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Abstract. Static analyzers usually return partial results. They can assert that
some properties are valid during all possible executions of a program, but gener-
ally leave some other properties to be verified by other means. In practice, it is
common to combine results from several methods manually to achieve the full
verification of a program. In this context, Frama-C is a platform for analyzing
C source programs with multiple analyzers. Hence, one analyzer might conclude
about properties assumed by another one, in the same environment. We present
here the semantical foundations of validity of program properties in such a con-
text. We propose a correct and complete algorithm for combining several partial
results into a fully consolidated validity status for each program property. We
illustrate how such a framework provides meaningful feedback on partial results.

1 Introduction

Validating a program consists in exhibiting evidence that it will not fail during any of its
possible executions. From an engineering point of view, this activity generally consists
in manual reviews, testing and formal verifications. Static analyzers can be used to
prove properties about programs. More precisely, given the source code of a program,
an analyzer states a property of all of its possible executions. However, analyzers are
generally partial: they assert some program properties, but leave other ones unverified.
Let us illustrate this point of view with some examples of verification techniques.

Abstract Interpretation [1]. This technique computes over-approximations of possi-
ble values of each memory location during program execution. When all values in
the over-approximation of the memory entail a property, then the property holds
during any concrete execution of the program. Otherwise, nothing can be claimed
about the property. When such a property is required to hold for the analysis to
proceed, the analyzer generally assumes its validity. Hence, the analyzer makes an
assumption to be verified by other means.

Deductive Verification [2]. This modular technique explicitly proves that a property
holds after the execution of a small piece of code, whenever some other property
holds before it. We generally say that the pre-condition of the verified code entails
its post-condition. These small theorems can then be chained with each others in
order to prove that, whenever some initial pre-condition holds on initial states, the
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desired properties hold on all concrete executions of the program. Generally, not
all these elementary steps can be proved, and there remain some properties to be
asserted by other means.

Testing. In some sense, testing still falls into the depicted category of analyzers. Ex-
ecuting a test actually asserts that, for all possible executions, if the considered
execution corresponds to the test case, then the property defined by the oracle of
the test holds. This point of view is of particular interest when we aggregate a col-
lection of tests that covers some criteria. Then, one might claim that the verified
properties might only be invalid outside of the covered criteria. Last but not least,
testing is also used to exhibit properties that do not hold, an activity of major inter-
est during the verification engineering process.

A general practical approach is then to combine several analyzers to increase the cov-
erage of verified properties. Thus there is a need for ensuring the consistency of several
partial results. The purpose of this article is to give a semantical foundation to this
problem and to provide an algorithm to combine several partial results from different
analyzers. A salient feature of our approach is the use of a blocking semantics, which
is pivotal in ensuring the correctness of the aforementioned algorithm. It allows the
correctness to be independent from the hypotheses that the analyzers use to establish
their results. These claims remain nevertheless essential for the completeness of the al-
gorithm. The proposed framework is language independent, although it is instantiated
in Frama-C [3], a platform dedicated to the verification of critical embedded software
written in C, typically in the domain of avionics and energy industries.

Related Work. Combining analysis techniques (in particular static and dynamic ones)
is a quite recent but not new idea [4]. However only very few of these works tackle
the goal of formally verifying a program by combining these techniques in a consistent
way. Heintze at al. [5] proposes a framework by equational reasoning to combine an
abstract interpreter with a deductive verification tool to enhance verification of user as-
sertions. As in our work, it does not depend on specific analyzers and is correct modulo
analyzer’s correctness. However, instead of focusing on merging analyzer’s results, it
implements a new analyzer which operates on the results of the analyzers which it is
based on. This analyzer is incomplete in the sense that it not does always provide the
more precise result. More recently, the Eve verification environment for Eiffel programs
combines a deductive verification tool and a testing tool in order to make software ver-
ification practical and usable [6]. Eve reports the separated results obtained from this
tool. Since tools which Eve is based upon are not supposed to be correct, Eve computes
a so-called correctness score for each property. This score is a metrics indicating a level
of confidence in its correctness. That is quite different from our approach where we
suppose that analyzers are correct but can use other properties as hypotheses to build
a proof. Comar et al. [7] also aim to integrate a deductive verification tool with testing
to verify Spark1 programs. As in our work, proofs are based on a notion of hypotheses,
called assumptions in their context. However, to avoid consistency issues, they split
the program in several chunks: in each chunk, the same analysis techniques must be
applied. In our approach, we allow the user to verify each property by different means.

1 Spark is a subset of Ada dedicated to the development of critical software.
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Outline. The article is structured as follows. First Section 2 presents the problem and
the key concepts thanks to a simple C program and a set of properties to verify on it.
Section 3 introduces the semantic framework where key concepts are precisely defined.
Section 4 presents the algorithm to compute consolidation statuses of properties in a
logical way. Section 5 finally focuses on practical usages of the proposed framework:
we explain the large variety of user feedbacks that can be obtained after consolidation.

2 Key Concepts

This section introduces all the concepts presented in this article through a running ex-
ample. It consists of a short program written in C depicted in Figure 1. The program
initializes an array with values returned by some external function f for which the code
is not provided, but only some property P on its result is known. We are interested in
proving different categories of properties on this short program:

– the program should never produce runtime errors, which are situations where the
program’s behavior is explicitly undefined by the ISO Specification of the C pro-
gramming language, such as divisions by zero or accesses to uninitialized variables
and invalid memory cells;

– once initialized, the values of the array satisfy the property P as expected.

Properties in the first category implicitly follow from the language semantics. The sec-
ond category needs to be expressed explicitly by the developer in order to be verified.
The Frama-C platform supports the ACSL language [8] for this purpose. We do not get
into details of ACSL here: it is a first-order logical language designed to expressing
properties of a C program during its execution.

1 /*@ axiomatic A { predicate P(int x); } */
2

3 /*@ ensures P(\result);
4 @ assigns \nothing; */
5 int f(int);
6

7 void main(void) {
8 int i, n = 0, a[100];
9 for(i = 1; i <= 10; i++) n += i;

10 // Have n = Sum {1..10}
11 for(i = 0; i < n; i++) a[i] = f(i);
12 //@ assert \forall integer k; 0 <= k < n ==> P(a[k]);
13 }

Fig. 1. Annotated Code Example

We now comment the source code of Figure 1 in more details. ACSL constructs are
inserted into @-comments. The predicate P is abstractly defined in the pure logic world
(axiomatic clause). The external function f is declared to have no visible side-effect
(assigns clause), and to have its results satisfying P (ensures clause). The code to be
verified lies in functionmain. It consists in two loops: the first one computes the sum of
integers from 1 to 10 and stores the result in local variable n; the second loop initializes
the n-th first indices of array a with function f. Finally, the ACSL clause assert states
the additional property we want to verify for indices less than n. The set of properties
to be verified for this simple program is then:
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Overflows and Runtime Errors: three potential arithmetic overflows and one poten-
tial invalid memory access.

