
Chapter 7
Recent Advances in Cross-Coupling
Reactions with Aryl Chlorides, Tosylates,
and Mesylates

Shintaro Noyori and Yasushi Nishihara

Abstract In the past 10 years, the cross-coupling reactions of the relatively
unreactive electrophilic aryl chlorides, -tosylates, and -mesylates have been
extensively investigated. Strategies to promote oxidative addition toward inert
chemical bonds have included the use of bulky, electron-rich ligands.

Keywords Aryl chlorides � Aryl tosylates � Aryl mesylates � Activation of
unactivated bonds

7.1 Introduction

The palladium-catalyzed cross-coupling reactions of organometallic reagents with
aryl halides are widely used in the field of synthetic organic chemistry. These
reactions are very important for creating novel functional materials and bioactive
substances [1, 2]. Although numerous cross-coupling reactions have achieved the
formation of carbon–carbon bonds via the cleavage of the comparatively weak
bonds of aryl iodides, bromides, and triflates (C(sp2)-I, -Br, and -OTf), the syn-
thetic success of the cross-coupling reactions cleaving the more inert bonds such as
aryl chlorides, tosylates, and mesylates (C(sp2)-Cl, OTs, and OMs) has lagged
behind [3, 4]. In regard to the reaction mechanism, one of the reasons why the
latter substrates have not been utilized in cross-couplings is that oxidative addition
of aryl chlorides, tosylates, and mesylates to the palladium center does not readily
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occur under standard conditions. However, around 2000 it began to be reported
that the appropriate combination of certain ligands with the transition metal cat-
alysts enables cross-coupling reactions of aryl chlorides, tosylates, and mesylates
as coupling partners [5–7]. This chapter outlines the examples of the Ni and Pd-
catalyzed cross-coupling reactions of the relatively inactive aryl electrophiles
reported in recent years, as shown in Eq. 7.1.

Aryl X

X = Cl, OTs, OMs
M = Mg, Zn, Sn, B, Si, etc.

M R
Ni, Pd catalyst

Aryl R+

R = Alkyl, Aryl, Alkynyl etc.
ð7:1Þ

7.2 Kumada–Tamao2Corriu Coupling

In 1984, Tamao and Kumada synthesized the coupled product 1 by using 2,6-
chloropyridine and two different heteroaryl Grignard reagents as coupling partners
under palladium catalysis (Scheme 7.1) [8].

Later, Umeno and Katayama succeeded in the first cross-coupling reactions of
alkyl Grignard reagents with aryl chlorides, rather than heteroaryl chlorides. The
reactions of dichloroarenes with alkyl Grignard reagents afforded the corre-
sponding monoalkylated products 2. The double alkylated products were formed,
but only in very small amounts (Eq. 7.2) [9].

Cl
nPr nPr+ ClMg

R R
PdCl2(dppf) (0,1 mol%)

dppf (0.1 mol%)

68-84%R1 = 2-Cl, 3-Cl, 4-Cl

THF
85 °C, 18-25 h

2

ð7:2Þ

In 1999, Nolan et al. reported that Kumada–Tamao–Corriu coupling reactions,
catalyzed by the palladium complexes having the N-heterocyclic carbene (NHC)
ligands, took place across aryl chlorides bearing electron-donating groups to afford the

N Cl
S

N
Me

BrMg

MeN

N
S

PdCl2(dppb) (1 mol%)

N ClCl

S MgBr

THF

55%

THF
reflux, 1 h

88% 1

Scheme 7.1 Kumada-Tamao-Corriu coupling of 2,6-chloropyridine with two different hetero-
aryl Grignard reagents
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corresponding biaryls 3 (Eq. 7.3) [10]. However, they also reported that the reaction of
a bulky 2,6-dimethylphenyl chloride with 2,4,6-trimethylphenyl Grignard reagents
did not generate a corresponding product at all due to the steric hindrance.

Cl + BrMg
R1 R1

dioxane/THF

Pd2(dba)3 (1 mol%)

85-99%R1 = 4-OMe, 4-Me,
2,5-Me2, 2,6-Me2,
4-HO

R2 R2
IPr•HCl (4 mol%)

R2 = H, 4-Me, 3-Me,
4-F, 2,4,6-Me3,

80 °C, 1-5 h 3
ð7:3Þ

In addition, in 2007 Organ et al. reported that a wide variety of the substrates
could be applied to Kumada–Tamao–Corriu coupling reactions with various het-
eroaryl and aryl chlorides [11]. Recently, Kumada–Tamao–Corriu coupling
reactions of aryl chlorides using nickel catalysts, rather than palladium, have been
reported [12, 13]. Along that trend, Chen revealed that the nickel complexes 4,
ligated by a tetradentate ligand for the Kumada–Tamao–Corriu coupling reactions,
showed a high catalytic activity to generate the desired cross-coupled products 5
(Eq. 7.4) [14, 15].

