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Abstract. When the popularity of fuzzy systems in the guise of fuzzy controllers be-
gan to rise in the beginning of the 1990s researchers became interested in supporting
the development process by an automatic learning process. Just a few years earlier
the backpropagation learning rule for multi-layer neural networks had been redis-
covered and triggered a massive new interest in neural networks. The approach of
combining fuzzy systems with neural networks into neuro-fuzzy systems therefore
was an obvious choice for making fuzzy systems learn. In this chapter we briefly
recall some milestones on the evolution of neuro-fuzzy systems.1

1 Introduction

The term neuro-fuzzy systems (also neuro-fuzzy methods or models) refers to com-
binations of techniques from neural networks and fuzzy systems [26, 50]. This typ-
ically does not mean that a neural network and a fuzzy system are used in some
kind of combination, but that a fuzzy system is created from data by some kind of
(heuristic) learning method that is motivated by learning procedures used in neural
networks.

Neuro-fuzzy methods are usually applied, if a fuzzy system is required to solve
a function approximation problem — or a special case of it like classification or
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control [58] — and the otherwise manual design process should be supported or
replaced by an automatic learning process. The (manual) design of a fuzzy system
requires specification of fuzzy partitions (parameters) for each variable and a set
of fuzzy rules (structure). If the fuzzy system does not perform well, structure or
parameters or both must be modified accordingly. This can be a very lengthy and
error-prone process that is effectively based on trial and error. In order to support
this design process learning techniques based on sample data became a popular
research topic at the beginning of the 1990s when fuzzy systems in the guise of
fuzzy controllers first became successful and widely known.

The history of neuro-fuzzy systems can be roughly structured into first feed-
forward systems for control and function approximation and later — mainly due to
the success of fuzzy systems in control — approaches for classification and cluster-
ing problems, where interpretable solutions and the introduction of prior knowledge
into the learning process is also quite often very beneficial. More recently, several
researchers studied the usability of hierarchical and recurrent architectures. In the
following, we discuss the major approaches that have been proposed for these fields,
if possible, in chronological order.

2 Feed-Forward Architectures

One of the first works that proposed a combination of neural network learning meth-
ods with the concepts of fuzzy systems was proposed in 1985 by Keller and Hunt
[29]. In this paper, the authors proposed an approach to stabilize the perceptron
learning algorithm for classification problems using fuzzy techniques. They intro-
duced a fuzzy membership of data items to the searched classes in order to improve
the convergence of the learning algorithm. Motivated by this early work, several
other approaches had been proposed that deal with the combination of neural net-
works and fuzzy systems and that have driven this field of research. In the area
of approximate reasoning, for example, several approaches have been proposed in
1991 and 1992 [14, 28, 31, 30, 32, 57, 56]. These models are parts of fuzzy ex-
pert systems, or support fuzzy decision making with the help of neural networks.
Since these methods do not integrate the neural network and fuzzy system struc-
ture in a homogenous architecture, but one adapts the parameters of the other in
a cooperative way, we do not consider them as (hybrid) neuro-fuzzy system and
thus do not cover them as part of this contribution. The same holds for approaches
suggested by Miyoshi et al. and Yager and Filev in 1993 and 1992, respectively.
In these approaches the fuzzy sets are not modified, but parametrized t-norms and
t-conorms are used. Miyoshi et al. [39] proposed an approach to adapt parameters
of these operators by backpropagation, while Yager and Filev suggest adaptive de-
fuzzification strategies [77, 78]. Yager and Filev used a parametrized defuzzification
operation and define a supervised learning algorithm to determine the parameters.
However, even though we do not discuss co-operative approaches in detail, we will
refer to them, if other (hybrid) approaches made use of the proposed more general
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techniques and ideas. The same holds for problems of learnability and interpretabil-
ity of (neuro) fuzzy systems, where some discussions can be found in [22, 64, 47,
11, 42]. For an overview that is focussed on neuro-fuzzy methods for rule generation
see [38].

2.1 Control

Neuro-fuzzy controllers were together with neuro-fuzzy systems for function ap-
proximation the first neuro-fuzzy approaches. The principles and architectures are
similar and the main difference is basically the learning mechanism. While function
approximation models can use supervised learning based on a training set, con-
trollers need to discover a model in a setting where target outputs are not known.
Neuro-fuzzy controllers therefore use reinforcement learning and require either a
model of or direct feedback from the process they are supposed to control.

