
HPC Refactoring with Hierarchical
Abstractions to Help Software Evolution

Hiroyuki Takizawa, Ryusuke Egawa, Daisuke Takahashi, and Reiji Suda

Abstract This article briefly introduces the concept of our new research
project, JST CREST “An Evolutionary Approach to Construction of a Software
Development Environment for Massively-Parallel Computing Systems.” Since
high-performance computing system architectures are going to change drastically,
existing application programs will need to evolve for adapting to the new-generation
systems. Motivated by this, our project will explore an effective methodology to
support the programming for software evolution of valuable existing applications,
and also develop a programming framework to bridge the gap between system
generations and thereby to encourage migration of existing applications to the new
systems. The programming framework will provide abstractions of complicated
system configurations at multiple levels, and refactoring tools to help evolving
applications to use the abstractions.

H. Takizawa (�)
Graduate School of Information Sciences, Tohoku University/JST CREST, 6-6-01
Aramaki-aza-aoba, Aoba, Sendai 980-8579, Japan
e-mail: tacky@isc.tohoku.ac.jp

R. Egawa
Cyberscience Center, Tohoku University/JST CREST, 6-3 Aramaki-aza-aoba, Aoba,
Sendai 980-8578, Japan
e-mail: egawa@isc.tohoku.ac.jp

D. Takahashi
Faculty of Engineering, Information and Systems, University of Tsukuba/JST CREST,
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
e-mail: daisuke@cs.tsukuba.ac.jp

R. Suda
Graduate School of Information Science and Technology, The University of Tokyo/JST CREST,
7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
e-mail: reiji@is.s.u-tokyo.ac.jp

M. Resch et al. (eds.), Sustained Simulation Performance 2012,
DOI 10.1007/978-3-642-32454-3 3, © Springer-Verlag Berlin Heidelberg 2013

27



28 H. Takizawa et al.

1 Instruction

In conventional HPC software development, the top priority is always given to
performance. Lower-level programming may allow an application program to
achieve a higher performance by thoroughly specializing the application code for
a particular target system. However, low-level programming forces an application
programmer to significantly modify the code whenever the target system changes
to a new one. As a result, it is difficult to evolve existing computational science
applications so as to adapt to future-generation systems, which will be massively-
parallel and heterogeneous. Motivated by this, we have started a research project
named “An Evolutionary Approach to Construction of a Software Development
Environment for Massively-Parallel Computing Systems,” which aims to support
HPC software evolution adapting to system changes.

The goal of this 5.5-year project supported by JST CREST is to appropriately
abstract the increasing hardware complexity of massively parallel heterogeneous
computing systems, and thereby to enable computational science applications to
adapt easily to new systems. This project emphasizes incremental development of
existing applications and continuous software development. Therefore, the project
will develop abstraction technologies so as to hide the gap between current and
future systems as much as possible.

For supporting software evolution, various abstraction technologies are needed.
Since we already have a huge number of valuable applications and it is impossible
to completely rewrite their codes, we need to incrementally evolve them based
on incremental improvement of existing programming models such as MPI and
OpenMP. On the other hand, high-level abstraction is a very powerful tool to
facilitate software evolution because it can hide the implementation details that are
likely to be system-specific and hence major impediments to software evolution.
Therefore, we will develop hierarchical abstraction layers by the following three
approaches. One approach is to provide evolutionary programming models and their
programming interface for massively parallel heterogeneous systems. Another is to
develop numerical libraries as one high-level abstraction layer to achieve a high
performance without considering the underlying system hardware. The other is to
use domain-specific knowledge to build another high-level abstraction layer in order
to ease application development in computational science.

We will also design a new concept of HPC refactoring to migrate existing
application programs to new ones, which use the above hierarchical abstraction
layers. Many research projects have proposed high-level descriptions of compu-
tational science applications to realize the automatic/semi-automatic translation
from high-level codes to optimized low-level codes. On the other hand, software
evolution in this project assumes that low-level codes already exist. The existing
codes are optimized usually at a low level for current systems, not for future systems.
Therefore, we first need to help migrating the existing codes to high-level ones, and
then the high-level ones will be used for future maintenance and evolution while
keeping their performances. The migration support, HPC refactoring, is one of the



HPC Refactoring with Hierarchical Abstractions to Help Software Evolution 29

Fig. 1 Overview of the research project. As the hardware configuration of post Petascale
computing systems is too complicated, this project will develop hierarchical abstraction layers
to facilitate software development and future maintenance. In addition, we will establish a new
concept of “HPC refactoring” for smooth migration of existing applications to the abstracted
programming environment

most important features characterizing this project. We will integrate the techniques
developed in this project into a programming framework, called Xevoler.

