
Chapter 3
Natural Product Synthesis

Yasuhiro Okuda and Yasushi Nishihara

Abstract The synthetic routes to the natural products are designed with consid-
eration of the structures of the reagents, functional group tolerance, total yields,
and the environmental benignness of wastes. In natural product syntheses, the
cross-couplings as carbon–carbon bond-forming reactions have been widely uti-
lized for the construction of fragments as the key steps in the total syntheses.
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3.1 Introduction

Natural organic compounds with specific chemical structures and bioactivities
have intimate relationships with pharmaceuticals, dyes, spices, etc., and are thus
extremely important industrially. Frequently, only a small amount of a natural
product can be harvested from its naturally occurring source; in these cases,
organic synthesis is necessary if a large amount of the natural product is required.
Furthermore, the synthetic route is often simply more cost-effective or practical.
Some naturally occurring products with unique physical and chemical properties
are preferable for the production of fine chemicals. In fact, the proportion of these
products supplied from nature is only about 5 %. This extensive demand implies
that partial or total synthesis is necessary and indispensable [1].

Although a variety of organic reactions (e.g., aldol reactions and Grignard
reactions) have been conventionally used for carbon–carbon bond formation in
natural product syntheses, these reactions are not able to satisfy some demands due
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to a low selectivity and due to substrate limitations. However, the cross-coupling
reactions are widely accepted as carbon–carbon bond-forming methodologies that
can achieve high selectivity and functional group tolerance in the synthesis of
natural products with complicated chemical structures [2].

Considering the establishment of convergent synthesis and the easy availability
of starting materials in natural product syntheses, the cross-coupling methods
introduced in this publication are very powerful strategic tools for carbon–carbon
bond formation. However, when the target molecules are synthesized with these
cross-coupling reactions, appropriate selection of substrates and reagents is
essential. This chapter will review recent examples of how the cross-coupling
reactions have been used in practical natural product syntheses.

3.2 Kumada–Tamao–Corriu Coupling (sp3–sp2)

Because the highly reactive Grignard reagents can be employed in Kumada–
Tamao–Corriu coupling, these reactions have been applied to natural product
syntheses in recent years. Kumada–Tamao–Corriu coupling is advantageous due to
the utility of commercially available Grignard reagents. For example, a precursor of
(-)-hennoxazole A was synthesized selectively and quantitatively by methylation
of the substrate bearing a protected hydroxy group with methylmagnesium bromide
under palladium catalysis (Scheme 3.1) [3].

Since Kumada–Tamao–Corriu coupling lacks functional group tolerance, its
utilization in the final stages of synthesis of the natural products is rare. However,
there is a natural abundance of magnesium with the eighth Clark’s number (1.93
wt %), and the preparation of Grignard reagents is relatively easy. Thus, Kumada–
Tamao–Corriu coupling can play an important part in synthesis if the substrates are
stable enough toward Grignard reagents. Hereafter, more examples of Kumada–
Tamao–Corriu coupling as the key step in an overall synthesis will be introduced.
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E/Z stereoisomerization is known to be one of the side reactions in the nickel-
catalyzed Kumada–Tamao–Corriu coupling of alkenyl halides with Grignard
reagents. However, this isomerization has been utilized for the selective synthesis of
(-)-zampanolide by manipulating the steric effect of the substituent (Scheme 3.2)
[4]. In this method, a selective synthesis of the trisubstituted dienyne as a target
product was attained by the introduction of an alkynyl group stereoselectively
through Sonogashira–Hagihara coupling and the subsequent isomerization of an
olefinic moiety during the Ni-catalyzed Kumada–Tamao–Corriu coupling. Thus,
this example shows the advantageous features of the Ni-catalyzed Kumada–Tamao–
Corriu coupling—appropriate selection of the substituents and ligands enable control
of the stereoselectivity of the products. In this reaction, the undesired side reaction
does not take place at all, even under basic conditions, and the cross-coupling of aryl
halides with achiral Grignard reagents can be achieved without isomerization.

