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Chapter 10 
Synthesis of Stability Lobe Diagrams 

K. Großmann and M. Löser 

Abstract. Chatter vibrations during machining lead to poor workpiece surfaces and 
increased tool wear. In the worst case, the tools and even the main spindle can be 
damaged. Nowadays, the surface regeneration is considered to be the main effect 
causing chatter instabilities. Regenerative chatter is initiated by repetitive tooth en-
gagement where the currently engaged tooth cuts the surface produced by the pre-
ceding tooth. In a stability lobe diagram (SLD), the stable and unstable areas are 
separated by the graph of a critical cutting parameter plotted against the spindle 
speed. Stability lobe diagrams can be used to optimize machining processes in 
terms of maximizing material removal rate under stable cutting conditions. These 
SLDs are computed by time domain simulations. However, this consumes a lot of 
computational time. Thus, several time efficient algorithms in discrete time as well 
as frequency domain have been developed in the last decades. This chapter scruti-
nizes under what conditions different algorithms in frequency domain can be  
applied. The processes are separated regarding cutting conditions and dynamic be-
havior so that the most time efficient algorithm can be chosen for each class. 

10.1   Introduction 

To predict the stability boundaries of cutting processes the interactions within the 
closed-loop of the coupled sub-systems machine and process is examined, 
Fig. 10.1. Regenerative chatter is caused by the repetitive engagement of a tooth 
into the surface cut by the preceding tooth. In Fig. 10.1, this is represented by the 
time delay T. 
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Fig. 10.1 Closed loop of the process-machine interactions [1] 
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The figure shows an example where the process machine interactions in x-y-
plane are investigated and the z direction is neglected. The dynamic behavior of 
the machine is represented by the transfer function matrix G(jω), which contains 
the direct transfer functions and the cross transfer functions in x and y direction 
respectively. However, the process force is a function of chip thickness h. Thus, 
the deflections in x-y-plane have to be transformed into the direction of chip 
thickness h. This is conducted by means of so-called directional coefficients (ax, 
ay). With the dynamic chip thickness Δh the dynamic process forces ΔFp can be 
computed by applying an empirical cutting force model. Here, this is represented 
by the tangential coefficient kt and the radial coefficient kr. The process forces 
now have to be transformed into x-y-plane again to close the loop of the process 
machine interaction. 

One method to compute stability boundaries of this closed loop is to model and 
simulate the interactions in time domain. Modeling non-linearities in the time do-
main is much easier than in the frequency domain; at the same time, however, the 
computation time to calculate SLDs increases significantly. One reason for this is 
that a certain amount of “real time” has to be simulated to ensure the detection of 
unstable cutting using time signals.  

It is more time efficient to analyse the process machine interactions in fre-
quency domain. Analytical methods in frequency domain are the oldest algorithms 
to predict the stability boundaries and are based on the research works by Tlusty 
and Polacek as well as by Tobias and Fishwick [2, 3]. Algorithms in frequency 
domain apply stability criteria like the Nyquist criterion on the open loop transfer 
function of the process-machine interactions, [1, 4]. In milling operations, the di-
rectional coefficients shown in Fig. 10.1 are time-variant and vary periodically 
with the tooth-passing frequency. To apply the methods in frequency domain av-
erage directional coefficients are used. Since the average directional coefficients 
equal zeroth order Fourier coefficients this method is called zeroth order approxi-
mation (ZOA-method). 

Operations with highly intermittent cutting conditions, such as low immersion 
milling, show very strong time variance, which is assumed to affect the process 
stability. In these cases, the assumption of constant average directional coeffi-
cients may lead to incorrect predictions of stability boundaries. Various authors 
have presented computational time-efficient methods in discrete time domain to 
determine stability lobe diagrams for highly intermittent cutting operations. Bayly 
et al. have presented a time-finite element analysis [5], Insperger and Stepan have 
developed the semi-discretization method [6]. 

To take the time variant behavior of directional coefficients in frequency do-
main into account Budak and Altintas expanded their single frequency solution to 
the multi-frequency solution [7]. This was later on applied to low immersion mil-
ling by Merdol and Altintas [8]. 