Ni
N

NN

N

N N

2+

2PF6–

Cl + BrMg
R1 R1

Ni cat. 4 (2 mol%)

62-99%

R2 R2

4

THF
rt, 12 hR2 = H, 2-Me, 4-MeR1 = 4-CF3, 2-Me, 4-Me

2-CN, 3-CN, 4-CN,
4-OMe

N N

N

Cl

Cl

Cl Cl Cl Cl

Cl

Cl

5

ð7:4Þ

Endeavors to perform Kumada–Tamao–Corriu coupling reactions with aryl
tosylates have been underway in recent years. For instance, Kumada–Tamao–
Corriu couplings of electron-deficient aryl tosylates with arylmagnesium reagents
were demonstrated by the research group of Leitner in 2002 [16]. Later, Hartwig
et al. reported coupling reactions with the aryl tosylates having various substitu-
ents in 2005 (Eq. 7.5) [17, 18]. Using palladium catalysts ligated by the bidentate
ligand 6, they clarified the mechanism details of these reactions by elucidating
stoichiometric reactions of the palladium complexes.
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Ar1 OTs + BrMg Ar2

toluene

Pd(dba)2 (0.1-1 mol%)
ligand 6 (0.1-1 mol%)

Ar1 Ar2

PPh2

PtBu2

FeCp

Ar1 = 4-OMe-C6H4
2-OMe-C6H4
4-CF3-C6H4
2,4,6-Me3-C6H4
4-Me-C6H4

1-naphtyl

Ar2 = 4-OMe-C6H4
4-Me-C6H4
4-F-C6H4
2-Me-C6H4

25-80 °C, 1-24 h

40-86%

6

ð7:5Þ

In 2006, Althammer et al. succeeded in Kumada–Tamao–Corriu coupling
reactions of aryl tosylates under palladium catalysis by using the air-stable
phosphonate ligands [19]. It is postulated that an equilibrium (shown in
Scheme 7.2) exists for the phosphonate 7, and the active species can be stabilized
through a hydrogen bond in the reaction system [20].

Knochel et al. have accomplished the cobalt(II)-catalyzed Kumada–Tamao–
Corriu coupling reactions of aryl tosylates [21] and heteroaryl tosylates [22] with
directing groups, achieving the in situ generation of arylcuprates from aryl bro-
mides, Grignard reagents, and copper(I) cyanide.

7.3 Negishi Coupling

Negishi coupling reactions of organozinc compounds with aryl chlorides have
been actively researched as well. In the 1980s, the studies started with the reac-
tions of a variety of activated heteroaryl chlorides such as pyridines [23].

P
RO

RO H

O
P

RO

RO

OH

[Pd], -H

O

P
[Pd]

P

O
H

RO

RO OR

OR

R1 OTs + R2XMg R1 R2

7

Scheme 7.2 Kumada-Tamao-Corriu coupling of aryl tosylates using the air-stable phosphonate
ligands
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In 1994, Bracher and Hildebrand achieved the synthesis of nitramarine (8) by
Negishi coupling of heteroaryl chlorides (Eq. 7.6) [24]. Negishi coupling of het-
eroaryl chlorides is a viable tool in various natural product syntheses to construct
an array of carbon–carbon bonds (see Chap. 3).

K
N

N

ZnCl

N

Cl

THF

Pd(PPh3)4 (4 mol%)
H
N

N

N

+

reflux, 22 h

53% 8

ð7:6Þ

Negishi coupling reactions of the activated aryl chlorides bearing electron-
withdrawing substituents was reported by Miller and Farrell in 1998 (Eq. 7.7) [25].
They accomplished Negishi coupling reactions of aryl chlorides substituted by
cyano and ester groups catalyzed by palladium and nickel as the catalysts, giving
rise to the corresponding biaryls 9.

Cl + XZn
R1 R2 R2R1

X = Br, Cl

Ni or Pd cat.

THF, 25 °C-ref lux

63-89%

R2 = H, 4-Me
R1 = 4-NC, 2-NC, 4-Me

4-MeO2C, 4-EtO2C

(2-6 mol%)

9

ð7:7Þ

Dai and Fu explored Negishi couplings of electron-rich aryl chlorides with aryl-
and alkylzinc reagents by using an electron-donating and bulky tri-tert-butyl-
phosphine as the ligand under the palladium catalysis, giving rise to the corre-
sponding biaryls and alkylated arenes 10 (Eq. 7.8) [26].