2.1.1 ARIC and GARIC

On of the first neuro-fuzzy controllers was suggested by Berenji in 1992. The ARIC
model (Approximate Reasoning-based Intelligent Control) implements a fuzzy con-
troller by using several specialized feed-forward neural networks. The architecture
of ARIC is similar to an adaptive critic, a special neural controller learning by rein-
forcement [75], and it generalizes the neural model of Barto et al. [3] to the domain
of fuzzy control. ARIC consists of two neural modules, the ASN (Action Selection
Network) and the AEN (Action state Evaluation Network). The AEN is an adaptive
critic that is trained by backpropagation and that evaluates the actions of the ASN.

The ASN itself consists of two feed-forward three-layer neural networks. One
network calculates a confidence value that is used to change the output of the second
network which is a direct representation of a fuzzy controller. The input layer rep-
resents state variables of a process and the hidden units represent fuzzy rules. Their
inputs are the antecedents, and their outputs the consequents of the rules. ARIC as-
sumes that the rule base is known in advance. The output of the control network
represents the defuzzified control value of the fuzzy controller. The learning algo-
rithm modifies connections weights in the ASN and so indirectly the represented
fuzzy sets.

Implementing learning by modifying connection weights was a popular approach
in early neuro-fuzzy systems, but it was later shown that this leads to problems in
interpreting the learning outcome [40].

The ARIC model was later extended to GARIC (Generalised ARIC, Fig. 1) [4,
5, 6]. Like ARIC it consists of an evaluation network (AEN) and an action network
(ASN). The ASN does not use any weighted connections, but the learning process
modifies parameters stored within the units of the network. The other network of
the ASN which produces a confidence measure no longer exists.
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Fig. 1 GARIC represents a fuzzy system as a feed-forward network [5]

2.1.2 NEFCON

NEFCON is a model for neural fuzzy controllers proposed by Nauck in 1994 [44].
It is based on the architecture of the generic fuzzy perceptron [50] and implements
a Mamdani-type fuzzy system. NEFCON is probably the first neuro-fuzzy system
that tries to introduce the notion of interpretability by preventing identical linguistic
terms being represented by more than one membership function, even though the
general idea of a fuzzy perceptron has been proposed already earlier by Keller and
Tahani as well as Pal and Mitra in 1992 [31, 54] and similar concepts have been
discussed by Gupta and Rao in 1994 [18].

Like ARIC and GARIC, the learning algorithm for NEFCON is based on the idea
of reinforcement learning but instead of an adaptive critic network it uses a fuzzy
rule base to describe a fuzzy error.

Fig. 2 shows a NEFCON system with two input variables, one output variable
and five rules. The unit R3 for instance represents the rule

R3: If ξ1 is μ (1)
2 and ξ2 is μ (2)

2 then η is ν2.

The connections in NEFCON are weighted with fuzzy sets instead of real numbers,
and some connections always have the same weight (illustrated by ellipses around
connections) in order to ensure the integrity of the rule base.

Several learning methods have been proposed for this model. In [53] an overview
is given. One major problem of all methods is, that they require at least some prior
knowledge of the system to be controlled in order to define the (fuzzy) error signal
that is used for learning.

Recently, models have been proposed that try to solve these fundamental prob-
lems using hierarchical models and Q-learning, see, e.g., [13, 15]. Q-learning has
been already successfully used in combination with neural networks in order to con-
trol more complex systems, see e.g. [60].
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Fig. 2 A NEFCON system with two input variables and five rules

2.2 Approximation

Many neuro-fuzzy systems for function approximation are based on Takagi-Sugeno
fuzzy systems, because they allow the application of gradient descent learning, if
differentiable membership function (e.g. Gaussians) are used.

2.2.1 ANFIS

One of the first and still one of the popular neuro-fuzzy systems is Jang’s AN-
FIS model proposed in 1991 [26, 23, 24, 25]. ANFIS (adaptive network-based
fuzzy inference system) is a neuro-fuzzy method to determine the parameters of
a Sugeno-type fuzzy model which is represented as a special feed-forward network
(see Fig. 3). It encodes fuzzy rules of the form

Rr: If x1 is μ (1)
j1

∧ . . .∧ xn is μ (n)
jn

then y = α(r)
0 +α(r)

1 x1 + . . .+α(r)
n xn.