Furthermore, in the next synthetic pathway, the catalyst was carefully selected.
Ni(acac)2, which does not contain the phosphine ligands, was used for the enan-
tioselective synthesis of (S)-macrostomine (Scheme 3.3) [5]. This result suggests
that Kumada–Tamao–Corriu coupling has the drawbacks of poor selectivity and of
substrate limitations. However, this reaction is an economical and preparative
approach to natural product syntheses when substrates that are highly reactive
toward Grignard reagents are not involved.
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3.3 Sonogashira–Hagihara Coupling (sp–sp2)

Sonogashira–Hagihara coupling is often employed in the natural product syntheses
owing to its ability to construct enyne frameworks through the formation of
carbon(sp)–carbon(sp2) bonds. In general, in the natural product synthesis, the
reactive substrates are first masked by a protecting group and economical bases
such as triethylamine or diisopropylamine and copper iodide (CuI) are often used
as essential reagents. Sonogashira–Hagihara coupling proceeds with high func-
tional group tolerance under mild conditions, and often gives excellent results to
afford molecules with complex structures. The total synthesis of paracentrone,
shown in Scheme 3.4, is a representative example showing that Sonogashira–
Hagihara coupling can be applied to a substrate bearing a reactive epoxide moiety
which remains intact during the reaction [6].
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The air-stable PdCl2(PPh3)2 is often used for the palladium catalyst of Sono-
gashira–Hagihara coupling, instead of a Pd(0) complex, because PdCl2(PPh3)2 is
reduced promptly during the reaction to form the Pd(0) species. Scheme 3.5 shows
the demonstration of PdCl2(PPh3)2 as a Pd precursor in the total synthesis of (-)-
disorazole C1 [7].

In the total synthesis of bongkrekic and isobongkrekic acids shown in
Scheme 3.6, conjugate enynes were first synthesized by Sonogashira–Hagihara
coupling. Then, chemoselective reduction of the alkyne moiety transformed the
coupled product into the conjugate diene 1 and 2 [8]. In this reductive reaction, an
excess amount of copper/silver activated with zinc was found to be the best
synthetic method, since the chemoselectivity was fairly low when the syn reduc-
tion of the conjugate enyne by Lindlar’s catalyst was attempted [9, 10].
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Sonogashira–Hagihara coupling of aryl halides/triflates with terminal aryle-
thynes is one of the most useful synthetic methods to afford an array of diaryle-
thynes which are important frameworks applicable to liquid crystals and
pharmaceuticals. The total synthesis of (±)-tylophorine shown in Scheme 3.7 is a
representative example using diarylethynes as a synthetic intermediate [11].

Moreover, an intramolecular Sonogashira–Hagihara coupling enables the con-
struction of large-membered rings; however, the yields of the cross-coupled
products are generally very low, as shown in Scheme 3.8 [12]. Therefore, for the
construction of large-membered rings, ring-closing metathesis by the Ru or Mo
catalysts [13, 14] and macrolactonization [15] is often used rather than intramo-
lecular Sonogashira–Hagihara couplings.
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Additionally, the following are examples of total syntheses utilizing Sonogash-
ira–Hagihara coupling reported after 2000: frondosin B [16], callipeltoside A [17],
mucocin [18], borrelidin [19], tetrodotoxin [20], 34-hydroxyasimicin [21], oximi-
dine II [22], (-)-siphonodiol, (-)-tetrahydrosiphonodiol [23], peroxyacarnoates A
and D [24], leucascandrolide A [25], macbecin I [26], moracin O, moracin P [27]
(+)-neopeltolide [28], furopyrans [29], leiodolide B [30], iso- and bongkrekic acids
[31], cis- and trans- bupleurynol [32], and lukianol A [33].

