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Preface

This volume contains the papers presented at ITP 2012, the Third International
Conference on Interactive Theorem Proving. The conference was held August
13–15 in Princeton, New Jersey, USA, organized by the General Co-chairs
Andrew W. Appel and Lennart Beringer.

ITP brings together researchers working in interactive theorem proving and
related areas, ranging from theoretical foundations to implementation aspects
and applications in program verification, security, and formalization of mathe-
matics. ITP 2012 was the third annual conference in this series. The first meet-
ing was held July 11–14, 2010, in Edinburgh, UK, as part of the Federated
Logic Conference (FLoC). The second meeting took place August 22–25, 2011,
in Berg en Dal, The Netherlands. ITP evolved from the previous TPHOLs series
(Theorem Proving in Higher-Order Logics), which took place every year from
1988 to 2009.

There were 40 submissions to ITP 2012, each of which was reviewed by at least
four Program Committee members. Out of the 40 submissions, 36 were regular
papers and four were rough diamonds. Unlike previous editions of TPHOLs/ITP,
this year’s call for papers requested “submissions to be accompanied by verifi-
able evidence of a suitable implementation.” In accordance with this, almost all
submissions came with the source files of a corresponding formalization, which
were thoroughly inspected by the reviewers and influenced the acceptance de-
cisions. The Program Committee accepted 25 papers, which include 21 regular
papers and four rough diamonds, all of which appear in this volume. We were
pleased to be able to assemble a strong program covering topics such as program
verification, security, formalization of mathematics and theorem prover develop-
ment. The Program Committee also invited three leading researchers to present
invited talks: Gilles Barthe (IMDEA, Spain), Lawrence Paulson (University of
Cambridge, UK), and André Platzer (Carnegie Mellon University, USA). In ad-
dition, the Program Committee invited Andrew Gacek (Rockwell Collins) to give
a tutorial on the Abella system. We thank all these speakers for also contributing
articles to these proceedings.

ITP 2012 also featured two associated workshops held the day before the
conference: The Coq Workshop 2012 and Isabelle Users Workshop 2012, bringing
together users and developers in each of these communities to discuss issues
specific to these two widely used tools.

The work of the Program Committee and the editorial process were facilitated
by the EasyChair conference management system. We are grateful to Springer
for publishing these proceedings, as they have done for all ITP and TPHOLs
meetings since 1993.

Many people contributed to the success of ITP 2012. The Program Commit-
tee worked hard at reviewing papers, holding extensive discussions during the
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on-line Program Committee meeting, and making final selections of accepted
papers and invited speakers. Thanks are also due to the additional referees en-
listed by Program Committee members. Finally, we would like to thank Andrew
W. Appel and his staff for taking care of all the local arrangements, Princeton
University for the administrative and financial support, and NEC Laboratories,
Princeton, for their additional sponsorship.

June 2012 Lennart Beringer
Amy Felty
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MetiTarski: Past and Future

Lawrence C. Paulson

Computer Laboratory, University of Cambridge, England
lp15@cl.cam.ac.uk

Abstract. A brief overview is presented of MetiTarski [4], an automatic
theorem prover for real-valued special functions: ln, exp, sin, cos, etc.Meti-
Tarski operates through a unique interaction between decision procedures
and resolution theorem proving. Its history is briefly outlined, along with
current projects. A simple collision avoidance example is presented.

1 Introduction

MetiTarski [4] is an automatic theorem prover for first-order logic over the real
numbers, including the transcendental and other special functions. It is a version
of Joe Hurd’s Metis [23,24] (a resolution theorem prover) heavily modified to
call decision procedures, and more recently, augmented with case-splitting by
backtracking.

Here are some theorems that MetiTarski can prove, automatically of course,
and typically in tens of seconds.

∀ t > 0, v > 0

((1.565 + 0.313 v) cos(1.16 t) + (.0134 + .00268 v) sin(1.16 t)) e−1.34 t

− (6.55 + 1.31 v) e−0.318 t + v ≥ −10

∀x > 0 =⇒ 1− e−2x

2 x (1− e−x)2
− 1

x2
≤ 1

12

∀x y, x ∈ (0, 12) =⇒ xy ≤ 1

5
+ x ln(x) + ey−1

∀x ∈ (−8, 5) =⇒ max(sin(x), sin(x+ 4), cos(x)) > 0

∀x y, (0 < x < y ∧ y2 < 6) =⇒ sin(y)

sin(x)
≤ 10−4 +

y − 1
6y

3 + 1
120y

5

x− 1
6x

3 + 1
120x

5

∀x ∈ (0, 1) =⇒ 1.914

√
1 + x−

√
1− x

4 +
√
1 + x+

√
1− x

≤ 0.01 +
x

2 +
√
1− x2

∀x ∈ (0, 1.25) =⇒ tan(x)2 ≤ 1.75 10−7 + tan(1) tan(x2)

∀x ∈ (−1, 1), y ∈ (−1, 1) =⇒ cos(x)2 − cos(y)2 ≤ − sin(x+ y) sin(x− y) + 0.25

∀x ∈ (−1, 1), y ∈ (−1, 1) =⇒ cos(x)2 − cos(y)2 ≥ − sin(x+ y) sin(x− y)− 0.25

∀x ∈ (−π, π) =⇒ 2 | sin(x)| + | sin(2 x)| ≤ 9

π

L. Beringer and A. Felty (Eds.): ITP 2012, LNCS 7406, pp. 1–10, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 L.C. Paulson

The motivation for MetiTarski arose with Jeremy Avigad’s Isabelle/HOL proof
of the prime number theorem. Avigad [7, Sect. 4.5] observed that some quite ele-
mentary inequalities involving the logarithm function (the proof requires estab-
lishing many such inequalities) were inordinately difficult to prove. My original
idea was to create a simple-minded heuristic procedure within Isabelle to prove
inequalities involving continuous functions. It might reason using monotonicity,
backwards chaining, and ideas similar to those in the Fourier-Motzkin [26] ap-
proach to deciding real inequalities. Although decision procedures are popular,
reasoning about arbitrary special functions is obviously undecidable. The decid-
able problems that do exist are very complex, both in theory and in practice.
Our approach has to be heuristic.

2 Early Work

The initial work was done (using funding from the UK’s EPSRC) by my col-
league, Behzad Akbarpour. He located a promising paper [29] (see also Daumas
et al. [16]) giving formally verified upper and lower bounds (polynomials or ratio-
nal functions, namely, ratios of polynomials) for the well-known transcendental
functions and describing techniques using interval arithmetic to establish ground
inequalities involving special functions over the real numbers. Hand simulations
quickly established that interval arithmetic was seldom effective at solving prob-
lems even in one variable [5].

Equipped with the upper and lower bounds, we could replace the transcenden-
tal functions appearing in a problem by polynomials. We could therefore reduce
the original special-function inequality to a set of polynomial inequalities. Be-
cause interval arithmetic was too weak to decide these inequalities, we decided to
try a decision procedure. First-order formulas over polynomial inequalities over
the real numbers admit quantifier elimination [20], and are therefore decidable.
This decision problem is known as RCF, for real closed fields.

The first implementation of MetiTarski [2] used John Harrison’s implementa-
tion [27] of the Cohen-Hörmander RCF decision procedure. It turned out to be
much more effective than interval arithmetic. As the procedure was itself coded
in ML, MetiTarski was a self-contained ML program. Unfortunately, we found [2]
that the Cohen-Hörmander procedure couldn’t cope with polynomials of degree
larger than five, which ruled out the use of accurate bounds. The next version
of MetiTarski [3] invoked an external decision procedure, QEPCAD [12], which
implements a much more powerful technique: cylindrical algebraic decomposi-
tion (CAD). More recently, we have integrated MetiTarski with the computer
algebra system Mathematica, which contains a family of highly advanced RCF
decision procedures. We can even use the SMT solver Z3 [18] now that it has
been extended with nlsat, a novel approach to deciding purely existential RCF
problems [25].

A separate question concerned how to apply the upper and lower bounds to
eliminate special function occurrences. Should we write a bespoke theorem prover
implementing a carefully designed algorithm? Analytica [14] and Weierstrass [8]
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both implement a form of sequent calculus. Despite the impressive results ob-
tained by both of these systems, we decided to see whether ordinary first-order
resolution could perform as well. The contest between “natural” and resolution
proof systems is a long-standing scientific issue in automated reasoning [10].
Resolution had two strong arguments in its favour: one, its great superiority (in
terms of performance) over any naive implementation of first-order logic, and
two, the possibility that resolution might also be superior to a bespoke algo-
rithm at finding complicated chains of reasoning involving the upper and lower
bounds.

Resolution has entirely met our expectations. No individual bound can accu-
rately approximate a special function over the entire real line. This was already
clear in Muñoz and Lester [29], who presented families of bounds, each accurate
over a small interval. A typical proof involves choosing multiple bounds over
overlapping intervals of the real line. With resolution, we can supply bounds
as files of axioms. Resolution automatically identifies bounds that are accurate
enough, keeping track of the intervals for which the theorem has been proved.
Moreover, other facts (such as the definitions of the functions abs and max) can
be asserted declaratively as axioms.

The original families of bounds also underwent many refinements. Through
careful scrutiny, we were able to extend their ranges of applicability. A later ver-
sion of MetiTarski [4] adopted many continued fraction approximations [15]. For
some functions, notably ln and tan−1, continued fractions are vastly more accu-
rate than truncated Taylor series. There is also the choice between inaccurate
but simple bounds (linear ones are helpful if functions are nested), and highly
accurate bounds of high degree. Although the most recent version of MetiTarski
can choose axiom files automatically, manually choosing which bounds to in-
clude can make a difference between success and failure for some problems. To
extend MetiTarski to handle a new function, the most important step is to find
approximations to the function that yield suitable upper and lower bounds.

3 Basic Architecture

MetiTarski comprises a modified resolution theorem prover, one or more RCF
decision procedures and a collection of axiom files giving approximations (upper
and lower bounds) to special functions. A few other axioms are used, relating
division with multiplication, defining the absolute value function, etc.

The most important modifications to the resolution method are arithmetic
simplification and the interface to RCF decision procedures. Polynomials are
simplified in an ad hoc manner, loosely based on Horner canonical form; this
serves first to identify obviously equivalent polynomials, but second and crucially
to identify a special function occurrence to be eliminated. The mathematical
formula is transformed to move this candidate occurrence into a certain position,
which will allow an ordinary resolution step to replace it by an upper or lower
bound, as appropriate. Occurrences of the division operator are also simplified
and in particular flattened, so that an algebraic expression contains no more
than a single occurrence of division, and that outermost.
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RCF decision procedures are mainly used to simplify clauses by deleting cer-
tain literals. Recall that a clause is a disjunction of literals, each of which is
an atomic formula or its negation. With standard resolution, a literal can only
be deleted from a clause after a resolution step with another clause containing
that literal’s negation. MetiTarski provides another way a literal can be deleted:
whenever an RCF decision procedure finds it to be inconsistent. This determi-
nation is done with respect to the literal’s context, consisting of the negation of
other literals in the same clause, as well as any globally known algebraic facts.

RCF decision procedures are also used to discard redundant clauses.Whenever
a new clause emerges from the resolution process, it is given to the decision
procedure, and if the disjunction of its algebraic literals turns out to be a logical
consequence (in RCF) of known facts, then this clause is simply ignored. This
step prevents the buildup of redundant algebraic facts, which cannot influence
future decision procedure calls.