Each node of the first layer is connected to exactly one of the n input variables and
stores the three parameters of a membership function. The k nodes in the second
layer represent the antecedents of the fuzzy rules. They compute the degree of ful-
fillment by multiplying the degrees of membership. The k nodes of the third layer
compute the relative degree of fulfillment for each rule. The output values of the
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rules are computed by the k nodes of layer 4. They store the consequent parameters.
Each node in this layer is connected (not drawn in Fig. 3) to one node of layer 3 and
to all input variables. The output node in layer 5 computes the overall output value.
If the model must compute m > 1 output values, then there are m output nodes and
mk nodes in layer 4.
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Fig. 3 ANFIS encodes a Sugeno-type fuzzy model in a feed-forward network structure [25]

ANFIS uses only differentiable functions, and therefore it is easy to apply stan-
dard gradient descent learning procedures from neural network theory. For ANFIS
a mixture of backpropagation (BP) and least mean square estimation (LSE) is sug-
gested by Jang [25]. BP is used to compute the updates of the antecedent parameters,
i.e. the parameters of the fuzzy sets, and LSE is used to determine the updates for
the consequent parameters, i.e. the coefficients of the linear combinations in the
consequents.

ANFIS does not learn the structure of the fuzzy system, but it simply creates rules
from all possible combinations of input fuzzy sets. Initial fuzzy partitions have to
be specified. The consequent parameters are initialised by small random numbers.

2.2.2 Radial Basis Function Networks

Radial basis function networks (RBFN) are often connected to fuzzy systems, be-

cause the activation functions h(||x−c||2) = exp(−||x−c||2
2σ 2 ) of their hidden units can

be interpreted as multidimensional membership functions. If this interpretation is
assumed, then fuzzy rules can be extracted from an RBFN. To do this the RBF func-
tions of the hidden units must be projected onto the individual dimensions. This way
fuzzy sets are obtained that must be labelled with suitable linguistic terms. In gen-
eral, this kind of rule generation suffers from the problem that the antecedent of the
resulting fuzzy rule is not necessarily equivalent to the original corresponding RBF
function. We only have equivalence if the area described by it is an axis-paralell
hyperellipsoid and the product is used to compute the degree of fulfilment of the
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extracted fuzzy rule. If min is used as a t-norm the support of a rule is equivalent to
the smallest hyperbox which contains the hyperellipsoid described by h(||x−c||2)>
ε . If the RBFN uses a generalised radial basis function with an inverse co-variance
matrix that is not diagonal it is no longer equivalent to a fuzzy system.

In 1993 Jang and Sun showed when a radial basis function network (RBFN) is
equivalent to a TSK fuzzy model [27]. They found that the following conditions
have to hold:

• The number of hidden units in the RBFN (receptive field units) is equal to the
number of fuzzy if-then rules.

• The output of each fuzzy if-then rule is just a constant, i.e. the fuzzy system is
a simplified special case of a TSK system which would normally have a linear
combination as rule output.

• All membership functions in the fuzzy system are Gaussian functions with the
same variance.

• The t-norm operator used to compute each rule’s degree of fulfilment is the
product.

• Both the RBFN and the fuzzy inference system use the same operation to com-
pute the overall output, i.e.either weighted average or weighted sum.

Note that the third condition can be relaxed such that only the variances for each cor-
responding dimension (input variable) have to be identical. That means the RBFN
can use basis function with an inverse covariance matrix that is a diagonal matrix
and the elements on the diagonal need not be identical.

RBF networks have frequently be used to derive neuro-fuzzy approaches. For ex-
ample, Fuzzy RuleNet [69] as discussed in Sect. 2.3.4 is an extension of the RuleNet
model which is a special RBFN. The activation functions of the hidden units use the
∞-vector norm instead of the usual Euclidean vector norm. Thus the activation func-
tions are defined over hyperboxes instead of hyperellipsoids [12, 70].

Fuzzy RuleNet is a typical approach that can be seen as being inspired by RBFN
but having outgrown the limitation of functional equivalence to RBFN by using hy-
perboxes as the support of antecedents and max-min interference instead of product
and weighted average. Similar hyperbox-oriented approaches have been presented
by Berthold and Huber [10, 8, 9].

