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Preface

Complex systems and their phenomena are ubiquitous as they can be found in
biology, finance, the humanities, management sciences, medicine, physics and sim-
ilar fields. For many problems in these fields, there are no conventional ways to
mathematically or analytically solve them completely at low cost. On the other hand,
nature already solved many optimization problems efficiently. Computational intel-
ligence attempts to mimic nature-inspired problem-solving strategies and methods.
These strategies can be used to study, model and analyze complex systems such
that it becomes feasible to handle them. Key areas of computational intelligence are
artificial neural networks, evolutionary computation and fuzzy systems. This vol-
ume contains a collection of papers dealing with computational intelligence in data
analysis.

Nowadays, as more and more data storage gets affordable with increasing band-
width and decreasing production costs of RAM or sensors, the amount of data is
rapidly growing, even faster than Moore predicted it for the speed of computers.
This is especially the case for complex systems as they are data intensive. Storing
the data only, however, does not solve real-world problems we might face. In fact,
the more data is stored, the harder it is for human beings to see useful regularities or
patterns. Therefore the research field of data analysis has been created and devel-
oped beautiful tools to find patterns in a huge amount of data. When these methods
are furthermore enhanced by human ideas and concepts that ensure interpretability,
soundness and applicability, we talk about intelligent data analysis.

As only a few researchers in that field, Rudolf Kruse has contributed in many
important ways to the understanding, modeling and application of computational
intelligence methods. In l996 he was appointed to a full professor position in the
Faculty of Computer Science at the Otto-von-Guericke University Magdeburg, Ger-
many. There he is the head of the computational intelligence group. Rudolf Kruse
has co-authored more than 30 books and 330 technical papers. He has the compe-
tence to develop beautiful theories which are typically applied to solve real-world
problems.



VI Preface

Recently, the research of Rudolf Kruse and his collaborators enabled new di-
rections in the fields of data mining and intelligent data analysis. Of particular im-
portance are his contributions to mainly four research areas. These are fuzzy data
analysis, hybrid intelligent systems, uncertainty in knowledge-based systems, and
intelligent data analysis. On occasion of his 60th birthday, we collected 20 origi-
nal papers in this volume of leading researchers in the field of computational in-
telligence. Among the authors are many former doctorates that were mentored by
Rudolf Kruse and also a couple of his research partners he collaborated with over
many years.

First of all, we express our gratitude to Janusz Kacprzyk who suggested to com-
pose this book. Janusz actually made it possible to publish it in the Springer series
Studies in Computational Intelligence.

Furthermore we are very thankful to all authors who accepted our invitation to
contribute a chapter to this volume. We are very grateful to all reviewers who helped
to improved the papers. Last not least, we thank the Springer-Verlag for the excellent
collaboration in publishing this book in time.

Magdeburg Christian Moewes
September 2012 Andreas Nürnberger
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Mario A. Muñoz, Michael Kirley, Saman K. Halgamuge

Neuro-fuzzy Systems: A Short Historical Review . . . . . . . . . . . . . . . . . . . . 91
Detlef D. Nauck, Andreas Nürnberger

Safe and Interpretable Machine Learning: A Methodological Review . . . 111
Clemens Otte

Science Visions, Science Fiction and the Roots of Computational
Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Rudolf Seising



VIII Contents

Part III: Uncertainty in Knowledge-Based Systems

Markov Network Revision: On the Handling of Inconsistencies . . . . . . . . 153
Jörg Gebhardt, Aljoscha Klose, Jan Wendler

Feedback-Driven Design of Normalization Techniques for Biological
Images Using Fuzzy Formulation of a Priori Knowledge . . . . . . . . . . . . . . 167
Arif ul Maula Khan, Markus Reischl, Brigitte Schweitzer, Carsten Weiss,
Ralf Mikut

Part IV: Intelligent Data Analysis

Exploring Time Series of Patterns: Guided Drill-Down in Hierarchies
Using Change Mining on Frequent Item Sets . . . . . . . . . . . . . . . . . . . . . . . 181
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Part I

Fuzzy Data Analysis



Objective Functions for Fuzzy Clustering

Christian Borgelt

Abstract. Fuzzy clustering comprises a family of prototype-based clustering meth-
ods that can be formulated as the problem of minimizing an objective function.
These methods can be seen as “fuzzifications” of, for example, the classical c-means
algorithm, which strives to minimize the sum of the (squared) distances between the
data points and the cluster centers to which they are assigned. However, it is well
known that in order to “fuzzify” such a crisp clustering approach, it is not enough to
merely allow values from the unit interval for the variables encoding the assignments
of the data points to the clusters (that is, for the elements of the partition matrix):
the minimum is still obtained for a crisp data point assignment. As a consequence,
additional means have to be employed in the objective function in order to obtain
actual degrees of membership. This paper surveys the most common fuzzification
means and examines and compares their properties.

1 Introduction

The general objective of clustering or cluster analysis [14, 23, 26, 21] is to group
given objects in such a way that objects from the same cluster are as similar as
possible, while objects from different clusters are as dissimilar as possible. In order
to formalize the notion of similarity, so that it becomes mathematically treatable, it is
usually expressed as a distance measure between points (or vectors) representing the
objects in a metric space, usually Rm. Two objects are then seen as the more similar,
the smaller the distance between the data points that represent them.

A common approach to describe the clusters is to use prototypes that capture the
location and possibly also the shape and size of the clusters in the data space. With
such an approach the general objective of clustering can be reformulated as the task

Christian Borgelt
European Centre for Soft Computing, Edificio de Investigación,
33600 Mieres (Asturias), Spain
e-mail: christian@borgelt.net

C. Moewes et al. (Eds.): Computational Intelligence in Intelligent Data Analysis, SCI 445, pp. 3–16.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

christian@borgelt.net


4 C. Borgelt

to find a set of cluster prototypes together with an assignment of the data points to
them, so that the data points are as close as possible to their assigned prototypes. By
formalizing this approach, and using for the prototypes only points in the data space
that represent the cluster centers, one obtains immediately the objective function
of classical c-means clustering [1, 19, 32]: simply sum the (squared) distances of
the data points to the center of the cluster to which they are assigned. The c-means
algorithm then strives to minimize this objective function.

Unfortunately, c-means clustering always partitions the data, that is, each data
point is assigned to one cluster and one cluster only. This is often inappropriate,
as it can lead to somewhat arbitrary cluster boundaries and certainly does not treat
points properly that lie between two (or more) clusters without belonging to any of
them unambiguously. Solutions to this problem consist in either using a probabilistic
approach, like applying the expectation maximization (EM) algorithm to a mixture
of Gaussians (see, for example, [11, 15, 6]), or to employ one of the different “fuzzi-
fications” of the classical crisp scheme (see, for instance, [37, 13, 2, 5, 21, 7]).

In this paper I focus on the latter approach, that is, on how the objective function
of classical c-means clustering can be modified in order to obtain graded cluster
memberships. I survey different methods that have been suggested in the literature
and examine and compare their properties. The remainder of this paper is organized
as follows: Section 2 introduces the presuppositions made and the notation used
in this paper. Section 3 briefly reviews the formal basis of the classical c-means
algorithm. The following two sections discuss the main classes of “fuzzification”
approaches: Section 4 explores membership transformation and Section 5 examines
membership regularization as tools to obtain graded memberships from a modified
objective function. Finally, Section 6 draws conclusions from the discussion.

2 Presuppositions and Notation

We are given a data set X = {x1, . . . ,xn} with n data points, each of which is an
m-dimensional real-valued vector, that is, ∀ j;1 ≤ j ≤ n : x j = (x j1, . . . ,x jm) ∈ Rm.
These data points are to be grouped into c clusters, each of which is described by
a prototype ci, i = 1, . . . ,c. The set of all prototypes is denoted by C = {c1, . . . ,cc}.
I confine myself here to cluster prototypes that consist merely of a cluster center,
that is, ∀i;1 ≤ i ≤ c : ci = (ci1, . . . ,cim) ∈ Rm. The assignment of the data points to
the cluster centers is encoded as a c×n matrix U = (ui j)1≤i≤c;1≤ j≤n, which is often
called the partition matrix. In the crisp case, a matrix element ui j ∈ {0,1} states
whether data point x j belongs to cluster ci or not. In the fuzzy case, ui j ∈ [0,1]
states the degree to which x j belongs to ci (degree of membership).

In this paper I also confine myself to the (squared) Euclidean distance as the
measure for the distance between a data point x j and a cluster center ci, that is,

d2
i j = d2(ci,x j) = (x j − ci)

�(x j − ci) =
m

∑
k=1

(x jk − cik)
2.
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A common alternative is the (squared) Mahalanobis distance with a cluster specific
covariance matrix Σi [18, 17], that is, d2

i j = (x j − ci)
�Σ−1

i (x j − ci). However, this
choice adds at least a shape parameter and in some approaches also a size parame-
ter to the cluster prototypes (see, for example, [5, 21, 7]). Nevertheless, extending
the approaches to this distance measure is usually fairly straightforward. An exten-
sion to the L1-distance [24], that is, to di j = ∑m

k=1 |x jk − cik|, or to other Minkowski
metrics is less simple to achieve, but certainly beyond the scope of this paper.

3 Classical c-Means Clustering

As already stated, classical c-means clustering strives to find, for a given data set X,
a set C of cluster centers and a partition matrix U, such that the objective function

J(X,C,U) =
c

∑
i=1

n

∑
j=1

ui j d2
i j

is minimized under the constraints ∀i;1 ≤ i ≤ c : ∀ j;1 ≤ j ≤ n : ui j ∈ {0,1} and
∀ j;1 ≤ j ≤ n : ∑c

i=1 ui j = 1. These constraints ensure that each data point is assigned
to one cluster and to one cluster only (crisp partition of the data set).

Since the minimum cannot be found directly using analytical means, an alternat-
ing optimization scheme is employed. At the beginning the cluster centers are ini-
tialized randomly, for example, by selecting c data points arbitrarily or by sampling
c points from some distribution on the data space. Then the two steps of partition
matrix update (data point assignment) and cluster center update are iterated until
convergence, that is, until the cluster centers do not change anymore.

In the partition matrix update each data point x j is assigned to the cluster ci, the
center of which is closest to it, that is, the partition matrix is updated according to

ui j =

{
1, if i = argminc

i=1 d2
i j,

0, otherwise.

In the cluster center update each cluster center is recomputed as the mean of the data
points that were assigned to it (hence the name c-means clustering), that is,

ci =
∑n

j=1 ui j x2
j

∑n
j=1 ui j

.

This update process is guaranteed to converge and usually does so after fairly few
steps. However, it is fairly sensitive to the initial conditions (i.e. the initial cluster
centers), due to which it can yield undesired results, which are caused by local
minima of the objective function. In order to handle this drawback, it is usually
recommended to execute the clustering algorithm multiple times and take the best
result, that is, the result that yields the smallest value of the objective function.
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In order to obtain degrees of membership, it may seem, at first sight, to be suf-
ficient to simply extend the allowed range of values of the ui j from the set {0,1}
to the real interval [0,1], but to make no changes to the objective function itself.
However, this is not the case: the optimum of the objective function is obtained for
a crisp assignment, regardless of whether we enforce a crisp assignment or not.

This can easily be demonstrated as follows: let k j = argminc
i=1 d2

i j, that is, let k j

be the index of the cluster center closest to the data point x j. Then it is

J(X,C,U) =
c

∑
i=1

n

∑
j=1

ui j d2
i j ≥

c

∑
i=1

n

∑
j=1

ui j d2
k j j =

n

∑
j=1

d2
k j j

c

∑
i=1

ui j︸ ︷︷ ︸
=1 (due to the constraints)

=
n

∑
j=1

(
1 ·d2

k j j +
c

∑
i=1
i �=k j

0 ·d2
i j

)
.

Therefore it is best to set ∀ j;1 ≤ j ≤ n : ukj j = 1 and ui j = 0 for 1 ≤ i ≤ c, i �= k j.
In other words: the objective function is minimized by assigning each data point
crisply to the closest cluster, even though we allowed for degrees of membership.

4 Fuzzification by Membership Transformation

Since we cannot obtain degrees of membership by merely expanding the range of
values of the ui j, we have to modify the objective function if we desire graded
assignments. The most common approach is to apply a transformation to the mem-
bership degrees, that is, to use an objective function of the form

J(X,C,U) =
c

∑
i=1

n

∑
j=1

h(ui j)d2
i j,

where h is a convex function on the real interval [0,1]. This general form was
first studied in [27], where the convexity of h was derived as follows: for sim-
plicity, we confine ourselves to two clusters c1 and c2 and consider the terms of
the objective function that refer to a single data point x j. That is, we consider
J(x j,c1,c2,u1 j,u2 j) = h(u1 j)d2

1 j +h(u2 j)d2
2 j and study how it behaves for different

values u1 j and u2 j. Note that a crisp assignment should not be ruled out categori-
cally, namely if the distances d1 j and d2 j differ significantly. Hence we assume that
d1 j and d2 j differ only slightly, so that a graded assignment is actually desired.

J(x j,c1,c2,u1 j,u2 j) is minimized by choosing u1 j and u2 j appropriately. Exploit-
ing ∑c

i=1 ui j = 1 yields J(x j,c1,c2,u1 j) = h(u1 j)d2
1 j + h(1− u1 j)d2

2 j. A necessary

condition for a minimum is ∂
∂u1 j

J(x j,c1,c2,u1 j) = h′(u1 j)d2
1 j − h′(1− u1 j)d2

2 j = 0,

where ′ denotes taking the derivative w.r.t. the argument of the function. This leads
to h′(u1 j)d2

1 j = h′(1 − u1 j)d2
2 j, which yields another argument that a graded as-

signment cannot be optimal without any function h: if h is the identity, we have
h′(u1 j) = h′(1− u1 j) = 1 and thus the equation cannot hold if the distances differ.
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For the further analysis let us assume, without loss of generality, that d1 j < d2 j,
which implies h′(u1 j)> h′(1− u1 j). In addition, we know that u1 j > u2 j = 1− u1 j,
because the degree of membership should be higher for the cluster that is closer.
In other words, the function h must be the steeper, the greater its argument. There-
fore it must be a convex function on the unit interval [27].

Since we confine ourselves to the Euclidean distance (see Section 2), we can
already derive the update rule for the cluster centers, namely by exploiting that a
necessary condition for a minimum of the objective function J is that the partial
derivatives w.r.t. the cluster centers vanish. Therefore we have ∀k;1 ≤ k ≤ c :

∇ck J(X,C,U) = ∇ck

c

∑
i=1

n

∑
j=1

h(ui j)(x j − ci)
�(x j − ci) =−2

n

∑
j=1

h(ui j)(x j − ci)
!
= 0.

Independent of the function h, it follows immediately

ci =
∑n

j=1 h(ui j)x j

∑n
j=1 h(ui j)

.

This update rule already shows one of the core drawbacks of a fuzzification by
membership transformation, namely that the transformation function enters the up-
date of the cluster centers. It would be more intuitive to use the membership degrees
directly as the weights for the mean computation, which would also ensure that all
data points enter with the same total unit weight (since ∑c

i=1 ui j = 1 by definition).
However, the weights are rather the transformed membership degrees h(ui j), which
gives unequal weight to the data points as they need not sum to 1.

It may be argued, though, that this effect can actually be desirable: due to the
convexity of the function h the total weight ∑c

i=1 h(ui j) of data points x j with a less
ambiguous assignment is higher than that of more ambiguously assigned data points.
Hence in this scheme the locations of the cluster centers depend more strongly on
the data points that are “typical” for the clusters. Such an effect is very much in the
spirit of, for instance, robust regression techniques, in which data points receive a
lower weight if they do not fit well to the regression function. This connection to
robust statistical methods was explored in more detail, for example, in [10].

In order to derive the update rule for the partition matrix (and thus for the mem-
bership degrees ui j) we need to know the exact form of the function h. The most
common choice is h(ui j) = u2

i j, which leads to the standard objective function of
fuzzy clustering [13]. The more general form h(ui j) = uw

i j was introduced in [2].
The exponent w, w > 1, is called the fuzzifier, since it controls the “fuzziness” of the
data point assignments: the higher w, the softer the boundaries between the clusters.
This leads to the commonly used objective function [2, 5, 21, 7]

J(X,U,C) =
c

∑
i=1

n

∑
j=1

uw
i j d2

i j.
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The update rule for the membership degrees is now derived by incorporating the
constraints ∀ j;1 ≤ j ≤ n : ∑c

i=1 ui j = 1 with Lagrange multipliers into the objective
function. This yields the Lagrange function

L(X,U,C,Λ) =
c

∑
i=1

n

∑
j=1

uw
i j d2

i j︸ ︷︷ ︸
=J(X,U,C)

+
n

∑
j=1

λ j

(
1−

c

∑
i=1

ui j

)
,

where Λ = (λ1, . . . ,λn) are the Lagrange multipliers, one per constraint.
Since a necessary condition for a minimum of the Lagrange function is that the

partial derivatives w.r.t. the membership degrees vanish, we obtain

∂
∂ukl

L(X,U,C,Λ) = w uw−1
kl d2

kl −λl
!
= 0 and thus ukl =

(
λl

wd2
kl

) 1
w−1

.

Summing these equations over the clusters (in order to be able to exploit the cor-
responding constraints on the membership degrees, which are recovered from the
fact that it is a necessary condition for a minimum that the partial derivatives of the
Lagrange function w.r.t. the Lagrange multipliers vanish), we get

1 =
c

∑
i=1

ui j =
c

∑
i=1

(
λ j

wd2
i j

) 1
w−1

and thus λ j =

( c

∑
i=1

(
wd2

i j

) 1
1−w

)1−w

.

Therefore we finally have for the membership degrees ∀i;1 ≤ i ≤ c: ∀ j;1 ≤ j ≤ n:

ui j =
d

2
1−w
i j

∑c
k=1 d

2
1−w
k j

and thus for w = 2: ui j =
d−2

i j

∑c
k=1 d−2

k j

.

This rule is fairly intuitive, as it updates the membership degrees according to the
relative inverse squared distances of the data points to the cluster centers.

However, this rule also has the disadvantage that it necessarily yields a graded
assignment. Regardless of how far a data point is from a cluster center, it will always
receive a non-vanishing degree of membership to the corresponding cluster. The
undesirable results that can be caused by this property in the presence of clusters
with fairly uneven numbers of members have been demonstrated clearly in [27].

In addition, it was revealed in [27] that the reason lies essentially in the fact
that h′(ui j) =

d
dui j

uw
i j = wuw−1

i j vanishes at ui j = 0. This suggests the idea to use a
transformation function that does not have this property and thus allows, at least for
sufficiently large distance relationships, a crisp assignment of data points to cluster
centers. In [27] the function h(ui j) = αu2

i j +(1−α)ui j, α ∈ (0,1], or, with a more

easily interpretable parametrization, h(ui j) =
1−β
1+β u2

i j +
2β

1+β ui j, β ∈ [0,1), was sug-

gested as such a transformation. It relies on the standard function h(ui j) = u2
i j and

mixes it with the identity to avoid a vanishing derivative at zero. The parameter β is,
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for two clusters, the ratio of the smaller to the larger squared distance, at and below
which we get a crisp assignment [27]. It therefore takes the place of the fuzzifier w:
the smaller β , the softer the boundaries between the clusters.

The update rule for the membership degrees is derived in essentially the same
way as for h(ui j) = uw

i j, although one has to pay attention to the fact that crisp
assignments are now possible and thus some membership degrees may vanish. The
detailed derivation, which I omit here, can be found in [27] or in [7]. It yields

ui j =
u′i j

∑c
k=1 u′k j

with u′i j = max

{
0, d−2

i j − β
1+β (c j − 1)

c j

∑
k=1

d−2
ς(k) j

}
,

where ς : {1, . . . ,c} → {1, . . .c} is a mapping function for the cluster indices such
that ∀i;1 ≤ i < c : dς(i) j ≤ dς(i+1) j (that is, ς sorts the distances ascendingly) and

c j = max

{
k

∣∣∣∣ d−2
ς(k) j >

β
1+β (k− 1)

k

∑
i=1

d−2
ς(i) j

}

is the number of clusters to which the data point x j has a non-vanishing member-
ship. This update rule is fairly interpretable, as it still assigns membership degrees
essentially according to the relative inverse squared distances to the clusters, but
subtracts an offset from them, which makes crisp assignments possible.

5 Fuzzification by Membership Regularization

We have seen that transforming the membership degrees in the objective function
has the disadvantage that the transformation function appears in the update rule
for the cluster centers. In order to avoid this drawback, one may try to achieve a
fuzzification by leaving the membership degrees in their weighting of the (squared)
distances untouched. Graded memberships are rather achieved by adding a regular-
ization term to the objective function, which pushes the minimum away from a crisp
assignment. Most commonly, the objective function then takes the form

J(X,C,U) =
c

∑
i=1

n

∑
j=1

ui jd
2
i j + γ

c

∑
i=1

n

∑
j=1

f (ui j),

where f is a convex function on the real interval [0,1]. The parameter γ takes the
place of the fuzzifier w: the higher γ , the softer the boundaries between the clusters.

To analyze this objective function, we use the same basic means as in the preced-
ing section: we confine ourselves to two clusters c1 and c2 and consider the terms
of the objective function that refer to a single data point x j, that is, we consider
J(x j,c1,c2,u1 j,u2 j) = u1 jd2

1 j+u2 jd2
2 j+γ f (u1 j)+γ f (u2 j). Since u2 j = 1−u1 j, it is

J(x j,c1,c2,u1 j) = u1 jd2
1 j+(1−u1 j)d2

2 j+γ f (u1 j)+γ f (1−u1 j). A necessary condi-

tion for a minimum is ∂
∂u1 j

J(x j,c1,c2,u1 j) = d2
1 j−d2

2 j+γ f ′(u1 j)−γ f ′(1−u1 j)= 0,
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where ′ denotes taking the derivative w.r.t. the argument of the function. This leads
to the simple condition d2

1 j + γ f ′(u1 j) = d2
2 j + γ f ′(1− u1 j).

We now assume again, without loss of generality, that d1 j < d2 j, which implies
f ′(u1 j)> f ′(1− u1 j). In addition we know u1 j > u2 j = 1− u1 j, because the degree
of membership should be higher for the cluster that is closer. In other words, the
function f must be the steeper, the greater its argument. Hence it must be a convex
function on the unit interval in order to allow for graded memberships.

More concretely, we obtain (d2
2 j − d2

1 j)/γ = f ′(u1 j)− f ′(1− u1 j) as a condition
for a minimum. Since f is a convex function on the unit interval, the maximum value
of the right hand side is f ′(1)− f ′(0). If f ′(1)− f ′(0)<∞, we have the possibility of
crisp assignments, because in this case there exist values for d2

1 j, d2
2 j and γ such that

the minimum of the function J(x j,c1,c2,u1 j) w.r.t. ui j either does not exist or lies
outside the unit interval. In such a situation the best choice is the crisp assignment
u1 j = 1 and u2 j = 0 (still assuming that d1 j < d2 j).

To obtain the update rule for the cluster centers we can simply transfer the result
from the preceding section, since the regularization term does not refer to the cluster
centers. Therefore we have the simple rule (because here h(ui j) = ui j)

ci =
∑n

j=1 ui jx j

∑n
j=1 ui j

.

This demonstrates the advantage of a membership regularization approach, because
the membership degrees are directly the weights with which the data points enter
the mean computation that yields the new cluster center.

In order to derive the update rule for the membership degrees, we have to respect
the constraints ∀ j;1 ≤ j ≤ n : ∑c

i=1 ui j = 1. This is achieved in the usual way (cf.
the preceding section) by incorporating them with Lagrange multipliers into the
objective function. The resulting Lagrange function is

L(X,U,C,Λ) =
c

∑
i=1

n

∑
j=1

ui jd
2
i j + γ

c

∑
i=1

n

∑
j=1

f (ui j)

︸ ︷︷ ︸
=J(X,C,U)

+
n

∑
j=1

λ j

(
1−

c

∑
i=1

ui j

)
,

where Λ = (λ1, . . . ,λn) are the Lagrange multipliers, one per constraint.
Since a necessary condition for a minimum of the Lagrange function is that the

partial derivatives w.r.t. the membership degrees vanish, we obtain

∂
∂ukl

L(X,U,C) = d2
kl + γ f ′(ukl)−λl

!
= 0 and thus ukl = f ′−1

(
λl − d2

kl

γ

)
,

where ′ denotes taking the derivative w.r.t. the argument of the function and f ′−1

denotes the inverse of the derivative of the function f . In analogy to Section 4, the
constraints on the membership degrees are now exploited to obtain 1 = ∑c

k=1 uk j =

∑c
k=1 f ′−1((λ j − d2

k j)/γ). This equation has to be solved for λ j and the result has
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to be used to substitute λl in the expression for the ukl derived above. However, in
order to do so, we need to know the exact form of the regularization function f .

The regularization functions f that have been suggested in the literature (con-
crete examples are studied below) can be seen as derived from a maximum entropy
approach. That is, the term of the objective function that forces the ui j to minimize
the weighted sum of squared distances is complemented by a term that forces them
to maximize the entropies of the distributions over the clusters, the ui j describe for
each data point. Thus the ui j are pushed away from a crisp assignment, which has
minimum entropy. Generally, such an approach starts from the objective function

J(X,C,U) =
c

∑
i=1

n

∑
j=1

ui jd
2
i j − γ

n

∑
j=1

H(u j),

where u j = (u1 j, . . . ,uc j) comprises the degrees of membership the data point x j

has to the different clusters. H computes their entropy, as u j is, at least formally, a
probability distribution, since it satisfies ∀i;1 ≤ i ≤ c : ui j ∈ [0,1] and ∑c

i=1 ui j = 1.
In order to develop the maximum entropy approach in more detail, we consider

the generalized entropy proposed by Daróczy in [9]. Let p = (p1, . . . , pr) be a prob-
ability distribution over r values. Then Daróczy entropy is defined as

Hβ (p) =
2β−1

2β−1 − 1

r

∑
i=1

pi(1− pβ−1
i ) =

2β−1

2β−1 − 1

(
1−

r

∑
i=1

pβ
i

)
.

From this general formula the well-known Shannon entropy [38] can be derived as

H1(p) = lim
β→1

Hβ (p) =−
r

∑
i=1

pi log2 pi.

Employing it in the entropy-regularized objective function leads to

J(X,C,U) =
c

∑
i=1

n

∑
j=1

ui jd
2
i j + γ

c

∑
i=1

n

∑
j=1

ui j lnui j,

where the factor 1/ ln2 (which stems from the relation log2 ui j = lnui j/ ln2) is in-
corporated into the factor γ , as the natural logarithm allows for easier mathematical
treatment. That is, we have f (ui j) = ui j lnui j [25, 31, 33, 8] and therefore obtain
f ′(ui j) = 1+ lnui j and f ′−1(y) = ey−1. Using the latter in the formulas obtained
above for deriving the update rule for the membership degrees yields

ui j =
e−d2

i j/γ

∑c
k=1 e−d2

k j/γ
.

As was pointed out in [35, 20], this update rule relates the approach very closely
to the expectation maximization (EM) algorithm for Gaussian mixtures [11, 15, 6],
since by setting γ = 2σ2, we obtain exactly the formula for the expectation step. As a
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consequence, this update rule can be interpreted as computing the probability that a
data point x j was sampled from a Gaussian distribution centered at ci and having the
variance σ2. In addition, since the update rule for the cluster centers coincides with
the maximization step, this form of fuzzy clustering is actually indistinguishable
from the expectation maximization algorithm for a mixture of Gaussians.

It should be noted that f ′(ui j) = 1+ lnui j implies f ′(1)− f ′(0) = ∞ and thus
Shannon entropy regularization always yields graded assignments. However, this

drawback is less harmful here, because e−d2
i j/γ is much “steeper” than d−2

i j and thus
is less prone to produce undesired results (cf. also the discussion in [12]).

Another commonly used special case of Daróczy entropy is so-called quadratic
entropy, which results if we set the parameter β = 2, that is,

H2(p) = 2
r

∑
i=1

pi(1− pi) = 2− 2
r

∑
i=1

p2
i .

Employing it in the entropy-regularized objective function leads to

J(X,C,U) =
c

∑
i=1

n

∑
j=1

ui jd
2
i j + γ

c

∑
i=1

n

∑
j=1

u2
i j,

as the constant term 2 has no influence on the location of the minimum and thus can
be discarded, and the factor 2 can be incorporated into the factor γ . That is, we have
f (ui j) = u2

i j [34] and therefore obtain f ′(ui j) = 2ui j and f ′−1(y) = y
2 .

In order to derive the update rule for the memberships, one has to pay attention to
the fact that f ′(1)− f ′(0) = 2. Therefore crisp assignments are possible and some
membership degrees may vanish. However, the detailed derivation can easily be
found by following, for example, the same lines as for the analogous approach in
the preceding section, which also allowed for vanishing membership degrees.

The resulting membership degree update rule is ∀i : 1 ≤ i ≤ c : ∀ j : 1 ≤ j ≤ n :

ui j = max

{
0,

1
c j

(
1+

c j

∑
k=1

d2
ς(k) j

2γ

)
− di j

2γ

}
,

where ς : {1, . . . ,c} → {1, . . .c} is a mapping function for the cluster indices such
that ∀i;1 ≤ i < c : dς(i) j ≤ dς(i+1) j (that is, ς sorts the distances ascendingly) and

c j = max

{
k

∣∣∣∣ k

∑
i=1

d2
ς(i) j > k dk j − 2γ

}

is the number of clusters to which the data point x j has a non-vanishing membership.
In this update rule 2γ can be interpreted as a reference distance relative to which all
distances are judged. For two clusters, 2γ is the difference between the distances of
a data point to the cluster centers, at and above which a crisp assignment is used.
Clearly, this is equivalent to saying that the distances, if measured in 2γ units, must
differ by less than 1 in order to obtain a graded assignment.
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A disadvantage of this update rule is that it refers to the difference of the distances
rather than their ratio, which seems more intuitive. As a consequence, a data point
that has distance x to one cluster and distance y to the other is assigned in exactly the
same way as a data point that has distance x+ z to the first cluster and distance y+ z
to the second, regardless of the value of z (provided z ≥−min{x,y}).

Alternatives to the discussed approaches modified the Shannon entropy term,
using, for instance, f (ui j) = ui j lnui j +(1− ui j) ln(1− ui j) [42], or replaced it with
Kullback-Leibler information divergence [30] to the (estimated) cluster probability
distribution [22], that is, f (ui j) = ui j ln

ui j
pi

with pi =
1
n ∑n

j=1 ui j.
It has also been tried to use f (ui j) = uw

i j [41, 36], but combined with h(ui j) = uw
i j

(to avoid technical complications), so that the objective function is effectively

J(X,C,U) =
c

∑
i=1

n

∑
j=1

uw
i j (d

2
i j + γ).

Hence this is actually a hybrid approach that combines membership transforma-
tion and regularization. Another hybrid approach, proposed in [40], combines
h(ui j) = uw

i j and Shannon entropy regularization f (ui j) = ui j lnui j. Finally, a gener-
alized objective function was presented in [3] and analyzed in more detail in [43].

It should be noted, though, that the approach of [16], which is covered by the
generalized objective function of [3] and based on

J(X,C,U) =
c

∑
i=1

n

∑
j=1

uw
i j d2

i j − γ
c

∑
i=1

p2
i with pi =

1
n

n

∑
j=1

ui j,

is not a membership regularization scheme, as it yields crisp assignments unless
w > 1. In this approach the entropy term (which is added rather than subtracted)
serves the purpose to choose the number of clusters automatically.

A closely related approach is possibilistic clustering [28, 29], which eliminates
the constraints ∀ j;1 ≤ j ≤ n : ∑c

i=1 ui j = 1 and is based on the objective function

J(X,C,U) =
c

∑
i=1

n

∑
j=1

uw
i j d2

i j +
c

∑
i=1

ηi

n

∑
j=1

(1− ui j)
w.

Here the ηi are suitable positive numbers (one per cluster ci, 1 ≤ i ≤ c) that de-
termine the distance at which the membership degree of a point to a cluster is 0.5.
They are usually initialized, based on the result of a preceding run of standard fuzzy
clustering, as the average fuzzy intra-cluster distance ηi = ∑n

j=1 uw
i jd

2
i j/∑n

j=1 uw
i j and

may or may not be updated in each iteration [28].
Although this approach is useful in certain applications, it should be noted that

the objective function of possibilistic clustering is truly optimized only if all clusters
are identical [39], because the missing constraints decouple the clusters. Thus it
actually requires that the optimization process gets stuck in a local optimum in order
to yield useful results, which is a somewhat strange property.
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6 Conclusions

Since classical c-means clustering does not yield graded data point assignments,
even if one allows the membership variables to take values in the unit interval,
the objective function has to be modified if graded assignments are desired. There
are two fundamental approaches to this: transforming the membership degrees or
adding a membership regularization term. In both cases variants can be derived that
allow partially crisp assignments, that is, allow for vanishing membership degrees,
as well as variants that enforce graded assignments regardless of the data. All of
these variants have advantages and disadvantages: membership transformation suf-
fers generally from the fact that the transformation function enters the cluster center
update, but uses a fairly intuitive relative inverse squared distance scheme for the
membership updates. Quadratic entropy regularization allows for vanishing mem-
bership degrees, but refers to distance differences rather than more intuitive distance
ratios. Shannon entropy regularization leads to a procedure that is equivalent to the
expectation maximization (EM) algorithm for a mixture of Gaussian and thus is
not a specifically “fuzzy” approach anymore. However, judging from the discussion
in [12] due to which the forced graded assignment is unproblematic, its practical
advantages make it, in my personal opinion, the most recommendable approach.
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[10] Davé, R.N., Krishnapuram, R.: Robust clustering methods: A unified view. IEEE Trans
on Fuzzy Systems 5(1997), 270–293 (1997)

[11] Dempster, A.P., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society (Series B) 39, 1–38 (1977)



Objective Functions for Fuzzy Clustering 15
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Efficient Learning of Classifiers Based
on the 2-Additive Choquet Integral�

Eyke Hüllermeier and Ali Fallah Tehrani

Abstract. In a recent work, we proposed a generalization of logistic regression
based on the Choquet integral. Our approach, referred to as choquistic regression,
makes it possible to capture non-linear dependencies and interactions among pre-
dictor variables while preserving two important properties of logistic regression,
namely the comprehensibility of the model and the possibility to ensure its mono-
tonicity in individual predictors. Unsurprisingly, these benefits come at the expense
of an increased computational complexity of the underlying maximum likelihood
estimation. In this paper, we propose two approaches for reducing this complexity
in the specific though practically relevant case of the 2-additive Choquet integral.
Apart from theoretical results, we also present an experimental study in which we
compare the two variants with the original implementation of choquistic regression.

1 Introduction

The Choquet integral is well-known as a flexible aggregation function and, as such,
has been used in various fields of application [14, 11, 21]. In machine learning,
it is less common so far, although the interest in using the Choquet integral as a
mathematical tool for tackling problems like classification, regression and ranking
is increasing [12, 13, 22, 1, 2, 9].

In [8], we proposed a method called “choquistic regression”, which is a general-
ization of logistic regression based on the Choquet integral. Choquistic regression
has a number of appealing properties. Most notably, it combines three features in a
non-trivial way, namely monotonicity, nonlinearity and interpretability. As for the
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first, a monotone dependence between the input and output attributes is often de-
sirable in a classification setting and sometimes even requested by the application
[3, 19, 10]. At the same time, the Choquet integral also allows for modeling inter-
actions between different attributes in a flexible, nonlinear way. Last but not least,
thanks to the existence of natural measures for quantifying the influence of individ-
ual (e.g., the Shapley value) and the interaction between groups of features (e.g., the
interaction index), it provides important insights into the model, thereby supporting
interpretability [7].

Compared to standard logistic regression, these benefits are coming at the ex-
pense of an increased computational complexity of the underlying learning algo-
rithm, which solves a maximum likelihood estimation problem. This is mainly
caused by the large number of parameters of the fuzzy measure on which the Cho-
quet integral is based, and the complicated dependency between these parameters.
In this paper, we propose two approaches for reducing this complexity in the spe-
cific though practically relevant case of the 2-additive Choquet integral. To this end,
we shall try to optimally exploit the simplified structure of a 2-additive measure in
comparison to a non-additive measure in the general case.

The rest of this paper is organized as follows. In the next section, we briefly recall
the basic definition of the (discrete) Choquet integral and some related notions. In
Section 3, we sketch the idea of using the Choquet integral for binary classification
and recall the basics of choquistic regression. In Section 4, we develop two alterna-
tive formulations of the learning (likelihood maximization) problem, both pursuing
the same goal of complexity reduction. In Section 5, we present an experimental
study in which we compare the two variants with the original implementation of
choquistic regression, prior to concluding the paper with a few remarks in Section 6.

2 The Discrete Choquet Integral

In this section, we start with a brief recapitulation of the (discrete) Choquet integral
and, along the way, introduce the main mathematical notation used throughout the
paper.

Let C = {c1, . . . ,cm} be a finite set and μ : 2C → [0,1] a measure. For each A ⊆C,
the value μ(A) can be interpreted as the weight or, say, the importance of the set
of elements A. A standard assumption on a measure μ(·), which is, for example, at
the core of probability theory, is additivity: μ(A∪B) = μ(A)+ μ(B) for all A,B ⊆
C such that A∩B = /0. Unfortunately, additive measures cannot model any kind of
interaction between elements: Extending a set of elements A by a set of elements B
always increases the weight μ(A) by the weight μ(B), regardless of the “context” A.

This lack of expressivity motivates the use of non-additive measures, also called
capacities or fuzzy measures, which are simply normalized and monotone but not
necessarily additive [20]:

μ( /0) = 0, μ(C) = 1

μ(A)≤ μ(B) for all A ⊆ B ⊆C
(1)
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A useful representation of non-additive measures, that we shall explore later on for
learning Choquet integrals, is in terms of the Möbius transform:

μ(B) = ∑
A⊆B

mμ(A) (2)

for all B⊆C, where the Möbius transform mμ of the measure μ is defined as follows:

mμ(A) = ∑
B⊆A

(−1)|A|−|B|μ(B) . (3)

A measure μ is said to be k-order additive, or simply k-additive, if k is the smallest
integer such that m(A) = 0 for all A ⊆ C with |A| > k. This property is interesting
for several reasons. In particular, as can be seen from (2), it means that a measure μ
can formally be specified by significantly fewer than 2m values, which are needed
in the general case.

Suppose the “criteria” ci ∈C are simply considered as binary features, which are
either present or absent in a set A. Mathematically, μ(A) can then also be seen as an
integral of the indicator function of A, namely the function fA given by fA(c) = 1
if c ∈ A and = 0 otherwise. Now, suppose that f : C → R+ is any non-negative
function that assigns a value to each criterion ci; for example, f (ci) might be the
degree to which a candidate satisfies criterion ci. An important question, then, is
how to aggregate the evaluations of individual criteria, i.e., the values f (ci), into
an overall evaluation, in which the criteria are properly weighted according to the
measure μ . Mathematically, this overall evaluation can be considered as an integral
Cμ( f ) of the function f with respect to the measure μ .

Indeed, if μ is an additive measure, the standard integral just corresponds to the
weighted mean

Cμ( f ) =
m

∑
i=1

wi · f (ci) =
m

∑
i=1

μ({ci}) · f (ci) , (4)

which is a natural aggregation operator in this case. A non-trivial question, however,
is how to generalize (4) in the case where μ is non-additive.

This question, namely how to define the integral of a function with respect to a
non-additive measure (not necessarily restricted to the discrete case), is answered
in a satisfactory way by the Choquet integral, which has first been proposed for
additive measures by Vitali [23] and later on for non-additive measures by Choquet
[4]. In the discrete case, the Choquet integral is formally defined as follows:

Cμ( f ) =
m

∑
i=1

(
f (c(i))− f (c(i−1))

)
·μ
(
A(i)

)
,

where (·) is a permutation of {1, . . . ,m} such that 0 ≤ f (c(1)) ≤ f (c(2)) ≤ . . . ≤
f (c(m)) (and f (c(0)) = 0 by definition), and A(i) = {c(i), . . . ,c(m)}. In terms of the
Möbius transform of μ , the Choquet integral can also be expressed as follows:
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Cμ( f ) = ∑
T⊆C

m(T ) ·min
i∈T

f (ci) (5)

where T(i) =
{

S∪{c(i)}|S ⊂ {c(i+1), . . . ,c(m)}
}

.

3 The Choquet Integral as a Tool for Classification

As mentioned earlier, the Choquet integral has been used as a tool for different types
of machine learning problems. In the following, we focus on the setting of binary
classification, where the goal is to predict the value of an output (response) variable
y ∈ Y = {0,1} for a given instance represented in terms of a feature vector

x = (x1, . . . ,xm) ∈ X = X1 ×X2 × . . .×Xm

More specifically, the goal is to learn a classifier L : X → Y from a given set of
(independent and identically distributed) training data

D =
{
(x(i),y(i))

}n

i=1
⊂ (X ×Y )n (6)

so as to minimize the risk

R(L ) =

∫
X ×Y

�(L (x),y)dPXY (x,y) , (7)

where �(·) is a loss function (e.g., the simple 0/1 loss given by �(ŷ,y) = 0 if ŷ = y
and = 1 if ŷ �= y).

In this context, the predictor variables (features) play the role of the criteria ci ∈C.
The Choquet integral can be used in order to model nonlinear dependencies between
these variables and the response, thus taking interactions between predictors into
account while preserving monotonicity in each individual feature. This can be done
in different ways. In the following, we propose a model that can be seen as an
extension of logistic regression.

3.1 Choquistic Regression

The key idea of the method of “choquistic regression” as proposed in [8] is to model
the log-odds ratio between the positive (y = 1) and the negative (y = 0) class as
a function of the Choquet integral of the input attributes; thus, the affine function
x �→ w0+w�x modeling the log-odds ratio in standard logistic regression is replaced
by the Choquet integral. Formally, this leads to the following model:

πc
df
= P(y = 1 |x) = 1

1+ exp
(
− γ
(
Cμ( fx)−β

)) , (8)
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where Cμ( fx) is the Choquet integral (with respect to the measure μ) of the eval-
uation function fx : {c1, . . . ,cm} → [0,1] that maps each attribute ci to a value
xi = fx(ci); β ,γ ∈ R+ are constants. The value of xi is normalized in order to turn
each predictor variable into a criterion, i.e., a “the higher the better” attribute, and
to assure commensurability between the criteria [18].

The model (8) has several degrees of freedom, namely the fuzzy measure μ
(Möbius transform m = mμ ), the threshold β and the scaling parameter γ . The goal
of learning is to identify these degrees of freedom on the basis of the training data D .
Like in the case of standard logistic regression, it is possible to harness the maximum
likelihood (ML) principle for this purpose. The log-likelihood of the parameters can
be written as

l(m,γ,β ) = logP(D |m,β ,γ)

= log

(
n

∏
i=1

P(y(i) |x(i);m,β ,γ)

)
(9)

=
n

∑
i=1

y(i) logπ (i)
c +
(
1− y(i)

)
log
(
1−π (i)

c
)
.

This is a convex function with respect to m,γ , and β . The problem, now, is to max-
imize (9) while making sure that μ is a proper fuzzy measure. Formally, this leads
to the following constrained optimization problem:

max
m,γ,β

{
− γ

n

∑
i=1

(1− y(i))(Cm(x
(i))−β )

−
n

∑
i=1

log
(

1+ exp(−γ (Cm(x
(i))−β ))

)}

such that

0 ≤ β ≤ 1

0 < γ

∑
T⊆C

m(T ) = 1 (10)

∑
B⊆A\{ci}

m(B∪{ci})≥ 0 ∀A ⊆C, ci ∈ A (11)

4 Efficient Learning of 2-Additive Measures

Solving the above optimization problem is a non-trivial task and may become
computationally expensive, mainly due to the constraints on the fuzzy measure μ .
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In fact, since (11) needs to be satisfied for all subsets A ⊆ C, the number of these
monotonicity constraints is given by m2m−1 and thus grows exponentially with the
number of attributes.

In the following, we restrict ourselves to the specific case of 2-additive fuzzy
measures. This restriction is interesting for several reasons. In particular, one may
of course hope for a gain in terms of computational efficiency, and indeed, this is
the aspect that we shall focus on in the remainder of the paper. Besides, however,
let us mention that a restriction of this kind is also interesting from a learning point
of view: By allowing one to capture pairwise interactions between attributes, the 2-
additive case is a proper generalization of the linear model, while at the same time,
it is still reasonable in terms of the number of degrees of freedom. In fact, while the
number of parameters to be estimated is exponential (in the number of attributes)
in general, it is only quadratic in the 2-additive case. Practically, we could observe
that the high flexibility of the general model is rarely needed; on the contrary, it of-
ten leads to problems of over-fitting the data, thereby compromising generalization
performance.

Coming back to the computational aspect, the number of parameters to be es-
timated is indeed reduced, since m(A) = 0 for all A ⊆ C such that |A| > 2. On the
other hand, it is important to observe that the number of constraints does not reduce:
Although the number of summands in each of the constraints (11) becomes smaller
(since many of them are now 0), the number of constraints themselves remains the
same.

In the following, we shall therefore look for ways to exploit the simplified struc-
ture of the 2-additive case in order to reduce the number of constraints. More specif-
ically, we shall propose two alternative formulations of the constraint optimization
problem to be solved for ML estimation.

4.1 Alternative Formulation I

To simplify notation, let C = {1, . . . ,m} (instead of C = {c1, . . . ,cm}) and let M
denote the class of nonnegative monotone set functions on C, i.e., the class of func-
tions ν : 2C → [0,∞) such that ν(A) ≤ ν(B) for all A ⊆ B ⊆ C; for the time being,
we neglect the normalization condition (10), as it is less important for our purpose
(it constitutes a single constraint that must be added to the optimization problem in
order to turn a monotone measure into a fuzzy measure). More specifically, we are
interested in the subclass M2 ⊂ M of 2-additive measures ν , i.e., whose Möbius
transform satisfies mν(A) = 0 for all A ⊆C such that |A|> 2.

The following characterization is well-known (see, e.g., Proposition 1 in [16]):
ν ∈ M2 if and only if the following constraints Ci,X are satisfied for all i ∈ C and
X ⊆Ci =C \ {i}:

Ci,X : mi + ∑
j∈X

mi, j ≥ 0 , (12)
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where mi = mν({i}) and mi, j = mν ({i, j}). Note that the number of constraints (12)
is still exponential in m. Yet, we can show that they can be expressed equivalently
in terms of a smaller number of constraints (albeit at the expense of introducing
additional variables).

Proposition 1. Condition (12) is equivalent to the following condition: For all i∈C,
there exist αi, j , j ∈Ci, such that

αi, j ≥ 0

∑
j∈Ci

αi, j ≤ 1

mi ≥ 0

mi, j ≥−αi, j ·mi

(13)

Proof: Let ν ∈ M2 and suppose (12) to hold. For i ∈ C, (12) with X = /0 implies
mi ≥ 0. Now, define C−

i = { j ∈Ci |mi, j < 0}, C+
i = { j ∈Ci |mi, j ≥ 0}, and let

αi, j =

{
0 if j ∈C+

i|mi, j |
mi

if j ∈C−
i

Since (12) holds with X =C−
i , we have

∑
j∈C−

i

|mi, j| ≤ mi ,

and therefore

∑
j∈Ci

αi, j = ∑
j∈C−

i

αi, j = ∑
j∈C−

i

|mi, j|
mi

=
1
mi

∑
j∈C−

i

|mi, j| ≤ 1.

Moreover, mi, j ≥ −αi, j ·mi holds by definition, both for j ∈ C+
i and j ∈ C−

i . Thus,
condition (13) holds, and hence (12) implies (13).

Now, suppose that (13) holds. Then, mi ≥ 0 and for any /0 �= X ⊆Ci,

mi + ∑
j∈X

mi, j ≥ mi + ∑
j∈X

−αi, j ·mi

= mi −mi ∑
j∈X

αi, j

≥ mi(1− ∑
j∈X

αi, j)≥ 0

Thus, condition (12) holds, and hence (13) implies (12). Q.E.D.

As a consequence of the above result, the constraints (11) can be replaced by
the equivalent constraints (13). Thus, the number of constraints can indeed be re-
duced from exponential to quadratic, namely to 2m2 inequalities. On the other hand,
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(13) also comes with a disadvantage: While the constraints (11) are all linear, some
of the constraints (13) are nonlinear (albeit convex); indeed, recall that the αi, j are
introduced as new variables that need to be determined simultaneously with the mi

and mi, j.

4.2 Alternative Formulation II

Our second reformulation of the problem is based on a theoretical result showing
that the class M2 or, more specifically, the class of normalized measures in M2 (i.e.,
those ν whose Möbius function additionally satisfies (10), forms a convex polytope.
The extreme points of this polytope are exactly those {0,1}-valued measures whose
Möbius transforms are of the form

mA(X) =

{
1 if X = A
0 otherwise

, A ∈ E

or of the form

m′
B(X) =

⎧⎨
⎩

1 if /0 �= X � B
−1 if X = B

0 otherwise
, A ∈ E ′,

where E = {A ⊆C |1 ≤ |A| ≤ 2} and E ′ = {B ⊆ C | |B| = 2} [17]. In other words,
each feasible solution m can be written as a convex combination of these m2 extreme
points:

m = ∑
A∈E

αA ·mA + ∑
B∈E ′

α ′
B ·m′

B (14)

Consequently, the constraints (10–11) can be replaced by (14) in conjunction with
the following constraints:

αA ≥ 0

α ′
B ≥ 0

∑
A∈E

αA + ∑
B∈E ′

αB = 1

Like in our first reformulation, the number of constraints is thus significantly re-
duced, this time even without introducing nonlinearities, albeit again at the cost of
a quadratic number of additional variables. More concretely, we end up with m2

additional variables while reducing the number of constraints to m2 + 1.

5 Experiments

The collection of data for experimental evaluation is a bit hindered by the fact
that choquistic regression is a method for learning monotone models, i.e., mod-
els in which the probability of a positive output is an increasing function of each
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Table 1 Data sets and their properties

data set #instances #attributes source
1 Employee Selection (ESL) 488 4 WEKA
2 Employee Rejection/Acceptance (ERA) 1000 4 WEKA
3 Lecturers Evaluation (LEV) 1000 4 WEKA
4 CPU 209 6 UCI
5 Mammographic (MMG) 961 5 UCI
6 Car Evaluation (CEV) 1728 6 UCI
7 Auto MPG 392 7 UCI
8 Den Bosch (DBS) 120 8 [5]
9 Breast Cancer (BCC) 286 7 UCI

10 Social Workers Decisions (SWD) 1000 10 [6]

Table 2 Classification accuracy in terms of 0/1 loss (mean ± standard deviation derived from
10 repeats of 5-fold cross-validation)

data set CR-orig CR-AI CR-AII LR
ESL .0655± .0225 .0668± .0227 .0639± .0208 .0678± .0255
ERA .2908± .0312 .2880± .0292 .2907± .0312 .2873± .0275
LEV .1478± .0202 .1491± .0222 .1530± .0213 .1686± .0240
CPU .0241± .0223 .0244± .0197 .0196± .0236 .0672± .0346
MMG .1685± .0240 .1697± .0232 .1661± .0232 .1712± .0268
CEV .0743± .0127 .0835± .0120 .0726± .0135 .1382± .0170
MPG .0663± .0244 .0644± .0281 .0636± .0254 .0627± .0277
DBS .1413± .0715 .1330± .0648 .1130± .0645 .1472± .0573
BCC .3041± .0581 .2840± .0556 .3065± .0524 .3079± .0586
SWD .2186± .0187 .2169± .0276 .2143± .0225 .2202± .0244

input attribute. Data sets for which monotonicity of this kind is a reasonable assump-
tion are less frequent than standard classification data. Nevertheless, we managed to
collect 10 such data sets; Table 1 provides a summary of their main properties. Those
with a numerical or ordered categorical output were binarized by thresholding at the
median. Moreover, all input attributes were normalized.

Experimentally, we compared three versions of choquistic regression, the origi-
nal formulation from Section 3.1 (CR-orig), the first reformulation from Section 4.1
(CR-AI), and the second reformulation from Section 4.2 (CR-AII). To make the
implementations as comparable as possible, we applied the same solver to the dif-
ferent optimization problems, namely the fmincon function implemented in the
optimization toolbox of Matlab. This function provides a method for constrained
nonlinear optimization based on sequential quadratic programming.

In terms of classification accuracy, the different implementations of choquistic re-
gression should perform exactly the same, at least theoretically, because they seek
to maximize the same likelihood function under different but equivalent constraints.
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Table 3 Runtime complexity of the alternative implementations on different data sets (name,
number of attributes, number of instances) measured in terms of CPU time (mean ± standard
deviation in seconds) for different sample sizes (in % of the complete data set)

data CR 20% 40% 60% 80% 100%

ESL orig 0.26±0.05 0.31±0.02 0.38±0.02 0.45±0.13 0.63±0.05
4 AI 0.41±0.13 0.50±0.07 0.68±0.13 0.80±0.17 1.05±0.18
488 AII 0.31±0.09 0.39±0.07 0.50±0.06 0.61±0.04 0.70±0.04

ERA orig 0.23±0.03 0.36±0.01 0.50±0.02 0.63±0.01 0.78±0.02
4 AI 0.53±0.10 0.90±0.08 1.06±0.16 1.20±0.20 1.35±0.18
1000 AII 0.31±0.05 0.52±0.07 0.70±0.09 1.12±0.14 1.32±0.16

LEV orig 0.34±0.04 0.55±0.05 0.71±0.04 0.88±0.07 1.03±0.07
4 AI 0.96±0.23 1.41±0.21 1.84±0.24 2.25±0.18 2.50±0.19
1000 AII 0.49±0.07 0.76±0.05 1.04±0.10 1.68±0.15 1.90±0.14

CPU orig 0.77±0.18 1.95±3.39 3.37±5.42 6.9±8.97 14.23±11.33
6 AI 1.85±0.22 2.56±0.52 2.79±0.71 3.42±0.18 6.11±2.71
209 AII 0.50±0.31 1.28±0.24 1.33±0.29 1.68±0.56 2.06±0.66

MMG orig 0.39±0.15 0.56±0.06 0.79±0.12 0.95±0.09 1.07±0.11
6 AI 1.19±0.24 1.77±0.47 2.06±0.61 2.71±1.60 3.24±1.96
961 AII 0.52±0.13 0.83±0.11 1.13±0.10 1.54±0.18 1.78±0.19

CEV orig 2.45±0.24 3.84±0.38 5.09±0.41 5.79±0.51 6.74±0.41
6 AI 5.36±0.55 7.53±1.00 9.89±0.96 11.93±2.83 13.72±2.56
1728 AII 2.11±0.33 3.68±0.31 5.23±0.52 6.88±0.59 7.88±0.58

MPG orig 1.83±0.71 2.15±0.62 2.69±0.59 3.18±0.54 3.45±0.65
7 AI 2.58±0.32 2.54±0.66 3.46±0.89 3.84±0.75 4.15±0.92
392 AII 0.61±0.21 0.72±0.12 0.95±0.24 1.02±0.19 1.3±0.13

DBS orig 5.68±1.11 5.36±1.23 5.61±1.02 5.59±0.72 5.47±1.05
8 AI 2.51±1.81 2.88±1.29 3.03±1.42 3.17±0.96 4.08±1.10
120 AII 0.71±0.19 0.78±0.34 0.76±0.18 0.82±0.12 0.91±0.13

BCC orig 1.22±0.56 1.10±0.27 1.19±0.23 1.47±0.38 1.47±0.25
9 AI 2.29±1.09 2.04±1.52 2.16±0.95 2.88±2.5 2.97±2.30
286 AII 0.47±0.24 0.47±0.06 0.55±0.55 0.66±0.11 0.78±0.07

SWD orig 292.4±31.1 382.8±42.24 371.3±12.67 394.0±36.62 427.5±36.62
10 AI 17.9±13.4 27.82±12.13 32.11±10.10 32.35±10.05 33.14±10.77
1000 AII 4.7±0.71 8.80±1.34 13.01±1.44 18.24±2.21 22.66±1.73

Practically, of course, different formulations of the optimization problem will yield
slightly different solutions, although these differences should be small. This expec-
tation is confirmed by the result of a 5-fold cross validation, which is summarized in
Table 2; this table also shows results for standard logistic regression (LR) as a baseline.
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What we are of course most interested in is the runtime performance of the dif-
ferent implementations, which we measured in terms of CPU usage.1 The results,
which are summarized in Table 3, convey a quite clear picture: While the original
implementation CR-orig is superior or at least competitive for data sets with up to
6 attributes, it is visibly outperformed by the alternative formulations for m > 6 at-
tributes, and the difference in runtime rapidly increases with m. This is in agreement
with our expectations: An exponential number of constraints is no big obstacle pro-
vided the number of attributes is small. In this case, a reduction from exponential
to quadratic does not compensate for the additional overhead caused by introducing
new variables. Due to the exponential growth of the number of constraints in CR-
orig, however, this situation quickly changes in favor of CR-AI and CR-AII with
an increasing number of attributes; indeed, as can be seen from the SWD data, the
runtime of CR-orig becomes unacceptable as soon as m > 9.

This is also confirmed by another experiment we did with this data set: From the
total of 10 attributes, we randomly samples m ∈ {5,6, . . . ,10}, trained a CR model
on the data set reduced to these k attributes (using the tree methods CR-orig, CR-
AI and CR-AII) and measured the runtime. This was repeated many times and the
runtime was averaged. Fig. 1 shows this average runtime as a function of m.

Comparing the two alternatives CR-AI and CR-AII, it seems that the latter is
consistently faster, although the growth of the runtime as a function of m is in both
cases much more moderate than for CR-orig. Again, this is not unexpected against
the background of the results from the previous section.
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Fig. 1 Average runtime on the SWD data as a function of the number of attributes included

6 Discussion

Our experimental results are in complete agreement with the theoretical complexity
(in terms of the number of constraints and the number of variables involved) of the
optimization problems. Thus, learning the Choquet integral for classification can
indeed be made more efficient by exploiting the special structure of the problem

1 Experiments were carried out on an Intel Core(TM) i7-2600 CPU with 3.40GHz and 8 GB
RAM under Windows 7.
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in the case of 2-additive fuzzy measures, essentially reducing the complexity from
exponential to quadratic in the number of attributes.

In order to compare the different variants of the problem (CR-orig, CR-AI, CR-
AII), we decided to use a rather general optimization method that can handle all
of them without the need for specific adaptations. An interesting alternative, of
course, is to implement each of the variants individually and as efficiently as possi-
ble, seeking for a more specialized solver that allows for exploiting the respective
problem structure in an optimal way. In particular, this appears to be important for
a more thorough comparison of the two alternatives we proposed, respectively, in
Sections 4.1 and 4.2.

Theoretically, CR-AII seems to be advantageous to CR-AI, and indeed, the ex-
perimental results are in agreement with this presumption. Nevertheless, the refor-
mulation in Section 4.1 should not be abandoned rashly. First, as just mentioned,
it might be possible to improve its efficiency by means of specialized optimization
techniques; one may think, for example, of an alternating optimization scheme in
which, repeatedly, the αi, j are fixed while the mi, j are optimized and vice versa,
thereby circumventing the issue of nonlinearity.

Moreover, CR-AII might be more amenable for a generalization to the case of
k-additive measures, k > 2. In this regard, the second approach is arguably difficult:
Firstly, it is known that for k > 2, the extreme points of the convex polytope of
k-additive measures are not all {0,1}-valued. Secondly, and more importantly, the
number of these extreme points is expected to grow extremely fast, knowing that
the number of extreme points of the polytope of additive measures on m variables
grows like the sequence of Dedekind numbers [15].
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Can Fuzzy Clustering Avoid Local Minima
and Undesired Partitions?

Balasubramaniam Jayaram and Frank Klawonn

Abstract. Empirical evaluations and experience seem to provide evidence that fuzzy
clustering is less sensitive w.r.t. to the initialisation than crisp clustering, i.e. fuzzy
clustering often tends to converge to the same clustering result independent of the
initialisation whereas the result for crisp clustering is highly dependent on the ini-
tialisation. This leads to the conjecture that the objective function used for fuzzy
clustering has less undesired local minima than the one for hard clustering. In this
paper, we demonstrate that fuzzy clustering does suffer from unwanted local min-
ima based on concrete examples and show how these undesired local minima of the
objective function in fuzzy clustering can vanish by using a suitable value for the
fuzzifier.

1 Introduction

The aim of cluster analysis is to construct a partition of a given data set into ho-
mogenous groups, called clusters. Data objects within a cluster should be similar,
whereas data objects assigned to different clusters should differ significantly. The
main motivation for the introduction of fuzzy clustering as a generalisation of crisp
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or partitioning clustering was to better represent partly overlapping clusters. Data
points at the boundary between two clusters should belong partly to both clusters.

Apart from this obvious motivation for fuzzy clustering, it seems that fuzzy clus-
tering is more robust in the sense that the results seem to be less dependent on the
initialisation that is required for many clustering algorithms. Since fuzzy clustering
is usually based on minimising an objective function by a gradient descent method,
this empirical observation suggests the conclusion that the fuzzy versions of crisp
clustering algorithms have less local minima in which the clustering algorithm can
get stuck.

