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Preface

This volume contains the papers presented at FMICS 2012, the 17th International
Workshop on FormalMethods for Industrial Critical Systems, taking place August
27–28, 2012, in Paris, France. Previous workshops of the ERCIM Working Group
on Formal Methods for Industrial Critical Systems were held in Oxford (March
1996), Cesena (July 1997), Amsterdam (May 1998), Trento (July 1999), Berlin
(April 2000), Paris (July 2001), Malaga (July 2002), Trondheim (June 2003),
Linz (September 2004), Lisbon (September 2005), Bonn (August 2006), Berlin
(July 2007), L’Aquila (September 2008), Eindhoven (November 2009), Antwerp
(September 2010), and Trento (August 2011). The FMICS 2012 workshop was co-
located with the 18th International Symposium on Formal Methods (FM 2012).

The aim of the FMICS workshop series is to provide a forum for researchers
who are interested in the development and application of formal methods in in-
dustry. In particular, FMICS brings together scientists and engineers that are
active in the area of formal methods and interested in exchanging their expe-
riences in the industrial usage of these methods. The FMICS workshop series
also strives to promote research and development for the improvement of formal
methods and tools for industrial applications.

The topics of interest include, but are not limited to:

– Design, specification, code generation and testing based on formal methods
– Methods, techniques and tools to support automated analysis, certifica-

tion, debugging, learning, optimization and transformation of complex, dis-
tributed, dependable, real-time systems and embedded systems

– Verification and validation methods that address shortcomings of existing
methods with respect to their industrial applicability, e.g., scalability and
usability issues

– Tools for the development of formal design descriptions
– Case studies and experience reports on industrial applications of formal

methods, focusing on lessons learned or identification of new research di-
rections

– Impact of the adoption of formal methods on the development process and
associated costs

– Application of formal methods in standardization and industrial forums

This year we received 37 submissions. Papers had to pass a rigorous review
process in which each paper received three reports. The international Program
Committee of FMICS 2012 decided to select 14 papers for presentation during
the workshop and inclusion in these proceedings. The workshop was highly en-
riched by our two invited talks given by Dimitra Giannakopoulou, NASA Ames,
USA, and Hubert Garavel, INRIA Grenoble Rhone-Alpes, France.



VI Preface

We would like to thank the local organizers Kamel Barkaoui, CNAM Paris,
and Béatrice Bérard, University Pierre et Marie Curie, for taking care of all
the local arrangements in Paris, the ERCIM FMICS working group coordina-
tor Radu Mateescu, INRIA Grenoble, for his fruitful discussions, and especially
Alessandro Fantechi, Università degli Studi di Firenze and ISTI-CNR, Italy, for
inviting us to co-chair this workshop, EasyChair for supporting the review pro-
cess, Springer for the publication, all Program Committee members and external
reviewers for their substantial reviews and discussions, all authors for submitting
37 papers and all attendees of the workshop. Thanks to all for making FMICS
2012 a success.

August 2012 Mariëlle Stoelinga
Ralf Pinger
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Three Decades of Success Stories

in Formal Methods

Hubert Garavel�
with contributions of Susanne Graf

INRIA/LIG – CONVECS team
655 avenue de l’Europe, 38330 Montbonnot St Martin, France

hubert.garavel@inria.fr

http://convecs.inria.fr/people/Hubert.Garavel

Abstract. This talk presents a selection of successful applications of
formal methods to real-life problems. Similar studies already appeared
in the scientific literature but are not, we believe, entirely satisfactory.
On the one hand, in the cumulative list of applications considered by
these studies, certain formal methods are over-represented while others
are not mentioned. On the other hand, the essential role of verification
tools is not always acknowledged as strongly as it should be.

To ensure a broader coverage of the diversity of formal methods,
we selected a set of thirty case-studies, while prior studies often limited
themselves to a dozen. These case-studies are distributed regularly over
the past three decades, one per year between 1982 and 2011.

We tried to give a balanced panorama of formal methods by featuring
different formal approaches (mathematical notations, theorem proving,
model checking, static analysis, etc.), different models of computations
(sequential, synchronous, asynchronous, timed, probabilistic, hybrid, etc.),
and different application domains (hardware, software, telecommunica-
tion, embedded systems, operating systems, compilers, etc.).

In our selection, we focused on practical applications of formal meth-
ods rather than theoretical results alone. Contrary to some other stud-
ies, we gave priority to repeatable experiments, privileging approaches
supported by software tools rather than “heroic” approaches relying on
pen-and-paper manipulation of mathematical symbols.

Obviously, exhaustivity is impossible as the number and diversity of
applications of formal methods cannot be reduced to a collection of thirty
samples. Also, we do not claim that our selection represents the “best”
case studies ever published, but simply that they correspond to pioneering
and inspiring work that the young generation should keep in mind.

� This study is part of a formal methods survey that has been funded by the German
Federal Agency BSI (Bundesamt für Sicherheit in der Informationstechnik) under
project 875 initiated and led by Dr. Anastasia-Maria Leventi-Peetz.



To Scale or Not to Scale: Experience with

Formal Methods and NASA Systems

Dimitra Giannakopoulou

NASA Ames Research Center, USA
dimitra.giannakopoulou@nasa.gov

Abstract. The safety-critical nature of aerospace systems mandates the
development of advanced formal verification techniques that provide de-
sired correctness guarantees. In this talk, we will discuss our experience
with the development and use of formal method techniques in the context
of aerospace systems. We will first provide an overview of approaches that
we have developed over the last decade for scaling exhaustive verifica-
tion through divide-and-conquer principles. In particular, we will present
learning-based frameworks for automatically generating component ab-
stractions. Such abstractions can be used for documentation, or more
efficient modular reasoning. In the domain of human-automation inter-
action systems, these abstractions can be used for human operators to
understand what to expect from their interactions with the system.

The techniques that will be presented use a variety of approaches,
including model checking, predicate abstraction, and symbolic execu-
tion. Despite the progress that we have made in developing and applying
sophisticated formal methods frameworks, the issue of scalability still re-
mains the Achilles tendon in this domain. We will discuss scalability and
the trade-offs that we have made in our work, as well as our perspective
for the future application of formal methods in industry.
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Real-Time Specification Patterns and Tools�

Nouha Abid1,2, Silvano Dal Zilio1,2, and Didier Le Botlan1,2

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse France
2 Univ de Toulouse, LAAS, F-31400 Toulouse, France

Abstract. An issue limiting the adoption of model checking technolo-
gies by the industry is the ability, for non-experts, to express their re-
quirements using the property languages supported by verification tools.
This has motivated the definition of dedicated assertion languages for
expressing temporal properties at a higher level. However, only a limited
number of these formalisms support the definition of timing constraints.
In this paper, we propose a set of specification patterns that can be used
to express real-time requirements commonly found in the design of re-
active systems. We also provide an integrated model checking tool chain
for the verification of timed requirements on TTS, an extension of Time
Petri Nets with data variables and priorities.

1 Introduction

An issue limiting the adoption of model checking technologies by the industry
is the difficulty, for non-experts, to express their requirements using the spec-
ification languages supported by the verification tools. Indeed, there is often a
significant gap between the boilerplates used in requirements statements and
the low-level formalisms used by model checking tools; the latter usually rely-
ing on temporal logic. This limitation has motivated the definition of dedicated
assertion languages for expressing properties at a higher level (see Section 5).
However, only a limited number of assertion languages support the definition
of timing constraints and even fewer are associated to an automatic verification
tool, such as a model checker.

In this paper, we propose a set of real-time specification patterns aimed at the
verification of reactive systems with hard real-time constraints. Our main objec-
tive is to propose an alternative to timed extensions of temporal logic during model
checking. Our patterns are designed to express general timing constraints com-
monly found in the analysis of real-time systems (such as compliance to deadlines;
event duration; bounds on the worst-case traversal time; etc.). They are also de-
signed to be simple in terms of both clarity and computational complexity. In par-
ticular, each pattern should correspond to a decidable model checking problem.

Our patterns can be viewed as a real-time extension of Dwyer’s specification
patterns [11]. In his seminal work, Dwyer shows through a study of 500 spec-
ification examples that 80% of the temporal requirements can be covered by a
� This work was partially supported by the JU Artemisia project CESAR and the

FNRAE project Quarteft.

M. Stoelinga and R. Pinger (Eds.): FMICS 2012, LNCS 7437, pp. 1–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 N. Abid, S. Dal Zilio, and D. Le Botlan

small number of “pattern formulas”. We follow a similar philosophy and define
a list of patterns that takes into account timing constraints. At the syntactic
level, this is mostly obtained by extending Dwyer’s patterns with two kind of
timing modifiers: (1) P within I, which states that the delay between two events
declared in the pattern P must fit in the time interval I; and (2) P lasting D,
which states that a given condition in P must hold for at least duration D. For
example, we define a pattern Present A after B within ]0, 4] to express that the
event A must occur within 4 units of time (u.t.) of the first occurrence of event
B, if any, and not simultaneously with it. Although seemingly innocuous, the
addition of these two modifiers has a great impact on the semantics of patterns
and on the verification techniques that are involved.

Our second contribution is an integrated model checking tool chain that can
be used to check timed requirements. We provide a compiler for Fiacre [6], a
formal modelling language for real-time systems, that we extended to support the
declaration of real-time patterns. In our tool chain, Fiacre is used to express the
model of the system while verification activities ultimately relies on Tina [3], the
TIme Petri Net Analyzer. This tool chain provides a reference implementation for
our patterns when the systems can be modeled using an extension of Time Petri
Nets with data variables and priorities that we call a TTS (see Sect. 2.1). This is
not a toy example; Fiacre is the intermediate language used for model verification
in Topcased [13], an Eclipse-based toolkit for system engineering, where it is used
as the target of model transformation engines for various high-level modelling
languages, such as SDL or AADL [4]. In each of these transformations, we have
been able to use our specification patterns as an intermediate format between
high-level requirements (expressed on the high-level models) and the low-level
input languages supported by the model checkers in Tina.

The rest of the paper is organized as follows. In the next section, we define
technical notations necessary to define the semantics of patterns. Section 3 gives
our catalog of real-time patterns. For each pattern, we give a simple definition
in natural language as well as an unambiguous, formal definition based on two
different approaches. Before concluding, we review the results of experiments
that have been performed using our verification tool chain in Sect. 4.

2 Technical Background

Since patterns are used to express timing and behavioral constraints on the
execution of a system, we base the semantics of patterns on the notion of timed
traces, which are sequences mixing events and time delays, (see Def. 1 below).
We use a dense time model, meaning that we consider rational time delays and
work both with strict and non-strict time bounds.

The semantics of a pattern will be expressed as the set of all timed traces
where the pattern holds. We use two different approaches to define set of traces:
(1) Time Transition Systems (TTS), whose semantics relies on timed traces; and
(2) a timed extensions of Linear Temporal Logic, called MTL. In our verification
tool chain, both Fiacre and specification patterns are compiled into TTS.
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2.1 Time Transition Systems and Timed Traces

Time Transition Systems (TTS) are a generalization of Time Petri Nets [17] with
priorities and data variables. We describe the semantics of TTS using a simple
example. Figure 1 gives a model for a simple airlock system consisting of two
doors (D1 and D2) and two buttons. At any time, at most one door can be open.
This constraint is modeled by the fact that at most one of the places D1isOpen
and D2isOpen may have a token. Additionally, an open door is automatically
closed after exactly 4 units of time (u.t.), followed by a ventilation procedure
that lasts 6 u.t. This behavior is modeled by adding timing constraints on the
transitions Open1, Open2 and Ventil. Moreover, requests to open the door D2
have higher priority than requests to open D1. This is modeled using a priority
(dashed arrow) from the transition Open2 to Open1. A shutdown command can
be triggered if no request is pending.

To understand the model, the reader may, at first, ignore side conditions and
side effects (the pre and act expressions inside dotted rectangles). In this case,
a TTS is a standard Time Petri Net, where circles are places and rectangles
are transitions. A transition is enabled if there are enough tokens in its input
places. A time interval, such as I = [d1; d2[, indicates that the corresponding
transition must be fired if it has been enabled for d units of time with d ∈ I.
As a consequence, a transition associated to the time interval [0; 0] must fire
as soon as it is enabled. Our model includes two boolean variables, req1 and
req2, indicating whether a request to open door D1 (resp. D2) is pending. Those
variables are read by pre-conditions on transitions Openi, Buttoni, and Shutdown
and are modified by post-actions on transitions Buttoni and Closei. For instance,
the pre-condition ¬req2 on Button2 is used to disable the transition when the
door is already open. This implies that pressing the button while the door is
open has no further effect.

We introduce some basic notations used in the remainder of the paper. (A com-
plete, formal description of the TTS semantics can be found in [2].) Like with Petri

Idle

Shutdown
pre: ¬(req1 ∨ req2)

Ventil.

[6; 6]

Refresh

Close1
act: req1 := false

[4; 4]
D1isOpen

act: req2 := false
Close2

[4; 4]
D2isOpen

Open1
pre: req1

[0, 0]

pre: req2
Open2

[0, 0]

Button1
act: req1 := true

pre: ¬req1

Button2
act: req2 := true

pre: ¬req2

Fig. 1. A TTS model of an airlock system
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Nets, the state of a TTS depends on its marking, m, that is the number of tokens
in each place. We write M the set of markings. Since we manipulate values, the
state of a TTS also depends on its store, that is a mapping from variable names to
their respective values. We use the symbol s for a store and write S for the set of
stores. Finally, we use the symbol t for a transition and T for the set of transitions
of a TTS. The behavior of a TTS is defined by the set of all its (timed) traces. In
this particular case, a trace will contain information about fired transitions (e.g.
Open1), markings, the value of variables, and the passing of time. Formally, we de-
fine an event ω as a triple (t, m, s) recording the marking and store immediately
after the transition t has been fired. We denote Ω the set T ×M×S of events. The
set of non-negative rational numbers is written Q+.

Definition 1 (Timed trace). A timed trace σ is a possibly infinite sequence of
events ω ∈ Ω and durations d(δ) with δ ∈ Q+. Formally, σ is a partial mapping
from N to Ω∗ = Ω ∪ {d(δ) | δ ∈ Q+} such that σ(i) is defined whenever σ(j) is
defined and i ≤ j.

Given a finite trace σ and a—possibly infinite—trace σ′, we denote σσ′ the con-
catenation of σ and σ′. This operation is associative. The semantics of patterns
will be defined as a set of timed traces. Given a real-time pattern P , we say that
a TTS T satisfies the requirement P if all the traces of T hold for P .

2.2 Metric Temporal Logic and Formulas over Traces

Metric Temporal Logic (MTL) [16] is an extension of LTL where temporal
modalities can be constrained by a time interval. For instance, the MTL for-
mula A U[1,3[ B states that in every execution of the system (in every trace),
the event B must occur at a time t0 ∈ [1, 3[ and that A holds everywhere in
the interval [0, t0[. In the following, we will also use a weak version of the “until
modality”, denoted A W B, that does not require B to eventually occur. We
refer the reader to [18] for a presentation of the logic and a discussion on the
decidability of various fragments.

An advantage of using MTL is that it provides a sound and unambiguous
framework for defining the meaning of patterns. Nonetheless, this partially de-
feats one of the original goal of patterns, that is to circumvent the use of temporal
logic in the first place. For this reason, we propose an alternative way for defin-
ing the semantics of patterns that relies on first-order formulas over traces. For
instance, when referring to a timed trace σ and an event A, we can define the
“scope” σ after A–that determines the part of σ located after the first occur-
rence of A–as the trace σ2 such that ∃σ1.σ = σ1Aσ2 ∧ A /∈ σ1. We believe that
this second approach may ease the work of engineers that are not trained with
formal verification techniques. Our experience shows that being able to confront
different definitions for the same pattern, using contrasting approaches, is useful
for teaching patterns.
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2.3 Model Checking, Observers and TTS

We have designed our patterns so that checking whether a system satisfies a
requirement is a decidable problem. We assume here that we work on discrete
models (with a continuous time semantics), such as timed automata or time
Petri Nets, and not on hybrid models. Since the model checking problem for
MTL is undecidable [18], it is not enough to simply translate each pattern into
a MTL formula to check whether a TTS satisfies a pattern. This situation can
be somehow alleviated. For instance, the problem is decidable if we disallow
simultaneous events in the system and if we disallow punctual timing constraints,
of the form [d, d]. Still, while we may rely on timed temporal logics as a way
to define the semantics of patterns, it is problematic to have to limit ourselves
to a decidable fragment of a particular logic–which may be too restrictive–or to
rely on multiple real-time model checking algorithms–that all have a very high
complexity in practice.

To solve this problem, we propose to rely on observers in order to reduce the
verification of timed patterns to the verification of LTL formulas. We provide
for each pattern, P , a pair (TP , φP ) of a TTS model and a LTL formula such
that, for any TTS model T , we have that T satisfies P if and only if T ⊗ TP (the
composition of the two models T and TP ) satisfies φP . The idea is not to provide
a generic way of obtaining the observer from a formal definition of the pattern.
Rather, we seek, for each pattern, to come up with the best possible observer
in practice. To this end, using our tool chain, we have compared the complexity
of different implementations on a fixed set of representative examples and for a
specific set of properties and kept the best candidates.

3 A Catalog of Real-Time Patterns

We describe our patterns using a hierarchical classification borrowed from
Dwyer [11] but adding the notion of “timing modifiers”. Patterns are built from
five categories, listed below, or from the composition of several patterns (see
Sect. 3.4):

– Existence Patterns (Present): for conditions that must eventually occur;
– Absence Patterns (Absent): for conditions that should not occur;
– Universality Patterns : for conditions that must occur throughout the

whole execution;
– Response Patterns (Response): for (trigger) conditions that must always

be followed by a given (response) condition;
– Precedence Patterns : for (signal) conditions that must always be pre-

ceded by a given (trigger) condition.
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In each class, generic patterns may be specialized using one of five scope
modifiers that limit the range of the execution trace over which the pattern
must hold:

– Global : the default scope modifier, that does not limit the range of the
pattern. The pattern must hold over the whole timed trace;

– Before R : limit the pattern to the beginning of a time trace, up to the
first occurrence of R;

– After Q : limit the pattern to the events following the first R;
– Between Q and R : limit the pattern to the events occurring between an

event Q and the following occurrence of an event R;
– After Q Until R : similar to the previous scope modifier, except that we

do not require that R must necessarily occur after a Q.
Finally, timed patterns are obtained using one of two possible kind of timing
modifiers that limit the possible dates of events referred in the pattern:

– Within I : to constraint the delay between two given events to belong to
the time interval I;

– Lasting D : to constraint the length of time during which a given condition
holds (without interruption) to be greater than D.

When defining patterns, the symbols A, B, . . . stand for predicates on events
ω ∈ Ω such as Open2 ∨ req2. In the definition of observers, a predicate A is
interpreted as the set of transitions of the system that match A. Due to the
somewhat large number of possible alternatives, we restrict this catalog to the
most important presence, absence and response patterns. Patterns that are not
described here can be found in a long version of this paper [1].

For each pattern, we give its denotational interpretation based on First-Order
formulas over Timed Traces (denoted FOTT in the following) and a logical defini-
tion based on MTL. We provide also the observer and the LTL formula that should
be combined with the system in order to check the validity of the pattern. We de-
fine some conventions on observers. In the following, Error, Start, . . . are transitions
that belong to the observer, whereas E1 (resp. E2) represents all transitions of the
system that match predicate A (resp. B). We also use the symbol I as a shorthand
for the time interval [d1, d2]. The observers for the pattern obtained with other
time intervals–such as ]d1, d2], ]d1, +∞[, or in the case d1 = d2–are essentially the
same, except for some priorities between transitions that may change. By conven-
tion, the boolean variables used in the definition of an observers are initially set
to false.

3.1 Existence Patterns

An existence pattern is used to express that, in every trace of the system, some
events must occur.

Present A after B within I

Predicate A must hold between d1 and d2 units of time (u.t) after the first oc-
currence of B. The pattern is also satisfied if B never holds.
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Example: present Ventil. after Open1 ∨ Open2 within [0, 10]

mtl def.: (¬B) W (B ∧ True UI A)
fott def.: ∀σ1, σ2 . (σ = σ1Bσ2 ∧ B /∈ σ1) ⇒ ∃σ3, σ4 . σ2 = σ3Aσ4 ∧ Δ(σ3) ∈ I

Observer:
act: foundB := true

E2 Start
pre: foundB

act: flag := true
[d1, d1]

act: if flag then
foundA := true

E1 Error
pre: foundB ∧¬ foundA

[d2, d2]

The associated ltl formula is []¬Error.
Explanation:

In this observer, transition Error is conditioned by the value of the shared boolean
variables foundA and foundB. Variable foundB is set to true after transition E2
and transition Error is enabled only if the predicate foundB ∧¬ foundA is true.
Transition Start is fired d1 u.t after an occurrence of E2 (because it is enabled
when foundB is true). Then, after the first occurrence of E1 and if flag is true,
foundA is set to true. This captures the first occurrence of E1 after Start has been
fired. After d2 u.t., in the absence E1, transition Error is fired. Therefore, the
verification of the pattern boils down to checking if the event Error is reachable.
The priority (dashed arrows) between Start, Error, and E1 is here necessary to
ensure that occurrences of E1 at precisely the date d1 or d2 are taken in account.

Present first A before B within I

The first occurrence of predicate A holds between d1 and d2 u.t. before the first
occurrence of B. The pattern is also satisfied if B never holds. (The difference
with Present B after A within I is that B should not occur before the first A.)

Example: present first Open1 ∨ Open2 before Ventil. within [0, 10]

mtl def.: (♦B) ⇒ ( (¬A ∧ ¬B) U (A ∧ ¬B ∧ (¬B UI B)) )
fott def.: ∀σ1, σ2 . (σ = σ1Bσ2 ∧ B /∈ σ1) ⇒ ∃σ3, σ4 . σ1 = σ3Aσ4 ∧ A /∈ σ3 ∧

Δ(σ4) ∈ I

Observer:
act: foundA := true

E1 Start
pre: foundA

act: flag := true
[d1, d1]

act: foundB := true
E2 Error

pre: foundA ∧¬ foundB

[d2, d2]

The associated ltl formula is (♦B) ⇒ ¬♦(Error ∨ (foundB ∧ ¬flag)).
Explanation:

Like in the previous case, variables foundA and foundB are used to record the
occurrence of transitions E1 and E2. Transition Start is fired, and variable flag
is set to true, d1 u.t. after the first E1. Then transition Error is fired only if its
precondition—the predicate foundA ∧¬ foundB—is true for d2 u.t. Therefore
transition Error is fired if and only if there is an occurrence of E2 before E1
(because then foundB is true) or if the first occurrence of E2 is not within
[d1, d2] of the first occurrence of E1.
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Present A lasting D

Starting from the first occurrence when the predicate A holds, it remains true for
at least duration D.

Comment: The pattern makes sense only if A is a predicate on states (that is, on
the marking or store); since transitions are instantaneous, they have no
duration.

Example: present Refresh lasting 6

mtl def.: (¬A) U (�[0,D]A)
fott def.: ∃σ1, σ2, σ3 . σ = σ1σ2σ3 ∧ A /∈ σ1 ∧ Δ(σ2) � D ∧ A(σ2)

Observer:
pre: A

act: win := true
OK [D, D]

pre: A ∧ ¬ foundA

act: foundA := true
Poll

pre: foundA ∧¬ win

Error [D, D]

The associated ltl formula is �¬Error.
Explanation:

Variable foundA is set to true when transition P oll is fired, that is when A
becomes true for the first time. Transition OK is used to set win to true if A
is true for duration D without interruption (otherwise its timing constraint is
resetted). Otherwise, if variable win is still false after D u.t., then transition
Error is fired. We use a priority between Error and OK to disambiguate the
behavior D u.t. after Poll is fired.

3.2 Absence Patterns

Absence patterns are used to express that some condition should never occur.

Absent A after B for interval I

Predicate A must never hold between d1–d2 u.t. after the first occurrence of B.
Comment: This pattern is dual to Present A after B within I (it is not equivalent

to its negation because, in both patterns, B is not required to occur).
Example: absent Open1 ∨ Open2 after Close1 ∨ Close2 for interval [0, 10]

mtl def.: ¬B W (B ∧ �I¬A)
fott def.: ∀σ1, σ2, σ3, ω . (σ = σ1Bσ2ωσ3 ∧ B /∈ σ1 ∧ Δ(σ2) ∈ I) ⇒ ¬A(ω)

Observer: We use the same observer as for Present A after B within I , but here
Error is the expected behavior.
The associated ltl formula is ♦B ⇒ ♦Error.

Explanation:
Same as the explanation for Present A after B within I.

Absent A before B for duration D

No A can occur less than D u.t. before the first occurrence of B. The pattern
holds if there are no occurrence of B.
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Example: absent Open1 before Close1 for duration 3

mtl def.: ♦B ⇒ (A ⇒ (�[0,D]¬B)) U B

fott def.: ∀σ1, σ2, σ3, ω . (σ = σ1ωσ2Bσ3 ∧ B /∈ σ1ωσ2 ∧ Δ(σ2) � D) ⇒ ¬A(ω)

Observer:
E1

act: bad := true
foundB := false

E2

act: foundB := true

idle Reset

act: bad := false
[D, D]

The associated ltl formula is �¬(foundB ∧ bad).
Explanation:
Variable foundB is set to true after each occurrence of E2. Conversely, we
set the variables bad to true and foundB to false at each occurrence of E1.
Therefore foundB is true on every “time interval” between an E2 and an E1.
We use transition Reset to set bad to false if this interval is longer than D. As a
consequence, the pattern holds if we cannot find an occurrence of E2 (foundB
is true) while bad is true.

3.3 Response Patterns

Response patterns are used to express “cause–effect” relationship, such as the
fact that an occurrence of a first kind of events must be followed by an occurrence
of a second kind of events.

A leadsto first B within I

Every occurrence of A must be followed by an occurrence of B within time in-
terval I (considering only the first occurrence of B after A).

Example: Button2 leadsto first Open2 within [0, 10]

mtl def.: �(A ⇒ (¬B) UI B)
fott def.: ∀σ1, σ2 . (σ = σ1Aσ2) ⇒ ∃σ3, σ4 . σ2 = σ3Bσ4 ∧ Δ(σ3) ∈ I ∧ B /∈ σ3

Observer:
E1

act: foundA := true
bad := true

Start

act: bad := false
[d1, d1]

E2

act: foundA := false

Error

pre: foundA
[d2, d2]

The associated ltl formula is (�¬Error) ∧ (�¬(B ∧ bad)).
Explanation:
After each occurrence of E1, variables foundA and bad are set to true and the
transition Start is enabled. Variable bad is used to control the beginning of the
time interval. After each occurrence of E2 variable foundA is set to false. Hence
Error is fired if there is an occurrence of E1 not followed by an occurrence of
E2 after d2 u.t. We use priorities to avoid errors when E2 occurs precisely at
time d1 or d2.

A leadsto first B within I before R

Before the first occurrence of R, each occurrence of A is followed by a B—and
these two events occur before R—in the time interval I. The pattern holds if R
never occur.
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Example: Button2 leadsto first Open2 within [0, 10] before Shutdown
mtl def.: ♦R ⇒ (�(A ∧ ¬R ⇒ (¬B ∧ ¬R) UI B ∧ ¬R) U R

fott def.: ∀σ1, σ2, σ3 . (σ = σ1Aσ2Rσ3 ∧ R /∈ σ1Aσ2 ⇒ ∃σ4, σ5 . σ2 = σ4Bσ5 ∧
Δ(σ4) ∈ I ∧ B /∈ σ4

Observer: E1

act: if ¬ foundR then foundA := true
bad := true

Start

act: bad := false
[d1, d1] Error

pre: foundA
]d2, ∞[

E2
act: if ¬ foundR then foundA := false

E3
act: foundR=true

The associated ltl formula is ♦R ⇒ (�¬Error ∧ �¬(B ∧ bad)).
Explanation:
Same explanation than for the previous case, but we only take into account
transitions E1 and E2 occurring before E3.

A leadsto first B within I after R

Same than with the pattern “A leadsto first B within I” but only considering
occurrences of A after the first R.

Example: Button2 leadsto first Open2 within [0, 10] after Shutdown
mtl def.: �(R ⇒ (�(A ⇒ (¬B) UI B)))

fott def.: ∀σ1, σ2 . (σ = σ1Rσ2Aσ3 ∧ R /∈ σ1) ⇒ ∃σ4, σ5 . σ3 = σ4Bσ5 ∧ Δ(σ4) ∈
I ∧ B /∈ σ4

Observer: It is similar to the observer of the pattern A leadsto first B within I before
R . We should just replace ¬foundR in transition E1 and E2 by foundR.
The associated ltl formula is ♦R ⇒ (�¬Error ∧ �¬(B ∧ bad)).

Explanation:
Same explanation than in the previous case, but we only take into account
transitions E1 and E2 occurring after an E3.

3.4 Composite Patterns

Patterns can be easily combined together using the usual boolean connectives.
For example, the pattern “P1 and P2” holds for all the traces where P1 and P2
both hold. To check a composed pattern, we use a combination of the respective
observers, as well as a combination of the respective LTL formulas. For instance,
if (T1, φ1) and (T2, φ2) are the observers and LTL formulas corresponding to the
patterns P1 and P2, then the composite pattern P1 and P2 is checked using
the LTL formula φ1 ∧ φ2. Similarly, if we check the LTL formula φ1 ⇒ φ2
(implication) then we obtain a composite pattern P1 � P2 that is satisfied by
systems T such that, for all traces of T , the pattern P2 holds whenever P1 holds.

4 Use Cases and Experimental Results

In this section, we report on three experiments that have been performed using
an extension of a Fiacre compiler that automatically compose a system with
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the necessary observers. In case the system does not meet its specification, we
obtain a counter-example that can be converted into a timed sequence of events
exhibiting a problematic scenario. This sequence can be played back using play
and nd, two Time Petri Nets animators provided with Tina.

Avionic Protocol and AADL. Our first example is a network avionic protocol
(NPL) which includes several functions allowing the pilot and ground stations
to receive and send information relative to the plane: weather, speed, . . . AADL
has been used to model the dynamic architecture for this demonstrator [5].
The AADL model includes several threads that exchange information through
shared memory data and amounts to about 8 diagrams and 800 lines of code
(using AADL textual syntax). The AADL code specifies both the hardware
and software architecture of the system and defines the real time properties of
threads, like for instance their dispatch protocol (periodic or sporadic) or their
periods.

We used the AADL2Fiacre plug-in of Topcased to check properties on the NPL
specification. The Fiacre model obtained after transformation takes into account
the complete behavior described in the AADL model but also the whole language
execution model, meaning that our interpretation takes fully into account the
scheduling semantics as specified in the AADL standard. The abstract state
space for the TTS generated from Fiacre has about 120 000 states and 180 000
transitions and can be generated in less than 12s on a typical development
computer (Intel dual-core processor at 2GHz with 2Gb of RAM). On examples
of this size, our model checker is able to prove formal properties in a few seconds.
We checked a set of 22 requirements that were given together with the description
of the system, all expressed using a natural language description and, in one case,
a scenario based on a UML sequence diagram. Of these 22 requirements, 18
where instances of “untimed patterns”, such as checking the absence of deadlock
or that threads are resettable. The four remaining requirements where “response
patterns” of the kind A leadsto first B within [0, d]. Using patterns, we were able
to check the 22 patterns in less than 5min.

Service Oriented Applications. We consider models obtained from the composi-
tion of services expressed using a timed extension of BPEL, the Business Process
Execution Language. Our example models a scenario from the health-care do-
main related to patient handling during a medical examination. The scenario
involves three entities, each one managed by a service: a Clinic Service (CS); a
Medical Analysis Service (MAS); and a Pharmacy Service (PS). When a patient
arrives in clinic, a doctor should check with the MCS whether its social secu-
rity number is valid. If so, the doctor may order some medical analyses from
the MAS and, after analyzing the results, he can order drugs through the PS.
Timing constraints can be added to this scenario by associating a duration to
each activity of the workflow and a delay to each service invocation.

We use our patterns to express different requirements on this system. An
example involving the absence pattern is that we cannot have two medical anal-
yses for a patient in less than 10 days (240 hours): absent MAS.medicalAnalysis
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after MAS.medicalAnalysis for interval ]0, 240]. A more complicated example of
requirement is to impose that if a doctor does not cancel a drug order within 6
hours, then it should not cancel drugs for another 48 hours. This requirement
can be expressed using the composition of two absence patterns (see Sect. 3.4):

(absent MCS.drugsChanging after MCS.drugsAsking for interval [0; 6])
� (absent MCS.drugsChanging after MCS.drugsAsking for interval [0; 54]).

Finally, using the notation S.init and S.end to refer to a start (resp. end) event
in the service S, we can express that drugs must be delivered within 48 hours
of the medical examination start: MCS.init leadsto PS.sendDrugsOrder within
[0; 48].

The complete scenario is given in [9], where we describe a transformation tool
chain from Timed BPEL processes to Fiacre. For a more complex version of the
health care scenario, with seven different services and more concurrent activities,
the state graph for the TTS generated from Fiacre is quite small, with only 886
states and 2476 transitions. The generation of the Fiacre specification and its
corresponding state space takes less than a second. For examples of this size, the
verification time for checking a requirement is negligible (half a second).

Transportation Systems. Our final example is an automated railcar system, taken
from [10], that was directly modeled using Fiacre. The system is composed of
four terminals connected by rail tracks in a cyclic network. Several railcars,
operated from a central control center, are available to transport passengers
between terminals. When a car approaches its destination, it sends a request to
signal its arrival to the terminal. This system has several real-time constraints:
the terminal must be ready to accommodate an incoming car in 5s; a car arriving
in a terminal leaves its door open for exactly 10s; passengers entering a car have
5s to choose their destination; etc. There are three key requirements:

(P1) when a passenger arrives in a terminal, a car must be ready to transport
him within 15s. This property can be expressed with a response pattern, where
Passenger/sndReq is the state where the passenger requests a car and Car/ack-
Term is the state where it is served:

Passenger/sendReq leadsto Car/ackTerm within [0, 15]

(P2) When the car starts moving, the door must be closed:

present CarDoor/closeDoor after CarHandler/moving within [0, 10]

(P3) When a passenger select a destination (in the car), a signal should stay
illuminated until the car is arrived:

absent Terminal/buttonOff before Control/ackTerm for duration 10

We can prove that these three patterns are valid on our Fiacre model. Concerning
the performances, we are able to generate the complete state space of the railcar
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system in 310ms, using 400kB of memory. This gives an upper-bound to the
complexity of checking simple (untimed) reachability properties on the system,
like for instance the absence of deadlocks. The three patterns can all be checked
in under 1.5s. For instance, we observed that checking property (P1) is not more
complex than exploring the complete system: the property is checked in 450ms,
using 780kB of memory. Also, this is roughly the same complexity than checking
the corresponding untimed requirement in LTL that is: � (Passenger/sendReq ⇒
♦Control/ackTerm).

Conclusion. In other benchmarks, we have often found that the complexity of
checking timed patterns is in the same order of magnitude than checking their
untimed temporal logic equivalent. An exception to this observation is when the
temporal values used in the patterns are far different from those found in the
system; for example if checking a periodic system, with a period in the order
of the milliseconds, against a requirement using an interval in the order of the
minutes. More results on the complexity of our approach can be found in [2].
These experimentation, while still modest in size, gives a good appraisal of the
use of formal verification techniques for real industrial software.

These experimental results are very encouraging. In particular, we can realis-
tically envisage that system engineers could evaluate different design choices in
a very short time cycle and test the safety of their solutions at each iteration.

5 Related Work and Contributions

We base our approach on the original catalog of specification patterns defined by
Dwyer [11]. This work essentially study the expressiveness of their approach and
define patterns using different logical framework (LTL, CTL, Quantified Regular
Expressions, etc.). As a consequence, they do not need to consider the problem of
checking requirements as they can readily rely on existing model checkers. Their
patterns language is still supported, with several tools, an online repository of
examples [12] and the definition of the Bandera Specification Language [8] that
provides a structured-English language front-end. A recent study by Bianculli et
al. [7] show the relevance of this pattern-based approach in an industrial context.

Some works consider the extension of patterns with hard real-time constraints.
Konrad et al. [15] extend the patterns language with time constraints and give a
mapping from timed pattern to TCTL and MTL. Nonetheless, they do not con-
sider the complexity of the verification problem (the implementability of their
approach). Another related work is [14], where the authors define observers based
on Timed Automata for each pattern. However, they consider a less expressive
set of patterns (without the lasting modifier) and they have not integrated their
language inside a tool chain or proved the correctness of their observers. By
contrast, we have defined a formal framework that has been used to prove the
correctness of some of our observers [2]. Work is currently under way to mecha-
nize these proofs using the Coq interactive theorem prover.
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Our patterns can be viewed as a subset of the Contracts Specification Lan-
guage (CSL), defined in the context of the SPEEDS project [19], which is
intended as a pragmatic proposal for specifying contract assertions on HRC
models. While the semantics for HRC is based on hybrid automata, the only au-
tomatic verification tools available for CSL use a discrete time model. Therefore,
our verification tool chain provides a partial implementation for CSL (the part
concerned by timing constraints) for a dense time model. This is an important
result since more conception errors can be captured using a dense rather than a
discrete time model.

Compared to these related works, we make several contributions. We extend
the specification patterns language of Dwyer et al. with two modifiers for real-time
constraints. We also address the problem of checking the validity of a pattern on a
real-time system using model-based techniques: our verification approach is based
on a set of observers, that are described in Sect. 3. Using this approach, we reduce
the problem of checking real-time properties to the problem of checking simpler
LTL properties on the composition of the system with an observer. Another con-
tribution is the definition of a formal framework to prove that observers are correct
and non-intrusive, meaning that they do not affect the system under observation.
This framework is useful for proving the soundness of optimization. Due to space
limitations, we concentrate on the definition of the patterns and their semantics in
this paper, while most of the theoretical results are presented in a companion re-
search report [2]. Finally, concerning tooling, we offer an EMF-based meta-model
for our specification patterns that allow its integration within a model-driven en-
gineering development: our work is integrated in a complete verification tool chain
for the Fiacre modelling language and can therefore be used in conjunction with
Topcased [13], an Eclipse based toolkit for system engineering.

6 Conclusion and Perspectives

We define a set of high-level specification patterns for expressing requirements
on systems with hard real-time constraints. Our approach eliminates the need
to rely on model checking algorithms for timed extensions of temporal logics
that—when decidable—are very complex and time-consuming. While we have
concentrated our attention on model checking—and although we only provide
an implementation for TTS models—we believe our notation is interesting in its
own right and can be reused in different contexts.

There are several directions for future works. We plan to define a composi-
tional patterns inspired by the “denotational interpretation” used in the def-
inition of patterns. The idea is to define a lower-level pattern language, with
more composition operators, that is amenable to an automatic translation into
observers (and therefore can dispose with the need to manually prove the cor-
rectness of our interpretation). In parallel, we plan to define a new modelling
language for observers—adapted from the TTS framework—together with spe-
cific optimization techniques and easier soundness proofs. This language, which
has nearly reached completion, would be used as a new target for implementing
patterns verification.
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Abstract. Distributed systems are hard to program, understand and
analyze. Two key sources of complexity are the many possible behav-
iors of a system, arising from the parallel execution of its distributed
nodes, and the handling of asynchronous messages exchanged between
nodes. We show how to systematically construct executable models of
publish/subscribe systems based on the Java Messaging Service (JMS).
These models, written in the Abstract Behavioural Specification (ABS)
language, capture the essentials of the messaging behavior of the original
Java systems, and eliminate details not related to distribution and mes-
sages. We report on jms2abs, a tool that automatically extracts ABS
models from the bytecode of JMS systems. Since the extracted models
are formal and executable, they allow us to reason about the modeled
JMS systems by means of tools built specifically for the modeling lan-
guage. For example, we have succeeded to apply simulation, termination
and resource analysis tools developed for ABS to, respectively, execute,
prove termination and infer the resource consumption of the original
JMS applications.

1 Introduction

Reverse engineering is a key technique to understand and improve software that
is available only in executable form. In this paper we focus on reverse engineer-
ing, or decompilation, of distributed Java applications given in bytecode form,
with the purpose of increasing the understanding of such applications through
analysis of reverse-engineered executable specifications. In the context of mobile
code, programming languages which are compiled to bytecode and executed on
a virtual machine are widely used nowadays. This is the approach used by Java
bytecode and .NET. The execution model based on virtual machines has two
important benefits when compared to classical machine code. First, bytecode
is platform-independent, i.e., the same compiled code can be run on multiple
platforms. Second, since the virtual machine is not directly executed on the
hardware, it is possible to apply a sandbox model which guarantees that the
bytecode does not have access to certain assets of the platform unless the code
is explicitly granted access to them. In languages such as Java and C#, handling
bytecode has a much wider application area than handling source code since the
latter is often not available.

M. Stoelinga and R. Pinger (Eds.): FMICS 2012, LNCS 7437, pp. 16–31, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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We study a specific class of distributed systems called publish/subscribe
systems [9]. Furthermore we focus on applications built using the Java Messag-
ing Service (JMS) [13], an industry-standard technology for realizing publish/-
subscribe enterprise systems in Java. Our goal is to extract abstract behavioral
specifications that capture the essentials of the messaging behavior, eliding im-
plementation details, but preserving enough behavior so that analysis can draw
conclusions about distribution and resource consumption of the original sys-
tems. The modeling language, called abstract behavioral specification language
(ABS) allows to abstract from implementation details: Abstract data types and
functions specify internal, sequential computations, while concurrency and dis-
tribution are handled using active objects. Analysis of ABS models is supported
by a set of research tools.1

We report on jms2abs, a tool which automatically extracts an ABS model
from a JMS application in bytecode form. The main phases of the extraction
process are: (1) Decompile the bytecode into a higher-level intermediate repre-
sentation with structured control flow. (2) Based on annotations added by the
programmer, generate an ABS model from the intermediate representation. (3)
During generation, insert calls to a pre-written ABS library of the JMS middle-
ware, in order to model publish/subscribe middleware behavior.

The main contributions of our work can be summarized as follows:

– Section 4 provides a general and system-independent model of a subset of
JMS publish/subscribe systems;

– In Section 5, we define a procedure for translating the code of a JMS pub-
lish/subscribe system into an executable model, and realize this as a tool;

– Section 6 applies existing tools developed for the ABS language in order to
draw conclusions about the systems;

– Finally, Section 7 reports on a prototype implementation of our approach
and evaluates it on two JMS examples.

2 Publish/Subscribe Communication in JMS

JMS is an industry standard for message communication in Java enterprise sys-
tems [13]. It offers APIs for configuring message passing services and for per-
forming the message passing (i.e., encode, send, receive, and decode messages).
One may realize various kinds of messaging systems using JMS; we focus on
publish/subscribe systems.

Fig. 1 provides an overview of the publish/subscribe programming model of
JMS. Subscribers have the ability to express interest in events or messages in
order to be later notified of any message generated by a publisher that matches
their registered interest. The basic model for publish/subscribe interaction relies
on a message notification service (middleware) to provide storage and man-
agement for subscriptions, to mediate between and decouple publishers and

1 These tools are currently being developed by the ongoing EU project HATS (FP7-
231620), http://www.hats-project.eu.

http://www.hats-project.eu
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Fig. 1. Overview of the JMS publish/subscribe programming model

subscribers, and to deliver messages efficiently. Such middleware manages ad-
dressable message destination objects denoted as topics. The steps that publish-
ers and subscribers perform, as depicted in Fig. 1, are: (1) Discover and join
a topic of interest by means of a connection factory of topics. (2) Establish a
connection to the factory and then start a new session for such a connection.
(3) Create a topic subscriber for the session which allows receiving (subscribers)
and sending (publishers) messages related to the topic of interest. (4) Create
and publish a message (publisher). (5) Receive a message (subscriber).

We consider the subset of JMS components depicted in Fig. 1, capturing the
essence of the publish/subscribe communication model. In addition, a model of
a JMS system must include the state information and logic that decides how
messages are processed and exchanged. Features such as transactions or fail-
ure recovery are outside the scope of this paper. Fig. 2 shows an example of a
JMS publish/subscribe implementation of a basic fruit supply business model,
consisting of a FruitSupplier class that acts as a publisher of updates for topic
"PriceLists"; SuperMarket class implements asynchronous updates receipts from
the topic, time-decoupled (i.e., non-blocking) from the publisher; and Example

class provides the main method that initializes instances of FruitSupplier and
SuperMarket.

Note that the different components are created and retrieved by invoking
API methods. In particular, ConnectionFactory and Topic objects can be either
created dynamically or found using JNDI services2 . Subscribers can retrieve
messages either asynchronously using a MessageListener object or synchronously
through the (blocking) receive method of a TopicSubscriber object.

3 ABS: A Distributed Modeling Language

Within the OO paradigm, there are two main approaches to concurrency: (1)
thread-based concurrency models (like those of Java and C#) are based on
threads which share memory and are scheduled preemptively, i.e., threads can

2 http://www.oracle.com/technetwork/java/jndi/

http://www.oracle.com/technetwork/java/jndi/
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1 class Fru i tSupp l i e r extends Thread {
void run ( ) {

3 f a c = new TopicConnectionFactory ( ) ;
con = fac . c reateTop icConnect ion ( ) ;

5 s e s = con . c r e a t eTop i cS e s s i on ( . . . ) ;
t op i c = se s . c reateTop ic ( ” Pr i c eL i s t s ” ) ;

7 pub l i sh e r = se s . c r e a t ePub l i sh e r ( t op i c ) ;
message = se s . c reateObjectMessage ( p r i c e L i s t ) ;

9 pub l i sh e r . pub l i sh ( message ) ; // execut ion continues
con . c l o s e ( ) ; } }

11 class SuperMarket extends Thread implements MessageLi stene r {
Pr i c eL i s t p r i c e L i s t ;

13 void onMessage ( ObjectMessage m) {
newPr iceLi st = m. getObjec t ( ) ;

15 updatePr i ce s ( newPr i ceLi st ) ; }
void updatePr i ce s ( P r i c eL i s t l ) {

17 Product p ;
for ( int i = 1 ; i <= l . l ength ( ) ; i++) {

19 p = l . ge t ( i ) ;
i f ( p r i c e L i s t . c on ta in s (p ) ) p r i c e L i s t . update (p ) ;

21 else p r i c e L i s t . i n s e r t (p ) ; } }
void run ( ) {

23 f a c = new TopicConnectionFactory ( ) ;
con = fac . c reateTop icConnect ion ( ) ;

25 s e s = con . c r e a t eTop i cS e s s i on ( . . . ) ;
t op i c = se s . c reateTop ic ( ” Pr i c eL i s t s ” ) ;

27 subsc = t op i c S e s s i o n . c r e a t eSub sc r i b e r ( t op i c ) ;
subsc . s e tMe s sageL i s ten e r ( this ) ;

29 con . s t a r t ( ) ; // execut ion continues
con . c l o s e ( ) ; } }

31 class Example {
void main ( . . .){ new SuperMarket ( ) . s t a r t ( ) ;

33 new Fru i tSupp l i e r ( ) . s t a r t ( ) ; } }

Fig. 2. Excerpt of implementation of publish/subscribe in JMS

be suspended or activated at any time. To prevent threads from undesired in-
terleavings, low-level synchronization mechanisms such as locks have to be used.
Experience has shown that software written in the thread-based model is error-
prone, difficult to debug, verify and maintain [20]. (2) In order to overcome
these problems, the active objects model [20,15,8] aims at providing program-
mers with simple language extensions which allow programming concurrent ap-
plications with relatively little effort. The common idea is to take advantage of
the inherent concurrency implicit in the notion of object in the following way:
a concurrent object, conceptually, has a dedicated processor and it encapsulates
a local heap which is not accessible from outside the object. Active (also called
concurrent) objects operate similar to actors [12] and Erlang processes [5].

ABS [14] is the abstract behavioral specification language for distributed con-
current objects that we use to define the models. ABS has a functional sub-
language with abstract data types and functions to specify internal, sequential
computations. The functional language is a standard strict functional language
(the details are elsewhere [14]). As regards the concurrent imperative part, the
central concept is the notion of component object group (COG), which gener-
alizes the notion of concurrent or active object [12]. Intuitively, each COG has
a dedicated processor and the COG is a concurrently running, isolated compo-
nent. A COG can be considered as a container for objects. Its state is a heap
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Fig. 3. Concurrent entities in ABS models (counterpart of Figure 1 for JMS)

of objects which are owned by the COG for their entire lifetime. The behavior
of a COG consists of a set of cooperative tasks, which, again, are owned by the
COG for their entire lifetime.

All communication is via asynchronous method calls between named objects,
typed by interfaces. Method calls may be seen as triggers of concurrent activity,
spawning new activities (so-called processes) in the called object without trans-
ferring control from the caller. The method caller may decide at runtime when
to synchronize with the reply from a call. In general, an object may have many
method activations competing to be executed. Among these, at most one process
(or task) is active and the other processes are suspended in a process pool. Pro-
cess scheduling is non-deterministic and occurs only at processor release points.
This means that switching between tasks of the same object happens only at
specific scheduling points during program execution, which are explicit in the
source code and can be syntactically identified. This particular feature of pro-
cess scheduling makes machine analysis notably simpler (when compared to the
thread-based concurrency model).

In ABS syntax, asynchronous method calls are denoted o!m(e). After asyn-
chronously calling x := o!m(e), the caller may proceed with its execution without
blocking on the call. Here x is a future variable, o is an object (typed by an in-
terface), and e are expressions. A future variable x refers to a return value which
has yet to be computed. There are two operations on future variables, which
control synchronization in ABS. First, a return test x? evaluates to false unless
the reply to the call can be retrieved. Second, the return value is retrieved by the
expression x.get, which blocks all execution in the object until the return value
is available. The statement sequence x = o!m(e); v = x.get encodes a block-
ing, synchronous call, abbreviated v = o.m(e), whereas the statement sequence
x = o!m(e); await x?; v = x.get encodes a non-blocking, preemptable call.

4 Modeling Publish/Subscribe Systems in ABS

This section shows how to model the behavior of a publish/subscribe system
implemented using JMS by means of the ABS language. The model abstracts
away implementation-related details of a distributed Java application while still
capturing the essence of cooperation among the components of the system. Our
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goal is to preserve all essential application properties concerning distribution
and performance but improve on clarity and tractability for automatic analysis
purposes. Our starting point is the JMS system of Fig. 2, whose model in ABS
is shown in Fig. 4 (in the model, updatePrices is a function that will be defined
later). In particular, we focus on the components that participate in the system
(Sec. 4.1) and the operations that can be executed (Sec. 4.2). Sec. 5 will then
describe how to automate the model extraction process.

4.1 Distributed Entities

Our ABS model creates only one concurrent object per participant in the dis-
tributed communication, namely publishers, subscribers and the middleware; see
Fig. 3. Thus, each concurrent entity in ABS encapsulates the behavior of several
JMS components that will communicate with the remaining entities by means
of asynchronous calls and future variables.

Clients: Publishers and Subscribers. A JMS system relies on a number of objects
in order to perform distributed operations. This design makes JMS portable and
interoperable across multiple messaging products. However, it often makes the
resulting programs harder to understand and thus analyze. In the ABS models
we simplify this into a smaller set of objects. Namely, a publish/subscribe client
in ABS will just need to create a session object and a publisher/subscriber object
to interact with the middleware.

Table 1. Example mapping from Java/JMS to Distributed ABS

JMS instructions Equivalent ABS models
Create a distributed object

obj = new C( ) ;

// c l a s s C implements Runnable

// i n t e r f a c e or e x t end s Thread

obj = new cog C( ) ;

Establish new session

f = new TopicConnectionFactory ( ) ;

c = f . createTopicConnect ion ( ) ;

s = c . c r eat eTop i cSes s i on ( . . . ) ;

t = new Topic ( ”TopicName ” ) ;

s = middleware . c r e a t eS e s s i on ( ) ;

t = middleware . createTopic ( ”TopicName” ) ;

Send a message

pub = s . c r ea t ePub l i s h e r ( t ) ;

connect ion . s t a r t ( ) ;

m = s . createTextMessage ( ) ;

m. setText ( ”message ” ) ;

pub . pub l i sh (m) ;

pub = s . c r e a t ePub l i sh e r ( t ) ;

m = ”message ” ;

pub ! pub l i sh (m) ;

Receive a message synchronously

sub = s . c r e a t eSubs c r i b e r ( t ) ;

connect ion . s t a r t ( ) ;

m = top i cSubs c r i b e r . r e c e i v e ( ) ;

sub = s . c r ea t eSubs c r i b e r ( t ) ;

Fut<Message> f = s ! r e c e i v e ( ) ;

message = f . get ;

Receive a message asynchronously

sub = s . c r e a t eSubs c r i b e r ( t ) ;

l = new TextLi stener ( ) ;

sub . s e tMessageL i s t ener ( l ) ;

connect ion . s t a r t ( ) ;

sub = s . c r ea t eSubs c r i b e r ( t ) ;

l = new MessageLi stener ( ) ;

sub . s e tMessageL i s t ener ( l ) ;
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Middleware. In a real publish/subscribe system the middleware (the message-
oriented middleware, or MOM) is a highly distributed entity. In our model of
JMS we simplify the middleware to one central entity. While not a desirable
choice in an actual implementation, it still allows to analyze many properties
of applications. The middleware entity relies on the concurrency model of ABS
to provide publish/subscribe services. The main block of the ABS model creates
the initial configuration of the publish/subscribe system, see Line 20 of Fig. 4
(the counterpart of Lines 32–33 of Fig. 2). Observe that the model uses COGs
to represent each of the distributed/concurrent entities.

4.2 Operations

Here we consider the operations of a publish/subscribe system.

Message Sending. A publisher sends a message to the topic using a session, see
method run of class FruitSupplier (Lines 3–10 of Fig. 2). The asynchronous se-
mantics of the operation can be simulated by an ABS asynchronous method call,
see Lines 3–8 of Fig. 4. In JMS, the sending operation implies some decisions re-
garding delivery mode, priority and time-to-live for the message. These configura-
tion parameters can be global to a message publisher or specific for each message.
For flexibility, we use the latter option and include configuration parameters as
properties of messages.

Asynchronous Message Receipt. Method run of class SuperMarket in Fig. 2 shows
that asynchronous message receipt in JMS is achieved by instantiating the
MessageListener class. The new object is bound to the subscriber object and is
able to receive and process incoming messages in its onMessage method (named
notify in the publish/subscribe literature [9]). This method is triggered from the
JMS provider upon arrival of a new message to the topic (Lines 23–30 of Fig. 2).

1 class Fru i tSupp l i e r (Middleware mw) {
Unit run ( ) {

3 Topic t op i c = ” Pr i c eL i s t s ” ;
Top icSess ion s e s s i o n = mw. c r e a t e S e s s i o n ( ) ;

5 TopicPub l i she r pub l i sh e r = s e s s i o n . c r e a t ePub l i sh e r ( t op i c ) ;
ObjectMessage message = new ObjectMessage ( p r i c e L i s t ) ;

7 s e s s i o n ! pub l i sh (message ) ;
} }

9 class SuperMarket ( Middleware mw) implements MessageLi stene r {
Unit onMessage ( ObjectMessage m) {

11 newPr iceLi st = m. getObjec t ( ) ;
p r i c e L i s t = updatePr i ce s ( newPr i ceLi st ) ;

13 }
Unit run ( ) {

15 Topic t op i c = ” Pr i c eL i s t s ” ;
Top icSess ion s e s s i o n = mw. c r e a t e S e s s i o n ( ) ;

17 TopicSubsc r ibe r s u b s c r i b e r = s e s s i o n . c r e a t eSub sc r i b e r ( t op i c ) ;
s u b s c r i b e r ! s e tMe s sageL i st ene r ( t h i s ) ;

19 }
{ Middleware mw = new cog Middleware ( ) ;

21 new cog SuperMarket (mw) ; new cog Fru i tSupp l i e r (mw) ;
} //main b lock

Fig. 4. Extracted ABS model for the running example
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In ABS, an equivalent asynchronous message receipt is implemented in Lines 15–
19 of Fig. 4. The concurrent behavior, i.e., the interaction with different topics
simultaneously, is achieved by sharing the single-threaded session object among
clients within the same COG. A serial order of outgoing and incoming messages is
implicitly modelled when using a shared session object. Table 1 summarizes the
mappings that we have described along this section for our particular example.

5 Automatic Extraction of ABS Models from JMS

Figure 5 provides an overview of the main steps performed by jms2abs for auto-
matically extracting ABS models from JMS publish/subscribe systems. The tool
receives as input the bytecode associated to the JMS publish/subscribe system
and, optionally, a set of annotations that indicate which methods of the code
should be transformed into functions and which ones into imperative methods.
The absence of annotations brings about a purely imperative translation. In-
tuitively, the following stages are carried out by the extraction process. First,
the bytecode is decompiled into a higher-level intermediate representation (IR)
which, among other things, features structured control flow. Then, a driver mod-
ule reads the IR and the set of annotations and directs the model extraction
process either towards a functional implementation or towards an imperative
one. The extraction of functional code requires a static single assignment (SSA)
transformation [4] and automatically generates abstract data types and func-
tions. The ABS library functions include standard data types for lists, trees, etc.
and some common functions on these types. They are used by the translation
when possible. The imperative object-oriented extraction is based on the mod-
eling of JMS using ABS defined in Table 1. As an external component to this
process, we have available the ABS implementation of the specific JMS middle-
ware in use. As a result of the process, an ABS model is obtained which includes
abstract data types, functions and classes. The following sections describe the
main components of jms2abs.

JMS
(Bytecode)

Decomp IR Driver

Annotations

Object-Oriented

Mapping
JMS-ABS

Functional

SSA

Model Extraction

ABS implementation
of JMS Middleware

Classes

Data types

Functions

ABS Model

ABS functional
libraries

Fig. 5. Overview of main components of jms2abs
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5.1 From Bytecode to Intermediate Representation

A method m in a Java (bytecode) program is represented by a set of procedures
in the IR such that there is an entry procedure named m and the remaining
ones are intermediate procedures invoked only from m. The translation of a
program into the IR works by first building the control flow graph (CFG) from
the program, and then representing each block of the CFG in the IR as a rule.
The process is identical to that of Albert et al. [2], hence, we will not go into
the details of the transformation but just show the syntax of the transformed
program. A program in the IR consists of a set of procedures which are defined
as a set of (recursive) rules. A procedure p is defined by a set of guarded rules
which adhere to the following grammar:

rule ::= p(x̄, ȳ) ←g, b1, . . . , bn g ::= true | exp1 op exp2 | type(x,C)
exp ::= x | null | n | x−y | x+y | x∗y op ::= > | < | ≤ | ≥ | = | �=
b ::= x:=exp | x :=new c | x :=y.f | x .f :=y | q(x̄ , ȳ)

where p(x̄, ȳ) is the head of the rule; x̄ (resp. ȳ) are the input (resp. output)
parameters; g its guard, which specifies conditions for the rule to be applicable;

0: iconst 1
1: istore 3
2: iload 3
3: aload 1
4: invokevirtual length:()I
7: if icmpgt 43
10: aload 1
11: iload 3
12: invokevirtual get:(I)LProduct;
15: astore 2
16: aload 0
17: aload 2
18: invokevirtual exists:(LProduct;)Z
21: ifeq 32
24: aload 0
25: aload 2
26: invokevirtual updatePrice:(LProduct;)V
29: goto 37
32: aload 0
33: aload 2
34: invokevirtual add:(LProduct;)V
37: iinc 3, 1
40: goto 2
43: return

updatePrices([this,l],[]) ← i := 1,
rule 2 ([this,l,i],[]).

rule 2 ([this,l,i],[]) ←
length([l],[s1]),
rule 7 ([this,l,i,s1 ],[]).

rule 7 1([this,l,i,s1 ],[]) ←
i ≤ s1,
get([l,i],[p]),
exists([this,p],[s2 ]),
rule 21 ([this,l,p,i,s2 ],[ip]).

rule 7 2([this,l,i,s1 ],[]) ←
i > s1.

rule 21 1([this,l,p,i,s1 ],[]) ←
s1 = 0,
add([this,p],[]),
rule 37 ([this,l,i],[]).

rule 21 2([this,l,p,i,s1 ],[]) ←
s1 �= 0,
updatePrice([this,p],[]),
rule 37 ([this,l,i],[]).

rule 37 ([this,l,i],[]) ←
ip := i +1,
rule 2 ([this,l,ip],[]).

