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Abstract. In the first part of this article, the main results from applying data mining
methods and algorithms to spatial precision agriculture data sets will be outlined.
In particular, the task of yield prediction will be handled as a spatial regression
problem. To account for the spatial nature of the data sets, a few modeling pitfalls
resulting from spatial autocorrelation will be tackled. Based on a cross-validation
approach, the yield prediction setting will be used to determine spatial variable im-
portance. Another task called management zone delineation will be briefly outlined.
A novel hierarchical spatially constrained clustering algorithm will be presented
which aims to provide a tradeoff between spatial contiguity of the resulting clusters
and cluster similarity. These two tasks are a summary of [26]. In the second part of
this article, the emerging field of environmental data mining will be briefly laid out.

1 Introduction

While the (spatial) data sets around us grow rapidly, the tools and algorithms to
match those data sets are struggling to keep up. While geographical information
systems and location-based services are rapidly expanding, the agricultural sector
is currently experiencing an influx of information technology, mostly based on the
global positioning system and technological advances in sensors and data aggrega-
tion. However, even precision agriculture is still in its infancy and requires novel
data mining tools and algorithms adapted for the special spatial data sets.

Agricultural companies nowadays harvests not only crops but also growing
amounts of data. These data are site specific – which is essentially why the combina-
tion of GPS, agriculture and data has been termed site-specific crop management. A
large amount of information about the soil and crop properties enabling a higher
operational efficiency is often contained in these spatial data sets – appropriate
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techniques should therefore be applied to find this information. This is a rather
common problem for which the term data mining has been coined. Data mining
techniques aim at finding those patterns in the data that are both valuable and in-
teresting for crop management. This article primarily summarizes the author’s two
main lines of research. Furthermore, it extends the work on data mining in preci-
sion agriculture towards a broader scope on environmental data mining. The first
two parts shortly recapitulate existing work based mainly on [27] and [25].

2 Data Description

The data available in this work were collected during the growing season of 2007
on three sites south of Köthen, Germany. The data for the sites, called F440, F611
and F631, respectively, were interpolated using kriging [30] to a grid with 10 by 10
meters grid cell sizes. Each grid cell represents a record with all available informa-
tion. The fields grew winter wheat. Nitrogen fertilizer (N) was applied three times
during the growing season. Overall, for each field there are six input attributes, ac-
companied by the respective current year’s yield (2007) as the target attribute. In
total, there are 6446 (F440), 4970 (F611) and 7875 records (F631).

Yield is measured in metric tons per hectare ( t
ha ), along the harvesting lanes

(spaced 8 m apart), roughly every ten meters. Apparent electrical soil conductiv-
ity (EC25) as a measure for a number of soil properties is acquired. Satellite or
aerial image processing provides a measure of vegetation called the red edge inflec-
tion point (REIP) value, at two points into the growing season (REIP32, REIP49),
according to the growing stage defined in [17]. The REIP value may also be used di-
rectly for guiding fertilizations [10]. A simplified assumption is that a higher REIP
value means more vegetation. Three nitrogen fertilizer dressings are applied (N1,
N2, N3, in kg

ha ). In the available data, due to the fields being experimental agricul-
ture sites, the nitrogen dressings were not temporally autocorrelated. However, this
phenomenon may be considered in production sites. EC, REIP and N are measured
in 10-m-intervals along the lanes which are spaced 24 meters apart.

3 Spatial Cross-Validation and Regression

According to [9], spatial autocorrelation is the correlation among values of a single
variable strictly attributable to the proximity of those values in geographic space,
introducing a deviation from the independent observations assumption of classical
statistics. Given a spatial data set, spatial autocorrelation can be determined using
Moran’s I ([18]) or semivariograms. For the data sets used in this article, each of the
attributes exhibits spatial autocorrelation. In practice, it is usually also known from
the data origin whether spatial autocorrelation exists. For further information it is
referred to, e.g., [3].

