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Chapter 2 
Modeling and Simulation 

C. Brecher, A. Bouabid, M. Deichmueller, B. Denkena, K. Großmann,  
A. Hardtmann, D. Hömberg, R. Hermes, F. Klocke, M. Löser,  
O. Rott, P. Steinmann, and M. Weiß 

Abstract. One focus of the Priority Program 1180 is the prediction of process  
machine interactions. The investigated manufacturing processes as well as the ma-
chine tool behavior and the physical phenomena vary within the projects of this 
program. So depending on the issues that were investigated, the modeling ap-
proach that is best suitable for the specific problem has to be applied. To predict 
the interactions these models have to be coupled and simulated. Besides the mod-
eling approaches different simulation techniques have also been applied. This 
chapter gives an overview of the applied models of the structural machine beha-
vior and the manufacturing processes, the coupling of these models as well as the 
simulation techniques that were used.  

2.1   Introduction 

The prediction of process machine interactions requires models of the subsystems 
“machine” and “process”. Which modeling approach is appropriate for a specific 
problem depends on the type of process, the character of the investigated interac-
tion and the physical phenomena relevant for this interaction. However, other  
factors may also have an impact, for example, the computation time or the effort 
for modeling as well as the effort of a parameter identification based on measured 
data. 

A comprehensive overview of current issues and approaches in the field of pre-
dicting process machine interactions is given by Brecher et al. [1]. This chapter 
focuses on issues that are relevant within the projects of the Priority Program 
1180. It gives basic information about the modeling techniques and the coupling 
methods. Most of the projects within the priority program scrutinized the interac-
tions between the process forces and the static and dynamic displacements at the 
contact zone of tool and workpiece. 

To describe the dynamic behavior of the machine multi-body systems, finite 
element models and analogous models are applied. The first two approaches con-
tain structural information of the machine. This makes it much easier to apply 
changes of structural parameters. The analogous models are abstract models where 
information about the structure is lost but they can be parameterized much easier 
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using measured frequency response functions. The different approaches to model 
the machine behavior differ, for example, in terms of degrees of freedom or the 
ability of coping with nonlinearities. 

The applied approaches of process models differ for cutting, grinding and form-
ing processes. In cutting, simple empirical models are applied in most cases. In 
grinding, empirical models as well as finite element models are applied. In form-
ing simulations, only finite element approaches were used. To couple and simulate 
the process and machine models coupled simulations as well as model integration 
within the same software were applied. 

2.2   Models of the Machine Behavior 

2.2.1   Multi-Body Models 

A multi-body simulation (MBS) system generally consists of different stiff bodies, 
which can conduct defined movements. They are connected by different kinds of 
joints like revolute, prismatic, ball or cardan joints. Movements and reactions of 
the bodies can be simulated using algebraic-kinematic relations and external 
forces in the time domain. The main advantage of MBS is the possibility to simu-
late large scale movements and rotations. In contrary to a MBS a linear FE-
simulation e. g. is able to represent the dynamic behaviour of a machine tool only 
in one defined position. Thus, non-linearities cannot be simulated [2]. 

In a flexible MBS model, the advantages of both MBS and FE-simulation are 
combined. As the FEM is able to simulate deformations of parts and the MBS can 
realize movements of the modelled parts the dynamic machine behaviour can be 
described for every position of the machine tool slides. 

For the implementation of a flexible MBS the structural parts of a machine tool 
have to be converted into flexible bodies. A flexible body allows the description of 
its flexible properties in defined points of force transmission. The count of possi-
ble part deformations is reduced by means of modal superposition. Hence, linear 
part deformations can be described by the combination of linear eigenmodes. 

Fig. 2.1 shows the difference of a flexible MBS model and a moveable flexible 
MBS using the example of a machine table. As the flexible MBS uses fixed ele-
ments to constrain the machine table to the machine bed the moveable flexible 
MBS realizes a movement of the machine table. The occurring forces are  
transferred to the machine bed by dividing the load onto different nodes of the 
guideway. Hence, a variable load transmission can be realized and the machine 
behavior can be depicted in more detail. 
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Fig. 2.1 Principle of flexible and moveable flexible multi-body simulation [3] 

2.2.2   Finite Element Models 

In contradiction to the multi-body systems treated in the last section, structural 
analyses are primarily concerned with deformable structures, which consist of an 
infinite number of single material points. Also, structural analyses are more inter-
ested in the distribution of physical quantities within the structure, e. g. the stress 
distribution. 

