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Abstract. In a recent work, we proposed a generalization of logistic regression
based on the Choquet integral. Our approach, referred to as choquistic regression,
makes it possible to capture non-linear dependencies and interactions among pre-
dictor variables while preserving two important properties of logistic regression,
namely the comprehensibility of the model and the possibility to ensure its mono-
tonicity in individual predictors. Unsurprisingly, these benefits come at the expense
of an increased computational complexity of the underlying maximum likelihood
estimation. In this paper, we propose two approaches for reducing this complexity
in the specific though practically relevant case of the 2-additive Choquet integral.
Apart from theoretical results, we also present an experimental study in which we
compare the two variants with the original implementation of choquistic regression.

1 Introduction

The Choquet integral is well-known as a flexible aggregation function and, as such,
has been used in various fields of application [14, 11, 21]. In machine learning,
it is less common so far, although the interest in using the Choquet integral as a
mathematical tool for tackling problems like classification, regression and ranking
is increasing [12, 13, 22, 1, 2, 9].

In [8], we proposed a method called “choquistic regression”, which is a general-
ization of logistic regression based on the Choquet integral. Choquistic regression
has a number of appealing properties. Most notably, it combines three features in a
non-trivial way, namely monotonicity, nonlinearity and interpretability. As for the
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first, a monotone dependence between the input and output attributes is often de-
sirable in a classification setting and sometimes even requested by the application
[3, 19, 10]. At the same time, the Choquet integral also allows for modeling inter-
actions between different attributes in a flexible, nonlinear way. Last but not least,
thanks to the existence of natural measures for quantifying the influence of individ-
ual (e.g., the Shapley value) and the interaction between groups of features (e.g., the
interaction index), it provides important insights into the model, thereby supporting
interpretability [7].

Compared to standard logistic regression, these benefits are coming at the ex-
pense of an increased computational complexity of the underlying learning algo-
rithm, which solves a maximum likelihood estimation problem. This is mainly
caused by the large number of parameters of the fuzzy measure on which the Cho-
quet integral is based, and the complicated dependency between these parameters.
In this paper, we propose two approaches for reducing this complexity in the spe-
cific though practically relevant case of the 2-additive Choquet integral. To this end,
we shall try to optimally exploit the simplified structure of a 2-additive measure in
comparison to a non-additive measure in the general case.

The rest of this paper is organized as follows. In the next section, we briefly recall
the basic definition of the (discrete) Choquet integral and some related notions. In
Section 3, we sketch the idea of using the Choquet integral for binary classification
and recall the basics of choquistic regression. In Section 4, we develop two alterna-
tive formulations of the learning (likelihood maximization) problem, both pursuing
the same goal of complexity reduction. In Section 5, we present an experimental
study in which we compare the two variants with the original implementation of
choquistic regression, prior to concluding the paper with a few remarks in Section 6.

2 The Discrete Choquet Integral

In this section, we start with a brief recapitulation of the (discrete) Choquet integral
and, along the way, introduce the main mathematical notation used throughout the
paper.

Let C = {c1, . . . ,cm} be a finite set and μ : 2C → [0,1] a measure. For each A ⊆C,
the value μ(A) can be interpreted as the weight or, say, the importance of the set
of elements A. A standard assumption on a measure μ(·), which is, for example, at
the core of probability theory, is additivity: μ(A∪B) = μ(A)+ μ(B) for all A,B ⊆
C such that A∩B = /0. Unfortunately, additive measures cannot model any kind of
interaction between elements: Extending a set of elements A by a set of elements B
always increases the weight μ(A) by the weight μ(B), regardless of the “context” A.

This lack of expressivity motivates the use of non-additive measures, also called
capacities or fuzzy measures, which are simply normalized and monotone but not
necessarily additive [20]:

μ( /0) = 0, μ(C) = 1

μ(A)≤ μ(B) for all A ⊆ B ⊆C
(1)
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A useful representation of non-additive measures, that we shall explore later on for
learning Choquet integrals, is in terms of the Möbius transform:

μ(B) = ∑
A⊆B

mμ(A) (2)

for all B⊆C, where the Möbius transform mμ of the measure μ is defined as follows:

mμ(A) = ∑
B⊆A

(−1)|A|−|B|μ(B) . (3)

A measure μ is said to be k-order additive, or simply k-additive, if k is the smallest
integer such that m(A) = 0 for all A ⊆ C with |A| > k. This property is interesting
for several reasons. In particular, as can be seen from (2), it means that a measure μ
can formally be specified by significantly fewer than 2m values, which are needed
in the general case.

