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Abstract Mortar finite element methods are of great relevance as a non-conforming
discretization technique in various single-field and multi-field applications. In
computational contact analysis, the mortar approach allows for a variationally
consistent treatment of non-penetration and frictional sliding constraints despite
the inevitably non-matching interface meshes. Other single-field and multi-field
problems, such as fluid–structure interaction (FSI), also benefit from the increased
modeling flexibility provided by mortar methods. This contribution gives a review
of the most important aspects of mortar finite element discretization and dual
Lagrange multiplier interpolation for the aforementioned applications. The focus is
on parallel efficiency, which is addressed by a new dynamic load balancing strategy
and tailored parallel search algorithms for computational contact mechanics. For
validation purposes, simulation examples from solid dynamics, contact dynamics
and FSI will be discussed.

1 Introduction

Mortar finite element methods, and particularly their application to computational
contact mechanics and several other single-field and multi-field problems, have seen
a great thrust of research over the last decade. In this contribution, we give a review
of the most important features of non-conforming finite element discretization
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based on mortar methods with a special emphasis on dual Lagrange multiplier
interpolation, parallel efficiency of the devised numerical algorithms and high
performance computing. Thus, the present work combines and extends different
aspects of our previous work in [5, 8–11], to which we refer for technical details,
more profound discussion of the presented methods and further numerical examples.

Originally introduced as a domain decomposition technique for spectral elements
in [2], mortar methods are nowadays also widely used within finite element formu-
lations for many different problem classes. The first investigations on mortar finite
element methods were typically performed for model problems of Laplace operator
type, e.g., the Poisson equation, and formulated as non-conforming variational
problem with the coupling constraints directly introduced into the global solution
space. Yet, an alternative formulation soon became popular, which is not based on a
constrained solution space, but rather introduces Lagrange multipliers in the sense of
constrained minimization, thus leading to a typical saddle point formulation. Details
of both approaches can, for example, be found in [1, 18, 19].

The mortar approach is characterized by an imposition of the occurrent interface
constraints in a weak sense and by the possibility to prove its mathematical
optimality. This means that suitable inf-sup conditions and a priori error estimates
for the consistency error and the best approximation error have been established
for the most widely used finite element discretizations and for different choices
of the discrete Lagrange multiplier space. If considering first-order finite elements
as an example, their optimal spatial convergence of order O.h2/ measured in the
L2-norm is preserved by mortar methods, despite the fact that non-conforming
interfaces are involved. Establishing optimal a priori error bounds for unilateral
contact problems is more intricate due to the typically reduced regularity of the
solution. The interested reader is exemplarily referred to [20] and the references
therein.

Especially the choice of the discrete Lagrange multiplier space is an essential
question with great implications on the actual algorithmic realization of mortar
methods. Standard mortar methods suffer from a serious drawback: they generate
high computational costs due to the global character of the resulting interface
coupling conditions, see [19] for a detailed explanation. However, this issue can
be completely resolved by introducing so-called dual Lagrange multiplier spaces as
proposed in [18], which are constructed based on a biorthogonality condition such
that the interface coupling conditions reduce to purely local constraints.

This approach has been applied very successfully to impose interface constraints
for finite deformation contact analysis in [10–12, 20], thus allowing for a variation-
ally consistent treatment of non-penetration and frictional sliding conditions despite
the inevitably non-matching interface meshes for finite deformations and large
sliding motions. Recently, the focus of research in the field of mortar finite element
methods and dual Lagrange multiplier interpolation has been extended towards
other single-field applications and especially to coupled multiphysics problems.
A computational framework for fluid–structure interaction has been proposed
in [8] and the combination of FSI and contact interaction for capturing physical
phenomena such as elastohydrodynamic lubrication is discussed in [9, 16, 24]. The
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coupling of several subdomains with non-matching meshes in computational fluid
dynamics can also be efficiently carried out with dual mortar methods, see [4].

The remainder of this contribution is organized as follows: Sect. 2 provides an
introduction to mortar finite element methods in the exemplary context of mesh
tying for nonlinear solid mechanics. The main part in Sect. 3 then describes several
aspects of the efficient parallel implementation of mortar methods within a high
performance computing framework. Concretely, dynamic load balancing techniques
as well as search algorithms for computational contact mechanics will be addressed.
With these general findings at hand, different application scenarios ranging from
classical mesh tying in solid mechanics to finite deformation contact and coupled
problems such as FSI including contact are highlighted in Sect. 4. Finally, Sect. 5
gives a summary and outlook on current and future research directions.

