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Abstract. This paper shows a construction in Coq of the set of real
algebraic numbers, together with a formal proof that this set has a struc-
ture of discrete Archimedean real closed field. This construction hence
implements an interface of real closed field. Instances of such an interface
immediately enjoy quantifier elimination thanks to a previous work. This
work also intends to be a basis for the construction of complex algebraic
numbers and to be a reference implementation for the certification of
numerous algorithms relying on algebraic numbers in computer algebra.

Introduction

Real algebraic numbers form the countable subset of real numbers which are
roots of polynomials with rational coefficients. This strict sub-field of real num-
bers has interesting properties that make it an important object for algorithms
in computer algebra and in constructive and effective mathematics. For example,
they can be substituted for real numbers in the ongoing constructive formaliza-
tion of Feit-Thompson Theorem. Indeed, there is an effective algorithm to com-
pare two algebraic numbers and all field operations can be defined in an exact
way. Moreover, they can be equipped with a structure of discrete Archimedean
real closed field, which is an Archimedean ordered field with decidable ordering
satisfying the intermediate value property for polynomials.

The aim of this paper is to show how we define in Coq a data-type repre-
senting the real algebraic numbers and to describe how to formally show it is an
Archimedean real closed field. This construction and these proofs are described
in many standard references on constructive mathematics [11] or in computer
algebra [2]. However, the implementation of these results in a proof assistant
requires various changes in their presentation. Hence our development is not a
literate translation of a well-chosen reference, but is rather a synthesis of results
from the mathematical folklore which are often unused in the literature because
they are subsumed by classical results.

In order to define real algebraic numbers, standard references usually sug-
gest one of the following strategies. The first one takes a type representing real
numbers and builds the type representing the subset of reals which are roots
of a polynomial with rational coefficients. One must then show that induced
arithmetic operations on this subset have the expected properties. The second
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strategy starts from a type representing rational numbers and formalizes the
real closure of rational numbers, which is the smallest real closed field contain-
ing them. An element of the closure is usually represented as a pair polynomial
- interval, satisfying the invariant that the polynomial has a unique root in the
interval. This selected root is the algebraic number encoded by that pair. From
a constructive point of view, there is no reason to prefer one or the other of
these strategies: it may of course be possible to complete the required proofs in
any of these two cases. However, there are significant differences in the nature
of objects and proofs we handle when formalized in type theory.

In this work, we combine the two approaches in order to get the advantages
of both and to eliminate their respective drawbacks.

Constructive formal libraries on exact reals are available in the Coq sys-
tem [8]. However, for the requirements of this formalization we developed a
short library constructing exact reals as Cauchy sequences from an arbitrary
Archimedean field. We explain these formalization choices and our construction
in Section 2.

Then, in Section 3 we introduce a first type for algebraic real numbers which
we call algebraic Cauchy reals, together with its comparison algorithm and arith-
metic operations. In particular, we show how to compute annihilating polyno-
mials, decide the equality and more generally the comparison.

We then describe in Section 4 how to construct the real closure of rational
numbers to get a second data-type for real algebraic numbers, that we call real
algebraic domain.

Thanks to this second data-type and to the equality decision procedure, we
show in Section 5 how to form the real algebraic numbers and we prove that it
is a real closed field. The key ingredient is the proof of the intermediate value
property for polynomials, which concludes this work.

The complete Coq formalization we describe in this paper is available at
http://perso.crans.org/cohen/work/realalg. The code excerpts of the pa-
per may diverge from the actual code, for the sake of readability. However, we
wrote the proofs in a way which is very close to their Coq formalization.

1 Preliminaries

In this work, we use the SSReflect library of the Mathematical Components
project [13]. We base our development on the algebraic hierarchy [7], with the
extensions we already brought to describe discrete ordered structures [5]. We
use mostly the discrete real closed field structure. We also take advantage of
the available libraries on polynomials with coefficients in rings or fields. More
precisely, we use the polynomial arithmetic library which grants the following
definitions and properties: arithmetic operations, euclidean division, Bézout the-
orem, Gauss theorem.

We explain in more details some elements of the SSReflect library we use.
In the SSReflect library, algebraic structures are equipped with a decidable

equality and a choice operator.

http://perso.crans.org/cohen/work/realalg
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Decidable Equality Structure

Decidable equality structures are instances of an interface called eqType. Such
a structure is a dependently typed record that bundles a type, together with a
boolean relation (eq_op : T → T → bool) and a proof it reflects the Leibniz
equality, which means:

∀ (T : eqType) (x y : T), x = y ↔ (eq_op x y = true)

The SSReflect library provides a rich theory about eqType, such as for ex-
ample the uniqueness of equality proofs on such types. The importance of this
structure also comes from the SSReflect methodology to go back and forth
between boolean statements and propositional statements in order to alternate
computational steps with deductive steps.