3.4 Negishi Coupling

3.4.1 sp2–sp2 Negishi Coupling

Negishi coupling has also been widely used as a highly selective, efficient cross-
coupling reaction in the natural product syntheses. The total synthesis of brevi-
samide as a natural product can be accomplished using the sp2–sp2 Negishi cou-
pling (Scheme 3.9) [34]. Negishi coupling is often used in combination with
hydrozirconation of alkynes by a Schwartz reagent, because hydrozirconation of
alkynes generates an alkenylzirconium complex in a highly regioselective manner;
the iodination and treatment with zinc salts of that complex yield the corre-
sponding alkenyl iodides and alkenylzinc reagents, respectively, in one pot.
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The sp2–sp2 Negishi coupling has been recently reported as applicable to other
total syntheses: cis and trans bupleurynol [32] (-)-motuporin [35], xerulin [36],
pitiamide A [37], FR901464 [38, 39], eunicenone A [40], bisabolene [41],
xerulinic acid [42], callystatin A [43, 44], anguinomycin C [45], anguinomycin C
and D [46], and 6,7-dehydrostipiamide [47].

3.4.2 sp3–sp2 Negishi Coupling

Herein, the natural product syntheses by Negishi cross-coupling of alkenyl or aryl
halides (pseudo-halides) (sp2) with alkylzinc reagents (sp3) are described. In general,
alkyl halides are converted into alkylzinc compounds by halogen–zinc exchange, as
shown in Eq.3.1. In addition, a transformation with tert-BuLi of alkylzinc halides
into dialkylzinc compounds is widely used, because the tert-butyl functionality
can be used as a dummy group for Negishi coupling, leading to the selective for-
mation of the desired cross-coupled products by carbon(sp2)–carbon(sp3) bond
formation (See Chap. 8 for the details of carbon(sp2)–carbon(sp3) bond formation).

R X + ZnR'2 R Zn R
- 2R'X

2 ð3:1Þ

As shown in Scheme 3.10, reactivity between the dialkylzinc compound and
alkylzinc chloride was compared to the total synthesis of (+)-pumiliotoxin B [48].
Starting from substrate 4 in Path A, alkylzinc chloride was prepared by halogen–
lithium exchange with tert-BuLi and the subsequent transmetalation using zinc
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chloride. On the other hand, in Path B the dialkylzinc reagent was synthesized
from iodine–zinc exchange between substrate 4 and zinc chloride, followed by
addition of tert-BuLi. As a result, Path B of Negishi coupling with the dialkylzinc
reagent was found to give the desired product in better yield (50 vs 28 %).

In recent years, the sp3–sp2 Negishi cross-coupling has been a frequently used
synthetic method for multi-substituted aliphatic olefins and the substituted aryl or
heteroaryl compounds. Furthermore, the utility of the sp3–sp2 Negishi cross-
coupling has been recently observed in other total syntheses: borrelidin [19]
(-)-callystatin A [43], anguinomycin C [45], anguinomycin C, D [46],
(+)-discodermolide [49], dysiherbaine [50], bisabolene [41, 51], (–)-4a,
5-dihydrostreptazolin [52], a core structure of mycolactones [53], coenzyme Q10,
(E,Z,E)-geranylgeranoil [54], trans-epothilone A [55], oleandolide [56], sphingo-
fungin F [57], ionomycin [58], (–)-longithorone A [59], (-)-delactonmycin [60],
capensifuranone [61], (+)-murisolin [62], a side chain of scyphostatin [63],
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(+)-scyphostatin [64], (-)-stemoamide [65], dysiherbaine [66], maleic anhydride,
maleimide [67], OF4949-III, K-13 [68], harveynone, tricholomenyn A [69], and in
the synthesis of important intermediates of ionomycin and borrelidin [70].

3.4.3 sp–sp2 Negishi Coupling

In Negishi coupling, the coupling partners (alkenyl or aryl halides/triflates and
alkynylzinc reagents) are employed to form carbon(sp)–carbon(sp2) bonds. In the
total synthesis of (–)-salicylihalamide shown in Scheme 3.11, Negishi coupling
with the combination of the aforementioned substrates afforded the intermediate 5
in 90 % yield while retaining the Z-configuration [71].