2 Mortar Finite Element Methods

Mesh tying in solid mechanics (also referred to as tied contact) serves as a
model problem for the introduction to mortar finite element methods here. The
motivation for such mortar mesh tying algorithms is to connect dissimilar meshes
in nonlinear solid mechanics in a variationally consistent manner, see also [13] for
a comprehensive overview. Reasons for the occurrence of non-matching meshes
can be manifold and range from different resolution requirements in the individual
subdomains to the use of different types of finite element interpolations.

Without losing generality, only the case of a body with one sole tied contact
interface is considered. A generalization to the case of multiple interfaces is however
possible without conceptual differences. Figure 1 gives an overview of the general
problem setup and introduces some basic notation. The open sets ˝

.i/
0 � R

3 and

˝
.i/
t � R

3, i D 1; 2, represent the two subdomains of the contemplated body in
the reference and current configuration, respectively. The surfaces @˝

.i/
0 are divided

into three disjoint subsets �
.i/

u , �
.i/

� and �
.i/

c , where �
.i/

u is the Dirichlet boundary,
�

.i/
� is the Neumann boundary, and �

.i/
c represents the mesh tying interface. Any

gaps and overlaps between the subdomains are excluded, i.e., �
.1/

c � �
.2/

c � �c .
The superscript .1/ is commonly referred to as slave side of the problem, whereas
the superscript .2/ denotes the master side.

On each subdomain ˝
.i/
0 , the initial boundary value problem (IBVP) of finite

deformation elastodynamics needs to be satisfied, i.e.,

DivP .i/ C Ob.i/

0 D %
.i/
0 Ru.i/ in ˝

.i/
0 � Œ0; T �; (1)

u.i/ D Ou.i/ on � .i/
u � Œ0; T �; (2)

P .i/N .i/ D Ot.i/

0 on � .i/
� � Œ0; T �; (3)
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Fig. 1 Configurations, kinematics and basic notation for a mesh tying problem in 3D

u.i/.X .i/; 0/ D Ou.i/
0 .X .i// in ˝

.i/
0 ; (4)

Pu.i/.X .i/; 0/ D OPu.i/
0 .X .i// in ˝

.i/
0 : (5)

The mesh tying constraint formulated in the reference configuration is given as

u.1/ D u.2/ on �c � Œ0; T �: (6)

Equations (1)–(6) represent the final strong form of a mesh tying problem in
nonlinear solid mechanics. In the course of deriving a weak formulations, the
balance of linear momentum at the mesh tying interface �c is typically exploited
and a Lagrange multiplier vector � is introduced, thus setting the basis for a mixed
variational approach. To start the derivation of a weak formulation of (1)–(6),
appropriate solution spaces U .i/ and weighting spaces V .i/ need to be defined as

U .i/ D
n
u.i/ 2 H 1.˝/ j u.i/ D Ou.i/ on �u

o
; (7)

V .i/ D ˚
ıu.i/ 2 H 1.˝/ j ıu.i/ D 0 on �u

�
: (8)

Moreover, the Lagrange multiplier vector � D �t
.1/
c , which represents the negative

slave side contact traction t
.1/
c , is chosen from a corresponding solution space

denoted as M . In terms of its classification in functional analysis, M represents
the dual space of the trace space W .1/ of V .1/. In the given context, this means
that M D H � 1

2 .�c/ and W .1/ D H
1
2 .�c/. Based on these considerations, the

saddle point type weak formulation is derived next. Basically, this can be done by
extending the standard weak formulation of solid mechanics to two subdomains and
combining it with Lagrange multiplier coupling terms. Find u.i/ 2 U .i/ and � 2 M
such that



Mortar Methods in Computational Mechanics 137

ıWkin. Ru.i/; ıu.i// C ıWint;ext .u.i/; ıu.i// C ıWmt .�; ıu.i// D 0 8 ıu.i/ 2 V .i/;

(9)

ıW�.u.i/; ı�/ D 0 8 ı� 2 M : (10)

Herein, the kinetic contribution ıWkin as well as the internal and external contribu-
tions ıWint,ext are well-known from standard weak formulations in nonlinear solid
mechanics. The mesh tying interface contribution ıWmt and the weak mesh tying
constraint ıW� have been abbreviated as

ıWmt D
Z

�c

�.ıu.1/ � ıu.2// dA0; ıW� D
Z

�c

ı�.u.1/ � u.2// dA0: (11)

For the spatial discretization of the tied contact problem (9)–(10), standard isopara-
metric finite elements are employed. This defines the usual finite dimensional
subspaces U

.i/

h and V
.i/

h being approximations of U .i/ and V .i/, respectively.
Within our implementation, both first-order and second-order interpolation in 2D
and 3D are considered. The subscript h refers to a spatially discretized quantity.
Obviously, there exists a direct connection between the employed finite elements
in the domains and the resulting surface facets on the mortar interfaces �

.i/

c;h . For
example, a 3D finite element mesh composed of tet4 and hex8 elements yields tri3
and quad4 facets on the surface of tied contact. Consequently, the following general
form of displacement interpolation on the discrete mesh tying surfaces holds:

u.1/

h j
�

.1/
c;h

D
n.1/X
kD1

N
.1/

k .�.1/; �.1// d
.1/

k ; u.2/

h j
�

.2/
c;h

D
n.2/X
lD1

N
.2/

l .�.2/; �.2// d
.2/

l : (12)

The total number of slave nodes on �
.1/

c;h is n.1/, and the total number of master

nodes on �
.2/

c;h is n.2/. Discrete nodal displacements are given by d
.1/

k and d
.2/

l .

The shape functions N
.1/

k and N
.2/

l are defined with respect to the usual finite
element parameter space, usually denoted as �.i/ for two-dimensional problems
(i.e., 1D mesh tying interfaces) and as �.i/ D .�.i/; �.i// for three-dimensional
problems (i.e., 2D mesh tying interfaces). In addition, an adequate discretization
of the Lagrange multiplier vector � is needed, too, and will be based on a discrete
Lagrange multiplier space M h being an approximation of M . A general notation
reads:

�h D
m.1/X
j D1

˚j .�.1/; �.1// �j ; (13)

with the (still to be defined) shape functions ˚j and the discrete nodal Lagrange
multipliers �j . The total number of slave nodes carrying additional Lagrange
multiplier degrees of freedom is m.1/. Typically for mortar methods, every slave
node also serves as coupling node, and thus in the majority of cases m.1/ D n.1/ will
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hold. However, in the context of second-order finite element interpolation it may be
favorable to chose m.1/ < n.1/ in certain cases, see e.g., [12, 20].

Two different families of discrete Lagrange multipliers, namely standard
and so-called dual Lagrange multipliers are commonly distinguished. Standard
Lagrange multipliers represent the classical approach for mortar methods
(cf. [1, 14]) and lead to identical shape functions for Lagrange multiplier and
slave displacement interpolation, i.e., ˚j D N

.1/
j . In contrast, the dual approach

is motivated by the observation that the Lagrange multipliers physically represent
fluxes (tractions) on the mesh tying interface in the continuous setting. This duality
argument is then reflected by constructing dual Lagrange multiplier shape functions
based on a so-called biorthogonality condition with the displacements in W .1/

h , see
e.g., [18]. While they are in general not continuous and cannot be interpreted as
a trace of conforming finite elements, the biorthogonality condition assures that
the Lagrange multiplier shape functions ˚j are again well-defined and satisfy all
required approximation properties. One crucial advantage of the dual approach lies
in the fact that it heavily facilitates the treatment of typical mortar coupling condi-
tions at the interface, while at the same time preserving the optimality of the method.

Substituting (12) and (13) into the interface virtual work ıWmt in (9) yields

ıWmt;h D
m.1/X
j D1

n.1/X
kD1

�T
j

 Z

�
.1/

c;h

˚j N
.1/

k dA0

!
ıd

.1/

k

�
m.1/X
j D1

n.2/X
lD1

�T
j

 Z

�
.1/

c;h

˚j .N
.2/

l ı �h/ dA0

!
ıd

.2/

l ; (14)

where �h W �
.1/

c;h ! �
.2/

c;h defines a suitable discrete mapping from slave to master
side of the mesh tying interface. Such a mapping (or projection) becomes necessary
due to the fact that the discretized coupling surfaces �

.1/

c;h and �
.2/

c;h are, in general,
no longer geometrically coincident. In (14), nodal blocks of the two mortar integral
matrices commonly denoted as D and M can be identified. This leads to the
following definitions:

DŒj; k� D
Z

�
.1/

c;h

˚j N
.1/

k dA0 Indim; j D 1; : : : ; m.1/; k D 1; : : : ; n.1/; (15)

M Œj; l� D
Z

�
.1/

c;h

˚j .N
.2/

l ı �h/ dA0 Indim; j D 1; : : : ; m.1/; l D 1; : : : ; n.2/:

(16)

Note that Indim 2 R
ndim�ndim is an identity matrix whose size is determined

by the global problem dimension ndim, i.e., either ndim D 2 or ndim D 3.
In general, both mortar matrices D and M have a rectangular shape, however
D becomes a square matrix for the common choice m.1/ D n.1/. Dual Lagrange
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Fig. 2 Main steps of 3D mortar coupling for a mesh tying example—projection and intersection
of slave and master surfaces, determination of clip polygons and triangulation into so-called
integration cells, see [11, 13] for details

multiplier interpolation based on a biorthogonality condition allows for the benefi-
cial simplification of D reducing to diagonal form. All details concerning the actual
numerical integration of the mass matrix type of entries in D and M as well as the
implementation of the interface mapping �h for both 2D and 3D can be found in our
recent work [10, 11]. Here, Fig. 2 only illustrates the generation of integration cells
for 3D mortar coupling with an exemplary mesh tying model.

