
Chapter 9
Development of a Stability Prediction Tool
for the Identification of Stable Milling Processes

D. Hömberg, E. Uhlmann, O. Rott, and P. Rasper

Abstract. This chapter deals with a new mathematical model to characterize the
interaction between machine and workpiece in a milling process. The model consists
of a multi-body system representing the milling machine and a linear thermo-elastic
workpiece model. An extensive experimental analysis supported the development
of the governing model equations. A numerical solution strategy is outlined and
complemented by simulations of stable and unstable milling processes including
workpiece effects. The last part covers the development of a new algorithm for the
stability analysis of large milling systems.

9.1 Introduction

The interaction of process and structure is the main reason for the unwanted chat-
ter phenomena in milling. Hence, the determination of stable cutting conditions for
given structures and the design of more efficient milling machines are important re-
search fields in production technology. Since the mathematical description of model
components like machine, workpiece and process is well understood by now, the
main challenge is to integrate them into a coupled model and to simulate the result-
ing system with tailored numerical algorithms to reproduce the stability limits and
the dynamical characteristics of the real system correctly.

Accordingly, the goal of the present project was the development of a coupled
model to study the dynamics of milling processes by means of time domain sim-
ulations. To cope with a necessarily long simulation time the machine structure is
treated as a multi-body system and the workpiece as a thermo-elastic body. Compre-
hensive experimental studies performed in close cooperation between engineers and
mathematicians provided the basis for the mathematical modeling, the identification
of model parameters and the validation of the numerical results.

The main achievements of the present work are the consistent mathematical mod-
eling of a complex milling system including the mathematical analysis of the derived
equations [10], the numerical implementation of a time-domain simulation system
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and its experimental validation, experimental studies, which have revealed a tem-
perature dependency of the stability limits.

The chapter is organized as follows: In Section 9.2, we will present the differ-
ent experimental studies carried out during the modeling procedure, as well as the
parameter identification and for the validation of the simulation results. Section 9.3
covers the derivation of the model equations, the development of numerical algo-
rithms and the presentation of simulation results. The last section is devoted to some
concluding remarks including the discussion of perspectives and further issues.

9.2 Experimental Analysis

9.2.1 General Setup

Machining tests were performed for experimental determination of process stabil-
ity behavior and cutting forces. Hence, a commonly used measurement setup for
milling experiments according to [12] was implemented to measure the specific cut-
ting forces and to analyze the process behavior.

The tests were performed on a five-axis machining center type MAP LPZ 500,
which features linear drives for the linear axes. Aluminum alloy AlZnMgCu1,5 (EN
AW-7075) blocks were machined for the general experiments using a one-edge end
mill cutter of High-Speed Steel (HSS) with a diameter of d = 8.0 mm and a side rake
angle of γ f = 23◦. The size of the workpieces was 150×100×50 mm. The milling
tool was fixed in a heat-shrinking tool holder with a HSK-A 63 mounting shank.
The workpiece was mounted on a 3-component-dynamometer type Kistler 9257A.
The dynamometer was connected to three charge amplifiers type Kistler 5011. For
the acquisition of the data, a measuring board from National Instruments with a
maximum sampling rate of 500 kHz and a resolution of 16 bit was applied. Figure
9.1 schematically displays the measurement setup.

PC with measuring 
board

3 charge amplifiers

machine table

end mill cutter
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heat shrinking 
toolholder
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Fig. 9.1 Experimental setup for machining tests



9 Development of a Stability Prediction Tool 205

9.2.2 Experiments for Parameter Identification

9.2.2.1 Measurement of Structural Dynamics

The identification of unknown model parameters is essential for the prediction of
process stability. Therefore, the measurement of the dynamic behavior of the ma-
chine tool structure is necessary. With a similar approach as Faassen et al. [12],
the dynamic characteristics of the machine structure and cutting tool can be de-
duced from measured mobility-frequency-response functions at the tool center point
(TCP). The tool was excited in x and y-direction of the machine tool coordinate sys-
tem using an impact hammer (Kistler 9722A500), while the machine tool was in an
idle state. The bandwidth was 5,000 Hz. The response measurement in y-direction
was realized with a laser vibrometer (Polytec OFV 303). Therefore, errors due to the
additional mass of an accelerometer near the TCP were avoided as stated in [11].