Most of the studies that apply these advanced time efficient methods focus on 
the investigation of single influences (for example: single degree of freedom be-
havior, helix angle, low immersion milling). In this chapter, the complex influence 
of different effects is discussed for methods working in frequency domain. ZOA 
method and two slightly different methods based on the multi-frequency solution 
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are investigated. The applicability of these methods is scrutinized for a pattern of 
different cutting conditions and different characteristics of the dynamic machine 
behavior. The presented works were conducted within a project of the priority 
program SPP 1180. One goal of the project is to define classification numbers, 
which allow the selection of an appropriate algorithm before the computation of a 
stability lobe diagram. 

10.2   Computation of SLDs in Frequency Domain 

10.2.1   Directed Frequency Response Functions 

The open loop transfer function of the process machine interactions can be written 
as: 
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Here, Gg(iw) is the directed frequency response function. The Nyquist criterion 
can be applied to this transfer function: 
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Simply spoken, the Nyquist criterion checks if an input signal leaves the open loop 
without phase shift (imaginary part equals zero) and amplified (real part > 1). 
Since the output signal is equivalent to the input signal of the subsequent pass 
through of the loop the signal will be more and more amplified and the closed 
loop becomes unstable. 

In peripheral milling this criterion cannot be applied under any condition since 
the coordinates in the x-y-plane are coupled, Fig. 10.2. The simplest approach for 
the solution of this problem is by handling the interaction not in the machine coor-
dinates x and y but by investigating the transfer function at the direction of the 
chip thickness h. Therefore, the deflections are transformed into the direction of 
chip thickness and the chip thickness-dependent process forces are transformed 
back into the direction of the machine coordinates. The transformation is carried 
out by so-called directional coefficients [1]. 

Regarding regenerative chatter the static process forces and therefore the static 
chip thickness can be neglected, [4]. The static chip thickness is the chip thickness 
that would occur without relative displacements between workpiece and tool. The  
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Fig. 10.2 Cutting conditions in peripheral milling 

 

dynamic chip thickness Δh is the change of h caused by the present deflection and 
the deflection at the time of the preceding tooth engagement. 
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Taking into account that the deflections are the reaction of forces acting on the 
flexible machine structure this can be written in frequency domain. 
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The dynamic process forces are a function of dynamic chip thickness Δh: 
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Equalizing the vector of process forces in (10.4) with (10.5) and taking the time-
delayed re-engagement of the subsequent tooth into account leads to the transfer 
function of the open loop where Gg denotes the directed frequency response 
function: 
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The directional coefficients depend on the immersion angle ϕ and are therefore 
time-dependent. So, to apply (10.6) in frequency domain average directional 
coefficients have to be used. Applying the Nyquist criterion and rearranging (10.6) 
gives the frequency-dependent critical depth of cut apcrit, [1] 
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Since only positive cutting depths are relevant for cutting operations only frequen-
cies with negative real parts of the directed frequency are considered. Further-
more, the relation between chatter frequency and spindle speed can be derived 
from the Nyquist criterion: 
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With (10.7) and (10.8) the relation between cutting depth and spindle speed and, 
consequently, the stability lobe diagram (SLD) can be computed. For this purpose, 
the dynamic behaviour of the machine has to be assumed as constant within the 
observed range of spindle speed. 

(10.7) shows that only frequencies are relevant, whose real parts of the directed 
frequency response function are negative. For a multi-degree of freedom system 
(MDoF system) it is possible to divide the directed transfer function Gg into sec-
tions, which can be assigned to a specified mode respectively. For each of these 
sections a mode-dependent stability boundary can be computed. The total stability 
lobe diagram can now be determined by choosing the minimum of the mode-
dependent boundaries at every spindle speed. However, it has to mentioned that 
this is only valid, if the assumption of averaged directional coefficients can be 
made and if the directional coefficients are used to compute the directed transfer 
function Gg as shown in (10.6). The directed transfer function Gg takes the cou-
pling of x and y direction into account. Insperger and Stepan have shown that 
computing stability lobe diagrams for x and y direction separately by neglecting 
the geometrical coupling and superposing these SLDs will lead to an incorrect 
prediction of stability boundaries, [9]. 

10.2.2   Time Variant Behavior  

In milling operations, the directional coefficients are time-variant and vary period-
ically with the tooth passing frequency. Using average directional coefficients al-
lows a time-efficient computation of the process stability in the frequency domain, 
as shown in the section before. 

As mentioned in the introduction, several authors have introduced computa-
tional time-efficient algorithms in discrete time domain to take these effects into 
account. However, since this chapter deals with the computation of stability in 
frequency domain the following section focuses on an algorithm based on the mul-
ti-frequency solution presented by Altintas and Merdol [8]. 

