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Surface Generation Process with Consideration
of the Balancing State in Diamond Machining
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Abstract. In order to manufacture optical components or mechanical parts with
high requirements regarding surface quality, diamond machining is frequently ap-
plied. Nevertheless, to achieve the desired surface quality, the understanding of the
surface generation process and its influencing parameters is highly important. One
crucial parameter is the residual unbalance of the main spindle. As the residual un-
balance affects the process and vice versa, the investigation of the process-machine
interaction is necessary. In this paper results of experimental work and mathematical
modelling of diamond machining under varying balancing states are presented. The
experiments show the connection between unbalances and resulting surface quality;
the mathematical model provides the possibility to simulate the surface quality for
given unbalances distributions. Furthermore, regularization techniques in order to
solve the inverse problem of computing the optimal balancing state for a given or
desired surface quality are presented.

15.1 Introduction

Ultraprecision diamond machining is mainly used to manufacture optical parts or
microstructures with form deviations of less then one micron and surface rough-
ness in the range of a few nanometers. To obtain these accuracies the requirements
regarding machine tool accuracy, process control and environmental conditions are
exceptional.

But even if all these requirements are met, unintended vibrations either induced
by the environment or by the process itself can result in insufficient part quality. Usu-
ally external vibrations can be kept low by appropriate foundations of the machine
tool. In contrast, process induced vibrations can occur because of misaligned tools
or workpieces, unsymmetrical workpieces, unsymmetrical workpiece mounting or
inhomogeneous workpiece materials. All these effects lead to non-homogeneous
mass distribution for the rotational axis of the system and therefore to vibrations
when under rotation. If existent these process induced vibrations can lead to an
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increased form deviation and an increased surface roughness depending on the ex-
citing frequency. Therefore, precision balancing is crucial for ultraprecision ma-
chining processes [7]. In this chapter only ultraprecision turning will be considered,
nevertheless basic balancing principles will apply for other processes using rotating
spindles as well. The balancing process in ultraprecision machining is done man-
ually and it generally takes more than one iteration step to get the best balancing
condition.

The goal of the project is to get a deeper understanding of the interaction be-
tween balancing and the surface generation process in ultraprecision machining.
Therefore, a process-machine model has been developed which allows to predict the
surface topography based on the balancing state considering the interaction between
the machine tool structure and the machining process. In a first step, we developed
an interaction model for the experimental platform, see Section 15.3. A structure
model was developed to determine the vibrations for given force and moment dis-
tributions induced by unbalances as well as forces from the cutting process. This
model can also be utilized to determine unbalance distributions or balancing weights
from vibration data measured by sensors during idle spindle speed. Additionally, an
analytical process model for describing the cutting forces during the cutting pro-
cess has been developed. The cutting forces were related to the surface structure of
the workpiece. Since the cutting forces influence the vibrations of the machine and
vice versa, both sub-models have to be merged into a mechanical-dynamical model.
The complete model will enable us to determine the effective cutting forces and
displacements related to the workpiece surface. This model also allows to compute
the surface quality and in the future a necessary balancing state to achieve a needed
surface quality.

15.2 Balancing in Ultraprecision Diamond Machining

Balancing procedures are commonly used wherever rotating parts or spindles (re-
ferred to as rotors) are not allowed to exceed a certain eccentricity. To specify a
balanced or unbalanced rigid rotor respectively, the balance quality grade G is used.
The balance quality grade represents the tolerable track speed (mm/s) of the center
of gravity: G = ezulω where ezul is the tolerable eccentricity and ω the angular ve-
locity. For example G6.3 stands for a tolerable track speed of 6.3 mm/s. Within the
DIN ISO 1940-1 quality grades from G6.3 down to G0.4 are considered for con-
ventional machining [1]. These values are summarized in a diagram (Fig. 15.1). The
diagram allows for instance to obtain a tolerable specific unbalance for a needed
G value and the operating speed n. Additionally, these G values are standardized
for characteristic machine tool constructions where the mass of the rotor is within
a defined range of the total mass [13]. To show the difference between balancing
in conventional machining and ultraprecision machining the diagram has been ex-
tended by the G value range which was set as a target for the project described in
this article. The named target range for ultraprecision machining is G0.04 or less
(depicted area, Fig. 15.1).
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Fig. 15.1 Balance quality
grades

15.2.1 Single-Plane Balancing

For ultraprecision machine tools rigid rotor behavior can be assumed for the main
spindle, which means the rotor will not or only insignificantly change its form or
unbalance state while running with operational speed or slower. In principle every
unbalance state for a rigid rotor can be compensated with two balancing planes
[13, 18]. In general these unbalances can be classified into three different types:
static unbalance, moment unbalance and dynamic unbalances.

A static unbalance occurs when a single unbalance is set to the radial plane of
a fully balanced rotor (Fig. 15.2). Hence, the center of gravity will be shifted away
from the shaft axis. When the spindle starts to rotate the unbalance will cause a cen-
trifugal force and therefore a vibration of the system. This kind of unbalance can
be compensated by either removing material from the spindle in the direction of the
unbalance or by adding a counterweight in the opposite direction of the unbalance.
The unbalance can be detected without continuous rotation of the spindle. The com-
pensation procedure is called single-plane-balancing (static balancing), because the
compensation is done in a single plane only [13]. Strictly speaking the above exam-
ple is only valid for a two dimensional system. But, although all real systems are
three dimensional, some may be treated as two dimensional [4].

A moment unbalance is caused by two identical unbalances, regarding their ab-
solute value, which are located opposite to each other in different radial planes
(Fig. 15.3). This unbalance cannot be detected without rotating the spindle. Under
rotation the two occurring unbalances will cause opposing centrifugal forces in dif-
ferent planes and therefore a moment to the spindle will occur [13]. The described

Fig. 15.2 Static unbalance
of a planar rotor [5]
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Fig. 15.3 Moment unbal-
ance [5]

effect will be referred to as moment unbalance. As well as a static unbalance, a mo-
ment unbalance is mainly theoretical or will be used to describe a rotor or spindle
where the main influence is given by the moment unbalance. The depicted two kinds
of unbalances are necessary to describe and understand unbalances which occur in
real spindle systems. These unbalances are called dynamic unbalance and can be
described as a combination between a static unbalance and a moment unbalance.
Fig. 15.4 shows an example of dynamic unbalance. The center of gravity for the
workpiece and the counter weight could not be aligned within the balancing plane.
Therefore, the overlapping workpiece lead to a moment unbalance for the rotating
spindle.

Fig. 15.4 Dynamic un-
balance with single-plane
balancing (static balancing)
[4]

15.2.2 Dual-Plane Balancing

The described process of single-plane balancing is only capable of compensating
static unbalances. Furthermore, for most balancing setups a moment will be induced
because of the axial distance between balancing plane and unbalance. The general
balancing condition for most workpieces is called dynamic unbalance. It can be
regarded as a combination between static unbalance and a moment unbalance.