9.2.3 Experimental Stability Analysis

9.2.3.1 Machining Tests for the Analysis of Process Stability and Cutting
Forces

The considered process in the machining tests was peripheral end milling. Flutes
with full immersion of the cutter (ae = 8 mm) were machined into the work-
piece. During the process, the cutting force components Fx, Fy and Fz according
to the machine coordinate system were measured at the workpiece using the 3-
component-dynamometer. The spindle speed was varied between n = 15,800 rpm
and n = 19,800 rpm. A feed rate per tooth of fz = 0.2 mm was set for each spin-
dle speed. The cutting depths were gradually increased with 0.5 mm increments
starting at 0.5 mm until the cutting process became unstable. Based on the data cap-
tured during the cutting tests the process stability behavior could be analyzed by the
generation of stability charts. The process data corresponding to stable machining
processes was used to determine cutting coefficients according to [23]. A sample
rate of 50 kHz was used for data acquisition.

9.2.3.2 Identification of Unstable Milling Processes

A method to distinguish stable and unstable process states is necessary for the anal-
ysis of the stability behavior of cutting processes. The regenerative effect is the main
reason for stable cutting processes to become unstable. Varying cutting forces lead
to self-excited vibrations and an additional relative shift between tool and work-
piece. These displacements create a characteristic waviness on the workpiece sur-
face. Thus, every following cut results in a chip-thickness modulation, which is
amplified by the machine tool vibrations [3], [2], [28], [33]. The characterizing fre-
quencies of these self-excited vibrations are called chatter frequencies. The domi-
nant chatter frequencies are generally located close to the eigenfrequencies of the
considered machine tool structure. Chatter leads to a worse product quality because
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of additional self-excited vibrations. Therefore, it is necessary to define a stability
criterion in order to identify unstable milling processes and maintain a good product
quality.

The described effect makes it possible to identify process instabilities by con-
siderating force signals in frequency domain. Other possibilities are the analysis of
vibration signals near the TCP, the resulting surface roughness, the occurrence of
chatter marks and noise measurements during the machining process [12]. In this
research work, the recorded cutting force signals were transformed into frequency
domain using Fast-Fourier-Transformation (FFT) according to [3], [13] and [19] in
order to identify the dominant frequencies and related amplitudes. Figure 9.2 shows
the spectrum of the force signals for a stable and and an unstable milling process.
Since a one-edge end mill cutter was used the spindle speed of n = 17200 rpm
corresponds to excitation frequencies, which are multiples of f = 287 Hz.
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Fig. 9.2 FFT of stable and unstable cutting processes

According to Sims [27], stable and unstable process states were determined by
the investigation of the ratio between the absolute value of the largest force am-
plitude, which can be allocated to the excitation frequency, and the largest force
amplitude of the occurring chatter frequency. If the ratio exceeds a value of 10 %,
the corresponding process is classified as unstable. In addition, the resulting surface
roughness, the occurrence of chatter marks and noise during the machining pro-
cess were also taken into account. A detailed description of the procedure is given
in [29].
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9.2.3.3 Results of the Stability Analysis

The measured cutting force signals were analyzed using the illustrated method for
the identification of unstable cutting processes in order to generate stability plots
and determine stability limits. Figure 9.3 shows the resulting stability plot.
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Fig. 9.3 Stability plot for a feed-rate-per-tooth of fz = 0.2 mm

The variation of the stability limit is rather small in the analyzed range of spindle
speed. The maximum value is ap = 2 mm at spindle speeds around n = 17,000 rpm
and n= 19,400 rpm. For other spindle speeds, ap = 1.5 mm is the measured stability
limit.

The graph depicted in Figure 9.3 has been computed using the standard stabil-
ity prediction method proposed by Altintas et al. (see e.g. [2] or [1]). A mobility-
frequency-response function measured by means of hammer excitation and cutting
force coefficients determined from cutting force measurements under stable cutting
conditions have been provided as input data.

9.2.3.4 Possible Sources of Measurement Errors in the Process Analysis

The large gap between the predicted and the measured stability limits can probably
be explained with difficulties in the measurement of the frequency-response function
at the tool center point. Beyond that, the dynamometer which has been mounted be-
tween machine table and workpiece, might also affect the dynamical characteristics
of the structure. Both effects have been analyzed in [22]. The frequency-response
function of the work piece changes significantly, if the workpiece is not directly
mounted on the machine table but on the dynamometer. However, in both cases,
the average value of the measured workpiece frequency-response function is about
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two orders of magnitude smaller than the corresponding value at the tool center
point [22]. Consequently, the effect of the dynamometer has been assumed to be
negligible.

However, recent results of machining tests have shown that the dynamic behavior
of the dynamometer-workpiece combination seems to have a much larger impact on
process behavior as expected. Although the amplitudes of the response functions
are very small, current experimental process analysis has shown that the shifting
of eigenfrequencies by use of a dynamometer seems to play a major role for the
stability behavior. Alternatively, the work piece accelerations during the machining
tests could be monitored to detect unstable processes. By defining a new stability
criterion this method would allow to remove the dynamometer and thus refine the
chatter detection.

