
Performance Evaluation of a Next-Generation
CFD on Various Supercomputing Systems

Kazuhiko Komatsu, Takashi Soga, Ryusuke Egawa, Hiroyuki Takizawa,
and Hiroaki Kobayashi

Abstract The Building-Cube Method (BCM) has been proposed as a new CFD
method for an efficient three-dimensional flow simulation on large-scale super-
computing systems, and is based on equally-spaced Cartesian meshes. As a flow
domain can be divided into equally-partitioned cells due to the equally-spaced
meshes, the flow computations can be divided to partial computations of the same
computational cost. To achieve a high sustained performance, architecture-aware
implementations and optimizations considering characteristics of supercomputing
systems are essential because there have been various types of supercomputing
systems such as a scalar type, a vector type, and an accelerator type. This paper
discusses the architecture-aware implementations and optimizations for various
supercomputing systems such as an Intel Nehalem-EP cluster, an Intel Nehalem-EX
cluster, Fujitsu FX-1, Hitachi SR16000 M1, NEC SX-9, and a GPU cluster, and
analyses their sustained performance for BCM. The performance analysis shows
that memory and network capabilities largely affect the performance of BCM rather
than computational potentials.

K. Komatsu (�) � R. Egawa � H. Kobayashi
Cyberscience Center, Tohoku University/JST CREST, 6–3 Aramaki-aza-aoba, Aoba,
Sendai 980–8578, Japan
e-mail: komatsu@isc.tohoku.ac.jp; egawa@isc.tohoku.ac.jp; koba@isc.tohoku.ac.jp

T. Soga
NEC System Technologies, Ltd., Osaka 540–8551, Japan
e-mail: soga-txa@necst.nec.co.jp

H. Takizawa
Graduate School of Information Sciences, Tohoku University/JST CREST,
6-6-01 Aramaki-aza-aoba, Aoba, Sendai 980–8579, Japan
e-mail: tacky@isc.tohoku.ac.jp

M. Resch et al. (eds.), Sustained Simulation Performance 2012,
DOI 10.1007/978-3-642-32454-3 11, © Springer-Verlag Berlin Heidelberg 2013

123



124 K. Komatsu et al.

1 Introduction

Since 1960s, the numerical calculation using computers has been utilized for simula-
tions and analysis of fluid dynamics. In CFD, unstructured mesh and boundary-fitted
mesh have generally been utilized to represent complicated geometries such as
a three-dimensional whole airplane. These mesh methods have advantages of the
mesh quality and the accuracy of the simulations. However, CFD algorithms with
these mesh methods become complicated, and need a high computational cost. In
addition, because the mesh is not regular, it is difficult to realize a spatial higher-
order flow solver.

In order to solve these problems, the Building-Cube Method (BCM) has been
proposed to efficiently simulate various fluids [4, 7, 8]. BCM uses equally-spaced
Cartesian meshes. One of the advantages of BCM is that the algorithms of pre-
processing, post-processing, and even the flow solver can be simplified [2] because
of the equally-spaced Cartesian meshes. Another advantage is that it is well suited
for highly parallel computation because equally-spaced meshes produce many
parallel tasks with the same amount of computation.

Along with the development of CFD, the performance of supercomputing
systems has also drastically been improved because of the rapid advancement
of semiconductor technologies. To achieve a high sustained performance using
supercomputing systems, architecture-aware implementation and optimization con-
sidering characteristics of supercomputing systems are essential due to various types
of supercomputing systems such as a scalar type, a vector type, an accelerator type.

This paper describes architecture-aware implementations and optimizations of
BCM on an Intel Nehalem-EP cluster, an Intel Nehalem-EX cluster, Fujitsu FX-1,
Hitachi SR16000 M1, NEC SX-9, and a GPU cluster to examine the implication
of their architectural features with BCM. From experimental results, this paper
analyses the performances and scalabilities of BCM.

2 Overview of the Building Cube Method

BCM is designed for three-dimensional large-scale flow computations around
practical geometries using high-density grids [4]. The basic idea of BCM is
to decompose a whole flow domain into sub-domains called cubes, and further
decompose each cube into high-density and equally-spaced Cartesian meshes called
cells shown in Fig. 1. The size of each cube is determined by geometries and flow
features at its location [2].

One of the advantages of BCM is that the algorithm is simple because it does not
deal with complicated mesh structures. Thus, the simplicity of pre-processing, flow
solvers, and post-processing lead to fast computation.

Another advantage of BCM is that the calculations of cubes can easily be
decomposed into many data parallel tasks of the same size because the calculations



Performance Evaluation of a Next-Generation CFD on Various . . . 125

A cube consists of
equally-spaced cells.

Computational domain
 consists of cubes.

