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Abstract. We present the NOVA Workflow tool-suite, a prototype for a
process, information and communication management tool to guide and
inform real world workflows with special attention to the needs of health
services delivery. NOVAWorkflow is an innovative workflow management
system which integrates formal verification into the software development
process. For workflow modeling the tool uses the time Compensable
Workflow Modeling Language (CWMLT ) which produces reliable and
structured workflow models and enhances error handling. The graphical
editor of the tool gives a common platform for modeling, verifying
and developing software. The SOA based architecture of the workflow
engine ensures compliance with industry standards. The tool includes an
automated translator to a model checking tool, a monitor to facilitate
run-time compliance of (health care) policy, and a user friendly browser
to give clinicians a convenient way to view a patient’s information
without losing the context. We propose an application of the browser
to process diagnosis.

1 Introduction

This paper presents an integrated approach for modeling, verifying, developing
and monitoring workflow management systems (WfMSs), with special attention
to the needs of safety critical systems such as health care systems. A report
estimated that approximately 98,000 deaths per year in the United States were
the result of medical errors, many of which could be traced to faulty processes
[18]. Errors not leading to death are costly and adversely affect the patient.
WfMSs can help ensure compliance with protocols. Model checking processes
in these systems, before enactment, can save time and reduce errors, while
using a model checked monitor can alert clinicians to abnormal situations.
However, commercial WfMSs do not have adequate rollback mechanisms (for
error handling and side effects) and many model checkers deal only with relative
(rather than quantified) time eg.: when an emergency case arrives at the hospital,
standard model checking can only verify whether, for a particular process
“Eventually the patient receives the treatment”, but to save the patient’s life,
it should be verified that “The patient receives the treatment within half an
hour”.
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In this paper we present an integrated tool for developing and verifying
enterprise software systems. Rather than verifying actual programs, an abstract
specification for the software is written and used to verify properties of the
system. The abstract specification is written using a limited syntax in Java and
the specification is translated to a model for a model checker. Enterprise software
usually consists of hundreds if not thousand of components; each component
has many business logics, data access operations and third party service
invocations. In addition, client applications require an enormous programming
effort to provide sophisticated Graphical User Interfaces (GUI). To verify such
complex software systems without abstraction is challenging. Our tool-suite
NOVA Workflow1 deals with this problem by abstraction (i.e., abstract process
specification) and reduction which makes it feasible to verify enterprise and/or
safety critical software systems.

The NOVA Workflow tool suite has five components, i) the NOVA Editor, ii)
the NOVA Translator, iii) the NOVA Engine iv) the NOVA Monitor and v) the
NOVA Browser. The NOVA Editor uses the graphical modeling language, the
Compensable Workflow Modeling Language, extended with the time constraints
of delay and duration (CWMLT ). The NOVA Translator translates the workflow
model and Java specification into DVE, the modeling language for the parallel
distributed model checker DiVinE [5]. The NOVA Engine is a workflow engine
based on Service Oriented Architecture (SOA). The NOVA Engine can be used
in a system as a workflow library and it does not provide any restriction on
application development. The engine was developed on the Spring [10] and
Hibernate [9] platforms both of which can be deployed to various application
servers. Spring is a widely used open source framework that helps developers
build high quality applications faster. Hibernate is an object-relational mapping
(ORM) library for the Java language, providing a framework for mapping an
object-oriented domain model to a traditional relational database. We used a
three tire architecture for NOVA Workflow as centralizing the business logic in
an application tier has several advantages including maintainability, extensibility,
and interoperability. The NOVA Monitor integrates time constrained monitors
with workflow models. The NOVA Browser is a flexible user interface designed to
allow brainstorming to enhance the user experience. The integrated tool support
for modeling, verification and development of workflow management systems
together with the monitor will greatly help its users build reliable safety critical
systems. Fig. 1 shows the architecture of NOVA WorkFlow.