Cl + R2ClZn
THF/NMP

Pd(PtBu3)2 (2 mol%)
R2

87-97%

R1
R1

R1 = 4-CO2Me, 4-NO2
2-Me, 4-OMe
4-B(OR)2, 2,6-Me2

R2 = 4-OMe-C6H4
2-Me-C6H4
2,6-Me2-C6H4
sBu, nBu

100 °C, 2-24 h 10 ð7:8Þ
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The analogous Negishi coupling reactions were found to take place, not only
with the palladium catalysts [27–29], but also with the nickel catalysts [30]. For
instance, Wang synthesized the NHC-ligated nickel complex 11 and applied this to
Negishi coupling reactions with a variety of aryl chlorides [31, 32]. Recently, it
was also reported that Negishi coupling of more inert aryl chlorides were smoothly
accelerated under mild conditions by the palladium complex 12 bearing the NHC
ligand (Fig. 7.1) [33, 34].

In contrast to the large number of Negishi coupling reactions of arylzinc
reagents and aryl chlorides reported, in 2009 Buchwald succeeded in Negishi
coupling reactions of secondary alkylzinc compounds and a variety of aryl chlo-
rides by using CPhos as the ligand of the palladium catalyst (Eq. 7.9) [35].

Cl + ClZn
R1 R1

63-89%R1 = 4-CN, 2-CN,
4-CO2Me, 2-CO2Me
4-COH

Pd(OAc)2 (1 mol%)
CPhos (2 mol%)

PCy2

NMe2Me2N
CPhos

R1

+

(22:1-47:1)

rt, 30 min
THF

ð7:9Þ

7.4 Migita–Kosugi–Stille Coupling

In 1998, Li et al. achieved the vinylation reactions of chloropyridine with the
organotin compounds in the presence of the palladium catalyst; this was the key
reaction in the synthesis of 3-AP (3-aminopyridine-2-carboxaldehyde thi-
osemicarbazonea) 13, the ribonucleotide reductase inhibitor (Scheme 7.3) [36].

Ni
NN

Ph2P PPh2

NBn

N N

BnN

Pd

NN

ClCl

N

Cl

12: Pd-PEPPSI-IPent11

Fig. 7.1 Active catalysts for Negishi coupling reactions of various aryl chlorides
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In 2001, Grasa and Nolan succeeded in the synthesis of the corresponding biaryls
by the Migita–Kosugi–Stille coupling reactions of aryl chlorides bearing electron-
poor substituents with aryltin compounds, using the palladium catalysis ligated by
NHC. However, a decrease in yield was observed in the coupling reactions with aryl
chlorides having the electron-donating substituents (Eq. 7.10) [37].

Cl + PhBu3Sn

IPr•HCl (3 mol%)

THF/dioxane

Pd(OAc)2 (3 mol%)

TBAF
R R Ph

H

NN RR

Cl

R = 2, 6-iPr-C6H3

100 °C, 1-48 h
15-91%

R = COMe 91% (1 h)

R = OMe 34% (48 h)

IPr•HCl =

ð7:10Þ

In 1999, Fu and Littke succeeded in the Migita–Kosugi–Stille coupling of aryl
chlorides bearing electronic-rich substituents under palladium catalysis by using
an electron-donating and bulky tri-tert-butylphosphine as the ligand. In addition, it
was disclosed that not only aryltin compounds but also alkenyltin and alkyltin
compounds could be used as the substrates (Eq. 7.11) [38, 39].

Cl + R2Bu3Sn
dioxane

Pd2(dba)3 (1.5 mol%)

CsF
R2

61-98%

R1 R1

R1 = 4-COMe, 4-nBu,
4-OMe, 4-NH2,
2,5-Me2

R2 = Ph, vinyl,
1-ethoxyvinyl,
allyl, nBu

PtBu3 (6 mol%)

80-100 °C, 12-48 h

ð7:11Þ

In 2004 Verkade et al. reported active catalyst systems to accelerate the cou-
pling reactions of more inert aryl chlorides [40]. The electronic density on the
phosphorus atom of the proazaphosphatrane ligands 14–17 (as shown in Eq. 7.12)
is rather large because: (1) the three nitrogen atoms around the phosphorus atom
share the same plane with phosphorus, and (2) the phosphorus atom has an

N

NO2

Cl toluene
+

N

NO2

N

NH2

N

H
N
H

NH2

S

13: 61%

Bu3Sn

Pd(PPh3)4 (1 mol%)
PPh3 (3 mol%)

reflux, 2 h
86%

Scheme 7.3 Vinylation reactions of chloropyridine by Migita-Kosugi-Stille coupling
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interaction with the unpaired electron of the nitrogen atom at the bridgehead. As a
result, the palladium catalysts having this ligand generally show high catalytic
activity toward inert aryl chlorides.

R1 Cl + R2Bu3Sn R1

dioxane
R2

67-99%
R1 = aryl, heteroaryl

ligand 14-17 (3-6 mol%)

Pd2(dba)3 (1.5 mol%)

CsF

R2 = aryl, heteroaryl
vinyl, allyl

P
N N

N

N

R3

R1

R2

14: R1, R2, R3 = iBu

15: R1, R2 = iBu, R3 = Bn

16: R1, R2 = Bn, R3 = iBu,

17: R1, R2, R3 = Bn

60-110 °C, 24-48 h

ð7:12Þ

Although the use of palladium as a catalyst is frequent in the cross-coupling
reactions of aryl chlorides [41–43], in 2006 Zhang reported that copper(I) oxide
can catalyze the coupling reactions of aryl chlorides and aryltin compounds
through the assistance of appropriate activators (Eq. 7.13) [44].