Fig. 6. Pretty-printed IR for method updatePrices of class PriceList
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b1, . . . , bn the body of the rule; n an integer; x and y variables; f a field name,
and q(x̄, ȳ) a call-by-value procedure call. The IR supports class definition and
includes instructions for object creation, field manipulation, and type compari-
son through the instruction type(x,C), which succeeds if the runtime class of x
is exactly C. A class C is a finite set of fields with either numeric (integer) or
reference (class name) type.. The key features of this representation, which will
simplify the transformation later, are: (1) input and output parameters are ex-
plicit variables of rules, (2) recursion is the only iteration mechanism, (3) guards
are the only form of conditional, and (4) objects can be regarded as records,
and the behavior induced by dynamic dispatch is compiled into dispatch rules
guarded by a type check.

As an example, let us consider method updatePrices in Fig. 2. The left-
hand column of Fig. 6 shows the bytecode of this method (which is the input
to jms2abs) and the right-hand column contains the IR that jms2abs uses
which features the three first points above. We can observe that instructions
in the IR have an almost one-to-one correspondence with bytecode instructions
(rule 7 in the IR corresponds to the CFG block starting at bytecode instruction
7, for example), but they contain as explicit parameters the variables on which
they operate (the operand stack is represented by means of variables). Another
important aspect of the IR is that unstructured control flow of bytecode (i.e.,
the use of goto statements) is transformed into recursion and loop conditions
become guards, as in rules rule 2 and rule 37 for instance.

5.2 From IR to Functional and Distributed ABS

To generate functions from a set of procedures in the IR, jms2abs performs three
main steps: (1) An SSA transformation on the IR guarantees that variables are
only written once [4]. (2) Then, for each recursive rules in the IR, it generates an
associated function with the same name, where each instruction is transformed
into an equivalent one in the functional sub-language of ABS. The process is
similar to decompilation from bytecode to a simply typed functional language
[16], to TRS [17] or to CLP programs [11]. Hence, we do not go into the details
of the process but rather show an example. (3) Finally, jms2abs generates def-
initions of the data types involved in the functions. This is done by recursively
inspecting the types of the class fields until reaching a primitive type, and using
data constructors to group the fields that form an object.

The following function corresponds to the bytecode in Fig. 6. It is extracted
from the above IR in a fully automatic way. ABS’s let and case expressions, resp.,
are used to represent variable bindings and conditional statements in the original
program. Moreover, observe that several data types declarations have been gen-
erated from class PriceList. The new algebraic data type PriceList has two
data constructors: one for the empty list (EmptyPriceList) and one for the com-
bination of a product and another list (ConsPriceList(Product,PriceList)).
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//Data type dec l a ra t ions
2 type ProductID = Int ; type Price = Int ;

data Product = EmptyProduct | ConsProduct ( ProductID , Pr i c e ) ;
4 data Pr i c eL i s t = EmptyPriceList | ConsPr iceLi st ( Product , P r i c e L i s t ) ;

//Function d e f i n i t i on s
6 Pr i c e L i s t updatePr i ce s ( P r i c eL i s t l ) {

l e t Int i = 1 in loop ( p r i c e L i s t , newPriceList , i ) ;
8 }

Pr i c e L i s t loop ( Pr i c eL i s t l1 , P r i c eL i s t l2 , Int i ) {
10 l e t n = length ( l 2 ) in

case i <= n {
12 True => l e t p = get ( l2 , i ) in

case ( c on ta in s ( l2 , p ) ) {
14 True => return loop ( update ( l1 , p ) , l2 , i +1);

Fa l se => return loop ( add ( l1 , p ) , l2 , i +1);}
16 False => return l 1 ;}

}

All procedures which have not been transformed into functions will become
methods of the ABS models. Each ABS class will have as attributes the same
ones as in the original Java program. Then, the translation of each method is
performed by mapping each instruction in the IR into an equivalent one in ABS.
The instructions which involve the distribution aspects of the application are
translated by relying on the mapping of Table 1.

Fig. 7 shows the IR for the Java method SuperMarket.run. Observe how
instructions in lines 2–5 match with the pattern for session establishment shown
in Table 1. Instructions in lines 7–9 correspond to the asynchronous receiving of a
message. From this IR it is straightforward to extract the model for method run

showed in Fig. 4. Because of the correspondence between the involved operations
in JMS and ABS, the main properties of the JMS systems (e.g., those regarding
reliability and safety [6]) are preserved.

0 run([this],[]) ← tConFac := null, tCon := null, tSes := null, topic := null,
1 tSubscriber := null, tListener := null,
2 tConFac := new TopicConnectionFactory,
3 createTopicConnection([tConFac],[tCon]),
4 createTopicSession([tCon],[tSes]),
5 createTopic([tSes,this.topicName],[topic])
6 createSubscriber([tSes,topic],[tSubscriber]),
7 tListener := new PriceListener,
8 setMessageListener([tSubscriber,tListener],[]),
9 start([tCon],[]), close([tCon],[]).

Fig. 7. Pretty-printed IR for method run of class SuperMarket

6 Using the ABS Toolset on the Extracted Models

The final goal of the extraction of ABS models from bytecode systems is to
be able to perform machine analysis of JMS systems via their equivalent ABS
models. This section outlines the application of two ABS tools: the simulator [14]
and the COSTABS termination and resource usage analyzer [1].
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6.1 Simulation

Once compiled, ABS models can be run in a simulator. The ABS toolset has
two main simulators, with corresponding back-ends in the ABS compiler: One
simulator is defined using rewriting logic and the Maude system [7], and the
other is written in Java. The Maude simulator allows modellers to explore the
model’s state-space declaratively and model check it. The Java simulator does
source-level simulation, meaning that modellers can follow the model’s control
flow at the statement level and observe object or method state. Both simulators
allow modellers to control scheduling of methods, for example, control when a
JMS message is sent and when it is received.

6.2 Resource and Termination Analysis

Resource analysis (a.k.a. cost analysis) aims at automatically inferring bounds on
the resource consumption of programs statically, i.e., without having to execute
the program. The inferred bounds are symbolic expressions given as functions of
its input data sizes. For instance, given a method void traverse(List l), an
upper bound (e.g., on the number of execution steps) can be an expression on the
form l*200+10, where l refers to the size of the list l. The analysis guarantees
that the number of steps of executing traverse will never exceed the amount
inferred by analysis. COSTABS [1], a COSt and Termination analyzer for ABS,
is a system able to prove termination and obtain resource usage bounds for both
the imperative and functional fragments of ABS programs. The resources that
COSTABS can infer include termination, number of execution steps, memory
consumption, number of asynchronous calls. Knowledge of the number of asyn-
chronous calls is useful to understand and optimize the distributed behavior of
the application (e.g., to detect bottlenecks when one object is receiving a large
amount of asynchronous calls). COSTABS allows using asymptotic (i.e., big O
complexity) notation for the results of the analysis and obtain simpler cost ex-
pressions.

Table 2. Resource analysis results

Method #Instructions Memory #Async Calls

run max(allSubscribers) max(allSubscribers) 1

onMessage m*(m+max(priceList))+m2 max(priceList) 1

Let us analyze the resource consumption of the methods of class SuperMarket
from the extracted ABS model. Table 2 shows the asymptotic results that
COSTABS computes. The upper bound on the number of instructions inferred
for method run depends on the number of clients that are subscribed to the
topic (field allSubscribers of class TopicSession). max(f) denotes the maxi-
mum value that field f can take. This is because in our current implementation
the size of the list of subscribers is not statically known, as it is updated when a
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new subscriber arrives (the analysis uses max(allSubscribers) to bound its size).
As regards the analysis of onMessage, it requires analyzing updatePriceswhich
traverses the new list of prices priceList and, for each of its elements, it checks
whether it already exists or must be added to the local list of prices. The lat-
ter requires inspecting the object message m which is an input parameter of
the method. Hence, we obtain a quadratic complexity on the sizes of m and
priceList. The memory allocation accounts for the creation of the functional
data structures. Namely, in method run (resp. onMessage), we create the data
structure allSubscribers (resp. PriceList). Finally, it can be observed that
both methods perform a constant number of asynchronous method calls, hence
the rightmost column shows a constant complexity (denoted by 1). A main nov-
elty of COSTABS, which is not available in other systems, is the notion of cost
centers. This is motivated by the fact that distribution does not match well with
the traditional monolithic notion of cost which aggregates the cost of all dis-
tributed components together. Albert et al. [1] propose the use of cost centers to
keep the resource consumption of the different distributed components separate.

The cost bounds that are shown in Table 2 are computed as a monolithic ex-
pression which accumulates the resources consumed by all objects together. More
interestingly, COSTABS can show the results separated by cost centers. In partic-
ular, we consider that all objects of the same class belong to the same cost center
(i.e., the share the processor). Now, the execution of method SuperMarket.run

performs steps in three cost centers, namely in SuperMarket, Middleware and
in TopicSubscriber. By enabling the cost centers option, COSTABS shows
that max(allSubscribers) is the upper bound on both number of instructions and
memory in the cost center Middleware. In cost center TopicSubscriber, the
upper bounds on number of instructions and on memory consumption are con-
stant. Also, in cost center SuperMarket, the upper bound for both cost models
is constant. Method onMessage is integrally executed in the SuperMarket cost
center (hence the same results of Table 2 are obtained). Performing cost anal-
ysis of a distributed system, using cost centers, allows detecting bottlenecks if
one distributed component (cost center) has a large resource consumption while
siblings are idle most of the time.

7 Prototype Implementation

jms2abs can be used on 32-bit Linux systems through a command-line interface,
is open-source and can be downloaded from http://tools.hats-project.eu/.
Also, available from the same place, is our ABS model of JMS middleware, exam-
ples of how to write publish/subscribe ABS models using the middleware model,
and Java/JMS example applications from which models may be extracted. These
examples correspond to the running example of this paper, and a Chat exam-
ple borrowed from Richards et al. [19] and slightly simplified. The Java code is
accompanied by the necessary Java/JMS libraries and a makefile which may be
used to run the tool on the Java examples. Although still a research prototype,
jms2abs is reasonably efficient. For instance, on an Intel(R) Core(TM) i5 CPU

http://tools.hats-project.eu/
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at 1.7GHz with 4GB of RAM running Ubuntu Linux 11.10, the overall time to
extract the model for the running example is 910 msec. This time is divided
into the time for building the CFG (240 msec.), generating and optimizing the
intermediate representation (40 msec.) and building and refining the ABS model
(630 msec.). The Chat example is smaller and its overall model extraction time
is 790 msec. In this case, the most costly phase is also the model generation and
refinements, which takes 490 msec. of the overall time.

8 Related Work

Reverse engineering higher-level specifications from complex third party or legacy
code has applications in analyzing, documenting and improving the code. Broadly
speaking, we can classify reverse engineering tools into two categories: (1) When
the higher-level specification is some sort of software visualization formalism
which abstracts away most of the program semantics (e.g., UML class diagrams,
control flow graphs or variable data flow graphs), reverse engineering is usually
applied in order to understand the structure of the source code faster and more
accurately. This in turn can detect problems related to the design of the appli-
cation, to task interactions, etc. (2) When the higher-level specification provides
an abstraction of the program semantics, but still the properties of interest are
observable on it, reverse engineering can be used to develop analysis tools that
reason about the original code by means of analyzing the reverse engineered
specification. This has the advantage that, instead of analyzing the complex
original code, we develop the tools on a simpler formalism which allows inferring
the properties of interest more easily.

Our work falls into the second category. The overall motivation behind our
work is to be able to analyze (complex) distributed Java JMS applications by
means of tools developed for (simpler) ABS models. In particular, we have been
able to apply simulation and cost analysis techniques developed for ABS pro-
grams [3,18] to reason on JMS applications. It is widely recognized that publish/-
subscribe systems are difficult to reason about, and there are several previous
approaches to modeling their behavior using different formalisms. Baldoni et
al. [6] provide one of the first formal computational frameworks for modeling
publish/subscribe systems. The focus in this work is different from ours; their
main concern is the notion of time in the communication, which allows them to
evaluate the overall performance, while we do not consider this aspect. Another
formalism for publish/subscribe system is provided by Garlan et al. [10]. Instead
of building executable programs as we do, they rely on a finite state machine
that can be checked using existing model checking tools.

9 Conclusions and Future Work

Our goal is to show that it is possible to build a tool that automatically extracts
useful models for complex distributed systems such as the JMS publish/sub-
scribe using the concurrency and distribution mechanisms provided by the ABS
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modeling language. These mechanisms are not very different from those used by
other distributed object-based modeling languages [12], and so we expect our
study to provide useful conclusions beyond the mere case study performed.

Publish/subscribe systems come in a large range of flavors, depending on ap-
plications and requirements [9]. The common idea is to asynchronously decouple
publishers from subscribers. In a purely centralized model such as the one used
in this paper, providing the expected service is not hard, as the server has full
knowledge to ensure that messages are sent only to active subscribers, in the
same order in which they come in. In general, however, a reusable and general
model must allow for decentralized implementations in which full consistency
(in the sense that messages are received by only and all subscribers at any given
time) and order preservation (same order of messages for all subscribers) cannot
be achieved with good performance. We are currently examining ways in which
the ABS framework can be extended to allow richer families of implementations.
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Abstract. We present a so-called labelling method to enrich a compiler
in order to turn it into a “cost annotating compiler”, that is, a compiler
which can lift pieces of information on the execution cost of the object
code as cost annotations on the source code. These cost annotations
characterize the execution costs of code fragments of constant complexity.
The first contribution of this paper is a proof methodology that extends
standard simulation proofs of compiler correctness to ensure that the
cost annotations on the source code are sound and precise with respect
to an execution cost model of the object code.

As a second contribution, we demonstrate that our label-based instru-
mentation is scalable because it consists in a modular extension of the
compilation chain. To that end, we report our successful experience in
implementing and testing the labelling approach on top of a prototype
compiler written in ocaml for (a large fragment of) the C language.

As a third and last contribution, we provide evidence for the usability
of the generated cost annotations as a mean to reason on the concrete
complexity of programs written in C. For this purpose, we present a
Frama-C plugin that uses our cost annotating compiler to automatically
infer trustworthy logic assertions about the concrete worst case execution
cost of programs written in a fragment of the C language. These logic
assertions are synthetic in the sense that they characterize the cost of
executing the entire program, not only constant-time fragments. (These
bounds may depend on the size of the input data.) We report our ex-
perimentations on some C programs, especially programs generated by
a compiler for the synchronous programming language Lustre used in
critical embedded software.

1 Introduction

The formal description and certification of software components is reaching a
certain level of maturity with impressing case studies ranging from compilers
to kernels of operating systems. A well-documented example is the proof of
functional correctness of a moderately optimizing compiler from a large subset
of the C language to a typical assembly language of the kind used in embedded
systems [11].

In the framework of the Certified Complexity (CerCo) project1 [4], we aim
to refine this line of work by focusing on the issue of the execution cost of

1 CerCo project http://cerco.cs.unibo.it
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the compiled code. Specifically, we aim to build a formally verified C compiler
that given a source program produces automatically a functionally equivalent
object code plus an annotation of the source code which is a sound and precise
description of the execution cost of the object code.

We target in particular the kind of C programs produced for embedded appli-
cations; these programs are eventually compiled to binaries executable on specific
processors.The current state of the art in commercial products such as Scade2 [8] is
that the reaction time of the program is estimated bymeans of abstract interpreta-
tion methods (such as those developed byAbsInt3 [7]) that operate on the binaries.
Thesemethods rely on a specific knowledge of the architecture of the processor and
may require explicit (and uncertified) annotations of the binaries to determine the
number of times a loop is iterated (see, e.g., [14] for a survey of the state of the art).

In this context, our aim is to produce amechanically verified compiler which can
lift in a provably correct way the pieces of information on the execution cost of the
binary code to cost annotations on the sourceC code.Then the produced cost anno-
tations are manipulated with the Frama− C4 [5] automatic tool to infer synthetic
cost annotations. We stress that the practical relevance of the proposed approach
depends on the possibility of obtaining accurate information on the execution cost
of relatively short sequences of binary instructions. This seems beyond the scope
of current Worst-Case Execution Time (WCET) tools such as AbsInt or Chronos5

which do not support a compositional analysis of WCET. For this reason, we fo-
cus on processors with a simple architecture for which manufacturers can provide
accurate information on the execution cost of the binary instructions. In particu-
lar, our experiments are based on the 8051 [10]6. This is a widely popular 8-bits
processor developed by Intel for use in embedded systems with no cache and no
pipeline. An important characteristic of the processor is that its cost model is ‘ad-
ditive’: the cost of a sequence of instructions is exactly the sum of the costs of each
instruction.

The rest of the paper is organized as follows. Section 2 describes the labelling
approachand its formal application to a toy compiler.The report [2] gives standard
definitions for the toy compiler and sketches the proofs. A formal and browsable
Coq development composed of 1 Kloc of specifications and 3.5 Kloc of proofs is
available at http://www.pps.univ-paris-diderot.fr/cerco. Section 3 reports
our experience in implementing and testing the labelling approach for a compiler
from C to 8051 binaries. The CerCo compiler is composed of 30Kloc of ocaml code;
it can be both downloaded and tested as a web application at theURL above.More
details are available in report [2] Section 4 introduces the automatic Cost tool that
starting from the cost annotations produces certified synthetic cost bounds. This
is a Frama− C plug-in composed of 5 Kloc of ocaml code also available at the URL
above.

2 Esterel Technologies. http://www.esterel-technologies.com
3 AbsInt Angewandte Informatik. http://www.absint.com/
4 Frama− C software analyzers. http://frama-c.com/
5 Chronos tool. www.comp.nus.edu.sg/~rpembed/chronos
6 The recently proposed ARM Cortex M series would be another obvious candidate.

http://www.pps.univ-paris-diderot.fr/cerco
http://www.esterel-technologies.com
http://www.absint.com/
http://frama-c.com/
www.comp.nus.edu.sg/~rpembed/chronos
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2 A “Labelling” Method for Cost Annotating
Compilation

In this section, we explain in general terms the so-called “labelling” method to
turn a compiler into a cost annotating compiler while minimizing the impact
of this extension on the proof of the semantic preservation. Then to make our
purpose technically precise, we apply the method to a toy compiler.

2.1 Overview

As a first step, we need a clear and flexible picture of: (i) the meaning of cost
annotations, (ii) the method to provide them being sound and precise, and (iii)
the way such proofs can be composed. The execution cost of the source pro-
grams we are interested in depends on their control structure. Typically, the
source programs are composed of mutually recursive procedures and loops and
their execution cost depends, up to some multiplicative constant, on the num-
ber of times procedure calls and loop iterations are performed. Producing a cost
annotation of a source program amounts to:

– enrich the program with a collection of global cost variables to measure re-
source consumption (time, stack size, heap size,. . .)

– inject suitable code at some critical points (procedures, loops,. . .) to keep
track of the execution cost.

Thus, producing a cost-annotation of a source program P amounts to build an
annotated program An(P ) which behaves as P while self-monitoring its execution
cost. In particular, if we do not observe the cost variables then we expect the
annotated program An(P ) to be functionally equivalent to P . Notice that in the
proposed approach an annotated program is a program in the source language.
Therefore, the meaning of the cost annotations is automatically defined by the
semantics of the source language and tools developed to reason on the source
programs can be directly applied to the annotated programs too. Finally, notice
that the annotated program An(P ) is only meant to reason on the execution
cost of the unannotated program P and it will never be compiled or executed.

Soundness and precision of cost annotations. Suppose we have a functionally
correct compiler C that associates with a program P in the source language a
program C(P ) in the object language. Further suppose we have some obvious
way of defining the execution cost of an object code. For instance, we have a good
estimate of the number of cycles needed for the execution of each instruction of
the object code. Now, the annotation of the source program An(P ) is sound if its
prediction of the execution cost is an upper bound for the ‘real’ execution cost.
Moreover, we say that the annotation is precise with respect to the cost model
if the difference between the predicted and real execution costs is bounded by a
constant which only depends on the program.
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Compositionality. In order to master the complexity of the compilation process
(and its verification), the compilation function C must be regarded as the result of
the composition of a certain number of program transformations C = Ck ◦· · ·◦C1.
When building a system of cost annotations on top of an existing compiler, a
certain number of problems arise. First, the estimated cost of executing a piece
of source code is determined only at the end of the compilation process. Thus,
while we are used to define the compilation functions Ci in increasing order,
the annotation function An is the result of a progressive abstraction from the
object to the source code. Second, we must be able to foresee in the source
language the looping and branching points of the object code. Missing a loop
may lead to unsound cost annotations while missing a branching point may lead
to rough cost predictions. This means that we must have a rather good idea
of the way the source code will eventually be compiled to object code. Third,
the definition of the annotation of the source code depends heavily on contextual
information. For instance, the cost of the compiled code associated with a simple
expression such as x+1 will depend on the place in the memory hierarchy where
the variable x is allocated. A previous experience described in [1] suggests that
the process of pushing ‘hidden parameters’ in the definitions of cost annotations
and of manipulating directly numerical cost is error prone and produces complex
proofs. For this reason, we advocate next a ‘labelling approach’ where costs are
handled at an abstract level and numerical values are produced at the very end
of the construction.

2.2 The Labelling Approach, Formally

The ‘labelling’ approach to the problem of building cost annotations is summa-
rized in the following diagram.

L1 L1,�I
��

er1

��

C1 �� L2,�

er2

��

. . .
Ck �� Lk+1,�

erk+1

��
L1

L

��

C1 �� L2 . . .
Ck �� Lk+1

er i+1 ◦ Ci = Ci ◦ er i
er1 ◦ L = idL1

An = I ◦ L

For each language Li considered in the compilation process, we define an ex-
tended labelled language Li,� and an extended operational semantics. The labels
are used to mark certain points of the control. The semantics makes sure that
whenever we cross a labelled control point a labelled and observable transition
is produced.

For each labelled language there is an obvious function er i erasing all labels
and producing a program in the corresponding unlabelled language. The com-
pilation functions Ci are extended from the unlabelled to the labelled language
so that they enjoy commutation with the erasure functions. Moreover, we lift
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the soundness properties of the compilation functions from the unlabelled to the
labelled languages and transition systems.

A labelling L of the source language L1 is a function such that erL1 ◦L is the
identity function. An instrumentation I of the source labelled language L1,� is a
function replacing the labels with suitable increments of, say, a fresh global cost
variable. Then, an annotation An of the source program can be derived simply as
the composition of the labelling and the instrumentation functions: An = I ◦L.

Suppose s is some adequate representation of the state of a program. Let P
be a source program. The judgement (P, s) ⇓ s′ is the big-step evaluation of P
transforming state s into a state s′. Let us write s[v/x ] to denote a state s in
which the variable x is assigned a value v. Suppose now that its annotation
satisfies the following property:

(An(P ), s[c/cost ]) ⇓ s′[c+ δ/cost ] (1)

where c and δ are some non-negative numbers. Then, the definition of the instru-
mentation and the fact that the soundness proofs of the compilation functions
have been lifted to the labelled languages allows to conclude that

(C(L(P )), s[c/cost ]) ⇓ (s′[c/cost ], λ) (2)

where C = Ck ◦ · · · ◦ C1 and λ is a sequence (or a multi-set) of labels whose ‘cost’
corresponds to the number δ produced by the annotated program. Then, the
commutation properties of erasure and compilation functions allows to conclude
that the erasure of the compiled labelled code erk+1(C(L(P ))) is actually equal
to the compiled code C(P ) we are interested in. Given this, the following question
arises: under which conditions the sequence λ, i.e., the increment δ, is a sound
and possibly precise description of the execution cost of the object code?

To answer this question, we observe that the object code we are interested in
is some kind of assembly code and its control flow can be easily represented as a
control flow graph. The idea is then to perform two simple checks on the control
flow graph. The first check is to verify that all loops go through a labelled node.
If this is the case then we can associate a finite cost with every label and prove
that the cost annotations are sound. The second check amounts to verify that
all paths starting from a label have the same cost. If this check is successful then
we can conclude that the cost annotations are precise.

2.3 A Toy Compiler

As a first case study, we apply the labelling approach to a toy compiler.
The syntax of the source, intermediate and target languages is given in Fig-

ure 1. The three languages considered can be shortly described as follows: Imp is
a very simple imperative language with pure expressions, branching and looping
commands, Vm is an assembly-like language enriched with a stack, and Mips is
a Mips-like assembly language [9] with registers and main memory.

The semantics of Imp is defined over configurations (S,K, s) where S is a
statement, K is a continuation and s is a state. A continuation K is a list of
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Syntax for Imp

id ::= x || y || . . .
n ::= 0 || −1 || +1 || . . .
v ::= n || true || false
e ::= id || n || e+ e
b ::= e < e
S ::= skip || id := e || S;S
|| if b then S else S
|| while b do S

P ::= prog S

Syntax for Vm

instrVm ::= cnst(n) || var(n)
|| setvar(n) || add
|| branch(k) || bge(k) || halt

Syntax for Mips

instrMips ::= loadiR,n || loadR, l
|| storeR, l || addR,R,R
|| branch k || bgeR,R, k || halt

Fig. 1. Syntax definitions

commands which terminates with a special symbol halt. The semantics of Vm
is defined over stack-based machine configurations C 	 (i, σ, s) where C is a
program, i is a program counter, σ is a stack and s is a state. The semantics of
Mips is defined over register-based machine configurations C 	 (i,m) where C is
a program, i is a program counter and m is a machine memory (with registers
and main memory).

The first compilation function C relies on the stack of the Vm language to
implement expression evaluation while the second compilation function C′ al-
locates (statically) the base of the stack in the registers and the rest in main
memory. This is of course a naive strategy but it suffices to expose some of the
problems that arise in defining a compositional approach. The formal definitions
of these compilation functions C from Imp to Vm and C′ from Vm to Mips are
standard and thus eluded. (See report [2] for formal details about semantics and
the compilation chain.)

Applying the labelling approach to this toy compiler results in the following
diagram. The next sections aim at describing this diagram in details.

Imp Imp�I
��

er Imp

��

C �� Vm�

erVm

��

C′
�� Mips�

erMips

��
Imp

L

��

C �� Vm C′
�� Mips

erVm ◦ C = C ◦ er Imp

erMips ◦ C′ = C′ ◦ erVm

er Imp ◦ L = idImp

An Imp = I ◦ L

2.4 Labelled languages: Syntax and Semantics

Syntax The syntax of Imp is extended so that statements can be labelled: S ::=
. . . || � : S. A new instruction emit(�) (resp. (emit �)) is introduced in the syntax
of Vm (resp. Mips).
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Semantics. The small step semantics of Imp statements is extended as described
by the following rule.

(� : S,K, s)
�−→ (S,K, s)

We denote with λ, λ′, . . . finite sequences of labels. In particular, the empty
sequence is written ε. We also identify an unlabelled transition with a transition
labelled with ε. Then, the small step reduction relation we have defined on
statements becomes a labelled transition system. We derive a labelled big-step

semantics as follows: (S, s) ⇓ (s′, λ) if (S, halt, s)
λ1−→ · · · λn−−→ (skip, halt, s′) and

λ = λ1 · · ·λn.
Following the same pattern, the small step semantics of Vm and Mips are

turned into a labelled transition system as follows:

C � (i, σ, s)
�−→ (i+ 1, σ, s) if C[i] = emit(�) .

M � (i,m)
�−→ (i+ 1,m) if M [i] = (emit �) .

The evaluation predicate for labelled Vm is defined as (C, s) ⇓ (s′, λ) if C 	
(0, ε, s)

λ1−→ · · · λn−−→ (i, ε, s′), λ = λ1 · · ·λn and C[i] = halt. The evaluation

predicate for labelled Mips is defined as (M,m) ⇓ (m′, λ) if M 	 (0,m)
λ1−→

· · · λn−−→ (j,m′), λ = λ1 · · ·λn and M [j] = halt.

2.5 Erasure Functions

There is an obvious erasure function er Imp from the labelled language to the
unlabelled one which is the identity on expressions and boolean conditions, and
traverses commands removing all labels.

The erasure function erVm amounts to remove from a Vm code C all the emit(�)
instructions and recompute jumps accordingly. Specifically, let n(C, i, j) be the
number of emit instructions in the interval [i, j]. Then, assuming C[i] = branch(k)
we replace the offset k with an offset k′ determined as follows:

k′ =
{
k − n(C, i, i+ k) if k ≥ 0
k + n(C, i+ 1 + k, i) if k < 0

The erasure function erMips is also similar to the one of Vm as it amounts to
remove from a Mips code all the (emit �) instructions and recompute jumps ac-
cordingly. The compilation function C′ is extended to Vm� by simply translating
emit(�) as (emit �):

C′(i, C) = (emit �) if C[i] = emit(�)

2.6 Compilation of Labelled Languages

The compilation function C is extended to Imp� by defining:

C(� : b, k) = (emit(�)) · C(b, k) C(� : S) = (emit(�)) · C(S) .
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Proposition 1. For all commands S in Imp�, we have that:

(1) erVm(C(S)) = C(er Imp(S)).

(2) If (S, s) ⇓ (s′, λ) then (C(S), s) ⇓ (s′, λ).

The following proposition relates Vm� code and its compilation and it is similar
to proposition 1. Here m ‖−σ, s means “the low-level Mips memory m realizes
the Vm stack σ and state s”.

Proposition 2. Let C be a Vm� code. Then:

(1) erMips(C′(C)) = C′(erVm(C)).

(2) If (C, s) ⇓ (s′, λ) and m ‖−ε, s then (C′(C),m) ⇓ (m′, λ) and m′ ‖−ε, s′.

2.7 Labellings and Instrumentations

Assuming a function κ which associates an integer number with labels and a
distinct variable cost which does not occur in the program P under consideration,
we abbreviate with inc(�) the assignment cost := cost + κ(�). Then we define
the instrumentation I (relative to κ and cost) as follows:

I(� : S) = inc(�); I(S) .
The function I just distributes over the other operators of the language. We
extend the function κ on labels to sequences of labels by defining κ(�1, . . . , �n) =
κ(�1) + · · · + κ(�n). The instrumented Imp program relates to the labelled one
as follows.

Proposition 3. Let S be an Imp� command. If (I(S), s[c/cost ]) ⇓ s′[c+ δ/cost ]
then ∃λ κ(λ) = δ and (S, s[c/cost ]) ⇓ (s′[c/cost ], λ).

Definition 1. A labelling is a function L from an unlabelled language to the
corresponding labelled one such that er Imp ◦L is the identity function on the Imp
language.

Proposition 4. For any labelling function L, and Imp program P , the following
holds:

erMips(C′(C(L(P ))) = C′(C(P )) . (3)

Proposition 5. Given a function κ for the labels and a labelling function L, for
all programs P of the source language if (I(L(P )), s[c/cost ]) ⇓ s′[c+ δ/cost] and
m ‖−ε, s[c/cost ] then (C′(C(L(P ))),m) ⇓ (m′, λ), m′ ‖−ε, s′[c/cost ] and
κ(λ) = δ.

2.8 Sound and Precise Labellings

With any Mips� code M , we can associate a directed and rooted (control flow)
graph whose nodes are the instruction positions {0, . . . , |M | − 1}, whose root
is the node 0, and whose directed edges correspond to the possible transitions
between instructions. We say that a node is labelled if it corresponds to an
instruction emit �.
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Definition 2. A simple path in a Mips� code M is a directed finite path in
the graph associated with M where the first node is labelled, the last node is
the predecessor of either a labelled node or a leaf, and all the other nodes are
unlabelled.

Definition 3. A Mips� code M is soundly labelled if in the associated graph the
root node 0 is labelled and there are no loops that do not go through a labelled
node. Besides, we say that a soundly labelled code is precise if for every label �
in the code, the simple paths starting from a node labelled with � have the same
cost.

In a soundly labelled graph there are finitely many simple paths. Thus, given a
soundly labelled Mips codeM , we can associate with every label � a number κ(�)
which is the maximum (estimated) cost of executing a simple path whose first
node is labelled with �. Thus for a soundly labelled Mips code the sequence of
labels associated with a computation is a significant information on the execution
cost.

For an example of command which is not soundly labelled, consider � :
while 0 < x do x := x + 1, which when compiled, produces a loop that does
not go through any label. On the other hand, for an example of a program
which is not precisely labelled consider � : (if 0 < x then x := x+1 else skip). In
the compiled code, we find two simple paths associated with the label � whose
cost will be quite different in general.

Proposition 6. If M is soundly (resp. precisely) labelled and (M,m) ⇓ (m′, λ)
then the cost of the computation is bounded by κ(λ) (resp. is exactly κ(λ)).

The next point we have to check is that there are labelling functions (of the source
code) such that the compilation function does produce sound and possibly precise
labelled Mips code. To discuss this point, we introduce in table 1 a labelling
function Lp for the Imp language. This function relies on a function “new” which
is meant to return fresh labels and on an auxiliary function L′p which returns a
labelled command and a binary directive d ∈ {0, 1}. If d = 1 then the command
that follows (if any) must be labelled.

Table 1. A labelling for the Imp language

Lp(prog S) = prog Lp(S)
Lp(S) = let � = new , (S′, d) = L′

p(S) in � : S′

L′
p(S) = (S, 0) if S = skip or S = (x := e)
L′

p(if b then S1 else S2) = (if b then Lp(S1) else Lp(S2), 1)
L′

p(while b do S) = (while b do Lp(S), 1)
L′

p(S1;S2) = let (S′
1, d1) = L′

p(S1), (S′
2, d2) = L′

p(S2) in
case d1
0 : (S′

1;S
′
2, d2)

1 : let � = new in (S′
1; � : S

′
2, d2)
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Proposition 7. For all Imp programs P , C′(C(Lp(P )) is a soundly and precisely
labelled Mips code.

Once a sound and possibly precise labelling L has been designed, we can deter-
mine the cost of each label and define an instrumentation I whose composition
with L will produce the desired cost annotation.

Definition 4. Given a labelling function L for the source language Imp and a
program P in the Imp language, we define an annotation for the source program
as follows:

An Imp(P ) = I(L(P )) .

Proposition 8. If P is a program and C′(C(L(P ))) is a sound (sound and pre-
cise) labelling then (An Imp(P ), s[c/cost ]) ⇓ s′[c + δ/cost ] and m ‖−ε, s[c/cost ]
entails that (C′(C(P )),m) ⇓ m′, m′ ‖−ε, s′[c/cost ] and the cost of the execution
is bounded by (is exactly) δ.

3 A C Compiler Producing Cost Annotations

We now consider an untrusted C compiler prototype in ocaml in order to exper-
iment with the scalability of our approach. Its architecture is described below:

C → Clight → Cminor → RTLAbs (front end)
↓

Mips or 8051 ← LIN ← LTL ← ERTL ← RTL (back-end)

The most notable difference with CompCert [11] is that we target the Intel
8051 [10] and Mips assembly languages (rather than PowerPc). The compila-
tion from C to Clight relies on the CIL front-end [13]. The one from Clight to RTL
has been programmed from scratch and it is partly based on the Coq definitions
available in the CompCert compiler. Finally, the back-end from RTL to Mips is
based on a compiler developed in ocaml for pedagogical purposes7; we extended
this back-end to target the Intel 8051. The main optimizations the back-end per-
forms are liveness analysis and register allocation, and graph compression. We
ran some benchmarks to ensure that our prototype implementation is realistic.
The results are given in report [2].

This section informally describes the labelled extensions of the languages in
the compilation chain (see report [2] for details), the way the labels are propa-
gated by the compilation functions, and the (sound and precise) labelling of the
source code. A related experiment concerning a higher-order functional language
of the ML family is described in [3].

3.1 Labelled Languages

Both the Clight and Cminor languages are extended in the same way by labelling
both statements and expressions (by comparison, in the toy language Imp we

7 http://www.enseignement.polytechnique.fr/informatique/INF564/
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just used labelled statements). The labelling of expressions aims to capture pre-
cisely their execution cost. Indeed, Clight and Cminor include expressions such
as a1?a2; a3 whose evaluation cost depends on the boolean value a1. As both
languages are extended in the same way, the extended compilation does nothing
more than sending Clight labelled statements and expressions to those of Cminor.

The labelled versions of RTLAbs and the languages in the back-end simply
consist in adding a new instruction whose semantics is to emit a label without
modifying the state. For the CFG based languages (RTLAbs to LTL), this new
instruction is emit label → node. For LIN, Mips and 8051, it is emit label . The
translation of these label instructions is immediate.

3.2 Labelling of the Source Language

As for the toy compiler, the goals of a labelling are soundness, precision, and
possibly economy. Our labelling for Clight resembles that of Imp for their common
instructions (e.g. loops). We only consider the instructions of Clight that are not
present in Imp8.

Ternary expressions. They may introduce a branching in the control flow. We
achieve precision by associating a label with each branch.

Program Labels and Gotos. Program labels and gotos are intraprocedural. Their
only effect on the control flow is to potentially introduce an unguarded loop.
This loop must contain at least one cost label in order to satisfy the soundness
condition, which we ensure by adding a cost label right after each program label.

Function calls. In the general case, the address of the callee cannot be inferred
statically. But in the compiled assembly code, we know for a fact that the callee
ends with a return statement that transfers the control back to the instruction
following the function call in the caller. As a result, we treat function calls ac-
cording to the following invariants: (1) the instructions of a function are covered
by the labels inside this function, (2) we assume a function call always returns
and runs the instruction following the call. Invariant (1) entails in particular
that each function must contain at least one label. Invariant (2) is of course an
over-approximation of the program behavior as a function might fail to return
because of an error or an infinite loop. In this case, the proposed labelling re-
mains correct: it just assumes that the instructions following the function call
will be executed, and takes their cost into consideration. The final computed
cost is still an over-approximation of the actual cost.

4 A Tool for Reasoning on Cost Annotations

Frama− C is a set of analysers for C programs with a specification language
called ACSL. New analyses can be dynamically added through a plug-in system.

8 We do not consider expressions with side-effects because they are eliminated by CIL.
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For instance, the Jessie plug-in allows deductive verification of C programs with
respect to their specification in ACSL, with various provers as back-end tools.

We developed the Cost plug-in for the Frama− C platform as a proof of con-
cept of an automatic environment exploiting the cost annotations produced by
the CerCo compiler. It consists of an ocaml program of 5 Kloc which in first
approximation takes the following actions: (1) it receives as input a C program,
(2) it applies the CerCo compiler to produce a related C program with cost anno-
tations, (3) it applies some heuristics to produce a tentative bound on the cost
of executing the C functions of the program as a function of the value of their
parameters, (4) the user can then call the Jessie tool to discharge the related
proof obligations. In the following we elaborate on the soundness of the frame-
work, the algorithms underlying the plug-in, and the experiments we performed
with the Cost tool.

4.1 Soundness

The soundness of the whole framework depends on the cost annotations added
by the CerCo compiler, the synthetic costs produced by the Cost plug-in, the
verification conditions (VCs) generated by Jessie, and the external provers dis-
charging the VCs. The synthetic costs being in ACSL format, Jessie can be used
to verify them. Thus, even if the added synthetic costs are incorrect (relatively
to the cost annotations), the process in its globality is still correct: indeed, Jessie
will not validate incorrect costs and no conclusion can be made about the WCET
of the program in this case. In other terms, the soundness does not really depend
on the action of the Cost plug-in, which can in principle produce any synthetic
cost. However, in order to be able to actually prove a WCET of a C function,
we need to add correct annotations in a way that Jessie and subsequent auto-
matic provers have enough information to deduce their validity. In practice this
is not straightforward even for very simple programs composed of branching
and assignments (no loops and no recursion) because a fine analysis of the VCs
associated with branching may lead to a complexity blow up.

4.2 Inner Workings

The cost annotations added by the CerCo compiler take the form of C instruc-
tions that update by a constant a fresh global variable called the cost variable.
Synthesizing a WCET of a C function thus consists in statically resolving an
upper bound of the difference between the value of the cost variable before and
after the execution of the function, i.e. find in the function the instructions that
update the cost variable and establish the number of times they are passed
through during the flow of execution. The plug-in proceeds as follows.

– Each function is independently processed and is associated a WCET that
may depend on the cost of the other functions. This is done with a mix
between abstract interpretation [6] and syntactic recognition of specific loops.
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– As result of the previous step, a system of inequations is built and its solution
is attempted by an iterative process. At each iteration, one replaces in all
the inequations the references to the cost of a function by its associated cost
if it is independent of the other functions. This step is repeated till a fixpoint
is reached.

– ACSL annotations are added to the program according to the result of the
above fixpoint. The two previous steps may fail in finding a concrete WCET
for some functions, because of imprecision inherent in abstract interpreta-
tion, and because of recursive definitions in the source program not solved
by the fixpoint. At each program point that requires an annotation (function
definitions and loops), annotations are added if a solution was found for the
program point.

– The most difficult instructions to handle are loops. We consider loops for
which we can syntactically find a counter (its initial, increment and last
values are domain dependent). Other loops are associated an undefined cost
(�). When encountering a loop, the analysis first sets the cost of its entry
point to 0. The cost inside the loop is thus relative to the loop. Then, for
each exit point, we fetch the value of the cost at that point and multiply it
by an upper bound of the number of iterations (obtained through arithmetic
over the initial, increment and last values of the counter); this results in an
upper bound of the cost of the whole loop, which is sent to the successors of
the considered exit point.

Figure 2 shows the action of the Cost plug-in on a C program. The most no-
table differences are the added so-called cost variable, some associated update
(increment) instructions inside the code, and an ensures clause that specifies
the WCET of the is sorted function with respect to the cost variable. One can
notice that this WCET depends on the inputs of the function. Running Jessie
on the annotated and specified program generates VCs that are all proved by
the automatic prover AltErgo9.

4.3 Experiments

The Cost plug-in has been developed in order to validate CerCo’s framework for
modular WCET analysis. The plug-in allows (semi-)automatic generation and
certification of WCET for C programs. Also, we designed a wrapper for support-
ing Lustre files. Indeed, Lustre is a data-flow language to program synchronous
systems and the language comes with a compiler to C. The C function pro-
duced by the compiler implements the step function of the synchronous system
and computing the WCET of the function amounts to obtain a bound on the
reaction time of the system.

We tested the Cost plug-in and the Lustre wrapper on the C programs gen-
erated by the Lustre compiler. We also tested it on some basic algorithms and
cryptographic functions; these examples, unlike those generated by the Lustre

9 AltErgo prover. http://ergo.lri.fr/

http://ergo.lri.fr/
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int is sorted (int *tab, int size) {
int i, res = 1;

for (i = 0 ; i < size-1 ; i++) if (tab[i] > tab[i+1]) res = 0;

return res; }
(a) The initial C source code.

int cost = 0;

/*@ ensures ( cost ≤ \old( cost)+(101+(0<size-1?(size-1)*195:0))); */

int is sorted (int *tab, int size) {
int i, res = 1, cost tmp0;

cost += 97; cost tmp0 = cost;

/*@ loop invariant (0 < size-1) ⇒ (i ≤ size-1);

@ loop invariant (0 ≥ size-1) ⇒ (i ≡ 0);

@ loop invariant ( cost ≤ cost tmp0+i*195);

@ loop variant (size-1)-i; */

for (i = 0; i < size-1; i++) {
cost += 91;

if (tab[i] > tab[i+1]) { cost += 104; res = 0; }
else cost += 84; }

cost += 4; return res; }
(b) The annotated source code generated by Cost.

Fig. 2. An example of the Cost plug-in action

File Type Description LOC VCs

3-way.c C Three way block cipher 144 34

a5.c C A5 stream cipher, used in GSM cellular 226 18

array sum.c S Sums the elements of an integer array 15 9

fact.c S Factorial function, imperative implementation 12 9

is sorted.c S Sorting verification of an array 8 8

LFSR.c C 32-bit linear-feedback shift register 47 3

minus.c L Two modes button 193 8

mmb.c C Modular multiplication-based block cipher 124 6

parity.lus L Parity bit of a boolean array 359 12

random.c C Random number generator 146 3

S: standard algorithm C: cryptographic function
L: C generated from a Lustre file

Fig. 3. Experiments on CerCo and the Cost plug-in
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compiler include arrays and for-loops. Table 3 provides a list of concrete pro-
grams and describes their type, functionality, the number of lines of the source
code, and the number of VCs generated. In each case, the Cost plug-in computes
a WCET and AltErgo is able to discharge all VCs. Obviously the generation of
synthetic costs is an undecidable and open-ended problem. Our experience just
shows that there are classes of C programs which are relevant for embedded ap-
plications and for which the synthesis and verification tasks can be completely
automatized.

Acknowledgement. The master students Kayvan Memarian and Ronan Sail-
lard contributed both to the Coq proofs and the CerCo compiler in the early
stages of their development.
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Abstract. Reliability of low-level operating-system (OS) code is an in-
dispensable requirement. This includes functional properties from the
safety-liveness spectrum, but also quantitative properties stating, e.g.,
that the average waiting time on locks is sufficiently small or that the
energy requirement of a certain system call is below a given threshold
with a high probability. This paper reports on our experiences made in a
running project where the goal is to apply probabilistic model checking
techniques and to align the results of the model checker with measure-
ments to predict quantitative properties of low-level OS code.

1 Introduction

For safety-critical systems such as space, flight, and automotive control systems
one wants correctness guarantees for the software not only for the functional
behaviour of components but also, e.g., for their timing behaviour. Worst-case
execution-time analyses (see e.g. [3,11,22]) are able to provide these guarantees,
but only in the form of upper bounds on the execution times of all involved compo-
nents, which hold even in the most extreme situations. Many computer systems
are however either not safety critical or they include fail-safe mechanisms that
prevent damage in highly exceptional situations. Quantitative analyses can pro-
vide detailed information on the probabilities of certain events or on the average
behaviour. First, the requirement that certain requirements hold for all possible
execution sequences is a very strong condition. E.g., for uncontended locks the
property that a process will find a lock free without waiting might not hold uni-
versally, but with some high probability. Second, probabilistic features are crucial
for the evaluation of complex architectures such as x86 that are optimised accord-
ing to their average-performance, for systems that rely on imprecise real-time
computing techniques to deal with transient overload [18,6], or for systems that
may fail in extreme cases. Third, the probabilistic analysis may guide OS level op-
timisation justifying, for instance, the use of a simple test-and-test-and-set (TTS)
lock implementation over more complex ticket [1] or queue-based locks [15].
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In this paper, we report on a running project of the operating-system and
the formal-methods group at TU Dresden whose aim it is to establish quantita-
tive properties of low-level operating-system (OS) code using probabilistic model
checking techniques. By low-level OS code, we mean drivers, the kernel of mono-
lithic operating systems, microkernels or microhypervisors and similar code that
directly interacts with hardware devices and that is therefore often optimised to
fully exploit the intrinsic behaviour of modern processor architectures. Although
the applicability of probabilistic model checking techniques is expected to work
in principle, several non-trivial problems have to be addressed.

Modelling. The first challenge is to find a reasonable abstraction level for the
formal model based on the probabilistic analysis that will be carried out. E.g.,
there are several details on the realisation of hardware primitives (such as caches,
busses and controllers of the memory subsystem) that have impact on the tim-
ing behaviour of low-level OS code. The model must cover all features that
dominate the quantitative behaviour, while still being compact enough for the
algorithmic analysis. The latter requires to abstract away from details that have
negligible impact on the quantitative behaviour or that would render the model
unmanageable. The abstraction of many of these details is indispensable because
only little information on the hardware realisation is available, and even if these
details are known, too fine-grained hardware models make the state-explosion
problem unscalable and lead to quantitative results that are too hardware spe-
cific. Instead, we incorporate hardware timing effects in the distributions for
the execution times and use measurement-based simulation techniques to obtain
empirical evidence for the models and the model checking results.

Measurement-based simulation. Generating this evidence frommeasurement data
is the second major challenge because the quantities of interest for many rele-
vant OS-level properties are in a range where measurements significantly disturb
the normal system behaviour and where instrumentation-induced noise blurs the
results. For instance, the update rate and resolution of CPU-internal energy sen-
sors necessitate a statistical analysis over a multitude of measurements to extract
an energy profile for a single system call [5]. To counteract these effects and to
obtain empirical evidence for the models and model checking results, we con-
struct microbenchmarks that place the to-be-measured code into a manageable
environment and that mimic the formalisation as close as possible.

Quantitative properties. A third major step is the identification of the types of
quantitative properties that are relevant for low-level OS code. At a first glance, it
seems that constrained reachability conditions such as “what is the probability for
threads to find the requested resource locked for longer than 1 microsecond?” can
be expressed as probabilistic queries of the form P=?(ϕ) using comparably simple
patterns of path formulas ϕ in standard temporal logics, such as PCTL. (The no-
tation P=?(ϕ) refers to the probability for the event specified by ϕ.) However, the
main interest is in deducing probabilities of this kind for the long run rather than
for fixed initial distributions. Typically, the long-run behaviour of programs (e.g.,
the time programs hold a certain resource) shows fundamentally different charac-
teristics when compared to the initialisation-phase behaviour (when resources are
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requested for the first time). These differences are caused by the fact that the sys-
tem had time to learn and adjust to the program characteristics, e.g., by warming
up the disk or processor caches or by adjusting the scheduling parameters of the
program to meet its responsiveness and interactivity demands. Queries for ques-
tions of the above type must therefore be able to ask for long-run probabilities of
path formulas under the condition that the system is in a certain set of states. The
above question translates into a condition about the states in the long run (e.g.,
the probability of finding a resource held in the long run) and a temporal formula
on the paths starting in these states (e.g., “what is the likelihood that such a held
resource will be released and granted to the requesting thread within 1 microsec-
ond?”).We refer to these type of queries as conditional steady-state queries. A sec-
ond class of important queries for low-level OS code asks for the value of a quantity
that is not exceeded in the majority of all cases: the quantile. Two examples of im-
portant quantile-based queries are “how long does a thread wait for a resource in
99.9% of all cases?” and “what is the energy that must remain in the battery to
guarantee the complete playback of a certain video with a probability greater than
95%?”.To our surprise, neither conditional steady-state queries nor quantile-based
queries are supported by state-of-the-art probabilistic model checkers.

Outline. In this paper, we report on our experiences with a simple TTS spinlock
as a starting point and initial experiment for a more elaborate investigation of the
general feasibility of probabilistic model checking techniques and the limitations
of existing tool support. Sec. 2 presents the TTS spinlock and a set of relevant
quantitative properties. Sec. 3 explains our discrete-time Markov chain model.
Sec. 4 presents the results of the quantitative analysis that we have carried out
with the model checker PRISM [13]. We explain how we dealt with conditional
long-run probabilities and quantile-based properties and report on the results
of the measurement-based simulation and the lessons learned. Sec. 5 concludes
this paper. Due to space limitations, we present the detailed model checking
statistics in an extended version1 and provide here only a brief summary.

2 A Test-And-Test-And-Set Lock

Fig. 1 shows the C/C++ code of a
1 volatile bool occupied = false;

2 void lock(){
3 while(atomic swap(occupied,true)){
4 while(occupied){}
5 } }
6 void unlock(){
7 occupied = false
8 }

Fig. 1. Simple TTS spinlock

simple TTS lock. To acquire the lock,
the requesting process executes the
atomic swap operation in Line 3 to
atomically read the value of the
shared variable occupiedand to then
set it to true. The loop exits if the
process was first to perform this swap
after another process has released the
lock by setting occupied to false.
For as long as in Line 4 occupied is
true, the process only reads this variable to avoid unnecessary contention on the
core-to-core interconnect.
1 http://wwwtcs.inf.tu-dresden.de/ALGI/spinlock-FMICS2012.pdf

http://wwwtcs.inf.tu-dresden.de/ALGI/spinlock-FMICS2012.pdf
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Properties. For our case study, we investigate four questions as representatives
for complex conditional long-run and quantile-based properties:

(A1) probability that a process finds a free lock when it seeks to acquire this lock;

(A2) probability of re-acquiring a previously held lock (without spinning)
without other processes having acquired the lock in the meantime;

(A3) expected amount of time a process waits for a lock;

(A4) the 95% quantile of the time processes wait for a lock.

Properties such as (A1)–(A4), which characterise the quantitative behaviour of
locks, are highly relevant to guide design decisions and optimisation of low-
level OS code. For instance, high probabilities in (A1) and (A2) justify the
use of less complex lock implementations, respectively of simpler execution-time
analyses. An analysis which assumes low fixed costs for acquiring and releasing
a lock is justified by a high probability of (A2) because cache eviction of the
occupied variable is unlikely. The expected waiting time (A3) is important to
judge whether a lock implementation is suitable for the common cases of a given
scenario. And the quantile in (A4) replaces the worst-case lock acquisition time
in imprecise real-time systems [18,6] and in systems with a fail safe override in
case of late results. It returns an upper bound t for the lock-acquisition time
that will be met with the specified probability (here 95%).

We investigate these measures in a scenario where a fixed number of processes
repeatedly acquire a single shared lock, execute a critical section while holding
the lock, and then wait for some time after they have released the lock before
they attempt to re-acquire it. We call the time between release and the attempt
to re-acquire the interim time and refer to the code that is executed during
this time as the interim section. We assume here, that the length of the critical
section is more or less constant, while the interim time varies. Further, critical
sections are typically very short in comparison with the times when no lock is
held. For the distribution of the length of the interim section we draw inspiration
from a video decoding example. For video decoding, the different frame types (I
and P-frames) lead to clusters of the interim time in certain small intervals. Our
approach used for both model checking and the measure-based techniques relies
on discretisation of these distributions using finitely many sampling points.

The modelled lock-acquisition pattern allows for the derivation of results
about the common-case behaviour of applications when they use a certain opera-
ting-system functionality, but gives also rise to extreme-case analyses where one
assumes malicious or erroneous applications to attack the operating system. For
example, by setting the interim time to the execution time of a system call
minus its critical sections it is possible to deduce the contention of locks that
protect these sections under the assumption that malicious applications invoke
this system call as fast as they can.

3 Markov Chain Model for the Spinlock Protocol

To model the spinlock protocol, we have chosen a discrete-time Markov chain
(DTMC) model for the following reasons. The clear demand for probabilistic
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guarantees about the long-run behaviour requires a model where steady-state
probabilities are mathematically well defined and supported by model checking
tools. This, for instance, rules out probabilistic timed automata and other stochas-
tic models with nondeterminism (e.g., Markov decision processes). Continuous-
time Markov chains are not adequate given that the distribution specifying the
duration of the critical and interim sections are not exponential. Approxima-
tions with phase-type distributions lead to large and unmanageable state spaces.
From a mathematical point of view, we could use semi-Markovian models with
continuous-time uniform distributions, but we are not aware of tools that provide
engines for all queries (A1)–(A4).

Preliminaries: Discrete-Time Markov Chains. We briefly explain our no-
tations used for DTMCs and refer to standard textbooks for further details,
see e.g. [12,7]. A (probabilistic) distribution on a countable set X is a function
μ : X → [0, 1] such that

∑
x∈X μ(x) = 1. The support supp(μ) of μ consists of

all elements x ∈ X with μ(x) > 0. μ is called a Dirac distribution if its support
is a singleton. If C ⊆ X then μ(C) =

∑
x∈C μ(x).

In our approach, a DTMC is a tupleM = (S,P, sinit, rew) where S is a finite
state space, sinit ∈ S the initial state, P : S×S → [0, 1] the transition probability
matrix and rew : S → N the reward function. We require

∑
u∈S P(s, u) = 1 for

all s ∈ S and refer to P(s, u) as the probability to move from s to u within
one (time) step. A path in M is a finite or infinite sequence π = s0 s1 s2 . . .
of states with P(si, si+1) > 0 for all i. Let π(k) = sk be the (k+1)-st state
and π ↓ k = s0 s1 . . . sk the prefix consisting of the first k+1 states. Paths(s)
denotes the set of infinite paths starting in state s. The accumulated reward for
a finite path π = s0 s1 . . . sk is Rew(π) = rew(s0)+ . . .+ rew(sk−1). If π is a finite
path then the cylinder set Cyl (π) spanned by π consists of all infinite paths π′

where π is a prefix of π′. Using well-known concepts of measure theory, given
some probabilistic distribution μ : S → [0, 1], there exists a unique probability
measure PrMμ on the σ-algebra generated by the cylinder sets of finite paths

such that PrMμ
(
Cyl (s0 s1 . . . sk)

)
= μ(s0) ·

∏
0�i<k P(si, si+1). If μ is a Dirac

distribution with supp(μ) = {s} we simply write Prs or PrMs for PrMμ .
For specifying measurable path events (i.e., sets of paths that belong to the

σ-algebra generated by the cylinder sets of finite paths), we use the standard
LTL-like notations with the symbols© (next), U (until) and ♦ (eventually) and
time-bounded variants thereof. For X,Y ⊆ S, ©X stands for the set of infinite
paths π with π(1) ∈ X . X U=k Y denotes the set of infinite paths π such that
π(n) ∈ X \ Y for 0 � n < k and π(k) ∈ Y . We write X U�K Y for the union of
the sets X U=k Y where k ranges over the elements in {0, 1, . . . ,K} and X U Y
for the union of the sets X U=k Y where k ∈ N. ♦Y , ♦=k Y and ♦�K Y are short
forms of S U Y , S U=k Y and S U�K Y , respectively. To deal with query (A2),
we will also use LTL-like formulas with cascades of until-operators and suppose
here the standard LTL-semantics for paths. For further details see [20,4,21].