User Property: one user assertion to prove.
External Properties: the specification of function f.

Two static analyzers distributed with Frama-C address those properties:

Value [9] uses a context sensitive forward abstract interpretation to compute an over-
approximation of possible values of variables at each program point. This analysis
verifies the absence of any runtime error and can also handle simple ACSL asser-
tions, like quantifier-free assertions.

Wp [10] implements deductive verification. This modular analysis is able to verify com-
plex logical annotations using external automated or interactive provers, but
requires extra code annotations to carry function contracts and loop invariants.

We intend here to use Value for proving the absence of runtime errors, and Wp to prove
the assertion, which is not in the scope of Value. The external specification of f will
be trusted here. In the rest of this section, we first report on an incremental study for
verifying this program. Then, we introduce our key concepts of local and consolidated
statuses for properties managed by Frama-C.

It would also be possible to use Wp or other analyzers to prove the absence of runtime
errors thanks to the RTE Frama-C’s plug-in, which generates standard ACSL assertions
for any potential runtime error in a source code. More generally, using RTE promotes
runtime errors to standard properties that smoothly integrate with our framework. How-
ever, even small C programs reveal many potential runtime errors, and generating all
assertions produces a lot of noise compared to user-defined assertions. When Value
can be used, it is then much more preferable to rely on it for runtime errors.

2.1 Verifying Properties in Practice

Running Value alone with its default configuration on this program gives poor results:
variable i is not tied enough and the over-approximation of n contains overflowing
values that become negative. Hence the memory access to a[i] in the second loop
may be invalid and an alarm is generated. Running Value a second time with option
-slevel 100 makes the analyzer more precise during the first loop2. This time, all
potential errors are discarded, and we get the following interesting properties on the fi-
nal memory state: n is equal to 55, a[0..54] takes any int value, and a[55..99]
remains uninitialized.

RunningWp to prove the quantified assertion requires additional annotations from the
developer, especially on loops. As illustrated in the Wp tutorial [11], a canonical way of
proving such a property is to insert the loop invariants of Figure 2. The results of running
Wp alone are quite encouraging: all annotations are discharged by the Alt-Ergo theorem
prover [12], except the first loop invariant 0<=i<=n. Wp proves the preservation of this

2 The option -slevel N of Value makes the analyzer works over N different over-
approximations in parallel. On our running example, the maximum of precision is obtained
for N ≥ 55. N ≥ 10 is sufficient to prove the intended properties.
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1 /*@ axiomatic A { predicate P(int x); } */
2

3 /*@ ensures P(\result);
4 @ assigns \nothing; */
5 int f(int);
6

7 void main(void) {
8 int i, n = 0, a[100];
9 for(i = 1; i <= 10; i++) n += i;

10 /*@ loop invariant 0 <= i <= n ;
11 @ loop invariant \forall integer k; 0 <= k < i ==> P(a[k]);
12 @ loop assigns i,a[0..n-1]; */
13 for(i = 0; i < n; i++) a[i] = f(i);
14 //@ assert \forall integer k; 0 <= k < n ==> P(a[k]);
15 }

Fig. 2. Annotated Code Example for Wp

invariant over loop iterations, but fails to establish it at the very beginning of the loop,
because there is no invariant on the first loop establishing that 0<=n. Of course, it is
possible to complete the verification with Wp on the first loop, but these range properties
over n are simple enough to be verified by Value. Running both Value with option
-slevel 100 and Wp on the completely annotated code of Figure 2, we obtain the
following results:

Runtime Errors: all potential runtime errors are discharged by Value.
Loop Annotations: Wp proves two of the three, but leaves the first invariant unverified.

Value proves only this range invariant.
User Property: Wp proves it, but under the hypothesis of the range invariant.
External Properties: they are assumed here, but should be verified later against both

the definition of P and the actual code of f.

Intuitively, the verification task is now complete: everything has been discharged by at
least one analyzer. But formal practitioners would notice that it is not clear whether such
a verification is conclusive. Indeed, complex dependencies between properties might
interfere with each others.

2.2 Soundly Merging Results

A presentation of the results obtained during our verification process can be represented
by a graph. With a node for each property, we can represent assumptions by edges from
the proved property towards its hypotheses. We also represent analyzers as nodes, with
edges towards the properties they established. To increase readability, it is convenient
to merge isomorphic nodes into a single one. On our running example, the associated
final graph is represented in Figure 3.

Such a report is actually accessible through the report plug-in and from the graphical
user interface of Frama-C. Let us now present how Frama-C is able to perform this
consolidation and report about this verification process. In the example presented above,
we have collected different results at different times by using two analyzers with various
parameters. Hence, it is not possible to build efficiently and incrementally the desired
graph of Figure 3. Instead, it is easy to register each verification experiment with their
parameters in a database and to build the consolidation on demand.
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Wp (Alt-Ergo)

Value (slevel 100)

invariant ∀k ∈ Z, 0 ≤ k < i =⇒ P (a[k])
assert ∀k ∈ Z, 0 ≤ k < n =⇒ P (a[k])
assigns i, a[0..n − 1]

invariant 0 ≤ i ≤ nassigns \nothing
ensures P (\result)

Valid

Admitted (f) Valid

Fig. 3. Consolidated Graph of Properties Validity

This is the key idea behind local versus consolidated statuses of properties. We in-
troduce the concept of emitter to identify an analyzer with all of its parameters. The
partial results provided by an analyzer are registered in a Frama-C database. Each entry
of the database precisely consists of:

– an emitter made of an analyzer with concrete parameters’ values;
– a target property;
– a local status, ranging over True, False or Dont_know;
– a list of properties notably used by the analyzer to claim this local status.

The entries obtained after many verification rounds can be very complex to represent.
The graph in Figure 4 shows an extract from the full data collected during the verifi-
cation of Example 2. Two kinds of nodes distinctly represent properties and emitters.
Edges are added when analyzers emit local statuses. For instance, three edges are added
when Wp (using Alt-Ergo as prover) emits True for the user assertion A: one from Wp
to A labeled by the status, and two from A to the loop invariants representing the hy-
potheses under which this status holds.

Wp

-wp-proof alt-ergo

-slevel 100

Value

-slevel 0

A: assert
∀k ∈ Z, 0 ≤ k < n =⇒ P (a[k])

invariant
0 ≤ i ≤ n

invariant
∀k ∈ Z, 0 ≤ k < i =⇒ P (a[k])

assigns
\nothing

assigns
i, array[0..n− 1]

ensures
P (\result)

Wp

Wp

Wp

Wp

WpWp

Wp

Wp

True

Dont_know
True

True

True

Dont_know

Fig. 4. Graph of Local Status (extract)

Let us illustrate how we obtain the consolidated status for this user assertion. Con-
sider all the dependencies that were emitted in conjunction with a local status True.
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All these paths either end at the range invariant, which is locally True with no more
assumptions, or at the function contract of f. The internal cycle between loop invari-
ants represents Wp’s internal inductive scheme. Hence the consolidation algorithm of
Frama-C concludes that everything is proven, except the admitted properties of f. As
we will see, consolidation can be quite challenging on more involved programs. For in-
stance, a property may be false but only over unreachable traces. The general algorithm
is complex enough for a semantical approach to be necessary.