First investigations in this direction have been described in [14], but without fi-
nal proofs that local minima of the objective function can really vanish in fuzzy
clustering. After a brief review of fuzzy cluster analysis, we provide concrete exam-
ples where it can be clearly observed that undesired local minima of the objective
function can be ruled out by fuzzy clustering. Although this is a positive result, new
problems are introduced by fuzzy clustering when applied to high-dimensional data.

2 From Crisp to Fuzzy Clustering

A simple and common popular approach is the so-called c-means clustering (HCM)1

[8]. For the HCM algorithm it is assumed that the number of clusters is known or at
least fixed, i.e., the algorithm will partition a given data set X = {x1, . . . ,xn} ⊂ Rm

into c clusters. Since the assumption of a known or a priori fixed number of clusters
is not realistic for many data analysis problems, there are techniques based on cluster
validity considerations that allow to determine the number of clusters for the HCM
algorithm as well. A comparison of methods for determining the number of clusters
can be found in [6]. In recent years, resampling or cross-validation techniques [5] are
often used to determine the number of clusters. However, the underlying algorithm
remains more or less the same, only the number of clusters is varied and the resulting
clusters or the overall partition is evaluated. Therefore, it is sufficient to assume for
the rest of the paper that the number of clusters is always fixed.

From the purely algorithmic point of view, the c-means clustering can be de-
scribed as follows. Each of the c clusters is represented by a prototype vi ∈ Rm.
These prototypes are chosen randomly in the beginning. Then each data vector is
assigned to the nearest prototype (w.r.t. the Euclidean distance). Then each proto-
type is replaced by the centre of gravity of those data assigned to it. The alternating
assignment of data to the nearest prototype and the update of the prototypes as clus-
ter centres is repeated until the algorithm converges, i.e., no more changes happen.

This algorithm can also be seen as a strategy for minimising the following objec-
tive function:

f =
c

∑
i=1

n

∑
j=1

ui jdi j (1)

1 Usually, the algorithm is called k-means. But in fuzzy clustering it is common to use the
letter c instead of k for the number of clusters. HCM stand for Hard C-Means clustering in
order to distinguish it from Fuzzy C-Means clustering (FCM).
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under the constraints

c

∑
i=1

ui j = 1 for all j = 1, . . . ,n (2)

where ui j ∈ {0,1} indicates whether data vector x j is assigned to cluster i (ui j = 1)
or not (ui j = 0). di j =‖ x j − vi ‖2 is the squared Euclidean distance between data
vector x j and cluster prototype vi.

It would be a straight forward generalisation of HCM to simply relax the con-
straints ui j ∈ {0,1} to ui j ∈ [0,1] in order to obtain a fuzzy version of HCM. How-
ever, it turned out that the minimum of the objective function (1) under the con-
straints (2) is still obtained, when ui j is chosen in the same way as in HCM, i.e.
ui j ∈ {0,1}, even if we allow ui j ∈ [0,1]. Therefore, an additional parameter w, the
so-called fuzzifier, was introduced – first only for the choice w = 2 [9] and later on
for any w > 1 [2] – and the objective function (1) is replaced by

f =
c

∑
i=1

n

∑
j=1

uw
i jdi j. (3)

Note that the fuzzifier w does not have any effects, when we use hard clustering.
The fuzzifier w > 1 is not subject of the optimisation process and has to be chosen
in advance. A typical choice is w = 2.

The minimisation of the objective function (3) under the constraints (2) is usually
carried out by an alternating optimisation scheme where the membership degrees are
updated by

ui j =

⎛
⎜⎜⎝ 1

∑c
k=1

(
di j
dk j

) 1
w−1

⎞
⎟⎟⎠

w

, (4)

and – in case of the Euclidean distance – the cluster prototypes by

vi =
∑n

j=1 uw
i jx j

∑n
j=1 uw

i j
. (5)

This is the standard fuzzy c-means algorithm (FCM). The update equations (4) and
(5) represent the global minimum of the objective function when the corresponding
other set of parameters is considered as fixed.

Fig. 1 shows a simple data set with three well-separated clusters. However,
in 2,589 out of 10,000 runs with random initialisation, HCM gets stuck in a lo-
cal minimum of the objective function leading to the undesired clustering result
shown in Fig. 1(b) whereas FCM terminates in the correct partition (a) in all 10,000
runs2. The reason for the failure of HCM lies in the fact that once a prototype has

2 The clustering was carried out with the package cluster of the statistics software R
[19].
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(b) HCM fails!

Fig. 1 A simple two-dimensional data set and an HCM clustering result as it is expected (a).
But in about 25% of the runs, HCM gets stuck in a local mininum leading to the partition (b).

‘conquered’ the two clusters in left-hand side, the other two prototypes will not take
any notice of these points anymore.

It is out of the scope of this paper to provide a detailed review on fuzzy clustering
as for instance in [3, 12]. It should be noted that there are two parts of the objective
function (3) that can be modified or generalised. One the one hand, there is the way
how fuzzy membership degrees are incorporated in the objective function. Possibilis-
tic clustering [17] relaxes the constraints (2), leading to an actually undesired global
minimum. An improved version of possibilistic clustering, avoiding the problem, has
been proposed in [20] for the price of significantly higher computational costs. In
[16, 15], the fuzzifier is replaced by more general functions than just a simple power
of the membership degrees to overcome certain problems that are introduced by the
fuzzifier. One of these problems is discussed at the end of Section 3.

On the other hand, the distance measure can be modified to cover more general
cluster shapes. Various approaches have been proposed, for instance to adapt to
linear [4, 2] or ellipsoidal [10] clusters, to clusters of different volume [13] or to
non-compact shell clusters [18]. Although all these approaches have been published
as fuzzy clustering techniques, they have actually nothing specific to do with fuzzy
clustering. In principle, one could also use crisp membership degrees for them. The
reason why these approaches are exclusively based on fuzzy clustering is probably
that the more complex cluster shapes with additional parameters introduce more
local minima into the objective function, so that there is a much higher risk to get
stuck in an undesired local minimum when hard clustering is applied.

Noise clustering [7] is another example of an approach that is also applicable in
the context of hard clustering. An additional noise cluster is introduced to which all
data have a fixed (large) distance. In this way, data points that are far away from all
clusters will be assigned to the noise cluster and have no longer any influence on
other clusters.
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3 Vanishing of Local Minima

As shown above HCM can get stuck in local minima if the initialisation is not
’proper’. While FCM certainly overcomes many of the lacunae in HCM, a simi-
lar problem can also plague FCM. For instance, is it true that FCM does not have
any local minima? If it does, what is it that makes FCM come out of this? In this
section, we firstly demonstrate that FCM does have undesired local minima and then
argue that a proper fuzzifier can reduce the number of local minima in the objective
function of FCM and thus help in the proper and faster convergence of FCM.

3.1 Local Minima of FCM

The objective function (3) of FCM is often difficult to visualise – there are too
many dimensions (parameters, i.e., prototypes and membership degrees). Hence,
let us reduce the dimensions by making the objective function independent of the
membership degrees by choosing the optimal values for the membership degrees as
in [11] by replacing ui j in (3) by (4).

Taking a similar approach as in [14], let us consider a one-dimensional data set
with one cluster at x = 0 with k points and one outlier at x = u. Clearly, we have
just one cluster and let us add a noise cluster [7] to take care of the outlier. Now, the
objective function in (3) becomes

f (v) =
k · v2(

1+
(

v2

δ

) 1
w−1
)w +

(v− u)2(
1+
(
(v−u)2

δ

) 1
w−1
)w

+
k ·δ(

1+
(

δ
v2

) 1
w−1
)w +

δ(
1+
(

δ
(v−u)2

) 1
w−1
)w (6)

where v is the location of the cluster centre and δ is the distance of every point to
the noise cluster.

Let us consider Fig. 2, where the location of the cluster centre v is represented on
the x-axis and the fuzzifier w on the y-axis. From Fig. 2(a), where u = 2,k = 2, i.e.,
the lone data point is at x = 2 and there are k = 2 points at x = 0, we see that when
w = 1 there is a clear local minima at v = 2 while for the conventionally used value
of w = 2 we see that the local minima is almost non-existent. Here the noise distance
is δ = 1. However, it does not mean that FCM is not plagued by this problem. To
see this let us shift the lone data point from v = 2 to v = 10. As Fig. 2(b) shows, still
with δ = 1, we see a clear local minima at v = 10. Note that increasing the number
of points at x = 0 does have an effect in the first case, as is expected, it does not have
any effect in the second case, since the lone point is far enough not to be influenced
by it. Moreover, note that the local density of data is not in our control in realistic
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(a) u = 2,k = 2 (b) u = 10,k = 2

(c) u = 2,k = 5 (d) u = 10,k = 5

Fig. 2 Plots of the objective function of FCM for w = 1,1.5,2

situations and hence it is hard to ensure the vanishing of unwanted local minima.
In fact, the distribution of the local density of data gives rise to an entirely different
problem as is analysed and solved in [16, 14] (see below for more details).

3.2 The Role of the Fuzzifier w

While the generalisation of the membership values ui j from just {0,1} to the whole
interval [0,1] is usually the highlighted aspect of FCM – perhaps even the nomen-
clature of FCM is also attributable to it – a major role is also played by the so called
fuzzifier value ’w’ in (3) above.

Firstly, note that even if ui j ∈ [0,1] when w = 1 we still have hard clustering
and FCM is equal to HCM. Secondly, as shown in [16] the value of the fuzzifier
w actually controls the amount of overlap among the clusters. Looking at the term
uw

i j in (3) as only a particular transformation of ui j, viz., g(u) = uw, it was shown in
[14] that suitable transformations g exist that also redeem FCM from the problem
of letting their cluster centres be dictated by the local density of the data.
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(a) u = 2,k = 2 (b) u = 10,k = 2

(c) u = 2,k = 5 (d) u = 10,k = 5

Fig. 3 Plots of the Objective Function of the FCM for w = 2,3,4,5,6

In this work, we show yet another aspect of the fuzzifier, viz., we show that
choosing the w value appropriately can make many, if not all, of the local minima
vanish and thus help FCM deliver correct results more often than not.

3.3 Suitable w for Vanishing Local Minima

Let us once again consider the scenarios presented in Sec. 3.1. As the Figs. 3(a)–(d)
show, by increasing the value of w we see that the unwanted local minima at v = 2
and v = 10 vanish leading to a correct and, clearly, also a faster convergence. Note
also that the local density of the data does not seem to alter the slope of the curve,
equivalently the rate of convergence significantly. Thus it is very much applicable
to real life data. While it can be seen from Fig. 3 that a value of around w = 5
or w = 6 seems sufficient to eliminate the unwanted local minima at v = 2,10, it
should be emphasised that the scenario considered here is very elementary. In higher
dimensions, the value of w required could be much smaller or higher. For instance,
see the scenario considerd in Section 3.4 below. As we understand the happenings
while w → 1, it is interesting to study the limiting case of w → ∞.
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To this end, it is sufficient to consider the following expression that occurs in the

denominator of the objective function in (6):

(
1+
(

d′
d′′
) 1

w−1
)w

, where d′,d′′ are

positive distances of the points from the cluster centres. Since, when either d′ = 0 or
d′′ = 0 the expression does not come into play, we consider the following equivalent

form: g(w) =
(

1+(ε)
1

w−1

)w
for ε > 0. Now, it is obvious that lim

w→∞
g(w) = ∞ and

hence lim
w→∞

f (v) = 0 for every position v of the cluster centre. In other words, every

point on the x-axis could be a cluster centre.

3.4 A Slightly More Complex Scenario

Let us consider the following scenario, where we have 2 clusters at u = 2 and at
w = 5. There are 10 points each at u = 2 and w = 5 and 3 ’noise’ points at x = 0.
Using a noise cluster distance δ = 1, we expect the global minima to be at v1 =(2,5)
and symmetrically at v2 =(5,2). Now the objective function becomes a two-variable
function F(v) = F(r,s), the formula of which is quite complex to be given here.
However, we do plot F in Figs. 4 and 5 for different values of w. In every case there
are clear global minima at v1,v2 as expected.

When w = 1 (HCM), we see from Fig. 4(a) that, apart from the desired minima at
v1,v2, there are also clear local minima around (0,2),(2,0),(0,5),(5,0) as indicated
by the dark blue contour circles. When w = 2, as is usual for FCM, we see that two
of the local minima have vanished and only the local minima around v′ = (0,2)
and v′′ = (2,0) remain. Thus if a cluster centre gets initialised closer to these local
minima, it is difficult for these cluster centres to escape from there.

Now let us consider the case when w= 2.3. It is already clear to see (see Fig. 5(a))
that most of the local minima have vanished and even if cluster centres fall close to
the above v′,v′′, they can eventually reach one of the global minima. This becomes
even more apparent for the case when w = 2.9 – see Fig. 5(b).

It is also interesting to note that for larger values of w, in fact, for w = 4 or w = 5
we see that all the local minima vanish and just one global minimum appears around
the centroid of the whole data set, as is expected – see Figs. 6(a) & (b).

3.5 FCM Problems with High-Dimensional Data

The above examples seem to suggest that the fuzzifier will always lead to less local
minima. However, for high-dimensional data, fuzzy clustering suffers from the so-
called curse of dimensionality [1]. In higher dimensions, standard distances like the
Euclidean distance seem to lose their power to distinguish between points. Fig. 7
is adopted from [21] where the following example is considered. Clusters are uni-
formly distributed on the surface of a hypersphere. Then the objective function of
FCM is drawn along one axis only by moving the prototypes from the centre of
the sphere along the radii to the cluster centres. Surprisingly, there is a local min-
imum of the objective function when all prototypes are positioned in the centre of
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(a) w = 1, Local minima around (0,2),(2,0),(0,5),(5,0)

(b) w = 2, Local minima around (0,2),(2,0)

Fig. 4 Plots of the objective function F(v) of FCM for w = 1,2
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(a) w = 2.3

(b) w = 2.9, All the local minima have vanished

Fig. 5 Plots of the objective function F(v) of FCM for w = 2.3,2.9
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(a) w = 4

(b) w = 5

Fig. 6 Plots of the objective function F(v) of FCM for w= 4,5 - one global minimum appears
around the centroid of the whole data set
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Fig. 7 An undesired local minimum at the centre 0 for high-dimensional data (the bottom
curve is for dimension m = 10 and the top curve is for m = 500)

the sphere and the danger of getting stuck in this local minimum increases with
number of dimensions. HCM does not have this specific problem although it has its
own problems with high-dimensional data, see for instance [21] and the references
therein.

One can escape from this problem of FCM with high-dimensional data by either
choosing a fuzzifier very close to 1 or by using a generalised fuzzifier function as
proposed in [16].

4 Conclusions

The answer to the initial question whether fuzzy clustering can avoid local minima
is partly positive. For low-dimensional data, local minima can vanish by a suitable
choice of the fuzzifier. For high-dimensional data, additional local minima can be
introduced. The choice of the fuzzifier can be crucial for the avoidance of local
minima. How to choose an appropriate value for the fuzzifier will be investigated in
a future work.
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Optimal Control Based on Fuzzy Logic

Kai Michels

Abstract. This paper introduces an algorithm for optimal control, whose first idea
was developed in a PhD-thesis under supervision of Rudolf Kruse in the mid of
the nineties. In that project, the algorithm was developed theoretically and tested in
simulation, while in 2011 a new project was started, where this algorithm shall be
applied to a given real-world problem with all the restrictions and additional detail
problems that arise in real-world applications. The basic idea of this algorithm is to
discretize and bound the state space and to find optimal trajectories from any point
in this finite state space to a predefined set point. First, the connection weights be-
tween each two points of the discretized state space are estimated, which is based on
fuzzy logic. Then, the optimum trajectories are calculated with the help of Dijkstra’s
algorithm.

1 Dynamical Models as Basis for Controller Design

The first and most important step of controller design is to define, which information
is available for design and operation of the controller. If a precise linear model (a
set of linear differential equations describing the dynamical behavior of the system)
is available and the system is controllable (there are enough actuators to drive the
system to any given point in state space), one can access to the entire linear control
theory for controller design and operation. Depending on the design algorithm, it
can be guaranteed, that the closed-loop system with its transfer behavior from the
reference input to the output value is optimal with respect to any given definition of
optimality.

If the linear model is not precise, which means, that there is a certain range of un-
certainty about the parameters of the differential equations, norm-optimal controller
design methods can be applied, that guarantee not only stability of the closed-loop
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system and sufficiently fast transfer behavior, but also robustness, which means,
that even if the real system differs from the model in a given range, stability can be
guaranteed.

Also for nonlinear plants (described by nonlinear differential equations) classi-
cal control theory offers a great variety of algorithms, that also guarantee stability,
optimal transfer behavior and robustness. But due to the large possible structural
differences of nonlinear differential equations, in the field of nonlinear plants cer-
tain controller design algorithms can be applied only for a certain class or type of
nonlinearities. A general controller design method for all types of nonlinear plants
would be either too unspecific to apply to a given real plant, or the performance of
the resulting controller would be too poor, i.e. the response of the output on a change
of the reference input value would be too slow. But to sum up, for special classes
of nonlinear plants classical control theory offers excellent solutions like for linear
systems.

All of the above mentioned classical controller design approaches have in com-
mon, that a more or less precise dynamical model in the form of differential or dif-
ference equations must be available. Therefore, they could be called model-oriented.
But on the other hand, there still exists a numerous number of plants, of which no
such model exists.

This is the application field of fuzzy control. Here, only a certain idea about the
dynamical behavior of the plant must exist, before one can try to develop a fuzzy
controller by definition of fuzzy rules and sets. Normally, some fuzzy rules and sets
are used to design a first version of the fuzzy controller. Then, in the closed-loop
system, the behavior is tested and improved by adding or changing fuzzy rules and
sets. This method could be called controller-oriented. As an advantage, this method
doesn’t require detailed knowledge about control theory. But on the other hand, for
non-trivial plants the design is very time-consuming and may get even impossible
due to increasing complexity. While one fuzzy rule is clear and easy to understand, a
large number of fuzzy rules cannot be surveyed any more. Besides that, there exists
no proof of stability for a closed-loop system with such a fuzzy controller, because
a proof always requires an analytical model of the plant.

Self-tuning fuzzy controllers have been discussed to solve this problem, but at
the end, a self-tuning or adaptation strategy for a non-trivial plant, that guarantees
stability, must fit exactly to the plant, which means, it must be based on a rather
detailed model of the plant. But if such a model is available, classical controller
design approaches lead to much better results.

The same argument holds for using genetic algorithms to find the optimum or at
least a good fuzzy controller. Here, each fuzzy controller is seen as an individual of
a population, whose quality (fitness) can be estimated in different simulation runs.
But to perform a simulation, a precise model of the plant must be available, which
leads to the same argument as before.

Neural networks are often seen as solution of this problem, but they just shift
the problem into a different area, like classical adaptation algorithms. It is true,
that neural networks don’t need a plant model, but they need training data, and this
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training data must cover the entire range of operation. In practical application on
higher-order plants, it is nearly impossible to create such a training data set.

The approach introduced in this paper is a model-oriented approach, where the
model is based on fuzzy logic. Due to this fact, the following controller design
cannot be analytical, it is based on graph theory. The model information has to be
taken from an analytical model, so one might ask, what is the use of this method,
as for an existing analytical model classical controller design is normally the better
way. But compared to classical controller design methods, the method of this paper
doesn’t have restrictions regarding the dynamical structure of the plant, it works in
principle for any type of differential equations, linear or nonlinear.

In the first step, the state space has to be discretized and bounded, which is nor-
mally no problem, as the range of operation is known. Then, for each point in the
discretized state space, using the analytical model of the plant it is calculated for
different values of the actuating variables, how the neighbouring discrete states can
be approximated in one time-step. The distance between the following state and the
regarding neighbouring state defines the weight of the graph from the initial state to
the neighbouring state. The larger the distance, the smaller the weight.

In this way, for each point in discrete state space it is investigated, how good
(close) the system can be brought from this point to its neighbouring points. After
this, it is easy to find an optimum trajectory from any point to a given set point in
state space using Dijkstra’s algorithm.

As the idea of the algorithm is based on fuzzy models and fuzzy logic, we will
describe these fuzzy features first.

2 Fuzzy Model

As the entire algorithm can only be realized on a computer, that always needs a
certain time to sample the measured values and to estimate a new controller output,
the dynamical behavior of the controller as well as of the plant have to be discussed
in form of difference equations and not in form of differential equations.

From the measurements known at a certain time t = kT (including past values), a
dynamical model of a plant should be able to predict the vector of output variables
y(k+ 1) or the state vector x(k+ 1) at time t = (k+ 1)T . A state space model, for
example, describes the relation between the current state vector x(k), the current
vector of actuating variables u(k) and the change of the state vector in the next time
step Δx(k+ 1) resulting from them. The difference equation for such a model is

Δx(k+ 1) = x(k+ 1)− x(k) = f(x(k),u(k)) (1)

where f can be any nonlinear vector function.
An alternative to the state space model is a model, which describes the relation-

ship between actual input vector and former input and output vector on the one hand
and the actual output vector on the other hand:

y(k) = f[u(k− n), ...,u(k),y(k− n), ...,y(k− 1)] (2)
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In the linear case, such a difference equation corresponds to the well-known transfer
function resp. transfer matrix of a system.

In the following, we will use the state space model as given in Eq. (1). Such a
model shall now be given in form of a fuzzy model [12, 13]. For reasons of sim-
plicity, we explain a fuzzy model here only for a zero-order SISO (single input -
single output) plant with no internal dynamics. The dynamical behavior of such a
type of plant can be described by pairs of input and output values (u(k),y(k)) at
one sample time t = kT , where both values are of the set X , which can be seen as
the set of real numbers under the restriction of discretization. We therefore have
a relation between each value of the actuating variable u(k) and the corresponding
one of the output variable y(k), which we can represent by a—still “crisp”—relation
Rk = {(u(k),x(k))}, that means, we just have to store the pair of values (u(k),y(k)).

Now we can expect, that, if the pair (u(k),y(k)) can appear, similar pairs of mea-
sured values can appear as well Using the similarity relation [5, 8, 10]

E : (X ×X)2 → [0,1] ,

((u1,y1),(u2,y2))→ (3)

min{1−min(|u1 − u2|,1) ,1−min(|y1 − y2|,1)}

we can replace Rk by a fuzzy relation, the extensional hull of Rk:

μRk : X ×X → [0,1] ,

(u,y)→ (4)

min{1−min(|u(k)− u|,1) ,1−min(|y(k)− y|,1)}

The point (u(k),y(k)) in the u− y− plane becomes the fuzzy set μRk (cf. Fig. 1).
From a set-theoretical point of view, μRk is the set of all points which are similar to
(u(k),y(k)), where “similarity” is defined by Eq. (4).

We can also think of this fuzzy relation as the set of all pairs of values (u,y)
which are possible for this plant. The pair (u(k),y(k)), as a pair of values which
were given in the beginning, maybe by measurement, is certainly possible, and its
degree of membership to this set is therefore 1. For other pairs of values, the degree
of membership to this set decreases with an increasing distance from (u(k),y(k)).
The assumption is, that pairs, which are close to the measured pair of values, are also
possible; in fact, they are more possible, the smaller the distance to this pair is. It
should be mentioned that we would obtain a different fuzzy relation μRk , if we chose
another similarity relation. With regard to the computational effort however, it seems
reasonable to choose a relation which is as simple as possible for the construction
of the model.

The disjunctive combination of a certain number of fuzzy relations μRk delivers
the fuzzy model of the plant:

μR =
⋃
k

μRk (5)
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Figure 1 shows such a model as a result of two pairs of values (u(1),y(1)) and
(u(2),y(2)). The more pairs of values form the model, the more it will cover the
field of operation.

Fig. 1 Fuzzy model of a plant derived from two pairs of values

As a firm footing for our further explanations, let us now describe how to compute
the expected output value ym(k) for a given input value um(k) using this model. First,
we have to define a singleton fuzzy set representing the input:

μu : X → [0,1] , u →
{

1 if u = um(k)

0 otherwise
(6)

Then, using this singleton and the given relation describing the model μR, we
compute the relational equation μy = μu ◦ μR. We obtain a fuzzy set as the output
quantity:

μy : X → [0,1],

y → sup{min [μu(u),μR(u,y)] | u ∈U}= μR(um(k),y) = μy(y) (7)

This procedure corresponds to making a cut parallel to the y-axis through the re-
lation μR at u = um(k), and projecting it onto the output variable y (see Fig. 2). A
defuzzification of this fuzzy set yields the value which should be expected as the
output value ym(k). These are obviously the same steps which have to be carried
out to calculate the output value of a conventional fuzzy controller, if the rules are
stored in form of a fuzzy relation.

The entire method can be adjusted to MIMO (multi input - multi output) plants
of higher order without any problems. A first order plant, for example, can be char-
acterized by a triple of measured values (u(k),x(k),Δx(k + 1)) (actuating variable,
state, resulting change of state), where the actuating variable and the state form
the input quantities of the model, and the resulting change of state is the output
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Fig. 2 Computing the output value of a fuzzy model

quantity. Therefore, the fuzzy model requires an additional dimension. Normally we
may obtain multi-dimensional fuzzy models. But as any of the equations involved
can easily be extended to any dimension, the method itself is not affected by adding
further dimensions.

Let us discuss this type of modelling from a logical point of view: The more
information is added to the model (by adding new pairs of values with their fuzzy
relations), the “larger” the fuzzy set gets. If we got the model from pairs of measured
values, which might be noisy, we might get several pairs of values, that have slightly
different output values for the same input value. This would lead to a quite “uncrisp”
relation describing the plant behavior. At the end we would have to face the fact that
adding more information leads to a less precise and therefore worse model of the
plant.

Using conjunctive connected implications (Goedel, Lukasiewicz) instead of dis-
junctive connected similarity relations for modelling would cause the opposite ef-
fect: For every new pair of measured values the relation R would become smaller
and sharper, which means, the model gets more exactness and precision. Indeed
this is the usual intention for adding new information to the model. But if the input
data for modelling is noisy, each conjunctive connection of two implications result-
ing from similar but inconsistent pairs of measured values would lead to deletion
of each others information, so that at the end the final overall implication could
be zero everywhere. Because of that effect, we prefer the disjunctive connection of
similarity relations for our work.

It should be mentioned how such a model can be stored. It seems reasonable to
discretize the entire space spanned by the involved quantities. At every supporting
point which results from this process, the degree of membership valid at that point is
recorded (see Fig. 3). The relation describing the model is then defined in terms of
an interpolation between these recorded degrees. Of course, this causes differences
between the stored relation and the original one, but we can adjust this difference
according to our needs by choosing a grid of sufficiently high resolution.
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Fig. 3 Illustration of how to store a fuzzy model

3 Model-Based Control

Obviously, interchanging input and output while using a given fuzzy model (see
Fig. 2) would cause no problem. Therefore, we can use the model to calculate the
corresponding input value for a given output value, i.e. to answer the question, which
actuating value (or vector) is necessary to drive the system to a certain state [6, 7].
From a theoretical point of view, we use the inverted model, which is well known as
compensating control in classical control theory. But while inversion of an analytical
model causes problems in most practical applications, the inversion of a fuzzy model
is just interchanging input and output of the model. We only have to define the plant
output we want, get into the model and calculate the corresponding input of the
plant.

As it is easy to construct fuzzy relations also for multi-dimensional systems
without any difficulties, this type of model-inversion should cause no problems for
higher order plants or MIMO systems. The models are constructed in the same way
as usual, and then just used invertedly.

If we have got a state-space fuzzy model, i.e. Eq. (1), we have to define the
desired change of the state vector Δx(k+ 1) at the next time step as input for our
model to get the necessary actuating (or input) vector u(k) at the current time step.
But here, we face a problem. If the change of state we want is too large, there may
exist no input vector that can cause this change. We therefore have to split the wanted
change of state into several smaller changes and perform the entire procedure for
several times. To do so, we need a block in front of the inverted model to calculate
these intermediate values (see Fig. 4).

But for calculation of intermediate values, we face another problem, that can
easily be explained in form of an example. Let us assume we are given a mass m to
move from one point to another in a plane. The differential equations are

F = ma

a = v̇

v = l̇ (8)
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Fig. 4 Control based on an inverse model

where F is the driving force, a is acceleration, v is velocity and l is position. The
state variables are l and v. We would like to achieve a transformation of the system
from the initial state (l1,v1) = (0,0) into the final state (l3,v3) = (w,0) with w > 0.
Figure 5 shows the required trajectory in state space. To get from state 1 to state 3,
we obviously need an intermediate velocity v > 0 in order to bring the mass to its
final state, i.e. we have to go via state 2.

Fig. 5 Trajectory of moving
a mass

A simple calculation of intermediate goals would just have estimated the direct
connection between initial and final state and splitted this connection into several
smaller steps, so that the system could follow each step within one time-step. All
intermediate reference values would have been on the l-axis, which means, v would
always have been zero. This would be equal to the demand, that the body moves
from position l = 0 to l = w with a velocity of zero, which is obviously impossible.

The example shows clearly, that the calculation of intermediate values requires
knowledge about the dynamical behavior of the plant. This leads to the idea of
optimal control based on fuzzy logic.

4 Optimal Control

This method calculates the optimal trajectory from the initial to the final state first.
Following this trajectory the intermediate reference values (as part of this trajectory)
are then calculated for each time-step and given as input to the inverse model of the
plant. As the calculation of the optimal trajectories requires a lot of computation
time, this method is suitable especially for systems with a constant reference value.
For a continuously varying reference value, however, the computational effort might
exceed reasonable limits.
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Let us explain the calculation of optimal trajectories for a second order system
with one actuating variable and a fixed reference value or final state. The model-
relation μR has got the two states x1(k) and x2(k) and the actuating variable u(k)
as input quantities. The output quantities are given by the changes Δx1(k+ 1) and
Δx2(k + 1) of the states during the following time step, resulting from the input
quantities. μR is therefore a five-dimensional relation.

First, we have to choose an operating region around the final state, where we are
sure of that the system will never leave it. We discretize this limited state space,
which leaves us with a finite number of discrete states inside this region. Figure 6
shows such a discretization for a second order system. The origin of the coordinate
system is assumed to be the final state.

Fig. 6 Discretization of a
two-dimensional state space

As the second step, for every single state we have to detect the possibility with
which it can be transferred into one of its adjacent states by means of a suitable
actuating variable, within one time step. Figure 7 gives an illustration of this for
one state of our example. The central point is the state under examination. It is
surrounded by eight adjacent states. We are now looking, for example, for the pos-
sibility with which this state may be transferred into the state on the upper right.
We know the coordinates (x1m,x2m) of the central state, and those of the state on the
upper right, (x1r,x2r). We then define the state in the center to be the current state
(x1(k),x2(k)) = (x1m,x2m), and the difference between this state and the one on the
upper right (Δx1(k+ 1),Δx2(k+ 1)) = (x1r − x1m,x2r − x2m) to be the desired state
difference for the next sample.

We then have to define membership functions for x1(k),x2(k),Δx1(k + 1) and
Δx2(k+ 1) as inputs for our fuzzy model to calculate the corresponding actuating
value u(k). As x1(k),x2(k) represent the well known and precisely defined current
state of the system, we use singletons for these variables. We could also use single-
tons for Δx1(k+1),Δx2(k+1), but here it makes more sense to define the member-
ship functions by [4]

μΔxi : X → [0,1] , Δxi →
{

Δxi
Δxi(k+1) if 0 < Δxi < Δxi(k+ 1)

0 otherwise
(9)



54 K, Michels

Fig. 7 Possibilities for a transition from one state to one of its adjacent states

This membership function is shown in Fig. 8. This way to define the membership
function makes sense because of the following reason: It might happen, that no
actuating value exists to drive the system within one time-step from the central
state to the upper right one. In that case, using singleton membership functions for
Δx1(k+ 1),Δx2(k+ 1) would lead to no result from the fuzzy model. This case is
prevented by using membership functions as shown here. Even if no actuating value
can drive the system into the upper right state within a single time-step, we will at
least find an actuating value that drives the system as close as possible to this state.

Fig. 8 Membership func-
tion for Δxi(k+ 1) as fuzzy
model input

Using the fuzzy sets defined above and the model-relation μR, we can then esti-
mate the output of the relational equation

μu = μx1 ◦ μx2 ◦ μΔx1 ◦ μΔx2 ◦ μR (10)

which leaves us with a fuzzy set μu for the actuating variable. This fuzzy set contains
all actuating values that can drive the system from the center state closer to the upper
right state.

A defuzzification is not necessary, since we are only interested in a measure
of the possibility of the transition from one state to another one—and not in the
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actuating variable which would be required to obtain this transition. This measure
is the highest degree of membership

P = sup
u
{μu(u)} (11)

which occurs within the fuzzy set μu (0.8 in our example). It would make little
sense to use a measure like for example

∫
μu(u)du, since we are not interested in

the power of the set, but only in whether there actually exists an actuating variable
which can be used to enforce the transition from the center state to the upper right
one.

As the result of this step, we now know the possibilities for all the transitions
from any state of the limited, discretized state space to any of its adjacent states that
can occur within one time step. We can think of this as having two directed lines
connecting any two adjacent states, which are labeled with a measure describing the
possibility of the corresponding state transition. In Fig. 7 only the lines beginning at
the center state are sketched.

Now, we would like to find one trajectory from every point of the discretized state
space into the final state, passing through several other discrete states if necessary.
On the one hand, we would like this trajectory to be as short as possible. On the
other hand, it should contain only those transitions which have a high value of pos-
sibility, since this increases the possibility that the real system can actually follow
this trajectory. In order to be able to present this task as an optimization problem of
a closed form, we transform the possibility values of all the transitions according to

P′ = 1.0−Pa where a > 0 (12)

The value for P′ will be the smaller, the higher the possibility for the corresponding
transition is. a can be used to manipulate the relation of the P′-values of large to
small possibility values. This again affects the probability of having transitions with
small or large possibility values occur within the computed trajectories.

If all the possibility values are transformed, we can define the weight of a trajec-
tory to be the sum of all P′-values of the transitions involved. This weight will be
the smaller, the fewer transitions the trajectory contains and the smaller the values
P′ of the corresponding transitions are. Now this just means that the trajectory will
be short and contain transitions with high possibility values. Our task is therefore to
find a trajectory from every point of the state space to the final state with a weight
as small as possible.

This is a task for Dijkstra’s Algorithm [2] which is well known in graph theory
and we are now going to present shortly. It is defined recursively, which is why we
have to presuppose a connected domain of the discretized state space, where all the
optimal trajectories from any state to the final state, which lie completely inside
this region, are already known. We now want to add another (adjacent) state to this
region, i.e. the optimal trajectory inside this region has to be computed for the new
state. As the state is adjacent to the region, some transitions between this state and
states inside the region will exist, with corresponding weights P′.
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Since we already know the optimal trajectory of each of these adjacent old states,
all we have to do is find the state whose trajectory is also optimal from the new state
via this state to the final state. And this merely requires adding the weight of the
transition from the new to the old state to the weight of the optimal trajectory from
the old state to the final state. The optimal trajectory for the new state will be the one
passing through that old state, for which the addition produced the smallest value.
We then have to store that old state as successor of the new state, and also store the
weight of the new state’s optimal trajectory.

Having done that, we also have to check if adding this new state changes the
optimal trajectory of an old state, i.e. if it is “cheaper” for any of the old states to
reach the final state via this new state. For all of the old states, for which this holds,
we have to store the new state as successor and change the weight of their optimal
trajectory. Then, we have finished one recursion, add the new state to the (extended)
region, and repeat the entire algorithm for the next new state all over again.

Let us illustrate this algorithm with the simple example given in Fig. 9. The final
state is S. The region for which we already know all the optimal trajectories consists
of A,B and S. We would like to add N as the new state. We know the weights for the
transitions between N and its neighbors A and B in both directions. The weight for
the trajectory N −A−S is 0.3+0.4 = 0.7, the one for N −B−S is 0.1+0.9 = 1.0.
The optimal trajectory from N to S therefore runs via A. We see that the weight for
the trajectory B−N −A− S (= 0.8) is less than the one of the originally optimal
trajectory from B to S (= 0.9). We therefore define a new optimal trajectory for B,
too, which now runs from B to S via N and A. At the end of this recursion step, we
define A as the successor of N, and N as the successor of B.

Fig. 9 An illustration to
Dijkstra’s algorithm

With Dijkstra’s algorithm, we can now estimate the optimal trajectories from all
the discrete states of the limited state space to the final state, starting from this final
state (see Fig. 10). With the help of these trajectories, we can always find a suitable
intermediate reference value for the control.
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The algorithm for any time step is the following: We have to measure the current
state of the plant, and determine the discrete state which is closest to it. The suc-
cessor state of this state with respect to the computed trajectory is then used as the
intermediate reference value for the inverse model. From the inverse model we get
the necessary actuating variable to drive the system to the intermediate reference
value within the next time step at least approximately. The state reached at the end
of this time step is the starting point for the algorithm at the next time step.

The question arises, how far the only approximative reaching of the intermediate
reference value within one time step affects the entire control algorithm, as this will
be the normal case. Through accumulation of these errors, it is even possible that
the system continues to move away from the computed trajectory, and that it finally
reaches a state which is closer to another computed trajectory. However, this does
not effect the overall result, as all that happens is that the system then reaches the
final state via this other trajectory.

Fig. 10 Trajectories in a dis-
cretized, limited state space

5 Practical Remarks

In principle, the fuzzy model of the plant can be generated from measured values.
Any tuple of measurements, e.g.

(u(k),x1(k),x2(k),Δx1(k+ 1),Δx2(k+ 1)) (13)

for a second-order system as described in section 4, forms a partial fuzzy rela-
tion μRk , that has to be connected disjunctively to the other partial fuzzy relations
resulting from other measurement tupels, so that at the end the resulting over-
all fuzzy relation represents the plant’s behavior in the entire range of operation.
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But even for just a second-order plant this is nearly impossible, because it would
require, that during an identification phase the plant is driven through the entire
state plane, and furthermore, that for all states all different actuating (input) values
have been applied.

Therefore it makes more sense to derive the fuzzy model from a given analytical
model of the plant. We can use this model to calculate for any state and any input
(actuating) vector the resulting output, which leads to one measurement tuple, that
forms a partial fuzzy relation to be connected to the overall fuzzy relation.

But doing this, the question arises why we should transfer an analytical model
into a fuzzy model instead of using the analytical model directly for trajectory gen-
eration. Indeed, this is done in our new research project. For each discrete state we
calculate the resulting following state for different values of the actuating vector. So
we check, how close we can get to one of the neighbouring states. The smallest dis-
tance to the neighbouring state leads to the required measure of possibility to reach
this neighbouring state within one time-step.

A second problem arises from the huge amount of storage needed for the de-
scribed algorithm. We have to discretize the state space with such small intervals,
that we can drive the system from one discrete state into one of its adjacent states
within one time-step. This may lead to more than one hundred discretization inter-
vals for each state variable, so that even for just the control of an inverted pendulum,
which is a fourth order system, we would get more than 1004 = 100,000,000 points
in the discrete state-space.

To reduce this huge amount of storage needed, we have to choose a lower dis-
cretization, which means, less discrete points and larger distances between them.
But this causes the problem, that no actuating vector can drive the system from one
discrete state close to one of its adjacent states. The solution is, that we have to
simulate the possible system’s behavior under different actuating vectors not only
for one single time-step, but for several time-steps, to check how close we can get
to the neighbouring states of one given state. The idea of simulating the plant’s be-
havior for several time-steps is well known in classical control theory and referred
to as “predictive control”, but there, the simulation is used for the entire time inter-
val needed to reach the final state, not only to get from one discrete state to one of
its adjacent states. Related approaches based on fuzzy systems can also be found
in [1, 3, 9] and [11].

One can see, that these solutions to meet practical requirements forced us to leave
the pure fuzzy approach. Instead of fuzzy sets and fuzzy models, we just handle
characteristic fields. And due to the increasing discretization distances, the solution
can only be suboptimal, but not optimal any more. But the original fuzzy method,
to check the possibility to get from one discrete state to another, and to calculate an
optimal trajectory based on these possibilities, is still the basis of this method.

Therefore, our algorithm might be an example for a successful combination of
classical control methods and fuzzy logic. This should be a good result, if we re-
member the “war” between fuzzy researchers and classical control engineers in the
nineties of the last century.
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[1] Babuška, R., Verbruggen, H.B.: Fuzzy modeling and model-based control for nonlinear
systems. In: Jamshidi, M., Titli, A., Zadeh, L., Boverie, S. (eds.) Applications of Fuzzy
Logic: Towards High Machine Intelligence Quotient Systems, pp. 49–74. Prentice-Hall,
Inc., Upper Saddle River (1997)

[2] Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press and
McGraw-Hill, Cambridge (1990)

[3] Filev, D., Angelov, P.: Fuzzy optimal control. Fuzzy Sets Syst. 47(2), 151–156 (1992)
[4] Gorzalczany, M.B.: Interval-valued fuzzy controller based on verbal model of object.

Fuzzy Sets Syst. 28(1), 45–53 (1988)
[5] Kruse, R., Gebhardt, J., Klawonn, F.: Foundations of Fuzzy Systems, 1st edn. John

Wiley & Sons, Ltd., Chichester (1994)
[6] Sm, L., Sh, H.: A method of generating control rule model and its application. Fuzzy

Sets Syst. 52(1), 33–37 (1992)
[7] Michels, K.: A model-based fuzzy controller. Fuzzy Sets Syst. 85(2), 223–232 (1997)
[8] Michels, K., Klawonn, F., Kruse, R., Nürnberger, A.: Fuzzy Control: Fundamentals,

Stability and Design of Fuzzy Controllers. STUDFUZZ, vol. 200. Springer, Heidelberg
(2006)

[9] Valente de Oliveira, J., Lemos, J.M.: Long-range predictive adaptive fuzzy relational
control. Fuzzy Sets Syst. 70(2-3), 337–357 (1995)

[10] Pedrycz, W.: Fuzzy Control and Fuzzy Systems. Control theory and applications studies
series, vol. 3. Research Studies Press, Tauntun (1989)

[11] Sastry, V.N., Tiwari, R.N., Sastri, K.S.: Dynamic programming approach to multiple
objective control problem having deterministic or fuzzy goals. Fuzzy Sets Syst. 57(2),
195–202 (1993)

[12] Tong, R.M.: Synthesis of fuzzy models for industrial processes: some recent results. Int.
J. General Syst. 4(3), 143–162 (1978)

[13] Xu, C., Lu, Y.: Fuzzy model identification and Self-Learning for dynamic systems.
IEEE Trans. Syst. Man Cybern. 17(4), 683–689 (1987)



Kernel Based Defuzzification

Thomas A. Runkler

Abstract. Defuzzification converts a fuzzy set to a crisp value or set. Standard de-
fuzzification methods are the center of gravity (COG) and the mean of maxima
(MOM). A popular parametric defuzzification method is based on the basic defuzzi-
fication distribution (BADD). COG and MOM are special cases of BADD for unit
and infinite exponents, respectively. Kernelization is a popular approach to improve
data processing methods by implicit transformation to higher dimensions. This arti-
cle introduces kernelized defuzzification. We present a kernelized version of COG
and illustrate it for polynomial kernels (pkCOG) and Gaussian kernels (GkCOG).
We show that pkCOG is equivalent to BADD. Experiments with various represen-
tative synthetic examples show that GkCOG is superior to pkCOG/BADD in terms
of smoothness.

1 Introduction

Fuzzy systems perform computation and reasoning based on fuzzy sets [46]. Inputs
for fuzzy systems are mostly crisp, but also some applications with fuzzy inputs
have been reported [24]. Fuzzy computation and reasoning mostly produces fuzzy
results, but in many applications crisp results are required, so the fuzzy results have
to be converted into crisp results. The conversion of fuzzy sets into crisp sets or
values is called defuzzification.

Defuzzification is a very active research field since the early 1990s. Standard
defuzzification methods are the centroid or center of gravity (COG) method that
computes the centroid (first order moment) of the area under the membership func-
tion, and maxima methods that yield one of the values that has maximum member-
ship, for example the mean of maxima (MOM). Many variations of these standard
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defuzzification methods have been proposed. The centroid of largest area (COLA)
considers only the largest sub-area under the membership function [26, 44]. The
center of area (COA) or median computes the median instead of the first order mo-
ment. Since the determination of the first order moment is computationally inten-
sive and infeasible for applications with severe real-time constraints, various effi-
cient algorithms for the computation of COG [2, 16, 25, 43] and also implemen-
tations of COG devices in dedicated hardware modules [1, 19, 20, 39] have been
proposed. The decreased effort centroid defuzzification algorithm (DECADE) [32]
is an efficient algorithm that approximates the COG. Instead of the mean of max-
ima (MOM), also the first of maxima (FOM), last of maxima (LOM), and center of
maxima (COM) (median) are used. More sophisticated choices of the maxima are
presented in [15]. Defuzzification has also been interpreted as a decision process,
which yields the constrained decision defuzzification (CDD) [34], multi-criteria de-
cision methods [23], and constrained decision methods [21]. Also measurement-
theory has been applied to defuzzification [33]. Defuzzification can also be done
by modern methods of computational intelligence, such as clustering [7, 40], neural
networks [14, 27, 10], or evolutionary algorithms [3, 13]. The previously reported
defuzzification methods transform a fuzzy set into only one crisp value, but also
subset defuzzification methods have been proposed that yield crisp sets [35, 41].
Recently, also the defuzzification of type-2 fuzzy sets has been considered in the lit-
erature [4, 5, 8, 9, 17, 18, 38, 42]. For a comprehensive overview of defuzzification
methods see [28, 29], and for specific issues concerning fuzzy control see [12, 36].

This article does not focus on individual defuzzification methods but on para-
metric defuzzification that covers standard defuzzification methods as special cases,
and whose properties can be determined by setting appropriate parameter values.
A widely used class of parametric defuzzification methods is based on the basic
defuzzification distribution (BADD) [6]. BADD contains COG as a special case but
can also approximate MOM. A linear approximation of BADD with lower compu-
tational effort is the semi linear defuzzification (SLIDE) [45], and extended center of
area (XCOA) is a BADD variant that uses the median instead of the center of gravity
[31].

Based on Mercer’s theorem from 1909 [22], the so-called kernel trick has recently
become popular in many fields of data processing such as support vector machines
for classification [37] or kernelized clustering [11, 30]. The idea of kernelization
is to transform the data to a very high-dimensional (possibly infinite-dimensional)
space where they have more desirable properties so that problems can be solved
more appropriately. For example, nonlinear class borders can be approximated by
linear class borders in the high-dimensional space, and the effect of outliers is re-
duced in the high-dimensional space which enables more robust clustering algo-
rithms. In this article we propose a kernelized version of COG defuzzification that
contains COG and BADD as special cases. Experiments with representative syn-
thetic examples show that the proposed kernelized clustering is superior to COG
and BADD.



Kernel Based Defuzzification 63

This article is structured as follows: In section 2 we briefly review the standard
defuzzification methods such as COG. In section 3 we present BADD as a popular
example for parametric defuzzifation. In section 4 we introduce the kernelized COG
defuzzification. In section 5 we illustrate kernelized clustering in experiments with
representative examples and compare kernelized COG with regular (unkernelized)
COG and BADD. In section 6 we summarize our conclusions.

2 Standard Defuzzification Methods

We denote a fuzzy set over a universe X = {x1, . . . ,xn} ⊂ Rp, n, p ∈ N, as a set
U = {u1, . . . ,un}⊂ [0,1], where each uk quantifies the membership of xk in the fuzzy
set. Fuzzy sets are often defined over one-dimensional universes, p = 1, and multi-
dimensional fuzzy sets can be constructed from individual one-dimensional fuzzy
sets (e.g. using t-norms of the cylindrical extensions). In our experiments we will
therefore also consider only one-dimensional examples, but all presented methods
are also valid for higher-dimensional fuzzy sets, p ∈ N. Using these definitions, the
centroid or center of gravity (COG) can be defined as the first moment of the area
under the membership function

y =

n
∑

k=1
ukxk

n
∑

k=1
uk

(1)

The mean of maxima (MOM) is defined as

y =

∑
k∈argmax U

xk

∑
k∈argmax U

1
(2)

where argmax U is the index set of the maxima in U . Notice that for both COG and
MOM we have y ∈Rp, but not necessarily y ∈ X .

3 Parametric Defuzzification

As a generalization of COG (1), Filev and Yager introduced the basic defuzzification
distribution (BADD) [6]. The BADD defuzzification is defined as

y =

n
∑

k=1
us

kxk

n
∑

k=1
us

k

(3)
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with the parameter s > 0. Obviously, COG is a special case of BADD for s = 1. For
s → ∞ we obtain

lim
s→∞

n
∑

k=1
us

kxk

n
∑

k=1
us

k

= lim
s→∞

(maxU)k
n
∑

k=1

( uk
maxU

)s
xk

(maxU)k
n
∑

k=1

( uk
maxU

)s (4)

= lim
s→∞

∑
k∈argmax U

(maxU
maxU

)s
xk

∑
k∈argmax U

(
maxU
maxU

)s =

∑
k∈argmax U

xk

∑
k∈argmax U

1
(5)

which is equivalent to MOM (2). So for large values of s, BADD approximates
MOM.

4 Kernel Based Defuzzification

Mercer’s theorem [22] states that for any data set X and any so-called kernel function
κ : Rp ×Rp → R there is a mapping ϕ : Rp → Rq, q ∈ N, so that

κ(x j,xk) = ϕ(x′j) ·ϕ(x′k)T (6)

This means that a mapping of X to X ′ can be implicitly done by replacing scalar
products in X ′ by kernel functions in X , without explicitly computing X ′. This is
called the kernel trick. Frequently used kernel functions include

linear kernel κ(x j,xk) = x j · xT
k (7)

polynomial kernel κ(x j,xk) = (x j · xT
k )

s, s > 0 (8)

Gaussian kernel κ(x j,xk) = e−
‖x j−xk‖2

s , s > 0 (9)

Usually, we assume q � p, i.e. the data are mapped to a higher dimensional space,
but since the transformation is not explicitly performed, the value of q can be ignored
here.

In this article we do not want to kernelize the data X but we want to kernelize the
memberships U in COG. Since COG (1) does not contain any scalar product in U ,
we can not immediately apply the kernel trick. Instead we define the singleton set

δ k = {δ k
1 , . . . ,δ

k
n} (10)

with k ∈ {1, . . . ,n}, where

δ k
j =
{

1 if j=k
0 otherwise

(11)
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with j ∈ {1, . . . ,n}, so we can write

uk =
n

∑
j=1

δ k
j ·u j = δ k ·uT (12)

for δ k and u in vector form. We can therefore kernelize uk as

uk = κ(δ k,u) (13)

Inserting the kernelized uk into COG (1) yields

y =

n
∑

k=1
k(δ k,u)xk

n
∑

k=1
k(δ k,u)

(14)

If we use the polynomial kernel (8), then we obtain

y =

n
∑

k=1
k(δ k,u)xk

n
∑

k=1
k(δ k,u)

=

n
∑

k=1
(δ k ·uT )sxk

n
∑

k=1
(δ k ·uT )s

=

n
∑

k=1
us

kxk

n
∑

k=1
us

k

(15)

which is equal to the BADD defuzzification (3). So, for polynomial kernels, kernel-
ized COG is equal to BADD.

A very frequently used kernel function is the Gaussian kernel (9). If we use the
Gaussian kernel (9) in kernelized COG (14), then we obtain what we call Gaussian
kernel COG (GkCOG).

y =

n
∑

k=1
xke−

‖δ k−u‖2

s

n
∑

k=1
e−

‖δ k−u‖2
s

(16)

Notice that the kernelization does not imply any computational benefit but yields
some nice functional properties, as we will see in the next section.

5 Experiments

We present four different experiments with synthetic data to examine and compare
the behaviors of COG, BADD, and GkCOG defuzzification. For each experiment
for both BADD and GkCOG we use the parameters s = {0.01, 0.0125, 0.016, 0.02,
0.025, 0.032, 0.04, 0.05, 0.063, 0.08, 0.1, 0.125, 0.16, 0.2, 0.25, 0.32, 0.4, 0.5, 0.63,
0.8, 1, 1.25, 1.6, 2, 2.5, 3.2, 4, 5, 6.3, 8, 10, 12.5, 16, 20, 25, 32, 40, 50, 63, 80, 100}
which represent an approximately logarithmic scaling over 4 orders of magnitude.
In each experiment we consider the one dimensional data set X = {0,0.1, . . . ,1}.
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Fig. 1 Experiment 1: truncated triangles with various peak positions, COG (top right), BADD
(bottom left), and GkCOG (bottom right)

As pointed out earlier, we restrict to one-dimensional data here because they are
most common and because of the easier visualization. However, the presented meth-
ods also work for higher-dimensional data.

In our first experiment we consider triangular membership functions with width
1, height 1, and variable peaks at 0,0.1, . . . ,1, which are truncated at x = 0 and
x = 1. Fig. 1 (top left) shows the 11 different membership functions generated this
way. For each peak position 0,0.1, . . . ,1 we compute the defuzzified value. Fig. 1
(top right) shows the results for COG (vertical) over the center position (horizontal).
For a triangle with peak at 0, COG yields about 0.15, at 0.5 we have 0.5, and at 1
we have about 0.85. Fig. 1 (bottom left) shows the results for BADD. For large
values of s, BADD behaves like MOM and follows the peak of the triangle, which
yields the main diagonal. For s = 1, BADD is equal to COG and yields the same
curve as in Fig. 1 (top right). For 1 < s < ∞, BADD yields curves between MOM
and BADD. For s < 1 BADD yields some unexpected artefacts (bumps at about 0.2
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Fig. 2 Experiment 2: wide triangle and narrow triangles with various heights, COG (top
right), BADD (bottom left), and GkCOG (bottom right)

and 0.8). For triangle peaks between 0.4 and 0.6, BADD yields the same values for
any parameter s which is somewhat counterintuitive. Fig. 1 (bottom right) shows
the results for GkCOG. Also here we can see the main diagonal representing MOM
as one extreme. However, here the other extreme is a constant defuzzification value
of 0.5 representing ignorance of the provided fuzzy information. GkCOG smoothly
interpolates between these two extremes. There are no bumps, and the choice of
s affects all results except for the symmetric case of a triangle peak at 0.5 which
matches intuitive expectation.

In our second experiment we consider one triangle with peak 0.4, width 0.8,
height 1, and another narrower triangle with peak 0.9, width 0.2, and variable height
0,0.1, . . . ,1 (Fig. 2, top left). For each height 0,0.1, . . . ,1 we compute the defuzzi-
fied value. Fig. 2 (top right) shows the results for COG (vertical) over the height
(horizontal). For height 0, COG yields 0.4 (the mean of the wide triangle), for
height 1, COG yields 0.5, and approximately linearly interpolates between the two
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Fig. 3 Experiment 3: triangle with exclusion, COG (top right), BADD (bottom left), and
GkCOG (bottom right)

extremes. Fig. 2 (bottom left) shows the results for BADD. For large s (MOM),
BADD yields 0.4 for s < 1, and jumps to (0.4+ 0.9)/2 = 0.65 for s = 1. For small
s, BADD yields about 0.46, and jumps to 0.4 for s = 0. GkCOG (Fig. 2, bottom
right) shows a very similar behavior, except for the boundary 0.5 instead of 0.46,
and it does not show the jump for s = 0.

In our third experiment we consider a triangle with peak 0.5, width 1, height
1, and an exclusion at the position 0.6, i.e. the height at 0.6 is varied between
0,0.1, . . . ,1 (Fig. 3, top left). For the different height levels, COG (Fig. 3, top
right) almost linearly interpolates between about 0.48 and about 0.5. BADD (Fig.
3, bottom left) interpolates between two extremes: a concave curve from about 0.48
(s= 0) to 0.55 (s= 1), and a constant 0.5. Similar as in the previous example, BADD
exhibits an edge from 0.49 (s = 0) to 0.5 (s = 0.1). GkCOG (Fig. 3, bottom right) is
very similar but without the edge.
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Fig. 4 Experiment 4: truncated trapezoids, COG (top right), BADD (bottom left), and
GkCOG (bottom right)

In our fourth experiment we consider a truncated trapezoid with a right slope of
1 at the edge positions 0,0.1, . . . ,1 (Fig. 4, top left). COG (Fig. 4, top right) yields
a convex interpolation from 0.3 to 0.5. BADD (Fig. 4, bottom left) interpolates
between a slope from (0,0) to (1,0.5) and a constant 0.5 with an edge at s = 0.
GkCOG (Fig. 4, bottom right) is again very similar except for the edge.

6 Conclusions

Defuzzification is an important and continuously very active field of research since
the early 1990s. Defuzzification converts a fuzzy set to a crisp value or set. Standard
defuzzification methods are center of gravity (COG) and mean of maxima (MOM).
Many alternative approaches to defuzzification have been proposed. Parametric de-
fuzzification provides a unified approach to defuzzification. A popular parametric
defuzzification method is based on the basic defuzzification distribution (BADD).
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BADD contains COG as a special case and can also be used to approximate MOM.
We have introduced a kernelized variant of COG and have shown that BADD can
be interpreted as kernelized COG with polynomial kernels. We have also consid-
ered kernelized COG with the popular Gaussian kernel, which we call Gaussian-
kernelized COG (GkCOG). Experiments with four representative cases illustrate
that parametric defuzzification allows to realize different defuzzification behavior
depending on the chosen parameter values. Moreover, the experiments show that
BADD often exhibits unsmooth behavior (edges in the defuzzification characteris-
tics), which are avoided when using the Gaussian kernel (GkCOG).

This paper has introduced the concept of kernelized defuzzification. It has specif-
ically considered kernelization of COG with polynomial and Gaussian kernels and
experiments with one-dimensional data. Future work will include the kernelization
of other defuzzification methods (parametric and non-parametric, one-dimensional
and multi-dimensional) and a more detailed study how the properties of the kernel
function relate to the properties of the resulting kernelized defuzzification function.
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The Algorithm Selection Problem
on the Continuous Optimization Domain�

Mario A. Muñoz, Michael Kirley, and Saman K. Halgamuge

Abstract. The problem of algorithm selection, that is identifying the most effi-
cient algorithm for a given computational task, is non-trivial. Meta-learning tech-
niques have been used successfully for this problem in particular domains, including
pattern recognition and constraint satisfaction. However, there has been a paucity
of studies focused specifically on algorithm selection for continuous optimization
problems. This may be attributed to some extent to the difficulties associated with
quantifying problem “hardness” in terms of the underlying cost function. In this
paper, we provide a survey of the related literature in the continuous optimization
domain. We discuss alternative approaches for landscape analysis, algorithm mod-
eling and portfolio development. Finally, we propose a meta-learning framework for
the algorithm selection problem in the continuous optimization domain.

1 Introduction

A continuous optimization problem is such that, given a function f : Rn �→ R, we
want to find x� = argmin f (x). When solved in a computer, a search algorithm
samples from the very large but finite search set, X ⊂ Rn. Each observation xi ∈
X has an associated output value yi ∈ Y such that yi ≈ f (xi), where Y ⊂ R is
the objective set. The algorithm aims to find one or more candidate solutions xo ∈
X ,yo ≈ f (xo), such that |yo − y�| � δ , where y� = f (x�) and δ → 0. It is expected
that the algorithm produces a solution of acceptable quality after a bounded number
of function evaluations. The opposite is known as premature convergence.
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Premature convergence is related to the nature of the search algorithm, as each al-
gorithm exploits differently the information obtained by sampling f . Therefore, un-
less some restrictions are in place, it is optimistic to expect that an algorithm would
work well across a wide range of functions [78]. Due to the plethora of available al-
gorithms, it is non-trivial to know which one is able to exploit the information more
efficiently [29]. This is an instance of the well known algorithm selection problem.
In this paper we propose a framework based on meta-learning for the algorithm se-
lection problem. For this purpose, we review the literature about the different stages
of the new framework — namely landscape analysis, meta-learning models and al-
gorithm portfolios. Then, we outline the requirements for implementation of the
new framework.

The paper is organized as follow: Section 2 presents the algorithm selection
problem for continuous optimization, and the related parameter tuning problem.
Section 3 describes the characteristics that make an optimization problem difficult
and it reviews different methods for landscape analysis. Section 4 discusses how
machine learning techniques have been employed to solve the algorithm and param-
eter selection problems. Section 5 analyzes the related works in algorithm portfolio
design. Section 6 presents our meta-learning based framework for the algorithm
selection problem. Finally, Section 7 discusses avenues for further research.

2 Algorithm Selection

Rice [56] defined the algorithm selection framework as a loose methodology that re-
lates problems and solution methods through performance and problem characteris-
tics. This framework did not provide specific methods for implementation, which is
one of the reasons it has not been thoroughly explored. However, in the last decades,
meta-learning has been favored as implementation method with demonstrated suc-
cess in different problem domains [62]. Meta-learning exploits data obtained from
previous experiments by constructing models that can be used for prediction, using
machine learning techniques [28]. Figure 1 presents a summary of this implementa-
tion adapted to continuous optimization problems. In this figure, F is the very large,
amorphous, high dimensional and hard to define function set, for which f ∈ F . Let
A be the large and diverse algorithm set, and a ∈ A be one of the many algorithms
capable of searching for xo in X . The cost of running a in f can be measured by a
function ρ ( f ,a). Let P ⊂ R be the set of feasible values of ρ ( f ,a), called the per-
formance set. Then, the algorithm selection problem is to find ao = argminρ ( f ,a)
with f constant. It is noteworthy to point out that this problem cannot be solved
directly. Hence, let C ⊂ Rm be the set of function characteristics. This set includes
known attributes of f such as the dimension, but also measurements about the occur-
rence of certain structures known to pose difficulties for a [57, 73]. Characteristics
are important as they provide some order and coherence to the complicated problem
space by imposing a lower dimensional coordinate system [57]. Characteristics can
be calculated through user defined functions known as landscape analysis meth-
ods, c(x,y). These functions should be designed such that varying complexities are
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F
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Fig. 1 Summary of the algorithm selection framework for the continuous optimization
domain

exposed, structural properties are captured, and advantages and limitations of the
different algorithms are related to them.