Our use of RCF decision procedures has one massive disadvantage: perfor-
mance. The general decision problem is doubly exponential in the number of
variables [17]. We actually use a special case of the decision problem, in which
we ask whether universally quantified formulas are theorems, but even so, when
a proof takes a long time, almost invariably this time is spent in decision pro-
cedures. The time spent in resolution is frequently just a few seconds, a tiny
fraction of the total.

We undertook this project as basic research, motivated by Avigad’s difficulties
but with no other specific applications. Having no problem set to begin with, we
(mainly Akbarpour) created our own. The original problems mostly came from
mathematical reference works [1,13,28]. Later, we formalised engineering prob-
lems, including Nichols plot problems from Ruth Hardy’s thesis [21], and simple
hybrid systems problems that were published on a website [35]. The hardware
verification group at Concordia University supplied a few more problems. We
now have nearly 900.

4 Current Projects

Recent developments fall under three categories: improvements to the resolution
process, the use of new decision procedures, and applications.

Resolution can be tweaked in countless ways, but one of the most important
heuristics is splitting. This involves taking a clause of the form A ∨B (all non-
trivial clauses are disjunctions) and considering the cases A and B as separate
problems. Given that resolution already can deal with disjunctions, splitting is
not always appropriate, and indeed splitting is only possible if A and B have
no variables in common. We have experimented [11] with two kinds of splitting:
lightweight (essentially a simulation, implemented by adding propositional vari-
ables as labels in clauses) and with backtracking (similar to the splitting done
by SAT-solvers). Backtracking is complicated to implement in the context of
resolution theorem proving: it affects many core data structures, which must
now be saved and restored according to complicated criteria; this work was done



MetiTarski: Past and Future 5

by James Bridge. Both forms of splitting deliver big performance improvements.
The problem is only split into separate cases when each involves a special func-
tion problem.

The decision procedure is a crucial element of MetiTarski. From the first
experiments using interval arithmetic and the first implementation, using the
Cohen-Hörmander method, each improvement to the decision procedure has
yielded dramatic improvements overall. We have the most experience with QEP-
CAD, but in the past year we have also used Mathematica and Z3. Each has
advantages. QEPCAD is open source and delivers fast performance on problems
involving one or two variables. Unfortunately, QEPCAD is almost unusable for
problems in more than three variables, where Mathematica and Z3 excel. Grant
Passmore is heavily involved with this work. With Mathematica, we can solve
problems in five variables, and with Z3, we have sometimes gone as high as nine.
(See the example in Sect. 6.) But we do not have the luxury of regarding the
decision procedure as a black box. That is only possible when the performance
bottlenecks are elsewhere. We have to examine the sort of problems that Meti-
Tarski produces for the decision procedures, and configure them accordingly.
Such tuning delivers significant improvements [30].

5 Applications

We have assumed that, as MetiTarski’s performance and scope improved, users
would find their own applications. Meanwhile, we have ourselves investigated
applications connected with hybrid systems, and in particular with stability
properties. Note that MetiTarski is not itself a hybrid system verifier: it knows
nothing about the discrete states, transitions and other elements of a hybrid
system. The discrete aspect of a hybrid system must be analysed by other means,
but MetiTarski can assist in verifying the continuous aspect [6]. There have also
been a few simple experiments involving the verification of analogue circuits [19].

The ability to prove theorems combining first-order logic and real-valued spe-
cial functions is unique to MetiTarski. Mathematica can establish such properties
in simple cases, as can certain constraint solvers [34], but these tools do not de-
liver proofs. MetiTarski delivers resolution proofs, which specify every detail of
the reasoning apart from the arithmetic simplification and the decision proce-
dure calls. Even these reasoning steps do not necessarily have to be trusted, as
discussed below (Sect. 7).

Mathematicians will find that MetiTarski proofs are seldom natural or ele-
gant. Mathematical properties of a special function are typically proved from
first principles, referring to the function’s definition and appealing to general
theorems. A MetiTarski proof is typically a complicated case analysis involving
various bounds of functions and signs of divisors. Compared with a mathemati-
cian’s proof, such a proof will frequently yield a less general result (perhaps
limited to a narrow interval). For these reasons, MetiTarski is more appropriate
for establishing inequalities that arise in engineering applications, inequalities
that hold for no simple reason.
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6 A Collision Avoidance Problem

A problem studied by Platzer [32, Sect. 3.4] concerns collision avoidance for two
aircraft, named x and y. For simplicity, we consider only two dimensions: the
aircraft are flying in the XY plane.

The coordinates of aircraft x are written (x1, x2). Here, the subscript 1 refers
to the X component of the aircraft’s position, while subscript 2 refers to the
Y component. (I am not to blame for this confusing notation!) Similarly, the
velocity vector in two dimensions is written (d1, d2).

Glossing over the details of the derivation, here is a summary of the system
of equations governing this aircraft:

x′
1(t) = d1(t) x′

2(t) = d2(t) d′1(t) = −ωd2(t) d′2(t) = ωd1(t)

x1(0) = x1,0 x2(0) = x2,0 d1(0) = d1,0 d2(0) = d2,0

This system admits a closed-form solution, yielding the trajectory of aircraft x:

x1(t) = x1,0 +
d2,0 cos (ωt) + d1,0 sin (ωt)− d2,0

ω

x2(t) = x2,0 −
d1,0 cos (ωt)− d2,0 sin (ωt)− d1,0

ω

The treatment of aircraft y, whose coordinates are written (y1, y2), is analogous.
We would like to prove that two aircraft following the trajectory equations,
for certain ranges of initial locations and linear velocities will maintain a safe
distance (called p, for “protected zone”):

(x1(t)− y1(t))
2 + (x2(t)− y2(t))

2 > p2

Figure 1 presents the corresponding MetiTarski input file. MetiTarski can prove
the theorem, but the processor time is 924 seconds.1 Of this, six seconds are
devoted to resolution proof search and the rest of the time is spent in the RCF
decision procedure (in this case, Z3). The problem is difficult for MetiTarski
because of its nine variables. It is only feasible because of our recent research
[30] into heuristics such as model sharing (which can eliminate expensive RCF
calls by utilising information obtained from past calls) and specific strategies
that fine-tune Z3 to the problems that MetiTarski gives it.

Naturally, users would like to handle problems in many more variables. This
is the biggest hurdle in any application of RCF decision procedures.

Platzer’s treatment of this problem is quite different. He uses KeyMaera, his
hybrid system verifier [33]. KeyMaera models a hybrid system that controls the
aircraft, while we examine only a part of the continuous dynamics of this sys-
tem. Even the continuous dynamics are treated differently: KeyMaera has a
principle called differential induction [31] that can establish properties of the
solutions to differential equations without solving them. To prepare these Meti-
Tarski problems, the differential equations must first be solved (perhaps using

1 On a Mac Pro Dual Quad-core Intel Xeon, 2.8 GHz, with 10GB RAM.
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fof(airplane_easy,conjecture,

(! [T,X10,X20,Y10,Y20,D10,D20,E10,E20] :

(

(

0 < T & T < 10 & X10 < -9 & X20 < -1 & Y10 > 10 & Y20 > 10 &

0.1 < D10 & D10 < 0.15 & 0.1 < D20 & D20 < 0.15 &

0.1 < E10 & E10 < 0.15 & 0.1 < E20 & E20 < 0.15

)

=>

(

(X10 - Y10 - 100*D20 - 100*E20 + (100*D20 + 100*E20)*cos(0.01*T)

+ (100*D10 - 100*E10)*sin(0.01*T))^2 +

(X20 - Y20 + 100*D10 + 100*E10 + (-100*D10 - 100*E10)*cos(0.01*T)

+ (100*D20 - 100*E20)*sin(0.01*T))^2

)

> 2

)

)

).

include(’Axioms/general.ax’).

include(’Axioms/sin.ax’).

include(’Axioms/cos.ax’).

Fig. 1. Aircraft Collision Avoidance

Mathematica), yielding explicit formulas for the aircrafts’ trajectories. KeyMaera
can verify much larger hybrid systems than MetiTarski can. However, recall that
MetiTarski is not specifically designed for verifying this type of example: it is
simply a general-purpose theorem prover for the reals.

7 Integration with Proof Assistants

As mentioned before, MetiTarski combines classical resolution with arithmetic
simplification, RCF decision procedures and axioms describing the behaviour of
various real-valued functions. It returns machine-readable proofs that combine
standard resolution steps with these extensions.

If MetiTarski is to be added to an interactive theorem prover as a trusted
oracle, little effort is required other than to ensure that all problems submitted
to it are first-order with all variables ranging over the real numbers. To reduce
the level of trust required, MetiTarski proofs could be broken down into their
various elements and reconstructed in Isabelle, leaving only the most intractable
steps to oracles.

– Arithmetic simplification in MetiTarski involves little more than reducing
polynomials to canonical form and extending the scope of the division op-
erator; these steps should be easy to verify by automation in an LCF-style
interactive theorem prover.
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– The axioms used by MetiTarski are simply mathematical facts that could,
in principle, be developed in any capable interactive theorem prover. For-
mal developments of the familiar power series expansions already available
[16]. However, the theory of continued fractions seems to rest on substantial
bodies of mathematics that are yet to be mechanised. Possibly some of these
bounds could be verified individually, independently of the general theory.

– The most difficult obstacle is that of the RCF decision procedure. Unfor-
tunately, the algorithms are complicated and we have few implementations
to choose from. Until now there has been little interest in procedures that
justify their answers. However, Harrison has investigated sum of squares
techniques that could produce certificates for such proofs eventually [22].

One fact in our favour is that MetiTarski’s entire proof search does not have to be
justified, only the final proof, which represents a tiny fraction of the reasoning.

Before undertaking such an integration, it is natural to ask how many potential
applications there are. It is sobering to consider that after SMT solvers were
integrated with Isabelle, they were left essentially unused [9], and SMT solvers
are much more generally applicable than MetiTarski. This integration might
be included in a larger project to verify a specific and substantial corpus of
continuous mathematics.

8 Conclusion

Research on MetiTarski is proceeding in many directions. Improvements to the
use of decision procedures are greatly increasing MetiTarski’s scope and power,
especially by increasing the number of variables allowed in a problem. Meanwhile,
many new kinds of applications are being examined. Integrating MetiTarski with
an interactive theorem prover such as Isabelle is not straightforward, but is
feasible given motivation and resources.
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Abstract. EasyCrypt is an automated tool that supports the machine-
checked construction and verification of security proofs of cryptographic
systems, and that has been used to verify emblematic examples of public-
key encryption schemes, digital signature schemes, hash function designs,
and block cipher modes of operation. The purpose of this paper is to
motivate the role of computer-aided proofs in the broader context of
provable security and to illustrate the workings of EasyCrypt through
simple introductory examples.

1 Introduction

The rigorous study of cryptographic systems as mathematical objects originates
with the landmark article “Communication Theory of Secrecy Systems” [31], in
which Shannon defines the notion of perfect secrecy for (symmetric) encryption
systems, and shows that it can only be achieved if the size of keys equals or
exceeds the size of messages. Shannon’s article is often viewed as marking the
beginning of modern cryptography, because it was the first to recognize the
importance of rigorous mathematical definitions and proofs in the analysis of
cryptographic systems.