In machine tools, the finite element method can be applied in order to analyze 
both the static and the dynamic machine behavior. In particular, time-dependent 
and coupled processes are of high interest. Machine tools consist, in many cases, 
of spinning cylindrical parts, which permit some simplifications of the solution 
procedure through their form and periodic motion. Then, computationally more ef-
ficient solution techniques can be used, e. g. the Arbitrary Lagrangian Eulerian 
(ALE) approach. In the following, the basics of a transient finite element solution 
procedure are presented, exemplarily for the case of a spinning wheel, which can 
represent a grinding wheel, for example. Detailed information can be found in [4]. 
Bold symbols denote vectors or tensors while scalars are denoted in normal font 
style. 

In the ALE approach, three states (or configurations) of the spinning wheel can 
be distinguished, Fig. 2.2. B0 denotes the non-deformed state. In this configura-
tion, each of the material points constituting the wheel can be localized by the co-
ordinates X0. By means of a time-dependent rotation matrix R(t) one passes to the 
rotated (or reference) configuration Br, where material points are described by the 
coordinates 

( ) 0XRX ⋅= t                                                         (2.1) 

X0 describes the geometry of the spinning wheel at the idle state and does not de-
pend on the time t. X is time-dependent since the position of a material point 
changes due to the rotation, regardless of whether the angular velocity ω is con-
stant or not. 
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Finally, the deformation of the spinning wheel is given at the deformed (or to-
tal) configuration Bt by the function ϕ0 or ϕ, depending on the choice of the con-
figuration one takes as reference, i. e. B0 or Br respectively. Thus, the coordinates 
x of a material point in the total configuration can be given by 

( ) ( )( ) ( )( )ttttt ,,, 000 XRXXx ⋅=== ϕϕϕ                    (2.2) 

The total deformation ϕ depends on the time t in two ways: indirectly via X(t) and, 
in addition, in an explicit way via t. The dependency on X(t) includes the fact that 
the less important part of the kinematics, i. e. the rigid body rotation, is anticipated 
in the model formulation. The direct dependency on time t, however, expresses the 
most important part of the kinematics, i. e. the transient deformation due to the 
process forces. For the position vector x, a total and a partial time derivative x  
and xt∂  can be defined, depending on whether the rigid body rotation is included 

or not. 
 

( ) ( )( ) ( )( )ttttt ,,, 000 XRXXx ⋅=== ϕϕϕ  
 

 

Fig. 2.2 Configurations corresponding to the ALE approach. In addition to the initial non-
deformed state and the total deformed state there is an intermediate rotated state one refers 
to when solving the problem 

The stress tensor can be defined in different ways. Relating a force increment 
dF to a surface element da, both in the total configuration, results in the Cauchy or 
true stress tensor σ. Taking, however, the surface element in the initial or rotated 
configuration dA0 or dA leads to the Piola-stress tensor P0 or P respectively. 

In the following, the basic relations of the finite element model of the spinning 
wheel are given. All equations are written with respect to the rotated configuration 
Br. The balance of momentum writes 

xbP rr ρ=+Div                                                  (2.3) 

where ρr is the material density. The external body forces br, caused by gravity for 
example, are not important for the present presentation. The total acceleration x  
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can be determined by totally deriving the position vector x twice. After some deri-
vations and transformations one obtains the following relations: 

Total velocity:                          vXFXFx +⋅=∂+⋅=  ϕt  (2.4) 

Total acceleration: [ ] [ ] aXLΩFXXGx +⋅+⋅+⊗=  2:  (2.5) 

Herein, the following entities have been used: 

Deformation gradient:                              ϕX∂=F  (2.6) 

Velocity gradient:                             vL XXt ∂=∂= ϕ2  (2.7) 

Gradient of the deformation gradient:    FG X∂=  (2.8) 

Local velocity:                                         ϕt∂=v  (2.9) 

Local acceleration:                          va ttt ∂=∂= ϕ2
                                                (2.10) 

Spin tensor:                                  [ ] 






 −
=

0
0
ω

ωΩ ij

                                             
(2.11) 

Guiding velocity:                                 XΩX ⋅=                                                    (2.12) 

Stresses are related to the strains by means of a material law, e. g. according to the 
Neo-Hookean model. In this model, the isotropic strain energy function W is given 
by 

[ ] JJW 2

2
2:

2
lnln

λμμ +−−= 1C
                                  

(2.13) 

The Piola-stress results from the relation 

SFP ⋅=                                                    (2.14) 

with the Piola-Kirchhoff stress 

[ ] [ ]112 1
2

2 −− −+−=
∂
∂= CC

C
S 1μλ

J
W

                         
(2.15) 

In Eq. (2.13)-(2.15), λ and μ designate the Lamé parameters. In addition, the fol-
lowing entities have been used: 

Right Cauchy-Green strain tensor:    FFC ⋅= t
                                               (2.16) 

Jacobian of the deformation gradient F:    FDet=J                                      (2.17) 