9.2.4 Workpiece Effects in Milling

9.2.4.1 Experimental Setup and Measurement Procedure

The dynamic process behavior is mainly influenced by the spindle and cutting tool of
the machine tool system. Apart from that major influence, the geometry of the work-
piece also has an impact on the process [5], [8]. The effect of different workpiece
geometries on process stability was analyzed with an almost equal measurement
setup and experimental procedure as before (see Section 9.2.1 and 9.2.2).

In this case, a more flexible T-shaped workpiece compared to the blocks with a
size of 150× 100× 50 mm in the machining tests before was analyzed. The size
of the vertical bar was changed to obtain numerous and different geometries. The
width of the bar was varied between t1 = 10 mm and t2 = 20 mm and the height
between h1 = 50 mm and h2 = 150 mm to realize different dynamic behavior of
the workpieces in terms of flexibility. The T-shaped workpiece was mounted upside
down on the dynamometer so that the bar was in a vertical position. Flutes with
full immersion of the same end mill cutter were milled into the T-shaped workpiece
beginning at the top of the bar. Considering the stability plot above (Figure 9.3)
stable process states were analyzed using different workpiece geometries.

9.2.4.2 Analysis of the Influence of the Workpiece Geometry on Process
Stability

Machining test were carried out using different T-shaped workpieces. The figure
points out the huge impact of the workpiece geometry on process stability behavior.
With the use of the stability criterion described in Section 9.2.3.2, the considered
process state was classified as stable using the aluminum block as all relevant am-
plitudes in the frequency domain are related to the excitation with a frequency of
f = 267 Hz.
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Fig. 9.4 Comparison of stability behavior considering different geometries.

The variation of the workpiece geometry leads to a varying dynamic process
behavior. While the machining process remained stable for a bar with a height of
h= 60 mm the amplitudes of the vibrations became higher in the frequency domain.
When a bar with a height of h = 140 mm was machined the cutting process became
unstable. Here, dominant chatter frequencies arise in the frequency domain apart
from the excitation frequency of f = 267 Hz.

The results show the big impact of the workpiece geometry and thus the effect of
the workpiece dynamics on process stability. It shows that there is need to consider
workpiece dynamics in stability prediction. Thus, the stiffness and damping of the
workpiece have to be analyzed and linked to the dynamic behavior of the machine
tool structure for the calculation of stability plots.

9.2.5 Temperature Effects

9.2.5.1 Experimental Setup and Measurement Procedure

To analyze the temperature influence on process stability and cutting forces the
measurement setup in Figure 9.1 was adjusted by using workpieces with differ-
ent pre-heating conditions. The pre-heating of the workpiece was realized with a
heating plate by Horst GmbH with three heating cartridges and a heater power of
P = 300 W. Thus, temperatures of to T = 200 ◦C were achieved. The plate was
triggered by a temperature regulator device type HT MC1.

The workpiece was warmed-up to temperatures between TW P1 = 25 ◦C and
TW P2 = 100 ◦C, positioned upside down, by means of the described heating plate
before the machining started. In order to ensure homogeneous heating conditions
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during the machining tests thermocouples type K were fixed on the sides of the
workpiece to control the local work piece temperature. In addition, the temperature
was monitored using a thermal imaging camera type Infratronics IR600. Due to this
approach it was possible to execute cutting tests with defined and homogeneous
heating conditions (ΔT = 1 K) of the workpiece.

9.2.5.2 Temperature Influence on Measurement Accuracy

The dynamometer is a piezo-electric sensor. For the analysis of thermal effects
on process stability and cutting forces a possible source for measurement er-
rors is the change in thermal conditions. In order to quantify these errors the
temperature-dependency of the three-component-dynamometer and the influence on
the measurement results were analyzed. The dynamometer was gradually heated to
temperatures from TWP1 = 25 ◦C to TW P2 = 100 ◦C. Then, force measurements were
performed using defined force signals. First, the dynamometer was loaded with de-
fined masses in a static way; and the arising differences between the measured force
signals and normal forces were determined. In a second step, an impact hammer was
used excite of the dynamometer at different temperatures. The measured amplitudes
and lengths of the force impulse signals by the hammer were recorded and subse-
quently compared with the measured signals of the dynamometer. The warming of
the hammer can be neglected due to the temporally short contact between platform
and impact hammer.