Cl + R2Bu3Sn

P(o-tolyl)3 (20mol%)

KF, TBAB
R2

90-92%

R1 R1

R1 = H, 4-NO2, 4-OMe
4-COMe, 3,5-Me2,

(R1 = OMe : 10%)

Cu2O (10 mol%)

125-130 °C, 11-72 h
neat

R2 = Ph, vinyl,
phenylethynyl

ð7:13Þ

7.5 Suzuki–Miyaura Coupling

In the 1980s, Suzuki–Miyaura coupling reactions of aryl chlorides with organo-
boron compounds were reported for the first time by Terashima (Eq. 7.14) [45]. In
this reaction, the desired bipyridine was obtained from 2-chloropyridine as a
coupling partner by using Pd(PPh3)4 as the catalyst.
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N
Cl +

N
Et2B

Pd(PPh3)4 (5 mol%)
KOH

nBu4NBr

N

N

THF
reflux, 8 h

82%

ð7:14Þ

Through the use of palladium with triarylphosphine ligands, the cross-cou-
pling reactions of a variety of heteroaromatic chlorides were achieved. In the
1990s, it began to be reported that the cross-coupling reactions of arylboronic
acids with aryl chlorides afforded the target biaryls utilizing a substrate bearing
electron-withdrawing groups, such as nitro, cyano, and acetyl groups, in the
presence of the palladium catalysts ligated with arylphosphines [46]. Moreover,
reactions using the catalysts with high turnover numbers (TONs) were reported
(Eq. 7.15) [47]

Cl + (HO)2B

[PdCl(C3H5)]2/Tedicyp

xylene

NO2

F3C F3C

NO2

Tedicyp =
Ph2P PPh2

Ph2P PPh2

TON = 680 000
68%

(10-5 mol%)

130 °C, 20 h

ð7:15Þ

Pioneering research in this field was reported in 1998. Fu accomplished the
cross-coupling of electron-rich aryl chlorides utilizing a bulky alkylated phosphine
ligand (Eq. 7.16, condition A) [48]. Meanwhile, Buchwald succeeded in obtaining
the cross-coupled products in high yields from unactivated aryl chlorides by using
the phosphine ligand 18, consisting of a biaryl backbone (Eq. 7.16, condition B)
[49–52].
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Cl + (HO)2BMeO MeO
Condition A or B

ligand 18 (3 mol%)

Cy2P

NMe2

Condition A

Pd(OAc)2 (1.5 mol%)

CsF
dioxane, rt, 21 h ligand 18

Pt Bu3 (3 mol%)

Condition B

[Pd2(dba)3] (1.6 mol%)

Cs2CO3

dioxane, 80 °C, 5 h

91%89%

ð7:16Þ

Since the initial discovery, a large number of researchers have created a myriad
of these catalysts for effective Suzuki–Miyaura coupling reactions of aryl chlorides
(Fig. 7.2). In recent years, copious examples of the Suzuki–Miyaura coupling
reactions accomplished with highly electron-donating, bulky phosphorus-con-
taining ligands [53–60], the biaryl-type phosphine ligands [61–63], and the NHC
(N-hetrocyclic carbene) ligands [64–67] of the palladium catalysts have been
reported [53, 54, 63, 68].

Enhancements such as milder reaction conditions have also been attained; for
instance, the room-temperature reactions of highly active catalysts have been
developed. In 2004, the NHC ligands with a powerful ability to accelerate Suzuki–
Miyaura coupling reactions toward the bulky and electron-rich substrates were
synthesized (Eq. 7.17) [69]. In these reactions, even if both the aryl chlorides and
the arylboronic acids were sterically congested, the corresponding biaryl com-
pounds were obtained in high yields.

Fe PCy2

MeOPd(OAc)2

Pd

NMe2

Cl

N
N

Ar

Ar

Ar = 2, 6-iPr-C6H3

N
PCy2

MeO

Pd2(dba)3

Pd
N

NN

N

Fig. 7.2 Various palladium catalysts effective for Suzuki–Miyaura couplings of aryl chlorides
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Cl + (HO)2B

Me

Me

Me

Me

Me

Me

Me

Me

Me

Me
toluene

Pd(OAc)2 (3 mol%)

K3PO4

96%

NN

OO

n n

IBox =

110 °C, 16 h

IBox (3.6 mol%)

ð7:17Þ

In 2005, Buchwald similarly reported that the Suzuki–Miyaura couplings
occured for the bulky substrates in water by introducing sodium sulphonate into
the aryl group of the biaryl-type ligands [70]. It was reported that other ligands
involving polymers such as the silica gel, tetraethylene glycol, and polystyrenes
also showed a high performance [58, 71–74]. In the reactions reported by Tsuji,
the TEG-containing ligand 19 captures the metal catalysts, generating coordin-
atively unsaturated catalyst species (Fig. 7.3). The formed active catalysts accel-
erate oxidative addition of the carbon-chlorine bond, leading to the smooth cross-
coupling reactions of the electron-rich aryl chlorides [75–78].