Finally, the material stiffness results from 

CCC
S

∂⊗∂
∂=

∂
∂= W2

42C
                                             

(2.18) 
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Now, when the spinning wheel problem is discretized first with respect to space 
and then time and when substituting Eq. (2.3) for Eq. (2.4)-(2.12), one can show, 
that the forces at an arbitrary node I can be written at time step tn+1 as: 

Spinning forces:     [ ][ ] ⋅⋅∂−= ++

rB

r
hh

1n
hI

Xr
spn

1n I dVN XFX ρF

                
(2.19) 

Internal forces:      [ ] ∂⋅⋅= +++

rB

r
I

X
h

1n
h

1n
int

1n I dVNSFF

                             

(2.20) 

Inertia forces:       ++ =
rB

r
h
n

I
r

ine
1nI dVN 1aρF

                                         

(2.21) 

Coriolis-type forces:   
⋅

++ ⋅=
rB

r

h
h
n

I
r

cor
1nI dVN XL 12 ρF

                

(2.22) 

where the notation (⋅) h means that after spatial discretization the corresponding 
entity (⋅) has, of course, to be written in discretized form, i. e. as a function of the 
value at node I, weighted by the element shape function N I. The local velocity and 
acceleration at time step tn+1 can be written according to the Newmark-scheme as 

nnnnnt1n tt
t

avdddv 







Δ−Δ+








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β
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γ

2
1][ 11

             
(2.23) 

[ ] nnnnnttn tt
avddda 








−−

Δ
−−

Δ
≈∂= +++ 1

2

111
121

2
1 βββ                

(2.24) 

Herein, Δt and dn+1 denote the time increment to be appropriately chosen and the 
time-dependent nodal position vector to be solved for respectively. Also, it has 
been assumed that the state of the wheel is known at time step tn. The parameters β 
and γ appearing in Eq. (2.23)-(2.24) are the Newmark parameters to be chosen 
such that 

( ) 





=

2

1
,

4

1
,γβ

                                                   
(2.25) 

Relations (2.19)-(2.22) in sum give the force residual vector 

cor
n

ine
nn

spn
nn 11

int
111 +++++ +++=− FFFFR

                                   
(2.26) 

to be iteratively solved, e. g. by means of the Newton-Raphson procedure when 
appropriate boundary conditions have been defined. The linearization of the force 
residual vector R leads to the stiffness matrix K, which relates the force at a node I 
with the displacement at a node J caused by that force. In analogy to the force, the 
stiffness can be given in form of the following single contributions: 
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Spinning part:      [ ][ ] ⋅∂⋅∂−=+
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(2.27) 

Geometric part:   [ ] ∂⋅⋅∂= ++
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J

x
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x
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(2.28) 

Material part:      [ ] [ ] ++++ ⋅∂⋅⋅∂⋅=
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Coriolis-type part:   
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Herein, I denotes the identity matrix. By summing all stiffness parts, the total 
stiffness results in 

cor
1n

ine
1n

mat
1n

geo
1n

spn
1n1n ++++++ ++++= KKKKKK

                        
(2.32) 

which again results together with the force residual R in the Newton-Raphson step 

1n 1n1n +++ =Δ⋅ RK d                                              (2.33) 

where Δdn+1 denotes the iterative increment of the nodal displacement vector. 
Once the nodal position vector dn+1 is known all other entities, e. g. the stress or 
the strain tensor, can be determined. 

2.2.3   Analogous Models 

The multi-body and the FE models are based on the structure of the mechanical 
system. In some cases, it sufficient to describe the dynamic behaviour by abstract 
models, for example when only the dynamic behaviour at the tool center point 
(TCP) is of interest for the desired simulation results. 

The dynamic behaviour of the structure is represented by a system of masses 
and spring/dampers, which act like the machine at observed points. In a simple 
case, the frequency response function at one point can be written as the sum of the 
frequency responses of n single degree of freedom mass spring damper systems 

( )  ++−
=

n nnn cdjm
jG

ωω
ω

2

1

                                

(2.34) 

with the modal mass m, the damping d and the stiffness c. The parameters of these 
models can be identified from frequency response functions measured at the real 
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machine structure. For this, commercial software for a modal analysis or self-
written routines can be used. In many cases, the fitting between the dynamic be-
havior of the real structure and the model is better than the one that can be 
achieved by structure based models, especially in the case of multi-degree of free-
dom behavior of the machine, see chapter 1. Since the abstract models contain 
only a few degrees of freedom the computation time for simulations is much 
shorter than when structure-based models – like FE or MBS models - are applied. 

A disadvantage of the analogous models is the loss of information about the 
structure of the machine. These abstract models are only valid for a given configu-
ration or state of the machine. Therefore, a change of local parameters or a change 
of the position of the axes can only be considered by a new set of modal parame-
ters. A structure-based model can help to identify local parameters of the real 
structure that cannot be measured directly. An analogous model is not appropriate 
for such a task. 