This dynamic unbalance can be compensated with a second balancing plane
within which a compensatory moment can be applied, see Fig. 15.5. With two bal-
ancing planes it is possible to compensate for all unbalance situations that may
occur, as long as the spindle can be considered as rigid [13]. Nevertheless, a second
balancing plane is increasing the complexity of the system and therefore, the effort
to balance a system will be increased too.
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Fig. 15.5 Dual-plane-
balancing principle [4]

15.2.3 Ultraprecision Machine Tools

For most ultraprecision machine tools balancing is a manual, iterative and time con-
suming process with the goal to minimize the occurring vibrations. This process has
to be carried out whenever the workpiece is changed, because a small difference
in position can lead to a significant unbalance. Depending on workpiece size and
mounting situation (centric or eccentric), a rough balancing is done by applying a
counter weight. The fine balancing is done by applying set screws to the chuck.

15.2.4 Balancing Dependent Surface Generation

Because of the high requirements for the machined surfaces in ultraprecision ma-
chining it is necessary to understand to which extent the surface generation process
is influenced by the different process parameters. For this chapter the surface gen-
eration will be observed and investigated with regard to the balancing state of the
main spindle. As mentioned before balancing is one crucial factor for ultraprecision
machining but up to now it has not been investigated to which magnitude an occur-
ring unbalance influences the surface topography or the surface generation process
respectively.

To characterize the surface topography of the generated surfaces different mea-
surement devices are used. The form is measured by using an optical flatness tester,
where it is possible to assess the whole surface of the chosen samples. Roughness
measurements are taken by white light interferometry and by tactile profilometry (s.
Chap 1, Sect. 4 Workpiece analysis).

15.2.5 Process Forces with Regard to Unbalances

During machining an unbalance will lead to a deflected workpiece and therefore
change the depth of cut and consequently the process forces periodically. As the
process forces also act on the tool, the tool will be deflected as well. It can be
estimated, that the cutting force will deflect the tool opposite to the cutting direction,
but the tool will also be moved away from the surface and therefore reduce the
effective depth of cut. In consequence, the cutting force will be reduced and the tool
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will move back in cutting direction and towards the surface as well. Depending on
the occurring forces, the damping properties of the tool and the unbalance, the tool
will either start to vibrate itself or it will reach a state of equilibrium.

Due to the interaction between the workpiece and the tool the surface of the
workpiece will be distorted. For an unbalanced and therefore vibrating workpiece
the engaged tool will act as a damper and reduce the induced vibrations. Due to this
process machine interaction it is necessary to take the process forces into account
with regard to the unbalance state and the resulting surface topography . But, be-
cause of size effects process models applied in conventional machining cannot be
applied. Previous investigations showed that in diamond turning the forces increase
for higher cutting velocities [11] whereas in conventional machining the forces de-
crease at higher cutting velocities because of heating and softening of the workpiece
material [14].

To assess the process forces during ultraprecision machining measurements have
been carried out using a triaxial dynamometer for low forces. The dynamometer is
mounted beneath the tool holder, on top of the test stands z-axis.

15.3 Experimental Setup

Commercially available ultraprecision machine tools are designed for manual single-
plane balancing and therefore, it is not possible to compensate for dynamic un-
balances. But, if a second balancing plane would be applied to an ultraprecision
machine tool a rise in workpiece quality relating to surface roughness and form
accuracy can be assumed.

To investigate the influence of dual-plane balancing in ultraprecision diamond
machining a test stand has been designed and built. Balancing experiments have
been carried out to investigate the influence between surface topography and corre-
sponding balancing situation. As the main goal of the investigations is to identify
and characterize balancing dependent effects during ultraprecision machining the
experimental procedure has been kept as simple as possible to reduce the influ-
ence of other effects. For this reason face turning was chosen as machining pro-
cess and plane discs (Fig. 15.6) were machined. As a result only one axis has to
be moved during machining. For all experiments an aluminum alloy (AlMg3) was
used a workpiece material which is commonly used for ultraprecision machining
processes.

Fig. 15.6 Machined planar
sample
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Fig. 15.7 Balancing experiment platform (test stand), cross sectional view of the main spin-
dle (courtesy: Kugler) [5]

15.3.1 Test Stand

The test stand (Fig. 15.7, left) is based on an ultraprecision turning lathe, which
contains an automatic dual-plane balancing system. This system consists of two in-
dependent balancing actuators, so called balancers, both attached to the spindle. The
first balancer is located in front of the air bearing near the chuck, the second is lo-
cated behind the air bearing near the motor (Fig. 15.7, right). Attached to the spindle
housing are two vibration sensors located in same radial plane as the correspond-
ing balancers. Their signal is send to a control unit for analyzing and interpreting
the vibration data. The control unit calculates a balancing solution according to the
analyzed vibration data and sends a control impulse to each balancer. Because each
adjustment that is made to a balancer is simultaneously influencing both balancing
planes, the control unit is not able to calculate a single step solution, but has to ap-
proximate iteratively the best solution. This procedure demonstrates the complexity
of dual-plane balancing. For the functional principle of a single balancer and the
customizable machine tool properties, see [4, 5, 6].

15.4 Structure Process Interaction Model

In order to improve the balancing process with mathematical methods, a simulation
environment of the whole process has to be developed. The crucial point hereby
is the connection between unbalances and surface topography. Therefore, a model
which considers the interaction between machine structure and cutting process has
been built up. In the following subsections the separate parts of this model are pre-
sented, namely the machine model in 15.4.1, the process model in 15.4.2, the cou-
pling in 15.4.3 and the visualization of the surface topography in 15.4.4.
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15.4.1 The Structure Model

The experimental platform from Fig. 15.7 has a complex structure which is difficult
to model in full detail. Thus, simplifying assumptions have been made that enable
us to handle the model mathematically but also make sure that the simplified model
is still a good approximation of the reality.

15.4.1.1 System Matrices

First, we have divided the platform into components which are illustrated in Fig.
15.8, namely the rotating part of the spindle, the spindle casing, the rotating part
of the motor, and the motor casing. The spindle rotor and casing are connected by
an air bearing with two spherical calottes. We have modelled this bearing by two
spring-damper elements although in a first attempt any damping in the springs was
neglected. The motor bearings are also modelled as spring-damper elements. Spin-
dle and motor are connected by a coupling that can compensate misalignments in
axial and radial directions as well as torsion. It is also modelled as a spring element.
Spindle and motor are supported by a granite base that is assumed to be rigid. The
joints to the granite base are modelled as firm spring elements. Additionally, Figure
15.8 shows the coordinate system. In operation, the spindle rotates counterclockwise
around the z-axis.