In contrast to perfect secrecy, which yields unconditional, information-theo-
retic security, modern cryptography yields conditional guarantees that only hold
under computational assumptions. Modern cryptography takes inspiration from
complexity theory: rather than considering arbitrary adversaries against the se-
curity of cryptographic systems, security is established against adversaries with
bounded computational resources. Moreover, the security guarantee itself is
probabilistic and is expressed as an upper bound of the probability of an ad-
versary with bounded resources breaking the security of the system. Typically,
the computational security of a cryptographic system is proved by reduction to
one or more assumptions about the hardness of computational problems. This
reductionist approach originates from the seminal article “Probabilistic Encryp-
tion” [20], in which Goldwasser and Micali elaborate a three-step process for
proving the security of a cryptographic system:
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IND-CPA :
(pk, sk)← KG(1η);
(m0,m1, σ)← A1(pk);
b $← {0, 1};
c← E(pk,mb);
b′ ← A2(c, σ)

EF-CMA :
(pk, sk)← KG(1η);
(m, s)← A(pk)
Oracle Sign(m) :
S ← s :: S;
return S(sk,m)

WCR :
k← KG(1η);
(m1,m2)← A()
Oracle H(m) :
return H(k,m)

Adv
(KG, E,D)
IND-CPA (A) def

= |Pr [IND-CPA : b = b′]− 1/2|
Adv

(KG,S,V)
EF-CMA (A) def

= Pr [EF-CMA : V(pk,m, s) ∧m /∈ S]

Adv
(KG,H)
WCR (A) def

= Pr [WCR : H(k,m1) = H(k,m2) ∧m1 �= m2]

Fig. 1. Experiments corresponding to security notions for various cryptographic con-
structions (from left to right): indistinguishability under chosen-plaintext attack for en-
cryption schemes, existential unforgeability under chosen-message attack for signature
schemes, and weak collision-resistance for keyed hash functions. In these experiments
A denotes an adversary that may have access to oracles; A has access to a signature
oracle S(sk, ·) in experiment EF-CMA and to a hash oracle H(k, ·) in experiment WCR.

1. Formalize precisely the security goal and the adversarial model. A common
manner of proceeding is to consider an experiment in which an adversary
interacts with a challenger. The challenger sets up and runs the experiment,
answers to adversary oracle queries, and determines whether the adversary
succeeds. Figure 1 describes experiments corresponding to some typical se-
curity notions. Formally, an experiment EXP can be seen as a function that
given as input a cryptographic system Π and an adversary A, returns a dis-
tribution over some set of output variables. The advantage of an adversary
A in a security experiment EXP, noted AdvΠ

EXP(A), is defined in terms of
this output distribution.

2. Formalize precisely the assumptions upon which the security of the system
relies. Such assumptions assert the practical unfeasibility of solving a com-
putational (or decision) problem believed to be hard. As security goals, they
can also be formalized by means of experiments between a challenger and an
adversary (an assumption could play the role of a security goal in a lower level
proof). Figure 2 describes some assumptions used to realize cryptographic
functionalities.

3. Define a cryptographic system Π and give a rigorous proof of its security
by exhibiting a reduction from the experiment EXP, corresponding to the
security goal, to one or more computational assumptions. Suppose for sim-
plicity that the reductionist proof involves a single assumption, modelled by
an experiment EXP′. Broadly construed, the reduction must show that for
every efficient adversary A against EXP, there exists an efficient adversary
B against EXP′ whose advantage is comparable to that of A. In most cases,
the proof is constructive and exhibits an adversary B against EXP′ that uses
A as a sub-routine.
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DDH0 :
x, y $← [1, ord(G)];
b← A(gx, gy, gxy)

DDH1 :
x, y, z $← [1, ord(G)];
b← A(gx, gy, gz)

OW :
(pk, sk)← KG(1η);
x $← dom(f); y ← f(pk, x);
x′ ← A(pk, y)

Adv
(G, g)
DDH (A) def

= |Pr [DDH0 : b]− Pr [DDH1 : b]|
Adv

(KG, f)
OW (A) def

= Pr [OW : f(pk, x′) = y]

Fig. 2. Experiments corresponding to security assumptions used to realize crypto-
graphic goals: Decision Diffie-Hellman problem for a finite cyclic multiplicative group
G with generator g (left) and One-Wayness of a trapdoor function (KG, f) (right).

Early works on provable security take an asymptotic approach to capture
the notions of efficiency and hardness. In this setting, experiments and assump-
tions are indexed by a security parameter, typically noted η, which determines
the size of objects on which computations are performed (e.g. keys, messages,
groups). Asymptotic security equates the class of efficient computations to the
class of probabilistic polynomial-time algorithms, so that security is established
against adversaries whose memory footprint and computation time is bounded
by a polynomial on the security parameter. Moreover, in an asymptotic security
setting, a problem is considered hard when no efficient adversary can achieve a
non-negligible advantage as a function of the security parameter. (A function is
negligible on η when it is upper-bounded by 1/ηc for any c > 0.)

A more practically relevant approach to cryptographic proofs evaluates quan-
titatively the efficiency of reductions. This approach, known as practice-oriented
provable security or concrete security, originates from the work of Bellare and
Rogaway on authentication protocols [10] and the DES block cipher [8]. A typi-
cal concrete security proof reducing the security of a construction Π w.r.t. EXP
to an assumption EXP′ about some object Π ′, begins by assuming the existence
of an adversary A against EXP that runs within time tA (and makes at most qA
oracle queries). The proof exhibits a witness for the reduction in the form of an
adversary B against EXP′ that uses A as a sub-routine, and provides concrete
bounds for its resources and its advantage in terms of those of A, e.g.:

tB ≤ tA + p(qA)

AdvΠ′
EXP′(B) ≥ AdvΠ

EXP(A) − ε(qA)

A concrete security proof can be used to infer sensible values for the parame-
ters (e.g. key size) of cryptographic constructions. Based on an estimate of the
resources and advantage of the best known method to solve EXP′ (and a conser-
vative bound on qA), one can choose the parameters ofΠ such that the reduction
B would yield a better method, thus achieving a practical contradiction.

The game-based approach, as popularized by Shoup [32], and Bellare and
Rogaway [11], is a methodology to structure reductionist proofs in a way that
makes them easier to understand and check. A game-based proof is organized as
a tree of games (equivalently, experiments). The root of the tree is the experiment
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that characterizes the security goal, whereas the leaves are either experiments
corresponding to security assumptions or experiments where the probability of
an event of interest can be directly bounded. Edges connecting a game G at
one level in the tree to its successors G1, . . . , Gn correspond to transitions ; a
transition relates the probability of an event in one game to the probability of
some, possibly different, event in another game. Put together, these transitions
may allow to prove, for example, an inequality of the form

Pr [G : E] ≤ a1Pr [G1 : E1] + · · ·+ anPr [Gn : En]

By composing statements derived from the transitions in the tree, one ultimately
obtains a bound on the advantage of an adversary against the experiment at
the root in terms of the advantage of one of more concrete adversaries against
assumptions at the leaves.

Whereas games can be formalized in the usual language of mathematics, Bel-
lare and Rogaway [11] model games as probabilistic programs, much like we
modelled experiments in Figures 1 and 2. This code-based approach allows giv-
ing games a rigorous semantics, and paves the way for applying methods from
programming language theory and formal verification to cryptographic proofs.
This view was further developed by Halevi [21], who argues that computer-
aided verification of cryptographic proofs would be of significant benefit to im-
prove confidence in their correctness, and outlines the design of a computer-aided
framework for code-based security proofs.

Verified security [4, 5] is an emerging approach to practice-oriented provable
security: its primary goal is to increase confidence in reductionist security proofs
through their computer-aided formalization and verification, by leveraging state-
of-the-art verification tools and programming language techniques. CertiCrypt [5]
realizes verified security by providing a fully machine-checked framework built
on top of the Coq proof assistant, based on a deep embedding of an extensi-
ble probabilistic imperative language to represent games. CertiCrypt implements
several verification methods that are proved sound (in Coq) w.r.t. the seman-
tics of programs and inherits the expressive power and the strong guarantees
of Coq. Unfortunately, it also inherits a steep learning curve and as a result its
usage is time-consuming and requires a high level of expertise. EasyCrypt [4],
makes verified security more accessible to the working cryptographer by means
of a concise input language and a greater degree of automation, achieved by
using off-the-shelf SMT solvers and automated theorem provers rather than an
interactive proof assistant like Coq.

Issues with verified security. Verified security is no panacea and inherits several
of the issues of provable security and formal proofs in general. We only review
briefly some key issues, and refer the interested reader to more detailed reviews
of provable security [6, 16, 30], and formal proofs [22, 28]. We stress that these
issues do not undermine by any means the importance of verified security.

The first issue regards the interpretation of a verified security proof. As the
proof is machine-checked, one can reasonably believe in its correctness with-
out the need to examine the details of the proof. However, a careful analysis of
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the statement is fundamental to understand the guarantees it provides. In the
case of verified security, statements depend on unproven hardness assumptions,
which are meaningful only when instantiated with a sensible choice of parame-
ters. Thus, one must consider the security assumptions and convince oneself that
they are adequately modelled and instantiated; proofs relying on flawed or inap-
propriately instantiated assumptions fail to provide any meaningful guarantee. In
addition, cryptographic proofs often assume that some functionalities are ideal.
As with security assumptions, one must convince oneself that modelling primi-
tives as ideal functionalities is reasonable, and that instantiating these primitives
does not introduce subtle attack vectors. Random oracles are a common instance
of ideal functionality; in the Random Oracle Model (ROM) [9], some primitives
used in a cryptographic system, such as hash functions, are modelled as perfectly
random functions, i.e. as maps chosen uniformly from a function space. Proofs
in the ROM are considered as providing strong empirical evidence of security,
despite some controversy [6, 14, 18].

The second issue is the level of abstraction in security proofs. Security proofs
reason about models rather than implementations. As a result, cryptographic
systems, even though supported by a proof of security, may be subject to prac-
tical attacks outside the model. Prominent examples of practical attacks are
padding oracle attacks [12, 26], which exploit information leakage through er-
ror handling, and side-channel attacks [13, 24, 25], which exploit quantitative
information such as execution time or memory consumption. There is a grow-
ing body of work that addresses these concerns; in particular, leakage-resilient
security [19] gives the adversary access to oracles performing side-channel mea-
surements. However, most of the provable security literature, and certainly all
of the verified security literature, forego an analysis of side-channels.

Organization of the paper. Section 2 overviews the foundations of EasyCrypt.
Subsequent sections focus on examples: One-Time Pad encryption (Section 3),
the nested message authentication code NMAC (Section 4), and ElGamal en-
cryption (Section 5). Section 6 reviews some topics deserving more attention.

2 Foundations

This section reviews the foundations of the code-based game-based approach, as
implemented by EasyCrypt; more detailed accounts appear in [4, 5].

Programming language. Games are represented as programs in the strongly-
typed, probabilistic imperative language pWhile:

C ::= skip nop
| V ← E deterministic assignment
| V $← DE probabilistic assignment
| if E then C else C conditional
| while E do C loop
| V ← P(E , . . . , E) procedure call
| C; C sequence
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The language includes deterministic and probabilistic assignments, condition-
als, loops, and procedure calls. In the above grammar, V is a set of variable
identifiers, P a set of procedure names, E is a set of expressions, and DE is a
set of probabilistic expressions. The latter are expressions that evaluate to dis-
tributions from which values can be sampled. An assignment x $← d evaluates
the expression d to a distribution μ over values, samples a value according to
μ and assigns it to variable x. The base language of expressions (deterministic
and probabilistic) can be extended by the user to better suit the needs of the
verification goal. The rich base language includes expressions over Booleans, in-
tegers, fixed-length bitstrings, lists, finite maps, and option, product and sum
types. User-defined operators can be axiomatized or defined in terms of other
operators. In the following, we let {0, 1}� denote the uniform distribution over
bitstrings of length �, {0, 1} the uniform distribution over Booleans, and [a, b]
the uniform distribution over the integer interval [a, b].