For the ease of notation, all nodes of the two subdomains ˝
.1/
0 and ˝

.2/
0 , and

correspondingly all degrees of freedom (DOFs) in the global discrete displacement
vector d , are sorted into three groups: a group S containing all slave interface
quantities, a group M of all master quantities and a group denoted as N , which
comprises all remaining nodes or DOFs. The global discrete displacement vector
can be sorted accordingly, yielding d D .dN ; dM ; dS /. Going back to (14), this
allows for the following definition:

ıWmt;h D ıdT
S DT� � ıdT

M M T� D ıdTBT
mt � D ıdTf mt .�/: (17)

Herein, the discrete mortar mesh tying operator Bmt and the resulting discrete
vector of mesh tying forces fmt .�/ D BT

mt � acting on slave and master side of
the interface are introduced. Due to the saddle point characteristics and resulting
symmetry of the mixed variational formulation (9)–(10), the final formulation of
the weak constraint contribution ıW� can directly be given as

ıW�;h D ı�TDdS � ı�TMdM D ı�TBmt d D ı�Tgmt .d/; (18)
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with gmt .d/ D Bmt d representing the discrete mesh tying constraint at the
coupling interface. Taking into account the finite element discretization of all
remaining contributions to the first part of the weak formulation (9), the semi-
discrete equations of motion including tied contact forces and the constraint
equations emerge as

M Rd C C Pd C f int .d/ C f mt .�/ � f ext D 0; (19)

gmt .d/ D 0: (20)

Mass matrix M , damping matrix C , internal forces fint.d/ and external forces fext
result from standard FE discretization. It is important to point out, that the actual
mortar based interface coupling described here is completely independent of the
concrete choice of an underlying finite element formulation.

3 Aspects of Implementation and High Performance
Computing

The following section aims at addressing and outlining some of the most important
implementation and software design issues associated with the proposed mortar
finite element methods. We first put an emphasis on inter-processor redistribution
and dynamic load balancing strategies for mortar methods, which in turn requires a
short introduction to the employed paradigm of parallel programming. Furthermore,
the basic concepts of efficient parallel search algorithms for two body contact,
self contact and multiple bodies (e.g., agglomerations of elastic particles) will be
presented. All explanations exclusively refer to implementations devised in the
context of the present contribution, and subsequently integrated into the in-house
finite element software package BACI (cf. [17]), developed at the Institute for
Computational Mechanics at Technische Universität München.

3.1 Parallel Redistribution and Dynamic Load Balancing

The presented mortar based mesh tying and contact algorithms are designed for
the use on large interconnected computer systems (clusters) with many CPUs
and a distributed main memory. Being able to efficiently run large simulations
in parallel requires strategies for the partitioning and parallel distribution of the
problem data, i.e., finite element meshes (consisting of nodes and elements) as well
as global vectors and matrices, into several independent processes. Within BACI,
this so-called domain (or data) decomposition is provided by the third-party library
ParMETIS, see e.g., [7], and all communication tasks are implemented through
MPI.
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partition of process 1

partition of process 2

domain and mesh
owned nodes

non−owned nodes

elements integrated

elements integrated

by process 2

by process 1
elements integrated

by both processes

Fig. 3 An example of overlapping domain decomposition and parallel assembly involving two
independent processes

An example of such decompositions is visualized in Fig. 3 for a simple parti-
tioning including only two processes. It can be seen that each node in the mesh
is uniquely assigned to one specific process, and the same holds true for the
elements. In addition, some nodes and elements at the transition between different
processes must be stored redundantly within all adjacent processes. Therefore, this
type of partitioning is commonly denoted as overlapping decomposition. Here, it
is sufficient to consider only the most straightforward case of minimal overlap
between the individual partitions, i.e., an overlap of one layer of elements or
nodes, respectively. Obviously, this concept of overlapping decomposition fits quite
naturally to the typical tasks within a finite element program: first, each process
performs an elementwise integration of its own partition of the computational
domain including the (relatively few) elements at the inter-process boundaries.
Then, the resulting quantities (e.g., local element load vectors and stiffness matrices)
are assembled into the respective FE nodes of each process. Thus, overlapping
domain decomposition as described above provides a very elegant way of processing
finite element integration and assembly, which is completely free of communication
due to the distributed storage of the resulting global vector and matrix objects.
For further details on the CCC based implementation of parallel (i.e., distributed)
matrix and vector objects as well as the associated linear algebra, the interested
reader is exemplarily referred to the extensive documentation of open-source
libraries of the Trilinos Project conducted by Sandia National Laboratories (cf. [6]).
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Fig. 4 Parallel redistribution and dynamic load balancing—initial partitioning for exemplary
mesh tying problem setup using 32 processes (left) and strong scaling diagram (right)