Choice Structure

Choice structures are instances of an interface called choiceType in the library.
They provide us the choice operator xchoose of type:

xchoose : ∀ (T : choiceType) (P : T → bool), (∃ x, P x) → T.

which satisfies the two following properties :

xchooseP : ∀ (T : choiceType) (P : T → bool) (xP : ∃ x, P x),
P (xchoose T P xP).

eq_xchoose : ∀ (T : choiceType) (P Q : T → bool)
(xP : ∃ x, P x) (xQ : ∃ x, Q x),

(∀ x, P x = Q x) → xchoose T P xP = xchoose T Q xQ.

which respectively ensure the correctness and uniqueness of the chosen element
with respect to the predicate P.

For instance, in Coq, any countable type can be provably equipped with such
a structure. This means we can take T to be the type Q of rational numbers.

The choice structure is fundamental to formalize both the comparison of
Cauchy reals in Section 2.2 and the construction of the effective quotient type
in Section 5.

Resultant of Two Polynomials and Corollary to Bézout Theorem

The resultant of two polynomials P =
∑m

i=0 piX
i et Q =

∑n
i=0 qiX

i is usually
defined as the determinant of the Sylvester matrix.

ResX(P,Q) =
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0 ··· 0 pm pm−1 ··· p0 0
0 ··· 0 0 pm pm−1 ··· p0
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The notion of resultant is well described and studied in numerous books, we
invite the reader to look in one of them, for instance in [10]. If the polynomials
are univariate the resultant is a scalar, if they are bivariate, it is a univariate
polynomial in the remaining variable. In our development we use only the two
following properties of the resultant ResX(P (X,Y ), Q(X,Y )) ∈ F [Y ] of polyno-
mials P,Q ∈ F [X,Y ] where F is a field:

∃U, V ∈ F [X,Y ], ResX(P,Q) = UP + V Q
ResX(P,Q) = 0 ⇔ P and Q are not coprime as polynomials in X

which respectively express that the resultant of P and Q is in the ideal generated
by P and Q, and is zero if and only if P and Q are not coprime as polynomials
in X with coefficients in F [Y ], i.e. they have no common factor in (F [Y ])[X ].

Moreover we use the following corollary to Bézout theorem: If P and Q are
not coprime as polynomials in X with coefficients in F [Y ], there exist U and V
in F [X,Y ] such that U is non zero, degX(U) < deg(Q) and

U(X,Y )P (X,Y ) = V (X,Y )Q(X,Y )

2 Construction and Properties of Cauchy Reals

From now on, we denote by F an ordered Archimedean field equipped with a
decidable equality structure and with a choice structure. All the constructions
are done over F which is, for our purpose, an appropriate generalization of Q.
Although it is necessary for this construction, we do not detail the use of the
Archimedean property for the sake of readability.

It remains unclear whether an axiomatization of Cauchy reals as described
in [8] would fit our needs. Moreover, our implementation is shorter and more
direct, but less generic, when compared with Russell O’Connor’s [12].

2.1 Mathematical Description and Coq Data-Type

We define a Cauchy real as a sequence (xn)n∈N in FN, together with a con-
vergence modulus mx : F → N such that from the index mx(ε), the dis-
tance between any two elements is smaller than ε. This “Cauchy property” is
stated as:

∀ε ∀i ∀j , mx(ε) ≤ i ∧ mx(ε) ≤ j ⇒ |xi − xj | < ε

We encode sequences of elements of F as functions from natural numbers to F .
Hence, we encode Cauchy reals by packaging together the sequence (xn)n, the
modulus mx and the “Cauchy property”:

Definition creal_axiom (x : nat → F) :=
{m : F → nat | ∀ ε i j, m ε ≤ i → m ε ≤ j → |x i - x j| < ε}.

Inductive creal := CReal
{cauchyseq : (nat → F); _ : creal_axiom cauchyseq}.
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We remind that {m : F → nat | ...} is called a sigma-type and can be read
“there exist a function (m : F →nat) such that”.

The C-CoRN library also provides an interface for Cauchy reals and a con-
struction of Cauchy sequences, which is used to instantiate the interface in [8].
Although their definition is close enough to ours, we redefine and re-implement
Cauchy reals from scratch, mainly because our algebraic structures are incom-
patible. We use this as an opportunity to restate the definitions in a way which
is more compatible with our proof style.

In this paper, we often denote a Cauchy sequence (xn)n of convergence mod-
ulus mx by the notation x̄. We call such an element a Cauchy real and it repre-
sents a constructive real number. We often take the ith element of the underlying
Cauchy sequence of x̄, and we denote it as xi. Moreover, in Coq code, mx is
encoded as a function (cauchymod x) of type (F → nat). A Coq user will re-
mark that such a function is definable because the existential modulus in the
definition of the Cauchy sequence is in Type.

By definition of Cauchy sequences, we get the following property:

Lemma cauchymodP (x : creal) (ε : F) (i j : nat) :
cauchymod x ε ≤ i →cauchymod x ε ≤ j → |x i - x j| < ε

It is important to note that when we apply this lemma, we produce a sub-goal
(which we call side condition) of the form f(ε) ≤ i. This is a general scheme in
our development: during a proof we may generate n side conditions fk(ε) ≤ i for
k ∈ {1, . . . , n}. Indeed, if all constraints on i are formulated like this, it suffices
to take i to be the maximum of all the fk(ε), in order to satisfy all the side
conditions on i. We even have designed an automated procedure to solve this
kind of constraints using the Ltac language [6] available in Coq, so that many
proofs begin with a command meaning “let i be a big enough natural number”.