For m ∈ N, θm : S → [0, 1] denotes the state distribution forM after m steps.
Formally, θ0 is the Dirac distribution with supp(θ0) =

{
sinit

}
and θm+1 = P ·θm

for m � 0. The function θ : S → [0, 1],
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θ(s) = lim
k→∞

1
k+1 ·

k∑
m=0

θm(s),

is called the steady-state distribution for M. Then, θ(s) > 0 iff s belongs to a
bottom strongly connected component (BSCC) that is accessible from sinit. If
C is a set of states with θ(C) > 0 and Π a measurable set of paths then the
conditional long-run probability for Π (under condition C) is defined by:

PM(
Π

∣∣C ) def
=

∑
s∈C

θ(s)/θ(C) · PrMs (Π)

Here, θ(s)/θ(C) is the conditional steady-state probability for state s, again
under condition C. The intuitive meaning of θ(s)/θ(C) is the portion of time
spent in state s on long runs relative to the total time spent in states of C. With
the factor PrMs (Π), the above weighted sum represents the long-run probability
for the event specified by Π under condition C. Analogously, conditional steady-
state average values of random variables can be defined as weighted sums. (A3)
will be formalised as an instance of conditional long-run accumulated reward for
reaching a goal set Y defined by:

RM(
♦Y

∣∣C )
def
=

∑
s∈C

θ(s)/θ(C) · ExpAccRewM
s (♦Y )

where ExpAccRewM
s (♦Y ) denotes the expected accumulated reward for reaching

Y from state s. It is defined by:

∞∑
r=0

r · PrMs
{
π ∈ Paths : ∃k ∈ N s.t. π ∈ ♦=k Y ∧ Rew(π↓k) = r

}

Markov Chain Model for the Spinlock Protocol. To analyse the quan-
titative behaviour of the spinlock protocol for n processes P1, . . . , Pn, we use
a DTMC that results as the synchronous parallel composition of one module
representing the spinlock in Fig. 1 (see Fig. 3) and one module for each of the
processes (see Fig. 2). The ti’s are integer variables that serve as timers for the
critical and noncritical section. Distribution ν models the interim time, i.e., the
time required for the (noncritical) activities of the processes between two criti-
cal sections, including the request to acquire the lock, but without the spinning

start i ncriti

waiticrit i

initialize:
ti := random(ν)

if ti=0 then tick

if lock i ∧ ti=1 then tick : ti := random(γ0)
if lock i ∧ ti=2 then tick : ti := random(γ1)

if ti=0 then tick :
ti := random(ν)

if ti > 0 then tick :
ti := ti−1

if ¬lock i then tick :
ti := min{ti+1, 2}

if ti > 0 then tick :
ti := ti−1

Fig. 2. Control flow graph of process Pi
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unlock

lock i. . . . . .lockk

if waiti
then tick

if criti ∧ ti=0 and
¬wait1 ∧ . . . ∧ ¬waitn

then tick

if ¬(crit i ∧ ti=0)
then tick

if waitk
then tick

if critk ∧ tk=0 and
¬wait1 ∧ . . . ∧ ¬waitn

then tick

if ¬(critk ∧ tk=0)
then tick

if criti ∧ ti=0 ∧ waitk then tick

if critk ∧ tk=0 ∧ wait i then tick

if ¬wait1 ∧ . . . ∧ ¬waitn
then tick

Fig. 3. Control flow graph of the spinlock

time. Distributions γ0 and γ1 serve to model the total length of the critical
section (including lock acquisition and release). In order to account for cache
effects that lead to different time behaviour for the lock acquisition, depending
on whether the lock is taken with and without spinning, we use two distribu-
tions for the critical section length. Distribution γ0 is used when the lock was
obtained without spinning, while distribution γ1 is used if some spinning was nec-
essary. To obtain a DTMC model, ν and γ0, γ1 are discrete distributions with
finitely many sampling points in the relevant time intervals. E.g., the distribu-
tion ν(8) = ν(10) = ν(12) = 1

3 indicates that with equal probability the duration
of the interim time is 8, 10 or 12 time units. The assignment ti := random(ν)
means that a sample is drawn according to distribution ν and assigned to ti.

For each process Pi, we distinguish four locations. Location starti serves to
set the timers for the first noncritical phase. The other three locations have the
obvious meaning. Location waiti signals that Pi is trying to acquire the lock.
If the lock is granted to Pi, the lock process switches to location locki, which
in turn enables the transition from waiti to criti. In location wait i, process Pi

waits until the lock has been made accessible for it. In location waiti, variable
ti does not serve as a timer. Instead, ti indicates whether process Pi has just
entered the waiting location (ti ∈ {0, 1}) or Pi is spinning as some other process
is holding the lock (ti=2). The control flow graph of the lock process contains
for each Pi one location lock i (indicating that Pi may take or holds the lock) and
one location unlock (the lock is free). For the synchronisation, we followed the
approach of PRISM’s input language with synchronisation over shared actions.
Action initialize has to be synchronised by all processes, while tick indicates one
time step and must be executed synchronously by all processes and the lock.

The states of the DTMC M for the composite model have the form s =
〈�1, . . . , �n,m, t1=b1, . . . , tn=bn〉 where �i is the current location of process Pi,
m the current location of the lock and bi the current value of variable ti. Then,
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Pi is spinning in state s iff s.m �=locki, s.�i=waiti and s.bi=2, where we use the
dot notation to refer to parts of a state s. If process Pi performs its last critical
action and moves from location criti to ncriti then either the lock returns to
its initial location unlock (if no process Pk is spinning) or there is a uniform
probabilistic choice for the lock to move to one of the locations lockk where
process Pk is spinning. To compute the long-run average spinning time (query
(A3)), we deal with the reward function rew spini(s) = 1 for each state s where
process Pi is spinning. For all other states s, we have rew spini(s) = 0.

Formalisation of Queries (A1)–(A4). In the sequel, we use propositional for-
mulas over the locations and conditions on the values of t1, . . . , tn to characterise
sets of states. For instance, criti is identified with the set {s ∈ S : s.�i = criti},
where S denotes the state space of the DTMC M for the composite system.
Condition requesti = waiti ∧ ti=0 characterises the set of states s inM where
process Pi has just requested the lock. The set of states where process Pi spins
is specified by spini = waiti ∧ ti=2 ∧ ¬lock i. Finally, releasei = criti ∧ ti=0
characterises the states s where process Pi is just performing its last critical
actions and the lock is to be released next. The relevant quantitative measures
(A1)–(A4) of Section 2 now correspond to the following values.

(A1) PM(
ϕ1

∣∣ requesti) where ϕ1 =© locki

(A2) PM(
ϕ2

∣∣ releasei) where ϕ2 =© ( unlock U locki )

(A3) RM(
♦ locki

∣∣ requesti)
(A4) min

{
t ∈ N : PM(

♦�t+1locki
∣∣ requesti) � 0.95

}
(A1), (A3) and (A4) refer to the conditional steady-state distribution for the
condition that process Pi has just performed its first request operation. (A1)
corresponds to the long-run probability under the condition requesti for the path
event ϕ1 = © locki stating that in the next time step process Pi will win the
race between the waiting processes, i.e., it will enter its critical section without
spinning. (A3) stands for the long-run average spinning time from states where
Pi has just requested its critical section. Replacing the condition requesti in (A3)
with waiti ∧ t1=1 ∧ ¬locki, we obtain the long-run average spinning time, pro-
vided that the first attempt to acquire the lock was not successful. The quantile
in (A4) corresponds to the minimal number t of time steps minus one such that
the long-run probability from the requesti-states for the path event ♦�t+1locki
stating that the lock will be granted for process Pi in t+1 or fewer steps is at least
0.95. For the long-run probability of acquiring the lock, again without interfer-
ence by other processes (see (A2)), there are several reasonable formalisations.
For the constraint that no process other than Pi requested the lock in the mean
time, we can deal with the path event ϕ2 =©( unlock U locki) under the condi-
tion that process Pi will release the lock in the next step (condition releasei). The
variant of (A2) where other processes may have acquired and released the lock in
between the critical sections of Pi and where Pi has not to spin and hence expe-
riences a low overhead lock can be formalised as PM(

ϕ′
2

∣∣ requesti) for the event

specified by the LTL-formula ϕ′
2 = ©(

locki U (ncriti ∧ (¬spini U criti))
)
. The
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treatment of (A2) using ϕ2 or ϕ′
2 is rather complex since the standard treatment

of LTL-queries relies on a probabilistic reachability analysis of a product con-
struction of a deterministic ω-automaton and the DTMC (see e.g. [2]). To avoid
this automaton-based approach, one can replace ϕ2 and ϕ′

2 with a simpler reach-
ability condition when refining the control flow graph of Pi by duplicating the
control loop ncriti waiti criti. This can be realised by introducing a Boolean vari-
able b that flips its value after leaving the critical section, see the extended version
of this paper, and justified using an appropriate notion of bisimulation. The con-
trol flow graphs for the lock and the other processes remain unchanged. Then,
instead of ϕ2 and ϕ′

2 we can then deal with ψ2 = (locki ∨ unlock) U (criti ∧ b)
and ψ′

2 = ¬spini U (criti∧b) under the condition releasei∧¬b and requesti∧¬b,
respecively. Indeed, our experiments show that the analysis ofM′ with the mod-
ified queries is more efficient than the analysis ofM.

4 Quantitative Analysis of the TTS Spinlock

Our general approach to the quantitative analysis of low-level operating-system
code proceeds in four steps: (1) The targeted operating-system code is formalised
at a suitable level of abstraction in the input language of a probabilistic model
checker. For our TTS lock case study, we used the prominent model checker
PRISM [13]. (2) The parameters of the model are determined with the help
of measurements in the targeted setting. If this is not possible due to unduly
high interference with the instrumentation code, we extract the relevant code
and measure it in the form of a microbenchmark in a controlled environment.
(3) The queries of interest are evaluated both by the model checker and with
a microbenchmark that again executes the code in a manageable environment.
This step is necessary to determine how well the model corresponds to the tar-
geted setting. (4) The queries are evaluated on the parameters obtained for the
real workload and if possible cross-checked against measurements in this setting.
There are two situations in which such a comparison is infeasible, namely when
the interference between the instrumentation code and the targeted operating-
system code fundamentally changes the behaviour of the latter or when the
analysis is performed with parameters of a system that does not yet exist.

The measurements done in the microbenchmarks do as well interfere with the
to-be-analysed code. However, these measurements only extract the required
model parameters (possibly only one at a time). The challenge is to construct a
setting where this interference is limited only to those parameters that are not
currently extracted. We now report on our experiences in adjusting the model
with the help of a microbenchmark and measurement-based simulation.

Measurement-Based Simulation. For the extraction of the two distributions
γ0 and γ1 for the critical section and for the distribution ν for the interim
section, we can resort to random sampling and similar techniques [14] to deduce
the characteristics of the workload we seek to investigate. Very short critical
sections and the acquire and release costs of the lock must however be measured
in an environment where it is possible to control side effects on the quantity
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of interest. For the TTS lock, we construct such an environment by mimicking
the behaviour of the formal model in the critical and interim section. When a
process enters a critical section, it selects pseudorandomly a sampling point of
the distribution γ0 if the lock was free and of γ1 if it had to spin. A counter in the
spinning loop (in Line 4 in Fig. 1) reveals whether or not the process was able
to obtain the lock without spinning. We pass this counter in a processor register
not to disturb the timing of the TTS code. The actual instrumentation consists
of three reads of the per core time stamp counter, before and after acquiring
the invocation of the lock() function in Line 2 and after the unlock() function
returns. Both the critical and interim section consist of a loop of an integer
instruction: rep; dec %eax. We have confirmed that the execution time of this
loop is very regular. The loop executes for a time that is proportional to the
sampling point selected for the respective critical or interim section.

Quantitative Analysis Using PRISM. For the quantitative analysis of the
DTMC of the TTS spinlock we used the probabilistic model checker PRISM [13].
We mainly concentrated on (A1)–(A4), but also considered functional and a few
more quantitative queries. To obtain empirical evidence in the model and in the
model checking results we compare the model checking results with measure-
ments of the model mimicking a microbenchmark. Unfortunately, PRISM has no
direct support for computing conditional long-run probabilities or quantile-based
queries. We extended the PRISM code by operators that compute conditional
long-run probability PM(

ϕ
∣∣C )

and conditional long-run accumulated rewards

RM(
♦Y

∣∣C )
where ϕ is a PCTL path formula and Y , C sets of states. Although

there is also no direct support for (A4) in PRISM, quantiles that refer to the
amount of time until some event occurs can be calculated with the same itera-
tive bottom-up computation scheme as for bounded reachability properties. In
(A4), we are interested in the minimal t ∈ N such that the conditional long-run
probability is greater than some fixed probability value. For finding the minimal
value t ∈ N with the above property efficiently, we modified the implementation
of the bounded until operator in PRISM to store the intermediate probabilities
for all 0 � j � t. Instead of a more direct evaluation at the MTBDD level of
PRISM, this storing of intermediate results allows for an external script to check
the gradually increasing values of the bounded until formula without restarting
the model checking for each such check.

Lessons Learned. During the analysis of the queries (A1)–(A4) and in the
course of performing and evaluating the measurements for the simulation, we
encountered several difficulties that we would like to share.
Cascade effects. We first evaluated (A1)–(A4) using a model where the length
of the critical section and the interim time are deterministic, i.e., where γ0 = γ1
and ν are Dirac distributions with values Tcrit and Tint and where Tcrit << Tint .
A simulation run of the model revealed a probabilistic choice of the order in
which processes acquire the lock for the first time. For all subsequent turns,
the processes received the lock in this same order and without having to spin.
Small variations in the lock acquisition times and in the points in time when
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the processes start prevented the measurement-based simulation from entering
a similar cascade. These cascade effects, however, do not appear for more realistic
models where at least ν is a distribution with |supp(ν)| � 2. Assuming that the
values for ν are much larger than those for γ0 and γ1, such DTMC models only
have one bottom strongly component, which justifies to apply the measurements
for just a few simulation runs.

Short critical sections. One of the first workloads we evaluated, was a system
call of the Nova microhypervisor [19] in which very short TTS-lock protected
critical sections alternate with relatively long sequences of interim activities.
The measure-based approach encountered situations where the lock-acquisition
times exceeded the critical section length. To avoid a too fine granular (discrete)
time domain for the DTMC model that would rule out the feasibility of model
checking techniques, we used time domains of different granularity for the mea-
surements and the DTMC model and relate them via a scaling factor sf . E.g.,
for the scaling factor sf = 1000, one time unit in the DTMC model corresponds
to 1000 cycles (approx. 362 ns) on the target system.

Varying acquisition times. In an early version of the microbenchmark, we ad-
justed the rep; dec %eax loops, which together with the pseudo random choice
of a sampling point mimic the distributions of the critical and interim sections,
to the same constant value for all processes. More precisely, for γ(x) = 1, we ad-
justed the loop in critical to consume as close as possible to 1000 cycles minus the
time required to execute the instrumentation code. However, the average costs
for acquiring and releasing a lock increase with the number of processes that
require this lock. One explanation for this behaviour could be that the costs for
invalidating a cache line when acquiring or releasing the lock vary with varying
number of cores. This is because the on-chip networks in modern multicore pro-
cessors connect cores in a point-to-point fashion while maintaining information
about the locations of copies of cache lines.

Controlled measurement environment. We realised early variants of our mi-
crobenchmark as a Linux user-level application, disabled all obvious sources of
interference and raised the priority of this application into the otherwise empty
real-time priority band. From the results, we classified spikes as interference and
ignored these points in our comparison with the formal model. Still, we expe-
rienced high fluctuations of the measurement results, which could not easily be
explained. In a repeated measurement on top of a small kernel binary, which
we just used to bootstrap our microbenchmark and to communicate the results
after the measurement part completed, these variations did not reappear. We
therefore take this effect as an indicator and as a warning that the interference
of large operating-system kernels on short executing microbenchmarks should
not be underestimated and best be avoided whenever this is possible.

Need for two critical distributions. After having performed the above adjust-
ments, we observed a discrepancy between the model checking results and the
measurements of approx. 20% (see the model I results in Fig. 4(a)–4(c)). Fol-
lowing an in-depth search for possible causes both in the model and in the
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(a) Probability to grab the lock (A1)
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(b) Average waiting time (A3)
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(c) 95% quantile (A4)
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Fig. 4. (a)-(c) results for model I and II and (d) the histogram for acquire time

microbenchmark, we identified small variations between the costs of acquiring a
lock with and without spinning. In the course of this search, we encountered sev-
eral other possible causes such as the quantisation due to scaling, which showed
similar small variations in the measurements. To confirm these factors, we ad-
justed a copy of the measurement data to mimic the effect we suspected to
determine the magnitude of the impact this effect could have. If this impact was
in a range where it could have explained a significant part of this discrepancy,
we adjusted the formal model accordingly. For the small variations between lock
acquisition times, we changed the model from a single Dirac distribution for the
critical section length to the two Dirac distributions γ0 and γ1 in Fig. 2.

Unfortunately, the value of the singleton sampling point of γ1 could not be
directly measured because it would require the inclusion of rdtsc in the spinning
loop (Line 4 in Fig. 1) to read the core cycle counter, which would significantly
change the timing behaviour of the lock. We therefore calculate the average
costs for acquiring a lock under the condition that a process had to spin by
comparing the time stamps of the releasing cores with the time stamps of the
lock acquiring cores. However, although the time stamp counter for cores on
the same die are derived from the same clock, there is an offset caused by the
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barrier on which these cores synchronise to start the measurement at approx.
the same point in time. The two dashed lines in Fig. 4(d) show the acquire spin
costs per core. The figure also shows the acquire spin costs after normalising the
offset between the two clocks. We choose the spike as the sampling point for γ1.
The scaling factor sf = 1000 that we used to deal with the single-distribution
model (where γ(1) = 1) was no longer adequate for integrating the resulting
distributions (γ0(5)=γ1(6)=1) into the DTMC model. We therefore decreased
the scaling factor to sf=200.

Evaluation of the Results. Fig. 4(a)–4(c) show the results of our quantitative
analysis of the queries (A1)–(A4). We omit the plot for (A2) because, for selected
distributions, the chance to re-acquire the lock without interference by other pro-
cesses is close to zero. The plots compare our measurements with the results from
two models. Model I is our earlier, simpler model which uses only one distribution
for the critical section (γ0=γ1). Model II is more precise because it uses different
distributions γ0 and γ1 as explained before. The x-axis displays the number of
processes and the distributions used for model II and, with scaling factor sf=200,
for the measurement. The label 3[5][6][40, 50, 60] stands for n=3 processes and
the distributions γ0(5)=γ1(6)=1 and ν(40)=ν(50)=ν(60)= 1

3 . The distribution
for model I, which uses scaling factor sf=1000, is obtained by dividing all values
by 5 and using the value of γ0 for γ1 too. Thus, for model I, the same label stands
for the model with 3 processes, γ0(1)=γ1(1)=1 and ν(8)=ν(10)=ν(12)=1

3 . We
performed the measurements on an Intel i7 920 quadcore machine at 2.67 GHz.
The benchmark and the sampling area for storing the measurement results fit-
ted completely in the on-die caches. Fig. 4(a) shows that the introduction of
γ1 reduced the error between the measured and analysed results from 20% for
model I to below 1% for model II. The discrepancy between model II and the
measurements in Fig. 4(c) is due to the quantisation of the model. That is,
the model considers changes of the waiting time only in steps of sf=200 cycles,
which corresponds to one fifth (0.2) of the critical section length. The differences
between the results obtained for the models with parameters n[5][6][40, 50, 60]
and n[5][6][40, 60] (where n ∈ {2, 3, 4}) illustrate that not only the mean value,
but also the variance of distribution ν for the interim time has non-negligible
impact on (A1)-(A4).

For model I (sf=1000 and γ0=γ1), we used PRISM to compute (A1)–(A4)
for the DTMC with up to six processes. For model II (sf=200, γ0 �= γ1) the
analysis has been carried out with up to four processes. Because of the reduced
scaling factor, model II is far more complex. E.g., for n=4 processes and the
distribution ν(8) = ν(14) = 1

2 the DTMC for model I has about 104 states,
while for model II with the corresponding distribution ν(40) = ν(70) = 1

2 the
DTMC has about 2.5 · 106 states. In a nutshell, for the DTMC with n=6 and
sf=1000 PRISM needs a few minutes for all queries, while for n=4 and sf=200
the computation can take a few hours. In most cases, the computation of the
steady-state probabilities is the most time consuming part. For more information
on the PRISM statistics (MTBDD sizes, time for the model construction and
the quantitative analysis) we refer to the extended version.
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5 Conclusions

The paper presents a first step towards the application of probabilistic model
checking techniques for the quantitative analysis of low-level operating-system
code. We reported on the difficulties we encountered when analysing a simple
test-and-test-and-set (TTS) spinlock with the model checker PRISM and on our
solutions to address them. A major challenge was to find an appropriate level
of abstraction that allows to capture all relevant behaviour and allows to ab-
stract from the precise timing behaviour of the cache and other CPU parts. We
performed extensive measurement-based simulations of real spinlocks to demon-
strate that our abstract model does indeed reproduce important aspects of the
timing behaviour. We considered a representative list of properties that are of
high interest to the system designer when he has to choose the right lock imple-
mentation. These properties involve conditional steady-state probabilities and
quantiles. To overcome the lack of direct tool support for both types of queries,
we added the relevant features in the PRISM code.

Related work. Many researchers performed case studies with probabilistic model
checkers for mutual exclusion protocols and other coordination algorithms for
distributed systems (see e.g. [8,16,17] or the PRISM web pages [13]). While some
of these case studies address the analysis of randomised protocols, we deal with
non-randomised operating-system primitives (the TTS spinlock). Our models
rely on stochastic assumptions on the execution times of the critical section and
interim sections of competing processes). Unlike the wide range of case studies
with continuous-time models, where rates of exponential distributions specify,
e.g., the frequency of the arrival of requests or the average duration of events
(see e.g. [7]), we deal with a DTMC model and discretisations of non-exponential
distributions. Of course, there have been plenty of case studies with the DTMC
engine of PRISM, but we are not aware of experiments that have been carried out
where the modelling and evaluation process was accompanied by measure-based
techniques. To the best of our knowledge, none of these case studies considers
conditional steady-state probabilities or quantile-based queries. The majority of
work on model checking low-level operating-system code concentrates on proper-
ties in the safety-liveness domain. E.g., [23] used model checking to find serious
file system bugs. Formal quantitative analyses often consider only worst-case
execution times as measure. For the special case of probabilistic worst-case ex-
ecution times (i.e. queries similar to Query (A3)), [3] presents a timing-schema
based on independent or only pairwise dependent (i.e., joint) execution profiles.

Future work. It would be very interesting to scale the analysis of basic and
more advanced spinlocks for CPUs with more than 100 cores. Such results could
justify the use of more simple locks with less overhead for certain tasks. Given
the exponential growth of the system model with the number of cores, this
is an extremely challenging task and requires clever encoding, abstraction and
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reduction techniques such as symmetry reduction. Other promising candidates
are bisimulation quotienting techniques as supported by the model checker
MRMC [9,10] and the use of sophisticated (MT)BDD-based techniques to in-
crease the efficiency of PRISM’s symbolic engine.
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Abstract. A method for the automatic refinement of single-task timed
automaton specifications into microcontroller assembly code is proposed.
The outputs of the refinement are an assembly implementation and a
timed automaton describing its exact behaviour. Implementation is only
possible when all specified timing behaviours can be met by the target
microcontroller. Crucially, the implementation does not make the sim-
plifying synchrony assumption, yet correctness with respect to timing is
guaranteed. Currently this method copes with parallel inputs and out-
puts, but is restricted to timed automaton specifications with only one
clock variable that is reset after each transition. Further generalization
is possible. A tool illustrates the method on a simple example.

1 Introduction

We propose a method for automating the implementation of single-task timed
automaton specifications targeted strictly at microcontroller architectures with-
out caching or pipelining. These microcontrollers have deterministic instruction
execution times. This method does not assume the use of an embedded operating
system and therefore does not address the issue of task scheduling.

Existing work addresses these issues, but at various costs. The TIMES tool [2]
translates a timed automaton model of task arrival patterns, together with task
WCET and deadline, into a complete, multi-tasking executable package that
satisfies the required scheduling behaviour by construction. The tool does not
implement tasks from their specifications but rather allows the user to input the
task code.

PLC automata [6,8] are a complete automaton formalism that is tailored to
implementation on PLC hardware. It comes equipped with an algorithm for the
direct translation of specifications into PLC hardware implementations. This
algorithm uses the hardware’s timing facilities to implement the specified timing
behaviour, which makes any hardware platform that provides similar timing
facilities a valid target for the algorithm. The value ε of the specification encodes
the minimum required cycle time of the implementation hardware and is derived
from the shortest duration for which the implementation must guarantee to
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detect an input (see discussion in Sec. 2.3). Moreover, Dierks [7] also presents
an algorithm for the translation of Duration Calculus [21] refinements known as
implementables into PLC automata.

More recent work by Jee et al. [12] tackles reactive control by capturing the
behaviour of each system component as a timed automaton model and using
the cyclic executive structure of the output of the TIMES tool to implement
the combined behaviour without the need for externally provided task code.
The structure of the (instrumented) output code is such that it suffers from
variations in execution period due to guard condition checking and the way in
which transitions are selected for execution. Because of this, the synthesized
code must be checked for correctness of timing behaviour by direct execution
or simulation. The timing requirements in the specification automata are then
modified in response to the observed timing behaviour of the synthesized code
(which is not guaranteed to meet the behaviour specified in the first place) and
the process is repeated. Jee et al. also present a multithreaded implementation
which confirms our preliminary ideas for how to generalize our proposed method
to multiple clock variables. This is discussed further in Sec. 7.

These and other approaches (i.e., [4,13]) make the synchrony assumption, that
the underlying system acts in negligible time when compared with the imple-
mented task. Since this time is never in fact zero, it must be accounted for either
in the specification or in the development of the task code, making for an it-
erative and error-prone development approach that circumvents the advantages
of automatic code generation. The main contribution of this paper is a refine-
ment method that does not make this assumption, thus being able to guarantee
that the specified timing behaviour is preserved by the implementation, at the
cost of a constrained specification language. The implementation is thus treated
as a purely derived artifact and does not impose any time-consuming iteration
upon the development process. The timing guarantee is only contingent on the
behaviour of the clock signal driving the target microcontroller, but, as this
is outside the software domain, its quality is not considered here. Our second
contribution is an intermediate assembly language that can facilitate specifica-
tion refinement for non-cached, non-pipelined microcontroller architectures in
general.

2 The Specification Language Used

Our method is aimed at specifications written as Timed Automata. A full de-
velopment of the theory is given by Alur and Dill [1]. This section only presents
a summary of the restrictions and changes required for our approach.

2.1 Notational Modifications

For improved readability of timed automaton specifications we make the follow-
ing stylistic changes. In the first place, interval membership notation is preferred
over the original logical notation (i.e. we write x ∈ [3.2, 9.1] for 3.2 ≤ x∧x ≤ 9.1).
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This makes it easier to visualize how the time spent by an automaton in a state
is divided into sub-intervals during which individual outgoing transitions are
enabled and disabled with the passage of time. In the second place, we impose
a convention on message names in the spirit of Tuttle and Lynch [19]: input
events are suffixed with ‘?’, output events with ‘!’. These are collected in the
two disjoint sets Σ? and Σ! such that Σ? ∪ Σ! ∪ {ε} = Σ, where Σ is the com-
plete alphabet and ε represents the empty event. Whenever any of the events
is ε it will be elided from the written specification. This second modification is
captured below.

Definition 1. A modified timed automaton is a tuple 〈Σ?, Σ!, S , s0,C ,E 〉 where,

– Σ? is the input alphabet

– Σ! is the output alphabet, disjoint from Σ?

– S is the set of states

– s0 ∈ S is the start state

– C is a finite set of non-negative real-valued clock variables

– E ⊆ S × S × P(Σ? ∪ {ε}) × P(Σ! ∪ {ε}) × P(C ) × Φ(C ) is the transition
relation and each element of E is a tuple 〈s , s ′, σ?, σ!, λ, κ〉 where,
• λ ⊆ C is a set of clock variables to be reset to zero on the given transition

• κ ∈ Φ(C ) is a clock constraint formula

A timed word in this model is a tuple 〈σ?, σ!, τ〉 where σ? and σ! are infinite
words over the input and output alphabets respectively, and τ is an infinite
sequence of real time values where,

– τ0 > 0 (definite start time)

– for all i ≥ 1, τi > τi−1 (monotonicity of time)

– for all t ∈ R with t > 0, there is an i such that τi > t (infinite time progress)

2.2 Implementable Specifications

We restrict this method to an implementable subset of timed automata which
satisfy the following conditions.

1. |C | = 1 (i.e., only one clock variable) and λ = C for each transition.

2. For every state, the time intervals specified on any concurrently enabled
outgoing transitions are identical.

It is possible to normalize specifications with overlapping time intervals that
do not satisfy condition 2 above by splitting them into multiple transitions and
distributing I/O actions accordingly among them.

Two different types of acceptance conditions are defined for timed automata,
Büchi and Muller conditions [1,17]. For our purposes, specifications need not
specify acceptance conditions. They may be useful in a theory of testing for our
method, but this is not investigated here.
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2.3 Response Allowance and Timing Resolution

A primary factor determining the feasibility of an implementation is whether it
can satisfy the timing resolution specified for each monitored variable and the
response allowance for each controlled/monitored variable pair [20]. In general,
the timing resolution for a monitored variable is a determination made based
on the nature of the monitored signal, which specifies the shortest duration of a
condition (or state) of the signal that must be guaranteed to be detected by the
implementation. As this relates directly to the rate at which this signal is sampled
in the software domain, it governs the feasibility of any given implementation.
The response allowance is likewise a determination made of an output generated
by the implementation in response to the status of an input (the initiating event),
but specifies instead the amount of time that the implementation can take to
react. Response allowance likewise governs the feasibility of implementations.

Inputs and outputs are visible in a timed automaton specification on tran-
sitions. In general it is possible to determine the controlled/monitored variable
pairs themselves if it is known how the given timed automaton specification is
derived from its requirements. However it is not possible in general to deter-
mine this information from only a timed automaton specification, which makes
it impossible for a tool to determine the feasibility of an implementation based
on response allowance and timing resolution without explicit annotations to this
end. Our tool, therefore, does not implement this feasibility check, though it
may be carried out post hoc using the definition of the control problem.

3 Overview of Synthesis Method

For brevity we give a condensed overview of the proposed approach. Bandur [3]
gives a detailed explanation and rationale.

3.1 Underlying Approach

Instead of calculating the execution speed required of a target microcontroller to
implement all timing requirements in a given specification, we propose starting
with the capabilities of a given microcontroller and restricting the set of speci-
fications whose timing requirements can be implemented on it. We observe that
there is a small set of hardware features common to a large number of micro-
controllers on the market that can be targeted as an abstract microcontroller
platform. We capture these capabilities in an intermediate assembly language
whose instructions can be implemented in a trivial way on a large number of
common microcontrollers. This approach is the opposite of the treatment of De
Wulf et al. [5], where the necessary hardware capabilities are calculated from a
given specification.

To start, we look at what each type of outgoing transition of a specification
automaton dictates must happen. A simple example transition is shown in Fig. 1,
here enabled in isolation on [0, a], with regard to condition 2 of Sec. 2.2. When
viewed as a requirement, this transition states the following:
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��

Fig. 1. Example transition

1. If message A or B arrives within a time units since entering state S0, the
transition to state S1 is made and the clock variable x is reset to 0.

2. If neither message arrives within this time, the transition becomes disabled
and inputs are no longer accepted. If other transitions outgoing from S0
exist, the clock variable is not reset to 0.

This interpretation is consistent with the definition of timed automata. The
requirement can be implemented as follows:

1. After entering state S0 accept messages A and B for at most a time units.
2. If either message arrives in this time, proceed with subsequent actions.
3. If no message arrives, and S0 has no other outgoing transitions, halt.
4. If S0 has other outgoing transitions, proceed with their implementation.

In a polling approach to inputs, the software must enter a loop in which the
channels via which messages A and B arrive are polled for a predetermined
period of time, until one of the messages arrives. The order in which the channels
are polled is not specified and so can be treated as underspecification. Therefore
if both messages arrive, the choice of which is accepted can be considered to be
nondeterministic. If no message arrives, the software must not proceed further,
perhaps entering an infinite loop of inactivity. This is done for every transition
of the specification.

The polling loop described above is specific to the time interval specified, [0, a],
and consists of instructions for reading the value of each channel, determining
whether a message has arrived and keeping track of the passage of time. These
instructions take a deterministic amount of time to execute. Depending on these
execution times, the number of repetitions of the loop can be calculated and
fixed a priori, as a function of the instructions in the loop, to span only this time
interval. Therefore, assuming that the specification automaton is consistent, the
behaviour specified for any time interval is unimplementable only if the hardware
is too slow to execute all the specified behaviour in that interval. Fortunately,
under this approach even a microcontroller driven by a 4 MHz clock signal
can satisfy microsecond-level timing constraints while retaining the ability to
discriminate among parallel inputs, and most significantly here, without making
any assumption of ideal synchronous hardware behaviour. The decision to take a
polling rather than an interrupt-driven approach is fundamental to our method.
Interrupts are much more energy-efficient, but the mechanism is more difficult to
model over a wide range of microcontrollers. One such treatment can be found
in McEwan and Woodcock [14]. Moreover, the simple microcontrollers to which
this approach is tailored have very low power consumption relative to more
sophisticated high-speed, multi-core architectures, making polling an arguably
viable approach.
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3.2 Time Intervals and Counter Registers

The polling loops described above are executed a calculated number of times
such that the bounds of the time intervals can be met as closely as possible. Con-
trolling these executions are pre-calculated countdown values stored in counter
registers. These values are decremented in a systematic fashion with each itera-
tion. The number of registers required for an interval specified between any two
states Si and Sj is NSi→Sj , and each one of these NSi→Sj registers receives a
value which contributes to the total countdown for that interval. A larger num-
ber of registers will accommodate a wider time interval. Obtaining these values
poses an integer optimization problem in NSi→Sj variables. These integer opti-
mizations are not solved by the embedded implementation, but rather when the
implementation is generated. Thus they do not introduce any time variations in
the behaviour of the implementation.

3.3 Input and Output

In a sequential polling scheme such as ours, communication with the environment
is generally a deterministic task, whether through digital I/O ports or off-chip
circuitry. Our proposed implementation structure assumes that the state of in-
puts and outputs can be captured as a bit pattern that can be tested (for input)
or modified (for output), and that communication carries no data payload. For
the remainder we assume the I/O port mechanism, though the intermediate as-
sembly language proposed below can cope with other mechanisms. In the I/O
port setting, to each message appearing in the specification there will correspond
a port of the microcontroller and a mask value. The mask is used to isolate the
bits of the port whose asserted state indicate the receipt or dispatch of that
message. The examples following deal only with active-high messages, though
our tool can handle both types.

3.4 Intermediate Assembly Language

In order to implement the polling loops described in Sec. 3.1 a target microcon-
troller needs to provide facilities to address the following:

– Determining whether messages have arrived by obtaining port values and
loading them to working registers for analysis.

– Emitting messages by writing arbitrary values out through ports.
– Counting down time by decrementing specific, pre-determined values stored

in registers or other memory.

Fortunately these are not special-purpose requirements and all simple microcon-
trollers on the market (i.e., [22,11,9,16]) can satisfy them. Furthermore, from
these requirements a necessarily simple intermediate assembly language can be
extracted (Tab. 1) that is sufficient for their implementation in general. Each
intermediate instruction can be implemented in turn on any microcontroller
with either a single instruction or a small, positionally independent sequence of
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instructions, i.e., the structure of each sequence is independent of its location
in the full body of code. This is a virtue of architectures without pipelines or
caches that makes it possible to achieve guaranteed microsecond-level behaviour,
without making the synchrony assumption, on an entire class of relatively slow,
cheap and energy-efficient microcontrollers. An example translation to the PIC
18F452 instruction set [16] can be found in Sec. 6.

Table 1. Intermediate assembly language

Instruction Effect

LI register value Load the literal value into register.
DEC register Decrement the value in register by 1.
J label Unconditional jump to label.
JNZ register label Jump to label if the value in register is not 0.
JZ register label Jump to label if the value in register is 0.
LPR port register Load the value at port to register.
LRP register port Load the value in register to port.
AND register mask Perform the bitwise AND of the value in register and

the literal mask, store result in register.
OR register mask Perform the bitwise OR of the value in register and

the literal mask, store result in register.

A Note on Optimization Many microcontrollers relevant to this method provide
individual instructions that have the same effect as a sequence of two or more
instructions in the intermediate language proposed. For example, the intermedi-
ate sequence {LPR p wreg; AND wreg m; LRP wreg p} can be implemented
on the PIC18F452 by the single instruction {ANDWF p, 1, 0}, but our proposal
is that each of the three instructions be implemented in turn, displaying some
obvious redundancy. Carrying out peephole optimization [15] on the proposed
implementation would detect this redundancy and make this substitution, but
the error in performing this optimization is two-fold. First, the formula for the
time to execute the implementation of the intermediate sequence can not be de-
scribed in a general way. Second, it would obliterate the correct timing behaviour
of the implementation. Therefore, omission of any algorithmic optimization is
central to the generality of this method.

4 Synthesis of Intermediate Implementations

For brevity we illustrate the synthesis method on the most general outgoing
transition configuration allowed for any single state in the restricted formalism,
that of multiple transitions specifying concurrent communication within a time
window. Less generic scenarios have a similar structure and will not be elaborated
here [3].

The outgoing transition configuration of any state of a specification automaton
satisfying the restrictions in Sec. 2.2 can only be one of the following:
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– Exactly one outgoing transition with no timing constraint (always enabled).
– One or more outgoing transitions with non-overlapping timing constraints.
– More than one outgoing transitions, where any overlapping time intervals

are identical.

Therefore, for each state there exists a set of time intervals which never overlap
(the identical overlapping timing constraints in the third case above yield one
such interval). There exists a natural ordering in time for this set. As a result, the
implementation can systematically step through the polling loops corresponding
to each interval with the passage of time.

Due to the granularity of each polling loop, sub-interval endpoints can not
be met exactly in general. For any interval [l , u], a correct implementation must
only attempt to operate within an interval [l�, u�] such that l ≤ l� and u� ≤ u.
Taking the specified action outside the interval [l , u] would not be correct with
respect to the specification. Assume two intervals [li , ui ] and [lj , uj ]. Even if
ui = lj in the specification, the values u�

i and l�j that can be satisfied by the
implementation will not be equal, thus introducing a gap of inactivity between
any two transitions. This is summarized in Fig. 2. The values l� and u� for the
implementation can be calculated exactly as parameters for each polling loop.
In the general case of N counter registers and s concurrent transitions on time
interval [a, b] (Fig. 3), we propose the intermediate implementation summarized
in Fig. 4, where WR is the working register, Ri are the counter registers, PAij is

Fig. 2. Approximating time intervals at implementation time

Fig. 3. Concurrent I/O requirements in time interval [a, b]
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S0 0: LI R1 ρ1
...

LI RN ρN
S0 1: DEC R1

JZ R1 S0 2
J S0 (N + 1)

...
S0 N: DEC RN

JZ RN S0 NoRcv
LI RN−1 ρN−1

...
LI R1 ρ1
J S0 (N + 1)

S0 (N + 1): LPR PA11 WR
AND WR MA11

JNZ WR S0 (N + 2)
...

LPR PA21 WR
AND WR MA21

JNZ WR S0 (N + 3)
...

J S0 1
S0 (N + 2): LPR PB11 WR

OR WR MB11

LRP WR PB11

...
J S1 0

S0 (N + 3): LPR PB21 WR
OR WR MB21

LRP WR PB21

...
J S2 0

...

Fig. 4. Intermediate implementation of specification of concurrent inputs and outputs
in time window [a, b]

the port on which message Aij is received, PBij the port on which message Bij is
sent. Mask values MAij and MBij are used to isolate the port bits corresponding
to messages Aij and Bij , respectively. The pre-calculated counter values ρi are
loaded to their respective counter registers between labels S0 0 and S0 1. The
countdown over the specified time interval is performed between labels S0 1 and
S0 N, with the aid of the block at label S0 (N+1), where polling for the input
messages takes place after each iteration of the loop from S0 1 and S0 N. Note
that in this block of code the input is discriminated, so that the corresponding
set of outputs B is emitted. The blocks starting at S0 (N + 2) output these
corresponding messages and perform a jump to the correct subsequent state. If
no specified input arrives in the prescribed time interval, the implementation
jumps to the block of code at S0 NoRcv, usually code implementing the idle
delay of duration l�j − b� (recall that currently li = a and ui = b) between the
current cluster of transitions and the next transition to become enabled.

The values ρi to be stored in the countdown registers are calculated as follows.

Definition 2. Tspec(N ) is the amount of time required by the target microcon-
troller to execute its implementation of the intermediate code fragment “spec”
using N counter registers.

Definition 3. τ(i) is the amount of time required by the target microcontroller
to execute its implementation of intermediate instruction i.
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To begin, the widest time interval specification that the code block above can
implement for N registers is,

Tmax = Tsetup(N ) + Tdelay (N ) + Texit (N ) .

The constituents of this formula and the base cases are as follows, where Ti is
the total number of inputs, MaxRegVal is 28 − 1 for 8-bit microcontrollers.

Tsetup(N ) = N τ(LI) .

Tdelay (N ) = (MaxRegVal − 1)(Tdelay (N − 1) + Texit (N − 1)+

τ(DEC) + τ(false JZ) + (N − 1)τ(LI) + τ(J)+

Ti(τ(LPR) + τ(AND) + τ(false JNZ)) + τ(J)) .

Texit (N ) = Tdelay (N − 1) + Texit (N − 1) + τ(DEC) + τ(true JZ) .

Tsetup(0) = Tdelay (0) = Texit (0) = 0 .

Next, the number of registers needed for the interval [a, b] specified is calculated.
This is the smallest integer R that satisfies (b − a�) ≤ Tmax (R) (in general, a�

is known from the implementation of the previous interval or inactivity delay).
Once an adequate number R of counter registers is chosen, the next step is to
calculate the latest time b� = Tlatest (R) at which the implementation can still
detect an input.

Tlatest (R) = Tlsetup(R) + Tldelay (R) + Tlexit (R) .

Tlsetup(R) = Rτ(LI) .

Tldelay(R) = (ρR − 1)(Tldelay(R − 1) + Tlexit (R − 1) + τ(DEC)+

τ(false JZ) + (R − 1)τ(LI) + τ(J)+

Ti(τ(LPR) + τ(AND) + τ(false JNZ)) + τ(J)) .

Tlexit (R) = Tldelay(R − 1) + Tlexit (R − 1) + τ(DEC) + τ(true JZ) .

Tldelay(0) = Tlexit (0) = Tlsetup(0) = 0 .

In both cases termination of the mutual recursion is ensured by the monotoni-
cally decreasing values N and R, respectively. If an input arrives at the latest
possible moment for which it must still be detected, then the implementation
needs time to process the input, and also to generate the corresponding out-
puts before transitioning to the next state. All this must be done within the
upper limit of the time interval. Therefore the values ρi are obtained by solving
the following integer optimization problem, where Tmo is the largest number of
outputs B ,

min {(b − a�)− (Tlatest (R) + Tmo(τ(LPR) + τ(OR) + τ(LRP)) + τ(J))} .

The optimum vector of values ρi is subject to,

Tlatest (R) + Tmo(τ(LPR) + τ(OR) + τ(LRP)) + τ(J) ≤ (b − a�) .
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The recursion ensures that the index i spans the interval [1,R], yielding the
register values ρ1, ρ2, . . . , ρR sought. The value b� is used to implement the
behaviour specified for the next time interval for state S0.

In summary, the code in Fig. 4 implements the behaviour specified by the
group of transitions shown for the time interval [a, b]. The idle wait between any
two adjacent intervals i and j corresponding to state S0 (not shown in Fig. 3) is
implemented by a simpler loop whose ρi values are calculated similarly for the
duration lj−u�

i , yielding the value l�j required subsequently. This glue code binds
individual transition implementations together into a complete implementation
for any given state, and the process is repeated for each state of the specification.
Most crucially, this resulting implementation is guaranteed to satisfy the tim-
ing requirements in the specification without making any synchrony assumption
about the underlying hardware, by accounting for execution times for sending
and receiving messages, and for switching between transition implementations,
in the code implementing the individual timing requirements. By pushing this
extra execution time inside the specified time intervals the implementations re-
main consistent with the specified timing behaviour.

5 Tool Support

We have developed an algorithm that implements this method with performance
O(N + E ) in the number of nodes N and edges E of the specification. The al-
gorithm is partially implemented in a prototype tool1 written in Haskell. The
optimal countdown register values ρi are determined through exhaustive search.
For narrow time interval requirements (less than a second) this implementation
yields acceptable performance on a modern personal computer at the time of
writing. All information is passed to the tool via XML files, including the spec-
ification automaton, and all XML processing is done using the Haskell HaXml
package. The tool outputs the assembly listing, together with graph files corre-
sponding to the original specification, the cleaned specification (with any tran-
sient states removed) and the implementation. These are in Graphviz Dot [10]
format.

6 Example

In this section we apply our method to an example specification to illustrate the
connection between intermediate and target assembly code.

6.1 Microcontroller Characteristics

The targetmicrocontroller is the Microchip PIC 18F452 [16]. This microcontroller
is relatively average in terms of core complexity in the class of microcontrollers

1 Latest version may be obtained online from
http://www.cs.york.ac.uk/~bandurvp.

http://www.cs.york.ac.uk/~bandurvp.
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with no pipelining and no caching. It is driven at 4 MHz and instructions take ei-
ther four or eight cycles to execute, as described below, yielding execution times
of either 1.0 μs or 2.0 μs per instruction. Of the 1536 bytes of RAM in the PIC
18F452, the lowest 128 bytes form the most conveniently addressable set of 8-bit
registers. The accumulator register is accessed by its mnemonic, WREG, and is
chosen as the working register. The instruction set is of RISC design and the tim-
ing characteristics of each instruction can be found in the unit’s data sheet [16].

6.2 Instruction Mappings and Execution Times

Table 3 shows the PIC 18F452 implementation of the intermediate assembly lan-
guage proposed in Sec. 3.4. Similar tables can be compiled for any microprocessor
with deterministic instruction execution times.

Table 3. PIC 18F452 implementation of intermediate instructions

Instruction PIC 18F452 Code τ (in μs)

LI register value
clrf WREG, 0
addlw value
movwf register, 0

3.0

DEC register decf register, 1, 0 1.0

J label bra label 2.0

JZ register label

movf register, 0, 0
incf WREG, 0, 0
decf WREG, 0, 0
bz label

4.0 if false, 5.0 if
true

JNZ register label

movf register, 0, 0
incf WREG, 0, 0
decf WREG, 0, 0
bnz label

4.0 if false, 5.0 if
true

LPR port WReg movf port, 0, 0 1.0

LRP WReg port movwf port, 1 1.0

AND WReg mask andlw mask 1.0

OR WReg location iorlw mask 1.0

6.3 Example Specification

The timed automaton in Fig. 5 specifies a metronome that keeps a tempo
amenable to measurement by oscilloscope (values are in microseconds). The in-
dicator is a light toggle. The metronome can be started and stopped via the
signals START and STOP. We assume that these signals come from a push but-
ton whose high and low levels correspond to START and STOP, respectively.
The timed automaton model of the implementation (one of the outputs of the
tool) is shown in Fig. 7. Note that the necessary platform-specific preamble is
a section of initialization code (Fig. 6) that must precede the implementation
proper. Similarly, cleanup code may be required, which in this case is the single
command end, signifying the end of the listing. This code takes no part in the
implementation of the specified behaviour.
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��

��

��

��

Fig. 5. Metronome specification

processor p18f452

#include "p18f452"

movlw 0x00 ;set pins to output

movwf TRISB

movwf PORTB ;turn light off

Fig. 6. Preamble code

��

��

��

��

��

Fig. 7. Implementation behaviour

6.4 Results

A Tektronix TDS 1002 oscilloscope [18] was used to measure the timing charac-
teristics of the implementation. The values measured at run-time of this imple-
mentation agree with those predicted on the behaviour automaton within 0.1μs
(Fig. 8). The key feature is the loop between states S1 and S2. The first image
notes that the rising edge from the microcontroller’s pin is offset by 0.700μs
from the oscilloscope’s trigger point (arrow at the top left). The second figure
shows the falling edge to be at 133.7μs. Subtracting the offset we obtain a pulse
width of 133μs, correct with respect to both the specification and the model of
the implementation.

7 Conclusions and Future Work

We propose a method for automatically refining timed automaton specifications
of single tasks to microcontroller assembly code based on the timing character-
istics of the target hardware rather than the behaviour specified. We only allow
specifications written in a restricted subset of the timed automaton formalism.
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Fig. 8. Oscilloscope measurements of the metronome implementation

By targeting only simple microcontrollers without instruction pipelining, mem-
ory caching and other architectural improvements that trade determinism for
speed, we can generate code that targets features common to all such micro-
controllers and which is correct with respect to its timed specification. We have
partially implemented our method in Haskell and have validated it on numerous
example specifications by making measurements on the target hardware that
agree with the specification. The ability to satisfy microsecond-level timing re-
quirements on such simple microcontroller hardware in a generic way is very
promising in terms of cost and guaranteed timing behaviour. Most importantly,
we believe that the ability to automatically generate implementations that guar-
antee timing behaviour without making the synchrony assumption is a strong
theoretical result.

As an immediate next step, we believe that it is possible to generalize this
method to specifications with multiple clock variables while retaining accept-
able performance across this class of microcontroller hardware. Jee et al. check
and modify timers each time a guard condition is evaluated [12]. These actions
would be necessary in such an extension to our method as well, but owing to
the strictly sequential and deterministic nature of the implementation code, the
time required to execute these actions can be taken into account in such a way
that values for multiple clocks can be maintained. Of course this requires a cor-
responding restriction to the clock predicates allowed. It may also be possible
to augment the method to accommodate global variables and actions on those
variables, all without making the synchrony assumption. We have not yet inves-
tigated extending this approach to specifications with arbitrary tasks, as is done
by some of the approaches reviewed in the introduction.

Acknowledgments. We wish to thank the anonymous reviewers for their help-
ful comments and suggestions.
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Abstract. Embedded systems have become an inevitable part of control systems
in many industrial domains including avionics. The nature of this domain tradi-
tionally requires the highest possible degree of system availability and integrity.
While embedded systems have become extremely complex and they have been
continuously replacing legacy mechanical components, the amount of defects of
hardware and software has to be kept to absolute minimum to avoid casualties and
material damages. Despite the above-mentioned facts, significant improvements
are still required in the validation and verification processes accompanying em-
bedded systems development. In this paper we report on integration of a parallel,
explicit-state LTL model checker (DIVINE) and a tool for requirements-based
verification of aerospace system components (HiLiTE, a tool implemented and
used by Honeywell). HiLiTE and the proposed partial toolchain use MATLAB
Simulink/Stateflow as the primary design language. The work has been conducted
within the Artemis project industrial Framework for Embedded Systems Tools
(iFEST).

1 Introduction

The complexity of embedded systems and of their architecture has been growing
rapidly, primarily due to market demand for more functionality. Moreover, more ad-
vanced technologies are becoming available and are being combined in new and in-
novative ways. This complexity growth demands improved tool support. It is becoming
impossible to engineer high quality systems in a cost efficient manner without extensive
tool support, which is often coming from heterogeneous, disparate set of tools. It is of
utmost importance that these tools work well together.

The safety-critical nature of systems developed in avionics industry increases other-
wise high development cost even more. This is because thorough verification, valida-
tion, and certification processes must be involved in the development cycle. Automated
formal verification methods, such as model checking [8], can significantly help lower
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the cost of verification and validation process. Incorporation of model checking into the
development cycle may result into a development process capable of delivering systems
at a reasonable cost and the required level of safety [9].

An important lesson learned from the effort spent on verification of avionics sys-
tems [4] shows that the major bottleneck preventing successful application of model
checking to verification of avionics systems is the scalability of verification tools. While
symbolic model checking tools have been successfully applied in model-based devel-
opment based on Mathworks Simulink [14], their scalability is unfortunately quite lim-
ited. One of the factors limiting scalability is the absence of distributed tools: none
of the symbolic model checkers can distribute the work among multiple computation
nodes [7]. On the other hand, explicit-state model checking has been repeatedly reported
to scale well in a distributed-memory environment [21,5].

Also it is not entirely clear that a symbolic approach is the best possible option for
verification of hardware-software co-designed systems. While symbolic methods are
more easily applied since they can naturally cope with data-related state space explo-
sion, the explicit-state methods can still be a more efficient [12] alternative. However,
some abstraction, ideally automated, is required to deal with data manipulated by the
investigated model.

In this paper we aim at chaining tools used for development of embedded systems
with parallel, explicit-state model checker DIVINE [2]. This allows for verification of
systems against properties specified in Linear Temporal Logic (LTL), a standard for-
malism for expressing important behavioural properties, cf. Process Specification Lan-
guage [19].

2 Tools in the Chain

2.1 Simulink

Simulink is a model-based design tool widely used in the aerospace industry. It allows
design, simulation and code generation for dynamic and embedded systems [14].

A Simulink model is a design of the system built from a set of interconnected blocks.
We will leave out continuous blocks (those with real-valued inputs and/or outputs) in
this paper and will focus on discrete blocks: without special precautions, model check-
ing in general (and DIVINE in particular) can only be used with discrete systems. Dis-
crete blocks produce an output at specific points in time, governed by a global discrete
clock. Simulink provides libraries of blocks and also allows user to define their own
custom blocks. Connected blocks comprise a sub-system and multiple sub-systems are
combined to create a hierarchical system model.

2.2 HiLiTE

Honeywell Integrated Lifecycle Tools and Environment (HiLiTE) is a tool used within
Honeywell for the requirements-based verification of aerospace systems. HiLiTE has
been qualified for use in RTCA DO-178B processes, and has been applied to the verifi-
cation of thousands of practical Simulink models that are derived from a wide variety of
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domains, including flight control algorithms, discrete mode logic, built-in tests, hybrid
perimeter controls and many others [3]. HiLiTE provides in-depth semantic analysis
of models for design consistency and robustness, as well as automatic generation of
certifiable code and of test vectors.

2.3 ForReq

In order to automate the validation and verification of requirements, they need to come
in a machine-readable form. Whenever we refer to “formal requirements”, it is implied
that these are available in a suitable machine-readable format. Since the vast major-
ity of legacy requirements are written in informal technical language it is necessary to
formalize them. For this purpose, we have implemented a prototype of an HiLiTE ex-
tension (ForReq: Formalizing Requirements), a special requirements management tool
that aims to simplify the task of formalizing requirements. It guides the user in creation
of machine readable requirements from scratch or from legacy requirement documents.

ForReq provides the user with requirement patterns to ease the formalization process.
Requirement patterns are similar to design patterns which are typically used in design
tools. A requirement pattern consists of a requirement name and classification, a struc-
tured English specification without scope, a pattern intent, temporal logic mappings or
other mappings, examples, and relationships.

Our requirement patterns are based on a Specification and Pattern System created
by Dwyer [10] extended by real-time patterns by Konrad and Cheng [13]. Currently,
ForReq is using an improved pattern system adapted to be aligned with aerospace re-
quirements.

Once the requirement pattern and the scope is selected it contains so-called proposi-
tions (P, Q, R, S, T, and U) which need to be further refined. At this point our approach
provides the engineer with the unique feature to assign a design (Simulink model) to the
set of requirements. Our method obtains a list of variables from the design, allowing the
engineer to select and use the variables in propositions (P, Q, R, ...). This also enables
verification of the coverage of inputs and outputs with requirements and allows the tool
to report any inputs or outputs that are not covered by at least one of the requirements.

Once the requirement is formalized, i.e. the requirement pattern is selected and all
propositions are specified with logical formulae containing some model design vari-
ables, ForReq executes the DIVINE model checker and provides it with the assigned
design and the temporal logic formula corresponding to the selected requirement pat-
tern. We have developed a transformation from the design model (Simulink) to a form
suitable as an input for the DIVINE model checker. Since every proposition within the
temporal logic formulae are logical formulae consisting solely of design variables, the
model checker can directly return a confirmation that the requirement is satisfied, or
alternatively, a counterexample which demonstrates the behaviour that falsifies the re-
quirement.

2.4 DIVINE

DIVINE is a tool for explicit-state LTL model checking and reachability analysis of
discrete distributed systems [2]. The distinguishing quality of the tool is its ability to
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efficiently exploit the aggregate computing power of multiple network-interconnected
multi-core workstations in order to deal with very large verification tasks, beyond the
size handled by comparable sequential tools.

3 Model Checking with DIVINE

3.1 Linear Temporal Logic

Model checking is an automated formal verification procedure that takes a behavioral
model of a system and decides whether the model satisfies a given property. Properties
to be verified by the model-checking procedure vary significantly. Due to the exhaus-
tive statespace search that is behind the model checking procedure, model checkers can
formally prove properties such as an absence of a deadlock in a concurrent system, or
(un)reachability of a particular system state. However, the real advantage of the tech-
nique lies in the ability to check for temporal properties of systems. An example of
temporal property that is most often checked with a model checker is a response prop-
erty, i.e., System will always react by performing action R to every stimulus action S.

Linear Temporal Logic (LTL) is often used in combination with explicit-state model
checkers to formalize the properties. Formulae of LTL are built from the so-called
atomic propositions, boolean-typed expressions evaluated on individual system states,
and boolean and temporal operators. The key temporal operators used in LTL are the
unary operators F (Future), G (Globally), X (Next) and the binary operator U (Until).
Formulae of LTL describe properties of individual system runs. A run is a (possibly
infinite) sequence of system states. A run satisfies the LTL formula Fϕ if there is a state
in the run (suffix of the run, to be more precise) where ϕ holds. In other words, Fϕ says
that ϕ holds true somewhere along the run (in the future of the initial state). Operator
G(ϕ) holds for a state on the run if all the following states of the run satisfy ϕ (i.e. ϕ
is globally true). Operator X(ϕ) requires ϕ to be valid in the next state. Finally, ϕUψ
requires that ϕ holds true, until ψ is satisfied at some state.

The LTL formalism allows the user to express many important properties of reactive
systems. Examples of some LTL-expressible properties are: Infinite repetition of ϕ,
expressed in LTL as GFϕ, inevitable stability of ϕ, expressed as FGϕ, or a sequence of
(alternating) occurrences of ϕ and ψ, expressed as ((¬ψ)U(ϕ∧ (¬ψ))∧F(ψ)).

To answer an LTL model checking question, an LTL model checking tool typi-
cally employs the automata-theoretic approach, which allows reducing the LTL model-
checking problem to the problem of non-emptiness of a Büchi automaton. In particular,
the model of a system S is viewed as a finite automaton AS describing all possible be-
haviours of the system. The property to be checked (LTL formula ϕ) is negated and
translated into a Büchi automaton A¬ϕ describing all the behaviours violating ϕ. In
order to check whether the system violates ϕ, a synchronous product AS×A¬ϕ of AS

and A¬ϕ is constructed describing all those behaviours of the system that violate ϕ, i.e.
L(AS×A¬ϕ)=L(AS) ∩ L(A¬ϕ). The automata AS, A¬ϕ, and AS×A¬ϕ are referred to as
the system, property, and product automaton, respectively. System S satisfies formula ϕ
if and only if the language of the product automaton is empty, which is if and only if
there is no reachable accepting cycle in the underlying graph of the product automaton.
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The LTL model checking problem is thus reduced to the problem of the detection of an
accepting cycle in the product automaton graph.