A program in EasyCrypt is modelled as a set of global variables and a collec-
tion of procedures. The language distinguishes between defined procedures, used
to describe experiments and oracles, and abstract procedures, used to model
adversaries. Quantification over adversaries in cryptographic proofs is achieved
by representing them as abstract procedures parametrized by a set of oracles.

Denotational semantics. A pWhile program c is interpreted as a function �c�
that maps an initial memory to a sub-distribution over final memories. As
pWhile is a strongly-typed language, a memory is a mapping from variables
to values of the appropriate type. When the set of memories is finite, a sub-
distribution over memories can be intuitively seen as a mapping assigning to each
memory a probability in the unit interval [0, 1], so that the sum over all memo-
ries is upper bounded by 1. In the general case, we represent a sub-distribution
over memories using the measure monad of Audebaud and Paulin [1]. Given a
program c, a memory m, and an event E, we let Pr [c,m : E] denote the prob-
ability of E in the sub-distribution induced by �c� m; we often omit the initial
memory m when it is irrelevant.

Relational program logic. Common reasoning patterns in cryptographic proofs
are captured by means of a probabilistic Relational Hoare Logic (pRHL). Its
judgments are of the form

|= c1 ∼ c2 : Ψ ⇒ Φ

where c1 and c2 are probabilistic programs, and the pre- and post-conditions Ψ
and Φ are relations over memories. Informally, a judgment |= c1 ∼ c2 : Ψ ⇒ Φ is
valid if for every two memories m1 and m2 satisfying the pre-condition Ψ , the
sub-distributions �c1� m1 and �c2� m2 satisfy the post-condition Φ. As the post-
condition is a relation on memories rather than a relation on sub-distributions
over memories, the formal definition of validity relies on a lifting operator, whose
definition originates from probabilistic process algebra [17, 23].

Relational formulae are represented in EasyCrypt by the grammar:

Ψ, Φ ::= e | ¬Φ | Ψ ∧ Φ | Ψ ∨ Φ | Ψ =⇒ Φ | ∀x. Φ | ∃x. Φ
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where e stands for a Boolean expression over logical variables and program vari-
ables tagged with either 〈1〉 or 〈2〉 to denote their interpretation in the left or
right-hand side program; the only restriction is that logical variables must not
occur free. The special keyword res denotes the return value of a procedure and
can be used in the place of a program variable. We write e〈i〉 for the expres-
sion e in which all program variables are tagged with 〈i〉. A relational formula
is interpreted as a relation on program memories. For example, the formula
x〈1〉+ 1 ≤ y〈2〉 is interpreted as the relation

Φ = {(m1,m2) | m1(x) + 1 ≤ m2(y)}

Reasoning about probabilities. Security properties are typically expressed in
terms of probability of events, and not as pRHL judgments. Pleasingly, one
can derive inequalities about probability quantities from valid judgments. In
particular, assume that Φ is of the form A〈1〉 =⇒ B〈2〉, i.e. relates pairs of
memories m′

1 and m′
2 such that when m′

1 satisfies the event A, m′
2 satisfies the

event B. Then, for any two programs c1 and c2 and pre-condition Ψ such that
|= c1 ∼ c2 : Ψ ⇒ Φ is valid, and for any two memories m1 and m2 satisfying
the pre-condition Ψ , we have Pr [c1,m1 : A] ≤ Pr [c2,m2 : B]. Other forms of
pRHL judgments allow to derive more complex inequalities and capture other
useful forms of reasoning in cryptographic proofs, including Shoup’s Fundamen-
tal Lemma [32].

3 Perfect Secrecy of One-Time Pad

Shannon [31] defines perfect secrecy of an encryption scheme by the condition
that learning a ciphertext does not change any a priori knowledge about the
likelihood of messages. In other words, for any given distribution over messages,
the distribution over ciphertexts (determined by the random choices of the key
generation and encryption algorithms) must be independent of the distribution
over messages. Shannon shows that perfect secrecy can only be achieved if the
key space is at least as large as the message space, and that the One-Time Pad
encryption scheme (also known as Vernam’s cipher) is perfectly secret.

For any positive integer �, One-Time Pad is a deterministic symmetric en-
cryption scheme composed of the following triple of algorithms:

Key Generation. The key generation algorithm KG outputs a uniformly dis-
tributed key k in {0, 1}�;

Encryption. Given a key k and a message m ∈ {0, 1}�, E(k,m) outputs the
ciphertext c = k ⊕m (⊕ denotes bitwise exclusive-or on bitstrings);

Decryption. Given a key k and a ciphertext c ∈ {0, 1}�, the decryption algo-
rithm outputs the message m = k ⊕ c.

We represent the a priori distribution over messages by a user-defined probabil-
isitc operator M. We prove perfect secrecy of One-Time Pad by showing that
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encrypting a message m sampled according to M results in a ciphertext dis-
tributed uniformly and independently from m. We prove this by showing that
the joint distribution of c,m in experiments OTP and Uniform below is the same:

Game OTP : m $← M; k ← KG(); c ← E(k,m);

Game Uniform : m $← M; c $← {0, 1}�;

In a code-based setting, this is captured by the following relational judgment:

|= OTP ∼ Uniform : true ⇒ (c,m)〈1〉 = (c,m)〈2〉 (1)

The OTP and Uniform experiments are formalized in EasyCrypt as follows:

game OTP = {

var m : message

var c : ciphertext

fun KG() : key = { var k:key = {0, 1}�; return k; }

fun Enc(k:key, m:message) : ciphertext = { return (k ⊕ m); }

fun Main() : unit = { var k:key; m = M(); k = KG(); c = Enc(k, m); }

}.

game Uniform = {

var m : message

var c : ciphertext

fun Main() : unit = { m = M(); c = {0, 1}�; }

}.

where the types key, message and ciphertext are all synonyms for the type of
bitstrings of length �.

The relational judgment (1) is stated and proved in EasyCrypt as follows:

equiv Secrecy : OTP.Main ∼ Uniform.Main : true =⇒ (c,m)〈1〉 = (c,m)〈2〉.
proof.
inline KG, Enc; wp.

rnd (c ⊕ m); trivial.

save.

The proof starts by inlining the definition of the procedures KG and Enc, and
applying the wp tactic to compute the relational weakest pre-condition over the
deterministic suffix of the resulting programs. This yields the following interme-
diate goal:

pre = true

stmt1 = m = M(); k = {0, 1}�;
stmt2 = m = M(); c = {0, 1}�;
post = (k ⊕ m, m)〈1〉 = (c, m)〈2〉
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At this point, we can apply the following pRHL rule for proving equivalence of
two uniformly random assignments over the same domain:

f is a bijection Ψ =⇒ ∀x ∈ {0, 1}�. Φ {x/k〈1〉} {f(x)/c〈2〉}
|= k $← {0, 1}� ∼ c $← {0, 1}� : Ψ ⇒ Φ

This rule is automated in EasyCrypt by the tactic rnd. When given as argument
a single expression f as in the above proof script, rnd yields a new goal where
the post-condition is a conjunction of two formulas universally quantified:

pre = true

stmt1 = m = M();

stmt2 = m = M();

post = ∀x ∈ {0, 1}�. (x⊕ m〈2〉)⊕ m〈2〉 = x ∧ (x⊕ m, m)〈1〉 = (x⊕ m, m)〈2〉

The first formula in the post-condition asserts that f , seen as a function of
c, is an involution (and thus bijective). The second formula is the outcome of
substituting x for k〈1〉 and f(x) = x⊕m〈2〉 for c〈2〉 in the original post-condition.
Combining these two formulas under a single quantification results in a more
succint goal. A similar rule could be applied to prove an equivalence between
the remaining (identical) random assignments. This would leave us with a goal
where the statements in both programs are empty and for which it suffices to
show that the pre-condition implies the post-condition; the tactic trivial does
all this automatically using an external solver (e.g. Alt-Ergo [15]) to discharge
the resulting proof obligation:

true =⇒ ∀x, y ∈ {0, 1}�. (x⊕ y)⊕ y = x ∧ (x⊕ y, y) = (x⊕ y, y)

4 The NMAC Message Authentication Code

Message Authentication Codes (MACs) are cryptographic algorithms used to
provide both authenticity and data integrity in communications between two
parties sharing a secret key. At an abstract level, a MAC algorithm M takes as
input a key k ∈ K and a message m, and returns a short bitstring M(k,m)—a
tag. Given a message m and a key k, a verification algorithm can determine
the validity of a tag; for stateless and deterministic MACs, this can be simply
done by re-computing the tag. A MAC algorithm is deemed secure if, even after
obtaining many valid tags for chosen messages, it is unfeasible to forge a tag for a
fresh message without knowing the secret key k. Formally, this can be expressed
in terms of the experiment EF-MAC in Figure 3 by requiring that the advantage
of an adversary A that makes at most q queries to a MAC oracle for a freshly
sampled key be negligible, where:

AdvM
EF-MAC(q)(A) def

= Pr [EF-MAC : y = M(k, x) ∧ x /∈ X ∧ n ≤ q]
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Game EF-MAC :
k $← K;
X ← nil;
n← 0;
(x, y)← A()

Oracle MAC(x) :
X ← x :: X;
n← n+ 1;
z ←M(k, x);
return z

Game WCR :
k $← K;
n← 0;
(x1, x2)← A()

Oracle F(x) :
n← n+ 1;
return F (k, x)

Fig. 3. Security experiments for MAC Forgery and Weak Collision Resistance

In the remainder of this section we overview the security proof of the NMAC
construction [7]. Let � and b be positive integers such that � ≤ b, and let
pad : {0, 1}∗ → ({0, 1}b)+ be an injective function that pads an arbitrary length
input message to a positive multiple of b. The NMAC construction transforms
a secure fixed input-length MAC f : {0, 1}� × {0, 1}b → {0, 1}� into a secure
variable input-length MAC:

NMAC : ({0, 1}� × {0, 1}�)× {0, 1}∗ → {0, 1}�
NMAC((k1, k2),m) def

= F (k1, F (k2,m))

where F (k,m) = f∗(k, pad(m)) and f∗ : {0, 1}� × ({0, 1}b)∗ → {0, 1}� is the
function that on input k ∈ {0, 1}� and x = x1 · · ·xn consisting of n b-bits blocks
returns hn, where h0 = k and hi = f(hi−1, xi) for 1 ≤ i ≤ n.

