wavelengths of lasing modes decreases from polycrystalline to amorphous
patterns.

Control of Lasing with Short-Range Order

To characterize the effect of short-range structural order on lasing, we can either
measure the threshold of individual lasing modes at different wavelength, or com-
pare the intensity of different lasing modes at the same pumping level. In principle,
the spectral variation of gain coefficient and mode competition for gain would in-
fluence the lasing threshold and emission intensity. However, the gain spectrum of
InAs QDs is very broad, and the gain coefficient has little variation over a wide spec-
tral range. More importantly, the gain spectrum is dominated by inhomogeneous
broadening, which significantly weakens mode competition. Hence, the interaction
of lasing modes at different wavelength or spatial location is negligible. To increase
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Fig. 9.13 Measured intensities of lasing peaks from three PAS of a = 235 nm, 255 nm and
275 nm. The air filling fraction f = 0.33 in (a) and 0.28 in (b). Laser emission intensity reaches
the maximum at the normalized frequency a/λ= 0.26 in (a) and 0.24 in (b). Reprinted with per-
mission from [20], Copyright 2008, Wiley-VCH

the range of normalized frequency ωa/2πc = a/λ, we probe lasing in multiple ar-
rays of distinct a. The ratio of r over a is kept constant, so that the filling fraction
f of air does not change. Figure 9.13 (a) plots the intensities of numerous lasing
modes collected from three arrays of a = 235 nm, 255 nm and 275 nm. The inci-
dent pump power is fixed at 16 µW. The pump spot is scanned across the interior
of each array to probe lasing modes at different locations. The size of pump spot
is kept at 1.2 µm. The range of a/λ, covered by the three patterns, is from 0.23 to
0.29. As a/λ increases, the lasing mode intensity first increases and then decreases.
It reaches the maximum at a/λ = 0.26. Thus lasing becomes the strongest, or equiv-
alently the lasing threshold is the lowest at a/λ = 0.26. Next we change the air
filling fraction f from 0.33 to 0.28 by varying r/a, and measure three samples of
a = 235 nm, 255 nm and 275 nm. As shown in Fig. 9.13 (b), the maximum intensity
of lasing modes is shifted to a/λ= 0.24. These results confirm that there exists an
optimal frequency for lasing in the PAS, and its value can be tuned by the structural
parameters.

To interpret the experimental data, we calculate the quality (Q) factor of resonant
modes in the samples. The higher the Q factor, the longer the photon lifetime in the
PAS, the stronger the amplification of light. We use the finite-difference frequency-
domain (FDFD) method in the numerical simulation. Since the 3D FDFD calcula-
tion is computationally expensive, we calculate the resonant modes in the approxi-
mate 2D structures. More specifically, we first compute the effective refractive index
nw of the waveguided mode in the GaAs layer free standing in air. We consider only
the transverse-electric (TE) polarization (electric field parallel to the GaAs layer),
because the laser emission is TE polarized. Then the value of nw as a function of
λ is assigned to the refractive index of the dielectric host in which the air cylinders
are embedded. The air cylinders are assumed to be infinitely long in the 2D FDFD
calculation. Figure 9.14 (a) plots Q vs. a/λ for three PAS of f = 0.33. The values
of a and r are equal to those of the fabricated samples. The Q factor is peaked at
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Fig. 9.14 Calculated Q factor of resonant modes in the PAS whose structural parameters are
identical to those in Fig. 9.13 (a) and (b). As the air filling fraction f changes from 0.33 (a) to
0.28 (b), the maximum of Q factor shifts to lower normalized frequency a/λ. Reprinted with
permission from [20], Copyright 2008, Wiley-VCH

a/λ = 0.24. When the air filling fraction f is changed to 0.28, the maximum of Q
factor shifts to a lower frequency (Fig. 9.14 (b)). These trends agree qualitatively to
those of laser emission intensity measured experimentally (Fig. 9.13). The maxima
occur at slightly different frequencies, due to 2D approximation in the numerical
simulation and uncertainty in determining the refractive index of GaAs at low tem-
perature. Note that the 2D simulation only takes into account light leakage through
the edges of an array. Experimentally, light can also escape through the top or bot-
tom surface of the GaAs membrane to air. The vertical leakage is included in our
finite-difference time-domain (FDTD) simulation of a free-standing GaAs mem-
brane. For the PAS, the total Q factor (including both lateral and vertical leakage)
displays a similar trend to that in Fig. 9.13. However, the actual Q value is notably
lower than that in Fig. 9.14 as a result of the vertical leakage. Hence, the variation
of Q with a/λ is determined by the lateral leakage. The existence of Q maximum
indicates light confinement is the strongest at specific wavelength λ that scales with
the characteristic length scale a of the structure. Thus theQ enhancement originates
from the short-range order. Since stronger optical confinement increases the dwell
time of light in the structure, light experiences more amplification and the lasing
threshold is reduced. In other words, the maximum of the Q factor leads to a mini-
mum of the lasing threshold, or equivalently, a maximum of laser emission intensity
at a fixed pump power above the threshold.

To confirm the origin of Q enhancement, we estimate the transport mean free path
lt , which is a measure of the scattering strength. For the approximate 2D structure,

lt (λ)=
(
π

k6

∫ 2k

0
ρF(q)S(q)q3 dq

)−1

, (9.9)

where q is the spatial frequency of the structure, F(q) is the form factor, S(q) is
the structure factor, ρ is the density of scatterers, and k is the wave vector [47].
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Fig. 9.15 (a) Estimated transport mean free path lt (black solid curve) as a function of the normal-
ized frequency a/λ in the PAS of air filling fraction f = 0.33 (a) and 0.28 (b). Red dashed curve
is the structure factor S(q = 2k) of PAS, and the blue dotted curve the total scattering cross section
σt of a single air cylinder embedded in a dielectric host. σt does not exhibit any Mie resonance.
The dip in lt almost coincides with the peak in S(q), confirming the enhanced light scattering is
caused by short-range order

k = 2πne/λ, where λ is the wavelength in vacuum, and ne is the effective index
of refraction of the 2D structure. If the structure is completely random, S(q) be-
comes 1. For the PAS, we compute the structure factor from the center positions
of air holes. Since the structure is isotropic, S depends only on the magnitude of q.
F(q) is obtained from the differential scattering cross section of a single air cylinder
(infinitely long) embedded in a dielectric host of refractive index nw . ne is estimated
by the Maxwell-Garnett formula with the air filling fraction f .

Figure 9.15 (a) plots lt (black solid curve) as a function of a/λ for the PAS of
f = 0.33. It has a significant dip at a/λ = 0.24, where light scattering becomes
the strongest. The minimum of lt almost coincides with the maximum of Q in
Fig. 9.14 (a), indicating the optimal light confinement is caused by the strongest
scattering. To find the origin of enhanced light scattering, we plot the total scatter-
ing cross section σt of a single air cylinder (blue dotted curve) in Fig. 9.15 (a). It in-
creases monotonically with a/λ, and does not exhibit any resonant behavior within
the frequency range of study. Hence, the dip in lt is not caused by any Mie resonance
of individual scatterers. In the same figure we also plot S(q) for the backscattering
q = 2k. Its value is peaked near the dip of lt , confirming the short-range order en-
hances backscattering and shortens lt [29]. Similar results are obtained for the PAS
of f = 0.28 [Fig. 9.15 (b)]. The dip of lt moves to lower frequency, consistent with
the shift of Q maximum [Fig. 9.14 (b)] and the strongest laser emission intensity
[Fig. 9.13 (b)]. Note that in the estimation of lt with (9.1), the near-field coupling
of adjacent scatterers is neglected. Within the frequency range of interest, there is
no scattering resonance of individual air cylinders, thus the coupling of neighboring
cylinders via evanescent wave is weak.
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9.3 Photonic Network Structures and Lasers

The photonic amorphous structures have two types of topology: (i) an aggregate
of dielectric spheres/cylinders, (ii) a continuous network of dielectric material.
The photonic bandgaps can be formed in (i) via evanescent coupling of Mie res-
onances of individual scatterers [10–14, 18]. However, two-dimensional and three-
dimensional (3D) realizations of (ii) can possess larger PBGs [16, 17, 48] For ex-
ample, a photonic amorphous diamond structure formed by a 3D network of silicon
has a 18 % PBG [16, 48]. Since the PAS is isotropic, the PBG is identical in all
directions. The photonic bandedge (BE) modes can be strongly localized without
introducing any defect in a PAS [17, 18, 48]. It is dramatically different from a
periodic structure where the PBG is anisotropic and the BE modes are spatially
extended.

Most studies on amorphous network structures have focused on passive systems
that have no gain or nonlinearity. What happens if we introduce optical gain to
the 2D amorphous network structures? Can we achieve lasing? What are the lasing
modes? These questions will be addressed in the section.

9.3.1 2D Photonic Network Laser

To generate a 2D trivalent network structure (each junction having three bonds),
we first created a jammed packing of polydisperse cylinders in a computer sim-
ulation [19]. The center positions of cylinders are marked by black solid circles
in Fig. 9.16 (a). Then we performed a Delaunay tessellation that provides triangu-
lar partitioning (blue thin lines) [17]. Associated with each triangle is a centroidal
point. We connected the centroids of neighboring triangles with line segments. The
resulting structure is a trivalent network shown in red thick lines. The spatial Fourier
spectra of the structure [inset of Fig. 9.16 (b)] exhibits a circular ring pattern, indi-
cating the structure is isotropic and there exits a dominant spatial frequency that
corresponds to the radius of the ring. We also calculated the 2D spatial correlation
function C(�r), which is plotted in Fig. 9.16 (b). The characteristic length scale
of the structure a is obtained from the first peak of the correlation function. The
rapid decay of the amplitude of C(�r) with �r reveals the structural correlation is
short-ranged.

As to be detailed later, we fabricated 2D trivalent network structures in a GaAs
membrane that was 190 nm thick and free-standing in air. To obtain the effective
index of refraction ne of the GaAs segments for the 2D simulation, we computed
the fundamental PBG in a triangle lattice of air holes in a free-standing GaAs mem-
brane (using the plane wave expansion method), then adjusted ne of an approximate
2D structure to get a similar PBG. The value of ne depends on the filling fraction
of air in the GaAs membrane f , which is chosen to be 0.53 to have the maximal
PBG. The 2D network structure was assigned the same f = 0.53 and ne = 2.68.
We calculated the 2D density of optical states (DOS) using the order N method in
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Fig. 9.16 (a) Black solid circles are the center positions of polydisperse cylinders produced by
jammed packing in a computer simulation. Blue thin lines represent the Delaunay tessellation,
that leads to the formation of a trivalent network structure shown in red thick lines. (b) Spatial
Fourier spectra (inset) and spatial correlation function C(�r) (main panel) of the trivalent network
structure. (scale bar: 2π/a) (c) Calculated density of optical states for a trivalent network structure
(blue dashed line) and an amorphous array of air cylinders (black solid line) with the same air
filling fraction f = 0.53 and dielectric refractive index ne = 2.68. (d) Calculated Q factor of the
resonant modes in the trivalent network structure as a function of the normalized frequency a/λ.
(e) and (f) are calculated intensity distributions of two modes [circled in (d)] at the low and high
frequency sides of the bandgap. Reprinted with permission from [49], Copyright 2008, Wiley-VCH
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a finite-difference time-domain (FDTD) simulation [36]. The boundary condition is
periodic, and the supercell contains 2048 vertices. Only TE modes are considered,
as the lasing modes in the GaAs membrane are TE polarized due to stronger ampli-
fication by QDs. Figure 9.16 (c) displays a significant depletion of DOS in the 2D
trivalent network. For comparison, we calculated the DOS for an amorphous array
of monodisperse air cylinders in GaAs. This structure was derived from the jammed
packing of polydisperse cylinders (from which the network structure was created)
by reducing the radii of all cylinders to a constant value. The air filling fraction f
is identical to that in the network structure. As seen in Fig. 9.16 (c), the DOS has
only a shallow dip in the amorphous array of air cylinders. Hence, the PBG effect is
greatly enhanced in the trivalent network structure. This is attributed to the uniform
topology of each junction.

Next we calculated the quality factor (Q≡ ωτ , ω is the frequency, τ is the life-
time) of the resonant modes in the 2D structure with the finite-element method (us-
ing the commercial software Comsol) in 2D. The network has 2048 vertices and
open boundary. As shown in Fig. 9.16 (d), there are no guided modes with TE polar-
ization in the frequency range a/λ= 0.32 and 0.38, as a result of the complete PBG
for TE guided modes. The highest-Q modes are located at the BEs. They are tightly
confined within the structure, as seen in Fig. 9.16 (e, f). The spatial localization
of BE modes reduces light leakage through the boundary of the structure, result-
ing in high Q factor. This is distinct from the periodic structure whose BE modes
are extended. Figure 9.16 (e)/(f) also reveals that the intensity of the BE mode at
the low/high frequency side of the PBG is mostly concentrated in the dielectric/air.
Thus it can be labeled as the dielectric/air BE mode.

The computer generated patterns of 2D trivalent network were transfered to a
GaAs membrane containing InAs quantum dots (QDs). Figure 9.17 (a) is a top-
view scanning electron microscope (SEM) image of one pattern with a = 315 nm.
The lateral dimension of each pattern is 9.7 µm × 9.7 µm. A series of patterns with
different a were fabricated. The lasing experimental setup is the same as that in the
previous Sect. 9.2.2. We realized lasing in a network structure of a = 315 nm with
optical excitation of InAs QDs. The emission spectrum consists of a few narrow
peaks on top of a broad background [top curve in Fig. 9.18 (a)]. The background
originates from the broad-band amplified spontaneous emission, while the narrow
peaks correspond to the resonant modes. Figure 9.17 (b) plots the intensity of one
emission peak at wavelength λ = 1000 nm versus the incident pump power P . It
displays a threshold behavior. When P exceeds 9.8 µW, the emission intensity in-
creases much more rapidly with P . The full width at half maximum (FWHM) of
the peak also decreases dramatically with increasing P and reaches the value of
0.28 nm at P = 16 µW. Such behaviors indicate the onset of lasing action. The op-
tical image of the lasing mode, shown in Fig. 9.19 (a), reveals the mode is located
in the interior of the pattern. Its lateral size was approximately 2.4 µm, significantly
smaller than the pattern size (9.7 µm). With a further increase of pump power, we
observed lasing in multiple modes.

We repeated the lasing experiment on different network configurations with the
same a. They were generated from different jammed packings of polydisperse cylin-
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Fig. 9.17 (a) A plane-view scanning electron microscope image of the fabricated trivalent network
structure in a GaAs membrane with a = 315 nm. The scale bar is 2 µm. (b) Measured intensity
(black circle) and spectral width (blue square) of one emission peak at λ= 1000 nm as a function
of the incident pump power P . Reprinted with permission from [49], Copyright 2008, Wiley-VCH

Fig. 9.18 Measured emission spectra for the trivalent network structures of a = 315 nm in (a),
and 275 nm in (b). The two spectra in each panel are taken from different configurations. With
decreasing a, the lasing modes blue shift. Reprinted with permission from [49], Copyright 2008,
Wiley-VCH

ders. Their spatial Fourier spectra and spatial correlation functions are nearly iden-
tical, indicating these configurations are statistically equivalent. Lasing was realized
in these patterns within the same spectral range, although the frequencies of indi-
vidual lasing modes varied from pattern to pattern [Fig. 9.18 (a)].

We performed 3D FDTD simulation of the real structures that were extracted
from the digitized SEM images. The results illustrated that the lasing modes are
located near the dielectric BE of the PBG. The air BE is located at much shorter
wavelength λ � 720 nm. The air BE modes could not lase as they are beyond the
gain spectrum of InAs QDs. Although they can be tuned into the gain spectrum by
increasing a, the dielectric BE modes are preferred for lasing as they are concen-
trated in the GaAs and experience more gain from the InAs QDs. We calculated
a dielectric BE mode in the 3D FDTD simulation. As shown in Fig. 9.19 (b), the
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Fig. 9.19 (a) Optical image of the lasing mode in Fig. 9.17 (b). (b) Spatial intensity distribution
of the dielectric BE mode calculated in a 3D FDTD simulation of the real structure

mode is spatially localized and has a size is similar to the measured one Fig. 9.19 (a).
However, the fine features, e.g., closely-spaced intensity maxima, were smeared out
in the optical image due to a finite resolution of our imaging system. The Q factor
of this mode is about 6000, which is limited by the out-of-plane leakage of light.

Finally we probed lasing in trivalent network structures of different a. Fig-
ure 9.18 (b) displays the emission spectra taken from two configurations of a =
275 nm. Lasing peaks shift to shorter wavelength. This move is consistent with the
blue shift of the dielectric BE as a decreases. However, the 3D FDTD calculation
predicted that the dielectric BE shift to λ∼ 900 nm, but the lasing peaks were seen
around 975 nm. Although the dielectric BE modes at 900 nm have higher Q, they
are far from the peak of gain spectrum and experience much lower gain than the
modes at 975 nm. Thus the latter have lower lasing threshold and dominated the
lasing spectra.

9.3.2 3D Photonic Network Structures

Although many studies have demonstrated that PBGs can be formed in 2D and 3D
PAS with short-range order [10, 14, 16–18, 48, 50], the exact physical mechanism
or condition for the PBG formation in PAS is not well understood. Our recent nu-
merical study aims to improve the fundamental understanding of PBG formation in
PAS, which would allow researchers to design photonic amorphous materials with
optimized and tunable PBGs.

In addition to geometric order, structural topology plays an important role in
forming a PBG. For the composite dielectric materials consisting of two compo-
nents with different refractive indices, there are two cases regarding the topology
of the high-index component. (i) Cermet topology: the high-index material consists
of isolated inclusions, each of which is completely surrounded by the low-index
material. (ii) Network topology: the high-index material is connected and forms a
continuous network running through the whole composite. Previous studies of pe-
riodic structures have indicated that the cermet topology is more favorable for the
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PBG formation of a scalar wave, while the network topology for a vector field [51].
Such conclusions also apply to PAS. For example, in 2D PAS, PBGs for the trans-
verse magnetic (TM) polarization (electric field out of plane) are easily obtained
with isolated islands of high-index materials, because the electric field has same
polarization direction everywhere and can be regarded as a scalar wave. For the
transverse electric (TE) polarization (electric field in plane), the electric field has
varying polarization direction and behaves like a vector field, thus it is easier to pro-
duce PBGs in connected dielectric networks [52]. It has been proposed that a hybrid
structure with a mixture of both topologies can possess a full PBG for both TE and
TM polarizations [17].

It is much more difficult to form complete PBGs in 3D structures. Substantial
reductions in the density of optical states (DOS) have been demonstrated in PAS
composed of randomly packed dielectric spheres of uniform size [14], as a re-
sult of evanescent coupling of the Mie resonances of individual spheres. Dielectric
network structures, for example, the photonic amorphous diamond (PAD), exhibit
much stronger depletion of the DOS [16, 48]. It was conjectured that the tetrahe-
dral bonding configuration in the PAD plays an important role in the formation
of isotropic PBG. However, the PAD is constructed from a “continuous-random-
network” (CRN) originally developed for modeling of amorphous Si or Ge [53],
thus it is difficult to separate the relative contributions of tetrahedral bonding and
local geometric order to the PBG formation. Identifying the key parameters that de-
termine when a PBG will form in PAS is important not only for developing novel
photonic glasses [54], but also for understanding color generation in nature [24].
Both cermet and network topologies have been found in color-producing PAS of
many animal species [27, 28]. It is also conjectured that pseudo PBGs may be
formed and responsible for non-iridescent coloration of many PAS [55].

This section presents a detailed numerical study of the DOS and PBGs in 3D
PAS. We vary the topology, short-range geometric order, refractive index contrast,
and filling fraction to maximize the depletion of DOS and the strength of PBG in the
absence of long-range structural order. This study allows us to identify the essential
elements for the formation of PBGs in PAS.

Network Generation and Characterization

We first study dielectric composites with the cermet topology—high-index dielec-
tric spheres embedded within a low-index host material (air). We employ a two-
stage numerical protocol to generate ‘just-touching’, jammed sphere packings in a
cubic simulation cell with varying positional order [33, 56]. First, liquid states of
monodisperse spheres are cooled at fixed packing fraction φ = 0.60 from an ini-
tial high temperature T0 to zero temperature at different rates. In the second step,
each zero-temperature configuration is compressed in steps of �φ = 10−3 followed
by minimization of the total energy until a static packing with infinitesimal parti-
cle overlaps is obtained. By varying the cooling rate, we are able to create static
packings with a range of positional order and packing fractions from random close
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Fig. 9.20 Three examples of photonic amorphous structures: (a) jammed packing of dielectric
spheres at φ = 0.64, (b) inverse structure of (a) with air fraction γ = 0.8, and (c) tetrahedral
network of dielectric rods with γ = 0.8 obtained from the Delaunay tessellation of (a). Reprinted
with permission from [58], Copyright 2008, Wiley-VCH

packing at φ = 0.64 to the face centered cubic (FCC) structure at φ = 0.74. In
general, the slowly cooled samples can be compressed to higher packing fractions.
Figure 9.20 (a) shows a cluster of 50 spheres from the interior of a jammed sphere
packing containing 1000 spheres at φ = 0.64. For comparison, we generate com-
pletely disordered configurations by placing spheres randomly in the cubic box with
no overlaps at φ = 0.35.

We also generate structures with network topologies, where the high-index di-
electric material forms the continuous network, using two methods. For the first
method, we invert the cermet structure of jammed dielectric spheres in air. The in-
verse structure consists of low-index (air) spherical inclusions in a continuous high-
index dielectric network. By adjusting the radius R of the spheres (but fixing their
positions), we can vary the air fraction γ in the inverse structure. An inverse struc-
ture with γ = 0.8 is shown in Fig. 9.20 (b). At this γ , adjacent air spheres begin to
overlap and the dielectric material exhibits an irregular topology.

The second method, which is based on an algorithm described in Refs. [17, 57],
produces more uniform network topologies than those from the first method. In
this method, a 3D Delaunay tessellation is performed on the sphere centers from
the cermet structures. Each tetrahedron of the tessellation has four facets shared
with four neighbors. We then calculate the center of mass of each tetrahedron, and
connect the centers of mass of nearest neighbors by a dielectric rod. This creates
a tetrahedrally connected dielectric network, where each junction (vertex) has four
dielectric bonds. All dielectric rods have same radius W , but different lengths d . By
changing W , we can vary the air fraction γ . A tetrahedral network with γ = 0.8 is
shown in Fig. 9.20 (c).

We now calculate the density autocorrelation function and spatial Fourier spectra
of the cermet and network structures described above. Since the dielectric spheres
embedded in air and the corresponding inverted structure possess identical geomet-
rical properties, we focus only on the air spheres and tetrahedral network structures
below.

As shown in the inset to Fig. 9.21 (a), the 3D spatial Fourier transform of the
tetrahedral network structures displays concentric spherical shells without discrete
Bragg peaks, which reflects structural isotropy and a lack of long-range order. The
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Fig. 9.21 Structural characterization of photonic amorphous structures. (a) Angle-averaged power
spectra of the spatially Fourier transformed density for jammed sphere packings (dashed line)
and tetrahedral networks (solid line) versus qa/2π , where q is the spatial frequency and a is
the mean spacing between spheres. The inset shows a cross-section of the 3D power spectrum
for the tetrahedral network. (b) Angle-averaged density autocorrelation for the sphere packing
and network structures. The inset shows the amplitudes of the oscillatory peaks of C(�r) for
sphere packings (circles) and tetrahedral networks (crosses). Reprinted with permission from [58],
Copyright 2008, Wiley-VCH

radii of the shells provides the characteristic spatial modulation frequencies of the
structures. Similar results are obtained for the tetrahedral networks generated from
the jammed sphere packings. The angle-averaged power spectra for both sphere
and network structures are plotted in Fig. 9.21 (a). The main peak represents the
dominant spatial frequency, and its width is inversely proportional to the average
size of ordered domains [19]. The sphere and network structures have similar peak
widths, and thus comparable domain sizes.

We also calculated the real-space density autocorrelation function C(�r) av-
eraged over all angles for the sphere and network structures [19]. As shown in
Fig. 9.21 (b), both structures display highly damped oscillations of C(�r). The
first peak away from �r = 0 is located at the average spacing a between nearest
neighbors. We find that the amplitudes of the oscillatory peaks decay exponentially
[inset to Fig. 9.21 (b)] with a decay length (excluding the first peak) ξr ≈ 0.9a for
the sphere packings and 1.1a for the tetrahedral networks. Hence, there are weak
spatial correlations and short-range order in these PAS.

DOS of PAS with Cermet and Network Topologies

In this section, we compare the DOS for jammed dielectric spheres in air, the in-
verse structure, and the tetrahedral networks of dielectric rods using the order-N
method [36]. We choose a cubic supercell with size 8.7a containing 1000 spheres
and refractive indices n= 3.6 and 1 for the high- and low-index materials, respec-
tively. We find that the optimal air fraction that yields the largest reduction of the
DOS is γ = 0.75 for the dielectric sphere packings and 0.80 for both the inverse
structure and tetrahedral network. The DOS was ensemble-averaged over five dis-
tinct configurations at the optimal γ for each topology, and then normalized by the
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Fig. 9.22 DOS for
(a) jammed dielectric spheres
in air with γ = 0.75,
(b) inverted structures with
γ = 0.8, and (c) tetrahedral
networks with γ = 0.8. The
wavelength λ is normalized
by the mean spacing between
spheres a (average bond
length d) on the top (bottom)
scale. Reprinted with
permission from [58],
Copyright 2008, Wiley-VCH

DOS of a “homogeneous” medium with the same γ . The latter structure is gen-
erated by placing cubic dielectric voxels (with lateral dimension 0.043a, which is
much smaller than the wavelength of light λ) randomly in the supercell.

As shown in Fig. 9.22, the maximal DOS reduction occurs in the tetrahedral net-
work structure, which is two orders of magnitude larger than that for the dielectric
spheres and inverse structures. For the tetrahedral networks, the PBG is formed at
normalized frequency d/λ≈ 0.22, where d is the average length of dielectric rods
and d/a = 0.39. The width of the PBG normalized by the gap center frequency is
∼5.5 %. The modest reduction in the DOS at a/λ≈ 0.41 for the dielectric spheres
stems from Mie resonances of individual spheres [14]. The uniformity of the dielec-
tric spheres allows the coupling of their Mie resonances, which of the lowest order
for isolated dielectric spheres in air occurs at a/λ≈ 0.41. In contrast, the air sphere
structures have only a small reduction of the DOS in the frequency range where the
tetrahedral networks show a pronounced PBG, despite the fact that both structures
have dielectric network topology and similar degree of spatial correlation. It is clear
that the dramatic difference in the DOS cannot be explained by the small differences
in spatial correlations.

Our studies of jammed dielectric sphere packings show that uniformity in the
size of dielectric spheres leads to strong coupling of Mie resonances that result in
a depletion of the DOS. In the inverse structure of air spheres, the basic scattering
unit is the dielectric filling between air spheres. For the tetrahedral network struc-
ture, the basic scattering unit is centered at each junction where four dielectric rods
meet. Note that in the network topology, the adjacent scattering units are connected,
in contrast with the cermet topology. To compare the uniformity of local scatter-
ing units in dielectric networks, we calculate the average refractive index near the
center of each unit. For the tetrahedral network structure, we calculate the mean re-
fractive index n̄ within a sphere of radius r whose center coincides with the center
of each junction. We then compute the average 〈n̄(r)〉 and its variance V (r) over
all junctions. For the air spheres, the dielectric junction center is set at the center of
refractive index distribution within each tetrahedron obtained from the 3D Delaunay
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Fig. 9.23 Uniformity of the local scattering environment for the dielectric networks of tetrahe-
dral bonding (solid line) and air spheres (dashed line). (a) Mean index of refraction 〈n̄(r)〉 and
(b) variance V (r) within a distance r from the dielectric junction center. r is normalized by the
mean spacing of spheres a (average bond length d) on the top (bottom) scales. Reprinted with
permission from [58], Copyright 2008, Wiley-VCH

tessellation of the sphere centers. Similarly, we calculate the mean refractive index
n̄ around each junction center, 〈n̄(r)〉, and V (r) averaged over all junctions.