2.3   Process Models 

2.3.1   Cutting Force Models 

In addition to the term describing the dynamic machine tool behavior the cutting 
process term is needed to resemble the process-machine interaction in a closed 
loop. The cutting process responds to a change in the cutting geometry with an al-
teration in process forces. The calculation of process forces regarding the dynamic 
variation of the depth of cut was the priority of the research in the years 1960-
1980 [5]. Cutting forces are not only influenced by a relative motion between the 
workpiece and cutting tool (inner chip thickness modulation) but also by the ripple 
left on the workpiece surface (outer chip thickness modulation) at the previous 
revolution (turning) or by the last cutting edge (milling). Not only the modeling of 
the milling process demands for a considerable effort but also the determination of 
the force coefficients is known as an extensive procedure. In addition to modeling 
the determination of force coefficients, which had been defined by the simulation 
model, was extensive. Radharamanan summarizes the work on this field of re-
search in detail [6]. 

A common method to estimate the cutting forces acting in turning and milling 
processes is the analytical description of the interrelationships at the cutting edge 
[7, 8]. There are three analytical formulations in literature, which differ in their 
mathematical depiction and the determination of the characteristic force 
coefficients, Fig. 2.3. The method of mechanistic description is based on the 
modeling of so-called shear planes. In this regard, a forming process is adopted in 
the ablated material. The assumed shear stress influences the amount of the 
calculated process forces decisively. In this context, for example, the shear plane 
model by Merchant [9] or the "Slip-line field" model by Fang [10] have to be 
mentioned. 
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Fig. 2.3 Analytical formulation of cutting forces 

Especially for the simulation of process stability linear models and models 
based on exponential functions have been established to estimate the process 
forces. Using such simulation models emerging friction between the workpiece 
and the cutting edge can be captured by appropriate additional terms [7, 11]. 
These linear models assume a linear relationship between process forces and chip 
thickness. There are different approaches for this purpose, e. g. by Tlusty [12], 
Altintas [13] and Weck [14]. 

Models based on exponential functions derive process forces out of a non-linear 
relationship to the chip thickness. Appropriate models for the description of the 
processes have been developed, for example by Stepan [15] and Feng [16]. 
Investigations have shown that the feed motion-dependence of the dynamic force 
variation may explain differences in process stability, which were also partially 
observed in practice. The parameterization of the shown force models is  
carried out on the basis of cutting tests and therefore valid only for one defined 
cutting edge-workpiece material combination. In some cases, the parameterization 
can be adapted to different experimental conditions with the help of adjusting 
factors [17]. 

Especially for the depiction of chip formation, burr formation and the chip tem-
perature the cutting simulation using the finite element method is an important 
tool [18]. In such a simulation tool, the chip formation is discretized for a small 
surrounding between the workpiece and the cutting tool by finite elements in a 
sufficiently small mesh size. These simulations are not linear since large dis-
placements and deformations, temperature and strain rate-dependent plasticity of 
the workpiece at the cutting point as well as contact between tool and workpiece 
must be taken into account. The results of the force calculation using FEM do not 
provide sufficiently accurate results for the passive force in particular. 
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For mapping the cutting forces in order to simulate the process stability of a 
machining process in most cases the afore-mentioned analytical models are used. 
However, the problem is modeling the dynamic cutting forces using data from sta-
tionary chipping processes. Fig. 2.4 shows the geometric engagement of a cutting 
edge for dynamic cutting conditions in one plane. The rapid change of the oscillat-
ing engagement conditions leads to digressive results in cutting force calculation. 

Regardless of the approach of modeling process forces (mechanistic, empirical) 
a multiplicity of research works have demonstrated, that dynamic effects have to 
be taken into account additionally for stability simulation in the case of improving 
process models. These models consider the inner chip thickness modulation 
(wave-cutting) and the outer chip thickness modulation (wave-removing) as an 
independent input parameter as well as a phase shift between the dynamic cutting 
force and chip thickness modulation. 

 The entire current average 
depth h is composed of static 
and dynamic portions.

 Location and size of the 
primary shear zone vary.

 A direct connection between 
the chip thickness h and the 
process force F is in contrast 
to the mechanical conditions .

vc : Cutting Speed
F : Total Process Force
Fc : Cutting Force (in Direction vc)
Fp : Passive Force (perpendicular to vc)

xstat : Static Portion of Tool Deflection
xd(t) : Dynamic Portion of Tool Deflection
xd(t-Tt) : Dynamic Portion of Tool Deflection

Previous Revolution 

xstat xd(t-Tt)

F

Fc

Fp
F

Fc

Fp

vch = xstat + xd(t) - xd(t-Tt)

xd(t)

 

Fig. 2.4 Plain dynamic cutting 

In particular, the variation of the position of the shear plane is quite often used 
for the determination of the dynamic cutting forces from existing static models. 
Kim and Lee [19], for example, give an analytical description of the shear angle 
regarding the inner and outer chip modulation. This dynamic force model 
considers the transfer function of the tool and its derivation in the direction of 
cutting speed and direction of the chip thickness variation. Although the 
mentioned models can be used for stability simulation they have not been applied 
for this purpose so far. 