2.2.3 NEFPROX

NEFPROX [48] is like NEFCON based on a generic fuzzy perceptron and imple-
ments a Mamdani-type fuzzy system. Mamdani-type system are rarely used for
function approximation purposes, because it is easier to train a Takagi-Sugeno-type
system. NEFPROX has learning algorithms for structure learning and parameter
learning, but it is typically less accurate than ANFIS.
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2.3 Classification

Neuro-fuzzy classification systems became more popular in the second half of the
1990s. They are a special case of function approximators and their output is typ-
ically a fuzzy classification of a pattern, i.e. a vector of membership degrees that
indicates membership to different classes. With the rising interest in data mining,
fuzzy classifiers became more and more important in the fuzzy system community.

2.3.1 The NNDFR Model

A very interesting and atypical neuro-fuzzy model from 1991 is the NNDFR model
(Neural Network Driven Fuzzy Reasoning) by Takagi and Hayashi [66] which was
developed around the same time as ANFIS. NNDFR is based on common neu-
ral networks that are structured by fuzzy system techniques. Its main purpose is
classification.

An NNDFR system is based on n input variables x1, . . . ,xn, an output variable
y and k fuzzy rules R1, . . . ,Rk. It consists of k+ 1 multi-layer feed-forward neural
networks trained by backpropagation and representing the fuzzy rules (Fig. 4). The
system cannot be used to extract the parameters of a fuzzy system from it. Strictly
speaking, we would not consider it as a neuro-fuzzy system. However, the structure
of the partial networks and the interpretation of the outputs are motivated by fuzzy
system techniques.
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Fig. 4 Structure of an NNDFR system [66]

The linguistic rules used by the NNDFR model are of the form Rr: If (x1, . . . ,xn)
is Ar then y = ur(x1, . . . ,xn). This is not the usual form of linguistic rules used in
fuzzy systems and is caused by the purely neural architecture. Ar is an n-dimensional
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membership function. There is no combination of single membership values. In an
NNDFR system the neural network NNmem provides for each rule Rr a value wr that
is interpreted as its degree of fulfillment.

The functions u1, . . . ,uk are implemented by k neural networks NN1, . . . ,NNk

that determine the output values of the rules R1, . . . ,Rk. The overall system output
is given by y = ∑k

r=1 wr ur(x1, . . . ,xn)/∑k
r=1 wr.

2.3.2 FuNe-I

The neuro-fuzzy model FuNe-I [20, 21], proposed in 1992, is based on the archi-
tecture of a feed-forward neural network (Fig. 5). The network has five layers. The
first layer contains a unit for each input variable and propagates the input values
unchanged via weighted links to the second layer. This layer consists of units with
sigmoid activation functions that are used to create membership functions. The third
layer contains specialized units that are only used to represent fuzzy sets that do not
touch the domain boundaries (see below). The units of the second and third layer
propagate their activations via unweighted links to the fourth layer. Units from the
second layer that have connections to the third layer are not connected to the fourth
layer.

The fourth layer consists of units that represent fuzzy rules. Compared to other
neuro-fuzzy approaches, the FuNe-I model is special because it uses three kinds
of rules: the antecedents can be conjunctions or disjunctions, and there are rules
with only one variable as antecedent (simple rules). A unit computes its activation
— depending on the kind of rule it represents — by either a differentiable soft
minimum, a differentiable soft maximum, or the identity function.

The fifth layer contains the output units that compute their input by a weighted
sum and their activation by a sigmoid function. The FuNe-I model provides al-
gorithms for structure and parameter learning and is one of the first neuro-fuzzy
approaches that also considers rule learning.

FuNe-I was extended in 1994 to FuNe-II which can be used for fuzzy control
problems. In a FuNe-II network a new output layer is created that is connected to
the previous output layer. On the connections discrete samples of fuzzy sets are
stored to represent control values. The activations of the new output units represent
support points of a fuzzy set that must be defuzzified to obtain the final control value
[19, 21].