From cauchymod we can define a function ubound to bound above the values
of elements of a Cauchy sequence. It then satisfies the following property:

Lemma uboundP : ∀ (x : creal) (i : nat), |x i| ≤ ubound x.

In the rest of the development, this function is used to compute the convergence
moduli of numerous Cauchy sequences. We use the notation �x� for (ubound x).

2.2 Comparison

On Cauchy reals, the Leibniz equality is not a good notion to compare numbers,
as two distinct sequences may represent the same real number. In fact, the good
correct of equality on Cauchy reals states that x̄ and ȳ are equivalent if the
sequence of point-wise distances (|xn − yn|)n converges to 0.

A type together with an equivalence relation is called a setoid, and the equiv-
alence is the setoid equality. Coq provides tools to declare setoids, to declare
functions that are compatible with the setoid equality, and eventually to rewrite
using the setoid equality in contexts that are compatible with it [1].
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Although the comparison of Cauchy reals is not decidable, telling whether x̄
and ȳ are distinct is semi-decidable: classically, if they are not equal, there exist
a quantity δ and an index k such that δ ≤ |xi − yi| for all i greater than k.
Hence the primitive notion for comparison is not equality but apartness, which
contains additional information: a witness for the non-negative lower bound of
the gap separating the two sequences.

For the sake of clarity we write x̄ = ȳ for apartness and x̄ ≡ ȳ for its negation.
The notion of non apartness coincides with the notion of equivalence stated
above and is declared as the setoid equality on Cauchy reals.

From a proof of apartness x̄ = ȳ we must be able to extract a rank k and
a non-negative witness δ which bounds below the sequence (|xn − yn|)n from
the rank k. This lower bound is needed to define the inverse as described in
Section 2.4. So we could define apartness as follows, using a witness in Type to
make it available for computation:

Definition bad_neq_creal x y : Type := {δ : F | 0 < δ &
∀ i, cauchymod x δ ≤ i → cauchymod y δ ≤ i → δ ≤ |x i - y i|}.

But to be fully compatible with the setoid mechanism, the apartness must be
in Prop, not in Type. Robbert Krebbers and Bas Spitters [9] already encoun-
tered this problem in C-CoRN and solved it using the “constructive indefinite
description” theorem, which is provable for decidable properties whose domain
is nat. Our solution uses a variant of this theorem, thanks to the choiceType
structure of F.

We define apartness ( = ) as follows:

Definition neq_creal (x y : creal) : Prop :=
∃ δ, (0<δ) && (3 * δ ≤ |x (cauchymod x δ) - y (cauchymod y δ)|).

Then, using xchoose, we can define the non-negative lower bound function:

Definition lbound x y (neq_xy : x = y) : F := xchoose F _ neq_xy.

Given two Cauchy reals x̄ and ȳ which are provably apart from each other,
let δ be their non-negative lower bound of separation as defined above. From
xchooseP we get that 3δ ≤ ∣

∣xmx(δ) − ymy(δ)

∣
∣. Thus:

∀i, 3δ ≤ ∣
∣xmx(δ) − xi

∣
∣+ |xi − yi|+

∣
∣yi − ymy(δ)

∣
∣

But since we work on Cauchy sequences, we know how to bound the distance
between any two elements of the sequence, starting from a well chosen index:
∀ i ≥ mx(δ),

∣
∣xmx(δ) − xi

∣
∣ < δ and ∀ i ≥ my(δ),

∣
∣yi − ymy(δ)

∣
∣ < δ. So:

∀ i ≥ max(mx(δ),my(δ)), δ ≤ |xi − yi|

Hence we prove the lemma:
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Lemma lboundP (x y : creal) (neq_xy : x = y) i :
cauchymod x (lbound neq_xy) ≤ i →
cauchymod y (lbound neq_xy) ≤ i →lbound neq_xy ≤ |x i - y i|.

2.3 Order Relation

The order relation is handled the same way as apartness. The primitive notion
is the strict ordering, the negation of which defines the non-strict ordering. For
the sake of space we don’t write much about comparison as beyond noting it is
derivable from a proof of apartness:

Lemma neq_ltVgt (x y : creal) : x = y → {x < y} + {y < x}.

where the operator + is the disjunction in Type.

2.4 Arithmetic Operations on Cauchy Reals

We build the negation, addition and multiplication on Cauchy reals and prove
their output are Cauchy sequences in a systematic way: we perform the appro-
priate operation on each element of the sequence and we forge a convergence
modulus for each operation.

