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Abstract. Graphical models are of high relevance for complex industrial applica-
tions. The Markov network approach is one of their most prominent representatives
and an important tool to structure uncertain knowledge about high-dimensional do-
mains in order to make reasoning in such domains feasible. Compared to condition-
ing the represented probability distribution on given evidence, the important belief
change operation called revision has been almost entirely disregarded in the past, al-
though it is of utmost relevance for real world applications. In this paper we focus on
the problem of inconsistencies during revision in Markov networks. We formally in-
troduce the revision operation and propose methods to specify, identify, and resolve
inconsistencies. The revision and its inconsistency management has proven to be
successful in a complex application for item planning and capacity management in
the automotive industry at Volkswagen Group.

1 Introduction

Today’s scientific and economic problems are often characterised by a large num-
ber of variables. With a sufficiently high number of variables, the complexity of
these problems grows quickly, so that analyses and reasoning processes become in-
creasingly difficult. For this reason, lossless or approximating decomposition tech-
niques are often necessary in order to efficiently cope with high dimensionalities.
Decomposition is achieved by making use of (conditional) independencies between
variables. Graphical models [15, 12, 1] have established themselves as one of the
most popular tools to structure uncertain knowledge in this way, so that inference
becomes feasible [14, 9]. Their most prominent representatives are Bayesian net-
works [14], which are based on directed graphs and conditional probability distri-
butions, as well as Markov networks [13], which refer to undirected graphs and
marginal probability distributions or factor potentials.
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When dealing with graphical models several non-trivial operations have to be
considered. For the first step of knowledge representation, one needs learning [4, 11]
and data fusion algorithms to get an appropriate structure and the initial distribu-
tions of a network. Further knowledge processing on a given network is realized,
for example, by information retrieval, belief change, and inference operations, re-
spectively [3, 4, 5].

The most discussed knowledge processing operation in the field of probabilistic
graphical models is focusing, which can be achieved by performing any kind of
evidence-driven conditioning on a set of input variables and propagating the new
information. Instantiation of variables as it is usually implemented in diagnostic
tools, can be considered as a special case of this operation, with all the probability
mass assigned to one value per given variable.

It is surprising that other essential operations well-known from uncertainty man-
agement in knowledge-based systems seem to be overlooked in the scientific com-
munity of graphical modeling: They concern the two almost complementary opera-
tions of revision and updating, respectively. Compared to focusing, these operations
are not restricted to pure information retrieval and simulation aspects, but reflect the
task of belief change.

Revision refers to an alteration of the represented probability distribution within
the frame of an existing model structure, i.e. although the probability of a state
(element of the common domain) may be changed in the revision process, it is re-
quired that forbidden states (having a zero probability) do not change. Revision is
performed by locally introducing new distributions into the Markov network. Like
with focusing, local modifications of distributions are propagated. But in contrast
to the operations used in information retrieval, changes made during revision are
permanent, as the modified distributions replace those already stored in the model.
The alterations to the model are the least ones required to integrate the new proba-
bility assignments. Therefore the maximum of the probabilistic interaction structure
already represented in the model is preserved, which coincides with the so-called
principle of minimal change [5].

If multiple local distributions in the network have to be modified, the desired
revision is achieved by propagating the new assignments one after another (itera-
tive proportional fitting [15]). Since any local change may affect other areas in the
model, processing one of the assignments may invalidate part of the models’ adap-
tations to previous assignments in the sequence. However, by iterating the process
the model will often converge to a state of stable compromise, consistent with all
assignments.

Nevertheless, if the assignments are in conflict with each other or affect zero
probabilities of the initial distribution, the whole revision process will remain unsta-
ble and equilibrium cannot be achieved. In the first case there can be no consistent,
accurate and complete model for contradictory evidence. In the latter case a solution
can be achieved by applying an updating operator.

Updating is complementary to a revision operation in the sense that this oper-
ation locally introduces a new probabilistic interaction structure to a model, which
means that it changes probabilities from zero to positive values and therefore defines
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new probabilistic dependencies between the involved variables. For this reason, it
does, of course, not follow the principle of minimal change.

In the following contribution we focus our interest on the topic of handling in-
consistencies in revision problems. The underlying research was triggered by an
application at the automobile manufacturer Volkswagen Group, where ISC Geb-
hardt established Markov networks for the development of a world-wide software
system for item planning and capacity management [2, 7, 6].