In Fig. 9.23 (a) we show that on average the tetrahedral network and air spheres
structure have similar distributions of the mean refractive index 〈n̄(r)〉 around each
dielectric junction. In addition, the average refractive index for both networks ap-
proaches the same value at large r since the air fraction γ is the same for both
structures. However, the variance V (r) of n̄ for the two network structures shows
marked differences for all r as shown in Fig. 9.23 (b). The tetrahedral network pos-
sesses much smaller fluctuations in n̄ from one junction to another. Thus, the scat-
tering units are much more uniform for the tetrahedral network than those in the air
spheres. The uniformity of local refractive index distribution ensures similar scat-
tering characteristic of individual dielectric junctions and facilitates their coupling
which leads to a dramatic depletion of the DOS.

The formation of a PBG in the tetrahedral network structure also depends on the
air fraction γ and the refractive index of the dielectric material n. In Fig. 9.24 (a),
we show the variation of the PBG for different values of γ while keeping n at 3.6.
Reducing the air fraction below 0.8 leads to a decrease in the PBG. A reduction in
γ increases the average refractive index of the structure, thus reducing the ratio of
the index difference (n− 1) to the average refractive index. It leads to a decrease of
the overall scattering strength, and a weakening of the PBG. In contrast, if γ is in-
creased to above 0.8, there is an insufficient amount of high-index material to scatter
light. Thus, there exists an optimal air fraction γ at which the scattering strength is
maximal and the PBG is the largest. The optimal value of γ varies with the refrac-
tive index contrast. As shown in Fig. 9.24 (b), as n decreases, the maximal DOS
reduction shifts to smaller γ value. In addition, the DOS dip becomes shallower,
reflecting the PBG effect is weaker at lower refractive index contrast. While the
depth of DOS reduction changes slightly when n varies from 3.6 to 3.2, it drops by
nearly two orders of magnitude with a further reduction of n from 3.2 to 2.8. This
threshold behavior indicates there is a cut-off value of n for the PBG formation in
the tetrahedral network structure.
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Fig. 9.24 DOS of tetrahedral networks for different values of the air fraction γ and refractive
index n. (a) n = 3.6, (i) γ = 0.85, (ii) γ = 0.72, and (iii) γ = 0.6. (b) (i) n = 3.2, γ = 0.77,
(ii) n= 3.0, γ = 0.74 and (iii) n= 2.8, γ = 0.72. Reprinted with permission from [58], Copyright
2008, Wiley-VCH

Effects of Short-Range Order

In addition to the factors studied above, short-range positional order and tetrahedral
bond order play important roles in the formation of PBGs in PAS. In this section,
we focus on the dielectric network of tetrahedral bonding, which yields the largest
PBGs, and vary the amount of positional and tetrahedral bond order. In particular,
we tune the positional order of the original sphere packings from which the tetrahe-
dral networks are formed. The degree of positional order increases with the volume
fraction of spheres φ, which varies from 0.35 to 0.69. We label the tetrahedral net-
works (Fig. 9.25 (a)–(c)) generated from the sphere packings at φ = 0.35, 0.64, and
0.69 as A, B , and C. 2D cross-sections of the 3D spatial Fourier spectra for these
structures are presented in Fig. 9.25 (d)–(f). The power spectra of networks A and
B consist of concentric shells, but the shell width is notably larger for A. Thus both
A and B are isotropic structures, but B possesses more positional order than A. In
contrast to A and B , network C features discrete diffraction peaks in the Fourier
spectrum, and the structure is no longer isotropic.

In Fig. 9.26, we compare the DOS of the tetrahedral networks A, B , and C,
with the refractive index of the dielectric rods set to n = 3.6. By adjusting the di-
electric rod radius W , we find that the optimal air fraction for all three structures
is γ = 0.8. As expected, network A, with the least positional order, possesses the
smallest depletion in the DOS. However, network C with the strongest degree of
positional order has a smaller DOS depletion than network B . This result contrasts
with recent findings for 2D PAS with air cylinders embedded in dielectric materi-
als that show increasing positional order leads to stronger DOS depletion [19]. To
understand these results, we must also compare the uniformity of the local refrac-
tive index distribution and the structural topology of the three network structures at
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Fig. 9.25 Tetrahedral dielectric networks generated from sphere packings with packing fraction
(a) φ = 0.35, (b) 0.64, and (c) 0.69. 2D cross-sections of the 3D spatial Fourier spectra of the corre-
sponding tetrahedral networks are shown in (d), (e), and (f). Reprinted with permission from [58],
Copyright 2008, Wiley-VCH

Fig. 9.26 The DOS for three
tetrahedral dielectric
networks (a) A, (b) B , and
(c) C with positional order
increasing from A to C.
Reprinted with permission
from [58], Copyright 2008,
Wiley-VCH

fixed radius W of the dielectric rods. We find that networks B and C have compara-
ble fluctuations in n̄ over all the junctions. Thus, local uniformity does not explain
the difference in the depletion of the DOS for networks B and C.

To investigate the effects of local topology on the depletion of the DOS, we
compute the tetrahedral order parameter [17, 48]

ζ = 1 − 3

8

3∑
j=1

4∑
k=j+1

(
cosψjk + 1

3

)2

, (9.10)

where ψjk is the angle between two dielectric rods joined at a junction in the tetra-
hedral network [59]. For a periodic diamond network, ψjk = 109.5◦, cos(ψjk) =
−1/3 for all j and k, and thus ζ = 1 at each junction. If the dielectric rods are ran-
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Fig. 9.27 Characterization of the local topology for networks A, B and C. (a) The distribution
of angles ψjk between dielectric rods j and k at each tetrahedral junction. The vertical dashed
line indicates the angle for the periodic diamond structure, ψjk = 109.5◦. (b) Distribution of the
tetrahedral order parameters ζ at each junction. The average ψ̄jk and ζ̄ and standard deviations sψ
and sζ are also provided. Reprinted with permission from [58], Copyright 2008, Wiley-VCH

domly orientated, 〈ζ 〉 = 0. In Fig. 9.27, we plot the distributions of ψjk and ζ for
the A, B , and C networks, and provide the mean values (ψ̄jk or ζ̄ ), and standard
deviations sψ and sζ .

Network A possesses the widest distributions for both ψjk and ζ , which indi-
cates that the local topology varies significantly from one junction to another and
the bond angles within each junction are not uniform. The distributions of ψjk and
ζ are narrower for network B, and are peaked at ψjk = 114◦ and ζ = 0.95, which
indicates that most of the junctions have a similar topology to that in a diamond
lattice. In contrast, network C displays multi-modal distributions for ψjk and ζ . For
example, the ζ distribution possesses peaks at ζ = 0.95, 0.72, and 0.5. The first peak
reveals that there are many junctions with strong tetrahedral order, while the second
and third peaks reflect the existence of many “defect” junctions with low ζ . Such
defect junctions are likely located at domain boundaries, and introduce irregularity
in the local configuration of scattering units. Figures 9.26 and 9.27 show that pho-
tonic amorphous networks with strong tetrahedral order and few defect junctions
have broad PBGs.

9.4 Conclusion

In our numerical study on the density of optical states (DOS) in 2D photonic struc-
tures with short-range positional order, we observe a transition from polycrystalline
to amorphous photonic systems. In polycrystals, photonic band gaps (PBGs) are
formed within individual domains, which leads to a depletion of the DOS similar to
that in periodic structures. In amorphous photonic media, the domain sizes are too
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small to form PBGs, thus the depletion of the DOS is weakened significantly. The
critical domain size that separates the polycrystalline and amorphous regimes is de-
termined by the attenuation length of Bragg scattering, which depends not only on
the degree of positional order but also the refractive index contrast of the photonic
material. Even with relatively low refractive index contrast, we find that modest
short-range positional order in photonic structures enhances light confinement via
collective scattering and interference.

Experimentally we have demonstrated lasing in photonic polycrystals and amor-
phous structures. 2D arrays of air holes were fabricated in a free-standing GaAs
membrane, and the average size of ordered domains was gradually varied. InAs
QDs embedded in the GaAs membrane provide gain under optical pumping. In
a photonic polycrystal, defect modes at the center frequency of PBG are tightly
confined in-plane, causing strong light leakage out of the plane. The lasing modes
shift away from the PBG center to reduce the out-of-plane leakage. In a photonic
amorphous structure, the depletion of DOS is significantly weakened, and the las-
ing modes have less in-plane confinement. Nevertheless, the short-range structural
order improves optical confinement and enhances the Q factor at certain frequency.
Consequently, lasing becomes the most efficient, i.e., the laser emission becomes
the strongest, at such frequency. The optimal lasing frequency can be tuned by the
structure factor. The photonic polycrystal laser and amorphous laser are in between
the photonic crystal laser and random laser. Our study demonstrates that lasing can
be manipulated by varying the short-range order of the nanostructures.

In addition, we compare the DOS in 3D photonic amorphous structures with
cermet and network topologies. We find that interconnected networks of high-index
material with uniform dielectric junctions and tetrahedral bonding give rise to large
isotropic PBGs. Further, reduced fluctuations in the refractive index around each
junction and strong tetrahedral order for the angles between the dielectric rods that
form the junctions enhance isotropic PBGs. High refractive index contrast and a low
fraction of high-index material are also important to PBG formation. We have thus
identified several parameters that can be tuned to create broad isotropic PBGs in
photonic amorphous structures in the absence of long-range structural order.

We also fabricate 2D trivalent network structures with short-range order in a
free-standing GaAs membrane. Such structures display wide isotropic photonic
bandgaps. We have realized lasing in the dielectric bandedge modes with optical
pumping. The bandedge modes are spatially localized, different from the extended
bandedge modes in photonic crystals. By varying the characteristic length scale of
the network structure, we can tune the lasing frequency within the gain spectrum of
InAs quantum dots.

The future work includes fabrication of 3D photonic network structures, which is
more difficult than fabricating 2D structures. Since such structures have only short-
range order, they may be fabricated by self-assembly, which is much easier than the
fabrication of 3D periodic structures. In fact, 3D photonic network structures have
already been produced routinely in nature, and our preliminary studies suggest they
are formed by phase separation, e.g., spinodal decomposition [27]. We can mimic
nature to make photonic amorphous structures in mass quantity at room tempera-
ture [60]. Furthermore we can outperform the natural structures by using inorganic
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materials with large refractive index contrast to enhance the interaction with light,
or incorporating active materials with gain or nonlinearity to achieve new function-
alities.
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Chapter 10
Amorphous Nanophotonics in Nature

Stephen Luke and Peter Vukusic

Abstract Visual appearance generates stimuli associated with many biological
functions, including interspecies and intra species communication. A range of bi-
ological structural colour mechanisms has been identified. These mechanisms in-
clude highly periodic microstructures associated with bright and saturated colours,
and amorphous structures which produce broadband colours and generally diffuse
reflectances. In this chapter several highly functional amorphous structures found in
biological systems are detailed, and their optical characteristics are described.

10.1 Introduction

Colour production in nature can be broadly separated into two distinct categories,
based on two levels of animal morphology [1]. The majority of bright appearances
found in nature are derived through chemical pigmentation. These are achieved
through selective absorption (or scattering) of particular wavelengths of light. An
alternative strategy, one which often results in ultra-bright appearances, is the use
of sub-micrometer structures. The interaction of light with these intricate micro-
structures, constructed from material which itself shows little or no intrinsic optical
absorption, can produce vivid colours and often stunning visual effects.

Although this chapter will focus primarily on amorphous structures and broad-
band appearances, this section will introduce the reader to the field of natural pho-
tonics as a whole and will include detail of periodic structures. Presentation of de-
tails of all structural colour identified to date would be an enormous task and require
considerable space. As such a very brief overview of many of the structural colour
mechanisms will be given, using examples to highlight the optical effects associ-
ated with the structural types. The majority of colour mechanisms that have been
identified employ a periodic structure, in either 1, 2 or all 3 dimensions, and re-
sult in bright, narrow-band reflectance. Whilst not strictly the remit of this chapter,
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an introduction to natural photonics would not be complete without describing the
microstructure and optical mechanisms which are responsible for the majority of
biological structural colour.

The saturated colours and often brilliant visual effects found in nature have in-
spired significant scientific study. The earliest record of such study is the work of
Robert Hooke, reported in his 1665 publication ‘Micrographia’ [2]. Hooke correctly
concluded that the bright colouration of duck and peacock feathers is a structural
effect that arises as the result of the interaction of light with alternating layers of
two different materials. Newton also undertook studies of avian colour appearance
mechanisms and reached a similar conclusion to that of Hooke, this was described
in his work ‘Opticks’ [3], published in 1704. Significant progress in the field was
achieved by Lord Rayleigh who used Maxwell’s equations of electromagnetism to
develop a theory of reflection from stratified surfaces [4]. A subsequent review of
the field, published in 1919, concluded that many bright colours found in birds,
beetles and beetles were ‘structural colours’, resulting from thin film interference,
rather than pigmentary colours [5].

Since these early works the invention of the electron microscope has revealed a
broad range of structural colour mechanisms associated with many intricate struc-
tural designs. Whether the purpose is high reflectivity for intra-specific signalling,
cryptic colouration or one of several other possible purposes, such optical systems
have evolved to perform a function and have been under continuous evolution, in re-
sponse to selection pressures for, in some cases, hundreds of millions of years. It is
therefore unsurprising to find a diverse array of structural colouration mechanisms
in the natural world which are seemingly optimised to perform specific biological
functions.

Reviewing the literature concerning natural photonic structure will identify a
broad range of optical effects in a broad range of animals and insects. From this
literature it is apparent that a large proportion of natural photonics arise from either
optical interference associated with multilayer structures or with diffraction associ-
ated with surface or bulk periodic structures [1]. Multilayer systems, or 1D photonic
crystals comprising alternating layers of high and low refractive index materials,
are prolific in nature. While some systems exist in which the multilayering exists in
broad flat layers, it is more often incorporated within a more specialist design that is
best suited to a specific function, physiology or environment [1]. The Morpho genus
of butterflies is an often quoted example of a specialised 1D photonic structure. The
brilliant blue wings (see Fig. 10.1(a)), quoted as being visible from a quarter of a
mile away, arise from the interference of light reflected from the discrete multilayer
system contained on Morpho wing scales (Fig. 10.1(b)). Absorbing pigments and
imperfect periodicity amongst the discrete stacks of layers enhances the saturation
of the blue colour and the spread the reflection into a wider angle range [6].

Periodicity in 2D is also a geometry that leads to colour production in nature. An
interesting example of structural colour effected by a 2D periodic structure is that
exhibited by the marine polychaete worm Aphrodita (sea mouse). The sea mouse has
a body which is covered in short hair-like structures known as setae which display
exceptional iridescence (see Fig. 10.1(c)). The core of each setae comprises a bundle
of thin wall chitin tubes held together in a 2D hexagonal packed array. Coherent
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Fig. 10.1 (a) Optical image showing the blue iridescent colour of a typical Morpho species.
(b) TEM image of a transverse section through a typical Morpho wing scale. Multilayer inter-
ference from the 1D periodicity results in the bright blue reflection from the wings. (c) Optical
image of the ‘sea mouse’ Aphrodita, note the iridescent hair like structures, called setae. (d) This
iridescence is effected by diffraction from a 2D photonic structure within in setae. (e) The weevil
Eupholus magnificus displays bright blue and green stripes, both colours are structural in origin.
(f) The green colour results from Bragg scattering of light from a highly ordered 3D photonic
crystal within the scales covering the weevils body. Scale bars: All 2 µm. (d) Reprinted with per-
mission, ©2010, American Physical Society. (e) and (f) Reprinted with permission, ©2011, Optical
Society of America

scattering from this periodic structure results in the coloured reflection. In Aphrodita
the diameter of the cylindrical tubes varies from 100 nm up to 360 nm, resulting in
the large range of reflected colours [1, 7].

Remarkable 3D periodicity has been identified in certain insect species, including
both Lepidoptera and weevils. The weevil Eupholus magnificus (Fig. 10.1(e)) is
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a remarkable example of structural colour as its colour appearance is associated
with both fully ordered (Fig. 10.1(f)) and quasi-ordered 3D photonic crystals [8].
Coherent scattering of light from planes of material within the structure creates the
yellow–green reflection. The 3D crystal is usually in the form of a poly-crystal,
smaller domains of the lattice structure in various orientations formed together to
form a solid. For any given illumination, the colour reflected from each domain will
depend on its orientation, the macroscopically observed colour is simply a spatial
average of the reflection from each domain. Reorienting the crystal changes the
reflected colour from each domain but not the system as a whole. Put simply, the
domaining of the crystal acts as an iridescence reducing mechanism, believed to
help with predator avoidance through camouflage [1, 8].

Broadband scattering systems in nature have been identified and studied but there
is not a wealth of literature devoted to the subject. Mason [9] dedicated a portion
of his early work on insects to white species. Without the aid of the electron micro-
scope he was unable to inspect the detailed nature of the sub-micron structures but
his work has proven to be accurate nonetheless. His work inspected many species
of white butterfly with colour appearances ranging from chalky white to highly lus-
trous, near-metallic whites. He concluded that the differences between the observed
effects were due to the differences in microstructure. The chalky matt white of pierid
butterflies was caused by uniform scattering in all directions from a disordered ar-
rangement of reflecting surfaces, the uniform nature of the scatter results in a lack of
‘high lights’ (gloss) [9]. Electron microscopy has since revealed this to be the case.
Lustrous whiteness, such as that exhibited by species of the moth genus Euproctis,
is created by a combination of optical scattering from fine scale structures contained
within its relatively transparent scales, and stacking of the scales in layers. The dif-
ference between matt white and pearly white, Mason concluded, was dependent on
the amount of fine scattering structure. Scales that exhibit minimal scattering struc-
ture and scales that overlap in a layered manner often exhibit minimal diffuse scatter
and therefore display lustrous, near-metallic whiteness [9].

In this chapter recent discoveries of broadband scattering structures found in na-
ture will be discussed. As for the narrow band examples detailed above the focus
will be on insects. Broadband scattering microstructure found in both butterflies and
beetles will be discussed, including details of the key structural parameters and the
mechanisms by which they function.

10.2 Amorphous Nanostructures in Insects

10.2.1 Lepidopteran Colouration

Some of the brightest colours seen in nature are those displayed by butterflies and
moths (order Lepidoptera). Such colouration has inspired a significant amount of
scientific interest leading to lepidopteran colour appearance strategies becoming
widely studied e.g. [6, 10, 11]. The extensive study of lepidopteran systems has
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led to them being amongst the best understood and has led to the identification of a
number of diverse structural types.

The name of the order Lepidoptera is derived from the Ancient Greek words
for ‘scale’ and ‘wing’. Almost without exception, all members of the order exhibit
scales on their wings. It is the scale covering which is largely responsible for wing
colouration, either through pigmentation or through microstructure on the surface
of, or contained within, the wing scales [10, 11]. Each scale is a flattened projection
of cuticle from an epidermal cell within the surface of the wing. Although a large
range of scale structures have been identified, most scales conform to a basic pat-
tern, even the most specialised scales share features with basic unspecialised scales.
The scales feature a stalk (petiole), which fits into a socket on the wing surface,
and a main body of the scale (blade). The blade has two surfaces, the upper and
lower laminae. The lower lamina, which usually faces the wing surface and is not
exposed, is usually relatively flat and featureless. The upper lamina usually features
prominent ridges running from root to tip [10]. These ridges are often seen to be
connected by a perpendicular series of cross-ribs, creating windows to the empty
scale interior. Pillar-like trabeculae appear throughout the scale, with the apparent
role of separating the upper and lower laminae [10].

Pieris Rapae, the Small Cabbage White Butterfly

The small cabbage white butterfly (Pieris rapae) is a member of the Pieridae family
and is common across much of the world (see Fig. 10.2(a)). Its chalky white colour
is structural in origin, resulting from a disordered structure within its wing scales
(see Fig. 10.2(b)). P. rapae wing scales conform to the basic scale structure pre-
viously described, with longitudinal ridges and perpendicular cross-ribs. The spe-
cialised part of the scale structure, seen in many pierid species, comprises a dense
array of ellipsoidal beads of pterin, contained within the empty void between the
upper and lower scale lamina (see Fig. 10.2(c)). The array appears to ‘hang’ from
both the ridges and cross-ribs [12, 13]. A gender difference has been noted with
males pierids seen to exhibit a much denser bead-array within their scales [14].

Wing colour of the pierid family has been the subject of numerous studies and
significant literature exists. Identification of the scale microstructure was not pos-
sible prior to the invention of the electron microscope. Studies, therefore, focused
on the macroscopically observable properties of the wing. This work revealed the
marked gender difference, identified as significantly reduced UV reflectance for
males [15, 16]. The strong UV absorption identified is associated with the pterin
class of pigments. Pterins are a class of pigments with differing absorption proper-
ties. Erythopterin absorbs wavelengths up to approximately 500 nm resulting in the
bright yellow colour of many pierid species [17]. Leucopterin absorbs exclusively
in the UV and is the likely pigment present in the scales of P. rapae.

Early scanning electron microscope (SEM) studies allowed microscopic anal-
ysis of the wing scales and revealed the extent of the presence of the ellipsoidal
beads suspended from the scale ridges and cross-ribs [18]. Further research later
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Fig. 10.2 (a) Optical image showing the chalky white wings of the small cabbage white P. rapae.
(b) As with the majority of lepidoptera, the wing colouration is effected by a covering of scales.
(c) P. rapae wing scales possess ridges and orthogonal cross-ribs, common to most butterfly species
scales. The dense array of ellipsoidal beads is a common feature amongst pierid species. The beads
effect both strong UV absorption and enhance visible wavelength light scatter. Scale bar: (c) 1 µm

concluded that the UV absorbing pigment was is isolated within these dense bead-
arrays [19–21].

More recent work by Stavenga et al. has suggested that these beads also play
an important role in enhancing broadband light scatter from the wing scales [22].
Morehouse et al. presented evidence for this when they detected a correlation be-
tween pterin bead-array density and absolute reflectance of the wings of the pired
butterfly Pontia protodice [19]. To establish a similar trend for the species P. rapae
it was necessary to alter the bead-array density of the wing scales of that species.
Using a method outlined by Rutowski et al. [21] the pterin beads were dissolved
using an immersion technique involving isopropyl alcohol and dilute ammonium
hydroxide (NH4OH). SEM imaging of the wing scales post immersion confirmed
the reduction in the bead-array density (see Fig. 10.3).

Initially beads suspended in the scale windows are removed (Fig. 10.3(b)); it
is likely that these beads are removed first due to the fragile supporting links
which hold them within the windows being dissolved. For longer immersion times
(Fig. 10.3 (c) and (d)) the beads appear to dissolve, thereby reducing in volume
and eventually number until no beads remain. Bead-array density was calculated for
all wing samples after immersion in the NH4OH solutions. Bead-array density was
found to be negatively correlated with immersion time in NH4OH.

Removal of the bead-array had two principle effects on wing reflectance
(Fig. 10.4 (a)). At short wavelengths (400–450 nm) reflectance increased from ca.
8 % for untreated wings to ca. 40 % for wings from which all the beads had been
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Fig. 10.3 Immersion of P. rapae wings in dilute ammonium hydroxide preferentially dissolves the
beads over the wing superstructure. Longer immersion times result in greater bead removal. SEM
images depicting the extent of the pterin bead array in male P. rapae wings: (a) Untreated wing;
(b) after immersion for a short period of time (15–30 seconds); (c) after immersion for an inter-
mediate period (60–90 seconds); (d) complete bead removal after immersion for approximately
120–150 seconds. Scale bars: 2 µm

removed. This is entirely expected due to the removal of the absorption of the pterin
pigment associated with the beads. Conversely, reflectance at longer wavelengths
was reduced from ca. 65 % for untreated wings to ca. 50 % for treated wings. This
is symptomatic of the decrease in optical scatter due to the removal of the pterin
bead scattering centres.

At short wavelengths where UV absorption by the pterin pigment is significant,
there is a strong negative correlation between total wing reflectance and bead-array
density. At a wavelength of ca. 430 nm there appears to be a critical point where
the reduction in optical scatter associated with pterin bead removal is balanced by
the reduction in optical absorption by the pterin. At approximately this wavelength,
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Fig. 10.4 Optical effects of removing the beads from the wing scales of male P. rapae butter-
flies. (a) The dual role of the beads is apparent from the reflectance spectra, as the beads are re-
moved UV reflectance significantly increases and visible wavelength reflectance decreases. (b) Re-
flectance spectra were recalculated using Kubelka–Munk theory into an optical scatter coefficient.
This quantitatively reveals the extent of non-bead optical scatter

the NH4OH solution has very little effect on the wing reflectance, despite the ma-
jor modification of the wing scale structures. At longer wavelengths (λ > 430 nm),
where optical scattering rather than absorption dominates, there is a positive corre-
lation between bead-array density and wing reflectance. This data is consistent with
the previous work on P. rapae conducted by Morehouse [19] and Stavenga [22],
it strongly implies that for P. rapae, the wing scale pterin bead-array density is a
significant factor in explaining wing reflectance and thus its appearance.

Calculation, using Kubelka–Munk theory [23], of the light scatter coefficient (S)
of the wing samples enables their optical properties to be understood more clearly.
This technique is regularly used in the paper manufacturing industry where the op-
tical properties of the product are critical. Presented here is a novel application of
the theory to a natural scattering system. Figure 10.4(b) shows the relationship be-
tween the light scatter coefficient and pterin bead-array density for male P. rapae
wing scales. Light scatter is observed to increase with increasing bead-array den-
sity; this again confirms that the beads are a major contributor to wing reflectance
through enhanced optical scatter. This analysis, however, also shows quantitatively
that non-bead intra-scale structures contribute to the optical scatter observed [24].
The remaining light scatter results from the bi-grating-like superstrate, or the planar
substrate of the wing scale, or a combination of both.

Finite element modelling further indicates the optical scattering role of the scale
superstructure. Models consisting of 2D cross-sections through the wing structure
were constructed and the simulated scattered power from the system calculated. In
the absence of better data, a refractive index of 1.56, similar to that of generic cuti-
cle was used [6]. The pterin absorption profile was also incorporated. The primary
focus on the modelling was the presence of the planar scale substrate, an approxi-
mately 100 nm thick layer of chitin forming the lower surface of the wing scales.
The effect of the presence of the scale substrate is clearly demonstrated in the sim-
ulations. Scattered power density in the dorsal hemisphere is significantly increased
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when the scale substrate is included in the model. A mean enhancement of approx-
imately 2.54 is observed when the scale substrate is included compared to when
it was omitted (over a wavelength range of 300–800 nm). The enhancement factor
appears to follow the reflectance spectrum of the substrate indicating that the planar
substrate acts as a mirror, reflecting light scattered by the beads and enhancing the
scale reflectance. The key result of this modelling is the indication that while the
pterin beads enhance optical scatter from the scales, they are not solely responsible
for it, in line with the optical data presented by previous research and within this
section. The remaining scale structure, specifically the scale substrate, is also a vital
component in the scattering system.