Van Brussel [20] and Werntze [21] propose simpler, empirical models. These 
take into account the influence of the inner and outer chip thickness modulation in 
terms of a proportional relation and a phase shift. The phase shift allows the 
modeling of a time lag between changes in chip thickness and the corresponding 
changes in force. 



2   Modeling and Simulation 39
 

2.3.2   Abrasive Machining 

In contrast to conventional machining where workpiece material is removed by a 
small number of defined cutting edges a large number of abrasive particles or 
grains acts in abrasive machining processes. In loose abrasive processes like po-
lishing or lapping, the grains are not connected to each other and move indepen-
dently from each other. In bonded abrasive processes like grinding or honing, the 
grains are connected by a bond, e. g. resin, vitrified or metal bond. Numerous 
models to describe grinding processes exist today. They can be divided into fun-
damental approaches, kinematic models, finite element method (FEM), molecular 
dynamics, artificial neural networks and rule based models. An overview is given 
in [22, 23]. Process machine interaction models for grinding are summarized in 
[1, 24]. Grinding models describe the influence of various parameters like depth of 
cut or cutting speed on forces, temperatures or surface roughness, for example. 
Since a universal model for all grinding processes has not yet been developed [25] 
it depends on the grinding operation and the contact conditions, which model is 
suitable. In general, the grinding models can be divided into microscopic and ma-
croscopic approaches which are described in the following. 

Restrictions

Macroscopic ApproachesMicroscopic Approaches

FEM, Kinematic-
geometrical simulations

Detailed simulation of
chip formation, grinding
forces, heat and surface
quality 

High computation time,
high effort to model
grinding wheel geometry 

Kinematic-geometrical
simulations (Dexel, Voxel)

Modelling
methods

Simulation of material
removal, geometric
description of contact area,
and application of grinding
force models   

Lower resolution in
simulation result than with
microscopic approaches,
surface quality cannot be
simulated.

Application
area 

 

Fig. 2.5 Modeling approaches for grinding processes 
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2.3.2.1   Microscopic Approaches 

The aim of microscopic process models is to calculate e. g. local stresses or tem-
perature, or to gain knowledge on chip formation mechanisms. The microscopic 
shape of a grinding wheel is determined either by topography measurement [26] or 
by generative modeling using a mathematical description of the grain morphology 
[27]. Mostly, statistical methods are applied for modeling the grain distribution 
[28]. Kinematic-geometrical models, as exemplarily described in [27], assume an 
ideal chip formation without plowing or similar effects. Process forces are calcu-
lated on the basis of undeformed chips of single grains. In other approaches, the 
finite element method is used to model the engagement of grinding wheel and 
workpiece [29]. Due to the high computation time, especially of 3D-FEM, only 
small parts of a grinding wheel are modeled, normally on a small set of grains or 
single grit scratching tests [30]. 

2.3.2.2   Macroscopic Approaches 

In macroscopic approaches, the grinding process is modeled by calculating the en-
gagement of grinding wheel and workpiece geometrically from a macroscopic 
view, i. e. no grains are modeled. In macroscopic approaches, parameters like 
equivalent chip thickness heq or geometrical contact length lg are calculated and 
empirical or FEM grinding force models applied [31]. In the kinematic-
geometrical simulation, the workpiece is discretized using dexels, voxels, or 
boundary representation models, for example. A more detailed description of 
process models for surface grinding, NC-shape grinding, pendulum and speed 
stroke grinding and tool grinding can be found in the section “Grinding” of this 
book. 

2.3.3   Metal Forming 

During an optimal process design the determination of the stresses, forces and 
energy is an important topic. While the processes of the sheet-metal forming are 
often limited by workpiece-lateral demands such as tensions and instabilities the 
process limits of the bulk forming can usually be detected in the tools. Hence, 
considering temporally and locally different loads the tool and workpiece must be 
dimensioned in such a way that the tool is predicted from plastic deformations and 
breakage and the tool wear adjusted to the desired life time. For the optimal ma-
chine selection the knowledge of value and localization of the necessary forming 
force as well as the value of the deformation energy are important. At present, 
there is a set of methods for the pre-determination of the stresses and forces. Ta-
ble 2.1 shows a selection of widely-used methods [32]. 
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Table 2.1 Methods for the determination of stresses, forces and energy: dxi - infinitesimal 
small dimension, kf – yield stress, V – forming volume, η – deformation efficiency, W – 
deformation energy, Fm – temporal mean value of deformation force F, σc, τc – contact 
stresses, σm – temporal and local mean value of normal stress [32] 
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Method Number 

of dxi 
input value output value 

Method of deformation energy 0 kf, V, η σm, Fm, W 
Strip method 1 kf, V, τc or μ σ, F, (W) 
Slip-line method 2 kf, τc σ, 
Method of upper and lower 
bounds 