Since October 2011, we have started developing the above abstraction layers,
and also designing the initial version of HPC refactoring catalog, which is the
guideline of software evolution under the assumption of using the abstraction layers.
In addition, we had a kick-off meeting and created a wiki page for project members
as the infrastructure for our collaborative work.

Figure 1 shows the overview of the research project. The project team consists of
the following four groups:

• Takizawa group:

– Programming interface for managing system heterogeneity
– Customizable refactoring tools and directives

• Takahashi group:

– Numerical libraries to fully exploit the system performance
– Fault tolerance and mixed-precision computation



30 H. Takizawa et al.

• Suda group:

– Domain-specific knowledge for extreme parallelization
– Algorithm/data-structure translation for strong scaling

• Egawa group

– Cataloging common patterns in software evolution
– Design methodology for post-Petascale applications

In the followings, we introduce the research topics of each group, and then briefly
describe their research progress in Fiscal Year 2011 (FY2011).

2 Programming Models and HPC Refactoring Tools

We discuss the expected difficulties in software development for future computing
systems by considering a computing system of CPUs and GPUs as a prototype of
future systems. Then, we will develop programming interfaces such as compiler
directives to describe effective and efficient collaboration among many different
processors. Programming models will also be designed so as to reduce the number
of system-dependent parameters decided by programmers, and hence improve the
code and performance portabilities of GPU computing applications.

In FY2011, we discussed the concept and future direction of this project with
many researchers [1, 2]. We also developed a data dependency analysis tool [3] and
a performance analysis tool [4] to help code manipulation by programmers for HPC
refactoring. In addition, we developed and evaluated the mechanisms for improving
the system dependability [5] and for the cache locality [6]. Those mechanisms will
be key technologies for effective use of massively parallel heterogeneous systems.

3 Numerical Libraries for Heterogeneous Computing
Systems

In this project, we will develop libraries of Fast Fourier Transform (FFT), Algebraic
Multi-Grid (AMG), and mixed-precision basic linear algebra subprograms (BLAS).
Although many large-scale applications in computational science internally use
numerical libraries, most of the existing libraries are not designed considering
future mainstream systems that are massively-parallel and heterogeneous. Thus, it is
necessary to develop numerical libraries that can exploit the potential of massively-
parallel heterogeneous systems such as large-scale GPU clusters.

In FY2011, we explored an effective implementation scheme of FFT library and
prototyped a library for preliminary evaluation on a multi-core cluster system. We
also considered the basic design of AMG library for GPU systems [7]. In addition,
we prototyped a triple-precision BLAS library and evaluated the performance [8].



HPC Refactoring with Hierarchical Abstractions to Help Software Evolution 31

4 Use of Domain-Specific Knowledge

We explore software development methodology for parallel applications in compu-
tational science from the following two viewpoints. One is focusing on paralleliza-
tion methods, and the other is on numerical calculation methods.

In FY2011, from the former viewpoint, we have developed a method to reduce
collective communications in the conjugate gradient (CG) method [9]. In a standard
CG method, collective communications are required twice in one iteration. How-
ever, the proposed method called the k-skip CG method needs only one collective
communication in k C 1 iterations. Although the proposed method needs more
computation and is less stable than the standard CG method, its computational
complexity is less than the methods in the related work. In addition, we proposed
three techniques to reduce the branch divergence, considering the importance
of exploiting SIMD parallelism in future systems due to the power efficiency
[10]. Those techniques will be applied to the application programs developed by
Takahashi group.

From the latter viewpoint, we proposed a method to minimize the number of trials
required for a Monte Carlo simulation of optimizing design parameters [11]. We also
proposed a new high-order difference formula of fractional calculus [12], which is
often used in the field of engineering but whose numerical method is not established
yet. Moreover, we analyzed the error of QR update algorithm that can quickly
solve linear least-squares problems but accumulates the errors. Then, we proposed a
method to restart the update algorithm when the accumulated error exceeds a certain
threshold. To explore the application design methodology in the massively-parallel
heterogeneous computing era, we started analyzing important application programs
in nano-science and bio-science.

In addition, for developing refactoring tools, we surveyed existing technologies
in software engineering, programming models, language processing systems, and
integrated development environment.

5 Design of HPC Refactoring

We are designing an HPC refactoring catalog by porting the existing applications
to various platforms whose successors will potentially become the building blocks
of future systems [13]. In FY2011, we have analyzed real application codes
used in Tohoku University Cyberscience Center [14], surveyed code maintenance
technologies in HPC software development [13], and discussed the format of HPC
refactoring catalog. In those activities, we gathered the contents that should be
described in the initial version of HPC refactoring catalog.

We also interviewed application programmers to collect opinions that help design
of a practical HPC refactoring catalog. Furthermore, by optimizing and parallelizing
existing applications, we developed optimization techniques to efficiently use the
performance of parallel heterogeneous systems.