A equally-spaced
Cartesian cell.

Fig. 1 Computational mesh
in BCM

are independent each other. In addition, each cube has the same computational
cost and data size for the calculations. Although there are data dependencies
among adjacent cells in a cube, the computational cost per cell is also the same.
More massive data parallelism in BCM might be obtained if the dependencies are
eliminated.

The flowchart of the BCM incompressible flow solver is shown in Fig. 2
[7, 8]. The governing equations are incompressible Navier–Stokes equations. The
fractional-step method [1, 3, 6] is used with the finite difference scheme on the
staggered arrangement. In the fractional-step method, the solver can be classified
into three major stages in one time step; a solver stage for calculating a temporal
velocity field, a solver stage for calculating a pressure field, and a solver stage
for calculating a real velocity field. In each stage, calculations of its field and data
exchanges between cubes are included. The most dominant part in these stages is
the calculation of the pressure field by solving the Poisson equation using the SOR
method.

To calculate the pressure of one cell, a seven-point stencil calculation, which
requires the pressure data of a cell and its six adjacent cells, is performed. As
the stencil calculations for all cells in all cubes are repeated until the difference
of the calculated field is convergent, the calculations of the pressure field dominates
the most of time for the whole BCM calculations.



126 K. Komatsu et al.

Initial setting

Real velcocity field u

Interface u

CL & CD

Next time step

Pressure field p

Interface p

SOR iteration

Temporal velcocity field u’

Interface u’

Inner iteration

Fig. 2 Flowchart of the
BCM flow solver

The pressure calculations for cubes can be performed in parallel because they
are independent. In addition, the computational cost of each cube is completely
the same. Therefore, parallel computing is adequate to accelerate the pressure
calculations.

3 Implementation of BCM on Various Systems

To achieve significant acceleration by parallel processing on supercomputing
systems, architecture-aware implementations and optimizations considering char-
acteristics of supercomputers are essential.

This section describes the overview of the target supercomputing systems. The
specifications of processors used in the systems are shown in Table 1. Then, the
architecture-aware implementations and optimizations of BCM for these supercom-
puters are described as follows.

3.1 Implementation on Scalar Systems

The Nehalem-EP cluster, the Nehalem-EX cluster, FX-1, and SR16000 M1 are
scalar parallel supercomputers that equip Nehalem-EP, Nehalem-EX, SPARC64VII,
and Power7 processors, respectively. As shown in Table 1, these scalar processors
also have large on-chip cache memories. On-chip L2 and/or L3 caches should be
used for data with high locality to avoid redundant memory accesses. Moreover,
uses of SIMD instructions are essential to efficiently process multiple data.



Performance Evaluation of a Next-Generation CFD on Various . . . 127

Table 1 Specifications of a processor in the supercomputing systems

System GFlops/s Mem.BW (GB/s) # of Cores On-chip memory B/F

Nehalem EP 46.93 25.6 4 256 KB L2/core,
8 MB shared L3

0.55

Nehalem EX 74.48 34.1 8 256 KB L2/core,
24 MB shared L3

0.47

SPARC64VII 40.32 40.0 4 6 MB shared L2 1.0
Power 7 245.1 128 8 256 KB L2/core,

32 MB shared L3
0.52

SX-9 102.4 256 1 256 KB ADB 2.5
Tesla C1060 78 102 1 16 KB/SM 1.3

Although the Red–Black method can eliminate the data dependency, the stride
memory accesses are required, resulting in performance degradation. Even though
dividing an array into two arrays, non-unit-stride accesses are required. Thus, in the
implementation on the scalar systems, the original SOR method is adopted to avoid
degrading the performance by the stride memory accesses.

In the implementation of BCM on a scalar system, cubes are hierarchically
assigned to nodes and then to processors in a node. As the computational cost of
each cube is also the same, efficient parallel processing using a number of scalar
processors can be carried out.

3.2 Implementation on a Vector System

SX-9 is a vector parallel supercomputer consisting of a large Symmetric Multi-
Processing (SMP) nodes, each of which has 16 102.4Gflop/s-vector processors. In
the implementation on SX-9, the Red–Black SOR method using mask tables is used.
The Red–Black method can avoid indirect memory accesses and exploit the data
parallelism among cells by removing the dependencies among cells. As parallelizing
the SOR method generally shortens the length of loop, the mask tables can avoid
accessing unnecessary data without shortening the length of a loop. Thus, the loop
remains long enough to utilize all of the vector units of SX-9.