3.2 Common Explicit-State Model Interface

An important part of the workload of the model-checking tool lies in the interpretation
of the model under verification. The interpretation requires the model checker to com-
pute successors of individual states of the model. To reduce this load, DIVINE offers
an option to process the input models specified in DVE – DIVINE native modelling
language – either as a text file, or as a binary file that results from compilation of the
text file into a native binary code (in a form of dynamically loaded library) of the target
hardware platform. It should be understood that the binary interface allows DIVINE to
load and use binary models other than those resulting from compilation of native DVE
modelling language, as long as they provide the mandatory portions of the binary in-
terface. Henceforward, we refer to the binary interface as to “Common Explicit-State
Model Interface” (CESMI for short).

CESMI can be used to provide DIVINE with the model to be verified at two different
stages of the automata-based approach to LTL model checking. First, CESMI can be
used to access the graph of the product Büchi automaton AS×A¬ϕ. Note that the graph
of an automaton can be given either explictly by enumerating all its states, transitions,
etc., or implicitly by providing functions to compute the explicit representation. CESMI
assumes the implicit way of definition of the graph, therefore, it requires the following
functions to be defined in the binary file:

– initial state, a nullary function (i.e. a constant)
– successors, a function from states to sets of states
– is accepting and is goal: unary boolean functions, classifying states as accepting

and goal, respectively

The second option is to provide DIVINE with an implicit definition of the model graph
only, i.e. graph of automaton AS. DIVINE can compute the property automaton AS×
A¬ϕ. internally from a given LTL formula ϕ and system automaton AS given though the
CESMI-compliant input file. However, to do so, DIVINE requires functions to evaluate
atomic propositions used in the input LTL formula at individual states of the system
automaton. Therefore, the basic CESMI interface has to be extended with functions to
evaluate all atomic propositions used in the formula.

– AP a unary boolean function, classifying states based on validity of atomic propo-
sition a

Should the latter case be used for LTL verification, the combine command of DIVINE
must be issued on CESMI-specified model file and LTL formula, in order to produce a
binary file with the implicit (CESMI) definition of the target product automaton.

An important fact to be understood is that parallel distributed-memory model check-
ing capabilities as offered by DIVINE are independent of the actual model described
through the CESMI interface. Once the model is given via CESMI, parameters of paral-
lel and distributed-memory processing are simply part of particular DIVINE invocation.
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4 The HiLiTE/DIVINE Interface

The main contribution of the proposed toolchain is a module that allows application of
parallel explicit-state LTL model checking to data-flow oriented designs. Even though
there is a certain amount of variance between various data-flow programming lan-
guages, they share many common traits. Data-flow systems are typically build up from
blocks, which are connected using data connections. All the blocks typically execute in
parallel, but unlike the standard concurrent software that is typically subject to model
checking, this execution is synchronous across the whole system: all computation is
done strictly in a lockstep manner.

Like with protocol design, the dataflow program often has no clear single line of
execution: the systems are often reactive in nature. This naturally gives rise to the need
for temporal properties.

4.1 Explicit-State Interpretation of Data-Flow Programs

In order to verify a data-flow program by means of model checking, we have to define an
executable model of it. In our case, the primary language of interest is Matlab Simulink,
which is widely used in design of avionic systems. For getting an executable model from
the Matlab Simulink model, we opted for a two-level approach. First, we translate the
Simulink model into a specific intermediate language of ours, and then we translate the
intermediate representation into the form that is accepted by the model checker. The
intermediate langugage was designed to be suitable as a target language also for other
data-flow programming languages. The intermediate language is in fact a simple EDSL
(embedded domain-specific programming language) for describing synchronous data
circuits in C++. Programs in this domain specific language are produced by a dedicated
compiler that will process Simulink designs.1 The produced EDSL code can then be
compiled using a standard C++ compiler, producing a shared object conforming to the
CESMI specification (see Section 3.2).

This shared object can then be directly used as a verification subject, if we are in-
terested in simple safety properties like presence of deadlocks. However, in the context
of dataflow programs, this is not a very interesting question: more general safety and
liveness properties can be expressed using LTL (see also Section 3.1).

To refer to “atomic” properties of the design in the specification of properties, the
design needs to provide so-called “atomic propositions”. These are statements about in-
dividual system states, and are directly expressed in the EDSL translation of the model:
in our case, the Simulink compiler is responsible for providing their definitions from
a high level description. When these atomic propositions are specified, this is enough
for the automated process of translating the LTL specification (which can refer to these
atomic propositions, and derive).

The intermediate language provides support for creating blocks and connections be-
tween them. There are two main types of blocks: atomic and composite: implementation

1 While the compiler which translates Simulink designs into our data-flow EDSL is proprietary
(part of the ForReq extension of HiLiTE), the implementation of the intermediate EDSL itself
is part of the DIVINE tool which is available for public download, including the source code,
from http://divine.fi.muni.cz.

http://divine.fi.muni.cz
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template< typename T >
struct Sum : Value< T > {

InSet< T, 4 > in;

virtual T get() {
T acc = 0;
typename InSet< T, 4 >::iterator i;
for ( i = in.begin(); i != in.end(); ++i )

acc += (*i)->get();
return acc;

}
};

Fig. 1. The data-flow EDSL in C++. An example (atomic) block with 4 inputs and a single output,
implementing summation.

of atomic blocks needs to be done in terms of C++ code implementing the operation.
An example of atomic block would be summation, product, minimum and the like: the
source code for a summation atomic block is shown in Figure 1. Atomic blocks imple-
ment basic operations, and as such provide building blocks for composite blocks, which
correspond to actual data-flow programs, or sub-programs. Since composite blocks can
be naturally used as building blocks for other, more complex composite blocks, modu-
lar designs are easily expressible. In the Simulink translation, composite blocks are the
natural counterpart of sub-systems as well as the entire system design.

The input program consists of a number of blocks with input and output ports and
connections. The computation of the overall design is controlled by a global discrete
clock. Every tick of the global clock triggers sampling on the system inputs (that are
connected to the environment) and re-computation of all port values in the system based
on data dependencies (represented by block connections).

While CTL is the common language for specifying synchronous systems, LTL is
more commonly supported by model checkers geared towards asynchronous paral-
lel systems, mainly software. Moreover, LTL model checkers more commonly use an
explicit-state representation, which allows for parallel distributed-memory procesing.
Since the application of parallel model checker was one of our primary goals, we
needed to adapt the synchronous data-flow system for the purposes of explicit-state
model checking. To this end, we needed to build an implicit representation of the state
transition system corresponding to the behaviours encoded by the data-flow program.

We have so far only described data-flow programs on a very high level. To describe
the transition system derived from a data-flow program, we need to look at the seman-
tics of blocks in more detail. While it is an important feature of data-flow programming
that most blocks contain no explicit memory – they operate solely on their inputs in a
functional way – this is not a strict requirement. In fact, many designs require memory-
ful blocks: in the Simulink parlance, these are called delay and Stateflow state machine
blocks. As for the delay block, the effect of the memory contained in a block is the
introduction of a delay on the “signal” when it passes through a block. It is the state
of this memory that introduces statefulness to data-flow programming (a memory-free



Tool Chain to Support Automated Formal Verification of Avionics Simulink Designs 85

data-flow program is stateless, and traditional LTL model checking cannot be applied,
although it can still be meaningfully combined with a stateful environment – more on
this in Section 4.2). Note that in current implementation our toolchain has no support
for Stateflow blocks yet.

Requirements

Design (Simulink)

HiLiTE
ForReq

LTL

EDSL G++ CESMI

DIVINE
combine

CESMI

DIVINE

Counter-example VALID

Fig. 2. The verification workflow based on the proposed toolchain

4.2 Environment

A reactive system, such as a data-flow program, is by definition an open system (it does
not specify complete behaviours): the system reacts to stimuli from the environment:
the environment comprises everything relevant that surrounds the reactive system in
question. It could include other components of the entire system like sensors, actua-
tors, other control units, and external factors such as weather, people and the like. In
order to verify properties of the reactive system, we need to simulate this surrounding
environment and its effects on the reactive system.

To this end, we create a simplified model of the environment and connect the inputs
and outputs of the reactive data-flow program to the environment. To make a sensible
environment model possible, we allow non-determinism in the actions originating in it:
at any instant, a temperature rise or a drop might happen (although not both at the same
time).

When the design and the environment model are connected, we obtain a closed sys-
tem, and as such can be subject to model checking. However, the requirement to have a
sensible environment can be an impediment to the verification process: it is another step
that needs attention and manual work. Fortunately, for many purposes, the environment
does not need to be very sophisticated, or even very sensible. In fact, a rather liberal
environment puts more stringent requirements on the designed system itself. Addition-
ally, it is easily possible to automatically generate an environment that is liberal in the
extreme: one where anything might happen (we will say that this type of environment
is universal). Such an environment is good enough surprisingly often, and can reveal
overly optimistic assumptions the designer is making about the actual environment of
the system.

4.3 Branching Explosion

Nevertheless, an universal environment has one major drawback in the presence of nu-
meric inputs in the system: the environment actions corresponding to these inputs are
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of the form “value of input X has changed to Y ”, and in an universal environment, such
an action will exist for each permissible Y . For inputs with large domains, this has the
effect of creating extremely many actions, and consequently extremely many transitions
in the resulting system. This in turn has disastrous effects on tractability of the model
checking problem, since even simple systems can have millions of transitions between
any their states. Since all model checking algorithms need to explore each transition
to remain correct (unless they can prove a given transition to be redundant, an option
that we will explore in the following section), this means that to make model checking
practical in these situations, we need to limit the number of transitions (environment
actions) that can happen.

One solution to this problem is to place simple constraints on the universal environ-
ment, without compromising our ability to generate such environments automatically.
The universal environment is stateless: it remembers nothing and can do anything at
any time. Especially when it comes to modelling variable quantities of the real world,
this is overly pessimistic. If the environment is made stateful, it can remember the cur-
rent values of the variables it models, and the limits can be in form “value X can change
by at most Y in a single clock tick”. Such limits can bring down the number of actions
available at any given instant considerably. Unfortunately, this construction has the dual
problem: now each environment variable with domain size n will cause existence of n
distinct states, which again precludes efficient model checking. An approach akin to
region construction could be used to address this latter problem though (this is a sub-
ject of future work; we expect this approach to be simpler than using a fully symbolic
representation).

4.4 Data Abstraction

A more common, but more involved approach to deal with big domains is symbolic
(abstract) representation. Instead of working with single values, the model checker ma-
nipulates entire sets of values. With this approach, the environment simply sets all its
variables to carry their full domain as the symbolic value, which exactly corresponds to
the notion of “any value”. Then, it is the job of the model checker to refine the various
sets adaptively: whenever a decision that depends on a variable value is done, and the
answer will be different for different values in the current set, this set needs to be split
(according to the predicate) and each part propagated along the control flow decision
which has observed the respective part of the set. Since control flow decisions are com-
paratively rare in primarily data-flow based programs, this technique is likely to work
very well. Nevertheless, efficient implementation of sets with the required operations
is hard and laborious. In the domain of hardware design, application of BDDs (binary
decision diagrams) in this role was a significant breakthrough. On the other hand, SAT
and SMT solvers have been employed in software-oriented tools with some success,
especially in the context of bounded model checking.

Nevertheless, none of these approaches is fully suitable for verification of generic,
high-level data-flow programs. Arithmetic operations pose a challenge for BDD and
SAT based representations, which are fundamentally bit-oriented. On the other hand
SMT solvers are hard to implement, and scarce.
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Fortunately, in many cases (especially in our case of data-flow oriented program-
ming), a relatively simple static heuristic can be used to compute a set of abstract
partitions that cover all behaviours of the program, by set-based, or rather symbolic,
back-propagation. Using this partitioning, we can generate an abstract environment that
will be substantially simpler. Additionally, we can entirely avoid set-based arithmetic
in model checking, which would be required in a fully symbolic approach: instead, the
abstract environment can directly use single concrete representatives from each abstract
set of inputs, and the program can be interpreted concretely as usual.

5 Related Work

There are many types of tools for automated formal verification, each with their own
strengths and weaknesses. Explicit state model checkers such as SPIN or DIVINE enu-
merate and store individual states. Implicit state (symbolic) model checkers such as
NuSMV store sets of states using a compact representation (such as Binary Decision
Diagrams). Alternatively, bounded model checkers such as CBMC use boolean formu-
lae for symbolic representation and employ SAT solvers.

Satisfiability modulo theories (SMT) model checkers such as SAL and Prover use
a form of induction to reason about models containing real numbers and unbounded
arrays. Their properties need to be written in such a way that they can be proven by
induction over an unfolding of the state transition relationship. For this reason, they
tend to be more difficult to use than explicit and symbolic state model checkers.

Tools like SPIN, DIVINE, NuSMV, or SMC (a statistical model checker extension
to UPPAAL) are not tightly integrated with a specific software design tool and can be
used as stand-alone tools and possess a tool-specific input language. Application of the
tool to models in “non-native” language usually requires either manual re-modelling of
the system or, preferably, an automated translation between the two languages.

There is extensive work on translating Simulink/Stateflow models to modelling lan-
guages of specific model checkers. We will mention only some of those that we think are
the most relevant. A translation into the native language of the symbolic model checker
NuSMV is presented in [1]. The paper [11] suggests an analysis of Simulink models
using the SCADE design verifier in the particular setting of system safety analysis. An-
other translation, this time from Stateflow to Lustre is described in [18]. Both share
the interpretation of Simulink and Stateflow as a synchronous language, as mandated
by the use of Lustre as the target language for the translations. Invariance checking
of Simulink/Stateflow automotive system designs using a symbolic model checker is
proposed in [20]. A first attempt to validate Stateflow designs using SPIN is presented
in[16] (the described tool is however not publicly available).

More recently a team at Rockwell Collins has built a set of tools [22,9,15] that trans-
late Simulink models into languages of several formal analysis tools, allowing direct
analysis of Simulink models using model checkers and theorem provers. Among the
tools considered are symbolic model checkers, bounded model checkers, model check-
ers using satisfiability modulo theories and theorem provers.

Unlike the above-mentioned tools, tools like SDL tool Telelogic TAU, the Statemate
ModelChecker, SCADE Design Verifier [17], and the Simulink Design Verifier (an op-
tional component of the Matlab Simulink tool set based on SAT technology) are tightly
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integrated with the design tool that they belong to. The design tools are typically do-
main specific. The Telelogic TAU tool, for instance, enjoys widespread popularity in
telecommunications while Matlab Simulink is a de-facto standard for software design
in automotive system engineering.

Our approach differs from the above-mentioned in using a parallel explicit-state LTL
model checker to directly handle Simulink models and employing distributed memory
to attack the state explosion problem. We are not aware of any other work with similar
ambitions.

6 Use Case – Honeywell’s Voter Core

The environment is automatically generated from a Simulink model. In each discrete
time step, the environment ensures that the input blocks can assume any value within a
certain range. For each input block the user specifies its permissible input range. More-
over the range can be further automatically reduced, as HiLiTE refines the actual range
of each input and output of each block, using both forward and backward propagation of
ranges of incident blocks using their semantics, through calculation of inverse functions
for the analyzed blocks [3].

6.1 Voter Core Specification

Voter Core is the sub-system of the common avionics triplex sensor voter described in
the paper [1]. However the Voter Core sub-system is not defined in the paper; therefore
our engineer had to design it from scratch. The design shown in Figure 3 was given to
the engineer with the task to design the highlighted Voter Core sub-system conforming
to the following informal requirements:

1. If signal delta > 1 or signal is not valid, signal mismatch shall hold.
2. If signal mismatch held for 3 time units, permanent mismatch shall hold.
3. Once permanent mismatch holds it shall hold forever.

The picture in Figure 4 shows the Voter Core sub-system as designed by the engineer.

6.2 Formalizing Requirements

We will demonstrate how the ForReq tool guides the user to formalize requirements, by
walking through the process of formalization of the last requirement mentioned above.

The user always starts with a scope and a specification and derives the complete
requirement pattern step by step:

– scope, specification.

The scope of the requirement is after the “permanent mismatch holds” atomic proposi-
tion is valid. The partially formalized sentence will be:

– After Q, (order ∨ occurrence).
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The user chooses the type of requirement pattern, occurence in this case. After that user
chooses the universal requirement pattern:

– After Q, it is always the case that P holds.

ForReq then guides the user to assign the propositions Q and P with the logical formula
with atomic propositions as variables that are directly mapped to Simulink model vari-
ables. In our use case the propositions Q = P = permanent mismatch are valid only if
permanent mismatch signal is true.

The engineer eventually arrives at the following formalized requirements:

1. Globally, it is always the case that if (signal delta > 1 ∨¬signal valid) holds, then
(signal mismatch) holds immediately.

2. Globally, it is always the case that if (signal mismatch) holds for at least 3 time
unit(s), then (permanent mismatch) holds immediately.

3. After (permanent mismatch), it is always the case that (permanent mismatch)
holds.

And the corresponding (automatically generated) LTL formulae:

1. G((signal delta > 1 ∨¬signal valid)→ (signal mismatch))
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2. G(G<3(signal mismatch)→ F=3(permanent mismatch))
3. G(signal mismatch→ G(signal mismatch))

The G<i and F=i operators are LTL extensions defined recursively as follows:

F=0(ϕ) ≡ ϕ (1)

F=i+1(ϕ) ≡ X(F=iϕ) (2)

G<0(ϕ) ≡ true (3)

G<i+1(ϕ) ≡ ϕ∧X(G<i(ϕ)) (4)

6.3 Verification of Requirements

The Simulink model is translated to an intermediate XML representation and trans-
formed, using XSLT, to C++ code conforming to CESMI (see Section 3.2).

Requirements in the form of LTL formulae and the corresponding CESMI design
are then automatically sent to DIVINE model checker for verification. LTL formulae
are stored in the following format (for example VC.ltl):

#property G(p0)
#property G(q1->G(p1))
#property G(p2*X(p2)*XX(p2)*XXX(p2)->XXXs2)

All atomic propositions (p0, p1, p2, and s2) are encoded as boolean C++ function so that
the model checker can, in each state of the system, evaluate whether the atomic propo-
sition is valid. Voter Core system together with abovementioned functions is compiled
using g++ VC.cpp -c command.

Having both the system design and the specification, DIVINE is used to convert the
LTL specification to the Büchi automaton and synchronize it with the system automaton
by issuing divine combine VC.o -f VC.ltl.

For each LTL formula a VC.prop*.so file is created. DIVINE then reports,
for each requirement, whether it is satisfied using the commands: divine owcty
VC.prop*.so. In the negative case a counterexample that demonstrates the wrong be-
haviour is shown.

In the Voter Core use case only the last requirement was initially satisfied. The engi-
neer actually made two fatal mistakes. The first requirement was not satisfied due to the
engineer using an and logical block instead of or. The second requirement was not sat-
isfied since the design did not treat the permanent mismatch as really permanent and the
counterexample was that after 3 mismatch signals the permanent mismatch held; how-
ever after a few correct signals the permanent mismatch output was (wrongly) turned
off.

In this use case the informal requirements ambiguity had not caused any defects.
However in other cases, the user is forced – in order to successfully carry out the for-
malization – to choose among several options. This often helps to improve the overall
quality of requirements by reducing ambiguity.
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7 Conclusions and Future Work

We have presented a toolchain that allows engineers to employ explicit-state LTL model
checking in the context of an established design verification framework, HiLiTE. The
integration allows easy formulation of machine-readable temporal requirements (both
safety and liveness) and exhaustive automated verification of such requirements in
concrete Simulink designs. This in turn improves the verification process for mission-
critical components designed in the data-flow programming environment of Simulink,
which is frequently deployed in aerospace and automotive industries, both with strin-
gent quality requirements. The improved process represents potential resource savings
(by replacing expensive manual work with automated tools) and possible reductions in
time-to-market, further increasing efficiency.

The toolchain as presented in this paper is already usable for verification of small
to medium-sized stateful components, as illustrated by the Voter Core use case pre-
sented in Section 6. At the moment the tool chain is able to fully parse and process 31
types of Simulink blocks. On the other hand, there is room for improvements: the data
abstraction process presented in Section 4.4 is still partially manual, but can be fully au-
tomated, and such automation is subject to a planned future extension of the toolchain.
This will broaden the scope of the integration to more complex components, while at
the same time reducing the amount of manual work required. We also intend to extend
the toolchain to Stateflow diagrams.
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Range Analysis of Binaries with Minimal Effort
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Abstract. COTS components are ubiquitous in military, industrial and
governmental systems. However, the benefits of reduced development and
maintainance costs are compromised by security concerns. Since source
code is unavailable, security audits necessarily occur at the binary level.
Push-button formal method techniques, such as model checking and ab-
stract interpretation, can support this process by, among other things,
inferring ranges of values for registers. Ranges aid the security engineer
in checking for vulnerabilities that relate, for example, to integer wrap-
ping, uninitialised variables and buffer overflows. Yet the lack of struc-
ture in binaries limits the effectiveness of classical range analyses based
on widening. This paper thus contributes a simple but novel range anal-
ysis, formulated in terms of linear programming, which calculates ranges
without manual intervention.

1 Introduction

Where once reverse engineering was the preserve of the black-hat, now binaries
are routinely inspected members of the intelligence community, military organ-
isations and employees of security firms. For these parties, an area of concern is
the security of commercial off-the-shelf software (COTS) such as linkable code
libraries [30]. COTS is increasingly deployed since it reduces development times,
but such code is written by third-parties, typically with an eye towards function-
ality rather than security and reliability [11]. COTS could corrupt the system on
which it is running or, more insidious still, introduce a trojan horse. The threat
posed by COTS is significant motivating security audits which, since the source
code is unavailable, are necessarily conducted at the binary level.

Surprisingly, buffer overflow deficiencies are still very popular targets for
cyber-criminals [1]. Programs with buffer overflow deficiencies may fall victim
to (amongst others) privilege escalation or code injection attacks. Often range
information can help in identifying such deficiencies by, for example, assert-
ing that an array index may be out of bounds. Whilst it is recognised that
range information can aid the security engineer in the auditing process [12],
industrial decompilers do not currently infer ranges for the values stored in ba-
sic data-types (though one commercial tool vendor recently mentioned this on
its wish list). Range analysis is the pedagogical example that is used to illus-
trate the need for the widening and narrowing in program comprehension [10].
Even for finite-precision integers, the domain of ranges (also known as intervals)
D = {∅} ∪ {[l, u] | −231 ≤ l ≤ u ≤ 231 − 1} admits long ascending chains such as
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d0 = ∅ and dn+1 = [0, n] where n ∈ [0, 232− 1]. The force of this is that fixpoint
acceleration aka. widening need be applied to compute an over-approximation
of the ranges for registers that arise in loops. The idea behind widening is to
accelerate convergence by leap frogging over intermediate points in the chain. To
illustrate, observe that the lower bound in the chain d0, d1, d2 is stable after d1
whilst the upper bound is strictly increasing. Widening would typically enlarge,
literally widen, d3 to [0, 231− 1] to preserve the lower bound of 0 whilst relaxing
the upper bound to the maximum representable signed integer. This side-steps
the generation of the intermediates d4, . . . , d231−2.

One does not need to relax an unstable bound to the largest, or conversely
the smallest, representable number in a single step. Instead, one can prescribe a
set of increasing thresholds which are widened to in a series of steps. If relaxing
a bound to one threshold is not sufficient for stability then, at the next step,
the bound is related the next threshold, and so on. This is called widening with
thresholds [6] yet it requires the thresholds to be specified a priori. With a
view towards automation, widenings [14,25] have been suggested that infer the
thresholds based on the structure of a program, in particular, where a transition
in a chain from one interval to the next flips an inequality from unsatisfiable to
satisfiable. The inequalities in question are those that occur in a control structure
such as a conditional branch or a loop condition, the intuition being that the
larger interval enables a new path through the program to be reached. However,
quite apart from reasoning about the satisfiability of systems of inequalities, such
widenings rely on extracting inequalities from the program, a problem that is
straightforward for a source program, but difficult for its binary counterpart.

Iterative methods based on widening are sound in that they infer ranges which
enclose any value that can reside in a register. Such analyses actually compute
a post-fixpoint, though the most desirable solution is the least fixpoint which
presents the best over-approximation of the intervals. This raises the question
of whether least fixpoint can be found directly, dispensing with the need for
iteration and widening. Different responses to this question are represented in
the works of [15,22,26] that compute ranges by, respectively, mixed integer pro-
gramming, parametric linear programming, and a mixture of transformation and
chaotic iteration. The latter approach, in effect, proposes a constraint solver for
a class of range constraints that can be solved in polynomial time. The former
approaches, attempt to exploit existing mathematical or linear programming
packages, though this presents the problem of how to express the fixpoint as an
optimisation problem. This is not straightforward and indeed the way branch-
ing conditions are encoded in [22] is unsound for some classes of loop. (In the
spirit of the call for papers, this shortcoming is discussed in Sect. 5 as well as
its relationship to follow-on work [29]). Whether by design or by accident, the
mathematical programming formulation, which is subsequently linearised, seems
to avoid this problem but the encoding is not straightforward and it is not easy
to validate the method due to its conceptual complexity. In this paper we extend
existing techniques by, paradoxically, stripping them down. In doing so, we make
the following contributions:



Range Analysis of Binaries with Minimal Effort 95

assume (m ∈ {5, 20});
(1) i := 10;
(2) while (i ≥ m)
(3) m := m + 1;
(4) end
(5)

1

2

3

4

5

S1 = {〈i,m〉 | −231 ≤ i ≤ 231 − 1 ∧m ∈ {5, 20}}
S�
2 = {〈10, m〉 | 〈i,m〉 ∈ S1}

S2 = S�
2 ∪ S4

S3 = {〈i,m〉 | 〈i,m〉 ∈ S2 ∧ i ≥ m}
S4 = {〈i,min(m+ 1, 231 − 1)〉 | 〈i,m〉 ∈ S3}
S5 = {〈i,m〉 | 〈i,m〉 ∈ S2 ∧ i < m}

Fig. 1. (a) Program code (b) CFG and (c) collecting semantics

– We show how range analysis can be formulated, in the words of the title
“with minimal effort”, using systems of min and max constraints;

– We show how systems of such constraints can be solved by repeatedly calling
a linear programming package;

– We show how the number of calls to the package can be significantly reduced
by solving the linear programs in a propitious order.

The structure of the remainder of this paper is as follows. Sect. 2 shows a worked
example of our analysis over a program, then in Sect. 3 we detail how we solve
systems of inequalities containing disjunctions using repeated linear program-
ming (LP). Experimental results of our analysis applied to several small pro-
grams are presented in Sect. 4 and in Sect. 5 we discuss some shortcomings in
existing work that influenced the design of our analysis. Related work is discussed
in Sect. 6 before we conclude the main body of the paper in Sect. 7.

2 Worked Example

In this section we explain how ranges can be derived without resorting to widen-
ing. Although our work is targeted at the binary level, we will introduce the
ideas in terms of a generic high-level program so as to aid comprehension.

2.1 Collecting Semantics

Fig. 1a shows a small program with the program points annotated (1) through
to (5). Our problem is how to summarise the program state at each of these
points without actually running the program. We start by considering a natural
set representation of all possible values of i and m at each program point. We
aim to compute the smallest hyper-rectangle (a tuple of intervals) summarising
all possible i and m combinations for each program point. To this end, the state
at a single program point is expressed as a 2-dimensional vector 〈i,m〉, thus the
states that can possibly arise at these 5 program points is described by 5 sets
of vectors, namely Sk ⊆ [−231, 231 − 1]2. Each set Sk is finite, though possibly
large, since we suppose that i and m are represented by 32-bit signed integers.
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Fig. 2. (a) S = {〈2, 2〉, 〈5, 3〉, 〈1, 5〉, 〈6, 6〉, 〈8, 9〉} (b) α(S) = [1, 8]× [2, 9]

Fig. 1c presents a system of recursive equations that define and relate the
sets S1, . . . , S5. The dependencies between the program points, hence the sets,
are illustrated in Fig. 1b. Note S2 is defined in terms of S4 and S∗

2 which, in
turn, is defined in terms of S1. This is because control passes from (1) and (4)
to program point (2). The set S∗

2 is merely introduced as a calculational device
(an intermediate set) that is used to decompose S2 into an update operation
and a merge operation, that define S∗

2 and S2 respectively. Note too that the
increment operation at line (3) can potentially overflow, though it does not in
this example. Instead of separately modelling the two modes of the increment:
the exact mode when the increment does not wrap, and the overflow mode,
and then distinguishing between these two modes with a guard, we simplify
the presentation by modelling the overflow with a min operation. Together these
equations can be considered as defining a collecting semantics [9] for the program;
a semantics over sets that provides a basis for abstraction.

2.2 Abstract Semantics

Every set S ⊆ [−231, 231 − 1] can be described by an interval drawn from the
abstract domain D = {∅}∪ {[l, u] | −231 ≤ l ≤ u ≤ 231− 1}. Moreover, an n-ary
tuple of intervals can describe a set of n-ary vectors, an idea that is formalised
with an abstraction α mapping and a concretisation γ mapping [9]. The latter
map explains how to interpret an n-tuple of intervals and the former specifies
how best to describe a set S ⊆ [−231, 231 − 1]n. These maps are defined thus:

γ : Dn → ℘([−231, 231 − 1]n)
γ(∅) = ∅
γ(S′) = S′

α : ℘([−231, 231 − 1]n)→ Dn

α(∅) = ∅
α(S) = ∩{S′ ∈ Dn | S ⊆ S′}

Note how an n-tuple of intervals 〈d1, . . . , dn〉 ∈ Dn is interpreted as its cartesian
product d1 × . . .× dn which defines an hyper-rectangle in n-dimensional space.
Thus the subset ordering on D naturally lifts to Dn by 〈d1 . . . dn〉 ⊆ 〈e1 . . . en〉
iff di ⊆ ei for all i ∈ {1, . . . , n}. Observe too how α(S) is defined as the least
hyper-rectangle that encloses S. Fig. 2 illustrates α(S) for a set S that is planar.

Abstraction and concretisation relate sets of vectors to hyper-rectangles. With
this relationship in place, we can relax the collecting semantics given previously,
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to a system of recursive equations that operate over hyper-rectangles rather
then arbitrary sets. Each S′

k is designed to faithfully characterise Sk in that
Sk ⊆ γ(S′

k). This relationship can be shown to hold inductively when:

S′
1 = {〈i,m〉 | −231 ≤ i ≤ 231 − 1 ∧ 5 ≤ m ≤ 20}

S′∗
2 = {〈10,m〉 | 〈i,m〉 ∈ S′

1}
S′
2 = α( S′∗

2 ∪ S′
4 )

S′
3 = α( {〈i,m〉 | 〈i,m〉 ∈ S′

2 ∧ i ≥ m} )
S′
4 = α( {〈i,min(m+ 1, 231 − 1)〉 | 〈i,m〉 ∈ S′

3} )
S′
5 = α( {〈i,m〉 | 〈i,m〉 ∈ S′

2 ∧ i < m} )
When incrementing m (S′

4) the resulting upper bound of may saturate. It is
possible to obtain a more faithful model of integer overflow using integer linear
programming, but in the interest of brevity we refrain from presenting this idea
here. Since the above semantics is derived as an abstraction of the collecting
semantics, henceforth it will be referred to as the abstract semantics.

2.3 Direct Calculation of the Abstract Semantics

The abstract semantics can be evaluated by iteratively applying the above equa-
tions, with widening, until stability is achieved. This does not necessarily give
the least (best) solution due to the approximation introduced by widening. How-
ever, the hyper-rectangles can be found directly by solving systems of equations.
Let S′

1 = [li,1, ui,1] × [lm,1, um,1], . . . , S
′
5 = [li,5, ui,5] × [lm,5, um,5]. The solution

to the following reformulation (as an optimisation problem) is the least fixed
point of the abstract semantics:

Minimise :

5∑
j=1

(ui,j − li,j) +

5∑
j=1

(um,j − lm,j)

subject to the (non-linear) constraints:

li,1 = −231 ∧ ui,1 = 231 − 1 ∧
li,2∗ = 10 ∧ ui,2∗ = 10 ∧
li,2 = min(li,2∗ , li,4) ∧ ui,2 = max(ui,2∗ , ui,4) ∧
li,3 = max(li,2, lm,2) ∧ ui,3 = ui,2 ∧
li,4 = li,3 ∧ ui,4 = ui,3 ∧
li,5 = li,2 ∧ ui,5 = min(ui,2, um,2 − 1) ∧
lm,1 = 5 ∧ um,1 = 20 ∧
lm,2∗ = lm,1 ∧ um,2∗ = um,1 ∧
lm,2 = min(lm,2∗ , lm,4) ∧ um,2 = max(um,2∗ , um,4) ∧
lm,3 = lm,2 ∧ um,3 = min(ui,2, um,2) ∧
lm,4 = min(lm,3 + 1, 231 − 1) ∧ um,4 = min(um,3 + 1, 231 − 1) ∧
lm,5 = max(lm,2, li,2 + 1) ∧ um,5 = um,2

The cost function asserts that the desired solution is the least (best) hyper-
rectangle that satisfies all of the constraints. Of particular note are the con-
straints li,2 = min(li,2∗ , li,4) and ui,2 = max(ui,2∗ , ui,4) which assert that
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[li,2, ui,2] is the smallest interval that encloses both [li,2∗ , ui,2∗ ] and [li,4, ui,4].
Likewise lm,2 = min(lm,2∗ , lm,4) and um,2 = max(um,2∗ , um,4) assert tight bounds
on m. In combination, these four constraints symbolically define S′

2 as the merge
of the hyper-rectangles S′

1 and S′∗
2 . Modelling the loop condition i ≥ m is a

particular subtlety. Note how li,3 = max(li,2, lm,2) and ui,3 = ui,3 strengthen
(not weaken) the lower bound of i but preserve its upper bound. Conversely
lm,3 = lm,2 and um,3 = min(ui,2, um,2) refine the upper bound of m but pre-
serve its lower bound. An analogous construction is used to model the loop exit
condition.

Solving the above (with the technique outlined in the following section) we
find the following ranges:

S′
1 = [−231, 231 − 1]× [5, 20]

S′
2 = [10, 10]× [5, 20]

S′
3 = [10, 10]× [5, 10]

S′
4 = [10, 10]× [6, 11]

S′
5 = [10, 10]× [11, 20]

3 Solving Minimum and Maximum Constraints

The min and max terms in our system of inequalities are non-convex, yet convex-
ity is a prerequisite of classical linear programming. We overcome this through
repeated linear programming, which we overlay with heuristics.

3.1 Constraint Decomposition

First we decompose our system of constraints into a set of linear constraints L
and a vector of non-convex complementary constraints C. Note that the con-
straints in C must be disjunctions of linear terms and not arbitrary non-convex
terms. Constraints containing min or max terms are rewritten using the following
equivalence:

x = min(y, z) ≡ (x ≤ y) ∧ (x ≤ z) ∧ (x = y ∨ x = z)
x = max(y, z) ≡ (x ≥ y) ∧ (x ≥ z) ∧ (x = y ∨ x = z)

For example, the constraint um,3 = min(ui,2, um,2) is decomposed into the linear
system L = {um,3 ≤ ui,2, um,3 ≤ um,2} which is complemented with the system
C = 〈(um,3 = ui,2 ∨ um,3 = um,2)〉. The decomposed constraints for the worked
example are show in figure 3.

3.2 Constraint Solving

Although the disjuncts of C preclude LP from being directly applied, the com-
plementary constraints can be supported by repeatedly solving LPs. To see this,
observe that the complementary constraint lm,6 = lm,5 ∨ lm,6 = li,5 + 1 has one
of two states, according to whether the first or the second equality holds. The
disjuncts of C thus prescribe a search space of 2|C| combinations. In principle
each of these combinations could be enumerated and combined with the linear
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L = { li,1 = −232, ui,1 = 231 − 1,
li,2∗ = 10, ui,2∗ = 10,
li,2 ≤ li,2∗, li,2 ≤ li,4, ui,2 ≥ ui,2∗, ui,2 ≥ ui,4

li,3 ≥ li,2, li,3 ≥ lm,2, ui,3 = ui,2,
li,4 = li,3, ui,4 = ui,3

li,5 = li,2, ui,5 ≤ ui,2, ui,5 ≤ um,2 − 1,
lm,1 = 5, um,1 = 20,
lm,2∗ = lm,1, um,2∗ = um,1,
lm,2 ≤ lm,2∗, lm,2 ≤ lm,4, um,2 ≥ um,2∗, um,2 ≥ um,4,
lm,3 = lm,2, um,3 ≤ ui,2, um,3 ≤ um,2

lm,4 ≤ lm,3 + 1, lm,4 ≤ 231 − 1 , um,4 ≤ um,3 + 1 , um,4 ≤ 231 − 1
lm,5 ≥ lm,2, lm,5 ≥ li,2 + 1, um,5 = um,2 }

C = 〈 (li,2 = li,2∗ ∨ li,2 = li,4), (ui,2 = ui,2∗ ∨ ui,2 = ui,4)
(li,3 = li,2 ∨ li,3 = lm,2), (ui,5 = ui,2 ∨ ui,5 = um,2 − 1)
(lm,2 = lm,2∗ ∨ lm,2 = lm,4), (um,2 = um,2∗ ∨ um,2 = um,4)
(um,3 = ui,2 ∨ um,3 = um,2), (lm,4 = lm,3 + 1 ∨ lm,4 = 231 − 1)
(um,4 = um,3 + 1 ∨ um,4 = 231 − 1), (lm,5 = lm,2 ∨ lm,5 = li,2 + 1 〉

Fig. 3. Worked example constraints decomposed

component L to form an LP. Each LP could then be independently solved and
then compared to find the least value of the objective function overall. However,
we suggest an alternative strategy.

The boilerplate of our algorithm is shown in Algorithm 1. Before the algorithm
commences, we augment L with:

∧
1≤k≤5

(−231 ≤ li,k ∧ ui,k ≤ 231 − 1) ∧ (−231 ≤ lm,k ∧ um,k ≤ 231 − 1)

so as to ensure that all the LPs are bounded. This augmented system will hence-
forth be denoted L̄. The search starts at the root node of the search space with
τ = true. At each stage in the search L̄ ∧ τ is tested for satisfiability with a
solver, where τ is the conjunction of equalities selected thus far from C (as il-
lustrated in Fig. 4). If L̄ ∧ τ is unsatisfiable, then there is no solution for this
choice of τ . Furthermore, augmenting τ with additional equalities from C would
further constrain the LP rather than relax it. However, if L̄∧τ is satisfiable, then
another equality is selected from C from a disjunct that has not already been
considered. This is the role of ChooseNextDecision. If exactly one equality
has been selected from each disjunct of C and L̄ ∧ τ is still feasible, then a
solution is recorded. The search terminates when the search space is exhausted,
at which point the solution with the least objective function value is reported as
the overall minimum.

The benefit of this strategy is that if inconsistency is detected when τ contains
relatively few equalities from C then many branches through the search space
can be discarded simultaneously. The effectiveness of this pruning strategy is
dependent upon the ordering of decisions, and in particular the equalities that
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Algorithm 1. Binary search algorithm

1: function BinSearch(L̄, F , C, τ )
2: r ← MinimizeLp(F , L̄ ∧ τ )
3: if ¬ Sat(r) then
4: return [] // No solutions here, prune.
5: else if AllDecisionsMade(C, τ ) then
6: return [(r, τ )] // Found a leaf with a solution
7: end if
8: (e1 ∨ e2)←ChooseNextDecision(C, r, τ )
9: sl ← BinSearch(L̄, F , C, τ ∧ e1)
10: sr ← BinSearch(L̄, F , C, τ ∧ e2)
11: return Append(sl, sr)
12: end function

C7

C3

C9

um,3 = ui,2

li,3 = li,2

um,4 = um,3 + 1

um,3 = um,2

li,3 = lm,2

um,4 = 231 − 1

L̄x Relaxation (L̄ ∧ τ )

1 L̄

2 L̄ ∧ (um,3 = ui,2)

3 L̄ ∧ (um,3 = ui,2) ∧ (li,3 = li,2)
...

...

Fig. 4. First three linear relaxations of the worked example program

are selected from C. For the search to be effective, inconsistencies need to be
found early in the search, at a shallow depth in the tree, in order to maximise
the effect of pruning. If an inconsistency is found later, then it is likely to be
duplicated down alternative paths, nullifying the effect of pruning. Like many
combinatoric search problems, the worst case complexity is high (worst case
number of linear programs is 2|C|+1 − 1), but in practice performance can be
significantly improved with the use of heuristics.

3.3 Heuristics

In order to improve upon the worst case complexity of our search space, we
implement the following heuristics:

H1: Prune Inconsistencies Early. This heuristic suggests which disjunct Cn ∈ C
is a good candidate from which an equality should be selected. Suppose solving
L̄ ∧ τ returns a solution for which (um,3 = −231) ∧ (ui,2 = 10) ∧ (um,2 = 20).
Observe that the disjunct C7 = (um,3 = ui,2∨um,3 = um,2) is unsatisfiable under
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Algorithm 2. Heuristic 1

1: function ChooseNextDecision(C, r, τ )
2: v ← GetViolatedCCs(C, τ )
3: if |v| > 0 then
4: let n ∈ v
5: else
6: n← ChooseArbitraryNextDecision(C, r)
7: end if
8: return n
9: end function

this assignment. Then the heuristic suggests that τ should next be extended
with an equality from C7. If all complementary constraints are satisfied, then
an arbitrary Cn ∈ C is chosen for selecting an equality; the selected Cn is
literally chosen at random, thus introducing non-determinism into the algorithm.
The intuition behind this selection strategy is that if C7 is unsatisfiable for one
solution to the LP, then extending τ with one of its equalities is likely to detect
an inconsistency thereby pruning the search space. Algorithm 2 provides an
implementation of ChooseNextDecision using this heuristic.

H2: Block Weak and Duplicate Solutions. A solution is found once an equality
is selected from each disjunct of C such that possible to satisfy that L̄ ∧ τ
remains satisfiable. There is only one minimal solution, but it is possible for other
solutions to exist which, whilst they satisfy the min/max constraints, yield less
tight intervals. It is also possible for both sides of the disjunct of a complimentary
constraint to evaluate true (eg. (li,3 = li,2 ∨ li,3 = lm,2) where li,2 = li,3 =
lm,2 = 1), thereby introducing ineffectual decisions in C and ultimately duplicate
solutions. Because there is no value in finding a solution if it does not improve
the objective, we propose adding an extra linear constraint to the system that
ensures that any solution that is subsequently found improves on the least value
of the objective. Suppose that we analyse the worked example program and
a solution is found whose objective function value we call omin. Subsequent
linear programs are solved in conjunction with an additional blocking constraint:∑5

j=1(ui,j − li,j) +
∑5

j=1(um,j − lm,j) < omin. Through this construction only
solutions yielding a strictly smaller objective are feasible, thus further pruning
the search space and in turn the number of LPs the analysis must perform.

4 Experimental Results

Our tooling, given a control flow graph and a description of CFG edge opera-
tions, generates 〈L̄, C〉 and proceeds to perform the binary search as described
in Sect. 3. The binary search uses the lpsolve solver which we interface us-
ing Python language bindings. Individual search heuristics (H1 and H2) may
be switched on and off, allowing performance comparisons to be drawn under
different heuristics configurations. Evaluation of the complimentary constraints
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Interval
m1 ∈

[2, 2] [63, 71] [5, 20]

m2∗ [2, 2] [63, 71] [5, 20]
m2 [2, 11] [63, 71] [5, 20]
m3 [2, 10] [63, 10] [5, 10]
m4 [3, 11] [64, 11] [6, 11]
m5 [11, 11] [63, 71] [11, 20]

i1 [0, 255] [0, 255] [0, 255]
i2∗ [10, 10] [10, 10] [10, 10]
i2 [10, 10] [10, 10] [10, 10]
i3 [10, 10] [63, 10] [10, 10]
i4 [10, 10] [63, 10] [10, 10]
i5 [10, 10] [10, 10] [10, 10]

(a) Intervals determined by the
analysis.

m1 ∈ H1 H2 Mean #LPs Mean Time (s)

[2, 2]

✗ ✗ 208 0.2
✓ ✗ 183 0.9
✗ ✓ 152 0.1
✓ ✓ 38 0.2

[63, 71]

✗ ✗ 200 0.2
✓ ✗ 125 0.6
✗ ✓ 105 0.1
✓ ✓ 45 0.2

[5, 20]

✗ ✗ 207 0.2
✓ ✗ 211 1.0
✗ ✓ 143 0.1
✓ ✓ 44 0.2

(b) Mean number of LPs and time required
to find the best solution (sample size of 10,
H1/H2 show heuristics enabled).

Fig. 5. Experimental results for the worked example program shown in Fig. 1

(for heuristic 1) is performed by SymPy, a computer algebra library for Python.
Experiments were run on a 3GHz 64-bit Intel machine running OpenBSD.

The tables in Fig. 5 show some experimental results for the worked example
(Fig. 1) with varying initial values of m1 and heuristics configurations. Because
the algorithm is non-deterministic, each experiment configuration was run 10
times and averages were taken. We show the intervals inferred by our analysis, the
mean number of linear programs required (out of a possible worst case number of
210+1−1 = 2047) to find the best solution and the average amount of time spent
finding the solution (in seconds). The intervals of the best solution are precise
and in all cases, our heuristics reduced the number of LPs required to find the
best solution. Further, when m1 ∈ [63, 71], the loop body is not entered and
this is reflected in our results by the empty intervals at program points 3 and 4.
Interestingly run-times appear to be longer when heuristic 1 is enabled. Profiling
revealed that the evaluation of complimentary constraints (GetViolatedCCs)
accounts for a large portion of solving time for this small example.

A second program was analysed by our analysis, this time at the binary level.
Fig. 6 shows the disassembly of a defective implementation of memcpy(3) for the
x64 architecture. The function takes a pointer to a buffer to write to (rdi), a
buffer to read from (rsi) and a length argument (rdx). The r15 register is used
as both a loop counter and as an index into the source and destination buffers.
Let r151 ∈ [lr15,1, ur15,1] be the interval representing r15 at the program point
marked p1, where bytes are written into the destination buffer. In order to apply
our conditional semantics to binary programs, high-level predicates are extracted
from pairs of assembler instructions which define and use boolean flags within
the status register [5]. For example, cmp r15, rdx; jg return causes a control
flow despatch if r15 > rdx.
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memcpy: xor r15 , r15 # loop counter
loop: cmp r15 , rdx

jg return
mov byte ptr cl, [rsi+r15] # read out src

p1: mov byte ptr [rdi+r15], cl # write in dest
inc r15
jmp loop

return: mov rax , rdi # return ptr to dest
ret

Fig. 6. A function to copy buffers

rdx ∈ r151 H1 H2 MLP MT

[8, 8] [0, 8]

✗ ✗ 25143 75
✓ ✗ 18596 178
✗ ✓ 11940 45
✓ ✓ 69 1

[8, 4096] [0, 4096]

✗ ✗ 31045 116
✓ ✗ 18963 198
✗ ✓ 8989 45
✓ ✓ 62 1

[31, 66] [0, 66]

✗ ✗ 28639 107
✓ ✗ 18963 194
✗ ✓ 13885 55
✓ ✓ 68 1

(a) memcpy(3)

rdi ∈ rax2 H1 H2 MLP MT

[8, 8] [1, 8]

✗ ✗ 36621 219
✓ ✗ 20342 302
✗ ✓ 7891 34
✓ ✓ 85 1

[7, 13] [1, 13]

✗ ✗ 35856 151
✓ ✗ 19977 258
✗ ✓ 8701 37
✓ ✓ 99 1

[4, 128] [1, 128]

✗ ✗ 40352 166
✗ ✓ 19696 252
✓ ✗ 7948 34
✓ ✓ 105 1

(b) Endian swap

Fig. 7. Results for the second and third experiments (MLP is the mean number of
linear programs required and MT is the mean time in seconds). Means calculated from
a sample of 10 runs.

Fig. 7a shows the results of our analysis upon the memcpy(3) implementation.
If a buffer size of between 8 and 4096 is passed to this function, then our analy-
sis indeed infers r151 ∈ [0, 4096], thereby indicating that one byte is potentially
written outside of the allocated buffer. Again, the number of LPs the analysis is
required to solve is improved through the use of heuristics. Evaluation of compli-
mentary constraints is especially expensive when heuristic 1 alone is enabled, but
the overall time spent searching is vastly improved through the use of heuristics
1 and 2 combined. This experiment utilises 18 complimentary constraints, so the
theoretical worst case number of LPs required is 218+1 − 1 = 524287.

Fig. 8 shows an algorithm to byte-swap 16-bit words in a memory buffer. The
function takes a buffer length (rdi) and a pointer to a buffer to swap (rsi).
The register rax is being used as an index into the buffer pointed to by rsi. Let
rax1 ∈ [lrax,1, urax,1] and rax2 ∈ [lrax,2, urax,2] be the intervals of rax at marked
points p1 and p2 respectively. The results of the analysis of this program (Fig. 7b)
highlight an interesting deficiency in our analysis. If the function is called with
an odd buffer size argument, then the function indeed writes one byte outside its
allocated buffer. Yet if we pass our analysis a a buffer size argument of 8, then
we infer rax2 ∈ [1, 8]. This would suggest that a byte was written outside of the



104 E. Barrett and A. King

endswap : xor r15 , r15 # loop counter
loop: cmp r15 , rdi

jge return
mov rax , r15 # rax is used as a write index
mov byte ptr dl, [rsi+r15]
inc r15
mov byte ptr cl, [rsi+r15]
inc r15

p1: mov byte ptr [rsi+rax], cl
inc rax

p2: mov byte ptr [rsi+rax], dl
jmp loop

return: ret

Fig. 8. A 16-bit byte swap

allocated buffer, however, in reality this is untrue. Our analysis is unable to take
into account the strided nature of the loop count and thus over-approximates
the upper bound of rax upon entry to the loop. Nevertheless, the solution safely
over-approximates all possible register values. The solution is found quickly and
in a fraction of the worst case number of linear programs (222+1− 1 = 8388607).

5 Discussion

The analysis presented in this paper was mostly inspired by the pioneering work
by Rugina et al. [22]. Our extension to Rugina’s work diverges in some aspects
with response to some shortcomings that are not mentioned in the literature. In
this section we will discuss these aforementioned shortcomings thus providing
an insight into some of the design decisions of our analysis.

5.1 Conditional Semantics

It would appear that Rugina’s branching semantics are unable to model a class
of loop constructs correctly. One such example is the program:

assume(m < 10); B1: int i = 10; B2: while (i >= m){B3: m = m + 1;}

Following Rugina’s constraint generation scheme we reduce this program to the
following constraints, which are infeasible:

li,2 ≤ 10 ∧ 10 ≤ ui,2 ∧ lm,2 ≤ lm,1 ∧ um,1 ≤ um,2 ∧
li,3 ≤ lm,2 ∧ ui,2 ≤ ui,3 ∧ lm,3 ≤ lm,2 ∧ um,2 ≤ um,3 ∧
li,2 ≤ li,3 ∧ ui,3 ≤ ui,2 ∧ lm,2 ≤ lm,3 + 1 ∧ um,3 + 1 ≤ um,2

5.2 Junk Propagation

In both our and Rugina’s analysis unreachable code causes the existence of empty
intervals (ie. an interval, [l, u], where l > u). Consider the following program
snippet, in which B3 is unreachable:
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B1: int i = 12; B2: while (i <= 10) {B3: i = i + 1}

If we analyse this program via Rugina’s method, we infer the following intervals:
i2 ∈ [12, 15], i3 ∈ [12, 10]. The interval at i3 is empty, correctly indicating that
this program point is unreachable. Unfortunately, the loop propagates bounding
information from B3 back to B2, thereby compromising the precision of the
upper bound of i2. We call this phenomenon “junk propagation”.

We overcome imprecision incurred through junk propagation by treating the
false branch of the loop check (or any conditional for that matter) as a condi-
tional whose predicate is a negation of the predicate of the true branch. For the
counter-example we have just presented, we insert a loop exit block B4 which is
a conditional edge asserting that i > 11, thereby retaining the precision of the
upper bound of i2.

6 Related Work

Range analysis has a long history in compilation and verification, dating back to
the seminal work of Harrison [16]. This work resonates with ideas in the widening
and narrowing approach to abstract interpretation [9], for instance, “this bound
may be fed back into the range analysis to revise the ranges” is reminiscent of
narrowing which classically following widening so as to tighten ranges. In this
work, “each range description describes an arithmetic sequence with a lower
bound, upper bound and an increment”, and thus the descriptions are actually
strided intervals [20], abstractions that are considered to be a recent invention.
Widening and narrowing is a research topic within its own right [6,14,25]; a
topic that is not confined to abstract interpretation either. Indeed, widening has
been applied in conjunction with SMT solving [18], to pose successively weaker
candidate loop invariants to the solver until an invariant is found that holds
across every iteration of the loop. Our paper, together with [15,26], offers an
alternative way of handling loops that aspire to directly compute a fixpoint.

As already discussed, range analysis can be expressed as mathematical integer
programming [15], which, in turn, can be reduced to integer linear programming.
In this approach binary decision variables are used to indicate the reachability
of, among other things, guarded statements. This idea could be developed by
making use of the finite nature of machine arithmetic, and encoding a branch
condition x ≤ y as two inequalities x ≤ y +M(1− δ) and x > y +Mδ where δ
is the binary decision variable and M is a sufficiently large number [29].

Ideally ranges need be combined with the relational domain of congruences [7]
since then a range on one variable can be used to trim the range on another
and vice versa. Congruence relations, that is, linear constraints that respect the
modulo nature of computer arithmetic, can be computed prior to range analysis
which leaves the problem of how to amalgamate them into a system of linear
constraints. However the congruence x = y mod 2k holds iff there exists an
integer variable n such that x = y + n2k. This suggests that integer linear
programming could be the right medium for marrying congruences with ranges.
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Iterative value set analyses have been proposed for binary code [5]. The work,
like ours, is predicated on extracting high level predicates from low level con-
ditional jumps. For example the instruction cmp eax, edx followed by a ja

instruction causes a jump if eax > edx. These authors argue that the predicates
can be extracted by pattern matching, a topic that is discussed elsewhere [7].

Interpolation has recently come to the fore in model checking [19] and tech-
niques have now emerged for constructing interpolants in linear arithmetic [23].
Such techniques could be applied with range analysis to find combinations of
range constraints that are inconsistent and hence diagnose unreachable code.

7 Conclusions

With an eye towards simplicity, we have shown how range analysis can be com-
puted, not as the solution to a system of recursive equations, but as the solution
of a system of constraints over min and max expressions. We have demonstrated
how such constraints can be reduced to linear constraints, augmented with com-
plementary constraints, and thus solved by repeated linear programming. The
method can be implemented with an off-the-shelf linear programming package
which can be used as a black-box. Furthermore, we have shown how the number
of calls to the black-box can be reduced by using search heuristics. The result is
an analysis that does not depend on classical fixpoint acceleration methods such
as widening since it is designed to compute the fixpoint directly.
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8. Chen, L., Miné, A., Wang, J., Cousot, P.: Linear Absolute Value Relation Anal-
ysis. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 156–175. Springer,
Heidelberg (2011)

9. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977)

http://nvd.nist.gov
http://www.itu.dk/courses/AVA/E2005/bdd-eap.pdf


Range Analysis of Binaries with Minimal Effort 107

10. Cousot, P., Cousot, R.: Comparing the Galois Connection and Widening/Narrow-
ing Approaches to Abstract Interpretation. In: Bruynooghe, M., Wirsing, M. (eds.)
PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)

11. Doan, D.: Commercial Off the Shelf (COTS) Security Issues and Approaches. Mas-
ter’s thesis, Naval Postgraduate School, Monterey, California (2006),
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA456996

12. Durden, T.: Automated Vulnerability Auditing in Machine Code. Phrack Maga-
zine 64 (2007)

13. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated Whitebox Fuzz Testing. In:
NDSS. The Internet Society (2008)

14. Gopan, D., Reps, T.: Lookahead Widening. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 452–466. Springer, Heidelberg (2006)

15. Goubault, E., Le Roux, S., Leconte, J., Liberti, L., Marinelli, F.: Static Analysis by
Abstract Interpretation: A Mathematical Programming Approach. ENTCS 267(1),
73–87 (2010)

16. Harrison, W.H.: Compiler Analysis for the Value Ranges of Varibles. IEEE Trans-
actions on Software Engineering SE-3(3), 243–250 (1977)

17. Kapur, D.: Automatically Generating Loop Invariants using Quantifier Elimina-
tion. In: International Conference on Applications of Computer Algebra (2004)

18. Leino, K.R.M., Logozzo, F.: Using Widenings to Infer Loop Invariants Inside an
SMT Solver, Or: A Theorem Prover as Abstract Domain. In: WING, pp. 70–84
(2007)

19. McMillan, K.L.: Applications of Craig Interpolants in Model Checking. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 1–12. Springer,
Heidelberg (2005)

20. Reps, T.W., Balakrishnan, G., Lim, J.: Intermediate-Representation Recovery from
Low-Level Code. In: PEPM, pp. 100–111. ACM (2006)
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Abstract. Static analyzers usually return partial results. They can assert that
some properties are valid during all possible executions of a program, but gener-
ally leave some other properties to be verified by other means. In practice, it is
common to combine results from several methods manually to achieve the full
verification of a program. In this context, Frama-C is a platform for analyzing
C source programs with multiple analyzers. Hence, one analyzer might conclude
about properties assumed by another one, in the same environment. We present
here the semantical foundations of validity of program properties in such a con-
text. We propose a correct and complete algorithm for combining several partial
results into a fully consolidated validity status for each program property. We
illustrate how such a framework provides meaningful feedback on partial results.

1 Introduction

Validating a program consists in exhibiting evidence that it will not fail during any of its
possible executions. From an engineering point of view, this activity generally consists
in manual reviews, testing and formal verifications. Static analyzers can be used to
prove properties about programs. More precisely, given the source code of a program,
an analyzer states a property of all of its possible executions. However, analyzers are
generally partial: they assert some program properties, but leave other ones unverified.
Let us illustrate this point of view with some examples of verification techniques.

Abstract Interpretation [1]. This technique computes over-approximations of possi-
ble values of each memory location during program execution. When all values in
the over-approximation of the memory entail a property, then the property holds
during any concrete execution of the program. Otherwise, nothing can be claimed
about the property. When such a property is required to hold for the analysis to
proceed, the analyzer generally assumes its validity. Hence, the analyzer makes an
assumption to be verified by other means.

Deductive Verification [2]. This modular technique explicitly proves that a property
holds after the execution of a small piece of code, whenever some other property
holds before it. We generally say that the pre-condition of the verified code entails
its post-condition. These small theorems can then be chained with each others in
order to prove that, whenever some initial pre-condition holds on initial states, the
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desired properties hold on all concrete executions of the program. Generally, not
all these elementary steps can be proved, and there remain some properties to be
asserted by other means.

Testing. In some sense, testing still falls into the depicted category of analyzers. Ex-
ecuting a test actually asserts that, for all possible executions, if the considered
execution corresponds to the test case, then the property defined by the oracle of
the test holds. This point of view is of particular interest when we aggregate a col-
lection of tests that covers some criteria. Then, one might claim that the verified
properties might only be invalid outside of the covered criteria. Last but not least,
testing is also used to exhibit properties that do not hold, an activity of major inter-
est during the verification engineering process.