To build the negation, addition and multiplication, we exhibit the convergence
moduli of negation, addition and multiplication of Cauchy reals. Given the
convergence modulus mx of x̄, we prove the convergence moduli of (−xn)n,
(xn + yn)n and (xnyn)n are respectively: mx, ε �→ max

(
mx

(
ε
2

)
,my

(
ε
2

))
and

ε �→ max
(
mx

(
ε

2�y�
)
,my

(
ε

2�y�
))

To build the inverse, we need to know a non-negative lower bound δ for the
sequence (|xn|)n of absolute values from some arbitrary rank, and use it to prove
that the sequence of point-wise inverses ( 1

xn
)n is a Cauchy sequence. According

to Section 2.2, such a non-negative lower bound δ is given by (lbound x_neq0)
when given a proof (x_neq0 : x = 0) that x̄ is apart from 0 (in the sense of
Cauchy sequences). This value δ is such that ∀i > mx(δ), δ ≤ |xi|

If i and j are greater than mx(εδ
2), we have |xi − xj | < εδ2 By definition

of δ and if i and j are greater than mx(δ), we get δ ≤ |xi| and δ ≤ |xj |, thus
|xi − xj | < ε|xixj |. And finally:

∣
∣
∣
∣
1

xi
− 1

xj

∣
∣
∣
∣ < ε

Thus, a convergence modulus is ε �→ max
(
mx(εδ

2),mx(δ)
)

Morphism property of arithmetic operations. We can check that all arithmetic
operations are compatible with the equality for Cauchy sequences, using a simple
point-wise study. The order relation is also a compatible. However, there is no
need to systematically study the compatibility with apartness.
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2.5 Bounds and Evaluation for Polynomials

Using the Taylor expansion of polynomial P , we define the following bounds:

B0(P, c, r) = 1 +

n∑

i=0

|pi|(|c|+ |r|)i

B1(P, c, r) = max(1, 2r)n

(

1 +
n∑

i=1

B0(P
(i), c, r)

i!

)

B2(P, c, r) = max(1, 2r)n−1

(

1 +

n∑

i=2

B0(P
(i), c, r)

i!

)

These bounds satisfy the following properties, for all x and y in [c− r, c+ r]:

|P (x)| ≤ B0(P, c, r)

|P (y)− P (x)| ≤ |y − x|B1(P, c, r)
∣
∣
∣
∣
P (y)− P (x)

y − x
− P ′(x)

∣
∣
∣
∣ ≤ |y − x|B2(P, c, r)

These bounds are constructive witnesses for well-known classical mathematical
results on continuous or derivable functions, specialized to univariate polyno-
mials. The bound B0 is only an intermediate step to bounds B1 and B2. The
bound B2 is used in Section 4.2 to prove that polynomials whose derivative does
not change sign on an interval are monotone on it.

The bound B1 is used to show that polynomial evaluation preserves the
Cauchy property for sequences. Indeed, we build polynomial evaluation of a
polynomial P ∈ F [X ] in a Cauchy real as the point-wise operation, and in order
to prove that the result is a Cauchy sequence, we bound |P (x)−P (y)| when |x−y|
is small enough. The convergence modulus is given by ε �→ mx

(
ε

B1(P,0,�x�)
)
. We

then prove that P (x̄) = P (ȳ) ⇒ x̄ = ȳ, which implies that x̄ ≡ ȳ ⇒ P (x̄) ≡
P (ȳ), hence the evaluation of a polynomial in a Cauchy real is compatible with
the equality of Cauchy reals.

3 An Existential Type for Algebraic Cauchy Reals

3.1 Construction of Algebraic Cauchy Reals

Now, we formalize real algebraic numbers on top of Cauchy reals.

Inductive algcreal := AlgCReal {
creal_of_alg : creal;
annul_algcreal : {poly F};
_ : monic annul_algcreal;
_ : annul_algcreal.[creal_of_alg] ≡ 0

}.
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Here, an algebraic Cauchy real (AlgCReal x P monic_P root_P_x) represents
an algebraic number as a Cauchy real x and a polynomial P with a proof monic_P
that P is monic (its leading coefficient is 1) and a proof root_P_x that x is a root
of P. The notation p.[x] stands for polynomial evaluation in the source code.

First we prove that Cauchy reals setoid equality is decidable on algebraic
Cauchy reals, then we build arithmetic operations.

3.2 Equality Decision Procedure

Whereas the comparison on Cauchy reals is only semi-decidable, the compari-
son on algebraic Cauchy reals is decidable. We call eq_algcreal this decision
procedure. It uses the additional data given by the annihilating polynomials. In
fact, we only need to decide if some algebraic Cauchy real is zero, because we
can test whether x̄ = ȳ by comparing x̄− ȳ to 0 once we have the subtraction.

Let (x̄, P ) be an algebraic Cauchy real we wish to compare to 0, so P is the
annihilating polynomial of the Cauchy real x̄. There are two possibilities:

– Either the indeterminate X does not divide P , then 0 is not a root of P , thus
x̄ = 0.

– Or X divides P . If P = X then x̄ ≡ 0, so let us suppose that X is a proper
divisor of P . Then there exist a divisor D of P whose degree is smaller than
the one of P and such that D(x̄) ≡ 0. The existence of such a D is given by
a general lemma stating that if x̄ is a Cauchy real and P,Q two polynomials
that are not coprime and such that P (x̄) ≡ 0 and P does not divide Q, then
there exist D of smaller degree than P such that D(x̄) ≡ 0.
We can now iterate this reasoning on (x̄, D) where the degree of D is smaller
than the one of P .