3 Semantics

This section formalizes the semantics of annotated programs and property statuses. Our
formalisation is independent from both the programming language and the formal spec-
ification language: we only suppose that the programming language is imperative, based
on a set of instructions, and admits a specification language based on a set of predicates.

Property. A property π = φ � ι is a predicate φ attached to the program point just
before the instruction ι. A predicate which does not depend on a program point (e.g. a
mathematical lemma required to prove the program) is supposed to be attached to an
arbitrary instruction ι0 without any effect and put just before the first instruction of the
program. We note ΦP the finite set of properties of a program P .

Evaluation. The programming language being imperative, we suppose that there is a
notion of state in which instructions are evaluated consistently with the operational
semantics of the programming language. This notion of evaluation can be extended to
predicates, as presented for instance in Herms’ works [13]: a state ς validates φ, denoted
by ς |= φ, if and only if the predicate φ is valid in the state ς .

Trace. We now consider that the underlying programming language comes with a trace
semantics [14,15] keeping all intermediate instructions and states during execution.
Thus a trace σ = (ςi � ιi)i is a (potentially infinite) sequence of instructions, each of
them coming with the state in which it is evaluated. Traces begin at the early program
entry point ς0 � ι0 and are consistent with the small step operational semantics of the
program: at each step k, the transition ςk

ιk−→ ςk+1 holds in the operational semantics of
the program. A finite trace σ does not contain the final state ς of a finite execution. But
it is still possible to extend it with (ς � skip) where skip is the identity instruction
which does not modify ς . We note σ1 ≺ σ2 if and only if σ1 is a strict trace prefix of
σ2. Also, we say that the trace σ ends at instruction ι in state ς , and we note σ ↪→ ς � ι,
if and only if σ is a finite trace of length n such that ςn = ς and ιn = ι. By extension,
for a property π attached at instruction ι, we note σ ↪→ π if and only if σ ↪→ ς 	 ι for
some state ς .

Trace Validity. We also extend the notation |= for predicates to traces and properties.
With π = φ � ι, we say that σ validates π, and we note σ |= π, the fact: if σ ends at
ς 	 ι then ς |= φ.

Trace Invalidity. The converse notation, σ �|= π, is used for the logical negation of σ |=
π. Remark it is not equivalent to σ |= ¬π, however, we still have σ �|= π ⇒ σ |= ¬π.



Combining Analyses for C Program Verification 115

Blocking Semantics. The correctness of our algorithm (see Theorem 1) requires a
blocking semantics which is usual in semantics of annotated programs (see for in-
stance [13,16]). In our theoretical framework, it can be expressed as follows.

Assumption 1 (Blocking Semantics). If a trace leads to an invalid property, then the
program stops and does not evaluate the following properties in the execution flow.
More formally:

∀ traces σ and σ′, ∀ properties π and π′, if σ′ ≺ σ and σ′ �|= π′, then σ �↪→ π.

If all properties are valid, the blocking semantics coincides with the non-blocking one.

Reachability. An associated concept is the reachability of some instruction of the pro-
gram. More precisely, we are interested in the reachability of instructions to which
given properties are attached. In our framework, this concept is represented by global
predefined (meta) properties of program properties, attached to the initial state ι0 of the
program:

reach(π) � (∃σ, σ ↪→ π) � ι0.

Local Validity. We say that a property π is locally valid under a finite set of hypotheses
ξ, and we note ξ |= π, if and only if:

∀ trace σ, if (∀πi ∈ ξ, ∀ trace σi, if σi ≺ σ, then σi |= πi), then σ |= π.

Informally, a property is locally valid if it is validated by each trace σ ending at it,
assuming that each hypothesis πi is itself validated by all subtraces of σ ending at πi.

Local Invalidity. A property π is locally invalid under a finite set of hypotheses ξ, and
we note ξ �|= π, if and only if:

if (∀πi ∈ ξ, ∀ trace σi, if σi ≺ σ, then σi |= πi), then ∃ trace σ, σ �|= π.

A property is locally invalid if there is a trace σ ending at it but does not validate it,
but still assuming each hypothesis πi is valid on any subtrace of σ ending at πi. These
notions of local validity and local invalidity correspond to statuses emitted by Frama-C
analyzers as we will see in assumptions 2 and 3 in the next section. Note that being
locally invalid is not equivalent to not being locally valid: ξ �|= π �⇐⇒ ¬(ξ |= π).
Moreover, none of these predicates is equivalent to ξ |= ¬π.

Cycles. Statements {π} |= π and ξ |= πi with πi ∈ ξ are not tautologies in loops.
Instead they exactly correspond to proofs by induction, as committed by the strict prefix
relation on traces. These statements are actually valid if and only if we can prove σ |= π
(resp. πi), for any trace σ, under the hypotheses that σj |= π for any strict subtrace σj
of σ (resp. σj |= πj for any πj ∈ ξ).

Global Validity. Last but not least, a property π is valid, and we note |= π, if and only
if σ |= π for each trace σ. We say that π is invalid, and we note �|= π, if π is not valid,
that is ¬(|= π). Once again, �|= π �⇐⇒ |= ¬π. These notions of validity and invalidity
correspond to the consolidated statuses computed by our algorithm from all the local
validity statuses emitted by the analyzers.
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4 Consolidation Algorithm

This section presents a high-level view of the so-called consolidation algorithm imple-
mented in Frama-C. From the local statuses of a property π computed by each emitter
under hypotheses, each of them corresponding to the local validity or invalidity of π,
this algorithm computes its consolidated status corresponding to |= π.

4.1 Local Statuses

As already mentioned, an emitter can emit three different local statuses, namely True,
False and Dont_know. The third one indicates that it is not able to conclude. Let Λ be
the set of these local statuses. Local statuses emitted by analyzers are collected into a
database, and we denote LP the lookup function that returns them for each property:

LP : ΦP → P(Λ × P(ΦP ))

If an emitter put a local status λ to the property π with hypotheses ξ, then (λ, ξ) ∈
LP (π). We expect that analyzers are correct and emit local statuses consistently with
the underlying annotated program semantics, in particular local validities and local inva-
lidities of annotations. Furthermore, when emitting False for a propertyπ, our algorithm
also requires that the only possible hypothesis is reach(π). The following assumption
formalizes this restriction.

Assumption 2 (Strong Correctness of Analyzers). We assume that each analyzer is
strongly correct: it emits the local status True (resp. False) only for locally valid (resp.
invalid) properties under the hypotheses really used (and limited to reachability in case
of invalidity). More formally, for each property π of a program P :

∀(λ, ξ) ∈ LP (π),

{
if λ = True, then ξ |= π;
if λ = False, then ξ �|= π and ∀πi, πi = reach(π).