Secondly, we have developed a vibration model for each part of the machine sep-
arately. If we would consider only unbalances as possible reasons for vibrations it
would be sufficient to allow vibrations in radial directions x and y only. Since unbal-
ances cause harmonic vibrations and we assume isotropic bearings, the vibrations
in x and y direction are the same except for a phase shift of π/2. Nevertheless, the
forces from the cutting process act in all three directions. Thus each point along the
z-axis, i.e. each beam element of infinitesimal length ∂ z, has the following degrees
of freedom (DOF): the displacement u,v,w in x,y,z direction, the torsion angle βz,
and the rotational angles βx,βy. We collect the DOF in a vector u = u(z, t). The
computation of u is based on an energy formulation, the so called Principle of Vir-
tual Displacements, see [8], Chapter 5. This principle is equivalent to equilibrium
conditions from which a partial differential equation for u(x, t) can be derived. Start-
ing from the energy formulation, we use the Finite Element Method (FEM) for the
discretization in the space variable x. We arrive at a system of ordinary differential
equations (ODE) in time of the form

Mü(t)+Su(t) = p(t), (15.1)

where M denotes the mass matrix, and S the stiffness matrix. In case of damping in
the system a third term Du̇(t) on the left hand side with a sparse damping matrix
D would be added. For the discretization, the considered parts of the platform are
divided into elements with nodes at each end. The movement of each point between
the nodes is described by ansatz functions scaled with the movement of the nodes.
Considering the boundary and transition conditions between the end node of one
element and the first node of the next element we will get system matrices M and
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S for each part of the platform. This procedure is well known and we have mainly
followed [8] in order to derive the matrices. We have used the following partition:

1. Spindle rotor with the coupling: 36 elements.
2. Spindle casing: 30 elements.
3. Rotor part of the motor: 3 elements.
4. Motor casing: 2 elements.

Fig. 15.8 Modeled parts of
the test stand

As introduced above, each node has 6 degrees of freedom (DOF).
The DOF of each of the parts specified above are collected in vectors
usp−rot ,usp−cas,um−rot ,um−cas. A discretization in Ni elements in our model
leads to Ni + 1 nodes and thus 6 · (Ni + 1) DOF in the model of the ith
part. The vectors of DOF are subject to equation (15.1) with mass matrices
Msp−rot ,Msp−cas,Mm−rot ,Mm−cas and stiffness matrices Ssp−rot , Ssp−cas, Sm−rot ,
Sm−cas. If we collect all DOF in one vector

u = (uT
sp−rot ,u

T
sp−cas,u

T
m−rot ,u

T
m−cas)

T , (15.2)

we get a block diagonal structure for the entire mass and stiffness matrix of the
dimension 450× 450.

Additionally, we have to consider the bearing elements that connect the DOF
of the corresponding nodes in the connected parts via a stiffness parameter C and
damping parameters D. This results in additional diagonal and in off-diagonal ele-
ments of the entire stiffness matrix which are collected in sparse matrices Cair for
the air bearing, Cm for the motor, and Cc for the coupling of motor and spindle:

S =

⎛
⎜⎜⎝

Ssp−rot 0 0 0
0 Ssp−cas 0 0
0 0 Sm−rot 0
0 0 0 Sm−cas

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

Cair −Cair 0 0
−Cair Cair +Cc −Cc 0

0 −Cc Cc +Cm −Cm

0 0 −Cm Cm

⎞
⎟⎟⎠ .

(15.3)
The damping matrix D will have the same structure as the additional sparse ma-
trices in the stiffness matrix. Stiffness values for the coupling between motor and
spindle were provided by the manufacturer. For the air bearing between spindle
and spindle casing we had to rely on an inspection record that stated measurement
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Fig. 15.9 Comparison of
model and measurement
data for given unbalance.
The two sensors are fixed
in y-direction on the casing
above the two balancers [2]

values for the axial and radial stiffness of the bearing in the steady state. We mention
again, that we have neglected the damping in a first attempt mainly because of the
lack of information. The identification of damping coefficients will be part of future
investigations.

15.4.1.2 Model Adjustment

Although we have carefully modelled the elements with respect to their geometry
and physical properties, we still made simplifications. Therefore, the model may
not fit reality immediately. The most uncertain values are the stiffness parameters
for the bearings, in particular those from the air bearing. A modal analysis of the ex-
perimental platform was carried out in order to adjust the model eigenfrequencies to
the eigenfrequencies of the platform but the analysis turned out to be faulty. So far,
the only reliable information we have of the real platform are the vibrational data
for certain defined unbalance settings in a frequency range of 5 · · ·50 Hz. For a good
model, the measured data has to fit the computed data reasonably well. With the
pre-chosen model parameters we were not able to achieve this data fit immediately.
Hence, we have changed the stiffnesses for all bearings and monitored its effect on
the vibrational response. It turned out that the stiffness of the air bearing changed the
vibrational behavior most notably, i.e. a reduction of its stiffness produced a desired
eigenfrequency at 15 Hz. The influence of other bearings on the lower eigenfre-
quencies was insignificant. A comparison of the data produced by the model with
the measurements can be seen in Fig. 15.9. Although this first attempt to optimize
the model according to the sparse information was successful, it is still questionable
if the model reflects the machine correctly in all necessary aspects. It is planned to
carry out further modal analyses in the near future. With these data available, a more
reliable model can be generated. Meanwhile, we have used this model for further
computations and tests, in particular the combination with the force model.
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15.4.1.3 Solution of the Vibration Equation in the Presence of Unbalances

If only unbalances in our machine tool are considered, the right hand side p =
punb(t) of equation (15.1) has harmonic entries depending on the angular velocity ω .
In practice, the revolution speed n in rpm is given, therefore we have ω = 2π

60 n. An
unbalance is modelled as a mass Δm displaced from the shaft by a vector r = rei·φ
where φ is the angle to a given zero position. If the displaced mass rotates with an
angular velocity ω it induces a centrifugal force of an absolute value F :

F = ω2b, with b := Δmr.

The projection of this force onto the x- and y- axis yields

Fx = ω2bsin(ωt +φ) = ℑ(ω2beiφ eiωt),

Fy = ω2bcos(ωt +φ) = ℜ(ω2beiφ eiωt),

where ℑ and ℜ denote the imaginary and real part of a complex number. Those
forces only apply to the displacement DOF in x-direction, and y-direction. All the
other DOF are not affected. Therefore, the sub-vector pk of p containing the entries
for the DOF of the k-th node, k =, · · · ,N, has the form

pk =

⎛
⎜⎜⎜⎜⎜⎜⎝

ℑ(ω2bkeiφk eiωt)
ℜ(ω2bkeiφk eiωt)

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

We split punb(t) = (pk)k into part with sin and cos entries only in order to apply the
right hand side ansatz for each of the parts to solve (15.1):

punb = ℑ(q1eiωt)+ℜ(q2eiωt), with q1,2 = (q1,2
k )k (15.4)

q1
k =

(
ℑ(ω2bkeiφk eiωt ),0,0,0,0,0

)�

q2
k =

(
0,ℜ(ω2bkeiφk eiωt),0,0,0,0

)�
.