As shown above, the sp–sp2 Negishi coupling is highly effective for the con-
struction of the conjugate enyne frameworks. Although conjugate enynes can be
synthesized by Sonogashira–Hagihara coupling, the functional group tolerance is
dramatically improved with Negishi coupling because the addition of bases is not
required. Other natural product syntheses by the sp–sp2 Negishi coupling are
known for the total syntheses of cis- and trans-bupleurynol [32], xerulin [36], 6,7-
dehydrostipiamide [47], and harveynone, tricholomenyn A [69].

3.4.4 Carbometalation and Negishi Coupling Sequences

One of the applied Negishi cross-coupling reactions is the synthesis of a carotenoid
having a conjugate polyene structure, e.g., b-carotene (Fig. 3.1). Since these
compounds possess multi-substituted polyene motifs, a synthetic strategy that
selectively introduces the substituents in appropriate positions is necessary.
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Because these conjugated polyene-type natural products are organic compounds
with valuable antioxidant property, efficient and selective innovation for synthetic
methods is still actively sought. It is likely that a combination of regioselective
carbometalation of alkynes and sequential Negishi coupling could be used for the
synthesis of such natural products.

In the syntheses of b-carotene and vitamin A, the Zr-catalyzed regio- and
stereoselective methylalumination across the terminal alkyne in precursor 6 is the
first step [72], as shown in Scheme 3.12. The formed alkenylaluminum compound
7 is transmetalated to zinc to afford the corresponding alkenylzinc compound 8,
which reacts consecutively with a half molar amount of 1-bromo-2-iodoethene
leading to the successful total synthesis of b-carotene. This method is very
advantageous from the viewpoint of the facile formation of the organozinc
reagents without the addition of the bases. Using the regioselective alkylmetalation
of the alkynes and sequential Negishi coupling, the total syntheses of coenzyme
Q10, (E,Z,E)-geranylgeranoil [54], and piericidin A1 [73] have also been
accomplished.
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In addition, when the terminal olefins are treated with chiral reagents, regio-
and stereoselective carbometalation can be achieved. The synthesis of a side
chain in scyphostatin, shown in Scheme 3.13, is an applied example [63].
Moreover, the total synthesis of 6,7-dehydrostipiamide has been attained by
regio- and stereoselective methylalumination and the subsequent Negishi
coupling [47]. The applied synthetic methods for ionomycin, for the interme-
diate of borrelidin, and for the total synthesis of doliculide have also been
achieved [74].

3.4.5 Utility of Negishi Coupling toward Carbonyl Compound
Synthesis

In Negishi coupling, acyl halides can be utilized as electrophiles to synthesize
the corresponding ketones. This type of Negishi coupling has been used for
the total synthesis of amphidinolide derivatives (Fig. 3.2), as shown in
Scheme 3.14 [75].
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As mentioned above, because Negishi coupling possesses a large number of
advantages (including a wide scope of substrate options, high regio- and stere-
oselectivities, and preparative reactions under mild conditions), it can be a very
powerful tool in the natural product syntheses through its combination with the
alkylmetalation of the terminal alkynes and alkenes.
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3.5 Migita–Kosugi–Stille Coupling

Although some cross-couplings might not be useful for highly reactive substrates
bearing functional groups such as epoxides which are sensitive to both acids and
bases, the mild and neutral Migita–Kosugi–Stille coupling has often been used in
the key steps of the natural product syntheses. This section introduces represen-
tative examples of how Migita–Kosugi–Stille coupling can be used in natural
product synthesis.

3.5.1 Synthetic Methods of Organotin Compounds

When Migita–Kosugi–Stille is employed as a coupling reaction, synthesis of organotin
compounds is required. Since the preparation of organotin compounds can be achieved
by various synthetic methods, the reaction conditions and the reagents used in the
natural product synthesis offer many choices for stannation. First, some recently
reported stannation reactions used in the natural product synthesis will be introduced.