The rest of this paper is organized as follows. The components of the NOVA
Workflow are described in section 2, (the NOVA Editor) section 3, (the NOVA
Engine) section 4, (the NOVA Translator) section 5, (the NOVA Monitor) and
section 6 (the NOVA Browser). Section 7 presents a case study and Section 8
discusses related work and concludes the paper. More details, case studies and
proofs pertaining to the NOVA Editor, Translator, Engine and Monitor may be
found in [30,27,29]. Most of the information on the NOVA Browser, including
the proposed application, appears here in published form for the first time.

1 http://logic.stfx.ca/software/nova-workflow
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Fig. 1. SOA based architecture of NOVA workflow

2 The NOVA Editor

The NOVA Editor is a visual modeling tool for the time Compensable Workflow
Modeling Language, CWMLT [30,27]. A compensable workflow model consists of
compensable and uncompensable tasks. In [30] we defined CWML (the untimed
version of CWMLT ). In addition to the basic operators “sequence” (•), “and”
(∧), “xor” (×), “or” (∨) and “loop” (+), CWML uses the t -calculus operators
[25] (sequential composition (;), parallel composition (||), internal choice (�),
speculative choice (⊗), and alternative choice (�)), to model compensation.
In [27] we extended CWML with time, by including the notions of delay and
duration and called it CWMLT . Timing constraints for most workflows can be
expressed using delay and duration [26,19]. The foundations of CWMLT are
essentially time Petri nets (with integer valued time) referred to as Explicit
Time Petri nets in [27]. Integers rather than reals suffice to model processes in
health services delivery. A hybrid Petri net based semantics incorporating both
weak and strong semantics is used [27] to model forward and compensation flows.

Atomic tasks in CWMLT are of two types, uncompensable and compensable.
An uncompensable atomic task is an activity which always finishes successfully,
if activated. In case of an error executing the forward flow, a compensable task
aborts and performs some compensation. The Petri net based representation
of an atomic uncompensable task and an atomic compensable task with time
constraints are given in Fig. 2. The Petri net representations of compound tasks
may be found in [30,29].

In Fig. 2 solid arcs represent a forward flow and dotted arcs represent a
compensation flow; d1, d2 and d3 are the delay, duration, and compensation
duration respectively.Delay is the timedurationbetween two subsequent activities
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Fig. 2. Petri net representation of atomic tasks

(i.e., tasks).Duration is themaximum time required to finish a task.Compensation
duration refers to the maximum time required to compensate a failed task. Delay,
duration and compensation duration are expressed by integer values.

Both traditional control flows and control flows associated with compensable
transactions can be easily edited and displayed graphically in the editor. The
modeling elements are displayed in Fig. 3, using a notation similar to many
workflow modeling languages. The editor produces workflow models which are
correct by construction [31] which essentially means that incorrect composition
of workflow activities is prevented. CWMLT is a structured workflow modeling
language which follows constraint-based approach and for this reason it becomes
possible to not only guarantee that processes run correctly regarding their
control and data flow, but also regarding the validity of the specified semantic
constraints. As each workflow component has an underlying Petri net structure,
the language has a sound mathematical foundation.

The editor is built as an Eclipse Plugin [6] using the Eclipse Graphical Editing
Framework (GEF) [7]. Because of this architecture, the NOVA Editor is available
in the development platform. Application developers can create models in a Java
project, and generate workflow service classes from it (see section 3). Modeling,
development and verification can be done in the same Eclipse Platform.

3 The NOVA Engine

The NOVA Workflow is developed using an SOA architecture. The engine was
developed on the Spring and Hibernate platforms; Spring is a widely used open
source framework that provides a consistent programming and configuration
model that is well understood and used by developers worldwide. From the
NOVA Editor, Workflow service classes are automatically generated to be
deployed in the Spring container. These services are exposed to the outside world
by service provider interfaces. The lifecycle of a workflow service bean (the class
that contains the business logic) is managed by the spring container and at the
time of instantiation, service beans register themselves to the workflow engine.