Inserting the equation u j
unb(t) = u jeiωt , j = 1,2 and its second derivative in (15.1)

yields

uunb = u1
unb(t)+u2

unb(t),

= ℑ((−ω2M+S)−1q1eiωt)+ℜ((−ω2M+S)−1q2eiωt). (15.5)

The solution of (15.1) is the sum of the particular solution uunb and the general
solution of the homogeneous equation with right hand side zero. After a certain
time of rotation with a constant angular velocity and no other forces than those from
unbalances the homogeneous solution will die out due to small damping effects.
Hence, in this case we have the solution uunb.
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15.4.2 The Process Model

The submodel for the machining process consists of two parts: a force model to
simulate the actual cutting force and a model for the actual process parameters as
well as the tool tip position on the workpiece surface. Actual parameter means that
the parameter is time dependent in contrast to the given constant input parameters at
the test stand. Figure 15.10 shows a schematic diagram of the considered diamond
face turning process. In face turning the tool is moving along the x-axis with a feed
velocity v f and cuts the workpiece with a depth of cut ap at its front face. The acting
force can be split in three components, the cutting force Fc in negative y-direction,
the thrust force Ft in z-direction and the feed force Ff in negative x-direction. In
the considered process, the cutting velocity vc(t) = 2πn(r−d(t)) is decreasing with
time since the rotational speed n is constant but the travelled distance d is increasing.
Therefore, we need a force model that includes the cutting velocity vc in addition to
the depth of cut ap and the feed rate f defined as the distance the diamond tool is
travelling during one revolution.

Fig. 15.10 Scheme of the
considered face turning
process

15.4.2.1 The Force Model

As there are a lot of standard force models for conventional cutting processes, the
development of force models for micro cutting is an actual research topic, because
several so called size effects occur like cutting edge effect, minimum chip thickness
and ploughing effects. See [15] for an overview about size effects in cutting opera-
tions. New force models have been developed, like the recently proposed slip-line
force model for micro turning with edge tool [9] including strain and temperature
effects. The critical chip thickness and micro ploughing effects are also examinated,
see for example [12].

In ultra-precision turning the situation is exceptional. The cutting parameters like
depth of cut and feed rate are in the range of some micrometers, which is possible
due to the use of diamond tools with much sharper cutting edges than conventional
(carbide) tools and the application of ultraprecise machine tools. Therefore, some
of the mentioned size effects do play only a subordinate role in diamond cutting
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and the mentioned conventional models are not applicable to ultra-precision turning
experiments. Nevertheless, the forces in the experiments show a typical behavior
for micro machining and the used workpiece material (aluminium alloy AlMg3),
i.e. the thrust force is the dominant force component and the forces are in the range
of one Newton or less.

Another class of force models for micro turning are modified Kienzle models,
see [14]. In [10] an ansatz is presented to calculate an undeformed chip thickness h
which permits to consider tools with different tool nose geometries. Another modi-
fied Kienzle ansatz is proposed in [17] where the specific cutting force kc is repre-
sented as a product of functions including cutting velocity vc, friction μ , uncut chip
thickness h and cutting edge radius rβ , i.e.

kc = f1(h) f2(vc) f3(rβ ) f4(μ), (15.6)

with functions f1(h) = ch−m and f2 = α1vβ1
c +α2v−β2

c . We picked up this idea and
the form of the functions f1 and f2 to model the specific cutting force as product
of functions gi depending on the depth of cut ap, the feed rate f and the cutting
velocity vc , i.e. to model the specific force in the form

kc = g1(ap)g2( f )g3(vc) . (15.7)

Similar equations hold for the specific thrust and feed forces kp and k f . The func-
tions gi (i = 1,2,3) and the model constants therein are determined with help of
force measurements with different cutting conditions, see Table 15.1 for details.

Table 15.1 Experimental conditions for diamond turning experiments

Parameter value range
rotional spindle speed n = 800 . . .1500 rev/min
feed rate f = 4 . . .12 mm/min
depth of cut ap = 2 . . .14 μm
tool nose radius rε = 760 μm
workpiece material AlMg3

The measurements of the specific forces over the depth of cut and feed rate are
illustrated in Fig. 15.11 forces together with the fitted curves g1 and g2 (solid line)
which had been determined to be of the form

gi
1(ap) = ci

aa−mi
a

p (i = t, f ,c) (15.8)

and
gi

2( f ) = ci
f f−mi

f (i = t, f ,c) . (15.9)

The function g3 has been determined to be of form of the function f2, i.e.

gi
3(vc) = α i

1v
β i

1
c +α i

2v
−β i

2
c (i = t, f ,c) . (15.10)
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Fig. 15.11 Measured specific forces over depth of cut (left hand side) and feed (right hand
side). The measured thrust force is represented by circles and the measured cutting force by
x-marks. The fitted curves g1 and g2 given by equation (15.8) and (15.9) are plotted as solid
line [3]

Fig. 15.12 Measured spe-
cific forces over cutting
velocity. The measured
thrust force is represented
by circles and the measured
cutting force by x-marks.
The fitted curve g3 given by
equation (15.10) is plotted
as solid line [3]

The function g3 and the measurements of the specific forces over cutting velocity are
shown in Fig. 15.12. Using the specific cutting forces we are now able to calculate
the specific cutting force components via the usual relationship for the forces by
Kienzle (see [14]):

Fc = kcAc, Ft = ktAc, Ff = k f Ac , (15.11)

where Ac denotes the cross sectional area of cut which can be approximated by
Ac = ap f .

15.4.2.2 Simulation of the Tool Path

The second part of the process model consists of the simulation of the actual process
parameter and the tool path. Basically, the description of the tool tip position on the
surface is given by the movement of the tool, the deflections δi (i = x,y,z) of the tool
as well as the deflections Δi (i = x,y,z) and tilting βi (i = x,y,z) of the workpiece,
i.e.
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x(t) = −r+ v f t −δx(t)−Δx(t) , (15.12)

y(t) = −δy(t)−Δy(t) , (15.13)

z(t) = −ap +
1

2lh

(
δ 2

x + δ 2
y

)
+δz(t)−Δz(t)− x(t) tan(βy(t)) , (15.14)

where lh denotes the length of the tool holder. The angle βy denotes the rotation of
the workpiece around the y-axis. This tilt of the workpiece can influence the actual
depth of the cut ap which is described in equation (15.14). Since the deflections
affect the actual tool tip position and we now define time dependent process param-
eters, namely the actual depth of cut

ap(t) =−z(t) (15.15)

and
vx(t) = ḋ(t) , with d(t) = x(t)+ r . (15.16)

The actual feed rate f is given by f (t) = n−1vx(t). In contrast to the given constant
input parameters of the test stand, the time dependant parameters are called “actual
parameters”.

