
Chapter 4
Pharmaceuticals

Jiao Jiao and Yasushi Nishihara

Abstract This chapter describes the design and development of biologically
active compounds using cross-coupling reactions as key steps. These biologically
active compounds are of both academic and industrial importance. Drug candi-
dates can be prepared from easily available substrates in a few steps through cross-
coupling—underscoring the versatility, effectiveness, functional group tolerance,
and mild reaction conditions of the cross-coupling methods. Due to these advan-
tages, palladium-catalyzed cross-coupling reactions are being utilized in the
industrial production of pharmaceuticals.
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4.1 Introduction

Owing to many pioneering chemists’ unremitting efforts, recent innovations have
replaced earlier protocols to achieve milder, broader, and more efficient catalytic
methods for carbon–carbon bond formations [1–11]. The cross-coupling protocols
are appropriately considered to be the cornerstones for the synthesis of pharma-
ceuticals. These reactions provide new entries into pharmaceutical ingredients of
continuously increasing complexity. Transition-metal catalysts such as Ni, Cu, Rh,
and Ru have been substantially developed in the synthesis of drugs or their precursors
[12–16]; however, Pd catalysis, with its high activity and mild reaction conditions,
has considerable potential in large-scale applications for pharmaceuticals.
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4.2 Suzuki–Miyaura Coupling

The most representative coupling for the synthesis of pharmaceuticals is the Su-
zuki–Miyaura coupling, which has been widely studied in the past decade. One of
the earliest examples of industrial-scale Suzuki–Miyaura coupling in pharma-
ceuticals was reported in 1999 [17], which described the synthetic pathway of SB-
245570, a candidate for the treatment of depression (Scheme 4.1). This synthesis
was efficient and inexpensive. The Pd/C-catalyzed Suzuki–Miyaura coupling
provided access to the desired product, and reaction in MeOH/H2O gave an
improved product yield with a residual Pd level of \6 ppm.

Cameron et al. published the preparation of a GABAA R2/3 agonist for the
treatment of generalized anxiety disorder (Scheme 4.2) [18]. The biaryl system
was assembled from the palladium-catalyzed Suzuki–Miyaura coupling of an aryl
bromide with an arylboronic acid. The arylboronic acid was prepared via ortho-
lithiation of 4-chlorofluorobenzene with lithium 2,2,6,6-tetramethylpiperidine,
followed by a B[O(i-Pr)]3 quench and acidic workup [19, 20].
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3-Amino-2-phenylpiperidines are important pharmacophores because of their
role as potent, non-peptidic NK1 receptor antagonists such as CP-99,994 and
GR203040 (Fig. 4.1).

Caron and co-workers have reported Suzuki–Miyaura coupling to prepare 3-
amino-2-phenylpyridine, a key intermediate in the preparation of 3-amino-2-
phenylpiperidine [21]. The in situ protection of 3-amino-2-chloropyridine with
benzaldehyde, followed by Suzuki–Miyaura coupling with phenylboronic acid and
the subsequent acidic hydrolysis provides 3-amino-2-phenylpyridine (1) in a sin-
gle, high-yielding step from inexpensive and commercially available starting
materials (Scheme 4.3).

Jensen has described the synthesis of a GABAA R2,3-selective allosteric mod-
ulator 2, a potential treatment for central nervous system conditions, in high yield
by Suzuki–Miyaura coupling of imidazopyrimidine with 3-pyridylboronic acid
(Scheme 4.4) [22]. This synthetic method highlights the versatility of Pd-catalyzed
Suzuki–Miyaura coupling.
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Itami and Yoshida have described a sequence of double Mizoroki–Heck reac-
tions of the vinylboronate pinacol ester with aryl halides, followed by Suzuki–
Miyaura coupling of the generated b,b-diarylvinylboronates with alkyl halides
(Scheme 4.5) [23], to very efficiently produce pharmaceutically important 1,1-
diaryl-1-alkenes 3 (Fig. 4.2). In the Pd-catalyzed Suzuki–Miyaura coupling step,
the use of bulky electron-rich ligands such as PtBu2Me and PCy2