The paper is structured as follows: Section 2 introduces the complex item plan-
ning problem. In Section 3 we establish definitions to specify and define the revi-
sion problem. We discuss revision and identify inconsistency problems which may
arise. In Section 4 we focus on inconsistencies, thereby differentiating between in-
ner and outer consistency. Furthermore we introduce the degree of inconsistency of
a revision problem. Finally, in Section 5 we present practical solutions to handle
inconsistencies in a complex domain.

2 Real-World Application

2.1 Item Planning at Volkswagen Group

In contrast to many competing car manufacturers, Volkswagen Group favours a
marketing policy that provides a maximum degree of freedom in choosing individ-
ual specifications of vehicles. That is, considering personal preferences, a customer
may select from a large variety of options, each of which is taken from a so-called
item family that characterises a certain line of equipment. Body variants, engines,
gearshifts, door layouts, seat coverings, radios and navigation systems reflect only
a small subset of the whole range of item families. In case of the VW Golf – Volk-
swagen’s most popular car class – there are about 200 families with typically 4 to 8
values each, and a total range of cardinalities from 2 up to 150.

Of course, not all of the possible instantiations of item variables lead to valid
vehicle configurations, since technical rules, restrictions in manufacturing and sales
requirements induce a common rule system that limits the item combinations. Nev-
ertheless, dealing with more than 10,000 technical rules in the Golf class and even
more rules delivered by the sales programs for the special needs of different coun-
tries, there remains a huge number of correct vehicle specifications. In fact, com-
pared to a total of 910,000 Golf cars in 2011, one can find only a small number of
vehicles within the whole production line that have identical specifications.

The major aim of the productive system EPL (EigenschaftsPLanung, German
for item planning) at Volkswagen Group was the development and implementation
of a software solution that supports item planning, parts demand calculation, and
capacity management with the aim of short-term as well as medium-term forecasts
up to 24 months of future vehicle production.

In order to achieve high quality of planning results, all relevant information
sources have to be considered, namely rules for the correct combination of items
into complete vehicle specifications, samples of produced vehicles as a reflection of
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customers’ preferences, market forecasts that lead to revision assignments of modi-
fied item rates for planning intervals, capacity restrictions, and production programs
that fix the number of planned vehicles.

With respect to the logistics view, the most essential result to assess of the item
planning process are the rates of all those item combinations that are known to be
relevant for the demand calculation of parts, always related to a certain vehicle class
in a certain planning interval. The importance of these item combinations arises
from the fact that a vehicle can be interpreted as a large set of installation points,
each of which is characterised by a set of alternative parts for the corresponding
location. Which of the alternative parts has to be chosen at an installation point
depends on its installation condition that can be specified by an item combination.
Of course, at each installation point, all occurring installation conditions have to be
disjoint, and their disjunction has to form a tautology. That is, given any correct
vehicle specification, for each installation point we obtain a unique decision which
of its alternative parts has to be used.

In the context of the Golf class, we find a total of about 70,000 different item
combinations required as installation conditions for the whole set of installation
points. The data structure that lists all installation points, their installation condi-
tions, and the quantities of the referenced parts, is called a variants-related bill of
material. The task of predicting the total demand of a certain part with respect to a
future planning interval is to sum up the demands over all of its installation points.
The demand at any installation point results from multiplying the rate of the item
combination that represents its installation condition with the quantity and the total
number of vehicles intended to be produced in the respective planning interval.

We conclude that calculating parts demand is reduced to a simple operation,
whenever the rates of all involved item combinations can be computed.

2.2 Markov Network Model and Revision Operator

The first step in the project EPL was to search for an appropriate planning model
that supports a decomposed representation of the qualitative and quantitative depen-
dency structure between item families. We had to take into account that we deal
with a finite set of discrete item variables, as well as that we get conditional inde-
pendences induced by the given rule systems and customers’ preferences.

Since logical rule systems can be transformed into a relational setting, and rates
for item combinations may be identified as (frequentistic or subjective) occurrence
probabilities within a large sample of historical or predictably valid vehicle spec-
ifications, Markov networks turned out to be the most promising environment to
satisfy the given modelling purposes.

Once a basic prior Markov network for a certain planning interval has been gen-
erated, it becomes subject to a variety of planning operations which involve mar-
keting and sales stipulations (e.g., installation rate of comfort navigation system
increases from 20 % to 35 %) and capacity restrictions from logistics (e.g., maxi-
mum availability of seat coverings in leather is 5,000). These quantitative input data
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are strongly related to the planning interval itself and therefore not learnable, nei-
ther from historical data nor from the non-probabilistic rule system. They typically
consist of predicted installation rates or absolute demands for single items, sets of
items, or (sets of) item combinations, and are frequently related to refined planning
contexts (e.g., VW Golf with all-wheel drive for the US market).