Significant research has been conducted on the mating habits of pierid butterflies.
Obara [25] and Rutowski [26] suggest that UV absorption by the wings is crucial in
distinguishing between males and females. This is particularly the case for P. r. cru-
civora where there is a distinct sexual dimorphism. This dimorphism is not so dis-
tinct for British P. rapae species, the wing scales of both male and female of which
are adorned with beads and subsequently exhibit low UV reflectance [14]. Only at
longer, visible wavelengths does the magnitude of the reflectance significantly differ
between males and females. Obara and Majerus conducted experiments on British
P. r. rapae and observed that the lack of distinct sexual dimorphism occasionally led
to males approaching other males mistakenly in courtship [27].

Rutowski et al. and Kemp et al. suggest that the UV reflectance generated by
wing scales in the butterfly Colias eurytheme contains information about the quality
of the lamellae-based nanostructure that generates the signal [21, 28], giving an
honest indication of the condition of the male butterfly. The contrast in reflectance of
short wavelengths (λ < 430 nm) to that of the longer wavelength region from male
P. rapae wings is directly correlated to the wing scale pterin bead array-density. This
may give a similar indication of the fitness of the individual; this hypothesis would
need to be confirmed by behavioural studies.

Morpho Cypris

The brilliant blue colour of the wings of Morpho butterfly species is one of the most
famous examples of so-called structural colour. In the introduction to this chapter
we saw that the scale ridges exhibit discrete multilayering in a ‘Christmas tree’ like
microstructure. Multilayer interference of light reflected from the periodic structure
results in the vivid blue colouration. A theoretical model has been proposed which
explains the extraordinary reflective properties of Morpho by introducing the coop-
eration of the regularity and irregularity of the structure [29].

Among the species of the Morpho genus, a few, e.g. M. cypris and M. rhetenor
helena, have a white stripe pattern on their brilliantly coloured blue wings. As white-
ness is generally associated with disordered structures and it is found here amongst
the vivid blue from a highly ordered structure it begs the question, what structural
difference is responsible for the optical difference between the blue and white re-
gions of the wing?
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Spatial analysis of both the dorsal (inner surface on closed wings) and the ven-
tral (outer surface) indicate that the white stripe pattern is almost identical on both
sides of the wing. Removal of the scales reveals that the pattern is repeated on the
wing membrane. SEM analysis reveals that the dorsal scales show little structural
variation irrespective of blue or white colouration, all dorsal scales exhibit the tree-
like structure with little or no variation in ridge number, size or spacing. The ventral
scales exhibit the unspecialised lepidopteran scale structure and again little variation
is seen between brown and white scales [30].

Optical measurements of the blue and white dorsal scales reveal in both cases a
strong reflectance peak at a wavelength of 470 nm. In spite of this spectral spike, the
wing stripe still appears white. The crucial difference between the blue and white
scales is revealed in the longer visible wavelength reflectance. Strong absorption
in the blue scales results in ca. 5 % reflectance for wavelengths longer than 550
nm [30]. For white scales this minimum is ca. 30 %. The blue light is still strongly
reflected from the white scales (as they have the tree-like structure) but the spe-
cial reflection properties of the Morpho wing negate the effect. The blue light is
reflected into a very narrow angular range, due to the anisotropy in the ridge lamella
structure. The higher reflectance of blue wavelengths is only applicable in a lim-
ited viewing angle, in the rest of the viewing hemisphere diffusely reflected light of
all wavelengths is visible, resulting in the white colouration. The dorsal scales also
contribute to the reflectance, removal of these scales sees a 10 % drop in reflectance
for all visible wavelengths [30].

10.2.2 Disordered Nanostructure in Coleoptera

Coleoptera form the largest and one of the most visually diverse animal orders on
earth. Their colour appearances range from extremely matt black through highly
saturated visible colours to broadband specularly reflecting surfaces [31, 32], many
also have detailed colour patterning [33]. A broad range of diverse structural colour
systems has been identified in many different beetles; these include two dimensional
surface diffraction gratings such as those found in a number of beetles in the Serica
genus [34, 35] and three dimensional photonic crystals in the scales of many weevils
[36, 37]. However, by far the most common structural colour system in beetles is
based on multilayers [33]. Different macroscopic appearances, including iridescent
colours and broadband reflection, have been attributed to variations in multilayer
design [38–40].

In contrast to the structures described in these highly periodic systems, which cre-
ate saturated colours and sometimes metallic appearances, the production of white-
ness requires an absorption-free microstructure that scatters all optical wavelengths
equally. Intense optical scatter from a structure containing many disordered reflect-
ing surfaces is require; it is this disorder that is responsible for the uniformity with
which all wavelengths are scattered.
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Cyphochilus is a scarab beetle reported to display brilliant whiteness from a
surface layer of scales with a thickness of only 5 µm [41]. This remarkable op-
tical performance arises from the interaction of light with a random filamentary
microstructure contained within the scales. The Cyphochilus system exhibits con-
siderably higher scattering efficiency than a typical synthetic counterpart, delivering
comparable optical performance for a significantly smaller layer thickness [41].

The remarkable optical properties of Cyphochilus suggest optimisation of the
scale design for optimal light scatter. The filament system previously identified can
be considered as a collection of discrete scattering centres. In such a system, the
phenomenon known as optical crowding reduces scattering efficiency if the scatter-
ers are spaced too closely together [42, 43], the brilliant whiteness of Cyphochilus
indicates that the scale design is optimised to limit optical crowding.

In this section the optimisation of the light scattering nanostructure within
Cyphochilus scales and those of two further white beetle species, Lepidiota stigma
and Calothyrza margaritifera, is detailed. Cyphochilus (Fig. 10.5(a)) is a mem-
ber of the Scarabaeidae family, often known as scarab beetles. Lepidiota stigma
(Fig. 10.5(c)) is a chafer beetle also of the Scarabaeidae family. Calothyrza mar-
garitifera (Fig. 10.5(e)) is a member of the Cerambycidae family, also known as
longhorn beetles or longicorns. All three species are native to south-east Asia.

In each case an amorphous nanostructure, that forms the interior of the scales,
has been identified as the source of the specimens’ white appearance. Examining
the scales of the three species by scanning electron microscope reveals the scales’
internal structure. In each case an outer envelope of cuticle surrounds the disor-
dered structure within. Both Cyphochilus and L. stigma exhibit a dense filamentary
network within their scales (Fig. 10.5 (b) and (d)). Typically these filaments have
diameters in the range 250–350 nm with a spacing of the order of 700 nm. Image
analysis indicates a scale void filling fraction of approximately 50–70 %. The white
elytral patches of C. margaritifera result from a thick covering of hair-like scales.
The internal structure of these is unlike that previously described; rather than fila-
mentary, this microstructure comprises disordered spheres aggregated together into
clumps and filaments (Fig. 10.5(f)). Imaging of the structure indicates a sphere di-
ameter of 300 nm and that the accumulated microstructure fills approximately 55 %
of the scales internal void.

The amorphous nature of these microstructures results in broadband optical scat-
ter, i.e. all wavelengths of light are reflected with approximately equal efficiency and
as a result all three species exhibit a bright white colour appearance. In fact these
species all exhibit remarkably efficient reflectance. A sheet of typical office paper
has a thickness of 100 microns; this is approximately ten times the thickness of any
of these beetle scales. Despite this, the paper only reflects between 5 % and 10 %
more light when compared to the beetle scales. Such remarkable optical scatter from
so little material indicates an exceptionally efficient and likely optimised scattering
system. Optimisation of the scale microstructure design could manifest itself in one
of three key parameters; the scale void filling fraction, the scattering centre size and
the scattering centre spacing. Where optimisation of these key parameters is evident,
strong optical scatter and bright white reflectance occur.
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Fig. 10.5 (a) The scarab beetle Cyphochilus derives its exceptional whiteness from a covering
of scales. (b) SEM of a single Cyphochilus scale revealing its highly disordered microstructure.
(c) and (d) Another scarab beetle Lepidiota stigma exhibits both similar whiteness and a sim-
ilar disordered scale microstructure. (e) The gloss white eltyral patches of the longhorn beetle
Calothyrza margaritifera are also the result of a scale covering. (f) With the scales of C. margar-
itifera is a disordered structure unlike that of the scarab species previously described. Scale bars:
(a), (c) and (e): 1 cm. (b), (d) and (f): 4 µm

The amount of material contained within the scale void appears to be the key
parameter that influences the scattering efficiency of the scale. Finite element mod-
elling has been used to simulate the scale structures of the three species and to
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Fig. 10.6 Finite element modelling results which indicate that the scales of each of the three
beetles are approximately optimised in terms of scale void filling fraction. In each case the peak
in the curve approximately coincides with the scale void filling fraction of each species measured
from TEM images. (a) TE polarised illumination, (b) TM polarised illumination. In each case the
solid line represents a best fit to the modelled data points

probe the influence of scale void filling fraction on optical scatter. Computational
limitations and the highly complex nature of the structures limited modelling to two
dimensions. The models were generated by image manipulation of TEM images of
transverse slices through the structure. Varying the size of the air pores within these
original models varied the filling fraction [44].

Transmission and reflectance were simulated for both TE and TM incident light
at normal incidence. The 2D model geometry is set out in the XY plane with the Z-
plane defined as into the page. In this geometry, TE incident radiation is defined as
the electric vector perpendicular to the XY plane. TM radiation is therefore defined
as the electric vector parallel to the XY plane. Whilst reducing the dimensionality
of the model was a computational requirement, it does not appear to change the
conclusions that can be drawn from the modelled data. In reducing the dimension-
ality we have removed a component of disorder from the model. The remaining 2D
model, however, remains fundamentally disordered. This method may result in a
slight reduction in the intensity of the optical scatter modelled, but otherwise ac-
curately models the optical scattering phenomena in question and does not modify
the conclusions that can be drawn from the models. The modelled reflectance pro-
files obtained from the process described above are displayed in Fig. 10.6 for both
incident TE radiation (Fig. 10.6(a)) and incident TM radiation (Fig. 10.6(b)).

While the absolute values of the modelled reflectance are not the same for both
polarisations, the modelled reflectance vs. scale void filling fraction profiles are very
similar. For each species there is a good agreement between the simulated filling
fractions at which peak reflectance occurs and the actual measured filling fractions.
For TE incident radiation, the modelled filling fraction of Cyphochilus scales which
results in peak reflectance is 63 ± 6 %. This is very close to the 68 ± 7 % filling
fraction of actual Cyphochilus scales, measured over a large number of TEM sec-
tions. This indicates that approximately 63 % is the optimum filling fraction for
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the filamentary system within Cyphochilus scales. Analogous modelling was car-
ried out for the scale microstructures of L. stigma and C. margaritifera (also plotted
in Fig. 10.6 (a) and (b)). These results indicate that the optimum filling fraction is
not independent of the other microstructure parameters; the optimum filling fraction
appears to change when a different filament diameter is considered. L. stigma scales
also appear to exhibit an optimal filling fraction, which at 48 ± 3 % is significantly
different to the optimised filling fraction of Cyphochilus scales. L. stigma scales
have filaments with a diameter of approximately 350 nm, compared to a diameter of
250 nm for Cyphochilus filaments. It appears that this difference in filament design
is responsible for the difference in optimal filling fraction.

The different microstructure of C. margaritifera appears to result in a different re-
flectance vs. filling fraction profile. For both polarisations it is apparent that for this
structure, a small variation in reflectance is observed for a wide range of scale filling
fractions. This is noticeable for scale filling fractions in the range 35 to 75 %, where
very little change in modelled reflectance is observed. This suggests that while a
filling fraction in the range 35–75 % is essential for optimal light scatter, it is far
less critical for the particle based scattering system of C. margaritifera than it is for
the filamentary based systems of Cyphochilus and L. stigma.

Within the microstructures identified, the individual filaments and spheres can
be considered as individual scattering units. The size and spacing of these units in-
fluences the optical scatter from the system as a whole. The effect of individual
scattering element diameter on overall reflectance was investigated using a Mie the-
ory model of a homogeneous sphere with a varying diameter. Three wavelengths
representing key colours of the visible spectral range were used in the modelling
process. For each sphere diameter, the radiation which was scattered into the reflec-
tion hemisphere was integrated and is depicted for each of the three wavelengths in
Fig. 10.7(a).

The results of this modelling imply that for wavelengths covering the entire vis-
ible spectrum there is an optimum scattering centre diameter which leads to max-
imised optical scatter. The data suggest that for visible wavelengths, this optimum
diameter is in the range 200–300 nm. SEM image analysis carried out previously has
revealed that the filaments within the scales of Cyphochilus and the spheres within
the scales of C. margaritifera fall within this size range, implying that their scat-
tering structures are optimally sized to ensure maximal optical scatter from their
scales. Interestingly, the filaments within the scales of L. stigma have a diameter
which does not fall into the optimum range identified here, this is assumed to be the
reason for L. stigmas apparent poor optical efficiency when compare to Cyphochilus
and C. margaritifera.

The effect of scattering centre spacing on the optical properties of a sample was
investigated using synthetic partical-based scattering systems. Blends of titanium
dioxide (TiO2) and solid latex spheres were coated onto base paper in different blend
ratios. The fabricated system could be considered as a set of monosized spheres
in which the blend ratio between TiO2 and latex determined the average spacing
between TiO2 particles. Each fabricated system was immersed in matching fluid,
blended to optically match the refractive index of the latex spheres, leaving the TiO2
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Fig. 10.7 (a) Mie theory back scattering results which indicate an optimum centre size for max-
imum scattering efficiency of visible wavelengths to be approximately 200–300 nm. The beetle
scale microstructures have scattering elements (fibrils or particles) that fall within this size range,
suggesting optimisation for maximal optical scatter. (b) Similar optimisation is apparent with the
scattering centre spacing, in the beetle species this is typically 600–700 nm. Optical scatter from
synthetic systems indicate this is within an approximately optimal range of 500–700 nm. In both
cases, the lines represent best fits to the data points

particles in an optically homogeneous medium. Reflectance spectra were taken from
each system and Kubelka–Munk theory [23] was used to calculate the light scatter
contribution of the individual TiO2 particles as a function of their spacing.

The optical scatter data collected during this experiment is presented in
Fig. 10.7(b). The data reveal that the contribution to optical scatter from each indi-
vidual scattering particle falls as the particles are moved closer together. The opti-
mum surface-to-surface spacing appears to be approximately 1200 nm, but the most
dramatic reduction in light scatter contribution occurs below a surface-to-surface
separation of approximately 500 nm. This reduction in scattering efficiency is due
to the phenomenon of optical crowding [42, 43]. As the particles are moved closer
together the incident light is no longer scattered by the individual particles, instead
it is effectively scattered from a larger single particle with subsequent lower scat-
tering efficiency. The data show that the wavelength of incident light has very little
effect on this phenomenon.

While avoiding optical crowding is vital for strong optical scatter from a particle-
based system, a reciprocal problem must also be addressed. To ensure high optical
scatter per scattering centre, the scatterers must be relatively sparsely distributed.
In a finite sample, however, this leads to a low spatial density of scattering centre
leading to low overall light scatter. Therefore any attempt to overcome the loss in
scattering efficiency due to optical crowding must be balanced against the recipro-
cal loss in total scatter associated with fewer scattering centres per unit volume. The
optimum compromise between the two effects appears to occur at an inter-particle
spacing of approximately 500–600 nm. At this spacing the scattering particle spatial
density is relatively high and dominates over the negative effects of optical crowd-
ing.

The filamentary structures identified within the scales of Cyphochilus and
L. stigma differ from these systems as they are based on a connected system, unlike
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the discrete particle systems fabricated here. However, the systems can be con-
sidered analogous because an inter-filament spacing which is too small will lead
to a similar optical crowding problem. The filament spacing of Cyphochilus and
L. stigma were measured at 580 ± 120 nm and 700 ± 180 nm respectively, where
the error margin quoted is the standard deviation of many (n= 50) measurements.
This indicates that the filaments are approximately optimally spaced to maximise
optical scatter. Optical crowding is largely avoided, while scattering centre density
is kept high.

In any amorphous medium designed for efficient broadband optical scatter, there
is a fine balance between achieving the maximum scattering-centre density, while
maintaining sufficient scattering-centre spacing. If the scattering centres are placed
too close together, optical crowding will occur. Balanced against this is the need
to maintain sufficient scattering centre number density. If the scattering centres
are spaced too far apart, their number density will fall and this will also result
in a loss of light scatter. There must clearly be a compromise between these two
effects in order to create the most efficient scattering system. Experimental data
and theoretical modelling indicate that the scattering microstructures within the
scales of Cyphochilus, L. stigma and C. margaritifera have evolved into systems
with structural variations that achieve an optimal compromise in this way. Fur-
ther to this, Mie theory modelling and experimental scattering data indicate that
scattering centres with a diameter of 200–300 nm and mutual distance of approx-
imately 500 nm reach an optimal size and spacing. Our SEM and TEM analyses
indicate that the microstructures within the scales of all three species are typi-
cally within these size and spacing ranges, further implying structural optimisa-
tion.

Further compromises in design may also hamper the optical function of beetle
scale. Specifically here, for these white beetles, the ultra-thin microstructures in
their scales must scatter light efficiently for bright whiteness but must concurrently
be relatively light so as not to add unnecessary weight. Additionally, the material
itself must be robust enough to limit abrasive damage during the beetle’s lifetime.

The bright white colour of these beetles is understood to serve the same pri-
mary functions ascribed to most colouration strategies used by animals; namely to
communicate with conspecifics or to avoid predation [45]. While bright whiteness
may seem counter-intuitive as a cryptic colour in Cyphochilus, their natural habi-
tat has been linked to areas rich in white fungi [41]. Their white appearance may
therefore aid in predator avoidance. Colour appearance often has a multifunctional
role and colours may evolve in response to two or more, often contradictory, se-
lection pressures [46]. While acting as a cryptic colour, the bright whiteness may
also aid conspecific recognition. Colour appearance is known to serve other non-
visual functions such as thermoregulation [33]. Certainly, it has been shown that
any form of dorsal colouration has consequences for thermoregulation in specific
species of diurnal beetles [33]. Hadley et al. [46] found that white morphs of the
beetle Neocicindela perhispida were able to forage for longer without overheating
when transferred from their natural white sand habitat to a black sand terrain, com-
pared to the native black morphs of the same species, which escaped the heat by
burrowing into the sand.
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10.3 Non-insect Examples

10.3.1 White Hairs on the Edelweiss Plant

Leotopodium nivale alpinium (edelweiss) is an herbaceous plant found in the Eu-
ropean mountains at altitudes up to 3400 m. In this harsh environment the plant is
subject to very dry and windy conditions. The whole plant, including stems, leaves,
bracts and flowers are found to be abundantly covered in felt-like hair. This hair is
thought to protect the plant through limiting water evaporation. Recent work sug-
gests that the white hairs also play a secondary protection role; they limit the plants’
exposure to the high flux of harmful UV radiation in the rarefied high-altitude at-
mosphere [47].

Investigation of the white covering reveals a ‘criss-cross’ of hairs, some millime-
tres in length and with a diameter of approximately 10 µm. SEM imaging of the hair
reveals longitudinal filaments running the length of the hairs, spaced in such a man-
ner that they form a diffraction grating-like structure on the surface. The filaments
have a size of 180 nm, appropriate for manipulation of UV radiation [47].

Optical measurements of the hair both in vivo and when removed from the plant
reveal exceptionally broadband reflectance, in line with their white colour. When re-
flection and transmission are compared similar trends are observed, namely very lit-
tle UV reflection or transmission. Nearly 100 % of the UVA radiation (300–400 nm)
is absorbed by the white hair covering [47].

In this case the term ‘absorbed’ is used to describe radiation which loses energy
while transiting through the filament walls and also radiation which first turns into
guided modes in a Fano-resonance process and then disappears with the lifetime of
the guided mode. Theoretical models, which approximate the hair surface as a flat
diffraction grating, indicate that the filaments allow the incident radiation to excite
guided modes which allows the electromagnetic energy to propagate over a much
larger distance. It is unclear what the actual absorption mechanism is, whether it
takes place within the filament wall itself or whether the core of the hair contains
an absorbing compound. One suggested compound is water which has excellent UV
absorbing properties [47].

Photonic structures are not common in plants but this example highlights the
potential gain from employing photonic strategies. The fleece covering of the plant
protects the organism from not only both cold and drought, but harmful UV radiation
as well. A photonic structure has evolved which uses diffraction effects to prefer-
entially dissipate UV radiation by allowing the effective energy exchange from the
incident wave to guided modes.

10.3.2 Disordered Multilayer Systems

Camouflage, as a means of survival, is highly developed in fish and provides another
interesting example of a ‘chaotic’ reflector system. The most common fish colour
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appearance is broadband silver; this provides camouflage against the silvery hue of
the water surface when viewed from below. In fish, colour appearance is usually
attributed to reflection from multilayer stacks (1D photonic crystals) [48]. Multi-
layering is typically associated with bright saturated (narrowband) colours, but with
subtle alterations to the periodic system can bring out a broadband response. Three
different perturbations to an ideal quarter-wave plate stack result in broadband re-
flectance; the use of multiple filters with different spacing, a chaotic multilayer with
a random distribution of layer thicknesses and finally a ‘chirped’ multilayer with
an increasing or decreasing layer thickness [31, 33]. The first method is common
and is thought to explain the silver colour of many fish species. Of more interest to
this chapter is the ‘chaotic’ system where a random distribution of later thicknesses
results in an ultra-broadband response.

Two species of the family Trichiurodae, the ‘hairtail’ and the ‘ribbonfish’, exhibit
such a chaotic reflector. Identified by McKenzie et al. [49], these species were found
to reflect approximately 65 % of light from 400 nm right up to well over 1000 nm,
an incredibly broad range over which to exhibit such a constant reflectance. Com-
putational modelling using the multiple filter method (with 3 filters with responses
centres on 500, 800 and 1100 nm) was found to recreate the observed colour, but
not the actual reflectance spectrum. Multilayer systems which consist of alternating
layers of high and low refractive index layers and randomly varying optical thick-
ness have been studied and give rise to a phenomenon known as optical localisation.
The reflected waves generated at the interfaces interfere in such a way that the elec-
tromagnetic wave is confined to a region known as the localisation length. If the
thickness of the system is greater than the localisation length then the propagation
of light through the system is prohibited. In the case of non-absorbing material, the
incident radiation can then only be reflected [49]. Computational models using high
refractive index layers of 1.83 (Guanine) with thicknesses in the range 55–165 nm
and low index layers of 1.33 (Cytoplasm) with thicknesses in the range 75–225 nm,
and a total thickness of 200 layers (26 µm) were generated. Ten multilayer stacks
were generated and the results averaged, giving a good qualitative match to optical
measurements. TEM imaging of cross-sections through the skin of the ribbonfish
confirms the chaotic reflector system [49].

The random multilayer stack is distinctly different from a quarter wave stack in
that the quarter-wave stack is notable for its exceptional efficiency with very few
layers but only over a very narrow band. This is undesirable in a system which is
trying to achieve a broadband response with a limited material choice. In fish there
is little constraint on the thickness of the system so the efficiency of a quarter wave
stack brings no advantage, a disordered system is a much more likely result given
the beneficial broadband response it brings [49].

10.4 Conclusions

In response to a range evolutionary selection pressures many species have devel-
oped complex microstructure based colour appearance mechanisms. In the majority
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of systems, alternating layers of high and low refractive index result in a surface with
a high reflectivity and a bright saturated colouration. Higher degrees of order (2D
and 3D photonic crystals) typically results in a similar optical narrow-band coloured
reflectance. In order to achieve a broadband reflectance, usually resulting in a white
colour appearance, an amorphous (disordered) structure is typically required. Such
amorphous structures are not as common in nature as their more ordered counter-
parts, but some such systems have been identified. The Pierid family of butterflies
(‘whites and sulphurs’) contains many examples of such colour appearance. In this
case the disorder is in the form of a dense array of nanoscopic beads which signif-
icantly enhance optical scatter of all visible wavelengths, resulting in a broadband,
and thus white, response. Amorphous structures have also been identified in several
species of beetle. In these cases ultra-thin scales exhibit exceptional whiteness and
brightness using a minimal thickness of scattering structure. Such efficiency sug-
gests an optimised scattering structure. Investigation of the structure has confirmed
the high degree of optimisation.

With such efficient systems identified it is of little surprise to learn of possi-
ble bio-mimetic applications of such microstructure. The filamentary structure of
Cyphochilus in particular has been of interest. With only 5 µm of material this struc-
ture out performs many synthetic systems containing far more material, mimicking
its structure and its optimisation could potentially lead to optical advances applica-
ble to many technologies. With so many species from which to choose, including
those of plants, fish and insects, there is still a wealth of natural resources that will
inspire emerging and future optical technology.
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Chapter 11
Random Light Scattering

Franz-Josef Haug

Abstract This chapter presents optical properties of surface textures without any
long range order in their geometry. Such textures are usually called random, as op-
posed to periodic ones like gratings. The random nature is extremely beneficial for
applications where the optical response extends over a wide frequency range; suit-
able operation over an extended spectral domain is thus ensured by the absence
of a preferential period, which would otherwise yield undesired selectivity of light
scattering into a certain angle for a fixed frequency. To introduce the reader to this
burgeoning field in the context of amorphous nanophotonics, this chapter starts by
briefly introducing volume and surface scattering. After introducing a few random
surface textures of technological importance, Sect. 11.3 discusses the statistical de-
scription of random surfaces in terms of root mean square roughness and autocor-
relation length. Light scattering is discussed in terms of scalar scattering theory in
Sect. 11.4. In Sect. 11.5 a Fourier theory is presented which avoids some of the
limitations of scalar theory. Finally, Sect. 11.6 illustrates the application of random
surfaces and the description of their scattering properties in thin film solar cells.

11.1 Introduction

Random light scattering is important for a variety of applications like paper and pro-
jection screens, to name just two every day examples. In order to facilitate reading
without irritating glare, paper must completely diffuse the incident light. The same
holds for projection screens which should reflect the incident light uniformly into
all directions, independently of the wavelength. The situation of uniform scattering
from an illuminated area into all directions was first described by Lambert and car-
ries his name ever since. For Lambertian scattering, the quantity called bidirectional
reflection distribution function (BRDF) is thus a constant, independent of angle and
wavelength. Scattering properties of surfaces are normally measured by mounting a
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Fig. 11.1 Angle resolved
scattering of white paper,
measured with a laser of
543 nm. The inset shows the
same data as polar plot.
Circles, up and down
triangles denote incident
angles of 15, 30 and
45 degrees, the line illustrates
the theoretical curve of
Lambertian scattering

small detector on a moving arm with the scattering surface sitting in the center of
rotation. This measurement yields a quantity called angle resolved scattering (ARS)
and since it measures zero intensity whenever the detector lies in the horizontal
plane, the two quantities are related by the cosine of the observation angle with
respect to the surface normal:

ARS = BRDF · cos θ (11.1)

Normalization is achieved via the total integrated scattering (TIS):

TIS =
∫ π/2

θ=0

∫ 2π

ϕ=0
(BRDF · cos θ) sin θ dθ dϕ (11.2)

For a white Lambertian scattering with TIS = 1, evaluation of the integral re-
quires BRDFL = 1/π and ARSL = (cos θ)/π . Figure 11.1 shows that white paper
is a good approximation for Lambertian scattering, even though the arrows illus-
trate that high angles of incidence tend to scatter preferentially into the angle that
would be expected if the surface were a mirror. Paper is a volume scatterer where the
refractive index contrast between cellulose fibers and air yields complete random-
ization after a series of scattering events. Similarly, the index contrast between water
particles and air yields random light scattering in clouds, other examples are paints
or correction fluid where the index contrast is achieved between pigment particles
and an organic binder.