3 kf, τc or μ F 

Finite-Element-Method 3 kf, σc, τc or μ σ, F 

The methods are tabulated according to the increasing value of an infinitesimal 
small dimension dxi, which is the basis for the selected section models. Such as the 
number of simplifying assumptions is reduced, the effort and accuracy of the cal-
culation as well as the number of the included small dimensions are increased. The 
first two methods are regarded to the elementary theory, the other ones to the 
higher theory of plasticity. 

The majority of elementary methods is valid under the following conditions 
[33]: 

• The workpiece volume remains constant during the forming process. 
• The material behaves homogeneously and isotropically, i. e. locally different 

material properties are generally not considered. 
• The elastic deformations are negligibly small compared with the plastic defor-

mations. 
• The yield stress is given as function of material, (equivalent) strain, strain rate 

and temperature. 
• The material behavior follows the Tresca’s yield criterion (Maximum Shear 

Stress Theory) and the v. Mises’ yield criterion (Distortion Energy Theory) re-
spectively. 

• The contact shear stress is given with a friction formulation, e. g. using the fric-
tion value µ or the friction shear factor m.  

• Forces of inertia and weight are neglected. 

The most frequently applied theoretical methods are  

• Method of deformation energy, 
• Strip method,  
• Slip-line method,  
• Method of the upper and lower bounds,  
• Method of weighted residuals and 
• Finite-Element-Method.  
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The method of deformation energy is the most elementary method to calculate the 
deformation forces. This method is based on the law of energy conservation with 
the applied outer energy 

sFWa ⋅=                                                       (2.35) 

equaling the inner strain energy  

φVk
η
1

W fmi ⋅= .                                                (2.36) 

In this formula, kfm is the mean value of yield stress and ϕ the equivalent plastic 
strain. The inner energy is equivalent to the total deformation energy  

BShFRidtot WWWWW +++= ,                                    (2.37) 

summarizing the expressions for ideal, frictional, shearing and bending energy. 
The ratio of ideal deformation energy and total deformation energy is referred to 
as the deformation efficiency 

tot

id

W

Wη = .                                                     (2.38) 

With these preliminary considerations, the determination of deforming forces can 
be derived for several forming processes. In order to exemplify this procedure the 
derivation of the forming forces is shown for solid forward extrusion and deep 
drawing in Fig. 2.6 and Fig. 2.7. 

uExta sFW ⋅= , φVk
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Fig. 2.6 Solid forward extrusion 
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umax,Da sFW ⋅= ,  φVk
η
1
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Fig. 2.7 Deep drawing of a cylindrical cup 

In both examples, the friction, shear and bending behavior are summarized in 
the deformation efficiency factor. More detailed approaches considering the fric-
tion between die and workpiece result in the following formulas, calculating the 
maximal forming forces in solid forward extrusion [34] 

00f0
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0fmExt hkd
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2sin
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3
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(2.41) 

and for deep drawing processes [35] 
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This includes the blankholder force FBH, the mean wall diameter 01m sdd +=  and 

the outside diameter of the flange when the drawing force has achieved a maxi-

mum value 2
m

2
0p d3.0d7.0d += . 

The presented elementary methods provide a solution for a set of problems 
without substantial effort. This is achieved with simplifying assumptions deviating 
from the real behavior. If the simplifying assumptions do not meet the require-
ments of accuracy, the Finite-Element-Method (FEM) could be used, however, 
with a higher effort and costs. Thus, the following factors can be considered in an 
improved way:  

• different material characteristics, 
• complicated geometry of the parts as well as 
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• inhomogeneous and unsteady mechanical and thermal behavior.  
• The FEM is used in metal forming for the simulation of forming processes to 

determine instantaneous and intermediate states as well as the design of highly-
stressed active elements of metal-forming tools (e. g. forging or extrusion dies) 
[36]. 

2.4   Coupling of Models 

2.4.1   Analytical Considerations  

2.4.1.1   General Setting 

In general, independent representations for structure and process are the starting 
point for the development of models describing the process-structure interaction. 
Depending on the properties of interest engineers can choose among a large varie-
ty of structure models. Mathematically, structure models are understood as equa-
tions of motion corresponding to 

• a complex multi-body system, 
• an abstract system with multiple degrees of freedom describing the dynamics of 

a selected point of a large structure, 
• a system of partial differential equations discretized with finite elements in 

space, 
• a coupled system of ordinary and discretized partial differential equations. 