In mathematical terms, this sort of additional information leads to competing
partial or total changes of selected (conditional) low-dimensional probability dis-
tributions in the Markov network. Such changes can be interpreted as the basis for
a revision operation, where a prior state of knowledge (represented by the initial
Markov network) given new information (which is the new set of probability distri-
butions) is revised to a posterior state of knowledge. The new information is thereby
incorporated in the sense of the principle of minimal change [5].

In terms of the probabilistic framework, the task is to calculate a posterior
Markov network that satisfies the new distribution conditions, only accepting a
minimal change of the quantitative interaction structures of the underlying prior
distribution.

3 Revision in Markov Networks

Before starting the discussion about inconsistencies in Markov networks we need
to specify the revision problem and define its solution. Furthermore we reflect how
the proposed solution can be calculated and discuss which problems will arise dur-
ing the revision operation due to the complexity and human factor in real world
applications.

3.1 Definitions

Suppose that we are given a Markov network M = (H,Ψ ) which represents a joint
probability distribution P(V ) on a set V = {X1, ...,Xn} of variables with finite do-
mains Ω(Xi), i = 1, ...,n. We assume that H = (V,{C1, ...,Cm}) denotes a hypertree
of which the Ci are the (maximal) cliques and Ψ = (P(Cj))

m
j=1 a family of prob-

ability distributions defined on the (maximal) cliques of H. In this setting, H and
its associated undirected dependency graph G(H) reflect the conditional indepen-
dencies between the involved variables, and Ψ shows the resulting factorization
property P(V ) = ∏m

j=1 P(Cj)/P(S j), where S j symbolize the separators in some
representation of H as a tree of cliques.

In addition, let Σ = (σs)
S
s=1 be a so-called revision structure that consists of

revision assignments σs, each of which is referred to a (conditional) assignment
scheme (Rs|Ks) with a context scheme Ks, Ks ⊆ V , and a revision scheme Rs,
where ∅ �= Rs ⊆ V and Ks ∩Rs = ∅. We assume that σs is specified by a set of

assignment components P∗(ρ (k,l)
s |κ (k)

s ), where κs
(k) is called its context compo-

nent and ρs
(k,l) its revision component, respectively. The context components are

expected to specify a partitioning of Ω(Ks), and for each k ∈ {1, ...,k∗(s)}, the set
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{ρ (k,l)
s |l = 1, ..., l∗(s,k)} forms a partitioning of Ω(Rs). Hence, each revision assign-

ment specifies a modified probability distribution referred to the scheme (Rs|Ks),

separable into independent modifications of the distributions P(Rs|κ (k)
s ), given by

the assignment components P∗(ρ (k,l)
s |κ (k)

s ), l = 1, ..., l∗(s,k). In case of the empty
scheme Ks = ∅, we deal with an assignment of the (non-conditioned) probabilities

P∗(ρ (l)
s ).

Finally, we suppose that for all s = 1, ...,S there are cliques C(s) ∈ {C1, ...,Cm}
such that Ks ∪Rs ⊆ C(s). This guarantees that we do not have cross-over depen-
dencies between cliques, which may not be expressible in the structure of the given
Markov network.

Definition 1 (Solution of revision problems). Let M = (H,Ψ) be a Markov net-
work with associated joint probability distribution P(V ). Furthermore, let Σ =
(σs)

S
s=1 be a revision structure.

A probability distribution PΣ (V ) is called solution of the revision problem
(P(V ),Σ), if and only if the following conditions hold:

(R1) Revision assignments are satisfied:

(∀s ∈ {1, ...,S})(∀k ∈ {1, ...,k∗(s)})(∀l ∈{1, ..., l∗(s,k)})(
PΣ(ρ

(k,l)
s |κ (k)

s ) = P∗(ρ (k,l)
s |κ (k)

s )
)

(R2) Preservation of interaction structure:
Except from the modifications induced by the revision assignments, PΣ (V ) pre-
serves all probabilistic dependencies of P(V ) .

3.2 Discussion

Essentially, the required preservation of the interaction structure coincides with the
decision-theoretical presupposition that the revision operator does not modify the
cross product ratios of conditional events outside the influence areas of the revision
assignments (principle of minimal change).