However, in practice, it may be complicated or inefficient to compute the exact set of
hypotheses which is used to compute a local status. Actually, in presence of a blocking
semantics, the correctness of the consolidation algorithm does not rely on these hy-
potheses, as explained by Theorem 1 (correctness of the algorithm). They are useful for
Theorem 2 (completeness of the algorithm) and to compute more precise informations
for the end-user in the unconclusive cases. Thus, for correctness, the following weaker
assumption is enough.

Assumption 3 (Weak Correctness of Analyzers). Analyzers are assumed to be weakly
correct. They emit the local status True (resp. False) only for locally valid (resp. in-
valid) properties under some unknown hypotheses (resp. reachability). More formally,
for each property π of a program P :

∀(λ, ξ) ∈ LP (π),

{
if λ = True, then ∃ξ′ ⊆ ΦP , ξ

′ |= π;
if λ = False, then ξ �|= π and ∀πi, πi = reach(π).
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Ensuring correctness of analyzers in practice is out of the scope of this paper3 and
is strongly related to the qualification of verification tools for an operational use in a
certified industrial process, for instance with respect to norms like aeronautic’s DO-
178C. Although none of the Frama-C analyzers is qualified at this time, efforts have
already been made in this direction [13,17].

4.2 Invalidity and Reachability

Unfortunately there is a practical issue with the previous local status False: proving
local invalidity of a property π requires to prove two different properties: (1) it exists
a trace σ which ends at π and (2) this trace does not validates π. Let us examine what
tools are able to assess.

– Deductive methods based on weakest precondition calculus are usually not able to
prove invalidity. They are only able to prove validity: in practice, they never emit
False.

– Testing tools usually prove together properties (1) and (2) by exhibiting a test case
which invalidates the property: all is fine.

– Abstract interpreters only reason with an over-approximation of all possible traces
of the program. Thus, when a property is invalidated for all these over-approximated
traces, it means the property is invalid if the program point is reachable. But, ab-
stract analyzers are usually not able to prove reachability.

For solving this issue, Frama-C allows emitters to emit either the local status False_-
and_reachable or the local status False_if_reachable. So, instead of working with LP ,
our algorithm uses the function L�

P : ΦP → P(Λ� × P(ΦP )), where Λ� is the set of
emittable statuses defined by:

Λ� � {True,Dont_know, False_if_reachable, False_and_reachable}.
For any program P , thanks to the reach operator, we can automatically compute LP

from L�
P as follows:

∀π ∈ ΦP ,LP (π) � {(λ, ξ) |λ ∈ {True,Dont_know} and (λ, ξ) ∈ L�
P (π)}

∪ {(False, ξ) | (False_and_reachable, ξ) ∈ L�
P (π)}

∪ {(False, ξ ∪ {reach(π)}) | (False_if_reachable, ξ) ∈ L�
P (π)}

Emitting False_and_reachable is changed into emitting False, and emitting False_if_-
reachable is modified into emitting False under the additional hypothesis reach(π).
Emitting True and Dont_know is left unchanged. This definition of LP preserves both
the strong and the weak correctness of analyzers (assumptions 2 and 3).

To avoid an inconsistency of our algorithm in a corner case leading to uncorrectness,
we also introduce the following assumption for any reach(·) property.

Assumption 4 (Do not prove unreachability with reachability). We assume that no
analyzer tries to prove unreachability of a property π by using its reachability. More
formally, for a given program P :

∀π ∈ ΦP , ∀(λ, ξ) ∈ LP (reach(π)), if λ = False, then reach(reach(π)) /∈ ξ.

3 See the small discussion about the status Inconsistent latter in this section however.
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4.3 Algorithm

We now introduce the consolidation algorithm itself. Applied on a given program P , it
may be seen as a function SP : ΦP → Σ in which the set Σ is defined by:

Σ � {Valid, Invalid,Unknown, Inconsistent}.

The third status is returned by the algorithm when it is not able to conclude, while the
last one is returned when there is both a proof of validity and a proof of invalidity:
in such a case, we can conclude that one emitter is not (strongly) correct4. Before the
formal definition of SP , we present an informal sketch of the algorithm:

1. abort if assumption 4 is violated;
2. compute the most precise local status λ;
3. for each emitter which emits λ, compute the conjunction of the consolidated sta-

tuses of its hypotheses;
4. compute the most precise conjunction γ computed above;
5. compute the status of γ =⇒ λ;
6. check for inconsistencies.

Step 1 of the algorithm is a simple structural check.
Computing the most precise local status in Step 2 relies on the operator

∨L based on
∨L which ensures local validity and is defined below. It is mosly equivalent to a logical
disjunction in a tri-valued boolean logic. But, in the case where an emitter emits True
and another one emits False, we do not choose yet a status, even if it would be correct
to choose True: in order to be complete, we wait Step 5 of the algorithm to select the
one which is possible to fully consolidate.

∨L True Dont_know False
True { True } { True } { True, False }

Dont_know { True } { Dont_know } { False }
False { True, False } { False } { False }

L∨ {λn}n =

{
λ1 ∨L ... ∨L λn if n > 0
Dont_know otherwise

Computing the conjunction of the statuses of the hypotheses in Step 3 of the algo-
rithm is done by the operator

∧H based on ∧H and defined below. This operator exactly
is the standard conjunction of a tri-valued boolean logic. We omit the case Inconsistent
which is treated as Unknown here, and still returns Unknown.

∧H Valid Unknown Invalid
Valid Valid Unknown Invalid

Unknown Unknown Unknown Invalid
Invalid Invalid Invalid Invalid

H∧ {λn}n =

{
λ1 ∧H ... ∧H λn if n > 0
Valid otherwise

4 In practice, other origins are possible like inconsistent user-defined ACSL axiomatics.
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Computing the most precise consolidated status as performed in Step 4 of the al-
gorithm is done by the operator

∨H based on ∨H and defined below. It exactly cor-
responds to the standard disjunction of a tri-valued boolean logic. We omit the case
Inconsistent which never occurs here, since ∧H returns Unknown instead.

∨H Valid Unknown Invalid
Valid Valid Valid Valid

Unknown Valid Unknown Invalid
Invalid Valid Invalid Invalid

H∨ {λn}n =

{
λ1 ∨H ... ∨H λn if n > 0
Unknown otherwise

The implication operator
HL
=⇒ involved in Step 5 of the algorithm is defined below

(left part in row, right part in column). Like for ∨H , Inconsistent is omitted and treated
as Unknown.