The NOVA Engine provides two modes for workflow engine integration: i)
loosely coupled integration, ii) tightly coupled integration. The one to be selected
depends on the system architecture. When the application services are not
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Fig. 3. Modeling Elements of CWMLT

deployed in the spring framework, loosely coupled integration should be selected;
by this integration, workflow services are invoked by application services from
outside the spring container. The NOVA Engine updates the task status when a
particular service bean is invoked. On the other hand, if the application services
are deployed in the spring container, tightly coupled integration is recommended;
here application services are extended by workflow service classes.

Although the NOVA Workflow provides all support to develop a full swing
client application, the current implementation of the NOVA Workflow does not
generate default forms to take input from the user. In future, a form builder (or
default form generator) will be incorporated with the NOVAWorkflow. With the
current version ofNOVAWorkflow, client applicationsmaybe developed in various
platforms and they may communicate with the NOVA Engine using RMI, JSP,
HTTPInvoker, WebService, etc. In future we intend to support greater mobility
using sophisticated technologies such as iPads, Tablet PCs, etc. Accessibility
and mobility are important for health care applications. It is anticipated that
advanced mobile applications will improve outcomes as physicians, nurses and
other clinicians can access both recent and historical information while visiting a
patient. Advanced interoperability vis a vis international standards such as HL7,
OpenEHR is on the horizon for future research.

4 The NOVA Translator

Once a workflow is designed with compensable tasks, its properties can be
verified by model checkers such as SPIN, SMV or DiVinE. Modeling a workflow
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with the input language of a model checker is tedious and error-prone. In [30]
we provided a manual translation from CWML to DVE the input language of
the DiVinE model checker, which was extended to an automated translator to
CWMLT in [27]. This automated translation method has been integrated into the
NOVA Workflow. Now, using the Editor one can graphically design a workflow
using the CWMLT and write the business logic for the tasks (in Java); then the
translator automatically translates the model to DVE (see [30,27]).

However, the time required for the verification was often unacceptable. Our
experiments showed that even though DiVinE is equipped with the Partial
Order Reduction technique and several different model checking algorithms,
it required a great deal of memory and time for the verification of large
models. In [29] we developed a model reduction algorithm for the models built
using (untimed) CWML. The algorithm has been implemented in the NOVA
Translator, which takes a workflow model and the specification of an LTL−X

property φ and reduces the model, based on the property φ. The proof of
the stuttering equivalence of the original and reduced models may be found
in [29]; thus the truth of φ is preserved and reflected. A demonstration of the
effectiveness of the proposed method in reducing the size of the state space
may be found in [29]. We expect the proposed algorithm can be easily applied
to any block-structured modeling language (e.g., ADEPT2 [31]), and currently
we are extending the reduction to models built using CWMLT . The reduction
algorithm incorporates the feature of data-awareness currently found in many
workflow modeling languages. Other reduction algorithms involving time and
including the notion of leaping time [37] are currently under investigation. An
extention of the translator to other model checkers, i.e., SMV, SPIN, Maude
are under development which will allow us to provide an in-depth performance
comparison.

5 The NOVA Monitor

Workflow monitoring is an active research area which has great importance
especially in safety critical systems for enforcing policies, and achieving effciency
and reliability goals. Monitoring is a frequent requirement in healthcare
environments where monitor systems are typically configured to notify clinicians
about abnormalities in a process. Designing a monitor for a time constrained
compensable workflow in a healthcare setting is complex and it must be verified
to ensure it operates properly before its use with a patient.

The NOVA Monitor uses a graphical modeling language for monitoring
workflows which is based on Time Petri nets [14], and integrates such time
constrained monitors (called WMon-nets) with workflow models (called CWF-
nets) built using CWMLT . Fig. 4 shows the graphical notation for workflow
monitor components. A green transition is associated with the forward transition
(pt1 in Fig. 2) of an atomic (uncompensable or compensable) task in a CWF-net,
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In order to verify properties of a monitor (modeled as a WMon-net) we
combine the state space of the monitor with the state space of the workflow.
A monitor monitors the processes of a workflow so it cannnot generate its own
state space without input from that workflow. From the generated state space,
the model checker can verify the properties of the system. In the case study,
we show a compensable workflow with a monitor and verify properties of the
workflow including properties to show that the monitor is working correctly.
An ontology was incorporated with the monitor; results of complex queries to
the ontology can guide the control flow. It is anticipated that the workflow
monitor may be integrated with other workflow languages, with Petri net based
foundations. Details of the monitor system may be found in [4].