These actual process parameters are plugged into the equation (15.11) for the
force components using the equations for the specific forces (15.7). Using the actual
forces, we are now able to determine the deflections of the tool holder which are
proportional to the forces

δx(t) =
Ff (t)
kex

, δy(t) =
Fc(t)
key

, δz(t) =
Ft(t)
kez

. (15.17)

Here kei denotes the corresponding stiffness in the direction i (i = x,y,z). Since
all force components have the same structure we get for all three spatial directions
( j = x,y,z) the deflection

δ j(t) = k−1
ei

(
ci

a ap(t)
−mi

a

)(
c̃i

f f (t)−mi
f

)(
α i

1vc(t)
β i

1 +α i
2vc(t)

−β i
2

)
ap(t) f (t)

(15.18)
with (i = f ,c, t) for ( j = x,y,z). Derivatives of the equations for the position
(15.12)-(15.14) and deflections (15.18) combined with equation (15.11),(15.15) and
(15.16) for the actual parameters deliver a system of ordinary differential equations
of the form

δ̇x(t) = v f − vx(t)− Δ̇x(t) , (15.19)

δ̇y(t) =
1

nkey

(
k̇c(t)ap(t)vx(t)+ kc(t) [ȧp(t)vx(t)+ ap(t)v̇x(t)]

)
, (15.20)

δ̇z(t) =
1

nkez

(
k̇t(t)ap(t)vx(t)+ kt(t) [ȧp(t)vx(t)+ ap(t)v̇x(t)]

)
, (15.21)

v̇x(t) =
δ̇x(t)− n−1k−1

ex vx(t)
(
k̇ f (t)ap(t)− k f (t) ȧp(t)

)

n−1k−1
ex k f (t)ap(t)

, (15.22)
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ȧp(t) = − 1
lh

(
δx(t)δ̇x(t)+ δy(t)δ̇y(t)

)
− δ̇z(t)+ Δ̇x(t) ,

+(r− d(t))
β̇y(t)

cos2 (βy(t))
− vx(t) tan(βy(t)) , (15.23)

ḋ(t) = vx(t) , (15.24)

k̇ f (t) = −c f
a c̃ f

f

[
ap(t)

−mf
a vx(t)

−mf
f

(
α f

1 β f
1 vc(t)

β f
1 −1 −α f

2 β f
2 vc(t)

−β f
2 −1
)

+

(
m f

a ap(t)
−mf

a−1ȧp(t)vx(t)
−mf

f +m f
f vx(t)

−mf
f −1v̇x(t)ap(t)

−mf
a

)

(
α f

1 vc(t)
β f

1 +α f
2 vc(t)

−β f
2

)]
(15.25)

k̇c(t) = −cc
ac̃c

f

[
ap(t)

−mc
a vx(t)

−mc
f

(
αc

1β c
1 vc(t)

β c
1−1 −αc

2β c
2 vc(t)

−β c
2−1
)

+
(

mc
aap(t)

−mc
a−1ȧp(t)vx(t)

−mc
f +mc

f vx(t)
−mc

f −1v̇x(t)ap(t)
−mc

a

)
(

αc
1vc(t)

β c
1 +αc

2vc(t)
−β c

2
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, (15.26)

k̇t(t) = −ct
ac̃t

f

[
ap(t)

−mt
a vx(t)

−mt
f

(
αt

1β t
1vc(t)

β t
1−1 −αt

2β t
2vc(t)

−β t
2−1
)

(
mt

aap(t)
−mt

a−1ȧp(t)vx(t)
−mt

f +mt
f vx(t)

−mt
f −1v̇x(t)ap(t)

−mt
a

)
(

αt
1vc(t)

β t
1 +αt

2vc(t)
−β t

2

)]
. (15.27)

Hereby, we defined c̃i
f = ci

f nmi
f , because of the relation vx(t) = n f (t) and equation

(15.9). The cutting velocity is calculated by vc(t)= 2πn(r− d(t)) and the vibrations
Δi, i ∈ {x,y,z}, as well as the tilt angle βy of the workpiece and their derivatives are
determined by the structural submodel. The system of differential equations will
be solved numerically with the MATLAB solver ”ode15i”. The stiffness values kei

(i = x,y,z) are determined by the geometrical dimensions of the tool holder and its
elasticity module (material: steel, E = 210 kN/mm2). The resulting actual forces Fi

are calculated by the deflections δ using equation (15.17). The numerical results are
presented in Sect. 15.4.5.

15.4.3 Coupling of the Submodels

In the last two sections both submodels have been presented, the structure model and
the process model. Solving the ODE (15.1) lead to the vibrations u of all elements
of the discretization. The first six entries are related to the workpiece and are input
parameters for the system of differential equations (15.19)-(15.27), i.e.

(Δx,Δy,Δz) = (u1,u2,u3) and βy = u5 . (15.28)

The process model computes the actual forces and deflections of the tool which act
at the tool tip position on the workpiece. Therefore, these forces add up to the forces
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of the unbalances in the right hand side of equation (15.1). The resulting additional
load vector has the form

pcut(t,u(t)) = (Ff ,Fc,Ft ,0,Mc,Mt ,0, · · · ,0)T , with M{t,c} = F{t,c} × ra,

where ra(t) = r− d(t) denotes the radius of the workpiece minus the already trav-
elled distance of the tool on the workpiece, cf. Fig. 15.10. Thus, a coupled system
of ODEs

Mü(t)+Su(t) = punb +pcut (t,F(t,w),Mt(t,w),Mc(t,w)) ,

ẇ(t) = g(t,w(t),ẇ(t),u(t)) ,

has to be solved, where the function g is given by the system of differential equa-
tions (15.19)-(15.27) and the corresponding variables are collected in the vector
w = (δx,δy,δz,vy,ap,d,kt ,k f ,kc). In order to solve the non-linear coupled system
approximately, we have employed a time step algorithm and assumed the forces and
moments from the cutting process to be constant during a small time interval, i.e.
pcut(t) = pcut (ti) for t ∈ [ti, ti +Δ t]. Now,

u(t) = A(punb +pcut(ti)), t ∈ [ti, ti +Δ t] ,

where A describes the solution operator of (15.1). The resulting deflections
(Δx,Δy,Δz) from (15.28) are plugged into the force model and we compute

(Ff (ti+1),Fc(ti+1),Ft(ti+1)) = B(u(ti +Δ t)) = B(δx,δy,δz)

at ti+1 = ti +Δ t. Here B denotes the solution operator for solving (15.19)-(15.27)
and use (15.17) afterwards. Again, we assume the cutting forces to be constant over
the next time interval [ti+1, ti+1 +Δ t]. This routine is repeated until the end of the
desired time interval t ∈ [t0, tend ] is reached, for which the coupled system should be
solved.

15.4.4 Surface Visualization

The visualization of a three-dimensional representation of a surface is an intuitive
but powerful and flexible technique in surface characterization and comparison. Sur-
faces produced in face turning can be represented as a continuous function S(x,y)
describing the surface height over the (x,y)-plane. For visualization and other digi-
tal processing, (x,y) is an element of a discrete support set consisting of regular or
irregular arranged points. For objective characterization, three dimensional surface
parameters can be derived from the surface function S, see [16] for more details.

We make investigations to study the surface at two scales. We are interested in the
form deviation of the global workpiece but also in the roughness structure. During
the development it turns out to be more efficient to decompose large surfaces into
two scales and to simulate both scales separately. This is done not only for the
save of computation time but also for avoiding alias effects which may occur when
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Fig. 15.13 Radial sur-
face sections under ideal
conditions and for a simula-
tion, both with ap = 1mm,
f = 0.5mm, rε = 0.76mm

large surfaces at fine discretization are sampled down. Consequently, we calculate
S on a small rectangular sub domain at fine discretization to visualize the roughness
profile and to determine the local surface parameters. Therefore, a kinematic surface
simulation is developed in the following subsections. The global form is provided
by S, evaluated on selected tool tip positions.