The above-mentioned models can be summarized by the following system of dif-
ferential (algebraic) equations 

( ) ( )fM pqqtfqpqtM ,,,,,  = ,                                 (2.43) 

with pM, pf denoting parameter vectors, which are usually determined fitting struc-
ture simulation results to the corresponding experimental data. The vector q 
represents the general set of coordinates. If (2.43) has been directly derived from 
modal analysis data, the mass matrix is usually constant and the right hand side is 
a linear function of q and q . 

Process models relate a geometrical parameter vector g and the relative velocity 
v between tool and workpiece to the cutting force vector F acting on the tool. In 
milling, the geometrical parameter vector consists of cutting width b and uncut 
chip thickness h. A large class of process models can be expressed in terms of the 
force they exhibit 

),,(
~

gpvgFF = ,                                            (2.44) 

where pg represents an empirical parameter vector depending on tool and work-
piece material and on the tool geometry, see section 2.3.1.  

In stationary cutting or grinding processes with sufficiently small cutting 
forces, the geometrical parameters and the relative velocity do not deviate notice-
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ably from the desired values regulated by the machine control system. However, if 
the cutting forces become large, increasing machine structure oscillations induce 
larger variations of the geometry parameter vector and the relative velocity. This, 
in turn, leads to undesired cutting force variations, which possibly cause a further 
increase of the machine structure oscillations. In order to describe these process 
structure interaction phenomena both aspects have to be incorporated into the 
model equations. The variation of the geometrical parameter can be formulated as 
a non-linear functional involving the history of the state variable arising from the 
structure model (2.43), i. e. 

( )[ ] ( )( )==
t

t

dssqsgqtg

0

,~., .                                     (2.45) 

The relative velocity between tool and workpiece is usually also a non-linear func-
tion depending on the state variable and the corresponding time derivative, i. e. 

( )qqtvv ,,~=                                                    (2.46) 

Moreover, an additional term appearing on the right hand side of (2.43) has to be 
introduced to model the effect of the varying process forces arising from (2.44) 
and (2.45), (2.46). Since the forces usually act on the tool or, in terms of the struc-
ture model, on an element representing the tool an additional model equation has 
to be developed to get the appropriate contribution to the right hand side of (2.43). 
In a general setting, such an expression is given by 

( )Fqtff FF ,,
~

= .                                               (2.47) 

Thus, the modified structure model involving the additional term due to the pres-
ence of process forces reads 

( ) ( ) ( )FqtfpqqtfqpqtM FfM ,,
~

,,,,, += 
                             

(2.48) 

As outlined above, phenomena related to process structure interactions can be 
modeled by strongly coupled systems, possibly involving the history of the state 
variable. The equations (2.48), (2.47), (2.46) and (2.45) are an abstract example 
for the model equation corresponding to an interacting system. In each applica-
tion, the adoption of the general system may lead to different equations, which 
have to be solved with tailored numerical algorithms, as shown in the following 
sections. However, in order to illustrate the different aspects of the general model 
we focused on a simple milling system at first.  

2.4.1.2   Example: A Simple Milling System 

A simple system possessing all the important features to model stability problems 
in milling is illustrated in Fig. 2.8. 
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Fig. 2.8 Scheme of a simple milling system 

For the present example, the equation of motion representing the machine struc-
ture reduces to the system 









+
















−
















−=
















y

x

y

x

y

x

F
F

y
x

k0
0k

y
x

d0
0d

y
x

m0
0m







,                (2.49) 

The unknown model parameters are pM = m and pf = (dx,dy,kx,ky)
T. Note that (2.49) 

is a very simple form of (2.48). The cutting force model corresponding to (2) is a 
linear function relating the cutting cross section h ap and the cutting forces acting 
on the tip of the cutting edge, i. e. 

ha
K
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F
F

p
c

f

c

f 






=



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


.                                             (2.50) 

The parameter vector is pg = (Kf,Kc)
T. The expression corresponding to (2.45), i. e. 

the variation of the geometrical parameter, consists of a stationary part hstat and a 
dynamic part hdyn. The dynamic part hdyn represents the modulation of the uncut 
chip thickness due to the structure oscillations 

( ) ( )( ) ( ) ( )( ) ϕτϕτϕ cossinsin −−+−−+=+= tytytxtxfhhh zdynstat    
(2.51) 