Suppose the “criteria” ci ∈C are simply considered as binary features, which are
either present or absent in a set A. Mathematically, μ(A) can then also be seen as an
integral of the indicator function of A, namely the function fA given by fA(c) = 1
if c ∈ A and = 0 otherwise. Now, suppose that f : C → R+ is any non-negative
function that assigns a value to each criterion ci; for example, f (ci) might be the
degree to which a candidate satisfies criterion ci. An important question, then, is
how to aggregate the evaluations of individual criteria, i.e., the values f (ci), into
an overall evaluation, in which the criteria are properly weighted according to the
measure μ . Mathematically, this overall evaluation can be considered as an integral
Cμ( f ) of the function f with respect to the measure μ .

Indeed, if μ is an additive measure, the standard integral just corresponds to the
weighted mean

Cμ( f ) =
m

∑
i=1

wi · f (ci) =
m

∑
i=1

μ({ci}) · f (ci) , (4)

which is a natural aggregation operator in this case. A non-trivial question, however,
is how to generalize (4) in the case where μ is non-additive.

This question, namely how to define the integral of a function with respect to a
non-additive measure (not necessarily restricted to the discrete case), is answered
in a satisfactory way by the Choquet integral, which has first been proposed for
additive measures by Vitali [23] and later on for non-additive measures by Choquet
[4]. In the discrete case, the Choquet integral is formally defined as follows:

Cμ( f ) =
m

∑
i=1

(
f (c(i))− f (c(i−1))

)
·μ
(
A(i)

)
,

where (·) is a permutation of {1, . . . ,m} such that 0 ≤ f (c(1)) ≤ f (c(2)) ≤ . . . ≤
f (c(m)) (and f (c(0)) = 0 by definition), and A(i) = {c(i), . . . ,c(m)}. In terms of the
Möbius transform of μ , the Choquet integral can also be expressed as follows:
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Cμ( f ) = ∑
T⊆C

m(T ) ·min
i∈T

f (ci) (5)

where T(i) =
{

S∪{c(i)}|S ⊂ {c(i+1), . . . ,c(m)}
}

.

3 The Choquet Integral as a Tool for Classification

As mentioned earlier, the Choquet integral has been used as a tool for different types
of machine learning problems. In the following, we focus on the setting of binary
classification, where the goal is to predict the value of an output (response) variable
y ∈ Y = {0,1} for a given instance represented in terms of a feature vector

x = (x1, . . . ,xm) ∈ X = X1 ×X2 × . . .×Xm

More specifically, the goal is to learn a classifier L : X → Y from a given set of
(independent and identically distributed) training data

D =
{
(x(i),y(i))

}n

i=1
⊂ (X ×Y )n (6)

so as to minimize the risk

R(L ) =

∫

X ×Y
�(L (x),y)dPXY (x,y) , (7)

where �(·) is a loss function (e.g., the simple 0/1 loss given by �(ŷ,y) = 0 if ŷ = y
and = 1 if ŷ 	= y).

In this context, the predictor variables (features) play the role of the criteria ci ∈C.
The Choquet integral can be used in order to model nonlinear dependencies between
these variables and the response, thus taking interactions between predictors into
account while preserving monotonicity in each individual feature. This can be done
in different ways. In the following, we propose a model that can be seen as an
extension of logistic regression.

3.1 Choquistic Regression

The key idea of the method of “choquistic regression” as proposed in [8] is to model
the log-odds ratio between the positive (y = 1) and the negative (y = 0) class as
a function of the Choquet integral of the input attributes; thus, the affine function
x 
→ w0+w�x modeling the log-odds ratio in standard logistic regression is replaced
by the Choquet integral. Formally, this leads to the following model:

πc
df
= P(y = 1 |x) = 1

1+ exp
(
− γ
(
Cμ( fx)−β

)) , (8)
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where Cμ( fx) is the Choquet integral (with respect to the measure μ) of the eval-
uation function fx : {c1, . . . ,cm} → [0,1] that maps each attribute ci to a value
xi = fx(ci); β ,γ ∈ R+ are constants. The value of xi is normalized in order to turn
each predictor variable into a criterion, i.e., a “the higher the better” attribute, and
to assure commensurability between the criteria [18].