Let g : C �→ P be a function that forecasts the performance based on the charac-
teristics. Consider the existence of a subset of functions from F such that we know
the values of c(x,y) and ρ ( f ,a) for all a ∈ A. Then, it is possible to use a machine
learning technique to identify the function g. These empirical performance models
provide a way to forecast the performance of an algorithm when a new problem is
presented. The whole process can be automated if the results of several models are
compared through an objective procedure.

The algorithm selection framework does not consider the algorithm parameter, θ ,
which controls the way that the search is carried out. This parameter can potentially
adapt a to f if it is properly tuned, and it can appreciably change the overall perfor-
mance [8]. This implies that an optimal θ for one function might not be appropriate
for others [35, 50]. Choosing θ for a given a is a time-consuming and non-trivial
task, and considerable effort has gone into developing methods for parameter selec-
tion that can be categorized as parameter tuning and parameter control [16]. Tuning
keeps the parameters constant during the run, while control modifies them. Both ap-
proaches have advantages and disadvantages that have been thoroughly discussed in
the literature [16, 35, 50].

Meta-learning is compatible with both parameter tuning and control [62]. If two
instances of the same algorithm differ only in one parameter, we can consider them
as two completely different algorithms [57]. This approach was followed by Hut-
ter et al. [31, 30, 32] for tuning randomized algorithms in the context of boolean
satisfiability problems, and by Muñoz et al. [45] for tuning the Covariance Ma-
trix Adapted Evolutionary Strategy. Therefore, parameter selection can be seen as a
component of the algorithm selection problem. As such, assume that g is not only
dependent of the landscape characteristics c but also from θ . In fact, if we assume
that c and θ are representations of f and a respectively, then ρ ( f ,a) ≡ g(c,θ ).
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Even though meta-learning provides a clear avenue for implementation, every
problem domain has specific issues to be considered, e.g. characteristic quantifi-
cation, methods for selecting algorithms, and issues with uncertainties. One of the
most important issues is the characteristic quantification. It is important to have a
good understanding of what makes a continuous optimization difficult. For that pur-
pose, in the next section we will discuss the search landscape metaphor and different
methods used in landscape analysis of optimization problems.

3 Landscape Analysis

To understand what makes an optimization problem difficult, we employ the search
landscape metaphor. Consider a surface in a three dimensional space composed of
ridges, valleys and basins, such as the ones shown in Fig. 2. In this surface the high-
est or deepest areas represent the optimal points. The objective of the search is to
navigate the surface until such areas are found. This metaphor helps us to under-
stand what is needed for a successful search [53], and allows us to describe features
in the landscape that are influential, even though most practical problems will have a
dimension several orders of magnitude larger than two. These features — which are
defined on detail in [44] — can be described qualitatively in cases where the knowl-
edge about the function is complete. However, in cases where the only information
available are the pairs (xi,yi) these attributes are usually unknown. Therefore, a
landscape analysis technique is used to provide a measure that quantifies one or
several attributes.

A number of landscape analysis methods have appeared in the past two decades.
Table 1 presents a summary of some well-known landscape analysis methods and
their underlying concepts. The measures have been classified into two groups: global
and local. The former takes the whole sample to produce the measure while the
later calculates the average of evaluating a condition over each observation and its
neighborhood. Global measures have the advantage that samples extracted during
an experiment can be reused to calculate different measures. However, they do not
provide details about the locality of the landscape. Nevertheless, local measures can
become intractable when the sample is too large, as each observation has to be ana-
lyzed independently. Other disadvantage of local measures is that samples obtained
in one type of experiment are not reusable, e.g. time series measures require that
a random walk experiment, while the basin of attraction measures require a local
search experiment. Samples could be reusable if an intermediate processing step is
placed. In previous work [44] we have demonstrated a procedure to calculate local
measures from scattered data —extracted using random sampling— for two dimen-
sional problems. However, this approach is not scalable. This is due to the sensitivity
that local measures have to the neighborhood definition.

Other authors have identified limitations in the landscape analysis methods. Their
application requires a sufficient number of observations, which grows exponentially
as the dimension of the search space increases. This establishes a difference between
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(a)

(b)

Fig. 2 Landscape for Gallagher’s Gaussian 21-hi Peaks function in two dimensions from
the Comparing Continuous Optimization Benchmark. Figure (a) show a three dimensional
rendering of the function, while Fig. (b) show a contour plot. This function is multimodal,
without global structure, non-separable, homogeneous with medium sized anisotropic basins
of attractions.
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Table 1 Summary of some well-known landscape analysis methods. Local measures calcu-
late the average of evaluating a condition over each observation and its neighborhood, while
global measures use the whole dataset to produce the measure.

Type Concept Measure References

Local

Time Series

Kolmogrov complexity [9]
Correlation length [64]
Information content of random walk [71, 72]
Random walk correlation function [76, 77]

Fitness clouds Negative slope coefficient [68, 69, 67, 70]

Evolvability
Fitness distributions [7]
Locality [21]
Fitness evolvability portraits [61]

Landmarking Basin of attraction distributions [22, 12, 17, 18, 54]

Markov Models Basin of attraction estimations [2]

Others

Phase transitions [1]
Ruggedness coefficient [3]
Information Landscapes [8]
Path diversity [10]
Motif difficulty [38]
Fourier transformations [59]

Global

Linear correlation
Fitness distance correlation [34]
Multiple correlation coefficient [41]

Epistasis

Epistasis variance [15]
Bit-wise epistasis [19]
Walsh Transformation [27]
Bit decidability [48]
Analysis of variance tables [55]
Epistasis correlation [58]
Entropic epistasis [60]

Other Dispersion [39]

theoretical results and empirical estimators, whose precision changes as the number
of observations increases to infinity [33]. Hence, a large amount of computation has
to be made to obtain precise estimators and theoretically they cannot be calculated
in polynomial time [26, 46, 66]. This also explains why statistical analysis can be
artificially “fooled” by giving a special weight to insufficiently sampled regions of
the landscape [66]. However, statistical measures are by nature approximate. The
real question is how much information is actually lost and if its possible to deal with
such losses. Also, providing a single global measure to analyze a whole landscape is
overly optimistic and several measures may be necessary [6, 46, 61]. There is, with-
out a doubt, another form of the no free lunch theorem [78] at work in this situation.
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Our interest is to obtain as much information possible for a reasonable expenditure
of effort. However, care must be taken into selecting methods that provide co-linear
measurements [75].

Note that even if the analysis is performed, the results could only be applicable
to the current representation [40]. To solve this issue, it has been suggested to use
the Metropolis algorithm to get an initial sample and extract the measures while the
optimization algorithm is running [47]. However, the bias imposed by the search
algorithm can produce deceiving results [44]. It is obvious that difficulty of a prob-
lem can only be measured relative to the algorithm used to solve it [27]. Hence,
it is necessary to relate the landscape features to the search cost. Otherwise, the
resulting measures fail to account for much, if any, of the variability on problem
difficulty [75]. However, meta-learning provides an avenue to solve various of these
difficulties.

We will continue the discussion on how landscape analysis fits into the general
framework in Sec. 6. Also, we can find examples on how landscape analysis has
been applied to create meta-learning models. The next section reviews this research
area.

4 Meta-learning Models for Optimization Algorithms

As we mentioned in Sec. 2, meta-learning uses data obtained from previous experi-
ments by constructing prediction models of the algorithm using a machine learning
technique. Table 2 presents a summary related of works to meta-learning in the con-
tinuous optimization domain. Unlike fitness prediction [11] — where a model of
the function is created, so only promising observations are actually evaluated —
machine learning is used as a mean to identify relationships among functions and
algorithms with the purpose of selecting algorithms, tuning parameters, or simply
understanding the algorithm behavior.

Francois and Lavergne [20] suggested that statistical analysis, in particular
regression, could be useful to identify trends in the algorithm behavior. Their ex-
periments concluded that performance is a random variable that follows a gamma
distribution. This affirmation was confirmed by Yeguas et al. [79]. Although in [20]
it is proposed to relate algorithm classes to performance, there is not a specific
methodology in how to determine such classes. This means that for each problem
a new model has to be trained. Hence, the resulting models could not be realisti-
cally used for parameter tuning. A similar conclusion can be drawn of the works by
Bartz-Beielstein et al. [4, 5].

Leyton-Brown et al. [36, 37] are one of the first to focus on the algorithm selec-
tion in the optimization domain. Their work using combinatorial problems demon-
strated the practical application of meta-learning, and how it can be successful in
actual applications. However, only deterministic algorithms were studied at this
stage. The work of Hutter et al. [31, 30, 32] demonstrated that randomized algo-
rithms also can be modeled following this approach. These works provide justifica-
tion to the exploration of meta-learning into the continuous optimization domain.
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Table 2 Summary of the application of meta-learning concepts in the optimization domain.
It is noteworthy the paucity of works dealing with algorithm selection using meta-learning
concepts for continuous optimization.

Problem Application Model type Reference

Algorithm Selection

Scheduling
Bayesian Classifier [13, 14]
Linear regression [42]

Program induction Linear regression [24]

Boolean satisfiability
Standard ridge regression [31, 30]
Random Forest [32]

Combinatorial auctions
Linear regression [36, 37]
Multivariate Adaptive Regres-
sion Splines

[36]

Parameter Selection
Continuous optimization

Generalized Linear Models [20]
Regression tree [4, 5]
Linear models [79]
Neural networks [45]

Program induction Linear models [24]

Boolean satisfiability Standard ridge regression [30]

A set of models would allow the user to maintain an empirical database of
problem-algorithm relationships in a compact format. The database would be useful
to select a single algorithm to run or a group of algorithms that can be run sequen-
tially or concurrently, with or without communication between each other. This type
of collection is known as algorithm portfolio [23], which we will discuss in the fol-
lowing section.

5 Algorithm Portfolios

The concept behind algorithm portfolios is simple [51]: “Instead of betting the en-
tire time budget in a single algorithm, how do we invest it in multiple algorithms?”
In other words, a portfolio aims to improve on the performance of the component
algorithms, in terms of expected computational cost and overall risk [23]. This con-
cept has been explored for more than ten years [23], and it is closely related to
the developments in memetic algorithms [43, 49], hyper-heuristics [25] and hybrid
algorithms [73]. In general, a portfolio contains besides the algorithm set, a pro-
cedure called selector, whose purpose is to decide which a is the best for a given
f [25, 28, 51, 52, 65, 73]. In some cases, the portfolio provides provides communi-
cation among algorithms through a migration scheme [51]. The portfolio approach
has demonstrated computational advantages over individual algorithms particularly
when high-variance methods are combined [23].
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The performance of a portfolio depends of both its composing algorithms and
the selector [49]. In fact, some portfolios are strictly preferable than others, as they
provide a lower risk and also a lower expected computational cost. However, in
some cases, these are conflicting objectives [23]. Hence, it is preferable to select
algorithms that are mutually complementary so a synergy can develop between
them [74]. Therefore, it is crucial to understand the relative strengths and weak-
nesses of the different algorithms in the portfolio for effective selection [63]. It has
been suggested that meta-learning systems infer which and why certain algorithms
work for specific classes of functions. As such, the information gained through
meta-learning allows to systematize the insights to combine algorithms purpose-
fully and even provide clues for new algorithm designs [28].

A final element to consider in portfolio development is the random nature of the
performance measure ρ ( f ,a). Since it is possible to have large variations of perfor-
mance over different instances of the same problem [25], the overall performance
is quite sensitive to the runtime distributions of the algorithms involved [23]. For-
tunately, for many randomized algorithms such distributions closely resemble stan-
dard parametric distributions [31], usually gamma as discussed in Sec. 4. Hence,
they can be described by certain sufficient statistics. By forecasting such statistics,
a prediction of the entire distribution for an unseen instance can be obtained [31].

6 An Extension of the Algorithm Selection Framework

So far we have discussed three main areas of research in the continuous optimiza-
tion domain: landscape analysis, algorithm modeling and portfolio design. We have
also pointed out how these areas are related to the algorithm selection problem and
meta-learning. Now, we propose the framework shown in Fig 3, which connects
these research areas together. This extended framework is composed by two feed-
back loops. The first of such loops is the analysis loop, which starts at the junction
α where the pairs (xi,yi) are fed into the landscape analysis stage. At this stage,
different analysis methods work in parallel to produce a vector of estimated charac-
teristics denoted as ĉ ∈ C. As we pointed out in Sec. 3, global measures have useful
computational advantages, particularly the possibility to reuse data from previous
experiments. However, there are two important factors to take into account: The
level of uncertainty associated with landscape analysis methods in general and the
inherent bias of the samples that have been extracted during the run. For the for-
mer, a possible avenue is to consider confidence intervals instead of a single value
as the result of the analysis. For the later, weighted resampling might provide cor-
rection over the bias. This solution was demonstrated in a previous work [44], with
promising results.

The vector ĉ is the input for a set of models, each one of them represents an
available algorithm. We do not favor any particular machine learning method to
model the algorithms, although it is desirable to have a method that recognizes the
uncertainty associated with the inputs, and provides a confidence interval for the
output. The result is the vector of performance predictions ρ̂ρρ ∈ Pm, where m is
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Fig. 3 Proposed extension of the algorithm selection framework. This new framework is
composed of two loops: the optimization loop, where the search for promising solutions is
carried out; and the analysis loop, where the selection for the best algorithm is made based
on the landscape analysis.

the number of available algorithms. The predictions in this vector will be accurate
depending on: the diversity in the knowledge base used to train the models, the
relevance of the features, and the inherent randomness of the performance function.
The results from this stage are used to create a ranking of the likelihood of each
algorithm to create a new, potentially useful solution. At this point, it is important to
consider the exploration/exploitation balance as well as the propagated uncertainty
due to the landscape analysis and performance prediction.

The second loop is the optimization loop. It starts from the junction α , where the
pairs (xi,yi) are fed into the algorithm portfolio. Besides producing new solutions to
be evaluated, the portfolio shares information among constituent algorithms with the
objective to improve the chances of producing useful solutions. For that purpose, it
must be considered if the algorithms use a type of reinforcement learning, i.e. CMA-
ES, or not, i.e. PSO. This is because data that is improperly supplied to the system
might disrupt significantly the learning process. The resulting new solutions, Xi+1,
are transmitted to the ranking and selection mechanism, where the decision is taken
into which one of them are fed into f .

In overall, the proposed framework provides different sources of information in
order to produce a more extensive and detailed search. It also stores expertise that
otherwise must be acquired by long, trial-and-error experiments. The framework
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still provides flexibility into the selection of each component, such as which land-
scape analysis method to use, what type of model to implement, and importantly,
which algorithms to select. It provides the opportunity of switching on and off algo-
rithms depending on the case and to run concurrently as many algorithms as desired,
unlike other portfolio approaches.

7 Discussion

In this paper we have discussed the relationship between landscape analysis, meta-
learning models and algorithm portfolios to the algorithm selection framework as
proposed by Rice [56]. We did so by reviewing the existing literature and proposing
an extended framework that can be used for the algorithm selection in the continu-
ous optimization domain. The proposed framework has several advantages: First, it
enhances the search by providing additional sources of information that can be used
to make decisions during the run. Second, it facilitates the storage of expertise that
otherwise must be acquired by trial-and-error experiments. Third, it provides flexi-
bility into the selection of each component, e.g. which landscape analysis method to
use, what type of model to implement, and importantly, which algorithms to place
in the portfolio. Finally, it provides the opportunity to run concurrently as many al-
gorithms as desired, and being able to switch on and off those that are suitable at the
time and place.

Our current work is focused in three areas of the framework. The first step is
to develop a deeper understanding of some of the analysis methods in Tbl. 1. Our
approach is to measure the uncertainty produced by the estimators through non-
parametric statistical tests. The second step is to develop the meta-learning models.
For this purpose, our approach is to use the confidence intervals of the landscape
analysis as input to a machine learning strategy. The third step is to produce a rank-
ing and selection mechanism. Our approach is to consider the uncertainty in the
output models as part of the decision process. Algorithms with low uncertainty and
high performance are deemed as the best choices, while algorithms with high un-
certainty and low performance are deemed as the worst choices. The results so far
are encouraging [44, 45].
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Neuro-fuzzy Systems: A Short Historical Review

Detlef D. Nauck and Andreas Nürnberger

Abstract. When the popularity of fuzzy systems in the guise of fuzzy controllers be-
gan to rise in the beginning of the 1990s researchers became interested in supporting
the development process by an automatic learning process. Just a few years earlier
the backpropagation learning rule for multi-layer neural networks had been redis-
covered and triggered a massive new interest in neural networks. The approach of
combining fuzzy systems with neural networks into neuro-fuzzy systems therefore
was an obvious choice for making fuzzy systems learn. In this chapter we briefly
recall some milestones on the evolution of neuro-fuzzy systems.1

1 Introduction

The term neuro-fuzzy systems (also neuro-fuzzy methods or models) refers to com-
binations of techniques from neural networks and fuzzy systems [26, 50]. This typ-
ically does not mean that a neural network and a fuzzy system are used in some
kind of combination, but that a fuzzy system is created from data by some kind of
(heuristic) learning method that is motivated by learning procedures used in neural
networks.

Neuro-fuzzy methods are usually applied, if a fuzzy system is required to solve
a function approximation problem — or a special case of it like classification or
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control [58] — and the otherwise manual design process should be supported or
replaced by an automatic learning process. The (manual) design of a fuzzy system
requires specification of fuzzy partitions (parameters) for each variable and a set
of fuzzy rules (structure). If the fuzzy system does not perform well, structure or
parameters or both must be modified accordingly. This can be a very lengthy and
error-prone process that is effectively based on trial and error. In order to support
this design process learning techniques based on sample data became a popular
research topic at the beginning of the 1990s when fuzzy systems in the guise of
fuzzy controllers first became successful and widely known.

The history of neuro-fuzzy systems can be roughly structured into first feed-
forward systems for control and function approximation and later — mainly due to
the success of fuzzy systems in control — approaches for classification and cluster-
ing problems, where interpretable solutions and the introduction of prior knowledge
into the learning process is also quite often very beneficial. More recently, several
researchers studied the usability of hierarchical and recurrent architectures. In the
following, we discuss the major approaches that have been proposed for these fields,
if possible, in chronological order.

2 Feed-Forward Architectures

One of the first works that proposed a combination of neural network learning meth-
ods with the concepts of fuzzy systems was proposed in 1985 by Keller and Hunt
[29]. In this paper, the authors proposed an approach to stabilize the perceptron
learning algorithm for classification problems using fuzzy techniques. They intro-
duced a fuzzy membership of data items to the searched classes in order to improve
the convergence of the learning algorithm. Motivated by this early work, several
other approaches had been proposed that deal with the combination of neural net-
works and fuzzy systems and that have driven this field of research. In the area
of approximate reasoning, for example, several approaches have been proposed in
1991 and 1992 [14, 28, 31, 30, 32, 57, 56]. These models are parts of fuzzy ex-
pert systems, or support fuzzy decision making with the help of neural networks.
Since these methods do not integrate the neural network and fuzzy system struc-
ture in a homogenous architecture, but one adapts the parameters of the other in
a cooperative way, we do not consider them as (hybrid) neuro-fuzzy system and
thus do not cover them as part of this contribution. The same holds for approaches
suggested by Miyoshi et al. and Yager and Filev in 1993 and 1992, respectively.
In these approaches the fuzzy sets are not modified, but parametrized t-norms and
t-conorms are used. Miyoshi et al. [39] proposed an approach to adapt parameters
of these operators by backpropagation, while Yager and Filev suggest adaptive de-
fuzzification strategies [77, 78]. Yager and Filev used a parametrized defuzzification
operation and define a supervised learning algorithm to determine the parameters.
However, even though we do not discuss co-operative approaches in detail, we will
refer to them, if other (hybrid) approaches made use of the proposed more general
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techniques and ideas. The same holds for problems of learnability and interpretabil-
ity of (neuro) fuzzy systems, where some discussions can be found in [22, 64, 47,
11, 42]. For an overview that is focussed on neuro-fuzzy methods for rule generation
see [38].

2.1 Control

Neuro-fuzzy controllers were together with neuro-fuzzy systems for function ap-
proximation the first neuro-fuzzy approaches. The principles and architectures are
similar and the main difference is basically the learning mechanism. While function
approximation models can use supervised learning based on a training set, con-
trollers need to discover a model in a setting where target outputs are not known.
Neuro-fuzzy controllers therefore use reinforcement learning and require either a
model of or direct feedback from the process they are supposed to control.

2.1.1 ARIC and GARIC

On of the first neuro-fuzzy controllers was suggested by Berenji in 1992. The ARIC
model (Approximate Reasoning-based Intelligent Control) implements a fuzzy con-
troller by using several specialized feed-forward neural networks. The architecture
of ARIC is similar to an adaptive critic, a special neural controller learning by rein-
forcement [75], and it generalizes the neural model of Barto et al. [3] to the domain
of fuzzy control. ARIC consists of two neural modules, the ASN (Action Selection
Network) and the AEN (Action state Evaluation Network). The AEN is an adaptive
critic that is trained by backpropagation and that evaluates the actions of the ASN.

The ASN itself consists of two feed-forward three-layer neural networks. One
network calculates a confidence value that is used to change the output of the second
network which is a direct representation of a fuzzy controller. The input layer rep-
resents state variables of a process and the hidden units represent fuzzy rules. Their
inputs are the antecedents, and their outputs the consequents of the rules. ARIC as-
sumes that the rule base is known in advance. The output of the control network
represents the defuzzified control value of the fuzzy controller. The learning algo-
rithm modifies connections weights in the ASN and so indirectly the represented
fuzzy sets.

Implementing learning by modifying connection weights was a popular approach
in early neuro-fuzzy systems, but it was later shown that this leads to problems in
interpreting the learning outcome [40].

The ARIC model was later extended to GARIC (Generalised ARIC, Fig. 1) [4,
5, 6]. Like ARIC it consists of an evaluation network (AEN) and an action network
(ASN). The ASN does not use any weighted connections, but the learning process
modifies parameters stored within the units of the network. The other network of
the ASN which produces a confidence measure no longer exists.
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Fig. 1 GARIC represents a fuzzy system as a feed-forward network [5]

2.1.2 NEFCON

NEFCON is a model for neural fuzzy controllers proposed by Nauck in 1994 [44].
It is based on the architecture of the generic fuzzy perceptron [50] and implements
a Mamdani-type fuzzy system. NEFCON is probably the first neuro-fuzzy system
that tries to introduce the notion of interpretability by preventing identical linguistic
terms being represented by more than one membership function, even though the
general idea of a fuzzy perceptron has been proposed already earlier by Keller and
Tahani as well as Pal and Mitra in 1992 [31, 54] and similar concepts have been
discussed by Gupta and Rao in 1994 [18].

Like ARIC and GARIC, the learning algorithm for NEFCON is based on the idea
of reinforcement learning but instead of an adaptive critic network it uses a fuzzy
rule base to describe a fuzzy error.

Fig. 2 shows a NEFCON system with two input variables, one output variable
and five rules. The unit R3 for instance represents the rule

R3: If ξ1 is μ (1)
2 and ξ2 is μ (2)

2 then η is ν2.

The connections in NEFCON are weighted with fuzzy sets instead of real numbers,
and some connections always have the same weight (illustrated by ellipses around
connections) in order to ensure the integrity of the rule base.

Several learning methods have been proposed for this model. In [53] an overview
is given. One major problem of all methods is, that they require at least some prior
knowledge of the system to be controlled in order to define the (fuzzy) error signal
that is used for learning.

Recently, models have been proposed that try to solve these fundamental prob-
lems using hierarchical models and Q-learning, see, e.g., [13, 15]. Q-learning has
been already successfully used in combination with neural networks in order to con-
trol more complex systems, see e.g. [60].
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Fig. 2 A NEFCON system with two input variables and five rules

2.2 Approximation

Many neuro-fuzzy systems for function approximation are based on Takagi-Sugeno
fuzzy systems, because they allow the application of gradient descent learning, if
differentiable membership function (e.g. Gaussians) are used.

2.2.1 ANFIS

One of the first and still one of the popular neuro-fuzzy systems is Jang’s AN-
FIS model proposed in 1991 [26, 23, 24, 25]. ANFIS (adaptive network-based
fuzzy inference system) is a neuro-fuzzy method to determine the parameters of
a Sugeno-type fuzzy model which is represented as a special feed-forward network
(see Fig. 3). It encodes fuzzy rules of the form

Rr: If x1 is μ (1)
j1

∧ . . .∧ xn is μ (n)
jn

then y = α(r)
0 +α(r)

1 x1 + . . .+α(r)
n xn.

Each node of the first layer is connected to exactly one of the n input variables and
stores the three parameters of a membership function. The k nodes in the second
layer represent the antecedents of the fuzzy rules. They compute the degree of ful-
fillment by multiplying the degrees of membership. The k nodes of the third layer
compute the relative degree of fulfillment for each rule. The output values of the



96 D.D. Nauck and A. Nürnberger

rules are computed by the k nodes of layer 4. They store the consequent parameters.
Each node in this layer is connected (not drawn in Fig. 3) to one node of layer 3 and
to all input variables. The output node in layer 5 computes the overall output value.
If the model must compute m > 1 output values, then there are m output nodes and
mk nodes in layer 4.

�

�

�

�

�

�

�

�

�

�

��

��

��

Fig. 3 ANFIS encodes a Sugeno-type fuzzy model in a feed-forward network structure [25]

ANFIS uses only differentiable functions, and therefore it is easy to apply stan-
dard gradient descent learning procedures from neural network theory. For ANFIS
a mixture of backpropagation (BP) and least mean square estimation (LSE) is sug-
gested by Jang [25]. BP is used to compute the updates of the antecedent parameters,
i.e. the parameters of the fuzzy sets, and LSE is used to determine the updates for
the consequent parameters, i.e. the coefficients of the linear combinations in the
consequents.

ANFIS does not learn the structure of the fuzzy system, but it simply creates rules
from all possible combinations of input fuzzy sets. Initial fuzzy partitions have to
be specified. The consequent parameters are initialised by small random numbers.

2.2.2 Radial Basis Function Networks

Radial basis function networks (RBFN) are often connected to fuzzy systems, be-

cause the activation functions h(||x−c||2) = exp(−||x−c||2
2σ 2 ) of their hidden units can

be interpreted as multidimensional membership functions. If this interpretation is
assumed, then fuzzy rules can be extracted from an RBFN. To do this the RBF func-
tions of the hidden units must be projected onto the individual dimensions. This way
fuzzy sets are obtained that must be labelled with suitable linguistic terms. In gen-
eral, this kind of rule generation suffers from the problem that the antecedent of the
resulting fuzzy rule is not necessarily equivalent to the original corresponding RBF
function. We only have equivalence if the area described by it is an axis-paralell
hyperellipsoid and the product is used to compute the degree of fulfilment of the
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extracted fuzzy rule. If min is used as a t-norm the support of a rule is equivalent to
the smallest hyperbox which contains the hyperellipsoid described by h(||x−c||2)>
ε . If the RBFN uses a generalised radial basis function with an inverse co-variance
matrix that is not diagonal it is no longer equivalent to a fuzzy system.

In 1993 Jang and Sun showed when a radial basis function network (RBFN) is
equivalent to a TSK fuzzy model [27]. They found that the following conditions
have to hold:

• The number of hidden units in the RBFN (receptive field units) is equal to the
number of fuzzy if-then rules.

• The output of each fuzzy if-then rule is just a constant, i.e. the fuzzy system is
a simplified special case of a TSK system which would normally have a linear
combination as rule output.

• All membership functions in the fuzzy system are Gaussian functions with the
same variance.

• The t-norm operator used to compute each rule’s degree of fulfilment is the
product.

• Both the RBFN and the fuzzy inference system use the same operation to com-
pute the overall output, i.e.either weighted average or weighted sum.

Note that the third condition can be relaxed such that only the variances for each cor-
responding dimension (input variable) have to be identical. That means the RBFN
can use basis function with an inverse covariance matrix that is a diagonal matrix
and the elements on the diagonal need not be identical.

RBF networks have frequently be used to derive neuro-fuzzy approaches. For ex-
ample, Fuzzy RuleNet [69] as discussed in Sect. 2.3.4 is an extension of the RuleNet
model which is a special RBFN. The activation functions of the hidden units use the
∞-vector norm instead of the usual Euclidean vector norm. Thus the activation func-
tions are defined over hyperboxes instead of hyperellipsoids [12, 70].

Fuzzy RuleNet is a typical approach that can be seen as being inspired by RBFN
but having outgrown the limitation of functional equivalence to RBFN by using hy-
perboxes as the support of antecedents and max-min interference instead of product
and weighted average. Similar hyperbox-oriented approaches have been presented
by Berthold and Huber [10, 8, 9].

2.2.3 NEFPROX

NEFPROX [48] is like NEFCON based on a generic fuzzy perceptron and imple-
ments a Mamdani-type fuzzy system. Mamdani-type system are rarely used for
function approximation purposes, because it is easier to train a Takagi-Sugeno-type
system. NEFPROX has learning algorithms for structure learning and parameter
learning, but it is typically less accurate than ANFIS.
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2.3 Classification

Neuro-fuzzy classification systems became more popular in the second half of the
1990s. They are a special case of function approximators and their output is typ-
ically a fuzzy classification of a pattern, i.e. a vector of membership degrees that
indicates membership to different classes. With the rising interest in data mining,
fuzzy classifiers became more and more important in the fuzzy system community.

2.3.1 The NNDFR Model

A very interesting and atypical neuro-fuzzy model from 1991 is the NNDFR model
(Neural Network Driven Fuzzy Reasoning) by Takagi and Hayashi [66] which was
developed around the same time as ANFIS. NNDFR is based on common neu-
ral networks that are structured by fuzzy system techniques. Its main purpose is
classification.

An NNDFR system is based on n input variables x1, . . . ,xn, an output variable
y and k fuzzy rules R1, . . . ,Rk. It consists of k+ 1 multi-layer feed-forward neural
networks trained by backpropagation and representing the fuzzy rules (Fig. 4). The
system cannot be used to extract the parameters of a fuzzy system from it. Strictly
speaking, we would not consider it as a neuro-fuzzy system. However, the structure
of the partial networks and the interpretation of the outputs are motivated by fuzzy
system techniques.
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Fig. 4 Structure of an NNDFR system [66]

The linguistic rules used by the NNDFR model are of the form Rr: If (x1, . . . ,xn)
is Ar then y = ur(x1, . . . ,xn). This is not the usual form of linguistic rules used in
fuzzy systems and is caused by the purely neural architecture. Ar is an n-dimensional
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membership function. There is no combination of single membership values. In an
NNDFR system the neural network NNmem provides for each rule Rr a value wr that
is interpreted as its degree of fulfillment.

The functions u1, . . . ,uk are implemented by k neural networks NN1, . . . ,NNk

that determine the output values of the rules R1, . . . ,Rk. The overall system output
is given by y = ∑k

r=1 wr ur(x1, . . . ,xn)/∑k
r=1 wr.

2.3.2 FuNe-I

The neuro-fuzzy model FuNe-I [20, 21], proposed in 1992, is based on the archi-
tecture of a feed-forward neural network (Fig. 5). The network has five layers. The
first layer contains a unit for each input variable and propagates the input values
unchanged via weighted links to the second layer. This layer consists of units with
sigmoid activation functions that are used to create membership functions. The third
layer contains specialized units that are only used to represent fuzzy sets that do not
touch the domain boundaries (see below). The units of the second and third layer
propagate their activations via unweighted links to the fourth layer. Units from the
second layer that have connections to the third layer are not connected to the fourth
layer.

The fourth layer consists of units that represent fuzzy rules. Compared to other
neuro-fuzzy approaches, the FuNe-I model is special because it uses three kinds
of rules: the antecedents can be conjunctions or disjunctions, and there are rules
with only one variable as antecedent (simple rules). A unit computes its activation
— depending on the kind of rule it represents — by either a differentiable soft
minimum, a differentiable soft maximum, or the identity function.

The fifth layer contains the output units that compute their input by a weighted
sum and their activation by a sigmoid function. The FuNe-I model provides al-
gorithms for structure and parameter learning and is one of the first neuro-fuzzy
approaches that also considers rule learning.

FuNe-I was extended in 1994 to FuNe-II which can be used for fuzzy control
problems. In a FuNe-II network a new output layer is created that is connected to
the previous output layer. On the connections discrete samples of fuzzy sets are
stored to represent control values. The activations of the new output units represent
support points of a fuzzy set that must be defuzzified to obtain the final control value
[19, 21].

2.3.3 NEFCLASS

NEFCLASS [45, 46, 41], proposed in 1995, is probably the first neuro-fuzzy ap-
proach that was able to handle missing values, both numeric and symbolic data in
the same data set and to determine a rule-base fully automatically. NEFCLASS is
also based on the idea of a generic fuzzy perceptron and focuses on creating small
interpretable fuzzy rule bases.
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Fig. 5 The architecture of a FuNe-I system

The learning algorithm of NEFCLASS has two stages: structure learning and
parameter learning. Rule (structure) learning is done by a variation of the approach
by Wang and Mendel [73] which was extended to cover also symbolic patterns [43]
and to use a rule performance measure for rule selection. In parameter learning the
fuzzy sets are tuned by a simple backpropagation-like procedure that is based on a
simple heuristics instead of a gradient descent approach. After learning NEFCLASS
uses pruning strategies to reduce the number of rules as much as possible.

2.3.4 Fuzzy RuleNet

Fuzzy RuleNet [69], which was also proposed in 1995, is a neuro-fuzzy approach
that is based on the structure of an radial basis function (RBF) network (see also
Sect. 2.2.2). It is an extension of the RuleNet model, a special neural network, that
can be seen as a variant of an RBF network [12, 70]. Instead of the usual radial
basis functions — which represent hyperellipsoids — RuleNet uses hyperboxes for
classification.

Fuzzy RuleNet allows hyperboxes to overlap. Each hyperbox represents a multi-
dimensional fuzzy set given by a membership function in form of a hyperpyramid.
By projecting the multidimensional fuzzy sets onto the individual dimensions we
obtain triangular or trapezoidal fuzzy sets that describe the pattern features. The
fuzzy classification rules obtained this way are equivalent to the multidimensional
fuzzy sets, i.e. there is no loss of information as it would be in the case of hyperel-
lipsoids used in fuzzy cluster analysis. The hyperboxes are created in a single cycle
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through the data. The learning algorithm adjusts the sizes of hyperboxes by extend-
ing them to cover new data or shrinking them in case of conflicts. This way a rule
base and the parameters (fuzzy sets) are created in a single loop.

If a Fuzzy RuleNet is used for classification it computes its output by a winner-
takes-all procedure to find the class of a given input pattern. It is also possible to
adjust the definition such that the outputs are computed by a weighted sum. This
way Fuzzy RuleNet can be used for function approximation.

Similar approaches to Fuzzy RuleNet are sometimes called hyperbox-oriented
rule learners, and were known as early as 1992 [62, 63]. Newer variations are also
called fuzzy graphs [9, 7]. The idea is always to cover a set of data with hyper-
boxes and connect each hyperbox with an output value. Hyperbox-oriented fuzzy
rule learning can create solutions for benchmark problems in pattern recognition
or function approximation very fast. If there are no contradictions in the training
patterns and if there is only one output variable, then hyperbox-oriented learning
algorithms can create solutions with no errors on the training data. In the worst case
this leads to a situation, where each training pattern is covered by its individual
hyperbox.

3 Recurrent Systems

In contrast to pure feed-forward architectures that have a static input-output behav-
ior, recurrent models are able to store information of the past, e.g. prior system
states, and can be thus more appropriate for the analysis of dynamic systems (see,
for example, discussions concerning the approximation and emulation capabilities
of recurrent neural networks [59, 37, 74]). If pure feed-forward architectures are
applied to these types of problems, e.g. prediction of time series data or physical
systems, the obtained system data usually has to be preprocessed or restructured to
map the dynamic information appropriately, e.g. by using a vector of prior system
states as additional input. If we apply a fuzzy system, this may lead to an exponen-
tial increase of the parameters — if we want to cover the whole system state space
— that soon becomes intractable.

Recurrent neuro-fuzzy systems (RNFSs) can be constructed in the same way as
discussed above for feed-forward neuro-fuzzy systems. So, they are based either on
a recurrent fuzzy system or a recurrent neural network structure. However, the de-
sign and the optimization of (hierarchical) recurrent systems is, due to the dynamics
introduced by the feed back connections, more difficult than that of feed forward
systems. In Fig. 6 an example of a hierarchical RNFS is shown.

Probably the first recurrent fuzzy system that was combined with a (neural net-
work motivated) learning method was proposed by Gorrini and Bersini in 1994
[17]. The proposed system is a Sugeno-Takagi-like fuzzy system and uses fuzzy
rules with a constant consequent. The internal variables of this system may be de-
fined manually, if the designer has sufficient knowledge of the system that should
be modeled. No learning method for the rule base itself was proposed except to ini-
tialize the rule base randomly. However, the authors propose a learning approach
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Fig. 6 Example of a simple hierarchical recurrent rule base consisting of two subsystems.
The output of the system is reused by each subsystem as time-delayed input.

to optimize the parameters of a recurrent rule base, which was motivated by the
real time recurrent learning algorithm [76]. According to Gorrini and Bersini the
results for the approximation of a third order non-linear system for a given rule
base was comparable to the approximation by a recurrent neural network. Unfortu-
nately, a detailed discussion of the results was not given. Furthermore, the model
had some insufficiencies. First of all, the structure has to be defined manually, since
no learning methods for the rule base have been proposed. Furthermore, the learn-
ing is restricted to symmetric triangular fuzzy sets and the interpretability is not
ensured, since the fuzzy sets are modified independently during learning. However,
an extension to arbitrary (differentiable) fuzzy sets is easily possible.

Surprisingly, after this first model, for some time not much work had been pub-
lished on recurrent systems that are also able to learn the rule base itself. Most likely
the first models that were successfully applied to control — which, however, do not
implement generic hierarchical recurrent models as described above — were pro-
posed by Theocharis and Vachtsevanos in 1996 [68], Zhang and Morris in 1999 [80]
and Lee and Teng in 2000 [35]. For example, Lee and Teng proposed a fuzzy neu-
ral network, which implements a modified Sugeno-Takagi-like fuzzy system with
Gaussian-like membership functions in the antecedents and constant consequents.
However, this model did not implement a fully recurrent system as shown in Fig. 6,
but they restricted themselves to integrate feed back connections in the membership
layer as depicted in Fig. 7.
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Fig. 7 Fuzzy neural network with simple feedback units as proposed by Lee and Teng

Approaches to learn hierarchical recurrent fuzzy system were presented in 2001
by Surmann and Maniadakis [65], who used a genetic algorithm, and Nürnberger
[51], who proposed a template based approach to learn a structured rule base and
a gradient descent based method motivated by the real time recurrent learning
algorithm [76] to optimize the parameters of the learned rule base. The interpretabil-
ity of the fuzzy sets of this model is ensured by the use of coupled weights in the
consequents (fuzzy sets, which are assigned to the same linguistic terms share their
parameters) and in the antecedents. Furthermore, constraints can be defined, which
have to be observed by the learning method, e.g. that the fuzzy sets have to cover
the considered state space. An example of the network structure is given in Fig. 8.
However, the template based learning approach still had insufficiencies due to the
use of a heuristic that created inner fuzzy sets. Therefore, in [52] a slightly modified
approach was proposed, that learned the rule base using a genetic algorithm.

Furthermore, recurrent models that tackle specific problems of the learning pro-
cess, properties of recurrent fuzzy systems or specific applications have been pro-
posed in, e.g., [36, 72, 33].
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Fig. 8 Possible structure of the recurrent neuro-fuzzy system proposed by Nürnberger in
2001 [51] (using one time-delayed and one hierarchical feed-back). The first row of neurons
defines the input variables, the second row the membership functions of the antecedents, the
third row the fuzzy rules, and the fourth row the output variables. The membership functions
of the consequents that are shared by rules are represented by coupled links from the rule to
the output layer.

4 Outlook

Starting with neural network oriented architectures like ARIC and NNDFR neuro-
fuzzy system quickly developed into network representations of fuzzy systems like
we can see in ANFIS and NEFCON. In the second half of the 1990s we saw a lot
of specific architectures for approximation, classification and control where neuro-
fuzzy systems have covered a broad area of problems. Meanwhile, they found their
way in quite diverse application areas where they are currently regularly applied,
see e.g. recent works in geochemistry [81], geology [55], manufacturing [67], time
series analysis [2] and signal processing [61].

However, there are still a lot of open research research questions in the area
of adaptive control, where the combination of reinforcement learning methods
with neuro-fuzzy architectures has made a lot of progress more recently (see, e.g.,
[16, 34, 71]). The same holds for applications in classification that became more
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and more important with the growing interest in data mining (see, e.g., [1, 79]). In
this area questions of how to completely automate the learning process and how to
guarantee a certain level of interpretability remain to be important issues.

5 Remarks

We like to apologize to all researchers we did not mention in this — for this broad
topic — short article. This would have been impossible. We tried only to mark major
developments in this area and may have missed some that would be considered by
others as major contributions.
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Safe and Interpretable Machine Learning:
A Methodological Review

Clemens Otte

Abstract. When learning models from data, the interpretability of the resulting
model is often mandatory. For example, safety-related applications for automation
and control require that the correctness of the model must be ensured not only for the
available data but for all possible input combinations. Thus, understanding what the
model has learned and in particular how it will extrapolate to unseen data is a crucial
concern. The paper discusses suitable learning methods for classification and regres-
sion. For classification problems, we review an approach based on an ensemble of
nonlinear low-dimensional submodels, where each submodel is simple enough to be
completely verified by domain experts. For regression problems, we review related
approaches that try to achieve interpretability by using low-dimensional submodels
(for instance, MARS and tree-growing methods). We compare them with symbolic
regression, which is a different approach based on genetic algorithms. Finally, a
novel approach is proposed for combining a symbolic regression model, which is
shown to be easily interpretable, with a Gaussian Process. The combined model has
an improved accuracy and provides error bounds in the sense that the deviation from
the verified symbolic model is always kept below a defined limit.

1 Introduction

There is an increasing trend for using data-driven models (i.e. models learned from
data) in monitoring and control applications, for instance in industry, healthcare or
automotive electronics [9, 18]. The main reason usually is that analytical models
derived from first principles are either unknown or suffer from insufficient accu-
racy. However, deploying data-driven models in applications where incorrect model
outputs may have fatal consequences requires ensuring that the model is correct for
all possible inputs. In practice, training data are almost always limited and may not
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Fig. 1 Example of inappropriate extrapolation behavior. Left side: Neural network is tested
outside the interval used for training. Right side: Uncertainty of the model is estimated by
averaging the output of 50 neural networks. The uncertainty is large beyond the training data
(shading shows mean ±1 standard deviation)

represent all relevant operating conditions. Thus, it is crucial to understand what the
model has learned and in particular how it will extrapolate to unseen data.

A simple example is shown in Fig. 1(a). A feed-forward network [2] with a single
input, one hidden layer of nine neurons with sigmoidal activation function and a
single output with linear activation has been trained on 1000 noise-free training
samples drawn from a sum of two sines on the interval [0,3π ]. After training, it
is tested on the larger interval [0,4π ]. While the test accuracy on the interval seen
during training is very good, the extrapolation behavior is rather inappropriate. It is
obvious that a linear combination of sigmoids cannot reproduce the periodicity of
the true function. The key point here is that the model is tested in a range where the
desired model behavior is not specified by training data. In other words, the model
has learned an approximation to the unknown true function on the training data and
beyond that data the approximation is poor.

A possible way for estimating the model uncertainty is to consider the average
and standard deviation of the output of several models as shown in Fig. 1(b). In this
example each of 50 neural networks was initialized with different random weights.
They converged to slightly different solutions which are similar on the training data
but have diverse extrapolation behavior. The resulting standard deviation is large
in the region not specified by the training data, which might be used to alarm the
user about the uncertainty. A further discussion of model averaging can be found in
[5, 7].

While model averaging is a common approach for improving the prediction ac-
curacy, there is no guarantee that the uncertainty estimation is correct. This is due to
the fact that the ensemble members usually are not truly independent because, for
example, they are trained on the same data or are based on the same type of model.

Other approaches for avoiding inappropriate extrapolation behavior include the
following ones.



Safe and Interpretable Machine Learning: A Methodological Review 113

• Use of an additional model estimating the density in the input space and deacti-
vating the prediction model in low-density regions. However, density estimation
in higher-dimensional spaces is a challenge itself [7, 17].

• Constraining the model using a-priori knowledge. For example, if some input-
output relations are known to be monotonic then monotonicity constraints can be
introduced on the weights of a neural network [8].

• Limiting the allowed output range of the model, e.g. to the range given by the
training data. This is of course just an ad hoc method.

None of these approaches can in general guarantee that unspecified behavior of the
model does not occur. It is therefore preferable to use models possessing a level
of interpretability that suits the safety requirements of the respective application.
Usually, one has to weight interpretability against accuracy, so there is no magic
formula. Instead, among the variety of methods the best one has to be chosen spe-
cific to the application. Some examples are given in this paper.

Structure of this Paper

The next section describes an approach for classification problems with an applica-
tion to airbag control in automotive safety. Some basic ideas are then transferred to
the learning of regression functions in Sect. 3. Using a benchmark data set (SAR-
COS inverse dynamics problem) several regression approaches are discussed. It is
shown that a combination of symbolic regression with a Gaussian Process (GP) pro-
vides a good trade-off between interpretability and accuracy. In that combination,
symbolic regression provides an analytical model and the GP improves the overall
accuracy by learning the residuals of the analytical model. Section 4 concludes.

2 Safe and Interpretable Classification

In the following we review an approach based on an ensemble of nonlinear low-
dimensional submodels where each submodel is simple enough to be completely
verified by domain experts. The approach was firstly developed for binary classifi-
cation problems [12] and then extended to multiple classes [13].

2.1 Ensembles of Low-Dimensional Submodels

The algorithm for learning an ensemble of low-dimensional submodels for binary
classification problems is described in plain words below. For a formal description
and extension to more than two classes we refer to [12, 13].

1. Given: Data set D with feature vectors in Rp of two classes (positive and negative
class). Start with an empty set of selected models.

2. Consider all two-dimensional subspaces and learn a separation of both classes
in each subspace, e.g. by a support-vector classifier, neural network or any other
method. There is one important constraint for learning: The model must correctly
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classify all negative samples in D, that is, false positives (i.e. false alarms) must
not occur.

3. Select the best 2D-model (possibly involving expert knowledge in the selection
process) and add the model to the set of selected models.

4. Remove all correctly classified positive samples from D.
5. Start again in step 2 to separate remaining positive samples until no positive

instances remain or the maximum size of the set of selected models has been
reached.

The reason for the no-false-alarm requirement in the second step is that it allows
combining all selected models simply by logical-or. In other words a test sample
will be assigned to the positive class if at least one of the models assigns it to that
class. This greatly improves the interpretability of the ensemble as shown in the
following example.

2.2 Example: Airbag Control

In this safety-relevant application the objective is to learn the deployment decision
of an airbag system from crash test data. In each crash test the data from several
sensors in the car (mostly acceleration sensors) were recorded and various features
were extracted, resulting in a multivariate time-series sampled every 1 ms. In our
experiment the data set includes 52 features. Each crash test either has a “nofire”
or “fire” label. In case of a “fire” label, the crash has a desired point of time when
the airbag has to be triggered, e.g. 24 ms after the first contact with the barrier. A
“nofire” crash must not trigger the airbag at any time.

Since the time series of each crash comprises many samples that all share the
same label, this is a typical example of a class of problems known as multiple-
instance-learning [1]. For these problems it is sufficient to classify at least one sam-
ple of a “fire” crash correctly (within a certain time interval around the desired fire
time). In contrast, no sample of a “nofire” crash may ever be misclassified as “fire”.

Figure 2 shows three models learned by the algorithm. Note that the training data
only cover some part of the input space. However, by using two-dimensional pro-
jections and visualizing the class boundary in the whole 2D-space, the extrapolation
behavior can be verified. The features of each model are selected from the set of(52

2

)
= 1326 combinations of the original, physically interpretable features.

3 Safe and Interpretable Regression

As explained above in the context of Fig. 1 it is difficult and often practically im-
possible to understand a neural network model on such a detailed level that it would
be possible to make statements about its extrapolation behavior. The same holds for
many other successful approaches like Support Vector Machines [16] and Gaussian
Processes [14].
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Fig. 2 Three airbag control submodels, each separating a certain “fire” region from a “nofire”
region in a 2D-projection of the input space. Training samples from “nofire” crashes are
marked as (green) circles. Samples from “fire” crashes are marked as (red) crosses. The thick
line indicates the learned class boundary in each model. By explicitly visualizing the bound-
ary in the complete input space of each model the extrapolation behavior can be verified.
Note that large regions of the input space are not filled by data. Thus, manually checking the
extrapolation behavior is mandatory. For illustration, the trajectory of a particular “fire” crash
is shown in the respective 2D-projections. It starts in the origin and enters the “fire” region in
the third model (second row, left) and some time later also in the first model (first row, left).
A “fire” decision by one model is sufficient.

Traditionally, approaches like the Classification And Regression Trees (CART)
[4] or rule-based methods [11] are considered as being interpretable. There is of
course a trade-off with accuracy. For example, a CART model only remains inter-
pretable as long as the number of tree nodes is rather small, which means that the
model is quite coarse. In contrast, Random Forests [3] provide the other extreme
with a good reputation in terms of accuracy but without any kind of interpretability.

A possible compromise is to partition the input space similar to CART or rule
learners but to use slightly more complex submodels in the different regions of the
input space. MARS (multivariate adaptive regression splines) [6] and an approach
called GUIDE (generalized unbiased interaction detection and estimation) [10] fol-
low this strategy; both are discussed in an experiment below.
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Symbolic regression [15] comes from a different direction and seeks for a sym-
bolic representation (i.e. an equation) that best matches the given data. Details are
given later on.

In statistics, additive models (see e.g. chapter 9 in [7]) are often applied when
the model shall be interpretable. The idea is to learn a multivariate function having
p inputs as a sum of p univariate functions, that is, y = α +∑p

i=1 fi(xi) + ε . The
advantage is that the univariate functions may be easier to interpret. The drawback,
however, is that interactions between variables cannot be modeled.

In the experiment below we propose a different strategy which is similar to an
additive model in the sense that two modular functions are added in the final model.
The first function is used as an analytical model learned by symbolic regression;
it is easily interpretable but has only moderate accuracy. Thus, a second function
is learned on the residuals of the first function in order to improve the accuracy.
The model of the second function is not interpretable; but by limiting its output to
a defined range a worst-case guarantee can be given in the sense that the maximal
deviation from the analytical model is always below a certain limit.

The objective of the following experiment is to compare different regression ap-
proaches in terms of their accuracy and interpretability. The results are discussed in
Sect. 3.2.

3.1 Experiment: SARCOS Benchmark

In this example we consider learning the inverse dynamics of a seven degrees-of-
freedom SARCOS robot arm1. The task is to map from a 21-dimensional input space
(7 joint positions, 7 joint velocities, 7 joint accelerations) to the corresponding 7
joint torques. Following previous studies on this benchmark (see references in [14])
we only consider the mapping to the first of the seven torques, that is, we learn a
function f : R21 →R. There are 44,484 training examples and 4,449 test examples.
All 21 inputs xi have been standardized to have zero mean and standard deviation 1.
The output y has zero mean. Results are given as standardized mean squared error
(SMSE), which is the mean squared error on the test set divided by the variance of
the target values in the test set. The normalization by the variance makes the error
measure independent on the overall scale of the target.

While in a real safety-related application the worst-case error should be consid-
ered additionally to the mean error, here we solely use the SMSE to facilitate the
comparison with previous studies.

All methods described in the following were applied to this benchmark. The re-
sulting SMSE accuracy is summarized in Table 1.

Rigid-body-dynamics (RBD): This is a physics-based model derived from rigid-
body-dynamics. The RBD result is taken from [14], p. 24. As shown in Table 1 the
model accuracy is rather poor, which may be explained by the fact that the robot

1 Named after the robotics company SARCOS. The benchmark data are publicly available
from http://www.gaussianprocess.org/gpml/data/

http://www.gaussianprocess.org/gpml/data/
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is actuated hydraulically and is rather lightweight, so some rigid-body assumptions
seem to be violated.

Linear Regression (LR): Linear model with 21 inputs and no intercept.

GUIDE [10]: Similar to the classical CART this is a recursive partitioning algo-
rithm creating a regression tree. In CART a leaf of the regression tree contains just
the mean output value of all training samples assigned to that leaf. In contrast, in
GUIDE the leaves may contain linear models either with all inputs or with a sub-
set of inputs. With the complexity of the submodels in the leaves being larger in
GUIDE, the overall number of nodes can often be kept smaller in comparison to
CART, which may improve the interpretability of the final model.

Note that switching between nodes may lead to discontinuities in the output,
possibly causing problems in control applications. This holds for other approaches
as well that use a hard partitioning of the input space, e.g. CART, MARS.

Three experiments were conducted. They differ in the type of linear models used
in the terminal nodes (leaves). In the second experiment the minimum node size
was raised; the parameter defines the minimum number of training samples that a
node must have. Increasing this number reduces the number of nodes and helps in
improving the interpretability. The lowest error is achieved in the third experiment,
which is the value considered in Table 1. However, the model is not easy to interpret:
it consists of 35 linear models each having 21 variables.

Experiment 1: Stepwise linear models with up to 5 variables. Using defaults
(minimum node size = 889). Number of terminal nodes of final tree: 27, SMSE
= 0.0411

Experiment 2: Stepwise linear models without limiting the number of variables
(typically 11-17 variables entered the models in the leaves). Minimum node size set
to 2000. Number of terminal nodes of final tree: 16, SMSE = 0.0403

Experiment 3: Multiple linear models, all with 21 variables, using defaults (min-
imum node size = 889). Number of terminal nodes of final tree: 35, SMSE = 0.0327

MARS: Multivariate adaptive regression splines [6] are an approach where a model
is build as a linear combination of basis functions. The simplest basis function is a
piecewise linear function (linear spline) h(xi) of one input variable; instead of lin-
ear splines cubic splines may also be used. Interactions between two inputs xi and
x j are modeled by the product h(xi)g(x j) of two univariate spline functions. The
resulting product is considered as a basis function again. Higher-order interactions
can be handled analogously by building the respective products. Usually the maxi-
mum interaction level is limited to aid in the interpretation of the final model. A key
property of the basis functions is that they are zero over some part of their range,
making it possible for them to operate locally.

We used the ARESLab2 toolbox ver. 1.5.1 in Matlab. The maximum number of
basis functions allowed to be included in the model was set to 21 (including the

2 ARESLab obtainable from http://www.cs.rtu.lv/jekabsons/

http://www.cs.rtu.lv/jekabsons/
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intercept term) and the maximum interaction level was limited to 2 (only allow-
ing pairwise products). The resulting model trained on the complete training set is
shown below.

y = 21.51 +22.19*BF1 -25.44*BF2 +4.49*BF3 +5.88*BF4 +12.61*BF5 -8.45*BF6 +3.03*BF7 -14.14*BF8
+2.31*BF9 +1.63*BF10 +7.37*BF11 +2.69*BF12 -4.02*BF13 -3.20*BF14 -1.88*BF15 -2.37*BF16 -2.11*BF17
-4.43*BF18 +1.98*BF19 +1.60*BF20

where all basis functions are either univariate cubic splines or products of two uni-
variate cubic splines. The model is rather difficult to interpret.

Gaussian Process (GP): A GP is a linear smoother using a weighted average of
the stored training outputs y to predict the output for a test input. It can be seen as
a linear combination of n kernel functions, each one centered on one of n training
points [14],

f (x) =
n

∑
i=1

αik(xi,x) , α = (K +σ2
n I)−1y (1)

where x is a test input, xi are the training inputs and α is a weight vector with kernel
matrix K and a hyperparameter σn.

We used the squared exponential kernel where each input dimension is scaled by
an individual factor, allowing the down-weighting of irrelevant inputs. The kernel
function is given as

k(x,x′) = σ2
f exp

(
1
2
(x− x′)T D−2(x− x′)

)

with diagonal matrix D= diag(�1, . . . , �21) containing the scaling factors of the input
dimensions. In total 23 hyperparameters (�1, . . . , �21,σ f ,σn) were optimized during
training.

Note that the GP cannot be trained on the complete training set as the kernel
matrix would be too large to compute the inverse in Eq. (1). Thus, we randomly
draw a subset of 4000 samples from the original training set and trained the GP on
the reduced set. The GP was then applied to the test set and the total procedure was
repeated ten times. Table 1 shows the average and standard deviation of the ten runs.
The SMSE is in good accordance to the result reported in [14], p. 182. It is possible
to slightly reduce the error further by replacing the random subsampling with more
sophisticated methods. This has not been investigated in this paper, for details we
refer to [14].

In terms of the interpretability of the model the GP has to be considered as a
“black box” approach as the model of Eq. (1) is a linear combination of 4000 kernel
functions.

Eureqa: Eureqa is a tool for symbolic regression3, where the training data are used
to search for an explicit symbolic relationship of the form y= f (x). Based on genetic
programming the search space of equations consisting of pre-specified “building

3 http://creativemachines.cornell.edu/eureqa

http://creativemachines.cornell.edu/eureqa
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blocks” (e.g. arithmetic operators, sin, exp) is explored to find an equation best
matching the data [15]. We used the mean-squared error to guide the search on the
complete training set and took the following model having the smallest training set
error.

y = x2 + 25.31*x15 + 11.08*x1 + 11.08*x18 + 1.732*x21 + x1*x15 + x4*x21
- x11 - x2*x15 - x4*x18 - 1.732*x8*x9

(2)

Note that this representation is more compact and much more interpretable than the
MARS model. Unlike the LR model the Eureqa model includes several terms with
two interacting variables, so it is not surprising that the model achieves a better test
set SMSE than the LR model as shown in Table 1.

A certain drawback of symbolic regression is that it is computationally intensive;
we spent about 60 hours search time on a 16 CPU cores computer. After ≈ 35 hours
there were only little improvements so the search could have been stopped earlier.
Given the much better interpretability of Eq. (2) in comparison to the GUIDE and
MARS models, the higher search time may be acceptable.

Eureqa + GP: Here we propose a new approach where a Gaussian Process (GP)
is used to learn the residuals of the Eureqa model. The basic idea is to take the
Eureqa model as an easily verifiable analytical model and to improve the accuracy
by a Gaussian Process. Thus, the overall model has the form y = f (x)+ r(x) where
f is the Eureqa equation and r is the GP model. The model r was trained on n =
4000 randomly drawn residuals ytar − f (x) where ytar are the target output values
of the training set. The experiment was repeated 10 times to avoid a sampling bias.
The number n controls the accuracy of the GP residual model as in the case of the
pure GP. A much smaller number of training samples, e.g. n = 2000, would yield a
coarser model with less accuracy.

Note that in terms of safety little is gained unless the amount of correction r
is limited. Otherwise, the output of the overall model may be arbitrarily wrong be-
cause it is hardly possible to fully verify the GP model as explained in the GP section
above. Therefore, the output r is limited, giving the overall model y = f (x)+ r∗(x)
with r∗(x) = max(min(r(x),γ),−γ). The limit γ ∈R provides a worst-case guaran-
tee on the error of the overall model. When choosing the limit, there is a trade-off
between possible accuracy gains and the worst-case guarantee.

In the SARCOS training set the output is in the range [−108.5,107.7]. We there-
fore evaluated the following limits γ ∈ {5,10,15,∞}. For example, γ = 10 means
that the maximal possible deviation from the analytical model is ±10, which is less
than ten percent of the maximal output values. We also tested the unlimited case,
which is denoted as ±∞.

As shown in Table 1 the tightest limit ±5 already improves the accuracy consid-
erably in comparison to the pure Eureqa model. The error is reduced further when
the limits are relaxed and at ±15 the same accuracy as of the pure GP is achieved.
Results show average and standard deviation over 10 runs.
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Table 1 Results on the inverse dynamics problem. The error is given as standardized-mean-
squared error (SMSE) on the test set. The third column refers to the interpretability of the
resulting model.

Method SMSE Interpretability

RBD 0.104 very high
LR 0.075 high
GUIDE 0.033 moderate
MARS 0.059 moderate
GP 0.020±0.001 very low
Eureqa 0.062 very high
Eureqa + GP (±5) 0.028±0.000 high
Eureqa + GP (±10) 0.021±0.001 high
Eureqa + GP (±15) 0.020±0.001 (high)
Eureqa + GP (±∞) 0.020±0.001 very low

3.2 Discussion

The best accuracy in this benchmark is achieved by Gaussian Processes (GP). How-
ever, as seen in Eq. (1) a GP consists of in our case 4000 kernel functions centered
on the respective training points, so the model is not interpretable. In principle, a
GP is able to additionally provide confidence estimates; but these may be wrong,
for example, if the model is slightly misspecified. Therefore, it is problematic to
apply a pure GP in safety-related applications.