15.4.4.1 Simulation of Surface Generation

The ideal kinematic surface resulting from face turning can be described by a set of
radial sections. Each radial section Sk is built by repetitions of the edge geometry in
intervals of feed per revolution. If a round nosed tool of radius rε is used, we can
formulate each radial section by

Sk(x) = rε −
√

r2
ε −
(

x+(k− 1/2) f −
⌊

x+ k f
f

⌋
f

)2

− ap, x ∈ [0,r],k ∈ [0,1),

where k2π denotes the section’s angle. An ideal radial section S0 is shown in Fig.
15.13. The surface profile will change in two ways with respect to vibrations of the
workpiece and deflections of the tool. Firstly, the repetitions will not be necessarily
equidistant and the turning grooves will differ in their depth. Secondly, the geome-
try of each channel will change because tool and workpiece will not be positioned
orthogonal to each other. Figure 15.13 shows also a simulation result for a disturbed
process.

In the following, a discrete surface generation model, which is coupled with the
process model, is presented to provide the surface function S depending on vibra-
tions of the workpiece and tool deflection. The central component of the model is
the parameter to state operator

Φ : P →�
4×4, (15.29)
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Fig. 15.14 Coordinate sys-
tem for dynamic surface
simulation; rotational mo-
tion of workpiece and tool

which maps kinematic information, provided by the structure model, to homoge-
neous matrices used to formulate the tool trajectories.

15.4.4.2 Calculation of the Tool Trajectories

Basically, the interacting objects, workpiece and tool, are assumed to be solid such
that they are configured in the coordinate system for any time point t by a rotation
and a translation. Thus, the tool and workpiece trajectories are given by affine linear
mappings ΦT and ΦW . In computer graphics homogeneous matrices are used to
perform such transformations. Therefore, we introduce a homogeneous coordinate
system, which is built from cartesian coordinates by

(x,y,z) �→ (x,y,z,1). (15.30)

The characteristic motions in turning processes are the rotation of the workpiece
around the z-axis, which is expressed by

ΦW = RZ(φ) =

⎛
⎜⎜⎝

cos(φ) −sin(φ) 0 0
sin(φ) cos(φ) 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

and the translation of the tool along the x-axis, which is expressed by

ΦT = T ((r− f Nt,0, lh − ap)) =

⎛
⎜⎜⎝

1 0 0 r− f Nt
0 1 0 0
0 0 1 lh − ap

0 0 0 1

⎞
⎟⎟⎠ .

These two operators describe the movement of the tool and of the workpiece under
ideal conditions. The positioning and alignment errors are included into the model
by applying further translations and rotations. Figure 15.14 shows the tilt angles βx
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and βy of the workpiece. The moment acting around the x-axis has only a marginal
effect to surface generation, and therefore it is neglected in our model. The rotation
rate is assumed to be constant. This leads to the operator for the movement of the
workpiece:

ΦW = T (Δ)RY (βy)RZ(φ). (15.31)

The tool inclination is changed appropriate to the deflection provided by the force
model by applying multiple rotations, which leads to

ΦT = T ((r− f Nt,0, lh − ap))R(δx,δy).

So far, the movement of the tool is described by ΦT and that one of the workpiece
by ΦW . For the material removal algorithm the relative position of the tool to the
workpiece is compulsory. ΦW and ΦT give absolute positions, but we can carry over
the workpiece operation to the tool using

Φ := Φ−1
W ΦT . (15.32)

The diamond tool, or more precisely its edge geometry, can be parameterized as

ε(ϕ) = (rε cosϕ ,0,−rε sinϕ − l+ rε ,1)T , ϕ ∈ [0,π ], (15.33)

with tool radius rε and length lh. Thus, the relative tool trajectories are given by
Φε(ϕ) for ϕ ∈ [0,π ]. In case of ideal conditions, i.e. no vibration, no displacement
and no deflection, (15.32) can be written as

Φ =

⎛
⎜⎜⎝

cos(−φ) −sin(−φ) 0 (r− f Nt)cos(−φ)
sin(−φ) cos(−φ) 0 (r− f Nt)sin(−φ)

0 0 1 lh − ap

0 0 0 1

⎞
⎟⎟⎠ . (15.34)

In Fig. 15.15 the ideal and disturbed tool tip locus is visualized. For the ideal case the
trajectories of the tool tip are given by applying the tool tip ε(π/2) = (0,0,−l,1)T to
(15.34), leading to (x,y,z,1)T = ((r − f Nt)cos(−φ),(r − f Nt)sin(−φ),−ap,1)T ,
i.e. a spiral with decreasing radius appropriate to the feed rate located parallel to the
workpiece surface at height −ap.

15.4.4.3 Material Removal Process

The material removal takes place under ideal conditions, i.e. a homogeneous,
isotropic material and an ideal sharp tool in the sense of a cutting edge rβ = 0
are assumed. Consequently, the material passed by the cutting edge will be removed
completely, in particular no ploughing or elastic recovery is considered. Therefore,
the swept volume of the moving edge

Φε(ϕi), 0 = ϕ0 < · · ·< ϕn = π

is used to update the surface function S for points, which are passed by the cutting
edge.
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Fig. 15.15 Relative tool tip locus for ideal conditions (left) and for an oscillating surface
(right); ap = 1mm, f =0.5mm

15.4.5 Numerical Simulation Results

Following Sections 15.4.4.2 and 15.4.4.3, a surface generation model for micro turn-
ing processes has been implemented. The model is able to simulate the global form
and roughness structure of the machined surface depending on the balancing state of
the machine. As mentioned in 15.4.2, the differential equations system for the pro-
cess model is solved numerically. The ODE (15.1) of the structure model is solved
numerically, too. A detailed description how to reformulate and solve the problem is
proposed in [2]. All algorithms are implemented in the mathematical programming
environment MATLAB. First, we tested the algorithm with different time steps Δ t.
The experiments showed that for higher frequencies the time resolution has be cho-
sen smaller. In particular, for the rotational speeds in our simulation we have to use
time steps equal or less than 1 ms.

We then tested the algorithm for several parameter settings. As expected, the
presence of unbalances mainly affects the deflection or vibration amplitudes in ra-
dial direction x and y. Nevertheless, the deflection in z direction is affected, too.
We can also observe quantitative effects for unbalance distributions of different
magnitude. Here, we will only present one example with the parameters defined
in Table 15.2, setting 1. We have used two different sets of unbalance distributions
f1 = ([22.4 gmm,63◦], [4.5 gmm,243◦], [4.7 gmm,2◦]) and f2 = ([22.4 gmm,63◦],
[0.45 gmm,243◦], [0.47 gmm,2◦]). The first position corresponds to the workpiece,
the second and the third to the balancer planes.