Altintas and Merdol [8] utilize the fact that the directional coefficients are peri-
odic with tooth-passing frequency ωT. Because of this they can be expanded into a 
Fourier series.  
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Taking into account that the relation between time and immersion angle ϕ is given 
by the tooth-passing frequency and that the directional coefficients are zero, if the 
teeth are not engaged, the Fourier coefficients can be written as [8]: 
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Where ϕst denotes the angle where the teeth engage the workpiece and ϕex denotes 
the angle where the teeth exit the workpiece. Since the Fourier coefficients of ze-
roth order are equivalent to the average directional coefficients the methods using 
average directional coefficients are called zeroth order approximation (ZOA). 
Fig. 10.3 depicts an example of absolute values of Fourier coefficients. 
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Fig. 10.3 Example for Absolute Values of Fourier Coefficients 

By applying the Fourier series the process forces as a function of the change of 
the relative deflection between tool and work piece can be written as follows: 

)t(ea)t(
r

r

T

h

hr

tjr
rp xAF Δ⋅













⋅= 

−=

ω  (10.11) 

This relation in time domain can be transformed into frequency domain by using 
the Laplace transformation. The Laplace transforms are given by: 
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Applying these Laplace transformed is slightly different to the approach intro-
duced in [8] but leads to the same results. 
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For a Fourier order hr=1 follows: 
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The right side of (10.14) shows forces F with indices of ( )1hr r +±= . Since the 

absolute values of Ar converge to zero for increasing order r the terms with indices 
of order greater than hr are set to be zero. It follows: 
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(10.15) 

This leads to the transfer function of the open loop. Therein, the coordinates are 
coupled. To apply the Nyquist criterion the investigated system needs only one 
coordinate or – in the case of a multi variable system – the coordinates have to be 
decoupled. The coordinates can be decoupled by a modal transformation. The 
modal coordinates correspond to the eigenvalues of G0. The Nyquist criterion can 
now be applied to every one of the ζ·(2·r+1) eigenvalues. ζ is the number of the 
structural coordinates (ζ= 2 for a stability analysis in the x-y-plane), [8]. 

Since the depth of cut is a scalar value the transfer function can be scaled  
with ap. 
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Fig. 10.4 shows an example of the real and imaginary parts of decoupled transfer 
functions. In this example, the dynamic behaviour has relevant eigenfrequencies of 
up to 5 kHz. Since the matrix of transfer functions contains the transfer functions at 
frequencies shifted by multiples of the tooth passing frequency at a specified fre-
quency, the superposition of transfer functions is periodic with tooth passing fre-
quency. So the stability analysis need not be carried out for the whole bandwidth of 
5 kHz but only for a frequency band of the tooth-passing frequency ft. 
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Fig. 10.4 Decoupled and Scaled Transfer Functions of the Open Loop 

These sets of transfer functions have to be computed for every discrete spindle 
the stability boundary has to be determined at. The stability boundaries are given 
by the reciprocals of the real parts of the intersections between transfer function 
and real axis. In [10] Altintas et al. assert that “the most conservative and positive 
depth of cut must be considered as a final solution.” So, the critical depth of cut is 
given by: 
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Fig. 10.5 demonstrates the computation of the stability boundary for the example 
mentioned before. The relevant parts of the transfer functions are drawn as bold 
lines and the critical depth of cut is ap_crit= 11.2 mm. 

However, the assumption that the critical depth of cut is given by the most con-
servative real part, is not correct in every case. However, if all intersections with 
the real axis are analyzed, the algorithm can also be used, if multiple stability 
boundaries occur at a specified spindle speed. All algorithms in frequency domain  
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Fig. 10.5 Determination of Critical Depth of Cut 

 

 

apply the simplified Nyquist criterion shown in (10.2). The complete criterion 
analyzes not only the intersection of the transfer locus with the real axis. It says 
the process is stable, if the Nyquist point is encircled counter-clockwise at least 
once. An intersection with the real axis where the imaginary part changes from 
positive to negative values will not lead to an unstable process. 