Returning to the efficient parallel treatment of mortar methods and the derived
mesh tying and contact algorithms, we now examine an exemplary mesh tying
problem setup consisting of two cubic bodies, which are distributed in parallel
among several processes as depicted in Fig. 4. This partitioning, generated via
the ParMETIS library, is in a sense optimal for the integration and assembly of
the individual volume finite elements in the two bodies, i.e., the corresponding
workload is equally distributed among all processes. For mortar coupling, however,
additional (but conceptually similar) tasks have to be performed locally at the mesh
tying interface. Computing the mortar contributions to the overall discrete problem
formulation involves numerical integration and assembly of the mortar matrices D

and M , to name only the most important task. Unfortunately, due to its locality, the
parallel distribution of the mortar interface itself is not optimal at all.

Figure 4 also illustrates typical results for the parallel efficiency of the presented
mortar algorithms in a so-called strong scaling diagram. Therein, the CPU time
for numerical integration and assembly of all interface-related quantities TCPU is
plotted against the total number of processes N with logarithmic scales applied to
both axes. Perfect scalability of the examined numerical algorithm is represented
by a straight line with a negative slope of �1, thus representing the evident
relation that TCPU � 1=N . It can clearly be seen from Fig. 4 that initially no perfect
scalability is achieved with the presented algorithms. This is due to the non-optimal
distribution of the slave surface among the participating processes as already
described above. The results clearly motivate the need to develop an efficient parallel
redistribution and load balancing strategy for mortar finite element methods. The
approach proposed in the following is based on three steps, where the first step is
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of fundamental importance and is therefore needed for both mesh tying and contact
applications. In contrast, the second and third step a purely contact-specific.

The rather simple basic idea of the first step is an independent parallel distribution
of the finite elements in the domain and the mortar elements at the coupling
interface in order to achieve optimal parallel scalability of the computational tasks
associated with both, i.e., FE integration and assembly in ˝.1/ and ˝.2/ as well
as mortar integration and assembly on �

.1/
c and �

.2/
c . Again using ParMETIS, this

redistribution of the interface elements can readily be performed during problem
initialization at t D 0. Results for the test model introduced above are also visualized
in Fig. 4, thus demonstrating that this simple modification already allows for
perfect parallel scalability within a wide range concerning the number of processes.
However, dependent on the considered problem size, parallel redistribution only
makes sense up to a certain number of processes. It is quite natural that such a limit
exists, because there are of course some computational costs associated with the
proposed redistribution procedure itself. If too many processes are used in relation
to the problem size, these costs (mainly due to communication) become dominant
and parallel redistribution is no longer profitable beyond this point.

As already mentioned, this strategy can be further refined for contact appli-
cations. In contrast to mesh tying, contact interfaces are characterized by two
additional complexities: the actual contact zone is not known a priori and it
may constantly and significantly vary over time. Thus, in a second and third
step, the proposed redistribution strategy is adapted such that it accommodates
these additional complexities. Concretely, it can be seen from Fig. 5 that parallel
redistribution must be limited to the actual contact area instead of the potential
contact area, because the entire computational effort of numerical integration and
assembly is connected with the former. Moreover, whenever finite deformations and
large sliding motions occur, the redistribution needs to be performed dynamically,
i.e., over and over again. Such a dynamic load balancing strategy is then typically
triggered by a suitable measure for the workload of each individual process. The
parallel balance of the workload among all processes is monitored and a simple
criterion whether to apply dynamic load balancing within the current time step or
not can be formulated as

IF

�
T max

CP U

T min
CP U

> "

�
 redistribute: (21)

Herein, the minimum and maximum CPU times of one individual process in the
last time step are denoted as T min