It can be proven (see, f.e. [8]) that in case of existence, the solution of the re-
vision problem (P(V ),Σ) is uniquely defined. PΣ (V ) can be calculated as the limit
probability distribution if the revision procedure of iterative proportional fitting
with parameters Σ is applied to the initial distribution P(V ).

From a practical point of view, in most cases of real world applications of suf-
ficient complexity, we have to take into account that revision problems (P(V ),Σ)
specified by human experts are not solvable. The reason for this observation is
the fact that revision structures Σ = (σs)

S
s=1 tend to contradict some of the re-

strictions given by the zero values of the initial probability distribution P(V ). Note

that assignment components P∗(ρ (k,l)
s |κ (k)

s ) > 0 may induce to change some prob-
abilities P(ω) = 0 to a strictly positive value. This kind of modification is not
conform to the dependency preservation requirement of the revision operator, as
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zero probabilities show the absence of any interaction structure. Hence, a resulting
probability PΣ (ω) > 0 would introduce a new interaction structure, which is the
typical focus of the (in some sense complementary) updating operations.

Resulting probabilities PΣ(ω) > 0 may be introduced directly by only one revi-
sion assignment σs (which can be easily detected and coped with) or by any subset
of Σ . In the latter case the revision structure Σ contains inconsistencies which cannot
be detected and dealt with by trivial means. In order to deal with such inconsisten-
cies we need first to analyse their properties and categorise these inconsistencies.

4 Categorisation of Inconsistencies

As already mentioned in the previous section, inconsistencies may occur during
revision. Inconsistencies can be roughly classified into two categories. In this section
we will differentiate between inner and outer (in-)consistency. Inner consistency is
a property of a revision structure alone whereas outer consistency always depends
on the initial distribution P(V ), especially its zero values. Moreover, we introduce
inner and outer inconsistency criteria for revision problems which finally allows us
to determine the degree of inconsistencies.

4.1 Definitions

In order to handle the typical inconsistencies which arise during the revision, we
introduce the following definitions:

Definition 2 (Inner consistency). Let (P(V ),Σ) be a revision problem. A revision
structure Σ shows the property of inner consistency, if and only if there exists a
probability distribution that satisfies the revision assignments of Σ .

Note that this definition is conform to the condition (R1) of definition 1.

Definition 3 (Outer inconsistency). Let (P(V ),Σ) be a revision problem with the
property of inner consistency. (P(V ),Σ) shows the property of outer inconsistency,
if and only if there is no solution of this revision problem.

Definition 4 (ε-modification of a revision problem). Let (P(V ),Σ) be a revision
problem, and let ε be a (sufficiently small) positive real number. Furthermore, as-
signing r := |{ω ∈ Ω(V )|P(ω) = 0}|, let

Pε(ω)
D f
=

{
P(ω) · (1− rε), if P(ω)> 0

ε, if P(ω) = 0

Then, (Pε(V ),Σ), is called the ε-modification of (P(V ),Σ).

We now present some results that are useful for the recognition and handling of
inconsistencies of revision problems.
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4.2 Inner Inconsistencies

Theorem 1 (Inner inconsistency criterion for revision problems). A revision
problem (P(V ),Σ) shows the property of inner consistency, if and only if the revision
procedure (iterative proportional fitting) applied to its ε-modification (Pε(V ),Σ)
converges to a limit distribution PΣ

ε (V ).

Corollary 1 (Sufficient condition for revisability). In case of a strictly positive
distribution P(V )> 0 and inner consistency of its structrue Σ of assignments, there
always exists the uniquely determined solution PΣ (V )≡ PΣ

ε (V ) of the revision prob-
lem (P(V ),Σ).

To achieve inner consistency, one may restrict the revision structure Σ , so that it
fulfills the following conditions:

1. (∀s ∈ {1, ...,S})(∀t ∈ {1, ...,S})(s �= t ⇒ Rs ∩Rt =∅)
2. (∃(V,<))(∀s ∈ {1, ...,S})(ρ ∈ Rs ⇒ (∀κ ∈ Ks)(κ < ρ))

The first condition forbids that two different assignment components (with possibly
different context schemes) specify parts of the same revision scheme. The second
condition ensures that no cyclic dependencies between the assignment components
are possible.