6 The NOVA Browser

Usability is an important quality in any product but is often neglected in software
products. It was found that EHR (Electronic Health Record) usability is at the
root of many medical errors [21]. For healthcare systems, usability is not an
expectation; rather it is an essential requirement, as patient safety is involved
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and clinician’s time is a valuable resource. We now present a user friendly
browser, called the NOVA Browser, for EHR with which health professionals
can view a patient’s medical information without losing the patient’s context
while browsing. The flexibility and capacity for brainstorming enhances the user
experience. The browser also incorporates a time travel view and a chart view
that helps health professionals observe and monitor a patient’s medical condition.
The unique time travel view of the browser makes it a helpful tool for cause and
effect analysis.

6.1 Current Features of the NOVA Browser

Hierarchical Representation of Data. The NOVA Browser hierarchically
represents a patient’s EHR in a mind map. A mind map [17] is a graphical
way to represent ideas and concepts. The nodes (i.e., ideas, concepts, items,
etc) are represented hierarchically in a mind map. A mind map (as opposed
to traditional notes or text) structures information in a way that resembles
much more closely how the brain actually works. Since it is an activity that
is both analytical and artistic, it engages the human brain in a rich way,
helping in all its cognitive functions. While pictorial methods for recording
knowledge and modeling systems have been used for centuries in learning,
brainstorming, memory, visual thinking, and problem solving by educators,
engineers, psychologists, and others, its use in software systems to provide a
means to involve the user more with the system is rare (e.g., mind map has been
used in OpenEHR as an archetype [1]).

Fig. 6 shows an EHR representation in the NOVA Browser. The browser
displays the records of a particular patient’s case. The centre of the map shows
the case number (Case-1). The clinician can unfold any of the branches and can
view the details of the case. The browser performs a database query using the
case number and loads the records from database tables or views. The NOVA
Browser provides a case selection window with which the clinician can switch to
a different patient’s case.

Time Travel View. In order to enable the time travel view, the database tables
include the Timed Table, to preserve the historical information and time. In a
Timed Table, no records are deleted or updated by replacing the original record;
instead of an update operation to a row, a new entry with status UPDATE is
inserted into the table and a column is used to indicate the parent record, whose
information is being updated. When displaying the records in the browser, only
the latest records are shown. When the user travels back, the browser fetches
historical records and displays them in the map.

The time travel view provides an easy way for clinicians to go back to when
a certain record was inserted or updated and then check its effect by travelling
forward from that time. The browser provides four types of time travel: Travel
Backward (or Travel Forward) to a past (or future) time when a selected record
was inserted, updated or deleted (in this case the user needs to select a node),
and Travel One Step Backward (or Forward), which is travel to the previous
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Fig. 6. Hierarchical Data representation in NOVA Browser

(or next) time that a record was inserted or updated for the selected case (in
this case the user does not select a node and the search operation is performed
globally on all tables for the case).

If the clinician selects the ‘Assessment’ node and travels back, the browser
will jump to the time when an Assessment record was inserted or updated.
Note that Assessment is an abstract base class with three concrete subclasses
(i.e., Distress Screening, Edmonton Assessment, Adult Pain Meter). The NOVA
browser uses hibernate [9] to communicate with the database. As hibernate is
an Object Relational Mapper, any query performed on a base class is executed
on all its subclasses. The NOVA Browser displays a transition from one map
to another by doing animation about the Z-axis, which gives the impression of
travelling backward or forward.