32 H. Takizawa et al.

6 Conclusions

In this article, we have introduced our new research project for adapting existing
applications to new-generation computing systems. In this project, we are devel-
oping various abstraction techniques to hide the hardware complexity, and also
designing HPC refactoring to help migrating existing application programs to the
abstracted programming environment. We will integrate these technologies into
a programming framework, named Xevolver. Using the framework, we will help
evolving various computational science applications in a systematic way.

Acknowledgements The authors would like to thank Prof. Michael Resch of HLRS, Prof.
Wenmei W. Hwu of UIUC, and Prof. Chisachi Kato of the University of Tokyo for their valuable
comments on this project. The authors would also like to thank Prof. Hiroaki Kobayashi of Tohoku
University for constructive discussions.

This work is supported by JST CREST “An Evolutionary Approach to Construction of a
Software Development Environment for Massively-Parallel Computing Systems.”

References

1. Takizawa, H.: “A new research project for enabling evolution of legacy code into massively-
parallel heterogeneous computing applications,” The 14th Teraflop Workshop, Stuttgart, Dec 5
(2012).

2. Takizawa, H.: “How can we help software evolution for post-Peta scale computing and
beyond?,” The 2nd AICS symposium, Kobe, Mar 2 (2012).

3. Sato, K., Komatsu, K., Takizawa, H. and Kobayashi, H.: “A Runtime Dependency Analysis
Method for Task Parallelization of OpenCL Programs,” IPSJ Transactions on Advanced
Computing Systems(ACS), Vol.5 No.1, pp.53–67 (2011).

4. Kanda, H., Okuyama, T., Ino, F. and Hagihara, K.: “An Instrumentation Method for Analyzing
Efficiency of Memory Access in CUDA Programs,” IPSJ SIG Notes 2012-HPC-133(3), 1–8,
Mar 26 (2012).

5. Amrizal, M.A., Sato, K., Komatsu, K., Takizawa, H. and Kobayashi, H.: “Evaluation of a
Scalable Checkpointing Mechanism for Heterogeneous Computing Systems,” presentation at
IPSJ Tohoku Branch Workshop, Mar 2 (2012).

6. Sugimoto, Y., Ino, F. and Hagihara, K.: “Improving Cache Locality for Ray Casting with
CUDA,” Proc. 25th Int’l Conf. Architecture of Computing Systems Workshops, 339–350, Feb
29 (2012).

7. Takahashi, K., Fujii, A. and Tanaka, T.: “Multiple GPUs-based AMG Method,” IPSJ SIG Notes
2012-HPC-133(29), 1–7, Mar 19 (2012).

8. Mukunoki, D. and Takahashi, D.: “Implementation and Evaluation of Triple Precision BLAS
Subroutines on GPUs,” The 13th Workshop on Parallel and Distributed Scientific and
Engineering Computing (PDSEC-12), May 25 (2012).

9. Motoya, T. and Suda, R.: “k-skip Conjugate Gradient Methods: Communication Avoiding Iter-
ative Symmetric Positive Definite Sparse Linear Solver For Large Scale Parallel Computings,”
IPSJ SIG Tech. Rep. 2012-HPC-133(30), Mar. 27 (2012), in Japanese.

10. Kato, S., Suda, R. and Tamada, Y.: “Optimization Techniques for Reducing Branch Divergence
on GPUs,” IPSJ SIG Tech. Rep. 2012-HPC-134(5), Jun. 1 (2012), in Japanese.

11. Suda, R. and Nittoor, V.S.: “Efficient Monte Carlo Optimization with ATMathCoreLib,” IPSJ
SIG Tech. Rep. 2012-HPC-133(21), Mar. 27 (2012).



HPC Refactoring with Hierarchical Abstractions to Help Software Evolution 33

12. Takeuchi, Y. and Suda, R.: “New numerical computation formula and error analysis of
some existing formulae in fractional derivatives and integrals,” The 5th IFAC Symposium on
Fractional Differentiation and its Applications (FDA’12), Keynote, May 15 (2012).

13. Egawa, R.: “Designing a Refactoring Catalog for HPC,” The 15th Workshop on Sustained
Simulation Performance, Sendai, Mar 23 (2012).

14. Komatsu, K., Soga, T., Egawa, R., Takizawa, H., Kobayashi, H., Takahashi, H., Sasaki, D. and
Nakahashi, K.: “Performance Evaluation of BCM on Various Supercomputing Systems,” In
24th International Conference on Parallel Computational Fluid Dynamics, pages 11–12 (2012).


	HPC Refactoring with Hierarchical Abstractions to Help Software Evolution
	1 Instruction
	2 Programming Models and HPC Refactoring Tools
	3 Numerical Libraries for Heterogeneous Computing Systems
	4 Use of Domain-Specific Knowledge
	5 Design of HPC Refactoring
	6 Conclusions
	References