The proof of security for NMAC establishes that it is no more difficult to
forge a valid message for NMAC than forging a valid message for the underlying
function f , viewed as a MAC, or finding a collision for the keyed function F .
Formally, we define Weak Collision-Resistance for F in terms of the experiment
WCR shown in Figure 3, and define the advantage of an adversary A making at
most q queries to F as

AdvF
WCR(q)(A) def

= Pr [WCR : F (k, x1) = F (k, x2) ∧ x1 �= x2 ∧ n ≤ q]

Given an arbitrary adversary A against the security of NMAC, we exhibit two
adversaries AF and Af such that

AdvNMAC
EF-MAC(q)(A) ≤ AdvF

WCR(q + 1)(AF ) +Advf
EF-MAC(q)(Af ) (2)

Figure 4 shows the tree of games used in the proof. We start from the game
encoding an attack against the security of NMAC. We then define another game
EF-MAC′ that just introduces a list Y to store the intermediate values of F (k2, x)
computed to answer to oracle queries, and simplifies the definition of NMAC using
the identity

NMAC((k1, k2),m) def
= f(k1, pad(F (k2,m)))

whose validity stems from the fact that the outer application of the function F
is on a message of � ≤ b bits. We prove the following judgment:

|= EFMAC ∼ EFMAC′ : true ⇒ (y = NMAC((k1, k2), x) ∧ x /∈ X ∧ n ≤ q)〈1〉 ⇐⇒
(y = f(k1, pad(F (k2, x))) ∧ x /∈ X ∧ n ≤ q)〈2〉
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From which we have

AdvNMAC
EF-MACq(A) = Pr

[
EF-MAC′ : y=f(k1, pad(F (k2, x))) ∧ x /∈X ∧ n ≤ q

]
(3)

We now make a case analysis on whether, when the experiment EF-MAC′ finishes
and A succeeds, there is a value x′ ∈ X s.t. F (k2, x) = F (k2, x

′) or not. Since
we are interested only in executions where x /∈ X , to make this case analysis it
suffices to check whether the value F (k2, x) is in the list Y .

– If there exists x′ ∈ X such that F (k2, x) = F (k2, x
′), we exhibit an adversary

AF against theWCR of F that finds a collision. This is trivial: x and x′ collide
and are necessarily distinct because one belongs to X while the other does
not;

– If there is no x′ ∈ X such that F (k2, x) = F (k2, x
′), we exhibit an adversary

against the MAC-security of the function f that successfully forges a tag.
Indeed, if (x, y) is a forgery for NMAC, then (pad(F (k2, x)), y) is a forgery
for f .

We prove the following judgments:

� EF-MAC′ ∼ WCRF : true ⇒
(y = f(k1, pad(F (k2, x))) ∧ x /∈ X ∧ n ≤ q ∧ F (k2, x) ∈ Y )〈1〉 =⇒
(F (k, x1) = F (k, x2) ∧ x1 �= x2 ∧ n ≤ q + 1)〈2〉

� EF-MAC′ ∼ EF-MACf : true ⇒
(y = f(k1, pad(F (k2, x))) ∧ x /∈ X ∧ n ≤ q ∧ F (k2, x) /∈ Y )〈1〉 =⇒
(y = f(k, x) ∧ x /∈ X ∧ n ≤ q)〈2〉

From which follows

Pr
[
EF-MAC′ : y = f(k1, pad(F (k2, x))) ∧ x /∈ X ∧ n ≤ q

]
≤

Pr [WCRF : F (k, x1) = F (k, x2) ∧ x1 �= x2 ∧ n ≤ q + 1]+
Pr [EF-MACf : y = f(k, x) ∧ x /∈ X ∧ n ≤ q]

(4)

We conclude from (3) and (4) that the bound (2) holds.
We observe that the bound in [7, Theorem 4.1] is off-by-one: the adversary

against the WCR-security of F must call the iterated hash function one more
time in order to find another value x′ that collides with x among the queries
made by the adversary against NMAC. Thus, one must assume that the function
F is secure against adversaries that make q + 1 rather than just q queries.

5 ElGamal Encryption

ElGamal is a public-key encryption scheme based on the Diffie-Hellman key
exchange. Given a cyclic groupG of order q and a generator g, its key generation,
encryption, and decryption algorithms are defined as follows:

KG() def
= x $← [1, q]; return (gx, x)

E(α,m) def
= y $← [1, q]; return (gy, αy ×m)

D(x, (β, ζ)) def
= return (ζ × β−x)
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Game EF-MAC :

k1, k2 $← {0, 1}�;
X ← nil;
n← 0;
(x, y)← A()

Oracle MAC(x) :
X ← x :: X;
n← n+ 1;
z ← NMAC((k1, k2), x);
return z

Game EF-MAC′ :
k1, k2 $← {0, 1}�;
X,Y ← nil;
n← 0;
(x, y)← A()

Oracle MAC(x) :
y ← F (k2, x);
X ← x :: X;
Y ← y :: Y ;
n← n+ 1;
return f(k1, pad(y))

Game WCRF :
k $← {0, 1}�;
(x1, x2)← AF ()

Adversary AF () :

k1 ← {0, 1}�;
Y X ← nil; n← 0;
(x, y)← A();
y′ ← F(x);
return (x, Y X[y′])

Oracle MAC(x) :
y ← F(x);
Y X[y]← x;
z ← f(k1, pad(y));
return z

Oracle F(x) :
n← n+ 1;
return F (k, x)

Game EF-MACf :
k $← {0, 1}�;
X ← nil;
n← 0;
(x, y)← Af ()

Adversary Af () :

k2 ← {0, 1}�;
(x, y)← A( );
z←pad(F (k2, x), y);
return z

Oracle MAC(x) :
y ← F (k2, x);
z ← f(pad(y));
return z

Oracle f(x) :
X ← x :: X;
n← n+ 1;
return f(k, x)

Fig. 4. Tree of games in the proof of the NMAC construction

Shoup [32] uses ElGamal as a running example to review some interesting points
in game-based proofs. We outline a code-based proof of the indistinguishability
under chosen-plaintext attacks of ElGamal by reduction to the Decision Diffie-
Hellman (DDH) assumption on the underlying group G. The experiments en-
coding both the security goal and the assumption, were introduced before in
Figures 1 and 2 and are instantiated for ElGamal in Figure 5.

Indistinguishability under chosen-plaintext attacks requires that an efficient
adversary cannot distinguish, except with small probability, between two ci-
phertexts produced from messages of its choice. In the experiment IND-CPA,
the challenger samples a fresh pair of keys using the algorithm KG and gives
the public key pk to the adversary, who returns two plaintexts m0,m1 of his
choice. The challenger then tosses a fair coin b and gives the encryption of mb

under pk back to the adversary, whose goal is to guess which message has been
encrypted. We model an IND-CPA adversary A in EasyCrypt as two unspecified
procedures that share state by means of an explicit state variable σ. By keep-
ing the type of this variable abstract, we obtain a generic reduction. Using the
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keyword res that denotes the return value of a procedure in EasyCrypt, we define
the IND-CPA-advantage of A as in Fig. 1:

AdvElGamal
IND-CPA(A) def

=

∣∣∣∣Pr [IND-CPA : res]− 1

2

∣∣∣∣
TheDDHproblemconsists indistinguishingbetween triples of the form(gx, gy, gxy)
and (gx, gy, gz), where the exponents x, y, z are uniform and independently sam-
pled from the interval [1..ord(G)]. The DDH-advantage of an adversary B is
defined as:

Adv
(G, g)
DDH (B) def

= |Pr [DDH0 : res]− Pr [DDH1 : res]|

Figure 5 presents the overall structure of the reduction, showing a concrete DDH
distinguisher B that achieves exactly the same advantage as an arbitrary IND-
CPA adversary A, with constant resource overhead.

Game IND-CPA :
(pk, sk)← KG();
(m0,m1, σ)← A1(pk);
b $← {0, 1};
c← E(pk,mb);
b′ ← A2(c, σ);
return b = b′

Game DDH0 :
x, y $← [1, q];
d← B(gx, gy, gxy);
return d

Adversary B(α, β, γ) :
(m0,m1, σ)← A1(α);
b $← {0, 1};
b′ ← A2((β, γ ∗mb), σ);
return b = b′

Game DDH1 :
x, y, z $← [1, q];
d← B(gx, gy, gz);
return d

Game IND :
x, y $← [1, q];
(m0,m1, σ)← A1(g

x);
z $← [1, q];
b′ ← A2((g

y, gz), σ);
b $← {0, 1};
return b = b′

Fig. 5. Game-based proof of IND-CPA-security of ElGamal. Games DDH0 and DDH1,
enclosed in a dotted box, share the same definition for the concrete adversary B.

The proof requires showing the validity of two pRHL judgments. The first
judgment relates the experiment IND-CPA to the instantiation of game DDH0

with the concrete adversary B defined in Figure 5. We prove that the distribution
of the result of the comparison b = b′ in game IND-CPA coincides with the
distribution of d in game DDH0, i.e.

|= IND-CPA ∼ DDH0 : true ⇒ res〈1〉 = res〈2〉

From this, we can derive the equality

Pr [IND-CPA : res] = Pr [DDH0 : res] (5)
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The second judgment relates the game DDH1 instantiated with the same adver-
sary B to a game IND, where the guess b′ of the adversary A no longer depends
on the challenge bit b:

|= DDH1 ∼ IND : true ⇒ res〈1〉 = res〈2〉

We state and prove this judgment in EasyCrypt using the following proof script:

equiv DDH1 IND : DDH1.Main ∼ IND.Main : true =⇒ res〈1〉 = res〈2〉.
proof.
inline B; swap〈1〉 3 2; swap〈1〉 [5-6] 2; swap〈2〉 6 -2.

auto.

rnd ((z + log(b ? m0 : m1)) % q), ((z - log(b ? m0 : m1)) % q); trivial.

auto.

trivial.

save.

The inline tactic expands calls to procedures by replacing them with their
definitions, performing appropriate substitutions and renaming variables if nec-
essary. The tactic swap pushes a single instruction or a block of instructions
down if its second arguments is positive, or up if it is negative. Dependencies
are checked to verify these transformations are semantics-preserving. The tactic
rnd f, f−1 applies the same rule for random assignments that we described in
Section 3; except that this time we provide a function f and its inverse f−1 by
means of justification of its bijectivity. The tactics auto and trivial implement
heuristics to combine simpler tactics. For instance, the above applications of
auto apply the wp transformer and tactics that implement rules for determin-
istic and random assignments and calls to abstract procedures. This suffices to
prove the goal without any user intervention.

It follows from the above judgment that

Pr [DDH1 : res] = Pr [IND : res] (6)

The right-hand side of this equality is exactly 1/2, i.e.

Pr [IND : res] =
1

2
(7)

This can be proven by direct computation:

claim Fact : IND.Main[res] = 1%r / 2%r by compute.

We conclude putting the above equations (5)–(7) together that

Adv
(G, g)
DDH (B) = AdvElGamal

IND-CPA(A)

6 Conclusion

EasyCrypt is a framework for computer-aided cryptographic proofs. It improves
confidence in cryptographic systems by delivering formally verified proofs that
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they achieve their purported goals. In this paper, we have illustrated how Easy-
Crypt can be used to verify elementary examples. In other works, we have applied
EasyCrypt to a range of emblematic examples, including asymmetric encryption
schemes [4], signature schemes [33], hash function designs [2, 3], and modes of
operation for block ciphers. We conclude this article with a review of some topics
that deserve further attention. Other topics, not developed below, include the
automated synthesis of cryptographic schemes, and the development of more
expressive relational program logics for probabilistic programs.