t Bu was found to
be very effective.
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A versatile methodology for the synthesis of 4-aminoquinoline derivatives 4
(antimalarial drugs) using C(sp2)-C(sp2) Suzuki–Miyaura cross-coupling reactions
as key steps is presented in Scheme 4.6 [24]. These methodologies provided the
novel synthesis of a variety of aryl- and alkyl-substituted 4-aminoquinoline ana-
logs by a general protocol, which allowed the convenient introduction of diversity
using Suzuki–Miyaura couplings between aryl bromides and commercially
available arylboronic acids.

A versatile and direct synthesis of multi-substituted olefins has been developed
by the regioselective formation of zirconacyclopentenes, followed by Pd-catalyzed
cross-coupling and sequential Suzuki–Miyaura coupling with various aryl iodides
(Scheme 4.7) [25]. (Z)-Tamoxifen, a widely used treatment for all stages of breast
cancer, can be successfully synthesized via this methodology with high regio- and
stereoselectivities ([99 %).

Wehn has demonstrated a novel approach to the synthesis of the substituted 5-
amino- and 3-amino-1,2,4-thiadiazoles beginning from a common precursor
(Scheme 4.8). Derivatization by palladium-catalyzed Suzuki–Miyaura coupling
enables an efficient supply of analogs around this pharmaceutically relevant core
(Fig. 4.3) [26].
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Saadeh has reported a one-pot synthesis of several 5-aryl-1-methyl-4-nitroim-
idazoles 5, which exhibit potent lethality against Entamoeba histolytica and
Giardia intestinalis, through Suzuki–Miyaura coupling between 5-chloro-1-
methyl-4-nitroimidazole and a variety of arylboronic acids (Scheme 4.9) [27].
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Jiang and Prasad have used this methodology in the synthesis of a phospho-
diesterase-4 inhibitor 6 for the treatment of chronic obstructive pulmonary disease
and asthma (Scheme 4.10) [28]. The desired drug substance 6 was obtained in
58 % yield. After recrystallization using 10 % water in acetonitrile, less than 1 %
of the cis-isomer remained. The remaining 1 % of undesired cis-isomer was lar-
gely isomerized to the trans-isomer using phosphorus oxychloride at 110 �C.

Vanelle has reported a synthetic pathway for diarylquinazolines 7, which display
significant pharmaceutical potential, starting from 4,7-dichloro 2-(2-methylprop-1-
enyl)-6-nitroquinazoline and using microwave-promoted chemoselective Suzuki–
Miyaura cross-coupling reactions (Scheme 4.11) [29].

Very recently, Lee investigated a new catalytic system based on the palladium-
amido-N-heterocyclic carbenes for Suzuki–Miyaura coupling reactions of het-
eroaryl bromides and chlorides with 4-pyridylboronic acids to produce a precursor
of milrinone (Scheme 4.12) [30].
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Also, Qian recently designed and synthesized a series of 5 non-amino aromatic-
substituted naphthalimides 8 from naphthalic anhydride by three steps, including
bromination, amination, and Pd(PPh3)4-catalyzed Suzuki–Miyaura coupling
(Scheme 4.13) [31]. Compared with the current state-of-the-art antitumor agent,
amonafide, these new naphthalimide derivatives not only exhibited better antitu-
mor activity against HeLa and P388D1 cancer cell lines in vitro, but they also may
have fewer side effects.

Zeni has reported the palladium-catalyzed Suzuki–Miyaura coupling reactions
of a variety of arylboronic acids with 4-iodo-2,3-dihydroselenophene derivatives
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to afford 4,5-diaryl-2,3-dihydroselenophenes 9 (Scheme 4.14) [32]. The sub-
sequent dehydrogenation of these 4,5-diaryl-2,3-dihydroselenophenes 9 were
activated by DDQ, and the corresponding 2,3-diarylselenophenes were obtained in
good yields. The 2,3-diarylselenophenes were found to be effective in counter-
acting lipid and protein oxidation as well as scavenging 2,20-azino-bis(3-ethyl-
benzothiazoline-6-sulphonic acid (ABTS) radicals. These findings indicate that
2,3-diarylselenophenes are prototypes for future drug development programs to
treat disorders involving reactive oxygen species.