A general practical approach is then to combine several analyzers to increase the cov-
erage of verified properties. Thus there is a need for ensuring the consistency of several
partial results. The purpose of this article is to give a semantical foundation to this
problem and to provide an algorithm to combine several partial results from different
analyzers. A salient feature of our approach is the use of a blocking semantics, which
is pivotal in ensuring the correctness of the aforementioned algorithm. It allows the
correctness to be independent from the hypotheses that the analyzers use to establish
their results. These claims remain nevertheless essential for the completeness of the al-
gorithm. The proposed framework is language independent, although it is instantiated
in Frama-C [3], a platform dedicated to the verification of critical embedded software
written in C, typically in the domain of avionics and energy industries.

Related Work. Combining analysis techniques (in particular static and dynamic ones)
is a quite recent but not new idea [4]. However only very few of these works tackle
the goal of formally verifying a program by combining these techniques in a consistent
way. Heintze at al. [5] proposes a framework by equational reasoning to combine an
abstract interpreter with a deductive verification tool to enhance verification of user as-
sertions. As in our work, it does not depend on specific analyzers and is correct modulo
analyzer’s correctness. However, instead of focusing on merging analyzer’s results, it
implements a new analyzer which operates on the results of the analyzers which it is
based on. This analyzer is incomplete in the sense that it not does always provide the
more precise result. More recently, the Eve verification environment for Eiffel programs
combines a deductive verification tool and a testing tool in order to make software ver-
ification practical and usable [6]. Eve reports the separated results obtained from this
tool. Since tools which Eve is based upon are not supposed to be correct, Eve computes
a so-called correctness score for each property. This score is a metrics indicating a level
of confidence in its correctness. That is quite different from our approach where we
suppose that analyzers are correct but can use other properties as hypotheses to build
a proof. Comar et al. [7] also aim to integrate a deductive verification tool with testing
to verify Spark1 programs. As in our work, proofs are based on a notion of hypotheses,
called assumptions in their context. However, to avoid consistency issues, they split
the program in several chunks: in each chunk, the same analysis techniques must be
applied. In our approach, we allow the user to verify each property by different means.

1 Spark is a subset of Ada dedicated to the development of critical software.
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Outline. The article is structured as follows. First Section 2 presents the problem and
the key concepts thanks to a simple C program and a set of properties to verify on it.
Section 3 introduces the semantic framework where key concepts are precisely defined.
Section 4 presents the algorithm to compute consolidation statuses of properties in a
logical way. Section 5 finally focuses on practical usages of the proposed framework:
we explain the large variety of user feedbacks that can be obtained after consolidation.

2 Key Concepts

This section introduces all the concepts presented in this article through a running ex-
ample. It consists of a short program written in C depicted in Figure 1. The program
initializes an array with values returned by some external function f for which the code
is not provided, but only some property P on its result is known. We are interested in
proving different categories of properties on this short program:

– the program should never produce runtime errors, which are situations where the
program’s behavior is explicitly undefined by the ISO Specification of the C pro-
gramming language, such as divisions by zero or accesses to uninitialized variables
and invalid memory cells;

– once initialized, the values of the array satisfy the property P as expected.

Properties in the first category implicitly follow from the language semantics. The sec-
ond category needs to be expressed explicitly by the developer in order to be verified.
The Frama-C platform supports the ACSL language [8] for this purpose. We do not get
into details of ACSL here: it is a first-order logical language designed to expressing
properties of a C program during its execution.

1 /*@ axiomatic A { predicate P(int x); } */
2

3 /*@ ensures P(\result);
4 @ assigns \nothing; */
5 int f(int);
6

7 void main(void) {
8 int i, n = 0, a[100];
9 for(i = 1; i <= 10; i++) n += i;

10 // Have n = Sum {1..10}
11 for(i = 0; i < n; i++) a[i] = f(i);
12 //@ assert \forall integer k; 0 <= k < n ==> P(a[k]);
13 }

Fig. 1. Annotated Code Example

We now comment the source code of Figure 1 in more details. ACSL constructs are
inserted into @-comments. The predicate P is abstractly defined in the pure logic world
(axiomatic clause). The external function f is declared to have no visible side-effect
(assigns clause), and to have its results satisfying P (ensures clause). The code to be
verified lies in functionmain. It consists in two loops: the first one computes the sum of
integers from 1 to 10 and stores the result in local variable n; the second loop initializes
the n-th first indices of array a with function f. Finally, the ACSL clause assert states
the additional property we want to verify for indices less than n. The set of properties
to be verified for this simple program is then:
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Overflows and Runtime Errors: three potential arithmetic overflows and one poten-
tial invalid memory access.

User Property: one user assertion to prove.
External Properties: the specification of function f.

Two static analyzers distributed with Frama-C address those properties:

Value [9] uses a context sensitive forward abstract interpretation to compute an over-
approximation of possible values of variables at each program point. This analysis
verifies the absence of any runtime error and can also handle simple ACSL asser-
tions, like quantifier-free assertions.

Wp [10] implements deductive verification. This modular analysis is able to verify com-
plex logical annotations using external automated or interactive provers, but
requires extra code annotations to carry function contracts and loop invariants.

We intend here to use Value for proving the absence of runtime errors, and Wp to prove
the assertion, which is not in the scope of Value. The external specification of f will
be trusted here. In the rest of this section, we first report on an incremental study for
verifying this program. Then, we introduce our key concepts of local and consolidated
statuses for properties managed by Frama-C.

It would also be possible to use Wp or other analyzers to prove the absence of runtime
errors thanks to the RTE Frama-C’s plug-in, which generates standard ACSL assertions
for any potential runtime error in a source code. More generally, using RTE promotes
runtime errors to standard properties that smoothly integrate with our framework. How-
ever, even small C programs reveal many potential runtime errors, and generating all
assertions produces a lot of noise compared to user-defined assertions. When Value
can be used, it is then much more preferable to rely on it for runtime errors.

2.1 Verifying Properties in Practice

Running Value alone with its default configuration on this program gives poor results:
variable i is not tied enough and the over-approximation of n contains overflowing
values that become negative. Hence the memory access to a[i] in the second loop
may be invalid and an alarm is generated. Running Value a second time with option
-slevel 100 makes the analyzer more precise during the first loop2. This time, all
potential errors are discarded, and we get the following interesting properties on the fi-
nal memory state: n is equal to 55, a[0..54] takes any int value, and a[55..99]
remains uninitialized.

RunningWp to prove the quantified assertion requires additional annotations from the
developer, especially on loops. As illustrated in the Wp tutorial [11], a canonical way of
proving such a property is to insert the loop invariants of Figure 2. The results of running
Wp alone are quite encouraging: all annotations are discharged by the Alt-Ergo theorem
prover [12], except the first loop invariant 0<=i<=n. Wp proves the preservation of this

2 The option -slevel N of Value makes the analyzer works over N different over-
approximations in parallel. On our running example, the maximum of precision is obtained
for N ≥ 55. N ≥ 10 is sufficient to prove the intended properties.



112 L. Correnson and J. Signoles

1 /*@ axiomatic A { predicate P(int x); } */
2

3 /*@ ensures P(\result);
4 @ assigns \nothing; */
5 int f(int);
6

7 void main(void) {
8 int i, n = 0, a[100];
9 for(i = 1; i <= 10; i++) n += i;

10 /*@ loop invariant 0 <= i <= n ;
11 @ loop invariant \forall integer k; 0 <= k < i ==> P(a[k]);
12 @ loop assigns i,a[0..n-1]; */
13 for(i = 0; i < n; i++) a[i] = f(i);
14 //@ assert \forall integer k; 0 <= k < n ==> P(a[k]);
15 }

Fig. 2. Annotated Code Example for Wp

invariant over loop iterations, but fails to establish it at the very beginning of the loop,
because there is no invariant on the first loop establishing that 0<=n. Of course, it is
possible to complete the verification with Wp on the first loop, but these range properties
over n are simple enough to be verified by Value. Running both Value with option
-slevel 100 and Wp on the completely annotated code of Figure 2, we obtain the
following results:

Runtime Errors: all potential runtime errors are discharged by Value.
Loop Annotations: Wp proves two of the three, but leaves the first invariant unverified.

Value proves only this range invariant.
User Property: Wp proves it, but under the hypothesis of the range invariant.
External Properties: they are assumed here, but should be verified later against both

the definition of P and the actual code of f.

Intuitively, the verification task is now complete: everything has been discharged by at
least one analyzer. But formal practitioners would notice that it is not clear whether such
a verification is conclusive. Indeed, complex dependencies between properties might
interfere with each others.

2.2 Soundly Merging Results

A presentation of the results obtained during our verification process can be represented
by a graph. With a node for each property, we can represent assumptions by edges from
the proved property towards its hypotheses. We also represent analyzers as nodes, with
edges towards the properties they established. To increase readability, it is convenient
to merge isomorphic nodes into a single one. On our running example, the associated
final graph is represented in Figure 3.

Such a report is actually accessible through the report plug-in and from the graphical
user interface of Frama-C. Let us now present how Frama-C is able to perform this
consolidation and report about this verification process. In the example presented above,
we have collected different results at different times by using two analyzers with various
parameters. Hence, it is not possible to build efficiently and incrementally the desired
graph of Figure 3. Instead, it is easy to register each verification experiment with their
parameters in a database and to build the consolidation on demand.
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Wp (Alt-Ergo)

Value (slevel 100)

invariant ∀k ∈ Z, 0 ≤ k < i =⇒ P (a[k])
assert ∀k ∈ Z, 0 ≤ k < n =⇒ P (a[k])
assigns i, a[0..n − 1]

invariant 0 ≤ i ≤ nassigns \nothing
ensures P (\result)

Valid

Admitted (f) Valid

Fig. 3. Consolidated Graph of Properties Validity

This is the key idea behind local versus consolidated statuses of properties. We in-
troduce the concept of emitter to identify an analyzer with all of its parameters. The
partial results provided by an analyzer are registered in a Frama-C database. Each entry
of the database precisely consists of:

– an emitter made of an analyzer with concrete parameters’ values;
– a target property;
– a local status, ranging over True, False or Dont_know;
– a list of properties notably used by the analyzer to claim this local status.

The entries obtained after many verification rounds can be very complex to represent.
The graph in Figure 4 shows an extract from the full data collected during the verifi-
cation of Example 2. Two kinds of nodes distinctly represent properties and emitters.
Edges are added when analyzers emit local statuses. For instance, three edges are added
when Wp (using Alt-Ergo as prover) emits True for the user assertion A: one from Wp
to A labeled by the status, and two from A to the loop invariants representing the hy-
potheses under which this status holds.

Wp

-wp-proof alt-ergo

-slevel 100

Value

-slevel 0

A: assert
∀k ∈ Z, 0 ≤ k < n =⇒ P (a[k])

invariant
0 ≤ i ≤ n

invariant
∀k ∈ Z, 0 ≤ k < i =⇒ P (a[k])

assigns
\nothing

assigns
i, array[0..n− 1]

ensures
P (\result)

Wp

Wp

Wp

Wp

WpWp

Wp

Wp

True

Dont_know
True

True

True

Dont_know

Fig. 4. Graph of Local Status (extract)

Let us illustrate how we obtain the consolidated status for this user assertion. Con-
sider all the dependencies that were emitted in conjunction with a local status True.
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All these paths either end at the range invariant, which is locally True with no more
assumptions, or at the function contract of f. The internal cycle between loop invari-
ants represents Wp’s internal inductive scheme. Hence the consolidation algorithm of
Frama-C concludes that everything is proven, except the admitted properties of f. As
we will see, consolidation can be quite challenging on more involved programs. For in-
stance, a property may be false but only over unreachable traces. The general algorithm
is complex enough for a semantical approach to be necessary.

3 Semantics

This section formalizes the semantics of annotated programs and property statuses. Our
formalisation is independent from both the programming language and the formal spec-
ification language: we only suppose that the programming language is imperative, based
on a set of instructions, and admits a specification language based on a set of predicates.

Property. A property π = φ � ι is a predicate φ attached to the program point just
before the instruction ι. A predicate which does not depend on a program point (e.g. a
mathematical lemma required to prove the program) is supposed to be attached to an
arbitrary instruction ι0 without any effect and put just before the first instruction of the
program. We note ΦP the finite set of properties of a program P .

Evaluation. The programming language being imperative, we suppose that there is a
notion of state in which instructions are evaluated consistently with the operational
semantics of the programming language. This notion of evaluation can be extended to
predicates, as presented for instance in Herms’ works [13]: a state ς validates φ, denoted
by ς |= φ, if and only if the predicate φ is valid in the state ς .

Trace. We now consider that the underlying programming language comes with a trace
semantics [14,15] keeping all intermediate instructions and states during execution.
Thus a trace σ = (ςi � ιi)i is a (potentially infinite) sequence of instructions, each of
them coming with the state in which it is evaluated. Traces begin at the early program
entry point ς0 � ι0 and are consistent with the small step operational semantics of the
program: at each step k, the transition ςk

ιk−→ ςk+1 holds in the operational semantics of
the program. A finite trace σ does not contain the final state ς of a finite execution. But
it is still possible to extend it with (ς � skip) where skip is the identity instruction
which does not modify ς . We note σ1 ≺ σ2 if and only if σ1 is a strict trace prefix of
σ2. Also, we say that the trace σ ends at instruction ι in state ς , and we note σ ↪→ ς � ι,
if and only if σ is a finite trace of length n such that ςn = ς and ιn = ι. By extension,
for a property π attached at instruction ι, we note σ ↪→ π if and only if σ ↪→ ς � ι for
some state ς .

Trace Validity. We also extend the notation |= for predicates to traces and properties.
With π = φ � ι, we say that σ validates π, and we note σ |= π, the fact: if σ ends at
ς � ι then ς |= φ.

Trace Invalidity. The converse notation, σ �|= π, is used for the logical negation of σ |=
π. Remark it is not equivalent to σ |= ¬π, however, we still have σ �|= π ⇒ σ |= ¬π.
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Blocking Semantics. The correctness of our algorithm (see Theorem 1) requires a
blocking semantics which is usual in semantics of annotated programs (see for in-
stance [13,16]). In our theoretical framework, it can be expressed as follows.

Assumption 1 (Blocking Semantics). If a trace leads to an invalid property, then the
program stops and does not evaluate the following properties in the execution flow.
More formally:

∀ traces σ and σ′, ∀ properties π and π′, if σ′ ≺ σ and σ′ �|= π′, then σ �↪→ π.

If all properties are valid, the blocking semantics coincides with the non-blocking one.

Reachability. An associated concept is the reachability of some instruction of the pro-
gram. More precisely, we are interested in the reachability of instructions to which
given properties are attached. In our framework, this concept is represented by global
predefined (meta) properties of program properties, attached to the initial state ι0 of the
program:

reach(π) � (∃σ, σ ↪→ π) � ι0.

Local Validity. We say that a property π is locally valid under a finite set of hypotheses
ξ, and we note ξ |= π, if and only if:

∀ trace σ, if (∀πi ∈ ξ, ∀ trace σi, if σi ≺ σ, then σi |= πi), then σ |= π.

Informally, a property is locally valid if it is validated by each trace σ ending at it,
assuming that each hypothesis πi is itself validated by all subtraces of σ ending at πi.

Local Invalidity. A property π is locally invalid under a finite set of hypotheses ξ, and
we note ξ �|= π, if and only if:

if (∀πi ∈ ξ, ∀ trace σi, if σi ≺ σ, then σi |= πi), then ∃ trace σ, σ �|= π.

A property is locally invalid if there is a trace σ ending at it but does not validate it,
but still assuming each hypothesis πi is valid on any subtrace of σ ending at πi. These
notions of local validity and local invalidity correspond to statuses emitted by Frama-C
analyzers as we will see in assumptions 2 and 3 in the next section. Note that being
locally invalid is not equivalent to not being locally valid: ξ �|= π �⇐⇒ ¬(ξ |= π).
Moreover, none of these predicates is equivalent to ξ |= ¬π.

Cycles. Statements {π} |= π and ξ |= πi with πi ∈ ξ are not tautologies in loops.
Instead they exactly correspond to proofs by induction, as committed by the strict prefix
relation on traces. These statements are actually valid if and only if we can prove σ |= π
(resp. πi), for any trace σ, under the hypotheses that σj |= π for any strict subtrace σj
of σ (resp. σj |= πj for any πj ∈ ξ).

Global Validity. Last but not least, a property π is valid, and we note |= π, if and only
if σ |= π for each trace σ. We say that π is invalid, and we note �|= π, if π is not valid,
that is ¬(|= π). Once again, �|= π �⇐⇒ |= ¬π. These notions of validity and invalidity
correspond to the consolidated statuses computed by our algorithm from all the local
validity statuses emitted by the analyzers.
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4 Consolidation Algorithm

This section presents a high-level view of the so-called consolidation algorithm imple-
mented in Frama-C. From the local statuses of a property π computed by each emitter
under hypotheses, each of them corresponding to the local validity or invalidity of π,
this algorithm computes its consolidated status corresponding to |= π.

4.1 Local Statuses

As already mentioned, an emitter can emit three different local statuses, namely True,
False and Dont_know. The third one indicates that it is not able to conclude. Let Λ be
the set of these local statuses. Local statuses emitted by analyzers are collected into a
database, and we denote LP the lookup function that returns them for each property:

LP : ΦP →P(Λ ×P(ΦP ))

If an emitter put a local status λ to the property π with hypotheses ξ, then (λ, ξ) ∈
LP (π). We expect that analyzers are correct and emit local statuses consistently with
the underlying annotated program semantics, in particular local validities and local inva-
lidities of annotations. Furthermore, when emitting False for a propertyπ, our algorithm
also requires that the only possible hypothesis is reach(π). The following assumption
formalizes this restriction.

Assumption 2 (Strong Correctness of Analyzers). We assume that each analyzer is
strongly correct: it emits the local status True (resp. False) only for locally valid (resp.
invalid) properties under the hypotheses really used (and limited to reachability in case
of invalidity). More formally, for each property π of a program P :

∀(λ, ξ) ∈ LP (π),
{

if λ = True, then ξ |= π;
if λ = False, then ξ �|= π and ∀πi, πi = reach(π).

However, in practice, it may be complicated or inefficient to compute the exact set of
hypotheses which is used to compute a local status. Actually, in presence of a blocking
semantics, the correctness of the consolidation algorithm does not rely on these hy-
potheses, as explained by Theorem 1 (correctness of the algorithm). They are useful for
Theorem 2 (completeness of the algorithm) and to compute more precise informations
for the end-user in the unconclusive cases. Thus, for correctness, the following weaker
assumption is enough.

Assumption 3 (Weak Correctness of Analyzers). Analyzers are assumed to be weakly
correct. They emit the local status True (resp. False) only for locally valid (resp. in-
valid) properties under some unknown hypotheses (resp. reachability). More formally,
for each property π of a program P :

∀(λ, ξ) ∈ LP (π),
{

if λ = True, then ∃ξ′ ⊆ ΦP , ξ
′ |= π;

if λ = False, then ξ �|= π and ∀πi, πi = reach(π).
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Ensuring correctness of analyzers in practice is out of the scope of this paper3 and
is strongly related to the qualification of verification tools for an operational use in a
certified industrial process, for instance with respect to norms like aeronautic’s DO-
178C. Although none of the Frama-C analyzers is qualified at this time, efforts have
already been made in this direction [13,17].

4.2 Invalidity and Reachability

Unfortunately there is a practical issue with the previous local status False: proving
local invalidity of a property π requires to prove two different properties: (1) it exists
a trace σ which ends at π and (2) this trace does not validates π. Let us examine what
tools are able to assess.

– Deductive methods based on weakest precondition calculus are usually not able to
prove invalidity. They are only able to prove validity: in practice, they never emit
False.

– Testing tools usually prove together properties (1) and (2) by exhibiting a test case
which invalidates the property: all is fine.

– Abstract interpreters only reason with an over-approximation of all possible traces
of the program. Thus, when a property is invalidated for all these over-approximated
traces, it means the property is invalid if the program point is reachable. But, ab-
stract analyzers are usually not able to prove reachability.

For solving this issue, Frama-C allows emitters to emit either the local status False_-
and_reachable or the local status False_if_reachable. So, instead of working with LP ,
our algorithm uses the function L�P : ΦP →P(Λ� ×P(ΦP )), where Λ� is the set of
emittable statuses defined by:

Λ� � {True,Dont_know, False_if_reachable, False_and_reachable}.
For any program P , thanks to the reach operator, we can automatically compute LP
from L�P as follows:

∀π ∈ ΦP ,LP (π) � {(λ, ξ) |λ ∈ {True,Dont_know} and (λ, ξ) ∈ L�P (π)}
∪ {(False, ξ) | (False_and_reachable, ξ) ∈ L�P (π)}
∪ {(False, ξ ∪ {reach(π)}) | (False_if_reachable, ξ) ∈ L�P (π)}

Emitting False_and_reachable is changed into emitting False, and emitting False_if_-
reachable is modified into emitting False under the additional hypothesis reach(π).
Emitting True and Dont_know is left unchanged. This definition of LP preserves both
the strong and the weak correctness of analyzers (assumptions 2 and 3).

To avoid an inconsistency of our algorithm in a corner case leading to uncorrectness,
we also introduce the following assumption for any reach(·) property.

Assumption 4 (Do not prove unreachability with reachability). We assume that no
analyzer tries to prove unreachability of a property π by using its reachability. More
formally, for a given program P :

∀π ∈ ΦP , ∀(λ, ξ) ∈ LP (reach(π)), if λ = False, then reach(reach(π)) /∈ ξ.
3 See the small discussion about the status Inconsistent latter in this section however.
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4.3 Algorithm

We now introduce the consolidation algorithm itself. Applied on a given program P , it
may be seen as a function SP : ΦP → Σ in which the set Σ is defined by:

Σ � {Valid, Invalid,Unknown, Inconsistent}.

The third status is returned by the algorithm when it is not able to conclude, while the
last one is returned when there is both a proof of validity and a proof of invalidity:
in such a case, we can conclude that one emitter is not (strongly) correct4. Before the
formal definition of SP , we present an informal sketch of the algorithm:

1. abort if assumption 4 is violated;
2. compute the most precise local status λ;
3. for each emitter which emits λ, compute the conjunction of the consolidated sta-

tuses of its hypotheses;
4. compute the most precise conjunction γ computed above;
5. compute the status of γ =⇒ λ;
6. check for inconsistencies.

Step 1 of the algorithm is a simple structural check.
Computing the most precise local status in Step 2 relies on the operator

∨L based on
∨L which ensures local validity and is defined below. It is mosly equivalent to a logical
disjunction in a tri-valued boolean logic. But, in the case where an emitter emits True
and another one emits False, we do not choose yet a status, even if it would be correct
to choose True: in order to be complete, we wait Step 5 of the algorithm to select the
one which is possible to fully consolidate.

∨L True Dont_know False
True { True } { True } { True, False }

Dont_know { True } { Dont_know } { False }
False { True, False } { False } { False }

L∨ {λn}n =

{
λ1 ∨L ... ∨L λn if n > 0
Dont_know otherwise

Computing the conjunction of the statuses of the hypotheses in Step 3 of the algo-
rithm is done by the operator

∧H based on∧H and defined below. This operator exactly
is the standard conjunction of a tri-valued boolean logic. We omit the case Inconsistent
which is treated as Unknown here, and still returns Unknown.

∧H Valid Unknown Invalid
Valid Valid Unknown Invalid

Unknown Unknown Unknown Invalid
Invalid Invalid Invalid Invalid

H∧ {λn}n =

{
λ1 ∧H ... ∧H λn if n > 0
Valid otherwise

4 In practice, other origins are possible like inconsistent user-defined ACSL axiomatics.
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Computing the most precise consolidated status as performed in Step 4 of the al-
gorithm is done by the operator

∨H based on ∨H and defined below. It exactly cor-
responds to the standard disjunction of a tri-valued boolean logic. We omit the case
Inconsistent which never occurs here, since ∧H returns Unknown instead.

∨H Valid Unknown Invalid
Valid Valid Valid Valid

Unknown Valid Unknown Invalid
Invalid Valid Invalid Invalid

H∨ {λn}n =

{
λ1 ∨H ... ∨H λn if n > 0
Unknown otherwise

The implication operator
HL
=⇒ involved in Step 5 of the algorithm is defined below

(left part in row, right part in column). Like for ∨H , Inconsistent is omitted and treated
as Unknown.

HL
=⇒ True Dont_know False

Valid Valid Unknown Invalid
Unknown Unknown Unknown Unknown

Invalid Unknown Unknown Valid

This operator corresponds to the standard implication of a tri-valued boolean logic,
but most cases remain unknown: remember that �|= π means that π is incorrect for some
trace σ. Thus it would be wrong to assume than an hypothesis πi being incorrect for
some trace σi leads to a correct goal for any trace: it is still possible to have another
trace σ independent of σi (σi �≺ σ) which ends at π and invalidates it. It is possible
to conclude Valid in the case Invalid

HL
=⇒ False since the only possible hypothesis is

reach(π) (assumption 4): if it is invalid, π is unreachable, hence valid.
Step 6 detects inconsistency when it is possible to consolidate a property to both

Valid and Invalid , thanks to the operator
∨I which is equivalent to

∨H except that:

Valid ∨I Invalid = Invalid∨I Valid = Inconsistent.

With all the operators now introduced, we can formally define our algorithm as the
function SP in the following way:

SP (π) � S∅P (π)

with SΨP (π) �
I∨

λπ∈Λπ

⎛
⎝
⎛
⎝ H∨

ξ∈Ξλπ

H∧
πξ∈ξ\Ψ

SΨ∪{π}
P (πξ)

⎞
⎠ HL

=⇒ λπ

⎞
⎠

and Λπ =

L∨
{ λ | (λ, _) ∈ LP (π) }

and Ξλπ = { ξ | LP (π) = (λπ , ξ) }.
In this definition, the set Ψ used in SΨP stores the properties already visited in order to
handle cycles in a well-founded way. This algorithm is correct with respect to the trace
semantics of Section 3, as stated by the following theorem5.

5 Proofs are provided in appendix.
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Theorem 1 (Correctness). Under assumptions 1 (blocking semantics) and 3 (weak
correctness of analyzers), if the consolidation algorithm returns Valid (resp. Invalid)
for a property π, then π is valid (resp. invalid). If it returns Inconsistent, then both |= π
and �|= π hold (i.e. logical inconsistency). More formally, for a given program P :

∀π ∈ ΦP ,

⎧⎨
⎩

if SP (π) = Valid, then |= π;
if SP (π) = Invalid, then �|= π;
if SP (π) = Inconsistent then |= π and �|= π.

The algorithm is also complete when the analyzers are strongly correct, in the following
sense: if a property is assigned a local status of validity (resp. invalidity), and if recur-
sively, all its dependencies are globally valid, then our algorithm computes a valid (resp.
invalid) consolidated status. The notion of recursively valid hypotheses for property π
is captured the following definition:

D(π) � ∃λ �= Dont_know, (λ, ξ) ∈ LP (π) and ∀πi,D(πi) and |= πi;

Theorem 2 (Completeness). Under assumptions 1 (blocking semantics) and 2 (strong
correctness of analyzers), if a property is valid (resp. invalid) and an emitter emits
a local status different from Dont_know under recursively valid hypotheses, then the
consolidation algorithm returns Valid (resp. Invalid). More formally, for a given pro-
gram P :

∀π ∈ ΦP ,

{
if D(π) and |= π, then SP (π) = Valid;
if D(π) and �|= π, then SP (π) = Invalid.

5 Consolidated Partial Statuses

The previous formalization provides correctness and completeness results when every
property is consolidated to valid or invalid. While this is perfect for the success of a
verification campaign under strong qualification requirements, there is no way to know
the origin of partial results, in particular in case of Unknown statuses.

In Frama-C, there is actually a variety of 11 consolidated statuses that can be syn-
thesized for a property. These statuses provide feedback to the engineer from three
complementary points of view: validity of the property, completeness with respect to
its recursively valid hypotheses, and reachablity. A color is assigned to each point of
view, and each of the 11 statuses of Frama-C has one or two colors for a fully detailed
feedback on any property status. This variety of statuses can be simply understood as
refinements for the four basic consolidated statuses presented in Section 4.

Refinements of Valid. As illustrated in the running example with external functions, it
is sometimes impossible to complete a verification process inside the verification tool.
It is then useful to consolidate admitted results like valid ones, while tagging those
admitted results for manual reviews outside the tool. As seen in the previous section,
another important case of validity is a locally invalid but unreachable property. To avoid
confusing the user by presenting a Valid status on a locally invalid status False, we use
a special “Invalid but dead” consolidated status in this situation. There is no interesting
refinement for Inconsistent and Invalid statuses.
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Valid Admitted
Invalid but dead

Inconsistent
Invalid

Refinements of Unknown. The most versatile situations are related to the status Un-
known. We distinguish several cases by taking into account whether the local status
is True or False, or whether some hypothesis is surely Invalid . In the first category of
cases, we want to retain the local status feedback although nothing can be claimed since
assumptions are missing. In the second category of cases, we want to mark the prop-
erty as irrelevant since there is an Invalid property previously in the control flow graph
which may impact the status of this property.

No local status No analyzer tried.
Unknown No analyzer succeeded.
Locally Valid Hypotheses are not yet consolidated (Unknown).
Locally Invalid
Valid but irrelevant One hypothesis is surely Invalid .
Unknown but irrelevant

Extension of the Algorithm. Extending the consolidation algorithm of Section 4 with
this full variety of statuses is quite straightforward. Roughly, an extended status is
treated like the status it refines. For instance, Locally Valid is treated as Unknown. This
extension may be synthetized in the modified table of the

HL
=⇒ operator below, which

is responsible for consolidating the best local status with respect to the consolidated
statuses of its hypotheses. The refined statuses are marked with a star (�).

HL
=⇒ True Dont_know False

Valid Valid Unknown Invalid
Unknown Locally Valid � Unknown Locally Invalid �

Invalid Valid but irrelevant � Unknown but irrelevant � Invalid but unreachable �

The extended table for this operator is sound: a status λ is only replaced by a refine-
ment of λ. Hence, we still benefit from correctness and completeness theorems.

6 Conclusion

We have presented a consolidation algorithm for verifying program properties by com-
bining results from several program analyzers. This algorithm is proved to be correct
and complete with respect to a generic blocking semantics of annotated programs, as
long as analyzers are correct. Its correctness does not rely on hypotheses emitted by the
analyzers: these hypotheses are only required for completness. We have also presented
how to refine results to provide more informative feedback to the end-user.

This algorithm is fully implemented in Frama-C, a platform gathering several static
analysis techniques in a single collaborative framework. It has successfully been used
on a confidential 50-kloc case study which is representative of real-life software of
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systems important to safety in nuclear power plants. Here Value is primarily used,
while Wp helps it to prove assertions on which Value is unconclusive. Other collabo-
rations between different set of analyses are currently under way, in particular between
test generation tools and static verifiers [18].
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A Proofs of Theorems

This appendix contains the proofs of the correctness and the completeness theorems of
the paper. First we introduce a lemma which links local validity to validity.

Lemma 1 (Local validity implies validity). Under assumption 1 (blocking seman-
tics), if a property is locally valid (resp. invalid), then it is valid (resp. invalid). More
formally, for a given program P :

∀π ∈ ΦP , ∀Π ⊆ ΦP , if Π |= π, then |= π.

Proof. Let π be a property, Π be a finite set of properties such that Π |= π and σ be a
trace. We have to show that σ |= π.

Case ∀πi ∈ Π, ∀ trace σi, if σi ≺ σ, then σi |= πi. By definition of local validity,
σ |= π.

Case ∃πi ∈ Π, ∃σi, σi ≺ σ and σi �|= πi. By assumption 1 (blocking semantics), as
σi ≺ σ and σi �|= πi, σ �↪→ π. Thus, by definition of |= (for trace), σ |= π.

Now, we introduce a well-founded relation which explains why the consolidation al-
gorithm terminates. It is actually not so trivial: informally, our algorithm performs a
topological iteration over a graph where vertices are properties and each edge indicates
that a property is used as hypothesis of another one. But, this graph may contain cycles,
while topological iteration is not well defined for such graphs. That is the raison d’être
of the set of already visited properties in the algorithm. Thus this set must be taken into
account in our proof. So, for any programP , let us introduce the following relation�P

over ΦP ×P(ΦP ) as the transitive closure of�1
P defined as follows:

(π1, Ψ1)�1
P (π2, Ψ2) ⇐⇒ π1 �

1
P π2 and π1 /∈ Ψ1 = Ψ2 ∪ {π2}

with π1 �
1
P π2 ⇐⇒ ∃(λ, ξ2) ∈ LP (π2), π1 ∈ ξ2

Informally, π1 �1
P π2 says that π1 is used as hypothesis of π2 (or there is an edge from

π2 to π1 in the graph), while (π1, Ψ1) �P (π2, Ψ2) indicates that there is a path from
π2 to π1 in the graph. It also requires that π2 is the property currently visited (thus being
included in the set of already visited properties) and π1 is not already visited (in order
to break cycles).

Lemma 2 (�P is a well-founded relation). For any program P ,�p is a well founded
relation. More precisely: �P is a strict partial order (i.e. an anti-reflexive, antisym-
metric and transitive relation) and every non-empty subset of ΦP ×P(ΦP ) has a�P -
minimal element. Furthermore, the set of all these�P -minimals is:

ℵP � {(π, Ψ) | ∀(λ, ξ) ∈ LP (π), ξ \ Ψ = ∅}.

Proof. Consider a program P .

Anti-reflexivity. Since, for any π ∈ ΦP and Ψ ∈ P(ΦP ), π ∈ Ψ ∪ {π}, (π, Ψ) ��P

(π, Ψ) by definition of�P . Hence�P is anti-reflexive.
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Antisymmetry. Let π1 and π2 being in ΦP and Ψ1 and Ψ2 being in P(ΦP ) such that
(π1, Ψ1)�P (π2, Ψ2) and (π2, Ψ2)�P (π1, Ψ1). By definition of�P :

π1 /∈ Ψ1 since (π1, Ψ1)�P (π2, Ψ2)

/∈ Ψ2 ∪ {π2} since Ψ1 = Ψ2 ∪ {π2} because of (π1, Ψ1)�P (π2, Ψ2)

/∈ Ψ1 ∪ {π1} ∪ {π2} since Ψ2 = Ψ1 ∪ {π1} because of (π2, Ψ2)�P (π1, Ψ1).

The last line is a contradiction since π1 ∈ {π1}. Hence�P is antisymmetric.
Transitivity. Trivial by definition of transitive closure.
Elements of ℵP are minimal. Let (π, Ψ) ∈ ℵP and (π′, Ψ ′) ∈ ΦP ×P(ΦP ). Let us

prove by contradiction that (π′, Ψ ′) ��P (π, Ψ). So let us suppose that (π′, Ψ ′)�P

(π, Ψ).
By definition of �P , since (π′, Ψ ′) �P (π, Ψ), π′ �P π, it exists π′′ such that
π′ �P π′′ and π′′ �1

P π. Thus, π′′ �1
P π and, by definition of �1

P , it exists
(λ, ξ) ∈ LP (π) such that π′′ ∈ ξ. By definition of ℵP , since π ∈ ℵP , π′′ ∈ Ψ .
However, by definition of�1

P , π′′ /∈ Ψ , leading to a contradiction.
Only elements of ℵP are minimal. Let (π, Ψ) /∈ ℵP . Let us prove that it exists a cou-

ple (π′, Ψ ′) ∈ ℵP such that (π′, Ψ ′) �P (π, Ψ). Consider the set Σ of sequences
(πn, Ψn)n such than π0 = (π, Ψ) and (πi, Ψi)  P (πi+1, Ψi+1). Since, ΦP is a
finite set and, forall i ≥ 0, Ψi ⊂ Ψi+1 by definition of P , any (πn, Ψn)n is a finite
sequence. If σ is a trace of Σ, π is a property and Ψ is a set of properties, we note
σ  P (π, Ψ) the extension of σ with (π, Ψ) such that the resulting trace belongs
to Σ. Thanks to this notation, we define a distance δ over traces of Σ as follows:

δ((πn, Ψn)n) = 0 if ∀(π, Ψ) ∈ ΦP ×P(ΦP ), (πn, Ψn) � P (π, Ψ)

δ((πn, Ψn)n) = min

{
k ∈ N

∣∣∣∣∃(π, Ψ) ∈ ΦP ×P(ΦP ),
δ((πn, Ψn)n  P (π, Ψ)) = k − 1

}
otherwise.

Informally, δ measures the minimal distance of a trace to a Σ-sequence of maximal
length. Now let us show by induction over δ that any element of any sequence of Σ
is P -smaller than, or equal to, some (π′, Ψ ′) ∈ ℵP : that will prove our goal. Let
σ = (π0, Ψ0) P · · ·  p (πn−1, Ψn−1) be a sequence of Σ.
Case δ(σ) = 0. By definition of δ, there is no (πn, Ψn) such that (πn−1, Ψn−1) P

(πn, Ψn). Hence, by definition of �P , either forall (λ, ξn−1) ∈ LP (πn−1),
ξn−1 is the empty set or ψn−1 = ΦP . In both cases, we can trivially conclude
than (πn−1, Ψn−1) ∈ ℵP . So the�P -smallest element of σ belongs to ℵP : by
transitivity and antisymmetry of P any other element of σ is ℵP  P -bigger
than (π, Ψ).

Case δ(σ) > 0. By definition of δ, there exists (πn, Ψn) such that σ is a prefix of
the sequence σ′ = (π0, Ψ0)  P · · ·  P (πn, Ψn) of length n + 1. Since
N − (n + 1) < N − n, we can apply the induction hypothesis on σ′: any
element of σ′ is�P -bigger or equal to some couple (π′, Ψ ′) ∈ ℵP . Hence, σ
too by transitivity of P .

We now introduce the last definition before proving both theorems of the paper. Infor-
mally, it restricts the sets of already visited properties to those verifying the implicit
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invariants of our algorithm. Let P be a program and π be a property of P . We note Υn
π

the set of finite sequences Ψn = (πn)n of length n inductively defined by (consider that
π = πn+1):

Ψ0 = ∅
Ψi+1 = Ψi ∪ {πi+1} 0 ≤ i < n

with (πi+1, Ψi)�P (πi, Ψi−1) 1 ≤ i ≤ n

and ∃(λi, ξi) ∈ LP (πi), λi �= Dont_know and πi+1 ∈ ξi 1 ≤ i ≤ n.

With these preliminary definitions and properties, we are now able to prove both theo-
rems of the paper.

Theorem 1 (Correctness of the Consolidation Algorithm). Under assumptions 1
(blocking semantics) and 3 (weak correctness of analyzers), if the consolidation algo-
rithm returns Valid (resp. Invalid) for a given property π, then π is valid (resp. invalid).
In case of inconsistency, we can deduce both |= π and �|= π, i.e. an inconsistency. More
formally, for a given program P :

∀π ∈ ΦP ,

⎧⎨
⎩

if SP (π) = Valid, then |= π;
if SP (π) = Invalid, then �|= π;
if SP (π) = Inconsistent then |= π and �|= π.

Proof. We actually prove the following more general result:

∀n ∈ N, ∀π ∈ ΦP , ∀Ψn ∈ Υn
π ,

⎧⎨
⎩

if SΨn

P (π) = Valid, then |= π;

if SΨn

P (π) = Invalid, then �|= π;
if SP (π) = Inconsistent then |= π and �|= π.

Let n ∈ N. We prove the expected property by�P -induction over (π, Ψn) (possible by
lemma 2, well-foundedness of�P ):

Case (π, Ψn) ∈ ℵP . Let us prove separately the three expected properties.
Case SΨn

P (π) = Valid. We have to prove |= π. According to the definitions of
∨I

and
HL
=⇒ , there are two cases.

Case True ∈ Λπ. By definition of
∨L and ∨L, (True, _) ∈ LP (π). Then by

assumption 3 (weak correctness of analyzers), it exists Π ⊆ ΦP such that
Π |= π. Hence the expected result by lemma 1 (local validity implies
validity).

Case False ∈ Λπ. By definition of
∨L, (False, _) ∈ LP (π). Then:

H∨
ξ∈Ξλπ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Invalid definition of

HL
=⇒

∃ξ ∈ Ξλπ ,

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Invalid definition of ∨H and

∨H .
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However, since (π, Ψn) ∈ ℵP , ξ \ Ψn is empty. Hence, by definition of∧H :
H∧

πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid.

Absurd since we previously demonstrated that this conjunction is invalid.
Case SΨn

P (π) = Invalid. We have to prove �|= π. According to the definitions of∨I and
HL
=⇒ , False ∈ Λπ. Then:

H∨
ξ∈Ξλπ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of

HL
=⇒

∃ξ ∈ Ξλπ ,
H∧

πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of ∨H and

∨H .

By assumption 3 (weak correctness of analyzers) which restricts the hypotheses
of π when emitting False to at best {reach(π)}, ξ is either empty or {reach(π)}.
Furthermore, since (π, Ψn) ∈ ℵP , ξ \ Ψn is empty. So there only remains two
cases.
Case ξ = ∅. Trivial by assumption 3 (weak correctness of analyzers).
Case reach(π) ∈ Ψn. Let us first prove that it exists (λ, ξ) ∈ LP (reach(π))

such that λ = True. Since reach(π) ∈ Ψn, and by definition of Ψn,
there exists (λ, ξ) ∈ LP (reach(π)) and π′ such that λ �= Dont_know
and π′ ∈ ξ. Following assumption 3 (weak correctness of analyzers), π′

must be reach(reach(π)). But, if λ = False, that contradicts assumption
4 (do not prove unreachability with reachability). Hence λ = True. So,
by assumption 3 (weak correctness of analyzers) followed by lemma 1
(local validity implies validity), |= reach(π). Furthermore, by assump-
tion 3 (weak correctness of analyzers) again, since (False, {reach(π)}) ∈
LP (π), {reach(π)} �|= π. Hence �|= π by definition of local invalidity.

Case SΨn

P (π) = Inconsistent. Both True and False belong to Λπ. So, following
both cases which we just proved, we can trivially deduce |= π and �|= π which
is the expected result.

Case (π, Ψn) /∈ ℵP . Let us prove separately the three expected properties.

Case SΨn

P (π) = Valid. We have to prove |= π. According to the definitions of
∨I

and
HL
=⇒ , there are two cases.

Case True ∈ Λπ. This case is exactly equivalent to the same subcase of the
basic case of the induction.

Case False ∈ Λπ. Similarly to the same subcase of the basic case of the in-
duction, we get:

∃ξ ∈ Ξλπ ,

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Invalid.
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By assumption 3 (weak correctness of analyzers) which restricts the hy-
potheses of π when emitting False to at best {reach(π)}, ξ is either empty
or {reach(π)}. If ξ \ Ψn is empty, then the case is absurd (see basic case
of the induction). Otherwise, by definition of

∧H , we get

SΨn∪{π}
P (reach(π)) = Invalid.

As reach(π)�1
P π and reach(π) /∈ Ψn ∪ {π}, (reach(π), Ψn ∪ {π})�P

(π, Ψn). Furthermore Ψn∪{π} ∈ Υn
reach(π). So we can apply the induction

hypothesis on (reach(π), Ψn) to deduce �|= reach(π). So, by definition of
reach(π), no trace ends at π. Hence |= π by definition of |=.

Case SΨn

P (π) = Invalid. We have to prove �|= π. According to the definitions of∨I and
HL
=⇒ , False ∈ Λπ. Then:

H∨
ξ∈Ξλπ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of

HL
=⇒

∃ξ ∈ Ξλπ ,

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of ∨H and

∨H .

By assumption 3 (weak correctness of analyzers) which restricts the hypotheses
of π when emitting False to at best {reach(π)}, ξ is either empty or {reach(π)}.
If ξ is empty or {reach(π)} ∈ Ψn, then the proof is the same as the one of the
basic case of the induction. Thus the remaining case is reach(π) ∈ ξ \ Ψn.
So (reach(π), Ψn ∪ {π}) �P (π, Ψn). Furthermore Ψn ∪ {π} ∈ Υn

reach(π):
we can apply the induction hypothesis on (reach(π), Ψn ∪ {π}) to deduce
|= reach(π). By definition of reach(π), there exists a trace σ which ends
at π. Furthermore, by assumption 3 (weak correctness of analyzers), since
(False, {reach(π)}) ∈ LP (π), reach(π) �|= π. Hence �|= π by definition of
�|=.

Case SΨn

P (π) = Inconsistent. This case is similar to the same subcase of the basic
case of the induction.

Theorem 2 (Completeness). Under assumptions 1 and 2 (strong correctness of ana-
lyzers), if a property is valid (resp. invalid) and an emitter emits a local status different
from Dont_know under recursively valid hypotheses, then the consolidation algorithm
returns Valid (resp. Invalid). More formally, for a given program P :

D(π) � ∃λ �= Dont_know, (λ,Π) ∈ LP (π) and ∀πi,D(πi) and |= πi.

then

∀π ∈ ΦP ,

{
if D(π) and |= π, then SP (π) = Valid;
if D(π) and �|= π, then SP (π) = Invalid.

Proof. Let P be a program. Let us note, for any property π and set of properties Ψ :

DΨ (π) � ∃λ �= Dont_know, (λ,Π) ∈ LP (π) and ∀πi,DΨ∪{π}(πi) and |= πi.
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We actually prove the following more general result:

∀n ∈ N, ∀π ∈ ΦP , ∀Ψn ∈ Υn
π , ∀π ∈ ΦP ,{

if DΨn(π) and |= π, then SΨn

P (π) = Valid;
if DΨn(π) and �|= π, then SΨn

P (π) = Invalid.

Let n ∈ N. We prove the expected property by�P -induction over (π, Ψn) (possible by
lemma 2, well-foundness of�P ).

Case (π, Ψn) ∈ ℵP . Let λ be a local status different of Dont_know, and ξ = {πi}i
such than (λ, ξ) ∈ LP (π) (if no such λ and ξ exist, the expected property is trivially
true). We split the proof in two cases according to the value of λ.
Case λ = True. By definition of

∨L and
∨I , λ ∈ Λπ. By assumption 2 (strong

correctness of analyzers), ξ |= π. Thus, by lemma 1 (local validity implies va-
lidity), |= π. So we have to prove SΨn

P (π) = Valid. According to the definition
of ℵP , ξ \ Ψn = ∅. Then:

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of

∧H

H∨
ξ∈Ξλπ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of ∨H and

∨H

H∨
ξ∈Ξλ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ)

HL
=⇒ λ = Valid definition of

HL
=⇒ .

By definition of
∨I , SΨn

P (π) is either Valid or Inconsistent . In the former case,
we directly get the expected result. In the latter case, by Theorem 16, we get an
inconsistency from which we can trivially deduce the expected result.

Case λ = False. By definition of
∨L and

∨I , λ ∈ Λπ. By assumption 2 (strong
correctness of analyzers), ξ �|= π. Furthermore, according to the definition of
ℵP , ξ \ Ψn = ∅. It follows:

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of

∧H

H∨
ξ∈Ξλπ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of ∨H and

∨H )

H∨
ξ∈Ξλ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ)

HL
=⇒ λ = Invalid definition of

HL
=⇒ .

6 Actually that is not precisely what Theorem 1 says : it expresses a statement for SP and not
SΨn
P , but the proof of this theorem encloses the proof of the same property for SΨn

P .
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By definition of
∨I , SΨn

P (π) is either Inconsistent or Invalid . In the former
case, by Theorem 17, we get an inconsistency from which we can trivially
deduce the expected result. So let us suppose SΨn

P (π) = Invalid and prove
�|= π to be able to conclude. By assumption 2 (strong correctness of analyzers)
which restricts the hypotheses of π when emitting False to at best {reach(π)},
ξ is either empty or {reach(π)}. Furthermore Since (π, Ψn) ∈ ℵP , ξ \ Ψn is
empty. So it only remains two cases.
Case ξ = ∅. Immediate by assumption 2 (strong correctness of analyzers).
Case reach(π) ∈ Ψn. Let us first prove that it exists (λ′, ξ) ∈ LP (reach(π))

such that λ′ = True. Since reach(π) ∈ Ψn, and by definition of Ψn, it
exists (λ′, ξ) ∈ LP (reach(π)) and π′ such that λ′ �= Dont_know and
π′ ∈ ξ. Following assumption 2 (strong correctness of analyzers), π′ must
be reach(reach(π)). But, if λ′ = False, that contradicts assumption 4 (do
not prove unreachability with reachability). Hence λ′ = True. So, by as-
sumption 2 (strong correctness of analyzers) followed by lemma 1 (lo-
cal validity implies validity), |= reach(π). Furthermore, by assumption 2
(strong correctness of analyzers) again, {reach(π)} �|= π. Hence �|= π by
definition of local invalidity.

Case (π, Ψn) /∈ ℵP . Let λ be a local status different of Dont_know, and ξ = {πi}i
such than (λ, ξ ∈ LP (π) and, for each πi ∈ ξ, DΨn(πi) and |= πi (if no such λ
and ξ exist, the expected property is trivially true). We split the proof in two cases
according to the value of λ.

Case λ = True. By definition of
∨L and

∨I , λ ∈ Λπ. By assumption 2 (strong
correctness of analyzers), ξ |= π. Thus, by lemma 1 (local validity implies
validity), |= π. So we have to prove SΨn

P (π) = Valid. For each πi ∈ ξ \ Ψn,
(πi, Ψn ∪ {π}) �P (π, Ψn). Furthermore Ψn ∪ {π} ∈ Υn

πi
: we can apply the

induction hypothesis to each πi ∈ ξ\Ψn to deduce SΨn∪{π}
P (πi) = True (since

|= πi and DΨn∪{π}(πi)). Then:

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of ∧H and

∧H

H∨
ξ∈Ξλπ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of ∨H and

∨H

H∨
ξ∈Ξλ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ)

HL
=⇒ λ = Valid definition of

HL
=⇒ .

By definition of
∨I , SΨn

P (π) is either Valid or Inconsistent . In the former case,
we directly get the expected result. In the latter case, by Theorem 18, we get an
inconsistency from which we can trivially deduce the expected result.

7 See footnote 6.
8 See footnote 6.
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Case λ = False. By definition of
∨L and

∨I , λ ∈ Λπ. By assumption 2 (strong
correctness of analyzers), ξ �|= π and ξ is either empty or {reach(π)}. We
have to show SΨn

P (π) = Invalid. If ξ is empty or {reach(π)} ∈ Ψn, then
the proof is the same as the one of the basic case of the induction. Thus the
remaining case is reach(π) ∈ ξ \ Ψn. So (reach(π), Ψn ∪ {π}) �P (π, Ψn).
Furthermore Ψn ∪ {π} ∈ Υn

reach(π): we can apply the induction hypothesis

on (reach(π), Ψn ∪ {π}) to deduce SΨn∪{π}
P (reach(π)) = Valid (since |=

reach(π) and DΨn∪{π}(reach(π))). Then:

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of ∧H and

∧H

H∨
ξ∈Ξλπ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ) = Valid definition of ∨H and

∨H

H∨
ξ∈Ξλ

H∧
πξ∈ξ\Ψn

SΨn∪{π}
P (πξ)

HL
=⇒ λ = Invalid definition of

HL
=⇒ .

By definition of
∨I , SΨn

P (π) is either Invalid or Inconsistent . In the former
case, we directly get the expected result. In the latter case, by Theorem 19, we
get an inconsistency from which we can trivially deduce the expected result.

9 See footnote 6.
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Abstract. The FlexRay protocol is an upcoming standard in automotive indus-
try. Its specification is finalised and maintained by ISO. It is a time-triggered
protocol that uses a fault-tolerant clock synchronisation mechanism. During a
startup phase that should be resilient to certain faults, the clocks in the network
are synchronised and the protocol is initialised. This paper presents a model of
the startup phase of the protocol in the mCRL2 modelling language, and shows
how model checking techniques can be used to check that the startup protocol
fulfills the requirements. A previously unknown scenario is uncovered in which
a single failing node can cause another node, or even the entire network, not to
start up.

1 Introduction

In the year 2000, a consortium was established with the goal to design a new, time-
triggered communication protocol for use in the automotive industry that would outper-
form CAN and TTP in both speed and reliability. At the end of 2009, the consortium
was disbanded, leaving a final version of a time-triggered protocol called FlexRay. The
final protocol definition, a 336 page document, became available in 2011, and is cur-
rently being transformed into an ISO standard.

Already in 2006, the first commercially available cars were equipped with FlexRay
networks, enabling new algorithms for vehicle control because of its higher bandwidth.

Since FlexRay will be the basis for communication in many vehicles to come, we
would like to establish that the protocol is correct, i.e., that implementing a system
according to the latest specification leads to a system that behaves predictably and that
shows no undesirable behaviour. We base our notion of correctness on the requirements
document [8] that was composed by the FlexRay consortium.

The FlexRay protocol requires that nodes are synchronised in order to communicate.
The procedure of starting up a FlexRay network therefore is of particular interest, be-
cause it involves a distributed algorithm that should reach such a synchronised state in a
reasonable amount of time. This procedure should work for any given startup scenario,
and should be to some extent fault-tolerant.

We choose to formalise the FlexRay protocol by means of a model written in the
mCRL2 specification language. This language has extensive support for the use of data
in models, and allows us to create a concise model that stays close to the specifica-
tion. Fault tolerence is checked by explicitly modelling a number of faults that should
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be allowed to occur, according to the requirements document, and requiring the same
properties to hold as for fault-free scenarios.

We have created a model that captures the details of that part of a node that or-
chestrates its operation while the node is starting up. Analysis of the model reveals a
scenario in which the network does not correctly deal with a single failing node. To our
knowledge, this scenario was not documented before.

We start by giving a brief overview of the FlexRay protocol, and describe how the
startup procedure works. We then briefly discuss the requirements that the startup pro-
cedure should satisfy. After that, we show how we arrived at our model: we discuss the
abstractions that we applied and we demonstrate how mCRL2 fragments are related to
the protocol specification. We then describe the method used to verify the presented
model, and subsequently present the verification results. We discuss related research,
before wrapping up with some conclusions and suggestions for future work.

2 FlexRay

We base our analysis on the 3.0.1 version of the protocol [9]. A FlexRay network con-
sists of a number of nodes that are each connected to one or two communication medi-
ums. Such a medium may itself consist of a number of infrastructure components, but
can be as simple as a pair of copper wires. FlexRay is a time-triggered protocol, which
is to say that a clock that is synchronised across the network dictates which node has
the right to write messages to a communication medium. This in contrast to for instance
CAN, which is event-triggered: whenever the event occurs that a node wishes to send a
message, the CAN protocol decides at that moment whether that node is allowed to so
so, based on some priority scheme.

A schedule records which node has access to the medium at what time. The schedule
is an access scheme that defines for a finite period (which the protocol specification
calls a cycle) the allocation of bandwidth to network nodes. Indefinite repetition of the
schedule allows any node to decide at any moment in time which node is allowed to
write to the medium.

This scheme is only strictly followed in that part of the schedule that is called
the static segment (although we should note that there are features that allow a user
to slightly deviate from the scheme). The FlexRay requirements document [8] states
that the aim of the protocol is to provide both ‘deterministic’ communication and ‘on-
demand’ communication. To this end, the schedule may leave part of the schedule un-
decided; this part is called the dynamic segment. A priority based selection scheme is
implemented on top of a time-triggered access scheme to dynamically allocate band-
width to nodes that need it in the dynamic segment. We will not consider the use of a
dynamic segment, and will therefore not describe the details of its implementation.

In the static segment of the schedule, time is divided into slots, and each slot is
allocated to a network node that is allowed to send data in that slot. Data is sent in
structured packets called frames. Some frames play a special role in the protocol: they
can be marked as sync frame or as startup frame. A sync frame is a frame that is used
by all nodes in the network to adjust the local view on the global clock. This is done
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using a variant of the clock synchronisation algorithm of Lundelius and Lynch [15].
A startup frame is a sync frame that is allowed to be sent during startup of the network,
which we describe in more detail in the next section.

We distinguish three phases in setting up communication over a FlexRay network:
wake-up, startup and communicating. The first phase is in place to wake up any nodes
that are in low-power mode. Nodes that are awake listen to the medium and can par-
ticipate in the startup phase. The startup phase is then entered, in which the nodes in
the network try to establish a globally synchronised clock, thus agreeing on the current
position in the schedule. At the end of the startup phase, all nodes should be aware of
the current position in the schedule, and their clocks are (and are kept) synchronised.
Communication can now proceed according to the schedule.

2.1 The Startup Phase

We study the behaviour of FlexRay networks during the startup phase of the protocol. In
this phase, a distinction is made between coldstart nodes and regular nodes. Coldstart
nodes are the only nodes that are allowed to start sending data on the bus if there is no
activity on the bus yet. A FlexRay network can be configured to have any number of
coldstart nodes, with a minimum of three (or two if the network consists of only two
nodes).

When the network is awake and a coldstart node is requested by a client application
to start communication, the node will start by listening to the bus for a duration that is
equal to the length of two schedule cycles, to detect ongoing traffic. Note that we cannot
yet speak of real cycles, because there is no shared time base. We will however not
always be this strict and will sometimes say ‘cycle’ when we mean ‘the local estimation
of the duration of a cycle’, and we will similarly speak of ‘bits’ and ‘slots’.

If no communication is detected during this first listening phase, the coldstart node
will decide to send a collision avoidance symbol, or CAS. The CAS is a signal to the
other nodes to indicate that some node is trying to initiate communication: if another
(coldstart) node sees a CAS, it will wait for another two cycles, expecting to hear more
from the node that sent the CAS.

It may be the case that two or more nodes simultaneously decide to send a CAS. To
resolve this situation, a leader is selected based on the schedule. The first node scheduled
to send a startup frame will become the leader. This is implemented as follows: as soon
as a coldstart node has started sending the CAS, it moves to a collision resolution stage.

node 1

node 2

node 3

bus

Legend CAS Frame header Frame body Noise

Fig. 1. Three nodes starting up. Black is CAS, dark grey is frame header and light grey is frame
body. The BUS line is the combined signal of the three nodes.
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During four cycles, it sends its startup frames according to the schedule, but if it sees a
frame header on the bus, it aborts its startup attempt and returns to the listening stage.
The result is that the first to send a frame after sending the CAS is the node that will
initiate communication. Because the CAS was sent simultaneously, the clocks of the
competing nodes are synchronized (within a certain error margin), which guarantees
that the frames they send do not overlap and are therefore decoded correctly.

After four cycles, the initiating node checks during two consecutive cycles that it sees
a frame from another node. If this is the case, then the startup phase ends for this node. If
only one frame is decoded, then the initiating node considers the startup attempt failed,
and it goes back to the listening stage. If no frames were decoded, then apparently no
other nodes followed the initiative, so it is assumed that there simply were no other
nodes ready to start communication yet. The initiating node waits for one cycle, and
then resends the CAS and repeats the procedure.

If, in the listening phase, ongoing communication was detected, then a node will
attempt to join in by first waiting for two consecutive frame headers from the same
node to synchronise the clock with. It then checks during two cycles that either the
node it synchronised on is still sending frames, or that at least two nodes are sending
frames each cycle. If this is the case, it enters normal operation, if it is not, then it aborts
its startup attempt and returns to the listening stage.

An example run of a fault-free startup is shown in figure 1, where nodes 1 and 2 start
simultaneously, and node 3 joins in a little later.