Only a small measurement inaccuracy of the dynamometer of about 1 % for the
static case and 0.5 % for the dynamic case could be identified as a result of these
approaches. Hence, a thermal decoupling between dynamometer and workpiece for
the later experiments was not required. However, the variance was considered later
in the analysis.

9.2.5.3 Analysis of the Influence of Temperature on Specific Cutting Forces

Linear cutting force models relate the cutting cross-section given by ap and h to
the cutting forces via an empirical constant; the so-called specific cutting force
coefficients. These coefficients depend on cutting speed, workpiece material and
cutter geometry (see e. g. [1], [31]). Since the workpiece material properties, i. e.
especially the yield stress, and the contact conditions change with temperature, it
is expected that the cutting force coefficients decrease for higher workpiece tem-
peratures. The effect of temperature on specific cutting forces has been analyzed
employing the measurement setup and experimental procedure presented in Section
9.2.1 and 9.2.2 in order to confirm this assumption. As suggested in [1], the pro-
cess parameters (spindle speed n = 16,200 rpm, cutting depth ap = 1.5 mm and
feed-rate-per-tooth of fz = 0.2 mm) were been chosen such that the corresponding
process was stable (see Figure 9.3). The specific cutting force component Kc was
calculated as shown in [1] or [17]. Figure 9.5 shows the influence of different pre-
heating states of the workpiece between TWP1 = 25 ◦C and TWP2 = 100 ◦C on the
specific cutting force coefficient Kc.
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Fig. 9.5 The dependency of the specific cutting force Kc on the preheating of the workpiece

A non-linear relationship between the workpiece temperature and the specific
cutting force coefficient Kc can be observed. The specific cutting force decreases
with increasing workpiece temperature. The decay is about 16 % in a temperature
range of TW P1 = 25 ◦C to TWP2 = 50 ◦C. The decay is less important but still visible
for higher workpiece temperatures. Based on these observations a new cutting force
model has been developed, which incorporates the effect of the workpiece tempera-
ture on the specific cutting force. Since the diagram illustrated in Figure 9.5 exhibits
an exponential decay, a similar relation was chosen for the modified specific cutting
force (9.9) presented in Section 9.3.4.

9.2.5.4 Results of the Stability Analysis for Different Workpiece
Temperatures

Experimental stability plots for different pre-heating conditions of the workpiece
were created with use of the described measurement procedure and the illustrated
method for the identification of unstable milling processes (see Figure 9.6).

Due to the pre-heating of the workpiece within the temperature range between
TW P1 = 25 ◦C to TW P2 = 100 ◦C, an increase of stability limits of at least Δap =
0.5 mm in the whole rpm-range with a maximum of Δap = 2.0 mm at n =
19,400 rpm can be determined. Only at spindle speeds between n = 17,800 rpm
and n = 18,400 rpm is there no rise in the stability limits. In conclusion, higher
work piece temperatures have a stabilizing effect on the process behavior.

Because of the pre-heating of the workpiece, higher temperatures occur in the
cutting zone, which leads to a softening of the workpiece material so that the part of
the cutting force related to plastic deformation decreases. Partially, the temperatures
can reach such high levels that melting of the machined aluminum can be observed.
The viscous interface between chip and tool improves the chip flow, which results
in decreasing cutting forces [25], [4], [30], [14], which finally leads to increasing
stability limits.
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9.3 Coupled System and Simulations

9.3.1 Modeling Concept

The goal of the presented research project was the development of a complex sim-
ulation system involving the dynamical characteristics of workpiece and machine
structure to study the dynamics of milling processes by means of time-domain sim-
ulations. Unstable processes can be identified by analyzing either the evolution of
the uncut chip thickness or the simulated cutting force spectrum. In both cases, the
precision of the predicted stability limit increases with the length of the simulated
time interval. However, due to the presence of high characteristic frequencies the
time-step size is strictly limited, which finally leads to unacceptable computation
times, especially for models with many degrees of freedom. In view of these prob-
lems, modeling the machine structure as a multi-body system and the workpiece as
a thermo-elastic work body seemed to be the best trade-off between accuracy and
efficiency.

From a macroscopic point of view, the largest part of the workpiece behaves like
a thermo-elastic body. Plastic deformations usually occur only in regions close to the
cutting edges and can therefore be incorporated by employing an empirical cutting
force model. Due to these simplifications, the material removal cannot be simulated
directly and has to be approximated by a heuristic approach. For milling processes,
where the difference between exit and entry angle is smaller than the pitch angle
of the cutter, such an approach can be constructed by applying a method of steps.
In each step the workpiece reference domain is considered to be constant and the
system is solved until the cutting edge leaves the workpiece. Before the next cutting
edge starts cutting, we construct a new workpiece reference domain based on the
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previously computed solution and pursue the simulation. Consequently, the model-
ing and the simulation process consists of two parts. While the first part deals with
the phenomena occurring during one tooth period, the second part focuses on the
construction of a series of workpiece reference domains and thus on an implemen-
tation of the method of steps.