Boranes and boronic esters can also be efficiently employed, rather than the
boronic acids, as the coupling partners with aryl or alkyl halides [33–38]. Lipton
has reported the large-scale synthesis of 10, a potential central nervous system
drug candidate. The key step was the Suzuki–Miyaura coupling reaction of
methyl-3-bromophenylsulfone and diethyl-3-pyridylborane (Scheme 4.15) [39].
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4.3 Negishi Coupling

Negishi coupling, another widely applied synthetic pathway for building carbon–
carbon bonds in pharmaceuticals, has also undergone extensive advancements in
the past decade [40–42]. Chemists such as Knochel [43] and Uchiyama [44, 45]
have developed milder reaction conditions for the preparation of organozinc
reagents bearing sensitive functional groups such as alcohols and aldehydes. These
new methods should find broad applications in the synthesis of complex
molecules.

Ku and coworkers incorporated Negishi coupling in the scalable synthesis of A-
224817.0 1A, a non-steroidal ligand for the glucocorticoid receptor, which can be
used for the treatment of inflammatory diseases and with fewer side effects than
the preceding therapeutic agents. The synthesis was accomplished in a few steps,
starting from 1,3-dimethoxybenzene. The biaryl intermediate was prepared by an
optimized high-yield and high-throughput Negishi protocol (Scheme 4.16) [46].

Scott has described the synthesis of AG-28262 11, a promising VEGFR kinase
inhibitor (Scheme 4.17) [47]. The precursor of this molecule was achieved via Pd-
catalyzed Negishi coupling. This procedure was repeated for a total of seven
batches; the crude product was purified to provide a total of 1.5 kg of 11 with
[95 % purity in a 63 % overall yield.
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Pannecoucke has developed a highly stereo-specific synthesis of (E)- or (Z)-a-
fluoro-a,b-unsaturated ketones via a kinetically controlled Negishi coupling,
providing easy and general access to valuable fluorinated intermediates for phar-
maceuticals and peptide mimics (Scheme 4.18) [48].

Liu and Xiang assembled adapalene (Differin�), a synthetic retinoid for the
topical treatment of acne, psoriasis, and photoaging, via the ZnCl2-mediated
Negishi coupling of a Grignard reagent and an aryl bromide (Scheme 4.19) [49].
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A scalable synthetic route to [4,70]bis-isoquinolinyl-1-yl-(2-tert-butyl-pyrimi-
dine-5-yl)amine, an inhibitor of B-Raf kinase, was described by Bänziger and
Yusuff (Scheme 4.20) [50]. The key step in this synthesis is the Pd-catalyzed
Negishi coupling of 4-bromo-1-chloroisoquinoline with trifluoromethanesulfonic
acid isoquinoline-7-yl ester to yield the molecule 12. This cross-coupled inter-
mediate was transformed to the desired drug by an amination reaction with 2-tert-
butyl-5-aminopyrimidine in the presence of NaH. Special care had to be taken to
ensure complete removal of traces of Zn and Pd from the final drug substance.
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Pérez-Balado has developed a practical and scalable synthesis of 2-chloro-5-
(pyridin-2-yl)pyrimidine 13, an intermediate to a selective PDE-V inhibitor
(Scheme 4.21) [51]. Negishi cross-coupling between the in situ prepared 2-pyr-
idylzinc chloride and 5-iodo-2-chloropyrimidine, catalyzed by Pd(PPh3)4, can
afford the product 13 in one step.