HL
=⇒ True Dont_know False

Valid Valid Unknown Invalid
Unknown Unknown Unknown Unknown

Invalid Unknown Unknown Valid

This operator corresponds to the standard implication of a tri-valued boolean logic,
but most cases remain unknown: remember that �|= π means that π is incorrect for some
trace σ. Thus it would be wrong to assume than an hypothesis πi being incorrect for
some trace σi leads to a correct goal for any trace: it is still possible to have another
trace σ independent of σi (σi �≺ σ) which ends at π and invalidates it. It is possible
to conclude Valid in the case Invalid

HL
=⇒ False since the only possible hypothesis is

reach(π) (assumption 4): if it is invalid, π is unreachable, hence valid.
Step 6 detects inconsistency when it is possible to consolidate a property to both

Valid and Invalid , thanks to the operator
∨I which is equivalent to

∨H except that:

Valid ∨I Invalid = Invalid ∨I Valid = Inconsistent.

With all the operators now introduced, we can formally define our algorithm as the
function SP in the following way:

SP (π) � S∅
P (π)

with SΨ
P (π) �

I∨
λπ∈Λπ

⎛
⎝
⎛
⎝ H∨

ξ∈Ξλπ

H∧
πξ∈ξ\Ψ

SΨ∪{π}
P (πξ)

⎞
⎠ HL

=⇒ λπ

⎞
⎠

and Λπ =

L∨
{ λ | (λ, _) ∈ LP (π) }

and Ξλπ = { ξ | LP (π) = (λπ , ξ) }.
In this definition, the set Ψ used in SΨ

P stores the properties already visited in order to
handle cycles in a well-founded way. This algorithm is correct with respect to the trace
semantics of Section 3, as stated by the following theorem5.

5 Proofs are provided in appendix.
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Theorem 1 (Correctness). Under assumptions 1 (blocking semantics) and 3 (weak
correctness of analyzers), if the consolidation algorithm returns Valid (resp. Invalid)
for a property π, then π is valid (resp. invalid). If it returns Inconsistent, then both |= π
and �|= π hold (i.e. logical inconsistency). More formally, for a given program P :

∀π ∈ ΦP ,

⎧⎨
⎩

if SP (π) = Valid, then |= π;
if SP (π) = Invalid, then �|= π;
if SP (π) = Inconsistent then |= π and �|= π.

The algorithm is also complete when the analyzers are strongly correct, in the following
sense: if a property is assigned a local status of validity (resp. invalidity), and if recur-
sively, all its dependencies are globally valid, then our algorithm computes a valid (resp.
invalid) consolidated status. The notion of recursively valid hypotheses for property π
is captured the following definition:

D(π) � ∃λ �= Dont_know, (λ, ξ) ∈ LP (π) and ∀πi,D(πi) and |= πi;

Theorem 2 (Completeness). Under assumptions 1 (blocking semantics) and 2 (strong
correctness of analyzers), if a property is valid (resp. invalid) and an emitter emits
a local status different from Dont_know under recursively valid hypotheses, then the
consolidation algorithm returns Valid (resp. Invalid). More formally, for a given pro-
gram P :

∀π ∈ ΦP ,

{
if D(π) and |= π, then SP (π) = Valid;
if D(π) and �|= π, then SP (π) = Invalid.

5 Consolidated Partial Statuses

The previous formalization provides correctness and completeness results when every
property is consolidated to valid or invalid. While this is perfect for the success of a
verification campaign under strong qualification requirements, there is no way to know
the origin of partial results, in particular in case of Unknown statuses.

In Frama-C, there is actually a variety of 11 consolidated statuses that can be syn-
thesized for a property. These statuses provide feedback to the engineer from three
complementary points of view: validity of the property, completeness with respect to
its recursively valid hypotheses, and reachablity. A color is assigned to each point of
view, and each of the 11 statuses of Frama-C has one or two colors for a fully detailed
feedback on any property status. This variety of statuses can be simply understood as
refinements for the four basic consolidated statuses presented in Section 4.

Refinements of Valid. As illustrated in the running example with external functions, it
is sometimes impossible to complete a verification process inside the verification tool.
It is then useful to consolidate admitted results like valid ones, while tagging those
admitted results for manual reviews outside the tool. As seen in the previous section,
another important case of validity is a locally invalid but unreachable property. To avoid
confusing the user by presenting a Valid status on a locally invalid status False, we use
a special “Invalid but dead” consolidated status in this situation. There is no interesting
refinement for Inconsistent and Invalid statuses.
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Valid Admitted
Invalid but dead

Inconsistent
Invalid

Refinements of Unknown. The most versatile situations are related to the status Un-
known. We distinguish several cases by taking into account whether the local status
is True or False, or whether some hypothesis is surely Invalid . In the first category of
cases, we want to retain the local status feedback although nothing can be claimed since
assumptions are missing. In the second category of cases, we want to mark the prop-
erty as irrelevant since there is an Invalid property previously in the control flow graph
which may impact the status of this property.

No local status No analyzer tried.
Unknown No analyzer succeeded.
Locally Valid Hypotheses are not yet consolidated (Unknown).
Locally Invalid
Valid but irrelevant One hypothesis is surely Invalid .
Unknown but irrelevant

Extension of the Algorithm. Extending the consolidation algorithm of Section 4 with
this full variety of statuses is quite straightforward. Roughly, an extended status is
treated like the status it refines. For instance, Locally Valid is treated as Unknown. This
extension may be synthetized in the modified table of the

HL
=⇒ operator below, which

is responsible for consolidating the best local status with respect to the consolidated
statuses of its hypotheses. The refined statuses are marked with a star (�).

HL
=⇒ True Dont_know False

Valid Valid Unknown Invalid
Unknown Locally Valid � Unknown Locally Invalid �

Invalid Valid but irrelevant � Unknown but irrelevant � Invalid but unreachable �

The extended table for this operator is sound: a status λ is only replaced by a refine-
ment of λ. Hence, we still benefit from correctness and completeness theorems.

6 Conclusion

We have presented a consolidation algorithm for verifying program properties by com-
bining results from several program analyzers. This algorithm is proved to be correct
and complete with respect to a generic blocking semantics of annotated programs, as
long as analyzers are correct. Its correctness does not rely on hypotheses emitted by the
analyzers: these hypotheses are only required for completness. We have also presented
how to refine results to provide more informative feedback to the end-user.

This algorithm is fully implemented in Frama-C, a platform gathering several static
analysis techniques in a single collaborative framework. It has successfully been used
on a confidential 50-kloc case study which is representative of real-life software of
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systems important to safety in nuclear power plants. Here Value is primarily used,
while Wp helps it to prove assertions on which Value is unconclusive. Other collabo-
rations between different set of analyses are currently under way, in particular between
test generation tools and static verifiers [18].
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A Proofs of Theorems

This appendix contains the proofs of the correctness and the completeness theorems of
the paper. First we introduce a lemma which links local validity to validity.

Lemma 1 (Local validity implies validity). Under assumption 1 (blocking seman-
tics), if a property is locally valid (resp. invalid), then it is valid (resp. invalid). More
formally, for a given program P :

∀π ∈ ΦP , ∀Π ⊆ ΦP , if Π |= π, then |= π.