Mie theory predicts that scattering becomes independent of wavelength when the
scattering particles are much larger than the wavelength [1]. Then, the depth of the
scattering volume should extend over several scattering particles in order to reach
fully random scattering. If complete reflection is desired, e.g. in white reflectors like
spectralon, considerable volumes may be required because a multitude of scattering
events is required to statistically cancel out all contributions of forward scattering.
Moreover, it must be ensured that no absorption occurs in the relevant range of
wavelengths.

Experience tells us that random scattering events are not always independent of
the wavelength. For example, the sky appears blue because of Rayleigh scattering
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Fig. 11.2 Surface morphologies of randomly oriented pyramids etched into a Si-wafer (upper
left) [2, 3], etch pits in a ZnO film (upper right) [4, 5], facets of a silver film deposited at high
temperature (lower left) [6, 7], and triangular pyramids of SnO2 (lower right) [8, 9]

which is a limiting case of Mie theory where the wavelength is longer than the
circumference of the scattering particle. In this case, scattering follows a 1/λ4 law,
i.e. short wavelengths are scattered more efficiently than long wavelengths.

11.2 Random Surface Textures

After these introductory remarks on volume scattering and the wavelength depen-
dence of the scattering process, the remainder of this chapter will be devoted to
surface scattering. In Fig. 11.2, some typical random surface structures are pre-
sented which are often used for light scattering in solar cells (see last section of this
chapter).

There are two main routes to fabricate random surface textures, etching and
faceting during growth of thin films. In most cases, etching starts with the forma-
tion of etch pits in the vicinity of imperfections like grain boundaries. If the etched
material possesses a defined orientation with respect to the surface, etching is likely
to proceed along a preferred orientation, resulting in etch pits with more or less de-
fined side angles. Likewise, during the deposition of thin films, preferential growth
of orientations with minimum surface energy can yield surface facets, particularly
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Fig. 11.3 Surface morphologies of ZnO grown by LP-CVD with 2 and 5 µm thickness (upper left
and right, respectively). The lower panels show how plasma treatment can be used to change the
surface of the 5 µm thick film [13]

at high substrate temperature [10]. The variability of surface textures is illustrated
in Fig. 11.2.

The influence of the deposited thickness is illustrated in Fig. 11.3. For boron-
doped ZnO grown by low pressure chemical vapor deposition (LP-CVD), the shape
of the facets stays essentially the same since they represent a preferential growth
direction, but their sizes increases linearly with the film thickness as smaller pyra-
mids get buried [11, 12]. The shape of the pyramids can be modified by a plasma
treatment [13].

11.3 Statistical Properties of Random Surfaces

In this section, a few key aspects used in the theoretical description of random sur-
faces will be summarized [14, 15]. To do so, the 2 and 5 µm thick ZnO films of
Fig. 11.3 are used as example. From their AFM data shown in Fig. 11.4, the root
mean square roughness σrms is evaluated to 68 and 180 nm, respectively.

Lateral information can be obtained by spatial Fourier transform. The power
spectral density (PSD), sometimes also called surface factor g(kx, ky), contains the
absolute square of the Fourier components as function of the Fourier wave vectors



11 Random Light Scattering 293

Fig. 11.4 AFM images of the Z2 and Z5 surfaces shown in Fig. 11.3. Image size 10 × 10 µm2

kx and ky that they represent. For discrete AFM images which are normally squares
of side length S, the wave vectors are defined as k =m · 2π/S. The integer m is the
Fourier order which counts how many full waves fit into the image size. Applying
another Fourier transform to the PSD does not reproduce the surface information
because phase information has been discarded. Instead, the autocorrelation function
Cor(x, y) is obtained. For truly random surfaces, the PSD as well as the autocor-
relation function are rotationally invariant and it is sufficient to regard only one
coordinate. Figure 11.6 illustrates cuts along one of the axes through the autocorre-
lation functions of the two surfaces shown in Fig. 11.4. Superimposed are Gaussian
characteristics with the correlation length C and the surface roughness σ :

Cor(x, y)= σ 2 · exp
{−(x2 + y2)/C2}= σ 2 · exp

{−(r/C)2}. (11.3)

For the as-grown Z2 and Z5 surface textures shown in the upper panels of
Fig. 11.4, correlation lengths are 208 and 465 nm, respectively. Assuming a Gaus-
sian autocorrelation function, the application of the Fourier transform yields also a
Gaussian characteristic for the power spectral density:

PSD(k)= √
πLσ 2 · exp

{−(πkC)2}. (11.4)

While being a convenient approximation, (11.3) is not always justified on real
surfaces. Elson reported that the autocorrelation function often contains a contribu-
tion of an exponential relationship [14]. This is also the case in the shown examples.
Figure 11.5 shows that the Gaussian overestimates the experimental data for small
displacements while it decays too fast for large displacement. The deviations be-
come particularly clear in Fig. 11.6 where the experimental PSD and the Gaussian
approximation are compared. The logarithmic presentation shows that the Gaussian
approximation decays too fast. It applies to some extent in the shaded region whose
significance will be explained in the next section.
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Fig. 11.5 Autocorrelation
function of the Z2 and Z5
surfaces shown in Fig. 11.4.
Squares and circles denote
measured data of Z2 and Z5,
respectively, lines illustrate
Gaussian approximations

Fig. 11.6 Power spectral
density of the surfaces shown
in Fig. 11.4. Squares and
circles denote measured data
of Z2 and Z5, respectively.
The lines illustrate again
Gaussian approximations

11.4 Scalar Scattering Theory

Historically, surface scattering has been thoroughly investigated for remote sensing
applications based on radar waves where ocean waves, forests or deserts as well
as building surfaces are successfully treated as random scattering centers [16–18].
The subject has been reviewed in several monographs [19–21]. In this context, the
reflected radiation is normally composed from two parts. The first is specular reflec-
tion, i.e. reflected under an angle equal to the incident angle, similar to the case of
a flat surface. The second part consists of radiation that is scattered diffusely into
the whole angular domain. The description is greatly simplified if the height infor-
mation of the surface features with respect to the mean level of the surface follows
a Gaussian distribution with standard deviation σ . For a probing wavelength λ, the
intensity of the specularly reflected beam Rspec is then expressed in terms of the
total reflectivity Rtot as follows [22]:

Rspec =Rtot · exp

{
−
(

4π · n
λ

σ · cos θ1

)2}
. (11.5)
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Fig. 11.7 Haze in
transmission from textured
ZnO into air. Squares and
circles represent Z2 and Z5,
respectively. Full and dashed
lines are according to (11.7)
with exponents of 2 (scalar
theory) and 3 (empiric
modification), respectively

Different from the original theory dealing with radar waves in air, (11.5) includes
the refractive index n to account for situations where scattering occurs in a medium.
Finally, the angle θ1 is measured between the incident beam and the surface normal.
Since polarization effects were neglected in the derivation of (11.5), the treatment is
often referred to as scalar scattering theory.

Based on (11.5), the reflection haze HR , i.e. the ratio between diffusely scattered
and totally reflected light, can be defined as follows:

HR = Rtot −Rspec

Rtot
= 1 − exp

{
−
(

4π · n
λ

σ · cos θ1

)2}
≈
(

4π · n
λ

· cos θ1

)2

.

(11.6)

The right hand side of (11.6) illustrates that surface scattering is proportional to
1/λ2 rather than the 1/λ4 dependence of Rayleigh scattering [22]. Other than remote
sensing, the theory of random surface scattering was also very successfully applied
in photovoltaics [23–25]. Upon entering into such structures, light is scattered not
only in reflection, but also in transmission. Analogously to (11.6), the haze HT for
transmission through an interface between two media with refractive indices n1 and
n2 is given by [22]:

HT = Ttot − Tspec

Ttot
= 1 − exp

{
−
(

2π |n1 · cos θ1 − n2 · cos θ2|
λ

σ

)2}
. (11.7)

Here, θ1 and θ2 denote the angles of the incident and the specularly transmit-
ted beams, respectively. Since both angles are measured with respect to the surface
normal, they are related by Snell’s law.

Figure 11.7 shows experimental haze data of the ZnO surfaces shown in
Fig. 11.3. The figure includes theoretical results according to (11.7), using the ma-
terials’ refractive index dispersion and their root mean square surface roughness as
measured by AFM. The scalar theory appears to apply only in the range of short
wavelengths, but overestimates the haze in the near IR region. This observation led
to the proposition of empirical changes. For example, for the transmission haze of
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textured SnO2:F which develops a texture similar to the ZnO surface, it was sug-
gested to replace the exponent of two in (11.7) by three [23]. The dashed lines in
Fig. 11.7 appear to fit the data at longer wavelengths, but they overestimate at short
wavelengths. Interestingly, for the texture that results when ZnO is etched in diluted
HCl, the exponent should be replaced by an even higher value while at the same
time the roughness σ is smaller than its corresponding values of surface profilome-
try [26]. However, none of these modifications can be explained conclusively.

The quoted results of scalar scattering can be used to describe the haze, at least
on a global scale. Apart from the distribution between specular and diffuse light,
however, the theory does not predict the angular properties of scattering. This defi-
ciency can be illustrated by looking at relief gratings which are the periodic version
of surface corrugations. The diffraction efficiency, i.e. the distribution of intensity
between the grating orders, depends sensitively on shape and depth of the grating
while the angular properties of diffraction are governed by the period. In order to ad-
dress this deficiency in the scalar theory, lateral information like the autocorrelation
length must be used as well [27, 28].

In the spatial Fourier analysis, the random surface is decomposed into a sum
of sinusoidal gratings and the amplitude of these individual gratings is represented
by their respective Fourier components. Since the superposition principle holds, an
incident light beam gets diffracted at each of these grating periods. Even monochro-
matic light will get diffracted into a variety of angles. Looking at the power spectral
density in Fig. 11.6, it can further be assumed that large periods contribute more
than very small periods. This allows one to define a (crude) estimate for the ARS by
the following procedure:

1. Fix the wavelength and the angle of the incident light (e.g. 543 nm and perpen-
dicular).

2. For each period represented in the PSD, use the grating equation to calculate the
angle into which light gets scattered.

3. Weigh all of these contributions by the value of the PSD and multiply with the
cosine of the diffraction angle to get the ARS. Note that this procedure cuts off
all components with period smaller than the wavelength (for 543 nm, everything
outside the shaded area in Fig. 11.6).

4. Since #3 disregards some Fourier components, normalization is needed. Inte-
grate the scattered light intensity according to (11.2), leaving out θ = 0 which
represents the specular beam.

5. Finally, normalize the result to the haze value at this wavelength.

The ARS obtained by this procedure for the Z2 and Z5 textures is illustrated by
the full lines in Fig. 11.8. Since the ARS is rotationally invariant for the case of
perpendicular incidence, only positive angles are shown. Overall, the agreement
with the experimental result is acceptable. Scattering into small angles appears to be
overestimated in both cases while at high angles, the procedure works better for the
Z5 texture. The ARS based on the Gaussian approximation to the PSD works well
for the Z2, but not at all for Z5 (dashed lines). This observation is not surprising
since Fig. 11.6 already showed that the Gaussian approximation underestimates the
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Fig. 11.8 Angle resolved
scattering of the Z2 and Z5
surfaces upon scattering in air
at a wavelength of 543 nm.
Owing to rotational
symmetry, only the radial
variation is shown. Symbols
refer to measured data, lines
denote theoretical ARS data
based on AFM data (full
lines), a Gaussian
approximation to the PSD
(dashed), and a Lambertian
cos-law (dotted)

wings of the PSD, particularly so for the Z5 texture. Using a sum of Gaussian and
exponential should yield an improvement in this case. For illustration, the graph
contains also the cosine characteristic of uniform scattering into all angles, i.e. like
Lambertian but with specular part (dotted line). This fits rather well to both surfaces
and over the whole range of angles except for the specular contribution.

In conclusion, it appears that the scalar theory describes the overall behavior of
the haze. It seems well suited to short wavelengths, but it overestimates the haze at
long wavelengths. Unfortunately, it cannot be decided a priori in which region the
formula applies reliably. Likewise for the angle resolved scattering, the approach
with the PSD based on AFM data appears to be valid globally, but rather unpre-
dictable in detail. If predictive power is requested of a simulation tool, a more reli-
able approach is mandatory.

11.5 Fourier Scattering Theory

This section presents an approach based on Fourier optics whose principles are dis-
cussed in the books Goodman and Maradudin [20, 29]. Similar to the previous sec-
tion, the individual steps of the procedure are illustrated using AFM data of the
Z2 and Z5 surfaces [30]. The following considerations are based on an applica-
tion of the Rayleigh-Sommerfeld diffraction integral [29]; after some modifications
discussed by Harvey, it yields a relation for the radiance L that is received by an
observer from the illuminated scattering element (or pupil) U0 [31].

L(α,β)= λ2

As

∣∣F{U0(x̂, ŷ)
}∣∣2. (11.8)

Here, α and β denote the direction cosines towards the position of the observer,
λ and As are the wavelength and the surface of the scattering surface, respectively,
and F {. . .} denotes the Fourier transform. Finally, x̂ and ŷ denote the in-plane co-
ordinates after scaling with the wavelength.
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Next, the pupil function U0 must be defined. It can be separated into three terms
taking into account the aperture, aberrations, and the modulation of the actual wave-
front, respectively [32]. Using plane wave illumination without imaging optics, the
first two contributions can be neglected. The remaining term can be described by
replacing the roughness zone with a screen of zero depth that changes either the
amplitude or the phase (or both) of the transmitted light plus as additional phase
changes from the scattering element to the observer [29].

The simplest form of screen is the amplitude screen. It is conveniently used
to describe diffraction phenomena of apertures, using areas which are either fully
transparent or fully opaque. More generally, amplitude screens also describe trans-
mission through partially transparent materials like photographic film. It appears
inappropriate to use the height information of the ZnO film as amplitude screen
since it is transparent for visible light, but this type of definition can nevertheless
be found in the literature. According to (11.8), this would predict that the radiance
is proportional to the power spectral density. Not surprisingly, this result was found
inadequate in the previous section and the underlying reason becomes clear now.
Moreover, the background subtraction of AFM routines can be set to yield a mean
amplitude of zero, resulting in a value of zero for the zero frequency term. Since the
height reference of surface data is arbitrary, the zero frequency term of the numeric
PSD becomes meaningless [33, 34].

Alternatively, the surface texture can be described as an element that changes
only the phase during the transit of the roughness zone ζ(x, y) as illustrated in
Fig. 11.9. The phase change after the transit through the roughness zone depends
on the path lengths which are traveled within the two different materials. For a
hemispherical geometry, the following pupil function U0 applies [32]:

U0(x̂, ŷ)= 1

(1 + ε)2
· ei·const · eikζ(x̂,ŷ)·(n1−n2). (11.9)

In (11.9), k = 2π/λ denotes the wave vector in vacuum. The constant term in
the phase change can be neglected because it does not contribute in a Fourier trans-
form and drops out subsequently during the calculation of the absolute value. The
term ε in (11.9) is the ratio between the distance from the origin to the points (x̂, ŷ)
of the integration (typically the diameter of the incident laser beam) and the dis-
tance to the detector sweeping out a hemispherical surface [32]. For typical mea-
surement geometries ε can be neglected, making (11.9) computable with the fast
Fourier transform (FFT) algorithm. The definition of (11.9) is easily generalized to-
wards the case of reflection by replacing the difference of the refractive indices in
the exponent by twice the index of the medium in which incident and reflected beam
propagate [35, 36].

The definition in terms of phase screens differs from the amplitude screen in a
very important aspect since it defines the contribution of zero frequency term unam-
biguously. In agreement with the experiment, the thickness of the sample below the
actual roughness zone is not relevant to light scattering and drops out of the calcula-
tion. The zero frequency term therefore describes the intensity of the specular beam.
Based on this reasoning, Harvey suggested a normalization procedure which states
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Fig. 11.9 Illustration of the phase change upon propagation through the surface roughness zone
denoted by the horizontal bars

Fig. 11.10 Illustration of the
normalization procedure. The
greyscale of the pixel array
represents the intensities of
the Fourier components for
Z2 surface and a wavelength
of 543 nm (excepting the zero
frequency term). The unit
circle (γ =√α2 + β2 = 1)
discriminates evanescent
modes (outside) from
propagating modes (inside).
For the shown conditions, the
radius of the unit circle
extends over 18 points

that the total observable light intensity in air is carried only in the waves with real
propagation constant; evanescent modes with imaginary propagation constant are
not considered [37]. Evanescent modes are easily discriminated from the calculation
because their direction cosines are located outside the unit circle (α2 +β2 > 1), fig-
uratively speaking they are “diffracted over the horizon”. This argument is similar
to point #3 of the procedure outlined in the previous section, except that the specular
beam intensity is now an integral part of the radiance. The procedure is illustrated in
Fig. 11.10 for the Z2 texture and a wavelength of 543 nm. It shows a greyscale plot
of the absolute square of the Fourier components in the (α,β) plane in the vicinity
of the origin.

Haze and ARS take on a different importance compared to scalar theory. In the
previous section, the distribution between specular and diffused light was described
by (11.5) and (11.6) and the angular properties of the ARS were calculated as sec-
ondary quantity. Using the Fourier approach of (11.8) in combination with the phase
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Fig. 11.11 Comparison of
experimental ARS with results
of the Fourier approach

screen of (11.9), the radiance L(α,β) takes over the role of the primary quantity. It
can be related to the angle resolved scattering by accounting for the projection factor
cos θ between the radiating surface and the observer [31].

ARS(ϕ, θ)= cos θ ·L(α,β). (11.10)

Here, ARS(ϕ, θ) is the 2D version of the angle resolved scattering. The angles
ϕ and θ in (11.10) are related to the direction cosines α and β by tanϕ = β/α and
cos θ = (1 − α2 − β2)1/2.

Using random textures and perpendicular incidence, the 2D-ARS(ϕ, θ) is again
rotationally invariant and can be averaged over the azimuthal angle ϕ to yield the
familiar 1D-ARS(θ):

ARS(θ)= 1

2π

∫
ARS(ϕ, θ) dϕ. (11.11)

The resulting ARS of the Z2 and Z5 surfaces are shown in Fig. 11.11. The mod-
eled characteristics match almost perfectly over the full angular range, including
even the intensity of the specular part.

Based on the radiance L(α,β), the haze is obtained as follows.

HT = Ttot − Tspec

Ttot
=
∑

α2+β2<1L(α,β)−L(0,0)∑
α2+β2<1L(α,β)

. (11.12)

Figure 11.12 shows that the Fourier approach successfully describes the haze in
the whole studied wavelength range. There is a small underestimation, but there
can be no question that the overall correspondence is much better than the scalar
results shown in Fig. 11.7. Moreover, the Fourier approach relies only on measurable
quantities like the AFM profile and the refractive index dispersion, but there are no
adjustable parameters.

The presented Fourier model was found to perform well in comparison with other
models and calculation routines [38]. Nevertheless, there are a few limitations. The
first concern addresses the replacement of the roughness zone with a screen of zero
thickness. Essentially, this procedure neglects diffraction within the peak to valley
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Fig. 11.12 Comparison of
the experimental haze
(symbols, cf. Fig. 11.7) with
results of the Fourier
approach (lines)

depth of the roughness zone as illustrated by the dashed light path in Fig. 11.9.
General aspects of this approximation are discussed by Goodman [29], for effects
from the surface textures used the current context, see Ref. [39].

A second concern addresses the validity of describing random scattering by a
Fourier approach that applies to periodic phenomena by definition. It turns out that
this an issue for the resolution of small scattering angles. Imagine that the Fourier
expansion treats the random surface like a superposition of sinusoidal gratings. With
increasing order of the expansion, one, two, three, etc. full wavelengths are fitted
into the dimension of the AFM image. The smallest possible diffraction angle beside
the specular beam is then related to first order diffraction at the largest possible
grating period. For the shown situation with an image size of 10 µm and a laser
wavelength of 543 nm, 3.1◦ is the smallest angle that is resolved. Accordingly, the
second order beam diffracts into 6.2◦, etc., resulting in a rather coarse resolution.
Towards higher angles, the characteristics in Fig. 11.11 become denser by averaging
over the rotational symmetry according to (11.11). Note that these limitations apply
to particular conditions of the shown AFM images, smaller angles are obviously
resolved if the surface profile is recorded on a larger scale.

11.6 Application to Light Scattering in Thin Film Silicon Solar
Cells

As conclusion of this chapter, it is demonstrated how light scattering is used to
aid solar cell development. In devices based on thin film silicon, the route towards
higher efficiencies follows a trade off between two competing mechanisms. On the
one hand, poor charge transport as well as throughput considerations in production
suggest to keep the device as thin as possible. Acceptable thicknesses for amor-
phous and microcrystalline cells are 300 nm and 2 µm, respectively, less would be
preferred. On the other hand, the indirect band gaps in these materials require thick-
nesses much in excess of the given values for complete absorption, particularly for
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Fig. 11.13 External quantum
efficiency of a solar cell
(symbols). The dashed line
illustrates modeling results
where the back reflector
morphology is assumed
conformal to the front
electrode while the full line is
based on measured AFM data
for front and back interface
(after [36])

light with long wavelengths. The issue can be overcome by absorption enhancement
using light scattering at interface textures [40] where textures can be either random
or periodic [41, 42]. While photovoltaic manufacturing concentrated almost exclu-
sively on random textures [43, 44], periodic textures are expected to outperform
random structures [45]. Recent experiments demonstrated that they are at least on
equal footing [46]. Nevertheless, a choice of relatively few natural textures like those
shown in Figs. 11.2 and 11.3 is still used in virtually all types of thin film silicon so-
lar cells due to their relative ease of fabrication [41, 47, 48]. Engineered structures
like gratings have been applied only rarely, but this might change since low cost
embossing processes are becoming increasingly common on large areas [49, 50].

Given the importance of random structures, a correct description of their impact
on solar cell performance is mandatory. Rigorous solution of Maxwell’s equations
can be used for this task [35, 51], but continuously high demands on computing
power prohibit their use as routine tool for screening. Instead, simplified ray optic
models are used where the intensity of specular and diffuse contributions is followed
throughout the multiple layers that constitute a solar cell [23, 25].

A recurring issue is the correct description of the interfaces within the device.
First, their scattering properties must be modeled reliably since they are generally
not accessible to measurement [38]. The use of empiric parameters must therefore
be avoided as much as possible. Second, the scattering events at all textured in-
terfaces must be described adequately. The widely assumed situation of conformal
coverage is usually not correct since growing films can develop their own surface
texture (cf. Figs. 11.2 and 11.3), or they can smooth a given texture to minimize sur-
face area. A correct description can be obtained by interrupting the growth process
regularly for measuring the actual surface topography.

Figure 11.13 shows experimental and simulated data of the external quantum
efficiency (EQE) [36]. This characteristic is a key quantity for solar cells since it
corresponds to the probability that an electron is created from an incident photon and
optical enhancement by light scattering is important for the weakly absorbed light at
long wavelengths. In the shown case, a solar cell with an amorphous absorber layer
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of 700 nm thickness is grown on an etched ZnO substrate (cf. upper right panel of
Fig. 11.2). After growth of the silicon films, the initial rms surface roughness of 35
nm is reduced to 15 nm. The optical enhancement is clearly overestimated if this
morphological change is neglected in the simulation whereas a simulation on the
basis of the correct interface morphologies gives excellent correspondence with the
measurement.

11.7 Conclusions

This chapter discussed light scattering at random surface textures, i.e. surfaces with
little correlation on small scale and no correlation on long scales. Scalar scattering
theory has been developed to describe this class of surface topography for remote
sensing applications with radar waves. Scalar theory relies on essentially two param-
eters to characterize a surface, its rms roughness σ and an autocorrelation function
which is usually approximated by a Gaussian with correlation length C. Shortcom-
ings of this simplification are discussed using AFM data of real surface morpholo-
gies. In the second part, a quantitative Fourier theory is presented. Starting from the
same surface data, it yields a more adequate description of light scattering, and it
was shown how the improved model is successfully used to describe light scattering
and absorption in a solar cell.
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Chapter 12
Active Plasmonics in Self-organized Soft
Materials

Roberto Caputo, Luciano De Sio, Ugo Cataldi, and Cesare Umeton

Abstract In this chapter we show several possibilities for obtaining active plasmon-
ics in self-organized amorphous materials. The starting point is a brief theoretical
description of the physical mechanisms that allow such a tunability. Afterwards,
it follows an overview of the up-to-date results obtained in this direction. Several
proof-of-concept prototypes have been successfully fabricated and are reported as
well.

12.1 Introduction

Nanophotonic devices have the capability to concentrate light into the nanoscale
range and hold high potential for many applications as integrated optics [1], plas-
monic circuits [2], biosensing [3] and quantum information processing [4]. One
promising way to localize the optical radiation into a nanometer-sized volume has
been obtained by using the unique properties of plasmonic nanomaterials [5]. These
amorphous materials are an effective bridge between bulk materials and atomic or
molecular structures and exhibit a very intense color, which is absent in the bulk
material as well as in individual atoms. The physics behind this behavior can be
explained by considering the collective oscillation of the free conduction electrons
that can be induced by an external electromagnetic field interacting with very small
metal particles: the so called Localized Surface Plasmon Resonances (LSPR). In
fact, the plasmonic coupling, existing between metal nanoparticles (NPs) and light,
enables a series of interesting optical phenomena, such as Surface-Enhanced Raman
Scattering (SERS) [6], Resonance Light Scattering (RLS) [7] and Surface Plasmon
Resonance (SPR) [8]. The dynamic control of plasmonic resonances is a hot-topic
and several possibilities to obtain this result have been already demonstrated. In this
chapter, we illustrate how an “active” control of the plasmonic resonance spectral
position is possible when the material showing plasmonic properties is acted on
by external stimuli (electric field, optical field, temperature and mechanical strain).
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In the following we will start with a brief introduction to the concept of localized
plasmonic resonance, giving a particular mention on how actively modify the plas-
monic spectral position. This is possible by acting on the medium surrounding the
sub-entities, responsible for the plasmonic response, but also modifying their inter-
distance. The chapter will then analyze the functioning of several selected amor-
phous nanomaterials that show an active plasmonic response.

12.2 Tunability of Localized Plasmonic Resonances

A convenient way to dynamically modify the plasmon resonance frequency of a
homogeneous (surface or bulk) distribution of mono-dispersed metal NPs is to vary
the dielectric permittivity of the medium surrounding the NPs. Indeed, the optical
properties of spherical particle dispersions can be predicted by the Mie theory [9]
through the expression of the extinction cross section.

σext (ω)= 9
ω

c
ε

3/2
m V0

ε2(ω)

[ε1(ω)+ 2εm]2 + ε2(ω)2
(12.1)

Where V0 = (4π/3)R3 is the nanoparticle volume, R being its radius, ω is the angu-
lar frequency of the exciting radiation, εm is the dielectric function of the medium
surrounding the metallic nanoparticles, and ε1 and ε2 are the real and imaginary
parts of the dielectric function of the metallic nanoparticles respectively. Based on
this theory, for small and isolated metal particles, the spectral position of the plas-
monic absorption peak depends on the refractive index of the surrounding medium,
according to the condition that minimizes the denominator of (12.1):

ε1(ω)= −2εm (12.2)

A modification of the dielectric behavior of the host material corresponds, therefore,
to a tuning action of the Plasmon resonance frequency. The outstanding properties
of Liquid Crystals (LCs) make them an ideal candidate for this role; indeed, these
materials represent an excellent example of reconfigurable medium where the re-
fractive index can be finely controlled by means of external stimuli.