CP U and T max
CP U , respectively. The parameter " > 1

represents a user-defined tolerance. For example, choosing " D 1:2 implies that at
most 20 % unbalance of the parallel workload distribution are tolerated. Of course,
the rather simple condition in (21) can easily be extended to incorporate more
sophisticated criteria for dynamic load balancing.
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Fig. 5 Motivation for parallel redistribution exemplified with a Hertzian contact example—the
active contact region (bottom right) is relatively small as compared with the potential contact
surface, i.e., the whole hemisphere. Without redistribution only six out of 16 processes would
carry the entire workload associated with contact evaluation (bottom left)

3.2 Search Algorithms for Two-Body Contact and Self Contact

The search for bodies or individual finite elements that might possible come into
contact is an important algorithmic aspect of any FEM contact formulation. In
particular, this is true in the context of finite deformations and large sliding motions
as primarily considered throughout the present work, because the contact situation
continuously changes in such scenarios. Search algorithms have been a subject of
intensive research since the beginnings of the computational treatment of contact
mechanics problems, see e.g., [21] for a comprehensive overview on the topic.

The basic motivation for efficient contact search algorithms can be easily
understood. A naive search approach for two-body contact would require to check
all finite elements on the slave side against all finite elements on the master side for
proximity. Thus, the associated number of operations would be N � M , where N

and M are the total numbers of slave and master elements, respectively. Assuming
M � N for the sake of simplicity, the resulting computational complexity of such
so-called brute force search algorithms is O.N 2/. Clearly, this makes contact search
inacceptably slow already for rather moderate problem sizes.

In the following, a short overview of the parallel search algorithm for two-body
contact used in this contribution will be given, which is closely related to the work
in [22]. Basically, most contact search algorithms consist of two components, i.e., a
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Fig. 6 Search algorithm for two-body contact—two-dimensional example based on 8-DOPs as
bounding volumes and a hierarchical binary tree structure

hierarchical global search structure (so-called search tree) and an efficient local
geometry representation (so-called bounding volumes). Here, discretized orienta-
tion polytopes with k edges (k-DOPs) serve as bounding volumes. Compared to
the commonly employed axis-aligned bounding boxes (AABBs), the k-DOPs allow
for a much tighter and thus more efficient geometrical representation of the contact
surfaces. For 2D simulations, the bounding volumes are typically 8-DOPs, while
18-DOPs are employed in the 3D case. Figure 6 provides a schematic illustration
of these ideas for a two-dimensional setting. Further details and comprehensive
illustrations can be found in [22]. As can also be seen from Fig. 6, both slave and
master surface are then organized and stored within hierarchical binary tree
structures, which allow for very fast search and update procedures. The search
tree is typically only built once during problem initialization in a top-down way.
This process starts from a so-called root node, which contains the entire slave or
master contact surface, and then the considered surfaces are continuously divided
in halves until arriving at the individual finite elements (so-called leaf nodes of the
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Fig. 7 Examples for self contact and contact of multiple bodies. The active set is visualized for
self contact (left) and the parallel distribution is shown for the multiple body case (right)

search tree). An update of the tree, i.e., of the contact geometry, must be done after
each nonlinear iteration step due to the fact finite deformations are considered here.

The search procedure itself basically consists of a recursive algorithm starting
with an intersection test of slave and master root nodes. Wherever necessary,
i.e., wherever an overlap of the corresponding bounding volumes is detected, the
search algorithm proceeds into the lower tree levels until the leaf level is reached. A
theoretical analysis in [22] predicts the resulting algorithm complexity to be O.N �
log.N 2//, which has also been confirmed in various numerical investigations. Going
beyond the implementation in [22], which is limited to the single-processor case,
the presented search algorithm has been extended to fit into a parallel FE simulation
framework. As explained above, slave and master surface are then distributed among
several independent processes and the tree update as well as search procedures
are only performed on the part of the slave contact surface that is actually part of
the problem partition of the respective process. This generates a distributed search
algorithm with optimal parallel scalability, where only the geometry of the (likewise
distributed) master surface needs to be communicated among all processes in order
to detect all possible contact pairs.

For the sake of completeness, it is mentioned that two special problem classes
in computational contact mechanics, namely self contact and contact of multiple
bodies, can be treated within the same algorithmic framework as described above.
Two characteristic examples for the mentioned problem classes are illustrated in
Fig. 7. The search algorithm for self contact and multiple bodies employed here is
again closely related to the work given in [22, 23]. The only algorithmic difference
to the two-body case is the way in which the contact search is realized. As can be
seen in Fig. 7, self contact is characterized by only one single potential self contact
surface, so that no a priori definition of slave and master surfaces is possible, but this
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assignment rather needs to be done in a dynamic manner. Thus, the search procedure
needs to be adapted in order to accommodate possible self contact. Moreover, Fig. 7
indicates that the case of multiple bodies lies somewhere in between two-body
contact and self contact with regard to its numerical treatment. Again, it is not
possible to find a unique a priori definition of slave and master surfaces. However,
once slave and master pairs are (dynamically) assigned, this scenario can basically
be interpreted and treated as a great many of simple two-body contacts.