In previous articles using the above data, such as [28, 24], the main focus was
on finding a suitable regression model to predict the current year’s yield sufficiently
well. However, the used regression models, such as neural networks [28, 29] or
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support vector regression [24], among others, generally assume statistical indepen-
dence of the data records. However, with the given geo-tagged data records at hand,
this is clearly not the case, due to (natural) spatial autocorrelation. Therefore, the
spatial relationships between data records have to be taken into account.

Due to the shortcomings in classical regression and cross-validation learning
approaches when using them on spatial data, this section will present a novel re-
gression model for data sets which exhibit spatial autocorrelation. In non-spatial
regression models, data records which appear in the training set are not supposed
to appear in the test set during a cross-validation learning setup. Classical sampling
methods do not take spatial neighborhoods of data records into account. Therefore,
the above assumption may be rendered invalid when using non-spatial models on
spatial data. This inevitably leads to overfitting and underestimates the true pre-
diction error of the regression model (compare [1, 2] for similar observations in a
classification context). Therefore, the main issue is to avoid having neighboring or
the same samples in training and testing data subsets during a cross-validation learn-
ing approach. The basic idea therefore is to apply changes to the resampling method
and keep the regression modeling techniques as-is. The resulting procedure can be
seen as spatial cross-validation technique.

Traditionally, cross-validation for regression randomly subdivides a given data
set into two or three parts: a training set, (optionally a validation set) and a test set. A
10- to 20-fold cross-validation is usually considered appropriate to remove bias [14].
The regression model is trained on the training set until the prediction error on the
validation set starts to rise. Once this happens, the training process is stopped and
the error on the test set is reported for this fold. This procedure is repeated r times to
remove a possible sampling bias. In our case, r has been empirically determined as
100. Instead of sampling randomly from the data set to generate the training and test
sets, a clustering step is inserted. A simple k-Means clustering on the data records’
x/y-coordinates yields a spatial tessellation of the site under study. The sub-areas of
the site are roughly the same size on typical sites. Once the tessellation exists, the
cross-validation samples randomly from the sub-areas rather than from the whole
data set. The regression is then performed on the data records within the sampled
sub-areas. Since k-Means is sensitive to initialization, the clustering is repeated r
times.

The spatial clustering procedure may thus be considered as a broader definition
of the standard cross-validation setup. This can be seen as follows: when refining the
clustering further, the spatial zones on the field become smaller. The border case is
reached when the field is subdivided into as many clusters as there are data records,
i.e. each data record describes its own cluster. In this special case, the advantages
of spatial clustering are lost since no spatial neighborhoods are taken into account
in this approach. Therefore, the number of clusters should be seen as a tradeoff
between predictive precision and statistical validity of the model. The parameter k
for the size of the tessellation has to be determined heuristically.

In previous work ([24, 28]), numerous regression modeling techniques have been
compared on similar data sets to determine which of those modeling techniques
works best. Support vector regression has been determined as the best modeling
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technique. It has furthermore recently been shown to work rather successfully in
spatial classification tasks, albeit without spatial cross-validation, as in [21]. Hence,
in this work support vector regression will serve as a benchmark technique against
which further models will have to compete. The techniques and the respective R
packages used here are support vector regression (e1071), regression trees (rpart),
random forests (randomForest), bagging with trees (ipred). The models’ perfor-
mance is measured via the root mean squared error (RMSE) between actual value
and predicted value.

The results in Table 1 confirm that the spatial autocorrelation inherent in the data
set leads classical, non-spatial regression modeling setups to a substantial underes-
timation of the prediction error. This outcome is consistent throughout the results,
regardless of the used technique and regardless of the parameters. Furthermore, it
can be seen that Random Forests seem to yield better performance in terms of lower
prediction error, regardless of the setup used. Moreover, the spatial setup can be
easily set to emulate the non-spatial setup: set k to be the number of data records in
the data set. Therefore the larger the parameter k is set, the smaller the difference
between the spatial and the non-spatial setup should be. This assumption also holds
true for almost all of the obtained results.

Table 1 Results of running different setups on the data sets F440 and F611; comparison
of spatial vs. non-spatial treatment of data sets; root mean squared error in t/ha is shown,
averaged over clusters/folds; k is either the number of clusters in the spatial setup or the
number of folds in the non-spatial setup. The average yield is around 8-10 t/ha.