Compositionality. Compositionality and abstraction are fundamental principles
in programming language semantics. They are supported by notions such as
modules, which are key to structure large software developments. In contrast,
it has proved extremely intricate to design general and sound abstraction and
compositionality mechanisms for cryptographic proofs. For instance, a recent
analysis [29] of the limitations of the indifferentiability framework [27] illus-
trates the difficulty of instantiating generic proofs to specific constructions. We
believe that the code-based approach provides an excellent starting point for
developing sound compositional reasoning methods, and that these methods can
be incorporated into EasyCrypt.

Automation. EasyCrypt provides automated support to prove the validity of
pRHL judgments and to derive inequalities about probability quantities. How-
ever, it does not implement any sophisticated mechanism to help users discover
or build intermediate games in a game-based proof. It would be interesting to
investigate whether one can develop built-in strategies that capture common
patterns of reasoning in cryptographic proofs, and generate proof skeletons in-
cluding the corresponding games and pRHL judgments. A more ambitious goal
would be to enhance EasyCrypt with a language for programming strategies, in
the way proof assistants such as Coq allow users to program their own tactics.

Certification and mathematical libraries. EasyCrypt was conceived as a front-end
to the CertiCrypt framework. In [4], we report on a proof-producing mechanism
that converts EasyCrypt files into Coq files that can be machine-checked in the
CertiCrypt framework. Certification remains an important objective, although
the proof-producing mechanism may fall temporarily out of sync with the devel-
opment of EasyCrypt. As cryptographic constructions and proofs rely on a wide
range of mathematical concepts, the further development of extensive libraries
of formalized mathematics is an essential stepping stone towards this goal.
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Abstract. Hybrid systems, i.e., dynamical systems combining discrete
and continuous dynamics, have a complete axiomatization in differential
dynamic logic relative to differential equations. Differential invariants
are a natural induction principle for proving properties of the remaining
differential equations. We study the equational case of differential invari-
ants using a differential operator view. We relate differential invariants
to Lie’s seminal work and explain important structural properties re-
sulting from this view. Finally, we study the connection of differential
invariants with partial differential equations in the context of the inverse
characteristic method for computing differential invariants.

1 Introduction

Hybrid systems [1,11] are dynamical systems that combine discrete and contin-
uous dynamics. They are important for modeling embedded systems and cyber-
physical systems. Reachability in hybrid systems is neither semidecidable nor
co-semidecidable [11]. Nevertheless, hybrid systems have a complete axiomati-
zation relative to elementary properties of differential equations in differential
dynamic logic dL [18,21]. Using the proof calculus of dL, the problem of proving
properties of hybrid systems reduces to proving properties of continuous systems.

It is provably the case that the only challenge in hybrid systems verification
is the need to find invariants and variants [18,21]; the handling of real arith-
metic is challenging in practice [27], even if it is decidable in theory [2], but
this is not the focus of this paper. According to our completeness results [18,21],
we can equivalently focus on either only the discrete or on only the continu-
ous dynamics, because both are equivalently and constructively interreducible,
proof-theoretically. Thus, we can equivalently consider the need to prove proper-
ties of differential equations as the only challenge in hybrid systems verification.
Since the solutions of most differential equations fall outside the usual decid-
able classes of arithmetic, or do not exist in closed form, the primary means
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for proving properties of differential equations is induction [19]. In retrospect,
this is not surprising, because our constructive proof-theoretical alignment [21]
shows that every proof technique for discrete systems lifts to continuous systems
(and vice versa). Since most verification principles for discrete systems are based
on some form of induction, this means that induction is possible for differential
equations. Differential invariants are such an induction principle. We have intro-
duced differential invariants in 2008 [19], and later refined them to a procedure
that computes differential invariants in a fixed-point loop [24,25]. Differential in-
variants are also related to barrier certificates [29], equational templates [30], and
a constraint-based template approach [8]. The structure and theory of general
differential invariants has been studied in previous work in detail [23].

In this paper, we focus on the equational case of differential invariants. We
show that the equational case of differential invariants and similar approaches
is already subsumed by Lie’s seminal work [14,15,16,17] in the case of open do-
mains. On open (semialgebraic) domains, Lie’s approach gives an equivalence
characterization of (smooth) invariant functions. This almost solves the differ-
ential invariance generation problem for the equational case completely. It turns
out, however, that differential invariants and differential cuts may still prove
properties indirectly that the equivalence characterization misses. We carefully
illustrate why that is the case. We investigate structural properties of invariant
functions and invariant equations. We prove that invariant functions form an al-
gebra and that, in the presence of differential cuts provable invariant equations
and valid invariant equations form a chain of differential ideals, whose varieties
are generated by a single polynomial, which is the most informative invariant.

Furthermore, we study the connection of differential invariants with partial
differential equations. We explain the inverse characteristic method, which is the
inverse of the usual characteristic method for studying partial differential equa-
tions in terms of solutions of corresponding characteristic ordinary differential
equations. The inverse characteristic method, instead, uses partial differential
equations to study solutions of ordinary differential equations. What may, at
first, appear to idiosyncratically reduce the easier problem of ordinary differen-
tial equations to the more complicated one of partial differential equations, turns
out to be very useful, because it relates the differential invariance problem to
mathematically very well-understood partial differential equations.

Even though our results generalize to arbitrary smooth functions, we focus on
the polynomial case in this paper, because the resulting arithmetic is decidable.

For backgroundon logic for hybrid systems, we refer to previouswork [18,20,22].

2 Differential Dynamic Logic (Excerpt)

Continuous dynamics described by differential equations are a crucial part of
hybrid system models. An important subproblem in hybrid system verification
is the question whether a system following a (vectorial) differential equation
x′ = θ that is restricted to an evolution domain constraint region H will always
stay in the region F . We represent this by the modal formula [x′ = θ&H]F . It
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is true at a state ν if, indeed, a system following x′ = θ from ν will always stay
in F at all times (at least as long as the system stays in H). It is false at ν if
the system can follow x′ = θ from ν and leave F at some point in time, without
having left H at any time. Here, F and H are (quantifier-free) formulas of real
arithmetic and x′ = θ is a (vectorial) differential equation, i.e., x = (x1, . . . , xn)
is a vector of variables and θ = (θ1, . . . , θn) a vector of polynomial terms; for
extensions to rational functions, see [19]. In particular, H describes a region
that the continuous system cannot leave (e.g., because of physical restrictions of
the system or because the controller otherwise switches to another mode of the
hybrid system). In contrast, F describes a region which we want to prove that
the continuous system x′ = θ&H will never leave.

This modal logical principle extends to a full dynamic logic for hybrid systems,
called differential dynamic logic dL [18,20,21]. Here we only need first-order logic
and modalities for differential equations. For our purposes, it is sufficient to
consider the dL fragment with the following grammar (where x is a vector of
variables, θ a vector of terms of the same dimension, and F,H are formulas of
(quantifier-free) first-order real arithmetic over the variables x):

φ, ψ ::= F | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | φ ↔ ψ | ∀xφ | ∃xφ | [x′ = θ&H]F

A state is a function ν : V → R that assigns real numbers to all variables in the
set V = {x1, . . . , xn}. We denote the value of term θ in state ν by ν[[θ]]. The
semantics is that of first-order real arithmetic with the following addition:
ν |= [x′ = θ&H]F iff for each function ϕ : [0, r] → (V → R) of some duration r
we have ϕ(r) |= F under the following two conditions:

1. the differential equation holds, i.e., for each variable xi and each ζ ∈ [0, r]:

dϕ(t)[[xi]]

dt
(ζ) = ϕ(ζ)[[θi]]

2. and the evolution domain is respected, i.e., ϕ(ζ) |= H for each ζ ∈ [0, r].

The following simple dL formula is valid (i.e., true in all states):

x > 5 → [x′ =
1

2
x]x > 0

It expresses that x will always be positive if x starts with x > 5 and follows
x′ = 1

2x for any period of time.

3 Differential Equations and Differential Operators

In this section, we study differential equations and their associated differential
operators. Only properties of very simple differential equations can be proved
by working with their solutions, e.g., linear differential equations with constant
coefficients that form a nilpotent matrix [18].

Differential Operators. More complicated differential equations need a dif-
ferent approach, because their solutions may not fall into decidable classes of
arithmetic, are not computable, or may not even exist in closed form. As a
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proof technique for advanced differential equations, we have
introduced differential invariants [19]. Differential invari-
ants turn the following intuition into a formally sound proof
procedure. If the vector field of the differential equation al-
ways points into a direction where the differential invariant
F , which is a logical formula, is becoming “more true” (see
Fig. 1), then the system will always stay safe if it initially
starts safe. This principle can be understood in a simple
but formally sound way in the logic dL [19,20]. Differential
invariants have been introduced in [19] and later refined to a procedure that
computes differential invariants in a fixed-point loop [24]. Instead of our original
presentation, which was based on differential algebra, total derivatives, and dif-
ferential substitution, we take a differential operator approach here. Both views
are fruitful and closely related.

Definition 1 (Lie differential operator). Let x′ = θ be the differential equa-
tion system x′

1 = θ1, . . . , x
′
n = θn in vectorial notation. The (Lie) differential

operator belonging to x′ = θ is the operator θ ·∇ defined as

θ ·∇ def
=

n∑
i=1

θi
∂

∂xi
= θ1

∂

∂x1
+ · · ·+ θn

∂

∂xn
(1)

The { ∂
∂x1

, · · · , ∂
∂xn

} are partial derivative operators, but can be considered as a
basis of the tangent space at x of the manifold on which x′ = θ is defined. The
result of applying the differential operator θ ·∇ to a differentiable function f is

(θ ·∇)f =

n∑
i=1

θi
∂f

∂xi
= θ1

∂f

∂x1
+ · · ·+ θn

∂f

∂xn

The differential operator lifts conjunctively to logical formulas F :

(θ ·∇)F
def
=

∧
(b∼c) in F

(
(θ ·∇)b ∼ (θ ·∇)c

)
This conjunction is over all atomic subformulas b ∼ c of F for any operator
∼ ∈ {=,≥, >,≤, <}. In this definition, we assume that formulas use dualities
like ¬(a ≥ b) ≡ a < b to avoid negations and the operator �= is handled in a
special way; see previous work for a discussion [19,22]. The functions and terms
in f and F need to be sufficiently smooth for the partial derivatives to be defined
and enjoy useful properties like commutativity of ∂

∂x and ∂
∂y . This is the case

for polynomials, which are arbitrarily smooth (C∞).
Since the differential operator θ ·∇ is a combination of the total derivative and

differential substitution, we have elsewhere [19,22] denoted the result (θ ·∇)F of

applying θ ·∇ to a logical formula F by F ′θ
x′ . The latter notation is also appropri-

ate, because (θ ·∇)F ≡ F ′θ
x′ can, indeed, be formed by taking the total derivative

F ′ and then substituting in the right-hand side θ of the differential equation to re-
place its left-hand side x′, the result of which is denoted F ′θ

x′ . It is insightful [19]
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to give a semantics to F ′, because that is the key to proving advanced differential
transformations [19], but beyond the scope of this paper.We refrain fromusing this
alternative notation in this paper, because we want to emphasize the differential
operator nature of the combined derivative and differential substitution. In this
notation, our differential induction proof rule [19] is:

(DI)
H→(θ ·∇)F

F→[x′ = θ&H]F

This differential induction rule is a natural induction principle for differential
equations. The difference compared to ordinary induction for discrete loops is
that the evolution domain constraint H is assumed in the premise (because the
continuous evolution is not allowed to leave its evolution domain constraint) and
that the induction step uses the differential formula (θ ·∇)F corresponding to
formula F and the differential operator θ ·∇ belonging to the differential equa-
tion x′ = θ instead of a statement that the loop body preserves the invariant.
Intuitively, the differential formula (θ ·∇)F captures the infinitesimal change of
formula F over time along x′ = θ, and expresses the fact that F is only getting
more true when following the differential equation x′ = θ. The semantics of dif-
ferential equations is defined in a mathematically precise but computationally
intractable way using analytic differentiation and limit processes at infinitely
many points in time. The key point about differential invariants is that they
replace this precise but computationally intractable semantics with a computa-
tionally effective use of a differential operator. The valuation of the resulting
computable formula (θ ·∇)F along differential equations coincides with ana-
lytic differentiation [19]. The term (θ ·∇)p characterizes how p changes with
time along a solution of x′ = θ.