4 Exemplary Single-Field and Multi-Field Applications

We present several numerical examples to illustrate the capabilities of the proposed
mortar finite element approach. All simulations are based on a parallel implemen-
tation of the mesh tying and contact algorithms described above in our in-house
research code BACI [17]. The chosen set of examples demonstrates the versatility
of mortar finite element methods as non-conforming discretization approach for
a manifold of applications in computational mechanics, ranging from single-field
problems in solid and fluid mechanics to challenging multi-field problems.

4.1 Mesh Tying in Solid Mechanics

The first numerical example investigates mortar finite element algorithms for 3D
mesh tying in the most general context of transient solid dynamics with finite
deformations and nonlinear material behavior. As illustrated in Fig. 8, the model
consists of an L-shaped block, whose larger part has the dimensions 1:2 � 1:2 � 3:6,
while the smaller part is simply a cube with side length 1:2. Constitutive behavior
is modeled according to a compressible Neo–Hookean law (Young’s modulus
E D 10:000, Poisson’s ratio 	 D 0:4), and the density is set to %0 D 100. The
left and right surfaces of the L-shaped block are both subject to a pressure load
p.t/ D 2;000 � sin.2
t/ in the time interval t 2 Œ0; 0:5�, and the body then moves
freely in the time interval t 2 Œ0:5; 5�, which adds up to a total of 500 time steps
with the step size �t D 0:01. A curved non-matching mortar interface is introduced
to make the mortar setting as general as possible, with the outer surface of the
cylindrical inclusion being chosen as slave side.

In order to assure exact algorithmic conservation of linear and angular momen-
tum as well as mechanical energy, the energy-momentum method (EMM) initially
proposed in [15] is employed as time integration scheme here. Some characteristic
stages of deformation are also visualized in Fig. 8 and emphasize the strong
nonlinearities involved in this simulation. However, the main focus of interest for
the presented example lies in the mechanical conservation properties. As can be seen
from Fig. 9, linear and angular momentum as well as mechanical energies are exactly
conserved when combining the proposed dual mortar finite element discretization
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Fig. 8 L-shaped block—problem setup, characteristic stages of deformation at t D 0; 1; 2; 3; 4; 5

and numerical solution for the displacement magnitude kuk

Fig. 9 L-shaped block—exact algorithmic conservation of linear momentum (top), angular
momentum (middle) and mechanical energies (bottom) over time t

and EMM time integration. Linear momentum conservation is assured by using the
same integration procedure for both mortar matrices D and M , while the mesh
initialization procedure suggested in [13] and the EMM together guarantee angular
momentum conservation. Finally, energy conservation is a direct consequence of
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Fig. 10 Torus impact—problem setup and characteristic stages of deformation

the employed time integration scheme, and could not be achieved when using other
well-known implicit time integrators such as the generalized-˛ method [3].

4.2 Finite Deformation Contact Mechanics

The second example illustrates the robustness of the described mortar approach in
the case of finite deformation contact with significant active set changes. Second-
order finite element interpolation in combination with novel, recently proposed dual
Lagrange multipliers is employed, see [12, 20] for details.

The considered test setup consists of a hollow half-torus (Neo–Hookean material
model with Young’s modulus E D 100, Poisson’s ratio 	 D 0:3) and a rigid planar
surface. The major and minor radii of the half-torus are 76 and 24, respectively,
and the wall thickness is 4.5. The bottom surfaces of the half-torus are completely
fixed, and an impact is generated by moving the rigid wall towards the elastic body
with a prescribed displacement u D 50 accumulated over 50 quasi-static load steps.
Figure 10 shows the finite element mesh consisting of 20-node hexahedral elements
(with 50:720 nodes in total) as well as some characteristic stages of deformation.

The given impact situation can be considered extremely challenging for any
employed active set strategy. However, as Table 1 exemplarily confirms for one
representative load step, the semi-smooth Newton type active set strategy presented
in [10, 11] and also used here does not have any problems with the described
scenario, but resolves all nonlinearities (including the search for the correct active
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Table 1 Torus
impact—convergence
behavior of the semi-smooth
Newton method in terms of
the relative L2-norm of the
total residual for a
representative load step

Step Relative L2-norm of residual

1 7:31eC01 (*)
2 6:67eC01 (*)
3 3:54eC01 (*)
4 8:16eC00 (*)
5 4:76e�01

6 8:34e�05

7 9:66e�09

(*) D change in active contact set

set) within only a few Newton–Raphson iteration steps. Owing to the underlying
consistent linearization, quadratic convergence is obtained in the limit.