The best interpretability among the data-driven approaches is achieved by the
symbolic regression model of Eureqa. A domain expert should be able to verify the
learned equation. In terms of accuracy the Eureqa model is better than the linear re-
gression model (LR) but worse than the more complex models of MARS or GUIDE.
However, the latter two are difficult to interpret.

The physics-based RBD model shows the worst accuracy on the test data, pos-
sibly due to violations of rigid-body assumptions. This clearly shows the improve-
ments that are possible by using data-driven models.

The proposed combination of the Eureqa model with a GP greatly improves the
accuracy. Limiting the possible contribution of the GP to a certain range gives a
worst-case guarantee in the sense that the maximal deviation from the verified an-
alytical model is always below that limit. Thus, the proposed approach may be
very interesting for safety-related applications where these kinds of guarantees are
mandatory.

The combination scheme can also be translated to other methods. For example,
instead of using a GP, the residuals could be learned by support vector regression
[16], which may be beneficial due to the automatic selection of support vectors. On
the other hand, the verified model could be a rule-based or tree-based model instead
of the symbolic regression equation as long as the model is truly interpretable.
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4 Conclusions

Understanding what a model has learned and in particular how it will extrapolate
to unseen data becomes a crucial concern if the model correctness must be ensured
not only for the available data but for all possible input combinations. The paper
has reviewed an approach for learning a classifier for safety-related applications.
The basic idea in that case is to solve the problem by splitting it into several low-
dimensional subproblems and to visualize the decision boundary of the classifier in
the whole low-dimensional input space of the respective submodels.

For regression problems similar concepts exist. MARS and the tree-growing ap-
proach GUIDE use submodels which are valid only in certain regions of the input
space. They have been compared together with other regression methods on the
SARCOS data benchmark. In that application both MARS and GUIDE provide
only moderate interpretability due to a large number of submodels. An excellent
interpretability is achieved by symbolic regression; however, this comes with the
price of a reduced accuracy. A good trade-off is provided by combining the sym-
bolic model with a Gaussian Process that learns the residuals of the symbolic model.
The output of the Gaussian Process model, that is, the amount of correction applied
to the symbolic model is limited to a certain range. The combined model has an
improved accuracy and provides error bounds in the sense that the deviation from
the verified symbolic model is always kept below a defined limit.

References

[1] Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-
instance learning. In: Advances in Neural Information Processing Systems, vol. 15, pp.
561–568. MIT Press, Cambridge (2003)

[2] Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

[3] Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
[4] Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression

Trees. Statistics/Probability Series. Wadsworth Publishing Company, Belmont (1984)
[5] Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.)

MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)
[6] Friedman, J.H.: Multivariate Adaptive Regression Splines. The Annals of Statis-

tics 19(1), 1–67 (1991)
[7] Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning:

data mining, inference and prediction. Springer, New York (2009),
http://www-stat.stanford.edu/˜tibs/ElemStatLearn

[8] Lang, B.: Monotonic Multi-layer Perceptron Networks as Universal Approximators. In:
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Science Visions, Science Fiction and the Roots
of Computational Intelligence

Rudolf Seising

Abstract. In later science fiction movies, computers run countries or govern the
whole mankind but in science fiction stories of the 1950s this scenario does not ex-
ist. It seems that it originated from the early Computer Science and it was Lotfi A.
Zadeh who published in 1950 the first science vision of a “Thinking Machine”. He
also predicted in 1950 that “Thinking machines” may be commonplace in anywhere
from ten to twenty years hence and that they will play a major role in any armed
conflict. Not many years later new SF stories told these kinds of stories of comput-
ers that govern the world by their decision — sometimes they annihilate the earth,
sometimes they protect the planet. This paper gives a historical view on the idea of
“machines that/who thinks” in science visions and in science fiction. Then, it shows
this idea’s historical path from the research program of Artificial Intelligence to that
of Computational Intelligence.

1 Introduction

Is there a difference between “Machines that compute” and “Machines that think”?
— We are tempted to say that the answer is obviously “Yes!” and perhaps many of
us could start to list some distinctive features immediately. However, this is a result
from 20th century science and technology and its reflections in science and science
fiction literature. Both will be traced in this chapter.

There was a time when both “Computing Machines” and “Thinking Machines”
have been names for the same! — The buzz word “Thinking Machine” appeared
in popular journals and newspapers, in science fiction stories, but also in scien-
tific articles: Shortly after the end of World War II the general public became in-
formed on the war development of computer and communication technology and a
big number of headlines said that these new created machines were “mechanical”
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(The Baltimore Sun) or “electronical” (New York Herald Tribune) or “mathemat-
ical brains” (Philadelphia Inquire), but they were also named “wonder brains”
(Philadelphia Inquire), “magic brains” (New York World Telegram) and “super-
brains” (Newark Star Ledger). They notified that these apparatus had a weight of
30 tons (The Evening Bulletin, Providence), they were 1000 times faster than any
previously built (Chicago Sun) and they could compute a 100-year problem in two
hours (New York Herald Tribune) ([22], p. 120.).

The first book that continued this trend was Giant Brains or Machines that Think.
It was published by the mathematician Edmund C. Berkeley (1923–1988) in 1949.
In this book Berkeley gave a description of the functionality of the early computing
machines — the book cover promoted that “an authority tells the story of ‘mechan-
ical brains’ — how they ‘think’, what they do and what they can mean in your
future.”[5]

“Can machines think?” was also the question that interested the British math-
ematician Alan M. Turing (1912-1954) in his article “Computing Machinery and
Intelligence” that appeared one year later [47]. However, Turing started as follows:
“I propose to consider the question, ‘Can machines think?”’ But: Since “think-
ing” is difficult to define, he chose to “replace the question by another, which is
closely related to it and is expressed in relatively unambiguous words.” ([47], p. 433)
Now, Turing considered the question “Are there imaginable digital computers which
would do well in the imitation game?” ([47], p. 442) that — as he believed —
was one that could actually be answered and to this end he proposed the “imitation
game” that was later named the “Turing test”. Thus, there was no statement in Tur-
ing’s paper to decide whether a computer or a program could think like a human
being or not.

Being unaware of Turing’s article, but inspired by Norbert Wiener’s (1894–
1964) Cybernetics [48], Claude E. Shannon’s (1916–2001) “Mathematical Theory
of Communication” [44] and the computer era that started during the wartime with
the Electronic Numerical Integrator and Computer (ENIAC) and the Electronic Dis-
crete Variable Computer (EDVAC) (both designed by John P. Eckert (1919-1995)
and John W. Mauchly (1907–1980)), Lotfi A. Zadeh wrote in the same year the
article “Thinking Machines: A New Field in Electrical Engineering.”

Zadeh, born 1921 in Baku, Azerbaijan, had studied and graduated with a Bache-
lor of Science in electrical engineering from the University of Tehran, Iran, in 1942.
After working as a technical contractor for a year with the US army forces in Iran
he had moved to the USA in 1944. There, he continued his studies at MIT where he
received an M.S. degree in 1946. In 1949 he had obtained a position at Columbia
University in New York as an instructor responsible for teaching the theories of
circuits and electromagnetism.

Then, also in that year, he had the opportunity to organize and moderate a debate
meeting about digital computers in which Shannon, Berkeley and Francis J. Mur-
ray (1911-1996) took part. It was probably the first public debate on this subject
ever! [42]

Due to this deep interest he turned his attention to the problems of comput-
ers when he had received his Ph.D., and in 1950, when he became an assistant
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professor, he published the paper on “Thinking Machines” in The Columbia Engi-
neering Quarterly, an electrical engieneering students’ journal [49]. He also fea-
tured such headlines:

“‘Psychologists Report Memory is Electrical’, ‘Electric Brain Able to Translate For-
eign Languages is Being Built’, ‘Electronic Brain Does Research’, ‘Scientists Confer
on electronic Brain’ — these are some of the headlines that were carried in newspa-
pers throughout the nation during the past year. What is behind the headlines? How
will ‘electronic brains’ or ‘Thinking Machines’ affect our way of living? What is the
role played by electrical engineers in the design of these devices? These are some of
the questions that we shall try to answer in this article.” ([49], p. 12.)

You would think that possible answers to these questions were given in science
fiction stories that have been written very soon after World War II but it is not as
simple as that! One of the most famous writers of such stories was Isaac Asimov
(1919–1992) who started writing sold SF stories — of course without any computers
contained — for the Amazing Stories magazine in the late 1930s.

In the 1940s Asimov wrote many of his robot stories and some of them, e.g.
“The Bicentennial Man”, were made into later films. Also other contents of Asi-
mov’s robot stories have been incorporated in the settings of SF movies in the last
three decades, e.g. “Little Lost Robot” that was first published in the March 1947
issue of Astounding Science Fiction and “I, Robot” that was originally a SF short
story by Eando Binder1, already published in the January 1939 issue of Amazing
Stories. This story influenced Asimov to write nine robot stories in the collection I,
Robot [1].2

SF action movies of the 1990s until today, e.g. Matrix and Terminator, show sce-
narios of the world where computers run countries or govern the whole mankind.
In The Terminator,3 that plays in the year 2029 after an apocalypse, artificially in-
telligent machines intend to exterminate all human beings. The American SF action
film series of The Matrix4 describes the fight of a small group of humans against
artificial intelligent machines that dominate the Earth of the 21st century. These
machines control the minds of all other humans by implants connecting them to a
simulated reality called “The Matrix”.

It is important to notice that these dystopic scenarios of a world, that is dominated
by computers, were not in the settings of that early science fiction stories. On the

1 Under the Eando name, the brothers Earl Andrew Binder (1904–1965) and Otto Binder
(1911–1974) (“E” and “O Binder”) wrote science fiction stories on a robot named Adam
Link.

2 These stories originally appeared in the American magazines Super Science Stories and
Astounding Science Fiction between 1940 and 1950. Asimov had titled this collection
Mind and Iron but the publisher changed the title without his approval.

3 The Terminator, 1984, Terminator 2: Judgment Day, 1991, and Terminator 3: Rise of the
Machines, 2003, American science fiction action films; Director: James Cameron, Co-
writers: James Cameron, William Wisher Jr., and Terminator Salvation, 2009 Director:
Joseph McGinty Nichol, Co-writers: John Brancato and Michael Ferris.

4 The Matrix, 1999, The Matrix Reloaded, 2003, and The Matrix Revolutions, 2003; Direc-
tors and Writers: Larry and Andy Wachowski.



126 R. Seising

contrary, a large number of them have been “Computer-is-God stories” wrote author
John Clute in 1995 in his Illustrated Encyclopedia on science fiction:

Later the “Computer-is-God stories” turned into “Computer-can-think stories”.
An example is the movie Wargames5, a Cold War story on computer-controlled nu-
clear disarmament. The movie begins with a simulated nuclear attack to the USA
by the Soviet Union. It turns out that 22% of the US Air Force Strategic Missile
Wing missileers prove unwilling to turn a key required to launch a missile strike.
Therefore the command of missile silos is maintained through automation, with-
out human intervention. Control is given to the NORAD6 computer, WOPR (War
Operation Plan Response), a learning expert system.

A high school student hacks this computer by accident when he looks for com-
puter games. Thinking that he found a forthcoming game, he starts the program
“Global Thermonuclear War” playing as the Soviet Union. It seems that this ends
in a disaster, but then the protagonist suggests the computer to play Tic-Tac-Toe
against itself. WOPR learns the concept of futility and concludes: “A strange game.
The only winning move is not to play.” Cycling through all the nuclear war scenar-
ios it has devised, it finds that they to all result in stalemates: “WINNER: NONE”
is the output on the screen and WORP cancels the launch of the second strike. In
this movie the computer became a rational thinker, an artificial or at least a com-
putational being that recompensed the fooling of human beings by making its own
decision!

In 1979 and in 1984 two books appeared with almost equal titles: Machines Who
Think, Pamela McCorduck’s Personal Inquiry Into the History and Prospects of
Artificial Intelligence [24] that is still a very good approach to the early history of
AI7, and Machines That Think [3], a compilation of 29 science fiction stories of
the 20th century that originally have been published in the period of 1909–1973.8

That collection (edited by Asimov et al.: [3]) comprises interesting examples of
speculations of computers and robots in their respective future.

2 The Computer Era in Science Reality and Science Fiction

Traditional histories of computation, computers and Artificial Intelligence (AI) con-
sider Alan Turing as the “father” of both computing and AI because he set up the
mathematical basis for the theory of computation while still being a graduate student
at Princeton University in 1936. He developed the concepts that now are considered
as the basic elements of computation. His main contribution was to apply the idea
of a “methodical process” (what people perform when pursuing any kind of orga-
nized action) to something that can be done “mechanically” by a machine. Though

5 WarGames, 1983, American science fiction film; Director: John Badham; Co-writers:
Lawrence Lasker and Walter F. Parkes.

6 North American Aerospace Defense Command.
7 The book appeared in 2004 in a new “25th anniversary edition” [25].
8 The first story is Ambrose Pierce’s Moxon’s Master and the last is Starcrossed, written by

George Zebrowski.
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he didn’t construct such a device, he mathematically demonstrated that this could
be possible by proposing a hypothetical machine known since then as the “Turing
machine”. Turing gave for the first time the formal definition of what should count
as a “definite method” (or, in modern language, simply “an algorithm”). That ma-
chine would be able to perform certain elementary operations by using a series of
instructions, which have to be written in symbols of formal language (that is, in a
precise form). His idea was that these symbols could be translated into a physical
medium (which in Turing’s example consisted on a paper tape). An “effective al-
gorithm” was defined by Turing as a series of instructions that, applied to a set of
data, allow us to achieve correct results. Turing’s argument goes on by telling that, if
each particular algorithm can be written out as a set of instructions in the same stan-
dard form, there could be a universal machine that can do what any other particular
Turing machine would do. The “Universal Turing Machine” embodies the essential
principle of the computer: a single machine for all possible tasks.

This abstract machine that represented the process of computing on a paper band
subdivided into fields could solve every conceivable mathematical problem as long
as there was an algorithm for it. In his paper “On Computable Numbers, with an
Application to the Entscheidungsproblem” [46], Turing reformulated Kurt Gödel’s
(1906-1978) incompleteness-findings and he replaced Gödel’s universal, arithmetic
based, formal language with simple, formal “automata”.

Turing’s machine was a purely theoretical model, a kind of universal computer.
However, this abstract idea of an automatic calculating machine was to be realized
ten years later in the so-called era of computers that started in the 1940s. The first
one was the electro-mechanical Z3 computer that was designed in 1941 by Konrad
Zuse (1919–1995) in Berlin, Germany; the second was “the first electronic computer
ABC” (Atanasoff-Berry-Computer) created by John V. Atanasoff (1903–1995) and
Clifford E. Berry (1918–1963)9; the third were the digital and electronic “Colos-
sus” computers in England designed by Tommy Flowers (1905–1998) with the help
of Turing.10 These were used to decrypt the Germans’ Enigma codes during the
Second World War in 1943. In 1944 we had the first large-scale electro-mechanical
and digital computer, the Automatic Sequence Controlled Calculator (ASCC), later
renamed Harvard Mark I, in 1947 Mark II, in 1949 the mostly-electronic Mark III
and in 1952 the then all-electronic Mark IV. This series was conceptual designed by
Howard Aiken (1900–1973), from 1944 to 1949 the mathematician Grace Murray
Hopper (1906–1992) joined the project (for details see [36]).

Based on Turing’s achievements, the idea of a “computing machine” changed
in the late 1940s from the earlier conception of “computers” (or sometimes “com-
putors”) as women that performed computations, to apply that name to the machine
that, based on digital equipment, was able to perform anything that could be de-
scribed as “purely logical”. Because of his demonstration that computation could be
used for more than just mathematical calculations, the study of computability began
to be a “science”.

9 However, the “ABC” was not general-purpose computer.
10 “Colossus” was also a not general-purpose computer.
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In 1945, almost one year before ENIAC was announced, the mathematician John
von Neumann (1903–1957) was asked to prepare a report on the logical principles
of its successor, the EDVAC (since the ENIAC had not had any such description
and it had been sorely missed). The ENIAC had an electronic working memory,
so the individual processing operations of the entered data were exceptionally fast.
However, each program to be run had to be hard wired, and so reprogramming
required several hours of work.

Von Neumann recognized very quickly, though, that this was a major drawback to
the huge computer, and he was soon looking for ways to modify it. Today, the novel
concept of a central programming unit in which programs are stored in a coded form
is attributed to von Neumann. Instead of creating the program by means of the in-
ternal wiring of the machine, the program is installed directly in the machine. Basic
operations like addition and subtraction remain permanently wired in the machine,
but the order and combinations of these basic functions could be varied by means of
instructions that were entered into the computer just like the data. The EDVAC was
not supposed to suffer from the “childhood diseases” that had afflicted the ENIAC.
To this end Neumann’s principle of store programming was used and the principle
that went down in the history of the computer as “Von Neumann architecture” was
realized for the first time [31]. This “Von Neumann architecture” became also the
basis of the first computer built under his direction by the Institute for Advanced
Study (IAS) in Princeton, New Jersey.

In 1949, the year before Eckert-Mauchly Computer Corporation (EMCC) was
sold to Remington Rand, Grace Hopper had become senior mathematician and
joined the team developing the UNIVAC I and she developed the idea of machine-
independent programming languages. Then, in March 1950, the UNIVAC computer
(UNIVersal Automatic Computer) was delivered. This machine not only became
known as the first commercial computer but also for predicting the outcome of the
U.S. presidential election in the following year.

2.1 The “Absurdity of Computer Science Fiction”

“History is all about what already happened. So the historian and the science fiction
writer might seem to be the two heads of Janus. One stares at the past, and tries to
imagine how it might have been different and why it wasn’t. The other stares at the
future, and wonders how it will be.” [14] Following the argument of the historian
of computer technology, Thomas Haigh along with the American science fiction
writer Kim S. Robinson, we can see here that “science fiction is ‘an historical litera-
ture’.” [14] Moreover, Robinson notes that in any work of science fiction “there is an
explicit or implicit fictional history that connects the period depicted to our present
moment or to some moment of our past” and Haigh concludes in Robinson’s words
that science fiction and historical fiction “are more alike, in some respects, than ei-
ther is like the literary mainstream . . . both are concerned with alien cultures, and
with estrangement.” ([14], p. 8, [35])
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Haigh names it the “absurdity of science fiction as a literature of prediction, and
its merit as a genre of historical writing” that “can be seen particularly clear in its
treatment of computing. Computers show up in science fiction in the early 1950s,
mirroring their arrival in the real world.” ([14], p. 9.)

The computing machines constructed in the first two decades of the computer
era looked different from our 21st century imaginations of a computer, they acted
different and they were different. As Clute wrote in 1995, “they were great, clumsy
giants, and hardly more powerful than a wristwatch is today.” That book was pub-
lished a long time ago and today’s wristwatches get ready to become or to merge
with today’s computers. But the essence of Clute’s argument is true and he con-
tinued describing these machines of the 1940s and 1950s as follows: “The basic
technology available still functioned, very crudely, through enormous and unreli-
able gadgets like vacuum tubes, programmed via hand-punched punch cards. It was
a nightmare in the real world but it was not a nightmare in the world of SF.” ([10],
p. 74)

The scientists who built the first computers used them for scientific calculation
and in these first years, SF writers paid almost no attention to them. ([10], p. 74) “At
first glance this is strange.” Clute wrote then, and he referred to the fact that many of
the SF authors had a background or even a degree in a scientific or engineering dis-
cipline. For instance, Asimov11 joined in 1951 the faculty of the Boston University
School of Medicine but in 1958 he resigned from this position to become a full-time
writer. Could SF writers with such a scientific background miss this technological
revolution? — Clute plausibly surmises that “the computer appeared to present a
challenge to Homo sapiens. The small amount of speculation about computers that
appeared before the 1960s failed to see them as almost infinitely adaptable tools,
concentrating instead on visions in which computers replaced humanity, or took
over from humanity, or became God. The computer was not imagined simply be-
cause to do so was to welcome into our bosoms the ultimate enemy.” ([10], p. 75)

Haigh indicates that “Computers were unknown in Asimov’s best-known work
of this era, the Foundation Trilogy (originally published from 1942 to 1950). Fifty
thousand years from now scientists have achieved some miracles of miniaturization,
including shrinking nuclear reactors to the size of walnuts for use in atomic-powered
dishwashers and personal force fields. But they don’t seem to have invented com-
puters. A separate stream of stories explored the three laws of robotics, depicting
the development of ever more intelligent and human-like machines powered by the
rather nebulous technology of “positronic brains”. Robots are common but com-
puters remain very rare; a handful of “thinking machines” with “super robot brains”
are used for economic control and scientific research. Asimov also wrote, from 1955
onward, a handful of stories concerned with a giant computer named Multivac, built
with vacuum tubes and buried deep underground. This machine too fits the “giant
brain” paradigm, and comes eventually to rule the world.” ([14], p. 10.)

11 Asimov got a Bachelor in 1939 and a Master’s degree in 1941 from Columbia University
in New York, and after the War in 1948 he returned to Columbia University to earn a Ph.D.
in biochemistry.
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Fig. 1 “Thinking Machine”; illustration in Eando Binder’s story “The Cosmic Blinker”, art
by Frank R. Paul, 1953

2.2 Asimov’s MULTIVAC

MULTIVAC is the name of a fictional supercomputer in some of Asimov’s stories
in the 1950s and — almost needless to say — it is an allusion to UNIVAC. Initially
the name should mean “MULTIple VACuum tubes” but in 1956 in the story “The
Last Question” Asimov translated the suffix AC to be “Analog Computer”. In all the
stories MULTIVAC is a computer that operates in ordinary to the government for
security purposes. In the various stories MULTIVAC has different skills.

For one, in Franchise (1955) the future United States of the year 2008 use the
system of a so-called “electronic democracy”. A single person has been selected by
the computer MULTIVAC to answer some questions. Then, MULTIVAC uses the
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answers and other data to predict the results of an election. Therefore, no actual
election will be held.12

Other MULTIVAC-stories are: Question (1955); Jokester (1956); The Last Ques-
tion (1956); All the Troubles of the World (1958); The Machine that Won the War
(1961); The Life and Times of MULTIVAC (1975); Point of View (1975).

When Asimov published the story Profession in 1957, he told the reader of a
society on the planet Earth in the 65th century. In that far future children are taught
to read at the age of eight to eighteen and after that they will be educated by a process
that is called “taping”, i.e. a brain-computer interface. A computer analyzes the brain
of every child and this analysis is the basis to determine their future profession at
their “Education Day”. The young humans have no chance to object or resist and
the best educated of them have to compete in their profession in futuristic Olympic
games. The winners in these “Olympics” have the chance of being “bought by an
advanced Outworld if they are valuable for the colonies whereas to stay on Earth
means to have an inferior status.

2.3 Zadeh’s “Thinking Machines”

It seems that it originated from the early Computer Science and that it was Lotfi A.
Zadeh who published the first science vision of a “Thinking Machine” in 1950 and
he also predicted then that “Thinking Machines” may be commonplace anywhere
from ten to twenty years hence and that they will play a major role in any armed
conflict. Not until decades later new SF stories told these kinds of stories of com-
puters that govern the world by their own decision — sometimes they annihilate the
earth, sometimes they protect the planet.

In 1950, when Zadeh wrote “Thinking Machines: A New Field in Electrical En-
gineering” [49] (Figure 2), he was interested in “the principles and organization of
machines which behave like a human brain, and as we said already, such machines
were then variously referred to as “thinking machines”, “electronic brains”, “think-
ing robots”, and similar names and with this article, he wanted first to clarify how
a thinking machine differed from other machines. To do so, he used a very simple
example:

However, an idea of the principles involved in a thinking machine can be obtained
from the description of a Tit-Tat-Toe playing device which was recently demonstrated
by Robert Haufe at Caltech before a meeting of the American Institute of Electrical
Engineers. ([49], p. 12)

In addition to chess, Tit-Tat-Toe, today better known as Tic-Tac-Toe, was one of the
games that scientists wanted to teach machines to play early on. The game is played
by two players on a board of three by three squares. The players take turns filling
a square with their respective symbols (usually × and ◦). The game is won by the
player who manages to place three of his symbols in a row (horizontally, vertically

12 Contingently the correct predicting of the U.S. presidential election’s outcome in the year
1952 motivated Asivmov to write this story.
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Fig. 2 Left: Illustration accompanying Zadeh’s article [49], the author’s first name was mis-
spelled here. Right: Zadeh’s chart for the basic elements of a “Thinking Machine”

or diagonally). Haufe’s machine functioned with relay circuits. It saved information
about which of the individual fields were filled with the players’ symbols, it could
make sensible moves and could indicate the result at the end of the game. When it
was the machine’s turn, it classified all nine fields according to whether or not filling
them was strategically desirable. These classes were then searched for empty fields.
An empty field with the highest strategic value was then filled. ([15], p. 885.)

Fig. 3 The two units comprising Robert Haufe’s Tit-Tat-Toe machine

Haufe’s Tic-Tac-Toe machine, which Zadeh displayed in his article (Figure 3),
was naturally much simpler than other machines that were referred to as “think-
ing machines”. However, Zadeh considered the ability to make decisions to be a
characteristic feature of thinking machines:

Despite its simplicity, Haufe’s machine is typical in that is possesses a means for ar-
riving at a logical decision based on evaluation of a number of alternatives. More
generally, it can be said that a thinking machine is a device which arrives at a certain
decision or answer through a process of evaluation and selection. ([49], p. 13)
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Zadeh’s diagram (Fig. 2) demonstrates the “thinking” process of such machines: In-
coming input data are sorted and processed in the processor. Some of this processed
data is then sent to storage to be saved for later use (this storage can be in the form
of punch cards, tapes or cathode ray tubes), “and it has the same function as memory
in a human brain”. ([49], p. 13)

Another portion of the processed data as well as some of the saved data are called
up into the unit known as the computer where necessary calculations are performed.
The computer is not the essential component of the thinking machine, however,
unless the calculation either is the end result itself or will be needed at the end in
order to make the decision. More important is the decision maker, for it is here that
decisions are reached. All of the relevant information coming from the computer
and from storage is evaluated and weighted according to the commands and criteria
present within the machine. The final answer or decision is formed on this basis
as output. Dashed lines lead from the decision maker to all three elements of the
machine: These are the so-called feedback connections. This feedback allows the
three elements to operate as a function of the data obtained from the decision maker
as needed.

In a footnote Zadeh mentioned that the “same names are frequently ascribed to
devices which are not ‘thinking machines’ in the sense used in this article”, there-
fore he separated them as follows: “The distinguishing characteristic of thinking
machines is the ability to make logical decisions and to follow these, if necessary,
by executive action.” ([49], p. 12.)

He stated: “More generally, it can be said, that a thinking machine is a device
which arrives at a certain decision or answer through the process of evaluation and
selection.” With this definition he decided: “Thus, M.I.T.’s differential analyser is
not a thinking machine, for it can not make any decisions, except trivial ones, on its
own initiative. However, the recently built large-scale digital computers, UNIVAC
and BINAC13, are endowed with the ability to make certain non-trivial decisions
and hence can be classified as thinking machines.” ([49], p. 13.) Zadeh explained in
this article “how a thinking machine works” and he claimed that “the box labeled
Decision Maker is the most important part of the thinking machine”.

2.4 Zadeh’s “Electronic Admission Director”

Zadeh found a very interesting exemplification of his imagination of a “Thinking
Machine” in 1950 and this picture resembles the concept of Asimov’s computer in
Profession. He illustrated his argumentation by peering forward into the year 1965.
Three years earlier, in this version of the future, the administration at Columbia
University had decided, for reasons of economy and efficiency, to close the admis-
sions office and install in its place a thinking machine called the “Electronic Ad-
missions Director”. The construction and design of this machine had been entrusted
to the electrical engineering department, which completed the installation in 1964.

13 The Binary Automatic Computer was the first stored-program computer in the US, built at
EMCC in 1949.
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Since then, the “director” has been functioning perfectly and enjoying the unquali-
fied support of the administration, departments and students. This thinking machine
functions as follows:

1. Human secretaries convert the information from the list of applicants into se-
ries of numbers a1,a2,a3, . . . ,an; each number represents a characteristic, e.g. a1

could stand for the applicant’s IQ, a2 for personal character, and so on.
2. The lists coded thusly are provided to the processor, which processes them and

then relays some of the data to the computer and another part of the data to
storage. On the basis of applicant data as well as university data, the computer
calculates the probabilities of various events, such as the probability that a student
will fail after the first five years. This information and the saved data are sent to
the decision maker to come to final decision on whether to accept the applicant.
The decision is then made based on directives, such as these two:

• accept if the probability of earning the Bachelor’s degree is greater than 60%;
• reject if the probability that the applicant will not pass the first year of college

is greater than 20%.

Zadeh didn’t consider the machine sketched out here to be as fanciful as student
readers (and surely others, as well) may have thought: Machines such as this could
be commonplace in 10 or 20 years and it is already absolutely certain that thinking
machines will play an important role in armed conflicts that may arise in the future.
([49], p. 30) Back then, in the year 1950, though, there was still much to be done so
that these or similar scenarios of the future could become reality.

3 Making Computers Think (Like People?)

In 1948 the young mathematician John McCarthy (1927–2011) had attended the
“Hixon Symposium on Cerebral Mechanisms in Behaviour” at Caltech where he
became acquainted with Warren S. McCulloch (1898–1969) who gave his famous
talk on “Why the Mind Is in the Head” [39], and other well-known members of
the so-called “Cybernetics group” [16]. During that symposium he also met the
mathematicians Turing and von Neumann, the psychologist Karl S. Lashley (1890–
1958) and Claude Shannon. This event initiated his life-time interests related to the
development of “machines that could think”. In the following year he changed to
Princeton to study automata models with von Neumann and he became friends with
his fellow student Marvin L. Minsky (born in 1927). In 1951 he received his Ph.D.
graduation at Princeton University, he spent the following year at Bell Labs and
he eventually discussed the idea of machine intelligence with Shannon. He argued
him into collecting and publishing scientific works on machines that seem to be
intelligent. The two edited the well-regarded and influential collection Automata
Studies that got this technical title because Shannon did not like provoking headings.
The voluminous tome appeared in print in 1956 [45] and here Automata theory and
Turing machines were treated from different sides. But McCarthy was dissatisfied
with the content of these papers concerning the potential of creating “intelligent
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computers”! In the mid-1950s he wished “to nail the flag to the mast,” he said at the
AI@50-conference in 2006 [21].

3.1 Artificial Intelligence

In 1955 McCarthy got an assistant professorship of mathematics at Dartmouth Col-
lege in Hanover, New Hampshire. Here he initiated AI when he started to organize
a “Summer Research Project on Artificial Intelligence” modeled on the traditional
military summer schools. In the proposal to this project McCarthy wrote that AI-
research will “proceed on the basis of the conjecture that every aspect of learning
or any other feature of intelligence can in principle be so precisely described that a
machine can be made to simulate it” [23]. Even this provoking text and moreover
the provoking name “Artificial Intelligence” in the heading that were McCarthy’s
conceptions, the proposal appeared officially under the authorship of McCarthy,
Minsky, the prominent IBM computer designer Nathaniel Rochester (1919–2001)
and the well-known Shannon who was in that year going to join MIT.

The Dartmouth workshop was held during one month in the summer of 1956 and
ten people took part, among the organizers McCarthy, Minsky, Rochester and Shan-
non, there were Raymond J. Solomonoff (1926-2009), Oliver G. Selfridge (1926-
2008), Trenchard More, Arthur L. Samuel (1901-1990), Herbert A. Simon (1916-
2001) and Allan Newell (1927-1992). It was a meeting of brainstorming discussions
on the potential of information technology between experts in language, sensory in-
put, learning machines and other fields; it helped focusing AI research for the future.
McCarthy recalled later that he was “disappointed in how few research papers dealt
with making machines behave intelligently. [. . . ] But the real reason we didn’t live
up to grand hopes was that AI was harder than we thought.” [21] James Moor wrote
what McCarthy also emphasized basically when he spoke at the AI@50-meeting:
“Nevertheless there were important research developments at the time, particularly
Allen Newell’s, John C. Shaw’s (1922–1991), and Herbert Simon’s Information Pro-
cessing Language (IPL) and the Logic Theory Machine” ([29], p. 87). The system
of this Carnegie Mellon-researcher trio was proving elementary logical theorems
and playing games. Symbols for objects like chess figures or truth values had to
be manipulated by the used program language and to this end the three established
the concept of “list structures” that enthused the other participants. Minsky tried to
build a geometry problem solver as an application of the rule-based approach that
was proposed by Newell and Simon and Rochester and Herbert Gelernter started the
trial to implement the program. Moor summed up that the Dartmouth project “was
not really a conference in the usual sense. There was no agreement on a general
theory of the field and in particular on a general theory of learning. The field of AI
was launched not by agreement on methodology or choice of problems of general
theory, but by the shared vision that computers can be made to perform intelligent
tasks” ([29] p. 87).

The subsequent history of AI research is a story of several successes but has
yet lagged behind expectations. AI became a field of research to build computers
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and computer programs that act “intelligently” although no human being controls
those systems. AI methods became methods to compute with numbers and find exact
solutions. However, not all problems can be resolved with these methods. On the
other hand, humans are able to resolve such tasks very well, as Zadeh mentioned
in many speeches and articles over the last decades. In conclusion, he stated that
“thinking machines” do not think as humans do. From the mid-1980s he focused on
“Making Computers Think like People” [52]. For this purpose, the machine’s ability
“to compute with numbers” should be supplemented by an additional ability that is
similar to human thinking: Computing with Words and Perceptions. To this end a
new mathematical theory was necessary.

Fig. 4 Zadeh moderating an annual AI debate at Berkeley; from left to right: John McCarthy,
Lotfi A. Zadeh, Hubert Dreyfus (University of California, Berkeley)

3.2 Fuzzy Sets and Systems

In 1959 Zadeh became professor at the University of California at Berkeley and
in the course of writing the book Linear System Theory: The State Space Ap-
proach [56] with his colleague Charles A. Desoer (1926–2010), he “began to feel
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that complex systems cannot be dealt with effectively by the use of conventional ap-
proaches largely because the description languages based on classical mathematics
are not sufficiently expressive to serve as a means of characterization of input-output
relations in an environment of imprecision, uncertainty and incompleteness of infor-
mation.” [41] There were two ways to overcome this situation. In order to describe
the actual systems appropriately, he could try to increase the mathematical precision
even further, but Zadeh failed with this course of action. The other way presented
itself to Zadeh in the year 1964, when he discovered how he could describe real sys-
tems as they appeared to people. “I’m always sort of gravitated toward something
that would be closer to the real world” [42].

In order to provide a mathematically exact expression of experimental research
with real systems, it was necessary to employ meticulous case differentiations,
differentiated terminology and definitions that were adapted to the actual circum-
stances, things for which the language normally used in mathematics could not ac-
count. The circumstances observed in reality could no longer simply be described
using the available mathematical means.

While he was serving as Chair of the department in 1963/64, he continued to do
a lot of thinking about basic issues in systems analysis, especially the issue of un-
sharpness of class boundaries. These thoughts indicate the beginning of the genesis
of Fuzzy Set Theory.” ([55], p. 7).

In his first article “Fuzzy Sets” he launched new mathematical entities as classes
or sets that ”are not classes or sets in the usual sense of these terms, since they do
not dichotomize all objects into those that belong to the class and those that do not.”
He introduced “the concept of a fuzzy set, that is a class in which there may be a
continuous infinity of grades of membership, with the grade of membership of an
object x in a fuzzy set A represented by a number fA(x) in the interval [0,1].” [50]14

Since that time he often compared the strategies of problem solving by comput-
ers on the one hand and by humans on the other hand. In a conference paper in 1970
he called it a paradox that the human brain is always solving problems by manipu-
lating “fuzzy concepts” and “multidimensional fuzzy sensory inputs” whereas “the
computing power of the most powerful, the most sophisticated digital computer in
existence” is not able to do this. Therefore, he stated that “in many instances, the
solution to a problem need not be exact”, so that a considerable measure of fuzzi-
ness in its formulation and results may be tolerable. The human brain is designed
to take advantage of this tolerance for imprecision whereas a digital computer, with
its need for precise data and instructions, is not.” ([51], p. 132) He continued: “Al-
though present-day computers are not designed to accept fuzzy data or execute fuzzy
instructions, they can be programmed to do so indirectly by treating a fuzzy set
as a data-type which can be encoded as an array [. . . ].” Granted that this is not
a fully satisfactory approach to the endowment of a computer with an ability to
manipulate fuzzy concepts, it is at least a step in the direction of enhancing the
ability of machines to emulate human thought processes. It is quite possible, how-
ever, that truly significant advances in artificial intelligence will have to await the

14 For more details on the genesis of the theory of Fuzzy Sets and Systems see: [43],
chapter V.
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development of machines that can reason in fuzzy and non-quantitative terms in
much the same manner as a human being.” ([51], p. 132)

3.3 Artificial Neural Networks

In 1943 Warren McCulloch and the 19-year-old math student Walter H. Pitts (1923–
1969) published “A Logical Calculus of the Ideas Immanent in Nervous Activ-
ity” [26]. The text linked the activities of a network of abstract electric on-off
switches, so-called neurons, with a complete logical calculus for time-dependent
signals in electric circuits with synaptic delays. By modeling these neurons after
electric on-off switches, which can be interconnected such that each Boolean state-
ment can be realized, McCulloch and Pitts now “realized” the entire logical calculus
of propositions by “neuron nets”.

Every McCulloch-Pitts neuron is a threshold element: If the threshold value is
exceeded, the neuron becomes active and “fires”. By “firing” or “not firing”, each
neuron represents the logical truth values “true” or “false”. Appropriately linked
neurons thus carry out the logical operations like conjunction, disjunction, etc.

Two years later von Neumann picked the paper up and used it in teaching the the-
ory of computing machines [31] and may be that initiated the research program of
“Neuronal Information Processing”, a collaboration involving psychology and sen-
sory physiology, in which other groups of researchers were soon interested. Some
years later, von Neumann wrote on his comparative view on the computer and the
brain in an unfinished manuscript that was published posthumously after he died
because of cancer.[30]

In 1951, Minsky had worked with Dean Edmonds in Princeton to develop a
first neurocomputer, which consisted of 3,000 tubes and 40 artificial “neurons” was
called SNARC (Stochastic Neural-Analog Reinforcement Computer), in which the
weights of neuronal connections could be varied automatically. But SNARC was
never practically employed.

The classic problem that a computer at that time was supposed to solve, and hence
an artificial neuronal network was expected to, was the classification of patterns of
features, such as handwritten characters. Under the concept of a pattern, objects of
reality are usually represented by pixels; frequency patterns that represent a linguis-
tic sign, a sound, can also be characterized as patterns. In 1957/1958, Frank Rosen-
blatt (1928–1971) and Charles Wightman at Cornell University developed a first
machine for pattern classification. Rosenblatt described this early artificial neuronal
network, called Mark I Perceptron, in an essay for the Psychological Review [37].
It was the first model of a neuronal network which was capable of learning and in
which it could be shown that the proposed learning algorithm was always successful
when the problem had a solution at all.

The perceptron appeared to be a universal machine and Rosenblatt had also her-
alded it as such in his 1961 book Principles of Neurodynamics: Perceptrons and the
Theory of Mind:
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“For the first time, we have a machine which is capable of having original ideas. ... As
concept, it would seem that the perceptron has established, beyond doubt, the feasibility
and principle of nonhuman systems which may embody human cognitive functions ...
The future of information processing devices which operate on statistical, rather than
logical, principles seems to be clearly indicated.” [37]

The euphoria came to an abrupt halt in 1969, however, when Minsky and Seymour
Papert (born 1928) completed their study of perceptron networks and published
their findings in a book. [27] The results of the mathematical analysis to which
they had subjected Rosenblatt’s perceptron were devastating: Artificial neuronal
networks like those in Rosenblatt’s perceptron are not able to overcome many dif-
ferent problems! For example, it could not discern whether the pattern presented to
it represented a single object or a number of intertwined but unrelated objects. The
perceptron could not even determine whether the number of pattern components
was odd or even. Yet should this have been a simple classification task that was
known as a “parity problem”. The either-or operator of propositional logic, the so-
called XOR, presents a special case of the parity problem that thus cannot be solved
by Rosenblatt’s perceptron. Therefore, the logical calculus realized by this type of
neuronal networks was incomplete. As a result of this fundamental criticism, many
projects on perceptron networks or similar systems all over the world were shelved
or at least modified. It took many years for a revival of this branch of AI research.

Since 1981 the psychologists James L. McClelland (born in 1948) and David
E. Rumelhart (1942–2011) applied Artificial Neural Networks to explain cognitive
phenomena (spoken and visual word recognition). In 1986, this research group pub-
lished the two volumes of the book Parallel Distributed Processing: Explorations in
the Microstructure of Cognition [38]. Already in 1982 John J. Hopfield, a biologist
and Professor of Physics at Princeton, CalTech, published the paper “Neural net-
works and physical systems with emergent collective computational abilities” [18]
on his invention of an associative neural network (now more commonly known as
the “Hopfield Network”), i.e.: Feedback Networks that have only one layer that is
both input as well as output layer and each of the binary McCulloch-Pitts Neurons
is linked with every other, except itself.

McClelland’s research group could show that perceptrons with more than one
layer can realize the logical calculus; multi layer perceptrons were the beginning of
the new direction in AI: Parallel Distributed Processing.

3.4 Evolutionary Strategies

In 1940 the immigrated mathematician Stanislaw Ulam (1909–1984) had studied the
growth of crystals at Los Alamos National Laboratory. When looking for a model
of discrete dynamic systems he had the idea of a cellular automaton and he cre-
ated a simple lattice network. The states of Ulam’s cells at a certain point in time t
were determined by its state at point in time instantaneous before t. Von Neumann
picked up this idea in 1953 when he conceptualized a theory of self-reproducing
two-dimensional cellular automata with a self-replicator implemented algorithmic.
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There was a universal copier and constructor working within a cellular automaton
with 29 states per cell and von Neumann could show that a particular pattern would
copy itself again and again within the given pool of cells.

Following up this concept von Neumann was wondering if self-reproducing of
automata also could pursue an evolutionary strategy, i. e. due to mutations and
struggle for resources. Unfortunately there is no paper by von Neumann on this
subject. Arthur W. Burks (1915–2008), a mathematician and philosopher who was
von Neumann’s collaborator in the IAS computer project since 1946, expanded the
theory of automata, completed and edited the paper “Theory of Self-Reproducing
Automata”, von Neumann had been working on, posthumously. The paper was pub-
lished in 1966 and it “had a huge impact, not only in computing but in biology and
philosophy as well,” said John H. Holland (born 1929), professor of psychology,
electrical engineering and computer science at the University of Michigan in Ann
Arbor. “Until then, it was assumed that only living things could reproduce.” [19] and
shortly after this field of research was named “Evolutionary Computing”. Holland
was a member of Burk’s “Logic of Computers Group”, in 1954 he was among the
first students in the new Ph.D. program “Computer and Communication science”
and the first to graduate in 1959.

Holland was affected by the book The Genetical Theory of Natural Selection,
written by English statistician and evolutionary biologist Sir Ronald A. Fisher
(1890–1962), and he was warm on analogies of evolutionary theory and animal
breeding from a computer science point of view: Can we breed computer programs?
“That’s where genetic algorithms came from. I began to wonder if you could breed
programs the way people would say, breed good horses and breed good corn”, Hol-
land recalled later ([28], p. 128). In his Adaptation in Natural and Artificial Systems,
that he published in 1975, he showed how to use these “genetic” search algorithms
to solve real-world problems. His research objectives were i) the theoretical expla-
nation of adaptive processes in nature and ii) the development of software that keeps
the “mechanisms” of natural systems and adapting to the respective circumstances
at the best. [17]

The name “Genetic Algorithms” goes back to the Ph.D. thesis of John D. Bagleys
under Holland’s supervision [4]. Bagley applied these algorithms to find solutions
in game theoretic problems and more of Holland’s Ph. D students, e.g. Kenneth De
Jong and David E. Goldberg, could demonstrate other successful applications.

Almost at the same time so-called “Evolutionary Programming” appeared with
the research work of Lawrence G. Fogel (1928–2007) from the University of Cali-
fornia, Los Angeles [13]. In 1966 the book Artificial Intelligence through Simulated
Evolution appeared, co-authored by Fogel, Al Owens und Jack Walsh. These biolog-
ical inspired research programs merged to the now so-called field of “Evolutionary
Computation.”

Apart from these developments in the US other natural inspired principles have
been considered in Germany: In the 1960s, Ingo Rechenberg (born 1934) and
Hans-Paul Schwefel (born 1940), two students of aircraft construction at the Tech-
nical University of Berlin, suggested to consider the theory of biological evolu-
tion to develop optimization strategies in engineering. In 1963 they founded the
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“inofficial working group Evolutionstechnik” performing “experimental optimiza-
tion” of the shape of wings and kinked plates through mostly small modifications
of the variables via a random manner. This was the seminal idea of the research
field “Evolution Strategies”, which was initially handled without computers. How-
ever, some time later, Schwefel expanded the idea toward evolution strategies to
deal with numerical/parametric optimization and, also, formalized it as it is known
nowadays. [34], [40].

4 Soft Computing

“The concept of soft computing crystallized in my mind during the waning months
of 1990” wrote Lotfi Zadeh in 2001 [53]. He coined this label ’Soft Computing’
(SC) to name an interdisciplinary field that covers different approaches to Artificial
Intelligence that had been developed during the last decades but weren’t part of the
mainstream of AI: He formulated this new scientific concept when he wrote that

“what might be referred to as soft computing — and, in particular, fuzzy logic —
to mimic the ability of the human mind to effectively employ modes of reasoning
that are approximate rather than exact. In traditional — hard — computing, the prime
desiderata are precision, certainty, and rigor. By contrast, the point of departure in soft
computing is the thesis that precision and certainty carry a cost and that computation,
reasoning, and decision making should exploit — wherever possible — the tolerance
for imprecision and uncertainty. [. . . ] Somewhat later, neural network techniques com-
bined with fuzzy logic began to be employed in a wide variety of consumer products,
endowing such products with the capability to adapt and learn from experience. [. . . ]
Underlying this evolution was an acceleration in the employment of soft computing —
and especially fuzzy logic — in the conception and design of intelligent systems that
can exploit the tolerance for imprecision and uncertainty, learn from experience, and
adapt to changes in the operation conditions.” [52]

Zadeh defined a new approach and also a “new direction in AI” [54], because he
is committed to the assumption that traditional AI couldn’t cope with the future
challenges. He directed his critique to the general approach of Computer Science
and Engineering, which he calls “hard computing”.

In the foreword to the new journal Applied Soft Computing he recommended
that instead of “an element of competition” between the complementary method-
ologies of SC “the coalition that has to be formed has to be much wider: it has to
bridge the gap between the different communities in various fields of science and
technology and it has to bridge the gap between science and humanities and social
sciences! SC is a suitable candidate to meet these demands because it opens the
fields to the humanities. [. . . ] Initially, acceptance of the concept of soft computing
was slow in coming. Within the past few years, however, soft computing began to
grow rapidly in visibility and importance, especially in the realm of applications
which are related to the conception, design and utilization of information/intelligent
systems. This is the backdrop against which the publication of Applied Soft Com-
puting should be viewed. By design, soft computing is pluralistic in nature in the
sense that it is a coalition of methodologies which are drawn together by a quest for
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accommodation with the pervasive imprecision of the real world. At this juncture,
the principal members of the coalition are fuzzy logic, neuro-computing, evolution-
ary computing, probabilistic computing, chaotic computing and machine learning.”
([53], p. 1–2)

In 2010 Luis Magdalena, General Director of the European Centre for Soft Com-
puting in Mieres, Asturias (Spain), that was founded in 2006, accompanied Zadeh
in distinguishing between “Soft Computing as opposite to Hard Computing” (HC)
saying that the “conventional approaches” of HC “gain a precision that in many ap-
plications is not really needed or, at least, can be relaxed without a significant effect
on the solution” and that the “more economical, less complex and more feasible so-
lutions” of SC are sufficient. He pointed out that using sub-optimal solutions “that
are enough” is “softening the goal of optimization” to be satisfied with inferring
“an implicit model from the problem specification and the available data.” Inversely
we can say that without an explicit model we will never find the optimal solution.
But this is not a handicap! — SC makes a virtue out of necessity because it is a
“combination of emerging problem-solving technologies” for real-world problems
and this means that we have only “empirical prior knowledge and input-output data
representing instances of the system’s behavior.”[20]

Also computer scientist Piero Bonissone stated, in these cases of “ill-defined sys-
tems”, that are “difficult to model and with large-scale solution spaces” “precise
models are impractical, too expensive, or non-existent. [. . . ] Therefore, we need ap-
proximate reasoning systems capable of handling such imperfect information. Soft
Computing technologies provide us with a set of flexible computing tools to perform
these approximate reasoning and search tasks.” [8]

When Hans-Jürgen Zimmermann, founding editor of the journal Fuzzy Sets and
Systems, foresaw that the development of “hybrid systems” of “fuzzy-neuro-evo-
combinations” would continue in the future, he deliberated about a name for the
common field of research, which would then also become the subtitle of the journal.
“Soft computing, biological computing and computational intelligence have been
suggested so far.” These concepts seemed to be attractive in different ways and also
varied with respect to their expressive power. He suggested calling the field “soft
computing and intelligence” since the other concepts seemed to place too much
emphasis on “computing” “which is certainly not appropriate at least for certain
areas of fuzzy set theory.” [57]. Thus since the first issue of 1995 Fuzzy Sets and
Systems has appeared with the subtitle International Journal for Soft Computing
and Intelligence.

5 Computational Intelligence

The name “Computational Intelligence” (CI) originates from a Canadian journal on
the topic of AI.15 When this journal was founded in 1985, the editorial board chose
this name “to reflect the fact that AI is distinct from other studies of intelligence in
its emphasis on computational models,” the editors recalled about 10 years later and

15 http://eu.wiley.com/WileyCDA/WileyTitle/productCd-COIN.html
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Fig. 5 In the year 2006 the European Centre for Soft Computing was launched. First row
(among others: Lotfi A. Zadeh, and Enric Trillas; back row (among others): Rudolf Kruse,
Luis Magdalena, Henri Prade, Janusz Kacprzyk.

they continued: “The name was also short enough to be catchy but general enough
to reflect our purpose and attract submissions from all areas of AI.” [9].

In “CI” the adjective “computational” was intended to refer to subsymbolic prob-
lem representation, knowledge aggregation and information processing. Here, we
reach the basics of natural intelligence but — as a matter of course — it is important
to distinguish between natural (biological) intelligence and AI.

As computer scientist Włodzisław Duch wrote in 2004, CI “is used as a name to
cover many existing branches of science. This name is used sometimes to replace
artificial intelligence, both by book authors and some journals.” [11]16

As Zadeh did when he launched SC, Duch directed his critique to Symbolic AI:
He surmises that “the idea that all intelligence comes from symbol manipulation has
been perhaps misunderstood by the AI community”. He stressed that psychologists
Newell, Simon and Shaw17 of the Carnegie-Rand group18 dealt with formal symbol
manipulations when they presented the Logical Theory Machine, that could proof

16 Duch referred to [33] and the above mentioned journal.
17 They were the so-called “NSS-group”, “NSS” was the name of a chess program, the initials

of its authors.
18 Carnegie-Mellon University and Rand-Corporation.
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mathematical theorems in elementary logic,19 and also three years later when they
presented the General Problem Solver [32].

Duch pointed that these AI pioneers “wrote about physical symbols, not about
symbolic variables. Physical symbols are better represented as multi-dimensional
patterns representing states of various brain areas. Symbolic models of brain pro-
cesses certainly do not offer accurate approximations for vision, control or any other
problem that is described by continuous rather then symbolic variables. Approxima-
tions to brain processes should be done at a proper level to obtain similar functions.
Symbolic dynamics [. . . ] and extraction of finite state automata from recurrent net-
works [. . . ] may provide useful information on dynamical systems, and may be
useful in modelling transition between low-to-high-level processes.”[12]

Moreover, in 2007 Duch noticed that the problems that “are at present solved in a
best way by the AI community using methods based on search, symbolic knowledge
representation, reasoning with frame-based expert systems, machine learning in
symbolic domains, logics and linguistic methods”, are “non-algorithmizable prob-
lems involving systematic thinking, reasoning, complex representation of knowl-
edge, episodic memory, planning, understanding of symbolic knowledge”. [12]

In early years CI was a collection of methods but now there exist attempts to
characterize this research area explicitly as defined: “CI studies problems for which
there are no effective algorithms, either because it is not possible to formulate them
or because they are NP-hard and thus not effective in real life applications!” [12]
As opposed to artificial systems, animate systems like living brains are able to solve
problems for which there are no effective algorithms: “extracting meaning from
perception, understanding language, solving ill-defined computational vision prob-
lems thanks to evolutionary adaption of the brain to the environment, survival in a
hostile environment.” [12] Accordingly: “A good part of CI research is concerned
with low-level cognitive functions: perception, object recognition, signal analysis,
discovery of structures in data, simple associations and control. Methods developed
for this type of problems include supervised and unsupervised learning by adaptive
systems, and they encompass not only neural, fuzzy and evolutionary approaches
but also probabilistic and statistical approaches, such as Bayesian networks or ker-
nel methods.” Duch also recollects that “These methods are used to solve the same
type of problems in various fields such as pattern recognition, signal processing,
classification and regression, data mining.”[12]

Also Magdalena, expressed “the idea of CI being the branch of science consid-
ering those problems for which there is not an exact model, plus those cases where
the model exists but its consideration is not computationally effective, i.e., when we
need to reduce the granularity or soften the goal.” He also brought out that these
ideas describe also “SC as the opposite to hard computing or based on its essential
properties. So, apparently there is no significant difference between Soft Computing
and Computational Intelligence.” [20]

However, there is “little overlap between problems solved using low and high-
level mental functions, although they belong to the same broader category of

19 They showed it on the 1956 founding AI workshop in Dartmouth.
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non-algorithmizable problems,” Duch said and therefore he accentuates distinctly:
“AI is a part of CI focusing on problems that require higher cognition and at present
are easier to solve using symbolic knowledge representation. It is possible that other
CI methods will also find applications to these problems in future. The main overlap
areas between low and high-level cognitive functions are in sequence learning, re-
inforcement and associative learning, and distributed multi-agent systems. All tasks
that require reasoning based on perceptions, such as robotics, automatic car driving,
autonomous systems, require methods for solving both low and high-level cognitive
problems and thus are a natural meeting ground for AI experts with the rest of the
CI community.”[12]

Another view on CI arrives at a different relationship of AI and CI; this view
emerged from James Bezdek’s reflections “On the Relationship between Neural
Networks, Pattern Recognition and Intelligence” in 1992 [6] that let him to the first
definition of CI. Bezdek considered three levels of system complexity that he named
the “ABCs of neural networks, pattern recognition, and intelligence.” The ABCs if
interest to us are the following:

“ A Artificial Nonbiological (manmade)
B Biological Physical + chemical + (??) = organic
C Computational Mathematics + manmade machines”

Bezdek illustrated his view of the relationships between these ABCs and neural
nets (NN), pattern recognition (PR), and intelligence (I) in Fig. 6. Here “complexity
increases from left to right and from bottom to top” and: “Familiar terms in Fig. 6
include ANN, AI, and the three biological notions in the first row.”20

He discussed Fig. 6 starting at the uppermost row: “The BNN is one of the phys-
iological systems that facilitates organisms (in particular, humans) to perform vari-
ous biological recognition tasks. One key input to the BNN is sensory data; another
’knowledge.’ In turn BPR is but one aspect of biological intelligence. Some writers
refer to the BNN as the hardware of the human body, the brain; BI then corresponds
to the software of the human body, the mind. At the other end of the complexity
spectrum, and I believe, in an entirely analogous way, computational NNs that de-
pend solely on sensor data are (but one!) facilitator of computational PR, which in
turn is but one aspect of computational intelligence. The middle row (A = Artifi-
cial) is perhaps the most interesting, for it offers us a means of extending low-level
computational algorithms upwards toward their biological inspirations.” Consider-
ing “other differences . . . between the B, A, and C levels of complexity”, he empha-
sized that “(strictly) computational systems” depend on numerical data supplied by
manufactured sensors and do not rely upon ’knowledge’.” ([6], p. 88).

Then, Bezdek emphasized that “it is especially important and useful, in the con-
text of the relationship between NNs and PR, to distinguish more carefully than
usual what is meant by the term knowledge. Also the word ’artificial’ raised trou-
ble, when Bezdek wrote his paper: it seemed “much more properly applied in its
usual context in AI than as it is currently used in NNs. Currently, it seems that the

20 Note: BNN stands for Biological Neural Networks, BPR stands for Biological Pattern
Recognition, and BI stands for Biological Intelligence, etc.
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Fig. 6 Bezdek’s “ABCs: Neural networks, pattern recognition, and intelligence”, [6]

ANN is ’artificial’ if it is not biological, that is, ANN is the complement of the BNN
in the usual set-theoretic sense. However, I suggest a finer distinction between CNN
and ANN, one that is connected to the term ’knowledge tidbits’ in Figure 6.” ([6],
p. 88)

It was this sentence that was later used as a definition for CI in the introduction
to the 1994 published book Computational Intelligence: Imitating Life, where the
editors continued: “Artificial intelligence, on the other hand, uses what Bezdek calls
’knowledge tidbits’. Many NN’s called ’artificial’ should, Bezdek argues, be called
computational NN’s.” ([59], p. v.)

In his contribution to the same book Bezdek responded to Fig. 6 more explicite:
“The symbol (↪→) in this figure means ‘is a proper subset of’. For example, I am
suggesting along the bottom row that CNNs ⊂ CPR ⊂ CI, and in the left column,
that CNNs ⊂ ANNs ⊂ BNNs. As defined then, any computational system is ar-
tificial, but not conversely. So, I am definitiely suggesting that CI and AI are not
synonyms. CI is in my view a proper subset of AI.” In this paper Bezdek defined
“CI systems” as follows:

“A system is computationally intelligent when it: deals with only numerical (low-level)
data, has pattern recognition components, does not use knowledge in the AI sense; and
additionally when it (begins to) exhibit 1) computational adaptivity, 2) computational
fault tolerance, 3) speed approaching humanlike turnaround and 4) error rates that
approximate human performance.” [7]

6 Conclusion

Concluding this chapter I would like to come back once again to Jim Bezdek’s
scheme in Fig. 6 that shows complexity levels in two dimensions: in Bezdek’s
words: “I think that A, B, and C correspond to three different levels of system com-
plexity, which increase from left to right, and from bottom to top in this sketch.” [7]
When scientists try to create intelligent systems it means that this systems should
perform (approximately) like biological intelligent (BI) systems. The way to reach
this goal leads up and to the right by increasing complexity in both dimensions.
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Bezdek pointed out that the concept “CI” is, however, only seductive as long as
the concept of intelligence is no better defined than it currently is [7]. That means
that in future times perhaps a similar scheme of complexity but showing more than
two dimensions will be appropriate and paths to create an intelligent system — a
“Thinking Machine” go labyrinthine ways to increase complexity. Science visions
and science fictions will always try to show how such paths could appear but they
will still base on their historical level of knowledge (tidbits)!

In December 1967, Isaac Asimov wrote a short text entitled “The Thinking Ma-
chine”. The first sentence of this paper is: “The difference between a brain and a
computer can be expressed in a single word: complexity.” He argued that computers
are programmed to solve problems and also human beings are programmed. Com-
puters can only do what they are programmed to do; the same is true for humans, he
wrote: “Our genes ‘program’ us the instant the fertilized ovum is formed, and our
potentialities are limited by that ‘program’.” However, our program is that much
more complex than computers have been in that time and still they are, but Asimov
assumed that “if a computer can be made complex enough, [. . . ] as complex as a
human brain, it could be the equivalent of a human brain and do whatever a hu-
man brain can do.” Moreover, his science vision — or is it science fiction? — says
further that “we will perhaps build a computer that is at least complex enough to de-
sign another computer more complex than itself. This more complex computer could
design one still more complex and so on and so on.” [2] In this scenario it happens
that computers “not only duplicate the human brain — but far surpass it.” Then,
there are two possibilies: “we ought to step aside” or the computers “push us aside”.
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Uncertainty in
Knowledge-Based Systems



Markov Network Revision: On the Handling
of Inconsistencies

Jörg Gebhardt, Aljoscha Klose, and Jan Wendler

Abstract. Graphical models are of high relevance for complex industrial applica-
tions. The Markov network approach is one of their most prominent representatives
and an important tool to structure uncertain knowledge about high-dimensional do-
mains in order to make reasoning in such domains feasible. Compared to condition-
ing the represented probability distribution on given evidence, the important belief
change operation called revision has been almost entirely disregarded in the past, al-
though it is of utmost relevance for real world applications. In this paper we focus on
the problem of inconsistencies during revision in Markov networks. We formally in-
troduce the revision operation and propose methods to specify, identify, and resolve
inconsistencies. The revision and its inconsistency management has proven to be
successful in a complex application for item planning and capacity management in
the automotive industry at Volkswagen Group.