Chart View. Charts and graphs play an important role for analyzing
information. Detecting patterns in patient populations is an esential function in
the administration of health care systems. The visual representation of complex
information can help process large amounts of data to detect and observe such
patterns. However it is very difficult to pre-configure all the charts with all the
different combinations of parameters which may be needed by clinicians and
administrators. The NOVA Browser incorporates a chart view allowing the user
to select the desired chart parameters. The clinician selects some nodes from the
browser, adds them to the parameter list and then selects a time range. The
chart viewer generates the chart using those selected parameters by plotting
time on the X-axis and the parameters on the Y-axis. As a clinician can select
any node from the browser, the browser will either plot the exact values of the
parameter or present them symbolically.



84 W. MacCaull and F. Rabbi

6.2 Proposed Application of the NOVA Browser

We propose applying the NOVA Browser to process diagnosis. To provide
flexibility to the system, we allow two ways of interacting: i) Workflow based,
ii) Task based. The workflow system will provide a worklist window from which
the user can select a task and execute it. Alternatively, the user may skip the
workflow and can fill in and submit a form related to a task. A workflow provides
better support but is less flexible. We will allow the user to skip the workflow,
as initially all patient case scenarios are not known so the workflow should not
restrict the user to perform an emergency job. The workflow may be adjusted
later on through a redesign.

All the activities performed by the user are recorded in an event log which
will be used to restructure the workflow. Two types of events may be found in
the event log: i) a workflow event for a task being executed from the worklist,
and ii) an ad-hoc event for a form being executed in an ad-hoc manner. We
have addressed the issue of an evolutionary process restructuring through a
process diagnosis mechanism. We propose a new design of process diagnosis in
the NOVA Workflow which incorporates a process mining technique using the
NOVA Browser.

Motivation of the Work. The term process mining refers to methods for
distilling a structured process description from a set of real executions. In [20],
Cook and Wolf described three methods for process discovery: one using neural
networks, one using a purely algorithmic approach, and one using a Markovian
approach. The authors considered the latter two as the most promising. The
purely algorithmic approach builds a finite state machine (FSM) where states
are fused if their futures (in terms of possible behavior in the next k steps) are
identical. The Markovian approach uses a mixture of algorithmic and statistical
methods and is able to deal with noise. However, they did not provide an
approach to generate explicit process models. The idea of applying process
mining in the context of workflow management was first introduced in [12].
This work is based on workflow graphs, which are inspired by workflow products
such as IBM MQSeries workflow (formerly known as Flowmark) and InConcert.

Van der Aalst et. al., studied a number of process mining or workflow mining
techniques in [36] and pointed out two problems. The first is to find a workflow
graph generating events appearing in a given event log and the second is to find
the definitions of edge conditions (i.e., pre-conditions). In [36], they provided a
concrete algorithm for tackling the first problem.

For a simple system with a few tasks and enough workflow logs it is quite easy
to construct a process model, but for more realistic situations (e.g., healthcare)
there are a number of complicating factors [36]:

1. Mining is difficult in large workflow models and has a high degree of
complexity if the model exhibits alternative and parallel routing (in which
case the workflow log will typically not contain all possible combinations).
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2. Workflow logs will typically contain noise, i.e., parts of the log may be
incorrect, incomplete, or refer to exceptions. For example, events can be
logged incorrectly because of human or technical errors.

3. Events can also refer to rare or undesirable events. Consider, for example,
a workflow in a hospital. If, due to time pressure, the order of two events
(e.g., make X-ray and remove drain) is reversed, this does not imply that
this would be part of the regular medical protocol and should be supported
by the hospital’s workflow system. Also two causally unrelated events (e.g.,
take blood sample and death of patient) may happen in a sequence without
implying a causal relation. Exceptions which are recorded only once should
not automatically become part of the regular workflow.

Process Diagnosis Using the NOVA Browser. For a safety critical system
it is not desirable to deploy the workflow model discovered by the automated
process mining tool without a proper validation by domain experts for the
workflow model discovered by process mining. The conditions of XOR, OR, Loop
discovered by a process mining tool from the event log may not be the exact
condition for the selection of the branches. For a healthcare application there
are numerous parameters that guide the flow of the tasks.