Fig. 10.6 shows a simple example to demonstrate this. It depicts a section of a 
SLD for a one-dimensional process (only x-direction has been taken into account). 
The dynamic system has an SDoF behavior (m= 0.572 kg; d= 140 Ns/m; 
c= 2.2·107 N/m). The cutting force coefficients are kt= 3.6·109 N/m² and 
kr= 2.25·109 N/m². The figure compares the stability boundaries determined by 
time domain simulations with the boundaries determined by the multi-frequency 
solution. The figure also shows the transfer locus for a spindle speed of nspin-

dle= 10,600 rpm. Point I marks a counter-clockwise intersection and the process 
gets unstable at a depth of cut of apcrit= 7.3 mm. The clockwise intersection at 
point II compensates the instability and the process becomes stable again up to the 
depth of cut marked by point III. 

10.2.3   Cutting-Depth-Dependent Behavior 

Not only the radial immersion has an influence on the “smoothness” of the cutting 
forces. An increasing helix angle will cause forces that change less rapidly over 
time. Assuming the parameters of the process force model are unaffected by the 
helix angle, the average forces – i. e. the zeroth order Fourier coefficients - are al-
so independent from the helix angle. However, the higher order Fourier coeffi-
cients are influenced by the helix angle. This can be illustrated by the process 
forces. 
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Fig. 10.6 Multiple Stability Boundaries at one Spindle Speed 

 
Fig. 10.7 shows simulated process forces Fy for different helix angles at axial 

cutting depths ap= 10 mm and ap= 20 mm but in both cases for the same radial 
depth of cut ae= 3mm. The figure also depicts the spectra of the process forces. 
For the straight fluted mill there is a sharp change of the forces when the cutting 
edge leaves the workpiece. The force at zero frequency (which equals the average 
force) is independent of the helix angle. The forces at the tooth-passing frequency 
and their harmonics decrease with increasing helix angle. The decreasing effect is 
more significant for the axial depth of cut of ap= 20 mm. 

The magnitudes of the process forces at tooth-passing frequency and their har-
monics correspond to the Fourier coefficients. Thus, for helicoidal mills the values 
of the Fourier coefficients depend on the axial depth of cut ap. In this case, the 
value of the Fourier coefficients is given by [11]: 
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Fig. 10.7 Process Forces and Spectra of Process Forces 
 

 
Ar represents the Fourier coefficients for the straight-fluted mill and p is the 

pitch of a tool with Z teeth. 
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⋅
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=  (10.19) 

With increasing axial depth of cut the values of the Fourier coefficients decrease. 
The Fourier coefficients differ for the different helix angles. The zeroth order 
coefficients are independent of the helix angle but the values of the higher order 
coefficient decrease with an increasing helix angle λ. 

Similar to (10.15), the open loop transfer function can be written as follows: 
hh*

p0 Da GAG ⋅⋅⋅=  (10.20) 

Decoupling the coordinates in (10.20) and applying the Nyquist criterion could 
still be carried out by computing the eigenvalues, as described in the chapter be-
fore. This can be achieved by computing the eigenvalues for the characteristic eq-
uation 

[ ] 0det hh =Λ+ GAI  (10.21) 

with ( )Tj
p e1a ω−=Λ , [8].  

 



236 K. Großmann and M. Löser
 

However, if the decoupled system has to be computed for every ap, it is less 
time consuming to apply a different approach. For a multi-variable system the sta-
bility analysis can be carried out for the determinant of the matrix of open loop 
transfer functions minus identity matrix: 

IGG −= 00 det  (10.22) 

The behavior of the whole system is therefore summarized in a transfer function 
for a single coordinate. The open loop is stable, if the transfer function does not 
encircle the point {0, 0·i}. This way, the determination of stability boundaries is 
numerically easier, especially for a Fourier series expansion of higher order.  

Since the elements of matrix of Fourier coefficients h*A  depend on the axial 
depth of cut the transfer function cannot be scaled with ap as described by (10.16). 
Thus, applying the Nyquist criterion only provides information, if a specified 
combination of spindle speed and axial depth of cut results in a stable process or 
not. A change of axial depth of cut ap leads to different transfer locuses and the 
stability boundary at a given spindle speed has to be determined iteratively. In  
the following sections, the above-described algorithm is called Multifreq_det  
algorithm. 

10.2.4   Summary 

In the previous three sections, different algorithms for the computation of stability 
lobe diagrams have been shown. The first and simplest one is the well-known ze-
roths order approximation (ZOA). The last two approaches are expanded versions 
of the multi-frequency solution presented by Merdol and Altintas. One of them 
uses the computation of eigenvalues to decouple the system of multiple “frequen-
cy coordinates” (Multifreq_eig) and the other one computes the determinants of 
the transfer matrices (Multifreq_det). Which algorithm is best suitable for the de-
termination of a SLD depends on the effects that have to be taken into account. 
However, the more complex the algorithm gets, the more computational time is 
needed. But even the algorithm for a depth-of-cut-dependent behavior is less time-
consuming than time domain simulations. In the following section, these algo-
rithms are applied to cutting operations with different process and machine  
behavior.  