The effective use of an on-chip 256KB software-controllable cache named
Assignable Data Buffer (ADB) in SX-9 is also a key to exploit the potential of SX-9.
Once data specified by programmers are accessed, these data are stored in ADB and
can be used in the next accesses. Thus, the ON ADB directives are inserted to the
source code to specify reusable data in the seven-point stencil calculations. As a
result, the reusable data are kept in ADB at runtime. As the main memory and ADB
can simultaneously provide data to vector pipelines, the vector processor can access
those data at a high sustained bandwidth, and thereby achieve a high performance.



128 K. Komatsu et al.

3.3 Implementation on a GPU System

A GPU cluster consists of multiple nodes, each of which has a CPU with main mem-
ory and one or more GPUs. Each GPU can be considered as a many-core processor
consisting of hundreds of stream processors (SPs) in CUDA (Compute Unified
Device Architecture) [5]. In CUDA, SPs are grouped into stream multiprocessors
(SMs), and several SPs in an SM work together.

The memory system of the CUDA platform is hierarchical. The shared memory
is an on-chip memory space shared by threads. The capacity of the shared memory
is small, but the memory access latency is very short. On the other hand, the global
memory is the largest off-chip memory, but it needs a long access latency. Thus,
it is necessary to use both shared memory and global memory appropriately. Key
techniques for efficient data transfers are to make good use of the shared memory
and to use coalesced global memory accesses as much as possible.

Massive parallelism of BCM is well suited for load balancing among nodes and
also among many cores in each GPU. In the implementation of BCM on a GPU
cluster system, after grouping cubes into subsets, each subset of cubes is assigned
to one of GPU nodes as shown in Fig. 3. The cubes in a subset are further assigned
to SMs of GPUs. The computations for the cells in cubes are assigned into threads,
which are executed on SPs. As the computational cost is the same, efficient parallel
processing using multiple nodes can be expected.

Besides, the effective use of the shared memory in a GPU is essential to reduce
the number of global memory accesses requiring a long access latency. By storing
data with high locality to a ring buffer on the shared memory as shown in Fig. 4, it
can not only reduce the number of the off-chip memory accesses but also effectively
utilize the limited capacity of the on-chip memory.

4 Performance Evaluation and Discussions

The flow simulations using BCM around 3D test models are performed on the
supercomputing systems shown in Table 1. F1 is a large model of 200 million cells,
and Sphere is a small model of 5 million cells which are shown in Fig. 5.

Figure 6 shows the sustained performance of BCM achieved for the F1 model.
The results show that SX-9 achieves a higher sustained performance than the others.
As BCM is a memory-intensive application, the sustained memory bandwidth has
a great impact on the performance. In addition to the importance of a high memory
bandwidth, the effective use of ADB further improves the sustained bytes/flop ratio,
resulting in the high performance.

Even though the peak memory bandwidth of FX-1 outperforms those of Nehalem
EP and EX, its sustained performance is lower. This is because the sustained mem-
ory bandwidth of Nehalem is higher than that of SPARC64VII. In the STREAM
benchmark, FX1 achieves only 10.0 GB/s while Nehalem EP and EX achieve 17.0
and 17.6 GB/s, respectively.



Performance Evaluation of a Next-Generation CFD on Various . . . 129

GPU Node-level
cube assignemnt.

3D flow domain

SM1Node1 Node2

Node3

SM2

SM3 SM4

SM5 SM6

SM8

SM-level
cube assignemnt.

A subset of cubes

SP-level
cell assignment.

Cells in a cube

SP1 SP2 SP3 SP4

SP5 SP6 SP7 SP8

Fig. 3 Task assignments into a GPU cluster system

Fig. 4 Three planes for cyclical use of the shared memory

Fig. 5 3D test modes. (Left: F1, Right: Sphere)

Figure 7 shows the sustained performance of BCM on the Sphere model, which
includes the results of the GPU system. This results shows that a GPU cluster system
achieves comparable and/or better performance than the scalar cluster systems. The
main reason is that GPUs can accelerate the data parallel calculations of BCM using
a number of SPs and high memory bandwidth, even though it cannot execute a large
problem such as the F1 model due to the limited global memory capacity. Effective
use of SPs and shared memory contributes to the good sustained performance larger
than the other scalar systems. Another reason is that the sustained performances of
other supercomputers including SX-9 become lower for a small problem such as
the Sphere model. However, even if the calculations using the GPUs are fast, data
transfers between a GPU and a CPU in a node and between GPUs in different nodes



130 K. Komatsu et al.

1

10

100

1000

1 2 4 8 16 32 64 128 256 512

P
er

fo
rm

an
ce

 (
G

fl
o

p
s/

s)

Number of processes

SX-9 EP EX FX1 SR

Fig. 6 Sustained performance of the F1 model

0.1

1.0

10.0

100.0

1000.0

1 2 4 8 16 32 64 128

P
er

fo
rm

an
ce

 (
G

fl
o

p
s/

s)

Number of processes

SX-9 EP EX FX-1 GPU

Fig. 7 Sustained performance of the sphere model

are slow and cannot be negligible. As a result, the data transfer dominates the most
of time in the simulation. To further accelerate BCM using the GPU system, the
time of data transfers should be shortened and be hidden by transferring data during
the calculations.