9.3.2 Multi-body System

The development procedure of a multi-body system representing a machine struc-
ture can be summarized as follows. The first step, an experimental modal analysis,
provides the eigenfrequencies and the corresponding mode shapes. Next, consid-
ering the measured mode shapes, the rigid bodies for the model can be defined.
Finally, after having implemented the mathematical model, the remaining free cou-
pling parameters have to be identified by comparing the experimentally and numer-
ically determined frequency-response functions for several points on the machine
structure using a least-squares approach. Based on the experimental data and addi-
tional FEM simulations a multi-body system has been developed, which matches
the measured frequency-response function. The final model, which is composed of
cutter, tool holder, two spindle segments, headstock, x-slider and a frame moving in
y-direction with respect to the fixed machine base, is illustrated in Figure 9.7.

The equation of motion describing the dynamics of the system can be summa-
rized by the following expression

M(t,q)q̈ = fI(t,q, q̇)+ fE(t,q, q̇,η)+ gE(t,q,F) (9.1)

with gE representing the external forces and torques applied via joints on each body.
The parameter vector η contains the free coupling parameters, such as joint stiffness
or joint damping, while M denotes the state dependent mass matrix and fI represents
the inertia forces. The last term incorporates the cutting force vector F acting on the
cutter. The generalized coordinates q describe the relative motion between the rigid
bodies. Due to the presence of pre-defined parameters, such as feed and spindle
rotation speed the time appears explicitly in the expressions for M, fI , fE and gE .
Since the system is organized in a tree-like structure an iterative algorithm (c.f. [7])
can be applied to evaluate the equations of motion during a time-domain simulation.

9.3.3 Thermo-elastic Workpiece Model

The largest part of the workpiece behaves like a thermoelastic body. Plastic defor-
mations usually occur only in regions close to the cutting edges. In the framework
of a macroscopic description, the cutting forces F and the heat produced during
the chip formation can be modeled by employing an empirical approach. A volume
force sm

E occurring on the right hand side represents the cutting forces acting on
the workpiece. Similarly, a distributed heat source se

E models the heat flux into the
workpiece. Note that both functions sm

E and se
E depend on the cutting forces and thus
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Fig. 9.7 Multi-body system representing the milling machine

on the solution of the coupled system. As shown in [15], the equations of thermo-
elasticity read

ρutt = div(σ)+ sm
E , (9.2)

σ = λ tr(ε)I + 2με − 3KαΘ I with K = (λ +
2
3

μ), (9.3)

ε =
1
2

(
∇u+(∇u)T) , (9.4)

ρcvΘt = κΔΘ − 3KαT0div(ut)+ se
E (9.5)

where λ and μ are the Lamé constants, ρ denotes the mass density, T0 the reference
temperature, cv the specific heat, κ the heat conductivity and α is the thermal expan-
sion coefficient. The function u represents the deformation field, I identity matrix
and tr(.) denotes the trace operator.

The heat equation has been formulated in terms of the deviation Θ from the
reference temperature T0. Thus, the actual temperature T is given by T = Θ +T0.
The workpiece is fixed on a large and rigid machine table, a configuration, which can
be approximated by imposing Dirichlet boundary conditions on the corresponding
part of the workpiece boundary, i.e.

u(t,x) = 0 for x ∈ ΓT , (9.6)

Θ(t,x) = 0 for x ∈ ΓT . (9.7)
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9.3.4 Coupling and Material Removal Models

9.3.4.1 Coupling of Process and Structure Models during One Tooth Period

The cutting forces acting on cutter and workpiece can be described by empirical
models involving the uncut chip thickness, i. e.

F̂ = ap K̂(Tce) h, (9.8)

where ap denotes the depth of cut. The vector K̂ denotes an empirical parameter, the
so called specific cutting force, which is usually assumed to be constant or depend-
ing on the cutting speed. However, as shown in Section 9.2.5, the cutting forces
decrease due to higher workpiece temperatures. This effect has been incorporated
into the cutting force model by multiplying the constant specific cutting force vector

K̂
std

= [Kf ,Kc,Kp]
T by an empirical function involving the work piece temperature

Tce at the cutting edge, i. e., we define

K̂(Tce) = K̂
std

(cTce)
−b , (9.9)

with further fit parameters b and c. The uncut chip thickness h generally depends
on the current position of the cutting edge, the workpiece deformation and the
shape of the workpiece surface created by the preceding tooth. In the mathemati-
cal models delay terms are often used to incorporate the effect of the surface shape
(see [10]). However, to allow for a numerically stable and realistic coupling to the
workpiece, an alternative approach is pursued here. The workpiece surface shall
be constructed employing a real material removal model similar to the approaches
presented in [9], [32].