In addition to the aforementioned active catalysts, recently recyclable hetero-
geneous catalysts were synthesized for use in Suzuki–Miyaura couplings [79].
This new type of catalyst consists of nano particles of iron oxide (Fe3O4) on silica
gel; the film-supported catalysts have been used for the Suzuki–Miyaura cou-
plings. The catalysts were found to be easily separable from the reaction mixtures
with a magnet after completion of the reactions, and they can be recycled many
times. Moreover, the catalysts can be applicable to Sonogashira–Hagiwara as well
as Migita–Kosugi–Stille couplings under slightly modified reaction conditions.

CH2

O

O

CH2

CH2

O

O

O

O

O

O

(CH2CHO)4

(CH2CHO)4

(CH2CHO)4

(CH2CHO)4

(CH2CHO)4

(CH2CHO)4

CH3

CH3

CH3

CH3

CH3

CH3

R =P OR

3

19

Fig. 7.3 Active ligand containing the TEG moieties
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Although arylboronic acids have been widely utilized as coupling partners in
the Suzuki–Miyaura coupling reactions of aryl chlorides, in 2004 Buchwald
reported coupling reactions utilizing potassium aryltrifluoroborates [80]. Further-
more, Molander reported Suzuki–Miyaura coupling reactions of aryl chlorides
with alkoxymethyltrifluoroborates (Eq. 7.18) [81] and with cyclopropyl- and
cyclobutyltrifluoroborates (Scheme 7.4) [82].

+ KF3B O
R2

Pd(OAc)2 (3 mol%)
Ruphos (6 mol%)

Cs2CO3

dioxane/H2O

ClR1 R1

O
R2

100 °C, 24 h
R1 = H, 2-Me, 2,6-Me,

3,5-OMe2, 4-pyrrolyl,
3-CN-5,6-(OMe)2,
3-CO2Me, 4-CN,
4-OMe

R2 = Ph, Bn,
4-MeO-C6H4CH2,
tBu, Me3SiC2H5,
cyclopentyl,
5-CHO-2-furyl,
5-COMe-2-thiophenyl

48-86%

PCy2
iPrO OiPrRuphos =

ð7:18Þ

Colobert reported the NHC-ligated-palladium-catalyzed Suzuki–Miyaura cross-
coupling reactions of aryl chlorides with lithium alkynylborates as coupling
partners to give the corresponding internal ethynes (Eq. 7.19) [83].

+ (MeO)3B

Pd2(dba)3 (3 mol%)

CsF

DME/dioxane
C6H13

Li

C6H13

SIPr•HCl (4 mol%)
R R

Cl

reflux, 2-3 h
60-94%R = H, 4-Me, 4-CN,

4-CF3, 4-OMe,
3-Me, 2-Me, 2-OMe

ð7:19Þ

+

KF3B

Cl

KF3B

Pd(OAc)2 (3 mol%)
nBuPAd2 (6 mol%)

Cs2CO3

CPME/H2O

Pd(OAc)2 (3 mol%)

XPhos or nBuPAd2 (6 mol%)
K2CO3

toluene/H2O

R

R = aryl, heteroaryl

52-99%
100 °C, 24 h

100 °C, 24 h
45-82%

R

R

XPhos =

PCy2
iPr iPr

iPr

Scheme 7.4 Suzuki-Miyaura coupling of aryl chlorides with cyclopropyl- and
cyclobutyltrifluoroborates
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In 2010, Dreher synthesized the corresponding biaryls 20 from the subsequent
Suzuki–Miyaura cross-coupling reactions of tetrahydroxydiborane with two dif-
ferent aryl chlorides in one pot (Scheme 7.5) [84].

In this reaction, it is thought that solubility and reactivity are enhanced by using
ethanol as the solvent. The equilibrium between tetrahydroxydiborane (21) and
ethanol creates a variety of ethyl ethers to generate dipinacolboron-like species, as
shown in Scheme 7.6.

On the other hand, Suzuki–Miyaura coupling reactions of aryl mesylates bearing
electron-withdrawing groups, catalyzed by nickel, were reported for the first time by
the research group of Hill in 1995 [85]. Moreover, in 1996 Kobayashi et al. similarly
reported the Suzuki–Miyaura coupling reactions of aryl tosylates and mesylates with
phenylboronic acid in the presence of the nickel catalysts (Eq. 7.20) [86]. Unfor-
tunately, the substrate scope was found to be very narrow, and the reaction only took
place with aryl tosylates and mesylates that have electron-withdrawing substituents.