Another way to modify the plasmonic resonance frequency of a metal NPs ar-
ray is to change size, shape and inter-particle distance. Kinnan et al. have recently
demonstrated this possibility by performing a very systematic study on Ag NPs
layers [10]. For these experiments, two-dimensional Ag NPs layers have been fab-
ricated by using different sizes of nano-particles. For each size, the particle density
has been chemically controlled in such a way that it is possible to fix the inter-
particle distance. This distance has a quite important role. Indeed, if we assume that
single particles put at close distance undergo a dipolar interaction, we can argue
that a change of the inter-particle distance corresponds to a modification of both the
plasmonic coupling and the resonance frequency. Experiments of Kinnan et al. con-
firmed this hypothesis: by fixing the particle size and increasing their density, the
extinction coefficient of the plasmonic peak increases. At the same time, the spec-
tral position of this peak changes and, depending on the particle size, a blue or a red
shift is observed.
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12.3 Electrically and Temperature Controlled Active Plasmonics

When combined with noble metal NPs, LCs can have a two-fold role: they can be
exploited as a “host-fluid” for dissolving colloidal noble nanoparticles [11] and, at
the same time, if used as the medium surrounding the resonant entities, they can
dynamically tune the spectral position of the plasmon resonance position. In 2005,
Kossyrev et al. have provided one of the first demonstrations of this possibility when
they showed that, by layering a regular array of gold nanoparticles with nematic
LC (E7) it is possible to obtain a tunable plasmonic system. Indeed, by applying
a low amplitude electric field (10 V/µm) to the sample, they obtained a plasmonic
red shift of about 8 nm [12]. However, a drawback in using LCs is represented by
the fact that, in general, they require chemical and/or mechanical treatments to be
aligned; in addition, the order degree of the LC material is affected by the inclusion
of nanoparticles and therefore their concentration in the host LC must be limited to a
few percents [13, 14]. A convenient alternative to avoid this issue has been proposed
by Smalyiukh et al. who obtained bulk self-alignment of dispersed gold nanorods
imposed by the intrinsic cylindrical micelle selfassembly in nematic and hexagonal
liquid crystalline phases [15]. Due to their elongated shape, nematic molecules mix
quite efficiently with gold nanorods; this allows a high filling fraction of the gold
component in the mixture and hence the fabrication of a system with noticeable plas-
monic properties. These properties are also tunable and very pronounced effects can
be observed when the system undergoes a temperature variation. In order to avoid
the difficulty of mixing metal NPs and LCs, Khoo et al. have instead fabricated
a system where a “carpet” of gold nanodisks lays on an Indium-Tin-Oxide (ITO)
coated glass substrate [16]. Another conductive glass has been put at controlled dis-
tance on top of the previous one in such a way that a cell is fabricated. This cell has
been then filled in with a dual-frequency liquid crystal (DFLC), which can change
the sign of its dielectric anisotropy either from positive to negative, or from nega-
tive to positive, depending on the frequency of the electric field that is applied to
the sample. This feature allows the switching of the dual-frequency liquid crystal
director in both directions, parallel and perpendicular to the applied field, by using
low and high frequencies. To these drastic changes of the refractive index both blue-
and red-shifts in the plasmonic resonances correspond. Experiments performed on
this system have demonstrated a blue-shift of about 4 nm for field frequency below
an observed cross-over frequency of 14 KHz and a red-shift of about 21 nm for fre-
quencies ranging between 15–21 KHz. Recently, we have reported on the realization
of a periodic soft-composite structure, with a wide range of photonic applications,
which might represent a solution to the previously illustrated drawbacks [17]. By
a microfluidic etching of a composite micro/nano grating, made of polymer slices
alternated to films of well oriented LC (POLICRYPS) [18], we realize a polymeric
platform that is able to align and micro-confine a large variety of LC materials,
without the need of any chemical and/or mechanical treatment. The same platform
can be utilized for efficiently aligning Cholesteric Liquid Crystals (CLC) doped with
gold nanoparticles, as well. A homogeneous mixture of metallic nanoparticles (NPs)
and CLC has been prepared by mixing the Harima gold nanopaste NPG-J (from
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Fig. 12.1 Polarized optical microscope view of the polymeric template filled with CLC and gold
NPs mixture at the edge of the grating area (a). The high magnification of the CLC and gold NPs
area aligned in ULH geometry is shown in (b) while its typical reflection notch is reported in (c).
EBSD view (d) and high magnification (e) of the polymeric template filled with CLC and gold
NPs. [28]—Reproduced with permission of the Royal Society of Chemistry

Harima Chemicals, Inc. [19], generally used for other aims like ink-jet printing and
laser sintering [20]), and the BL095 CLC by Merck [21] (helix pitch p ≈ 400 nm).
Harima nanopaste NPG-J contains 55 wt% of gold nanoparticles with a mean size
of 7 nm and a distribution ranging in 5–12 nm. The plasmonic absorption peak in
solvent (naphthen) is instead at λ≈ 525 nm. The Harima NPs have been mixed to
the CLC in high concentration (about 20 wt%) and then infiltrated, by capillarity, in
the polymeric template. The best optical performances were exhibited by a grating
of L= 10 µm thickness and Λ= 6 µm periodicity. The sample was kept at a fixed
high temperature (≈90 °C) during the whole filling process, thus keeping the CLC
in the isotropic phase; then, by slowly (0.5 deg/min) cooling down the sample to
room temperature, a self-organization process occurred, which was able to orient
the axes of CLC helices to be almost parallel to the polymeric slices, in a uniform
lying helix configuration [17]. Figure 12.1a shows a Polarized Optical Microscope
micrograph of the sample at the edge of the photo-sculptured grating area; on the
left, the photo puts into evidence the existence of a standard focal conic texture,
induced by a random distribution of the helical axes.

On the right, we can see the uniform lying helix geometry induced by the poly-
meric structure (Fig. 12.1b), as demonstrated by the exhibition of a selective reflec-
tion, typical of a short pitch CLC (Fig. 12.1c). In order to study the effects produced
by the presence of gold NPs inside the microstructure, we first tried to figure out
their distribution within the host CLC by performing a Scanning Electron Micro-
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scope (SEM) and an Electron Back-Scattering Diffraction (EBSD) characterization
of the sample. In particular, EBSD analysis is valuable to distinguish gold from
other materials, since the yield of backscattered electrons increases with the spec-
imen atomic number (Z); in our case, the presence of gold (Z = 79) produces a
high contrast with the polymer microstructure (a thiol based system with Z ≈ 18).
As shown in the EBSD view of Fig. 12.1d, the bright stripes confirm the presence
of gold along the microchannels only, while in the high magnification (Fig. 12.1e),
we can notice, that CLC branches are literally “wrapped” by densely packed gold
particles. Despite the quite high concentration of gold NPs, the high magnification
in Fig. 12.1e indicates that the CLC is uniformly aligned, with helices confined be-
tween polymeric slices. This is a clear indication that the CLC exhibits good “host-
fluidity” properties for the gold NPs; at the same time, its high degree of order
indicates that the CLC phase is weakly perturbed by the presence of gold NPs. The
obtained structure represents, therefore, a successful combination of a “top-down”
approach (polymeric template fabrication) with a “bottom-up” one, represented by
the self-organization of gold NPs in CLC helices; in this sense, the microscale meets
the nanoscale. Considering the size of involved NPs (≈7 nm), the SEM resolution
is not able to show their morphological details.

In order to check the influence of gold NPs on the optical properties of the whole
structure, we have investigated its spectral response by shining the sample with lin-
early polarized white light (wavelengths in the range 350–1000 nm) at normal inci-
dence; obtained results are reported in Fig. 12.2. It is evident that p-polarized light
is strongly diffracted and its transmission is almost suppressed (diffraction pattern
of Fig. 12.2a (curve 3); on the other hand, s-polarized light is highly transmitted in
almost the whole analyzed range (diffraction pattern of Fig. 12.2a, curve 1). This
behavior has already been observed in the past with a similar structure [22] and can
be easily explained by supposing that CLC helices lay, in average, along the chan-
nels of the template. It is reasonable to assume, therefore, that two different effective
refractive indices exist: n⊥ (whose value can be estimated to be ≈1.64), quite dif-
ferent from the polymeric refractive index np (≈1.54), which is experienced by
light whose electric field is perpendicular to the channels (p-wave), and n‖ whose
value can be estimated to be ≈1.56 ≈ np , for light whose electric field is parallel to
them (s-wave). Above rough estimation of n⊥ and n‖ have been made by calculating
two different averages of differently weighted ordinary and extraordinary refractive
indices (no and ne) of the CLC.

Due to the alternation of n⊥ and np indices, the grating structure is therefore
experienced only by the p-wave. Incidentally, the noticeable difference between n⊥
and n‖ values is confirmed by the pronounced birefringence shown by the sample
(Fig. 12.1b, picture taken between crossed polarizers). In the curve 1 of Fig. 12.2a,
a pronounced absorption peak at λ= 532 nm, with an extinction coefficient of 0.2,
can be observed; this peak cannot be attributed to any diffractive mechanism be-
cause the structure appears optically homogeneous (n‖ ≈ np) to the incoming s-
wave. Both the spectral position and the narrow width of the measured peak sug-
gest, instead, that it is due to the presence of gold NPs dispersed in the CLC host
and, more precisely, to their localized plasmon resonance. This hypothesis is sup-
ported by similar results reported in literature [12], and observed in different systems
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Fig. 12.2 Spectral response of the sample for two values of the external electric field (a) and
its higher magnification detail (b). [28]—Reproduced with permission of the Royal Society of
Chemistry

where gold NPs are also involved [23]. Even if physically remarkable, this result is
not outstanding in itself; it is quite interesting, on the contrary, the circumstance
that the plasmonic response of such a composite nanomaterial is also tunable. This
has been demonstrated by applying an external electric field (8 V/µm, frequency
1 kHz, square wave) across the cell, perpendicularly to the helix axes. This field
induces an in-plane tilt of the optical axis of the CLC (aligned in ULH texture),
with a consequent variation of the value of n‖, experienced by s-waves. This index
variation is directly related to the tuning of the plasmon resonance frequency ac-
cording to (12.2). Indeed, when applying the external electric field, the impinging
probe light experiences a decreased value of the refractive index of the CLC (from
the initial n‖ to about no; typically from 1.56 to 1.5).

Following (12.2), the resonance condition is fulfilled for higher (negative) values
of ε1(ω). It is well known that, in the visible range, the real part of the electric per-
mittivity of gold nanoparticles increases with frequency [24]; therefore, fulfillment
of (12.2) takes place for higher values of ω. This yields a blue shift of the plasmonic
absorption peak. This hypothesis is confirmed by results shown in Fig. 12.2b (higher
magnification of the highlighted region of Fig. 12.2a): the absorption peak is blue
shifted from λ= 532 nm (curve 1, Fig. 12.2b) to λ= 514 nm (curve 2, Fig. 12.2b).
An additional demonstration of the tunability of the plasmonic response of our com-
posite structure has been obtained by varying the temperature of the sample; results
are reported in Fig. 12.3. By means of a miniature oven (CaLCTec S.r.l.), it was
possible to vary the sample temperature from 25 °C up to 75 °C; a red-shift of the
plasmonic absorption peak was observed in the range from 532 nm to 582 nm. Since
the pitch p of chiral liquid crystals elongates with temperature [25]; assuming that
the CLC helices are wrapped by gold NPs, the consequence of this elongation is an
increase of the inter-distance between neighboring metal NPs. It has been already
demonstrated that the plasmon response of NP arrays depends on particle size and
density [26, 27]. In particular, results show that, for densely packed metal NPs, the
absorption peak is quite broad and is centered in the blue-green range, while this
peak slightly reduces its width and shifts to the red in case of well separated NPs. In
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Fig. 12.3 Spectral response
of the sample versus its
temperature.
[28]—Reproduced with
permission of the Royal
Society of Chemistry

fact, as observed in [10], when NP aggregates are considered whose size is compa-
rable with the wavelength of the incoming radiation, different areas of the aggregate
surface experience different phases of the incident radiation; thus, higher multipolar
modes (quadrupolar, octupolar and even hexadecapolar) have to be taken into ac-
count. Given that the excitation frequency of these higher modes is larger than that
of the dipolar one, a broadening of the plasmon peak occurs which has its center in
the blue region of the electromagnetic spectrum.

On the contrary, single, small-sized, NPs, when hit by the incoming radiation,
experience the same phase of the electromagnetic wave on their whole area; in this
condition, gold NPs behave as simple dipoles: the plasmonic peak width is quite nar-
row and, depending on the particle size, the peak is centered in the green–red part
of the electromagnetic spectrum. Based on above considerations, the temperature
dependent shift of the plasmonic resonance observed in our sample can be therefore
explained in terms of a temperature induced passage from densely packed (wrapping
the CLC branches) to mono-dispersed gold NPs. We can conclude that a soft-matter
periodic structure containing a composite mixture of CLC and gold NPs can be ex-
ploited as an “active plasmonic” system. The CLC material acts as a “host fluid”
whose refractive index can be varied in a broad range, by utilizing both external
electric fields on temperature variations. This has a strong influence on the position
of the plasmonic absorption peak of NPs that exhibits, consequently, a broad tun-
ability. In our opinion, this might represent the first step towards the realization of
a new generation of nanostructured materials with tunable optical properties. More
details of this work can be found in [28].

12.4 Optically Controlled Active Plasmonics

In the previous paragraph, we have shown that a reconfigurable medium can have
a strong influence on the LSPR properties of a system of metal NPs. If LCs are
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Fig. 12.4 Typical behavior of an optically controllable trans-cis system. Mechanism. (a) If the
structure is probed with red laser light, the azo-dye molecules remain in the trans-configuration
and the LC material remains in the nematic phase; (b) if an optical pumping with green light takes
place, the molecules undergo a trans-cis conformational change and the LC makes a transition to
the isotropic phase

considered, electric field and temperature can efficiently modify the orientation of
molecules and tune the effective refractive index of the medium. However, there
are other methods to tune the refractive index of LC materials. In particular, when
an LC system is doped with small amounts of azo-dye molecules, the refractive
index tuning can be achieved by using light. In Fig. 12.4, it is shown the typical
mechanism that takes place in these systems. When irradiated with light of a specific
wavelength, azo-dye molecules undergo a photo-chemical trans-cis conformational
transformation: they modify their shape and induce disorder in the host LC material
(Fig. 12.4b).

This mechanism is usually called all-optical switching and it is very convenient
because it offers the possibility to commute the properties of an optical system with-
out using any electrode [29–31]. Such a possibility can prove very appealing also
with plasmonic systems. Liu et al. have provided an interesting example of this con-
cept where they use a photo-switchable grating made of azo-dye-doped Holographic
Polymer-Dispersed Liquid Crystals (HPDLCs) combined with a gold nanodisk ar-
ray [32]. By putting the two elements in close proximity, they show some interac-
tions because the grating becomes the surrounding medium of the nanodisk array.
These interactions yield on one hand an LSPR-enhanced diffraction of the grating
and, on the other hand, a diffraction-mediated LSPR of the gold nanodisk array. The
first remarkable result is that the coupled system (grating + nanodisk array) exhibits
a shifted LSPR frequency, because of the presence of the grating. Moreover, due to
the absorption of the gold nanodisks, the diffraction efficiency outside the LSPR
range is much lower than that of the bare grating, whereas it is higher within the
LSPR range. Where the tunability of the system is considered, experiments show
that pumping with green light (λ= 514 nm) has no effect on the LSPR of the bare
gold nanodisk array; in contrast, a significant decrease of the extinction coefficient
can be observed under different pumping intensities for the azo-based HPDLC grat-
ing. A change in the band 600–800 nm is due to the decreased diffraction from the
grating caused by the Nematic to Isotropic (N-I) phase transition of the LCs. In this
case, indeed, light propagating through the grating experiences an effective index of
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LC droplets, which is an average of the ordinary and extraordinary indices, and only
slightly higher than that of the LC material in the isotropic phase; for a 10-µm-thick
grating, the index change due to the N-I phase transition gave a ∼30 % reduction
of the diffraction efficiency when measured by a p-polarized He–Ne laser (in this
condition the index modulation between polymer and LC is almost negligible and
the diffraction grating very weak).

Finally, it is worth noting that the realized variations are fully reversible because
only the trans-cis isomerization transition is responsible of the isothermal switch-
ing processes of the LC state: by removing the photo-pump action, the azo-dye
molecules relax in the original trans configuration and the LC order is restored.
Switching times are not extremely fast but they can be eventually improved by real-
izing the optically switchable grating with a POLICRYPS technique [17, 33]. It has
been indeed demonstrated that this technique provides more performing diffraction
gratings than the HPDLC one.

Starting from a similar concept, a light-driven plasmonic absorber has been re-
cently demonstrated [34]. There is a significant amount of research focused on de-
veloping plasmonic absorbers with wide working frequency ranges or multiple res-
onances [35–37]. These devices usually require an accurate design to guarantee op-
timal performances and it can result quite difficult to reconfigure them or tune the
absorption bands without redesigning and repeating the entire fabrication process.
In this regard, it would be extremely convenient to have an actively tunable plas-
monic absorber that can be adapted to a specific application. As an example, such a
device could be used to optimize the efficiency of solar cells, which usually exhibit
narrow absorption peaks in the near IR and visible range. The tunable plasmonic
absorber designed by Zhao et al. [34] comprises a photosensitive nematic liquid
crystal (PNLC) layer covering an asymmetric gold nanodisk array. The photosensi-
tivity of the PNLC derives again from the presence of azo-dye dopants that, upon
light irradiation, can induce a change of the refractive index of the liquid crystal.
Figure 12.5a shows a schematic of the active plasmonic absorber: there are two dif-
ferent sizes of gold nanodisks, which exhibit two distinct localized surface plasmon
resonances (LSPR) [38]; their frequency values are determined by the size of the
metal nanodisks, as well as by the inter-spacing between them.

Indeed, the specific electromagnetic energy impinging on the structure induces
dipole oscillations in the nano-units present on the substrate; as such, the energy
is converted into a displacement current and confined until it completely dissipates
through the structure. Thus, an absorption phenomenon takes place at a specific
frequency: The use of two different sizes of gold nanodisks (Fig. 12.5b) results in
two different absorption bands. Figure 12.5c shows a SEM image of the fabricated
plasmonic absorber: it is a three-layer structure specially designed for the top gold
pattern to achieve the dual-band near perfect absorption and a 200 nm gold bottom
layer to block any incident/transmitted light. The top layer consists of two nanodisk
arrays arranged in a two-dimensional (2D) pattern with the same period d, as shown
in Fig. 12.5b. A thin layer of SiO2 (30 nm) is used as the middle spacing layer and
its thickness has been chosen by considering two criteria: (1) the layer has to be thin
enough to ensure the plasmonic coupling between the top and bottom metal layers;
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Fig. 12.5 (a) Schematic of light-driven tunable plasmonic absorber. Light-sensitive liquid crystals
on top of the absorber can be modulated with light. (b) The top layer consists of two sets of
alternatively arranged, two-dimensional nanodisks with the same period and different diameters,
followed by a spacing layer of SiO2 and a bottom gold layer. (c) SEM images of fabricated near
perfect plasmonic absorber working at dual frequencies. [34]—Reproduced with permission of the
American Institute of Physics

(2) a dielectric with relatively high dielectric constant is convenient in a capacitor
configuration between the top and bottom metal layers, since a large capacity allows
a very good confinement of light energy inside the three-layer structure. In order to
check the functionality of the three-layer structure, several numerical simulations
have been performed. The absorption bands strongly depend on the geometrical
features of the nanodisk arrays and even slight changes can determine a noticeable
frequency shift. In order to characterize this dependence, two designs have been
considered with different combinations of large nanodisk and small nanodisk arrays
(a = 300 nm, b = 200 nm; and a = 280 nm, b = 180 nm). The experimental check
of the fabricated structures has been performed by using a Fourier Transform in-
frared (FTIR) spectrometer and an imaging microscope (Bruker FTIR, HYPERION
3000). Both simulated and measured curves are plotted in Figs. 12.6a,b. Experi-
mental results match almost perfectly in terms of position of the absorption peaks,
with a slightly reduced absorption when compared to simulations. Differences are
likely caused by imperfections in the fabrication and different boundary conditions
in simulations and real cases.

In order to incorporate a tuning mechanism, this system has been layered with
a photosensitive LC material. As an active medium it has been chosen the liquid
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Fig. 12.6 (a) Two designs of the near-perfect plasmonic absorber (i) a = 300 nm, b = 200 nm,
and (ii) a = 280 nm, b = 180 nm. FDTD simulations show that near perfect absorption can be
achieved at selected wavelength ranges. (b) Experiment results of the two designs. Over 90 % ab-
sorbing efficiencies can be achieved. [34]—Reproduced with permission of the American Institute
of Physics

crystal 5CB (pentyl-cyano-biphenyl) doped with ≈4 % of methyl-red dye. These
materials are of real interest for possible applications, because all-optical modula-
tion of the liquid crystal birefringence can be implemented at speeds several orders
of magnitude higher than with electro- or acousto-optical approaches [39–41]. The
presence of the nanodisc array perturbs the azo-dye doped LC material that assumes
an isotropic phase.

This has been demonstrated by probing the reflection property of the structure
with s- and p-polarized light. No appreciable variation has been observed, indicating
that the liquid crystal molecules are distributed in the structure with their axis ran-
domly distributed on the gold surfaces. The experimental setup for optical tuning of
the absorption dip is shown in Fig. 12.7a, with an infrared microscope connecting to
FTIR spectrometer to collect the reflection spectrum. An argon laser (λ= 514 nm)
is used for the photo-pumping with its power tunable from 0 to 248 mW. The laser
impinges obliquely on the sample so that its reflections are not collected by the
microscope objective. When illuminated by the pumping light, several mechanisms
can occur in the methyl-red doped nematic liquid crystal [42]. The most likely one
is an optically induced alignment of the methyl-red molecules (and therefore the
liquid crystals molecules) towards the normal to the gold surface, i.e., the probe
“sees” a lower refractive index value closer to the ordinary index value no. Fig-
ure 12.7b shows the numerical simulation of a sample with different nanodisk sizes
(a = 300 nm and b = 200 nm). It is evident that, with the liquid crystal overlayer,
the two absorption dips are shifted by a considerable amount (from 1.1 µm (in air) to
1.35 µm, and from 1.52 µm (in air) to 1.7 µm, respectively). Because of the large in-
dex mismatch between the liquid crystal (niso ≈ 1.61) and air (n= 1.0), the minima
of the reflection bands are higher. When the refractive index of the liquid crystal is
changed by an amount �n= −0.06 (from 1.61 to 1.56), the simulation shows that
a shift of about 30 nm should take place. The corresponding experimental results
are plotted in Fig. 12.7c: we can clearly observe the change in the absorption dips
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Fig. 12.7 (a) Experimental setup for characterizing the optically tunable plasmonic absorber.
(b) FDTD-simulated results of the performance of the liquid crystal-plasmonic absorber; about
30 nm shift can be observed. (c) Measured absorption band shifts with the pumping light turning
ON and OFF. (d) Zoom-in view of the left absorption dip. The shift is around 25 nm. (e) Zoom-in
view of the second absorption dip. The shift is around 20 nm. [34]—Reproduced with permission
of the American Institute of Physics

before and after the pumping light is applied; furthermore, in the experiment with
low cw laser power illumination the tuning is reversible and repeatable and the tun-
ing speed is ∼1 s. We also observe that the performance of the plasmonic absorber
is somehow compromised after introducing the liquid crystal and dye mixture, with
one absorption dip giving ∼70 % absorption compared to over 90 % before the in-
troduction of liquid crystal. Figures 12.7d and 12.7e show a magnification of the
two resonances from Fig. 12.7c; the shifts are around 20–25 nm, which is in good
agreement with simulation results (shift of 30 nm). By optimizing the geometry,
or the dye-concentration, and utilizing other mechanisms or liquid crystals to pro-
duce larger birefringence change, we could expect larger and faster tuning for the
absorption dips. We can conclude by summarizing the main features of the two ex-
amples of photo-tunable plasmonic devices: In the first case, the combination of a
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photo-sensitive HPDLC grating and a gold nanodisk array gives rise to interesting
interactions; results of experiments show that the diffraction efficiency of the grating
is enhanced by the presence of the resonant entities. On the other side, a significant
decrease of the extinction coefficient of the LSPR peak is observed because varia-
tions in the diffractive properties of the grating take place upon light irradiation.

The second example concerns a near-perfect dual-band plasmonic absorber; the
two absorption bands of the device strongly depend on the geometrical features of
two arrays of gold nanodisk, with different sizes, that are used in the main layer of
the device. By further optimizing the device, large room for improvements can be
attained in terms of tuning range, absorption efficiency and tuning response time.

12.5 Strain Controlled Active Plasmonics

There is a substantial interest in realizing nano-particulated substrates where shape,
size and density of NPs can be finely controlled. The main reason is due to the
dipole-dipole interaction that takes place between isolated metal particles. As al-
ready said, the interparticle separation influences the plasmon resonance frequency;
roughly speaking, a change of plasmon frequency corresponds to a change of the
color of the considered material. A wide scenario of applications is then foreseen
for these systems as optical sensors and detectors. However, a detail that cannot be
neglected is related to how pronounced this effect can be: will this color change be
visible by naked eye or just detectable by means of a spectrophotometer? In order to
answer this question, several groups have investigated the plasmonic shift that can
derive from the application of mechanical strains to flexible substrates containing
metal NPs.

A significant example has been provided by Correa-Duarte et al. who have
successfully deposited gold NPs onto either planar or honeycomb structured
poly(dimethylsiloxane) (PDMS) elastomeric substrates [43]. The involved process
is sketched in Fig. 12.8. Planar or honeycomb structured elastomer films have been
obtained by depositing a PDMS liquid solution (Sylgard 184 from Dow Corning
GmbH) onto a silicon substrate and on a monolayer of polystyrene spheres (65 nm)
closely packed on a hexagonal structure. Both samples were dried up in oven and
then peeled off from the substrates. The planar PDMS film has been coated with
25 nm silica-coated gold NPs (Au@SiO2, with a gold core of 15 nm) by following
a layer-by-layer self-assembly technique [44]. After the peeling off, the honeycomb
film contained some Poly-styrene spheres that have been dissolved by immersing
it in Chloroform for a couple of hours. Afterwards, Au@SiO2 NPs have also been
deposited on this film by following the layer-by-layer technique.

In order to check an eventual dynamic plasmonic response, obtained samples
(both planar and honeycomb structured) have undergone mechanical strain ex-
periments. Samples were clamped and mounted within a uniaxial frame that al-
lowed both stretching and compression experiments. Obtained results, reported in
Fig. 12.9a, evidence a gradual reduction of the absorbance of the sample when it is
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Fig. 12.8 Schematic illustration of the synthetic process followed for preparation of functionalized
PDMS substrates. gold NPs are deposited onto planar (a) or honeycomb-like structured (b) PDMS
substrates. The sketch is courtesy of Prof. Correa-Duarte. [43]—Reproduced with permission of
Springer

subject to a stretching action; a reverse behavior is observed upon compressing the
sample. For each curve, the maximum absorbance value has been plotted versus the
percentage of applied strain, exhibiting a linear dependence (inset of Fig. 12.9a).
This dependence can represent a quick and easy way to monitor the strain of the
film and, hence, to use the system as an optical sensor. Keeping in mind that these
experiments have been recorded using a standard UV-Vis spectrophotometer with a
quite large beam diameter (0.5 mm), the sensitivity of the method can be considered
quite high. Nevertheless, the obtained curves do not show any shift of the plasmon
frequency. In fact, if we suppose that a dipolar interaction between neighboring gold
NPs exists, upon stretching the PDMS film, we should expect a gradual blue-shift
of the plasmon frequency because of a homogeneous increase of the interparticle
separation.