1 Introduction

Today’s scientific and economic problems are often characterised by a large num-
ber of variables. With a sufficiently high number of variables, the complexity of
these problems grows quickly, so that analyses and reasoning processes become in-
creasingly difficult. For this reason, lossless or approximating decomposition tech-
niques are often necessary in order to efficiently cope with high dimensionalities.
Decomposition is achieved by making use of (conditional) independencies between
variables. Graphical models [15, 12, 1] have established themselves as one of the
most popular tools to structure uncertain knowledge in this way, so that inference
becomes feasible [14, 9]. Their most prominent representatives are Bayesian net-
works [14], which are based on directed graphs and conditional probability distri-
butions, as well as Markov networks [13], which refer to undirected graphs and
marginal probability distributions or factor potentials.
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When dealing with graphical models several non-trivial operations have to be
considered. For the first step of knowledge representation, one needs learning [4, 11]
and data fusion algorithms to get an appropriate structure and the initial distribu-
tions of a network. Further knowledge processing on a given network is realized,
for example, by information retrieval, belief change, and inference operations, re-
spectively [3, 4, 5].

The most discussed knowledge processing operation in the field of probabilistic
graphical models is focusing, which can be achieved by performing any kind of
evidence-driven conditioning on a set of input variables and propagating the new
information. Instantiation of variables as it is usually implemented in diagnostic
tools, can be considered as a special case of this operation, with all the probability
mass assigned to one value per given variable.

It is surprising that other essential operations well-known from uncertainty man-
agement in knowledge-based systems seem to be overlooked in the scientific com-
munity of graphical modeling: They concern the two almost complementary opera-
tions of revision and updating, respectively. Compared to focusing, these operations
are not restricted to pure information retrieval and simulation aspects, but reflect the
task of belief change.

Revision refers to an alteration of the represented probability distribution within
the frame of an existing model structure, i.e. although the probability of a state
(element of the common domain) may be changed in the revision process, it is re-
quired that forbidden states (having a zero probability) do not change. Revision is
performed by locally introducing new distributions into the Markov network. Like
with focusing, local modifications of distributions are propagated. But in contrast
to the operations used in information retrieval, changes made during revision are
permanent, as the modified distributions replace those already stored in the model.
The alterations to the model are the least ones required to integrate the new proba-
bility assignments. Therefore the maximum of the probabilistic interaction structure
already represented in the model is preserved, which coincides with the so-called
principle of minimal change [5].

If multiple local distributions in the network have to be modified, the desired
revision is achieved by propagating the new assignments one after another (itera-
tive proportional fitting [15]). Since any local change may affect other areas in the
model, processing one of the assignments may invalidate part of the models’ adap-
tations to previous assignments in the sequence. However, by iterating the process
the model will often converge to a state of stable compromise, consistent with all
assignments.

Nevertheless, if the assignments are in conflict with each other or affect zero
probabilities of the initial distribution, the whole revision process will remain unsta-
ble and equilibrium cannot be achieved. In the first case there can be no consistent,
accurate and complete model for contradictory evidence. In the latter case a solution
can be achieved by applying an updating operator.

Updating is complementary to a revision operation in the sense that this oper-
ation locally introduces a new probabilistic interaction structure to a model, which
means that it changes probabilities from zero to positive values and therefore defines
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new probabilistic dependencies between the involved variables. For this reason, it
does, of course, not follow the principle of minimal change.

In the following contribution we focus our interest on the topic of handling in-
consistencies in revision problems. The underlying research was triggered by an
application at the automobile manufacturer Volkswagen Group, where ISC Geb-
hardt established Markov networks for the development of a world-wide software
system for item planning and capacity management [2, 7, 6].

The paper is structured as follows: Section 2 introduces the complex item plan-
ning problem. In Section 3 we establish definitions to specify and define the revi-
sion problem. We discuss revision and identify inconsistency problems which may
arise. In Section 4 we focus on inconsistencies, thereby differentiating between in-
ner and outer consistency. Furthermore we introduce the degree of inconsistency of
a revision problem. Finally, in Section 5 we present practical solutions to handle
inconsistencies in a complex domain.

2 Real-World Application

2.1 Item Planning at Volkswagen Group

In contrast to many competing car manufacturers, Volkswagen Group favours a
marketing policy that provides a maximum degree of freedom in choosing individ-
ual specifications of vehicles. That is, considering personal preferences, a customer
may select from a large variety of options, each of which is taken from a so-called
item family that characterises a certain line of equipment. Body variants, engines,
gearshifts, door layouts, seat coverings, radios and navigation systems reflect only
a small subset of the whole range of item families. In case of the VW Golf – Volk-
swagen’s most popular car class – there are about 200 families with typically 4 to 8
values each, and a total range of cardinalities from 2 up to 150.

Of course, not all of the possible instantiations of item variables lead to valid
vehicle configurations, since technical rules, restrictions in manufacturing and sales
requirements induce a common rule system that limits the item combinations. Nev-
ertheless, dealing with more than 10,000 technical rules in the Golf class and even
more rules delivered by the sales programs for the special needs of different coun-
tries, there remains a huge number of correct vehicle specifications. In fact, com-
pared to a total of 910,000 Golf cars in 2011, one can find only a small number of
vehicles within the whole production line that have identical specifications.

The major aim of the productive system EPL (EigenschaftsPLanung, German
for item planning) at Volkswagen Group was the development and implementation
of a software solution that supports item planning, parts demand calculation, and
capacity management with the aim of short-term as well as medium-term forecasts
up to 24 months of future vehicle production.

In order to achieve high quality of planning results, all relevant information
sources have to be considered, namely rules for the correct combination of items
into complete vehicle specifications, samples of produced vehicles as a reflection of
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customers’ preferences, market forecasts that lead to revision assignments of modi-
fied item rates for planning intervals, capacity restrictions, and production programs
that fix the number of planned vehicles.

With respect to the logistics view, the most essential result to assess of the item
planning process are the rates of all those item combinations that are known to be
relevant for the demand calculation of parts, always related to a certain vehicle class
in a certain planning interval. The importance of these item combinations arises
from the fact that a vehicle can be interpreted as a large set of installation points,
each of which is characterised by a set of alternative parts for the corresponding
location. Which of the alternative parts has to be chosen at an installation point
depends on its installation condition that can be specified by an item combination.
Of course, at each installation point, all occurring installation conditions have to be
disjoint, and their disjunction has to form a tautology. That is, given any correct
vehicle specification, for each installation point we obtain a unique decision which
of its alternative parts has to be used.

In the context of the Golf class, we find a total of about 70,000 different item
combinations required as installation conditions for the whole set of installation
points. The data structure that lists all installation points, their installation condi-
tions, and the quantities of the referenced parts, is called a variants-related bill of
material. The task of predicting the total demand of a certain part with respect to a
future planning interval is to sum up the demands over all of its installation points.
The demand at any installation point results from multiplying the rate of the item
combination that represents its installation condition with the quantity and the total
number of vehicles intended to be produced in the respective planning interval.

We conclude that calculating parts demand is reduced to a simple operation,
whenever the rates of all involved item combinations can be computed.

2.2 Markov Network Model and Revision Operator

The first step in the project EPL was to search for an appropriate planning model
that supports a decomposed representation of the qualitative and quantitative depen-
dency structure between item families. We had to take into account that we deal
with a finite set of discrete item variables, as well as that we get conditional inde-
pendences induced by the given rule systems and customers’ preferences.

Since logical rule systems can be transformed into a relational setting, and rates
for item combinations may be identified as (frequentistic or subjective) occurrence
probabilities within a large sample of historical or predictably valid vehicle spec-
ifications, Markov networks turned out to be the most promising environment to
satisfy the given modelling purposes.

Once a basic prior Markov network for a certain planning interval has been gen-
erated, it becomes subject to a variety of planning operations which involve mar-
keting and sales stipulations (e.g., installation rate of comfort navigation system
increases from 20 % to 35 %) and capacity restrictions from logistics (e.g., maxi-
mum availability of seat coverings in leather is 5,000). These quantitative input data
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are strongly related to the planning interval itself and therefore not learnable, nei-
ther from historical data nor from the non-probabilistic rule system. They typically
consist of predicted installation rates or absolute demands for single items, sets of
items, or (sets of) item combinations, and are frequently related to refined planning
contexts (e.g., VW Golf with all-wheel drive for the US market).

In mathematical terms, this sort of additional information leads to competing
partial or total changes of selected (conditional) low-dimensional probability dis-
tributions in the Markov network. Such changes can be interpreted as the basis for
a revision operation, where a prior state of knowledge (represented by the initial
Markov network) given new information (which is the new set of probability distri-
butions) is revised to a posterior state of knowledge. The new information is thereby
incorporated in the sense of the principle of minimal change [5].

In terms of the probabilistic framework, the task is to calculate a posterior
Markov network that satisfies the new distribution conditions, only accepting a
minimal change of the quantitative interaction structures of the underlying prior
distribution.

3 Revision in Markov Networks

Before starting the discussion about inconsistencies in Markov networks we need
to specify the revision problem and define its solution. Furthermore we reflect how
the proposed solution can be calculated and discuss which problems will arise dur-
ing the revision operation due to the complexity and human factor in real world
applications.

3.1 Definitions

Suppose that we are given a Markov network M = (H,Ψ ) which represents a joint
probability distribution P(V ) on a set V = {X1, ...,Xn} of variables with finite do-
mains Ω(Xi), i = 1, ...,n. We assume that H = (V,{C1, ...,Cm}) denotes a hypertree
of which the Ci are the (maximal) cliques and Ψ = (P(Cj))

m
j=1 a family of prob-

ability distributions defined on the (maximal) cliques of H. In this setting, H and
its associated undirected dependency graph G(H) reflect the conditional indepen-
dencies between the involved variables, and Ψ shows the resulting factorization
property P(V ) = ∏m

j=1 P(Cj)/P(S j), where S j symbolize the separators in some
representation of H as a tree of cliques.

In addition, let Σ = (σs)
S
s=1 be a so-called revision structure that consists of

revision assignments σs, each of which is referred to a (conditional) assignment
scheme (Rs|Ks) with a context scheme Ks, Ks ⊆ V , and a revision scheme Rs,
where ∅ �= Rs ⊆ V and Ks ∩Rs = ∅. We assume that σs is specified by a set of

assignment components P∗(ρ (k,l)
s |κ (k)

s ), where κs
(k) is called its context compo-

nent and ρs
(k,l) its revision component, respectively. The context components are

expected to specify a partitioning of Ω(Ks), and for each k ∈ {1, ...,k∗(s)}, the set
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{ρ (k,l)
s |l = 1, ..., l∗(s,k)} forms a partitioning of Ω(Rs). Hence, each revision assign-

ment specifies a modified probability distribution referred to the scheme (Rs|Ks),

separable into independent modifications of the distributions P(Rs|κ (k)
s ), given by

the assignment components P∗(ρ (k,l)
s |κ (k)

s ), l = 1, ..., l∗(s,k). In case of the empty
scheme Ks = ∅, we deal with an assignment of the (non-conditioned) probabilities

P∗(ρ (l)
s ).

Finally, we suppose that for all s = 1, ...,S there are cliques C(s) ∈ {C1, ...,Cm}
such that Ks ∪Rs ⊆ C(s). This guarantees that we do not have cross-over depen-
dencies between cliques, which may not be expressible in the structure of the given
Markov network.

Definition 1 (Solution of revision problems). Let M = (H,Ψ) be a Markov net-
work with associated joint probability distribution P(V ). Furthermore, let Σ =
(σs)

S
s=1 be a revision structure.

A probability distribution PΣ (V ) is called solution of the revision problem
(P(V ),Σ), if and only if the following conditions hold:

(R1) Revision assignments are satisfied:

(∀s ∈ {1, ...,S})(∀k ∈ {1, ...,k∗(s)})(∀l ∈{1, ..., l∗(s,k)})(
PΣ(ρ

(k,l)
s |κ (k)

s ) = P∗(ρ (k,l)
s |κ (k)

s )
)

(R2) Preservation of interaction structure:
Except from the modifications induced by the revision assignments, PΣ (V ) pre-
serves all probabilistic dependencies of P(V ) .

3.2 Discussion

Essentially, the required preservation of the interaction structure coincides with the
decision-theoretical presupposition that the revision operator does not modify the
cross product ratios of conditional events outside the influence areas of the revision
assignments (principle of minimal change).

It can be proven (see, f.e. [8]) that in case of existence, the solution of the re-
vision problem (P(V ),Σ) is uniquely defined. PΣ (V ) can be calculated as the limit
probability distribution if the revision procedure of iterative proportional fitting
with parameters Σ is applied to the initial distribution P(V ).

From a practical point of view, in most cases of real world applications of suf-
ficient complexity, we have to take into account that revision problems (P(V ),Σ)
specified by human experts are not solvable. The reason for this observation is
the fact that revision structures Σ = (σs)

S
s=1 tend to contradict some of the re-

strictions given by the zero values of the initial probability distribution P(V ). Note

that assignment components P∗(ρ (k,l)
s |κ (k)

s ) > 0 may induce to change some prob-
abilities P(ω) = 0 to a strictly positive value. This kind of modification is not
conform to the dependency preservation requirement of the revision operator, as
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zero probabilities show the absence of any interaction structure. Hence, a resulting
probability PΣ (ω) > 0 would introduce a new interaction structure, which is the
typical focus of the (in some sense complementary) updating operations.

Resulting probabilities PΣ(ω) > 0 may be introduced directly by only one revi-
sion assignment σs (which can be easily detected and coped with) or by any subset
of Σ . In the latter case the revision structure Σ contains inconsistencies which cannot
be detected and dealt with by trivial means. In order to deal with such inconsisten-
cies we need first to analyse their properties and categorise these inconsistencies.

4 Categorisation of Inconsistencies

As already mentioned in the previous section, inconsistencies may occur during
revision. Inconsistencies can be roughly classified into two categories. In this section
we will differentiate between inner and outer (in-)consistency. Inner consistency is
a property of a revision structure alone whereas outer consistency always depends
on the initial distribution P(V ), especially its zero values. Moreover, we introduce
inner and outer inconsistency criteria for revision problems which finally allows us
to determine the degree of inconsistencies.

4.1 Definitions

In order to handle the typical inconsistencies which arise during the revision, we
introduce the following definitions:

Definition 2 (Inner consistency). Let (P(V ),Σ) be a revision problem. A revision
structure Σ shows the property of inner consistency, if and only if there exists a
probability distribution that satisfies the revision assignments of Σ .

Note that this definition is conform to the condition (R1) of definition 1.

Definition 3 (Outer inconsistency). Let (P(V ),Σ) be a revision problem with the
property of inner consistency. (P(V ),Σ) shows the property of outer inconsistency,
if and only if there is no solution of this revision problem.

Definition 4 (ε-modification of a revision problem). Let (P(V ),Σ) be a revision
problem, and let ε be a (sufficiently small) positive real number. Furthermore, as-
signing r := |{ω ∈ Ω(V )|P(ω) = 0}|, let

Pε(ω)
D f
=

{
P(ω) · (1− rε), if P(ω)> 0

ε, if P(ω) = 0

Then, (Pε(V ),Σ), is called the ε-modification of (P(V ),Σ).

We now present some results that are useful for the recognition and handling of
inconsistencies of revision problems.
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4.2 Inner Inconsistencies

Theorem 1 (Inner inconsistency criterion for revision problems). A revision
problem (P(V ),Σ) shows the property of inner consistency, if and only if the revision
procedure (iterative proportional fitting) applied to its ε-modification (Pε(V ),Σ)
converges to a limit distribution PΣ

ε (V ).

Corollary 1 (Sufficient condition for revisability). In case of a strictly positive
distribution P(V )> 0 and inner consistency of its structrue Σ of assignments, there
always exists the uniquely determined solution PΣ (V )≡ PΣ

ε (V ) of the revision prob-
lem (P(V ),Σ).

To achieve inner consistency, one may restrict the revision structure Σ , so that it
fulfills the following conditions:

1. (∀s ∈ {1, ...,S})(∀t ∈ {1, ...,S})(s �= t ⇒ Rs ∩Rt =∅)
2. (∃(V,<))(∀s ∈ {1, ...,S})(ρ ∈ Rs ⇒ (∀κ ∈ Ks)(κ < ρ))

The first condition forbids that two different assignment components (with possibly
different context schemes) specify parts of the same revision scheme. The second
condition ensures that no cyclic dependencies between the assignment components
are possible.

However, these conditions for the revision structure are quite restricting: Con-
sidering the presupposed distinction of context and revision schemes (Ks ∩Rs = ∅)
as well as the inclusion of Ks ∪Rs in one of the cliques, it turns out that (1) and (2)
lead to a so-called chain graph which reflects the dependencies induced by the given
revision structure. This means that all dependencies of the involved variables may
be specified with the aid of a composition of directed acyclic graphs and undirected
graphs. For practical purposes, whenever possible, it is desirable to establish such
a dependency graph. An alternative is to use techniques of locating and removing
(inner) inconsistencies rather than preventing them (see section 5).

4.3 Outer Inconsistencies

Lemma 1 (Theoretical outer inconsistency criterion for revision problems).
Given the inner consistency of its structure Σ of assignments, we observe an outer
inconsistency of a revision problem (P(V ),Σ), if and only if

(∃ω ∈ Ω(V ))(P(ω) = 0 ∧ P∗(ω)> 0)

holds for all probability distributions P∗(V ) that satisfy the revision assignments
(R1).

Theorem 2 (Practical outer inconsistency criterion for revision problems).
Given the inner consistency of its structure Σ of assignments, we observe an outer
inconsistency of a revision problem (P(V ),Σ), if and only if
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(∃ω ∈ Ω(V ))(P(ω) = 0 ⇒ PΣ
ε (ω)>> Pε(ω))

is satisfied.

As a consequence, given inner consistency, the outer inconsistency proof for a par-
ticular revision problem (P(V ),Σ) can be obtained by application of the revision
procedure to the ε-modification (Pε(V ),Σ) of this revision problem, and testing the
limit distribution PΣ

ε (V ) with respect to the outer inconsistency criterion.

4.4 Degree of Inconsistencies

Further investigations on mass flows in inconsistency situations finally lead to the
following theorem that gives a basis to handle inconsistencies of non-solvable revi-
sion problems:

Theorem 3. Given the assumptions of the previous theorem, let

Inconsistent tuples(P(V),Σ)
D f
=
{

ω ∈ Ω(V )|P(ω) = 0 ∧PΣ
ε (ω)>> Pε(ω)

}
denote the set of all tuples that are involved in the outer inconsistencies of a revision
problem (P(V ),Σ). Then, this set consists of all invalid tuples ω that need significant
probability mass flows (quantified by PΣ

ε (ω)) from ω to any valid tuples in order to
remove the existing inconsistencies.

After inconsistent tuples are located one can determine the degree of the inconsis-
tency which is given by

Inconsistency mass(P(V ),Σ)
D f
= ∑

{
PΣ

ε (ω)|ω ∈ Inconsistent tuples(P(V ),Σ)
}
.

Inconsistency mass(P(V ),Σ) reflects the whole probability (inconsistency) mass
which has to be transferred to any tuples of Ω(V )− Inconsistent tuples(P(V ),Σ).

5 Practical Solutions to Handle Inconsistencies

With the analysis of inconsistencies from the last section one can identify the in-
consistent tuples and distribute the inconsistency mass to other tuples using the ε-
modification of a revision problem. However, applying the ε-modification makes it
necessary to hold in memory all tuples within the cliques Cj, even the tuples which
had a zero probability before. Note that in the original revision problem zero prob-
abilities do not need to be represented explicitly.

In our application domain the sizes of average cliques and largest cliques differ
among the automobil models. In typical automobile models (like the Golf class) the
largest cliques contain about 40,000 non-zero tuples, but the maximal theoretical
size1 of these cliques is greater than 1014, which makes it infeasible to apply the

1 Size of all tuples including the zero-value tuples.
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ε-modification to these cliques. Therefore practical solutions are needed to handle
inconsistencies.

The main idea for the practical solution presented in this paper is to prioritise and
group the revision assignments as well as apply several revisions2 with consistency
checking (and adaptation of revision assignments if necessary) until all revision
assignment groups are incorporated. With this strategy it is possible to locate and
remove all inconsistencies without the need to differentiate between inner and outer
inconsistencies anymore.

In the following we will speak about inconsistencies between revision assign-
ments. Please note that the intial distribution P(V ), especially its zero-values, is
always part of such inconsistencies but will be regarded as not adaptable to solve
inconsistencies and therefore P(V ) is not mentioned all the time.

5.1 Prioritising and Grouping the Revision Assignments

Given a potentially inconsistent revision problem (P(V ),Σ) one can often specify
which revision assignments σs are more important than others, so that in case of
an inconsistency between these revision assignments only the least important one
should be adapted.

However, sometimes it is impossible to decide which one of two revision as-
signments is more important. In fact it might be needed that two or more revision
assignments get the same priority. Such revision assignments are grouped together.
In case of an inconsistency within such a group all its revision assignments should
be adapted according to the principle of minimal change.

The set of revision assignments is divided into n partitions Si, so that Σ =
⋃n

i=1Si

and Si �=∅, Si ∩S j =∅ for any 1 ≤ i, j ≤ n with i �= j.

5.2 Iterative Revision with Consistency Checking

After the revision assignments are grouped and ordered we can start with an empty
set Σ0 which is consistent with the initial probability distribution P(V ). In each
iteration we take the consistent set Σi−1 (1 ≤ i < n) and perform a meta revision by
adding the revision assignments of Si. This meta revision results in a new consistent
set Σi where the revision assignments of Si are adapted (where necessary) to achieve
consistency with Σi−1.

Each meta revision operates using (up to) two phases. In the first phase a sin-
gle revision is performed on the set Σi−1 ∪ Si. If this revision converges, the set
is consistent, otherwise the revision assignments of Si introduce an inconsistency.
This inconsistency is resolved by applying partition mirrors to Si. By applying these
partition mirrors, the revision converges and the revision assignments σs ∈ Si are
adapted to σ∗

s if necessary. The main idea of partition mirrors is to mirror variables
into the network structure, couple the states of these variables to their origins by

2 For detailed information about a single revision step, please see [8].
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suitable initial distributions, and reformulate the assignments in order to set prob-
abilities to these new variables. For detailed information about partition mirrors
see [10].

After n steps every revision assignment has been tested for consistency with the
other revision assignments. In case of inconsistencies the least important revision
assignments have been adapted so that we finally have a consistent set Σn of revision
assignments.

The resulting algorithm reads:

i := 0; Σi :=∅; (∗ initializing empty set ∗)
repeat (∗ iterative meta revision ∗)
i := i+ 1 (∗ iteration counter increment ∗)
phase 1: test consistency

do single revision with Σi−1 ∪Si

if probability distribution converges:
Σi := Σi−1 ∪Si

else {
phase 2: applying partition mirrors

do single revision with Σi−1 ∪Si applying partition mirrors for Si

Σi := Σi−1 ∪S∗i where S∗i contains adapted revision assignments }
until i = n (∗ all revision assignments incorporated ∗)
The result of each iteration (meta revision) is a consistent set of revision assignments
Σi as well as a modified probability distribution PΣi(V ). The i-th meta revision can
be performed on either the initial probability distribution P(V ) or on the resulting
distribution of the prior iteration PΣi−1(V ). Using the resulting distribution of the
iteration before, one benefits from the already incorporated assignments Σi−1.

With highly inconsistent revision assignments it may be practical to skip phase
one of the meta revision and assume that the assignments in Si introduce a new
inconsistency. By skipping phase one, calculation time can be saved but the appli-
cation of partition mirrors also introduces additional calculation time.

If inconsistencies are rare it is possible to further group the revision assignments
so that the number of single revisions can be reduced. In case of an inconsistency
with a set

⋃
anyiSi, this set has to be divided again to locate the Si which introduces

the inconsistency.

6 Conclusion

In this paper we analysed inconsistencies which may occur during Markov network
revision. We identified two inconsistency categories, namely inner inconsistency
and outer inconsistency. With the help of the ε-modification of a revision problem
we analysed the differences and special properties of these two inconsistency cate-
gories. Consequently, it was possible to specify the degree of inconsistencies based
on the number of tuples involved as well as their probability mass. Not only theo-
retical considerations to identify and resolve inconsistencies are presented, although
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a practical approach to handle inconsistencies was proposed in this work. This ap-
proach is based on prioritising and grouping revision assignments so that iterative
revision operations can be used to identify and resolve inconsistencies efficiently.

Automatically resolved inconsistencies are very beneficial for the user since it
reduces the manual effort drastically. However, sometimes additional information
is needed in order to explain to the user why some assignments have been adapted.
Therefore an automatically generated explanation of inconsistencies would be very
helpful. Such an explanation could be determined in two steps. In the first step a
minimal set of revision assignments causing the inconistency could be generated. In
the second step an argumentation line could be given in order to explain the inconsis-
tency. The automatic explanation of inconsistencies seems to be more complicated
than expected (especially the second step). This task is subject to further research.
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Feedback-Driven Design of Normalization
Techniques for Biological Images Using Fuzzy
Formulation of a Priori Knowledge

Arif ul Maula Khan, Markus Reischl, Brigitte Schweitzer,
Carsten Weiss, and Ralf Mikut

Abstract. In digital imaging, a normalization procedure is an important step for an
efficient and meaningful analysis of any random image dataset. The original inten-
sity information in a digital image is mostly distorted due to imperfect acquisition
conditions resulting in the shading phenomenon. Additionally, the high contrast of
gray values present in an image also imparts a bias to retrieved gray values. Con-
sequently, image processing goals such as segmentation and cell classification are
adversely affected by aforementioned factors. In many microscopic imaging ap-
plications, retrospective shading correction methods are more commonly used as
opposed to prospective methods in order to remove unwanted shading effects. The
objectives of a normalization process, for one, can be rescaling of pixel values to a
desired range while disregarding outliers and noisy background pixels. To counter
shading effects, robust normalization techniques based on the adaptation of nor-
malization parameters should be devised. We propose a feedback-based automatic
image normalization technique that incorporates the evaluation criterion for its ef-
fectiveness based on image processing goals such as segmentation. Such a technique
employs surface fitting of the available image pixel values to structures of a given
family of function (such as polynomials) describing the spatial intensity variation of
that image. It incorporates fuzzy formulation of criteria for normalization evaluation
as an internal consistency check, while including post-segmentation results based on
a priori segmentation knowledge at the same time. Results from a biological dataset
consisting of images showing normal and dying cells are included to elucidate
the effectiveness of the proposed scheme by automatically adapting normalization
parameters.

1 Motivation and Overview

Digital images are subject to a diversity of unwanted distortions that are inevitably
linked to the acquisition conditions, pre-processing and storage. In the realm of
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image processing, normalization alludes to the retrieval of original inherent in-
formation (i.e. intensity values) in an image. This is achieved by manipulation of
pixel values (i.e. corresponding image intensity values) in order to obtain a de-
sired range of pixel values satisfying certain desired image processing goals such as
segmentation.

The optimal parameters of an image segmentation procedure are often affected
by side effects (e.g. blurriness, noise, inconsistent background illumination etc.) [9].
These side effects cause distortions in image intensities, which in turn cause loss of
targeted information present in an image. For instance, microscopic images are of-
ten corrupted by erroneous intensity variation on account of inherent shortcomings
of the image formation process. This phenomenon of intensity variation in litera-
ture is described using terms such as shading, intensity inhomogeneity, intensity
non uniformity, bias field and gain field [5, 11]. While manual image analysis might
be less prone to invalid interpretation of images in presence of such spurious in-
tensity variation effects, automatic image analysis is likely to get riddled with such
effects [10]. Consequently, in the absence of an appropriate image normalization
procedure, eventual image processing goals such as image segmentation and object
classification would be affected unfavorably. The aim is to introduce sophisticated
image normalization techniques such that desired image processing goals could be
achieved efficiently. Moreover, an adequate formulation of criteria to evaluate the
performance of a normalization technique should be done in order to quantify the
normalization outcome.

Currently, there are myriad of shading correction methods on the horizon. Shad-
ing can be roughly categorized as either object-independent or object-dependent [5].
The former is originated from certain shortcomings in the image acquisition process
and is independent of the imaged object while the latter is caused by imperfectly pre-
pared object to the acquisition device such as staining inhomogeneity [11]. Shading
correction methods are basically categorized as prospective and retrospective, de-
pending upon the degree of access to the available information related to a given
image. Prospective methods are related to calibration and improvement of image
acquisition process. On the other hand, retrospective methods solely rely on the in-
formation captured in an acquired image. Sometimes, a priori information may also
be present in case of retrospective methods [11]. Since, in this study, we are dealing
with microscopic images with no related information about the acquisition process
and parameters, only retrospective methods will be discussed.

A general assumption usually made on intensity inhomogeneity is that the shad-
ing is a smooth, spatially varying function that corrupts image intensities of the im-
aged objects. In absence of such a shading, image intensities of the imaged objects
would be the same irrespective of the location of imaged objects in an acquired
image. Various methods have been proposed in the field of retrospective shading
correction methods using a linear image formation model, consisting of additive
and multiplicative shading components in an acquired image [5, 10, 11].

Retrospective methods can be simplified by using only one shading component
i.e. additive. Retrospective methods are further divided into several approaches such
as filtering, surface fitting, segmentation, histograms and others [11]. In case of
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filtering, a reliable removal of shading effect from true image data is only possible
in the case where the spectra of shading component and true image data are not over-
lapping. Filtering techniques are more suited for small scale structured images [5].
On the other hand, surface fitting methods are parametric methods approximating
smoothly varying image background by parametric surfaces such as polynomials.
The optimal parameters for the background can be ascertained by iterative search-
ing in parametric space and optimizing certain criterion such as squared error or
other robust distance measure between the parametric background and the acquired
image [5].

A brief overview of variety of retrospective methods in term of applicability and
comparison are given in [5, 6, 10, 11, 12]. However, these methods are limited in
terms of well-formulated search space for ascertaining optimal normalization pa-
rameters and integration of segmentation results in addition to internal consistency
check for the performance of normalization routines. Therefore, we propose a new
automatic feedback-driven normalization technique for tuning processing parame-
ters iteratively using fuzzy formulation of a priori segmentation knowledge and cri-
teria for normalization evaluation to obtain optimal parameter set. Feedback-driven
automatic approaches for segmentation have already been employed in [1, 3, 4, 9]
but application to normalization is yet to be explored deeply. Since biomedical im-
age processing is currently a quite challenging domain for image analysis, we chose
two datasets of images containing living and dying cells for the evaluation of our
normalization technique. Both these datasets were previously used in [4] for auto-
matic tuning of image segmentation parameters in the same fashion. Moreover, the
proposed technique could be efficiently used for the fault detection in large datasets.
Based on the automatic feedback-based normalization evaluation criteria proposed
in this paper, a user can easily discern faulty images in a given image dataset after
normalization procedure.

This paper is organized as follows: The methodology of image normalization,
subsequent parameter calculation and evaluation criteria are given in Section 2. The
results of our proposed technique are given in Section 3 using two biological image
datasets followed by conclusions given in Section 4.

2 Methods

In this study, we used a surface fitting retrospective shading correction method with
parametric fitting to a surface described by a parabolic polynomial. The relation
between an acquired image IA(x,y) and the true shading-free image ISF(x,y) is then
described by:

IA(x,y) = ISF(x,y) ·Sm(x,y)+ Sa(x,y) (1)

where, Sa(x,y) and Sm(x,y) denote additive and multiplicative shading components
respectively as a function of spatial pixel locations in IA(x,y). The components
Sa(x,y) and Sm(x,y) account for the brightness adjustment and global contrast re-
spectively in Eq. (1). In case of fluorescence microscopy, the acquired images are
always distorted with additive shading noise. For the sake of simplicity, only Sa(x,y)
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was considered, accounting only for the brightness correction in the normalization
procedure, such that:

IA(x,y) = ISF(x,y)+ Sa(x,y). (2)

The proposed scheme for the feedback-based normalization technique is shown in
Fig. 1. It includes the normalization of an input grayscale image by fitting the pixel
values of IA(x,y) to Sa(x,y). Image normalization is then performed for different pa-
rameter combinations based on parameters obtained from the fitting. Normalization
results are evaluated for internal consistency of normalization procedure iteratively
to adopt an optimal parameter set âopt . Automatic segmentation based on normal-
ized image using âopt is also done iteratively to adopt optimal segmentation param-
eter set popt in an iterative fashion. Optimum segmentation is performed based on
this popt obtained from optimally normalized image using âopt .

Fig. 1 Employed feedback-based automatic normalization and segmentation scheme

The aim to introduce automatic normalization was to improve automatic feed-
back-based segmentation results based on a priori reference knowledge about cells
to be found. A priori knowledge included area, intensity and roundness factor (i.e.
ratio of major cell axis to sum of major and minor axes) of normal cells in addi-
tion to the total number of cell count in an image. A priori segmentation reference
was given based on manual labeling of the cells in image dataset discussed in Sec-
tion 3. The automatic feedback-based segmentation is fully discussed in our previ-
ous work [4].

Image normalization: As an example, a free exponent polynomial was used for our
feedback-based normalization routine. Since we are just estimating the shading-free
image denoted as ÎSF, the employed polynomial function denoted as Ŝa(x,y) used
for estimation is given as:

Ŝa(x,y) = â0 + â1x+ â2y+ â3xy+ â4xâ6 + â5yâ7 . (3)
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In order to induce better clarity in mathematical representation, the polynomial func-
tion and the acquired image denoted in matrix form as Ŝa and IA respectively, can
be written in vectorized form as:

ŝ∗a = X · â, (4)

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1â6 1â7

1 2 1 2 2â6 1â7

. . . . . .

. . . . . .
1 m 1 m mâ6 1â7

1 1 2 2 1â6 2â7

. . . . . .

. . . . . .
1 m n mn mâ6 nâ7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, â =

⎡
⎢⎢⎢⎢⎢⎢⎣

â0

â1

â2

â3

â4

â5

⎤
⎥⎥⎥⎥⎥⎥⎦
, i∗A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IA(x1,y1)
.

IA(xm,y1)
IA(x1,y2)

.
IA(xm,y2)

.

.
IA(xm,yn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, âtotal =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

â0

â1

â2

â3

â4

â5

â6

â7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

In Eq (4), ŝ∗a is the vectorized form of Ŝa. In Eq (5), m and n refer to the number
of rows and columns of IA respectively. In Eq. (4), the dimensions of ŝ∗a are mn
× 1 whereas the dimensions of X and â are mn × 6 and 6 × 1 respectively. The
vector i∗A in Eq. (5) also has dimensions of mn × 1. Since the analytical solution of
our problem including â6 and â7 is not possible, numerical optimization in order to
achieve parameters for best fit of IA(x,y) to Ŝa(x,y) was performed using analytical
least squares minimization for â. Our normalization routine was divided into two
steps:

Step 1 - Initial estimate: Firstly, the least square regression problem is to find:

QS1 = min
â

1
2
||X · â− i∗A||2 (6)

such that, the optimization initially is only performed setting the exponents â6 and
â7 equal to 2 and finding the optimal parameter values with respect to â to yield an
initial estimate of the search space used in the succeeding step of our feedback-based
normalization routine.

Step 2 - Search space exploration: The feedback-based normalization is then con-
tinued using search space spanned by varying â6 and â7 around initial estimates
to find the optimal combination of â, â6 and â7 that yields the best parameter set to
perform the optimum image normalization. The least squares problem for automatic
tuning of normalization routine was to find:

QS2 = min
â6,â7

1
2
||QS1||2 . (7)

The calculation of criterion (7) was based on least square minimization in order to
fit Ŝa(x,y) to pixel values of IA(x,y). Pseudo inverse of the system matrix X was
used to calculate â for given values of â6 and â7 as:
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â = (XT X)−1XT i∗A (8)

to find an optimal solution for the inner criterion QS1. Consequently, ÎSF is calculated
using its vectorized form î

∗
SF as:

î
∗
SF = i∗A −X · â, (9)

where the dimensions of î
∗
SF are same as that of both i∗A and X·â. The range for

â6 and â7 was kept closely around quadratic between 1.9 to 2.1 based on initial
estimate in order to find best exponents yielding optimal image normalization. The
employed algorithm also has the possibility to enhance its running time efficiency
by downscaling the resolution of IA by a certain factor f such that newer i∗A has lesser
overall elements by factor f. This reduces number of calculations and consequently
speeds up the automatic normalization routine.

Normalization evaluation: Generally, a normalization outcome is evaluated with
respect to two different criteria i.e. check of internal consistency of spatial image
intensities and improvement of image post-processing results based on normalized
image. A variety of metrics can be used as a quality measure for normalization
procedure with respect to given a priori knowledge. In this paper, we used one cri-
terion for the residual root mean square error Qnorm,1 of acquired image IA to the
fitted function Ŝa(x,y) normalized by the range of given image intensities and is
defined as:

Qnorm,1 =

√
1

m×n ∑m
i=1 ∑n

j=1(IA(xi,y j)− Ŝa(xi,y j))2

|max{IA}−min{IA}| . (10)

The idea behind using criterion (10) is to calculate the deviation (i.e. residual shad-
ing after fitting IA to Ŝa(x,y)) of IA from a uniform background which we intend
to obtain in normalized ÎSF, provided that the image has shading noise of the form
given in Eq. (3). However, we do not estimate the background here, instead fit-
ting is done based on both back- and foreground intensity information. This can be
dealt with by using a sliding filter to spatially inhibit the effect of high brightness
in any image. Nevertheless, an ideally normalized image would consist of nearly
a uniform background just containing the information about segments (e.g. cells
etc.) to be found. This would be indicated by smaller values (i.e. close to zero) of
criterion (10). We used another criterion Qnorm,2, given in Eq. (11), based on the nor-
malized sum of absolute difference in median image intensity values over rows and
columns of our estimated shading-corrected image ÎSF by applying q % percentiles
on pixel median values. It is used to evaluate the decrease in spatial intensity value
differences of rows and columns as corrected by our shading correction algorithm.
In ideal case, for a fairly good segment distribution and shading trends having mid-
dle section brighter than corners with no segment having area greater than 50 % of
the pixels, such a criterion should yield values closer to 0. The percentile operator
using q is denoted as prq (·) for lower qth percentile and pr100-q (·) for the upper
(100-q) th percentile in Eqs. (11) and (12).



Feedback-Driven Image Normalization 173

Qnorm,2 =

∣∣pr100−q(xmed)− prq(xmed)
∣∣+ ∣∣pr100−q(ymed)− prq(ymed)

∣∣
2×max{|t | ,1} , (11)

t = max{pr100−q(xmed), pr100−q(ymed)}−min{prq(xmed), prq(ymed)}, (12)

xmed =

⎡
⎢⎢⎣

xmed,1
.
.

xmed,m

⎤
⎥⎥⎦ , ymed =

⎡
⎢⎢⎣

ymed,1
.
.

ymed,n

⎤
⎥⎥⎦ , (13)

xmed,i = med
j=1...n

{ÎSF(xi,y j)} ∀ i = 1...m, (14)

ymed, j = med
i=1...m

{ÎSF(xi,y j)} ∀ j = 1...n, (15)

where, med {·}, max {·} and min {·} in Eq. (11), (12), (13), (14) and (15) represent
median, maximum and minimum operators respectively. In criterion (11), 2 in the
denominator is used to average the effect of variations in percentile image intensity
values along columns and rows. The criterion (11) will ideally yield values closer
to 0 in case of minimum spatial intensity variations along the row and columns,
which would indicate median values along all row and columns are closer to each
other. This would tend to eliminate the high spatial variations in intensity, imparting
a uniform background which is our desired goal in the shading correction.

We propose a fuzzy formulation of the error measures described in Eq. (10)
and (11) to grasp the parametric effect in a more intuitive way. Spline-based (a.k.a
z-shaped) fuzzy membership functions were employed with two parameters i.e. a
and b defining the maximum and minimum x-values of criteria respectively. Fuzzy
memberships for the criteria (10) and (11) are denoted as μ1 and μ2 respectively. It
is reasonable to calculate a criterion Q f uzz,norm based on a product of μ1 and μ2 since
fulfillment of both criteria for each evaluation is essential and complete absence of
any (i.e. μ1 = 0, μ2 = 0) should render Q f uzz,norm zero. Therefore, a criterion:

Q f uzz,norm(âtotal) = μ1(âtotal) ·μ2(âtotal) (16)

based on aforementioned logic, is introduced to express the internal consistency of
automatic image normalization.

Parameters/Structure adaptation: The criterion (16) needs to be maximized in
order to obtain:

âopt, f uzzy,norm = argmax
âtotal

Q f uzz,norm(âtotal). (17)

In this paper, âopt,fuzzy,norm was computed based on exhaustive enumeration. How-
ever, more sophisticated optimum search methods such as genetic algorithms, con-
straint optimization etc. could be used as well.
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Image segmentation: The automatic feedback-driven image segmentation is per-
formed on ÎSF based on â. The image segmentation is performed in the same way as
shown in Fig. 1. The optimal parameter set popt is adopted based on:

popt = argmax
p

Q f uzz,seg(p), (18)

Q f uzz,seg(p) = μc(p) · 1
n(p)

n(p)

∑
i=1

(
m

∏
j=1

μi j(p)). (19)

Trapezoidal membership functions μj(xj) with four parameters (i.e. a-d defining x-
values of edges of a trapezoid) were used to formulate reference features. Fuzzy
membership μ of each segment i for each feature j is denoted as μi j in Eq. (19)
and m denotes the number of considered features. Moreover, the total number n of
expected segments in an image was also formulated as a feature of a single image
segmentation process using a trapezoidal fuzzy membership function denoted as μc

in Eq. (19). Elaborate discussion can further be read in [4].

3 Results

Benchmark dataset Human HT29 Colon Cancer 1: This benchmark dataset was
published in the Broad Bioimage Benchmark Collection1. It contains microscopic
images (showing cells) Bk where k = 1...6, shown in Fig. 2. The ground truth for
Bk was only the average total number nref of cells present in each image based on
manual counting of two observers. For cell detection and counting, the benchmark
has to be evaluated by:

σGD =
‖n− nre f‖

nre f
(20)

where n is the number of detected cells and σGD is the deviation from the ground
truth in each image. By using Qfuzz,seg = 1−min(σGD,1), to transfer this given cri-
terion into a fuzzy evaluation, popt was adopted by (20) based on (17). In addition,
a feed-forward automatic segmentation technique proposed by Otsu [8] was applied
resulting in a threshold t. However, the results could not be directly compared based
just on the consideration of the total number of segments n because in Otsu’s method
some segments can be considered as insignificant due to their size being consider-
ably smaller than the normal segments. To solve this problem, an image opening
was applied in case of Otsu’s method in order to remove erroneous small segments
(opening filter size s = 3). With the addition of an image opening operation, the
parameter vector for Otsu’s method is described as pOtsu = (s, t)T . Using values
of s larger than 3 causes more deviation from the ground truth and were therefore
avoided in case of Otsu’s method.

The segmentation results obtained from our feedback-based normalization were
improved in comparison to the results obtained from automatic feedback-based

1 http://www.broadinstitute.org/bbbc/
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Table 1 Reference cells detection and cell count results from Bk using our method with and
without automatic normalization in comparison to Otsu’s method using s = 3

Images
Our method (w/o norm.) Our method (with norm.) Otsu’s method (s = 3)
σGD (%) x1,mean σGD (%) x1,mean σGD (%) x1,mean

B1 12 110 13 114 8 101
B2 15 129 12 108 16 97
B3 18 113 14 105 18 99
B4 15 99 15 112 12 94
B5 20 120 18 117 23 96
B6 11 121 11 128 14 96
μ 15 115 14 114 15 97

segmentation without using normalization. This can be seen in terms of σGD and
mean cell area x1,mean in pixels which are aggregated using mean value μ in Tab. 1.
The value of μ of σGD (i.e. 14) for our automatic segmentation based on normaliza-
tion scheme shows that greater number of cells were detected compared to μ of σGD

(i.e. 15) obtained without using automatic normalization procedure. This difference
of 1 is significant in μ of σGD since slightly more cells were detected separately
from each other which were otherwise merged into each other in high shading re-
gions of the image (see Fig. 2). The mean cell area too was not affected adversely,
the direct relevance or comparison of which is not stated in a priori reference of Bk.
Moreover, comparisons to results obtained by Otsu’s feed-forward image segmen-
tation method were thoroughly discussed in [4]. The plausibility of visual results
with respect to human observation was slightly improved when using our proposed
method. This is indicated in B2 by a fine delineation of cells lying very close to
each other. Since the shading effect around cells has been minimized in our normal-
ization technique, more cells were detected in the whole dataset Bk. This effect is
demonstrated in Fig. 2 (image on the right, section on middle top), where the outer
boundaries of detected cells were seen to be hardly touching each other.

Therefore, it can be inferred that by using our normalization method for auto-
matic image segmentation, not only the detection but the counting of the cells was
also improved in numbers compared to our previous automatic image segmentation
method without normalization and Otsu’s method. The mean cell area was also kept
intact and better cell delineation was achieved compared to work done in [4]. All
parameters for normalization and segmentation were also selected automatically as
opposed to manual filter size selection in case of Otsu’s method.

Cell detection based on an heterogeneous cell dataset: A biological dataset with
images Pl where l = 1...4 was used as shown in Fig. 3(a). This dataset consists of
images showing human lung cells (A549) treated with the anticancer drug cis-platin
for 24 hours and representative images were acquired as described previously in [2].
The parameter vector to be optimized in this case is p = (r,s, t)T , where r, s and t
represent convolution square matrix size, image opening disc size and brightness
threshold respectively using (18) and (19) with m = 3. The shading effect, using P1
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Fig. 2 Comparison of visual results between automatic segmentation without normalization
(left) with one using normalization (right) with sectioned images in the middle

having numerous cells in different states, is illustrated in Fig. 3(a). The image suffers
from an inconsistent background illumination since the background in corners is
darker than in the middle of the image as shown in Fig. 3(b) using high contrast
by applying 5 % percentiles. Therefore, shading correction is imperative in order to
disentangle image from such variations concealing original intensity information in
an image.

(a) Original grayscale image (b) Contrast-stretched image
using 5 % percentiles

(c) Contrast-stretched nor-
malized image using 5 %
percentiles

Fig. 3 Shading effect and its automatic correction using P1

Normalization of P1 image using âopt,fuzzy,norm is done and resulting image is
shown in Fig. 3(c). Using high contrast by applying 5 % percentiles, it is clear that
shading effects are highly reduced. The spline-shaped fuzzy membership functions
were used (see Fig. 4) for the evaluation of our normalization criteria. The results are
presented in Tab. 2. It can be seen from Tab. 2 that segmentation criterion Qfuzz,seg
was improved in the case of using normalization before automatic segmentation. It
demonstrates the beneficial effect of using a shading correction procedure. Uniform
backgrounds were achieved (see Qfuzz,norm in Tab. 2) using our automatic normaliza-
tion technique, whereas in original images of Pl, criterion (11) yielded undesirably
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low values. In Tab. 2, Qfuzz,seg represents the total quality of the automatic segmenta-
tion procedure, both for original and normalized images. This methodology can be
effectively adapted to discard outlier images (i.e. having very low criterion values
for Qfuzz,norm and Qfuzz,seg) in the whole dataset.

This work was done in continuation to our previous work described in [4]. All
algorithms are implemented in MATLAB using the Image Processing Toolbox and
the open source Gait-CAD Toolbox [7] for data mining.

(a) Qnorm,1 vs. μ1 with (a,b) = (0 1) (b) Qnorm,2 vs. μ2 with (a,b) = (0 1)

Fig. 4 Fuzzy spline-shaped membership functions μ1 and μ2 for criteria (10) and (11)

Table 2 Comparison of segmentation results with/without automatic normalization of Pl

Images
Original images Normalized images

Qfuzz,norm Qfuzz,seg Qfuzz,norm Qfuzz,seg

P1 0.15 0.73 1 0.75
P2 0.07 0.76 1 0.76
P3 0.08 0.77 1 0.78
P4 0.11 0.69 1 0.73

4 Conclusions

It was shown from our results that feedback-oriented normalization algorithms using
fuzzy criteria have the capability to fulfill the goals of image segmentation using a
human reference. The presented scheme was able to produce good results, using two
biological image datasets, in terms of number and quality of segments found based
on automatic normalization.

In the future, exhaustive enumeration for finding the optimal parameter set would
be replaced by nonlinear optimization. Moreover, new benchmarks would be tested
for the reliability of performed normalization and multiplicative shading component
would also be accounted for in shading correction based on a priori knowledge.

Acknowledgements. We express our gratitude to DAAD and BioInterfaces program of the
Helmholtz Association for funding this research work.
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Exploring Time Series of Patterns: Guided
Drill-Down in Hierarchies Using Change Mining
on Frequent Item Sets

Mirko Böttcher and Martin Spott

Abstract. In the past years pattern detection has gained in importance for many
companies. As the volume of collected data increases so does typically the number
of found patterns. To cope with this problem different interestingness measures for
patterns have been proposed. Unfortunately, their usefulness turns out to be lim-
ited in practical applications. To address this problem, we propose a technique for
a guided, visual exploration of patterns rather than presenting analysts with static
ordered lists of patterns. Specifically, we focus on a method to guide drill-downs
into hierarchical attributes, where we make use of change mining on frequent item
sets for pattern discovery.

1 Introduction

Companies are faced with a market environment that changes faster than ever. Prod-
uct life cycles are getting shorter, and prices and therefore profit margins shrink due
to harder competition. At the same time customers demand higher service levels.
To tackle the problem, organisations collect vast amounts of data about customers,
internal processes and external influences at increasing rates in order to make smart
business decisions. Nevertheless, they still fail to unfold the full potential of the data
for their decision making. The resulting lack of information often leads to subopti-
mal decisions.

Pattern detection is at the heart of most data analysis activities. However, analysts
usually only find the patterns they are looking for. Typically, the analysis process
consists of formulating a hypothesis based on domain knowledge and testing its
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validity. For instance, if the number of incoming jobs of a service provider is rising
over time, then an analyst may test whether this was driven by an increasing demand
for certain products, in certain areas, by specific types of job etc. The number of
hypotheses is however limited by the analysts’ time and imagination. To make things
worse, some scientists like pharmacologists even argue that they do not know what
they are looking for, that they will only know when they see it. This suggests that we
must look for a clever way to present potentially interesting patterns to users rather
than expect them to come up with hypotheses.

Unfortunately, machines still struggle to evaluate the interestingness of found
patterns, to automatically make decisions and trigger actions based on them, mainly
due to the lack of domain knowledge. For that reason, we are interested in ex-
ploratory data analysis, where machines focus on the mechanical part of analysing
large amounts of data and only guide the analysts’ exploration of the results through
interactive visualisations. The analysts can then include domain knowledge, trigger
further analysis by the machine and make decisions based on the results.

One core question is how to hint an expert at the most relevant patterns. While
it is very challenging to design an algorithmic method to assess the interestingness
of a pattern, it is astonishingly simple for us humans to decide what is relevant to
us and what is not. One of the clues to how humans judge the interestingness of an
object is that they take its past and how it changes into account. For instance, when
investing in stocks or buying expensive consumer goods we do not only look at the
current price but also how it developed over the last couple of months. When we
like to place a bet we do not only look at how a team scored last weekend but during
the whole season.

For a business change can mean a risk (like a shrinking subgroup of target cus-
tomers) or an opportunity (like an evolving market niche). In either case, the busi-
ness has to detect the change in order to survive or to win. In some business domains
the value of information about change as a key enabler for pro-active decision-
making has been known for a long time. For example, stock traders aim to opti-
mise buy and sell decisions by analysing stock price behaviour over time. Moreover,
many data collected are already time-stamped. In fact, the time dimension is the one
dimension which is present in every data warehouse [8].

In recent years there has been an increasing research interest in methods which
aim at analysing the changes within a domain by describing and modeling how the
results of data mining—models and patterns—evolve over time. The term change
mining has been coined as an umbrella term for such methods [5]. Change mining
approaches have been proposed for a variety of patterns and models (see [4]). Many
studies focus on analysing change in the context of item sets, not only because item
sets are rather comprehensible but also because their evolution can be represented
in a convenient and interpretable way.

In a previous publication we reported an application of change mining for item
sets in the context of detecting interesting customer segments from data collected
by a telecommunications provider [7]. Here, we describe an application which
extends this prior work by two aspects: the possibility to use a machine-guided
drill-down to find aspects of a domain that change in an interesting way and the
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incorporation of attribute hierarchies as they are commonly found as part of corpo-
rate data warehouses.

Similar hierarchies as the ones described in this publication are found in OLAP
(Online Analytical Processing) tools where a target variable, such as the revenue,
is aggregated at various level of detail, for instance, first on country level, then on
state level and then on town level. Change explanation methods for OLAP hierar-
chies have been, for example, proposed by [11] and [1]. In contrast to our approach
they only account for two time periods, and they aim towards finding the most dras-
tic differences between the latter. An extension to more than two periods is not
straightforward.

This paper is structured as follows. Section 2 describes our data and our analy-
sis task in more detail. Section 3 then continues with formalising this problem by
introducing notation to describe attribute hierarchies and the temporal dimension.
In particular it introduces histories of weight aggregates as a general way for ex-
pressing the temporal development not only of counts (volumes), but also of prices,
profits, costs etc. and shows how those trends are identified which appear to con-
tradict more general trends, as defined by the attribute hierarchy. In the following
Section 4 we show how this work relates to and is embedded into our previous work
on change mining. Section 5 describes an application of the techniques.

2 Problem Description

For illustration, we will use the following exemplary problem throughout the paper,
which is very common across different industry sectors. Assume, a service provider
receives jobs such as orders or fault reports from customers. Every job has attributes
such as time stamp (when the job came in, or when it has been completed), type of
job, location, type of customer, product and service level. Such attributes may differ
slightly between industries, but at their core they can be assumed to be typical.

The organisation needs to understand, how the number of jobs develops over
time for different attribute-value combinations such that new trends in particular
segments can be spotted early. In this way, problems can be anticipated and re-
solved before they escalate. Furthermore, such trends can be used for forecasting
and planning.

Most organisations monitor trends only at a global level. For instance, they would
only look at the development of the overall number of jobs rather than all the dif-
ferent types of jobs in all different locations for all customer groups etc. Such an
approach is reasonable, since the number of different attribute-value combinations
grows exponentially with the number of attributes and can be very high—in some
real data sets tens of thousands different combinations. If a high-level trend has been
detected, the root cause needs to be found. Analysts will try to figure out if the trend
is local, i.e. only for a certain type of job, product, location etc. Since the number
of different combinations is usually too high to test all of them manually, we are
looking to automate the procedure and visualise the results for a guided exploration.
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We assume that some attributes are hierarchical, i.e. they can be further broken
down into attributes with a higher level of detail. Fig. 1 shows—in partial—a hier-
archy for the attribute location. Starting at UK level, each level below introduces
an attribute which divides the country up into disjoint, more fine-grained parts. For
location these attributes may be region, county, borough, and so on, until post code.
For now, we stipulate that every element in the hierarchy has exactly one parent el-
ement, i.e. hierarchies can be represented by trees. Additionally we require that the
hierarchy is complete in the sense that it contains all children of a node. For instance,
for region = South, we require all counties in the South of the UK as children. We
will discuss completeness more formally later on. If a hierarchy is not complete, we
can simply add a virtual value other covering for the missing values. Neither of the
two assumptions is severe, since almost all hierarchies in our real-world data sets
follow this schema.

Attributes with no hierarchy, i.e. just a flat set of values, can be given a value
all as a virtual root node. all is equivalent to the set of all values, i.e. the attribute
domain. In that way, every attribute can be made hierarchical for consistency.

Fig. 1 Partial hierarchy of the attribute location

The idea of the proposed exploration approach is to start with a high-level view
of trends in the data, such as the overall trend for the UK and then guide the user in
drilling down into attributes. For instance, if a trend is observed for the South of the
UK but the same trend occurs in all its counties, a drill-down into location will not
reveal more information. The other way around, if the trend prevalently occurs for
a certain service, then the analyst should be made aware, eventually suggesting him
to drill down in this direction.
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3 Formalisation

In this section we formalise the previously sketched approach in order to yield a
notion of homogeneity within hierarchies which builds upon time series of arbitrary
weights.

3.1 Data and Attributes

We assume relational data in form of records (table rows) r ∈ D , D being the set of
all records, with attributes (table columns) A ∈ A , A being the set of all attributes.
As outlined above, a record may relate to an order that has been placed and the
attributes represent further information about the order such as product, location or
service level. Every record has three additional attributes:

• an identifier id ∈I D , e.g. an order number, which is not necessarily unique (the
same order may have several records reflecting different stages of the process)

• a time stamp t ∈T , e.g. the time when the order has been placed, thereby T be-
ing the overall time period that is the minimum time span that covers all records
of D .

• a weight w ∈ R. This could be as trivial as being the constant 1 as a count, or
alternatively represent costs, profit, price etc. associated with the record

Altogether a record can be characterised by a tuple (id, t,w,a1, . . .an) = (id, t,w,a).
We further assume that each record is described by attributes that are leaves in

the hierarchy. The hierarchy itself is part of the corporate background knowledge
and typically modelled as dimensions in data warehouses. To pick up on the loca-
tion example, each record originally contains the post code. Hierarchies which map
post codes to a less detailed location description are virtually available to every-
one. By looking up the value of the respective county attribute in such a hierarchy
and replacing the post code attribute with it, the record is transformed into one that
describes the location with less detail.

In an attribute hierarchy we assume that each attribute has exactly one attribute as
a direct generalisation, called the parent. This way, the attributes within a hierarchy
can be ordered by increasing degree of generalisation. To navigate within a hierarchy
we define the function p(A) producing the parent of A (thereby defining the root
node as its own parent). Further, we define valp(A,a) = b or short valp(a) as the
function that maps the attribute value a ∈ dom(A) to its corresponding (i.e. more
general) attribute value b ∈ dom(p(A)).

3.2 Weights and Time

Rather than looking at individual records, analysts will aggregate them over sub-
periods of time (like weeks or months), grouped by attribute-value combinations. In
order to achieve that T is divided into n > 1 non-overlapping periods Ti ⊂ T , such
that the corresponding data subsets Di ⊂ D each have a size |Di| � 1.
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Through aggregation, the id will be lost and the weight requires an aggregation
operator

⊕
like sum, mean, maximum or minimum. Overall, the aggregation can

be described as a mapping agg : (T,a) �−→⊕({w|(id, t,w,a) ∈ (I D ,T,w,a)}).
In this way, we can produce a time series of weight values for every attribute

vector a: wi(a) := agg(Ti,a). As mentioned above, the time series may describe
how the number of weekly reported jobs develops over time, or their associated
revenue, costs etc.

The aggregation operator is semantically bound to the weight of a record and
must therefore be used for the aggregation in hierarchical attributes, as well. In
other words, the weight of a parent in a hierarchy can be computed by aggregating
the weights of its children. Formally, let the value of all attributes but one be fixed.
Let B ∈A be the variable attribute, b a value of B and {bc | valp(bc) = b} the values
of b’s children. Without loss of generality, let us omit the fixed attributes in the
following and only write the values of B. An aggregation then yields the parent time
series

∀i wi(b) =
⊕

{bc | valp(bc)=b}
wi(bc) (1)

The equation gives us a necessary condition for the completeness of a hierarchy,
in that it must hold for every parent in the hierarchy of every attribute. In case of
strictly monotonous operators like the sum, we have equivalence, i.e. a sufficient
condition for completeness.

Lemma 1. Let sum be the weight aggregation operator and all weights be positive.
A hierarchy is complete iff for all values b of non-leaf attributes B ∈ A holds

∀i wi(b) = ∑
{bc | valp(bc)=b}

wi(bc).

Proof of the lemma is straightforward. The property is central for dealing with pro-
portions of records in hierarchies and defining probability measures.

3.3 Homogeneity of Trends

In order to decide whether drilling down into an attribute will reveal interesting
patterns, we introduce the concept of temporal homogeneity. In general terms we
consider a parent-child relationship in an attribute hierarchy temporally homoge-
neous, if the associated time series show the same behaviour over time. For the
formal definition, we again let the value of all attributes but one be fixed and use the
same notation for the variable attribute B as above.

Definition 1. An attribute value b is called temporally homogeneous with its child
bc, iff ∃c ∈ R : ∀i wi(b) = cwi(bc).

An attribute value being temporally homogeneous with all its children is equivalent
to the property that the proportion of weights wi(bc) between the children bc does
not change over time i. This can also be interpreted in terms of probability theory.
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Given a complete hierarchy with sum as aggregation operator, we can define a prob-
ability measure on attribute-value combinations a as P(a,Ti) :=wi(a)/wi(root) with
root being the vector of the root value for every attribute. Homogeneity then means
that P(child|parent,Ti) is constant over time, i.e. the probability distribution of the
children given the parent does not change.

In practice, the above definition is too strict if the data is noisy. We suggest to
use measures to quantify the level of homogeneity or run statistical tests. Table 1
shows the Pearson correlation between the time series of a parent area with the ones
of the child areas. The time series describe the volume of jobs (weekly aggregated)
over a period of 32 weeks in different areas (location).1 The Pearson correlation is
a measure of linear dependence, ±1 meaning perfect linear dependence which is
equivalent with temporal homogeneity according to Def. 1. Areas 5 and 9 show the
lowest levels of correlation with the parent region (low homogeneity) and areas 3
and 8 the highest values. The normalised time series in Fig. 2 illustrate the difference
in homogeneity between areas 3 and 9. The time series of area 3 matches the one of
the parent region much better than the one of area 9.