One well-known method for the preparation of organotin is via organolithium
reagents; organotin reagents can be prepared by halogen–lithium exchange of
alkenyl halides with n-BuLi, followed by treatment of the intermediate organo-
lithium reagents with tin halides, as shown in Scheme 3.15. These organotin
reagents can be conveniently synthesized due to the commercial availability of tin
chlorides and organolithium compounds, but this synthetic method cannot be used
for the substrates that have base-sensitive functional groups.

On the other hand, tin-containing functional groups can be introduced into
unsaturated organic molecules in a highly regioselective fashion through hydro-
stannation and carbostannation reactions catalyzed by the transition metal
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Scheme 3.15 Preparation of organostannanes from organolithium reagents
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complexes. A synthetic example of a precursor of nicandrenones by the Rh-cat-
alyzed regioselective hydrostannation and the subsequent Migita–Kosugi–Stille
coupling is shown in Scheme 3.16 [76].

3.5.2 sp2–sp2 Migita–Kosugi–Stille Coupling

Migita–Kosugi–Stille coupling is often used at the key stage when the conver-
gently synthesized fragments are bonded in natural product syntheses. Most
of the reactions involve sp2–sp2 coupling to give the conjugate dienes and
polyenes. The total syntheses of rutamycin B and oligomycin C are shown in
Scheme 3.17 [77].
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In Migita–Kosugi–Stille coupling, LiCl and CuI are added to promote trans-
metalation (see, Chap. 2). In regard to the effect of these additives, it is assumed
that the added copper salt can trap the excess phosphine ligands retarding trans-
metalation. The more nucleophilic organocopper species, generated via trans-
metalation from tin to copper, accelerate the transmetalation [78]. The total
synthesis of deoxyvariolin B can be achieved by applying these reaction conditions
(Scheme 3.18) [79, 80].
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In some cases AsPh3, which has a moderate electron-donating ability, gives
better results for the construction of sp2–sp2 carbon–carbon bonds in Migita–
Kosugi–Stille coupling. For instance, such a ligand is used in the total synthesis of
marinomycin A (Scheme 3.19) [81, 82].
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As mentioned above, the mild Migita–Kosugi–Stille coupling enables appli-
cation to the substrates that are unstable under acidic and basic condition. Hence,
this reaction is useful for the total synthesis of amphidinolide H, which bears an
epoxide functionality (Scheme 3.20) [83]. A stoichiometric amount of copper(I)-
thiophene-2-carboxylate (CuTC) can enhance Migita–Kosugi–Stille coupling as an
activator [84].

Migita–Kosugi–Stille coupling, using a stoichiometric amount of CuTC, can be
used in the total synthesis of phoslactomycin A, while avoiding the side reaction of
allylphosphate with the Pd catalyst (Scheme 3.21) [85]. Other stoichiometric
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reactions mediated by a copper compound have been reported for the total syn-
thesis of dictyostatin [86], formamicin [87], and amphidinolide A [88].

The total synthesis of gambierol, shown in Scheme 3.22, is another example
of a synthetic strategy utilizing Migita–Kosugi–Stille coupling [89–92]. An
important aspect of this synthesis is that a silyl protecting group was removed
before the cross-coupling. This underscores the fact that Migita–Kosugi–Stille
coupling will not take place if the reaction site of the cross-coupling is steri-
cally hindered by the presence of a bulky TBS group. Deprotection of the silyl
group counteracts the steric congestion to smoothly accelerate the cross-
coupling.
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The following are known examples of the utility of the sp2–sp2 Migita–Kosugi–
Stille coupling reactions for the natural product syntheses: paracentrone [6], iso- and
bongkrekic acids [8], leiodolide B [30], (-)-callystatin A [43], sanglifehrin A
[93–95], a biaryl moiety of TMC-95 [96], (-)-reveromycin B [97], manzamine A
[98], quadrigemine C, psycholeine [99], pentacyclic skeletons [100], SNF4435 C,
SNF4435 D [101], (-)-crispatene [102], (–)-SNF4435 C, (+)-SNF4435 D [103],
28-19F-amphotericin B methyl ester [104], FR252921, pseudotrienic acid B [105,
106], (-)-spirangien A and its methyl ester [107], amphidinolide H1 [108], (+)-
crocacin C [109], amphidinolides B1, B4, G1, H1 [110], (±)-havellockate [111],
(±)-goniomitine [112], amphidinolide A [113], CD-D’ rings in angelmicin B
(hibarimicin B) [114], and brevenal [115, 116].