10.3   Application 

10.3.1   Models of Process and Machine 

The following investigations use the example of an up-milling operation with cy-
lindrical end mills. Table 10.1 shows the parameters of this reference process as  
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well as the coefficients of the process force model. To describe the process forces 
a linear force model was used [12]. The parameters were conducted by means of 
cutting tests for aluminium AA7075 workpieces. 
 
 
Table 10.1 Parameters of the Reference Process 
 

Process Up-milling 

Tool 
Number of teeth Z= 4 
Tool diameter dTool= 12 mm 

Workpiece 
Material AlZn5,5MgCu (AA7075) 
Tangential force coefficient kt= 830 N/mm² 
Radial force coefficient kr= 225 N/mm² 

 
The dynamic behavior is represented by modal models. The parameters of these 

models have been identified from measured frequency response functions of dif-
ferent spindle tool systems. In all cases, cross compliances have been neglected. 
The frequency response functions are therefore computed as follows: 
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(10.23) 

with number of eigenmodes n, the modal parameters mass m, damping d and  
stiffness c. 

10.3.2   Rotational Symmetric SDoF System 

The single degree of freedom system is meant here as the single degree of freedom 
behavior in the x and y-directions respectively. Such a behavior with just one do-
minant eigenfrequency is typical for tools with a large length-to-diameter ratio. 
Fig. 10.8 shows the measured frequency response function of a carbide dummy 
tool with a ratio of l/d= 8. It shows a dominant eigenfrequency at 728 Hz. The re-
sponse functions are nearly the same for x and y- direction. The modal parameters 
identified from the measured data and used for the computation of stability lobe 
diagrams are shown in Table 10.2. 
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Fig. 10.8 Reference for a SDoF Behavior 

Table 10.2 Modal Parameters of the SDoF System 
 

 Gxx Gyy 

Mass m [kg] 0.922 0.925 

Damping d [kg/s] 69 69 

Stiffness c [N/m] 1.93·107 1.95·107 

 
For the example of SDoF, several authors showed  systems that may occur at 

small radial immersion additional stability lobes. These additional stability lobes 
cannot be predicted by the ZOA-method. Zatarain et al. [11] investigated the in-
fluence of the helix angle on chatter stability by using the multi-frequency solution 
by Merdol and Altintas as well as the semi-discretization method by Insperger and 
Stepan. This work showed that for increasing helix angles the additional lobes 
transform into closed instability islands. The same behavior can be shown for this 
example here. 
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Fig 10.9 SLDs of the SDoF System, λ= 0°, ae= 0.5 mm  
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Fig. 10.9 shows a comparison of SLDs computed by time domain simulation 
and by the Multifreq_eig algorithm. The time domain and the frequency domain 
solution are in good agreement and show the additional stability lobes. 
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Fig. 10.10 SLDs of the SDoF System, ae= 0.5 mm 

With increasing helix angle, the additional stability lobes transform into unsta-
ble islands within the stable area. This can be shown with the multi-frequency so-
lution as well as by time domain simulations. Since the directional coefficients 
depend on depth of cut the Multifreq_det algorithm has to be used in the case of a 
helix angle λ= 30°. For a helix angle of λ= 0 the Multifreq_eig algorithm is used. 
For a helix angle of λ= 30° the ZOA algorithm shows nearly the same results as 
the multi-frequency solution, except the unstable islands, Fig. 10.10. 
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Fig. 10.11 SLDs of the SDoF System ae= 3 mm 

For larger radial immersions the time variant behavior of the directional coeffi-
cients gains less impact on the stability boundaries. At a radial depth of cut of 
ae= 3 mm, no impact of the helix angle can be shown and the ZOA algorithm  
results in practically identical stability boundaries to the multi-frequency solution, 
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Fig. 10.11. In this case, the fast ZOA method can be applied without loosing accu-
racy of the predicted stability boundaries. 