Knochel has demonstrated that the acidic hydrogens of amines, alcohols, and
phenols are compatible with Negishi cross-coupling conditions and do not require
the use of protecting groups (Scheme 4.22) [52]. The reaction conditions use
Buchwald’s S-PHOS, which allows general Pd-catalyzed Negishi cross-coupling
of functionalized alkyl, aryl, heteroaryl, and benzylic zinc reagents with aryl
halides bearing amide or sulfonamide functionalities in spite of their acidic
hydrogens.
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Furthermore, many antiarrhythmic agents (Bristol–Myers Squibb) have been
prepared by Knochel et al. in 92–97 % yields by the direct Negishi coupling of
aromatic and heteroaromatic zinc reagents under standard conditions (Scheme 4.23).

In addition, sodium channel blockers 14 (Merck) were synthesized from the
corresponding primary amide and zinc reagents in 94–97 % yield (Scheme 4.24).

Kwak has developed an efficient and convenient Negishi coupling protocol for
the preparation of 3-aryl-2,2-dimethylpropanoates 15, providing easy access to key
pharmaceutical intermediates that would otherwise require multi-step syntheses
using conventional enolate chemistry (Scheme 4.25) [53].
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Kennedy-Smith and Sweeney have reported the synthesis of non-nucleoside
reverse transcriptase inhibitors (NNRTIs), which are important components of
antiretroviral therapy for the treatment of HIV infection [54]. A pyridone com-
pound, which was found to strongly inhibit the polymerase activity of wild-type
HIV reverse transcriptase, was successfully synthesized from compound 16
(Scheme 4.26). Negishi coupling was involved as one of the key steps to install the
acetic acid functionality, giving rise to intermediate 17.

4.4 Migita-Kosugi-Stille Coupling

The Migita-Kosugi-Stille Coupling has not been widely used in the large-scale
manufacturing of pharmaceuticals. This is mainly due to the toxicity of the or-
ganotin reagents and the difficulty of purging tin-containing by-products from drug
intermediates and active pharmaceutical ingredients. Despite these issues, many
organotin reagents used for Migita-Kosugi-Stille Coupling are widely available,
stable to air and moisture, and compatible with a variety of functional groups.

Ragan has incorporated the Migita-Kosugi-Stille Coupling of imidazolylst-
annane and iodothienopyridine into the synthesis of a VEGFR kinase inhibitor 18,
a compound with promising antitumor activity (Scheme 4.27) [55]. An exhaustive
survey of coupling reactions revealed this Migita–Kosugi–Stille approach to be the
only robust and scalable method for the coupling of the imidazole and thieno-
pyridine rings.
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Gundersen has reported the synthesis of 6-benzofuryl- and styrylpurines 19, in
which Migita-Kosugi-Stille coupling was involved as a synthetic strategy to
achieve the target molecules with regioselectivity (Scheme 4.28) [56]. Several of
these compounds displayed profound antimycobacterial activity with low toxicity
toward mammalian cells.

Wada developed cesium-fluoride-promoted Migita-Kosugi-Stille Coupling
reactions of vinyl triflates with an alkenylstannane bearing an electron-with-
drawing group. These methodologies were then adopted for the preparation of the
9Z-retinoic acid (9CRA) analogs (known metabolites of vitamin A and ligands of
the retinoid X receptor) having a 2-substituted benzo[b]furan [57]. Treatment of 2-
substituted 3-iodobenzofurans (derived from 2-alkynyl-1-(1-ethoxyethoxy)ben-
zenes) with the alkenylstannane in the presence of cesium fluoride, copper iodide,
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and with Pd(PPh3)4 as the catalyst, afforded the coupled products 20 in good yield
without isomerization of the double bonds (Scheme 4.29).

Gao has recently described an improved synthesis of precursors for the positron
emission tomography (PET) radioligands [18F]XTRA and [18F]AZAN, involving a
key Migita-Kosugi-Stille Coupling step, followed by deprotection of a Boc group
and N-methylation sequences (Scheme 4.30) [58].