The flaws of using the Pearson correlation as a measure for linear dependence are
well known (e.g. its sensitivity to outliers), but it nevertheless is a useful measure in
practice. Alternatively, statistical tests are described in [6].

4 Change Mining for Item Sets

The technique developed in the previous sections is extremely useful for the as-
sumed application area where analysts monitor how values develop over time at a
high level and try to narrow down trends found at a global level to local root causes.
In general, interactive data exploration by drill-down is typical for OLAP systems
as part of corporate data warehouses and the proposed approach augments such sys-
tems in that it offers a guided and more focused analysis.

Table 1 Homogeneity of nine areas with the parent region based on Pearson correlation

Homogeneity area1 area2 area3 area4 area5 area6 area7 area8 area9

correlation 0.88 0.82 0.94 0.92 0.69 0.83 0.91 0.93 0.76

While such a drill-down is a useful tool for strategic and decision making control
on an upper management level, it has shortcomings at the operational level: first, a
large number of attributes leads to an explosion in the number of paths an analyst
may drill down into, but impossibly can. The discovered changes are thus still biased
towards an analyst’s preferences, and therefore changes may not be discovered at all.
Second, the aforementioned hierarchies do not model strong dependencies between
attributes values, as they occur when a certain service is only offered in a particular

1 Real data from a telecommunications company.
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Fig. 2 Normalised time series of the parent region (total, in red), area 9 (low level of homo-
geneity) and area 3 (high level of homogeneity)

region but nowhere else. Since analysts have to drill down one attribute at a time,
such dependencies are difficult to discover.

Both issues can be solved by frequent item set discovery [2]. Given a data set its
goal is to detect all those attribute values which frequently occur together. The ad-
vantage of item set discovery is the completeness of its results: it finds the exhaustive
set of all patterns which exceed specified thresholds on certain significance metrics.
Traditionally, the support of an item set is chosen as such a metric which is defined
as the relative frequency of an item set’s occurrence in the data. Nevertheless, it is
also possible to choose other metrics based on weights assigned to individual items
such as profit or price as we entertained in Sect. 3.2 (see [10]). Overall, frequent
item set mining provides a rather detailed description of a data set’s structure, and
thus of the underlying domain.

4.1 Notation

Formally, item set discovery is applied to a data set of transactions. Every transac-
tion R is a subset of a set of items L. A subset X ⊆ L is called item set. It is said
that a transaction R supports an item set X if X ⊆ R. For reasons of simplicity, we
define XY := X ∪Y and Xy := X ∪{y}.

The statistical significance of an item set X is measured by its support supp(X)
which estimates P(X ⊆ R), or short P(X). It is said that an item set is frequent if its
support is greater than or equal to a user-defined minimum support value suppmin.
The downward closure property of item sets states that for two item sets Y ⊃ X the
support of X is greater or equal to the one of Y , i.e. supp(X)≥ supp(Y ).

In our previous work [7] we defined the change of an item set by the change
of its support over time. After carrying out frequent item set discovery for each Di,
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i = 1, . . . ,n the support of each item set X is now related to a specific time period
Ti. We will indicate this by using the notation suppi(X). An item set X which has
been discovered in all periods is therefore described by n support values. Imposed
by the order of time the values form sequences (supp1(X), . . . suppn(X)) which are
also called support histories.

Following the introduction of weights and aggregation functions in Sect. 3.2 we
utilise that the item set mining process can also integrate other quantities than sup-
port which have a higher practical relevance for industrial applications. Pei et al
[10] provide a general framework for this. The above mentioned support threshold
suppmin then becomes a weight threshold wmin and support histories are replaced by
weight histories (w1(X), . . .wn(X)).

4.2 Hierarchical Item Sets and Temporal Homogeneity

A data record r as described in Sect. 3 can be transformed into a transaction R by
encoding every (attribute, attribute value) combination as an item. An item set then
describes a conjunction of attributes and their values, and its support represents the
relative number of records which satisfy this conjunction. For instance, region =
south is an item, and {region = south, service = broadband} an item set. We define
a function item(A,a) which maps an (attribute, attribute value) combination to the
corresponding item. In the following, we will omit the attribute name if it is obvious
from the context of the value.

The set of frequent item sets I(D) = {X : w(X) ≥ wmin} is generated from the
data set D by traversing the power set of L. This step utilises support’s downward-
closure property: w(X) ≥ w(X ∪{x′}) for any item set X and x′ ∈ L. This property
implies that every proper superset of an infrequent item set is infrequent, too.

When integrating attribute hierarchies into item set mining, it is important to
preserve the property of downward closure. This can be achieved by adding all
parents of attribute values to item sets up to the value at the top of the hierarchy.
For instance, an item set X = {ipswich, broadband} would be extended to X ′ =
X ∪{suffolk, east anglia, south}. Since the added items are universally true given
the region ipswich it is w(X ′) = w(X). Furthermore, item sets at different levels
of the same hierarchy can now be compared. Where item sets Y = {east anglia,
broadband} and Z = {south, broadband} are simply different (Y �= Z), we have
inclusion for the extended item sets: Y ′ = {east anglia, south, broadband}⊇ {south,
broadband}= Z′ and w(Y ′)≤ w(Z′) .

Having shown the relationship between records and transactions and their time
series of weights, we will transfer the concept of a temporally homogeneous parent-
child relationship (cf. Sect. 3.3) to item sets.

Definition 2 (Temporally Homogeneous Item Set). Let XY,X �= /0 be item sets
and (w1(XY ), . . . , wn(XY )), (w1(X), . . . , wn(X)) the associated weight histories.
The item set X is temporally homogeneous with the item set XY , iff there exists a
constant c ∈R such that wi(XY ) = cwi(X), i = 1, . . . ,n.
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Since real-world data is typically noisy, the condition for temporal homogeneity
should be tested statistically—an appropriate test procedure can be found in [6].

As before, the idea behind the definition is that the history of an item set and
hence the item set itself is temporally homogeneous with a more specific item set if
their support histories have the same shape apart from a scaling factor c. This can be
explained more formally by going back from weight to support histories.2 The cri-
terion suppi(XY ) = csuppi(X), i = 1, . . . ,n used in the definition can be rewritten as
c = suppi(XY )/suppi(X) = P(XY |Ti)/P(X |Ti) = P(Y |XTi). This means, the con-
ditional probability of Y given X is required to be constant over time, i.e. the fraction
of transactions containing Y additionally to X changes in the same proportion as the
ones of X .

If the additional item Y is a child attribute value in the hierarchy of one of the
values in X , then the two definitions 2 and 1 describe the same phenomenon. In other
words, the introduction of item sets allows to generalise the concept of temporal
homogeneity of patterns.

Given such time-invariance the history of XY can be inferred if one knows the
support history of X (and vice versa). For that reason, XY and X are also called
temporally redundant [6]. Redundant patterns can be hidden from users in order to
reduce the number of potentially interesting patterns. Using set inclusion to form an
order on item sets, one can form sets of mutually redundant item sets and reduce
the sets to the maximal (most specific) or minimal (most general) elements. In some
applications, analysts are more interested in the most specific, in others in the most
general item sets. This approach of removing redundant patterns is an extension
of closed item sets (see [9]) in two ways: first, by adding the dimension time and
secondly, through generalising from c = 1 in the condition.

If we take hierarchical attributes into account, sets of mutual redundant item sets
can be formed along the hierarchies. In the original problem from Sect. 2, analysts
are typically interested in the most general item set, since drilling down does not
add any information.

5 Putting the Approaches into Practice

In the context of our examples, a data analysis job is typically triggered by detecting
trends in the time series either at the highest level of the hierarchies, for instance
the overall number of jobs rising in the UK, or for a very specific subset of the
data. Since high level trends are usually monitored, they would be automatically
detected and lead to further analysis. For this purpose, we have developed interactive
visualisation techniques that make use of hierarchies and temporal homogeneity
[12]. The idea is to visualise attributes with their hierarchies in a radial tree layout.
Given a trend at the root node, the shape of the node indicates for each root attribute,
if the underlying children are homogeneous with the parent (circle) or not (triangle).
If not, the node can be unfolded one level and the child nodes be revealed. Every
child node has a colour and a shape: the colour to indicate its homogeneity with the

2 As indicated in Sect. 3.3, a similar argument can be constructed with weight histories.
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parent (a colour spectrum can be used for the level of homogeneity) and the shape
to indicate if the underlying children are homogeneous or not as before.

All hierarchies can be opened up at the same time, however it must be noted that
the homogeneity indicators in a hierarchy are always based on the assumption that
the other attributes have the root value. This can be changed by selecting values
lower down in all hierarchies, which is equivalent to selecting a subset of the data
as the new base line for homogeneity tests and the indicators will be recalculated.

In a different mode, homogeneity can be measured between a node and its root
node rather than the immediate parent. Fig. 3 shows a visualisation of this mode
based on Mike Bostock’s Sunburst [3], implemented in d3. This example is essen-
tially a visualisation of Tab. 1, but extended to the volume of jobs of nine regions
over 32 weeks with a number of subregions each. The segments of the inner circle
represent the regions, the attached segments of the outer circle are the associated
subregions. The grey levels indicate the level of homogeneity of a segment with the
root, i.e. the overall development of volumes in the UK. Light grey means a high
level of homogeneity, medium grey a medium level and black a low level. An ana-
lyst will typically focus on the dark segments to look for unexpected developments
over time. The sizes of the segments correspond to the volume of jobs in the dif-
ferent regions and help evaluate the gravity of differences. Labels can be added to
the segments and subtrees folded and unfolded. Furthermore, other attributes can be
included in the circular representation.

Fig. 3 Circular representation of homogeneity of nine regions (inner circle) and subregions
(outer circle) with the root. Light grey indicates a high level of homogeneity, medium grey a
medium level and black a low level.

In the second scenario, trends will be detected for very specific subsets of the
data set, described by item sets at lower levels of the hierarchy. After having in-
duced item sets with their weight histories and having removed redundant ones, the
weight histories can be analysed for trends (upward, downward, stable, spikes etc).
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Furthermore, the item sets can be sorted regarding the significance or strength of
their trends. Fig. 4 shows a screenshot of the developed tool IDEAL with a list of
association rules found, sorted by the strength of their downward trend. The time
series of support and confidence of the highlighted rule are displayed in the bottom
panel.

Users find patterns with highly significant trends at the top of the sorted list and
can then judge, if the found patterns are of interest. If that is the case, the trend
of related patterns—item sets that share items—can be compared with the first in
order to gain additional information. Furthermore, potentially unrelated item sets
that show a related trend can be retrieved for the same reason.

Fig. 4 Screenshot of our tool IDEAL that discovers temporal association rules from data, and
analyses and evaluates trends of support and confidence time series

Both approaches have been tested on real-world data in a telecommunications
company and have revealed unexpected temporal patterns. Some of them could be
explained by internal changes such as new business processes or the replacement of
products. However, the tool also discovered changes in customer behaviour that had
been missed otherwise.

6 Conclusion

Data is collected by organisations at an increasing rate and at the same time they are
struggling to make use of it for decision making. Change Mining is a promising ap-
proach to tackle this problem, since it will automatically find interesting patterns in
temporal data, analysts may otherwise miss. However, it still suffers from the prob-
lem that a lot of potentially interesting item sets will be generated even if methods
are employed to remove redundant ones. Interestingness measures which essentially
produce an ordered list of item sets can help, but they are not the optimal choice for
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business applications because they neglect the interconnectedness of item sets as
imposed by, for example, attribute hierarchies.

Drilling down into attribute hierarchies from a top view can overcome this prob-
lem, but brings practical problems in domains with a large number of attributes.
Since a drill-down can only be done one attribute at a time, too many steps are
required before sufficiently small parts of a domain are identified. Here, change
mining for item sets comes into play. Due to its strength to automatically analyse
the change in arbitrarily small parts of a domain, it can be employed as a look-ahead
mechanism for the drill-down by precalculating trends and their homogeneity across
a hierarchy.

This paper proposes a way to combine the two approaches in a mathematically
consistent way and introduces the concept of temporal homogeneity of hierarchical
patterns. We believe that this combination will reveal patterns, analysts would not
have found otherwise and at the same time give them a tool to visually explore
patterns much quicker than in the past.

Future work includes research in the areas of interactive visualisation of temporal
patterns as well as the integration of domain knowledge.
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Enriching Multivariate Temporal Patterns with
Context Information to Support Classification

Frank Höppner, Sebastian Peter, and Michael R. Berthold

Abstract. In this paper we consider classification tasks where the class depends on
the co-evolution of multiple variables over time, for instance, “if A happens before
B and in the meantime we do not observe C, then we have a failure of class X”. We
present a two-phased approach to derive such patterns from data. In the first step,
we seek the most specific pattern that still matches all data from one class and in the
second step we constrain the pattern further, such that it discriminates with respect
to other classes. While the second step is directly motivated by the classification
task, the first step enables the user to better match his or her mental model of the
temporal process to the patterns derived by the classifier. The experimental evalua-
tion on the libras dataset has shown that the additional first step not only improves
the interpretability, but also the classification results.

1 Introduction

Measuring and recording data is easy and cheap nowadays, but in some applications
substantial conclusions can only be drawn if we extend our observations to a certain
period of time. An operator who is controlling a chemical production process, a
user interacting with a technical device, a medic administering a drug to a patient –
in all these cases instantaneous information does not help to differentiate between
a successful and a failed process, decide about the ergonomics of a man-machine
interface or judge about the chances of patient recovery. It is necessary to observe
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multiple attributes over a period of time to derive rules specifying how a class label
may depend on the history of observations.

Measuring a couple of variables over a period of time turns the classification task
into a high-dimensional problem. As classifiers seek for the best attribute to discrim-
inate between the classes, they may eventually come up with classification rules that
only depend on a few of these attributes. However, users wants to align the findings
with their mental model, which is difficult if most of the temporal context is ignored
or lost by the classifier. In this paper, we propose to include more background in-
formation by means of a temporal outline or sketch, which is then refined by the
classifier. This approach tackles two problems: It reduces the danger of overfitting,
because it reduces the possibilities of combining arbitrary features that may occur
otherwise at any time in the recorded history and, secondly, it provides the necessary
background information for the user when inspecting the result.

The remainder of the paper is organized as follows: In Sect. 2 we briefly discuss
the representation of temporal data and review related work. The classifier we are
going to use in this paper is reviewed in Sect. 3, while an approach to provide the
aforementioned background information is discussed in Sect. 4. Results on the libras
data set are discussed in Sect. 5. Section 6 finally concludes the paper.

2 Representation and Related Work

Rather than considering values individually, we employ temporal abstractions such
as ’rising temperature’, ’connection established’, ’low user activity’, or ’increased
variance’. We thus describe the evolution by means of temporal predicates: denoting
the temporal dimension by T, a temporal predicate Pl is a function Pl :T→B, where
l is called the label of the predicate P. Examples for predicates (and especially their
label) were given above. The choice of predicates is domain dependent and part of
the feature selection step in data mining. A set of predicates (which we will call
history H) may be depicted by plotting them against the temporal dimension (cf.
Fig. 1). The use and visualization of temporal abstractions has a long tradition in
the medical domain [9]. Note that in contrast to stream mining approaches, where a
single but potentially infinite stream of data is considered, we assume that multiple
(finite) labelled histories are available.

Various ways of defining patterns in a stream of labeled intervals have been pro-
posed in the literature, many of them relying on Allen’s interval relationships [1]
(cf. Fig. 2) or variants thereof. Some approaches define a history by specifying the
exact relationship for every pair of intervals [3], others allow for a set of possible
relationships [4]. The representation by sequences of chords [6] uses a partially or-
dered sequence of simultaneous (sub)intervals to define a pattern. Other proposals
consider a different set of interval relationships or specify the relationship between
temporal intervals only partially [5].

While these approaches have their individual strengths, they also have their weak-
nesses even when it comes to represent simple situations. Thinking of predicting a
certain state of some network server (breakdown, overload, malfunction, etc.) on the
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connect A
connect B

peak load
load increase

Fig. 1 Representation of Evolving Data: the
black rectangles denote the intervals when the
predicate holds (labels on the left)

B before A
B meets A
B overlaps A
B is−finished−by A
B contains A
B starts A
B equals A

B

A

Fig. 2 Thirteen possible relationships
between two intervals. The inverse re-
lationships (before ↔ after) have been
omitted.

history of, say, the last 24 hours, a situation as simple as “there was only one con-
nection to server A” (during the last n hours) is usually prohibitive to discover using
approaches based on association rules [3, 6], as they count occurrences of events and
often rely on a quickly decreasing count of co-occurrences, which forbids an inclu-
sion of absent features during counting. A situation like “at some point in time,
both A and B hold” is a challenge to approaches such as [3], because they rely on
explicitly specified interval relationships (which are ambiguous in this case). Tem-
poral constraints “the connection to A was lost for at least 4 hours” or “... at most 4
hours” are usually ignored or introduced in a postprocessing step.

3 Representing and Classifying Temporal Data

To support an intuitive understanding we choose a rule-based approach where the
conclusion part predicts the class and the premise of the rule contains a pattern that
has to be matched to a given history. In [7] a notion of a pattern, called template
history, has been introduced. A template history may be visualized as in Fig. 1,
but this time a black box is understood as a constraint that has to be fulfilled by
a matching history. The constraints on the presence of temporal abstractions are
not fixed in time to compensate dilational and translational effects, only the order
in which the constraints have to be fulfilled must be preserved. A template is thus
decomposed into a number of n successive blocks whose absolute duration may vary
from case to case. Together with a selection of m temporal predicates, we obtain an
m×n matrix C where each cell Ci, j represents a constraint on the ith predicate in the
jth block (cf. Fig. 3). We distinguish between four different constraints:

Definition 1 (predicate constraint). Given a temporal interval T ⊆ T and a predi-
cate P, we say (a) P is present during T if ∀t ∈ T : P(t), (b) P is absent during T if
∀t ∈ T : ¬P(t), (c) P exists during T if ∃t ∈ T : P(t) and (d) P disappears during T
if ∃t ∈ T :¬P(t). If no condition is posed, we say P is unconstrained during T . By C

we denote the set of constraints {present, absent, exists, disappears, unconstrained}.

Besides the constraints in the cells of the matrix, we may additionally constrain the
duration of each block:
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Definition 2 (template). A tuple T = (L,n,C,D) is called a template if L is a set
of labels, n ∈ N, C : L×{1, ..,n} → C and D : {1, ..,n} → (T∪ {∞})2 satisfying
1 ≤ dmin ≤ dmax for any D(i) = (dmin,dmax), 1 ≤ i ≤ n. The map C constrains the
predicate in each block, the map D contrains the block duration.
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���������
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present

absent

unconstrained

exists

disappears

t 0 t tt 1 2 3

a

b

c

[1,10]

C(b,1) 0[D(2) ,D(2)  ]1

1 n...0
labels

[1,*] [1,*]

Fig. 3 Illustration of the template definition. The predicate constraints are color-coded.

Figure 3 shows an example template with n = 3 blocks, defined by four time
points (vertical lines), where the leftmost and rightmost time point shall always
represent the start and end of the history. The bottom row declares that a predicate
Pc is absent in the whole history. Somewhere in the history (2nd block), Pb is present
(Pb may be present or not elsewhere (=unconstrained)). Pa is present from the very
beginning, but disappears while Pc is present in the 2nd block. The duration of the
first block is arbitrary, the second block takes 1 to 10 time units (D(2) = (1,10)),
the last block may again have any (positive) duration (’*’ represents ’∞’).

Matching a template to a history involves the determination of points ti in time
(temporal alignment) such that all constraints hold.

Definition 3 (match). Let T = (L,n,C,D) be a template and H be a history. Let
[tmin, tmax] be the smallest interval subsuming ∪P∈Hdom(P). T matches a history H
if and only if (a) there is a predicate Pl ∈ H for every l ∈ L, (b) there are ti ∈ T,
0 ≤ i ≤ n, with t0 = tmin, ti ≤ ti+1, tn = tmax, (c) for every l ∈ L and i ∈ {1, ..,n}
the constraint C(l, i) holds for Pl within [ti, ti+1) and finally (d) for all 1 ≤ i ≤ n:
ti − ti−1 ∈ [dmin,dmax] with (dmin,dmax) = D(i).

In [7] we proposed a method to explore the space of templates to find good dis-
criminators between differently labeled histories. The search algorithm implements
a general-to-specific search: It begins with an empty pattern and specializes it fur-
ther to improve some measure of interestingness (we used the J-measure [10] as it
balances the generality (applicability of the rule) and the interestingness (deviation
from a priori knowledge)). The initial template that matches all histories consists
of one block, all predicate constraints are unconstrained and so are the temporal
constraints (1,∞). While a propositional rule can only be specialized by an addi-
tional condition (like outlook=sunny), there are at least three ways to specialize a
template: we may look at it in a finer resolution (by subdividing the temporal axis
further), we may change or add a predicate constraint (for some label and block), or
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may introduce or change an existing temporal constraint. We thus have chosen three
different specialization operators to address each of these aspects. The general idea
for all refinement operators is to search for specializations that improve the measure
of interestingness. A more detailed description of the operators and the quality of
the learned patterns can be found in [7].

4 Providing Background Information

The idea of providing ’temporal context’ in a template is to find some (most specific)
pattern that matches all instances of a given class. Such a pattern may be used as a
starting point for the beam search mentioned in Sect. 3. The problem of finding such
a pattern is closely related to the alignment of multiple sequences, which is known
to be NP-complete [11]. As all instances of the same class may in principle share a
considerable number of blocks, the use of pattern mining algorithms that enumerate
subpatterns is prohibitive because the number of subpatterns grows exponentially
with the length of the sequence. However, we do not rely on the optimal or even the
most specific pattern, but assume that any pattern that is shared by all instances of
the same class will help to provide contextual background. Therefore we are duly
satisfied with an approximate or heuristic solution to this problem. One possible
approach will be discussed in the remainder of this section, but we do not claim any
specific properties or advantages of this solutions: but our intention is to demonstrate
that (any) common subpattern is potentially useful.

The idea behind our simple heuristic method is to exploit the fact that each in-
stance itself should match the sought common subpattern – and that we thus may
identify it by simplifying the instance subsequently. At first, an arbitrary selected
history is transformed into a template history: Whenever a predicate changes its
value, we introduce a new block. If the predicate holds during the block, we place
a present constraint in the respective block, otherwise we leave it unconstrained.
A copy of this template history is created where all predicate constraints are set
to unconstrained, which is trivially matched by all instances. Next, we transfer the
present constraints (one by one) from the instance pattern to the (initially blank)
copy and only keep it if it still matches all instances of its class.

For example: Given the three different histories shown in Fig. 4, we want to find
a common subpattern, shared by all three histories. We start by using (a) as the start

A

B

C

A

B

C

(b) (c)(a)

A

B

C

Fig. 4 Three sample histories for the starting pattern algorithm
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instance (please note that every instance could be picked). In the first step we create
the template history by counting the blocks (segments between the dashed lines
because there is at least one predicate change) and convert it into the history shown
in Fig. 5. Finally we change all predicate constraints to unconstrained as shown in
Fig. 6.

[1, *] [1, *] [1, *] [1, *] [1, *]

A

B

C

Fig. 5 Sequence (Fig. 4(a))
transformed into a template
history

[1, *] [1, *] [1, *] [1, *] [1, *]

A

B

C

Fig. 6 Template history
(Fig. 5) with all predicate
constraints changed to
unconstrained

[1, *] [1, *] [1, *] [1, *] [1, *]

A

B

C

Fig. 7 Starting pattern af-
ter adding the A-Label
intervals to the starting pat-
tern in Fig. 6

In the second step we add constraints to the pattern and check if the resulting
pattern still matches all instances. Therefore we go through the original template
history row by row and transfer the present-constraints to the pattern. Furthermore
we add a new unconstrained block before and/or after the modified block to relax the
required predicate relationships. We obtain four possible patterns in total – if more
than one turns out to match all histories we choose the most specific one. For label A
the algorithm adds the present constraints as shown in Fig. 7 directly to the pattern,
so we inspect the refinements for label B in more detail. The four possible patterns
shown in Fig. 8 are created as the possible refinements. Evaluating the first pattern
shows that the instance in Fig. 4(c) is not matched anymore because the relation ’A
meets C’ is not present (but ’A before B’). The second pattern matches all sequences
because the meet-relationship has been relaxed by the intermediate unconstrained-
block. The remaining two patterns duplicate the final unconstrained-block but do
not add any substantial differences. A further refinement is not possible, as there is
no position for B that matches all three histories in Fig. 4.

Drawbacks of heuristic approach. From the example above we also recognize the
drawback of this approach. The resulting patterns depend on the order in which the
labels are added to the pattern. If we had started with adding a present constraint
for predicate C we would not be able to add any more constraints, because all other
intervals occur in different relationships to C.

5 Experimental Evaluation

We applied our algorithm to the libras movement data set from the UCI repository
[2]. It contains 15 different signs described by their characteristic hand movements
over 45 time frames, where the current x- and y-positions of the hand were recorded.
There are 24 instances per sign, 360 in total.

Data preperation & evaluation settings. In a first step we have manually inspected
all hand movements and removed clear outliers and incomplete movements, such
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A

B

C

[1, *] [1, *] [1, *] [1, *] [1, *][1, *] [1, *] [1, *][1, *]

[1, *] [1, *] [1, *] [1, *] [1, *]

A

B

C

A

B

C

[1, *] [1, *] [1, *] [1, *] [1, *][1, *]

A

B

C

[1, *] [1, *] [1, *] [1, *]

(b)
(a)

(c) (d)

Fig. 8 Four template histories tested by the algorithm by adding B to the pattern shown in
Fig. 7

that not only parts of the hand movement appear in each class but the complete
sign is visible. We have subsequently extracted predicates that represent the hand
movement, e.g., the speed of the movement (overall speed and separate movement
in x- and y-direction). We used a priori defined thresholds and the following labels
only:

• x-movement: fast left (−−), left (−), constant (o), right (+), fast right (++).
• y-movement: fast down (−−), down (−), constant (o), up (+), fast up (++)
• x/y-moveall: fast (++), normal (−) (this label is the same as x/y-movement with-

out distinguishing between left/right resp. down/up).
• Curve: nearly same direction (o), middle change of direction (+), abrupt change

of direction(++)

For example, a fast hand movement to the upper left may be recognized by observing
predicates x-movement −− and y-movement ++ at the same time.

We divided the preprocessed data into training (66%) and test (33%) data. For
each sign we constructed a shared pattern and refined it using the classifier in [7] on
the training set. The signs #10 and #12 were merged to just one class #10, because
the set of features we had chosen was not suited to distinguish between these two
hand movements. For the evaluation against the test set, we matched an instance
against all obtained patterns – if an instance matches only a single rule pattern, the
classification rule predicts the class; if no unique pattern matches, we classify it as
“cannot predict”.

5.1 Effect on Interpretability

Before discussing the classification performance we start by comparing the learned
template histories for three different hand movements shown in Fig. 9, 10 and 11.
We want to demonstrate the usefulness of the identified ’common pattern’ for align-
ing it with the user’s mental model of the considered process.
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Fig. 9 Example hand
movement for sign #1

Fig. 10 Example hand
movement for sign #3

Fig. 11 Example hand
movement for sign #14

Sign #1. The pattern for sign #1 found without a start pattern is shown in Fig. 12. By
inspection of this pattern, it is quite difficult to recover the actual hand movement,
because it consists of many absent-constraints, which are difficult to align with a
mental model of the hand movement. Furthermore, the first and last blocks consist
of unconstrained-conditions only. Thus we do not get any information about what
may happen before or after the pattern or at what time it might occur.

[1, *] [1, *] [1, *] [1, *] [3, 5] [1, *] [1, *]

Y−Movement/−

Y−Movement/o

Fig. 12 Pattern found by the beam search without a starting pattern for sign #1

X−Movement/+

X−Movement/++

X−Movement/−

X−Movement/−−

X−Movement/o

Y−Movement/+

Y−Movement/−

Y−Movement/−−

Y−Movement/o

Y−Moveall/+

Y−Moveall/++

Curve/o

Speed/+

Speed/++

Speed/+++

Fig. 13 Pattern found by the beam search with the help of a starting pattern for sign #1

Fig. 13 shows the pattern found with the help of a starting pattern: the many
present-constraints support the user in understanding the actual hand movement.
The pattern describes the hand movement almost completely: a fast left-right-
left movement (present x-movement/–, x-movement/++ and x-movement/–) com-
bined with an up-down-up movement (present y-movement/+, y-movement/- and
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x-movement/+). We also observe periods of ’high speed movements’ and low speed
when changing directions. In total the key features of the sign #1 as shown in Fig. 9
are well reflected.

[1, *]

X−Moveall/++

Y−Movement/++

[1, *][1, *] [1, *][7, 10]

Fig. 14 Pattern found by the beam search without a starting pattern for sign #3

Sign #3. Fig. 14 shows the pattern learned for the sign #3 without a starting pattern.
It is again a simple pattern which forbids the occurrence of a fast left or right move-
ment (absent x-moveall/++) at any time and requires a fast upwards movement for
7-10 time frames in the middle of the sign (absent to present to absent constraint
for y-movement/++). Again, this pattern does a good job in discriminating sign #3
from all other signs, but it does not help the user to get an impression of sign #3,
because it mainly carries information about which predicates are not allowed rather
than which are required.

Speed/o

Speed/+

Curve/o

X−Movement/++

X−Movement/o

Y−Movement/+

Y−Movement/++

Y−Movement/−

Y−Movement/−−

[1, *] [1, *] [1, *] [1, *] [1, *] [1, *][1, *] [1, *] [1, *] [1, *] [1, *][1, *]

Speed/++

Speed/+++

Y−Movement/o

Fig. 15 Pattern found by the beam search with a starting pattern for sign #3

The pattern which was learned with the help of a starting pattern (Fig. 15) reveals
the hand movement pretty well. We recognize that the pattern falls into three parts
with unconstrained blocks (6th and 10th block), which allow for gaps between the
three parts. In the first part the pattern requires no noticeable movement (present
X- and y-movement/o) at the beginning, and is followed by a downward move (y-
movement −−), an upward move in the second part, and a downward move in the
third part again. No movements to the left or right are allowed as the ’x-movement/o’
predicate is present most of the time. The absent constraint for ’x-movement/++’
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X−Moveall/++

X−Movement/−

Y−Movement/+

[1, *] [1, *] [1, *] [1, *] [1, *] [1, *][11, 18]

Fig. 16 Pattern found by the beam search without a starting pattern for sign #14

(top row) was added during the beam search refinement to better discriminate the
pattern from all other classes.

Sign #14. Finally we inspect the results for sign #14 (cf. Fig. 11). The pattern ob-
tained without using a starting pattern is shown in Fig. 16 and describes an upward
move of 11 to 18 time frames and no such upward move before or afterwards. The
downward move (which occurs later) is not part of this pattern, because it did not
help to discriminate sign #14 from other signs, but it would definitely help the user
to interpret the pattern and associate it with Fig. 11.

X−MoveAll/++

X−Movement/o

Y−Movement/+

Y−Movement/−

Y−Movement/−−

Y−Movement/o

X−MoveAll/+

Speed/o

Speed/+

Curve/o

Speed/++

Speed/+++

[1, *] [1, *] [1, *] [1, *] [1, *] [1, *][1, *] [1, *] [1, *] [1, *] [1, *][1, *]

Fig. 17 Pattern found by the beam search with a starting pattern for sign #14

In Fig. 17 we see the pattern found when using the starting pattern. The pat-
tern is fully connected, there is no block with only unconstrained predicates. Thus
the pattern describes the whole movement without any gaps, which is particularly
helpful in reconstructing the hand movement. The pattern requires that there is no
movement at the beginning (x/y-movement/o present). During blocks 3 and 4 the
template describes an upward move (present y-movement/+) followed by a com-
bined upward move to the right or left (present x-moveall/+ and y-movement/+). In
block seven the upward move stops because y-movement/o has to be present and
the movement in x-direction accelerates (as present x-moveall/++ appears). During
blocks 8-10, the hand movement in the x-direction decelerates and starts to move
downwards. In the last two blocks the x-movement disappears (as x-movement/o
present appears) and the downwards move gets slower as well. If we now take into
account that during the whole hand movement the speed of the hand is very high
and there are no abrupt change of directions because curve/o holds, we are able to
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interpret the pattern as a half circle movement. Another interesting aspect is that the
pattern does not state a concrete direction of the x-movement. This is due to the fact
that the sign could be drawn from right to left or from left to right.

Some hand movements appear easier to understand by inspecting the plots (e.g.
Fig. 11) rather than the obtained patterns (e.g. Fig. 17). But this is only true because
the underlying predicates have been extracted from two-dimensional hand move-
ments. In general the data source may consist of more dimensions, mixed binary
and numerical sensors, etc., such that no condensed representation as in Fig. 11 is
possible. We have chosen the libras data set to illustrate that the proposed history
templates actually help the user to grasp what is going on in the data.

5.2 Effect on Classification Performance

Having discussed the effect on the interpretability, we we now investigate the effect
on the classification results. The confusion matrices are shown in Fig. 18 (without
starting patterns) and Fig. 19 (with starting patterns).

class 1 2 3 4 5 6 7 8 9 10 11 13 14 15 cannot predict

1 3 1
2 5 1
3 4
4 3 2
5 2 3
6 1 4
7 1 4 1
8 3
9 8

10 10 3
11 5 3
13 4 4
14 5
15 5

Fig. 18 Confusion matrix for the learned
patterns without starting pattern with accu-
racy: 71.765% and error-rate: 28.235%

class 1 2 3 4 5 6 7 8 9 10 11 13 14 15 cannot predict

1 4
2 6
3 4
4 5
5 5
6 4 1
7 4 2
8 3
9 8

10 11 2
11 7 1
13 8
14 5
15 5

Fig. 19 Confusion matrix for the learned
patterns with starting pattern with accuracy:
92.941% and error-rate: 7.059%

We can see that accuracy improves by around 21 percent. One reason is the
greedy nature of the beam search. During the beam search only constraints that in-
crease the J-measure are added to the pattern, thus refinements which require multi-
ple steps to increase the measure are not found easily due to the myope of the search
algorithm. By providing the starting pattern, it is more likely that a critical constraint
can be placed right where it is needed, because the basic outline of the pattern is al-
ready present right from the beginning. As the intial pattern is constructed such that
it matches all histories of one class, the danger of overfitting is not increased despite
the high complexity of the pattern.

6 Conclusion

We have investigated the problem of deriving classification rules for temporal or
sequential data. The employed classifier operates by successively refining a given
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pattern to better distinguish between the classes. Instead of learning the patterns for
each class from scratch, we propose to derive a starting pattern, which consists of
those parts that are shared among all instances of the same class (a representative
for this class, which has not necessarily any discriminative power). The experimen-
tal evaluation has shown that this step not only improves the interpretability of the
obtained patterns, but also improves the classification results. Increasing the ex-
planatory power of the patterns [8] and reducing the complexity of searching the
starting pattern are topics to be addressed in future work.
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Comprehensiveness of Linguistic Data
Summaries: A Crucial Role of Protoforms

Janusz Kacprzyk and Sławomir Zadrożny

Abstract. We show first the essence of our approach to linguistic database sum-
maries, equated with linguistically quantified propositions in Zadeh’s sense and
mined through the use of a fuzzy querying interface to a database. We recast the
problem from the perspective of comprehensiveness of patterns derived by linguis-
tic data summaries. Motivated by Michalski’s [21] seminal approach to the compre-
hensiveness of data mining and machine learning results in which he advocates the
use of natural language, we advocate the use of linguistic summaries which provide
a new quality and an exceptional human consistency and comprehensiveness. We
illustrate our analysis by two examples related to the linguistic summarization of
both static and dynamic data in the area of analysis of innovativeness of companies
and of Web server log files.

1 Introduction

The purpose of this paper is to briefly touch upon an important and interesting issue
of comprehensiveness (or comprehensibility) of data mining, or – more generally –
data analysis and even knowledge discovery. The perspective adopted will however
be very specific, much less general than, for instance, some other works on the
comprehensibility of data mining exemplified by Zhou [32], Pryke and Beale [22],
Fish, Gruber and Sick [4], etc.

While speaking about quality criteria for data mining or knowledge discovery
tools and techniques, we usually mention that they should provide: (1) novelty, (2)
correctness, (3) generality, (4) usefulness, and (5) comprehensiveness; clearly, some
authors add some other criteria.
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In this paper we will be concerned about some aspects of comprehensiveness
which is basically meant as that for the user, who is almost always not a data min-
ing expert, the patterns produced as a result of data mining should be clear and
understandable. To be more specific, with any data mining algorithm we usually
associate, explicitly or implicitly, some more or less formal representations for the
patterns it is meant to produce (mine). It is therefore clear that to be usable and
implementable, the data mining algorithm should produce patterns whose represen-
tations are comprehensible, that is, the algorithm should encode the patterns derived
in a form understandable to the human user.

The problem of comprehensiveness of data analysis, data mining, machine learn-
ing, etc. results (patterns) had been known for some time, and it had been presum-
ably Michalski who already in 1982 devised the so called postulate of comprehen-
sibility whose essence can be summarized as (cf. Michalski [21]): “. . . The results
of computer induction should be symbolic descriptions of given entities, semanti-
cally and structurally similar to those a human expert might produce observing the
same entities. Components of these descriptions should be comprehensible as sin-
gle “chunks” of information, directly interpretable in natural language, and should
relate quantitative and qualitative concepts in an integrated fashion . . . ”.

Michalski’s statement, and – more generally – his vision, has had a great impact
on machine learning, data mining, etc. research, and has also played an extremely
important role by triggering our research summarized in this short paper as it will
be discussed later.

Later, many people have further extended Michalski’s idea of comprehensive-
ness, and just to give some more relevant example, we can cite Craven and Shav-
lik [3] who stated as the main reasons for the importance of comprehensiveness of
machine learning algorithms: (1) To be confident in the performance and usefulness
of the algorithms, and hence to be willing to use them, the users have to understand
how the result is obtained and what it says, (2) By assumption, the results to be
produced by a data mining (machine learning, etc.) algorithm should be novel and
unexpected, in one sense or another, and these results can only be accessible to the
human if they are understandable, (3) It is usually assumed that the mining patterns
may imply some action to be taken, and in such a case their comprehensiveness is
clearly crucial, (4) The patterns mined may provide much insight into a possibility
of devising a better feature representation, and their comprehensiveness is again cru-
cial, (5) Data mining algorithms can be employed for refining knowledge (theories)
about a domain or field in question, and it is crucial to be able to express changes
indicated as a result of data mining.

Therefore, it is obvious that data mining tools and techniques of a good com-
prehensibility are extremely desirable, if not crucial. Unfortunately, most of them
are not very comprehensible per se and some additional mechanisms, sometimes
trickeries, should be used to enhance their comprehensibility.

In this paper we will follow the above line of reasoning but assume some partic-
ular perspective which has been advocated and indicated in the excerpt of Michal-
ski’s paper already mentioned above which will be repeated below for convenience:
“. . . The results of computer induction should be symbolic descriptions of given
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entities, semantically and structurally similar to those a human expert might pro-
duce observing the same entities. Components of these descriptions should be
comprehensible as single “chunks” of information, directly interpretable in natu-
ral language, and should relate quantitative and qualitative concepts in an integrated
fashion . . . ”. It can be readily seen that he makes a direct relation to natural language
the use of which he indicates as a prerequisite for the comprehensibility. This is in
line with our philosophy which is based on the obvious fact that natural language
is the only fully natural way of articulation and communication of the human being
and should therefore be employed, explicitly or implicitly, in data mining tools and
techniques, requirements’ specifications, and finally patterns (results) obtained.

In our particular case, this boils down to the use of linguistic data summaries
which for years have been our field of interest, both in the sense of theory and
real world applications. They are meant to summarize the very meaning of a (usu-
ally huge) set of (numeric, in our case) data via a simple and short statement(s) in
(quasi)natural language, exemplified by “most young and highly qualified people
earn salaries” in the case of a personnel database. It is clear that the need for sum-
marization is due to abundance of data that is beyond human cognition and compre-
hension, and that for a human being the only fully natural means of communication
is natural language. We will consider the linguistic data(base) summaries introduced
by Yager [24], then advanced by Kacprzyk and Yager [7], and Kacprzyk, Yager and
Zadrożny [18], and implemented in Kacprzyk and Zadrożny [10, 13, 14, 15]. They
are assumed to be linguistically quantified propositions.

Even if conceptually the linguistic data summaries are simple and intuitively ap-
pealing (perfectly comprehensible!), their derivation (mining) is difficult due to very
many possible forms, linguistic terms and expressions, etc. And, a fortiori, an au-
tomatic expression of the real human interest and intention with respect to a lin-
guistic summary is questionable. We adopt our general approach (cf. Kacprzyk and
Zadrożny [10, 12]) of an interactive approach via the use of our FQUERY for Ac-
cess, a fuzzy querying add-on (see Kacprzyk and Zadrożny’s [9, 8, 11] and also
Zadrożny et al. [31]).

In this respect, we show that by relating various types of linguistic summaries to
fuzzy queries, with various known and sought elements, we end up with a hierarchy
of Zadeh’s [28] protoforms of linguistic data summaries. We discuss the power of
protoforms, and indicate ways of an automatic generation of linguistic summaries for
various protoforms. We mention a possible use of association rule mining. We will
discuss this but now from the novel point of view of comprehensiveness. Moreover, we
will give some examples of comprehensible protoforms to users in various domains.

2 Linguistic Data Summaries: An Approach Based on Fuzzy
Logic with Linguistic Quantifiers

In our works we have been using the basic Yager’s [24] approach, through its con-
structive form by Kacprzyk and Yager [7], and Kacprzyk, Yager and Zadrożny [18],
and implemented in Kacprzyk and Zadrożny [10, 11, 14], in which we have: (1) V ,
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a quality (attribute) of interest, e.g., salary in a database of workers, (2) a set of ob-
jects (records) yi that manifest quality V , e.g., the set of workers; hence V (yi) are
values of quality V for objects yi, and (3) Y = {V(y1), . . . ,V (ym)} is a set of m pieces
of data (the “database” in question).

A linguistic summary of a data set consists of:

• a summarizer S, i.e., a fuzzy predicate describing a property, simple or com-
pound, of the objects that may be of interest to the user and is possibly shared
by a reasonable quantity (cf. description of Q below) of objects (e.g., “young”,
extendable to “young and well paid”, etc.),

• a qualifier K, i.e., another fuzzy predicate describing a range of objects to which
the summarizer applies (e.g., “young”, extendable to “young and well paid”,
etc.); effectively it turns the set Y which a summary is to summarize into its
fuzzy subset K (e.g., a summary thanks to a qualifier “young” may describe a
property (expressed by the summarizer) shared by, e.g., a majority of “young
employees” instead of the employees in general; if K = Y (identifying a pred-
icate with its extension) then the qualifier is omitted in the specification of the
linguistic summary,

• a quantity in agreement Q given as a fuzzy linguistic quantifier (e.g., most),
which expresses how many objects from among those satisfying a qualifier K
share a property expressed by a summarizer S,

• truth degree T — e.g., 0.7, meant as a truth of a linguistically quantified proposi-
tion Qy∈Y (K(y),S(y)) as, e.g., “T (most young employees are well-paid) = 0.7”.

The truth degree is equated with the truth value (from [0,1]) of a linguistically quan-
tified statement which may be done by using Zadeh’s [27] calculus of linguistically
quantified propositions (cf. Zadeh and Kacprzyk [29]), and this will be used here,
too; cf. also Yager’s [25] OWA operators (cf. also Yager and Kacprzyk [26]).

By using Zadeh’s calculus of linguistically quantified propositions we can calcu-
late the truth value of the propositions:

Qy∈Y S(y) (e.g., “Most elements of Y possess property S”) (1)

or, more generally,

Qy∈Y (K(y) ,S(y)) (e.g., “Most elements of Y with property K (2)
possess also property S”)

using the following formulas, respectively:

truth(QS(y)) = μQ(
∑Count(S)

∑Count(Y )
) = μQ(

1
m

m

∑
i=1

μS(yi)) (3)

truth(Q(K(y),S(y))) =

= μQ(
∑Count(S∩K)

∑Count(K)
) = μQ(

∑m
i=1(μS(yi)∧μk(yi))

∑m
i=1 μK(yi)

) (4)

where m = card(Y ), ∑Count(A) = ∑yi∈Y μA(yi), ∑m
i=1 μk(yi) �= 0, and ∧ is a t-norm.
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The basic validity criterion, i.e., the truth degree T , given by (3) or (4) is the most
important and widely employed. One of the reasons is its high comprehensiveness
because virtually all users, even novice, can comprehend what truth means, and the
fact that a linguistic summary to be acceptable and meaningful should have a high
truth degree. It is, however, easy to see that the truth degree alone is too weak to be
a criterion for the goodness of a linguistic summary, and hence some other quality
(validity) criteria have been proposed by, e.g., Yager’s [24] measure of informative-
ness, and then five additional measures proposed by Kacprzyk and Yager [7] and
Kacprzyk, Yager and Zadrożny [18]: truth, degrees of imprecision, covering and ap-
propriateness, and a length of a summary. For even more measures, see Kacprzyk,
Wilbik and Zadrożny [19, 20]. Unfortunately, though all those measures do capture
very well, much better than the truth degree alone, how good a linguistic summary
is, the comprehensiveness of some of them to an average user may be questionable.
Among them, the length of a summary which basically boils down to the complex-
ity of the summarizer and qualifier, is surely closely positively correlated with the
intuitively understood comprehensibility.

The very advantage of the linguistic summaries with respect to their comprehen-
sibility is, as advocated earlier, their use of the linguistic terms. It is especially true
if the linguistic terms used to compose summaries have a clear meaning to the user.
This may be achieved when a dictionary of such terms is used by the user also for
some other purposes, securing the clarification of their semantics, and what is even
more important, allowing for a convenient tuning of their meaning in the frame-
work of the representation assumed (here: using fuzzy logic). In particular, such
a synergestic effect may be obtained when a linguistic summaries mining tool is
combined with a fuzzy flexible querying interface what will be exemplified in what
follows.

The real problem is clearly how to generate the best summary (or summaries). An
exhaustive search can obviously be computationally prohibitive, and some implicit
enumeration type schemes should be used. We will discuss this in some detail in the
next section.

3 Mining Linguistic Data Summaries through Fuzzy Querying:
A Protoform Based Analysis

Obviously, it is very difficult to automatically detect what (in the sense of a linguistic
summary) is interesting, intended, useful, etc. to the user. In Kacprzyk and Zadrożny
[12] we proposed a natural solution, that is, an interactive approach for the definition
of elements of an intended linguistic summary via a user interface of a fuzzy query-
ing add-on. The roots are our previous papers on the use of fuzzy logic in querying
numerical databases (cf. Kacprzyk and Ziółkowski [16], Kacprzyk, Zadrożny and
Ziółkowski [17]) by using imprecisely specified requests which led to our FQUERY
for Access, an add-in to Microsoft Access R© that makes it possible to use fuzzy
linguistic terms in database queries such as numerical fuzzy values, exemplified by
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QKYs are S

QKYs are earning Svalue salary

QKYs are earning low salary

Q young Ys are S
������

������

Fig. 1 An example of a part of a hierarchy of protoforms

low in “profitability is low”, fuzzy relations, exemplified by much greater than in
“income is much greater than spending”, and linguistic quantifiers, exemplified by
most in “most conditions have to be met”. These fuzzy linguistic terms are building
blocks of fuzzy queries and are represented as fuzzy sets.

In the context of linguistic summaries equated with linguistically quantified
propositions, of a particular importance are linguistic quantifiers which provide for
a more flexible aggregation of simple conditions in fuzzy queries, exemplified by,
instead of requiring that all simple conditions are met, one may indicate that most
of them are to be met.

The definition, processing and storage of the above mentioned linguistic terms
was implemented in our FQUERY for Access package (cf. Kacprzyk and Zadrożny
[9, 8, 11]).

It is easy to see that fuzzy queries (with linguistic quantifiers) directly correspond
to linguistic summaries in the sense assumed here. Thus, a linguistic summary may
be derived as follows: (1) the user formulates a set of linguistic summaries of interest
(relevance) using the fuzzy querying add-on, (2) the system retrieves records from
the database and calculates the validity of each summary in question, and (3) a most
appropriate linguistic summary is chosen.

Obviously, to make this derivation process effective and efficient, operationally,
some standardized forms of linguistic summaries would be desirable, and this is pro-
vided by Zadeh’s protoform viewed as an abstract prototype of a linguistic summary
given by Eq. (1) or Eq. (2).

Technically, for the generation of linguistic summaries it is convenient to consider
the summarizer (and the qualifier) as an abstract fuzzy logic statement “X IS A”,
where X is a placeholder for an attribute of objects in Y and A is a placeholder
for a fuzzy set (linguistic term) determining its value as, e.g., “age IS young” or
“salary IS A”. The former summarizer is fully instantiated, while the latter still has
an abstract attribute value (A).

The protoforms (in Zadeh’s sense) may obviously form a hierarchy, and hence
we can define lower level (less abstract) protoforms, for instance replacing Q by a
specific linguistic quantifier, “most”, and we get: “Most Y s are S” for (1) and “Most
KY s are S” for (2). Zadeh’s protoforms may conveniently be used as a fundamen-
tal element of the user interface in that the user selects a protoform of a linguistic
summary from that hierarchy and then the system instantiates the selected proto-
form in all possible ways, replacing abstract symbols by chosen fuzzy values and
linguistic quantifiers stored in a dictionary. A part of such a hierarchy of protoforms
is shown in Figure 1. At the top we have a completely abstract protoform; in a
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Table 1 A taxonomy of linguistic summaries

Type Given Sought Remarks

1 S Q Simple summaries through ad-hoc queries

2 S K Q Conditional summaries through ad-hoc queries

3 Q Sstructure Svalue Simple value oriented summaries

4 Q Sstructure B Svalue Conditional value oriented summaries

5 Nothing S K Q General fuzzy rules

protoform to the right, the qualifier K is instantiated to “age IS young”; in the one to
the left, summarizer S is first instantiated to “salary IS Svalue”, i.e., the attribute of the
summarizer is selected to be “salary” but its value is not determined; then this proto-
form is further instantiated to fully specify the summarizer using “low” as the value
of “salary”. Notice that by relating the linguistic summaries to the protoforms we
maintain a high degree of comprehensiveness because we operate within the same
structure of the protoform (linguistic summary) and just instantiate or generalize a
particular element of the summary. The user is therefore not forced to leave his/her
“safe” area of expertise, in the sense of a proper type of protoform of a linguistic
summary that is comprehensible in a particular domain; this will be clearer later on
when we will quote some examples of what may a proper protoform of a linguistic
summary in some chosen domains.

Therefore, the more abstract forms of protoforms correspond to cases in which
we assume less about the summaries to be mined. At the one extreme, we (1) assume
a totally abstract (top) protoform, or (2) assume that all elements of a protoform are
given, i.e., all attributes and all linguistic terms expressing their values are fixed.
In the former case data summarization by a “brute force” full search would be ex-
tremely time-consuming, but might produce interesting, unexpected patterns, and in
the latter case the user guesses in fact a good candidate summary but the evaluation
is simple, related to ad hoc queries.

This classification is shown in Table 1 in which 5 basic types of linguistic sum-
maries are shown, corresponding to protoforms of a more and more abstract form;
Sstructure denotes that attributes and their connection in a summary are known, while
Svalue denotes the values of the attributes sought.

A Type 1 summary may be easily derived by a simple extension of fuzzy query-
ing. The user has to construct a query, i.e. a candidate summary, and it has to be
determined what is the fraction of rows matching this query and what linguistic
quantifier best denotes this fraction. A Type 2 summary is a straightforward exten-
sion of Type 1. A Type 3 summary requires much more effort as it boils down to the
determination of typical or exceptional, depending on the quantifier, values of an
attribute. A Type 4 summary is meant to find typical (exceptional) values for some,
possibly fuzzy, subsets of rows. A Type 5 summary represent the most general form
considered here: fuzzy rules describing dependencies between specific values of
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particular attributes. Type 1 and Type 3 summaries have been implemented as an
extension to Kacprzyk and Zadrożny’s [10] FQUERY for Access.

Two approaches to Type 5 summaries generation have been proposed. First, a
subset of such summaries may be obtained by analogy with association rules con-
cept and employing their efficient algorithms (cf. Borgelt and Kruse [2]). Second,
genetic algorithms may be used to search the space of summaries (cf. George and
Srikant [5], Kacprzyk and Strykowski [6]).

4 Remarks on Some Implementations

In this section we will briefly show for illustration some linguistic summaries de-
rived in various domains for various purposes: linguistic summarization of corporate
innovation data and linguistic summarization of Web server logs. Basically, the first
example concerns static data, and the second is mainly concerned with static data
but extends the analysis to dynamic data. As we will see, various protoforms are
employed in those examples but, in general, they are highly comprehensible and
can be well understood by domain experts.

4.1 Linguistic Summaries of Data on the Innovativeness of
Companies

In the first example the purpose was to develop a human consistent, linguistic
summarization based tool for the analysis of data related to the innovativeness of
Polish companies (cf. Baczko, Kacprzyk and Zadrożny [1]). The values
of each attribute were described by three linguistic terms: low, medium and high.
The definition of linguistic terms was supported by FQUERY for Access. The
linguistic quantifier “most” was used in the generated summaries. The set of
transformed data was processed by AprioriTID in Borgelt’s implementation (cf.
http://www.borgelt.net/apriori.html).

We obtained a lot of very interesting linguistic summaries exemplified by:

“Most companies having high net revenues from sales and equivalent in 2004 had high
total assets in 2004”

“Most of the companies having at least a few points (scores) for their RTD related
activities in 2006 had also some points for that in 2005”

“Most companies having some points related to patents registered in 2006 AND some
points for their RTD related activities in 2005 had also some points for RTD related
activities in 2006”

Thus, in general, companies being active in the RTD field in 2005 did not necessarily
continue to do so in 2006. However, those with some patents in 2006 usually also
had RTD related activities in 2006.

Notice that the very structure of the linguistic summaries, i.e. their underlying
protoforms, have an extremely high degree of comprehensibility for the domain
experts specializing in innovations, economics, etc.

http://www.borgelt.net/apriori.html
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4.2 Linguistic Summaries of Web Server Logs

A Web server log file may be directly interpreted as a table of data with the columns
corresponding to the fields listed in Table 2 and the rows corresponding to the re-
quests. On the other hand, the content of a log file may be naturally viewed as a
time series type of data as each request is time stamped; such type of data reflects an
inherent dynamics. In this section we will discuss various linguistic summaries that
may be derived using that type of data as proposed by Zadrożny and Kacprzyk [30].

Table 2 Content of the web server log file

Field no. Content

1 the requesting computer name or IP address

2 the username of the user triggering the request

3 the user authentication data

4 the date and time of the request

5 the HTTP command related to the request which
includes the path to the requested file

6 the status of the request

7 the number of bytes transferred as a result of the request

8 the software used to issue the request

The fourth field (cf. Table 2), i.e. a timestamp that is accompanying each recorded
request, plays a special role as it may be used to form summaries like: “Most of large
files requests take place on Thursdays”. Here the time (instant) is treated as any other
nominal attribute. Such summaries will be referred to as static as they concern time
(Thursday) but in a static sense.

On the other hand the time series perspective of the data may imply the following
summary: “Recently, most of decreasing trends are very short”. We will refer to such
summaries as dynamic as they concern time but in a dynamic sense taking explicitly
into account what has been happening over some time period, here recently. In the
following subsections we study both types of linguistic summaries in a more detail.

Static Summaries

We denote by Y the set of all analyzed requests to a Web server, and we describe
a request by the attributes given in Table 3 which directly correspond to the fields
listed in Table 2 or are extracted from them. Obviously, the extraction of other at-
tributes is possible and may lead to interesting summaries, too, but this will not be
discussed here.

We can distinguish simple summaries, where the qualifier R is absent. These may
be exemplified by:
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Table 3 Attributes of the requests used for their linguistic summarization

Attribute name Description

domain Internet domain extracted from the requesting computer name (if
given)

hour an hour the request arrived; extracted from the date and time of the
request

day of the month as above

day of the week as above

month as above

filename the name of the requested file, including the full path, extracted from
the HTTP command

extension the extension of the requested file extracted as above

status the status of the request

failure =1 if status code is of 4xx or 5xx form and =0 otherwise

success =1 if status code is of 2xx form and =0 otherwise

size the number of bytes transferred as a result of the request

agent the name of the browser used to issue the request (name for major
browsers, ”other” otherwise)

Most of the requests come from the Opera browser

or

Almost all requested files are small

Here “most” and “almost all” are linguistic quantifiers and the summarizers are
“browser is Opera” and “size is small”, respectively. These are fairly simple sum-
maries which may be deduced while looking at an appropriate tabular or graphical
report produced by a popular Web log analysis software. This is particularly true in
the first case.

The use of a linguistic term (“small”) in the second of these summaries is relevant
from our point of view. Assuming that the linguistic terms are calibrated according
to the particular reporting needs, the use of such summaries provides for a highly
compressed, easily comprehensible presentation of some features of the Web server
access data.

More interesting may be extended summaries, exemplified by:

Almost all failures concern files with an extension “ppt”

or

Most of the requests concerning large files happen in the evening
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Here “most” and “almost all” are the linguistic quantifiers, the summarizers are
“extension is ‘ppt”’ and “hour is in the evening”, respectively, and the qualifiers are
“failure is 1” and “size is large”. The first summary may indicate that the main-
tenance of the archive of the Powerpoint presentations should be carried out more
carefully. The second may suggest that the large reports that the company makes
available at its Web server should be updated, if possible, in the afternoon rather
than in the morning to provide useful and timely information.

Dynamic Summaries

In a series of our previous papers, which culminated in Kacprzyk, Wilbik and
Zadrożny [19, 20], and Wilbik and Kacprzyk [23], we proposed to apply linguis-
tic summaries to time series data. The linguistic summaries are used to describe in a
human consistent way how trends concerning a selected numerical attribute evolve
over time, how long some types of behavior last, how rapid changes are, etc.

We deal with a numerical attribute such as the size of the requested files or the
number of the requests. These are aggregated over a uniformly spaced time mo-
ments, e.g., hours or days. Then the (partial) trends in such a data are identified as
linear segments in a piecewise linear approximation of a time function obtained.
Such an approximation may be obtained using various methods. These are clearly
partial trends as a global trend in a time series concerns the entire time span of the
time series, and there also may be trends that concern parts of the entire time span,
but more than a particular window taken into account while extracting partial trends
by using the Sklansky and Gonzalez algorithm.

Table 4 Attributes derived for the purposes of dynamic linguistic summaries

Name Linguistic terms

dynamics of change decreasing, slowly increasing,. . .

duration long, short,. . .

variability high, small,. . .

The dynamics of change, meant here as the speed of changes, is expressed by the
slope (angle) of a line segment. In the linguistic summaries the following linguistic
terms are used in reference to this attribute: “quickly decreasing”, “decreasing”,
“slowly decreasing”, “constant”, “slowly increasing”, “increasing” and “quickly
increasing”.

In fact, each term represents a fuzzy granule of directions. The user may define a
membership functions of particular linguistic terms depending on his or her needs.

Duration corresponds to the length in time units of a single trend. In the sum-
maries it is described by linguistic terms exemplified by “long”, “short” etc.

Variability is here a measure of how “spread out” are actual data points around
approximating them line segment.
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Again this attribute is treated as a linguistic variable and expressed using linguis-
tic values (labels) such as “high”, “low”, etc.

Basically, in case of dynamic summaries we have distinguished simple and ex-
tended forms of them, as previously depending on the absence or presence of a
qualifier. Moreover, we have introduced another classification of dynamic sum-
maries into the frequency based and duration based. The former class comprises
those summaries which describe the partial trends using just their attributes listed
in Table 4. Summaries of the latter class explicitly exploit the existence of the time
scale (duration) inherent in the data set. The examples of those summaries are given
below.

Let us start with a simple frequency based summaries exemplified by

Most of the trends concerning the number of requests are decreasing

Thus here we assume that the entity which is measured over time is the number
of requests. “Most” is the linguistic quantifier and decreasing for the “dynamics of
change” is the summarizer. Let us assume that the access data are aggregated day by
day and the log file covers several months. Then such a summary indicates a steady
decline in the number of requests served by the Web server. Still the fact that such
a summary is true does not exclude the possibility that there are a few increasing
trends that are quite long, due to the existence of the “most” quantifier.

Even stronger an indication of a request rate decline is provided by the following
simple duration based summary:

Trends concerning the number of requests that took most time are slowly increasing

Here, again, some increasing trends are not excluded but they are short in terms of
the total time they last altogether. Here, again,“most” is a linguistic quantifier but
this time referring to the time covered by the trends rather than to their number. The
summarizer is “dynamics of change is slowly increasing”.

The extended frequency based summaries may be exemplified by:

Most of increasing trends concerning the number of requests are of high variability

This indicates that if there is a growth of the requests rate, then usually the number of
requests fluctuates seriously. The linguistic quantifier, summarizer and qualifier are
“most”, “variability is high” and “dynamics of change is increasing”, respectively.

Finally, we may consider the extended duration based summaries exemplified by:

Increasing trends concerning the total size of requested files, that took most of the
time, are very long

and this summary states that among increasing trends concerning the total size of
requested files, the predominant ones, i.e., taking most of the time, are those which
are very short.