F440 F611
k spatial non-spatial spatial non-spatial

Support Vector Regression 10 1.06 0.54 0.73 0.40
20 1.00 0.54 0.71 0.40
50 0.91 0.53 0.67 0.38

Regression Tree 10 1.09 0.56 0.69 0.40
20 0.99 0.56 0.68 0.42
50 0.91 0.55 0.66 0.40

Random Forest 10 0.99 0.50 0.65 0.41
20 0.92 0.50 0.64 0.41
50 0.85 0.48 0.63 0.39

Bagging 10 1.09 0.59 0.66 0.42
20 1.01 0.59 0.66 0.42
50 0.94 0.58 0.65 0.41

4 Management Zone Delineation with HACC-Spatial

The second task in precision agriculture which is summarized in this article is man-
agement zone delineation. In brief, it aims to generate a subdivision of the site under
study into homogeneous zones which are, to a certain degree, contiguous in space.
Further details can be acquired from [25]. From a data mining point of view, this task
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is essentially a clustering challenge where a specific constraint (spatial contiguity)
must be taken into account accordingly.

The underlying idea of HACC-SPATIAL is to adapt hierarchical agglomerative
clustering (HAC) for spatial data sets. In HAC, the clustering of arbitrary objects
starts with each object in a single cluster. Consecutively, two clusters are merged
into one new cluster: the decision which clusters to merge is often done based on
cluster similarity or distance, using an appropriate distance measure. Furthermore,
constraints have been introduced into HAC, leading to hierarchical agglomerative
constrained clustering (HACC): the decision which clusters to merge is not only
done based on the similarity, but also according to constraints which can have two
types. The first is a must-link constraint, which means that two clusters belong into
one cluster. The second is of the opposite cannot-link constraint, which determines
that two clusters must not be merged. The idea of HACC-SPATIAL is now to use
a cannot-link constraint to enforce spatial contiguity of the resulting clusters. Fur-
thermore, in the beginning of the clustering the algorithm strictly enforces spatial
contiguity due to the constraint, while the constraint may be relaxed after a certain
threshold between adjacent and non-adjacent clusters is reached.

The cluster distance is determined in feature space, while the constraint ensures
spatial contiguity in geographic space. For lower-dimensional feature spaces, Eu-
clidean distance is used, while for higher dimensions, due to the curse of dimen-
sionality, the Cosine distance may be used. The details of HACC-SPATIAL can be
obtained from [25].

To exploit spatial autocorrelation (which is typically present in precision agricul-
ture data sets) and reduce the computational burden, HACC-SPATIAL does not start
directly with each data object in a single cluster. Instead, it can safely be assumed
that a few spatially adjacent data objects are similar enough to be put into an initial
cluster. To achieve this initial clustering, a round of k-Means clustering is applied
initially to the spatial coordinates of the data objects. Depending on the heterogene-
ity of the site, the number of initial clusters in the tessellation which is generated by
k-Means should be set in a range of around 100 to N, where N is the number of data
objects to be clustered.

4.1 Results on Different Precision Agriculture Data Sets

The two variables from two actual sites which HACC-SPATIAL will be applied to
are depicted in Figure 1. While the REIP value alone has no practical use in this
zone delineation task, it certainly is of major importance in other YIELD-related
tasks. The experiments are designed such that the algorithm’s results can be easily
visually compared with the actual variable under study. Practically, zone delineation
is often done using the EC variable.

4.1.1 F631

A result demonstrating the different settings of the contiguity parameter is presented
in Figure 2, where the variable EC25 of the F631 field is used for management zone
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Fig. 1 F631: EC25, F440: REIP32. The spatial distribution of the EC25 and the REIP32 vari-
ables clearly exhibits spatial autocorrelation. In the bottom figure, strips of data are missing,
while the underlying distribution can still be identified by a human. An appropriate clustering
algorithm has to be developed to generate management zones from this variable.

delineation. The field is initially tessellated into 250 clusters and the clustering is
run with low and high contiguity settings to compare the results. Clustering with low
spatial contiguity yields mostly non-contiguous clusters (as expected) until spatially
contiguous clusters start emerging towards the very end of the clustering (Figure 2e).
On the other hand, clustering with high spatial contiguity starts showing emergent
clusters after around 200 merging steps (Figure 2b) and subsequent clusters clearly
correspond to the actual variable value (Figure 1a). The clusters are not limited
to convex shapes and account for the irregular shape of the field (missing data,
irregular borders, “holes”). If the clustering in Figure 2f is deemed too coarse, the
hierarchically structured clustering easily allows for subdividing single clusters by
traversing the dendrogram.