2.3.3 NEFCLASS

NEFCLASS [45, 46, 41], proposed in 1995, is probably the first neuro-fuzzy ap-
proach that was able to handle missing values, both numeric and symbolic data in
the same data set and to determine a rule-base fully automatically. NEFCLASS is
also based on the idea of a generic fuzzy perceptron and focuses on creating small
interpretable fuzzy rule bases.
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Fig. 5 The architecture of a FuNe-I system

The learning algorithm of NEFCLASS has two stages: structure learning and
parameter learning. Rule (structure) learning is done by a variation of the approach
by Wang and Mendel [73] which was extended to cover also symbolic patterns [43]
and to use a rule performance measure for rule selection. In parameter learning the
fuzzy sets are tuned by a simple backpropagation-like procedure that is based on a
simple heuristics instead of a gradient descent approach. After learning NEFCLASS
uses pruning strategies to reduce the number of rules as much as possible.

2.3.4 Fuzzy RuleNet

Fuzzy RuleNet [69], which was also proposed in 1995, is a neuro-fuzzy approach
that is based on the structure of an radial basis function (RBF) network (see also
Sect. 2.2.2). It is an extension of the RuleNet model, a special neural network, that
can be seen as a variant of an RBF network [12, 70]. Instead of the usual radial
basis functions — which represent hyperellipsoids — RuleNet uses hyperboxes for
classification.

Fuzzy RuleNet allows hyperboxes to overlap. Each hyperbox represents a multi-
dimensional fuzzy set given by a membership function in form of a hyperpyramid.
By projecting the multidimensional fuzzy sets onto the individual dimensions we
obtain triangular or trapezoidal fuzzy sets that describe the pattern features. The
fuzzy classification rules obtained this way are equivalent to the multidimensional
fuzzy sets, i.e. there is no loss of information as it would be in the case of hyperel-
lipsoids used in fuzzy cluster analysis. The hyperboxes are created in a single cycle
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through the data. The learning algorithm adjusts the sizes of hyperboxes by extend-
ing them to cover new data or shrinking them in case of conflicts. This way a rule
base and the parameters (fuzzy sets) are created in a single loop.

If a Fuzzy RuleNet is used for classification it computes its output by a winner-
takes-all procedure to find the class of a given input pattern. It is also possible to
adjust the definition such that the outputs are computed by a weighted sum. This
way Fuzzy RuleNet can be used for function approximation.

Similar approaches to Fuzzy RuleNet are sometimes called hyperbox-oriented
rule learners, and were known as early as 1992 [62, 63]. Newer variations are also
called fuzzy graphs [9, 7]. The idea is always to cover a set of data with hyper-
boxes and connect each hyperbox with an output value. Hyperbox-oriented fuzzy
rule learning can create solutions for benchmark problems in pattern recognition
or function approximation very fast. If there are no contradictions in the training
patterns and if there is only one output variable, then hyperbox-oriented learning
algorithms can create solutions with no errors on the training data. In the worst case
this leads to a situation, where each training pattern is covered by its individual
hyperbox.

3 Recurrent Systems

In contrast to pure feed-forward architectures that have a static input-output behav-
ior, recurrent models are able to store information of the past, e.g. prior system
states, and can be thus more appropriate for the analysis of dynamic systems (see,
for example, discussions concerning the approximation and emulation capabilities
of recurrent neural networks [59, 37, 74]). If pure feed-forward architectures are
applied to these types of problems, e.g. prediction of time series data or physical
systems, the obtained system data usually has to be preprocessed or restructured to
map the dynamic information appropriately, e.g. by using a vector of prior system
states as additional input. If we apply a fuzzy system, this may lead to an exponen-
tial increase of the parameters — if we want to cover the whole system state space
— that soon becomes intractable.

Recurrent neuro-fuzzy systems (RNFSs) can be constructed in the same way as
discussed above for feed-forward neuro-fuzzy systems. So, they are based either on
a recurrent fuzzy system or a recurrent neural network structure. However, the de-
sign and the optimization of (hierarchical) recurrent systems is, due to the dynamics
introduced by the feed back connections, more difficult than that of feed forward
systems. In Fig. 6 an example of a hierarchical RNFS is shown.