Figure 15.16 shows the development of the deflection of the workpiece in di-
rection of the spindle over time for both unbalance settings. The vibration in radial
direction as well as the development of the depth of cut are shown in Fig. 15.17.
Fig. 15.18 presents the thrust force Ft and the cutting force Fc. The higher unbal-
ance distribution f1 causes vibrations with bigger amplitudes.
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Table 15.2 Parameter setting for the simulations

Parameter setting 1 setting 2 setting 3
rotational spindle speed n = 25Hz n = 25Hz n = 20Hz
feed rate f = 5.33 μm/rev f = 500 μm/rev f = 8.33 μm/rev
depth of cut ap = 5 μm ap = 5 μm ap = 5
tool nose radius rε = 760 μm rε = 760 μm rε = 760 μm
workpiece radius r = 30 mm r = 5 mm r = 30 mm
tool holder length lh = 25 mm lh = 25 mm lh = 25 mm
time step Δ t = 1 ms Δ t = 0.1 ms Δ t = 1 ms

Fig. 15.16 Deflection of the workpiece in z-direction for f1 and f2; entire time interval (left),
and detail (right)

Fig. 15.17 Deflection of the workpiece in y-direction for f1 and f2 and depth of cut

The output of the process machine interaction model can also used to visualize
the machined surface. In a first step, surface simulations for simple oscillations of
type

βy(t) = ∑
i

ki sin(piωt), ω = n2π , (15.35)
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Fig. 15.18 Simulated thrust and cutting force

are carried out in order to verify the basic function of the surface model. It is clear
that frequencies pin in the signal βy can be recovered in the surface structure because
the workpiece is rotating with angular speed ω . In Fig. 15.19 two example surfaces
for different oscillations are shown.

Fig. 15.19 Simulated surfaces for oscillations of type (15.35)

In a second step, the robustness of surface generation is evaluated with the help
of the implemented surface model. This is an important step, because all input os-
cillations are result of numerical solved differential equations. Figure 15.20 shows
exemplarily a simulated surface for an oscillation βy of (50+ε)Hz, where ε denotes
a small disturbance. When no disturbance exists (ε = 0) and a rotation frequency of
50Hz is assumed, the resulting surface is an inclined plane. With increasing degree
of disturbance the form error grows rapidly, which is demonstrated in Figure 15.20
for ε = 10−4,10−3,10−2. For ε = 10−4 a first distortion appears, which is growing
intensively for increasing disturbance. Finally, for ε = 10−2 the oscillation is heavily
asynchronous to the rotation leading to a completely wrong visual impression.

Model problems with reduced workpiece diameter and high feed speeds are con-
sidered for the benefit of short calculation time for all sub-models. The process
parameters of setting 2 in Table 15.2 are used in three model problems with dif-
ferent unbalance configurations, see Table 15.3. The related surfaces are plotted in
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(a) ε = 10−4 (b) ε = 10−3 (c) ε = 10−2

Fig. 15.20 Simulated surfaces for an oscillation of (50+ ε)Hz; n = 50Hz,r = 30mm

Fig. 15.21 (a)–(c). In case (a), where no unbalances are set, a wavy surface can be
detected. This corresponds to the power spectrum of βy, where three different fre-
quencies can be identified. In case (b) and (c), where unbalances for the workpiece
or balancer planes are set, only the rotation frequency can be identified in the power
spectrum. The result is an inclined surface.

Table 15.3 Unbalance configuration for the model problems of setting 2

no. unbalance workpiece unbalance balancer planes 1 and 2
(a) no no
(b) no ([4.5 gmm,243◦], [4.7 gmm,2◦])
(c) [22.4 gmm,63◦] ([4.5 gmm,243◦], [4.7 gmm,2◦])

(a) No Unbalances (b) Plane 1&2 set (c) Unbalance at workpiece
and plane 1&2 set

Fig. 15.21 Simulated surfaces for model problems

In a last step, surfaces under practical relevant conditions concerning workpiece
dimension and process parameters are computed. For a workpiece diameter of 60
mm and a feed rate of 5.33μm more than 5.600 overlapping channels generate the
resulting surface. To realize simulation results with reasonable expense, a two scale
model is compulsory. In analogy to the experiments, a set of simulations for different
rotation rates (n = 1200, . . . ,1800 [min−1]) and feed rates ( f = 5.33, . . . ,8.33 [μm])
with two different balancing states are carried out. In the unbalanced case, only the
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(a) Global form (b) Roughness profile

Fig. 15.22 Simulated surfaces for setting 3, Table 15.2, unbalanced (1.823g at the
workpiece)

(a) Global form (b) Roughness profile

Fig. 15.23 Simulated surfaces for setting 3, Table 15.2, best possible balancing state

rotation frequency can be identified in the oscillations βx,βy,βz. The displacements
and deflections are relatively small compared to the dominant oscillation βy and
the resulting surface is an inclined plane. The global form and a small rectangular
domain of 150μm× 50μm are plotted in Figure 15.22. In the case of best possible
balancing state, βy indicates one frequency, which is close to the rotation frequency,
e.g. 48.96Hz for n = 50Hz. It can be assumed that this deviation is of numerical
nature. The simulated surface is highly defective, see Figure 15.23, and corresponds
to the scenario shown in Figure 15.20 (c).

15.5 Solving the Inverse Problem for Balancing

So far, we presented a process-machine interaction model which can compute the
surface topography of the workpiece with a given unbalance distribution and input
process parameters. Mathematically spoken, we have derived an operator A which
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maps the vector p containing the unbalances distribution and the process parameters
to a surface S, i.e. we have the following operator equation

A(p) = S . (15.36)

This equation is called forward formulation of our model. Assuming now that for a
given surface S, we are interested do determine the necessary balancing state in or-
der to obtain the surface S, i.e. to solve equation (15.36) with respect to p. However,
measurement devices typically have limited precision and we assume that unprecise
and noisy measurement data Sδ are available, which fulfill ||S− Sδ || ≤ δ , where
δ denotes the measurement precision. Usually this operator is not continuously in-
vertible, which means that for given noisy data Sδ with a data error of the function
pδ = A−1(Sδ ) might be an arbitrary bad approximation of the true unbalance dis-
tribution p. Problems with those properties are referred to as being ill-posed. In this
case, least square techniques, where pδ is computed as the minimizer of ‖Ap−Sδ‖2,
are unstable. The computation of pδ can be stabilized by using the regularization
methods presented in Chap. 3, i.e. by minimizing the so-called Tikhonov-functional

pδ
α = min

p
‖Ap− Sδ‖2 +αΨ(p) (15.37)

instead. The penalty term Ψ(p) acts as a stabilizer and prevents large values of
Ψ(p).Typical choices of Ψ are, e.g.

Ψ(p) = ‖p‖p :=

(
∑

i
|pi|p

)1/p

, 0 < p ≤ 2. (15.38)

In a first attempt we invert the structural submodel, i.e. given a vibration u we deter-
mine the unbalance distribution p causing the vibrations. This results are presented
in Chap. 3. Future work is dealing with the inversion of the full forward problem
(15.36).

15.6 Experimental Results

Face turning experiments were conducted to show to which extent an unbalance
affects the resulting surface topography. To further assist the investigation and un-
derstanding of the process-machine-interaction force measurements were carried
out during machining.

