
Modeling and Simulation of Forest Fire
Spreading
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1 Mathematical Modeling

We consider a similar model of forest fire spreading as Asensio and Ferragut [1].

∂T

∂t
= −v∇T + D�T + A

(
Y exp

(
− B

T − T∞

)
− h(T − T∞)

)
, (1)

∂Y

∂t
= −bY exp

(
− B

T − T∞

)
, (2)

with temperature of fuel T , time t , wind velocity v, diffusion coefficient D, pre-
exponential factor of reaction A, mass fraction of fuel Y , coefficient due to modified
Arrhenius law B, natural convection coefficient h, disappearance rate of fuel b, and
ambient temperature T∞.

2 Numerical Solution

2.1 Space and Time Discretization

We use for the space discretization a collocation method based on the sums:

u =
I∑

i=1

φ(x, zi )ui , y =
I∑

i=1

φ(x, zi )yi , x ∈ X, z ∈ Z , I number of points,

(3)
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where φ is the trial function, X a grid representing the collocation points and Z a grid
consisting of the centers of the trial functions (for more details the reader is referred
to Eberle et al. [2]). Then, we apply the ansatz (3) for the temperature T and mass
fraction Y and plug it in Eqs. (1) and (2):

∂u

∂t
=

I∑
i=1

(−v ∇φi + D�φi − Ahφi ) ui + AhT∞ + A
I∑

i=1

φi yi exp

(
− B

T −T∞

)
,

(4)

∂y

∂t
= −b

I∑
i=1

φi yi exp

(
− B

T − T∞

)
. (5)

The time discretization is done by a Crank-Nicolson-scheme.

2.2 Stabilization

The above introduced solution scheme yields strongly oscillating results in the con-
vection dominated case (Gibbs phenomenon). Thus, the method needs to be stabi-
lized. Here, we follow the procedure of flux corrected transport of Kuzmin, Löhner,
Turek [3]. In doing so, we apply the stabilization exemplary for the temperature T .
Step (1) We start with the approximation of the initial conditions and determine the
according coefficients u0 by solving the system

Mu0 = T0, (6)

where M = mi j is the mass matrix given by mi j = φ(xi , z j ).
The coefficients are needed for the space discretization within the time-stepping

scheme.
Step (2) Next, we consider the so-called "low-order" problem and define the lumped
mass matrix MLby

mii =
∑

j

mi j for i = j. (7)

Step (3) After that we have a look at the "high-order" problem, which means we
construct the operator K H given by

k H
i j (φ) = −v∇φ(xi , z j ) + D�φ(xi , z j ), (8)

which describes the convection and diffusion.
Step (4) Artificial diffusion is added now and we define the diffusion operator in the
same way as by Möller [4]
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dii = −
∑
j �=i

di j , di j = d ji = max{0,−k H
i j ,−k H

ji } for i < j (9)

and the low-order operator K L = K H + D.
Step (5) The right-hand side of our convection-diffusion-reaction-problem (1) is
represented by the reaction term q and we call its coefficients qn−1.

q = A

(
Y exp

(
− B

T − T∞

)
− h(T − T∞)

)
. (10)

Step (6) Following the procedure in [4] we make an approximation of the coeffi-
cients of the collocation method by

u = un−1 − �tn
2

M−1
L (K Lun−1 − qn−1). (11)

Step (7) Next, we modify the right-hand side of problem (1) by applying
Zalesak’s algorithm [5] for which we need to calculate the residuum r and the weights
α to get q∗

n−1. The algorithm considers only the next neighbors i of every collocation
point

P+
j =

∑
i �= j

max
i=1,...,N

{0, ri j }, P−
j =

∑
i �= j

min
i=1,...,N

{0, ri j }, (12)

Q+
j = max{0, max

i=1,...,N
(u j − ui )}, Q−

j = min{0, min
i=1,...,N

(u j − ui )}, (13)

R+
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i=1,...,N

{
1,

mi Q+
i

P+
i

}
, R−

j = min
i=1,...,N

{
1,

mi Q−
i

P−
i

}
, (14)

αi j = min
i=1,...,N

{
1,

R+
i

R−
j

}
for ri j > 0 and αi j = min

i=1,...,N

{
1,

R−
i

R+
j

}
else. (15)

Step (8) Now we are able to determine the coefficients

un = un−1 − �tn
2

M−1
L (K Lun−1 − qn−1 − q∗

n−1) (16)

Step (9) Finally, we use these coefficients to get solutions for the temperature T and
the mass fraction of the fuel Y with the stabilized method.
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Fig. 1 In the first row the temperature of fuel T in [K ] is plotted for the initial temperature, after
400 and 800 time steps and accordingly in the second row we see the mass fraction of fuel Y

3 Numerical Simulation

Figure 1 shows first simulations for two different fuel types (type 1 on the left-
hand side and type 2 on the right-hand side) and wind directed to the south. We
can see the fire spreads faster for the fuel type 1 and due to the wind its shape is
elliptic.
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