3.5.3 Other Migita–Kosugi–Stille Couplings

In addition to the sp2–sp2 coupling, sp2–sp3 Migita–Kosugi–Stille coupling is also
utilized for natural product syntheses. The total syntheses of piericidin A1 and B1
[117] and (±)-neodolabellane-type diterpenoids [118] are shown in Schemes 3.23
and 3.24, respectively.
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Because stable p-benzyl- and p -allylpalladium complexes are generated, these
sp2–sp3 Migita–Kosugi–Stille couplings can be utilized with a low risk of
b-hydrogen elimination. The sp3 organotin reagents have rarely been utilized in
Migita–Kosugi–Stille coupling because they cause b-hydrogen elimination
(See also Chap. 8).

In addition, using the sp3–sp2 Migita–Kosugi–Stille coupling, the total syn-
theses of amphidinolide A [113], azaspiracid-1 [119, 120], tardioxopiperazine A,
isoechinulin A, and variecolorin C [121] have been reported.

3.6 Suzuki–Miyaura Coupling

Suzuki–Miyaura coupling is extremely advantageous because the organoboron
compounds have low toxicity and have stability toward water and air; this cross-
coupling has been used extensively in natural product syntheses. However,
Suzuki–Miyaura coupling requires the use of bases, thus functional groups that are
unstable under basic conditions are incompatible. Herein, the applications of
Suzuki–Miyaura coupling to natural product syntheses are described.
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3.6.1 sp2–sp2 Suzuki–Miyaura Coupling

Construction of biaryl and conjugate diene motifs using the sp2–sp2 Suzuki–Miyaura
coupling is particularly important in the natural product syntheses. Some examples
include: 5,6-DiHETE methyl esters [122], (-)-chlorothricolide [123], and rutamycin
B [124]. Although Negishi and Migita–Kosugi–Stille couplings can be used for sp2–
sp2 carbon–carbon bond formation, Suzuki–Miyaura coupling is more widely uti-
lized owing to its versatility of ligands and its various types of boron-containing
reagents. The total synthesis of lamellarin D shown in Scheme 3.25 is one such
example employing pinacolborane as the boron moiety [125].

Pd(PPh3)4 is generally the most frequently used Pd(0) complex in Suzuki–
Miyaura coupling, but PdCl2(dppf) also shows high catalytic activity in the
synthesis of (+)-complanadine A (Scheme 3.26) [126].
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In general, as the substrate becomes larger, the achievement of cross-coupling
becomes more difficult due to poor access to the reaction sites. However, Kishi
reported in 1989 that the reactivity of a congested substrate was drastically
improved by the use of thallium hydroxide as the base in the total synthesis of
palytoxin [127]. More recently, TlOEt and Tl2CO3 have been utilized as a
precursor of thallium hydroxide because thallium hydroxide is difficult to handle
due to its instability to light and air [128]. The example of the synthesis of
apoptolidinone via Suzuki–Miyaura coupling with TlOEt as the base is shown in
Scheme 3.27 [129].
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Buchwald reported that the bulky phosphine ligands with a biaryl backbone
such as SPhos have a high activity in Suzuki–Miyaura coupling [130]. In the total
synthesis of eupomatilones, as little as 0.005 mol % of the Pd catalyst can afford
the cross-coupled products in 93 % yield (Scheme 3.28) [131, 132].
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Furthermore, Suzuki–Miyaura coupling is practical because it offers a superior
selection of bases and ligands. As the result of recent research utilizing the benefits
of organoboronic acids, many progressive synthetic routes have been established.
Herein, some examples of modified organoboron compounds used in natural
product syntheses are introduced. As shown in Scheme 3.29, the total synthesis of
oximidine II [22] is an example of the application of organotrifluoroborates [133]
to the natural product synthesis. The construction of an unsaturated 12-membered
ring with a large strain was achieved.