It can be evidently seen that the linguistic summaries obtained do provide much
highly valuable information, for both the maintenance, design and improvement
of the Web servers. Moreover, the form of the linguistic summaries is extremely
comprehensible to the human user, too. And, again, the use of various protoforms,
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which lead to various summaries, is of utmost importance as it makes it possible to
emphasize elements of relevance.

5 Concluding Remarks

We have presented the essence of our approach to linguistic database summaries,
equated with linguistically quantified propositions in Zadeh’s sense and mined
through the use of a fuzzy querying interface to a database. We have recasted the
problem from the perspective of comprehensiveness of patterns derived by linguistic
data summaries. The use of natural language, which was advocated by Michalski [21]
in his seminal approach to the comprehensiveness of data mining and machine learn-
ing results, has provided a new quality and an exceptional human consistency and
comprehensiveness. We have illustrated our analysis by two examples related to the
linguistic summarization of both static and dynamic data in the area of analysis of
innovativeness of companies and of Web server log files.
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[8] Kacprzyk, J., Zadrożny, S.: FQUERY for Access: Fuzzy querying for a Windows-based
DBMS. In: Bosc, P., Kacprzyk, J. (eds.) Fuzziness in Database Management Systems,
pp. 415–433. Physica-Verlag, Heidelberg (1995)
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Listening to the Voice of the Customers:
An Early Warning System Based on Sentiment

Carsten Lanquillon

Abstract. In a global economy, enterprises have to intelligently analyze their data
asset in order to stay competitive. With the advent of the Web 2.0, there is a wealth
of user generated content which contains valuable information on what customers
think about available products and services: the voice of the customers is readily
accessible. Listing to and understanding these data can reveal valuable customer
insights especially for product quality assessment, improvement and innovation as
well as marketing. This report focuses on the use of state-of-the-art text mining
techniques for identifying and monitoring the sentiment of customer feedback on
Web 2.0 channels over time such as to alert enterprise users to significant increases
in negative sentiment as an early indicator of inferior or degrading product quality.

1 Introduction

With the advent of the Web 2.0 and mobile technologies, social media have become
an integral part of our society. Social media platforms such as blogs, microblogging,
discussion forums, review sites and social networks are used to easily create and
share the so-called user generated content [11].

Whether or not an enterprise has decided to use social media channels as a part
of its communication strategy, existing and potential customers are likely to share
the experience they made with the enterprise’s products or services. Obviously, they
did so even before social media platforms became popular. However, while at that
time information was shared rather locally among personal contacts, information
can now be shared quickly and globally. Hence, the reach of the word of mouth
communication is drastically enlarged. Social media platforms have become the
most influential source of information prior to buying.

Carsten Lanquillon
Heilbronn University, 74081 Heilbronn, Germany
e-mail: carsten.lanquillon@hs-heilbronn.de

C. Moewes et al. (Eds.): Computational Intelligence in Intelligent Data Analysis, SCI 445, pp. 223–235.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

carsten.lanquillon@hs-heilbronn.de


224 C. Lanquillon

By listening to and understanding the voice of their customers, enterprises have
the possibility to efficiently gain immediate costumer insights which can be used in
particular for market research, product improvement and innovation, product quality
assessment as well as marketing. As such it is part of an emerging discipline referred
to as social media analytics which attracts researchers and practitioners alike. This
report focuses on state-of-the-art text mining techniques for identifying and mon-
itoring the sentiment orientation of customer feedback on Web 2.0 channels over
time such as to alert enterprise users to significant increases in negative sentiment
orientation as an early indicator of inferior or degrading product quality.

At the core of social media analytics is the field known as opinion mining or sen-
timent analysis. The following section introduces this field and sets out the relevant
tasks for this report. Subsequently, state-of-the-art text mining techniques tailored
for sentiment analysis are presented. Then, the architecture of the early warning
system together with its core components is described with a focus on monitoring
sentiment orientation over time. The conclusion provides a brief discussion on the
solutions presented and gives prospects for future research.

2 Opinion Mining and Sentiment Analysis

Liu and Zhang [19] define sentiment analysis or opinion mining as “the computa-
tional study of people’s opinions, appraisals, attitudes and emotions toward entities,
individuals, topics and their attributes expressed.” As pointed out in the previous
section, opinions play a key role in our everyday life in general and in particular in
decision making for both individuals (private consumers) and organizations (busi-
ness). Currently, the dominant source of opinions in user generated content is still
textual data which is also the focus of this report. In the past decade, sentiment anal-
ysis has been studied extensively. The following generic definition of the underlying
tasks enables a precise classification of the envisioned application’s components.

The general goal of opinion mining or sentiment analysis is to turn unstruc-
tured or semi-structured text collections into structured data, which is subsequently
amenable to further qualitative and quantitative analysis and visualization. In this
context, an opinion can be defined as a quintuple (t,h,e,a,s), where

• t is the time when the opinion was expressed,
• h is the opinion holder,
• e is a target entity,
• a is an aspect (feature) of the entity e, and
• s = s(t,h,e,a) is the supposedly unique sentiment orientation (polarity) of the

opinion on aspect a of entity e expressed by opinion holder h at time t [18].

These elements are considered essential for characterizing an opinion [18]. Yet, note
that further elements may be helpful or required for specific applications such as
location information, attributes characterizing the opinion holder, or the usefulness
of an opinion which is often available especially in the domain of review sites.
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Based on this definition, the general objective of opinion mining can formally
be phrased as the discovery of all opinion-quintuples from a set of documents and
naturally be split into five subtasks:

• Date and time extraction
• Opinion holder extraction
• Entity identification
• Aspect identification
• Sentiment orientation (polarity) detection

Eventually, the five elements are combined to construct an opinion-quintuple. While
all tasks can already be very challenging on their own, it is also not trivial to ensure
that the elements within extracted opinion tuples genuinely belong together [18].

The detection of the sentiment orientation is key to all sentiment analyses. In
fact, many research efforts focus solely on this subtask. Depending on the task or
application at hand, the remaining four elements may not be relevant or not even
applicable. For example, in many applications the opinion holder need not be iden-
tified or may conveniently be assumed to be the only author of a document. The
time when an opinion was expressed is mandatory for applications that visualize or
monitor opinions over time. Lastly, the applicability of the entity and aspect strongly
depends on the localization of sentiment within a document:

Document-level sentiment: The primary task is to determine the sentiment ori-
entation of an entire document while ignoring the remaining opinion elements.
This may be helpful when the task is to extract a total (summary) sentiment of a
document. Yet, most documents except for very small documents such as tweets
typically contain more than one opinion of often diverse polarity. Nevertheless,
much research has been devoted to this level of sentiment analysis.

Sentence or clause-level sentiment: This perspective comes closer to individual
opinions with regard to a certain entity and aspect. And for reasons of simplicity
it is often assumed that a sentence contains a single opinion from an individual
opinion holder. Obviously, a sentence may contain sentiment polarity on several
entities and aspects as illustrated by the simple sentence “The car is great, but
the gas consumption is way too high.” Looking at clauses rather than sentences
may ease but not completely solve this problem. Yet, it resembles a sound com-
promise between the coarse-grained document-level and the fine-grained entity
and aspect-level of sentiment analysis. In addition to polarity detection, opin-
ion topics might be extracted as specific entity-aspect-combinations from each
opinionated sentence or clause. Often, data selection prior to opinion mining is
parameterized such that only documents relevant for a selected entity are ana-
lyzed. In this case, the extracted topics correspond to the aspect element.

Entity and aspect-level sentiment: Detecting each single opinion with its elements
as defined above is the most precise but also most difficult endeavor. All entities
with their relevant aspects in combination with the corresponding sentiment ori-
entations have to be determined within a document. Often it is assumed that all
opinions within a document are from the same opinion holder but obviously this
need not be true.
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Fig. 1 The text preprocessing process transforms documents into sentence-based term
vectors

In the following we focus on sentence-level sentiment analysis for documents
which are gathered for an entity of choice. Further, we assume that the task of ex-
tracting the author (opinion holder) as well as the date and time when the opinion
(document) was expressed are solved for the selected sources. Thus, the subtasks
to be solved and discussed below by means of text mining technologies are topic
identification and sentiment orientation detection within individual sentences.

3 Text Mining Technologies for Sentiment Analysis

This section describes the core text mining technologies for sentiment orientation
detection which will be treated as a text classification task and topic identification
by means of text clustering. General issues regarding text preprocessing and repre-
sentation are relevant for both tasks and covered first. In the following we assume
that a collection of plain text documents relevant for a specific entity of choice has
been gathered. Furthermore, we do not cover the issue of multi-language processing
and assume that the text collection contains documents in English only.

3.1 Text Preprocessing and Representation

Before any text mining on a collection of documents can take place, the documents
need to preprocessed and transformed into a format that is suitable for analysis such
as term vectors. Moreover, adequately designing the text preprocessing process is
a crucial factor with regard to the quality of text mining results. Fig. 1 shows the
most important steps involved in the text preprocessing process. Some of the steps
may require deeper knowledge of natural language processing techniques which are
beyond the scope of this report.

Sentence and word tokenization, text normalization, stop-word removal, word
stemming, and frequency filtering are carried out in a typical manner [14]. Steps
with less common or task-specific aspects are highlighted in Fig. 1 and motivated as
follows.

Co-reference resolution: Our objective is a sentence-level sentiment analysis.
This requires sentence tokenization which will take sentences out of their context
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so that references between sentences will be broken. Co-reference resolution is
a remedy to this problem as it attempts to replace each of possibly several terms
which all reference the same entity by only one defined term [26]. For example,
“Martin Winterkorn is the CEO of Volkswagen AG. He succeeded Bernd Pischet-
srieder as CEO of Volkswagen AG in 2007” should be transformed into “Martin
Winterkorn is the CEO of Volkswagen AG. Martin Winterkorn succeeded Bernd
Pischetsrieder as CEO of Volkswagen AG in 2007” such that each sentence is
more comprehensible in isolation.

Spelling correction: Contrary to many other text mining tasks, documents ob-
tained from social media are likely to contain many spelling errors. These may
hinder the following steps from producing results of acceptable quality. Thus,
spelling errors should be automatically corrected if possible [5].

Part-of-speech tagging: A part-of-speech tagger assigns word class information
to each word such as a word being a noun, verb, adjective or adverb. Here, this
information may be utilized for task specific feature selection. In particular, sen-
timent orientation detection may rely rather on adjectives and adverbs whereas
nouns and adverbs may be more relevant for opinion topic identification.

Term vector generation: This step aims at transforming the sequence of words
(terms) from a specific unit of text into a term vector. Note that the general ter-
minology typically refers to these basic units of text as documents. Yet, here the
units of text are actually sentences or clauses of documents. A very common
way of representing text is the bag-of-words approach based on word-unigrams.
This approach does not take into account the order in which words occur within
a document, i.e., here, within a sentence. Instead, the number of occurrences of
each term in each sentence is counted which leads to the so-called term frequen-
cies (tf). More sophisticated approaches might construct terms based on small
sequences of words (word n-grams) e.g. to capture multi-word expressions such
as “social media monitoring”. Although the context of words is intuitively rele-
vant, in many applications and domains, often there is no or only little improve-
ment with regard to the quality of text mining results when using multi-word
terms instead of unigram terms [25]. In part, this is due to limited text resources
as opposed to the rapidly growing dimensionality which comes along with more
complex term definitions. Therefore, we will use the plain unigram bag-of-words
approach. Each sentence is represented by a vector of absolute term frequencies
where each position in the vector corresponds to a specific term which is element
of a particularly selected term set also referred to as the vocabulary V . Depend-
ing on the subsequent text mining task, the term frequencies might be further
processed. Common choices are using simple binary term presence in a sentence
rather than the absolute frequencies or using weighted frequencies, e.g. through
multiplication with the so-called inverse document frequency (idf). This inverse
frequency is based on the number of “documents” (i.e., here, sentences) in which
a term occurs and takes into account that terms have more discriminating power
when they occur only in a (small) subset of the “document” collection [27].
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3.2 Sentiment Orientation Detection

An intuitive approach to sentiment orientation detection is to treat it as a standard
(topic-based) text classification task with either two classes (positive and negative
polarity) or three classes by adding a supplemental neutral class for no or mixed
polarity. In practice, support vector machines [10], Naive Bayes classifiers [16, 20]
and linear threshold models [23] are frequently applied to topic-based text classi-
fication and reported to perform very well. Yet, experiments in sentiment analysis
show that sentiment classification is much harder than topic classification [25].

Why is it more difficult to classify sentiment? Topic-related documents typi-
cally contain more topic-specific terms which allow for reasonably good classi-
fication performance. In contrast, polarity often depends on the domain and the
aspect of an entity. One and the same term may have opposite sentiment orienta-
tion even for different aspects of the same entity. Further, topic classification ap-
pears to be more robust with respect to the occurrences of individual terms. By
contrast, individual terms such as negators or other explicit valence-shifters may
very well inverse polarity. In addition, implicit valence-shifting such as the use of
irony aggravates this issue [8]. Lastly, user groups on different social media plat-
forms may have their own style of communication with contrary polarity-specific
meaning. In this report, we will not deal with language-specific aspects explicitly
and focus on the general capabilities of text mining approaches to reasonably detect
sentiment.

3.2.1 Semi-supervised Learning Framework

As sentiment classification is strongly domain and task-specific, approaches based
on text mining techniques are appealing in highly automated applications. Manually
constructed rule-based approaches based on natural language processing techniques
may outperform text learning approaches at selected tasks. Yet, they typically re-
quire extensive user effort which may render model construction prohibitive when
many entities and aspects are to be monitored. But, since supervised learning ap-
proaches to text classification require costly labeled training data, not much help
is attained with regard to reducing user effort. At this point, semi-supervised ap-
proaches which learn from few labeled documents and a large number of inexpen-
sive and readily available unlabeled documents [13, 24] should be considered. And
indeed, semi-supervised approaches have already been applied successfully to the
task of sentiment orientation detection [3, 7].

Our semi-supervised framework uses a two-stage bootstrapping approach to learn
an initial base classifier based on polarity-specific key words instead of labeled sen-
tences. Subsequently, the following two steps are alternated until no changes in class
assignments are recognized or a specified number of iterations is exceeded:

1. Use the base classifier to predict the class of all (unlabeled) sentences, and
2. Re-learn the classifier based on sentences classified as either positive or negative.
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3.2.2 Base Classifier

The Naive Bayes classifier is known to work well as a base classifier in semi-
supervised learning. Yet, we refrain from using it in this application because we
expect the class priors to change significantly over time. After all, the early warn-
ing systems should detect this kind of changes in sentiment orientation. Instead, we
use the Winnow approach [17] as it proved to be robust and efficient with good
classification performance for sentiment analysis [9].

Winnow learns a linear-threshold classifier Hc(d) for class c and sentence d as

Hc(d) = ∑
t∈V

wc(t)χ(d, t)

where V is the vocabulary, χ(d, t) = 1 if term t occurs in sentence d (tf(d, t) > 0)
and 0 otherwise, and w(t) is the weight of term t.

Winnow predicts class c for sentence d if Hc(d) > θ . Note that we learn two
classifiers H+ and H− for the positive and negative class, respectively. A sentence
will be declared to be neutral if either none or both of the classifiers fire (Hc > θ ).

In the learning phase, the weights are initialized by wc(t) = 1 for each term t ∈V .
For each positively or negatively labeled sentence d, Winnow updates the weights
if it cannot correctly classify d as follows: wc(t) *= 2 if d belongs to class c and
χ(d, t) = 1 and wc(t) /= 2 if d does not belong to class c and χ(d, t) = 1.

3.2.3 Two-Stage Bootstrapping of Base Classifier

We take up the two-stage bootstrapping approach of [6]. Instead of hand-labeling
sentences to acquire training data, we provide domain-unspecific seed key terms for
each polarity class, e.g. [6]

K+ = {good, excellent, love, happy}

for the positive class and for the negative class:

K− = {bad, lousy, terrible, hate, suck, unreliable}.

Under the assumption that polarity-specific key terms of the same polarity tend to
co-occur at the sentence level while they do not co-occur if they are of opposite
orientation [6], the initial seed sets of key terms are expanded by unambiguously
co-occurring terms in a first bootstrapping phase as follows. First, all frequent 2-
itemsets are generated taking sentences to resemble transactions and term occur-
rences within a sentence as items. Then, while there exists a frequent 2-itemset
f = {t1, t2} which contains an element of the key term set of one polarity class, say
t1 ∈ Kc, but no element of the other class ( f ∩Kc̄ = /0), the other term t2 is added to
the respective key term set Kc.

Based on these polarity-specific key term sets, sentences are initially and unam-
biguously labeled as class c if they contain at least one key term of the corresponding
key set Kc and none of the opposite key set. The resulting set of labeled sentences is
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used to initially train the base classifier. In case no sentences can be labeled accord-
ing to this bootstrapping process, the unambiguity requirement could be relaxed or,
otherwise, some sentences have to be hand-labeled.

3.3 Opinion Topic Identification

The objective of this task is to uncover opinion topics from a stream of sentences
which are orthogonal to the structure induced by sentiment orientation [4] There
are two predominant types of approaches that lend themselves to identify hidden
topic structure within a stream of sentences: topic modeling [21] and text clustering.
Since sentences are on average much shorter than documents, they are likely to be
dominated by a single topic each. Therefore, allowing sentences to belong to several
topics is less important and we focus on uncovering a disjoint cluster structure.

3.3.1 Text Clustering

Due to their limited lengths, sentences are unlikely to contain enough information to
generate meaningful topic ontologies. Thus, we focus on partitional text clustering
approaches. Text clustering based on frequent itemsets provide a sound way of deal-
ing with the very high dimensionality of text data and providing meaningful cluster
descriptions [2, 28].

Following the partitional FTC approach of [2], treating sentences as transactions
and term presence in a sentence as items, frequent itemsets are generated using a
standard association rule algorithms like Apriori [1]. Each frequent itemset f is
regarded as the (meaningful) description of a cluster candidate. The cover cov( f )
denotes the set of all sentences that contain the terms t ∈ f . Starting with an empty
set S of selected frequent itemsets, the algorithm iteratively adds frequent itemsets
to S until each sentence is covered by a selected frequent itemset s ∈ S. At each
iteration, that frequent itemset f whose cover has the least overlap with the already
selected frequent itemsets in S is added.

3.3.2 Guiding Search towards Opinion Topic Structure

When trying to identify structure from data without any guidance such as known
class labels, we may end up with any kind of structure. To guide search into the
direction of meaningful opinion topics and away from sentiment-oriented structure
without any kind of user feedback, we propose to make use of knowledge derived
from the sentiment classification task. In an additional feature selection step prior
to clustering, all terms are discarded which appear to be highly discriminative with
regard to polarity [6]. In particular, this includes all polarity-specific key terms and
also all terms with Winnow-based weights above a specified threshold. The remain-
ing terms are assumed to be more relevant with regard to topic structure. In addition,
it is possible to select terms based on word classes, e.g. to retain only noun groups
and verbs since adjectives and adverbs are generally believed to be more relevant
for sentiment orientation detection.
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Fig. 2 System architecture of the early warning systems based on sentiment

4 Early Warning System

Fig. 2 gives an overview of the system architecture of the early warning system
based on sentiment. The core components are described below.

Web Crawler

The web crawling component delivers documents from selected sources which are
relevant for an entity of choice, i.e. an enterprise’s product or service. In case a
social media platform provides an API, accessing the user generated content for
further processing might be straightforward. However, limited access to historical
content can be an issue. Unfortunately, many relevant social media platforms do
not provide API access to the user generated content. If tolerated by the platform
provider, web crawlers and scraping tools have to be used. To deliver high quality
results, i.e. the extracted opinionated text together with the opinion holder (author)
as well as the date and time when the opinion was created, specific information
extraction components might have to be developed for each social media source
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anew unless this information extraction is treated as a separate learning task. Note
that we assume that there are no legal objections such as copyright issues against
extracting, storing and analyzing opinions form the sources of choice.

Text Mining Components

The components for text preprocessing, sentiment orientation detection and opinion
topic identification have been described in depth in Sec. 3. Note the dotted line
between the latter two components which indicates that topic identification requires
information from the sentiment orientation detection component.

Opinion Base

The main objective of opinion mining is to structure the unstructured user generated
content. As described above, textual documents are tokenized into sentences from
which an opinion-quintuple is derived if possible. The resulting opinion quintuples
together with context information such as the source system, the original source
document and the URL are stored in a database which allows easy access to the
opinionated content for further analysis and visualization.

Sentiment Monitoring

In order to detect changes with regard to the fraction of negative sentiment within
the stream of opinionated sentences, this component applies techniques from the
field of statistical quality control [22]. The key difficulty is to distinguish between
chance causes of variation and causes which can be assigned to changes in senti-
ment orientation. Generally, change is suspected if an observed measure is out of
specific control limits, i.e. if it is too many standard deviations above or below its
expected value under the assumption of a stable process. Here, a variant of the well-
known Shewhart control chart is deployed which has been proven to be successful
in various change detection tasks within machine learning applications [12, 15].

In particular, the stream of documents is split into batches on a daily, weekly or
monthly basis depending on its volume. We choose to monitor the absolute number
of sentences with negative sentiment orientation per batch and opinion topic as well
as for the entire set of sentences by means of a so-called np-chart. The advantage
of this approach over the classical p-chart for fractions of negative opinions (resem-
bling the fraction defective in quality control parlance) is that the users are not only
informed about changes in sentiment but can also get an impression of changes with
regard to opinion volume in total.

For either a certain topic or the total number of sentences, let nt denote the
number of sentences and pt denote the fraction of negatively oriented sentiment
in batch t. The corresponding expected fraction p̄ of negative polarity under the
assumption of a stable public opinion is either determined based on the initially
available collection of documents which is also used during the text learning steps
or it is provided by the users based on experience.
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As we are only interested in significant increases in negative sentiment, we de-
ploy only upper control limits. We assume that the random variable indicating
whether or not an opinion has negative sentiment follows a binominal distribution.
Hence, the upper warning limit is set at nt p̄+ 2

√
nt p̄(1− p̄) and the upper action

limit is at nt p̄+3
√

nt p̄(1− p̄). This corresponds to two and, respectively, three stan-
dard deviations above the expected value. Finally, whenever pt exceeds these upper
control limits, an appropriate signal is issued to inform the users.

5 Conclusion

This report has demonstrated how text mining techniques can be applied to solve
some of the key issues in opinion mining or sentiment analysis as a core field of the
emerging discipline known as social media analytics. Since the task of sentiment
orientation detection is known to be domain-specific, learning appropriate models
with as little user feedback as possible is crucial for automatic monitoring systems.

Semi-supervised text learning approaches require only little user input such as
some seed keywords for bootstrapping an initial base classifier for sentiment orien-
tation detection. Yet, still better classification performance on the sentiment orienta-
tion detection task is expected when coupling text learning approaches with deeper
natural language processing.

Text clustering on a feature subset restricted based on polarity-specific key terms
allows for automatic identification of relevant topics which are orthogonal to senti-
ment orientation. The approach chosen should be further extended to incrementally
deal with new documents. Detecting new hot topics from a stream of text documents
may also serve as a key indicator for product quality management.
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Computational Intelligence to Recognize Animal
Vocalization and Diagnose Animal Health Status

Gerhard Jahns

Abstract. Without information there is no life. In the course of evolution, nature
made use of nearly every physical principle to enable organisms to gain information
from and about their environment, and to affect their environment. In animal realm,
sound is one of the most prominent communication means, suited for long and close
distances. Acoustic monitoring of farm animals may serve as an efficient manage-
ment tool to enhance animal health, welfare, and farm efficiency, and in general as
a useful tool in animal ethology. The final goal is a call-recognizer to identify the
meaning of sounds issued by animals. Such call-recognizer must be able to recog-
nize the meaning of calls, independent from the individual animal and a more or less
noisy environment. As a probabilistic method during the learning or training phase,
feature vectors from known calls are calculated. From feature vectors of calls with
the same meaning reference patterns are built and stored. To recognize a call it has
to be calculated in the same way. The system then determines the reference pat-
tern that is most similar to the pattern to be recognized and outputs the meaning.
Despite the vocabulary size and complexity of human speech, which is unique in
animal realm, sound production and reception have several commonalities among
vertebrates. This encourages to adapt methods and experiences from speech recog-
nition in order to recognize animal vocalization and sounds. In speech recognition,
double stochastic processes, such as Hidden Markov Models (HMMs), have proven
to be very efficient. They were applied here to recognize the meaning of different
animal calls in two studies, using utterances of cows as an example, and to diagnose
pathological coughing of pigs. The results revealed that probabilistic methods like
HMMs are well suited for monitoring animals by identifying the meaning of their
vocalization and to diagnose their health status.
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1 Introduction

Communication is a main key to survival. In the course of evolution, organisms
have evolved a diversity of modalities for communication [5]. Nature has utilized
nearly every physical principle, e.g. sound and vibration, electromagnetic waves (vi-
sion), chemicals (odor) and even electrical fields. Among these, sound is one of the
most prominent means to convey information over long distances as well as in close
vicinity, despite obstacles or the need for visual contact. These characteristics make
sound analysis one of the most suitable approaches for monitoring animals. The ad-
vantage of acoustic monitoring is that no physical contact is needed. So acoustic
monitoring does not interfere with the natural behavior of animals. Moreover, one
system would be sufficient to continuously monitor a group of animals. An under-
standing of the information uttered by animals could provide farmers an efficient
management tool to enhance animal health, welfare, and farm efficiency. The costs
of the required hardware are quite low, and the performance of today’s common PCs
is more than sufficient for this purpose. The methods illustrated in this paper can be
expected to be applied for species other than pigs and cows as well and be a useful
tool for ethology research.

Fig. 1 Phylogenetic of vertebrates

The phylogeny of the vocal tract for sound production [12] and the acoustic or-
gans for sound reception [1] show many commonalities. This suggests methods that
have proven themselves in speech recognition, to adapt to recognize and analyze



Computational Intelligence to Recognize Animal Vocalization 241

animal utterances1. Figure 1 illustrates and reminds that the phylogeny of verte-
brates reveals the same principles of sound production and reception [12, 9]. The
recognition of utterances in cows is one example given below. The diagnosis of
respiratory diseases of pigs by analyzing their cough is another example demon-
strated here.

In the following examples it is shown, how to gain information from sounds ut-
tered by animals. The final goal is a call-recognizer, a device that automatically tran-
scribes animal utterances to identify their state and condition. However this needs
more. Such a call-recognizer must not only be able to recognize species specific calls
or sound, independent from the individual animal, it also must perform reliably in
more or less noisy environments. This capability would allow farmers to monitor
farm animals continuously without additional workload. Up to now, no appropri-
ate software has been developed. Moreover, the hardware for such a call-recognizer
is also appropriate to monitor technical equipment in a barn such as conveyors,
augers, feeders, etc. Methods to monitor machinery by sound are state of the art,
to detect damage of ball bearings, leaks in pipelines, knock sensors in cars and
so on. While call analysis, based on power spectrum density (PSD), has proved to
be sufficient to identify different cows individually [8], it is not sufficient to iden-
tify the meaning of their calls. It is more sophisticated to recognize the meaning of
species specific calls independent of the individual animal. It may be compared with
speaker independent word spotting in speech recognition. Hidden Markov Models
(HMMs), which statistically model acoustic patterns, have proven very efficient for
this purpose in speech recognition. To reveal the meaning of utterances in cows [7]
the Hidden Markov Model Toolkit (HTK) was used. The HTK is a comprehensive
set of tools and programs, developed by Young et al. [17]. To diagnose respiratory
infections of pigs [4] the software toolbox from Murphy [11] was applied. Both
examples revealed that HMMs are well suited for animal monitoring. To achieve
sufficient results, a careful feature extraction and fine-tuning of the HMM is re-
quired. Indispensable for probabilistic methods is a large and reliable database (data
corpus).

1 The development of knowledge about the animal calls from ancient Greece up to the mid-
dle of last century is depicted by Körting in his dissertation [9]. Amongst others he con-
cisely displays, that the ancient Greeks, among them Aristotle, Plato, Democritus, etc. had
no doubts that animals are endowed with a soul, and therefore were capable to commu-
nicate and express their feelings and emotions by utterances. Thus Phorphyrius (233–301
aD) states, besides other examples, that a good cowherd would very well be able to recog-
nize by the calls of a cow, if they have hunger or thirst, are tired, or are sexually aroused
or call for their calves. With the spread of Christianity, this knowledge became forgotten.
Because only humans, as the crown of creation, were regarded as the only soulful beings.
Thusly still Descartes (1596–1650) regarded animals only as a mechanical automata. It
was not until the middle of the 19th century by Darwinian (Darwin 1809–1882) theory
of evolution which slowly changed this view. Today it is accepted in science, that living
organisms communicate in various ways by exchanging signs and information [16].
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2 Motivation and Objectives

In small farms, farmers know their animals personally leading to an individual,
species-appropriate, and efficient animal husbandry. On large farms, where main-
tenance of the animals is not always in the hands of professionals, this cannot be
guaranteed. Therefore, in the scope of precision livestock farming, big efforts have
been made to monitor farm animals automatically. Established or proposed systems
are expensive. Also, since they need to be attached to them or force the animals
in a certain position, they may perturb the natural behavior of the animals. They
also perform intermissive, which means that data transmission takes place only at
particular times a day, e.g. during milking.

The diagnosis of respiratory infections in pig fattening is a serious economic
issue. Respiratory infections in pig fattening farms cause losses of millions of Eu-
ros [6] respectively Dollars [15] per year. These economic losses are attributed less
to total losses due to the death of pigs, but much more to costs for treatment and
indirect costs caused by diminished mast und breeding results. The earlier infected
animals are detected, the more promising treatments and means to reduce the risk of
infection are. For diagnosis, it is necessary to distinguish between cough made by
healthy pigs, simple throat cleaning, and cough by infected pigs.

The objectives were to develop monitoring software, for being able to recognize
and understand utterances of cows and to diagnose respiratory infections in pigs.
It is also mandatory that this has to be realized without dependence on the partic-
ular animal which utters the sound. The latter is important, because if the system
is not animal independent, it would be necessary to train the system to the individ-
ual pronunciation of each single animal to be monitored. The resulting workload
would be absolutely unacceptable for practical purposes in agriculture. To utilize
such a system in practice e.g. on farms, it is required to spot only utterances of dis-
tinct meaning and ignore all the other utterances and noise in the environment. This
problem has not been solved yet.

3 Peculiarities of Animal Utterances

From daily experience with human speech we know that pronunciation of words
show inter and intra individual variations. Words are never pronounced exactly the
same, even if spoken by the same speaker. And it is even more different, when the
word is spoken by different speakers. The same holds true for utterances of ani-
mals. Any utterance is a non-stationary signal, variable not only in frequency but
also in duration. The variation of utterances in time is, as in speech recognition, a
main challenge. Many efforts have been made in speech recognition to overcome
this problem, e.g., template-based approaches with dynamic time warping [13, 2].
Hidden Markov Models (HMMs) [14, 17] have proven efficient in speech recogni-
tion. They are applied here. The results [4, 7] revealed that HMMs are well suited
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for call recognition and to distinguish between cough in infected pigs and cough in
healthy pigs (simple throat cleaning)2.

4 Data

The data base is the link to reality. A reliable data corpus is the indispensable basis
for any call recognition. Every species has its own call repertoire and therefore needs
its own data corpus. Calls which are not part of the data corpus cannot be recognized.
However, to establish a data corpus of animal utterances is very elaborate and time
consuming, because animals cannot be asked to elicit an utterance with a certain
meaning. So the meaning of utterances can only be disclosed by observation or by
provoking the utterance by providing a certain situation. To cope with inter- and
intra-individual variation the data corpus cannot be large enough.

Utterances from cows were recorded in the same environment in the former
Bundesforschungsanstalt für Landwirtschaft (FAL) in Braunschweig, Germany.
688 recorded and manually labeled moos were collected for seven different mean-
ings of utterances [7]. The records of coughing pigs were provided by the courtesy
of the Department of Biosystems, Measure, Model & Manage Bioresponse (M3-
Biores), Catholic University of Leuven in Belgium. For more details see [3, 10].
For training, validating and final testing, 232 cough records caused by Pasteurella
infection, 160 cough records caused by Actinobacillus infection, and 149 cough
records from healthy pigs, artificially elicit by citric acid, were available. In general,
caution is demanded when recordings are made in different environments, because
this comprises the risk that the system is trained to recognize the different acoustic
environment instead the different utterances of the animals. Both data corpi were
manually labeled. 70% of each data type was used for training, whereas 30% was
used for validation of the recognition rate.

5 Method

Figure 2 portrays the signal flow of an utterance. According to the emotional state or
condition of an animal (W ), its sensory system triggers a call or call sequence (C).
This causes vertebrates to release pressurized air from the lungs through the vocal
cords, forcing it through resonance chambers – pharynx, mouth and nose cavities –
and, finally, radiate the utterance from the lips or nose. If the vocal cords are tensed,
the air will vibrate periodically according to the tension and a voiced sound will
be produced. If the larynx is open, the vocal cords do not vibrate and, a voiceless
sound is produced. In all cases the result is a sound – a pressure, respectively, density
variation in the air – the call or call sequence.

Coughing is a reflex involving the whole respiratory tract, causing a short con-
traction of the lungs resulting in a short explosive like exhaling of air. The glottis

2 Even a cough is not a call in the classic meaning, but for more fluently reading the word
call will be used for both cough and cow utterances.
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Fig. 2 Signal flow in call production and call recognition. (W ) state or condition; (C) call se-
quence; (D) digital, one-dimensional time series; (Ĉ) equivalence of the call sequence, which
most likely represents the uttered calls; (Ŵ ) text that most likely represents the state or con-
dition of the animal.

is open and air reaches a high speed resulting in a short characteristic noise. The
primary focus was to distinguish between morbid and healthy cough, assuming that
the first affects the whole respiratory tract, while the latter mainly affects the upper
part, resulting in general distinguishable sounds. However, the evaluation revealed
that it is even possible to distinguish between certain kinds of common infections,
namely Pasteurella and Actinobacillus.

The sound event is picked up by a microphone, which changes the pressure varia-
tion into corresponding varying electrical signals, which are amplified and digitized
(D). By digital signal processing, a call decoder produces an equivalent to the call or
call sequence (Ĉ), which most likely represents the uttered calls (C). An interpreter
transcribes the call or call sequence (Ĉ) into a text (Ŵ ) that is meaningful to humans,
which most likely describes the emotional state or condition (W ) of the animal.

Fig. 3 Extracting feature vectors from sound wave

The first step in call recognition is to determine frequency range of the utterances
of the particular species, to ensure no information is getting lost. All hard- and soft-
ware has to be tuned appropriately to this frequency range. Because the sound range
a species uses for communication may vary widely from infra sound (e.g. used by
elephants to communicate) up to ultra sound (e.g. used by bats). The recorded sig-
nal, a continuous waveform, picked up by the microphone and amplified, results in a
flow of numbers, a one-dimensional time series. From this time series, a sequence of
equally spaced discrete parameters and feature vectors are calculated, respectively.
These feature vectors characterize the original signal. Mathematics offers numerous
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methods to extract feature vectors. Unfortunately, only some general rules can be
given to choose the most appropriate features. However the requirements are con-
tradictory. For example, the features should be chosen in a way that the variability
of the features from examples belonging to the same class is reduced. On the other
hand, the variability of features from examples belonging to different classes should
be increased. Feature vectors should be relative imprecise to improve the robustness
of the classification algorithms and to avoid over-fitting. Because each utterance is a
non-stationary signal, the features were not extracted from the whole call. They were
calculated within successive, overlapping, equally spaced windows (see Fig. 3).

The size of the window has to be small, thus it can be assumed that the signal
is stationary within a window. Although this assumption is not strictly true, it is a
reasonable approximation. The size of the window depends on the dynamic of the
utterances of the species. For example in human speech, a signal within a window
of about 20− 30ms can be regarded as stationary. For the results presented below,
a window of 25ms for utterances of cows and 11ms for pig cough was empirically
chosen. To reduce disturbances at the windows’ edges, they were weighted with a
Hamming window.

For the cow utterances, the chosen coefficients were the Mel Frequency Cepstral
Coefficients (MFCCs) with logarithmic energy and their first delta and their first
acceleration coefficients. The Mel scale takes the psychoacoustic perception into
account (Weber-Fechner Law) and in speech recognition it had proofed to improve
recognition rates. A system for speech or call recognition comprises a training part,
and a recognition part. During the training or learning phase, reference patterns
respectively models were built from calls with the same meaning. As a result, each
reference model represents a call of a certain meaning independent of the inter- and
intra-individual variations. The more comprehensive the data corpus is, the better
the call repertoire of the species is represented. For recognition, the unknown call
has to be preprocessed in the same way as the calls during the learning or training
phase.

Generally speaking, a Hidden Markov Model is a double stochastic process,
where the states of the model are hidden [14, 17]. It is characterized by the number
of states (N) and outputs (K) and defined by λ = (π ,A,B). The N-dimensional vec-
tor π defines the probabilities of the initial conditions. The transition probabilities
from one state to another are defined by an N ×N-dimensional parameter matrix
A. The emission probabilities, the probability that a state generates an output, are
determined by an N ×K-dimensional matrix B.

Generally a Hidden-Markov Model allows the transition from one state to any
other state. For speech- and here for call-recognition a left-right model as portrayed
in Fig. 4 is used. Loops returning to the same state model the lengthening of a part
of an utterance in time. Loops which skip a state model are slurring or skipping
a part of an utterance. Unfortunately, there are no general rules to determine the
number of states. Therefore the number of states must be determined empirically.
To recognize the utterances of cows HMMs with 7 states were used for pig cough
recognition HMMs with 5 states. The challenge is, to train a generic HMM to obtain
the best fitting of these probabilistic parameters by samples, so that it most probably
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Fig. 4 Four state, five outputs left-right Hidden Markov Model [17]

represents and estimates the constituents of the utterances to be recognized. Because
it is a statistical process, the number of samples should be as great as possible. For
every meaning one HMM has to be trained. In particular, the model parameters of
the HMM are estimated by applying the well-known Baum-Welch Algorithm. The
likelihood that the HMM has produced some observation can be determined using
the Viterbi Algorithm, basically a linear programming algorithm to determine the
most probable sequence of states for a given observation.

Fig. 5 Call recognition using Hidden Markov Models

Provided the HMMs representing the call repertoire are trained, Fig. 5 portrays
the principle of call recognition. A model of the unknown call is computed the
same way as the calls during the training phase before and then compared with the
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stored reference models. The call associated with the HMM of highest likelihood is
declared to be the recognized call.

6 Results

The recognition rates of different calls from cows are presented in Fig. 6. They are
based on a data corpus of 688 calls. These calls were recorded from 39 cows. Sev-
enty percent of these calls (478) were used to train the HMMs and 210 calls (30%)
for validation. The diagnosis of cough reached a recognition rate of over 97%. All
cough records for training as well as for recognition were filtered to reduce possi-
ble effects of the environment where they were recorded. However, the difference
was minor. The few erroneously recognized unfiltered cough were two Pasteurella
cough which were classified as Actinobacillus cough and one artificially generated
cough which was classified as Actinobacillus cough. Furthermore, one filtered Pas-
teurella cough was classified as Actinobacillus cough and one filtered artificially
generated cough was classified as Actinobacillus cough.

Fig. 6 Recognition rate of different calls from cows using Hidden Markov Models

7 Conclusion

From the results it can be concluded, that HMMs and methods adapted from speech
recognition are suited to establish a call-recognizer, to recognize the meaning of
calls from animals, here cows, and to diagnose diseases, here Pasteurella and Acti-
nobacillus infections in pigs. However, for practical use on farms, the data corpi
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have to be increased considerably. One reason is that utterances from a larger num-
ber of animals are required in order to ensure that the calls will be recognized inde-
pendent of the individual animal and environment. Another reason is that more calls
of equal meaning improve the recognition rates. Based on increased data corpi, the
results can most probably be improved by a fine-tuning of the Hidden Markov Mod-
els. At least it must be considered that in these two studies it has only be proofed
that it is possible to recognize the meaning of utterances, respectively to diagnose
morbid cough. For automatic monitoring on farms, the utterances and cough have
to be spotted in a continuous sound stream buried in noise, a problem to be solved,
to establish an automatic call-recognizer.
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Applications of Intelligent Data Analysis for the
Discovery of Gene Regulatory Networks

Frank Rügheimer

Abstract. The availability of cheap sequencing and measurement techniques in
molecular biology sustains a rapid increase in both quantity and quality of biomed-
ical data. But although such methods provide detailed information about gene ex-
pression levels in samples or even individual cells, these extensive data sets merely
represent snapshots of system states at given times and under a limited number of
conditions. Both the high data dimensionality and low throughput sample prepara-
tion present obstacles to the identification of general mechanism underlying biolog-
ical functions. This contribution documents approaches that rely on Intelligent Data
Analysis (IDA) to address challenges to data analysis and interpretation in Com-
putational Biology. Several of the documented approaches were applied within a
recent interdisciplinary study dedicated to the exploration of the regulatory systems
in the bacterium Bacillus subtilis, which serves as a model for several gram-positive
pathogens [6, 16].

1 Introduction

Understanding the mechanisms of regulation that allow cells to carry out a wide
range of functions in varied environments has long been considered an ambitious
goal in biology. Maps of regulatory interactions promise to identify targets and help
limit undesired side effects in drug development, support the optimization commer-
cial bioreactors and may even lead to new therapeutic strategies. The rapid develop-
ment of experimental techniques has brought researchers within reach of that goal,
and following the introduction of large scale, high throughput techniques, compu-
tational methods have become an essential element of the scientific workflow in bi-
ology. In this context the field of Computational Intelligence contributes algorithms
for explorative data analysis, data integration from heterogeneous sources, decision
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support and the validation of computationally inferred regulatory links. Although
the results of such inferences are rarely sufficiently certain to stand on their own,
they nevertheless guide biologists towards conducting targeted experiments that test
promising candidate regulations with a high success rate.

The following section will familiarize the reader with basic concepts of gene
expression and regulation in bacteria. In section 3 I will shortly present some of
the most common types of data used for uncovering gene regulatory networks.
The second half of the paper focuses on individual stages of a scientific pro-
cess for studying gene regulation and elaborates how IDA supports each of those
stages.

2 Fundamentals

2.1 From Gene to Protein to Function

Proteins constitute a large, highly varied and versatile class of molecules in living
cells. They act, e.g. as enzymes, provide structural support for the cell and form
specialized structures such as ion channels or membrane-bound receptors. In addi-
tion, they have functions in intra- and intercellular signaling and provide defenses
against harmful chemicals, pathogens or competing organisms. In pathogens they
help to bind to and extract resources from host organisms and in turn contribute to
mechanisms to evade or neutralize protein-based defenses of those hosts. Further-
more, proteins are involved in elaborate mechanisms that control essential functions
such as metabolism and other biochemical reactions, growth and cell division. In
particular they also carry out various roles in the regulation of the cellular machin-
ery to supply new proteins and degrade damaged or dysfunctional variants that could
otherwise be harmful to the cell.

Proteins are synthesized from amino acids according to a “blueprint” of genetic
information that is encoded in the cell’s DNA. Genes are sections of that DNA,
that code, e.g. for a protein subunit. When genes are expressed, they are initially
transcribed into mobile messenger RNAs (mRNAs). The mRNA then binds to ri-
bosomes to form a complex. In the following step the mRNA is translated at the
ribosome into a corresponding chain of amino acids. These chains of amino acids
subsequently fold and combine into proteins. At each of the intermediate stages ad-
ditional interactions can take place that modify the product, or alter the likelihood
and speed of biochemical reactions in which it partakes.

Because survival in varying environments and complex processes like cell di-
vision depend on an adapted set of proteins (proteome), cells have evolved mech-
anisms to regulate the level and activity of specific proteins. Bacteria, which are
thought to lack some of the more elaborate mechanisms observed in eukaryotic
organisms, not only serve as a test-bed for developing approaches to improve the
understanding of regulation in cells, but are also interesting due to their economic
significance and their potential role as human pathogens.
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2.2 Genetic Regulation in Bacteria

The concentration of any given protein in living bacteria relies on a number of
variable factors: the rate of synthesis of new proteins from mRNAs transcripts,
the rate of degradation, and dilution due to growth. The transcription of genes is
modulated by specialized proteins such as transcription factors, repressors, or ter-
minators. These proteins recognize and bind to DNA of characteristic sequences
that are located close to the regulated genes. Once bound the regulatory proteins
act by recruiting other proteins and enzymes that are required for transcription
or by physically blocking such elements from accessing nearby genes. Because
gene transcription depends on the presence and possibly enzymatic activation of
proteins and other biochemical compounds, environmental challenges often trig-
ger a series of related transcription events that are reflected in expression data.
When constructing gene regulatory networks one aims to represent a superposi-
tion of all such causal links in the gene expression patterns as a directed graph.
Nodes correspond to genes or operons whereas edges represent regulatory interac-
tion. Additional annotations are sometimes used to record details about interactions,
e.g. dependence on co-factors, direction of the regulation or specific biochemical
mechanisms.

2.3 Operon Model of Gene Expression

Bacterial genomes are organized in operons [11]. An operon is a group of genes that
are located on a continuous section of DNA and that are transcribed into a single
mRNA. Such genes are expressed as a unit and their products tend to be closely
related in function. For instance, the genes in an operon often code for enzymes
involved in the reactions of the same biochemical pathway.

With regard to data analysis the existence of operons necessitates some consid-
erations: Firstly, co-expression within an operon creates strong associations in the
data on the respective genes – these associations must be distinguished from associ-
ations due to regulatory links. For organisms with sequenced genomes the relative
location of the corresponding DNA segments can be combined with clustering tech-
niques to reliably identify active operons from expression data. Secondly, operons
significantly reduce the dimensionality of data-driven network induction problems
(regulation can be modeled via interactions between operons rather than individ-
ual genes), this enables the application of computational intelligence techniques to
induce networks in spite the low number of tested conditions (typically < 100) in
comparison to the protein-coding genes (e.g. ∼ 4300 in E. coli, ∼ 4200 in B. sub-
tilis). Thirdly the fact that expression for genes in an operon is strongly dependent
leads to undesired biases in method evaluation (e.g. for functional classification),
if not properly taken into account, as expression vectors for genes from the same
operon effectively duplicate each other.
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3 Data Sources

3.1 Sequence and Transcriptome Data

Although there are ongoing efforts to study cells on the level of interactions within
the proteome, current experimental techniques and the infrastructure supporting
them are geared towards obtaining the genetic information and measuring mRNA
transcript levels in samples. Several reasons can be named for this. Firstly protein
identification requires comparatively new technologies and specialized equipment
and expertise [3]. In contrast transcriptome-oriented techniques such the various in-
carnations of microarray technology, have been able to capitalize on technology,
experience and manufacturing capacity of the semiconductor industry and are now
widely available at comparatively low costs. A related argument is that transcrip-
tomics have reached a higher degree of standardization in equipment, data formats
and software pipelines for subsequent analysis. Finally, a large number of mRNAs
can be detected on a single chip, allowing to cover the full transcriptome while re-
ducing error sources due to biological variance and minor differences in experiment
or subsequent treatment. For these reasons mRNA expression data, are often used
as a proxy for indicating the presence of the corresponding protein products [22].
They are arguably the most readily available data source for the study of regula-
tions. An analysis using microarray technology will usually reveal genes affected by
a tested condition and often indicate associations between gene expression patterns.
However, in bacteria it usually does not allow to identify the direction of potential
regulatory interactions reliably because samples refer to populations rather than in-
dividual cells and resolution in time is limited by contraints on the number and rate
for drawing samples.

To obtain expression data on a genome wide scale it is necessary to determine
nucleotide sequences for the DNA of the organism. A number of sequencing tech-
nologies are available and genomes for many organism have been submitted to pub-
lic databases. The sequence data is then matched to known gene sequences for the
target and related species [4] that link them to specific DNA sites. In addition stan-
dard sequence analysis algorithms search for from characteristic sequences of DNA
that are associated with the beginning and end of transcribed regions to identify
potential genes. For the network inference problem, cultures are grown under di-
verse condition to cover a wide range of regulatory pathways. Samples from those
cultures are collected and analyzed for their mRNA content, which is compared to
a reference. By matching observed mRNA to corresponding DNA sequences the
expression of sections of DNA and therefore the genes represented by that DNA
can be inferred. The result is a relative quantification of the expression of genes
under different conditions. On occasion the pattern of DNA expression itself re-
veals the presence of previously undetected features, such as new genes or small
DNA fragments that affect the cell directly via their RNA transcripts rather than
proteins.
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3.2 Other Data Sources

For an increasing number of organisms, known genes are now annotated with in-
formation about known biological function of their products [2]. This information
often provides critical clues about the role of the gene in regulatory networks, for
instance, many transcription factors will bind at more than one site.

Additional information about potential regulations can be obtained my combin-
ing microarrays with chromatin immunoprecipitation technology (ChIP-on-chip).
In this type of experiment selected proteins are tested for their affinity to bind to
specific DNA sequences on the microarray. In vivo such binding events occur when
regulatory proteins affect the transcription of the associated genes, but the method
is known to produce a number of false positives. Nevertheless protein binding data
can provide an initial directed graph of potential regulatory links to be refined when
evidence from other sources becomes available.

A richer type of data can be gathered from perturbation experiments, in which
the level or activity of the mRNA or protein for a targeted gene is artificially altered
to observe subsequent changes in the expression of other genes. Unless the a gene is
essential to the viability of the organism, knock-out experiments targeting that gene
will also affect the expression of other genes that are directly or indirectly regu-
lated by its product. Such experiments are used to reveal causal chains in regulation
processes. Unfortunately the underlying techniques, which rely on mutant strains or
RNA interference technology, are comparatively expensive and labor intensive, so
they are usually applied on a smaller scale to validate hypothesized regulatory links
supported by other pieces of evidence.

4 Determining Gene Function: Clustering and Classification

Given expression data for bacteria over several conditions the first task is to identify
operons. Because expression of genes within the same operon is highly correlated,
operons can be identified by clustering expression vectors for genes over several
experiments. With additional information about collocation of genes and known
transcription starting and termination sites the identification of operons is now con-
sidered a fairly straightforward task. In explorative analysis, expression data sets are
often visualized as matrices that associate genes with rows, conditions as columns
and display log-ratios of expression values in the experiment versus a control as the
cell value. The application of hierarchical clustering to rearrange rows and columns
in the resulting matrix according to correlation has become a common practice due
to its visual appeal and early use within the in the community [7].

Assuming new genes or operons have been found however, further investigations
will depend on hypotheses about their functions. This classification task is often
approached by supplementing the clustering result from the exploratory step with
an ad-hoc assignment based on common labels of known genes within the same
cluster. The resulting strategy can be seen as an informal approximation of semi-
supervised clustering techniques. Among true classification methods the k-nearest



256 F. Rügheimer

neighbor approach has been applied successfully due to its capacity to model multi-
centered classes. For the assignment to coarser functional categories based on a
time series over expression data, Bayesian classifiers have recently provided valu-
able results, due to their ability to model associations between correlated input
attributes and their explicit representation of uncertainty in category assignments
(www://basysbio.org/nutrientshift, suppl. information for [6]).

5 Regulatory Network Search: Association Measures and
Bayesian Network Induction

The detection of links in Gene Regulatory Networks relies on measuring associa-
tions in observed data. Unfortunately such observed associations provide only weak
evidence for regulatory links. Apart from direct causal links, associations are often
produced due to unavoidable systematic biases in the experiments. Moreover, they
can result from indirect connections (e.g. common cause) or stochastic effects in
conjunction with noisy signals and small sample size. Nevertheless the application
of simple thresholds on correlation coefficients or other association measures such
as mutual information, is still promoted as a network induction technique (relevance
networks).

More advanced methods take the context of observed associations into account
and test for conditional independence when seeking sets of causal link that poten-
tially explain observations. In [10] the authors induce and evaluate Bayesian Net-
works over a selected subset of the baker’s and brewer’s yeasts (Saccharomyces
cerevisiae) genome on a large compendium of microarray data. In this study two
types of approaches are used to model value distributions. The first method relies
on discretized expression data resulting in multinomial distributions. The other ap-
proach is parametric and models normal value distributions over the domains of all
variables (Gaussian Graphical Model). The search procedure tests network topolo-
gies constructed from small sets of candidate links, which are pre-selected based on
local measures of associations between the expression of genes [9], and fitting the
data to each resulting topology. Causal Bayesian Networks [17] have been used with
perturbation data obtained from measurements on single cells [21]. A comparison
of these model types is given in [23].

More recently the DREAMS initiative has lead to systematic comparisons of
inference methods for gene regulatory networks against artificial data and reference
networks [15].

6 Exploring Regulatory Pathways: Frequent Pattern Mining,
Enriched Ontologies and Triangular Norms

Whereas in the previous section we saw network induction as a self-contained pro-
cess, biomedical research projects rarely apply network induction on the global
scale. More often than not, they are centered around specific questions that seem

www://basysbio.org/nutrientshift
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to offer a path to potential treatments, e.g. regulatory events in host pathogen in-
teraction during the course of infections. In this context experiments will tend to
focus on specific set of closely related conditions that draw on a limited subset of
the organisms regulatory repertoire. In addition, prior knowledge from detailed low
throughput studies is usually available to provide a scaffold of known regulatory
interactions. In some cases specific genetic features or environmental conditions are
associated with an observable effect that cannot be explained from the pre-existing
knowledge about regulatory interactions.

Data from such studies is linked to phenotypcial effects (e.g. weak vs. strong
immune response, phases of infection, presence of signaling molecules). In such
experiments researchers aim to answer biological questions such as:

1. Which sets of genes/operons are linked to which effects/outcomes?
2. What is the (usual) role of the associated gene product in the organism?
3. How are their expression patterns linked to each other?

The first two questions identify participants in potentially new regulatory pathways
and reveal gaps in the existing models of gene regulation. The third question focuses
on detailed mechanism that can be tested and possibly exploited in drug develop-
ment. In the following, we are assuming a typical database of microarray data as it
would be generated using standard sample preparation and normalization and pri-
mary data processing procedures. Each entry in that database corresponds to a vector
describing the ratios of gene expression values in a sample in which the targeted ef-
fect was triggered in relation to those measured in an associated control experiment
(e.g. an uninfected sample). Again, IDA provides tools to extract relevant informa-
tion from such data.

6.1 Finding Relevant Subsets of Genes and Operons

The analysis of individual microarrays focuses on genes that are over- or underex-
pressed in an investigated condition relative to a neutral control condition. Due to
the noisy nature of such measurements, it is a common procedure to disregard genes
unless the relative difference between observed expression and reference value cor-
responds to a factor of at least 2. A drawback of this method is that some relevant
interactions may remain below the chosen threshold while biological variation in
gene expression may lead to false-positive selections.

If several replicates or cases are available, statistical approaches to the detec-
tion of reoccurring gene sets supplement this selection process. Recent develop-
ments in frequent item set mining have produced algorithms suitable to support
large item bases and show promise for the analysis of expression data and genome-
wide-association studies [5]. Applying frequent item set mining to microarray data
permits to lower such the filter criteria yet robustly identify associations between
effects and associated gene sets.
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6.2 Interpretation via Functional Annotations

While the identification of relevant gene sets is a necessary step in the analysis, a
perspective based on the associated genes’ functions provides an orientation aid for
the interpretation. Gene annotation databases (such as those using the Gene On-
tology [2]) record functions previously attributed to genes and may thus point out
connections to other cell functions. For instance, certain bacteria that switch active
metabolic pathways in the presence of preferred nutrients start to express gene sets
normally related to famine stress conditions [6]. However, as these effects do not
manifest themselves very strongly, they are easily overlooked in an analysis based
on individual genes. An interesting point about this particular observation was, that
the changes in expression of stress-associated started even before the metabolic
transition took effect (as if in anticipation of a possible energy crisis) leading to
a follow-up investigation of a new regulatory mechanism.)

Models for set-valued data, e.g. [19], can be used to explicitly represent impre-
cision w.r.t. gene function that occurs due to several roles of gene products in the
organisms. They provide a function-oriented perspective to complex expressions
patterns associate them with other patterns that involve different gene sets, but cor-
respond to related functions. Because the genes involved in controlling or modulat-
ing these function are often known, this type of analysis helps define perturbation
experiments that confirm the existence of regulatory paths between previously un-
connected sections of the regulatory network models.

6.3 Finding Regulatory Pathways

Once the existence of a regulatory pathway between different sections of the net-
work has been established, the causal chain leading from the original perturbation
to the observed effect needs to be explored. An approach to this task proposed in [20]
uses association measures and t-norms to assign a measure of plausibility to candi-
date paths via intermediates. The algorithm combines this approach with an efficient
heuristic search strategy and on-demand evaluation of association measures to cre-
ate a superposition the top k plausible pathways. Alternative output modes provide
selections of candidate genes for validation by knock-out experiments. The above
approach is implemented in and supported by a collection of command-line tools
available from the authors website (manuscripts in preparation).

The choice of t-norms as operators for aggregating evidence for local regulatory
links to assess the consistency of pathway-level hypotheses is rooted in their in-
terpretation as extensions of logical conjunctions. Moreover the monotonicity w.r.t.
both arguments is exploited in the heuristic search strategy.

6.4 Implementation in Application Software

An extensible network induction bundle (CYNI) for the network data integration,
analysis and visualization software Cytoscape is currently under development. It
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features a modular architecture and aims to promote applications of Intelligent
Data Analysis in network biology by providing resources for method implementa-
tion. The bundle will be released with a selection of pre-implemented plug-ins that
cover the whole network induction process. This offers usable network inductions
pipelines to experimenters and serves as framework for extensions, modifications
and systematic comparative evaluation for other method developers.

7 Current Issues and Further Reading

The methods presented in this paper focussed on structure learning tasks for de-
tecting previously unknown links in gene regulatory networks. Such links can be
validated, e.g. in knockout or RNA interference experiments. Arkin and Shaffer [1]
provide a wider perspective on network induction techniques by assessing them ac-
cording to their position on the descriptive/predictive dimension and their relative
emphasis on associations observed in data versus mechanistic explanations.

A summary of general network induction strategies and experiments to identify
cancer-related mutations via their effect on gene regulation is given in [18]. Finally,
for an extended coverage of predictive models for gene expression, ranging from
boolean predictions via discretized value domains, systems of ordinary differen-
cial equations (ODEs) to extensive stochastic simulations on the level of individual
molecules the reader is referred to [12]. It is remarked however, that these detailed
models rely on fitting parameters to predefined network structures and that they
make specific assumptions about the regulatory mechanisms. Thus their application
calls for extensive prior knowledge, while parameter estimation and evaluation are
dependent on rich expression, protein and/or metabolome data sets.

Although detailed quantitative models have been successfully applied for
metabolic networks of biochemical pathways, their application to gene regulatory
networks draws on optimistic assumptions about the mechanisms and complexity of
genetic regulation in living organisms. In particular, recent studies about variability
in mRNA degradation rates, the modulating effects of small RNAs, posttranslational
modifications and alternative splicing undermine many simple assumptions about
genetic regulation [14, 22]. This issue is particularly problematic due to the lack of
extensive evaluation data sets that would allow to systematically assess the effect of
relaxed assumptions for the quality of predictions. Evaluation results on synthetic
data sets seemingly support those models, but the generation of such the data draws
on the very assumptions challenged.

The evaluation of inference methods for network structure on the other hand, is
now supported by extensive knowledge databases and expression compendia [13, 8].
These ressources enable comparisons between predicted links and archives of vali-
dated regulatory interactions. It should be noted, however, such databases are nec-
essarily incomplete and subject to a selection bias as rare or weak effects are less
likely to have been investigated before. Moreover, their use requires extensive ad-
ditional processing as databases are geared towards detailed knowledge representa-
tion rather than systematic computational evaluation. To assemble a gene regulatory
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network with the EcoCyc resource, for instance, relations over gene locations, pro-
teins and protein complexes with specific regulatory functions, their binding sites, and
the location of potential target genes relative to these binding sites need to be com-
bined while considering the reading direction of the respective DNA strand during the
transcription process. Implementing such an operation requires domain knowledge
about transcription, regulation mechanisms and conventions in genetics in addition
to general programming skills and familiarity with relational knowledge representa-
tions. This creates a barrier for integration into tools or evaluation frameworks.

8 Conclusion

With the availability and increasing reliance on automated methods for hypothesis
generation and large scale network induction in biology the issue of method selec-
tion and thorough evaluation has become essential to the progress of the field. Yet
the still prevalent division into modeling and experimentalist communities limits
the access to critical expertise for both groups. This challenge is neither adressed
by indescriminately transplanting approaches from other fields nor by the introduc-
tion of ever new postulates that are difficult to assess with currently available data.
Instead it would seem prudent to form closer collaborations between the Network
Biology and Intelligent Data Analysis communities to improve knowledge about
the properties of biological datasets, identify stengths and weaknesses of existing
models, adapt methods to current tasks and foster a culture of systematic evaluation
and documentation of models and the conditions, under which they can be applied.
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[19] Rügheimer, F.: Using Enriched Ontology Structure for Improving Statistical Models of
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From Spatial Data Mining in Precision
Agriculture to Environmental Data Mining

Georg Ruß

Abstract. In the first part of this article, the main results from applying data mining
methods and algorithms to spatial precision agriculture data sets will be outlined.
In particular, the task of yield prediction will be handled as a spatial regression
problem. To account for the spatial nature of the data sets, a few modeling pitfalls
resulting from spatial autocorrelation will be tackled. Based on a cross-validation
approach, the yield prediction setting will be used to determine spatial variable im-
portance. Another task called management zone delineation will be briefly outlined.
A novel hierarchical spatially constrained clustering algorithm will be presented
which aims to provide a tradeoff between spatial contiguity of the resulting clusters
and cluster similarity. These two tasks are a summary of [26]. In the second part of
this article, the emerging field of environmental data mining will be briefly laid out.