3.3 Operations on Algebraic Cauchy Reals

We build all the operations (negation, addition, multiplication, inverse) from the
constants 0 and 1 and using the subtraction and the division. The embedding of
the constants c ∈ F is obtained from the pair (c̄, X − c) (where c̄ is a constant
Cauchy sequence).

In the remainder of this section we consider two algebraic Cauchy reals x
and y, whose respective Cauchy sequences are x̄ and ȳ, and whose respective
annihilating polynomials are P and Q.

Let us recall (Section 2.4) that the subtraction x̄− ȳ (resp. division x̄
ȳ ) is ob-

tained as the point-wise subtraction (resp. division) of elements of the sequence.
Let us find a polynomial whose root is this new sequence.

Subtraction. Our candidate is the following resultant:

R(Y ) = ResX (P (X + Y ), Q(X))

There are two essential properties to prove about this resultant it is non zero
and it annihilates the subtraction.
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R is non zero. Let us suppose that R is zero and find a contradiction. Since R
is zero, P (X + Y ) and Q(X) are not coprime.

Thanks to the corollary to Bézout theorem, we know there exist U, V ∈
F [X ] such that U is non zero, degX(U) < deg(Q) and U(X,Y )P (X + Y ) =
V (X,Y )Q(X).

Taking the Y -leading coefficient, we get u(X)p = v(X)Q(X) where u(X) and
v(X) are the respective Y -leading coefficients of U(X,Y ) and V (X,Y ), and p
is the leading coefficient of P . This equation gives that deg(Q) ≤ deg(u), but
deg(u) ≤ degX(U) < deg(Q). This is a contradiction.

R annihilates the subtraction. Let us prove that R annihilates the Cauchy se-
quence x̄ − ȳ. Since R is in the ideal generated by P (X + Y ) and Q(X), there
exist U and V such that R(Y ) = U(X,Y )P (X + Y ) + V (X,Y )Q(X). Hence by
evaluation at X = yn and Y = (xn − yn):

R(xn − yn) = U(yn, xn − yn)P (xn) + V (yn, xn − yn)Q(yn)

But P (x̄) ≡ 0 and Q(ȳ) ≡ 0. As xn and yn are bounded and U is bounded on a
bounded domain (cf Section 2.5) we have that R(x̄− ȳ) ≡ 0.

Remark that now the subtraction is defined, we can decide the equality of two
arbitrary values by comparing their subtraction to zero, using the result from
Section 3.2.

Division. When ȳ is zero, we return the annihilating polynomial X . When
it is non zero, we can find a new Q annihilating ȳ such that Q(0) = 0. The
annihilating polynomial of x̄

ȳ is the following resultant:

R(Y ) = ResX (P (XY ), Q(X))

R is non zero. Let us suppose that R is zero and find a contradiction. Since R
is zero, P (XY ) and Q(X) are not coprime.

Thanks to the corollary to Bézout theorem, we know there exist U, V ∈
F [X ] such that U is non zero, degX(U) < deg(Q) and U(X,Y )P (XY ) =
V (X,Y )Q(X).

By evaluation at Y = 0 we get: U(X, 0)P (0) = V (X, 0)Q(X). Since F [Y ] is
an integral domain, if V (X, 0) = 0 we know that Y |V (X,Y ), and that there are
two possibilities:

– Either U(X, 0) = 0, which means Y |U(X,Y ). Hence, there exists U ′(X,Y )
and V ′(X,Y ), whose degrees in Y are strictly smaller than the ones of U
and V , and such that: U ′(X,Y )P (XY ) = V ′(X,Y )Q(X).

– Or P (0) = 0, which means X |P (X), thus XY |P (XY ). But we also know
that U(0, Y )P (0) = V (0, Y )Q(0). And since Q(0) = 0, we necessarily have
V (0, Y ) = 0. It follows that X |V (X,Y ) and as we knew that Y |V (X,Y ), we
find that XY |V (X,Y ).

Thus, there exist P ′ and V ′ whose degrees are strictly smaller than those
of P and V respectively, such that U(X,Y )P ′(XY ) = V ′(X,Y )Q(X).
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In both cases, we can repeat the same reasoning until we get an equation of
the following form, such that no member cancels: U(X, 0)P (0) = V (X, 0)Q(X).
This equation gives deg(Q) ≤ deg(U(X, 0)), but we also had deg(U(X, 0)) ≤
degX(U) < deg(Q). This is a contradiction.

R annihilates the division. In the same way we did for subtraction, we show
that R( x̄ȳ ) ≡ 0.

4 Encoding Algebraic Cauchy Reals

The data-type of algebraic Cauchy reals is a setoid whose equivalence is decid-
able, and it is difficult to show that algebraic Cauchy reals form a countable
setoid if F is countable. However, we can do better and build a type whose
decidable equivalence reflects Leibniz equality, and for which we can exhibit a
bijection with N if F is countable.

In order to get the type of real algebraic numbers, we should quotient the
type of algebraic Cauchy reals by the setoid equality. We know from [3] that
this quotient can be done inside Coq as soon as the type which gets quotiented
has a choiceType structure and the equivalence relation by which we quotient
is decidable. Since algcreal cannot directly be equipped with a choiceType
structure, we create a type algdom which we call real algebraic domain. The type
algdom only serves as an encoding of algcreal in order to forge the quotient,
the construction of which we detail in Section 5.