There are two main effects which result from an unbalance. First, the spindle on
which the unbalance is acting is deflected and performs a tumbling motion which
leads to a differing tool path. Second, the unbalance induces a vibration to the whole
machine tool structure where the magnitude of this vibration depends on the damp-
ing properties of the machine tool. These effects have different influences with re-
gard to the process, surface topography and process forces.
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15.6.1 Form Deviation

The initial experiments showed a trend to higher form deviations (peak to valley,
s. Fig. 15.24) for unbalanced workpieces or workpieces which were machined with
an additional unbalance. In this context unbalanced workpiece means a workpiece
without any balancing procedures prior to machining. An additional unbalance is a
weight added to the workpiece by the use of setscrews to amplify balance induced
effects.

Fig. 15.24 Form deviations for balanced (left) and unbalanced (right) workpiece [11]

The influence of an unbalance in terms of form deviation can be seen in Fig.
15.25 and Fig. 15.26. The diagrams show the form deviation versus the depth of cut
and feed. Additionally, the cross sectional area of cut Ac is given for each experi-
ment series. In correspondence to previous experiments workpieces with unbalance
show a larger form deviation in general. Larger cross sectional areas of cut show
similar form deviations for workpieces with and without unbalances compared to
smaller cross sectional areas of cut. It is assumed that the engagement of the tool
is damping the unbalance induced vibration and the tumbling motion of the work-
piece respectively and therefore leads to similar values of form deviation compared
to machined workpieces without unbalance.

15.6.2 Surface Roughness

The initial experiments could not show a clear dependency between unbalance and
surface roughness as large deviations within the roughness data prevented any clear
correlation [5]. Additionally, the roughness values are still within the limit of 10 nm
Ra (i.e. optic quality) in the majority of the cases for machining with unbalance.
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Fig. 15.25 Form deviation vs. depth of cut (with and without unbalance) [11]

Fig. 15.26 Form deviation vs. feed (with and without unbalance) [11]

From Fig. 15.27 and Fig. 15.28 it can be seen that the difference between ma-
chining with and without unbalance are only marginal. The roughness values are
slightly higher for machining with unbalance but for the observed cutting parame-
ters no strong influence can be observed.

Possibly the test stand is working at its limit in terms of accuracy as it has a lower
stiffness compared to current ultraprecision machine tools. Another possibility for
the low influence of unbalances is assumed in the process kinematic, as for turning
the surface normal and the direction of the force generated by the un-balance are
perpendicular to each other. For that reason the workpiece will not be deflected di-
rectly in direction of the tool which would cause a periodical change for the depth of
cut. Therefore, the current investigations will be extended by ultraprecision milling
experiments. For these experiments the normal of the generated surface and the di-
rection of the unbalance induced forces and with that the motion of the tool will be
the same.
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Fig. 15.27 Surface roughness vs. depth of cut (with and without unbalance) [11]

Fig. 15.28 Surface roughness vs. feed (with and without unbalance)

15.6.3 Force Measurements

For the used workpiece material (AlMg3) the measured forces showed a character-
istic order in terms of their magnitude. The influencing effect of the unbalance is
always largest for the thrust force, followed by the cutting force and the feed force
with the lowest values.

Figure 15.29 shows the components of the resulting forces versus the depth of
cut. The dashed line represents the experiments where an unbalance was applied,
the continuous line represents the experiments in balanced state.

As expected, the forces rise with an increase for the depth of cut. From these
experiments it can be seen that there is a significant difference between balanced
and unbalanced workpieces only for the thrust force, whereas the cutting force and
the feed force are almost equivalent for balanced and unbalanced states. As the
thrust force is depending on the friction of the chip on the rake face, it is estimated
that the thrust force will have a specific value for a balanced workpiece. In addi-
tion, if the workpiece is unbalanced, it will be deflected and perform a tumbling
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Fig. 15.29 Process forces Fi vs. depth of cut [11]

Fig. 15.30 Changed clear-
ance angle because of tum-
bling motion [11]

motion additionally to the rotation. The tumbling motion will tilt the workpiece pe-
riodically with respect to the tool. The tilting will not change the friction between
chip and rake face, but the angle between the workpiece surface and clearance face
will change periodically. For balanced machining this angle will be equivalent to
the clearance angle. For unbalanced machining if the workpiece is tilting towards
the clearance face, this angle will decrease and induce a larger frictional load on the
clearance face. With this additional frictional load the increased thrust force for un-
balanced workpieces can be explained. The cutting force would have been expected
to show a significant rise for unbalanced machining, because of the change in the
depth of cut. But at this stage this phenomenon cannot be explained.

A similar behavior for the force components can be recognized for an increasing
feed, again only the thrust force is influenced by the unbalance (see [11]).

15.7 Summary and Outlook

Up to now only single plane balancing has been used for ultraprecision machin-
ing processes although a secondary balancing plane seems promising with regard
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to an optimized surface quality. Utilizing a test stand with dual-plane-balancing
capabilities machining experiments have been conducted to show the dependence
between balancing quality and surface generation.

Additionally, a modelling approach of the interaction between machining process
and machine tool structure has been developed. Two submodels (structure model
and process model) are combined in a nonlinear way, and the resulting interaction
model is solved numerically by a time step algorithm. The solution is used as a
basis to determine the surface topography and the surface quality by using a surface
simulation program which is still under development. The setup of the mathematical
model is supported by the experimental data.

The mathematical model of the dependency between unbalances and surface to-
pography will enable us to predict the surface quality of a workpiece for a given
balancing state of the machine as well as to compute the balancing state which is
necessary at least for a given surface quality. Additionally, the necessary balancing
weights can be determined efficiently from vibrational measurements at the casing
of the machine. This will reduce time to setup the machine for the cutting process
with a desired accuracy.

The experimental investigations showed an influence of the balancing quality
with respect to the form deviation of the machined workpieces. The form deviation
rose for machining with an additional unbalance. But for the same parameters the
form deviation decreased if the cross sectional area of cut was increased, which was
accounted for with a higher damping of the engaged tool. Although it was assumed
for unbalanced machining to have an impact on surface roughness, machining with
an additional unbalance showed only marginal differences compared to balanced
machining. Due to its adjustment possibilities the test stand is not as stiff as stan-
dard ultraprecison machine tools, we assume that the lower stiffness is responsi-
ble for difficulties in showing a clear dependency between unbalance and surface
roughness.

Surprisingly only the thrust force was considerably affected by the unbalances.
Cutting force and feed force did not show any clear effects for unbalanced machin-
ing. This behavior has not been anticipated, least for the cutting force. The lack of
influence with respect to the cutting force cannot be explained at this stage.

As the project is still in progress it is planned to investigate circumferential
milling as an additional ultraprecision machining process. For this process the di-
rection of the unbalance induced centrifugal force and the direction of the surface
normal are the same. Therefore, any motion of the tool in radial direction will di-
rectly affect the surface generation. Consequently the influence of unbalances on the
surface topography will be larger than for turning.
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