The model (8) has several degrees of freedom, namely the fuzzy measure μ
(Möbius transform m = mμ ), the threshold β and the scaling parameter γ . The goal
of learning is to identify these degrees of freedom on the basis of the training data D .
Like in the case of standard logistic regression, it is possible to harness the maximum
likelihood (ML) principle for this purpose. The log-likelihood of the parameters can
be written as

l(m,γ,β ) = logP(D |m,β ,γ)

= log

(
n

∏
i=1

P(y(i) |x(i);m,β ,γ)

)
(9)

=
n

∑
i=1

y(i) logπ (i)
c +

(
1− y(i)

)
log
(
1−π (i)

c
)
.

This is a convex function with respect to m,γ , and β . The problem, now, is to max-
imize (9) while making sure that μ is a proper fuzzy measure. Formally, this leads
to the following constrained optimization problem:

max
m,γ,β

{
− γ

n

∑
i=1

(1− y(i))(Cm(x
(i))−β )

−
n

∑
i=1

log
(

1+ exp(−γ (Cm(x
(i))−β ))

)}

such that

0 ≤ β ≤ 1

0 < γ

∑
T⊆C

m(T ) = 1 (10)

∑
B⊆A\{ci}

m(B∪{ci})≥ 0 ∀A ⊆C, ci ∈ A (11)

4 Efficient Learning of 2-Additive Measures

Solving the above optimization problem is a non-trivial task and may become
computationally expensive, mainly due to the constraints on the fuzzy measure μ .
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In fact, since (11) needs to be satisfied for all subsets A ⊆ C, the number of these
monotonicity constraints is given by m2m−1 and thus grows exponentially with the
number of attributes.

In the following, we restrict ourselves to the specific case of 2-additive fuzzy
measures. This restriction is interesting for several reasons. In particular, one may
of course hope for a gain in terms of computational efficiency, and indeed, this is
the aspect that we shall focus on in the remainder of the paper. Besides, however,
let us mention that a restriction of this kind is also interesting from a learning point
of view: By allowing one to capture pairwise interactions between attributes, the 2-
additive case is a proper generalization of the linear model, while at the same time,
it is still reasonable in terms of the number of degrees of freedom. In fact, while the
number of parameters to be estimated is exponential (in the number of attributes)
in general, it is only quadratic in the 2-additive case. Practically, we could observe
that the high flexibility of the general model is rarely needed; on the contrary, it of-
ten leads to problems of over-fitting the data, thereby compromising generalization
performance.

Coming back to the computational aspect, the number of parameters to be es-
timated is indeed reduced, since m(A) = 0 for all A ⊆ C such that |A| > 2. On the
other hand, it is important to observe that the number of constraints does not reduce:
Although the number of summands in each of the constraints (11) becomes smaller
(since many of them are now 0), the number of constraints themselves remains the
same.

In the following, we shall therefore look for ways to exploit the simplified struc-
ture of the 2-additive case in order to reduce the number of constraints. More specif-
ically, we shall propose two alternative formulations of the constraint optimization
problem to be solved for ML estimation.

4.1 Alternative Formulation I

To simplify notation, let C = {1, . . . ,m} (instead of C = {c1, . . . ,cm}) and let M
denote the class of nonnegative monotone set functions on C, i.e., the class of func-
tions ν : 2C → [0,∞) such that ν(A) ≤ ν(B) for all A ⊆ B ⊆ C; for the time being,
we neglect the normalization condition (10), as it is less important for our purpose
(it constitutes a single constraint that must be added to the optimization problem in
order to turn a monotone measure into a fuzzy measure). More specifically, we are
interested in the subclass M2 ⊂ M of 2-additive measures ν , i.e., whose Möbius
transform satisfies mν(A) = 0 for all A ⊆C such that |A|> 2.

The following characterization is well-known (see, e.g., Proposition 1 in [16]):
ν ∈ M2 if and only if the following constraints Ci,X are satisfied for all i ∈ C and
X ⊆Ci =C \ {i}:

Ci,X : mi + ∑
j∈X

mi, j ≥ 0 , (12)
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where mi = mν({i}) and mi, j = mν ({i, j}). Note that the number of constraints (12)
is still exponential in m. Yet, we can show that they can be expressed equivalently
in terms of a smaller number of constraints (albeit at the expense of introducing
additional variables).