Inductive algdom := AlgRealDom {
annul_algdom : {poly F};
center_alg : F;
radius_alg : F;
_ : monic annul_algdom;
_ : annul_algdom.[center_alg - radius_alg]

* annul_algdom.[center_alg + radius_alg] ≤ 0
}.

An element (AlgRealDom P c r monic_P chg_sign_P) of algdom represents
one of the roots of the polynomial P in the interval [c - r, c + r], with a
proof monic_P that P is monic and a proof chg_sign_P that P changes sign on
the interval. We know which root is selected by running the decoding procedure
described in Section 4.1.

This data-type is only using elements of F and two proofs. It thus can be
encoded as sequences of elements of F and inherits the choiceType structure
of F . We also notice that algdom is countable as soon as F is. This fact was
not obvious for the setoid of algebraic Cauchy reals. The quotient type will also
inherit from the choiceType structure and will be countable if F is.

We show that algdom is an explicit encoding of algebraic Cauchy reals. Re-
mark that algcreal is still useful because arithmetic operations are easier to
define on it.



78 C. Cohen

4.1 Decoding to Algebraic Cauchy Reals

We build the decoding function to_algcreal: algdom →algcreal.
An element from the real algebraic domain contains a polynomial P , a center

c and a radius r such that P (c− r)P (c + r) ≤ 0. The root we wish to select is
in the interval I = [c− r, c+ r].

We decode an element from the real algebraic domain into an algebraic Cauchy
real by dichotomy. We form the Cauchy sequence x̄ = (xn)n, such that all the
xn are in the interval I and such that P (x̄) ≡ 0̄.

We proceed by induction on n to define the sequence x̄. It should satisfy the
following invariant, which expresses that P must change sign on the interval of
radius 2−nr and centered in xn:

Hn = P (xn − 2−nr)P (xn + 2−nr) ≤ 0

In the induction step, we pick either xn − 2−(n+1)r or xn + 2−(n+1)r to satisfy
the invariant Hn+1.

The condition that it changes sign is sufficient to show the existence of a root,
and doesn’t assert anything about its unicity. However, we have no need for
unicity as the decoding procedure selects a root in a deterministic manner.

4.2 Encoding of Algebraic Cauchy Reals

This step is more difficult, we construct the encoding function to_algdom:
algcreal → algdom. In order to satisfy the coding property:

Lemma to_algdomK x : to_algcreal (to_algdom x) ≡ x.

Given an algebraic Cauchy real (x̄, P ) we try to find a rational interval containing
only one root, in order for the decoding to return an element equivalent to x̄.

There are two possibilities:

– Either P and its derivative P ′ are coprime, so there exist U and V such that
UP + V P ′ = 1. Since P (x̄) converges to 0 and if n is big enough we get
P ′(xn) ≥ 1

2�V (x̄)� . By taking a small enough interval [a, b] containing xn, we
get that P is monotone on [a, b] (thanks to the B2 bound of Section 2.5)
Without loss of generality, we can suppose that P is increasing, we then get
P (a) ≤ P (xi) ≤ P (b) for all i ≥ n. But P (xi) converges to 0, so P (a) ≤ 0 ≤
P (b). We found an interval with only one root for P .

– Or P and P ′ are not coprime, so we can find a proper divisor D of P that still
annihilates x, thanks to the same general lemma mentioned in Section 3.2,
in the second case of the disjunction. We fall back to the study of (x̄, D),
where the degree of D is strictly smaller that the one of P .

4.3 Transferring the Operations to the Encoding

We can transpose all the operations and properties of algebraic Cauchy reals to
its encoding real algebraic domain. More particularly, equality between algebraic
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Cauchy reals ≡ (which we showed decidable in 3.2) gives a decidable equivalence
on real algebraic domain, using the following definition:

eq_algdom x y := (eq_algcreal (to_algcreal x) (to_algcreal y))

All the properties of these new operators are easily derived from the properties
of the original operators.

5 Real Algebraic Numbers as a Quotient Type

The construction of the quotient is done in a generic way, but for this paper to
be self-contained, we describe its construction as it is automatically done by the
mechanism presented in [3].

5.1 Construction of the Quotient Type

First we define a notion of canonical element. To each element x in algdom, we
associate an element (canon x) which must be equal to any (canon y) if and
only if eq_algdom x y. We use the unique choice operator xchoose to do this:

Lemma exists_eq (y : algdom) : ∃ x : algdom, y ≡ x.
Proof. exists y; reflexivity. Qed.

Definition canon (y : algdom) = xchoose (exists_eq y).

Moreover, canon is constant on each equivalence class thanks to the unicity
property of xchoose.

Then we define the quotient type of real algebraic numbers by forming the
sigma-type of elements of the real algebraic domain that are canonical:

Definition alg := {x : algdom | canon x = x}

Thanks to the uniqueness of equality proofs on algdom, two elements x and y
in alg are equal if and only if (val x = val y), where val is the projection
on the first component of the sigma-type. From canon, we can now build the
canonical surjection (pi : algdom → alg), which maps any element of algdom
to the unique representative for its equivalence class.