However, these conditions for the revision structure are quite restricting: Con-
sidering the presupposed distinction of context and revision schemes (Ks ∩Rs = ∅)
as well as the inclusion of Ks ∪Rs in one of the cliques, it turns out that (1) and (2)
lead to a so-called chain graph which reflects the dependencies induced by the given
revision structure. This means that all dependencies of the involved variables may
be specified with the aid of a composition of directed acyclic graphs and undirected
graphs. For practical purposes, whenever possible, it is desirable to establish such
a dependency graph. An alternative is to use techniques of locating and removing
(inner) inconsistencies rather than preventing them (see section 5).

4.3 Outer Inconsistencies

Lemma 1 (Theoretical outer inconsistency criterion for revision problems).
Given the inner consistency of its structure Σ of assignments, we observe an outer
inconsistency of a revision problem (P(V ),Σ), if and only if

(∃ω ∈ Ω(V ))(P(ω) = 0 ∧ P∗(ω)> 0)

holds for all probability distributions P∗(V ) that satisfy the revision assignments
(R1).

Theorem 2 (Practical outer inconsistency criterion for revision problems).
Given the inner consistency of its structure Σ of assignments, we observe an outer
inconsistency of a revision problem (P(V ),Σ), if and only if
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(∃ω ∈ Ω(V ))(P(ω) = 0 ⇒ PΣ
ε (ω)>> Pε(ω))

is satisfied.

As a consequence, given inner consistency, the outer inconsistency proof for a par-
ticular revision problem (P(V ),Σ) can be obtained by application of the revision
procedure to the ε-modification (Pε(V ),Σ) of this revision problem, and testing the
limit distribution PΣ

ε (V ) with respect to the outer inconsistency criterion.

4.4 Degree of Inconsistencies

Further investigations on mass flows in inconsistency situations finally lead to the
following theorem that gives a basis to handle inconsistencies of non-solvable revi-
sion problems:

Theorem 3. Given the assumptions of the previous theorem, let

Inconsistent tuples(P(V),Σ)
D f
=

{
ω ∈ Ω(V )|P(ω) = 0 ∧PΣ

ε (ω)>> Pε(ω)
}

denote the set of all tuples that are involved in the outer inconsistencies of a revision
problem (P(V ),Σ). Then, this set consists of all invalid tuples ω that need significant
probability mass flows (quantified by PΣ

ε (ω)) from ω to any valid tuples in order to
remove the existing inconsistencies.

After inconsistent tuples are located one can determine the degree of the inconsis-
tency which is given by

Inconsistency mass(P(V ),Σ)
D f
= ∑

{
PΣ

ε (ω)|ω ∈ Inconsistent tuples(P(V ),Σ)
}
.

Inconsistency mass(P(V ),Σ) reflects the whole probability (inconsistency) mass
which has to be transferred to any tuples of Ω(V )− Inconsistent tuples(P(V ),Σ).

5 Practical Solutions to Handle Inconsistencies

With the analysis of inconsistencies from the last section one can identify the in-
consistent tuples and distribute the inconsistency mass to other tuples using the ε-
modification of a revision problem. However, applying the ε-modification makes it
necessary to hold in memory all tuples within the cliques Cj, even the tuples which
had a zero probability before. Note that in the original revision problem zero prob-
abilities do not need to be represented explicitly.

In our application domain the sizes of average cliques and largest cliques differ
among the automobil models. In typical automobile models (like the Golf class) the
largest cliques contain about 40,000 non-zero tuples, but the maximal theoretical
size1 of these cliques is greater than 1014, which makes it infeasible to apply the

1 Size of all tuples including the zero-value tuples.
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ε-modification to these cliques. Therefore practical solutions are needed to handle
inconsistencies.

The main idea for the practical solution presented in this paper is to prioritise and
group the revision assignments as well as apply several revisions2 with consistency
checking (and adaptation of revision assignments if necessary) until all revision
assignment groups are incorporated. With this strategy it is possible to locate and
remove all inconsistencies without the need to differentiate between inner and outer
inconsistencies anymore.

In the following we will speak about inconsistencies between revision assign-
ments. Please note that the intial distribution P(V ), especially its zero-values, is
always part of such inconsistencies but will be regarded as not adaptable to solve
inconsistencies and therefore P(V ) is not mentioned all the time.

5.1 Prioritising and Grouping the Revision Assignments

Given a potentially inconsistent revision problem (P(V ),Σ) one can often specify
which revision assignments σs are more important than others, so that in case of
an inconsistency between these revision assignments only the least important one
should be adapted.