Proof. Let π be a property, Π be a finite set of properties such that Π |= π and σ be a
trace. We have to show that σ |= π.

Case ∀πi ∈ Π, ∀ trace σi, if σi ≺ σ, then σi |= πi. By definition of local validity,
σ |= π.

Case ∃πi ∈ Π, ∃σi, σi ≺ σ and σi �|= πi. By assumption 1 (blocking semantics), as
σi ≺ σ and σi �|= πi, σ �↪→ π. Thus, by definition of |= (for trace), σ |= π.

Now, we introduce a well-founded relation which explains why the consolidation al-
gorithm terminates. It is actually not so trivial: informally, our algorithm performs a
topological iteration over a graph where vertices are properties and each edge indicates
that a property is used as hypothesis of another one. But, this graph may contain cycles,
while topological iteration is not well defined for such graphs. That is the raison d’être
of the set of already visited properties in the algorithm. Thus this set must be taken into
account in our proof. So, for any programP , let us introduce the following relation �P

over ΦP × P(ΦP ) as the transitive closure of �1
P defined as follows:

(π1, Ψ1) �1
P (π2, Ψ2) ⇐⇒ π1 �

1
P π2 and π1 /∈ Ψ1 = Ψ2 ∪ {π2}

with π1 �
1
P π2 ⇐⇒ ∃(λ, ξ2) ∈ LP (π2), π1 ∈ ξ2

Informally, π1 �1
P π2 says that π1 is used as hypothesis of π2 (or there is an edge from

π2 to π1 in the graph), while (π1, Ψ1) �P (π2, Ψ2) indicates that there is a path from
π2 to π1 in the graph. It also requires that π2 is the property currently visited (thus being
included in the set of already visited properties) and π1 is not already visited (in order
to break cycles).

Lemma 2 (�P is a well-founded relation). For any program P , �p is a well founded
relation. More precisely: �P is a strict partial order (i.e. an anti-reflexive, antisym-
metric and transitive relation) and every non-empty subset of ΦP ×P(ΦP ) has a �P -
minimal element. Furthermore, the set of all these �P -minimals is:

ℵP � {(π, Ψ) | ∀(λ, ξ) ∈ LP (π), ξ \ Ψ = ∅}.

Proof. Consider a program P .

Anti-reflexivity. Since, for any π ∈ ΦP and Ψ ∈ P(ΦP ), π ∈ Ψ ∪ {π}, (π, Ψ) ��P

(π, Ψ) by definition of �P . Hence �P is anti-reflexive.
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Antisymmetry. Let π1 and π2 being in ΦP and Ψ1 and Ψ2 being in P(ΦP ) such that
(π1, Ψ1) �P (π2, Ψ2) and (π2, Ψ2) �P (π1, Ψ1). By definition of �P :

π1 /∈ Ψ1 since (π1, Ψ1) �P (π2, Ψ2)

/∈ Ψ2 ∪ {π2} since Ψ1 = Ψ2 ∪ {π2} because of (π1, Ψ1) �P (π2, Ψ2)

/∈ Ψ1 ∪ {π1} ∪ {π2} since Ψ2 = Ψ1 ∪ {π1} because of (π2, Ψ2) �P (π1, Ψ1).

The last line is a contradiction since π1 ∈ {π1}. Hence �P is antisymmetric.
Transitivity. Trivial by definition of transitive closure.
Elements of ℵP are minimal. Let (π, Ψ) ∈ ℵP and (π′, Ψ ′) ∈ ΦP × P(ΦP ). Let us

prove by contradiction that (π′, Ψ ′) ��P (π, Ψ). So let us suppose that (π′, Ψ ′) �P

(π, Ψ).
By definition of �P , since (π′, Ψ ′) �P (π, Ψ), π′

�P π, it exists π′′ such that
π′ �P π′′ and π′′ �1

P π. Thus, π′′
�

1
P π and, by definition of �

1
P , it exists

(λ, ξ) ∈ LP (π) such that π′′ ∈ ξ. By definition of ℵP , since π ∈ ℵP , π′′ ∈ Ψ .
However, by definition of �1

P , π′′ /∈ Ψ , leading to a contradiction.
Only elements of ℵP are minimal. Let (π, Ψ) /∈ ℵP . Let us prove that it exists a cou-

ple (π′, Ψ ′) ∈ ℵP such that (π′, Ψ ′) �P (π, Ψ). Consider the set Σ of sequences
(πn, Ψn)n such than π0 = (π, Ψ) and (πi, Ψi) �P (πi+1, Ψi+1). Since, ΦP is a
finite set and, forall i ≥ 0, Ψi ⊂ Ψi+1 by definition of �P , any (πn, Ψn)n is a finite
sequence. If σ is a trace of Σ, π is a property and Ψ is a set of properties, we note
σ �P (π, Ψ) the extension of σ with (π, Ψ) such that the resulting trace belongs
to Σ. Thanks to this notation, we define a distance δ over traces of Σ as follows:

δ((πn, Ψn)n) = 0 if ∀(π, Ψ) ∈ ΦP × P(ΦP ), (πn, Ψn) �� P (π, Ψ)

δ((πn, Ψn)n) = min

{
k ∈ N

∣∣∣∣∃(π, Ψ) ∈ ΦP × P(ΦP ),
δ((πn, Ψn)n �P (π, Ψ)) = k − 1

}
otherwise.

Informally, δ measures the minimal distance of a trace to aΣ-sequence of maximal
length. Now let us show by induction over δ that any element of any sequence ofΣ
is �P -smaller than, or equal to, some (π′, Ψ ′) ∈ ℵP : that will prove our goal. Let
σ = (π0, Ψ0) �P · · · �p (πn−1, Ψn−1) be a sequence of Σ.
Case δ(σ) = 0. By definition of δ, there is no (πn, Ψn) such that (πn−1, Ψn−1) �P

(πn, Ψn). Hence, by definition of �P , either forall (λ, ξn−1) ∈ LP (πn−1),
ξn−1 is the empty set or ψn−1 = ΦP . In both cases, we can trivially conclude
than (πn−1, Ψn−1) ∈ ℵP . So the �P -smallest element of σ belongs to ℵP : by
transitivity and antisymmetry of �P any other element of σ is ℵP �P -bigger
than (π, Ψ).

Case δ(σ) > 0. By definition of δ, there exists (πn, Ψn) such that σ is a prefix of
the sequence σ′ = (π0, Ψ0) �P · · · �P (πn, Ψn) of length n + 1. Since
N − (n + 1) < N − n, we can apply the induction hypothesis on σ′: any
element of σ′ is �P -bigger or equal to some couple (π′, Ψ ′) ∈ ℵP . Hence, σ
too by transitivity of �P .