4.1.2 F440

In the preceding sections, the main purpose was to show the effect of enforcing or
neglecting spatial contiguity throughout the clustering. This was achieved by set-
ting the contiguity ratio threshold accordingly. A direct comparison of the results
of HACC-SPATIAL when applied to the same input data is provided here. Figure 3
shows the REIP32 variable on the F440 field, clustered by HACC-SPATIAL, show-
ing the stage at which 15 clusters are left. While Figure 3a shows almost no visible
spatial contiguity, this changes gradually towards Figure 3d where the clusters are
clearly spatially contiguous.
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Fig. 2 HACC-SPATIAL on F631, using the variable EC25 (cp. Figure 1a on Page 268), start-
ing with 250 clusters. Clustering with low (left figures) and high (right figures) spatial conti-
guity shows considerable differences in the spatial structure of the resulting clusters. At low
spatial contiguity the algorithm starts producing visible spatially contiguous clusters only to-
wards the end of the clustering (e), while spatially contiguous clusters start emerging much
earlier when clustering with high spatial contiguity (b).
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Fig. 3 HACC-SPATIAL on F440, 120 initial clusters, using the REIP32 variable and demon-
strating the effect of different spatial contiguity settings. While (a) shows spatially rather
scattered clusters, the change in the designed contiguity ratio threshold varies the spatial con-
tiguity of the clusters until spatial contiguity is strictly enforced in Figure (d).

4.2 Clustering Summary

Based on both the practical and the theoretical need for an efficient and under-
standable algorithm for management zone delineation in precision agriculture, a
novel algorithm HACC-SPATIAL has been devised. It is able to exploit spatial au-
tocorrelation in the precision agriculture data and successfully extends hierarchical
agglomerative constrained clustering towards spatial data sets. An algorithmic de-
scription and results on one-dimensional spatial data sets have been presented. The
main parameter contiguity threshold has been experimentally validated and shown
to be successful in three practical data sets.
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5 Environmental Data Mining

The original definition of data mining within the process of knowledge discov-
ery in databases by [6] described it as “the nontrivial process of identifying valid,
novel, potentially useful, and ultimately understandable patterns in data”. The data
collected in environmental sciences such as ecology, geology, remote sensing and
agriculture are by their very nature spatial and/or temporal which are important ad-
ditional properties when it comes to data mining. Hence, it is proposed to extend the
above definition towards environmental data mining as follows:

Environmental Data Mining is the nontrivial process of identifying valid, novel, poten-
tially useful and ultimately understandable patterns in spatial and temporal data from
environmental sciences.

Many of the developed techniques in data mining, though not particularly adapted
for the specifics of environmental data sets, are rather flexible. They can often be
tailored to fit environmental data, such as the regression and clustering problems
presented in this article. Introductions to this increasingly active field can be found
in [8], [13], [12] and [7].

Given the classicals tasks of classification and regression, especially the work in
ecology has started around the year 2000, ranging from neural networks [15] over
bayesian statistics and belief networks [16] to bagging and random forests [22],[1],
[2]. The related task of clustering in environmental data sets has a history that dates
back to 1990 [5], with numerous further applications of fuzzy clustering, such as
in agriculture [19] and remote sensing [20]. A third frequent task in classical data
mining is association analysis, which has also been introduced into ecology [31],
remote sensing [11] and agriculture [4], among others.

With those prerequisites, the term environmental data mining encompasses most
of the existing work under a common umbrella term, while distinctively combining
the fields of environmental sciences and data mining.
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