By composing to_algdom with pi we can now see alg as the type of equiv-
alence classes of elements of algcreal. We now see F as a parameter for the
whole construction, so that alg becomes (alg F), which we denote by F̄ .

We prove that arithmetic operations (and the order relation) are compatible
with the quotient. This is a direct consequence of the morphism property of
operations with regard to setoid equality, which we dealt with in Section 3.3.

We also build a function (to_alg: F → alg F) which embeds any element c
of F into F̄ , by mapping c to the equivalence class of the element (c̄, (X − c)) of
algcreal. We then prove it is a field morphism and that this morphism is also
compatible with comparison. The mathematical notation for this function is ↑.
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We remark that by construction of algdom, the following property holds: given
a polynomial P ∈ F [X ] and two points a < b ∈ F such that P (a) ≤ 0 ≤ P (b),
there exist c ∈ F̄ such that c ∈ [a, b] and P (c) = 0. This is a weak version of the
intermediate value property for polynomials.

5.2 Real Algebraic Numbers Form a Real Closed Field

Note that F̄ is a totally ordered Archimedean field with decidable comparison.
Indeed, as those properties already hold for F , they transfer to F̄ by studying
the Cauchy sequences underlying its elements.

The difficulty is to prove F̄ is a real closed field, which amounts to prove the
intermediate value theorem for polynomials in F̄ [X ].

Let P be a polynomial in F̄ [X ] and a and b two elements of F̄ such that a < b
and P (a) ≤ 0 ≤ P (b). Let us show that there exist an real algebraic number c
in F̄ such that P (c) = 0.

Iteration of the Closure. Thanks to the remark in the end of Section 5.1,
applied to the ordered Archimedean field F̄ , we get that the polynomial P ∈
F̄ [X ] has a root ξ in the “double closure” ¯̄F .

If we find a function ↓: ¯̄F → F̄ , such that ∀ζ ∈ ¯̄F, ↑ (↓ ζ) = ζ, then (↓ ξ) ∈ F̄
would be a root of P . The Coq name for this function is from_alg. The existence
of such a function means that the closure process we design terminates in one
step only.

Let ξ be in ¯̄F , and let us build (↓ ξ). By transforming ξ in an algebraic Cauchy
real (ξ̄, P ) we get a Cauchy sequence ξ̄ in F̄N, and a polynomial P ∈ F̄ [X ].

Each element ξn is a Cauchy sequence x̄n = (xn,k)k which we can choose
such that |x̄n+1 − x̄n| < 2−(n+1). Then, the sequence x̄ = (xn,n)n is a Cauchy
sequence such that ↑ x̄ = ξ̄. We hence have the first component of (↓ ξ).

Polynomial Annihilating the Algebraic Cauchy Real x̄. We must find a
polynomial R ∈ F [X ] which annihilates x̄. The coefficients pi of P are a finite
number of values in the field extension F̄ of F , so we can apply the primitive
element theorem to find an element α ∈ F̄ , whose annihilating polynomial is Q
of degree q + 1 such that for all i, pi is in the simple extension F [α]. We can
then re-factorize P as P =

∑q
l=0 α

lPl.
We take the resultant R(Y ) = ResX

(∑q
l=0 X

lPl(Y ), Q(X)
)
. We now show

that it is non zero and it annihilates x̄.

R is non zero. Let us suppose R is zero and find a contradiction. The property
of Bézout gives U, V ∈ F [X ] such that U is non zero, degX(U) < deg(Q) and:

U(X,Y )

q∑

l=0

X lPl(Y ) = V (X,Y )Q(X)
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Then by embedding in F̄ and evaluation at X = α we get: U(α, Y )P (Y ) = 0.
But P = 0, thus U(α, Y ) = 0. Then by taking the Y -leading coefficient u(X) of
U(X,Y ) we get:

u(α) = 0 and u ∈ F [X ] and u = 0 and deg(u) < deg(Q)

This gives a polynomial u annihilating α of degree smaller than the one of Q,
and we can proceed by induction on the degree of Q.

R annihilates x̄. We have:

R(xn,n) = U(αm, xn,n)

(
q∑

l=0

αl
mPl(xn,n)

)

+ V (αm, xn,n)Q(αm)

and we notice that the right hand side converges to 0 when m and n grow.

Conclusion

The theory of real closed fields presented in [5] is based on an interface we
now provide an instance of. A direct consequence is that real algebraic numbers
immediately enjoy quantifier elimination which proves decidable its first order
theory. The formalization we describe comes from various classical sources that
had to be adapted, made constructive and simplified for the needs of the for-
malization. The methodology applied here to build algebraic numbers and make
proofs feasible and quick is, up to our knowledge, original. This is also, as far
as we know, the first certified formalization of real algebraic numbers in a proof
assistant.

It would be interesting to provide an efficient implementation of algebraic
numbers, relying on [2] and on [9] for example. The formalization we show in
this paper would then serve as a reference implementation. We would need to
prove the relative correctness of the efficient implementation with regard to the
abstract one. But no proofs about the algebraic structure of the new implemen-
tation would be required.