2.2 Requirements

The FlexRay protocol defines a startup procedure by specifying the local behaviour
of a FlexRay node. It is therefore not immediately clear how the startup phase can be
defined at the level of a FlexRay network, and what this startup phase should ensure.
We take inspiration from the FlexRay requirements document [8] in which we find
requirements on a more global level. Regarding startup of networks, the requirements
document specifies a number of faults that the system must be able to deal with when
starting up:

The wake-up and start-up of the ‘communication system’, the integration of
‘nodes’ powered on later and the reintegration of failed ‘nodes’ shall be fault-
tolerant against: the temporary/permanent failure of one or more ‘communica-
tion modules’ (down to one module sending in the static part for mixed or pure
static configurations), the temporary/permanent failure of one or more commu-
nication ‘channel(s)’ in a redundant configuration, and the loss of one or more
‘frames’. ([8], page 84)

A distinction is then made between faults associated to channels, faults associated to
nodes and transient faults. In this paper, we only look at the latter two types of faults.
A list of faults is provided, including for instance “A node (e.g. coldstart node) cannot
receive any communication element on all its attached channels” (a node-related fault),
and “A single bit of a communication element on one channel flips” (a transient fault,
caused by electromagnetic interference).
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For these types of faults, it is required that all fault-free nodes still reach—within
finite time—a state in which they communicate according to schedule.

This leaves quite some room for interpretation. One of the faults that the system
must be robust against, is for instance that a faulty node keeps disturbing the bus every
once in a while. While it is doing so, the other nodes can obviously be prevented from
communicating according to schedule. We therefore reinterpret successful startup to
mean that the startup procedure has terminated successfully, and during one cycle in
which none of the non-faulty nodes are executing their startup procedure, every frame
that is sent by a non-faulty node is received by all other non-faulty nodes, unless a faulty
node or transient fault prevents reception.

3 Model

The protocol specification defines the FlexRay protocol in terms of SDL (Specification
and Description Language, [12]) diagrams and accompanying text, which, as stated in
the introduction, is intended to provide “a reasonably unambiguous description of the
mechanisms and their interactions” involved in the protocol. Furthermore, “an actual
implementation should have the same behavior as the SDL description, but it need not
have the same underlying structure or mechanisms”. We are interested in this behaviour,
and therefore construct a model that we can directly relate to the SDL description.

We discuss the most important aspects of our model, but we do not go into the details
of specifying in mCRL2. We refer the interested reader to our technical report, which
includes the full model [5].

A single FlexRay node consists of 12 concurrently running, interacting processes,
called controller host interface (CHI), protocol operation control (POC), macrotick gen-
eration (MTG), clock synchronization startup (CSP-A, CSP-B), clock synchronization
processing (CSP), media access control (MAC-A, MAC-B), frame and symbol process-
ing (MAC-A, MAC-B) and coding/decoding (CODEC-A, CODEC-B). Some of these
processes are dedicated to serve a single channel (A or B), and are hence duplicated. The
discrete behaviour during the startup phase is governed by the POC process. We there-
fore aim to model this process in detail, while abstracting away as much as possible from
the other processes.

3.1 Abstractions

We are, as stated before, interested in the discrete behaviour of a FlexRay network during
the startup phase. This means we do not want to take into account timing aspects such as
propagation delays, clock speed and so on. Like time, data also influences the behaviour
of the protocol, but again we desire a limited level of detail: only features of the data
structures used in FlexRay are modelled that influence the decisions made in the POC
process. We describe the abstractions we use in more detail below.

Environment. During startup, the CHI process is used to feed back information to
the client application. It may also influence the POC process by enabling the so-called
coldstart inhibit mode, which causes a coldstart node to not actively start communica-
tion by sending a CAS. We assume none of the nodes are ever put in this mode, and
hence leave out the CHI altogether.



136 S. Cranen

The FSP process performs validity checks on the symbols that are decoded by the
coding / decoding process. The only way in which FSP influences the POC process is
by emitting a fatal protocol error signal, which happens when FSP detects that the node
that it is part of is sending across a boundary in the schedule. We make the assumption
that CODEC and MAC processes function correctly, which should prevent this error
from occurring. We therefore do not model FSP.

Communication and calculation. Component interactions are modelled in the SDL
description as signals being sent from one component to another. We make the assump-
tion that messages are received the moment they are sent. This eliminates the need for
(possibly unbounded) queues to model interactions between processes. Similarly, we
assume that calculations take no time to complete.

Time. We make the assumption that all nodes in a network are always synchronised,
eliminating any effect that clock synchronisation might have. This means that the CSS,
MTG and CSP processes need not be modelled. This approach is similar to that of [19].

We implement a discrete clock by means of a synchronisation barrier: all processes
synchronise every clock tick. The resolution of the clock is chosen to match the duration
of a single bit (gdBit in [9]). In the mCRL2 modelling language, this amounts to
allowing some actions to occur only in combination with a matching action from every
other concurrently running process. There is no need for a separate clock process.

Data. Although we are modelling time at a resolution suitable to model every bit
that is communicated in the protocol as-is, doing so leads to a statespace that is much
too large. For example, a frame containing 16 bits of data requires 80 bits on the bus.
For a network of three nodes, each sending a single frame, not taking into account
any time in which the bus should be idle, simply summing up the initial phasing of
nodes (assuming they start within one cycle of eachother) would already take millions
of states, and modelling every frame that could possibly be sent would be out of the
question.

We therefore try to compress the bit patterns into a minimal form that preserves some
of the properties of real bit patterns on the bus. We no longer require the amount of bits
to be realistic: we allow frames consisting of a one-bit frame header and a one-bit frame
body, and the CAS (which is usually at least 11 bits long) can be only two bits long.
We design the model such that we can choose the size of our symbols to be arbitrarily
large.

Four types of symbols are of interest during startup: the CAS, frame headers, frame
bodies and the channel idle recognition point (CHIRP). The latter is not a pattern that is
actively sent, but a pattern that is decoded when no node sends data for a certain amount
of time. Whenever a CHIRP is decoded by a node, it considers the bus to be idle until
it detects that data is sent over the bus. We have chosen the symbols such that we can
model the events that POC responds to (for instance, we need to be able to model the
event that a frame header has been decoded from the bus).

In our model, each bit on the bus can have one of six values: Hid, Did, Bid, CAS,
None or Noise. The encoding of symbols is shown schematically in Figure 2. For frame
data, every bit also carries an id field that identifies its sender. This is used to model the
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CRC checks in the frame header and frame body: we assume these checks are perfect,
so a CRC check passes if and only if the series of bits is equal to the sequence that was
originally sent. We model this check by checking that all bits in the sequence are sent
by the same sender, and make sure that each id is only used by one node in our model.

We assume that the simultaneous sending of two bits that are not of value None will
always result in Noise. In existing implementations, the CAS is a sequence of ‘domi-
nant’ bits, so two simultaneously sent CAS signals result in a valid CAS symbol again.
The protocol does however not require this. In this paper we choose to not take into ac-
count this notion of dominance, so nodes have maximal potential to disturb eachothers
transmissions. We have performed verification on models where we have taken domi-
nance into account, but this did not yield different results.

3.2 Structure

We model a network consisting of three coldstart nodes that are all attached to a single
channel in a bus topology. The channel is modelled by a process called Bus, which runs
in parallel with three Node processes, each representing one coldstart node. The bus and
the nodes synchronise on every clock tick. In between clock ticks, the bus goes through
a writing phase, in which every node may write data to the bus using a Put action, and
a reading phase, in which every node retrieves the combined signal using a Get action.

Figure 3 shows the structure of a node and how it is connected to the bus. Each
node process consists of three communicating processes running in parallel: the POC
process, which models the Process Operation Control SDL process, the MAC process,
which (coarsely) models the Media Access Control SDL process and the CODEC pro-
cess, which is a coarse model of the Coding/Decoding SDL process for one channel.
The arrows indicate communication, and are labelled by the actions in the model that
implement this communication. The dotted lines show which actions are synchronised
every clock tick (the bus, bit, wait and Encode actions can only occur on a clock tick).

The MAC process is responsible for dispatching encoding requests to the CODEC. It
can be ordered by POC to send a CAS, after which it starts sending frames periodically,
or, in the case of integration into existing traffic, it can be requested to start sending
frames immediately (but according to the schedule). When a startup attempt fails, it can
be requested to go back to an inactive mode again.

The CODEC is modelled as a process that either reads from or writes to the bus.
When in reading mode, it processes bits it reads from the bus, and does not write any-
thing to the bus (which is implemented as writing silence to the bus). When it is in

length(FRAME HEADER(id))︷ ︸︸ ︷
Hid Did Did · · ·

length(FRAME BODY(id))︷ ︸︸ ︷
Bid Did Did · · · Did

CAS CAS · · · CAS︸ ︷︷ ︸
length(CAS)

None None · · · None︸ ︷︷ ︸
length(CHIRP)

Fig. 2. Encoding of symbols on the bus
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Fig. 3. Detail of the Node and Bus processes

writing mode, bits it reads from the bus are ignored, and it writes an encoding of the
last requested symbol to the bus. This can be seen from Figure 3-18 in [9], where decod-
ing is explicitly halted when an encoding request is received by the CODEC process.

The POC process is defined by a number of SDL procedures that call eachother.
We follow this structure by modelling each SDL procedure by its own mCRL2 process.
Every process can be seen as a superstate that is input enabled with respect to the signals
coming from MAC and CODEC. Only SDL procedures that are executed by coldstart
nodes are modelled.

Decisions in these procedures that involve signals coming from the clock synchroni-
sation mechanism—POC for instance uses timers and signals that are generated at the
start of a cycle—are emulated using minimal local administration (usually a counter
that is incremented after every clock tick).

3.3 Verification

Our goal is to verify that our model satisfies the requirement from Section 2.2, i.e., that
the network starts up correctly in the presence of certain faults. The faults that are within
the scope of our investigations can all be seen as instances of a few general problems:
either a node is not able to send anything, a node is not able to receive anything, or the
bus misbehaves in such a way that symbols are not always transmitted correctly. Only
the periodic resetting of a node requires the node to display slightly more complicated
behaviour. Two faults described in [8] comprise a node sporadically disturbing the bus;
from the perspective of the correctly functioning nodes, however, this is not different to
having a noisy bus.

Since for the POC a noisy signal is observably equal to no signal at all (the CODEC
simply does not generate events), we model a limited set of scenarios. Each of the de-
scriptions below describes two scenarios: one in which the node with the lowest identi-
fier is the faulty node, and one in which another node is faulty. This is necessary because
the protocol relies on a leader election mechanism that is not quite symmetric: although
the process descriptions for startup are the same for every node, the leader that will be
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elected depends on the configuration of the nodes. The candidate configured with the
lowest identifier will be elected as leader. At least one failure scenario (viz. the resetting
node scenario below) [18] is only possible if the node with the lowest identifier is the
faulty node.

In this manner, the following categories of scenarios are modelled.

Two nodes. A faulty node does not switch on at all, so effectively there are only two
nodes present in the network.

Silent node. A faulty node is not able to send anything. Although we do model this
separately, we note that this scenario is equivalent to the two-node scenario if we
are not interested in the behaviour of the faulty node. We include this scenario
because it shows that the silent node is still able to integrate into the communication
correctly, albeit in a read-only mode.

Deaf node. A faulty node does not receive anything.
Resetting node. A node resets itself periodically.
Noisy channel. Signals sent by nodes are corrupted on the channel. We use a noise

model that consists of a burst length and a maximum backoff time. The burst length
determines the maximum number of sequential bits that are corrupted, the maxi-
mum backoff time determines the maximum number of sequential bits that pass
through the channel unaltered. Due to practical limitations, we were only able to
model this scenario in a two-node scenario.

For each of these scenarios, we check that the correctly functioning nodes start up.
We do this by checking three properties. The first is absence of deadlock; a reachable
deadlock would indicate an error in the model, rather than in the FlexRay protocol, for
the construction of the model is such that time is always allowed to progress.

Absence of deadlock is checked while traversing the statespace. The other two prop-
erties are formulated in the first order modal µ-calculus (see, e.g., [11]). For brevity,
we use mathematical syntax rather than concrete mCRL2 µ-calculus syntax, and ex-
tra statements to help the mCRL2 toolset (e.g., to prevent quantifiers from being ex-
panded forever) are left out. It is important to note that these formulae only represent
the intended properties correctly if the system they are checked on is deadlock free, as
otherwise the [true]ϕ subformulae might trivially hold.

The second property asserts that eventually all correctly functioning nodes enter nor-
mal operation exactly once, an event that is flagged by the enter operation action. It is
expressed by the following formula, in which N is the total number of nodes and C is
the set of correctly functioning nodes:

μX(r: 2N = C) . (
r �= ∅
∧ (∀i:N . (i ∈ r ⇒ [enter operation(i)]X(r \ {i})))
∧ [¬∃i:N . enter operation(i)]X(r)

) ∨ (r = ∅ ∧ [true∗][∃i : N . i ∈ C ∧ enter operation(i)]false)

The set r keeps track of which correctly functioning nodes are still running their startup
procedure. Least fixpoint X denotes that all paths along which r �= ∅ are finite, and the
two quantified conjuncts remove i from r when along such a path the enter operation(i)



140 S. Cranen

action is encountered. From states in which X holds, we can effectively reach a state in
which every node from C has executed its corresponding enter operation action once
and in which the second disjunct holds, which says that no node from C will ever do an
enter operation action again, but have done one once.

The last property says that eventually all correctly functioning nodes will keep re-
ceiving each others messages. Even though our model is not intended to model the
ongoing traffic after startup, we have constructed our model in such a way that this
property should hold. If this property does not hold, then it is likely that the nodes did
not synchronise correctly. It is characterized by the following formula:

μX . [true]X ∨ (
νY (s: Symbol = firstsymbol) . (
μZ(r: 2N = C \ sender(s)) . ((

r �= ∅
∧ (∀i:N, s′:Symbol .

[Decode(i, s′)]( (i ∈ C ∧ s = s′ ∧ i ∈ r ∧ Z(r \ {i}))∨
(i /∈ C ∧ Z(r)))

)
∧ [¬∃i:N, s′:Symbol .Decode(i, s′)]Z(r))

() ∨ ()
r = ∅
∧ Y (nextsymbol(s))

)) ) )

Fixpoint X holds in every state where always eventually Y will hold. We assume that
firstsymbol and nextsymbol are mappings that define the FlexRay schedule, i.e., they
define a repetitive pattern of frame headers and frame bodies that we expect to see on
the bus. Then Y is true in states from which all correct nodes will decode firstsymbol
first, followed by nextsymbol(firstsymbol), etcetera: it represents an infinite repetition
of finite paths along which the currently scheduled symbol is decoded. The sender of a
symbol is excluded from the set of recipients. The subformula

[Decode(i, s′)]((i ∈ C ∧ s = s′ ∧ i ∈ r ∧ Z(r \ {i})) ∨ (i /∈ C ∧ Z(r)))

makes sure that correct nodes can only decode the right symbol, and can do so only
once (by removing them from r), but allows faulty nodes to decode arbitrary symbols.

Verification of these properties is done by linearising the mCRL2 specification and
combining it with the formulae to form parameterised Boolean equation systems. These
are instantiated to Boolean equation systems, which are in turn reduced modulo stut-
tering equivalence on parity games. The resulting smaller equation systems are then
solved. A description of this procedure can be found in [6]. We use the July 2011 re-
lease of the mCRL2 toolset.

We note that it is also possible to check eventual startup and eventual communication
by manual inspection. By hiding all actions but enter operation and then reducing the
statespace using branching bisimulation, the first property can be checked. The second
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property can be checked manually by hiding all but Decode, reducing the statespace
using divergence preserving branching bisimulation and then manually inspecting all
strongly connected components.

4 Results

All three properties hold for the ‘no faulty nodes’ and ‘two nodes’ scenarios. The other
fault scenarios we discuss seperately. The figures that illustrate each scenario are gen-
erated from traces in our model.

Silent Node. All three properties hold on the system. Manually inspecting the
branching-bisimulation reduced statespace reveals that the failing node can in this case
enter normal operation using the wrong schedule (see Figure 4.a). The clock synchroni-
sation process will allow this scenario, and frame and symbol processing will also not
detect the mistake while the startup protocol has not finished. The mistake is harmless,
however, because the silent node cannot disturb ongoing communication, and does not

(a) Mute node

node 1

node 2

node 3

bus

(b) Deaf node

node 1

node 2

node 3

bus

(c) Deaf node (fixed)

node 1

node 2

node 3

bus

(d) Resetting node

node 1

node 2

node 3

bus

Fig. 4. Node 2 is mute, and can therefore start operation out of sync.
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violate any requirement because it is the failing node that suffers the consequences.
As soon as normal operation is entered, the clock correction process or the frame and
symbol processing process of the faulty node will notice the error. A next attempt to
integrate will succeed, because there is then already ongoing traffic.

Deaf Node. The statespace is deadlock free, but neither of the µ-calculus properties
hold, because there is a possibility of the network not starting at all. This violates re-
quirement 2111 nr. 6 in [8]. Figure 4.b shows such a scenario.

The deaf node can choose to align its frames with those of another startup node,
causing only the headers of the other node to be readable on the bus. The non-faulty
node that is broadcasting startup frames will not detect that every sent frame is corrupted
by the faulty node. Because the non-faulty node’s frame headers are untouched, all other
nodes will wait until it gives up after the maximum number of startup attempts.

Although this scenario is a valid trace in our model, it exposes an inaccuracy in the
model: because we did not model the non-coldstart behaviour, Node 3 simply stops
after it spent its maximum number of coldstart attempts (three in this case). In reality,
it would switch to an integrating mode, and would still be able to start up the network
together with Node 1.

The scenario can however still be reproduced by changing the parameters somewhat:
if each node starts with two remaining coldstart attempts (this is the minimal allowed
configuration value), then Node 1 has spent one attempt after this scenario, and has
one attempt left. The FlexRay protocol demands that at least two coldstart attempts are
available in order to initiate a coldstart, which results in Node 1 switching to integration
mode just like Node 2 and 3. We note that in the case of three or more coldstart attempts
for at least two non-faulty nodes, the network will always start up because at least one
node will be left with enough attempts to initiate a coldstart again.

The scenario was reproduced in our model, taking into account the ratios of the
lengths of symbols and idle times on the bus (also taking into account overhead like
frame / byte start sequences), and taking into account bus idle time that is enforced
by the protocol (more specifically, the ‘action point offset’ and the idle time between
the frame end sequence and the next slot boundary). The result is shown in Figure 4.c,
where the following key configuration values are used.

gdSampleClockPeriod 0.0125 µs pSamplesPerMicrotick 2
pMicroPerMacroNom 240 gdTSSTransmitter 9 gdBit
gdStaticSlot 4 MT gPayloadLengthStatic 3

Resetting Node. The statespace is deadlock free, but neither of the µ-calculus prop-
erties hold. This violates requirement 2111 nr. 9 in [8]. Although this scenario was
already known (it was described in [19]), the emergence of the trace in Figure 4.d gives
us confidence that our model is correct. The trace shows that the leading node may
cause startup of the network to fail by resetting itself every time it has sent a frame. In
fact, it would just have to send the frame header, but the way we modelled our reset
behaviour does not allow this.

It should be noted that in this scenario it is required that node 1 be the faulty node,
which is not necessary in the scenarios for deaf and mute nodes.
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Noisy Channel. The results depend very much on the parameters of the noise model.
For an arbitrary noise pattern, it is obvious that the system will not start up. The channel
could simply decide to corrupt all traffic going through it. The noise model we chose
guarantees that some information will come through. Checking exactly for which values
of maximum burst size and maximum backoff period the system starts correctly is too
big a task, but simply trying a few settings soon gives an idea of how robust the system
is. We made the following observation.

If there is noise on the channel for too long while nodes are trying to commence the
startup procedure, then obviously startup may fail. The interesting scenarios are those
in which some information can be communicated. However, if the minimum backoff
time is less than the time needed for fault-free startup, then one of the sync frames
of the leading coldstart nodes can always be corrupted, causing either the schedule
initialisation or the consistency check of the other nodes to fail. If the presence of noise
is the only anomaly in the system, then the minimum backoff time being at least the
time required for fault-free startup is enough to guarantee that the system will come up.

It is interesting to note that in the verification of these properties, memory usage
was not the bottleneck; the largest model used in our verification was that in which
the resetting node was modelled, which consisted of around 26 million states and 76
million transitions. Generating this statespace is rather time-consuming however, most
likely due to the multi-way communication used to model the clock tick, which can give
rise to rather large guard expressions.

The verification of properties on the network via instantiation of parameterised
boolean equation systems suffers from a similar problem. Although solving the gen-
erated equation system can be done quickly, generation takes a lot of time. This is
currently preventing us from performing verification on models of networks with more
than three nodes.

5 Related Work

The FlexRay protocol has been studied quite extensively, from numerous different per-
spectives. In this section we give a brief overview of previous studies known to us, and
describe how they relate to our investigations.

Kühnel et al. aim to provide a framework in which distributed applications can be
verified if they use a combination of an OSEK compliant (real-time) operating sys-
tem, FTCOM (a fault-tolerant communication layer for OSEK operating systems) and
FlexRay communication [13,14,17]. They use a specification language called FOCUS,
for which refinement checks are carried out with the Isabelle/HOL theorem prover [4].
Their model is based on the 2.0 version of the FlexRay protocol specification, and they
do not model start-up behaviour [13]. Their main aim is to verify applications built on
top of a FlexRay network. This work is further extended by Botaschanjan et al. [3,2].

Zhang uses theorem proving to prove three functional properties under the assump-
tion of synchronised clocks [21]. He takes into account local bus guardians [7].

The start-up behaviour of FlexRay networks was analysed by Malinsky in [16]. He
uses UPPAAL to create a timed-automata representation of a system consisting of two
coldstart nodes and one non-coldstart node. Using a few different settings for a number
of FlexRay parameters, this system is checked for deadlock, and it is checked that the
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system starts up normally. It should be noted that this setup is not a valid FlexRay setup,
because in a network with three nodes all nodes must be coldstart nodes, according to
[9]. However, the requirements document [8] does state that startup must succeed when,
due to a fault, only two coldstart nodes are active.

In our work, we do not model the FlexRay clock synchronisation, which is a mod-
ification of a clock synchronisation protocol described by Lundelius and Lynch [15].
Barsotti et al. have verified (amongst other protocols) the latter [1,10], although Zhang
notes that the correctness of the FlexRay clock synchronisation protocol does not triv-
ially follow from these results [20].

Steiner uses the SAL model checker to find failures in the startup protocol [18,19].
He identifies a scenario in which the system does not start up due to a single fail-silent
node. The approach here is very similar to ours, and indeed the scenario found here is
also detected by our model. Our model contains more detail, however, allowing us to
find more subtle errors.

6 Conclusion

We have modelled a 3-node FlexRay network during communication start-up, using
the mCRL2 modelling language. The core of the model was constructed by translating
SDL specifications of the process operation control process on every node, which im-
plements most of the discrete behaviour of a node during start-up. We formulated two
properties on the model in the first-order modal µ-calculus.

Analysis of the model revealed two violations of the FlexRay requirements, one of
which is a scenario that was not known before. This error could be detected because our
model captures more details of the specification than the models used in [18].

We intend to check the same properties on a 4-node network, but currently the verifi-
cation of such a network is too time consuming. The culprit seems to be the multi-way
communication that is used to implement our assumption of synchronously running
nodes. We consider it future work to see if this problem can be avoided by choosing a
different synchronisation method, or if it can be remedied by preprocessing the specifi-
cations that are currently processed directly by the mCRL2 toolset.

If the aforementioned scaling issues can be overcome, it would be interesting to also
extend the model by adding more detail to the MAC, FSP and CODEC processes defined
in the protocol specification, in the same manner as was now done for the POC process.
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Abstract. The commercial installation of offshore wind farms is still far
from having established standards or procedures and puts high demands
on employees who deal with uncertainty and risks. We present a model-
based risk assessment approach to support the development of health,
safety, and environment (HSE) plans for safe offshore operations. For this
purpose, a process model is used to integrate all aspects of these com-
plex and safety-critical operations which involve many different actors,
resources, and environmental conditions. On the basis of this model, we
are able to identify and precisely describe hazards, quantify their safety
impact, and develop risk mitigation means. To this end, we developed
methods and tools to support this process, resulting in a formalization of
hazardous events that can be used to unambiguously describe the risks
of a given offshore operation model. We will demonstrate the feasibility
of our approach on a specific offshore scenario.

1 Introduction

The radical change in the energy market towards renewable energy production,
initiated by politics, causes a high demand for installation of offshore wind farms.
The European Union set a mandatory target of at least 20 percent of produced
energy originating from renewable sources by 2020 [1]. Yet, with merely 12 years
of experience in the commercial installation of offshore wind farms, the industry
is still in its infancy. In Germany, 24 wind parks in the North Sea have been
approved so far [2]. However, the construction of many of these wind parks is
delayed. As such a huge change in a short time can only be realized by a large
amount of companies constructing multiple facilities concurrently, a lot new
players rush into the offshore wind energy market. Not all of these companies
have extended experience in the maritime or offshore sector and are familiar with
the required health, safety, and environment (HSE) procedures. Development
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and implementation of the necessary practices and processes is a highly complex
task. “The average time needed to register and apply for permits [...] can take as
long as five or seven years to navigate the process [3],” yet varying for different
EU member states. For each permit, a substantial management plan considering
health, safety, and environmental aspects is necessary to guarantee workplace
safety. Recent events have shown that profound assessments are essential to
protect personnel as well as the environment [4–7].

The SOOP project1 aims at supporting planning and execution of safe offshore
operations for construction and maintenance of offshore wind turbines. A special
focus is set on human behavior. To analyze an operation, a model-based approach
is used, also for representing the behavior of the involved persons as described
in [8]. Thus, a conceptual model is build and maintained that describes the
interaction of systems and persons as well as the evolution of the system. The
architecture of the system and thus the one of the conceptual model will be
changing over time as new needs might arise during the project period. Another
aspect of the SOOP project is the identification and mitigation of possible risks
during the planning process. Its results will also be used for an online assistant
system that monitors the mission (e.g. the location of crew and cargo, cf. [9])
and warns if a hazardous event is emerging. This is intended as a further way to
avoid risks during an offshore operation.

In this paper, we will focus on model-based planning and the risk assessment
aspects of the project. Though the project is still in an early phase and the
results might not be fixed and also not fully elaborated, we will discuss our
currently planned approach and the developed methods.

2 Health, Safety, and Environment Aspects for Offshore
Operations

The permit for the installation of offshore wind farms is accompanied by a sub-
stantial management plan considering health, safety, and environmental aspects
[3]. HSE plans cover and improve workplace safety, health, and environment per-
formance of the company in charge and the respective contractors. International
guidelines for HSE management have also been developed in the offshore oil and
gas industry, e.g. the OGP guidelines on HSE management [10, 11]. Since the
1970s to 1980s, the usage of Quantitative Risk Assessment (QRA) studies for
offshore oil and gas operations in the North Sea has become a key issue in the
management of HSE [12]. So far, the HSE situation in the offshore wind energy
industry is very different from the situation for other offshore operations, e.g. due
to lacking or at least incomplete HSE procedures, not defined use of protective
equipment, and non-standardized safe working practices [13].

HSE plans are addressed to the particular wind farm projects and are de-
veloped according to the (national) guidelines and regulations of the country
the project is located in. Yet, the project must also comply with additional re-
quirements besides the rules and regulations of the country, e.g. maritime rules,

1 http://soop.offis.de/

http://soop.offis.de/
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construction regulations, port working statutes, or operation-specific guidelines
[3]. In many European countries, such as Germany, minimum requirements for
workplace safety issues with regard to offshore wind farms have been defined
[14]. In the UK, for example, the association RenewableUK — formerly known
as BWEA— issued health and safety guidelines focusing on offshore and onshore
wind farms. A summary of further UK Health and Safety legislation relevant to
wind farm development is given in [15].

In order to install and implement a comprehensiveHSEmanagement system in a
company, commonly used standards, such as ISO9001 (QualityManagement), ISO
14001 for environmental management, and OHSAS 18001 for occupational health
and safety management systems development, are important. A HSE plan con-
stitutes a description of the means of achieving health, safety, and environmental
objectives [10], that is it includes the responsibilities, practices, procedures, pro-
cesses, and resources. Furthermore, a successful HSE management encompasses
the following key elements: a clear policy, organization, planning, implementation,
measurement of performance, as well as auditing and review [15, 16]. The key el-
ements policy and organization set the overall aims of the HSE management and
identify responsibilities within the company. The latter key elements consider how
these are put into practice and are continually improved by means of planning and
implementation tools.

During the planning and implementation process of HSE management, neces-
sary plans are drawn up and performance standards are set with the overall aim
of eliminating and controlling risks [15]. Typical inputs are OHSAS 18002 [16] le-
gal and other requirements concerning HSE, information on best practices, and
incidents/accidents having occurred in similar organizations. Furthermore, infor-
mation on facilities and environmental data of the workplace, processes, routine,
and non-routine activities is prepared in process flow-charts, site plans, or working
procedures descriptions. The competency requirements and the training needs for
the personnel pose another significant task and challenge for HSE management.

Fig. 1. Purpose of model-based approach
for HSE planning of offshore operations

Besides these commonly used stan-
dards, further specified operation-
specific guidelines are provided, for
example by NOGEPA [17] for helideck
operations or by IMCA with regard
to dynamically positioned ships [18]
and lifting operations [19]. A guide-
line by GL [20] specifies the process
for qualitative and quantitative risk
assessments in offshore wind farms. Still, the processes considered in these guide-
lines merely facilitate the development of generic plans for example for routine
and non-routine lifting operations or the selection of suitable risk assessment
methods. Further information has to be gathered for the company’s HSE plan in
order to meet the site/project-specific requirements and detailed working pro-
cedures and instructions have to be prepared [3]. This systematical assessment
of the work processes enables the organization to identify hazards and carry out
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risk assessment. By formulating necessary risk control as well as monitoring mea-
sures, it finally leads to relevant operations planning and operational safety. Our
model-based approach bridges the gap between generic routine and non-routine
plans (e.g. such as guidelines) and the development of project/site-specific HSE
plans (cf. Fig. 1) by providing a systematic, model-based approach.

3 Model Based Planning of Offshore Operations

The HSE plan provides a detailed description of work processes, involved actors
(e.g. a crane operator), and equipment of the planned offshore operations. Our ap-
proach transfers this step for HSE management into model-based planning. The
approach is intended to analyze all maritime operations (e.g. bunker, loading or
even nauticalmaneuvers) for whichwe take generic plans and guidelines for critical
routine and non-routine operations as a starting point, enrich them with
project/site-specific informationandperforma risk assessment to analyze andeval-
uate risks for personnel and equipment. For the processmodel, we have derived the
main concepts fromBPMN [21]. Thus, it provides amodel-based planning solution
that supports domain experts in the development of theHSEplan for offshore oper-
ations or othermaritimemaneuvers.To describe the behavior of the active entities,
a conceptual model for planning offshore operation is described in the following. It
represents the behavior of individual agents, the elements of the environment, and
its dynamics. Fig. 2 provides amore detailed viewof our conceptualmodel support-
ing the development of offshore operations. By using the conceptual model, we
can represent processes by describing all necessary activities, participants, and
events occurring in offshore operations. The respective processes of an operation
are structured into so-called lanes in order to map different participants repre-
senting different agents interacting in offshore operations (cf. Fig. 2). A Lane is
the graphical representation of a Participant in a Process and will extend its
entire length.

A Process can be composed of different Flow Objects and Connecting Objects
in order to achieve a sequential description (cf. Fig. 2). Flow Objects are Events,
Gateways, and Activities (including Participants). An Event affects the sequence
or timing of the process flow and usually has a trigger or an effect. There are
three types of Events, depending on when they affect the flow: Start Events, In-
termediate Events, and End Events. An Activity is an abstract term for working
procedures performed during an Operation. It can either be one Task or might
be further divided into Sub-Processes through a set of sub-activities. A Task is
an atomic Activity that cannot be broken down to a finer level of Process detail.
Also, Tasks can be further specified into different types. In our model, the set
of Tasks can be extended, meaning that it can be further extended according
to the considered operation. For example, a Send Task is designed to send a
message from one participant to another or a Receive Task is designed to re-
ceive a message. Another benefit of the open task definition is the possibility to
represent for example cognitive behavior as a Procedure Task. By application in
a cognitive architecture [22] these tasks can be interpreted to enrich the model
through non-normative behavior of humans.
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Fig. 2. Conceptual model supporting the description of offshore operations

Participants (cf. Fig. 2) represent specific entities performing certain Tasks in
a Process. Every Task has only one Participant, a Send Task with a sender, and
a Receive Task with a receiver. A Participant has Sensors and Actors, allowing
it to perceive and respond to Events in its environment. Human participants
are abstractions of individual employees, i.e. the personnel involved in a certain
offshore operation. Hence, it can be characterized by several aspects: its respon-
sibilities, the required competencies, skills depending on its role, etc. Physical
Objects include all the equipment involved in a Process (e.g. vessels, turbines or
cranes). Intangible Objects are without a physical manifestation. They describe
the behavior of the environment directly related to the flow of a Process, such as
wind or currents. A Gateway is used to control the divergence and convergence
of the flow in a process. Thus, it determines branching, forking, merging, and
joining of paths. Connecting Objects are used in the conceptual model to arrange
the process in a sequential order and to include necessary messages for commu-
nication. A Sequence Flow is used to show the schedule of Activities performed
in a Process. Each Sequence Flow has only one source and one target according
to the set of Flow Objects. A Message Flow is used to show the flow of messages
between two Participants that are prepared to send and receive them.

With the conceptual model, all necessary objects (human, physical, or intan-
gible) and activities can be systematically described in a sequential order. To
test and validate the model, it is applied to a specific offshore operation. In order
to analyze a scenario described by using our extended process model, it needs
to be transformed into a common representation of risk assessment techniques.
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4 Model Based Risk Assessment of Offshore Operations

To assess the created process model regarding risks, a risk assessment process
has to take place. Oil and gas companies have collected a lot of experience
in the offshore sector. We investigated existing concepts currently used in the
offshore sector and additionally took the practice of the automotive sector into
consideration.

Fig. 3. Overview over the risk assessment steps. Enhanced version the QRA approach
from [12]

The experience in the offshore sector is mainly derived from oil and gas rigs.
Thus, the knowledge cannot directly be applied to offshore wind turbine opera-
tions as, although some similarities exist, most of the risks differ substantially.
For example, there may be a lot of risks regarding fire and explosion when consid-
ering oil and gas rigs, as both of them handle ignitable compounds. Those are not
primary risks when talking about offshore wind turbines, neither are blowouts
or leakage. Besides these differences, some operations are common between both
types of offshore operations. Therefore, Vinnem[12] has been taken into consid-
eration as a source of the current state of practice in risk analysis. In detail, it
addresses the steps of QRA, which is frequently applied to offshore operations.
Its approach is based on the standards IEC 61508[23] and IEC 61511[24].

A further approach is Formal Safety Analysis which is also used for offshore
safety assessment[25]. It is based on assigning risks to three levels: intolerable,
As Low As is Reasonably Practicable (ALARP), and negligible. Risk assigned to



152 R. Droste et al.

the ALARP level are only accepted if it is shown that serious hazards have been
identified, associated risks are below a tolerance limit and are reduced “as low as
is reasonably practicable”. Because this concept does not rely on quantification
and rather uses an argumentative method for assessing risks, it is not suited for
usage with our model-based approach.

In addition to this approach, the current automotive standard is of particular
interest. This is due to the strong competition between different manufacturers in
this industry and the large amount of sold units. As a consequence, the processes
in the automotive sector have to be highly time and cost efficient. To achieve
a cost efficient process of risk assessment, a specialized approach is being used,
defined in ISO 26262 [26].

One of the concepts originating in the automotive sector that is used in our
approach are hazardous events. Their usage enables for us to further differentiate
hazards by specifying the situations in which they occurs. This allows us to assess
the impact of a hazard in a specific operational situation, as the impact might
be dependent on it.

The automotive industry also considers controllability as a factor for the risk
assessment. Controllability of a hazard reflects the ability to avoid harm or
damage by timely reacting to a hazardous event. This could be realized by
alerting persons that a risk might emerge, hence they are aware of it and have
the possibility to deploy preventive measures.

We use the controllability of a risk as a further assessment factor in our
approach, which will support the risk mitigation by introducing measures raising
the awareness of a risk, thus allowing the reduction of its consequence. This
results in shorter cycles of risk assessment and risk mitigation. The resulting
assessment, based on Vinnem[12], weights the consequence of the hazardous
event by also considering the frequency (for each independent cause i, thus for
the hazardous event) and the controllability:

Risk(Hazardous Event) =
∑
i

(Probability of independent causei)

Probability of Hazardous Event

×Consequence × Controllability. (1)

Fig. 4. Our planned quantification

This risk definition requires a quan-
tification of the consequences as well
as of the controllability. As a first
step, we can use the same classifi-
cation procedure as defined in risk
assessment standards, such as Risk
Graphs, Risk Assessment Table, or
Risk Matrix. A further ranking and
scaling of these classes (cf. Vinnem[12]) leads to the desired quantification. Again
following the automotive approach of the ISO 26262, the controllability can
similarly be categorized into classes, thus providing a quantification of the cor-
responding reduction of the consequence.



Model-Based Risk Assessment Supporting Development of HSE Plans 153

Our modified and extended approach for assessing the risk of an offshore
operation is depicted in Fig. 3 of which we introduce every step as well as the
supporting methods in the next sections.

4.1 Hazard Identification and Completeness of Identified Hazards

The base for the assessment of risks are the hazardous events. To create this
base, it is necessary to identify all possible hazards including the related faults,
environmental conditions, and operational situations that constitute a hazardous
event. We introduce three steps that result in a list of hazardous events and the
corresponding causes.

Fig. 5. Excerpt from the OOGHL to depict its structure

The first step is obtaining a detailed Scenario Description out of which
possible hazards have to be identified in the next step. The description can be
obtained from the previously mentioned process model. With the Automotive
Generic Hazard List (AGHL) as described by Reuss[27] and Beisel[28], an ap-
proach of systematic hazard detection exists. The AGHL is optimized for auto-
motive assistance systems and thus cannot be transfered directly to the offshore
sector. The nature and the complexity of interactions and hazards differ in an
extensive manner. Because of this, we have developed the Offshore Operation
Generic Hazard List OOGHL that is specifically adjusted to offshore related
interactions and hazards. Its data is derived from accident reports (e.g. Lessons
Learned for Seafarers [29]), guidance documents (e.g. by IMCA [18, 19]), and
expert interviews. Combining the scenario description and the OOGHL, a step
by step walk trough the scenario is possible. To perform a hazard lookup sys-
tematically, the OOGHL comprises of all possible actions that might be part of
an offshore operation. It also contains points of interaction (e.g. other traffic,
fixed installations, or other resources) and the potential hazards that might oc-
cur in the analyzed scenario. The structure of the OOGHL is depicted in Fig. 5.
For each combination of the possible actions and all feasible points of interac-
tion (indicated by an X) a list of references to potential hazards is given in the
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corresponding row. An example for a referenced entry is visible in Fig. 6. Us-
ing the OOGHL to identify possible hazards has the advantage that only one
source has to be taken into consideration, although we cannot guarantee neither
consistency nor completeness as it is based on empirically derived data. But us-
ing it leads to less expense in processing hazard descriptions and therefore takes
less time than traditional approaches that consider several sources. Additionally,
the OOGHL is a more systematic approach in detecting potential hazards, thus
leading to a more complete list of the ones that might occur during a scenario.

Fig. 6. Example entry of the OOGHL

To assess the risks associated with the identified hazards, the hazards have to
be documented. This can be achieved by creating a List of Hazardous Events
that comprises of all hazards.We extend the list with Hazardous Events as well as
with all their dependencies and the dependencies for the hazards. To distinguish
between the entries, we mark the type of every entry of the table.

This list consisting of all events and conditions allows us to create a depen-
dency structure for each hazardous event by using the causes of each event. Thus,
a fault tree can automatically be generated. A similar approach is described by
Peikenkamp[30]. Further to this, the dependency structure can be used to for-
malize the hazardous events listed in the table for analyzing the scenario, as we
will demonstrate in the next section.

4.2 Risk Picture

After all potential hazards of the scenario are defined, a risk picture can be cre-
ated. This can be achieved by modeling the scenario as well as to formalize the
hazardous events to analyze their occurrence. During the creation of the risk
picture, the risks associated with the hazardous events are assessed by evalu-
ating the frequency, consequence, and controllability. This can be realized by
investigating the underlying causes for a hazardous event regarding their fre-
quency of occurrence. Additionally, the hazardous events themselves have to be
assessed regarding their consequences (i.e. harm caused to humans and to the
environment) and their controllability (i.e. if the event can be controlled if it
occurs, thus mitigating its impact). Beforehand, a risk acceptance value has to
be defined which represents the maximum quantified risk value that is tolerable.
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Using a model of the scenario, it can be checked if it is possible to reach a
hazardous event. How such a Scenario Model can be obtained is described
in section 5. To automatically check whether a hazardous event might occur,
a model checker or simulation of the model can be used. For this, an observer
can be utilized to check if a state that might constitute a hazardous event has
been reached. One way to create such an observer is to use a Formalization of
Hazardous Events describing the hazardous events from the List of Hazardous
Events. This can be realized by using a formal language. As we are currently
developing a specialized language, we cannot yet give concrete examples for the
formalization process. The formalization allows assessing each state of the simu-
lation regarding if a hazardous event has occurred. By this means, an automatic
detection of all hazardous events happening in a modeled scenario is possible.

The dependency structure of the List of Hazardous Events allows to use the
list as a source for formalizing a hazardous event. Resolving the dependencies in
the List of Hazardous Events, a formula can be developed stepwise. An exam-
ple for this can be found in section 5. The formula also contains the faults and
environmental conditions that are necessary for the hazardous event to occur.
This list of faults can be used as a source for the causes that might lead to the
hazardous event. Because of our model-based approach they can be injected into
the model to trigger a hazardous event. Of course, the possibility for injecting
faults requires the model to be prepared. A detailed methodology for fault injec-
tion and model checking has been developed in the ESACS and ISAAC projects
(cf. [30, 31]) and will not be discussed further in this paper.

After having detected all possible causes of a hazardous event and assessing
the frequency, consequence, and controllability, a quantification of the risk for
each hazardous event exists (cf. equation 1). If the quantified risk value is higher
than the risk acceptance value risk mitigation measures need to be developed
that reduce the actual risk to an acceptable level.

4.3 Risk Mitigation

In order to minimize the risk of an offshore scenario, risk mitigation measures
for hazardous events that have a risk quantification value higher than the ac-
ceptable risk have to take place. This can be realized by developing measures
to prevent certain faults, thus lowering the probability of occurrence of a haz-
ardous event. Another way to minimize the risk is to raise the controllability of
the hazardous event. To reach this, the awareness of potential hazards has to
be raised so that proper reaction to the hazardous event can happen. A third
option is to minimize consequence on a hazardous event if it occurs. To minimize
the risk in the example scenario, possible causes for risks can be excluded (e.g.
not allowing an operation during particular weather conditions). Another way
is to add additional safety measures.

The approach and its risk assessment process is demonstrated by an example
in the next section.



156 R. Droste et al.

5 Application to an Example Scenario

To demonstrate our approach, we use an example to apply and verify our con-
ceptual model approach on an example offshore scenario. The application sce-
nario includes a jack-up vessel performing a crane operation to lift a quadpod,
a foundation type used for offshore wind turbines, from the vessel to its final
installation position in the sea. In the scenario, the crane operation begins after
the jack-up barge has been positioned and is lifted up to create a stable opera-
tional platform. Before the lifting equipment and crane are prepared, it has to be
confirmed that the personnel involved (e.g. lift supervisor, banksman, and crane
operator) is physically able for and has understood the intended lifting activity
as well as their respective roles. Besides, personnel should be equipped with its
protective equipment. The process step “cargo preparation and cargo lifting” is
described in further detail in Fig. 7.

Fig. 7. Extract of the process diagram of a lifting operation

Fig. 7 shows the cooperative activities of the process step “cargo prepara-
tion and cargo lifting” involving four participants represented in four different
lanes. It allows representing the crane as a Physical Object (Fig. 7: 1) and three
Human Participants taking part in the process (Fig. 7: 2). The process step
starts and ends with Events (Fig. 7: 3); Sequence Flows facilitate a schedul-
ing of the different Activities performed by the Participants. As described in
the conceptual model, different types of activities can be further distinguished.
Send and Receive Tasks (Fig. 7: 4) (e.g. report weight or warn personnel) ini-
tiate communication/interaction between different Participants. Message Flows
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(Fig. 7: 5) describe the destination of messages in order to synchronize the pro-
cess activities. Other Physical Objects used as Resources (e.g. cargo) can be
associated to an Activity (Fig. 7: 6).

The process diagram provides a detailed description of the cooperative activi-
ties, participants, and communication. As in other guidelines [19], these essential
components and steps can support the development of HSE plans. Due to the
underlying profound conceptual model, the diagram can be further enriched with
site and project-specific data. The modeling and notation of the process steps
allow the transformation into a common representation for the risk assessment.

To perform a model-based risk assessment of a scenario defined by this process
model, the process model has to be converted into a model type that enables
analysis regarding risks. Because the behavior of the involved actors the model
is highly dynamic, we decided to use a graph transformation model which allows
us to reflect this behavior in a way that is not possible when using, for instance,
finite state machines. Graph transformation gives us the possibility to dynami-
cally add or remove actors and enable changing the way of interaction and the
relations between actors during execution, as well as to add or remove actors.

Fig. 8. Start graph of a GROOVE model

We selected GROOVE2 as a graph
transformation tool. It has the advan-
tage that it is open source software
and thus can be extended to fit our
custom needs. Additionally, the used
data format is XML based and there-
fore can be generated automatically.

A graph transformation model con-
sists of a start graph that represents

the start situation of the scenario. Additionally, there are rules that match the
current state of the graph and transforms the graph. It is possible to add, remove,
or modify edges or nodes by applying the rules. Combining the start graph and
the rules it is possible to automatically generate the state space of the scenario
and to perform queries to check whether a specific graph configuration can be
reached. Rensink [32] gives an overview about how graph transformation works
and what its advantages are. See also Kastenberg[33] for the formal aspects of
graph transformation techniques.

Fig. 9. Example of a graph transformation rule

The challenge is to convert
the process model into a graph
transformation model and the
corresponding rules. An exam-
ple for this conversion can be
seen in Fig. 8. In this start
graph, the lanes from the pro-
cess model and all their points
of interaction have been created as nodes. They are attributed by the parameters
that change during the execution of the described scenario.

2 http://groove.cs.utwente.nl/

http://groove.cs.utwente.nl/


158 R. Droste et al.

The interactions of the process model are described by graph transformation
rules. One of these rules can be seen in Fig. 9. The rule describes the process of
the cargo preparation of the lift supervisor who reads the weight of the cargo (if
he has no knowledge about the cargo weight) and thus knows the correct weight.

With this converted model it is possible to check if a hazardous state can be
reached. For this, faults have to be injected to simulate wrong behavior of hu-
mans, machines, or materials. As a preparation for this, hazards have been ana-
lyzed as described in section 4. The resulting list contains the possible events that
might lead to a hazardous event. Fig. 10 outlines a possible fault tree generated
from the list. With having this information, it is possible for us to add possible
faults to the model to support fault injection. This can be done by introducing
additional rules that represent the dysfunctional behavior or by annotating the
transition rules with possible incorrect behavior. Of course, for the latter the sim-
ulation environment has to be adjusted to support annotations of this kind.

Fig. 10. Example of a fault tree
generated from the List of Haz-
ardous Events

Using the modified model, we are able to
formalize the hazardous event as described
in section 4. In the following we sketch how
this formalization can be used to check the
reachability of hazardous states. More specif-
ically, Linear Temporal Logic (LTL, cf. [34])
can be used as formalization language. For
illustration purposes, (part of) the LTL for-
mula checking the occurence of “Person In-
jured by Cargo” (cf. Fig. 10) can be expanded
as follows:

πi |= Person injured by cargo

πi |= F (Person in safety area ∧O(Cargo wrongly lifted ∨ . . . ))
πi |= F (Person in safety area ∧O((Wrong information about cargo weight ∨ ...) ∨ ...))

Generic Plans for Operations

Procedural Instructions

Incidents/Accidents Reports
Offshore Operation Generic

Hazard List (OOGHL)

Process Models Graph Transformation Model

Hazard Formalization

Risk Picture:
• Quantification of Risk
• Risk Mitigation Measures

Project-/Site-Specific
Risk Assessment

Fig. 11. Schematic illustration of our approach
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If these states are reachable, the risk represented by the simulation trace has to be
analyzed. That is to say, the possible faults that occur have to be evaluated with
respect to their frequency. These factors have to be accumulated and further the
consequence and the controllability for the hazardous event have to be assessed.
Multiplying these factors we receive a quantitative assessment for the hazardous
event. If the value is too high, mitigation measures have to be developed as
described in section 4.3.

6 Conclusion and Outlook

In this paper, we presented a model-based risk assessment approach, support-
ing the development of HSE plans for offshore operations. Thus, our approach
allows bridging the gap between generic operation plans and the project/site-
specific risk assessment for HSE development (cf. Fig. 11). Current HSE regu-
lations, guidelines, and incident/accident reports have been taken into account
to develop a systematic assessment of the processes, hazards, and risks during
offshore operations. Different model types, notations, the concept of an Offshore
Operation Generic Hazard List (OOGHL), and a formalization of hazardous
events have been introduced in order to integrate all aspects of these complex
and safety-critical operations, and evaluate risks for personnel and equipment.

By performing a quantitative assessment — including the frequency, severity,
and controllability of hazardous events — a quantification of risks can be created
and necessary risk mitigation measures can be derived to improve the operational
safety during offshore operations. In an example scenario, the feasibility of our
approach has been demonstrated.

Our approach can be further extended to support the analysis of other
maritime operations or even nautical maneuvers by adding generic plans and
guidelines and enriching them with project/site-specific information to conclud-
ing perform risk assessment.
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Cognitive Models in Multi-Agent Systems. In: International Conference on Ad-
vanced Cognitive Technologies and Applications (2012)

9. Wehs, T., Janssen, M., Koch, C., von Cölln, G.: System Architecture for Data Com-
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Abstract. Industrial systems are made of interacting components,
which evolve at very different speeds. This is often dealt with in notations
used in the industrial practice, such as Stateflow, through the notion of
“zero-time transitions”. These have several drawbacks, especially when
building complex models from basic components, whose coordination is
complicated by the fact that each element is modeled to be in different
states at the same time. We exploit a temporal logic formalism based on
non-standard analysis to provide a natural formal semantics to the com-
position of modules described as Stateflow diagrams. The semantics has
been implemented in a fully automated formal verification tool, which
we apply to the formal verification of an example of robotic cell.

Keywords: metric temporal logic, formal verification, flexible manufac-
turing systems, micro- and macro-steps, non-standard analysis.

1 Introduction

Formal models to describe and verify Flexible Manufacturing Systems (FMS)
are gaining widespread use. Many of them are based on the classical Stateflow
notation, which is inspired from the Statecharts formalism [10]. Two distinguish-
ing features of these formalisms are: (i) rather subtle and therefore difficult to
precisely model temporal behavior and, (ii) the need to structure complex sys-
tems as the composition of several interacting modules. Not surprisingly, the
difficulties of type (i) have a kind of “multiplying effect” with those of type (ii).
Despite an abundant literature on Stateflow, Statecharts, Petri nets and other
notations and the various ways to give them a fully formal semantics, some con-
cerns mainly related with the two aspects above still remain. One of them refers
to the way evolutions that occur at very different time scales, say milliseconds
and seconds, are formalized. Quite often the problem is solved by introducing two
different classes of transitions: micro-steps take – formally – no time to change
the system state – therefore they are also called zero-time transitions –, whereas
the only transitions that take a non-null time to complete are called macro-steps
(and often are paired with a discrete time domain, say the naturals).
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Thenotion of zero-time transition is a useful abstraction, but it entails some risks
from the point of view of naturalness of modeling. In fact, a major consequence is
that a system can be in different states at the same time, which is counterintuitive
from the standpoint of the traditional dynamical systems view; this creates the risk
of contradictory assertions about timing properties of the system.

In the past we have proposed a natural way to overcome this difficulty by
exploiting non-standard analysis [7], where the domain of any variable is ex-
tended by introducing non-standard numbers, which, roughly speaking, include
infinitesimal quantities. We exploited this idea by formalizing zero-time transi-
tions of Petri nets in terms of transitions that take a non-null, infinitesimal time
in the context of our metric temporal logic language TRIO [4]. In a compan-
ion paper [6] we applied this approach to formalize micro- and macro-steps in
timed systems by introducing in TRIO the next-time operator typical of various
temporal logics: the new state entered after a transition is at a time distance
that can be a standard positive number, in the case of a macro-step, or a non-
standard, infinitesimal one, in the case of a micro-step. This extension of TRIO,
called X-TRIO, allowed us to describe in a natural way the formal semantics of
the execution of a module, modeled as a state machine, in notations that are
widely used in the industrial practice, such as the Stateflow notation.

The present paper further extends the approach by addressing the formaliza-
tion of the semantics of a system modeled by several state machines that evolve
independently and asynchronously through a sequence of micro-steps and syn-
chronize by exchanging signals and data at each macro-step. The subtle semantic
issues involved in the synchronization of such modules are addressed in a general
and flexible way by means of suitable X-TRIO axioms.

Since the introduction of Statechart several different semantics have been de-
fined for it. The three most classical ones, the fixpoint [13], STATEMATE [10],
and UML [12] semantics, differ in the features adopted for step execution, and
have been fully analyzed in [5]. In the present work we focus on Stateflow because
of its widespread use in industrial settings. In [3] the authors introduce the “shal-
low synchronized” semantics to address the reachability problem for a network of
Linear Hybrid Automata: the automata proceed autonomously, unless they per-
form a synchronizing transition, in which case they realign their absolute time. In
[8] the authors give an operational semantics to a subset of Stateflow for efficiently
compiling it into an input language of a model checker.With respect to [3,5,8], our
approach is more general, flexible, and purely descriptive. As hinted at the end of
Section 3.2, it can be adjusted to any of the semantics defined for Statecharts or
other state-based formalisms that use the abstraction of micro- and macro-steps.
In the companion paper [6] we give more references to other micro- and macro-
step based formalisms, such as those based on Duration Calculus or super dense
time, or papers that are only partially connected to ours, as for example related
to different time scales or granularity.

Besides naturalness and generality, however, we pursue the goal of providing
practitioners with fully automated tools supporting the analysis of the modeled
systems. This is possible because a decidable fragment of the X-TRIO logic, one
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that is expressive enough to fully capture the semantics of the target notation,
is translated into the Propositional Linear Temporal Logic with Both future
and past operators (PLTLB) that is amenable to automated analysis by existing
tools such as Zot [1].

The paper is structured as follows. In Section 2 we briefly introduce the X-
TRIO logic. Then, in Section 3 we use X-TRIO to model the composition of
Stateflow diagrams, and we show how the logic model can be exploited to perform
automated verification of real-life industrial systems, using a Flexible Manufac-
turing System as example. Section 4 concludes and hints at possible extensions
and enhancements of this work.

2 Syntax and Semantics of X-TRIO

In this section we briefly present the X-TRIO logic, with some necessary back-
ground about non-standard analysis. X-TRIO, and its X-TRION subset that we
exploit in this work to formalize the semantics of the composition of Stateflow
diagrams, have been introduced in a companion work [6]. Here, we recall the
main features of the logic.

The original TRIO language [4] is a general-purpose specification language
suitable for modeling real-time systems. It is a temporal logic supporting a met-
ric on time. TRIO formulae are built out of the usual first-order connectives,
operators, and quantifiers, and the single basic modal operator, Dist: for any
formula φ and term t indicating a time distance, the formula Dist(φ, t) specifies
that φ holds at a time instant whose distance is exactly t time units from the
current instant. TRIO formulae can be interpreted both in discrete and dense
time domains.

X-TRIO extends TRIO along two main lines. First, the temporal domain T
is augmented with non standard numbers. Non-standard numbers formalize the
concept of infinitesimal numbers within the theory of Non-Standard Analysis
(NSA) founded by A. Robinson [14], which has already been exploited in TRIO
[7] to deal with time-critical systems. Intuitively, for any numerical domainD, ε is
infinitesimal in D if ε ≥ 0 and ε is smaller than any number in D>0. The original
values of D are classified as standard and are characterized by predicate st;
that is, x is standard iff st(x) holds. D is augmented with infinitesimal numbers
and all numbers resulting from adding and subtracting infinitesimal non-zero
numbers to and from standard ones. Predicate ns(x) denotes that x is non-
standard ; for each x, st(x) holds if and only if ns(x) does not hold. Notice that
0 is the only infinitesimal standard number and that non-standard numbers are
of the form v ± ε, where st(v) holds, and ε is infinitesimal greater than 0. NSA
provides an axiomatization that allows one to apply all arithmetic operations
and properties of traditional analysis in an intuitive way: for instance the sum
of two standard numbers is standard, the sum of two infinitesimal numbers is
an infinitesimal and the sum of an infinitesimal with a standard number is a
non-standard number. The theory of NSA introduced also the notion of infinite
numbers, plus a rich set of results that make it an appealing framework for
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Table 1. X-TRION syntax

φ := p | ¬φ |φ1 ∧ φ2 |Dist(φ, 1) |Dist(φ,−1) |Dist(φ, ε)

Until(φ1, φ2) |Since(φ1, φ2) |Xst(φ) |Xns(φ) |NowST

reasoning on. In this paper we do not use the full power of NSA, for example
we do not deal with the above mentioned infinite numbers. We denote as T the
extension of the temporal domain T with non-standard infinitesimal numbers.

The second major novelty of X-TRIO is the introduction of the next operator
X which is typical to describe the evolution of dynamical systems as a sequence
of discrete steps. Unlike the traditional use of the operator in a metric setting,
however, the time distance between two consecutive states is not implicitly as-
sumed as a time unit; on the contrary it can be any standard or non-standard
positive number. More precisely, we introduce two different types of X operator,
namely Xst and Xns. Intuitively, formula Xst(φ) is true in the current instant
iff φ is true in the next state entered by the system and this occurs at a time
instant that is a standard number; conversely, formula Xns(φ) is true iff in the
next state φ is true and the time of occurrence is a non-standard number. We will
use these two operators to distinguish between two typical ways of modeling sys-
tem evolution: Xst will formalize macro-steps i.e. transitions that “consume real,
tangible time”, whereas Xns will describe micro-steps which are often formalized
as zero-time transitions.

In this paper we use a decidable fragment of the X-TRIO logic, one that
is expressive enough to formalize the semantics of composition for Stateflow
diagrams. This fragment, which we call X-TRION, uses natural numbers for
time domain (i.e., T = N), and corresponds to the syntax of Table 1.