10.3.3   Rotational Symmetric MDoF System 

As shown in the example, in the previous chapter the dynamic behavior of spindle 
tool systems with long slender tools is dominated by the eigenmodes of the free pro-
jecting part of the tool. Tools with a lesser length-to-diameter ratio eigenmodes of 
the spindle and the spindle stock gain more impact on the dynamic behavior at the 
tool centre point (TCP). This results in the behavior of a multi-degree of freedom 
system (MDoF System) with several modes that may cause chatter instability. 
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Fig. 10.12 Dynamic Behavior of the Rotational Symmetric MDoF System 

Fig. 10.12 depicts a frequency response function in y-direction measured at a 
tool with a length-to-diameter ratio of l/d=2.5. Assuming a rotational symmetric 
system, the frequency response function in x-direction is set to be equal to the re-
sponse function in y-direction. 
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Fig. 10.13 SLDs of the Symmetric MDoF System, ae= 3 mm 
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The investigated SDoF system has no impact on the stability boundaries at a 
radial depth of cut of ae= 3 mm. This is different for the symmetric MDoF system. 
For the straight-fluted mill an impact on the stability can be seen around the spin-
dle speed of about 20,000 rpm. However, for a helix angle of λ= 30° the multi-
frequency solution is in good agreement with the stability boundaries obtained by 
the ZOA method, Fig 10.13. An increase of the radial depth of cut will minimize 
the impact of the time-variant directional coefficients even for the straight-fluted 
mill, Fig. 10.14. 
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Fig. 10.14 SLDs of the Symmetric MDoF System, ae= 5 mm 

10.3.4   Non-rotational Symmetric MDoF System 

Usually spindle and milling tool are rotational symmetric systems. In most cases, 
however, the spindle stock is non-rotationally symmetric. Especially for tools with 
a small length-to-diameter ratio this may have an impact on the dynamic behavior 
at the tool centre point. In addition to Fig. 10.12, Fig. 10.15 shows the measured 
frequency response functions in x and y-direction. The response functions differ 
for the different directions. 
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Fig. 10.15 Dynamic Behavior of the Non-Symmetric MDoF System 
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Fig. 10.16 and Fig. 10.17 show a comparison of the SLDs computed by multi-
frequency solution and ZOA method for radial immersions ae= 3 mm and 
ae= 5 mm respectively. In both cases, the ZOA method provides acceptable results 
for a helix angle of λ= 30°. However, compared with the results for the symmetric 
system the zero helix angle also has an impact at higher radial immersions. 
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Fig. 10.16 SLDs of the Non-Symmetric MDoF System, ae= 3 mm 
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Fig. 10.17 SLDs for the Non-Symmetric MDoF System, ae= 5 mm 

10.4   Conclusions 

The behavior of the mechanical system in combination with the process behavior 
has an impact on the stability. This means that the process and machine behavior 
determines which effects have to be taken into account for an accurate prediction 
of stability boundaries. 

In a case study - presented in this chapter - algorithms for the prediction of sta-
bility boundaries in frequency domain have been applied to different combinations 
of process and machine characteristics. A comparison with results in time domain 



10   Synthesis of Stability Lobe Diagrams 243
 

has demonstrated that frequency domain algorithms are applicable, even if the sys-
tem shows a time-variant behavior. It has been demonstrated that in some cases a 
simplification can be made so that the time efficient zeroth order approximation is 
applicable. Table 10.3 shows a pattern of the computational methods for the inves-
tigated combinations of process and machine behavior. 

 

Table 10.3 Pattern of Applicable Frequency Domain Algorithms for the Investigated Ref-
erence Process 

 
 Symmetric  

SDoF 
Symmetric  

MDoF 
Non-Symmetric 

MDoF 

Straight-fluted 
04.0d/a e ≈  Multifreq eig Multifreq eig Multifreq eig 

Helicoidal 
04.0d/a e ≈  Multifreq det Multifreq det Multifreq det 

Straight-fluted 
25.0d/a e ≈  ZOA Multifreq eig Multifreq eig 

Helicoidal 
25.0d/a e ≈  ZOA ZOA ZOA 

Straight-fluted 
4.0d/a e ≈  ZOA ZOA Multifreq eig 

Helicoidal 
4.0d/a e ≈  ZOA ZOA ZOA 

 
This pattern is valid for the investigated reference process. Ongoing works deal 

with the definition of classification numbers to expand this pattern for a general 
process and machine behavior. Some investigated issues that have to be quantified 
are, for example, the influence of tool diameter and cutting force coefficient as 
well as the quantification of the influence of the dynamic behavior, i. e. number of 
modes and dynamic stiffness. 
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