Lemma 2 (Derivation lemma). Let x′ = θ&H be a differential equation with
evolution domain constraint H and let ϕ : [0, r] → (V → R) be a corresponding
solution of duration r > 0. Then for all terms p and all ζ ∈ [0, r]:

dϕ(t)[[p]]

dt
(ζ) = ϕ(ζ)[[(θ ·∇)p]] .

Proof. This lemma can either be shown directly or by combining the derivation
lemma [19, Lemma 1] with differential substitution [19, Lemma 2]. ��

The rule DI for differential invariance is computationally very attractive, be-
cause it replaces the need to reason about complicated solutions of differential
equations with simple symbolic computation and arithmetic on terms that are
formed by differentiation, and, hence, have lower degree. The primary challenge,
however, is to find a suitable F for a proof.

Equational Differential Invariants. General formulas with propositional
combinations of equations and inequalities can be used as differential invari-
ants. For the purposes of this paper, we focus on the equational case in more
detail, which is the following special case of DI:
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(DI=)
H→(θ ·∇)p = 0

p = 0 → [x′ = θ&H]p = 0

This equational case of differential invariants turns out to be a special case of
Lie’s seminal work on what are now called Lie groups [15,16]. Since θ and p are
(sufficiently) smooth, we can capture Lie’s theorem [17, Proposition 2.6] as a dL
proof rule to make the connection to DI= more apparent.

Theorem 3 (Lie [15,16]). Let x′ = θ be a differential equation system and H a
domain, i.e., a first-order formula of real arithmetic characterizing an open set.
The following proof rule is a sound global equivalence rule, i.e., the conclusion
is valid if and only if the premise is.

(DIc)
H→(θ ·∇)p = 0

∀c
(
p = c → [x′ = θ&H]p = c

)
That is, the following dL axiom is sound, i.e., all of its instances valid

∀x∀c
(
p = c → [x′ = θ&H]p = c

)
↔ ∀x (H→(θ ·∇)p = 0)

Proof (Sketch). We only sketch a proof for the soundness direction of DIc and re-
fer to [15,16,17,19] for a full proof. Suppose there was a ζ with ϕ(ζ)[[p]] �= ϕ(0)[[p]],
then, by mean-value theorem, there is a ξ < ζ such that, when using Lemma2:

0 �= ϕ(ζ)[[p]]− ϕ(0)[[p]] = (ζ − 0)
dϕ(t)[[p]]

dt
(ξ) = ζϕ(ξ)[[(θ ·∇)p]]

Thus, ϕ(ξ)[[(θ ·∇)p]] �= 0, which contradicts the premise (when H ≡ true). ��

Note that domains are usually assumed to be connected. We can reason sep-
arately about each connected component of H , which are only finitely many,
because our domains are first-order definable in real-closed fields [31]. Observe
that the conclusion of DIc implies that of DI= by instantiating c with 0.

Corollary 4 (Decidability of invariant polynomials). It is decidable,
whether a polynomial p with real algebraic coefficients is an invariant function
for a given x′ = θ on a (first-order definable) domain H (i.e., the conclusion of
DIc holds). In particular, the set of polynomials with real algebraic coefficients
that are invariant for x′ = θ is recursively enumerable.

This corollary depends on the fact that real algebraic coefficients are countable.
A significantly more efficient version of the recursive enumerability is obtained
when using symbolic parameters as coefficients in a polynomial p of increasing
degree and using the fact that the equivalence in Theorem3 is valid for each
choice of p. In particular, when p is a polynomial with a vector a of symbolic
parameters, then, by Theorem3, the following dL formula is valid

∃a ∀x∀c
(
p = c → [x′ = θ&H]p = c

)
↔ ∃a ∀x (H→(θ ·∇)p = 0) (2)
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The right-hand side is decidable in the first-order theory of real-closed fields [31].
Hence, so is the left-hand side, but the approach needs to be refined to be useful.

This includes a logical reformulation of the so-called direct method, where
the user guesses an Ansatz p, e.g., as a polynomial with symbolic parameters a
instead of concrete numbers as coefficients, and these parameters are instantiated
as needed during the attempt to prove invariance of p. In dL, we do not need
to instantiate parameters a, because it is sufficient to prove existence, for which
there are corresponding dL proof principles [18]. Other constraints on p need
to be considered, however, e.g., that p = 0 holds in the initial state and p = 0
implies the desired postcondition. Otherwise, the instantiation of a that yields
the zero polynomial would be a solution for (2), just not a very insightful one.
For example, let dL formula A characterize the initial state and dL formula B
be the postcondition for a continuous system x′ = θ&H. Then validity of the
following (arithmetic) formula

∃a ∀x ((H→(θ ·∇)p = 0) ∧ (A → p = 0) ∧ (H ∧ p = 0 → B) (3)

implies validity of the dL formula

A → [x′ = θ&H]B

Formula (3) is decidable if A and B are first-order real arithmetic formulas.
Otherwise, the full dL calculus is needed to prove (3). Existential quantifiers for
parameters can be added in more general ways to dL formulas with full hybrid
systems dynamics to obtain an approach for generating invariants for proving
more general properties of hybrid systems [24,25]. The Ansatz p can also be
varied automatically by enumerating one polynomial with symbolic coefficients
for each (multivariate) degree. This direct method can be very effective, and is
related to similar approaches for deciding universal real-closed field arithmetic
[27], but, because of the computational cost of real arithmetic [7,4], stops to be
efficient for complicated high-dimensional problems. In this paper, we analyze the
invariance problem further to develop a deeper understanding of its challenges
and ways of solving it.

Since DIc is an equivalence, Theorem3 and its corollary may appear to solve
the invariance problem (for equations) completely. Theorem3 is a very powerful
result, but there are still many remaining challenges in solving the invariance
problem as we illustrate in the following.

Counterexample 5 (Deconstructed aircraft). The following dL formula is valid.
It is a much simplified version of a formula proving collision freedom for an air
traffic control maneuver [19,26]. We have transformed the differential equations
to a physically less interesting case that is notationally simpler and still exhibits
similar technical phenomena as those that occur in air traffic control verification.

x2 + y2 = 1 ∧ e = x→[x′ = −y, y′ = e, e′ = −y](x2 + y2 = 1 ∧ e = x) (4)

This dL formula expresses that an aircraft with position (x, y) will always be
safely separated from the origin (0, 0), here, by exactly distance 1 to make things
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easier. Formula (4) also expresses that the aircraft always is in a compatible y-
direction e compared to its position (x, y). In the full aircraft scenario, there is
more than one aircraft, each aircraft has more than one direction variable, the
relation of the directions to the positions is more complex, and the distance of
the aircraft to each other is not fixed at 1, it can be any distance bigger than
a protected zone, etc. Yet the basic mathematical phenomena when analyzing
(4) are similar to those for full aircraft [19,26], which is why we focus on (4) for
notational simplicity. Unfortunately, when we try to prove the valid dL formula
(4) by a Lie-type differential invariance argument, the proof fails

not valid

−2xy + 2ey = 0

(−y)2x+ e2y = 0 ∧ −y = −y

−y ∂(x2+y2)
∂x + e∂(x2+y2)

∂y = 0 ∧ −y ∂e
∂e = −y ∂x

∂x

DIx2 + y2 = 1 ∧ e = x →[x′ = −y, y′ = e, e′ = −y](x2 + y2 = 1 ∧ e = x)

This is, at first, surprising, since Theorem3 is an equivalence, but the conclusion
(4) is valid and, yet, the proof does not close. On second thought, the postcon-
dition is a propositional combination of equations instead of the single equation
assumed in DIc and DI=. This discrepancy might have caused Theorem3 to fail.
That is not the issue, however, because we have shown that the deductive power
of equational differential invariants equals the deductive power of propositional
combinations of equations [19, Proposition 1][23, Proposition 5.1]. That is, ev-
ery formula that is provable using propositional combinations of equations as
differential invariants is provable with single equational differential invariants.

Proposition 6 (Equational deductive power [19,23]). The deductive power
of differential induction with atomic equations is identical to the deductive power
of differential induction with propositional combinations of polynomial equations:
That is, each formula is provable with propositional combinations of equations as
differential invariants iff it is provable with only atomic equations as differential
invariants.

Using the construction of the proof of Proposition 6 on the situation in Coun-
terexample 5, we obtain the following counterexample.

Counterexample 7 (Deconstructed aircraft atomic). The construction in the (con-
structive) proof of Proposition6 uses an equivalence, here, the following:

x2 + y2 = 1 ∧ e = x ≡ (x2 + y2 − 1)2 + (e − x)2 = 0

The right-hand side of the equivalence is a valid invariant and now a single
polynomial as assumed in Theorem3, but DIc and DI= still do not prove it,
even though the desired conclusion is valid (because it follows from (4) by axiom
K and Gödel’s generalization [21]):
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not valid

2(x2 + y2 − 1)(−2yx+ 2ey) = 0

2(x2 + y2 − 1)(−y2x+ e2y) + 2(e− x)(−y − (−y)) = 0

(−y ∂
∂x

+ e ∂
∂y
− y ∂

∂e
)
(
(x2 + y2 − 1)2 + (e− x)2

)
= 0

DI(x2+y2−1)2 + (e−x)2 = 0 →[x′ = −y, y′ = e, e′ = −y](x2 + y2 − 1)2 + (e− x)2 = 0

How can that happen? And what can we do about it? The key to understand-
ing this is the observation that we could close the above proof if only we knew
that e = x, which is part of the invariant we are trying to prove in this proof
attempt. Note that the relation of the variables in the air traffic control maneu-
ver is more involved than mere identity. In that case, a similar relation of the
state variables still exists, involving the angular velocity, positions, and multidi-
mensional directions of the aircraft. This relation is crucial for a corresponding
proof; see previous work [19,26].

We could close the proof attempt in Counterexample 7 if only we could assume
in the premise the invariant F that we are trying to prove. A common mistake
is to suspect that F (or the boundary of F ) could, indeed, be assumed in the
premise when proving invariance of F along differential equations. That would
generally be unsound even though it has been suggested [28,8].

Counterexample 8 (No recursive assumptions). The following counterexample
shows that it is generally unsound to assume invariants like F ≡ x2 − 6x+ 9 = 0
in the antecedent of the induction step for equational differential invariants

unsound

x2 − 6x+ 9 = 0 →y2x− 6y = 0

x2 − 6x+ 9 = 0 →y ∂(x2−6x+9)
∂x − x∂(x2−6x+9)

∂y = 0

x2 − 6x+ 9 = 0 →[x′ = y, y′ = −x]x2 − 6x+ 9 = 0

We have previously identified [19] conditions under which F can still be assumed
soundly in the differential induction step. Those conditions include the case
where F is open or where the differential induction step can be strengthen to
an open condition with strict inequalities. Unfortunately, these cases do not
apply to equations, which are closed and rarely satisfy strict inequalities in the
differential induction step. In particular, we cannot use those to close the proof
in Counterexample 7.