The ratio of the sustained performance to the peak performance on an SX-9
vector processor is about 17 %, while those of the other systems are about 1.5–
3.2 %. This is because the vector units in a vector processor are efficiently utilized
for the calculations.

Taking a look at the scalability shown in Fig. 8, all of the systems achieve high
scalability in the F1 model due to a large number of parallel tasks and sufficient



Performance Evaluation of a Next-Generation CFD on Various . . . 131

1.0 

10.0 

100.0 

1000.0 

1 2 4 8 16 32 64 128 256 512 

S
p

ee
d

u
p

 r
at

io
 

Number of processes 

SX-9 EP EX FX1 SR 

Fig. 8 Speedup ratio of the F1 model

1 

10 

100 

1 2 4 8 16 32 64 128 

S
p

ee
d

u
p

 r
at

io
 

Number of processes 

SX-9 EP EX FX-1 GPU 

Fig. 9 Speedup ratio of the sphere model

network bandwidth. The scalabilities in the Sphere model shown in Fig. 9 are lower
than those of the F1 model. The low scalability of the GPU system comes from the
overhead of data transfers. The lower scalabilities of the other systems come from
the lack of parallel tasks due to a small number of cubes in the Sphere model.

5 Concluding Remarks

This paper describes the implementations and optimizations of BCM for var-
ious types of supercomputing systems such as a scalar type, a vector type,



132 K. Komatsu et al.

and an accelerator type. The implementation and optimizations considering the
characteristics of both a supercomputing system and an application are necessary for
high sustained performance. From the performance evaluations of BCM on SX-9, a
Nehalem-EP cluster, a Nehalem-EX cluster, FX-1, Hitachi SR16000 M1, and a GPU
cluster, it is clarified that the memory bandwidth and the network bandwidth greatly
affect the sustained performance of BCM. Therefore, the supercomputing systems
that can achieve a high-sustained memory bandwidth and network bandwidth, such
as SX-9, are the most promising for further acceleration of BCM.

Acknowledgements The author would like to thank Dr. Kazuhiro Nakahashi of JAXA, Lecturer
Daisuke Sasaki of Kanazawa Institute of Technology, Assistant Professor Shun Takahashi of Tokyo
University Agriculture and Technology, and Dr. Akihiro Musa of NEC cooperation for valuable
discussions on this research. This research was partially supported by Grant-in- Aid for Scientific
Research (S) #21226018; Grant-in- Aid for Young Scientists (B) #23700028; Core Research of
Evolutional Science and Technology of Japan Science and Technology Agency (JST CREST).

References

1. Dukowicz, J.K.: Approximate factorization as a high order splitting for the implicit incompress-
ible flow equations. Journal of Computational Physics 102, 336–347 (1992)

2. Ishida, T., Takahashi, S., Nakahashi, K.: Efficient and robust cartesian mesh generation for
building-cube method. Journal of Computational Science and Technology 2(4), 435–445 (2008)

3. Kim, J., Moin, P.: Application of a fractional-step method to incompressible navier-stokes
equation. Journal of Computational Physics 59, 308–323 (1985)

4. Nakahashi, K.: High-density mesh flow computations with pre-/post-data compressions. In:
AIAA paper, pp. 2005–4876 (2005)

5. NVIDIA Corporation: NVIDIA CUDA Compute Unified Device Architecture. http://developer.
nvidia.com/category/zone/cuda-zone

6. Perot, J.B.: An analysis of the fractional step method. Journal of Computational Physics 108,
1–58 (1993)

7. Takahashi, S., Ishida, T., Nakahashi, K., Kobayashi, H., Okabe, K., Shimomura, Y., Soga, T.,
Musa, A.: Study of high resolution incompressible flow simulation based on cartesian mesh. In:
AIAA paper: 47th AIAA Aerospace Sciences Meeting, pp. 2009–563 (2009)

8. Takashi, S.: Study of large scale simulation for unsteady flows. Ph.D. thesis, Tohoku University
(2009)

http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone

	Performance Evaluation of a Next-Generation CFD on Various Supercomputing Systems
	1 Introduction
	2 Overview of the Building Cube Method
	3 Implementation of BCM on Various Systems
	3.1 Implementation on Scalar Systems
	3.2 Implementation on a Vector System
	3.3 Implementation on a GPU System

	4 Performance Evaluation and Discussions
	5 Concluding Remarks
	References