4.3 Fluid–Structure–Contact Interaction (FSCI)

The third numerical example presented here demonstrates the effectiveness of the
proposed mortar finite element framework for fluid–structure–contact interaction
(FSCI) and especially its ability to deal with finite structural deformations and
contact in combination with classical fluid–structure interaction (FSI). A variety of
problems in engineering and applied sciences require the simulation of unilateral
contact of solids surrounded by an incompressible fluid. Important fields of
application include machine parts, such as gaskets or sliding-contact bearings, and
biomechanical systems, such as heart valves or capillary flow of red blood cells. All
details on the computational framework for such coupled problems can be found
in [9]. A beam-like structure (Young’s modulus E D 2;000, Poisson’s ratio 	 D 0:4)
is positioned in a two-dimensional channel flow, see Fig. 11. It should be pointed out
that the given implementation in BACI is inherently three-dimensional, so that this
2D example is actually modeled as a 3D problem with just one layer of elements
in the third direction. A parabolic inflow profile is applied as Dirichlet boundary
condition at the left and a zero traction Neumann boundary condition is assumed at
the outflow. All remaining channel boundaries are rigid walls with contact occurring
between the beam-like structure and a circular obstacle. Exemplarily, 8-node hexa-
hedral elements are used for both the fluid mesh and the structural discretization.

The resulting flow field and structural deformation including contact are
illustrated in Fig. 11, giving an impression of this highly dynamic fluid–structure–
contact interaction (FSCI) process. The beam-like structure exhibits large
deformations: At first, they are primarily induced by fluid stresses resulting from
the increasing fluid pressure, i.e., a typical fluid–structure interaction process is
initiated. At later stages the gap between beam and obstacle closes completely
and the structural deformation is then dominated by contact interaction. It should
be mentioned that the given example represents more of a qualitative proof of
concept for the successful integration of the mortar contact formulation into a
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Fig. 11 Beam-like structure in channel flow—finite element mesh (top), fluid velocity and
structural deformation in several characteristic time steps

fixed-grid FSI framework. Further investigations can also be found in [9]. While
the obtained preliminary results are definitely promising towards the simulation of
more challenging FSCI applications, the complex physical phenomena occurring
during the approach of the two bodies and the associated transition of boundary
conditions from FSI type to contact type are not yet fully captured here due to an
insufficient fluid mesh resolution.

4.4 Large-Scale Simulations

The mortar finite element methods presented in this contribution are readily appli-
cable to large-scale simulations of complex processes involving fluid dynamics,
structural dynamics or several coupled physical fields. Especially the design of
the numerical algorithms as described in Sect. 3, i.e., including parallel search
procedures with hierarchic binary tree structures and dynamic load balancing,
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Fig. 12 Exemplary large-scale simulations—contact and self contact of 200 elastic rings in 2D
(left) and impact of two thin-walled tori in 3D (right)

assures an excellent parallel scalability when solving very large simulation models
with up to several million degrees of freedom. To give an impression of typical
problem sizes, snapshots of two large-scale examples from computational contact
dynamics with finite deformations and nonlinear material behavior are shown in
Fig. 12. The finite element mesh for the 3D impact model, for example, consists
of 4;255;360 hexahedral elements and 13;994;880 degrees of freedom in total. The
numerical solution is performed in parallel on up to 120 cores, using an implicit
time stepping scheme and 500 time increments to resolve all contact interactions.

5 Conclusions and Outlook

The most important aspects of mortar finite element methods as a non-conforming
discretization technique for a wide range of applications in computational mechan-
ics have been reviewed. In particular, several new approaches for the efficient par-
allel implementation of such mortar methods within a high performance computing
framework have been addressed. Contact search algorithms based on hierarchical
tree structures and especially a novel dynamic load balancing strategy specifically
developed for mortar based discretization have been shown to be indispensable
ingredients of efficient numerical algorithms.

Beyond classical applications in nonlinear solid mechanics and contact analysis,
the application of mortar finite element methods within a simulation framework
for fluid–structure–contact interaction has been addressed shortly. This can be seen
as a first step towards more challenging multiphysics and multiscale simulations,
which couple contact analysis with several other physical fields and take into
account effects on different length scales. Ongoing and future work in this field
focuses on modeling finite deformation contact between slender beams and coupled
thermomechanical contact, with applications ranging from Brownian dynamics of
polymers in fiber networks to heat conduction and mechanical dissipation due to
frictional sliding in thermally loaded machine parts.
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