We now introduce the last definition before proving both theorems of the paper. Infor-
mally, it restricts the sets of already visited properties to those verifying the implicit
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invariants of our algorithm. Let P be a program and π be a property of P . We note Υn
π

the set of finite sequences Ψn = (πn)n of length n inductively defined by (consider that
π = πn+1):

Ψ0 = ∅
Ψi+1 = Ψi ∪ {πi+1} 0 ≤ i < n

with (πi+1, Ψi) �P (πi, Ψi−1) 1 ≤ i ≤ n

and ∃(λi, ξi) ∈ LP (πi), λi �= Dont_know and πi+1 ∈ ξi 1 ≤ i ≤ n.

With these preliminary definitions and properties, we are now able to prove both theo-
rems of the paper.

Theorem 1 (Correctness of the Consolidation Algorithm). Under assumptions 1
(blocking semantics) and 3 (weak correctness of analyzers), if the consolidation algo-
rithm returns Valid (resp. Invalid) for a given property π, then π is valid (resp. invalid).
In case of inconsistency, we can deduce both |= π and �|= π, i.e. an inconsistency. More
formally, for a given program P :

∀π ∈ ΦP ,

⎧⎨
⎩

if SP (π) = Valid, then |= π;
if SP (π) = Invalid, then �|= π;
if SP (π) = Inconsistent then |= π and �|= π.

Proof. We actually prove the following more general result:

∀n ∈ N, ∀π ∈ ΦP , ∀Ψn ∈ Υn
π ,

⎧⎨
⎩

if SΨn

P (π) = Valid, then |= π;

if SΨn

P (π) = Invalid, then �|= π;
if SP (π) = Inconsistent then |= π and �|= π.

Let n ∈ N. We prove the expected property by �P -induction over (π, Ψn) (possible by
lemma 2, well-foundedness of �P ):

Case (π, Ψn) ∈ ℵP . Let us prove separately the three expected properties.
Case SΨn

P (π) = Valid. We have to prove |= π. According to the definitions of
∨I

and
HL
=⇒ , there are two cases.

Case True ∈ Λπ. By definition of
∨L and ∨L, (True, _) ∈ LP (π). Then by

assumption 3 (weak correctness of analyzers), it exists Π ⊆ ΦP such that
Π |= π. Hence the expected result by lemma 1 (local validity implies
validity).

Case False ∈ Λπ. By definition of
∨L, (False, _) ∈ LP (π). Then:

H∨
ξ∈Ξλπ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Invalid definition of

HL
=⇒

∃ξ ∈ Ξλπ ,

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Invalid definition of ∨H and

∨H .
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However, since (π, Ψn) ∈ ℵP , ξ \ Ψn is empty. Hence, by definition of∧H :
H∧

πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid.

Absurd since we previously demonstrated that this conjunction is invalid.
Case SΨn

P (π) = Invalid. We have to prove �|= π. According to the definitions of∨I and
HL
=⇒ , False ∈ Λπ. Then:

H∨
ξ∈Ξλπ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of

HL
=⇒

∃ξ ∈ Ξλπ ,
H∧

πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of ∨H and

∨H .

By assumption 3 (weak correctness of analyzers) which restricts the hypotheses
of π when emitting False to at best {reach(π)}, ξ is either empty or {reach(π)}.
Furthermore, since (π, Ψn) ∈ ℵP , ξ \ Ψn is empty. So there only remains two
cases.
Case ξ = ∅. Trivial by assumption 3 (weak correctness of analyzers).
Case reach(π) ∈ Ψn. Let us first prove that it exists (λ, ξ) ∈ LP (reach(π))

such that λ = True. Since reach(π) ∈ Ψn, and by definition of Ψn,
there exists (λ, ξ) ∈ LP (reach(π)) and π′ such that λ �= Dont_know
and π′ ∈ ξ. Following assumption 3 (weak correctness of analyzers), π′

must be reach(reach(π)). But, if λ = False, that contradicts assumption
4 (do not prove unreachability with reachability). Hence λ = True. So,
by assumption 3 (weak correctness of analyzers) followed by lemma 1
(local validity implies validity), |= reach(π). Furthermore, by assump-
tion 3 (weak correctness of analyzers) again, since (False, {reach(π)}) ∈
LP (π), {reach(π)} �|= π. Hence �|= π by definition of local invalidity.

Case SΨn

P (π) = Inconsistent. Both True and False belong to Λπ. So, following
both cases which we just proved, we can trivially deduce |= π and �|= π which
is the expected result.

Case (π, Ψn) /∈ ℵP . Let us prove separately the three expected properties.

Case SΨn

P (π) = Valid. We have to prove |= π. According to the definitions of
∨I

and
HL
=⇒ , there are two cases.

Case True ∈ Λπ. This case is exactly equivalent to the same subcase of the
basic case of the induction.

Case False ∈ Λπ. Similarly to the same subcase of the basic case of the in-
duction, we get:

∃ξ ∈ Ξλπ ,

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Invalid.
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By assumption 3 (weak correctness of analyzers) which restricts the hy-
potheses of π when emitting False to at best {reach(π)}, ξ is either empty
or {reach(π)}. If ξ \ Ψn is empty, then the case is absurd (see basic case
of the induction). Otherwise, by definition of

∧H , we get

SΨn∪{π}
P (reach(π)) = Invalid.

As reach(π)�1
P π and reach(π) /∈ Ψn ∪ {π}, (reach(π), Ψn ∪ {π}) �P

(π, Ψn). Furthermore Ψn∪{π} ∈ Υn
reach(π). So we can apply the induction

hypothesis on (reach(π), Ψn) to deduce �|= reach(π). So, by definition of
reach(π), no trace ends at π. Hence |= π by definition of |=.

Case SΨn

P (π) = Invalid. We have to prove �|= π. According to the definitions of∨I and
HL
=⇒ , False ∈ Λπ. Then:

H∨
ξ∈Ξλπ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of

HL
=⇒

∃ξ ∈ Ξλπ ,

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of ∨H and

∨H .

By assumption 3 (weak correctness of analyzers) which restricts the hypotheses
of π when emitting False to at best {reach(π)}, ξ is either empty or {reach(π)}.
If ξ is empty or {reach(π)} ∈ Ψn, then the proof is the same as the one of the
basic case of the induction. Thus the remaining case is reach(π) ∈ ξ \ Ψn.
So (reach(π), Ψn ∪ {π}) �P (π, Ψn). Furthermore Ψn ∪ {π} ∈ Υn

reach(π):
we can apply the induction hypothesis on (reach(π), Ψn ∪ {π}) to deduce
|= reach(π). By definition of reach(π), there exists a trace σ which ends
at π. Furthermore, by assumption 3 (weak correctness of analyzers), since
(False, {reach(π)}) ∈ LP (π), reach(π) �|= π. Hence �|= π by definition of
�|=.

Case SΨn

P (π) = Inconsistent. This case is similar to the same subcase of the basic
case of the induction.