Proposition 1. Condition (12) is equivalent to the following condition: For all i∈C,
there exist αi, j , j ∈Ci, such that

αi, j ≥ 0

∑
j∈Ci

αi, j ≤ 1

mi ≥ 0

mi, j ≥−αi, j ·mi

(13)

Proof: Let ν ∈ M2 and suppose (12) to hold. For i ∈ C, (12) with X = /0 implies
mi ≥ 0. Now, define C−

i = { j ∈Ci |mi, j < 0}, C+
i = { j ∈Ci |mi, j ≥ 0}, and let

αi, j =

{
0 if j ∈C+

i|mi, j |
mi

if j ∈C−
i

Since (12) holds with X =C−
i , we have

∑
j∈C−

i

|mi, j| ≤ mi ,

and therefore

∑
j∈Ci

αi, j = ∑
j∈C−

i

αi, j = ∑
j∈C−

i

|mi, j|
mi

=
1
mi

∑
j∈C−

i

|mi, j| ≤ 1.

Moreover, mi, j ≥ −αi, j ·mi holds by definition, both for j ∈ C+
i and j ∈ C−

i . Thus,
condition (13) holds, and hence (12) implies (13).

Now, suppose that (13) holds. Then, mi ≥ 0 and for any /0 	= X ⊆Ci,

mi + ∑
j∈X

mi, j ≥ mi + ∑
j∈X

−αi, j ·mi

= mi −mi ∑
j∈X

αi, j

≥ mi(1− ∑
j∈X

αi, j)≥ 0

Thus, condition (12) holds, and hence (13) implies (12). Q.E.D.

As a consequence of the above result, the constraints (11) can be replaced by
the equivalent constraints (13). Thus, the number of constraints can indeed be re-
duced from exponential to quadratic, namely to 2m2 inequalities. On the other hand,



24 E. Hüllermeier and A.F. Tehrani

(13) also comes with a disadvantage: While the constraints (11) are all linear, some
of the constraints (13) are nonlinear (albeit convex); indeed, recall that the αi, j are
introduced as new variables that need to be determined simultaneously with the mi

and mi, j.

4.2 Alternative Formulation II

Our second reformulation of the problem is based on a theoretical result showing
that the class M2 or, more specifically, the class of normalized measures in M2 (i.e.,
those ν whose Möbius function additionally satisfies (10), forms a convex polytope.
The extreme points of this polytope are exactly those {0,1}-valued measures whose
Möbius transforms are of the form

mA(X) =

{
1 if X = A
0 otherwise

, A ∈ E

or of the form

m′
B(X) =

⎧
⎨
⎩

1 if /0 	= X � B
−1 if X = B

0 otherwise
, A ∈ E ′,

where E = {A ⊆C |1 ≤ |A| ≤ 2} and E ′ = {B ⊆ C | |B| = 2} [17]. In other words,
each feasible solution m can be written as a convex combination of these m2 extreme
points:

m = ∑
A∈E

αA ·mA + ∑
B∈E ′

α ′
B ·m′

B (14)

Consequently, the constraints (10–11) can be replaced by (14) in conjunction with
the following constraints:

αA ≥ 0

α ′
B ≥ 0

∑
A∈E

αA + ∑
B∈E ′

αB = 1

Like in our first reformulation, the number of constraints is thus significantly re-
duced, this time even without introducing nonlinearities, albeit again at the cost of
a quadratic number of additional variables. More concretely, we end up with m2

additional variables while reducing the number of constraints to m2 + 1.

5 Experiments

The collection of data for experimental evaluation is a bit hindered by the fact
that choquistic regression is a method for learning monotone models, i.e., mod-
els in which the probability of a positive output is an increasing function of each
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Table 1 Data sets and their properties

data set #instances #attributes source
1 Employee Selection (ESL) 488 4 WEKA
2 Employee Rejection/Acceptance (ERA) 1000 4 WEKA
3 Lecturers Evaluation (LEV) 1000 4 WEKA
4 CPU 209 6 UCI
5 Mammographic (MMG) 961 5 UCI
6 Car Evaluation (CEV) 1728 6 UCI
7 Auto MPG 392 7 UCI
8 Den Bosch (DBS) 120 8 [5]
9 Breast Cancer (BCC) 286 7 UCI