To derive a formula for the uncut chip thickness, we assume at first that the work-
piece reference configuration ΩR is given and show how the uncut chip thickness
can be derived from the current cutter position given by the solution of (9.1) and
the displacement field corresponding to (9.2). Note that for presentation purposes
we consider only the special case that the cutter axis is parallel to the z-axis of the
workpiece reference frame. In the general case, additional transformations depend-
ing on the solution of (9.1) have to be applied to compute the vector components in
the reference frame of interest.

As illustrated in Figure 9.8, a point on the cutting edge can be characterized
by the vector rce = r̃ce(t,q,z) = rca + rae. Note that the dashed lines in Figure 9.8
represent the ideal tooth path without machine and workpiece deformations. The
current workpiece domain Ω(t) is given by the reference configuration ΩR and the
displacement field corresponding to (9.2), i.e. x = X+u(t,X) with x ∈ Ω(t) and
X ∈ ΩR. As shown in [10], [23] and indicated by the bar labeled ’h’ in Figure 9.8,
the uncut chip thickness is the distance between a point ’ce’ on the cutting edge and
the workpiece surface measured in the direction of rae. Mathematically, this can be
formulated as follows
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h(t,q,z,Ω(t)) =

{
0 if rce /∈ Ω(t),

max
h∗∈H

h∗ otherwise,
(9.10)

with the set H being defined as

H=

{
x ∈ R+|

(
rce − x

rae

‖rae‖
)
∈ Ω(t)

}
. (9.11)

Combining the expression for the uncut chip thickness with the empirical cutting
force model (9.8) divided by ap gives a force per unit length, which possibly assume
different values on each z-level, i.e.

R̂ = K̂ h(t,q,z,Ω(t)). (9.12)

Since the components of the vector R̂ (see Figure 9.8) are given with respect to
the reference frame corresponding to the cutting edge, (9.12) has to be transformed
by means of an orthogonal transformation O(ϕ(z)) in the cutter reference frame to
compute the cutting force per unit length acting on the cutter, i. e.

R̃ = O(ϕ(z))R̂ = O(ϕ(z))K̂ h(t,q,z,Ω(t)), (9.13)

with ϕ(z) denoting the angle between rce and the x-axis of the cutter reference
frame. Integrating (9.13) along the cutter axis finally provides the resultant force
acting on the cutter.
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Fig. 9.8 Uncut chip thickness (left) and definition of the volume force (right)

Similar to the resulting force on the cutter, the volume forces sm
E acting on the

right hand side of (9.2) also have to be calculated from the relative cutting force
given in (9.12). Applying a second orthogonal transformation Q(t,q), which de-
pends on the solution of (9.1) to (9.13) provides the components of the relative
cutting force in the workpiece reference frame, i. e.
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R = Q(t,q)R̃ = Q(t,q)O(ϕ(z))K̂ h(t,q,z,Ω(t)). (9.14)

Since the presented model is a macroscopic approach, which cannot reproduce the
chip formation, the relative cutting forces have to be distributed over an area A(t,z)
located between cutting edge and workpiece surface. As illustrated in Figure 9.8,
for a given point on the cutting edge rae and a given level z the area A(t,z) is defined
as the set of all points in Ω(t) enclosed by the disc-ring segment with label ’A(t,z)’.
The segment is defined by the arcs through rae with radius D/2 and length ΔϕD
and through (1−h/‖rae‖)rae with radius D/2−h and length 2Δϕ(D/2−h). Thus,
the volume force reads

sm
E (t,x,y,z) =

{
0 if (x,y) /∈ A(t,z),

R
A(t,z) otherwise.

(9.15)

The heat conducted into the workpiece can be computed from the specific cutting
forces and the given cutting conditions (see [26]). If the shear angle appearing in the
corresponding expressions is estimated by an analytical formula as, for example,
proposed in [20], the total heat flux into the workpiece denoted by H(h,K̂) can be
written in explicit form. The corresponding term appearing on the right hand side
of (9.5) reads

se
E(t,x,y,z) =

{
0 if (x,y) /∈ A(t,z),
H(h,K̂)
A(t,z) otherwise.