Probably the first recurrent fuzzy system that was combined with a (neural net-
work motivated) learning method was proposed by Gorrini and Bersini in 1994
[17]. The proposed system is a Sugeno-Takagi-like fuzzy system and uses fuzzy
rules with a constant consequent. The internal variables of this system may be de-
fined manually, if the designer has sufficient knowledge of the system that should
be modeled. No learning method for the rule base itself was proposed except to ini-
tialize the rule base randomly. However, the authors propose a learning approach
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Fig. 6 Example of a simple hierarchical recurrent rule base consisting of two subsystems.
The output of the system is reused by each subsystem as time-delayed input.

to optimize the parameters of a recurrent rule base, which was motivated by the
real time recurrent learning algorithm [76]. According to Gorrini and Bersini the
results for the approximation of a third order non-linear system for a given rule
base was comparable to the approximation by a recurrent neural network. Unfortu-
nately, a detailed discussion of the results was not given. Furthermore, the model
had some insufficiencies. First of all, the structure has to be defined manually, since
no learning methods for the rule base have been proposed. Furthermore, the learn-
ing is restricted to symmetric triangular fuzzy sets and the interpretability is not
ensured, since the fuzzy sets are modified independently during learning. However,
an extension to arbitrary (differentiable) fuzzy sets is easily possible.

Surprisingly, after this first model, for some time not much work had been pub-
lished on recurrent systems that are also able to learn the rule base itself. Most likely
the first models that were successfully applied to control — which, however, do not
implement generic hierarchical recurrent models as described above — were pro-
posed by Theocharis and Vachtsevanos in 1996 [68], Zhang and Morris in 1999 [80]
and Lee and Teng in 2000 [35]. For example, Lee and Teng proposed a fuzzy neu-
ral network, which implements a modified Sugeno-Takagi-like fuzzy system with
Gaussian-like membership functions in the antecedents and constant consequents.
However, this model did not implement a fully recurrent system as shown in Fig. 6,
but they restricted themselves to integrate feed back connections in the membership
layer as depicted in Fig. 7.
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Fig. 7 Fuzzy neural network with simple feedback units as proposed by Lee and Teng

Approaches to learn hierarchical recurrent fuzzy system were presented in 2001
by Surmann and Maniadakis [65], who used a genetic algorithm, and Nürnberger
[51], who proposed a template based approach to learn a structured rule base and
a gradient descent based method motivated by the real time recurrent learning
algorithm [76] to optimize the parameters of the learned rule base. The interpretabil-
ity of the fuzzy sets of this model is ensured by the use of coupled weights in the
consequents (fuzzy sets, which are assigned to the same linguistic terms share their
parameters) and in the antecedents. Furthermore, constraints can be defined, which
have to be observed by the learning method, e.g. that the fuzzy sets have to cover
the considered state space. An example of the network structure is given in Fig. 8.
However, the template based learning approach still had insufficiencies due to the
use of a heuristic that created inner fuzzy sets. Therefore, in [52] a slightly modified
approach was proposed, that learned the rule base using a genetic algorithm.

Furthermore, recurrent models that tackle specific problems of the learning pro-
cess, properties of recurrent fuzzy systems or specific applications have been pro-
posed in, e.g., [36, 72, 33].
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Fig. 8 Possible structure of the recurrent neuro-fuzzy system proposed by Nürnberger in
2001 [51] (using one time-delayed and one hierarchical feed-back). The first row of neurons
defines the input variables, the second row the membership functions of the antecedents, the
third row the fuzzy rules, and the fourth row the output variables. The membership functions
of the consequents that are shared by rules are represented by coupled links from the rule to
the output layer.

4 Outlook

Starting with neural network oriented architectures like ARIC and NNDFR neuro-
fuzzy system quickly developed into network representations of fuzzy systems like
we can see in ANFIS and NEFCON. In the second half of the 1990s we saw a lot
of specific architectures for approximation, classification and control where neuro-
fuzzy systems have covered a broad area of problems. Meanwhile, they found their
way in quite diverse application areas where they are currently regularly applied,
see e.g. recent works in geochemistry [81], geology [55], manufacturing [67], time
series analysis [2] and signal processing [61].

However, there are still a lot of open research research questions in the area
of adaptive control, where the combination of reinforcement learning methods
with neuro-fuzzy architectures has made a lot of progress more recently (see, e.g.,
[16, 34, 71]). The same holds for applications in classification that became more
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and more important with the growing interest in data mining (see, e.g., [1, 79]). In
this area questions of how to completely automate the learning process and how to
guarantee a certain level of interpretability remain to be important issues.

5 Remarks

We like to apologize to all researchers we did not mention in this — for this broad
topic — short article. This would have been impossible. We tried only to mark major
developments in this area and may have missed some that would be considered by
others as major contributions.
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