On the contrary, if this homogeneous separation of NPs does not take place and,
due to the stretching, there is only the formation of random cracks of the gold NPs
layer (Fig. 12.9b), the absence of this shift can be justified. In this case, indeed, the
stretching action would just produce the formation of big agglomerates of NPs, sep-
arated between each other, with consequent no influence on the plasmonic response
of the system. Atomic force microscopy (AFM) images of the samples, before and
after the stretching, have confirmed the presence of localized cracks in the sam-
ple surface and, hence, verified the exactness of this last hypothesis (images not
reported). The honeycomb structured PDMS film also shows interesting features
when considered as a strain sensor. Indeed, the sensing functionalities are two-fold
because of the diffractive and plasmonic nature of the device. Due to the symme-
try of the structure, a laser probe impinging on the structure produces a hexagonal
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Fig. 12.9 (a) UV-Vis spectra of a planar PDMS films coated with Au@SiO2 as it is (black curve),
subject to 2 % stretching (last curve), 3 % stretching (green curve) and 2 % compression (first
curve). (b) Scheme of the stretched film in presence of cracks of the NPs layer or with uniform
separation of NPs. [43]—Reproduced with permission of Springer

diffractive pattern of the transmitted light. By applying a mechanical strain to the
sample, a deformation of the holes takes place that has a direct consequence on
the diffracted pattern. The honeycomb micro-structure offers also a higher surface
area for NPs deposition; for this reason, the authors deposited 10 monolayers of
Au@SiO2 NPs and checked the UV-Vis spectra of the sample under mechanical
strain.

Obtained results reveal a behavior very similar to the one obtained by using the
NPs coated planar film, and the gold layers do not influence the diffractive behavior
of the structure. These results suggest that both diffraction and surface Plasmon
resonance can be simultaneously exploited for optical sensing.

Experiments have been also performed by including gold NPs in the bulk of
flexible PDMS materials [45]. In order to avoid the cracking issues experienced
by Correa-Duarte et al., which can derive from depositing a coating of NPs on the
PDMS surface, the particles have been dissolved within the liquid PDMS solution.
This task was not trivial: when dealing with NPs, the hardest job is to prevent their
clustering. For this reason, gold NPs (from Harima Chemicals) have been, first, di-
luted in chloroform, stirred for about one hour and then their good dispersion has
been verified by SEM. The gold NPs diluted in chloroform have been, then, mixed
with PDMS. In doing this, there are, at least, three ways to proceed: particles can be
directly combined with the base pre-polymer, with the curing agent or with the two
components previously mixed together. At first, the very low viscosity of the curing
agent was supposed that should improve its miscibility with gold NPs. Unfortu-
nately, this hypothesis was not correct: after a short time (about 1 hour), NPs phase-
separated from the curing agent. The combination of NPs with the base pre-polymer
gave better results: the obtained mixture was quite stable and homogeneously col-
ored. Probably, the high viscosity of this material prevents the diffusion of NPs and
their aggregation in clusters. The further addition of the curing agent to the base
pre-polymer doped with NPs did not influence the stability of the mixture that was
then ready to be baked. The samples used for experiments have been prepared by
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Fig. 12.10 Step-by-step procedure used for realizing PDMS samples with bulk distribution of gold
NPs. (a) PDMS preparation, (b) air degassing, (c) master covering, (d) baking process, (e) peeling
off, (f) PDMS template filled with gold nanoparticles. [45]—Reproduced with permission of Taylor
& Francis group

following the steps depicted in Fig. 12.10: instead of preparing a homogeneous sub-
strate made of PDMS doped with NPs, the presence of this material was limited just
to a thin volume.

In order to obtain such a result, a glass substrate (1 × 2 cm2, 1.1 mm thick) was
glued to the bottom of a petri dish (Fig. 12.10a) and then was poured a pure PDMS
mixture (curing agent/base pre-polymer in 1/10 weight ratio) in it (Figs. 12.10b,c).
Afterwards, the petri dish was baked in the oven (previously warmed up at 100 °C,
Fig. 12.10d) for about one hour. After the baking step, the hardened PDMS substrate
was just peeled off from the petri dish (Fig. 12.10e). The obtained sample contains
a hollow volume corresponding to the one occupied by the glass substrate glued
in the Petri dish; this volume was filled in with a second mixture made of PDMS
(same ratio between the two components) and Harima particles at 1 wt%, prepared
as already explained. It is worth noting that the commercial product from Harima
(NPG-J) used for these experiments contains an effective 56 wt% concentration
of gold nanoparticles. As such, the real concentration of gold NPs in the samples
corresponds to 0.56 wt%. The PDMS sample, which included now gold NPs, was
additionally baked at 200 °C for about one hour. At the end of the process, a PDMS
layer, ∼2 mm of thickness, was obtained containing a thin layer (about 100 µm
thick) of PDMS doped with gold NPs (Fig. 12.10f). The choice of limiting the pres-
ence of NPs to a small volume of the sample is motivated by two reasons. First of
all, by fabricating a thick layer of PDMS homogeneously doped with NPs, even
with low gold concentrations, the extinction coefficient of the sample would be way
too high, making difficult a reliable study of the plasmonic response of the system.
Moreover, in future studies, it could be convenient to replicate a micro/nano struc-
ture (e.g. diffraction grating) on the surface of the pure PDMS sample; by covering
afterwards this structure with NPs, it could be possible to study the influence of NPs
in the optical and/or electro-optical behavior of such a structure. Such experimen-
tal condition can be realized by using the procedure indicated above for fabricating
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Fig. 12.11 (a) Experimental set-up used for the stretching characterization of PDMS samples
containing gold NPs; (b) Behavior of the plasmon resonance wavelength as a function of the strain
applied to the sample; the dashed lines indicate the points of minimum of the surface plasmon
resonances. [45]—Reproduced with permission of Taylor & Francis group

the sample and by simply substituting the thin glass substrate in the Petri dish with
another one where the micro/nano structure is present.

The prepared sample has been experimentally characterized by studying its spec-
troscopic response for different stretching conditions of the PDMS substrate. In or-
der to apply a mechanical strain to the sample, this has been clamped with tweezers
that can be moved apart by two micrometer mobile actuators. The set-up has been
mounted between the light source and the detector of an Agilent 8453E spectro-
photometer (Fig. 12.11a); for each elongation of the sample, the corresponding
transmission spectrum has been acquired. Obtained normalized spectra are reported
in Fig. 12.11b: from the graph, a similarity emerges with the work of Correa-Duarte;
to an increase of the applied strain corresponds a reduction of the absorbance. How-
ever this is not the only effect since a red shift of the plasmon resonance wavelength
of about �λ = 12 nm has been observed (from λ = 551 nm, no applied strain,
to λ = 563 nm, 20 % applied strain). This result confirms that, by using a PDMS
matrix doped with gold NPs, it is possible to obtain a system showing tunable plas-
monic properties. In order to interpret the measured red shift, results obtained by
Kinnan and Chumanov can provide useful hints. Indeed, these authors have also
demonstrated that, by changing the inter-distance between NPs, the electromagnetic
coupling in their system is correspondingly modified [10]. In particular, spectro-
scopic investigations performed on substrates coated with silver NPs with different
surface densities have shown a blue- or red-shift of the plasmon resonance wave-
length, depending on the particle size: for small particles (59 nm or less) a red shift
and a broadening of the plasmon peak takes place; in contrast, for NPs larger than
129 nm, there is a blue shift and a narrowing of the peak. In order to check which
condition better fits their results, authors of Ref. [45] performed a SEM character-
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Fig. 12.12 Electron microscopy images of (a) NPs aggregates typical ensemble vision, (b) par-
ticular of the shape of NPs aggregates. [45]—Reproduced with permission of Taylor & Francis
group

ization of their samples. Figure 12.12 shows two micrographs depicting the same
area but with different magnifications: size and distribution of particles are quite at
variance. Thus it is possible to assume that the red shift of the plasmon resonance
wavelength reported in [45] is the superposition of several contributes given by the
differently sized NPs aggregates.

We can conclude that the possibility of realizing active plasmonic systems tuned
by mechanical actions has been demonstrated in two systems in which gold NPs are
confined to the surface or dispersed in the bulk respectively. From an application
oriented point of view, we can envisage several possibilities for the obtained result:
when NPs are confined in the bulk, it could be convenient to reproduce the system
in thin layers (100 µm) in order to realize very precise pressure control sensors.
A more sophisticated application would instead result in advanced systems for solar
exploitation, due to the ability of Au nanoparticles to harvest the electromagnetic
radiation [46]. Finally, by better controlling size and distribution of Au nanoparti-
cles, it should be even possible to achieve a larger tuning range of the shift of the
plasmon resonance wavelength.

12.6 Conclusions

In the field of plasmonic devices the possibility of obtaining active functionalities is
very appealing under several aspects. Main reason is that these devices usually re-
quire an accurate design to guarantee optimal performances and, in order to obtain a
slight tuning of their properties it is sometimes necessary to complete redesign and
repeat the entire fabrication process. Theory suggests, at least, two ways to dynami-
cally tune the spectral position of the plasmon resonance frequency. One possibility
is to modify the refractive index of the medium surrounding the resonant system.
Depending on the involved materials, the tunability can be achieved by applying an
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external electric field, by changing the temperature of the device or by illuminating
it with a specific wavelength. Another tuning mechanism is based on the dipolar
interaction that gives rise to the resonance behavior. If metal sub-entities are moved
apart, a modification of their interaction takes place and, hence, a tuning of their res-
onance frequency is obtained; thus, a mechanical action exerted on a flexible system
containing metal nano-particles can induce a plasmonic tuning.

In conclusion, in this chapter, we have shown several examples of plasmonic
systems that gain their peculiar functionalities from a very large number of amor-
phously arranged particles. Being the common denominator of quite different sys-
tems, amorphous materials can hold promises for the realization of innovative de-
vices in optoelectronics, optofluidics, biosensors and metamaterials.
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Chapter 13
Plasmonic Nanoparticle-Based Metamaterials:
From Electric to Magnetic Response

José Dintinger and Toralf Scharf

Abstract The self-assembly of nanoparticles into hierarchical architectures is cur-
rently attracting a lot of interest due to their potential applications in a wide range
of fields like nanophotonics, nanoelectronics or catalysis. In the present chapter, we
discuss the potential of metal nanospheres for the bottom-up fabrication of opti-
cal metamaterials. Controlling the spatial arrangement of the nanoparticles in these
composites offers a promising route to engineer unique optical responses originat-
ing from their collective plasmonic resonance. Here we explore experimentally how
different types of NP arrangements can give rise to distinct macroscopic effective
properties, including both electric and magnetic optical responses. For each of the
structures investigated, we propose a brief overview of the current state-of-the-art of
the appropriate bottom-up fabrication methods and analyze their optical properties
in details. First, the optical constants of “bulk” amorphous nanoparticle metamateri-
als are investigated by ellipsometry, demonstrating that controlling the nanoparticle
filling fraction provides an efficient route to tune the metamaterial permittivity. As
an example of a potential application, the realization of a hybrid plasmonic Bragg
mirror is discussed. Finally, we focused on the fabrication and characterization of
dense spherical nanoclusters that can sustain a magnetic response at optical fre-
quencies. In doing so, we demonstrate the possibility to engineer the permeability
of nanocluster-based metamaterials, thereby opening interesting perspectives for the
realization of isotropic negative index materials operating in the visible.

13.1 Introduction

Although the interest in metallic nanoparticles (NPs) has grown tremendously in
the scientific community over the past 30 years [1–3], their first use, to stain glass
or decorate pottery, can be traced back to thousands of years ago [4, 5]. The most
famous examples are the Roman Lycurgus cup [6] or the stained-glass windows of
medieval cathedrals [7, 8] where luminous red and yellow colors are produced by
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the gold, silver or copper NPs that these glassworks contain. The origin of these
fascinating colors was, however, not well understood until the 19th century with
the seminal works of Michael Faraday. In a famous lecture marking the birth of
nanoscience in 1857 [9, 10], Faraday demonstrated that the vivid appearance of
metal colloids was due to the “very minute size” of their constituents, which re-
sults in properties very distinct from those of the corresponding bulk metal. The
underlying physical mechanism was clarified some years later with the advent of
Maxwell’s electromagnetic theory of light and several important works on the phe-
nomenon of scattering and absorption of light by small objects by Rayleigh [11],
Lorenz [12] and Mie [13] among others (see in [14–17]).

A clear picture of the phenomenon can be drawn within the Drude model for met-
als which considers the conduction electrons of metals as free from the attraction of
the heavier positive ions forming the metal lattice, screened by the valence electrons.
When the particles dimensions are much smaller than visible wavelengths, the opti-
cal field can polarize homogeneously the NP and its spatial phase can be considered
constant over the NP volume (quasistatic or Rayleigh approximation). Under the
influence of the time-varying electric field of an optical wave, the free electrons are
driven collectively into oscillation with respect to the static ionic background. How-
ever, unlike their bulk counterpart, the free electrons in a metal NP are subjected
to a restoring force induced by polarization charges created at the opposite surfaces
of the NP, following the electronic displacement (Fig. 13.1a). This attractive force
imparts a resonant behavior to the electronic cloud which acts, within this small size
limit, as an electric dipole oscillator characterized by a resonant frequency. By anal-
ogy with the collective electronic oscillations in gaseous plasmas, these resonances
were later termed localized surface plasmon resonances (LSPR). When the incident
light wave’s frequency is resonant, the amplitude of the oscillation is strongly en-
hanced as the optical energy is efficiently transferred to the free electrons. At the
same time, the electronic motion is damped by two loss mechanisms categorized
as radiative and non-radiative. Non-radiative damping, on the one hand, refers to
the dissipation of motional energy in the form of heat within the metal NP and its
environment, due principally to collisions between the vibrating electrons and the
lattice ions (i.e. Joule heating). Radiative damping, on the other hand, corresponds
to the reemission of light (in all directions) by the oscillating electrons (i.e. elas-
tic scattering). These two resonant mechanisms, absorption and scattering, result
in the different colors of stained glasses or colloidal dispersions when observed in
transmission or diffuse reflectance. However, for small NPs like the ones shown in
Fig. 13.1b, scattering is negligible and absorption strongly dominates.

The resonant wavelength λLSP also marks the transition between in- and out-of-
phase oscillations of the electronic cloud with respect to the exciting wave. As a
result, the optical light wave is not only attenuated but its phase is also affected and
varies strongly around the resonance, a phenomenon often referred as anomalous
dispersion (since the permittivity unusually decreases with the frequency). In addi-
tion to the characteristic LSPR extinction signatures observed in the far field, i.e. at
a great distance from the NPs, plasmonic resonances also manifest themselves by a
strong build-up of the optical near-field close to the NP surface. The NP therefore
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Fig. 13.1 Localized surface plasmon resonances (LSPR) of metal NPs: (a) Schematic representa-
tion of the excitation of the localized plasmon oscillations by an external electric field, within the
quasistatic approximation. (b) Dispersions of silver (left) and gold (right) NPs with diameter on
the order of 10 nm. (c) TEM of the corresponding silver NPs. (d) Extinction spectra of the two
dispersions

acts as an optical antenna [18, 19] which confines light in nanoscopic volumes (typ-
ically on the order of the NP volume [1]), leading to a large increase of the near-field
intensities in comparison with the incident light. The resonant frequency, and hence
the color of the NPs, is determined by the strength of the restoring force which in
turn depends on the surface charge densities and their spacing. Therefore, λLSP de-
pends essentially on the metal and host polarizability (i.e. permittivity), and on the
size and shape of the NP. Figure 13.1d shows the typical LSPR absorption band of
gold (red) and silver colloids (yellow) in a liquid solution at wavelengths close to
520 nm and 400 nm respectively. Beside the nature of the metal, another important
factor that affects the plasmonic resonance is the coupling among NPs. When the
distance between neighboring NPs is on the order of their size, their respective op-
tical near-fields start to interact and their electromagnetic coupling gives rise to new
coupled plasmonic resonances, much like how electron atomic orbitals hybridize
to form molecular orbitals [20]. Controlling the NP organization thereby offers an
additional degree of freedom to tune the NP plasmonic resonances and create new
properties. Recently, the collective properties of metal NP assemblies has attracted a
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lot of attention in the scientific community and a variety of exciting properties have
been observed such as the boosting of near-field intensities by several order of mag-
nitude [21], plasmon induced transparency [22] or optical magnetic responses [23].

While metal NPs are still exploited in the industry as pigment for paints or coat-
ings [24, 25], a profusion of groundbreaking plasmonic based applications have
been developed over the past decade [1–3, 26] thanks to these advances of modern
nanotechnology with the development of new fabrication, characterization and sim-
ulation tools. The large absorption and scattering cross sections of metal NPs are
attractive for various biomedical applications. When functionalized with specific
targeting ligands, they can be used as powerful contrast labeling agents for dark-
field bio-imaging, or as therapeutic agents for the photothermal treatment of cancer
[27, 28]. Another popular application in the biomedical field is biosensing [29–31]
which exploits the spectral sensitivity of the LSP frequency to local changes in the
NP environment (i.e., permittivity changes) and to the NP aggregation state, to mon-
itor the kinetics of binding events or to detect the presence of specific biomolecules
such as DNA or proteins. The large local field enhancement is also exploited to
improve the rate of various photophysical processes such as photoabsorption, fluo-
rescence [32] or Raman scattering [33]. These effects have allowed to improve con-
siderably the detection limit of various analytical spectroscopy techniques, down
to the single molecule level in the case of surface enhanced Raman scattering [34]
(SERS). They are also investigated as a potential means to improve the efficiency of
light-emitting devices [35] or photovoltaic cells [36] (more details on this last topic
are given in another chapter of this book). Other plasmonic applications include
subwavelength waveguiding [37], optical trapping [38], nanoscopy [39] or lithog-
raphy [40] and the list is still growing rapidly. In addition, we only addressed here
applications based on the optical properties of metal NPs but they are also widely
used for their catalytic or antimicrobial properties.

The focus of this chapter is on the use of metal NPs for the realization of a new
class of artificial composites with unusual optical properties: the so-called metama-
terials [41–44] (MMs). A general definition of an MM, is given by Cai and Sha-
laev [43] as an artificially structured material which attains its properties from the
unit structure rather than the constituent materials. An MM has an inhomogeneity
scale that is much smaller than the wavelength of interest, and its electromagnetic
response is expressed in terms of homogenized material parameters. These parame-
ters are usually the permittivity, ε(λ), and permeability, μ(λ)which describe respec-
tively the macroscopic polarization and magnetization of a material. Similarly to a
standard material where ε(λ) and μ(λ) describe the effect of its constituent atoms as
the average result of their electric and magnetic polarizability, αE(λ) and αM(λ), the
effective permittivity εeff(λ) and effective permeability μeff(λ) of an MM stem from
the response of the MM unit structure, the so called meta-atoms or meta-molecules.
As stated in the second part of the definition, the size and spacing of the meta-atom
must be small enough to prevent any diffraction effects, so that the electromagnetic
wave doesn’t sense the microscopic inhomogeneities of the MM and perceives an
effectively homogeneous material. For visible wavelengths, this sets an upper limit
for the size of the meta-atoms with a maximum on the order of 100 nm. This is still
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much larger than the sub-nanometric size of real atoms and it is therefore possible
to control the geometry of the meta-atoms by relying on advanced nanofabrication
techniques. The recent interest for MMs is largely motivated by the prospect of re-
alizing materials with tailored properties on demand through a rational design of
the meta-atom geometry. This enables the engineering of distinct optical proper-
ties that are precluded in the constituent materials, allowing potentially to extend
the optical properties of conventional materials. In this respect, one of the current
challenge of MM research is the realization of a bulk isotropic negative index ma-
terial at optical frequencies [44, 45]. Besides its fundamental interest, this prospect
also promises several exciting applications such as a superlens to image below the
diffraction limit [46], or an invisibility cloak that bends light around an object [47].
This requires the engineering of both the electric and magnetic response of the meta-
atoms. To achieve such properties, it is necessary to use resonant meta-atoms in or-
der to strengthen the usually weak light matter interaction. This is especially true for
the magnetic response since naturally occurring materials do not show any magnetic
activity at optical frequencies (as indicated by their permeability which is set to the
free space value: μ= 1). Although the field of MMs is still young, huge advances
have been made since the first demonstration of a negative index in the microwave
regime, about a decade ago [48]. Owing to their strong plasmonic resonances in
the visible, metallic nanostructures emerged as essential ingredients for the realiza-
tion of optical MMs. Several structures based on metallic meta-atoms and inspired
from the microwave designs, have successfully demonstrated similar effects close
to the visible range [49, 50]. These mainstream MM designs usually consist in pla-
nar arrays of sub-wavelength metallic inclusions with complex geometries such as
split rings [51], nanorod pairs [52] or fishnet structure [53]. The optical magnetic
response of such meta-atoms results from the excitation of a coupled plasmon mode
with anti-parallel currents that give rise to a magnetic moment. Despite these ac-
complishments, the current state-of-the-art MMs still suffer from several drawbacks
inherent to their design and fabrication process. Due to their complex geometry,
their fabrication usually requires advanced top-down nanofabrication methods such
as electron- or ion-beam lithography which offer a great flexibility in the design of
the meta-atoms and their large scale arrangement. Nevertheless, in addition to being
expensive and time-consuming, these techniques, generally, only allow the realiza-
tion of planar arrangements of meta-atoms. It is therefore difficult to fabricate a truly
three dimensional bulk MM where light can effectively propagate. Additionally, this
results in anisotropic geometries suffering moreover from strong spatial dispersion
due to the rather large size of the meta-atoms and their strictly periodic arrange-
ment. In consequence, the MM properties are angle and polarization dependent in a
highly non-trivial manner. This prohibits their application for many envisioned MM
devices that have been proposed while assuming to have a material at hand with
an isotropic electric and magnetic response. Finally, the operation of current MMs
in the visible remains limited due to the technical difficulties to further scale down
the size of the meta-atoms [44]. Hence, one of the major challenges of the current
MM research is to devise new strategies allowing the realization of an isotropic
three dimensional MM at optical frequencies. To overcome the limitations of stan-
dard top-down planar MMs, bottom-up approaches based on the self organization
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of metal colloids have been recently suggested as a promising alternative [44, 45].
The huge progress of colloidal nanochemistry now allows the preparation of metal
NPs with a wide range of shapes and their organization into complex ordered as-
semblies over various length scales [54, 55]. Nevertheless, the realization of com-
plex architectures like the ones obtained from top down methods (nanorod pairs,
split rings) still remain highly challenging. Fortunately, several theoretical works
have shown that the most common type of metal colloids, i.e. nanospheres, could
be used to build isotropic negative index MMs [56–60]. Depending on their organi-
zation in space, different properties can emerge from the plasmonic resonance of a
nanosphere (Fig. 13.2a): both the effective permittivity εeff(λ) and the effective per-
meability μeff(λ) (Fig. 13.2c) of the NP-MM can be engineered. For instance, metal
NPs act as electric meta-atoms allowing to engineer εeff(λ) (Fig. 13.2b) while spher-
ical clusters of NPs act as magnetic meta-atoms (Fig. 13.2c) influencing μeff(λ) via
the near-field interactions between NPs which give rise to a magnetic response.
Although the realization of such architectures requires to control the NP organiza-
tion over several length scales, a periodic ordering of the meta-atoms is not manda-
tory to observe the properties. Much to the contrary, amorphous arrangements are
highly desirable as they provide a simple solution to the aforementioned problem
of spatial dispersion and anisotropy by bearing intrinsically an isotropic response,
independent of the light propagation direction. Several works have indeed shown
that the MM properties are largely determined by the resonance of the individual
meta-atoms, rather than by their positional arrangement and hence these properties
survive the disorder [61–63] (a more detailed discussion of this problem is presented
in another chapter of this book). If the meta-atoms bear an isotropic response, as in
the case for spherical NPs or spherical clusters of NPs (Fig. 13.2), the strength of
the MM resonance remains unaffected by the lights polarization state. Also, amor-
phous structures are evidently easier to fabricate, due to less severe geometrical
constraints. In conclusion, the self assembly of plasmonic NPs represent a promis-
ing approach to solve some of the limitations of the current top-down MMs since
it should allow the realization of isotropic MMs operating in the visible range and
fabricated by up-scalable and cost effective bottom-up methods.

The aim of the work presented in this chapter is to evaluate the potential of col-
loidal metallic NP clusters for the bottom-up fabrication of optical MMs. To this
end, we investigate how different types of NP arrangements can give rise to distinct
macroscopic effective properties. The chapter is divided in three sections devoted to
the bottom-up fabrication and optical characterization of different type of NP orga-
nization, like the ones depicted in Fig. 13.2. Section 13.2 is dedicated to bulk NP
composites (Fig. 13.2b) and the determination of their effective optical constants
by spectroscopic ellipsometry. These parameters are essential for the determination
of the optical properties of more complex NP arrangements like the NP-polymer
multilayers discussed in Sect. 13.3. Section 13.4 focuses on dense spherical clus-
ters of NPs (Fig. 13.2c) and their potential magnetic response. A fabrication method
to form NP cluster meta-atoms containing a large number of NPs is presented and
the optical response of the fabricated clusters is carefully analyzed, confirming the
occurrence of a dipolar magnetic resonance for the largest clusters.
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Fig. 13.2 Self-assembled amorphous plasmonic NP metamaterials: the LSPR resonance of a
spherical NP (a) allows to engineer the permittivity of bulk NP composites (b) where NPs are
homogeneously distributed in a host material, and the permeability when the NP forms spherical
clusters (c)

13.2 Bulk NP Composites: From Dilute Systems to Closed
Packed Assemblies

As explained above, metal nanostructures form ideal MM building blocks due to
their LSP resonances. A bulky assembly of NPs, with no specific local arrangement
such as the one depicted in Fig. 13.2b, represents a good example of an amorphous
electric MM. Its effective permittivity εeff(λ) can be tuned to attain extreme val-
ues, owing to the strong anomalous dispersion that occurs in the spectral vicinity of
the LSP resonance [64]. The effective permittivity εeff(λ) of such a bulk NP com-
posite is a crucial parameter for evaluating the response of more elaborate meta-
structures such as the ones investigated in the next sections. A rigorous descrip-
tion that accounts for all the NP interactions in such complex structures requires
demanding simulation tools but a qualitative evaluation of the emerging effective
properties can be obtained by treating these complex assemblies as made out of an
effective medium characterized by εeff(λ). The effective permittivity (permeability)
is the spatial average of microscopic fields and polarization (magnetization), and
hence strongly depends on the volume fraction f occupied by the meta-atoms or
-molecules. Consequently, we devote this first section to the experimental determi-
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nation of the effective permittivity εeff(λ) of bulk NP MMs as a function of their
NP volume filling fraction, fNP, focusing on the case study of spherical silver NPs.
Section 13.2.1 starts with a brief review of the available bottom-up techniques for
the preparation of bulk NP MMs. Section 13.2.2 is devoted to the retrieval of the ef-
fective permittivity εeff(λ) of these samples by spectroscopic ellipsometry including
a brief introduction to the effective medium theories.