The proposed workflow management life cycle consists of 6 steps (i.e., 1.
Workflow Design, 2. Workflow Validation, 3. Workflow Enactment 4. Event Log
5. Process Mining 6. Process Restructure), where step 5, 6 and 2 are part of the
process diagnosis. Consider the workflow fragment ‘Medicine Administration’ as
shown in Fig. 7. The initial design of the Loop condition was to iterate until
the dose is finished. During the execution of the workflow it was found that a
patient was allergic to certain drug and the ‘Medicine Administration’ task was
cancelled for this reason.

Fig. 7. Medicine Administration

Let us assume that the allergy information was inserted into the system
and another change in the patient’s medical condition happened at the same
time; for example, the patient’s PPS (Pulse Per Second) value reduced. Here the
decrement of the patient’s PPS value is noise which makes it hard to identify
the exact Loop condition for a process mining tool.

We propose a design for a ‘Process diagnosis tool’ using the NOVA Browser to
handle these problems. The proposed system is shown using the NOVA Editor in
Fig. 8, where the workflow model discovered by the process mining tool can be
restructured by the user easily and efficiently. The workflow component’s view
is shown at the bottom left side of Fig. 8. The user makes some changes to the
workflow model, and invokes an analyze action to the system; by analyzing the
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Fig. 8. Process diagnosis using the NOVA Browser

event logs, the system searches for the workflow instances which do not satisfy
the redesigned workflow model. The unresolved workflow instances are shown at
the top right side of the editor. The user opens an unresolved workflow instance
in the NOVA Browser (shown in the middle of the editor) to analyze the case.
The sequence of the tasks’ execution for the selected case is shown at the bottom
of the NOVA Browser. The user can use the time travel view in the Browser to go
back to past records and see under what condition the tasks were executed. For
example, consider the above ‘Medicine Administration’ problem; the user can
go back in time to when the drug administration was stopped, find the allergy
recorded at that time and then edit the workflow and restructure it with the
exact condition. With such a mining and reconfiguring feature, a WfMS may be
considered to be adaptive.

7 Case Study

We model a workflow and a monitor system following the guidelines for the
management of cancer related pain in adults [16]. If a patient is taking a
strong opioid, a pain reassessment should be done after a certain interval. The
guideline for the strong opioid regimen says that if a patient is responding (i.e.,
current pain level is less than previous pain level) then another reassessment
should be done within a week; if a patient is not responding then it suggests a
different reassessment interval depending on the current pain level. The guideline
suggests ‘Opioid toxicity’ or the ‘Continuation of dose titration’ depending on the
‘Response’. ‘Management of side effects’ is a compensation for these processes.
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Fig. 9. “Treatment workflow”, “Reassessment monitor”, and “Side effect management
monitor” for patients

Fig. 9 shows the treatment workflow (a time constrained CWF-net) at the
top, the reassessment monitor (a WMon-net) at the bottom left which integrates
with both the INITIAL ASSESSMENT and REGULAR ASSESSMENT tasks,
and the side effect management monitor (a WMon-net) at the bottom
right which integrates with the compensable tasks OPIOID TOXICITY and
CONTINUE DOSE TITRATION. In this model, when a patient is admitted
(task INTAKE is executed) to the hospital an initial assessment is done
(task INITIAL ASSESSMENT is executed) where the patient’s pain level is
recorded. A physician prescribes medicine for the patient (related task is
PRESCRIPTION) which may be updated at Follow up. While the patient
is taking his medicine (task MEDICINE ADMINISTRATION executes), a
regular assessment is done (task REGULAR ASSESSMENT is executed) after
certain interval concurrently with other processes, e.g., Medicine Administration,
Follow up. Note that, CARE DELIVERY is an AND-Split task which
activates all of its outgoing branches and RESPONSE is an Internal choice
split task which activates one of its outgoing branches during execution.
OPIOID TOXICITY and CONTINUE DOSE TITRATION are compensable
tasks and they compensate for any side effects found during execution.