X + (HO)2B Ph

NiCl2(dppf) (10 mol%)

Zn, K3PO4
PhMeOC MeOC

X = OTs, 40%

X = OMs, 51%

67 °C, 24 h
THF

ð7:20Þ

ClR1
(Het)ArR1

B2(OH)4

EtOH

Pd cat. (2.5 mol%)

BR1

OR2

OR2 (Het)Ar-Cl

Pd
N
H2

Cl
L

Pd cat. =

XPhos (5 mol%)

NaO tBu, KOAc

80 °C, 2 h

R1 = 4-MeO, 4-CF3,
4-F, 2-Me, 3,5-(OMe)2

EtOH
80 °C, 15 h

K2CO3

55-90%R2 = H, Et 20

Scheme 7.5 Suzuki-Miyaura coupling of tetrahydroxydiborane with two different aryl chlorides

B B
OH

OHHO

HO
B B

OEt

OHHO

HO
B B

OEt

OEtEtO

EtOEtOH EtOH

H2O H2O

EtOH

H2O

EtOH

H2O

21

Scheme 7.6 The equilibrium between tetrahydroxydiborane (21) and tetraethoxydiborane
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After 2000, Suzuki–Miyaura coupling reactions of aryl tosylates with arylbo-
ronic acids bearing various substituents were reported by Monteiro using the al-
kylphosphine ligands under nickel catalysis [87]. In 2002 Boggess reported the
coupling reactions of heteroaryl tosylates with arylboronic acids by using the
sterically bulky phosphine ligand, XPhos (see, Scheme 7.4), in the presence of the
palladium catalysts [88]. In 2004 Buchwald et al. reported Suzuki–Miyaura cou-
pling reactions of various aryl tosylates, which greatly contributed to the expan-
sion of the substrate scope (Eq. 7.21) [89].

Ar1 OTs + (HO)2B Ar2

THF or tBuOH

Pd(OAc)2 (2-3 mol%)

XPhos (5-7 mol%)
Ar1 Ar2

80 °C
84-92%

ð7:21Þ

With these nickel catalysts in hand, coupling reactions of a series of aryl
mesylates were reported [90]. The analogous coupling reactions with aryl tosylates
were attained at room temperature by Hu et al. (Eq. 7.22) [91]. As the result of the
precedent works, a large number of reactions were reported using similar ligands
[92–95]. Later, improvements of amounts and ease of handling of the catalysts
were achieved to realize more coupling reactions [96–99].

Ar1 OTs + (HO)2B Ar2

Ni(cod)2 (3 mol%)
PCy3 (12 mol%)

Ar1 Ar2
K3PO4

THF
rt, 8 h

86-99%

ð7:22Þ

Furthermore, it has been reported that the preparation of the corresponding
arylboronic acids from aryl halides, followed by the coupling reactions with aryl
tosylates or mesylates can obtain the target biaryl compounds 22 (Scheme 7.7) [100].

XR

NiCl2(dppp)/dppp
or

NiCl2(dppe)/dppe

toluene
BR

O

O

OH

OH

+ BH3•DMS

0 °C, 30 min

Ni(cod)2 (6 mol%)

R Ar

X = I, Br

PCy3 (18 mol%)
K3PO4

Ar-OTs or Ar-OMs

R = OMe,
COMe

100 °C, 18 h

75-98%

(10 mol%)

THF

25 °C, 12 h

91-98%

0 °C-25 °C, 90 min

NEt3

22

Scheme 7.7 Suzuki-Miyaura coupling with aryl tosylates or mesylates
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7.6 Hiyama Coupling

In 1975 Matsumoto et al. were the first to succeed in the trimethylsilylation of aryl
chlorides bearing a nitro group with hexamethyldisilane (Eq. 7.23) [101]. They
also proved that the carbon–carbon bonds are easily formed by cleavage of the
carbon-chlorine bond in the 2-position, analogous to the reactions with 2,5-di-
chloronitorobenzene as the coupling partner [102].

Cl SiMe3 SiMe3+ Me3Si

100%

NO2 NO2

toluene

Pd(PPh3)4 (0.5 mol%)

140 °C, 18 h

ð7:23Þ

Since the latter half of the 1990s, many researchers have reported coupling
reactions for a variety of aryl compounds bearing the silicon functional groups
[103–106]. Hatanaka and Hiyama expanded the substrate scope in 1996, reporting
the coupling reactions of aryl chlorides bearing various electron-withdrawing
groups with arylsilicon compounds (Eq. 7.24) [107].