In X-TRION, one can also write Dist(φ, 1 + ε), which is an abbreviation for
Dist(Dist(φ, ε) , 1), while Dist(φ, 2ε) is an abbreviation for Dist(Dist(φ, ε) , ε)
(Dist(φ, kε) is an easy generalization of the schemata above). This highlights
that, in X-TRION, we consider numbers of N to have the form v + kε, where
v, k ∈ N and ε is an infinitesimal constant fixed a priori. In other words, stan-
dard numbers are identified by the coefficient k = 0, and infinitesimal num-
bers are multiples of the infinitesimal unit ε. To distinguish between standard
and non-standard instants, X-TRION introduces the operator NowST such that
S, i 	 NowST iff st(i). We briefly discuss in Section 3.1 how this impacts our
conceptual model of composition of Stateflow diagrams.

X-TRION introduces also typical derived temporal operators such as “some-
times” (SomF(φ) = Until(�, φ)) and “always” (AlwF(φ) = ¬SomF(¬φ)).

A model-theoretic semantics for X-TRIO is defined by following a fairly stan-
dard path on the basis of a temporal structure S = 〈T , β, σ〉, where:
– T is the time domain such that ∀t ∈ T it is t ≥ 0.
– β : T "−→ 2AP is an interpretation function that associates each instant of

time t with the set of atomic propositions β(t) that are true in t.
– σ = {σi|i ∈ N : σi ∈ T ∧ σ0 = 0 ∧ ∀j ∈ N(j < i ⇒ σj < σi) ∧ ∀t ∈
T (σi < t < σi+1 ⇒ β(σi) = β(t))} is the distinguishing element of the
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Table 2. Satisfaction relation for X-TRION

S, i 	 p iff p ∈ β(i)

S, i 	 ¬φ iff S, i � φ

S, i 	 φ1 ∧ φ2 iff S, i 	 φ1 and S, i 	 φ2

S, i 	 Dist(φ, 1) iff S, i+ 1 	 φ

S, i 	 Dist(φ,−1) iff i− 1 ≥ 0 and S, i− 1 	 φ

S, i 	 Dist(φ, ε) iff S, i+ ε 	 φ

S, i 	 Until(φ, ψ) iff ∃j ≥ i s.t. S, j 	 ψ and ∀l s.t. i ≤ l < j it is S, l 	 φ

S, i 	 Since(φ, ψ) iff ∃j, with 0 ≤ j ≤ i, s.t. S, j 	 ψ and ∀l s.t. j < l ≤ i it is S, l 	 φ

S, i 	 Xst(φ) iff there is j ∈ N s.t. σj ≤ i < σj+1, st(σj+1) and S, σj+1 	 φ

S, i 	 Xns(φ) iff there is j ∈ N s.t. σj ≤ i < σj+1, ns(σj+1) and S, σj+1 	 φ

X-TRIO temporal structure; it is a (possibly infinite) sequence of time in-
stants starting from the initial instant 0, called History. Intuitively, it repre-
sents the discrete sequence of instants when the system changes state; thus,
the X operator represents a step moving from σi to σi+1.

Let us point out some features of sequence σ, which will be exploited in Section
3.2 to provide an elegant approach to the problem of synchronizing components
that can make different numbers of micro-steps in the same macro-step. Given
two elements, σi and σi+1 of the history σ, if σi+1 is a nonstandard number
(i.e., ns(σi+1)), then the distance between σi and σi+1 is the infinitesimal ε (i.e.,
σi+1 = σi+ε). If, on the other hand, σi+1 is standard (st(σi+1)), then between σi
and σi+1 there is an infinite sequence of nonstandard numbers σi + ε, σi+2ε, . . .
such that, for all k ∈ N, β(σi + kε) = β(σi).

The satisfaction relation 	 of an X-TRION formula φ w.r.t. a structure S =
〈T , β, σ〉 at a time instant i ∈ T is defined as in Table 2. A formula φ is satisfiable
in a structure S = 〈T , β, σ〉 when S, 0 	 φ.

Despite its limited syntax and the restriction of the time domain to N,
X-TRION is undecidable [6]. For our purposes, however, we do not need its full
expressive power. More precisely, if we restrict formulae of the form Dist(φ, 1)
and Dist(φ,−1) to be evaluated only at standard instants, the logic becomes
decidable, and effective decision procedures can be defined for it. Occurrences of
Dist(φ, 1) (and, in general, of Dist(φ, v + kε), with v ≥ 1) in X-TRION formu-
lae are to be read as abbreviations for Dist(φ, 1) ∧ NowST. This is sufficient to
achieve decidability of X-TRION [6].

3 Using X-TRION to Model and Analyze the
Composition of Stateflow Diagrams

In this section we exploit X-TRION to ascribe a formal semantics that includes a
precise, metric notion of time to the Stateflow notation that is used in the
industrial practice of the design of FlexibleManufacturing Systems (FMS). In par-
ticular, we focus on the issue of providing a general, abstract, hierarchical
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mechanism to compose Stateflow diagrams into complex specifications of compo-
nents interacting with each other.We exploit an encoding into the PLTLB logic of
the decidable subset of X-TRION introduced in [6] to perform automated formal
verification of some properties of interest of a simple, yet realistic FMS.

3.1 Composition of Stateflow Diagrams

We use the Stateflow notation, a variation of Statecharts [9], to describe single
modules and Simulink graphs to describe the composition of concurrent modules.

In a nutshell, a Stateflow diagram is composed of: (i) a finite set of typed
variables V partitioned into input (VI), output (VO), and local (VL) ones; input
and output events are represented, respectively, through Boolean variables of VI
and VO; input and output variables constitute the public interface of the module,
as shown in the Simulink graph of Figure 2; (ii) a finite set of states S that can be
associated with entry, exit and during actions, which are executed, respectively,
when the state is entered, exited, or during the permanence of the system in the
state; (iii) a finite set of transitions,H , that may include guards (i.e., conditions)
on the variables of V and actions. An action is the assignment of the value of
an expression over constants and variables to a non-input variable. We assume
all variables in V to take values in a finite domain, which we denote by DV .

We illustrate the notation through the example of a robotic cell composed of
a robot arm that loads and unloads various parts on two machines, M1 and M2.
The cell, as shown in Figure 1(a), is served by a conveyor belt, which provides
pallets to be processed. There are two types of pallets, A and B, which are
processed, respectively, by machine M1 and by machine M2. After processing,
the finished parts are discharged from the cell by means of the conveyor out belt.

At any time, the robot arm can switch from automatic to manual mode or from
manual to automatic. The Stateflow diagram describing the behavior of the robot
arm is reported in [6]. TheM1 component is presented in Figure 1(b), while Figure
2 shows a Simulink graph representing a part of the robotic cell.

A Simulink graph represents a component of the system, which can be basic
or composed. A basic component has a public interface, that corresponds to the
set of variables VInt = VI ∪ VO of the module, and a behavior description that
is represented by a Stateflow graph. The specification of a composed component
is structured as follows: at the lowest level of the system description hierarchy,
it is represented by a Simulink graph with two or more basic components. Its
interface is the union of the Input and Output variables of its components; the
behavior is described by the Stateflow graphs of its modules, plus a network of
communication relations between components represented graphically by a set
of links. Each link corresponds to a flow of messages (signals or data) sent from
a component to another one. The communication is realized by the assignment
of the value of an Output variable of the sending component to a corresponding
Input variable of the receiving component. One or more Simulink graphs can be
further composed to obtain a new higher-level component.

The documentation provided by Mathworks presents the complete, although
informal, specification of Stateflow diagrams, but it does not provide a precise
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(a) (b)

Fig. 1. Robotic Cell 1(a) and Stateflow graph of machine M1 1(b)

definition of their semantics. Our semantics of Stateflow diagrams is based on the
STATEMATE semantics of Statecharts ([10]). It includes a composition operator
for building hierarchical, modular models from simpler ones.

The semantics of Stateflow hinges on the concept of run, which represents
the reaction of the system to a sequence of input events. A run is a sequence
of configurations ; each configuration ci = 〈s, ν〉 pairs the current state s ∈ S
with an evaluation function ν : V → DV representing the current values of the
variables. The configuration changes only when an enabled transition is executed.

The semantics of the evolution of time in Statecharts/Stateflow has proven
difficult to pin down precisely, and different solutions have been proposed in
the literature (e.g., [11,2]). Our model is of the so-called run-to-completion
variety. In this model the system reacts to the input events by performing a se-
quence of macro-steps. Within every macro-step, a maximal set of micro-steps is
executed based on the events generated in the previous macro-step. Micro-steps
are executed infinitely fast, with time advancing only at macro-step boundaries,
when the system reaches a stable configuration, in which no transition is en-
abled. As in the STATEMATE semantics of Statecharts, input events and data
are sensed only at the beginning of macro-steps, while events and data are out-
put to the environment, which also includes the other components, only at the
end of macro-steps.

In the semantics outlined above each run identifies a sequence of time instants
{Ti}i∈N, one for each macro-step, hence the time domain is discrete. This is con-
sistent with the underlying physical model, as the PLCs on which FMS control
solutions are built are governed by discrete clocks. Therefore, each macro-step
corresponds to a clock cycle of the modeled PLC.
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Fig. 2. Fragment of the Simulink graph of the robotic cell

For example, if, at the beginning of a macro-step, machine M1 of Figure 1(b)
is in state Working end and the robot arm signals that it is ready to dispatch the
finished workpiece by setting input variable FM1, the transition between states
Working end and Dispatch is enabled, so M1 executes a micro-step and output
variable M1 is set to false. At this point, the whole system has reached a stable
state, since M1 must wait for the robot arm to be free to deliver a new piece.

Let us now informally describe the semantics of the composition of two or
more modules in a Simulink graph. Given two modules G1 = 〈V1, S1, H1〉 and
G2 = 〈V2, S2, H2〉, we introduce a compositional binary operator ‖ whose result
is a new component G = G1 ‖ G2 with V = V1 ∪ V2 and S = S1 × S2. The
transition relation of G is intuitively given by analyzing the example of Figure
3. The figure shows the runs of two modules A and B that are composed to
obtain a component C. Each run is represented as a sequence of configurations
and transitions, respectively described as rectangles labeled with the name of the
current state and arrows labeled with the guard and the transition action. The
figure represents a macro-step of the two runs: for component A the macro-step
begins in state S0 and ends in state S3; similarly, component B goes from S7 to
S9. The x axis represents the number of micro-steps executed from the begin-
ning of the macro-step. The figure shows that when C is in a configuration where
the two components have both an enabled transition (as in micro-step 0), the
transitions are executed in parallel. After micro-step 1 component B reaches a
stable configuration, using fewer micro-steps than component A. The two mod-
ules complete the macro-step in states S3 and S9, where a synchronization event
occurs: all Output events and data are produced and sent as Input events and
data to the corresponding receiving component according to the link network of
the Simulink graph, and the “real” time advances.

It is easy to show that the parallel operator is associative, hence we can build
a hierarchy of components.
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Fig. 3. Examples of runs of two composed modules A and B

3.2 X-TRION-Based Modular Semantics of Stateflow Diagrams

This section presents the formalization of the semantics of Stateflow diagrams
using X-TRION formulae. We first focus on single Stateflow diagrams, then deal
with the issue of composing diagrams in a hierarchy.

As the domain DV of variables is finite, given a v ∈ V and a k ∈ DV , v = k
is represented through a propositional letter vk.

Given a Stateflow diagram representing the behavior of a module m, for each

transition Hm,i : sm,i
gm,i/am,i−→ s′m,i originating from state sm,i and targeting

state s′m,i with guard gm,i and action am,i, we introduce the following formula:

AlwF
(
(γm,i ∧ sm = sm,i)→ Xns

(
sm = s′m,i

) ∧ αm,i ∧ αexsm,i
∧ αens′

m,i

)
(1)

where γm,i is an X-TRION formula encoding guard gm,i, and αm,i, αexsm,i
and

αens′
m,i

are X-TRION formulae encoding, respectively, the transition action am,i,

the exit action of sm,i, and the entry action of s′m,i. Formula (1) formalizes the
execution of a micro-step: it asserts that if the current state of module m is
sm,i and the transition condition γm,i holds, then in the next micro-step the
active state is s′m,i and the entry actions of s′m,i and the exit actions of sm,i

are executed. Thus, operator Xns replaces a zero-time transition. To simplify the
formalization of the Stateflow semantics, in this paper we restrict the distance
between two consecutive non-standard instants to be ε, so each micro-step has
a predefined fixed length. In principle, it would be possible to define different
infinitesimal lengths for each basic component, but this is outside of the scope of
the present work. Then, operator Xns is related to the metric operator Dist(φ, ε),
as formula AlwF(Xns(φ)→ Dist(φ, ε)) holds. If no transition is enabled, the con-
figuration does not change, as captured by the following formula:

AlwF
(∧|Hm|

i=1 ¬(γm,i ∧ sm = sm,i)→ NOCHANGE
)

(2)

where subformulaNOCHANGE, which is not further detailed for space reasons,
asserts that in the next micro-step the current state and the values of all output
and local variables of module m do not change.

The “real” time advancement of our semantics is modeled through operator
Xst: every time the system reaches a stable state (where no transition is enabled),
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the time advances to the next standard number. We restrict the distance between
two consecutive standard instants (i.e. macro-steps) in a run to be exactly 1. The
following formula captures the advancement of the “real” time in a single module:

AlwF

⎛
⎝Xst(�)→

|Hm|∧
i=1

¬(γm,i ∧ sm = sm,i)

⎞
⎠ . (3)

Formula (3) expresses a necessary condition for time advancement. A sufficient
condition can be expressed at the level of the single module only after hav-
ing introduced a pair of additional predicates that are used to coordinate the
composition of different modules. This is unsurprising, as time advancement, as
explained in Section 3.1, requires all modules to have reached a configuration
where no further transitions are possible for any of them.

Finally, we introduce a formula asserting that input variables VI,m of module
m change values only at the beginning of a macro-step, i.e. in a standard time
instant. In other words, if the next time instant is non-standard, then the values
of the input variables must be the same as those in the current instant:

AlwF
(
Xns(�)→ (

∧
v∈VI,m,x∈DV

v = x→ Xns(v = x))
)

(4)

The formula MODm encoding the behavior of a single component m is given by

the conjunction of formulae
∧|Hm|

i=1 (1)i, (2-4), plus others not shown for brevity.
To build complex models from basic modules we employ a hierarchical ap-

proach where basic Simulink graphs are built from Stateflow diagrams, and they
can then be in turn composed into Simulink components of higher level, and
so on. To achieve this, for each module m, be it a simple Stateflow diagram,
or a Simulink graph of any level, we introduce two X-TRION predicates – and
related X-TRION formulae – that act as the interface of the module for the
purpose of coordinating time advancement. More precisely, these predicates are
used to guarantee that time advances only when all components are in a stable
state, i.e., when none of their transitions is enabled. The first predicate, stablem
is true when component m reaches a stable configuration. This is formalized by
the following formula:

AlwF
(∧|Hm|

i=1 ¬(γi ∧ sm = sm,i)↔ stablem

)
(5)

The second predicate, extSTm, is used to coordinate different modules; more
precisely, it is used to communicate to m when time advances, and its truth
value is determined by the “environment” of m, i.e., by its enclosing module (if
any). At the level of modulem, time advancement obeys the following constraint:

AlwF(Xst(�)↔ stablem ∧ extSTm) (6)

Suppose now that module m is composed of n lower-level modules m1 . . .mn.
Module m has its own predicates stablem and extSTm, where stablem is de-
fined from the values of stablem1 . . . stablemn, whereas extSTm is defined by its
environment. We have the following constraints, in addition to (5) and (6):
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AlwF

⎛
⎝stablem ↔ (

n∧
j=1

stablemj)

⎞
⎠ (7)

AlwF

⎛
⎝ n∧

j=1

(extSTm ↔ extSTmj)

⎞
⎠ (8)

Formula (7) states that module m is stable only when all its components are,
while (8) defines that the value of extSTm is passed on fromm to its components.

A system is defined by an outermost Simulink diagram I that hierarchically
integrates all components together. At the outermost level, time advances simply
when all components are stable; in other words, for the overall module I, Xst in
(6) depends only on predicate stablem (which in turn is defined by formula (7));
to achieve this, extSTI is constrained to be always true, i.e. AlwF(extSTI).

Finally, we formalize the relations between inputs and outputs of components
of Simulink graphs such as those of Figure 2. If an output variable vi,out of
module i is connected in the Simulink graph to input variable vj,in of module j,
then the value of vi,out is synchronized with the value of vj,in at the beginning
of each macro-step, i.e., when the time instant is standard. This is captured by
the following constraint, which uses predicate NowST introduced in Section 2:

AlwF(NowST→ (vi,out = vj,in)) (9)

Our formalization of the compositional semantics is such that stutter steps,
which are only implicit in the informal semantics described in Section 3.1, emerge
explicitly. Figure 4 shows the runs of two concurrent components A and B that
are part of a higher-level module C. The figure represents a macro-step executed
by the system at time t: component A (resp. B) starts the macro-step in state
S0 (resp. S7) and ends in state Sk (resp. S10). The x axis represents the time
instants of T . As the figure shows, B reaches stable state S9 (in which predicate
stableB holds) before A, in instant t+ 2ε. Since A has not yet reached a stable
state at t+ 2ε, stableA (hence also stableC) is false at t+ 2ε and, from formula
6, the next instant is non-standard. Finally, since formula 9 does not hold at
t + 3ε, component B remains in stable state S9, thus creating a stutter step, a
zero-time transition that does not change configuration.

Variations to the composition semantics. As mentioned in Section 1, many se-
mantics exist for Statecharts and its variants such as Stateflow. The X-TRION-
based approach pursued in this paper gives us great flexibility in adapting the
formal semantics depending on the cases. In fact, changing semantics is as simple
as changing X-TRION formulae.

For example, in some semantics input and output variables are synchronized
not only at the end of a macro-step, but also during it [5]. To allow for this
behavior one would have to change constraint 9 with the following one (also,
constraint 4 would have to be modified, but this is not shown here for brevity),
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Fig. 4. Runs of two composed components A and B introducing stutter transitions

which prescribes that connected input and output variables have the same values,
unless one of the two components has reached a stable state:

AlwF(¬stablei ∧ ¬stablej → (vi,out = vj,in)) (10)

Another possible variation could consist of imposing that there must be a max-
imum number K of micro-steps in a macro-step. This would reduce to forcing
condition stablem ∧ extSTm (which, for formula (6), entails passing to a new
macro-step) to occur within Kε instants from a standard one, which is simply
formalized by the following formula (where WithinF(φ,Kε) is an abbreviation
for φ ∨Dist(φ, ε) ∨ . . . ∨Dist(φ,Kε)):

AlwF(NowST→WithinF(stablem ∧ extSTm,Kε)) (11)

In a similar vein, another possible semantic variation might impose that a macro-
step cannot last more than K micro-steps, even if the system has not yet reached
a stable state. This semantics could be formalized, for example, by introducing
an additional predicate, say adv unstablem which holds exactly at distance Kε
from a standard instant t if at t + Kε the module is still not stable. Then,
formula (6) should be modified as follows (formulae (1)-(3) would also have to
be modified, but this is not shown here for brevity):

AlwF(Xst(�)↔ (stablem ∨ adv unstablem) ∧ extSTm) (12)

3.3 Verification of System Properties and Experimental Results

The formalization introduced in Section 3.1 has been implemented in the Zot [1]
bounded satisfiability/model checker to perform the verification of some typical
real-time properties of the example FMS system of Figure 1(a). In [6] we show
how we have encoded X-TRION operators in the input language of the Zot tool.

In this paper, we focus the attention on properties of the overall system,
which depend on the interactions of the modules composing the robotic cell.
An important property in a system of modules evolving concurrently is the
presence of deadlock. To define the property, we use a variation of the intuitive
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notion of “until”, called Untilstable, which takes into account only the last micro-
step of each macro-step, when the system reaches a stable state. Informally,
Untilstable(φ, ψ) holds if there is a future macro-step such that in its last micro-
step ψ holds, and φ holds in the last micro-step of all macro-steps before that.
It is defined by the following X-TRION formula:

Untilstable(φ, ψ)
def
= Until(Xst(�)→ φ,Xst(�) ∧ ψ) (13)

where the last micro-step is identified by the fact that its next instant is stan-
dard. Our notion of deadlock is defined only over macro-steps, since we consider
micro-steps to be transient states that are non-observable outside of a module.
Then, we say that the system is in deadlock if all of its components are in a
deadlock state. If M is the set of components of the system, where each m ∈M
is described through a Stateflow diagram with state space Sm, the following
X-TRION formula captures this notion of deadlock:

∧
m∈M

∨
x∈Sm

SomFstable(AlwFstable(sm = x)) (14)

where SomFstable(φ) and AlwFstable(φ) are, as usual, abbreviations for
Untilstable(�, φ) and ¬SomFstable(¬φ), respectively.

Other properties, that we have verified in [6], are: (P1) the presence of Zeno
runs, which would make the modeled system unfeasible; (P2) real-time prop-
erties, for example whether it is possible to produce and deliver one processed
workpiece of any kind within L time units from the system startup.

Some performance results obtained during the verification of properties above
are shown in [6]. The verification was performed with a time bound of 70 time
units, which is a user-defined parameter of the verification that corresponds to
the maximum length of runs analyzed by Zot, as customary in bounded satisfi-
ability checking. The absence of deadlocks (property P1 above) was determined
in less than 90 seconds, using about 260MB of memory.1 Similarly, the tool de-
termined in around 400s that property P2 does not hold when L = 15, and in
90s that it holds for L = 20. On the other hand, Zot determined in 17991s (using
about 270MB of memory) that property (14) does not hold, i.e., the system is
deadlock-free. The long verification time is due to the fact that the sole Stateflow
diagram of the controller of the robot arm of Figure 1(a) [6] has 12· 218 possible
configurations (|S|· 2|DV |); the overall system model is of course bigger.

During the verification phase we also detected and corrected errors in an
earlier version of the robotic cell design. More precisely, by checking X-TRION

formula (14) on an earlier model, the tool determined that deadlocks did exist,
and it returned a case of deadlocked run. By studying this run, we discovered
that there was a problem in the communication protocol between the Robot and
machine M1, which also affected the cell Controller. The problem was that the

1 All tests have been performed on a 3.3GHz QuadCore PC with Windows 7 and 4GB
of RAM. The verification engine was the ae2zot SMT-based Zot plugin using the z3
3.2 solver (http://research.microsoft.com/en-us/um/redmond/projects/z3/).

http://research.microsoft.com/en-us/um/redmond/projects/z3/
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system remained forever in a configuration where the robot arm was waiting for
machine M1 to signal the end of the communication protocol. The termination
event is signaled by M1 by setting a variable called FCIn to 1, but this had
not been modeled in the earlier model. After correcting the error, a new check
of property 14 showed that the modified system model was deadlock-free.

To conclude this section we remark that, thanks to the compositional nature
of the semantics presented in Section 3.2, properties such as the absence of Zeno
runs can be studied at the level of the single components instead of the whole
system. Intuitively, a component has a Zeno behavior if, from a certain point on,
the execution trace presents an infinite sequence of micro-steps (i.e. non-standard
instants). Let us consider a single Stateflow diagram m. If no Zeno runs exist in
m when predicate extSTm is always true (i.e., when m is analyzed in isolation),
then no Zeno runs of m can occur when the module is composed with others.
Therefore, given a system I composed by modules m1 . . .mn, if none of these
has Zeno runs, I does not have them, either, since input variables of the single
components do not change value until the overall system I reaches a stable
state. This suggests the possibility of performing that kind of verification on
the (smaller) models of the single components, instead of on the full integrated
model. On the other hand, if a Zeno runs exists in a component m taken in
isolation, this might be triggered by a combination of inputs that does not appear
in the system as a whole, so in this case a further analysis should be carried out
at system level.

4 Conclusions and Future Work

We presented an approach to formally model and automatically analyze FMS
specified as an integrated collection of Stateflow modules. We focused our at-
tention on the semantic intricacies due to the separation between micro- and
macro-steps (the only ones in which time elapses according to traditional litera-
ture); such intricacies become even more critical when moving from the semantics
of a single module to that of the coordinated behavior of a collection thereof.

In a companion paper we exploited nonstandard analysis to deal with micro-
steps by replacing zero-time transitions with ε-time ones, thus avoiding a few
pitfalls typical of transitions consuming no time; in this paper we extended our
approach – based on the X-TRION metric temporal logic – to formalize the
concurrent behavior of several Stateflow modules.

We deem that the distinguishing feature of our approach is its generality: for
instance, in Section 3.2 we offered a sample of variations of the composition
semantics which could be obtained by simple changes in the X-TRION formulae
formalizing it; other generalizations could involve the use of different standard
and non-standard values to measure the duration of micro- and macro-steps in
different modules. Our approach could also be easily adapted to other classical
notations, such as activity diagrams, Petri nets, etc.

Finally, the logic language used in this paper was suitably restricted to support
automated verification of systems and properties typical of FMS. An intriguing
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challenge for future research would be looking for (sub)optimal trade-offs be-
tween expressiveness and automated verification: e.g., how far could distances
between micro- and macro-steps be generalized, still maintaining decidability?
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Abstract. This paper presents a formal approach of designing soft-
ware robust against communication latencies that typically occur in
distributed embedded systems. In this approach, the software’s data-flow
is retimed and scheduled in order to achieve the maximum robustness
against possible communication latencies. This robustness is derived
individually for a given software and its distribution on a platform’s
communication topology. Robustness is interpreted as the guaranteed
amount of time, up to which the system does not change its externally
observable behavior due to communication latencies. The software’s
data-flow is given as a data-flow graph with nodes representing tasks and
edges representing communication channels. A linear problem approach
is employed that transforms elements of data-flow into variables of linear
expressions. An implementation of the approach in the tool Cadmos

together with the application on a case example from the automotive
software engineering domain shows its practicability.

Keywords: Distributed Systems, Embedded Systems, Reactive Sys-
tems, Data-Flow, Retiming, Linear Problem, Scheduling, Communica-
tion Latency Robustness.

1 Introduction

Embedded software systems realize critical functionality in industrial products
like cars, airplanes, production automation systems, energy supply systems
and medical devices. In these areas, embedded software systems are typically
reactive [1]. This means, there is a permanent and time-sensitive interaction
between the system and its physical environment. Sensors read the environment
inputs, which are processed and sent as outputs to the actuators. In many cases,
these embedded systems are built upon a distributed platform architecture that
comprises embedded control units (ECUs) interconnected by bus systems. Hence,
software tasks send and receive messages through these bus systems in order to
communicate with each other. A bus system’s message transmission time can
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deviate from an expected ideal transmission time, which can lead to unwanted
behavior of a reactive and time-sensitive system. In this paper, we present
a formal approach how software can be made robust against communication
latencies that occur in distributed embedded systems.

It is a typical design goal for distributed reactive software systems to be as
robust as possible against communication latencies while exploiting available
parallel resources of the platform. Regarding deviations in transmission time
between two ECUs, there are two possible cases. In the first case, a message
arrives at its destination earlier than expected. This is commonly solved by
buffering incoming messages at the receiver’s side and is not within the scope
of this paper. In the second case, a message arrives at its destination later than
expected. This paper focuses on how to analyze and maximize the robustness
against unwanted system behavior in the second case. In the approach presented
in this paper, we want to harness any delays and waiting times in the software
of the system, so that it is more robust against latencies on the platform.

It is common for industrial critical systems that the software has to produce
(functionally) correct outputs, which additionally have to be delivered within
an expected time interval. Different technical issues influence the expected
transfer time on bus systems. Deviations are typically caused by electromagnetic
compatibility (EMC) issues, resource conflicts on the MAC-layer or clock
synchronization issues. In the context of this paper, we regard these deviations
as inevitable and concentrate on how to make the software as robust as possible
against it. By describing robustness against communication latencies as an
“extra-functional” requirement, we present algorithms to determine whether this
requirement can be fulfilled and how this can be done by retiming and scheduling
the software.

This paper provides an interpretation of robustness as a formal property ρ(S)
of a system S in Sec. 2 and Sec. 3. Additionally a more coarse grain property
ρDFG(S) is provided, if execution times of tasks are not available, e.g., in early
phases of development.

Related work. In this paper, we analyze and transform a software’s data-flow
represented by a data-flow graph (DFG). In a data-flow graph G = (V,E, δ)
each node in V represents an executable task and each edge in E represents
a directed communication channel between two nodes. General concepts of
modeling systems with data-flow graphs are found in [2,3,4,5], for example. Data-
flow modeling is supported by well-known tools like e.g. Simulink, Labview and
Ptolemy. In this paper we will use an iterative version of data-flow [4], in which
every node is executed exactly once in each iteration. In iterative data-flow,
while a node is executed, it consumes one message from each of its incoming
channels and produces one message on each of its outgoing channels.

Furthermore, data-flow channels may contain unit delays (or delays). The
delay function δ ∈ E → N0 returns the number of delays for each channel. If
a channel c contains d = δ(c) unit delays, then the output of the source node
src(c) in the i-th iteration will be processed by the destination node dst(c) in the
(i+ d)-th iteration. Delays are present in data-flow models for different reasons:
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– A cyclic path in a DFG (describing a recurrence equation) must contain at
least one unit delay in order to be computable (see [6]).

– An algorithm requires delays (e.g.: digital FIR- and IIR-filters).
– Adding or moving delays modifies the critical path (the most time-consuming

undelayed path) [7,8].

Leiserson, Rose and Saxe presented the retiming transformation [7,8] that allows
for moving delays between edges in a DFG. While changing the internal structure
of the DFG, retiming preserves the externally observable behavior of the data-
flow program. Originally, retiming aims at modifying the critical path to enable
better parallelization. In [7] a linear programming based approach is presented,
how delays have to be retimed to achieve maximum parallelization. A similar
approach based on linear programming is described in [9] for the computation
of the minimum cycle period in a DFG. In this paper, we use retiming
and scheduling to maximize robustness against communication latencies. The
robustness maximization algorithms (see Sec. 3) determine the appropriate
retiming of delays and the schedule based on linear problems.

We also make use of a delay caclulus [10] to describe some of the analysis
and maximization methods. In this delay calculus, each output channel o in
a data-flow graph G has a so-called minimum guaranteed delay, denoted by
gardelay(G, o). In a data-flow graph G there can be many paths from input
channels {i1, . . . , in} that lead to the same output channel o. For an output
channel o the minimum guaranteed delay gardelay(G, o) is equal to the minimum
sum of delays on each of the paths leading from the {i1, . . . , in} to o.

Outline. This paper is organized as follows. Section 2 presents methods to
analyze the robustness against communication latencies. The following section
3 shows how a given DFG can be retimed and scheduled in order to achieve
maximum robustness against communication latencies. Section 4 describes how
the previous techniques can be implemented for automatic verification and
optimization with the tool Cadmos [11]. The next section 5 presents an
evaluation of the presented concepts. For this purpose, the data-flow model of
an automotive Adaptive Cruise Control system is analyzed and optimized with
the tool Cadmos. The last section 6 concludes with final remarks and future
work.

2 Analyzing the Robustness against Communication
Latencies

In a typical iterative development process, software is designed, analyzed and
improved if necessary. Robustness against communication latencies can already
be analyzed in early phases of development. In this paper, we regard a system
as a tuple S = (G,R,M) with data-flow graph G = (V,E, δ), platform resources
R = (P,B) (processors P , buses B) and a mappingM that defines the allocation
of data-flow elements onto resources. This section is organized as follows. First,
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we define a coarse grain robustness ρDFG(S) based on delay analysis only. This
is followed by a refined notion of robustness ρ(S) by analyzing a static schedule
for a given system S. With the help of ρDFG(S) and ρ(S) we are able to decide,
whether an improvement of the robustness is actually needed. In the scope of
this paper, the following assumptions are made:

– All tasks of the system are executed once within an iteration.
– An iteration has a given static execution period T .
– The mapping M of data-flow elements onto resources is known (see Eq. 2).
– The precedence relation of tasks is defined (see [5]).
– Schedules are computed in an offline and static way.

Analyzing the data-flow graph: coarse grain robustness. First, we define a coarse
grain robustness ρDFG(S) by analyzing the delays of the data-flow graph G =
(V,E, δ) of the system S. The function δ ∈ E → N returns the number of
delays for each channel. By δ(X,Y ) we denote the number of delays on the
channel (X,Y ). In order to analyze ρDFG(S) we need to know, which channels
are mapped onto the platform’s bus systems. In more detail, this leads us to the
subgraphs Gi which receive bus messages and produce outputs. However, input
channels and communication channels that go out of Gi are ignored. For the
robustness analysis, the channels which carry bus messages into Gi are the new
input channels for Gi.

(a) (b)

Fig. 1. Obtaining subgraphs Gi: (a) the original DFG; (b) the subgraphs G1, G2

relevant for analysis. Nodes with dotted lines are environmental input/output nodes.

After determining the subgraphs Gi and the respective output channels
Output(Gi), we define ρ

DFG(S) with the help of the minimum guaranteed delay
function gardelay(Gi, o) [10] (see related work, page 178):

ρDFG(S) = min{gardelay(Gi, o) | ∀o ∈ Output(Gi)} (1)

The function ρDFG(S) expresses the communication latencies robustness in
integer multiples of iterations. For example, ρDFG(S) = 2 means that S will
not change its externally observable behavior if communication on any bus is up
to two iterations late. The function ρDFG

opt (S) calculates the maximum achievable
robustness by retiming and is further explained in subsection 3.1.
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Analyzing the schedule: refined robustness. In an offline and statically scheduled
system S, we can derive a more accurate robustness ρ(S). Let us regard the
undelayed, feed-forward system together with its schedule on two processors
in Fig. 2, where Ai indicates the i-th execution of node A. Using Eq. 1, the
communication latency robustness is ρDFG(S) = 0. However, the schedule in
2(b) reveals the amount of latency which can occur after a bus transmission,
without affecting the correctness and end-to-end latency of the system. This is
indicated by the dashed areas (“Robust”).

(a)

 

Resources 

Iterations 

P1 

P2 

1 2 

A1 

B1 

A2 

B2 

Bus Robust Robust A1-B1 A2-B2 

(b)

Fig. 2. Additional robustness by scheduling: (a) data-flow model of a feed-forward
system; (b) its possible schedule

Knowing the schedule of a system, the following functions are computable:
s(Xi) returns a real number, representing the starting time in multiples of
iterations of the i-th execution of node X ; e(X) returns a real number,
representing the execution time in multiples of iterations of X ; tr(X,Y ) returns
a real number, representing the message transmission time in multiples of
iterations on channel (X,Y ). The mapping function M with signature

M ∈ V ∪ E → P ∪B (2)

associates each DFG element (tasks V , channels E) of the DFG G = (V,E, δ)
with a resource (processors P , buses B). Hence, regarding the scheduling of a
system S the communication latency robustness is computed as follows:

ρ(S) = min { s(Yj)− (s(Xi) + e(X))− tr(X,Y )

| ∀(X,Y ) ∈ E ∧M(X,Y ) ∈ B ∧ δ(X,Y ) = j − i} (3)

This refined robustness ρ(s) returns real numbers describing complete iterations
and their fractional parts. A computational node Xi communicates with node
Yi+d if and only if δ(X,Y ) = d. In Sec. 3.2, we present a method, which retimes
the data-flow model and modifies the schedule in order to obtain the global
maximal robustness of a system S against communication latencies.
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3 Optimizing the Robustness against Communication
Latencies

If the robustness of a system is insufficient, the communication latencies can
cause the system to produce unexpected and unwanted outputs. Distributed
reactive embedded systems are exposed to communication latencies and there-
fore, need to be analyzed carefully. Especially those tasks of a system, which
produce safety-critical outputs, should be as robust as possible. If, after applying
the analysis methods presented in Sec. 2, the communication latency is able to
influence the functionality of a system, the robustness needs to be improved.
Subsection 3.1 shows how to optimize the data-flow graph by retiming and
subsection 3.2 explains how get more accurate results by optimizing the schedule.

3.1 Optimizing the Data-Flow Graph by Retiming

This section shows how to achieve more robustness against communication
latencies by retiming the given DFG of a system. The following paragraphs
first present two basic scenarios to illustrate the idea using simple graphs, then
provide a general formalization and finally give a more complex example.

Basic scenarios. The first line of table 1 sketches the first scenario for improving
the robustness against communication latencies. In the first column, a chain of
three communicating nodesA,B and C is shown. The delay function is δ(A,B) =
3 and zero otherwise. Moreover, the channel (B,C) is mapped on the bus. The
robustness ρDFG(S) of the system is equal to δ(B,C) = 0. For an improvement,
channel (B,C) has to get delays of channel (A,B) by retiming. The optimal
robust system is seen in the second column with ρDFG

opt (S) = δ(B,C) = 3.
The DFG of the system in the second line of table 1 contains a cycle with four

nodes A,B,C and D. The delay function has the non-zero values: δ(Input, A) =
δ(A,B) = δ(B,D) = δ(D,C) = δ(C,A) = 1. The channels (A,B) and (D,C)
are mapped on the bus. If we apply Eq. 1, then ρDFG(S) = 1. The cycle contains
four unit delays, which have to be equally distributed to the channels (A,B),
(D,C), in order to maximize the robustness of the system (the number of delays
on a cycle stays the same, see [7]). The second column contains the retimed
system, in which the robustness is ρDFG

opt = 2.

Formal approach. The ρDFG
opt function computes the optimal achievable robust-

ness in number of iterations for a system S. For maximizing the robustness
against communication latencies, we have to consider a max-min problem.

ρDFG
opt (S) = maxmin{δ(X,Y ) | ∀(X,Y ) ∈ E ∧M(X,Y ) ∈ B} (4)

Eq. 4 suggests that the minimal number of delays of a channel mapped on
the bus has to be maximal in the robust system. When the sender submits its
message, the possible communication latency is compensated by unit delays.
For computing the value ρDFG

opt (S) we have to make some observations. If we
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Table 1. Two basic data-flow graphs and their optimization: (1) a pipeline; (2) a cycle

Nr. Data-Flow Graph Robust Retimed Data-Flow Graph

1

2

regard an elementary path as a ordered set of edges, P = {e1, . . . , en}, in which
∀i �= j, ei �= ej, the following lemma holds.

Lemma 1. The sum of all delays on every elementary path from an input to an
output stays the same.

Proof. Let P be an elementary path from input I to output O. According to
[8] the number of delays in P after the retiming is δr(P ) = δ(P ) + r(O) − r(I)
(r(X) is the number of delays used to retime X). Input/Output nodes can not
be retimed and hence, r(I) = r(O) = 0.

⇒ δr(P ) = δ(P ) $%

The optimization algorithm is divided into two parts. The first part involves
finding a path coverage that includes all channels in elementary cycles and paths
from inputs to outputs. A system of linear expressions is build out of the path
coverage. In the second part this system of linear expressions is solved with the
help of a linear problem solver. The final graph structure can be retraced from
the variable occupancy of the linear expression result.

The algorithm for computing all paths and cycles in the DFG can be
implemented with a depth-first-search and will not further be discussed in this
paper. However, every elementary cycle and path of the resulting coverage
X = {e1, e2, . . . en}, X ∈ Coverage contributes to the linear system with an
equation:

ae1 + · · ·+ aen−1 + aen =

n∑
i=1

δ(ei) (5)
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In Eq. 5, the aei are variables that represent the number of delays that will be
on channel ei in the robust system S. On every cycle the number of delays stays
the same (see [8]) and lemma 1 ensures that equations as in Eq. 5 will also hold
after the system is retimed. The optimal solution is calculated by maximizing
the value of the variables aei , which correspond to graph channels ei deployed
on the Bus (see definition of ρDFG

opt in Eq. 4).

Example 1. A system containing 8 nodes is given in data-flow representation (see
Fig. 3). We want to optimize the distribution of delays in order to obtain the
optimal robustness against communication latencies. All end-to-end latencies (i.e.
from inputs to outputs) of the original graph must be preserved. Furthermore, we
assume that the channels mapped on the bus are (D,E) and (H,F ). Regarding
the definition of ρDFG

opt in Eq. 4, these channels are relevant for the communication
latencies robustness. Therefore, we have to retime the system in such a way that
min{δ(D,E), δ(H,F )} is maximal. The analyzed system’s DFG does not contain
any cycles. The first step for optimizing the robustness against communication
latencies is to compute the paths, which cover all channels of the graph. Such a
path-coverage is realized by the two paths P1 and P2:

Fig. 3. The data-flow graph of a system containing 8 vertices. The channels (D,E)
and (H,F ) are mapped on a bus. This figure is based on a visualization by the tool
Cadmos [11].

P1 = {(Input, A), (A,B), (B,C), (C,D), (D,E), (E,F ), (F,Output)}
P2 = {(Input, A), (A,B), (B,G), (G,H), (H,F ), (F,Output)}

Consequently, the linear system contains the two equations:

aIA +aAB + aBC + aCD + aDE + aEF + aFO = 6

aIA +aAB + aBG + aGH + aHF + aFO = 5

This system of equations has to be solved so that the minimum between aDE =
δ(D,E) and aHF = δ(H,F ) is maximal. We employ a linear programming
solver to compute this max-min problem. For example, the tool lp solve offers a
language to describe linear problems (see [12]) and we use the following script
for lp solve:
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// Object ive func t i on .
max : r obus tne s s ;
// Var iab le bounds .
i a + ab + bc + cd + de + e f + fo = 6 ;
i a + ab + bg + gh + hf + fo = 5 ;
// Minimization part , r obus tne s s = min{de , hf } .
r obus tne s s < de ;
r obus tne s s < hf ;
// In t e g e r v a r i a b l e s .
i n t ia , ab , bc , cd , de , e f , bg , gh , hf , f o ;

The linear programming solver finds that the optimal solution for ρDFG
opt = 5.

The following variable values lead to this optimum:

ia = 0, ab = 0, bc = 1, cd = 0, de = 5, bg = 0, gh = 0, hf = 5, ef = 0, fo = 0

3.2 Optimizing the Schedule

As presented in Sec. 2, the robustness against communication latencies can be
determined more accurately if the schedule is additionally taken into account. In
this section we explain how to find a schedule, which leads to optimal robustness.
This involves finding the proper distribution of delays and the starting time
of each task during scheduling. We employ a linear problem based approach
similar to subsection 3.1. The function, which calculates the optimal robustness
is defined as:

ρopt(S) = maxmin { s(Yj)− (s(Xi) + e(X))− tr(X,Y )

| ∀(X,Y ) ∈ E ∧M(X,Y ) ∈ B ∧ δ(X,Y ) = j − i} (6)

In the context of this paper, we obtain a schedule in an offline and static way.
Hence, the statement ∀j ≥ i : s(Xj) = s(Xi) + j − i is valid. It suggests that
a task X starts at the same point of time within each iteration. Consequently,
Eq. 6 is transformed into:

ρopt(S) = maxmin { s(Y0)− (s(X0) + e(X))− tr(X,Y ) + δ(X,Y )

| ∀(X,Y ) ∈ E ∧M(X,Y ) ∈ B} (7)

Note that this method of computing the robustness against communication
latencies adds accuracy to the one defined by Eq. 4. Anyhow, it requires the
worst case execution time of each task and the worst case transmission time on
the bus to be known at scheduling time.

Now, that we have defined the objective function, the data-flow graph’s
precedence constraints are modeled as linear constraints. For every channel
(X,Y ) ∈ E with δ(X,Y ) = 0, the constraint of X being executed before Y
in each iteration needs to be satisfied.
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Lemma 2. For a data-flow channel (X,Y ) ∈ E the following inequality holds.

s(Yi+δ(X,Y ))−(s(Xi)+e(X))− tr(X,Y ) ≥
{
δ(X,Y ) if δ(X,Y ) = 0
δ(X,Y )− 1 if δ(X,Y ) > 0

(8)

This means, if δ(X,Y ) = 0, the starting execution time of the receiving node Y
is greater or equal to the time when the sending node X finishes its computation
and transmission. In this case the precedence constraint is fulfilled. If δ(X,Y ) > 0,
inequality 8 shows that the gap between Xi and Yi+δ(X,Y ) is at least δ(X,Y )− 1.

A branching if-construct is unsuitable for a linear program. Therefore, the
linear expression 9 is used. In case of δ(X,Y ) = 0, it describes the precedence
constraint. Otherwise if δ(X,Y ) > 0, it will be a true statement because s(Y0)−
(s(X0) + e(X))− tr(X,Y ) ∈ [−1, 1] and therefore, will not affect the variables.

s(Y0)− (s(X0) + e(X))− tr(X,Y ) ≥ −δ(X,Y ) (9)

Finally we need to introduce constraints that ensure that tasks running on the
same processing unit do not overlap in their execution. For two tasks X,Y of
the DFG, either

s(X0)− (s(Y0) + e(Y )) ≥ 0 (Y finishes before X) or

s(Y0)− (s(X0) + e(X)) ≥ 0 (X finishes before Y )

is true. This leads us to the binary variable bXY , which can only take the values
0 or 1. If bXY = 1, then X is executed before Y . Otherwise, Y is executed before
X . The following statements written in lp-language guarantee that the tasks X
and Y will not overlap if they are executed on the same processor:

s(X0)− (s(Y0) + e(Y )) ≥ −bXY (10)

s(Y0)− (s(X0) + e(X)) ≥ −(1− bXY ) (11)

When bXY = 0, statement 10 enforces Y to be executed before X . Consequently,
statement 11 is true and does not affect the variables because s(Y0)− (s(X0) +
e(X)) ∈ [−1, 1]. Analogue is the case when bXY = 1.

Example 2. Regarding the DFG in Fig. 4(a), we add the necessary information
for optimizing the schedule. The worst case execution time in iterations
e(X), ∀X ∈ V and the worst case transmission time are given. We define
e(A) = e(B) = 0.25 iterations and tr(A,B) = tr(B,A) = 0.1 iterations.
Similar as in the data-flow optimizing case, the equations as defined by Eq.
5 are computed. There is one path, which covers the graph:

aIA + aAB + aBA + aAO = 3 (12)

The statements, which describe the precedence constraints of the graph are:

s(A0)− (s(B0) + e(B)) − tr(A,B) ≥ −δ(A,B)

s(B0)− (s(A0) + e(A)) − tr(B,A) ≥ −δ(B,A)
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Fig. 4. The data-flow model of a system S and its optimal schedule: (a) original DFG;
(b) optimal schedule regarding robustness ρopt(S)

Since there are no two tasks running on the same processor without precedence
constraints, we do not have to deal with overlapping problems.

In order to optimize the robustness against communication latencies the
objective function needs to maximize the expressions s(B0) − (s(A0) + e(A))−
tr(A,B) + δ(A,B) and s(A0)− (s(B0) + e(B))− tr(B,A) + δ(B,A) (see 7).

The optimal robust system schedule is shown in Fig. 4(b). It is the result of
the previously presented linear expressions computed by lp solve. The optimal
robustness against communication latencies is 1.15 of an iteration. For achieving
this robustness the system is retimed such that δ(A,B) = 2 and δ(B,A) = 1.
Moreover, the linear system produces a solution for the starting times: s(A0) =
0.5 and s(B0) = 0. Hence, the starting times in each iteration compute as follows:

s(Ai) = s(A0) + i = 0.5 + i

s(Bi) = s(B0) + i = i

4 Automatic Analysis and Optimization with Cadmos

The previous sections provide the theoretical background to the concepts. This
section is concerned with the implementation of the concepts in the toolCadmos,
which can be used to visualize, analyze and transform data-flow graphs and is
developed at Chair IV for Software & Systems Engineering of the Technische
Universität München (see [11]). The presented analysis and transformation tech-
niques for robustness optimization are implemented in this tool. Tool-supported
automatic analysis and optimization is useful for industrial relevant system scales
where manual analysis is time-consuming, error-prone or impractical.

Analyzing the robustness against communication latencies. The first step when
trying to improve the robustness of the system is to analyze whether the
current robustness is sufficient. Cadmos allows to do this with the computing
of the function ρ(S) (see Sec. 2). Fig. 5(a) shows the DFG of a system with
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(a) (b)

Fig. 5. The data-flow model of a system and its optimal schedule: (a) data-flow; (b)
optimal schedule regarding robustness against communication latencies as generated
by the tool Cadmos.

three computational nodes. The platform contains two processors P1, P2, which
communicate through a bus. Task A is mapped on processor P1 and tasks
B,C are mapped on P2. The robustness against communication latencies of
this system can be read above the DFG. It is 2.35 in multiples of iterations.
Hence, if all the messages on the bus are delayed less than 2.35 · T , the system
will produce the correct outputs, where T represents the actual duration of an
iteration in physical time. For example, with T = 100ms we get a robustness of
2.35 · 100ms = 235ms.

Optimizing the robustness against communication latencies. If the analyzed
robustness is not sufficient for the system, we have the possibility to optimize
it regarding the communication latencies. Fig. 5 presents a system which has
reached its optimal robustness against communication latencies. Again, the
platform consists of two ECUs connected by a bus and A is executed on one
ECU while B and C are executed on the other ECU. The worst case execution
time of all nodes is e(X) = 0.15 iterations and the worst case transmission time
of all channels on the bus is tr(X,Y ) = 0.2 iterations. For solving the set of
inequalities presented in 3.2, the linear problem solver lp solve [12] is used. The
result is a system with ρopt(S) = 2.35 iterations. A schedule with this robustness
is illustrated in Fig. 5(b).

5 Evaluation

In this section, the concepts are evaluated by applying them to an industrial
relevant system. We use a model of an Adaptive Cruise Control (ACC) which is
a result of the Dentum research project of the Chair for Software and System
Engineering of the Technische Universität München in cooperation with an
international automotive supplier [13]. In this section, we evaluate the results
of the communication latencies robustness analysis and optimization using a
more complex model in order to show the practicability of these concepts.
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ACC functionality and structure. An Adaptive Cruise Control is a system used
in the automotive industry for vehicle speed control. It maintains a constant
speed unless the distance to the next vehicle is to low. By deceleration or
even active breaking, the ACC system preserves a required minimal distance
depending on the current vehicle speed. The system also contains a pre-crash
safety (PCS ) node. If the PCS detects that a collision is about to happen, it
suspends any acceleration, tights the seat belt and breaks actively. The PCS has
the responsibility to suspend any acceleration by sending the value “true” over
the channel suspend to the OnOffArbiter if a forthcoming collision is detected.
Hence, the suspend channel is considered a critical channel of the system, which
should have a high robustness against latencies on a bus. Fig. 6 shows the overall
data-flow graph G = (V,E, δ) and emphasizes the data-flow from the PCS, over
the suspend channel to the OnOffArbiter (as marked by text boxes).

Fig. 6. Using the tool Cadmos to analyze and optimize the data-flow and the schedule
of the Adaptive Cruise Control model. A robustness-optimal schedule of the ACC
system is visualized on the upper side and the optimized data-flow graph is visualized
on the lower side.

The platform resources are two ECUs of type MPC5554 (P = {P1, P2})
connected through a CAN-bus (B = {Bus}). The execution times of nodes on
the ECUs as well as the transmission times of messages on the bus are known.
The mappingM of this system contains the PCS node running on ECU P1 while
all the other nodes run on the other ECU P2. The suspend channel, that forwards
messages from the PCS to the OnOffArbiter, is the only channel mapped on the
CAN-bus Bus. In the following paragraphs, we use the concepts presented in this
paper to maximize the robustness of the suspend channel in the ACC system.

Optimizing the robustness against communication latencies. The robustness
optimization of the ACC model is realized automatically with the implemented
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methods (see Sec. 4) in Cadmos. Fig. 6 shows the modified system with its
optimal data-flow graph and schedule. The new DFG is the result of a series
of retiming transformations. Here, the suspend channel, which is mapped on
the bus, obtains the maximum number of three delays. Taking a closer look
at the schedule in Fig. 6, we observe that inside of an iteration the sending
PCS node is executed as early as possible, whereas the receiving OnOffArbiter
node is executed as late as possible. Cadmos assures that this system is robust
as long as a communication latency on the CAN-bus does not exceed 2.75094
multiples of an iteration. If we use an iteration period T = 5ms, the ACC
system is guaranteed to be robust against latency caused by the CAN-bus of up
to 2.75094 · 5ms = 13.7547ms.

Cadmos generates the respective lp-scipt automatically. The generated script
of the ACC model, has 73 lines of code written in linear programming language
and includes 48 variables. For the ACC model, which only comprises 7 nodes, a
manual attempt to implement this linear program, using the algorithm presented
in Sec. 3.2, would already be very time-consuming. The time required by lp solve
to find the optimal solution with the generated script is relatively low. For the
ACC model, the optimal result is produced in 0.03 seconds on an Intel(R)
Core(TM)2 Duo CPU with 2.4GHz. It is future work to evaluate how these
results scale on more complex models with hundreds of nodes and channels.

6 Concluding Remarks and Future Work

Robustness against communication latencies is an important property of dis-
tributed reactive systems. After analysis of the robustness ρ(S) as presented in
Sec. 2, engineers can decide if the robustness of a system S needs to be improved.
The optimization methods in Sec. 3 provide the maximum communication
latency robustness ρopt(S), which can be achieved for a system S = (G,R,M)
regarding its data-flow graph G, platform resources R and mapping M .

Threats to validity. One result of the optimization is a retimed DFG. Retiming
also involves the re-computation of initial values of channels. Our approach
currently requires that the initial values are manually defined, after the system
has been retimed. Otherwise, computing the initial values from the original
system can be challenging. If delays are moved from inputs towards outputs
of a node X , the new initial values val′i can be computed by applying the
functionality of X on its old initial values vali. (val

′
i = X(vali)). The difficult

case is when delays are moved from outputs towards inputs. This means that
for the computation of the new initial values the inverse function X−1 must
be applied on the old initial values (val′i = X−1(vali)). In general, finding the
inverse function (if it exists) is not trivial.

Trade-offs for optimizing the communication latency robustness. Achieving the
optimal robustness against communication latencies can have severe negative
influence on other important properties of the system like performance or
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parallelism. It is future work to find a possibility to have a weighted optimization
method with respect to these properties. Nevertheless, the optimization methods
in Sec. 3 give insight, whether the system can ever be robust enough to the
expected communication latencies of the platform. If even the optimal robustness
is not sufficient to cover worst case scenarios, engineers should consider adding
more delays or changing parts of the platform or changing the mapping of data-
flow elements onto resources.

Acknowledgements. This work was partially funded within the project
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Abstract. This paper presents a formal design of a tool for statically
establishing the upper bound on the number of executions of objects’
methods in a fragment of object-oriented code. The algorithm that our
tool employs is a multi-pass interprocedural analysis consisting of data
flow and region-based analyses. We describe the formalization of each
of stage of the algorithm. This rigorous specification greatly aids the
implementation of the tool by removing ambiguities of textual descrip-
tions. There are many applications for information obtained through
this method including reasoning about concurrent code, scheduling, code
optimization, compositing services, etc.We concentrate on using upper
bounds to instrument transactional code that uses a synchronization
mechanism based on versioning, and therefore benefits from a priori
knowledge about the usage of shared objects within each transaction.
To this end we implement a precompiler for Java that analyzes transac-
tions, and injects generated source code to initialize each transaction.

Keywords: static analysis, data flow analysis, transactional memory.

1 Introduction

In this paper we present a tool for estimating the maximum of how many times
methods of objects will be called within a fragment of object-oriented code. We
report the tool’s formalization and discuss its implementation. We see the formal-
ization as one of the main contributions of this paper. The described algorithm is
relatively simple: it is based on data flow analysis to establish information about
values and paths and region analysis to tally method calls. We expand regions
with additional properties so that the final, vital part of the analysis becomes
straightforward. We also describe a use of a natural positive set extended by
an absorbing value to count uncertain executions. In effect we manage to infer
upper bounds (either concrete or infinite) that provide safety.

There are several possible applications for information about the upper bound
on the number of objects’ method calls obtained through our analysis. Among
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others, such upper bounds may be used to analyze concurrent code to find rela-
tionships between threads: a thread accessing a shared object once, several times,
or not at all may impact safety guarantees like isolation or performance in differ-
ent ways. With this information prior to execution it can be treated differently,
i.e., applied proper synchronization, delayed, or executed as-is without breaking
guarantees. The upper bounds can also be applied in compile-time resource op-
timization. For instance, the amount of memory used by a given program or its
influence on network traffic may be estimated from calls to particular objects if
the interface is known and used to configure the environment appropriately or
to optimize the analyzed program. Other uses may be found in code rewriting,
automatic refactoring, etc. Apart from the work of [15] these applications seem
largely unexplored.

Our particular interest lays with algorithms that require this type of informa-
tion up front for efficient operation, e.g., those found in scheduling and synchro-
nization via transactions. One such application is Atomic RMI [26,27]. It is a
distributed transactional memory extension to Java RMI, an API for distributed
programming using remote procedure calls that is well-established in business
and industry. Atomic RMI uses versioning algorithms that need a priori infor-
mation about shared object accesses to figure out whether an object may be
released before a transaction commits (or aborts). Releasing objects early gives
Atomic RMI a performance edge, so a precompiler that provides upper bounds
automatically and precisely has significant practical value. We see the paper as
contributing the application and the implementation of the precompiler as well
as the analysis and its formalization. The technical documentation of the tool is
available on the project web page [19].

The paper has the following structure. In Section 2 we present work similar to
ours. We formalize the static analysis in Section 3— each subsection describes
an individual constituent part of the analysis. Then, in Section 4 we discuss the
precompiler implementation. Finally, we conclude with Section 5.

2 Related Work

There is a large body of research related to analysis of programs that aims at
deriving information about execution patterns statically (we sketch out some of
these below). However, we do not know examples of using this information for op-
timizing the execution of distributed transactions in the way we do. The largest
body of work to which our static analysis bears resemblance has been done with
regard to the Worst Case Execution Time (WCET) problem [24]—establishing
upper bounds on the time code takes to run. However, most of this work is aimed
at real-time systems, not transactional concurrency control which is the main
concern of our work. A number of frameworks are available for WCET analysis,
like aiT [4], Bound-T [10], SWEET [7], and SymTA/P [20]. A comprehensive sur-
vey of these tools and methods was done in [25]. Whereas our approach is based
on region analysis, some work in WCET use symbolic analysis [13], path analysis
[8], and abstract interpretation [10,5]. We also use the latter type of analysis for
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our value analysis algorithm (Section 3.2). In WCET emphasis is placed on the
problem of evaluating loops in general and bounding loop iterations in particu-
lar. This is done, among others, by the use of Presburger arithmetic [17], path
analysis (using integer linear programming) [21], or a combination of methods
involving abstract interpretation [3]. Our work touches on those concerns in Sec-
tion 3.2 where we use loop unfolding to establish their bounds roughly similar to
that of SWEET [7] but simpler. WCET tools additionally often use the Implicit
Path Enumeration technique [12] or single feasible paths [28] to establish worst-
case paths and perform final timing analyses. While our application presents
no need for the latter, we use region-based analysis (described in Section 3.4)
to conservatively deduce worst-case paths. WCET tools also allow for manual
declaration or correction of difficult-to-deduce information (e.g., loop bounds).

Our work has significant similarities to work on lock inference. Lock inference
aims to determine which memory locations or shared objects in a program must
be protected by locks and where these locks should be located. Thus, our work
and lock inference share the same ultimate goal of providing concurrency control
via static analysis albeit by different mechanisms. The authors of [2] employ
backward data flow analysis to transform a program’s control flow graph into
a path graph which is then used to derive locks. In [9] the authors present
a method for identifying shared memory locations using type-based analysis,
points-to analysis, and label flow analysis [16]. In Autolocker [14] pessimistic
atomic sections are converted into lock-guarded critical sections by analyzing
dependencies among annotated locks based on a computation history derived
from a transformation of the code using a type system.