(9.16)

9.3.4.2 Material Removal Model

As mentioned before, the workpiece surface can be constructed by employing a
material removal model. The main idea is to construct a volume based on the cut-
ting edge path and workpiece deformations, which can be subtracted from a given
workpiece domain by means of Boolean operations (see e.g. [32]).

To this end, recall that during one tooth period each point on the cutting edge
follows a certain path depending on the motion of the cutter. In a subinterval, some
points of the cutting edge penetrate the deformed workpiece surface and the cutter
is cuts. Thus, a workpiece deformation can be associated to each point rce of the
cutting edge in the workpiece domain Ω(t), i. e.

rce = Xce +u(t,Xce), Xce ∈ ΩR. (9.17)

With solution X∗
ce(t,rce) of the above equation and the cutting edge points we define

a new point y, which corresponds either to the cutting edge or to the new shape of
the reference domain, i. e.

y(t) =

{
rce if rce /∈ Ω(t),

X∗
ce(t,rce) otherwise.

(9.18)
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Monitoring these points y(t) ⊂ R
3 during a time interval, which encloses

the actual cutting period, gives a set of points describing an open surface in the
three-dimensional space. From such a surface, we construct a set Ωc ⊂ R

3, which
represents the points travelled by the cutting edge and incorporating the workpiece
deformations. The new workpiece reference domain Ω new

R can be found by subtract-
ing the domain Ωc from the given workpiece reference domain ΩR, i.e.

Ω new
R = ΩR \Ωc. (9.19)

The presented strategy leads to a series of workpiece domains, each incorporat-
ing the motion of the cutting edge and the corresponding workpiece deformations
during the preceding tooth path. Together with the expression for the uncut chip
thickness, the model leads to a non-linear system of coupled ordinary and partial
differential equations. The history of workpiece and cutter motion is stored in the
workpiece surface.

9.3.5 Numerical Algorithm, Implementation and Parameter
Identification

The main solution algorithm is composed of two parts. While the first part deals
with the solution of the coupled system on a constant reference domain, the second
part is focused towards the construction of a series of reference domains and the
corresponding initial conditions.

As shown in the previous sections, the process structure interaction leads to a
strong coupling of workpiece and machine model. In addition to the finite element
discretization of the workpiece equations, a tailored time-integration algorithm has
been developed for the coupled system guaranteeing a fully-implicit coupling of the
complete system. This strategy required a large programming effort. Since standard
finite element libraries do not allow the incorporation of multi-body systems, and
contrarily, the standard multi-body simulation packages do not provide any tools
to integrate coupled PDE-systems into the simulation environment, the numerical
implementation of both parts had to be developed in the framework of an in-house
library. The result is a powerful milling simulation system. Its main features are an
optimal resolution of the coupling effects by an efficient implicit time-integration
scheme, and as a consequence of the material removal model, the spatial resolution
of the machined workpiece surface. An example for the generated workpiece sur-
face employing a Dexel model similar to [34] is illustrated in Figure 9.9 for a stable
process and in Figure 9.10 for an unstable process, respectively. In addition, the pre-
sented approach allows for the identification of machine and workpiece parameters
by means of standard Gauss-Newton methods.

The identification process was carried out in close cooperation between experi-
menters and mathematicians. Based on the standard experiments, i. e. measurement
of mobility-frequency response functions, cutting forces and temperatures, the ex-
perimental and the numerical methods have been successively adjusted in order to
finally provide a realistic milling model.
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Fig. 9.9 Example for the material removal simulation, i. e. the evolution of the workpiece
shape, and the corresponding uncut chip thickness in case of a stable cut

1.5 1.6 1.7 1.8 1.9
x 10 −3

0

0.05

0.1

0.15

time / [sec]un
cu

t c
hi

p 
th

ic
kn

es
s 

/ [
m

m
]

0.031 0.0315 0.032 0.0325 0.033
0

0.05

0.1

0.15

0.2

0.25

time / [sec]un
cu

t c
hi

p 
th

ic
kn

es
s 

/ [
m

m
]

0.065 0.066 0.067
0

0.1

0.2

0.3

0.4

0.5

time / [sec]un
cu

t c
hi

p 
th

ic
kn

es
s 

/ [
m

m
]

Fig. 9.10 Example for the material removal simulation, i. e. the evolution of the workpiece
shape, and the corresponding uncut chip thickness in case of an unstable cut