In addition, Suzuki–Miyaura couplings using N-methyliminodiacetic acid
(MIDA) have been invented [134]. (–)-Peridinin has been synthesized by repeated
reactions with MIDA-containing organoborates (Scheme 3.30) [135].
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Thus, the sp2–sp2 Suzuki–Miyaura coupling has achieved selective and efficient
carbon–carbon bond formation in natural product syntheses through the use of a
wide variety of substrates. The following examples of natural product syntheses
using sp2–sp2 Suzuki–Miyaura coupling have been recently reported: iso- and
bongkrekic acids [8, 31], furopyrans [29], lukianol A [33], maleic anhydride,
maleimide [67], (+)-crocacin C [109], CD-D0 rings in angelmicin B (hibarimicin
B) [114], (+)-fostriecin [136], dragmacidin D [137], (-)-FR182877 [138, 139],
nakadomarin A [140], styelsamine C [141], (±)-spiroxin C [142], diazonamide A
[143], quinine, quinidine [144], lamellarin G trimethyl ether [145], (+)-dragmac-
idin F [146], eupomatilone diastereomers [147], biphenomycin B [148], (-)-
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spirofungin A, (+)-spirofungin B [149], pulvinic acids [150], N-shifted and ring-
expanded buflavine [151, 152], (±)-hasubanonine [153], altenuene, isoaltenuene
[154], C-15 vindoline analogs [155], (-)-erythramine and 3-epi-(+)-erythramine
[156], biaryl hybrids of allocolchicine and steganacin [157], ratanhine [158],
palmerolide A [159], eupomatilones [160], butylcycloheptylprodigiosin [161],
isotetronic acids [162], 1/2 of amphotericin B macrolide [163], GEX1A [164],
(±)-cyclocolorenone, (±)-a-gurjunene [165], withasomnines [166], the vacidin A
(E,E,E,Z,Z,E,E)-heptaene framework [167], fortuneanoside E [168], (–)-exiguolide
[169], dunnianol [170], and hirtellanine A [171].

3.6.2 sp3–sp2 Suzuki–Miyaura Coupling

Suzuki–Miyaura coupling has also been used to construct sp3–sp2 carbon–carbon
bonds (See also Chap. 8). One such example is the methylation using trim-
ethylboroxine, which is a dehydrated trimer of methylboronic acid, toward aryl or
alkenyl halides [172]. The total synthesis of (-)-FR182877 using the sp3–sp2

Suzuki–Miyaura coupling is shown in Scheme 3.31 [138].

In most cases, the sp3–sp2 Suzuki–Miyaura coupling employs a typical hyd-
roboration of the terminal olefin by 9-BBN and the subsequent B-alkyl Suzuki–
Miyaura coupling. Since hydroboration using a bulky 9-BBN takes place in a
highly regioselective fashion [173], B-alkyl Suzuki–Miyaura coupling has been
widely utilized for the connection of fragments in the natural product syntheses,
e.g., the total synthesis of brevenal (Scheme 3.32) [115, 116, 174].
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In addition, the B-alkyl Suzuki–Miyaura coupling can be applied to the intra-
molecular cyclization in the total synthesis of phomactin D; compared with other
sp3–sp2 cross-coupling reactions, the organoboron compounds have low toxicity
and are highly stable (Scheme 3.33) [175].