13.2.1 Bulk NP Metamaterial Fabrication

According to our definition, a bulk NP metamaterial consists of any extended (di-
mensions much larger than the wavelengths of interest) three dimensional arrange-
ments of NPs, regardless of whether it is ordered or amorphous. For the sake of
simplicity, we consider in this section only NP MMs where individual NPs are
homogeneously distributed. Random aggregation into ill-defined agglomerates is
addressed in the next section. The bottom-up approaches generally starts with the
synthesis of the NP meta-atoms from metal precursors in liquid, solid or gas phase
using chemical (generally wet reduction of metallic salts) or physical processes (gas
phase evaporation, electrolysis, pyrolisis, laser ablation, . . .). The NP host medium
can be liquid (NP dispersions) or solid (polymer, glass) and is generally a trans-
parent dielectric with a passive role in the MM properties. In some cases however
they can provide additional functionalities such as optical gain when doping the
host matrix with dyes [65], or an active tunability under external stimuli (tempera-
ture, light, electric field, . . .) like when using for instance liquid crystals [66]. The
principal interest of colloidal self organization methods is to control the NP orga-
nization over various length scales, from the nano- to the macroscale. In general
this involves coating the NP surface with specifically designed ligands to balance
the different attractive and repulsive NP interactions (these can be van der Waals,
electrostatic, steric, covalent or hydrogen bonding interactions to cite just a few).
Capping agents are used to manage the interaction between particles and most com-
mon are surfactants, polymers or ionic species. In solution, their role is to prevent
the agglomeration and coalescence of the NPs by mitigating the strong attractive
van der Waals NP forces through electrostatic repulsion or steric hindrance. For
our study, we used commercial hydrophobic silver NP inks (NPSJ, Harima Chem-
icals, Inc.) which have been originally developed in the field of printed electronics
[67, 68] for the realization of interconnects by inkjet printing, followed by anneal-
ing. In this respect, a major advantage of such metal NP inks is their low sintering
temperature (typically below 250 °C) which makes their processing compatible with
plastic electronics. A key requirement for these applications is the high NP concen-
tration necessary to obtain homogeneous conductive patterns: these NP dispersions
have a metal volume fraction above cv > 10 % (>1 g ml−1) in solution. This corre-
sponds to an average distance between NPs close to 10 nm only, in the liquid state.
With such high density, one can investigate a wide range of NP concentrations by
preparing several dilutions of the ink in polar solvents (Fig. 13.3a). These NPs are
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Fig. 13.3 Silver NP inks: (a) Photograph of the concentrated NP ink. (b) Photograph of the various
prepared dilutions corresponding to NP volume filling fractions fNP from 0.01 % up to 12 %

prepared by gas phase evaporation, and dispersed in tetradecane in the presence of
capping agents (usually long alkyl chains terminated by thiols or amine group to
prevent their irreversible agglomeration (by steric hindrance). This technique pro-
duces NPs with a narrow size distribution (mean diameter of 12 nm), as indicated by
the TEM images (Fig. 13.3b) and the sharp LSP absorption band around λ= 400 nm
(Fig. 13.1c). Note that we preferred silver over other metals like gold, due to com-
paratively lower losses [69] as can be seen from the much larger widths of the gold
NP LSP band (Fig. 13.1c).

Nevertheless, the interesting, unusual metal NP MM properties are expected at
still higher NP filling fractions [64] for which the NPs approach their condensed
state (fNP larger than 50 %), just like standard top-down planar MMs, which usually
have a surface coverage in this range. While the focus of this chapter is on the op-
tical properties of metallic NPs, unique electronic, magnetic, catalytic or mechanic
properties can also emerge depending on the choice of the NP material. Fostered by
these prospects [70], a whole host of methods have been developed to form extended
dense NP assemblies from dispersed solutions (Fig. 13.4). This ranges from direct
solvent evaporation to more intricate colloidal crystallization techniques. Several
excellent books and review articles [54, 71–75] offer an exhaustive description of
the various bottom-up techniques available. We only intend to give here a few ex-
amples of the most popular methods that allow the realization of ordered or glassy
amorphous 3D NP assemblies, with dimensions extending from several microns to
centimeters. The self assembly of NPs into prescribed architectures is essentially
ruled by the interplay between the multiple interactions among NPs [71, 76], the
influence of their environment and eventually the effect of external forces [73] (cap-
illary forces, shear flows, . . .) or templates [77]. Probably, the most straightforward
approach to increase the NP density up to the solid state is by sedimentation [78, 79]
(provided that the NPs are large enough so that gravity can overcome Brownian mo-
tion and buoyancy forces). Alternatively, NP aggregation or crystallization can be
realized by evaporating the solvent [74, 80] or destabilizing the colloidal disper-
sion by the addition of a precipitant [81–83] (ionic salt, non-solvent or competing
ligands) which destabilizes the repulsive NP interactions and prompt their aggrega-
tion. Dense amorphous films of randomly packed NPs are readily obtained by these
techniques but it is also possible to build large ordered NP superlattices if the den-
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Fig. 13.4 Examples of self-assembled bulk NP MM: (a) SEM image of a colloidal crystal of octa-
hedral silver NPs obtained by sedimentation. Reprinted with permission from [78]. (b) SEM image
of silver nanosphere supracrystals obtained by solvent evaporation. Inset: tilted view. Reprinted
with permission from [74]. (c) SEM image of CoFeO4 NP superlattice grown by solvent desta-
bilization in a microdroplet. Inset: photograph of the microcrystal confined inside a droplet.
Reprinted with permission from [83]. (d) TEM image of the (001) plane of a binary fcc superlattice
of oppositely charged PbSe and gold NPs direction. Inset: view of the (100) plane. Reprinted with
permission from [80]. (e) SEM image of an amorphous gold NP bilayer prepared by LbL deposi-
tion with polyelectrolytes. Courtesy of A. Cunningham. (f) AFM phase image of a monolayer of
hexagonally close packed PbSe NPs obtained by phase separation during spin coating. Reprinted
with permission from [84]

sification process is homogeneous and slow enough, and if the NP size distribution
is sufficiently narrow.

As the NP concentration exceeds a certain (crystallization) threshold, the NPs
adopt their equilibrium arrangement as determined by the balance between the dif-
ferent NP interactions at work (van der Waals, electrostatic, . . .), together with en-
tropic (space-filling) factors [79, 85] and eventually NP and solvent-substrate in-
teractions [74]. Although face-centered cubic (fcc) or hexagonally close packed
(hcp) superlattices are thermodynamically favored for monodisperse nanospheres,
a large variety of lattices have been produced by adjusting different NP properties
like their shape [79, 85] (Fig. 13.4a), surface charge [86] or size disparity [80, 87]
(Fig. 13.4d). Remarkably, electrostatic repulsive interactions can maintain order
even at very low NP concentration forming liquid colloid crystals with lattice con-
stants of several microns [78, 88]. These methods are however generally slow, and
offer only a limited control on the surface morphology, thickness and lateral di-
mensions of the NP assembly. A more sophisticated approach, inspired from the
concepts of supramolecular chemistry, is based on the molecular recognition be-
tween specific ligands grafted at the surface of the NPs. A large variety of ligands
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such as DNA strands [89, 90], mesogens [91, 92], dyes [93], photochromes [94]
or dendrimers [95] have been introduced to trigger the NP self-assembly by spe-
cific short range attractive NP interactions such as covalent or non covalent interac-
tions via hydrogen bonding, π–π , dipolar, metal-ion coordination, DNA base-pair
interactions and others. This approach is particularly effective for the fabrication
of small complex NP assemblies, i.e. NP meta-atoms (see Chap. 1) but large area
mono- and multilayers of NPs can also be produced when large 2D templates are
used, like in the layer-by-layer (LbL) deposition method [96]. This procedure in-
volves the alternate adsorption of NPs and molecular layers with complementary
charges or functional groups, by successive immersion of a solid substrate in NP
suspension and chemical baths. This method, originally based on the Coulomb in-
teractions between oppositely charged polyelectrolytes [97] was modified to form
NP multilayers by combining charged NPs and polyelectrolytes [98, 99]. More de-
tails on this method are given in another chapter if this book. The LbL deposition
principle was also exploited using the covalent bonding of dithiol ligands to met-
als [100] or the complementary interactions between nucleobase sequences of DNA
strands [101] or polypeptides [102]. More complex architectures can also be real-
ized by chemically pre-patterning the supporting substrates [77]. While the afore-
mentioned self-organization methods are essentially driven by internal interparticle
interactions, large scale ordering of NPs can be greatly facilitated by the use of ex-
ternal force fields. In particular, flow fields have been widely used in combination
with solvent evaporation to form wafer scale NP films following the principle of the
coffee ring effect. The dip-coating method [103, 104], for instance, exploits the cap-
illary forces that attract the NPs at the three-phase gas/liquid/solid interface, formed
by the meniscus between an evaporating suspension and a vertically standing wet-
table substrate. Other external fields, such as electric, magnetic or hydrodynamic
fields have also been investigated to drive the assembly of NP from dispersed so-
lutions [54]. For our purpose, we used the spin-coating technique [105, 106] which
offers the advantage of being perfectly adapted for scaling-up and mass production
as it is already widely used for various industrial applications such as photoresist
coating or compact disk fabrication. It is a cheap, fast and robust method to produce
homogeneous layers on large surfaces, ideally suited for our optical characteriza-
tion studies. In this method, an excess amount of NP dispersion is deposited on a
wettable substrate and rotated at high speed to spread the NP fluid. The formation
of NP films by spin coating has been investigated both experimentally and theoret-
ically. Despite its apparent simplicity, this method involves a complex multistage
process that combines viscous drag, non-uniform shear flow induced by centripetal
force, evaporation and interparticle interactions. The intricate balance between these
driving forces makes it difficult to predict and control the morphology of the NP as-
sembly. Nevertheless, the fabrication of large-area 2D and 3D ordered NP films has
already been reported [84, 107, 108].

To obtain a large area close-packed NP monolayer, we followed the method pre-
sented in Refs. [84] and [109], where hexagonally close packed (hcp) monolayer
of semiconductor NPs extending over cm2 have been prepared by spin coating a
mixed solution of NPs and organic material. The NP monolayer formation follows
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Fig. 13.5 2D NP monolayers prepared by phase segregation between NPs and a polymer during
spin casting: (a) Scheme of the structure. (b) Photograph of the structure showing cracks within
the monolayer. (c) SEM image of the hexagonally close packed silver NPs. (d) Topography of the
film measured by AFM

a phase separation process driven by the minimization of the interface surface en-
ergies. This results in the migration of the NPs at the air interface, on top of an
organic underlayer [109]. The addition of the organic material slows down the evap-
oration of the solvent, giving more time for the NPs to reorganize at its surface and,
therefore, avoiding unwanted kinetic effects like jamming. The NP surface coverage
can be adjusted from disconnected NP islands to fully hcp close packed monolayer
by controlling the concentration of NPs and organic material in the initial mix-
ture, and the evaporation rate (via the spinning speed and/or solvent volatibility).
In our case, we use polystyrene (Mw 90,000, Polymer Standard Services) as the
organic material and mix it with the hydrophobic silver NP inks (Harima, NPS-J)
in toluene. The various experimental parameters (NP and polystyrene concentration
and spin speed) were adjusted to obtain a uniform NP monolayer lying on top of a
polystyrene thin film (Fig. 13.5). Scanning electronic micrographs show some hcp
arrangements involving several tens of NPs (Fig. 13.5c); nevertheless no long range
order is observed due to the silver NP size polydispersity (a maximum standard
deviation in size of 5 % was found to be necessary to observe long-range ordered
packing [84]). Although undesirable, the presence of strain-induced cracks attests
(Fig. 13.5b and d) for the compactness of the NP arrangement and allows us to de-
termine the NP thickness by performing atomic force measurements at their edges.
A thickness around 10 nm was found, confirming a single layer of NPs, at most, is
present on top of the PS film. Assuming a uniform hcp packing, a diameter of 12 nm
for the metallic cores and a coating thickness of 1 nm (measured from TEM data;
Fig. 13.3b), the NP surface coverage is estimated to be around 50 %.
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Fig. 13.6 3D NP thin film prepared by spin casting: (a) Scheme of the structure. (b) Photograph
of the film. (c) SEM image of the randomly close packed silver NPs. (d) Cross-sectional view of
the thin film

Finally, to obtain a true 3D bulk NP MM, we spin coat directly the pure NP ink
(without polystyrene) on the substrate (Fig. 13.6). It must be noted that the ink for-
mulation contains some additives [68, 110], such as wetting agents and adhesion
promoters, that ensure the deposition of a stable uniform film, as can be seen from
the SEM analysis (Fig. 13.6d). The tilted view shows a thickness of 70 nm. In con-
trast to the monolayer sample, the NP packing appears completely random on the
SEM images (Fig. 13.6c), indicating a NP volume filling fraction fNP slightly below
50 %.

13.2.2 Effective Permittivity of Bulk NP Composites

The assessment of the dielectric constants of a material is essential to obtain a con-
densed description of its optical behavior and to evaluate its performance in device
applications. The assignment of effective material parameters is particularly deci-
sive for the understanding and further exploitation of MMs. The first demonstration
of a negative effective index [48] of refraction has contributed importantly to the
widespread interest for these composite materials. In general, effective permittiv-
ity εeff(λ) and permeability μeff(λ) are inferred indirectly from the measurement
of related observable quantities such as transmission and/or reflection coefficients
by relying on analytical models that connects observables and parameters [111]. Di-
rect retrieval requires to have access to as many observables as unknown parameters.
Otherwise the problem would be underdetermined and needs to be solved indirectly,
usually via data fitting procedures [112]. This task can be particularly intricate for
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Fig. 13.7 (a) Reflection of
linearly polarized light at a
substrate/ambient interface.
(b) Principle of the effective
medium theory

complex MMs that require a large number of parameters for their full characteri-
zation [113]. This concerns most of the top-down MMs that are affected by spatial
dispersion and anisotropy. In addition, when the MMs combine electric and mag-
netic activity, both εeff(λ) and μeff(λ) are needed, doubling the number of unknown
parameters. However, we should not be concerned with such complications since
the NPs we are considering are much smaller than optical wavelengths and only
very weakly diffusing. Furthermore, the amorphous and isotropic arrangements in-
vestigated in this section bear an isotropic response, fully described by a single
complex effective permittivity εeff(λ), since only an electric response is involved.
The parameter, however, still depends on the frequency.

To characterize our different samples, we used a polarization measurement tech-
nique, namely variable angle spectroscopic ellipsometry (VASE). Ellipsometry is
a widely used technique to determine the optical constant of thin films [114], and
it has been more recently introduced for the characterization of MMs [115, 116].
In particular, several works have used ellipsometry to determine the dielectric
constants of NP systems such as ours: NP liquid dispersions [117], monolayers
[118, 119] or thin films [120]. This method exploits the change in the polarization
state of light when reflected (or transmitted) by a material surface (Fig. 13.7a) to
deduce its permittivity. To do so, the sample of interest is illuminated at oblique
incidence by a light beam with a known state of polarization. This is usually a lin-
early polarized with equal amplitudes of the electric field in the plane of incidence
(p-polarization) and in the orthogonal plane (s-polarized). The permittivity contrast
at the interface induces a phase delay and a change of amplitude between the p- and
s-polarized reflected components, resulting in an elliptically polarized beam. The
reflected beam polarization ellipse is determined using an analyzer combined with
a rotating polarizer or a photoelastic modulator, as is the case for the commercial
instrument used in this study (UVISEL, Jobin-Yvon). The measured quantities, the
so-called ellipsometric angles �(λ) and Ψ (λ) correspond respectively to the ampli-
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Fig. 13.8 Real (left) and imaginary (right) parts of the effective permittivity of NP dispersions
for different NP filling fractions fNP as retrieved from spectroscopic ellipsometry measurements.
(Inset shows the dispersion with fNP = 0.25 %)

tude ratio and the phase difference and are related to by the complex ratio ρ(λ) of
the reflection coefficients rp(λ) and rs(λ) (for the p- and s-polarized light, respec-
tively) by the following relation, provided that the material is non depolarizing and
isotropic:

ρ(λ)= rp(λ)

rs(λ)
= tanΨ (λ) · ei�(λ). (13.1)

In the case of a single interface between air and a bulk MM, the MM complex
effective permittivity εeff(λ) can be directly calculated using Fresnel equations to
express rp and rs as a function of εeff(λ) and inverting relation (13.1):

εeff(λ)= ε′eff(λ)+ iε′′eff(λ)= sin2(ϑ)

[
1 +

(
1 − ρ(λ)

1 + ρ(λ)

)2

tan2(ϑ)

]
(13.2)

where ϑ is the angle of incidence. We applied this method for the characteriza-
tion of our liquid NP dispersions (Fig. 13.3) by using a liquid cell with a frosted
glass surface to minimize the reflection from the liquid-substrate surface interface.
As a consequence, only the air/liquid interface contributes to the reflected signals
and the sample behaves as a single interface [117, 121]. Measurements of the real
and imaginary part of the silver NP inks are shown in Fig. 13.8 for the various
NP volume fractions fNP. The volume fraction fNP is estimated from the metal
mass content of the most concentrated solution provided by the manufacturer (i.e.
concentration in weight cW = 65 %). The plasmonic resonance can be clearly iden-
tified as a peak in the spectrum of ε′′eff(λ), even for the lowest value of fNP. On
the other hand, the effect on the real part ε′eff(λ) remains almost insignificant at
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low fNP (<1 %) and ε′eff(λ) stays close to the permittivity value of the host solvent
(εh ≈ 2). As f is increased above a few percents, the plasmon induced dispersion
in ε′eff(λ) starts to deviate significantly from εh around the resonant plasmon wave-
length, moving from lower values on the blue side of the resonance to higher values
on the red side. A maximum value of ε′eff(λ)= 3.7 at λ= 515 nm and a minimum
value of ε′eff(λ)= 0.43 at λ= 400 nm are found for the most concentrated sample
(fNP ≈ 12 %). Besides the expected strengthening of the spatially averaged plas-
monic response with fNP, a strong red-shift and broadening of the plasmon peak is
also observed in the plot of ε′′eff(λ). This is the typical signature of the near-field cou-
pling between the LSP excitations of individual NPs which occurs as the NPs come
into close proximity. As a result, the individual resonances hybridize into collective
modes, similarly to what occurs for the simpler case of two coupled NPs [20].

As mentioned before, we also performed ellipsometric measurements on close-
packed NP films (Fig. 13.6) in order to investigate dense samples. For such thin
films standing on a substrate (which therefore involve two interfaces: air/NP and
NP/substrate), the effective permittivity can be retrieved by an inversion similarly
to the method for a single interface by using the Airy multilayer formula, pro-
vided that the film thickness d is known precisely. Otherwise, the three unknowns
(ε′eff(λ), ε

′′
eff(λ) and d) cannot be determined uniquely from the two measured val-

ues �(λ) and Ψ (λ). In this case, they can be retrieved indirectly by fitting a model
to the experimental data using a linear regression analysis minimizing the difference
between model and data. To be consistent, the models for ε′(λ) and ε′′(λ) must re-
spect fundamental physical principles such as causality (Kramers-Kronig relations).
Different analytical functions fulfilling these conditions exist to model the permit-
tivity dispersion of various types of optical materials. For metal NP composites,
essentially two types of models are used for the fit, depending on the information
that is sought. Effective medium theory (EMT) can be used to retrieve additional
parameters that affect the optical constants, such as the NP filling fraction. These
models allow to assign an effective permittivity εeff(λ) to the composite MM, and
hence to treat it as an effectively continuous material. The first and still widely used
EMT developed for spherical NP composites is the Maxwell-Garnett (MG) theory
[17, 122]. It derives from the Clausius-Mossotti (or Lorentz-Lorenz) relation which
links the permittivity ε(λ) of a material to the mean polarizability αE(λ) of its con-
stituents. For natural materials these constituents are atoms or molecules while for
the MM we are interested in here they are the meta-atoms, i.e. the NPs.

ε(λ)− 1

ε(λ)+ 2
= NαE(λ)

3ε0
. (13.3)

N is the average volume per number of atoms per unit volume and ε0, the vacuum
permittivity. This relation is obtained by calculating the field acting on an atom as
the superposition of the external field and all the dipole fields of the neighboring
atoms. The MG theory applies this approach to the case of NPs by introducing the
NP electric polarizability αE(λ) calculated within the quasistatic approximation

αE(λ)= 3V
εm(λ)− εh

εm(λ)+ 2εh
(13.4)
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where V is the NP volume, εm the permittivity of the metal and εh the permittivity
of the surrounding medium. The plasmonic LSPR resonance can be identified in
the above expression as a singularity occurring when εm(λ) = −2εh, marking the
resonant increase of the NP polarizability. The MG theory expresses the effective
permittivity of a metal NP composite εeff(λ) in terms of the permittivity of its in-
dividual components and the NP volume fraction fNP = 4/3πNNPr

3 (with r , the
NP radius and NNP, the NP density). The MG formula is obtained by combining
relations (13.3) and (13.4) and one finds

εeff(λ)= εh + 3fNPεh
εm(λ)− εh

εm(λ)+ 2εh − fNP(εm(λ)− εh)
. (13.5)

This formula was shown to provide a good description for dilute samples (up to
fNP = 30 % for silica coated gold NPs) but offer only a qualitative description
when the NPs are in closer proximity due to simplistic approximations. Indeed, the
MG theory only includes dipolar interactions although induced higher-order multi-
poles should be taken into account for close-packed NP arrangements. This model
also does not account for the effect of spatial disorder or size and shape polydisper-
sity which lead to fluctuations of the local fields and broadening of the resonance.
For monolayers deposited on a substrate, image dipole (or multipoles) in the sub-
strate should also be included for a more accurate description (see thin island film
theory for instance [123]). Finally, the result of the ellipsometric data fitting using
MG models may also be affected by the choice of data set or model used for εm(λ).
In any case, the bulk value εm(λ)must be corrected for confinement effects inherent
to small size NPs. Indeed, the free electron mean free path in NPs can be severely
reduced in comparison to the bulk metal due to the presence of boundaries; this can
results in a significant broadening of the plasmonic resonance when the NPs are
small (<20 nm) [17]. An alternative to the MG model is to use a Lorentz dispersion
model. Although the Lorentz model offers less physical insight by accounting only
implicitly for the composite nature of the system, it does not suffer from the afore-
mentioned constraints. The Lorentzian representation of the effective permittivity is
given as a function of the frequency (ω= 2πc/λ) by

εeff(ω)= ε∞ +
∑
i

Ai

ω2
0i −ω2 − iωΓi

, (13.6)

where the fitting parameters are the amplitude Ai , the width Γi and resonance fre-
quency ω0i of the Lorentzian functions and an offset value ε∞. As described in the
literature [119, 124], we used a series of at least two oscillators to fit the ellipsomet-
ric data collected for our solid thin samples (Fig. 13.9). One of the oscillator repre-
sents the plasmonic resonance in the visible range while the other accounts for the
interband transitions of silver that occur at UV wavelengths, outside the experimen-
tal range. The thickness d of the films was also used as a fitting parameter, whose
initial value has been extracted from AFM and SEM measurements (Figs. 13.5d
and 13.6d). These complementary data allows to ensure the accuracy and unique-
ness of the fit and avoids ambiguities due to strong correlations between εeff(λ) and
d for absorbing films. The results of the fit and the retrieved ε′eff(λ) and ε′′eff(λ) for
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Fig. 13.9 Ellipsometric data for the close-packed NP films. (a) Experimental and modeled ellip-
sometric angles Ψ (left) and � (right). (b) Retrieved real (left) and imaginary (right) parts of the
effective permittivity of the NP films

the two samples are shown in Fig. 13.9. Owing to the high density of NPs in these
samples, we can see that the dispersive profile of ε′eff(λ) is more pronounced than
for the liquid samples and extends now over the whole visible spectrum. Accord-
ingly, the plasmon peak grows and broadens considerably and its position shifts to
longer wavelengths with a red-shift of more than 100 nm (with respect to the most
dilute sample where NPs are non-interacting). For both samples the real permittivity
ε′eff(λ) reaches negative values (down to around −10) on the blue side of the plas-
mon resonance and high positive values (up to around 15–20) on the red side. As
we will see in Sect. 13.4, such high values of ε′eff(λ) are of particular interest for the
fabrication of MMs with magnetic activity and by consequence for the realization
of negative index materials. They are nonetheless accompanied by a strong absorp-
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tion which could be detrimental for certain applications. Although similar values
of ε′eff(λ) and ε′′eff(λ) are observed for both samples, we can see that the resonance
is slightly weaker for the monolayer sample despite the fact that the NP density is
expected to be slightly higher for this sample (owing to its more ordered organi-
zation). This is due to the presence of the cracks in the monolayer which results
in a decrease of the average NP density and hence in a dilution of the plasmonic
response. We also observe a significant difference in the line widths of the reso-
nance between the two samples (Fig. 13.9b), the resonance in the thick film being
considerably broader. We attribute this difference to the random NP organization in
the thick sample which leads to strong variations in the local fields and coupling
conditions between neighboring NPs.

In conclusion, these ellipsometric measurements shows that controlling the NP
density in a bulk silver NP metamaterial provides an efficient mean to tailor their
complex permittivitty. Huge changes in both the absorption [ε′′eff(λ)] and dispersion
[ε′eff(λ)] spectra are observed when going from dilute to dense composite. Beyond
metamaterial properties, the spectral tunability of these composite materials can be
of great value for the design of various useful optical devices like cut-off or ab-
sorption filters. As mentioned in the introduction, there are several other ways to
manipulate the spectral properties of NP composites like adjusting the size, shape
or composition of the NPs. Another powerful mean is by introducing some spa-
tial organization. An example is given in the next subsection which focuses on the
properties of hybrid NP-polymer multilayers.

13.3 Hybrid Plasmonic-Photonic Multilayers

Controlling the NP organization in a composite enables to tailor their coupling and
engineer its spectral properties. This can concern both the near-field and far field
coupling depending on the length scale of the NP arrangement. Manipulating the
plasmonic near field coupling allows to directly design new plasmonic resonance
but requires to control the NP organization at the nanoscale. Depending on the ap-
plication or property targeted, the control of the far-field coupling can be a power-
ful alternative to manipulate the spectral properties of plasmonic composites indi-
rectly, through interference effects. For instance, a clever choice of the periodicity
of diffractive NP arrays has allowed to produce extremely narrow plasmon peaks
[125, 126] with direct implications for sensing applications. Following similar con-
cepts, extremely large broadband photonic bandgaps were recently engineered using
3-dimensional stacking of plasmonic oscillators at Bragg distance.

Another type of plasmonic structure whose spectral properties are governed by
diffractive effects is the multilayer formed by alternated stacks of NP monolayers
and transparent dielectric films depicted in Fig. 13.10a. This layered arrangement
behaves as a one-dimensional photonic crystal due to the periodic permittivity mod-
ulation induced by the alternated NP and polymer layers [64]. The 1D ordering of
the monolayers allows for the formation of reflection stopbands related to the con-
structive interference between the partial reflections at subsequent interfaces. Like
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Fig. 13.10 Plasmonic Bragg multilayer: (a) Scheme of a NP-polymer multilayers. (b) Equivalent
effective structure used for modelization of the multilayer properties: NP layers are treated as
homogeneous layers with an effective permittivity ε′eff(λ). (c) SEM image of the NP layers showing
a random arrangement of chain-like NP aggregates. (d) Effective permittivity of the NP clusters
layers shown in (c)

for standard dielectric photonic crystals, the reflectivity of these hybrid structures
can be specified by setting the geometry of the layers and the permittivity contrast
between successive layers (i.e. the NP density in the monolayer and/or the refractive
index of the dielectric material). The optical response of those structures is how-
ever markedly different than the one of conventional dielectric Bragg mirrors due to
the unique interplay between plasmonic and Bragg resonances. To investigate these
unique properties, we extended the NP spin-coating deposition process presented
earlier to fabricate multilayers of this type. Several examples of similar multitasks
made of dielectric and/or metal NPs and fabricated by the same technique can be
found in the literature [127–133].