Note that instead of h nonlinear models usually involve the positive part of the un-
cut chip thickness, i. e. h+ = max(h,0). Since the cutting force components in 
(2.50) are given in the rotating reference frame of the cutter an additional trans-
formation has to be introduced to get the corresponding force components into the 
global reference frame, i. e. 
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with γ: [0, 2 π ]  {0,1} denoting a function that switches from one to zero, if the 
corresponding tooth is not cutting. Again, equation (2.52) can be interpreted as a 
simple version of (2.47). Since the expressions for the cutting forces, the uncut 
chip thickness, and the transformation of the cutting forces are given explicitly 
(2.52), (2.51), (2.50) and (2.49) can be summarized by the following first order 
delay differential equation (DDE) 

( ) ( )[ ] ( ) ( ) ( ) ( )tbtutCtutCAtu stat+−+−= τ ,                    (2.53) 

where C(t) denotes a non-smooth τ-periodic matrix. The vector bstat(t) represents 
the external forces related to the stationary uncut chip thickness hstat. The incorpo-
ration of process structure interaction effects leads to an additional state-dependent 
term hdyn in the uncut chip thickness (2.51). Without this term the matrix C(t) va-
nishes and (2.53) reduces to an inhomogeneous linear ordinary differential equa-
tion (ODE) with constant coefficients. Simulating the solution of (2.53) with the 
Matlab dde23 solver and comparing it to the corresponding solution v(t) of the 
system with C(t) = 0 for two different values of ap reveals the additional benefit of 
the interaction model. 
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Fig. 2.9 Stable (a) and unstable (b) solutions of system (2.53) 

In the stable case, the solution of (2.53) converges to the solution of the corres-
ponding ODE. Consequently, the relative difference of both solutions converges to 
zero. Such an evolution of the relative difference is shown in Fig. 2.9(a). In the 
unstable case, the solution of (2.53) does not converge to the solution of the cor-
responding ODE, which remains bounded for all times. Consequently the relative 
difference of both solutions diverges, as illustrated by Fig. 2.9(b). In the experi-
ments, the evolution of the DDE-solution is called chatter. While the DDE model 
properly reproduces the onset of chatter the ODE model has a bounded solution of 
all positive values of ap and is thus not capable of reproducing chatter phenomena. 

2.4.2   Simulation 

In the previous sections, the different approaches of modeling of the machine and 
the process behavior have been presented. The coupling of the models differs  
for the different processes. This section gives a short overview of the simulation 
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techniques, which have been applied within the different projects of the priority 
program. 

Within the Priority Program 1180, the analysis of the process machine interac-
tions for cutting operations focuses on the coupling of process forces and the  
deflection of the tool. As shown in the example of a simple milling model, the 
coupling for cutting processes is given by a change of the intersection between 
tool and workpiece: 

• change of cutting geometry caused by the deflection of the tool/workpiece 
• modulation of cutting forces caused by the changing cutting geometry 

For the computation of the tool workpiece intersection the following approaches 
have been applied: 

• intersection between a discrete workpiece (e. g. Dexel model) and the envelope 
of the tool (e. g. CSG model) 

• intersection between a discrete workpiece and a micro-model of single grains as 
well as a macro-model of the grinding wheel for abrasive processes 

• analytical computation of the chip thickness, as shown in the example in the 
preceding section 

In sheet metal forming, the position and deformation of the tool represent the 
boundary conditions for the FE simulations of the forming of the blank. The re-
sulting forces at the nodes of the blank model act on the tool causing deflections 
and deformations. For the computation of static or dynamic interaction respective-
ly two principle methods have been applied.  

• Offline coupling, i. e. iterative computation of process forces and deflections of 
the ram 

• Integration of the model of the machine in the FE model of the forming process 

For the simulation of commercial software tools as well as in-house developments 
were used. The coupling was carried out in the same solver or by coupled simulations. 

• Exchange of forces and deflections between two simulators with a fixed time 
step 

• Exchange of forces and deflections between two simulators with a variable time 
step 

• Exchange of forces and deflections in the same tool (model integration, time 
domain simulations) 

• Mode-dependent exchange of forces and deflections in the same tool. 
• Integration of a force model in the equations of motion. Taking the repetitive 

tooth engagement into account leads to a system of delayed differential equations. 

The different simulation techniques are illustrated in Fig. 2.10 
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Fig. 2.10 Simulation techniques applied in the Priority Program 1180 

2.5   Conclusion 

An overview of the applied modeling approaches has been provided. It has been 
demonstrated which approach is suitable under specific conditions regarding the 
machine and process behavior. An overview of the coupling methods and the si-
mulation techniques has also been given. The choice as to which approach has to 
be applied depends on the intension of the simulation of the process machine inte-
raction, i. e. the interaction phenomenon that is to be investigated. This chapter 
has given only basic information on the principle methods. Detailed information 
will be provided in the following chapters, showing the application of these ap-
proaches to the project specific problems. 
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