Cl + Cl2EtSi

62-95%

PdCl2(P
iPr3)2

KFR1 R1R2 R2

R1 = 4-COMe, 3-COMe,
4-CN, 3,4-F2, 4-CF3

R2 = 4-Me, 4-OMe

DMF
120 °C, 24-48 h

(0.5 mol%)

ð7:24Þ

In addition, Hiyama et al. also reported coupling reactions with alkenylsilicon
compounds (Eq. 7.25). The reactivity of alkenylchlorosilanes was found to be
strongly influenced by the structure of the silyl groups; the cross-coupling reaction
of (E)-1-octenylchlorosilanes bearing a SiCl3 group was the fastest. It should be
noted that these coupling reactions proceeded with the retention of the double
bond geometry of the alkenylchlorosilanes.

Cl +
ClMe2Si

58-91%

PdCl2(PEt3)2

TBAFR1 R1

R1 = 3-COMe,4-CN,
4-CF3

R2 = trans-nBu,
cis-nHex

R2

R2THF
90 °C, 20 h

(0.5 mol%)

ð7:25Þ

Very recently, Verkade et al. synthesized the new phosphine ligand 23, with a
high electron-donating ability, which was found to smoothly undergo the reactions
of various substituted aryl chlorides (Eq. 7.26) [108]. With this catalyst system in
hand, the corresponding biaryls were obtained with the electron-rich aryl chlorides.
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Cl + (MeO)3Si

82-95%

neat or dioxane

Pd(OAc)2 (0.5-1 mol%)

TBAFR R

R = 4-OMe, 2-CF3, 4-CN,
4-CO2Me, 4-COMe,
3,4-OCH2O, 2-Me,
2-naphthyl

P
N N

N

N

iBu

iBu
iBu

N
P

tBu
tBu

ligand 23 (1-2 mol%)

80 °C, 0.5-3 h

23

ð7:26Þ

One of many examples of Hiyama coupling, the reaction of aryl tosylates, has
been reported by Wu in 2008 (Eq. 7.27) [109]. Subsequently, the extended cou-
pling reactions with aryl mesylates were reported by the same research group
[110]. In 2009 Kwong et al. succeeded in more efficient reactions by using the
indole-type ligands under the palladium catalysis [111].

Ar1 OTs + (RO)3Si Ar2

Pd(OAc)2 (4 mol%)
XPhos (10 mol%)

Ar1 Ar2

R = Me, Et

TBAF

THF
80 °C, 10 h

31-99%

Ar1 = 4-tBuC6H4, 4-PhC6H4,
4-EtO2CC6H4, 4-NCC6H4,
4-MeC6H4, 4-CF3C6H4, 2-MeC6H4,
3-pyridinyl, 1-naphthyl, 2-naphthyl,

Ar2 = Ph, 4-MeOC6H4,
2-MeC6H4, 2-thiophenyl

ð7:27Þ

Only one example of a nickel version of coupling reactions of aryl tosylates was
reported; Hiyama et al. very recently accomplished this by using the mixed system
of two different phosphine ligands (Eq. 7.28) [112]. Importantly, an aryl mesylate
also participated in the coupling reaction to give the biaryl.
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Ar OTs +

acetone-DMF (2:1)

PPh3 (5 mol%)
PCy3 (15 mol%)

Ar Ph

Si
Me2

Me

HO

Me

Ph

Ni(PPh3)2Cl2 (5 mol%)

Zn (10 mol%)

80 °C, 20-24 h

62-83%

Cs2CO3 ð7:28Þ

7.7 Sonogashira–Hagihara Coupling

The Sonogashira–Hagihara coupling reactions of aryl chlorides with terminal
alkynes were ardently researched by many chemists in the latter half of the 1980s.
More recently, the Sonogashira–Hagihara coupling reactions of aryl chlorides
bearing the electron-withdrawing groups have gradually been investigated
(Scheme 7.8) [113, 114]. The coupling reaction of 4-chloro-3-cyanopyridine with
phenylethyne gave 4-(phenylethynyl)pyridine, which smoothly underwent the
intramolecular cyclization under acidic conditions to afford 3-pheynl-1H-pyr-
ano[3,4-c]pyridin-1-one (24).

Meanwhile, Lanza et al. synthesized the corresponding arylethynes from aryl
chlorides having a nitro group in the 2-position. They further demonstrated the
synthesis of an indole 25 bearing a substituent in the 6-position by four steps
(Scheme 7.9) [115].

N Cl

CN

Ph

PdCl2(PPh3)2 (2.3 mol%)

Et3N

+

N

CN

Ph

74%

CuI (4.2 mol%) PPA

130 °C, 15 min

N

O
O

Ph

61%
120 °C, 4-6 h

neat

PPA = polyphosphoric acid

24

Scheme 7.8 Sonogashira-Hagihara coupling with aryl chlorides
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Sonogashira–Hagihara coupling reactions with aryl chlorides that bear various
substituents have been manifestly reported since 2000. For instance, in 2003
Plenio reported Sonogashira–Hagihara coupling of the unactivated aryl chlorides
without copper (I) salts as a co-catalyst (Eq. 7.29) [116].