To fabricate such multilayers, we deposited sequentially polymeric and NP lay-
ers on a glass substrate using the spin-coating method described earlier. The NP
concentration of the NP ink and the deposition speed was adjusted to produce NP
layers with coverage ratio below one single nominal monolayer to mitigate absorp-
tion. The typical appearance of such layers is shown in Fig. 13.10c. The NPs cover
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Fig. 13.11 (a) SEM cross-sectional view of a NP-NOA multilayer with dNOA = 120 nm. (b) Pho-
tography of the same multilayer

approximatively 10 % of the surface and form an amorphous arrangement of random
clusters containing between 3 and 20 NPs laying flat on the substrate. The effective
permittivity εeff(λ) of this NP layer deduced from ellipsometric measurements, is
shown in Fig. 13.10d. A UV curable optical adhesive (NOA61, Norland adhesives)
is used as the polymeric material to prevent the redispersion of the deposited layers
during the successive deposition steps. After each deposition, the layers are hard-
ened and made solvent resistant by photopolymerization under UV irradiation.Their
thickness, dNOA, can be finely tuned by adjusting the spin deposition speed between
2000 and 8000 rpm for a chosen polymer concentration (here 4.5 %w NOA in ace-
tone was used). This allows to tune precisely the resonant wavelength λm of the
multilayer Bragg modes, which can be roughly estimated, for normal incidence, by
the Bragg condition: 2nNOA(dNOA + dNP) = mλm, where m is a positive integer
defining the Bragg mode order, dNP is the thickness of the NP layer [i.e. the NP di-
ameter (12 nm)] and nNOA is the refractive index of NOA61 (≈1.56). Four samples
were fabricated with different values of dNOA between 100 and 180 nm chosen to
bring the first Bragg mode of the structure in vicinity of the plasmon resonance of
the NP layers which occurs at λ= 460 nm. The total number layers was set arbitrar-
ily to 11 for all samples (5 periods and one protective NOA61 overlayer to prevent
oxidation of the silver NP).

The SEM image in Fig. 13.11a shows the cross-section of a typical multilayer
corresponding to dNOA = 120 nm. The alternated layers of the structure can be
clearly distinguished: the metal NP layers appear as thin bright layers separated
by darker NOA layers of equal thicknesses. Figure 13.11b shows the visual aspect
of the sample which exhibits a distinct purple color indicative of the selective Bragg
reflection. The Bragg resonance appears as a narrow peak in the reflectivity spec-
trum (Fig. 13.12a). We can see that the reflection band for this given sample coin-
cides almost exactly with the plasmon resonance of the NP cluster layers. No peak
splitting is observed indicating that the plasmon-photon interaction is in a regime
of weak coupling due to the damping of the plasmon oscillations. We can see that
for this particular set of parameters about the same amount of light is transmitted
and absorbed (∼40 %). Together with the experimental data, Fig. 13.12a also shows
the simulated optical properties of the multilayer calculated with the transfer ma-
trix method (dashed line). In this model, the NP layers are treated as homogeneous
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Fig. 13.12 (a) Measured
(plain lines) and simulated
(dashed line) of the optical
properties of the multi layer
with dNOA = 120 nm.
(b) Reflectivity spectrum of
NP-NOA multilayers for
different interlayer separation

layers (as schematized in Fig. 13.10b) with a thickness given by the NP diameter
(12 nm) and an effective permittivity plotted in Fig. 13.10d. Due to slight variations
inherent to the fabrication process and the uncertainty of the SEM measurements, it
was found necessary to adjust the thickness dNOA used in the calculations to match
the experimental peak position. As can be seen, the line shape and intensity of the
Bragg reflection band and the plasmon absorption are well reproduced by the sim-
ulation. The sideband oscillations clearly observed in the simulation are damped
in the experimental spectrum, probably due to sample inhomogeneities and scatter-
ing. Finally, to evidence the tunability of these multilayers, Fig. 13.12b shows the
reflectance of samples with different dNOA (the values indicated in the legend cor-
respond to the best fit of the simulations to the experimental data. As expected, the
Bragg peak shifts to longer wavelengths as the period is increased, with an approx-
imate redshift of 15 nm for an increase dNOA by 10 nm. Although we have only
varied the interlayer distance here, an important asset of such structure is the wide
tunability of the filling factor of the NP clusters in the layer that allows to control
the permittivity contrast and the level of absorption.

Besides color filtering, a few applications based on such amorphous NP cluster
multilayer stacks. There is the possibility of using the system directly to study de-
generation or take up of substances and solvents by just observing the spectra of the
multilayer film [134]. A surface with perfect absorption is another promising ap-
plication exploiting interferences and resonances in similar multistacks [135]. But
more unusual applications can also be envisaged when working in the metamaterial
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regime (i.e. small interlayer distances). For instance, provided that the NP density
in the layer is high enough, such multistacks can be used as an anisotropic metallo-
dielectric MM in which the permittivities have opposite signs in orthogonal direc-
tions. This type of MM is already used to implement novel applications based on
negative refraction like superlensing and subwavelength imaging [136, 137]. Other
applications of amorphous cluster matter metamaterials can be found in other chap-
ters of this book. Although, this type of NP organization only allow to engineer the
MM electric permittivity, we will see in the next section that other types of arrange-
ment allow to get access to the MM permeability by inducing an unusual magnetic
activity at optical frequency

13.4 Plasmonic Meta-atoms Made from Nanoparticle Clusters

The emergence of MMs as a new class of artificial materials has opened a wide range
of new perspectives for the manipulation of optical waves. One of the most exciting
prospects is undoubtedly the realization of a negative index of refraction with all the
exciting applications that this entails. As already mentioned, this requires, assum-
ing an isotropic material, to achieve both a negative permittivity εeff and a negative
permeability μeff thanks to a suitable design of the meta-atoms. We have seen in
Sect. 13.2 that plasmonic NPs can be used as electric meta-atoms to reach high pos-
itive and negative values of the effective permittivity. A more challenging task is
to engineer the permeability of the MM, given the lack of magnetic response from
these NPs and more generally from any known materials. Indeed, magnetism, which
generally arises from orbital currents in atoms, fades away at frequencies higher than
a few gigahertz. It is completely inexistent at optical frequencies due to an extremely
weak coupling with the magnetic component of light, hence μ= 1 for common ma-
terials. To tackle this problem, different types of meta-atoms which act as magnetic
dipoles, have been proposed and validated by experiments [44]. These meta-atoms
usually mimic the archetype of a magnetic dipole, i.e. a current loop. Their princi-
ple of operation is based on the excitation of resonant modes with circular current
distributions induced by the magnetic component of the optical field and giving rise
to a magnetic moment. At frequencies below the resonance, the magnetic moment
follows the incident magnetic field and an MM formed by a collection of such meta-
atoms exhibit a paramagnetic response (μ > 1). On the other hand, at frequencies
above the resonance, the magnetic moment is opposed to the incident field and the
MM is diamagnetic (μ < 1). Most of the current magnetic top-down MMs rely on
metallic inclusions with complex geometries, such as split rings or cut wire pairs,
which sustain coupled plasmonic modes mimicking closed loop currents. Spherical
metal NP clusters were recently proposed as an advantageous alternative to build
magnetic meta-atoms [56–58]. This approach is free from the usual constraints of
the top-down MMs (spatial dispersion, anisotropy) and provides a control over μ
in the visible range. In this section, we intend to evaluate the potential of clusters
of silver NPs as magnetic meta-molecules. Section 13.4.1 explains the origin of the
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optical magnetic response in such clusters, namely, the excitation of magnetic Mie
resonances. Section 13.4.2 describes our preparation method of the NP clusters, as
well as a quick overview of the state-of-the-art in this domain. Finally, Sect. 13.4.3
compares the optical properties of the fabricated clusters measured experimentally
with rigorous simulations to demonstrate the significant role of a magnetic dipole
resonance in such meta-atoms, hence confirming their potential for the realization
of a magnetic MM.

13.4.1 Magnetic Mie Resonances of Spherical NP Cluster

While the resort to metallic meta-atoms with loop-like geometries is by far the dom-
inant strategy to obtain a magnetic response, another possible route is to exploit
the optical resonances of high permittivity dielectric scatterers [138, 139]. In con-
trast to the former approach which relies completely on plasmonic resonances, the
magnetic activity in dielectric meta-atoms stems from large polarization currents
induced at specific resonant wavelengths associated with the so-called magnetic
Mie-resonances [16]. As indicated by their name, these magnetic resonances are
associated with the theory of Mie [13] which offers a rigorous analytical treatment
of the interaction of spherical particles with light. In this approach, the scattering
from a sphere is expressed as a superposition of spherical harmonics where each of
them corresponds to a specific electric or magnetic multipole moment. In the case
of subwavelength scatterers, like meta-atoms, only the electric and magnetic dipoles
are usually significant and their respective contribution can be found using the Mie
scattering theory. Both types of responses can exhibit a resonance under specific
conditions which depend essentially on the permittivity and size of the scattering
object. As a matter of fact, the LSPR of a metal NP correspond to the electric dipole
Mie resonance. The Mie resonance conditions can be found by looking for the poles
of the mathematical expression of the so-called Mie coefficients, or in other word
finding under which conditions the polarizability of interest goes to infinity. For in-
stance, for an electric resonance in the quasi static limit, the following condition
is found εm(λ) = −2εh [see (13.4)]. For geometries for which the quasi-static ap-
proximation is no longer valid, the denominator of the Mie coefficients have to be
evaluated explicitly. The condition for a strong electric response can be found while
considering the Mie coefficients expanding the contribution of electric multipoles
to the scattering response. The condition for a strong magnetic response can be
found in a similar way while considering the Mie coefficients expanding the contri-
bution of magnetic multipoles to the scattering response. For a sphere made out of
a nonmagnetic material with an arbitrary permittivity εd and surrounded by air, the
magnetic resonant condition is given by [140]:

λM√
εd

≈ d (13.7)

where λM is the resonant wavelength and d—the diameter of the sphere. Particles
that sustains such magnetic Mie modes can therefore be used as meta-atoms to form
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Fig. 13.13 A silver NP metasphere behaves as high permittivity dielectric sphere at wavelengths
longer that the plasmon resonance of the NPs. When the first Mie resonance is excited, the meta-
sphere acts as a magnetic dipole, induced by a displacement current circulating in a plane perpen-
dicular to the polarization of the incident magnetic field

an effective medium with a negative permeability μeff. However when operating as
meta-atoms, provisions have to be made that their size is sufficiently small (d � λ).
The resonance condition [see (13.7)] indicates that the magnetic Mie resonance oc-
curs approximately when the effective wavelength inside the NP is comparable to
the diameter of the sphere or NP cluster. This implies that high permittivity values
are needed to excite this resonance in sufficiently small objects. As a consequence,
this concept was first demonstrated in frequency regions where some high permittiv-
ity materials do exist like in the microwave and mid infrared regimes where the ex-
citation of magnetic Mie modes has been demonstrated using ferroelectric ceramics
[63, 141, 142] and polaritonic materials like silicon carbide [63, 142]. In the optical
domain however no experimental work can be found until now because of the rather
modest permittivity values of most materials at these frequencies. Recently, theoret-
ical suggestions have also been made for the visible range using silicon [143, 144]
or excitonic materials [59, 60, 145] but their experimental realization has not been
achieved so far. An alternative approach that we intend to investigate in this section
is to use clusters of metal NPs like the ones depicted in Fig. 13.13 to form such
magnetic meta-atoms. Indeed, we have seen in Sect. 13.2 that a bulk NP compos-
ite can act as an effective medium with a high permittivity at wavelengths slightly
above the collective plasmon resonance, hence in this wavelength region a sphere
made out of such NP composite should behave as high permittivity scatterer and
eventually sustains a magnetic dipole resonance. Based on the measured values of
εeff (ε′eff = 18 at λ= 580 nm; see Fig. 13.5), we can estimate that the smallest NP
cluster which can support a magnetic Mie mode would have a diameter on the order
of a hundred nanometers, as deduced from (13.7).

Of course, an important advantage of this design is that it is particularly con-
ducive with colloidal self-assembly techniques and several examples of such spher-
ical clusters with the appropriate dimensions have been realized. A brief overview
of the different methods available is given in the following section.
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Fig. 13.14 Spherical gold NP clusters obtained by: (a) ligand destabilization. Reprinted with
permission from [167]. (b) Chemical bonding with dithiol linkers. Reprinted with permission
from [164]. (c) Chemical bonding with tridentate tioether linkers. Reprinted with permission
from [168]. (d) Polymer induced self-assembly. Reprinted with permission from [157]. (e) Emul-
sion induced NP encapsulation. Reprinted with permission from [165]

13.4.2 Fabrication of Spherical Metal NP Cluster

The advances of the past decade in colloidal self-assembly now allow to build hi-
erarchical NP superstructures with complex geometries. The level of sophistica-
tion of the current methods has reached a point where it is now almost possible
to assemble NPs one by one to form architectures comprising a precise number
of NPs, such as dimers, trimers, quadrumers and so on (see the Review articles
[54, 71, 75, 146, 147]. Nevertheless, the design presented previously (Fig. 13.13)
does not require such a degree of precision and we will only present here some ex-
amples from the literature (Fig. 13.14) that match our targeted geometry, i.e. NP
aggregates comprising a large number of metal NPs (from several tens to hundreds)
without any specific organization inside the cluster but with an overall spherical
shape. Similarly to the methods discussed in Sect. 13.2.1 for the fabrication of
extended NP arrangements, the realization of small NP clusters requires to tailor
the various interparticle forces that drive the NP self-assembly with the additional
constraint that only a discrete number of NPs should be involved. A common ap-
proach involves the modification of the NP surface chemistry to alter the NP inter-
actions and trigger their aggregation into clusters. The displacement of the capping
molecules that initially stabilize metal NPs in solution, by surrogate ligands implies
that the latter have a greater affinity with the metallic cores. Hence, thiolated lig-
ands are generally employed owing to the higher affinity of sulfur for metals with
respect to other common capping molecules like amines, carboxilic acids or ions.
Various types of ligands have been used to control the different nanoscale forces
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responsible for the NP aggregation. For instance, spherical clusters of gold NPs
were obtained by adding short alkyl chains terminated by a thiol group to a dis-
persion of long alkylamine-protected NPs (Fig. 13.14a). The reduction of the alkyl
chain length reduces the repulsive barrier that screens van der Waals forces, result-
ing in a rapid aggregation. In this case however, the control of the size and shape
of the cluster is difficult and the spherical clusters shown in Fig. 13.14a only rep-
resented a fraction of the observed aggregates. Furthermore, the cohesion of these
clusters is rather weak as the clusters are easily redispersed by sonication. To ob-
tain robust and monodisperse clusters, more sophisticated NP ligands have been
devised that allow stronger and more specific molecularly mediated NP interactions
[148, 149]. In particular, using ligands that contain two or more binding groups like
alkyldithiol [150] (Fig. 13.14b) or multitdentate thioeter (Fig. 13.14c), it is possi-
ble to crosslink NPs by chemical bonding. The systematic spherical shape of the
clusters observed in these works was attributed to the templating effect of the ionic
surfactant protecting the NPs which are known to form spherical micelles. In ad-
dition, adjusting the ligand-to-NP ratio allows to tune precisely the cluster size.
Similar clusters were also obtained by grafting others type of molecular linkers like
fullerenes [151] or dyes [152], in which case the NP self-assembly is mediated by
non covalent attractive interactions between the ligands such as electrostatic or π–π
interactions. Instead of relying on direct NP-NP interaction, it is also possible to use
polymer [153, 154] or biopolymer [155] scaffolds with proper functional groups that
mediate indirectly the NP self-assembly following the “brick and mortar” concept
[156, 157]. The spherical shape of the fabricated clusters (Fig. 13.14d) has been at-
tributed in this case to surface tension effects which favor spherical architectures that
minimize interfacial area. Another solution to fabricate spherical clusters is by re-
lying on templates. 2D templates mechanically [158, 159] or chemically [160, 161]
patterned have been used to assemble NPs into controlled arrangements by a combi-
nation of geometrical confinement and capillary forces or by chemical recognition,
respectively. While the obtained NP assemblies are generally planar, 3D and, in par-
ticular, spherical architectures can also be fabricated by resorting to 3D templates.
Such templates generally take the form of oil-in-water emulsion droplets in which
or at the surface of which the NPs are entrapped. Subsequent evaporation of the oil
phase results in the shrinkage of the droplets and the aggregation of the NPs under
compressive forces. Initially developed for the self-assembly of polymeric or sil-
ica microspheres [162, 163], this technique has been successfully extended to small
NPs of various composition and in particular metallic ones [164–166] (Fig. 13.14e).
this method does have the advantage of allowing the fabrication of large amounts
of cluster without the need of intricate chemistry. Furthermore, the ability to con-
trol precisely the emulsion droplet size by various well-established emulsification
techniques (spray drying, high pressure or ultrasonic homogenization, . . .) allows to
produce highly monodisperse clusters.

In our work, we combined two of the abovementioned techniques, namely NP en-
capsulation in emulsion droplets followed by their self assembly by covalent bond-
ing using dithiol linkers (Fig. 13.15a). In the first step, an emulsion is prepared
by adding drop wisely 50 µL of the dense silver NP ink to 10 ml of an aqueous
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Fig. 13.15 (a) Sketch of the formation of spherical silver NP clusters in oil-in-water emulsions
following the addition of a molecular dithiol linker. (b) SEM images of the raw emulsion showing
the polymeric nano-capsules. (c) TEM images of the NP clusters

solution of polyvinyl alcohol polymer (PVA Mw. 9,000, 1 w%) while simultane-
ously sonicating. PVA is widely used to form polymeric capsules, in particular in
the field of medicinal chemistry for drug encapsulation. This polymer acts as the
emulsion stabilizer: the hydrophobic part of its polymeric chains (non hydrolyzed
acetate groups) arrange themselves at the surface of the oil droplets, thereby low-
ering the interfacial tension between the two immiscible liquids. This gives rise to
steric stabilization forces which prevent the coalescence of the emulsion droplets.
The emulsion droplets serve as nano-containers to confine a discrete number of NPs
in space. At this stage, we know from the ellipsometric data that the NP concentra-
tion needs to be increased up to the solid phase to observe a high permittivity and
a magnetic response. Since the ink solvent, tetradecane, cannot be evaporated sep-
arately from the water phase due to its high boiling point and low vapor pressure,
we introduced a dithiol linker to assemble the encapsulated silver NPs. A few drops
(∼10 µL) of nonanedithiol (Aldrich) were added right after the emulsification, giv-
ing a reddish color to the emulsion, indicative of the NP aggregation. The formation
of spherical NP ink droplets in the continuous water phase was first confirmed by op-
tical microscopy. To investigate the morphology of the polymeric capsules and NP
clusters, a few droplets of the raw emulsion were dried for SEM and TEM analysis.
The SEM images clearly show the spherical PVA shell while the TEM micrographs
confirm the presence of the silver NPs in the capsules and their agglomeration into
clusters (Fig. 13.15b and c). We note however, that due to the high vacuum in the
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microscope chambers, the polymeric shells tend to break up. As can be seen from
these images, the raw emulsion contains a broad size distribution of capsules, from a
few tens of nanometers up to 500 nm approximately; this corresponds to NP clusters
with diameters up to 200 nm. The size of the NP clusters is determined by the initial
concentration of NPs in the oil phase and the size of the emulsion droplets which
depends on the emulsification conditions (oil-to-water ratio, surfactant composition
and concentration, and input agitation energy).

13.4.3 Optical Properties of Spherical Metal NP Clusters

To characterize the optical properties of these NP clusters, the emulsion was first
purified by filtration and the cluster size distribution was narrowed down by per-
forming several cycles of centrifugation, collecting at each step the supernatant. The
resulting fractions are characterized by a strong change of color with the change in
cluster sizes: from yellow for the smallest ones, to orange and purple for the biggest
ones (Fig. 13.16 inset). The UV-Visible extinction spectra of the different fractions
are shown in Fig. 13.16. The spectra of the clusters are characterized by a large
extinction peak, strongly red-shifted in comparison with the single NP resonance
(black curve) and shifting progressively to longer wavelengths as the cluster size
increases. This trend clearly evokes the excitation of a collective resonance in the
NP clusters. In order to gain more insight in the physical origin of these extinction
peaks and to investigate their eventual relation to the excitation of a dipolar mag-
netic resonance, the experimental spectra were compared with rigorous simulations,
based on the extended Mie theory [169, 170]. While standard Mie theory allows to
obtain a rigorous solution for the case of an isolated sphere, the extended Mie the-
ory allows to calculate rigorously the optical response of an aggregate of interacting
NPs. The simulated geometry consists in a spherical cluster formed by an amor-
phous arrangement of 12 nm diameter silver NPs with a fixed interparticle distance
of 1.5 nm corresponding to the length of the dithiol linker. The cluster diameter,
and hence the number of NPs, was varied between 40 to 150 nm (e.g. between 10
and 460 NPs) and the refractive index of the surrounding medium was set to 1.6 to
match the experimental conditions.

As can be seen in Fig. 13.16, the simulated extinction spectra show the same
trends as the experimental spectra on the one hand. In particular, the progressive red-
shift when increasing the NP cluster diameter is well reproduced in the simulations,
thereby confirming that the observed extinction peaks correspond to a collective
resonance sustained by the entire clusters. On the other hand, the simulated spec-
tra contain some fine structure below the main resonance which is not found in the
measured spectra. These discrepancies are due to the fact that the simulation con-
siders only an individual implementation of metaspheres with nominally the same
geometry. In opposite, the clusters probed in the experiment, although characterized
by similar shapes and sizes, exhibit different spatial arrangements of the NPs within
them. However, the red-shifted resonance which is associated with the global shape
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Fig. 13.16 Experimental extinction spectra of the silver NP cluster dispersions for increasing
cluster size. The black curve is the spectrum of isolated NPs. Inset: photo of the vials containing the
NP clusters. (b) Simulated extinction spectra spherical silver NP clusters with different radiuses.
Reprinted with permission from [171]

of the clusters dominates the experimental spectra while the fine structure is related
to the details of the NP arrangement inside the cluster and is smeared out in the
experiment. Next, the simulated scattered field was related to the field radiated by a
series of electric and magnetic multipoles through a multipole expansion [172–174].
In this way, the excitation of a magnetic dipole moment related to the observed res-
onance can be clearly identified. For all the diameters considered, the clusters are
significantly smaller than the wavelength, hence only a few multipoles are expected
to contribute to the total scattered field. Figure 13.17a shows the contribution of
the magnetic dipole to the scattering cross-section for each size of cluster. As can
be seen, no magnetic dipole is excited for clusters having a diameter smaller than
100 nm. Their response is entirely described by a single electric dipole contribu-
tion. On the other hand, a magnetic dipole contribution clearly emerges for larger
diameters in the wavelength region corresponding to the red-shifted extinction peak.
This is in good agreement with the rough estimation of the cluster size done in the
introduction of this section based on the ellipsometric measurements. The contri-
bution of this magnetic dipole grows significantly as the cluster size increases. To
get a more complete description, the relative contribution of all the different excited
multipoles are shown for the cluster with the largest diameter in Fig. 13.17b.

It can be seen that although the electric dipole still dominates the cluster’s re-
sponse, the magnetic dipole contributes significantly to the scattering cross section
(by about 1/3). Since these results confirm the magnetic activity of the fabricated
silver NP clusters, it is interesting to evaluate how this would be reflected in the
effective permeability of a metamaterial formed by an arrangement of such clusters.
This is done by inserting the magnetic polarizability of the cluster obtained from
the previous calculations in the Clausius-Mossotti formula (13.4) for the effective
permeability μeff. The result is shown in Fig. 13.17c for a cluster filling fraction of
0.68 corresponding to close packed arrangement of clusters in a face-centered cubic
lattice. A clear dispersion in the metamaterial permeability is observed around the
cluster resonance, around 600 nm. Although this dispersion appears relatively weak
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Fig. 13.17 Contribution of the magnetic dipole moment to the scattering cross section of the NP
cluster as a function of its radius. (b) Contribution of the various multipole moments (p, elec-
tric dipole; m, magnetic dipole; Q, electric quadrupole) to the scattering cross section for the
larger cluster simulated (r = 75 nm). The cluster was illuminated by a linearly polarized plane
wave. (c) Simulated effective permeability of a fcc arrangement of silver NP clusters (f = 0.68).
Reprinted with permission from [171]

with respect to the previous theoretical predictions [57], it compares well with the
results recently obtained for gold NP clusters of slightly larger size [175] or for SiO2

spheres covered with a gold NP shell [176]. These results therefore demonstrate that
the formation of metal NP clusters by emulsion and crosslinking offers an efficient
way to realize magnetic meta-atoms. While their optical properties are similar to
those previously reported [175, 176], this original fabrication technique potentially
expands the degrees of freedom available to tailor those properties and thereby their
use in different applications. Several possibilities can be exploited to strengthen the
magnetic response of the NP clusters. For instance, a further increase of the size of
the clusters, by adjusting the emulsification conditions, should produce stronger res-
onances, as predicted by Mie theory. The size of the silver NP themselves could also
be slightly increased, so as to reduce the losses due to confinement effects which still
operate for 12 nm NPs. Alternatively, losses could also be reduced by introducing
some gain medium, like organic dyes, in the emulsion process.
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13.5 Conclusions

Within this chapter, we tried to demonstrate the potential of plasmonic NPs as build-
ing blocks for the bottom-up fabrication of optical MMs. To this end, we demon-
strate by different examples how the optical response of a NP composite can be
tailored by controlling the NP organization over different length scales. In addition
to our own works, we gave a brief overview of the different bottom-up techniques
available that provide the required level of precision. Starting with the bulky con-
figuration (e.g. a NP dispersion or thin film), spectroscopic ellipsometry was used
to show how the NP density in bulk MMs can influence their effective permittivity.
Provided that the NP density is high enough, a situation can be reached where the
MM exhibit both the behavior of a metal or a high permittivity dielectric in different
regions of the visible spectrum. Next, we showed that the 1D ordering of NP mono-
layers into multilayers allow to form a hybrid plasmonic-Bragg structure whose
spectral properties can be tuned by tailoring the interplay between plasmonic and
photonic modes. Finally, the possibility to create a magnetic response at optical fre-
quencies by assembling NPs into 3D spherical nanocluster is discussed and realized
by relying on colloidal self assembly concepts. Altogether, these different examples
demonstrate that NP self- or directed-assembly methods allow to create MMs with
an electric and magnetic response that can be tailored at will by directing the NP
organization into various prescribed architectures. The validity of the bottom-up ap-
proach for the fabrication of optical MMs is therefore confirmed with all the assets
that it implies for scale-up and mass production. This promising strategy call for
further investigations, in particular to address the issue of dissipative losses which
still prevent to benefit from the most exciting MM-based optical applications like
cloaking or superlensing.
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