In [15] the authors propose a tool for the automatic inference of upper bounds
on the usage of user-specified resources. Rather than memory or execution time,
these may be the number of open files, accesses to database, sent text messages,
etc.This work and ours share the set of tools they use (Soot and Jimple [22])
and they both try to solve a similar problem. The tool presented by the authors
performs a data flow analysis to derive data dependencies, then creates a set of
equations from input-output parameter size relationships. Finally the equations
are solved using a recurrence solver. Our approach differs most in that we per-
form region analysis to determine maximum paths and resource use where they
construct and solve equations.

3 Upper Bound Prediction Analysis

In this section we describe an algorithm for deriving upper bounds (or suprema)
on the number of method calls to objects via static analysis. The upper bounds
for some specific objects—remote objects used in a transaction—are used for con-
currency control by Atomic RMI. To derive the suprema the algorithm performs
multiple passes over the input code in the form of an intermediate language
(see Section 3.1). Three passes correspond to the three phases that form our
algorithm: value analysis, region analysis, and call count analysis. In addition
another pass is performed before value analysis to identify loops. Value analysis
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Identifiers j ∈ Ident

Constants c ∈ Const

Labels l ∈ Lab

Types t ∈ Type

Fields f ∈ Field ::= j : t

Immediates i ∈ Imed ::= j
∣∣ c

Right-hand values r ∈ Rval ::= i
∣∣ i[i] ∣∣ i.[f ] ∣∣ [f ]

Methods m ∈ Meth ::= invoke i.[j(j1 , ..., jn)](i1, ..., in){b1, ..., bn}
Conditions p ∈ Cond ::= i == i

∣∣ i ≥ i
∣∣ i > i

∣∣ i ≤ i
∣∣ i < i

∣∣ i �= i

Expressions e ∈ Expr ::= i+ i
∣∣ i / i

∣∣ i ∗ i
∣∣ i%i

∣∣ − i
∣∣ i− i

∣∣ i | i ∣∣ i & i∣∣ i xor i
∣∣ i� i

∣∣ i� i
∣∣ (t)i ∣∣ i instanceof t∣∣ new t

∣∣ new t[i1]...[in]
∣∣ length i

∣∣ p
Statements s ∈ Stmt ::= switch(i){case c1 : l1; ...; case cn : ln; default : l0}∣∣ if p goto l1 else l2

∣∣ l ∣∣ j = m
∣∣ j = r

∣∣ m∣∣ goto l
∣∣ return i

Blocks b ∈ Bloc ::= l : b1; ...; bn;
∣∣ b1; ...; bn; ∣∣ s

Fig. 1. Jimple syntax (altered)

predicts possible values of variables in the code. It also identifies unfeasible or
dead code, and unfolds loops. Region analysis uses the results of value analysis
to convert the input code into regions. Finally, call count analysis examines these
regions to produce the upper bounds on method call counts. We describe our use
of Jimple and the phases of the algorithm in detail in the following subsections.

3.1 Translation to Jimple

In order to analyze a program in Java with Atomic RMI transactions we translate
it into an intermediate representation called Jimple [23] using the Soot frame-
work [22]. We use Jimple as an intermediate language because it is much better
suited for analysis than either Java source code or bytecode. The reason for this
is that Jimple is a 3-address code representation with a very limited instruction
set consisting of 17 statements. In our earlier attempts to perform similar analy-
ses using Java source code [18] we learned that such analyses become convoluted
and the implementation costly in effort due to the number of constructs needing
handling and the complexity of their semantics.

The part of Jimple syntax that is pertinent to our further discussion is pre-
sented in Fig. 1. The semantics are mostly straightforward, the reader is referred
to [23] for details and the complete language. The constructs most important
to us are the conditional statements, switch statements, method invocations, as-
signments, and labeled blocks. We introduce superficial alterations to the syntax
to suit further description of the algorithm. We treat labels as statements and
place them at the beginning of labeled blocks. We modify the conditional state-
ment to define target labels for both outcomes instead of having a succeeding
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1 Transac t ion k = new Transac t ion ( reg ) ;
2 a = k . ac c e s s e s ( a , 2 ) ; // generated , upper bound = 2
3 b = k . ac c e s s e s (b , 1 ) ; // generated , upper bound = 1
4 k . s t a r t ( ) ;
5 int balance = a . getBalance ( ) ;
6 i f ( ba lance >= sum) {
7 a . withdraw (sum ) ; b . d epo s i t (sum ) ;
8 k . commit ( ) ;
9 } else

10 k . r o l l b a c k ( ) ;

Fig. 2. Example Java code for a distributed transaction using Atomic RMI

1 k = new soa . atomicrmi . Transac t ion ;
2 invoke k .[< i n i t >(@parameter0 ) ] ( reg ){ $b0 } ;
3 invoke k . [ s t a r t ( ) ] ( ) { $b1 } ;
4 balance = invoke a . [ getBalance ( ) ] ( ) { $b4 } ;
5 i f balance < sum goto l ab e l 1 else l a b e l 0 ;
6 l ab e l 0 :
7 invoke a . [ withdraw (@parameter0 ) ] ( sum){ $b5 } ;
8 invoke b . [ d epo s i t (@parameter0 ) ] ( sum){ $b6 } ;
9 invoke k . [ commit ( ) ] ( ) { $b2 } ; return null ;

10 l ab e l 1 :
11 invoke k . [ r o l l b a c k ( ) ] ( ) { $b3 } ;

Fig. 3. Java code translated to altered Jimple

block of code called if the condition is false. We do not distinguish among differ-
ent sorts of method invocations—interface, special, virtual, and static—and we
remove type information from invocations while adding a direct definition of the
methods’ arguments and a set of possible bodies. We also fix method invocations
nested in other statements by defining a separate assignment statement instead
where the results of the invocation are assigned to an identifier. We show an
example Java program using our Atomic RMI distributed transactions Fig. 2
translated to the altered form of Jimple in Fig. 3 (lines 2, 3 are omitted because
they are generated from Jimple later—see Section 4.2 for details).

For the purposes of analysis the input program is represented as Control Flow
Graphs (CFGs) and each method’s body is a separate graph. Most statements in
Jimple will have one incoming and outgoing edge. The conditional statement will
have 2 outgoing edges, and the switch statement will have one more outgoing
edge than it has conditions. Loop headers and labeled blocks will have more
incoming edges. Invoke statements point to CFGs of other method bodies.

3.2 Value Analysis

As a preliminary to the value analysis we find loops in code. A loop consists
of a head and a body. A loop head is a statement s that dominates any other
statement s′ (all paths from the start to s′ lead through s [1], denoted s dom s′)
while simultaneously being the successor of s′ (there is a path from s′ to s).
A loop body is a sequence of statements all of which are dominated by a loop
head and have that loop head as their successor. We gather the heads in set H
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G(s) � S � (SV , SP , SD, SI)

G(s) = eval(join({G(p) | s succ p}), s)
eval(S, j = r) � (SV [j �→ {val(r, SV )}], SP , SD, SI )

eval(S, j = m) � S′ = eval(S, m), (SV ⊕ S′V [j �→ {val(m, SV )}], SP , SD , SI)

eval(S, invoke i.[j(j1, ..., jn)](i1, ..., in){b1, ..., bm}) �
case depth(i.j) → SV [k �→ ωk ∈ defs(b1) ∪ ... ∪ defs(bm)], SP , SD, SI )

otherwise → S′ = (SV [j1 �→ val(i1, SV ), ..., jn �→ val(in, SV )], SP , SD , SI),

join(eval(S′, b1), ..., eval(S′, bm))

eval(S, l) � (SV ⊕ SP (l), SP , SD, SI)

eval(S, s : return i) � (SV , SP , SD ∪ {(s, s′) | s pdom s′, s′ ∈ Stmts)}, SI )
eval(S, s : if p goto l1 else l2) �

case pred(p, S) = true → (SV , SP
[
l1 �→ SP [p �→ true]

]
, SD ∪ {(s, l2)}, SI)

case pred(p, S) = false → (SV , SP
[
l2 �→ SP [p �→ false]

]
, SD ∪ {(s, l1)}, SI)

case pred(p, S) = ω → (SV , SP
[
l1 �→ SP [p �→ true], l2 �→ SP [p �→ false]

]
, SD, SI )

eval(S, s : switch(i){case c1 : l1; ...;case cn : ln; default : l0}) � (SV ,

SP
[
l1 �→ SP (l1)[j = val(c1)], ..., ln �→ SP (ln)[j = val(cn)]

]
, SD

∪{(s, lk) | pred(ck = j, S) = false ∨ pred(cr = j, S) = true, k = 1, ..., n, r = 1, ..., k}
∪{l0 | pred(∃k, ck = j,S) = true, k = 1, ..., n}, SI)

eval(S, s ∈ H) � evalloop(s,G,L(id(s)), 1, L)

eval(S, s ∈ B ∧ s �∈ H) � S

join(S1, ...,Sn) �
({k �→ S1V (k) ∪ ... ∪ SnV (k) | k ∈ (dom S1V ∪ dom SnV )}, {l �→

{k �→ S1P (l)(k) ∪ ... ∪ SnP (l)(k)} | l ∈ dom S1P ∪ ... ∪ SnP , k ∈ dom S1P (l) ∪ ... ∪ SnP (l)},
S1D ∪ ... ∪ SnD, {k �→ max

i=1,...,n
(SiI (k)) | k ∈ (dom S1I ∪ dom SnI )}

)

S′V ⊕ S′′V � {k �→ S′V (k) ∪ S′′V (k) | k ∈ (dom S′V (k) ∪ dom S′′V (k))}

Fig. 4. Value analysis

and create map L which contains a unique identifier of each statement h from H
as a key mapped to a set of statements whose elements are all dominated by h.

The first phase of the analysis is a forward data flow analysis performed on the
CFG. Its main purpose is threefold: to establish the possible values of variables
at each node of the CFG representing the program, to count the maximum
number of loop iterations through loop unfolding, and to establish which nodes
of the CFG are dead or unfeasible (will not be executed). There are two principal
functions in value analysis, eval and join. These functions are used to compute
members of global state G, a data structure that results from the analysis. We
present all of those elements in Fig. 4 and describe them below.

Global state G maps Jimple statements to states which apply to them. Global
state is constructed during value analysis by constructing a state for each state-
ment using a transfer function eval and an aggregation of states for the predeces-
sors of a given statement using join. We designate individual states S, such that
S is a quadruple consisting of a value map SV , an inferred value map SP , a dead
edge set SD, and a loop iteration map SI . SV is a map of locals (identifiers and
constants) to sets of values—it indicates what values a given variable or con-
stant may take at this point in the program. SP maps labels (names of blocks)
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to value maps and indicates assumptions about values of variables and constants
inferred from conditions that will apply at a particular succeeding statement. SD
contains pairs of statements indicating edges that will definitely not be used in
the execution of the program. SI is a map of loop heads to numbers indicating
the maximum estimated iteration count of the loop, or an unknown value. All
components of the state are initially empty.

Transfer function eval is the key function of the analysis. It analyzes each
Jimple statement and establishes the state of the program that holds after the
statement is evaluated. The resulting state depends on the type of statement
and the state before that statement.

When encountering an assignment of a right-hand side expression r to an
identifier j, a new mapping is added to SV that maps j to the set of possible
values of expression r. When eval encounters an assignment of the results of
method invocation m to identifier j, first m is evaluated separately and state
after its evaluation S′ is extended by the mapping of j to the result of m. A
method invocation itself is analyzed by first extending the value map by param-
eter identifiers mapped to the values of arguments. Then all possible bodies are
evaluated and the results are joined (the particular bodies are identified from the
type hierarchy and arguments but we leave the details to Soot). But if recursion
exceeds a depth L all the values defined within possible method bodies are set
to unknown (this degrades precision but maintains safety). L must be tuned to
a given application. A label l extends the value map with predictions from the
inferred map. A return statement adds all other statements it dominates to SD.

When analyzing an if statement the expression that is the condition is
checked. If the condition yields true then the edge in the CFG from the current
statement to label l2 is added to dead edges, and predictions about variables
are made under the assumption that the condition will be true at label l1. Con-
versely, if the condition yields false the edge from the statement to l1 will be dead
and predictions will be made for l2 under the assumption that the condition is
false. If the condition yields an unknown, no edges will be added to the dead
edge set, but predictions for both l1 and l2 will be made. A switch statement is
analyzed by creating a prediction for each constant c1, ..., cn that the local i is
equal to it at an appropriate label l1, ..., ln. Furthermore, if any of the constants
ck is definitely equal to i, edges from this statement to labels subsequent to that
constant lk+1, ..., ln and the default label l0 are added to the dead edge set SD.

Function join (Fig. 4) is responsible for joining states and is used when a
statement has two or more incoming edges. Each component of the state is
joined with its counterpart in the second state. Sets SD are added together. The
keys and values are copied to a new map, and if a key is present in both maps,
the values are added (SV , SP ) or the higher one is selected (SI).

We use the following helper functions within eval. Function val substitutes
values from a value map for identifiers and constants (where possible) in a given
expression and evaluates it to establish a set of values that the expression may
yield. The returned set may consist of a single value, any number of elements
or contain the unknown value ω. We use the function pred in a similar manner,
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evalloop(s,G′,U, i, L) �
G′′ = G′, G′′(u) = eval(join({G′′(u) | u succ p ∧ u ∈ U})),
E = {e | s succ e ∧ s �∈ U ∧ e ∈ U},
E′ = E \ {d | G′′(d) = S′, unpredecessed(S′

D, d) ∧ d ∈ E},
Se = join({G′′(e) | e ∈ E′}),
Z = {(b, h) | h dom b ∧ h succ b ∧ �s ∈ U, h succ s succ b}
Sz = join({G′′(b) | (b, h) ∈ Z}),
case Z ⊆ Sz

D ∨ (∀(b, h) ∈ Z, unpredecessed(Sz
D, b))→ (Se

V , Se
P , S

e
D, Se

I [h �→ i])

case i > L→ (Se
V [k �→ ω, k ∈ defs(U)], Se

P , S
e
D, Se

I [h �→ ω])

case i ≤ L→ evalloop(h,G′′,U, i+ 1, L)

unpredecessed(SD, s) � ∀s succ p, (p, s) ∈ SD ∨ unpredecessed(p)

defs(U) �
{
j | s ∈ {j = m, j = r} ∧ s ∈ U

}
Fig. 5. Loop unfolding within value analysis

except that only conditional expressions are evaluated and a single ternary value
is returned—true, false, or ω. We use depth to find out the depth of a method’s
recursion. Function id produces a unique identifier of a statement. Operators
succ, dom and pdom denote the succession, domination and post-domination
relation of two statements in the CFG.

When encountering a statement that was identified as a head of a loop, func-
tion evalloop is used where the statements that form the body of the loop are
taken from L and evaluated. During evaluation a collection of states G′ is cre-
ated and used to find those exit statements E′ and back edges Z that may be
executed during this iteration. If no back edge could be used during this iteration
we know the loop exits, so we aggregate the states after all exit statements and
finish evaluating the loop. It can also be deduced at this point that the loop will
be executed at most as many times as we performed iterations. Otherwise, if we
have not reached an arbitrary limit of iterations we conduct another iteration
using evalloop. If the limit was reached we do not proceed but assume that this
loop will continue indefinitely and set all the values that are defined within its
body to unknown ω. Upon evaluation exit statements from the loop body are
derived from the dead edge set of the resulting state. If there is only one exit
from the loop then the loop exits in the current iteration and both the state of
the variables and the number of iterations are added to S. Otherwise another
iteration is required and the evaluation is repeated. In order to manage infinite
loops or those where the conditions of exiting are uncertain, an iteration limit L
is given which, when reached, will cause the evaluation to cease and set all effects
of the loop to unknown value ω. Setting values to ω preserves safety. We use two
additional helper functions within evalloop. We define predicate unpredecessed
which checks whether a statement’s predecessors are all dead or the edge from
them to it are unused. We also define function defs which returns the names of
variables defined in a given statement.
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Unit regions U ∈ Units ::= unit

Statement regions S ∈ Statements ::= statement s

Invocation regions I ∈ Invocations ::= invoke j, R1, ..., Rm, s

Block regions B ∈ Blocks ::= block [R1, ..., Rn]

Condition regions C ∈ Conditions ::= condition p,R1, R2

Loop regions L ∈ Loops ::= loop h, R

Regions R ∈ Regions ::= U
∣∣ S ∣∣ I ∣∣ B ∣∣ C ∣∣ L

Fig. 6. The region-based intermediate representation

3.3 Regions

The second phase of our analysis is concerned with preparing the input structure
required by the third phase which is conducted using region-like structures. Thus
we introduce a function to convert the CFG into a region graph. Regions [1,11]
are areas of code with a single entry point, like code blocks. We extend each
region with information about its rôle in the code. We distinguish unit regions,
statement regions, invocation regions, block regions, condition regions, and loop
regions. We show their definitions in Fig. 6.

Regions are converted from Jimple CFG by the analysis defined in Fig. 7.
The analysis is performed on the root of the CFG using regf. The function then
handles each node of the CFG by recursion and returns a tree of regions. It uses
the loop header set H and a map of loop headers to their bodies L from the
previous analysis, and a set of dead statements D whose all incoming edges or
predecessors are dead (according to SD). For convenience, we also define function
block which creates a block region from a sequence of statements by applying
regf to each of them in succession and aggregating them into a single region.

3.4 Call Count Analysis

Call count analysis is performed on the region tree in order to establish the
number of times each object’s methods are called. It is depicted in Fig. 8. The
analysis begins with the application of function ccount at the root of the region
tree and proceeds depth-first through the subregions. In general, method calls
on objects in the tree’s leafs are counted and the counts are aggregated upwards,
either by adding the call counts (with addjoin) in cases of sequences or by taking
the highest count (using maxjoin) in cases of alternative program paths.

Function ccount takes three arguments—the global state G, the maximum
number of executions of the parent region n, and the region of appropriate type.
The function returns a map of object identifiers to the number of times that
particular object’s method were called. Thus, when the function comes across
statement or unit regions it returns empty sets. When it reaches an invoke region
it notes the object owning the method and creates a mapping of that object to
the number of times the parent region is to be executed; this mapping is then
aggregated using function addjoin to the results of the evaluation of the joined
bodies of the invoked method using ccount. If a block region is encountered its
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D � {s | S = G(s), unpredecessed(SD, s)}
block(H, [s1, ..., sn]) � block [Ri | 1 < i < n,Ri = regf(H, si) ∧ (i = 1 ∨ ¬si ∈ Ri−1)]

regf(H, l : b1; ...; bn; ) � block(H, [l, b1, ..., bn])

regf(H, b1; ...; bn; ) � block(H, [b1, ..., bn])

regf(H, s ∈ H) � loop s, block(H \ {s}, [s′|s′ ∈ L(s)])

regf(H, s ∈ ⋃
∀h∈H

L(h) ∨ s ∈ D) � unit

regf(H, s : if p goto l1 else l2) �
case �e ∈ Stmt, e pdom s→

condition p, block(H, [s′ | l1 dom s′]), block(H, [s′ | l2 dom s′])

case ∃e ∈ Stmt,�e′ ∈ Stmt, e pdom s ∧ e′ pdom s ∧ e psdom e′ →
condition p, block(H, [s′ | l1 dom s′ ∧ e pdom s′]),

block(H, [s′ | l2 dom s′ ∧ e pdom s′])

regf(H, s : switch(i){case c1 : l1; ...; case cn : ln; default : l0}) �
case �e ∈ Stmt, e pdom s→

condition (i = c1), block(H, [s′ | l1 dom s′]),
(
, ...,(

condition (i = cn), block(H, [s′ | ln dom s′]), block(H, [s′ | l0 dom s′])
))

case ∃e ∈ Stmt,�e′ ∈ Stmt, e pdom s ∧ e′ pdom s ∧ e psdom e′ →
condition (i = c1), block(H, [s′ | l1 dom s′ ∧ e pdom s′]),

(
, ...,(

condition (i = cn), block(H, [s′ | ln dom s′ ∧ e pdom s′]),

block(H, [s′ | l0 dom s′ ∧ e pdom s′])
))

regf(H, s : invoke i.[j(j1 , ..., jn) : t](i1, ..., in){b1, ..., bm}) �
invoke i, regf(H, b1), ..., regf(H, bm), s

regf(H, s) � statement s

Fig. 7. Region finding analysis

subregions are evaluated first and the results of these evaluations are aggregated
using addjoin. When ccount encounters a conditional region the condition is
checked and one of the subregions is evaluated, if the condition is true or false
or both conditions are evaluated and their results are aggregated using maxjoin
if the condition is unknown. Finally, with loop regions the subregion that is the
loop’s body is processed using ccount, but the number of executions of the parent
region is multiplied by the number of loop iterations (obtained from SI).

Function maxjoin is used for joining the results of evaluations of two or more
subregions where it is unknown which ones will execute. It takes n maps of some
keys to numerical values as arguments and returns a similar map. Out of all
values that share a key across the maps the maximum one is inserted into the
resulting map. Function addjoin is used for aggregating the results of evaluations
of a sequence of subregions that will execute one after another. It takes n maps
of some keys to numerical values as arguments and returns a similar map. All
values that share a key across the maps will be added together and the sum will
be inserted into the resulting map under that key.
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ccount(G, n, unit ) � ∅

ccount(G, n, statement s) � ∅

ccount(G, n, invoke j, R1, ..., Rm, s) � S = G(s),

addjoin({SV (j) �→ n},maxjoin(ccount(G, n,R1), ..., ccount(G, n,Rm)))

ccount(G, n, block [R1, ..., Rn]) � maxjoin(ccount(SV , n,R1), ..., ccount(G, n,Rn))

ccount(G, n, condition p,R1, R2, s) � S = G(s),

case pred(p, S) = true→ ccount(G, n,R1)

case pred(p, S) = false→ ccount(G, n,R2)

case pred(p, S) = ω → maxjoin(ccount(G, n, R1), ccount(G, n, R2))

ccount(G, n, loop h,R) � S = G(h), ccount(G, n ∗ SI(h), R)

maxjoin(M1, ...,Mn) � {k �→ max(M1(k), ...,Mn(k)) | k ∈ dom M1 ∪ ... ∪ dom Mn}
addjoin(M1, ...,Mn) � {k �→ M1(k) + ...+Mn(k) | k ∈ dom M1 ∪ ... ∪ dom Mn}
ω + c = ω, ω ∗ c = ω, max(ω, c) = ω

Fig. 8. Call count analysis

Functions at this stage of the analysis may need numerical values to be added
or multiplied with the unknown value ω. If this happens, we treat it as an
absorbing element, and the result of such an operation is always unknown. In a
similar vein, the maximum of any set of numbers including ω is also unknown.

4 Precompiler Implementation

We implemented our precompiler as a tool for Atomic RMI using the Soot frame-
work.The precompiler implementation consists of three elements: Jimple creation,
upper bound analysis, and code generation (as shown in Fig. 9). The Jimple cre-
ator converts Java source code into the Jimple intermediate language—this is pro-
vided by Soot. The upper bound analysis deduces the information about remote
object calls within Jimple. It is divided into four analyses, each responsible for one
pass over the code. The code generator instruments the input source code with in-
structions based on the information obtained by the analysis. The two components
are described in more detail below.

4.1 Upper Bound Analysis

The upper bound analysis consists of value analysis (VA), region finding (RF),
transaction finding (TF), and object call analysis (OCA). These are forward
flow analyses implemented in Soot. Each of them makes one pass over the input
code in the form of a CFG from a particular starting point (the main method,
for instance). The implementation of each analysis defines a transfer function
applied to each node of the CFG, a join operator for joining result sets, and
initial result sets (see Fig. 4, Fig. 7, and Fig. 8).

Value analysis is the most complex of the analyses. It is the implementation of
the algorithm in Section 3.2 such that the transfer function and join implement
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Jimple creation

upper bound analysis
OCA

TF
Jimple

RF
Jimple Jimple

VA

values regionstransactions

upper bounds

values values

Java
bytecode

source
code

code generation
source
code

Fig. 9. Components and information flow in the precompiler

eval and join. The transfer function performs whatever action is needed for a
given statement type (these are recognized via the type system). The result sets
represent SV and SP , SI , and SD are passed via separate fields (for convenience).
The implementation finds loops headers and bodies using Soot’s built-in loop
finder. Loops are processed by running the analysis repeatedly on a pruned copy
of the CFG that contains only the statements from the loop and integrating
the results into the original analysis. Recurrent calls are handled by finding all
applicable method bodies, starting an analysis on each, and joining the results.
A stack of calls keeps track of the depth of recursion and when to bound it.

The implementation of value analysis needs to take care of additional signifi-
cant mechanisms that are obvious in the formalization and therefore glossed over.
These include mechanisms for evaluating expressions. Expressions’ arguments’
types are recognized and the semantics appropriate to them is applied (i.e. a +

b is addition if a and b are integers or concatenation if they are strings). All
combinations of basic types (at least primitives and Object) and operators need
to be implemented. We take the approach that operators are defined by classes
and perform argument-dependent operations.

Region finder converts the CFG into a region graph in accordance with the
algorithm in Section 3.3. The algorithm performs numerous graph searches like
finding domination and post-domination relations within the graph (provided
by Soot) and finding if particular paths exist within the CFG (e.g. whether all
paths from a conditional expression leads to the end of the body or to a common
post-dominator). RF creates a region hierarchy, were each region is characterized
by its type and type-specific fields.

Transaction finder is a component that tracks Atomic RMI transactions and
their components: it identifies the start and possible ends of transactions, remote
objects used within, and transactions’ preambles. These information are collected
for use by OCA and marked in Jimple using the Soot tag system.

OCA is responsible for tallying remote objects calls as in Section 3.4. The im-
plementation is straightforward: it accepts the data from the preceding analyses
and uses them to traverse regions and identify those that make calls to remote
objects. The number of executions of these regions is predicted and the counts
are summed up with reference to particular remote objects.
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The implementation must take into account the unknown values that may
appear in the course of this analysis. These are implemented as a new type that
allows any positive natural number or a value representing ω. The type also
defines the maximum function and arithmetical operations using the unknown
value (specifically addition and multiplication from Fig. 8).

4.2 Code Generation

The code generator for Atomic RMI modifies code on the lexical level using the
suprema obtained from the execution of the upper bound analysis. Necessarily,
in order for the code generator to modify the existing source code that source
code must be available for analysis. The source is converted into tokens by the
SableCC lexer [6] and then divided into lines.

The generator performs three passes over the collection of lines of tokens. In
the first pass the generator locates transactions in the source code using the in-
formation provided by the transaction finding (TF) phase of code analysis. When
found, all definitions in a transaction’s preamble are marked for removal, with
the exception of those which are followed by a comment string specifying them as
manual overrides. The second pass inserts a line of code into each transaction’s
preamble for each identified remote object pertaining to that transaction (lines
2, 3 in Fig. 2). The insert contains a variable representing the remote object and
a supremum on the number of method calls to that object, and it is built using
on a simple template. All the inserts are marked for prepending to the beginning
of the transaction. The final pass applies all the changes marked by the previous
two passes to the tokens and they can then be written to the output stream.

5 Conclusion

Our work illustrates a static analysis for extracting the maximum number of
times objects will be called in a fragment of code. Such information has a num-
ber of applications (we discuss them in Section 1) but we concentrate on using
the upper bounds as input data for Atomic RMI. We have so far found that the
analysis we implemented solves this problem satisfactorily for our purposes. The
tree-like region-based intermediate representation allows to find all of the method
calls within the code and the use of the absorbing unknown value produces con-
servative results when uncertain values are involved. Both of these guarantee
that the statically derived upper bounds are correct, i.e. not lower than any
actual number of method calls on a particular object. Apart from being conser-
vative, the estimated upper bounds should also be as accurate as possible—as
close to the actual number of executions as possible. For typical Atomic RMI
transaction code, the analysis is able to handle most scenarios adequately.

The formalization of our algorithm and adherence to it simplified the imple-
mentation of the tool. The formalization was a blueprint for the join operators
and transfer function of the individual data flow analyses which it defined their
modi operandi and allowed us to concentrate on the details of the interfaces,
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data structures, etc. during implementation. Another advantage is that the cor-
rectness of the created tool is verifiable, extensible, and amendable by inspection
and modification of the underlying algorithm, without an initial need to delve
into the actual source code.

Our future work may include extending the current analysis with some ad-
ditional refined analyses. In particular, there are ways to provide better iden-
tification of particular objects in the code, and more accurate ways to bound
loops and recursion. The current algorithms may have trouble analyzing certain
instances of input code accurately, especially when the depth of recursion or the
number of loop iterations exceeds L. This may be resolved by following some of
the approaches we list in Section 2. We also plan on exploring some elements of
lock inference [2]. In particular, if an object’s method were called an unknown
number of times due to loops or recursion it would be possible to mark the last
use of the remote object and to free it on that basis in run-time. These two
methods could provide complementary mechanisms covering most scenarios. We
also look forward to using our tool in new applications such as scheduling.
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6. Gagnon, É.M., Hendren, L.J.: SableCC, an object-oriented compiler framework.
In: Proc. of TOOLS 1998 (August 1998)

7. Gustafsson, J., Ermedahl, A., Lisper, B.: Towards a flow analysis for embedded
system C programs. In: Proc. of WORDS 2005 (September 2005)

8. Harmon, T., Schoeberl, M., Kirner, R., Klefstad, R.: A modular worst-case execu-
tion time analysis tool for Java processors. In: Proc. of RTAS 2008 (April 2008)

9. Hicks, M., Foster, J.S., Prattikakis, P.: Lock inference for atomic sections. In: Proc.
of TRANSACT 2006 (June 2006)

10. Holsti, N., L̊angbacka, T., Saarinen, S.: Worst-case execution-time analysis for
digital signal processors. In: Proc. of EUSIPCO 2000 (September 2000)

11. Lee, Y.-F., Ryder, B.G., Fiuczynski, M.E.: Region analysis: A parallel elimination
method for data flow analysis. IEEE TSE 21, 913–926 (1995)

12. Li, Y.-T.S., Malik, S.: Performance analysis of real-time embedded software.
Springer (November 1998)



206 K. Siek and P.T. Wojciechowski

13. Lundqvist, T., Stenström, P.: An integrated path and timing analysis method based
on cycle-level symbolic execution. Real-Time Systems 17(2-3), 183–207 (1999)

14. McCloskey, B., Zhou, F., Gay, D., Brewer, E.: Autolocker: Synchronization infer-
ence for atomic sections. In: Proc. of POPL 2006 (January 2006)

15. Navas, J., Méndez-Lojo, M., Hermenegildo, M.V.: User-definable resource usage
bounds analysis for Java bytecode. ENTCS 253(5), 65–82 (2009)

16. Pratikakis, P., Foster, J.S., Hicks, M.W.: Existential Label Flow Inference via CFL
Reachability. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 88–106. Springer,
Heidelberg (2006)

17. Pugh, W.: The Omega Test: a fast and practical integer programming algorithm
for dependence analysis. Communications of the ACM 8, 4–13 (1992)

18. Siek, K., Wojciechowski, P.T.: Statically computing upper bounds on object calls
for pessimistic concurrency control. In: Proc. of the EC2 2010: Workshop on Ex-
ploiting Concurrency Efficiently and Correctly (July 2010), Brief Announcement

19. Siek, K., Wojciechowski, P.T., Mruczkiewicz, W.: Atomic RMI documentation
(2011), http://www.it-soa.pl/atomicrmi/

20. Staschulat, J., Braam, J., Ernst, R., Rambow, T., Schlor, R., Busch, R.: Cost-
efficient worst-case execution time analysis in industrial practice. In: Proc. of ISoLA
2006 (November 2006)

21. Theiling, H., Ferdinand, C., Wilhelm, R.: Fast and precise WCET prediction by
separated cache and path analyses. Real-Time Syst. 18, 157–179 (2000)

22. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot -
a Java optimization framework. In: Proc. of CASCON 1999 (November 1999)

23. Vallée-Rai, R., Hendren, L.J.: Jimple: Simplifying Java bytecode for analyses and
transformations. Technical Report 1998-4, McGill University (July 1998)

24. Wilhelm, R.: Determining bounds on execution times. In: Handbook on Embedded
Systems, ch. 14. CRC Press (2006)

25. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.B.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P.P., Staschulat, J., Stenström, P.: The worst-case execution time
problem-overview of methods and survey of tools. ACM TECS 7(3) (April 2008)

26. Wojciechowski, P.T.: Language Design for Atomicity, Declarative Synchronization,
and Dynamic Update in Communicating Systems. Poznań University of Technology
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Abstract. We introduce a novel technique for checking properties de-
scribed by finite state machines. The technique is based on a synergy of
three well-known methods: instrumentation, program slicing, and sym-
bolic execution. More precisely, we instrument a given program with a
code that tracks runs of state machines representing various properties.
Next we slice the program to reduce its size without affecting runs of
state machines. And then we symbolically execute the sliced program to
find real violations of the checked properties, i.e. real bugs. Depending
on the kind of symbolic execution, the technique can be applied as a
stand-alone bug finding technique, or to weed out some false positives
from an output of another bug-finding tool. We provide several examples
demonstrating the practical applicability of our technique.

1 Introduction

There are several successful formalisms for description of program properties.
One of the most popular is a finite state machine (FSM). This formalism is simple
and still flexible enough to describe many often studied program properties in-
cluding locking policy in concurrent programs, null-pointer dereferences, resource
allocations, and resource leaks. FSM specification is therefore used in many static
program analysis tools like xgcc [24], SLAM [4], SDV [3], Blast [5], ESP [14],
or Stanse [27]. All the mentioned tools produce false positives, i.e. they report
errors that do not correspond to any real error. We now roughly explain the
basic principle of static analysis implemented in xgcc, ESP, and Stanse.

1.1 Checking FSM Properties by Static Analysis

Let us consider the state machine SM(x) of Figure 1. It describes a lock ma-
nipulation including malign transitions. Intuitively, the state machine represents
possible courses of states of a lock referenced by x along an execution of a
program. The state of the lock is changed according to the program behavior.
Whenever the program contains a statement syntactically subsuming the label
of a transition, the transition is fired in the state machine. We would like to
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U L

lock(x)

unlock(x)

DU

unlock(x)

DL

lock(x)

RL

return

Fig. 1. State machine SM(x) describing errors in manipulation with lock x. The nodes
U and L refer to states unlocked and locked, respectively. The other three nodes refer
to error states: DU to double unlock, DL to double lock, and RL to return in locked
state. The initial node is U.

decide whether there exists any program execution where an instance of state
machine SM(x) reaches an error state for some lock in the program. Unfortu-
nately, this is not feasible due to potentially unbounded number of executions
and unbounded execution length. Hence, static analysis tools overapproximate
the set of reachable state machine states.

Let us assume that we want to check the program of Figure 2 for errors
specified by the state machine SM(x). First, we find all locks in the program
and to each lock we assign an instance of the state machine. In our case, there
is only one lock pointed to by L and thus only one instance SM(L). For each
program location, we compute a set overapproximating possible states of SM(L)
after executions leading to the location. Roughly speaking, we initialize the set
in the initial location to {U} and the other sets to ∅. Then we repeatedly update
the sets according to the effect of individual program statements until the fixed
point is reached. The resulting sets for the program of Figure 2 are written
directly in the code listing as comments.

As we can see, the sets contain two error states: double unlock after the
unlock(L) statement and return in locked state in the terminal location. If we

1: ���� *copy(���� *dst , ���� *src, ��� n, ��� *L) {
2: ��� i, len; // {U}
3: len = 0; // {U}
4: �� (src != NULL && dst != NULL) { // {U}
5: len = n; // {U}
6: lock(L); // {L}
7: } // {U,L}
8: i = 0; // {U,L}
9: 	��
� (i < len) { // {U,L}

10: dst[i] = src[i]; // {U,L}
11: i++; // {U,L}
12: } // {U,L}
13: �� (len > 0) { // {U,L}
14: unlock(L); // {DU ,U}
15: } // {U,L}
16: ������ dst; // {U,RL}
17: }

Fig. 2. Function copy copying a source string src into a buffer dst using a lock L to
prevent parallel writes
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analyze the computation of the sets, we can see that the first error corresponds
to executions going through lines 1,2,3,4,8, then iterating the while-loop and fi-
nally passing lines 13,14. These execution paths are not feasible due to the value
of len, which is set to 0 at line 3 and assumed to satisfy len > 0 at line 13.
Hence, the first error is a false positive. The second error corresponds to execu-
tions passing lines 1,2,3,4,5,6,7,8, then iterating the while-loop and finally going
through lines 13,16. All these paths are also infeasible except the one that per-
forms zero iterations of the while-loop, which is the only real execution leading
to the only real locking error in the program.

To sum up, static analysis tools like xgcc, ESP, and Stanse are highly flexi-
ble, fast and thus applicable to extremely large software projects (e.g. the Linux
kernel). It examines all the code and finds many error reports. Unfortunately,
many of the reports are false positives.1 As manual sorting of error reports con-
taining a pile of false positives is tedious work, the practical applicability of such
tools is limited.

1.2 No False Positives with Symbolic Execution

In contrast to static analysis, test-generation tools based on symbolic execution
do not suffer from false positives, since the checked program is actually executed
(but on symbolic input instead of concrete one). A disadvantage of these tools is
that they usually detect only low-level errors representing violations of program-
ming language semantics, i.e. various types of undefined behavior or crashes. To
detect violations of other program properties like locking policy, the program has
to be modified such that the errors can be detected during the execution. This
can be achieved, for example, by introducing a couple of assert statements to
specific program locations. Another and even more important disadvantage of
the tools is extreme computation cost of symbolic execution. In particular, pro-
grams containing loops or recursion have typically large or even infinite number
of execution paths and cannot be entirely analysed by symbolic execution.

1.3 Our Contribution: A New Technique

In this paper, we introduce a new fully automatic program analysis technique
offering flexibility of FSM property specification with zero false positive rate
of symbolic execution. The technique symbolically executes only parts of the
analysed program having impact on the checked property. The basic idea is very
simple:

1. We get state machines describing some program properties. We instrument
a given program with a code tracking behavior of the state machines.

2. The instrumented program is then reduced using method called slicing [33].
The sliced program has to meet the criterion to be equivalent to the instru-
mented program with respect to reachability of error states of tracked state

1 We note that xgcc and ESP actually use many techniques for partial elimination
of false positives (see [24,14] for details).
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machines. Note that slicing may remove large portions of the code, including
loops and function calls. Hence, an original program with an infinite number
of execution paths may be reduced to a program with a finite number of
execution paths.

3. Finally, we execute the sliced program symbolically to find violations of the
checked property.

Our technique may be used in two ways according to the applied symbolic exe-
cution tool. If we apply a symbolic executor that prefers to explore more parts
of the code (for example by exploring each program loop at most twice), we may
use the technique as a general bug-finding technique reporting only real errors.
On the contrary, if we use a symbolic executor exploring all execution paths, we
may use our technique for classification of error reports produced by other tools
(e.g. xgcc or Stanse). For each such an error report, we may instrument the
corresponding code only with the state machine describing the reported error.
If our technique finds the same error, it is a real one. If our technique explores
all execution paths of the sliced code without detecting the error, it is a false
positive. If our technique runs out of resources, we cannot decide whether the
error is a real one or just a false positive.

We have developed an experimental tool implementing our technique. The
tool instruments a program with a state machine describing locking errors (we
use a single-purpose instrumentation so far), then it applies an interprocedural
slicing to the instrumented code, and it passes the sliced code to symbolic execu-
tor Klee [9]. Our experimental results indicate that the technique can indeed
classify error reports produced by Stanse applied to the Linux kernel.

We emphasize the synergy of the three known methods combined in the pre-
sented technique.

– Instrumentation of a program with a code emulating state machines provides
us with simple slicing criteria: we want to preserve values of memory places
representing states of state machines. Hence, the sliced program contains
only the code relevant to the considered errors specified by state machines.

– Slicing may substantially reduce the size of the code, which in turn may
remarkably improve performance of the symbolic execution.

– Application of symbolic execution brings us another benefit. While in stan-
dard static analysis, the state machines are associated to syntactic objects
(e.g. lock variables appearing in a program), we may associate state ma-
chines to actual values of these objects. This leads to a higher precision of
error detection.

The rest of the paper is organized as follows. Sections 2, 3, and 4 deal with
program instrumentation, program slicing, and symbolic execution, respectively.
Experimental implementation of our technique and some experimental results
are discussed in Section 5. Section 6 is devoted to related work while Section 7
indicates some directions driving our future research. Finally, the last section
summarizes presented results.
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2 Instrumentation

In our algorithm, the purpose of the instrumentation is to insert a code imple-
menting a state machine into the analysed program. Nonetheless, the semantics
of the program being instrumented must not be changed. A result of this phase
is therefore a new program that still has the original functionality but it also
simultaneously updates instrumented state machines. We show the process using
the state machine SM(x) of Figure 1 and a program consisting of two functions:
copy of Figure 2 and foo of Figure 3. The function foo calls copy twice, first
with the lock L1 and then with the lock L2. The locks protect writes into buffers
buf1 and buf2 respectively. The function foo is a so-called starting function. It
is a function where the symbolic execution starts.

���� *buf1 , *buf2;
��� L1 , L2;


��� foo(���� *src, ��� n) {
copy(src , buf1 , n, &L1);
copy(src , buf2 , n, &L2);

}

Fig. 3. Function foo forms the analysed program together with function copy

The instrumentation starts by recognizing code fragments which manipulate
with locks in the analysed program. More precisely, we look for all those code
fragments matching edge labels of the state machine SM(x) of Figure 1. The
analysed program contains three such fragments, all of them in function copy

(see Figure 2): the call to lock at line 6, the call to unlock at line 14, and the
return statement at line 16.

Next we determine a set of all locks that are manipulated by the program.
From the recognized code fragments, we find out that a pointer variable L in
copy is the only program variable through which the program manipulates with
locks. Using a points-to analysis, we obtain set {L1, L2} of all possible locks the
program manipulates with.

We introduce a unique instance of the state machine SM(x) for each lock in
the set. More precisely, we define two integer variables smL1 and smL2 to keep
the current state of state machines SM(L1) and SM(L2), respectively. Further,
we need to specify a mapping from locks to their state machines. The mapping
is basically a function (preferably with constant complexity) from addresses of
program objects (i.e. the locks) to addresses of corresponding state machines.
Figure 4 shows an implementation of a function smGetMachine that maps ad-
dresses of locks L1 and L2 to addresses of corresponding state machines. We note
that the implementation of smGetMachine would be more complicated if state
machines are associated to dynamically allocated objects.

Besides smGetMachine, Figure 4 contains also many constants and a function
smFire implementing the state machine SM(x). Further, Figure 4 declares vari-
ables smL1 and smL2 and initializes them to the initial state of the state machine.
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1: ����� ��� smU = 0; // state U
2: ����� ��� smL = 1; // state L
3: ����� ��� smDU = 2; // state DU
4: ����� ��� smDL = 3; // state DL
5: ����� ��� smRL = 4; // state RL
6:
7: ����� ��� smLOCK = 0; // transition lock(x)
8: ����� ��� smUNLOCK = 1; // transition unlock(x)
9: ����� ��� smRETURN = 2; // transition return

10:
11: ��� smL1 = smU , smL2 = smU;
12:
13: ��� *smGetMachine(��� *p) {
14: �� (p == &L1) ������ &smL1;
15: �� (p == &L2) ������ &smL2;
16: ������ NULL; // unreachable
17: }
18:
19: 
��� smFire(��� *SM, ��� transition) {
20: �	���� (*SM) {
21: ���� smU:
22: �	���� (transition) {
23: ���� smLOCK:
24: *SM = smL;
25: �����;
26: ���� smUNLOCK :
27: assert(false); // double unlock
28: �����;
29: �����
� : �����;
30: }
31: �����;
32: ���� smL:
33: �	���� (transition) {
34: ���� smLOCK:
35: assert(false); // double lock
36: �����;
37: ���� smUNLOCK :
38: *SM = smU;
39: �����;
40: ���� smRETURN :
41: assert(false); // return in locked
42: �����;
43: �����
� : �����;
44: }
45: �����;
46: �����
� : �����;
47: }
48: }

Fig. 4. Implementation of the state machine (smFire) and its identification (smGet-
Machine)

Note that we represent both states of the machine and names of transitions by inte-
ger constants. Also keep in mind that the pointer argument SM of smFire function
points to an instrumented state machine, whose transition has to be fired.

It remains to instrument the recognized code fragments in the original pro-
gram. For each fragment we know its related transition of the state machine and
we also know what objects the fragment manipulates with (if any). Therefore, we
first retrieve an address of state machine related to manipulated objects (if any)
by using the function smGetMachine and then we fire the transition by calling
the function smFire. The instrumented version of the original program consists
of the code of Figure 4 and the instrumented version of the original functions
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���� *buf1 , *buf2;
��� L1 , L2;

���� *copy(���� *dst, ���� *src , ��� n, ��� *L) {
��� i, len;
len = 0;
�� (src != NULL && dst != NULL) {

len = n;
* smFire(smGetMachine(L), smLOCK );

lock(L);
}
i = 0;
	��
� (i < len) {

dst[i] = src[i];
i++;

}
�� (len > 0) {

* smFire(smGetMachine(L), smUNLOCK );
unlock(L);

}
* smFire(smGetMachine(L), smRETURN );

������ dst;
}


��� foo(���� *src, ��� n) {
copy(src , buf1 , n, &L1);
copy(src , buf2 , n, &L2);

}

Fig. 5. Functions foo and copy instrumented by calls of smFire function

foo and copy given in Figure 5, where the instrumented lines are highlighted
by *. Note that in our example, the instrumented state variables smL1 and smL2

directly correspond to the program locks L1 and L2 respectively. In general, how-
ever, states of a state machine of a more complex property need not necessarily
correspond to values of a particular program variable. Therefore, we apply this
general approach to our example too.

3 Slicing

Let us have a look at the instrumented program in Figure 5. We can easily
observe, that the main part of the function copy, the loop copying the characters,
does not affect states of the instrumented state machines. Symbolic execution
of such a code is known to be very expensive, moreover in this case it is yet
unneeded. Therefore, we use the slicing technique from [33] to eliminate such a
code from the instrumented program.

The input of the slicing algorithm is a program to be sliced and a so-called
slicing criteria. A slicing criterion is a pair of a program location and a set
of program variables. The slicing algorithm removes program statements that
do not affect any slicing criterion. More precisely, for each input data passed
to both original and sliced programs, values of the variable set of each slicing
criterion at the corresponding location are always equal in both programs. Our
analysis is interested only in states of the instrumented automata, especially
in locations corresponding to errors. Hence, the slicing criterion is a pair of a
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1: ���� *buf1 , *buf2;
2: ��� L1 , L2;
3:
4: ���� *copy(���� *dst, ���� *src , ��� n, ��� *L) {
5: ��� len;
6: len = 0;
7: �� (src != NULL && dst != NULL) {
8: len = n;
9: smFire(smGetMachine(L), smLOCK );

10: }
11: �� (len > 0) {
12: smFire(smGetMachine(L), smUNLOCK );
13: }
14: smFire(smGetMachine(L), smRETURN );
15: ������ dst;
16: }
17:
18: 
��� foo(���� *src, ��� n) {
19: copy(src , buf1 , n, &L1);
20: copy(src , buf2 , n, &L2);
21: }

Fig. 6. Functions foo and copy after slicing
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Fig. 7. Symbolic execution tree of the sliced program of Figure 6
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location preceding an assert statement in smFire function and the set of all
variables representing current states of the corresponding state machines. The
slicing criteria then comprises all such pairs.

In the instrumented program of Figures 4 and 5, we want to preserve vari-
ables smL1 and smL2. We put slicing criteria into the lines of code detecting
transitions of state machines into error states. In other words, the slicing crite-
ria for our running example are pairs (27,{smL1,smL2}), (35,{smL1,smL2}), and
(41,{smL1,smL2}), where the numbers refer to lines in the code of Figure 4. The
result of the slicing procedure is presented in Figures 4 and 6 (the code in the
former Figure shall not be changed by the slicing). Note that the sliced code
contains neither the while-loop nor the lock and unlock commands.

It is important to note that some slicing techniques, including the one in [33]
that we use, do not consider inputs for which the original program does not halt.
As a result, an input causing an infinite run of the original program can induce
a finite run in the sliced program. Moreover, the finite run can contain locations
not visited by the infinite run. This is the only principal source of potential false
positives in our technique.

4 Symbolic Execution

This is the final phase of our technique. We symbolically execute the sliced
program from the entry location of the starting function. Symbolic execution
explores real program paths. Therefore, if it reaches some of the assertions inside
function smFire, then we have found a bug.

Our running example nicely illustrates the crucial role of slicing to feasibility
of symbolic execution. Let us first consider symbolic execution of the original
program. It starts at the entry location of the function foo. The execution even-
tually reaches the function copy. Note that value of the parameter n is symbolic.
Therefore, symbolic execution will fork into two executions each time we reach
line 9 of Figure 2. One of the executions skips the loop at lines 9–12, while the
other enters it. If we assume that the type of n is a 32-bit integer, then the
symbolic execution of one call of copy explores more then 231 real paths.

By contrast, the sliced program does not contain the loop, which generated
the huge number of real paths. Therefore, a number of real paths explored by
the symbolic execution is exactly 6. Figure 7 shows the symbolic execution tree
of the sliced program of Figure 6. We left out vertices corresponding to lines in
called functions smGetMachine and smFire. Note that although the parameter
n has a symbolic value, it can only affect the branching at line 11. Moreover,
the parameter L always has a concrete value. Therefore, we do not fork symbolic
execution at branchings inside functions smGetMachine and smFire. Three of
the explored paths are marked with the label bug. These paths reach the sec-
ond assertion in function smFire (see Figure 4) called from line 14 of the sliced
program. In other words, the paths are witnesses that we can leave the function
copy in a locked state. The remaining explored paths of Figure 7 miss the asser-
tions in the function smFire. It means that the original program contains only
one locking error, namely return in locked state.
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It might be the case for some program and checked property, that the sliced
code still contains loops. Then the subsequent symbolic execution can be very
costly due to the well-known path explosion problem. Fortunately, there have
been done some work tackling the problem [18,19,22,30,34].

5 Implementation and Experimental Results

To verify applicability of the presented technique, we have developed an exper-
imental implementation. Our experimental tool works with programs in C and,
for the sake of simplicity, it detects only locking errors described by a state
machine very similar to SM(x) of Figure 1. The instances of the state machine
are associated with arguments of lock and unlock function calls. Note that the
technique currently works only for the cases where a lock is instantiated only
once during the run of the symbolic executor, which is the most frequent case.
However we plan to add a support even for the rest. The main part of our im-
plementation is written in three modules for the Llvm framework [35], namely
Prepare, Slicer, and Kleerer. The framework provides us with a C compiler
clang. We also use an existing symbolic executor for Llvm called Klee [9].

Instrumentation of a given program proceeds in two steps. Using a C prepro-
cessor, the original program is instrumented with function calls smFire located
just above statements changing states of state machines. The program is then
translated by clang into Llvm bytecode [35]. Optimizations are turned off as
required by Klee. The rest of the instrumentation (e.g. adding global variables
and changing the code to work with them) is done on the Llvm code using the
module Prepare.

The module Slicer implements a variant of the inter-procedural slicing algo-
rithm by Weiser [33]. To guarantee correctness and to improve performance of
slicing, the algorithm employs points-to analysis by Andersen [2].

The module Kleerer performs a final processing of the sliced bytecode before
it is passed to Klee. In particular, the module adds to the bytecode a function
main that calls a starting function. The main function also allocates a symbolic
memory for each parameter of the starting function. Size of the allocated memory
is determined by the parameter type. Plus, when the parameter is a pointer, the
size is multiplied by 4000. For example, 4 bytes are allocated for an integer
and 16000 bytes for an integer pointer. Further, for the pointer case, we pass
a pointer to the middle of the allocated memory (functions might dereference
memory at negative index). The idea behind is explained in [28]. Finally, the
resulting bytecode is symbolically executed by Klee. If a symbolic execution
touches a memory out of the allocated area, we get a memory error. To remedy
this inconvenience, we plan to implement the same on-demand memory handling
UcKlee [28] does.

5.1 Experiments

We have performed our experiments on several functions of the Linux kernel
2.6.28, where the static analyzer Stanse reported some error. More precisely,
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Table 1. Experimental results. The table presents running time of preprocessing and
compilation (Comp.), instrumentation including points-to analysis (Instr.), slicing
(Slic.), symbolic execution (SE), and the total running time. The column Sliced
presents the ratio of instructions sliced away from the instrumented Llvm code and
the exact number of instructions before/after slicing. The column Result specifies the
result of our tool: BUG means that the tool found a real error, FP means that the
analysis finished without error found (i.e. the original error report is a false positive),
TO that the symbolic execution did not finish in time and ME denotes an occurrence
of memory error. The last column specifies the factual state of the error report.

File Running Time (s)
Sliced Result

Factual

Function Comp. Instr. Slic. SE Total State

fs/jfs/super.c

jfs quota write
1.25 0.18 0.15 5.09 6.67

67.8%
369/119

BUG BUG

drivers/net/qlge/qlge main.c

qlge set mac address
2.70 0.72 26.75 13.28 43.45

66.5%
1333/447

BUG BUG

drivers/hid/hidraw.c

hidraw read
1.06 0.18 0.14 Timeout

67.0%
666/220

TO BUG

drivers/net/ns83820.c

queue refill
1.76 0.29 1.72 0.62 4.39

72.9%
1212/329

FP FP

drivers/usb/misc/
sisusbvga/sisusb con.c

sisusbcon set palette
1.50 0.24 0.27 17.19 19.20

76.0%
2936/705

FP FP

fs/jffs2/nodemgmt.c

jffs2 reserve space 1.04 0.18 0.22 Timeout
46.8%
677/360

TO FP

kernel/kprobes.c

pre handler kretprobe 0.32 0.09 0.51 2.43 3.35
66.3%
202/68

ME FP

Stanse reported an error trace starting in these functions. We consulted the
errors with kernel developers to sort out which are false positives and which are
real errors. All the selected functions (and all functions transitively called from
them) contain no assembler (in some cases, it has been replaced by an equivalent
C code) and no external function calls after slicing.

We ran our experimental tool on these functions. All tests were performed on a
machine with an Intel E6850 dual-core processor at 3GHz and 6GiB of memory,
running Linux. We specified Klee parameters to time out after 10 seconds spent
in an SMT solver and after 300 seconds of an overall running time. Increasing
these times brings no real effect in our environment. We do not pass optimize
option for Klee because it causes Klee to crash for most of the input.

Table 1 presents results of our tool on selected functions. The table shows
compilation, instrumentation, slicing, symbolic execution, and the overall run-
ning time. Further, the table presents the ratio of instructions that were sliced
away from the instrumented Llvm code. The last two columns specify the re-
sults of our analysis and the real state confirmed by kernel developers. The table
clearly shows that the bottleneck of our technique is the symbolic execution.
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However, if we did not slice the code, the only function completely executed in
time would be sisusbcon set palette, computed in 20.64s.

Although the results have no statistical significance, it is clear that the tech-
nique can in principle classify error reports produced by other tools like Stanse.
If our technique reports an error, it is a real one. If it finishes the analysis with-
out any error detected, the original error report is a false positive. The analysis
may also not finish in a given time, which is usually caused by loops in the sliced
code. Finally, it may report a memory error mentioned above.

6 Related Work

There are many tools checking properties described by finite state machines.
They produce both kinds of reports, real error as well as false positives. The
technique of xgcc presented in [11,12,16,24] found a thousands of bugs in real
system code. It provides a language Metal for easy description of properties to
be checked. xgcc suffers from false positives despite usage of false positive sup-
pression algorithms like killing variables and expressions, synonyms, false path
pruning, and others. Besides the suppression algorithms, bug-reports from the
tool are further ranked according to their probability of being real errors. There
are generic and statistical ranking algorithms ordering bug-reports. An extension
introduced in [17] provides an automatic inference of some temporal properties
based on statistical analysis of assumed programmer’s beliefs. The ESP [14]
technique uses a similar language to Metal for properties description. It imple-
ments an interprocedural dataflow algorithm based on [29] for error detection
and an abstract simulation pruning algorithm for false positives suppression.
Stanse [27], a static analysis tool also uses state machines for description of
checked program properties. The description is based on parametrised abstract
syntax trees. Finally, CEGAR [13] based tools like SLAM [4], SDV [3], or
Blast [5], do not produce false positives, in theory. However, to achieve an ap-
propriate efficiency and scalability for a practical use, the implementation of the
CEGAR loop is typically unsound.

Program analysis tools based on symbolic execution [25] mainly discover low-
level bugs like division by zero, illegal memory access, assertion failure etc.
These tools typically do not have problems with false positives, but they have
problems with scalability to large programs. There has been developed a lot of
techniques improving the scalability to programs used in practice. Modern tech-
niques are mostly hybrid: they usually combine symbolic execution with concrete
one [20,21,31]. There are also hybrid techniques combining symbolic execution
with a complementary static analysis [22,26]. Symbolic execution can be acceler-
ated by a compositional approach based on function summaries [1,18]. Another
approach to effective symbolic execution introduced in [8,9,10] is based on record-
ing of already seen behavior and pruning its repetition. There is an orthogonal
line of research which tries to improve the symbolic execution for programs with
some special types of inputs. Some techniques deal with programs manipulating
strings [7,34], and some other techniques reduce input space using a given input
grammar [19,30].
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The interprocedural static slicing was introduced by Weiser [33]. But nowa-
days, there are many different approaches to program slicing. They are surveyed
by several authors [6,15,32]. Applications of slicing include program debugging,
reverse engineering and regression testing [23].

7 Future Work

Our future work has basically three independent directions.
First, we plan to run our tool to classify all lock-related error reports produced

by Stanse on the Linux kernel. The results should provide a better image of
practical applicability of the technique. To get a relevant data, we should solve
some practical issues like a correct detection of starting functions, automatic re-
placement of assembler, treatment of external function calls, etc. We should also
implement an on-demand memory allocation to Klee as discussed in Section 5
or use a different executor.

The second direction is to adopt or design some convenient way for spec-
ification of arbitrary state machines. It may be a dedicated language similar
to Metal [12]. Then we plan to implement an instrumentation treating these
state machines. In particular, the instrumentation should correctly handle state
machines associated with dynamically allocated objects.

Finally, we would also like to examine performance of our technique as a stand-
alone error-detection tool. To this point, we have to use a symbolic executor
aiming for maximal code coverage. In particular, such an executor has to suppress
execution paths that differ from explored paths only in number of loop iterations.
Unfortunately, we do not know about any publicly available symbolic executor
of this kind. However, it seems that UcKlee [28] (which is not public as of now)
has been designed for a similar purpose.

8 Conclusion

We have presented a novel technique combining three standard methods (instru-
mentation, slicing, and symbolic execution) to check program properties given in
form of finite state machines. We have discussed a synergy of the three methods.
Moreover, our experimental results indicate that the technique can recognize
some false positives and some real errors in error reports produced by other
error-detection tools.
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Strejček, Jan 207

Tews, Hendrik 47
Trt́ık, Marek 207
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