Cl R2

Na2PdCl4 (2 mol%)

Na2CO3/DMSO
+ R2

54-96%

PBn(1-Ad)2•HBr (4 mol%)
CuI (1.5 mol%)R1 R1

R1 = H, 4-OMe, 4-Me,
4-NO2,4-COMe,
4-CF3

R2 = nC6H13,
SiiPr3, Ph

100-120 °C, 4-14 h

ð7:29Þ

In the same year, Buchwald reported that Sonogashira–Hagihara coupling
reactions of a variety of aryl chlorides smoothly proceeded in the presence of the
palladium catalysts ligated by XPhos (see Scheme 7.4) (Eq. 7.30) [117]. This
reaction overcame the prior limitations of substrates. In the past, coupling reac-
tions of aryl chlorides bearing electron-rich substituents at the ortho position had
not taken place easily.

Cl R2

PdCl2(CH3CN)2 (1 mol%)

CH3CN
+ R2

77-97%

XPhos (3 mol%)
R1 R1

Cs2CO3

70-95 °C, 1.5-3 hR1 = 4-CN, 4-Me,
4-OMe, 3-COMe,
2-Me, 2-OMe, 4-nBu,
2,4-Me2, 2,6-Me2,
3-pyridyl, 2-pyridyl

R2 = Ph, tBu,
cyclohexenyl,
CH2OMe, C6H13,
(CH3)3Cl, SiEt3

ð7:30Þ

In 2007, Hua et al. reported the reactions of aryl chlorides affording the sym-
metrical diarylethynes in one pot (Eq. 7.31) [118]. In this reaction, the same aryl
groups can be introduced to both ends of the ethyne by using 1,1-

O

Ph
Cl

NO2

SiMe3

PdCl2(PPh3)2 (1.4 mol%)

Et3N, 75 °C
+

O

Ph
NO2

SiMe3
O

Ph

H
N

75%
25

Scheme 7.9 Synthesis of arylethynes from aryl chlorides having a nitro group in the 2-position
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dimethylpropargylalcohol as a substrate. Although most of the reactions reported
thus far have employed the palladium catalysts [119–125], Prajapati reported the
Sonogashira–Hagihara reactions catalyzed by indium(III) in 2005 [126].

Cl

PdCl2(PCy3)2 (10 mol%)

DMSO
+

77-95%

R RCs2CO3, piperidine
OH

R

R = 4-Me, 4-vinyl,
2-vinyl, 4-(2'-Me)vinyl
2-thienyl, 1-naphthyl

120 °C, 12 h

ð7:31Þ

In 2008 the unsymmetrical diarylethynes were synthesized directly by acti-
vating the silicon–carbon bond of trimethylsilylethyne derivatives with copper(I)
chloride, rather than using the terminal alkynes as the substrates in the classical
Sonogashira–Hagihara couplings (Eq. 7.32) [127].

Cl

Pd(OAc)2 (10 mol%)

DMF
+

10-90%

R1 R1
CuCl (10 mol%)

Me3Si
R2 R2

(-)-DIOP (10 mol%)

120 °C, 3-48 h

R1 = 4-OMe, 4-CF3,
3-CF3, 2-pyridyl,
4-COMe, C6H13

R2 = 4-COMe, 4-CF3,
4-CN, 2-pyridyl,
4-NO2,

ð7:32Þ

In 2003, for the first time, Sonogashira–Hagihara coupling reactions with aryl
tosylates were reported by Buchwald (Eq. 7.33) [128]. In these reactions, slow
addition of the alkynes is essential to form the desired products in high yields.

Ar OTs +

PdCl2(CH3CN)2 (5 mol%)

XPhos (15 mol%)

ArR R
Cs2CO3

C2H5CN

ref lux, 10 h

62-78%
Ar = 4-CN-C6H4,

3-CF3-C6H4,
3,5-(CO2Me)2-C6H4

R = C6H13, Ph,
1-cyclohexene

ð7:33Þ

Recently Kwong has reported Sonogashira–Hagihara coupling reactions with
aryl mesylates by using the indole-containing phosphine ligand 26 (Fig. 7.4, left)
under palladium catalysis [129]. Furthermore, the coupling reactions of aryl
mesylates and -tosylates have been attained more efficiently by using ligand 27
(Fig. 7.4, right) [130].
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7.8 Summary

In this chapter, examples of the cross-coupling reactions with aryl chlorides, -
mesylates, and -tosylates reported in recent years have been introduced. One can
expect to utilize these reactions further for innovative syntheses of natural products
and of functional materials with new physical properties. Moreover, in the future,
not only the carbon–chlorine bond but also more inert bonds will likely be
selectively activated. As a result, the development of new types of cross-coupling
reactions that can precisely introduce the desired substituents at the desired
position may be achieved.
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