10 Social Workers Decisions (SWD) 1000 10 [6]

Table 2 Classification accuracy in terms of 0/1 loss (mean ± standard deviation derived from
10 repeats of 5-fold cross-validation)

data set CR-orig CR-AI CR-AII LR
ESL .0655± .0225 .0668± .0227 .0639± .0208 .0678± .0255
ERA .2908± .0312 .2880± .0292 .2907± .0312 .2873± .0275
LEV .1478± .0202 .1491± .0222 .1530± .0213 .1686± .0240
CPU .0241± .0223 .0244± .0197 .0196± .0236 .0672± .0346
MMG .1685± .0240 .1697± .0232 .1661± .0232 .1712± .0268
CEV .0743± .0127 .0835± .0120 .0726± .0135 .1382± .0170
MPG .0663± .0244 .0644± .0281 .0636± .0254 .0627± .0277
DBS .1413± .0715 .1330± .0648 .1130± .0645 .1472± .0573
BCC .3041± .0581 .2840± .0556 .3065± .0524 .3079± .0586
SWD .2186± .0187 .2169± .0276 .2143± .0225 .2202± .0244

input attribute. Data sets for which monotonicity of this kind is a reasonable assump-
tion are less frequent than standard classification data. Nevertheless, we managed to
collect 10 such data sets; Table 1 provides a summary of their main properties. Those
with a numerical or ordered categorical output were binarized by thresholding at the
median. Moreover, all input attributes were normalized.

Experimentally, we compared three versions of choquistic regression, the origi-
nal formulation from Section 3.1 (CR-orig), the first reformulation from Section 4.1
(CR-AI), and the second reformulation from Section 4.2 (CR-AII). To make the
implementations as comparable as possible, we applied the same solver to the dif-
ferent optimization problems, namely the fmincon function implemented in the
optimization toolbox of Matlab. This function provides a method for constrained
nonlinear optimization based on sequential quadratic programming.

In terms of classification accuracy, the different implementations of choquistic re-
gression should perform exactly the same, at least theoretically, because they seek
to maximize the same likelihood function under different but equivalent constraints.
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Table 3 Runtime complexity of the alternative implementations on different data sets (name,
number of attributes, number of instances) measured in terms of CPU time (mean ± standard
deviation in seconds) for different sample sizes (in % of the complete data set)

data CR 20% 40% 60% 80% 100%

ESL orig 0.26±0.05 0.31±0.02 0.38±0.02 0.45±0.13 0.63±0.05
4 AI 0.41±0.13 0.50±0.07 0.68±0.13 0.80±0.17 1.05±0.18
488 AII 0.31±0.09 0.39±0.07 0.50±0.06 0.61±0.04 0.70±0.04

ERA orig 0.23±0.03 0.36±0.01 0.50±0.02 0.63±0.01 0.78±0.02
4 AI 0.53±0.10 0.90±0.08 1.06±0.16 1.20±0.20 1.35±0.18
1000 AII 0.31±0.05 0.52±0.07 0.70±0.09 1.12±0.14 1.32±0.16

LEV orig 0.34±0.04 0.55±0.05 0.71±0.04 0.88±0.07 1.03±0.07
4 AI 0.96±0.23 1.41±0.21 1.84±0.24 2.25±0.18 2.50±0.19
1000 AII 0.49±0.07 0.76±0.05 1.04±0.10 1.68±0.15 1.90±0.14

CPU orig 0.77±0.18 1.95±3.39 3.37±5.42 6.9±8.97 14.23±11.33
6 AI 1.85±0.22 2.56±0.52 2.79±0.71 3.42±0.18 6.11±2.71
209 AII 0.50±0.31 1.28±0.24 1.33±0.29 1.68±0.56 2.06±0.66

MMG orig 0.39±0.15 0.56±0.06 0.79±0.12 0.95±0.09 1.07±0.11
6 AI 1.19±0.24 1.77±0.47 2.06±0.61 2.71±1.60 3.24±1.96
961 AII 0.52±0.13 0.83±0.11 1.13±0.10 1.54±0.18 1.78±0.19

CEV orig 2.45±0.24 3.84±0.38 5.09±0.41 5.79±0.51 6.74±0.41
6 AI 5.36±0.55 7.53±1.00 9.89±0.96 11.93±2.83 13.72±2.56
1728 AII 2.11±0.33 3.68±0.31 5.23±0.52 6.88±0.59 7.88±0.58

MPG orig 1.83±0.71 2.15±0.62 2.69±0.59 3.18±0.54 3.45±0.65
7 AI 2.58±0.32 2.54±0.66 3.46±0.89 3.84±0.75 4.15±0.92
392 AII 0.61±0.21 0.72±0.12 0.95±0.24 1.02±0.19 1.3±0.13

DBS orig 5.68±1.11 5.36±1.23 5.61±1.02 5.59±0.72 5.47±1.05
8 AI 2.51±1.81 2.88±1.29 3.03±1.42 3.17±0.96 4.08±1.10
120 AII 0.71±0.19 0.78±0.34 0.76±0.18 0.82±0.12 0.91±0.13