Theorem 2 (Completeness). Under assumptions 1 and 2 (strong correctness of ana-
lyzers), if a property is valid (resp. invalid) and an emitter emits a local status different
from Dont_know under recursively valid hypotheses, then the consolidation algorithm
returns Valid (resp. Invalid). More formally, for a given program P :

D(π) � ∃λ �= Dont_know, (λ,Π) ∈ LP (π) and ∀πi,D(πi) and |= πi.

then

∀π ∈ ΦP ,

{
if D(π) and |= π, then SP (π) = Valid;
if D(π) and �|= π, then SP (π) = Invalid.

Proof. Let P be a program. Let us note, for any property π and set of properties Ψ :

DΨ (π) � ∃λ �= Dont_know, (λ,Π) ∈ LP (π) and ∀πi,DΨ∪{π}(πi) and |= πi.



128 L. Correnson and J. Signoles

We actually prove the following more general result:

∀n ∈ N, ∀π ∈ ΦP , ∀Ψn ∈ Υn
π , ∀π ∈ ΦP ,{

if DΨn(π) and |= π, then SΨn

P (π) = Valid;
if DΨn(π) and �|= π, then SΨn

P (π) = Invalid.

Let n ∈ N. We prove the expected property by �P -induction over (π, Ψn) (possible by
lemma 2, well-foundness of �P ).

Case (π, Ψn) ∈ ℵP . Let λ be a local status different of Dont_know, and ξ = {πi}i
such than (λ, ξ) ∈ LP (π) (if no such λ and ξ exist, the expected property is trivially
true). We split the proof in two cases according to the value of λ.
Case λ = True. By definition of

∨L and
∨I , λ ∈ Λπ. By assumption 2 (strong

correctness of analyzers), ξ |= π. Thus, by lemma 1 (local validity implies va-
lidity), |= π. So we have to prove SΨn

P (π) = Valid. According to the definition
of ℵP , ξ \ Ψn = ∅. Then:

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of

∧H

H∨
ξ∈Ξλπ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of ∨H and

∨H

H∨
ξ∈Ξλ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ)

HL
=⇒ λ = Valid definition of

HL
=⇒ .

By definition of
∨I , SΨn

P (π) is either Valid or Inconsistent . In the former case,
we directly get the expected result. In the latter case, by Theorem 16, we get an
inconsistency from which we can trivially deduce the expected result.

Case λ = False. By definition of
∨L and

∨I , λ ∈ Λπ. By assumption 2 (strong
correctness of analyzers), ξ �|= π. Furthermore, according to the definition of
ℵP , ξ \ Ψn = ∅. It follows:

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of

∧H

H∨
ξ∈Ξλπ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of ∨H and

∨H )

H∨
ξ∈Ξλ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ)

HL
=⇒ λ = Invalid definition of

HL
=⇒ .

6 Actually that is not precisely what Theorem 1 says : it expresses a statement for SP and not
SΨn
P , but the proof of this theorem encloses the proof of the same property for SΨn

P .
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By definition of
∨I , SΨn

P (π) is either Inconsistent or Invalid . In the former
case, by Theorem 17, we get an inconsistency from which we can trivially
deduce the expected result. So let us suppose SΨn

P (π) = Invalid and prove
�|= π to be able to conclude. By assumption 2 (strong correctness of analyzers)
which restricts the hypotheses of π when emitting False to at best {reach(π)},
ξ is either empty or {reach(π)}. Furthermore Since (π, Ψn) ∈ ℵP , ξ \ Ψn is
empty. So it only remains two cases.
Case ξ = ∅. Immediate by assumption 2 (strong correctness of analyzers).
Case reach(π) ∈ Ψn. Let us first prove that it exists (λ′, ξ) ∈ LP (reach(π))

such that λ′ = True. Since reach(π) ∈ Ψn, and by definition of Ψn, it
exists (λ′, ξ) ∈ LP (reach(π)) and π′ such that λ′ �= Dont_know and
π′ ∈ ξ. Following assumption 2 (strong correctness of analyzers), π′ must
be reach(reach(π)). But, if λ′ = False, that contradicts assumption 4 (do
not prove unreachability with reachability). Hence λ′ = True. So, by as-
sumption 2 (strong correctness of analyzers) followed by lemma 1 (lo-
cal validity implies validity), |= reach(π). Furthermore, by assumption 2
(strong correctness of analyzers) again, {reach(π)} �|= π. Hence �|= π by
definition of local invalidity.

Case (π, Ψn) /∈ ℵP . Let λ be a local status different of Dont_know, and ξ = {πi}i
such than (λ, ξ ∈ LP (π) and, for each πi ∈ ξ, DΨn(πi) and |= πi (if no such λ
and ξ exist, the expected property is trivially true). We split the proof in two cases
according to the value of λ.

Case λ = True. By definition of
∨L and

∨I , λ ∈ Λπ. By assumption 2 (strong
correctness of analyzers), ξ |= π. Thus, by lemma 1 (local validity implies
validity), |= π. So we have to prove SΨn

P (π) = Valid. For each πi ∈ ξ \ Ψn,
(πi, Ψn ∪ {π}) �P (π, Ψn). Furthermore Ψn ∪ {π} ∈ Υn

πi
: we can apply the

induction hypothesis to each πi ∈ ξ\Ψn to deduce SΨn∪{π}
P (πi) = True (since

|= πi and DΨn∪{π}(πi)). Then:

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of ∧H and

∧H

H∨
ξ∈Ξλπ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of ∨H and

∨H

H∨
ξ∈Ξλ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ)

HL
=⇒ λ = Valid definition of

HL
=⇒ .

By definition of
∨I , SΨn

P (π) is either Valid or Inconsistent . In the former case,
we directly get the expected result. In the latter case, by Theorem 18, we get an
inconsistency from which we can trivially deduce the expected result.

7 See footnote 6.
8 See footnote 6.
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Case λ = False. By definition of
∨L and

∨I , λ ∈ Λπ. By assumption 2 (strong
correctness of analyzers), ξ �|= π and ξ is either empty or {reach(π)}. We
have to show SΨn

P (π) = Invalid. If ξ is empty or {reach(π)} ∈ Ψn, then
the proof is the same as the one of the basic case of the induction. Thus the
remaining case is reach(π) ∈ ξ \ Ψn. So (reach(π), Ψn ∪ {π}) �P (π, Ψn).
Furthermore Ψn ∪ {π} ∈ Υn

reach(π): we can apply the induction hypothesis

on (reach(π), Ψn ∪ {π}) to deduce SΨn∪{π}
P (reach(π)) = Valid (since |=

reach(π) and DΨn∪{π}(reach(π))). Then:

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of ∧H and

∧H

H∨
ξ∈Ξλπ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of ∨H and

∨H

H∨
ξ∈Ξλ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ)

HL
=⇒ λ = Invalid definition of

HL
=⇒ .

By definition of
∨I , SΨn

P (π) is either Invalid or Inconsistent . In the former
case, we directly get the expected result. In the latter case, by Theorem 19, we
get an inconsistency from which we can trivially deduce the expected result.

9 See footnote 6.
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