Other synthetic examples using the sp3–sp2 Suzuki–Miyaura coupling include
the total synthesis of: anguinomycin C [45], anguinomycin C and D [46], trans-
epothilone A [55], oleandolide [56], salicylihalamide [71], CP-225,917, CP-
263,114 [176], epothilone A [55, 177], 12,13-desoxyepothilone F [178], FGH ring
fragments of gambierol [179], sphingofungin E [180], GHIJKLM ring fragments
in ciguatoxin (CTX1B) [181], ABCD ring fragments of ciguatoxin (CTX3C) and
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ciguatoxin (51-hydroxyCTX3C) [182], (-)-ebelactone A [183], gymnocin-A
[184–187], (+)-phomactin [188], the C6–C21 segment of amphidinolide E [189],
(±)-geigerin [190], (+)-oocydin A [191], 4-hydroxydictyolactone [192], jatro-
phane diterpenes [193], (+)-brefeldin C, (+)-nor-Me brefeldin A, (+)-4-epi-nor-Me
brefeldin A [194], ABC ring fragments of brevesin [195], and (-)-brevisin [196].

3.7 Hiyama Coupling (sp2–sp2)

Finally, recent examples utilizing the sp2–sp2 Hiyama coupling in the natural
product syntheses will be briefly introduced. As shown in Scheme 3.34, silanol
(the substrate bearing a hydroxyl group on silicon) is activated by TBAF to react
with an alkenyl iodide in the total synthesis of isodomoic acid G [197].

Another alkenylsilane substituted with a benzyldimethylsilyl group was success-
fully subjected to Hiyama coupling for the synthesis of a precursor of herboxidiene/
GEX 1A (Scheme 3.35) [198]. It should be noted that in this synthetic example,
during the Hiyama coupling, the alcohol was protected by a silyl protecting group.
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In the total synthesis of papulacandin D, after a hydrosilane was converted into
a silanol using the Ru catalyst, Hiyama cross-coupling of silanol was applied
(Scheme 3.36) [199].

In addition, a conjugate diene bearing two different silicon functional groups
was subjected to the successive Hiyama coupling, achieving the total synthesis of
RK-397, as shown in Scheme 3.37 [200].
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Moreover, the total synthesis of a highly strained 9-membered compound, (+)-
brasilenyne, has been achieved through intramolecular Hiyama coupling
(Scheme 3.38) [201, 202].

Thus, Hiyama coupling has a large number of advantages from the viewpoints
of high stability, low toxicity, and natural abundance of the organosilicon

HOMe2Si
SiMe2Bn

+

I OTHP

Pd2(dba)3•CHCl3
NaH

THPO SiMe2Bn

77% (dr 3/1)

CO2Et
I

Pd(dba)2
TBAF

THPO
79% (dr 5/1)

CO2Et

O

Me

iPr

OH OH OH OH OH

OH

OHO

OH

RK-397

OH

EtO2C

Me

iPr

O O O O O O

Ph Ph
Me Me

O

O Ph

Scheme 3.37 A synthetic route to RK-397

O

I

OPMB

Me

O
Si

Me
Me

[Pd(allyl)Cl]2
TBAF

rt, 61%
O

HO

PMBO

Me O

Cl

Me

(+)-brasilenyne

Scheme 3.38 A synthetic route to (+)-brasilenyne

3 Natural Product Synthesis 73



compounds. Thus, Hiyama coupling can be a powerful tool in the natural product
syntheses. However, Hiyama coupling has not been advanced much, because the
silyl functionalities require the introduction of hydroxyl or fluoride substituents to
be activated, which limits the selection of substrates.

3.8 Summary

The cross-coupling reactions have facilitated the synthesis of complex organic
compounds with high selectivity and reactivity in the natural product syntheses. In
addition, recent advancement of technologies for cross-couplings includes: the
expansion of organometallic reagents, increased reactivity and safety by the
improvement of catalysts, and the reduction of chemical wastes. This remarkable
progress has made the cross-coupling reactions increasingly easy to utilize.
Complicated natural product syntheses that have not yet been achieved will likely
be artificially synthesized by using the cross-coupling reactions in the future. More
technological development is expected toward clarification and application of the
biologically active compounds.
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