The monitor system observes the interval of assessment and notifies the
clinician if another reassessment is not done within the time suggested by the
guidelines. The general knowledge base for medicine is very large, and frequently
organized as a medication ontology. To show how our system can integrate with
an ontology, we designed a small ontology in OWL 2.0 representing the facts and
rules about strong opioids used for querying reassessment time. We integrated
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the ontology with the monitor system using the FaCT++ reasoner. The system
generates a query with the list of medication that a patient is taking, and the
current and previous pain levels as parameters and sends them to the FaCT++
reasoner. The reasoner computes whether the medicine is a strong opioid and
returns the suggested reassessment time. Some of the properties we verified are
provided below with their LTL formulas:

– If a patient is under the strong opioid regimen, not responding
(to medication), current pain level is > 6 and another reassessment
is not done within 12 hours, the clinician will get a notification
( In LTL, G ( (strong opioid patient && patient is not responsive
&& cur p level gr than six && reassessed twelve hrs ago ) − > F
(clinician is notified) )).

– If a patient is discharged, the clinician will not receive any reassessment alert
(In LTL, G ( patient discharged − > ! F (clinician is notified) )).

– If required ‘Side effects’ are not managed within 24 hours, the
clinician will get a notification (In LTL, G (response measured &&
side effect not managed && resp measured 24 hrs ago − >
mgmt side effect alarm) )

The results of the model checking showed that first two properties were false,
and provided counter examples. For the first property the counter example says
if those conditions are true then the clinician may not get a notification if the
patient is discharged. For the second property, the counter example says the
clinician receives the notification if the discharge operation executes at the same
time as a notification was supposed to be sent. It is clear from the counter
examples that there exists a flaw in the models; we determined that the patient’s
discharge was not taken into consideration in the pre-conditions of Responsive,
Mild Pain, Moderate Pain and Severe Pain transitions. As a result while the
Discharge transition is ready, other transitions could possibly be ready and
execute. The initial model was corrected by rewriting the pre-conditions and
subsequent model checking showed that both properties were satisfied. Due to
space limitation we presented a small case study here which involves the modeling
of both a timed Compensable Workflow, with monitors and the translation to
DVE and model checking. The workflow was executed in a J2EE server and
interfacing to the Ontology was done by the FACT++ reasoner. Altogether, we
used the NOVA Editor, Engine, Translator and Monitor. Interested readers are
referred to [29] where they will find details of a much larger case study involving
the reduction.

8 Related Work

Petri nets [28] is a popular formalism for the design of concurrent systems
because of its sound mathematical foundations. Many analysis techniques are
available for Petri nets. Workflows may be designed by Petri net tools such as
TINA [15], Romeo [33], etc. Reo [24] is a graphical channel-based coordination
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language that enables the modeling of complex behavioral protocols using a small
set of channel types with well-defined behavior. Designing a large workflowmodel
with these tools ([15,33,24]) is difficult to manage. Designing a workflow with
compensation using these tools is particularly complex as the model becomes
very large; the use of a high level modeling language is preferable. These tools,
moreover do not use reduction techniques explicitly to verify a large model. In
[22] the authors provided a reduction technique for Coloured Petri nets. These
techniques preserve the liveness of the model and any LTL formula that does
not observe the reduced transitions of the net. This approach to reduction differs
from ours [29]; in our approach we take the model (M) and the property (φ) both
into consideration and reduce the model in such a way that the reduced model,
M ′ � φ iff the original model M � φ. Another difference between [22] and our
approach is merging vs. reducing transitions. We follow the later approach which
reduces tasks, pre-conditions, actions and variables from the original model. It
will significantly reduce the memory size for each state; as a result the memory
size of the whole state space becomes less.

UPPAAL [13] is a popular timed automata model checker but the distributed
version of UPPAAL is under development. The data aware verification method
we presented here using the parallel distributed model checker DiVinE provides
excellent support to verify large systems.