9.3.6 Simulations

The coupled model and the developed simulation algorithm provide a tool to inves-
tigate the characteristics of milling processes involving the dynamics of machine
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and workpiece. Although the temperature effects presented in Section 9.2.5 can
be reproduced with the presented model, an illustration of the related phenomena
is beyond the scope of this work. Therefore, we focued on effects, which can be
simulated with an elastic workpiece model. Due to this restriction the workpiece
equations can be reduced to system (9.2)-(9.4) with a constant temperature, i.e.
Θ = 0. The damping effects in the workpiece were incorporated into the model
on the space discrete level, introducing a so-called Rayleigh damping term. Again,
the unknown damping parameters were determined by comparing simulated and
measured frequency-response functions. Recall that the vector of unknown param-
eters in (9.1) has been fitted so that the multi-body system reproduces the measured
frequency-response functions at the tool centre point (TCP). Moreover, the cutting
force model employed in [22] to compute the stability limit illustrated in Figure
9.3 is similar to (9.8). Consequently, a system composed of the machine model and
a rigid workpiece almost has the same stability limits as the system analyzed to
compute the red line in Figure 9.3.

As observed in the experiments, a supple workpiece structure or the wrong choice
of cutting depth and spindle speed may destabilize the milling process. In order to
display these effects numerically we considered three examples.

In the first simulation, the workpiece structure is rather stiff and the process
parameters have been chosen so that no chatter occurs (ap = 0.5 mm and n =
16,400 rpm, see Figure 9.3).
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Fig. 9.11 Relative cutting force spectrum and evolution of the uncut chip thickness corre-
sponding to a stable cut

Figure 9.11 illustrates the spectrum of the cutting force in x-direction divided
by ap and the evolution of the uncut chip thickness. Both diagrams indicate that the
process is stable. No chatter peaks arise in the force spectrum and the uncut chip
thickness converges to the stationary evolution.

For the second example, the spindle speed has been set to n= 17,800 rpm. In this
case, the process parameters correspond to unstable cutting conditions. Additional
chatter peaks occur in the relative force spectrum (spectrum of the cutting force in
x-direction divided by ap) depicted in Figure 9.12. According to the considerations
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Fig. 9.12 Simulated and measured relative cutting force spectrum and evolution of the uncut
chip thickness corresponding to an unstable cut
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Fig. 9.13 Relative cutting force spectrum and evolution of the uncut chip thickness corre-
sponding to an unstable cut due to a supple workpiece

outlined in Section 9.2.4.2 and 9.2.3.2 the additional chatter peaks clearly indicate
that the corresponding process is unstable.

The evolution of the uncut chip thickness illustrated in Figure 9.12 confirms this
result. In contrast to the evolution shown in Figure 9.11, the uncut chip thickness
does not converge to the stationary evolution but increases noticeably after a short
decay at the beginning and remains on a high level until the end of the simulation.

In the third example, the process parameters have been set to the same values as
in the first simulation (ap = 0.5 mm and n = 16400 rpm). The stiff workpiece uti-
lized in the first example has been replaced by a more supple structure. Especially
on top, the supple workpiece exhibits a high compliance, which can destabilize the
previously stable milling process.

Analyzing the evolution of the uncut chip thickness reveals that the process does
not converge to a stationary regime. Large workpiece oscillations lead to an increas-
ing uncut chip thickness and thus to increasing cutting forces. The additional chatter
peaks appearing in the relative force spectrum clearly indicate that the correspond-
ing process is unstable. In contrast to the second example, the highest chatter peak
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is not located at 2,834 Hz at but at 408 Hz. Thus, the weak spot in the structure
leading to chatter vibrations is different in the two examples.

9.4 Conclusions

The goal of this chapter was the development of a complex milling model to in-
vestigate effects of machine and workpiece structure on the stability of milling pro-
cesses. The experimental analysis in Section 9.2 reveals that the stability limits can
be increased by pre-heating the workpiece. Moreover, it illustrates how milling pro-
cesses can become unstable due to a lack of workpiece stiffness. The experiments
conducted for the identification of machine parameters display that the frequency-
response functions at the TCP strongly depend on the excitation method and vary
with the angular spindle position. The simulations in Section 9.3 clearly demonstrate
that the developed model is capable of reproducing the instability effects observed
in the experiments. For the first time a new stability analysis method allows the
determination of stability limits of large DDE-systems with periodic coefficients.

The results are promising and open up various directions for future research.
A challenging task would be to investigate the stability of milling processes with
respect to variations in the machine design.

Finally, from the application point of view, an efficient numerical tool for the
systematic derivation of stability diagrams is most desirable. The developed stability
analysis tool is a first step in this direction. The improvement of the numerics and the
exploitation of model reduction techniques to increase the efficiency of the method
will be subject to further research.
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