4.5 Kumada-Tamao-Corriu Coupling

Because of the high reactivity of Grignard reagents relative to other organome-
tallic species, the scope of Kumada-Tamao-Corriu Coupling for the large-scale
synthesis of pharmaceuticals has been limited. Long has reported the coupling
reaction of 2-bromopyridine and arylmagnesium bromide to prepare a biaryl
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compound, an intermediate in the synthetic route to the HIV protease inhibitor
atazanavir (Reyataz�), as shown in Scheme 4.31 [59].

Manley has employed Kumada-Tamao-Corriu Coupling of 4-chloropyridine and
arylmagnesium bromide to prepare a biaryl compound, followed by further reactions
to prepare compound 21, an inhibitor of the phosphodiesterase-4D isoenzyme that
could potentially be used in the treatment of asthma (Scheme 4.32) [60].

Marzoni and Varney applied the methylation of an aryl iodide under Kumada-
Tamao-Corriu Coupling conditions for their improved synthesis of compound 22.
This is an intermediate to a thymidylate synthase inhibitor 23 which has potential
for the treatment of cancer (Scheme 4.33) [61].
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4.6 Sonogashira–Hagihara Coupling

Prasad has developed an elegant process for the one-pot coupling of an aryl
bromide and a heteroaryl bromide via stepwise Sonogashira-Hagihara reactions
with an acetylene linker masked as 2-methyl-3-butyn-2-ol for the synthesis of an
antimitotic agent 24 (Scheme 4.34) [62].

Hartner developed a series of Sonogashira–Hagihara coupling reactions, in
which various alkynes were coupled with 2,5-dibromopyridine at both bromo
positions, for the preparation of key intermediates to aVb3 antagonists 25
(Scheme 4.35) [63]. These are potential agents for the treatment for osteoporosis.
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Ripin has described the synthesis of the anti-cancer agent (CP-724, 714) 26 on a
multi-kilogram-scale using several different synthetic routes (Scheme 4.36) [64].
Applications of the Sonogashira–Hagihara and Mizoroki–Heck couplings to this
synthesis have been investigated, seeking a safe, environmentally benign, and
robust process for the production of this drug candidate.

Peng has developed the synthesis of a series of 3-arylethynyltriazolyl ribonu-
cleosides 27 via a microwave-assisted Sonogashira–Hagihara coupling reaction
(Scheme 4.37); these products show promise vis-à-vis anti-cancer activity on the
drug-resistant pancreatic cancer cell line MiaPaCa-2. The Sonogashira–Hagihara
coupling reactions between the 3-bromo-triazole nucleoside and various alkynes
were followed by ammonolysis to give the deprotected nucleosides 27 [65].
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Yu and coworkers commenced a synthetic route to the TRPV1 receptor
antagonist 28 with Sonogashira–Hagihara coupling of an aryl chloride and tert-
butylacetylene (Scheme 4.38) [66]. In general, aryl chlorides exhibit poor reac-
tivity in the Pd-catalyzed Sonogashira–Hagihara coupling reactions (See Chap. 7);
however, an aryl chloride activated by the electron-withdrawing trifluoromethyl
and nitrile groups smoothly couples with very low catalyst loading, using the
sterically hindered and electron-rich DavePhos as the ligand [67].

Berliner has developed a Sonogashira–Hagihara reaction of propyne gas and
iodoresorcinol for the synthesis of 4-hydroxy-2-methylbenzofuran 29, a core
intermediate to several compounds of pharmaceutical interest (Scheme 4.39) [68].

4.7 Summary

Palladium-catalyzed cross-coupling is clearly a powerful tool to synthesize phar-
maceuticals not only for academic research but also for industrial applications.
This chapter has demonstrated the versatility of these reactions. In the design and
synthesis of biologically active molecules, serious consideration must be given to
important factors such as: reactivity of functional groups, stereo- and regioselec-
tivity, toxicity of potential residual contaminants, and efficiency of yield. These are
all aspects in which the aforementioned cross-coupling models provide
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exceptional and innovative opportunities for the modern process chemist. In
addition, considering the myriad of advancements seen in the past decade, many
new discoveries should soon offer even more practical and reliable methods of
cross-coupling for the large-scale manufacturing of pharmaceuticals.
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