1 Introduction

While the (spatial) data sets around us grow rapidly, the tools and algorithms to
match those data sets are struggling to keep up. While geographical information
systems and location-based services are rapidly expanding, the agricultural sector
is currently experiencing an influx of information technology, mostly based on the
global positioning system and technological advances in sensors and data aggrega-
tion. However, even precision agriculture is still in its infancy and requires novel
data mining tools and algorithms adapted for the special spatial data sets.

Agricultural companies nowadays harvests not only crops but also growing
amounts of data. These data are site specific – which is essentially why the combina-
tion of GPS, agriculture and data has been termed site-specific crop management. A
large amount of information about the soil and crop properties enabling a higher
operational efficiency is often contained in these spatial data sets – appropriate

Georg Ruß
TecData AG, 9240 Uzwil, Switzerland
e-mail: georg.russ@buhlergroup.com

C. Moewes et al. (Eds.): Computational Intelligence in Intelligent Data Analysis, SCI 445, pp. 263–273.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

georg.russ@buhlergroup.com


264 G. Ruß

techniques should therefore be applied to find this information. This is a rather
common problem for which the term data mining has been coined. Data mining
techniques aim at finding those patterns in the data that are both valuable and in-
teresting for crop management. This article primarily summarizes the author’s two
main lines of research. Furthermore, it extends the work on data mining in preci-
sion agriculture towards a broader scope on environmental data mining. The first
two parts shortly recapitulate existing work based mainly on [27] and [25].

2 Data Description

The data available in this work were collected during the growing season of 2007
on three sites south of Köthen, Germany. The data for the sites, called F440, F611
and F631, respectively, were interpolated using kriging [30] to a grid with 10 by 10
meters grid cell sizes. Each grid cell represents a record with all available informa-
tion. The fields grew winter wheat. Nitrogen fertilizer (N) was applied three times
during the growing season. Overall, for each field there are six input attributes, ac-
companied by the respective current year’s yield (2007) as the target attribute. In
total, there are 6446 (F440), 4970 (F611) and 7875 records (F631).

Yield is measured in metric tons per hectare ( t
ha ), along the harvesting lanes

(spaced 8 m apart), roughly every ten meters. Apparent electrical soil conductiv-
ity (EC25) as a measure for a number of soil properties is acquired. Satellite or
aerial image processing provides a measure of vegetation called the red edge inflec-
tion point (REIP) value, at two points into the growing season (REIP32, REIP49),
according to the growing stage defined in [17]. The REIP value may also be used di-
rectly for guiding fertilizations [10]. A simplified assumption is that a higher REIP
value means more vegetation. Three nitrogen fertilizer dressings are applied (N1,
N2, N3, in kg

ha ). In the available data, due to the fields being experimental agricul-
ture sites, the nitrogen dressings were not temporally autocorrelated. However, this
phenomenon may be considered in production sites. EC, REIP and N are measured
in 10-m-intervals along the lanes which are spaced 24 meters apart.

3 Spatial Cross-Validation and Regression

According to [9], spatial autocorrelation is the correlation among values of a single
variable strictly attributable to the proximity of those values in geographic space,
introducing a deviation from the independent observations assumption of classical
statistics. Given a spatial data set, spatial autocorrelation can be determined using
Moran’s I ([18]) or semivariograms. For the data sets used in this article, each of the
attributes exhibits spatial autocorrelation. In practice, it is usually also known from
the data origin whether spatial autocorrelation exists. For further information it is
referred to, e.g., [3].

In previous articles using the above data, such as [28, 24], the main focus was
on finding a suitable regression model to predict the current year’s yield sufficiently
well. However, the used regression models, such as neural networks [28, 29] or
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support vector regression [24], among others, generally assume statistical indepen-
dence of the data records. However, with the given geo-tagged data records at hand,
this is clearly not the case, due to (natural) spatial autocorrelation. Therefore, the
spatial relationships between data records have to be taken into account.

Due to the shortcomings in classical regression and cross-validation learning
approaches when using them on spatial data, this section will present a novel re-
gression model for data sets which exhibit spatial autocorrelation. In non-spatial
regression models, data records which appear in the training set are not supposed
to appear in the test set during a cross-validation learning setup. Classical sampling
methods do not take spatial neighborhoods of data records into account. Therefore,
the above assumption may be rendered invalid when using non-spatial models on
spatial data. This inevitably leads to overfitting and underestimates the true pre-
diction error of the regression model (compare [1, 2] for similar observations in a
classification context). Therefore, the main issue is to avoid having neighboring or
the same samples in training and testing data subsets during a cross-validation learn-
ing approach. The basic idea therefore is to apply changes to the resampling method
and keep the regression modeling techniques as-is. The resulting procedure can be
seen as spatial cross-validation technique.

Traditionally, cross-validation for regression randomly subdivides a given data
set into two or three parts: a training set, (optionally a validation set) and a test set. A
10- to 20-fold cross-validation is usually considered appropriate to remove bias [14].
The regression model is trained on the training set until the prediction error on the
validation set starts to rise. Once this happens, the training process is stopped and
the error on the test set is reported for this fold. This procedure is repeated r times to
remove a possible sampling bias. In our case, r has been empirically determined as
100. Instead of sampling randomly from the data set to generate the training and test
sets, a clustering step is inserted. A simple k-Means clustering on the data records’
x/y-coordinates yields a spatial tessellation of the site under study. The sub-areas of
the site are roughly the same size on typical sites. Once the tessellation exists, the
cross-validation samples randomly from the sub-areas rather than from the whole
data set. The regression is then performed on the data records within the sampled
sub-areas. Since k-Means is sensitive to initialization, the clustering is repeated r
times.

The spatial clustering procedure may thus be considered as a broader definition
of the standard cross-validation setup. This can be seen as follows: when refining the
clustering further, the spatial zones on the field become smaller. The border case is
reached when the field is subdivided into as many clusters as there are data records,
i.e. each data record describes its own cluster. In this special case, the advantages
of spatial clustering are lost since no spatial neighborhoods are taken into account
in this approach. Therefore, the number of clusters should be seen as a tradeoff
between predictive precision and statistical validity of the model. The parameter k
for the size of the tessellation has to be determined heuristically.

In previous work ([24, 28]), numerous regression modeling techniques have been
compared on similar data sets to determine which of those modeling techniques
works best. Support vector regression has been determined as the best modeling
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technique. It has furthermore recently been shown to work rather successfully in
spatial classification tasks, albeit without spatial cross-validation, as in [21]. Hence,
in this work support vector regression will serve as a benchmark technique against
which further models will have to compete. The techniques and the respective R
packages used here are support vector regression (e1071), regression trees (rpart),
random forests (randomForest), bagging with trees (ipred). The models’ perfor-
mance is measured via the root mean squared error (RMSE) between actual value
and predicted value.

The results in Table 1 confirm that the spatial autocorrelation inherent in the data
set leads classical, non-spatial regression modeling setups to a substantial underes-
timation of the prediction error. This outcome is consistent throughout the results,
regardless of the used technique and regardless of the parameters. Furthermore, it
can be seen that Random Forests seem to yield better performance in terms of lower
prediction error, regardless of the setup used. Moreover, the spatial setup can be
easily set to emulate the non-spatial setup: set k to be the number of data records in
the data set. Therefore the larger the parameter k is set, the smaller the difference
between the spatial and the non-spatial setup should be. This assumption also holds
true for almost all of the obtained results.

Table 1 Results of running different setups on the data sets F440 and F611; comparison
of spatial vs. non-spatial treatment of data sets; root mean squared error in t/ha is shown,
averaged over clusters/folds; k is either the number of clusters in the spatial setup or the
number of folds in the non-spatial setup. The average yield is around 8-10 t/ha.

F440 F611
k spatial non-spatial spatial non-spatial

Support Vector Regression 10 1.06 0.54 0.73 0.40
20 1.00 0.54 0.71 0.40
50 0.91 0.53 0.67 0.38

Regression Tree 10 1.09 0.56 0.69 0.40
20 0.99 0.56 0.68 0.42
50 0.91 0.55 0.66 0.40

Random Forest 10 0.99 0.50 0.65 0.41
20 0.92 0.50 0.64 0.41
50 0.85 0.48 0.63 0.39

Bagging 10 1.09 0.59 0.66 0.42
20 1.01 0.59 0.66 0.42
50 0.94 0.58 0.65 0.41

4 Management Zone Delineation with HACC-Spatial

The second task in precision agriculture which is summarized in this article is man-
agement zone delineation. In brief, it aims to generate a subdivision of the site under
study into homogeneous zones which are, to a certain degree, contiguous in space.
Further details can be acquired from [25]. From a data mining point of view, this task
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is essentially a clustering challenge where a specific constraint (spatial contiguity)
must be taken into account accordingly.

The underlying idea of HACC-SPATIAL is to adapt hierarchical agglomerative
clustering (HAC) for spatial data sets. In HAC, the clustering of arbitrary objects
starts with each object in a single cluster. Consecutively, two clusters are merged
into one new cluster: the decision which clusters to merge is often done based on
cluster similarity or distance, using an appropriate distance measure. Furthermore,
constraints have been introduced into HAC, leading to hierarchical agglomerative
constrained clustering (HACC): the decision which clusters to merge is not only
done based on the similarity, but also according to constraints which can have two
types. The first is a must-link constraint, which means that two clusters belong into
one cluster. The second is of the opposite cannot-link constraint, which determines
that two clusters must not be merged. The idea of HACC-SPATIAL is now to use
a cannot-link constraint to enforce spatial contiguity of the resulting clusters. Fur-
thermore, in the beginning of the clustering the algorithm strictly enforces spatial
contiguity due to the constraint, while the constraint may be relaxed after a certain
threshold between adjacent and non-adjacent clusters is reached.

The cluster distance is determined in feature space, while the constraint ensures
spatial contiguity in geographic space. For lower-dimensional feature spaces, Eu-
clidean distance is used, while for higher dimensions, due to the curse of dimen-
sionality, the Cosine distance may be used. The details of HACC-SPATIAL can be
obtained from [25].

To exploit spatial autocorrelation (which is typically present in precision agricul-
ture data sets) and reduce the computational burden, HACC-SPATIAL does not start
directly with each data object in a single cluster. Instead, it can safely be assumed
that a few spatially adjacent data objects are similar enough to be put into an initial
cluster. To achieve this initial clustering, a round of k-Means clustering is applied
initially to the spatial coordinates of the data objects. Depending on the heterogene-
ity of the site, the number of initial clusters in the tessellation which is generated by
k-Means should be set in a range of around 100 to N, where N is the number of data
objects to be clustered.

4.1 Results on Different Precision Agriculture Data Sets

The two variables from two actual sites which HACC-SPATIAL will be applied to
are depicted in Figure 1. While the REIP value alone has no practical use in this
zone delineation task, it certainly is of major importance in other YIELD-related
tasks. The experiments are designed such that the algorithm’s results can be easily
visually compared with the actual variable under study. Practically, zone delineation
is often done using the EC variable.

4.1.1 F631

A result demonstrating the different settings of the contiguity parameter is presented
in Figure 2, where the variable EC25 of the F631 field is used for management zone
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Fig. 1 F631: EC25, F440: REIP32. The spatial distribution of the EC25 and the REIP32 vari-
ables clearly exhibits spatial autocorrelation. In the bottom figure, strips of data are missing,
while the underlying distribution can still be identified by a human. An appropriate clustering
algorithm has to be developed to generate management zones from this variable.

delineation. The field is initially tessellated into 250 clusters and the clustering is
run with low and high contiguity settings to compare the results. Clustering with low
spatial contiguity yields mostly non-contiguous clusters (as expected) until spatially
contiguous clusters start emerging towards the very end of the clustering (Figure 2e).
On the other hand, clustering with high spatial contiguity starts showing emergent
clusters after around 200 merging steps (Figure 2b) and subsequent clusters clearly
correspond to the actual variable value (Figure 1a). The clusters are not limited
to convex shapes and account for the irregular shape of the field (missing data,
irregular borders, “holes”). If the clustering in Figure 2f is deemed too coarse, the
hierarchically structured clustering easily allows for subdividing single clusters by
traversing the dendrogram.

4.1.2 F440

In the preceding sections, the main purpose was to show the effect of enforcing or
neglecting spatial contiguity throughout the clustering. This was achieved by set-
ting the contiguity ratio threshold accordingly. A direct comparison of the results
of HACC-SPATIAL when applied to the same input data is provided here. Figure 3
shows the REIP32 variable on the F440 field, clustered by HACC-SPATIAL, show-
ing the stage at which 15 clusters are left. While Figure 3a shows almost no visible
spatial contiguity, this changes gradually towards Figure 3d where the clusters are
clearly spatially contiguous.
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Fig. 2 HACC-SPATIAL on F631, using the variable EC25 (cp. Figure 1a on Page 268), start-
ing with 250 clusters. Clustering with low (left figures) and high (right figures) spatial conti-
guity shows considerable differences in the spatial structure of the resulting clusters. At low
spatial contiguity the algorithm starts producing visible spatially contiguous clusters only to-
wards the end of the clustering (e), while spatially contiguous clusters start emerging much
earlier when clustering with high spatial contiguity (b).
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Fig. 3 HACC-SPATIAL on F440, 120 initial clusters, using the REIP32 variable and demon-
strating the effect of different spatial contiguity settings. While (a) shows spatially rather
scattered clusters, the change in the designed contiguity ratio threshold varies the spatial con-
tiguity of the clusters until spatial contiguity is strictly enforced in Figure (d).

4.2 Clustering Summary

Based on both the practical and the theoretical need for an efficient and under-
standable algorithm for management zone delineation in precision agriculture, a
novel algorithm HACC-SPATIAL has been devised. It is able to exploit spatial au-
tocorrelation in the precision agriculture data and successfully extends hierarchical
agglomerative constrained clustering towards spatial data sets. An algorithmic de-
scription and results on one-dimensional spatial data sets have been presented. The
main parameter contiguity threshold has been experimentally validated and shown
to be successful in three practical data sets.
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5 Environmental Data Mining

The original definition of data mining within the process of knowledge discov-
ery in databases by [6] described it as “the nontrivial process of identifying valid,
novel, potentially useful, and ultimately understandable patterns in data”. The data
collected in environmental sciences such as ecology, geology, remote sensing and
agriculture are by their very nature spatial and/or temporal which are important ad-
ditional properties when it comes to data mining. Hence, it is proposed to extend the
above definition towards environmental data mining as follows:

Environmental Data Mining is the nontrivial process of identifying valid, novel, poten-
tially useful and ultimately understandable patterns in spatial and temporal data from
environmental sciences.

Many of the developed techniques in data mining, though not particularly adapted
for the specifics of environmental data sets, are rather flexible. They can often be
tailored to fit environmental data, such as the regression and clustering problems
presented in this article. Introductions to this increasingly active field can be found
in [8], [13], [12] and [7].

Given the classicals tasks of classification and regression, especially the work in
ecology has started around the year 2000, ranging from neural networks [15] over
bayesian statistics and belief networks [16] to bagging and random forests [22],[1],
[2]. The related task of clustering in environmental data sets has a history that dates
back to 1990 [5], with numerous further applications of fuzzy clustering, such as
in agriculture [19] and remote sensing [20]. A third frequent task in classical data
mining is association analysis, which has also been introduced into ecology [31],
remote sensing [11] and agriculture [4], among others.

With those prerequisites, the term environmental data mining encompasses most
of the existing work under a common umbrella term, while distinctively combining
the fields of environmental sciences and data mining.

Acknowledgements. The implementation is carried out in R [23]. The R scripts are available
on request from the author of this article. The data in this work have been acquired on the
experimental farm Görzig in the federal state Sachsen-Anhalt, in Germany. The data were
obtained from Martin Schneider and Peter Wagner from Martin-Luther-Universität Halle-
Wittenberg, Germany, Lehrstuhl für landwirtschaftliche Betriebslehre.
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Real-Time Data Mining with In-Memory
Database Technology

Matthias Steinbrecher and Joos-Hendrik Boese

Abstract. In the past, classical databases basically came in two flavors: optimized
for write access (OLTP, online transaction processing) or read access (OLAP, on-
line analytic processing). Typical data mining tasks, however, involve preprocessing,
feature extraction, model training and cross-validation which cannot fully be catego-
rized as either flavor. SAP’s in-memory database HANA stores all data cache-aware
in main memory, allowing for rapid transactional and analytical access. While in
common three-tier architectures (database, application server, client), computation-
ally intensive applications run at the application server layer and data is loaded into
the main memory of application servers, enterprise applications developed for or
moved to HANA are more tightly integrated with the database. The main principle
of application development for HANA is to execute data-intensive computations in
the database close to the raw data in order to prevent expensive data movement.
This shift in application design poses new challenges to the application developer:
in order to utilize HANA efficiently, he has to think differently about how to design
his application.We’ll address these challenges, discuss a real-world data analysis
scenario and present some open questions in this area.

1 SAP In-Memory Database

The SAP HANA database management system [2] provides the data management
infrastructure for current and future SAP enterprise applications. The technical
architecture and design of HANA was driven by the significant change of require-
ments on data management in modern enterprise applications, as well as recent
developments in hardware architectures:

Over the last decades, enterprise applications could be classified as either OLAP
or OLTP centric. Today, in most cases, this distinction cannot be made anymore,
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as more and more analytical applications require the immediate availability of op-
erational data to support accurate decision making, while transactional applications
also tend to touch large amounts of data, e.g., to calculate aggregates like sums
of already delivered orders per client [6]. In addition, modern enterprise applica-
tions demand for non-standard features such as planning, optimization or predictive
analysis functionality, which sometimes rely on non-relational data models, such
as graphs or semi-structured data. As speed is a key factor for business success,
response times of query execution for decision making must be in sub-second to
seconds. This requires all data to be kept constantly online for fast querying and an-
alytics. Therefore, HANA keeps the primary copy of its data in-memory to provide
up-to-date data for fast ad-hoc processing in-memory at any time.

To provide a solution for the heterogeneous needs of complex enterprise appli-
cations, HANA embeds multiple storage and query engines supporting different
domain-specific languages and targeting different data models:

1. To support the standard SQL features for enterprise applications, HANA pro-
vides a relational storage and query engine that allows access to relational data
via SQL. The relational store can physically organize data in a column- or row-
oriented fashion, depending on expected data access patterns. Organizing data
along columns bears the advantage of high compression rates and cache-efficient
processing of aggregation and scan operations [5]. Thus, relations that are used
for data-intensive operations are stored in a column-oriented manner. In fact, scan
operations on compressed columns are so fast that in the majority of cases there
is no need to create and maintain indexes, which reduces the memory required to
manage the data.

2. Since valuable insights can be gained from enhancing structured information
with unstructured or semi-structured data, HANA embeds a text engine that sup-
ports text indexing and common text search features, such as fuzzy or phrase
search. Such data can then be “joined” to relations of the relational store.

3. The graph engine provides access to graph structures, as commonly required in
SAP’s planning and supply chain applications. Domain-specific graph languages
are supported to query and manipulate stored graph data.

To access and process the information stored by the different storage engines,
domain-specific languages and extensions to SQL are provided. Besides SQL, sup-
ported languages at the moment are: (i) MDX for multi-dimensional expressions,
(ii) proprietary languages for planning applications, and (iii) various extensions
to SQL, e.g., for text search. Functionality that cannot be expressed in SQL or
one of the domain-specific languages can be implemented using a procedural ex-
tension to SQL called SQL Script. SQL Script is a Real-time Data Mining with
In-Memory Database Technology flexible programming language with imperative
elements such as loops and conditionals allowing to define the control flow of appli-
cations. SQL Script can be coupled with standard (declarative) SQL and operators
defined by HANA’s domain-specific languages. Functionality and business logic
that is frequently used in SAP’s enterprise applications, such as currency conver-
sion, is implemented in a function library natively in the database kernel. These
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functions can be programmed with a maximum degree of parallelism, since the li-
brary developer is in full control and can implement parallel execution on a lower
level. Therefore, these operators are much more tightly coupled with the database
kernel in contrast to classical stored procedures implemented in SQL Script. These
native functions can then be called in procedural SQL Script code. Stored proce-
dures and domain-specific languages are translated into an internal query processing
structure called the “Calculation Model” [3]. Calculation models may contain native
operators implemented by different query engines or operators defined in the native
function libraries. By integrating support for multiple data models and languages,
HANA establishes a holistic data management platform for SAP’s enterprise appli-
cations that allows to speed up existing applications, and enables the development
of completely new types of applications.

To leverage the performance of this new database layer, applications have to be
revised to push application logic down to the data, i.e., from the application layer
into the database. For such analytical applications the database server will be con-
figured not only to serve data input and output tasks but also to have enough com-
putational capabilities to cater for the above-mentioned analysis tasks.

2 Developing the Next Generation of Business Applications

The predominant paradigm for HANA development is to “bring the algorithms to
the data rather than bring the data to the algorithms”. This essentially means to push
application logic down to the database which contrasts the classical three-tier pat-
tern. In the classical architecture the database was considered as the computational
bottleneck and the middle-tier was responsible for processing compute-intensive
operations. The rationale behind this design pattern was that the application server
layer could be easily scaled-out by adding additional machines, while the database
management systems could only be scaled-up, which was uneconomical. Thus, the
database server had to be protected from compute-intensive operations. With the
ever increasing computing power and main memory sizes of modern hardware ar-
chitectures, scaling-up the database server is technically and economically feasible
today as proved by the HANA appliance. It is actually nowadays that memory prices
have declined enough to afford servers that are capable of storing the entire opera-
tional data of a company in-memory.

Having a database management system that integrates heterogeneous domain-
specific features in addition to significant computing power, changes the way SAP’s
enterprise applications can be designed. To make use of the full potential of SAP’s
in-memory computing engine, the developer has to decide about what parts of his
application are data-intensive. This part can then be pushed down into the database,
where it is executed close to the primary data structures of the storage engines.
This eliminates data movement from the database into application servers, which,
in fact, is the main bottleneck for data-intensive applications in traditional three-
tier architectures today. Identifying data-intensive operations is sometimes trivial
and sometimes tricky. Application developers could for example be guided by best
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practices, design patterns, tools for code analysis, profiling, etc. Another approach
is to decide at execution time, whether for a given setting, either data is moved
from the database to the application server or whether code should be shipped to the
database to be executed there.

To utilize the computing power of modern server platforms, user-defined logic
must exploit parallelism provided by the abundance of compute cores. Also, data-
specific code and runtime optimizations must be applied to execute application code
efficiently. Since SAP’s in-memory database technology is evolving from a classical
database system to a multi-purpose data analysis engine, runtime optimizations and
transparent parallelization must also be applied for non-SQL (procedural) parts of
the application code. Focusing on well understood SQL query optimization is not
sufficient anymore. Automatic optimization and parallelization of arbitrary procedu-
ral parts of application code is required. Algorithms implemented in domain-specific
languages or in SQL Script must scale over multiple cores.

One solution is to provide language features that allow application programmers
to describe how the in-memory execution engine can optimize and parallelize user
code: To address different types of application developers, the system can allow for
coding at different levels of abstraction. For example, some application logic can
be implemented using graphical tools such as SAP’s HANA modeler. Incorporating
parallelism hints on this level can be done by providing split/merge operations that
split/merge data streams for parallel processing. Again, other parts of the application
can be directly implemented in SQL Script, where parallelism can be formulated,
for example, using parallel for operations or functional patterns like map/reduce.
At the level below, we can provide an infrastructure that generalizes and modular-
izes existing database-internal algorithms and data structures for easy re-use and
re-combination in application code running in the database system.

For convenient development of arbitrary data-intensive logic in SQL Script, such
a language will need to evolve from a pure procedural SQL extension to a more
complete programming model, supporting features such as modularization, standard
libraries, debugging tools, exception handling, etc. The way these challenges are
addressed and solved are fundamental, since they will define the way we program
future enterprise applications for SAPs in-memory engine.

3 Data Mining Scenario

Let us illustrate the above-mentioned concept of pushing data-intensive operations
down into the database with a real-world application from a medical setting. The
human proteome represents the collective set of proteins that are expressed by
the respective individual’s genome at a given time. The proteome is constantly
changing, indicating metabolic or environmental conditions like stress or digestion.
However, certain proteins (or the lack of them) may indicate a pre-stage to certain
diseases, like cancer. The rationale therefore is to analyze the proteomes of two sets
of patients — healthy ones and those having a certain disease — and to infer pat-
terns (so-called fingerprints) that distinguish the two groups (but are alike between
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patients within the same group). These patterns then can act as biomarkers for the
respective diseases.

A prominent way of displaying the proteome is to use mass spectrography. The
research institute we are cooperating with uses the MALDI-TOF1 mass spectrog-
raphy technique in particular where a blood sample is embedded into a substrate
(the so-called matrix) which is then exposed to a laser beam desorbing and charging
(ionizing) the contained molecules. These ionized molecules (or fragments of them
since they can break apart during the ionization) are then introduced into an elec-
trical field where the fragments are deflected based on their actual mass. A detector
measures the number of impacts of fragments w.r.t. their deflection distance thus
creating a mass-to-charge histogram. The process is depicted in Fig. 1 and a small
portion of a histogram is shown in Fig. 2. The actual ionization and desorption pro-
cess is carried out many times to actually capture the entire substrate surface leading
to a multitude of histograms per blood sample.

Fig. 1 Elements of a modern MALDI-TOF mass spectrometer: (1) Laser, (2) Sample slide,
(3) Acceleration chamber, (4) Drift region, (5) Detector. (picture taken from [1], therein mod-
ified and cited from [4]).

3.1 Raw Data

A typical blood sample results in 1,500 to 2,000 histograms with approximately
100,000 histogram bins each. That is, a sample consists of 150 million up to 200 mil-
lion mass-count pairs (each bin represents a mass and tells the number of fragments

1 Matrix-assisted Laser Desorption/Ionization, Time-of-Flight mass spectrography.
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Fig. 2 Portion of a raw spectrum showing pronounced peaks in between noise (maybe con-
taining latent peaks as well). The yellow dots represent seeded local optima that are used for
peak picking.

Fig. 3 Quantities of the customer’s actual sample database

of that mass that hit the detector). Given as a CSV2 file, the raw data amounts up
to 2 gigabytes of data per sample. In-memory compression reduces this size to just
1 gigabyte inside the HANA database (specific numbers are given in Section 3.4).
Figure 3 depicts the (average) cardinalities involved in the data under analysis.

3.2 Analysis Pipeline

The entire analysis pipeline beginning with raw histograms and finally resulting
in predictive models consists of four major steps of which we illustrate the peak
seeding step in greater detail.

2 Comma-separated values.
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1. Preprocessing
Removal of noise and other systematic errors.

2. Peak Seeding
Identify potential peaks inside the histograms. This is the step for which we il-
lustrate the application of the HANA database.

3. Peak Picking
Taking the seeded peaks and decide which groups form an actual relevant peak
to be used for further pattern induction.

4. Analyses
Use the groups of picked peaks to determine whether they can separate the group
of healthy patients from the ones with a disease.

The above enumeration also illustrates decreasing amount of data: The raw unpro-
cessed data in step 1 does not contain any model aspect yet and makes up for the
largest data volume. Peak seeding returns only those parts of the histogram that
might be candidates for actual peaks, thus introducing some degree of semantic
meaning while greatly reducing the data (down to 10%–20% of the original size).
The remaining two steps further reduce the data size needed to store the actual
model. We use this hierarchy to decide which step is most promising to be pushed
down into the HANA database to expect the largest gain in performance. Empiri-
cal evidence shows that during peak seeding, the largest reduction in data can be
achieved, such that we chose this stage for illustrating the application of HANA’a
calculation engine.

3.3 Data Flow Model

As mentioned above, the calculation engine of the HANA database acts as the glue
that communicates with the different data stores and language layers. The calcu-
lation models that are run by the calculation engine can be specified in two ways:
Implicitly by issuing a query which is internally translated into a corresponding cal-
culation model, or explicitly by specifying a calculation model as an XML fragment
directly to the database. A calculation model is a directed acyclic graph: Root nodes
represent data sources while inner nodes denote the procedures that process the data.
The edges connect the outputs of a node to the input of the next node (if any). A
calculation model is used by the calculation engine to optimize and run the entire
set of calculation nodes. Since the XML version of a calculation model is quite ver-
bose, we use the graph in Fig. 4 to illustrate the way the peak seeding is carried out.
The sample is imported once into the database and exists as an in-memory column
table. Even though the actual data of the histograms are double- and integer-valued,
we can achieve a compression ratio of 1:2 compared to the raw CSV data.

For each available CPU, a dynamic view selects a certain histogram from the in-
memory column table. Each of these views is fed into a peak seeding node which
adds a virtual column denoting which bin of the histogram represents a (potential)
peak. The input views contain two columns: a double-valued column for the mass
and an integer-valued column for the frequency, that is, the number of fragments
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counted with that particular mass value. The left table of Fig. 5 shows an example
of such a histogram. Drawn as a continuous function, such a subset of data looks
like the plot in Fig. 5. Peak seeding now shall tell for each location whether it is a
local maximum or not. For that, the peak seeding procedure adds a new column to
the input data where each local maximum is marked with a 1. All other locations
are marked with 0 (or ? if it cannot be decided like at the borders of the histogram).

The actual peak seeding is carried out by using a sliding window approach to
estimate the first-order derivative. The roots of this sequence of slopes are marked
with 1 (and 0 else). The right table of Fig. 5 depicts a potential output. The imple-
mentation of this approach is done with an internal language. Upon insertion of the
peak seeding procedure code, native machine code is compiled that allows for an
efficient execution during runtime.

Fig. 4 Logical calculation model for peak seeding. Parallelization is carried out on histogram
level. The result (Seeded Peaks) can be either a temporary or materialized table.

3.4 Performance

We carried out measurements with one sample containing 1,680 histograms with
an average of 94,086 bins per histogram (minimal bin count: 20,366, max- imal
bin count: 105,568). The sample in total contained 158,065,304 mass-freq pairs and
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Mass Freq
23.137728 1
23.140790 3
23.156109 3
23.159172 4
23.162237 2
23.262238 2
23.352617 6
23.355694 8
23.358770 4

. . . . . .

⇒

Mass Freq IsPeak
23.137728 1 ?
23.140790 3 0
23.156109 3 0
23.159172 4 1
23.162237 2 0
23.262238 2 0
23.352617 6 0
23.355694 8 1
23.358770 4 ?

. . . . . . . . .

Fig. 5 The left table shows an excerpt of a histogram that is fed into the peak seeding pro-
cedure as a two-column view. The output (right) contains an additional column denoting
whether the respective (mass, freq)-bin is a potential peak (i.e., a local maximum).

had a CSV file size of 2.4 gigabytes. After loading, the in-memory column table
consumes only 1.05 gigabytes. Experiments were run on a HP Z600 workstation
(2x Intel Xeon X5650 six cores @ 2.67GHz, 24 gigabytes RAM, Suse SLES 11).

We randomly selected 20 consecutive histogram views and ran an equivalent of
the calculation plan in Fig. 4 (that is, with 10-fold parallelized peak seeding). The
number 20 was empirically determined to on the one hand equally load all cores
and on the other hand deliver running times that were long enough to get a stable
average. The execution times for the entire model (selecting input views, running the
peak seeding and returning the result views) averaged between 60ms–70ms for 20
histograms. We conducted no representative tests as to how the application behaves
under heavy concurrent requests as the sketched proteomics scenario is embedded
in an analysis pipeline where a large number of users will be relevant only later
in the process, namely when consuming the predictive content based on the results
from the algorithms discussed above.

4 Summary and Next Steps

We presented architectural and technological insights into SAP’s HANA database
platform and derived research challenges for future enterprise application develop-
ment. Additionally, a real-world application was introduced where we applied new
programming paradigms. Early results show great potential for changing the way
data analysis application will be designed and consumed.

In the example above, we chose the peak seeding stage for illustration as it was
the most data-intensive step. However, considering the large number of samples in
a typical proteome library, the latter steps are currently also being pushed into the
database kernel. That is, model induction and prediction are planned to be carried
out entirely inside the database, too.
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Computational Intelligence in Air Traffic
Management

Annette Temme, Ingrid Gerdes, and Roland Winkler

Abstract. The demand for increasing airport capacity combined with many con-
straints as well as the complexity of the data itself leads to the use of heuristic
methods from the computational intelligence domain. More specifically, the focus
in this paper is on how (fuzzy) clustering methods and evolutionary algorithms are
applied on various aspects of the Air Traffic Management domain. Fuzzy cluster-
ing techniques have been used for data evaluation and pre-processing. One task
is the identification and correction of noise and outliers in radar tracks as a pre-
processing step. In addition, clustering has been applied to identify general flight
routes in retrospective analysis tasks as well as to generate fuzzy rules, thus verify-
ing or complementing expert knowledge regarding transfer passenger movements.
Evolutionary algorithms are used to assist air- and ground traffic controllers. Namely
in Rogena (free ROuting with GENetic Algorithms) for route planning and TRACC
(Taxi Routes for Aircraft: Creation and Controlling) for ground movement planning.
Both systems create conflict free routes for aircraft which are suggested to the air-
and ground traffic controllers, respectively.

1 Introduction

The increasing human mobility in the last decades led to growing traffic rates at
most major airports around the world. These airports are usually located in urban
areas where airport expansions are hardly suitable. Finding alternative solutions for
increasing the airport capacity is a very complex task and must be done for each
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airport individually. The ultimate goal is to improve the airport’s performance. To
achieve that, the airport is on the one hand analysed in its current situation and
limiting elements are identified in retrospective evaluations. Relevant data for such
analysis can be flight information data and / or radar data combined with addi-
tional information such as time, aircraft size and type, weather, airline dependent
information, airport layout, and airport regulations. On the other hand, optimisation
techniques are applied to controller assistance systems. The tasks in the Air Traffic
Management (ATM) domain are usually complex and include additional data related
challenges like a very high number of attributes, limited sensor accuracy, missing
values in data sets, and in some cases even manual data gathering. The demand for
increasing airport capacity combined with many constraints as well as the complex-
ity of the data itself leads to the use of heuristic methods from the computational
intelligence domain. More specifically, the focus in this paper is on how (fuzzy)
clustering methods and evolutionary algorithms are applied on various aspects of
the Air Traffic Management domain. Besides the applications described exemplary
here, several approaches to apply fuzzy clustering and soft computing techniques to
traffic problems and aerospace applications in general have been described in the lit-
erature, see e.g. [3, 4, 6, 1, 14]. Fuzzy clustering techniques have been used for data
evaluation and pre-processing by the authors. One task has been the identification
and correction of noise and outliers in radar tracks as a pre-processing step [12].
Fuzzy clustering has also been applied to generate fuzzy rules, thus verifying or
complementing expert knowledge regarding transfer passenger movements [16]. In
addition, clustering has been applied to identify general flight routes [13] and cor-
rect radar tracks [19] as well as part of airport performance evaluation [18]. The last
two are exemplarily presented in this work. In addition, two systems based on evo-
lutionary algorithms are shown: Rogena (free ROuting with GENetic Algorithms)
for route planning and TRACC (Taxi Routes for Aircraft: Creation and Controlling)
for ground movement planning. Both systems create conflict free routes for aircraft
which are suggested to the air- and ground traffic controllers, respectively. The first
two applications presented here are designed for retrospective analysis. The systems
Rogena and TRACC are implemented in test environments for air traffic controllers.
Before such real-time systems are introduced at existing airports, comprehensive
safety tests and evaluations have to be performed. Beyond the scope of this paper
but even more complicated are technological modifications of aircraft, because the
certification procedures are very restrictive here.

2 Fuzzy Clustering

Fuzzy clustering techniques are designed to find a suitable fuzzy partition for a given
data set. For a fuzzy partition a data object is not necessarily assigned to a unique
class or cluster, but has membership degrees between zero and one to each cluster.
The use of fuzzy clustering algorithms has several advantages w.r.t. classical (crisp)
clustering:
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• The membership degrees give information about the ambiguity of the classifica-
tion.

• Fuzzy clustering can adapt to noisy data and classes that are not well separated.
• Since most fuzzy clustering approaches are based on optimising an objective

function, membership degrees represent continuous parameters so that a contin-
uous optimisation problem has to be solved.

• Fuzzy clustering can be applied to learning fuzzy rules from data.

The set of cluster parameters, that determine the size and the shape of a cluster,
depends on the specific application field. In the ATM domain, fuzzy clustering is
mainly used as an explorative data analysis method, especially for unsupervised
classification tasks. For an overview on fuzzy clustering see for example [11].

2.1 Fuzzy Clustering in Airport Performance Estimation

One aim in optimising air traffic management is to use the given resources more
efficiently and thereby increase the performance of airports over time. That implies
that there must be some sort of performance measure for airports in order to evaluate
air traffic management systems. The methodologies applied in such a system have
to be independent from an actual airport’s layout in order to generate comparable
results for all larger European airports. One part of such a measuring system has
been developed by DLR in connection with the Performance Review Unit (PRU) of
EUROCONTROL [5].

In particular, it is measured how well the airspace around an airport for arriving
aircraft is controlled. The two most important indicators for the performance are the
mean travel time and the variance of the travel time for the last 100 Nautical Miles
(NM) before landing. The mean travel time has to be as low as possible to reduce
the mean flight time and the variance should be as low as possible to make flight
times more predictable. More predictable flight times would mean, that flight plans
can be condensed which directly increases the capacity of the traffic system.

The flight time for the last 100 NM depends strongly on the direction of approach
(i.e. the origin of the aircraft) and the current runway configuration because it de-
termines the aircraft’s landing direction. For example an aircraft that can land in
the same direction as it is approaching the airport has to fly a much shorter dis-
tance than another one that has to surround the airport before landing. The runway
configuration is almost entirely determined by the direction and speed of the wind.
Obviously, both factors (direction of wind and origin of an aircraft) are out of con-
trol of the airport and must be taken into account for calculating the performance
indicators.

The performance indicators are calculated using radar tracks of aircraft which
indicate the location of an aircraft once per minute. The data contains all civil air-
craft movements in the European airspace, covering 7 days in May 2005. For each
aircraft, the entry point into the 100 NM radius around an airport is used to deter-
mine its local origin. In Fig. 1, two example data sets are presented, which show
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the first entry observation. The airport is located in the centre and the black dots
represent the aircraft approaching the airport. Some of the groups are too small or
some aircraft approach the airport from an unusual angle, these have to be regarded
as noise because they do not provide sufficient data to make statistically reliable
measurements.

The number of clusters is unique for each airport and the number should be de-
termined automatically. The standard FCM algorithm [2] does not provide the ca-
pability of calculating these properties. Therefore, we use a special FCM like al-
gorithm [18] to cluster these data sets, which has an additional term of repulsion
between the prototypes in order to prevent them being too close together. To deter-
mine the number of clusters, an overestimated number of prototypes is used at the
beginning and those prototypes that did not represent a sufficient amount of data
objects are removed after the clustering has finished. In a second step, the obtained
and yet (due to the repulsion) distorted prototype positions are used to initialise a
standard FCM algorithm. The result of this two-step clustering process is presented
in Fig. 2. The prototypes are represented as circles and the grey shading indicates
the cluster assignment (which is crisp here to make it easier to recognize visually).
Black data objects far away from any prototype represent the noise cluster. Both
examples were calculated using the same parameters which shows the usefulness of
the approach.

The cluster information is then used to calculate for each runway configura-
tion (which is determined in a similar manner) and each approach cluster the mean
travel time and variance in travel time. The resulting values are used in combination
with several other key performance indicators, to determine the performance of an
airport.

Fig. 1 Two typical data sets of different airports. Each dot represents the first measured
position of an aircraft inside the 100NM radius around an airport.
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2.2 DB Scan in Aircraft Position Estimation

One general problem in avionics is to determine the location of an aircraft. The aim
of the approach presented here is to include the developed method into a system for
retrospective movement analysis at an airport. Therefore, the technology to deter-
mine the location has to be as independent of the aircraft as possible. GPS is not
such a system for two main reasons. First, it cannot be guaranteed that all aircraft
have a GPS transponder and can broadcast their location. Second, GPS could fail,
either for technical problems or political intervention. Here, only systems that are
independent of the technology of the aircraft can be used.

In the air, en-route radar systems have relatively slow moving antennas. This
leads to a low accuracy in determining an aircraft’s position and in turn enforces
larger separations. However, on the ground, the location of aircraft must be much
better determined because the aircraft are much closer together than in the air. The
surface radar is not capable of providing the desired level of accuracy. In addition,
it cannot always be guaranteed to have a free line of sight to each aircraft.

A complementary system MLAT (Multilateration) detects the origin of the
transponder signal of an aircraft (Aircraft without a transponder are not allowed
to enter commercial used airspace) by measuring the signal time delay w.r.t. sev-
eral receiving antennas on the airport area. In combination with the surface radar,
the location of an aircraft can be detected in the order of a few 10 meters. To fur-
ther improve the quality, the current location and measured speed of the aircraft is
used to estimate a future location which in combination with the new measurement
improves the accuracy to a few meters.

If the speed of the aircraft becomes very slow, the prediction of the next position
due to the current speed of the aircraft becomes meaningless. The algorithm does
not detect this problem and reports a widely oscillating location of an aircraft around
its true location. In Fig. 3, two examples of such a problematic measurement are

Fig. 2 The clustering result of the two above presented data sets. Black dots indicate the
noise cluster.
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presented. It is necessary to remove these errors in order to detect when and where an
aircraft stops. The exact stop times are important factors for future planning and also
for automatic evaluation of the current situation at the airport. Fraport and DLR have
developed a system to remove the local inaccuracy due to the prediction algorithm
for low aircraft speeds. This will be applied to the tool S.O.D.A. [17] developed
by Fraport. Movement models like addressed in [10] cannot be well applied on
the original data due to the inaccuracy of the measurements. For further analysis
however, an adapted version for aircraft moving on the ground might be well suited.

Each observed track is analysed separately for local ‘clouds’ of position observa-
tions. If such a cloud occurs, it is likely to be a bad observation because an aircraft
does not drive around widely near one spot. The DBScan algorithm [7] is used
to separate ‘good’ from ‘bad’ observations and to estimate their respective correct

Fig. 3 Two problematic observations of aircraft location on the Frankfurt airport. The back-
ground shows parts of the ground structure of the airport.

Fig. 4 The two problematic tracks from above, this time with corrected ‘bad’ observations
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location. The process to handle all exceptional cases is rather complicated, but the
basic idea follows the following three step approach:

• In the first step, DBScan is used on the 3-dimensional location and time values
of each observation, with a low number of core points and a small core radius.
This divides each track into a subset of shorter tracks, separated gaps in space or
time. Many observations in one group means there are no gaps and therefore, it
is likely to be a group of good observations. Such groups are excluded from later
corrections.

• In a second step, clouds are found by applying DBScan again, on the 2 dimen-
sional spatial locations, with a larger number of core points and slightly larger
radius. This ignores long strings of observations and detects dense clouds. For
each cloud separately, the centre of mass is used as the estimated true position of
the aircraft.

• In the third step, all observations belonging to small groups (or the noise cluster)
are corrected to the centre of mass of the clouds that are detected in the second
step. Each cloud defines a time frame for which the aircraft has stopped and this
time frame is used to determine which ‘bad’ observation belongs to which cloud.

The result of this correction process is shown in Fig. 4. With these corrected obser-
vations, a lot of higher level analysis can be done.

3 Evolutionary Algorithms

The theory of evolutionary algorithms was developed as artificial evolution of a pop-
ulation of science problems in form of chromosomes [9]. These chromosomes con-
sist of genes which code different aspects of a possible problem solution. They are
mainly used for optimisation problems with a large solution space. The approach
is adopted from nature with exchange (crossover) or mutation of genetic material
with the goal of creating better solutions over time. The selection pressure is cre-
ated by an evaluation formula depending on important optimisation parameters. It
influences the chance of survival by a selection probability for each chromosome
which is directly connected to the related evaluation value.

A standard evolutionary algorithm starts with the random creation of a population
of binary coded chromosomes as possible solutions which is then evaluated with the
previously defined evaluation formula and the chromosomes for the next generation
are selected randomly. After applying the crossover and mutation operators with a
small probability to each chromosome of the population, the sequence of evalua-
tion, selection, and application of operators starts again until a stopping criterion
is fulfilled. Especially in the beginning particularly fit chromosomes can dominate
the population in the selection phase (so-called super individuals). This can lead
to a lack of diversification in the population and in the end to a loss of good solu-
tions. For coping with these super individuals a modified genetic algorithm called
modGA was developed by Michalewicz [15]. Instead of selecting all chromosomes
and applying the genetic operators to them three different groups of chromosomes
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are created. The chromosomes of the first group have to be different and remain un-
changed, the second group undergoes the crossover and the third group the mutation
operator. With introducing the first group a minimum of diversity is maintained.

3.1 ROGENA (Free ROuting with GENetic Algorithms)

Using predefined flight routes does not scale with increasing traffic. All aircraft have
to maintain a prescribed horizontal minimum separation to other aircraft which de-
pends on the position of the aircraft (glide path of the airport or remaining airspace).
In the first case, aircraft have to use the so called wake vortex separation depending
on the weight of the engaged aircraft and in the second case a horizontal separation
in the range of 5 to 10 NM and 1000 to 2000 feet vertical depending on the flight
level has to be maintained. Furthermore, there are restricted areas which cannot be
crossed.

Today all aircraft have to use prescribed standard flight routes, which often force
the aircraft to fly a detour to reach its destination. This increases not only the flight
time and the cost (fuel, staff) unnecessarily but leaves the main part of the airspace
unused. For manual control of the airspace the advantage of standard routes for
controllers is the limited number of crossing points between routes.

Nevertheless, more flexibility in creation of routes is needed but in this case the
controller will need technical support because of the resulting much more compli-
cated airspace structure. With ROGENA such a technical support was implemented
and tested. The purpose of this tool is the creation of short and conflict free ap-
proach routes with applicable descent and speed profiles inside the TMA. Because
it is common practice to use ‘First Come, First Serve’ in the assignment of flight
routes and keeping the number of route changes caused by non-compliances of other
aircraft as low as possible, not all aircraft routes are optimised at once but step by
step. Only those are reassigned, which have violated their assigned route during the
flight-phase.

Before it is possible to apply an optimisation technique to a problem it is neces-
sary to formalize this problem. In case of ROGENA a square of the airspace around
an airport of 200 by 200 NM was selected. Routes are described as a sequence of
waypoints (links between waypoints) consisting of x-, y- and z-coordinates as dou-
ble values together with data for speed and the used flight level. The number of used
waypoints can differ, but start and end points are predefined. Because no curves are
used for the routes it is necessary to assure a minimal angle between consecutive
links of 90 degrees. Within ROGENA the links of the routes are handled as vectors
in space. Therefore, the position of an aircraft is defined by the following formula:

p = wi +λ (vi+Δvit)t(wi+1 −wi)

where wi = waypoint i, vi = speed at waypoint i, Δvi = speed change per time unit
t
[
m/s2
]
. λ in [1/m] is the reciprocal of the length of the directional vector. For a

possible application of the routes created by ROGENA it is essential to comply to
feasible descent and climb profiles which depend on aircraft type, flight level and
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stall speed (speed of airflow breakaway). Standard speed profiles can be calculated
from aircraft procedure models of the EUROCONTROL BADA-database [8]. Speed
differences between successive way points are processed linear. Restricted areas are
implemented as polygons with a lower and a top level as well as a life time.

As input data for traffic a flight plan with flight id, type of aircraft, enter time for
the observed airspace, landing time and weight class (wake vortex class) for each
aircraft is needed.

Another formalisation is necessary for the holding patterns for aircraft which are
used for increasing punctuality or avoiding conflicts with other aircraft. This holding
pattern is an oval structure with a prescribed size depending on aircraft speed and
flight level. They are approximated by a hexagon with two long and four small legs.

There are two different types of possible conflicts which have to be observed
by ROGENA. The first type are conflicts between moving aircraft, the second type
are conflicts between aircraft and restricted areas. The conflict calculation between
aircraft is carried out by applying the rules of vector analysis. It is done by testing for
easy cases first (e.g. both flights are parallel) and otherwise calculating the point of
time where the minimum distance for each pair of links from two different aircraft
is reached. These points of time are calculated as extreme values of the distance
equation

dis2(t) = ( ∑
i∈{1...3}

(ai − ci +(v1t +Δv1t2)bi − (v2t +Δv2t2)di)
2 = 0

for aircraft 1: (a+(v1+Δv1t)tb, aircraft 2: (c+(v2+Δv2t)td. Solving this equation
leads to a maximum number of three extreme values. If these extreme values are
reached within the time the aircraft occupies the observed link, this value is used
for calculating the closest reachable distance, otherwise the closest time value on
the link (boundary point). For a correct separation between two aircraft not only the
lateral separation should be guaranteed but the vertical separation also. In case of
conflicts the time of the first height violation is calculated for a conflict check.

For the conflict detection between aircraft and restricted areas the intersection
points between all aircraft and area links for the two-dimensional area are calcu-
lated and a comparison between the intersection time with time of validity for the
restricted area is carried out. In case of intersections it is tested whether the critical
part of the aircraft route hits the flight levels occupied by the restricted area.

The evolutionary algorithm of ROGENA is based on the ideas of modGA.
However, problem specific modifications of the modGA have to be included for
a significant improvement of performance (e.g. storing of best five routes of every
generation automatically). The size of the population is set to 60 chromosomes (or
routes) and 20 chromosomes for each of the three groups. Instead of using binary
coded chromosomes double values where used for the waypoint information.

Start-population: The chromosomes of the start population are created with prede-
fined start- and endpoints and speeds and a random number of waypoints between
them. The location of the next random waypoint is determined by evenly dividing
the connection from the last selected point (e.g. start point) to the endpoint by the
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number of remaining waypoints. Then a deviation from x- and y-coordinates using
a normal distribution is carried out. With this approach the new route runs close to
the direct connection.

Evaluation formula: The evaluation function for the chromosomes consists of val-
ues for the length, lack of separation, penalty points for intersecting restricted areas,
penalty points for using incorrect climb and descent profiles, and penalty points for
using to narrow flight angles between successive waypoints. These five parts are
combined with generation dependent weight factors which reflect the changing im-
portance of the different parts of the evaluation function with increasing generation
number.

Selection of chromosomes: For the selection of chromosomes for the first group
it is necessary to define the term different because the use of double values for
the coordinates can lead to many nearly similar routes similar to super individ-
uals. For ROGENA different means either a different number of waypoints or
a certain distance between way points at the same position of the chromosome.
Furthermore, a generation dependent maximal allowed evaluation value is calcu-
lated excluding worse chromosomes from taking part in the selection. The selec-
tion probability for route i is then directly proportional to the evaluation value:

prob(i) =
(

maxEval−eval(i)
sum(maxEvaleval( j)

)
with prob(i) = 0 for routes with evaluation value

greater than maxEval.

Crossing of chromosomes: Because the chromosomes can differ in the number of
waypoints it is necessary to determine the minimum number of waypoints minNr
of two routes. Then two indices as crossover points are selected by random and
the nodes between these indices are exchanged and the standard speeds (see start
population) are reassigned. The flight levels for the exchanged nodes are linearly
determined to the difference between the last waypoint before and the first behind
the crossed part of the route.

Mutation of chromosomes: For ROGENA three different types of mutation are
applied with a small probability:

• Mutation of waypoints (normal distribution for the coordinates of the old way-
point),

• Mutation of the number of waypoints.
• Mutation of a flight level.
• Introducing a holding pattern.

Tests with different scenarios have shown that ROGENA is able to create conflict
free routes which are also short and close to the direct connection and conform
to the conditions for speeds and climb and descent rates without using prescribed
standard routes. Therefore, it is possible to include much more of the today un-
used airspace for a relief of the more and more overloaded traffic situation around
airports.
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3.2 TRACC (Taxi Routes for Aircraft: Creation and Controlling)

TRACC is designed for the use within the DLR Tower Simulator (real-time). The
focus of TRACC is the creation of time-based and conflict free taxi-routes on the
basis of a group of standard routes, which can be changed if required. Furthermore,
time constraints (e.g. take off time) are taken into account. A screen-shot of TRACC
is shown in Fig. 5.

For each new flight the normal standard route used at the observed airport is ap-
plied as a starting point together with a standard speed profile. In the next step this
route is handed over to an evolutionary algorithm which tries to optimise the speed
profile with respect to the time constraints and the movements of other aircraft (as
far as they are already scheduled). In case of conflicts which cannot be solved by
using the standard route, a second evolutionary algorithm is started which is able
to create completely new routes without respect to standard operations. Both evo-
lutionary algorithms are based on the same algorithm type and conflict detection
algorithms (2-dimensional for TRACC) as ROGENA but with several necessary
additions. Because possible taxi routes have to adhere to the taxiway system the
possibilities for the creation of routes are limited. Furthermore, the genes of the
chromosomes consist of nodes of the underlying node-link system (including circu-
lar arcs) instead of coordinates. Exchanging parts of chromosomes does now result
in the necessity to repair the chromosomes by adding the connections between the
old and the new parts of the route. The same is true for the mutation operator and
has led to a substitution of a part of a chromosome by a randomly selected new node

Fig. 5 Airport with underlying node-link structure
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and the necessary new connections. A function for the removal of circular driving
parts is added together with control functions for taxi speeds.

4 Conclusion

In this contribution, we have shown some examples where methods of the compu-
tational intelligence domain have been successfully applied to problems from the
air traffic management domain. Depending on the type of the problem, e.g. data
analysis or optimisation tasks, a suitable method has to be chosen. For the analy-
sis of imprecise radar data, especially fuzzy clustering techniques have proven their
usefulness. Evolutionary algorithms allowed to demonstrate that the use of more
flexible routes will be possible with suitable assistance systems. In addition, with
evolutionary algorithms, it was possible to develop a taxi route generator that is able
to cope with numerous boundary conditions and thus calculates routes comparable
to those that would be chosen by a traffic controller.
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Closing Remarks



About Rudolf Kruse and His Research Group
on Computational Intelligence

Christian Moewes and Andreas Nürnberger

Abstract. The preceeding chapters contain original contributions on the occasion
of Rudolf Kruse’s 60th birthday. These papers are categorized in the four research
areas to which Rudolf Kruse and his research group contributed to, i.e. fuzzy data
analysis, hybrid intelligent systems, uncertainty in knowledge-based systems, and
intelligent data analysis. Each topic spans one part of this book whereas the cor-
responding papers are ordered alphabetically by the last name of the first author.
The fifth part comprises papers that describe the application of computational intel-
ligence methods to real-world data analysis problems. This gives some more histor-
ical insights into the research works of Kruse and his group.

Rudolf Kruse obtained his diploma (Mathematics) de-
gree in 1979 from University of Braunschweig, Ger-
many, and a PhD in Mathematics in 1980 as well as
the venia legendi in Mathematics in 1984 from the same
university. Following a short stay at the Fraunhofer
Gesellschaft, in 1986 he joined the University of Braun-
schweig as a professor of computer science. Since 1996
he is a full professor at the Faculty of Computer Science
of the University of Magdeburg where he is leading the
computational intelligence research group.

Rudolf is the mentor of 20 doctorates and habilitants.
He supervised more than 300 undergrate and graduate
students. Since decades, he is giving lectures about a broad topic of computational
intelligence methods. His group published many student textbooks in German and
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English on many aspects of computational intelligence. Some of the most known
English textbooks are about fuzzy systems [10] and neuro-fuzzy systems [14].
This eventually led to an English student textbook entitled Computational Intelli-
gence [12] which appeared in the Springer series Textbooks in Computer Science in
2012.

Rudolf has coauthored more than 350 referred papers and 40 books. According
to Google Scholar, he has more than 8,000 citations and currently an h-Index of 41.
Kruse is associate editor of 10 scientific journals. He is a fellow of the International
Fuzzy Systems Association (IFSA), fellow of the European Coordinating Commit-
tee for Artificial Intelligence (ECCAI) and fellow of the Institute of Electrical and
Electronics Engineers (IEEE).

The first research area where Rudolf Kruse and his group contributed to is fuzzy
data analysis. Its aim is to analyse both crisp data using fuzzy methods and fuzzy
data using standard methods, e.g. statistics. Kruse and his group published the first
monograph about fuzzy statistics [7]. Already in Braunschweig, he organized work-
shops on that topic, e.g. Fuzzy Systems ’93 – Management of Uncertain Informa-
tion [11]. Even though it was the first of his interests, it is still lively discussed
today, e.g. in the just finished COST Action IC0702 “SoftStat” which focused on
the combination of statistics and soft computing.Also, this year from October 4 to
6, Michael Berthold and Rudolf Kruse chair the 6th International Conference on
Soft Methods in Probability and Statistics in Konstanz, Germany where fuzzy data
analysis will be a major topic. Regarding the industry, Rudolf inspired the develop-
ment of many applications especially dealing with fuzzy clustering [5], e.g. at the
German Aerospace Center.

His second research area focuses on hybrid intelligent systems. There, typically
computational intelligence methods are intelligently combined, e.g. a fuzzy system
with an artifical neural network. Such a neuro-fuzzy system [14] encodes the fuzzy
rules into the network and uses neural network learning algorithms. They can be
used in control [13], classification and function approximation. For the development
of a fuzzy idle speed controller together with Volkswagen AG [6], Kruse and his
group received the outstanding paper award in IEEE Transactions on Fuzzy Systems
in 1996. Working together with VW, one of Kruse’s student used such a hybrid
intelligent system to design an intelligent gear system in the VW New Beatle [16].

Rudolf Kruse also contributed to the research field uncertainty in knowledge-
based systems. Many contributions have been made by Rudolf Kruse’s group to
handle uncertainties, vagueness, incompleteness or partial inconsistency. Kruse’s
monograph [9] on this topic from 1991 was one of the first monographs on Bayesian
networks. Nowadays, his monograph about learning and representing graphical
models has been already extended and published in a second edition [1]. The ES-
PRIT Basic Research Action 3085 (named Defeasible Reasoning and Uncertainty
Management Systems (DRUMS) focused on these methodologies. Rudolf Kruse’s
research group was one of 11 European ones that participated in that project. In
1992, he established a forum for these groups with the European Conferences on
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU).
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The first conference in Marseille, France attracted 140 participants. The confer-
ence proceedings are still published at Springer-Verlag every other year. During
the time of the DRUMS project, 4 books about this topic had been coeditored by
him [8, 2, 15, 3]. Similarly to the DRUMS project, Rudolf Kruse and Giacomo
Della Riccia, the last doctorate of Norbert Wiener who is the originator of cyber-
netics, biannually invited internationally renowned researchers to the picturesque
Palazzo del Torso of the Centre International des Sciences Mécaniques (CISM) in
Udine, Italy. The revised versions of workshop papers were always published in the
series CISM Courses and Lectures which resulted into 7 books featuring varying
topics.

His group in cooperation with Dornier implemented the most like first Bayesian
network in Germany. The research [4] on this topic (see also page 153) let to a
successful outsourced company where 5,000 Bayesian networks are used on a daily
basis.

Most recently, Rudolf Kruse is mainly interested in intelligent data analysis.
Here, his focus is on the development of new learning methods and temporal data
analysis. This book offers a great collection of research questions dealing with this
topic. Most applications he has based his research on stem from collaborations with
rating agencies at the Deutsche Sparkassen- und Giroverband (DSGV), Europe’s
largest automobile club Allgemeiner Deutscher Automobil-Club e.V. (ADAC), Daim-
ler, British Telecom (BT), Siemens, Commerzbank and medical institutes at the Uni-
versity of Magdeburg. The interactive data mining platform Information Miner has
been established during these cooperations and is still in the main focus of ongoing
software development in his group today. It is not only used in lectures to visualize
and enhance intelligent data analysis, it is also presented at the international exhibi-
tion CeBIT in Hannover, Germany every year since 2005. Its presentation enables a
lively technology transfer from Rudolf Kruse’s working group to both industries and
the public sector. He shows the usefulness of the methods by consulting companies
that typically deploy parts of his tools to solve real-world problems.

References

[1] Borgelt, C., Steinbrecher, M., Kruse, R.: Graphical Models: Representations for Learn-
ing, Reasoning and Data Mining, 2nd edn. Wiley Series in Computational Statistics.
John Wiley & Sons, Inc., Chichester (2009)

[2] Moral, S., Kruse, R., Clarke, E. (eds.): ECSQARU 1993. LNCS, vol. 747. Springer,
Heidelberg (1993)

[3] Gabbay, D.M., Kruse, R. (eds.): Handbook of Deafesible Reasoning and Uncertainty
Management Systems, Abductive Reasoning and Learning, vol 4. Kluwer (2000)

[4] Gebhardt, J., Klose, A., Detmer, H.: Graphical models for industrial planning on com-
plex domains. In: Riccia, G.D., Dubois, D., Kruse, R., Lenz, H.J. (eds.) Decision Theory
and Multi-Agent Planning. CISM Courses and Lectures, pp. 131–143. Springer, Heidel-
berg (2006)
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