Some popular workflow management systems are YAWL [35], ADEPT2
[31], BPEL [2], etc. For workflow modeling YAWL uses workflow patterns
but is an unstructured language; on the other hand, ADEPT2 uses a block-
structured language. The use of structured vs. unstructured workflow language
is debatable; usually unstructured workflow languages are more expressive than
block-structured languages but the soundness is not guaranteed by construction
as in a block-structured language. CWMLT is a block-structured language and
hence the soundness is guaranteed by construction (proof in [30]). YAWL comes
with limited forms of verification (e.g., livelock, deadlock, etc). In [38] the authors
provided reduction rules for YAWL workflows with Cancellation regions andOR-
joins to reduce the size of the workflow, while preserving its essential properties
with respect to a particular analysis problem. Here the authors only focused on
the soundness analysis, whereas our reduction method works for any LTL−X

property (The subset of LTL formulas not containing the X operator).
An ADEPT2 workflow can be verified using the SeaFlows compliance checker

[23]. In [23] the authors discussed an abstraction approach which can serve as a
preprocessing step; this is an efficient way to deal with the state explosion problem.
This strategy is orthogonal to our strategy; our methods can be further improved
by the automated abstraction technique to reduce the data domain for variables
and their method can be improved by the reduction technique we discuss here.

YAWL and ADEPT2 do not have compensation mechanisms, whereas BPEL
has a built-in compensation for atomic processes (there are no compensable
operators). BPEL has been used in the industry for some time and there
are many publicly available tools (e.g., BPEL2PN [3], WSEngineer [11]) to
analyze workflows designed in BPEL. BPEL2PN does not provide data aware
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verification and WSEngineer does not use any explicit reduction technique.
Although BPEL has a built-in compensation, it is not t -calculus based. CWMLT

is more expressive and gives us flexibility in designing compensable workflowwith
its rich semantics.

Simmonds et al. presented the tool RuMoR in [32] which performs monitoring
of web service applications, and, when violations are discovered, automatically
proposes and ranks recovery plans. Properties, specified using property patterns,
are transformed into finite state automata. While runtime monitoring, some
compensation mechanism, verification are common to our system there are
differences. RuMoR takes a BPEL program as input and translates to a
labeled transition model using WS-Engineer. Monitors are specified as finite-
state automata. Although data aware verification can be done in RuMoR it
has limitations with respect to time. RuMoR was implemented within the IBM
WebSphere using the interception mechanism, whereas the architecture of NOVA
Workflow is light-weight as it uses Spring and aspect oriented programming
techniques which enabling its use with various J2EE application servers. In
addition, NOVA Workflow uses an ontology for decision support.

PROM [8] is an automated process mining tool which requires enough event
logs to extract process flows; here in this paper we proposed another process
mining tool which is semi-automated; the proposed tool is designed to be user
friendly as it incorporates the NOVA Browser.

Declare [34] is a prototype of a workflow management system which follows
a declarative approach to business process modeling and execution. Unlike
conventional systems, which use graph-like modeling languages (e.g., Petri-
nets), Declare uses logic (i.e., LTL) to model and execute business processes.
Modeling time, compensation and monitors in Declare is complex and its formal
verification needs further research. Moreover, many features of NOVA Workflow
(e.g., runtime monitoring, verification, browser, process diagnosis, etc) are not
covered in Declare.

NOVA, meaning ‘new’ in Latin, summarizes the four important features of
the framework: compeNsation, Ontology, Verification and Adaptability. We have
developed an interface to permit the workflow engine to consult an Ontology
knowledge base to guide the execution of the workflow engine. This paper also
presents a new technology for analyzing and visualizing healthcare information
that will significantly improve the usability of EHR systems. In future we will
interface the system with various laboratory and radiology equipment to display
a patient’s reports in the browser and develop an automated form builder.
We will further support workflow flexibility for instance, by incorporating a
sophisticated client application.
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