It would be natural to continue this work by extending the real algebraic num-
bers by the imaginary unit i. Thanks to the constructive fundamental algebra
theorem, generalized to real closed fields [4], this new field would be algebraically
closed, partially ordered and would then represent the data-type of (complex) al-
gebraic numbers. In the framework of Galois theory, it would also be interesting
to formalize the type of algebraic extensions over rational numbers: we could
then use the classical presentation and study them into their algebraic closure.

Finally, we formalized the construction of the real closure of fields of zero char-
acteristic, which is a step in constructing the algebraic closure. It is a completely
different work to formalize the algebraic closure of fields of non-zero characteris-
tic. Moreover the efficient algorithms for the non-zero characteristic are treated
in [2] and are more intricate than the ones for the zero characteristic.



82 C. Cohen

Acknowledgement. I wish to thank Georges Gonthier for the numerous ideas
which constitute the basis of this development and Russell O’Connor for dis-
cussions which helped me find the good way to state and prove some results. I
also thank Assia Mahboubi, Enrico Tassi and the anonymous referees for their
reading and comments on this paper.

References

1. Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. J. of Functional Pro-
gramming 13(2), 261–293 (2003); Special Issue on Logical Frameworks and Meta-
languages

2. Bostan, A.: Algorithmique efficace pour des opérations de base en Calcul
formel. Ph.D. thesis, École polytechnique (2003), http://algo.inria.fr/bostan/
these/These.pdf

3. Cohen, C.: Types quotients en COQ. In: Hermann (ed.) Actes des 21éme
Journées Francophones des Langages Applicatifs (JFLA 2010), INRIA, Vieux-
Port La Ciotat, France (January 2010), http://jfla.inria.fr/2010/actes/PDF/
cyrilcohen.pdf

4. Cohen, C., Coquand, T.: A constructive version of Laplace’s proof on the exis-
tence of complex roots, http://hal.inria.fr/inria-00592284/PDF/laplace.pdf
(unpublished)

5. Cohen, C., Mahboubi, A.: Formal proofs in real algebraic geometry: from ordered
fields to quantifier elimination. Logical Methods in Computer Science 8(1-02), 1–40
(2012), http://hal.inria.fr/inria-00593738

6. Delahaye, D.: A Tactic Language for the System COQ. In: Parigot, M., Voronkov,
A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 85–95. Springer, Heidelberg
(2000)

7. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging Mathematical
Structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)

8. Geuvers, H., Niqui, M.: Constructive Reals in COQ: Axioms and Categoric-
ity. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000.
LNCS, vol. 2277, pp. 79–95. Springer, Heidelberg (2002), http://dl.acm.org/
citation.cfm?id=646540.696040

9. Krebbers, R., Spitters, B.: Computer Certified Efficient Exact Reals in COQ.
In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011 and
Calculemus 2011. LNCS, vol. 6824, pp. 90–106. Springer, Heidelberg (2011)

10. Lang, S.: Algebra. Graduate texts in mathematics. Springer (2002)
11. Mines, R., Richman, F., Ruitenburg, W.: A course in constructive algebra. Univer-

sitext (1979); Springer-Verlag (1988)
12. O’Connor, R.: Certified Exact Transcendental Real Number Computation in

COQ. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS,
vol. 5170, pp. 246–261. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/
978-3-540-71067-7_21

13. Project, T.M.C.: SSReflect extension and libraries,
http://www.msr-inria.inria.fr/Projects/math-components/index_html

http://algo.inria.fr/bostan/these/These.pdf
http://algo.inria.fr/bostan/these/These.pdf
http://jfla.inria.fr/2010/actes/PDF/cyrilcohen.pdf
http://jfla.inria.fr/2010/actes/PDF/cyrilcohen.pdf
http://hal.inria.fr/inria-00592284/PDF/laplace.pdf
http://hal.inria.fr/inria-00593738
http://dl.acm.org/citation.cfm?id=646540.696040
http://dl.acm.org/citation.cfm?id=646540.696040
http://dx.doi.org/10.1007/978-3-540-71067-7_21
http://dx.doi.org/10.1007/978-3-540-71067-7_21
http://www.msr-inria.inria.fr/Projects/math-components/index_html

	Construction of Real Algebraic Numbers in Coq
	Preliminaries
	Construction and Properties of Cauchy Reals
	Mathematical Description and Coq Data-Type
	Comparison
	Order Relation
	Arithmetic Operations on Cauchy Reals
	Bounds and Evaluation for Polynomials

	An Existential Type for Algebraic Cauchy Reals
	Construction of Algebraic Cauchy Reals
	Equality Decision Procedure
	Operations on Algebraic Cauchy Reals

	Encoding Algebraic Cauchy Reals
	Decoding to Algebraic Cauchy Reals
	Encoding of Algebraic Cauchy Reals
	Transferring the Operations to the Encoding

	Real Algebraic Numbers as a Quotient Type
	Construction of the Quotient Type
	Real Algebraic Numbers Form a Real Closed Field

	References