However, sometimes it is impossible to decide which one of two revision as-
signments is more important. In fact it might be needed that two or more revision
assignments get the same priority. Such revision assignments are grouped together.
In case of an inconsistency within such a group all its revision assignments should
be adapted according to the principle of minimal change.

The set of revision assignments is divided into n partitions Si, so that Σ =
⋃n

i=1Si

and Si �=∅, Si ∩S j =∅ for any 1 ≤ i, j ≤ n with i �= j.

5.2 Iterative Revision with Consistency Checking

After the revision assignments are grouped and ordered we can start with an empty
set Σ0 which is consistent with the initial probability distribution P(V ). In each
iteration we take the consistent set Σi−1 (1 ≤ i < n) and perform a meta revision by
adding the revision assignments of Si. This meta revision results in a new consistent
set Σi where the revision assignments of Si are adapted (where necessary) to achieve
consistency with Σi−1.

Each meta revision operates using (up to) two phases. In the first phase a sin-
gle revision is performed on the set Σi−1 ∪ Si. If this revision converges, the set
is consistent, otherwise the revision assignments of Si introduce an inconsistency.
This inconsistency is resolved by applying partition mirrors to Si. By applying these
partition mirrors, the revision converges and the revision assignments σs ∈ Si are
adapted to σ∗

s if necessary. The main idea of partition mirrors is to mirror variables
into the network structure, couple the states of these variables to their origins by

2 For detailed information about a single revision step, please see [8].
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suitable initial distributions, and reformulate the assignments in order to set prob-
abilities to these new variables. For detailed information about partition mirrors
see [10].

After n steps every revision assignment has been tested for consistency with the
other revision assignments. In case of inconsistencies the least important revision
assignments have been adapted so that we finally have a consistent set Σn of revision
assignments.

The resulting algorithm reads:

i := 0; Σi :=∅; (∗ initializing empty set ∗)
repeat (∗ iterative meta revision ∗)
i := i+ 1 (∗ iteration counter increment ∗)
phase 1: test consistency

do single revision with Σi−1 ∪Si

if probability distribution converges:
Σi := Σi−1 ∪Si

else {
phase 2: applying partition mirrors

do single revision with Σi−1 ∪Si applying partition mirrors for Si

Σi := Σi−1 ∪S
∗
i where S∗i contains adapted revision assignments }

until i = n (∗ all revision assignments incorporated ∗)
The result of each iteration (meta revision) is a consistent set of revision assignments
Σi as well as a modified probability distribution PΣi(V ). The i-th meta revision can
be performed on either the initial probability distribution P(V ) or on the resulting
distribution of the prior iteration PΣi−1(V ). Using the resulting distribution of the
iteration before, one benefits from the already incorporated assignments Σi−1.

With highly inconsistent revision assignments it may be practical to skip phase
one of the meta revision and assume that the assignments in Si introduce a new
inconsistency. By skipping phase one, calculation time can be saved but the appli-
cation of partition mirrors also introduces additional calculation time.

If inconsistencies are rare it is possible to further group the revision assignments
so that the number of single revisions can be reduced. In case of an inconsistency
with a set

⋃
anyiSi, this set has to be divided again to locate the Si which introduces

the inconsistency.

6 Conclusion

In this paper we analysed inconsistencies which may occur during Markov network
revision. We identified two inconsistency categories, namely inner inconsistency
and outer inconsistency. With the help of the ε-modification of a revision problem
we analysed the differences and special properties of these two inconsistency cate-
gories. Consequently, it was possible to specify the degree of inconsistencies based
on the number of tuples involved as well as their probability mass. Not only theo-
retical considerations to identify and resolve inconsistencies are presented, although
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a practical approach to handle inconsistencies was proposed in this work. This ap-
proach is based on prioritising and grouping revision assignments so that iterative
revision operations can be used to identify and resolve inconsistencies efficiently.

Automatically resolved inconsistencies are very beneficial for the user since it
reduces the manual effort drastically. However, sometimes additional information
is needed in order to explain to the user why some assignments have been adapted.
Therefore an automatically generated explanation of inconsistencies would be very
helpful. Such an explanation could be determined in two steps. In the first step a
minimal set of revision assignments causing the inconistency could be generated. In
the second step an argumentation line could be given in order to explain the inconsis-
tency. The automatic explanation of inconsistencies seems to be more complicated
than expected (especially the second step). This task is subject to further research.
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