BCC orig 1.22±0.56 1.10±0.27 1.19±0.23 1.47±0.38 1.47±0.25
9 AI 2.29±1.09 2.04±1.52 2.16±0.95 2.88±2.5 2.97±2.30
286 AII 0.47±0.24 0.47±0.06 0.55±0.55 0.66±0.11 0.78±0.07

SWD orig 292.4±31.1 382.8±42.24 371.3±12.67 394.0±36.62 427.5±36.62
10 AI 17.9±13.4 27.82±12.13 32.11±10.10 32.35±10.05 33.14±10.77
1000 AII 4.7±0.71 8.80±1.34 13.01±1.44 18.24±2.21 22.66±1.73

Practically, of course, different formulations of the optimization problem will yield
slightly different solutions, although these differences should be small. This expec-
tation is confirmed by the result of a 5-fold cross validation, which is summarized in
Table 2; this table also shows results for standard logistic regression (LR) as a baseline.
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What we are of course most interested in is the runtime performance of the dif-
ferent implementations, which we measured in terms of CPU usage.1 The results,
which are summarized in Table 3, convey a quite clear picture: While the original
implementation CR-orig is superior or at least competitive for data sets with up to
6 attributes, it is visibly outperformed by the alternative formulations for m > 6 at-
tributes, and the difference in runtime rapidly increases with m. This is in agreement
with our expectations: An exponential number of constraints is no big obstacle pro-
vided the number of attributes is small. In this case, a reduction from exponential
to quadratic does not compensate for the additional overhead caused by introducing
new variables. Due to the exponential growth of the number of constraints in CR-
orig, however, this situation quickly changes in favor of CR-AI and CR-AII with
an increasing number of attributes; indeed, as can be seen from the SWD data, the
runtime of CR-orig becomes unacceptable as soon as m > 9.

This is also confirmed by another experiment we did with this data set: From the
total of 10 attributes, we randomly samples m ∈ {5,6, . . . ,10}, trained a CR model
on the data set reduced to these k attributes (using the tree methods CR-orig, CR-
AI and CR-AII) and measured the runtime. This was repeated many times and the
runtime was averaged. Fig. 1 shows this average runtime as a function of m.

Comparing the two alternatives CR-AI and CR-AII, it seems that the latter is
consistently faster, although the growth of the runtime as a function of m is in both
cases much more moderate than for CR-orig. Again, this is not unexpected against
the background of the results from the previous section.
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Fig. 1 Average runtime on the SWD data as a function of the number of attributes included

6 Discussion

Our experimental results are in complete agreement with the theoretical complexity
(in terms of the number of constraints and the number of variables involved) of the
optimization problems. Thus, learning the Choquet integral for classification can
indeed be made more efficient by exploiting the special structure of the problem

1 Experiments were carried out on an Intel Core(TM) i7-2600 CPU with 3.40GHz and 8 GB
RAM under Windows 7.
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in the case of 2-additive fuzzy measures, essentially reducing the complexity from
exponential to quadratic in the number of attributes.

In order to compare the different variants of the problem (CR-orig, CR-AI, CR-
AII), we decided to use a rather general optimization method that can handle all
of them without the need for specific adaptations. An interesting alternative, of
course, is to implement each of the variants individually and as efficiently as possi-
ble, seeking for a more specialized solver that allows for exploiting the respective
problem structure in an optimal way. In particular, this appears to be important for
a more thorough comparison of the two alternatives we proposed, respectively, in
Sections 4.1 and 4.2.

Theoretically, CR-AII seems to be advantageous to CR-AI, and indeed, the ex-
perimental results are in agreement with this presumption. Nevertheless, the refor-
mulation in Section 4.1 should not be abandoned rashly. First, as just mentioned,
it might be possible to improve its efficiency by means of specialized optimization
techniques; one may think, for example, of an alternating optimization scheme in
which, repeatedly, the αi, j are fixed while the mi, j are optimized and vice versa,
thereby circumventing the issue of nonlinearity.

Moreover, CR-AII might be more amenable for a generalization to the case of
k-additive measures, k > 2. In this regard, the second approach is arguably difficult:
Firstly, it is known that for k > 2, the extreme points of the convex polytope of
k-additive measures are not all {0,1}-valued. Secondly, and more importantly, the
number of these extreme points is expected to grow extremely fast, knowing that
the number of extreme points of the polytope of additive measures on m variables
grows like the sequence of Dedekind numbers [15].
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