Differential Cuts. As an alternative, we have introduced differential cuts [19].
Differential cuts [19] are a fundamental proof principle for differential equations.
They can be used to strengthen assumptions in a sound way:

(DC)
F→[x′ = θ&H]C F→[x′ = θ&(H ∧ C)]F

F→[x′ = θ&H]F

The differential cut rule works like a cut, but for differential equations. In the
right premise, rule DC restricts the system evolution to the subdomain H ∧C
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of H , which restricts the system dynamics to a subdomain but this change is
a pseudo-restriction, because the left premise proves that the extra restriction
C on the system evolution is an invariant anyhow (e.g. using rule DI). Note
that rule DC is special in that it changes the dynamics of the system (it adds
a constraint to the system evolution domain region that the resulting system is
never allowed to leave), but it is still sound, because this change does not reduce
the reachable set. The benefit of rule DC is that C will (soundly) be available
as an extra assumption for all subsequent DI uses on the right premise of DC.
In particular, the differential cut rule DC can be used to strengthen the right
premise with more and more auxiliary differential invariants C that cut down the
state space and will be available as extra assumptions to prove the right premise,
once they have been proven to be differential invariants in the left premise.

Using differential cuts repeatedly in a process called differential saturation has
turned out to be extremely useful in practice and even simplifies the invariant
search, because it leads to several simpler invariants to find and prove instead
of a single complex property [24,25,20]. Differential cuts helped us find proofs
for collision avoidance protocols for aircraft [19,26]. Following the same principle
in the simplified case of deconstructed aircraft, we finally prove the separation
property (4) by a differential cut. The differential cut elimination hypothesis,
i.e., whether differential cuts are necessary, has been studied in previous work
[23] and will be discussed briefly later.

Example 9 (Differential cuts help separate aircraft). With the help of a differ-
ential cut by e = x, we can now prove the valid dL formula (4), which is a
deconstructed variant of how safe separation of aircraft can be proved. For lay-
out reasons, we first show the left premise resulting from DC

∗
R −y = −y

−y ∂e
∂e = −y ∂x

∂x
DI e = x →[x′ = −y, y′ = e, e′ = −y]e = x �
DCx2 + y2 = 1 ∧ e = x →[x′ = −y, y′ = e, e′ = −y](x2 + y2 = 1 ∧ e = x)

and then show the proof of the right premise of DC resulting from the hidden
branch (indicated by � above):

∗
R e = x → − 2yx+ 2xy = 0

e = x →(−y)2x+ e2y = 0

e = x → − y ∂(x2+y2)
∂x + e∂(x2+y2)

∂y = 0

DIx2 + y2 = 1 ∧ e = x →[x′ = −y, y′ = e, e′ = −y& e = x](x2 + y2 = 1 ∧ e = x)

Finally, we have a proof of (4) even if it took more than Theorem3 to prove it.
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Another challenge in invariance properties of differential equations the following.
Theorem3 is sufficient, i.e., the premise of DIc implies the conclusion even if H is
not a domain. But the converse direction of necessity may stop to hold, because
the conclusion might hold only because all evolutions immediately leave the
evolution domain H .

Counterexample 10 (Equivalence requires domain). The following counterexam-
ple shows that the equivalence of DIc requires H to be a domain

not valid

y = 0 →2 = 0

y = 0 →(2 ∂
∂x + 3 ∂

∂y )x = 0

∀c
(
x = c → [x′ = 2, y′ = 3& y = 0]x = c

)
Here, the (closed) restriction y = 0 has an empty interior and y′ = 3 leaves it
immediately. The fact that the evolution leaves y = 0 immediately is the only
reason why x = c is an invariant, which would otherwise not be true, because
x′ = 2 leaves x = c when evolving for any positive duration. That is why the
above premise is not valid even if the conclusion is. Consequently, DIc can miss
some invariants if H is not a domain. Similar phenomena occur when H has a
non-empty interior but is not open.

In the proof of Example 9, after the differential cut (DC) with e = x, the re-
fined evolution domain constraint is not a domain anymore, which may appear
to cause difficulties in the reasoning according to Counterexample 10. Whether
evolution domain restrictions introduced by differential cuts are domains, how-
ever, is irrelevant, because the left premise of DC just proved that the differential
equation (without the extra constraint C) never leaves C, which turns C into a
manifold on which differentiation is well-defined and Lie’s theorem applies.

Example 11 (Indirect single proof proof of aircraft separation). We had originally
conjectured in 2008 [19] that the differential cuts as used in Example 9 and for
other aircraft dynamics are necessary to prove these separation properties. We
recently found out, however, that this is not actually the case [23]. The following
proof of (4) uses a single differential induction step and no differential cuts:

∗
R −y2e+ e2y = 0 ∧ −y = −y

−y ∂(e2+y2)
∂e + e∂(e2+y2)

∂y = 0 ∧ −y ∂e
∂e = −y ∂x

∂x

DIe2 + y2 = 1 ∧ e = x →[x′ = −y, y′ = e, e′ = −y](e2 + y2 = 1 ∧ e = x)

Using the construction in Proposition6, a corresponding proof uses only a single
equational invariant to prove (4):

∗
R 2(e2 + y2 − 1)(−y2e+ e2y) + 2(e− x)(−y − (−y)) = 0

(−y ∂
∂x

+ e ∂
∂y
− y ∂

∂e
)
(
(e2 + y2 − 1)2 + (e− x)2

)
= 0

DI(e2+y2−1)2 + (e−x)2 = 0 →[x′ = −y, y′ = e, e′ = −y](e2 + y2 − 1)2 + (e− x)2 = 0
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Thus, DC and domain restrictions are not critical for proving (4). Observe, how-
ever, that the indirect proof of (4) in Example 11 worked with a single equational
differential invariant and recall that the same formula was not provable directly
in Counterexample 5. Thus, even when the evolution domain (here true) is a
domain and the phenomena illustrated in Counterexample 10 are not an issue,
indirect proofs with auxiliary invariants may succeed even if the direct use of DIc
fails. This makes Theorem3 incomplete and invariant generation challenging.

Before we illustrate the reasons for this difference in the next section, we briefly
show that the same phenomenon happens for the actual aircraft dynamics, not
just the deconstructed aircraft-type dynamics.

Example 12 (Aircraft). We abbreviate d21 + d22 = ω2p2 ∧ d1 = −ωx2 ∧ d2 = ωx1

by F , which is equivalent to the condition x2
1 + x2

2 = p2 ∧ d1 = −ωx2 ∧ d2 = ωx1

for safe separation by distance p of the aircraft (x1, x2) from the origin (0, 0),
when the aircraft flies in a roundabout in its current direction (d1, d2) with
angular velocity ω �= 0. We prove invariance of F for an aircraft:

∗
R 2d1(−ωd2) + 2d2ωd1 = 0 ∧ −ωd2 = −ωd2 ∧ ωd1 = ωd1

2d1d
′
1 + 2d2d

′
2 = 0 ∧ d′1 = −ωx′

2 ∧ d′2 = ωx′
1

DIF ∧ ω �= 0 →[x′
1 = d1, x

′
2 = d2, d

′
1 = −ωd2, d

′
2 = ωd1]F

The proof for collision freedom of an aircraft (x1, x2) in direction (d1, d2) from
an aircraft (y1, y2) flying in direction (e1, e2) is similar to that in [19].

While differential cuts have, thus, turned out not to be required (though still
practically useful) for these aircraft properties, differential cuts are still crucially
necessary to prove other systems. We have recently shown that differential cuts
increase the deductive power fundamentally [23]. That is, unlike in the first-order
case, where Gentzen’s cut elimination theorem [6] proves that first-order cuts
can be eliminated, we have refuted the differential cut elimination hypothesis,
by proving that some properties of differential equations can only be proved with
a differential cut, not without.

Theorem 13 (Differential cut power [23]). The deductive power with dif-
ferential cuts (rule DC) exceeds the deductive power without differential cuts.

We refer to previous work [23] for details on the differential cut elimination
hypothesis [19], the proof of its refutation [23], and a complete investigation of
the relative deductive power of several classes of differential invariants.

4 Invariant Equations and Invariant Functions

In this section, we study invariant equations and the closely related notion of
invariant functions. The conclusion of rule DIc expresses that the polynomial
term p is an invariant function of the differential equation x′ = θ on domain H :
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Definition 14 (Invariant function). The function p is an invariant function
of the differential equation x′ = θ on H iff

� ∀c
(
p = c → [x′ = θ&H ]p = c

)
That is, an invariant function p is one whose value p(x(t)) is constant along all
solutions x(t), as a function of time t, of the differential equation x′ = θ within
the domain H , i.e., p(x(t)) = p(x(0)) for all t. Rule DIc provides a way to prove
that p is an invariant function. A closely related notion is the following.

Definition 15 (Invariant equation). For a function p, the equation p = 0 is
an invariant equation of the differential equation x′ = θ on H iff

� p = 0 → [x′ = θ&H]p = 0

Synonymously, we say that p = 0 is an equational invariant or that the variety
V (p) is an invariant variety of x′ = θ&H. For a set S of functions (or polyno-
mials), V (S) is the variety of zeros of S:

V (S)
def
= {a ∈ Rn : f(a) = 0 for all f ∈ S}

3
21

0

Fig. 2. Invariant equations p = c
for levels c of invariant function p

For a single function or polynomial p, we
write V (p) for V ({p}). Varieties of sets of
polynomials are a fundamental object of
study in algebraic geometry [3,10]. Rule DI=
provides a way to prove that p = 0 is an in-
variant equation.

What is, at first, surprising, is that the
premise of rule DI= does not depend on the
constant term of the polynomial p. However,
a closer look reveals that the premises ofDI=
and DIc are equivalent, and, hence, rule DI=
actually proves that p is an invariant func-
tion, not just that p = 0 is an equational invariant. Both notions of invariance
are closely related but different. If p is an invariant function, then p = 0 is an
equational invariant [17], but not conversely, since not every level set of p has to
be invariant if p = 0 is invariant; compare Fig. 2 to general differential invariant
Fig. 1.

Lemma 16 (Relation of invariant functions and invariant equations). A
(smooth) polynomial p is an invariant function of x′ = θ&H iff, for every c ∈ R,
p = c is an invariant equation of x′ = θ&H. In this case, if c is a constant that
denotes the value of p at the initial state, then p = c and p = 0 are invariant
equations. Conversely, if p = 0 is an equational invariant then the product Ip=0p
is an invariant function (not necessarily C1, i.e., continuously differentiable). If
c is a fresh variable and p = c an invariant equation of x′ = θ, c′ = 0&H, then
p is an invariant function of x′ = θ&H and x′ = θ, c′ = 0&H.
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Proof. By definition. Recall that the characteristic or indicator function of p = 0
is defined as Ip=0(x) = 1 if p(x) = 0 and as Ip=0(x) = 0 if p(x) �= 0. ��

Counterexample 17 (p = 0 equational invariant �⇒ p invariant function). We
have � x = 0 → [x′ = x]x = 0 but �� x = 1 → [x′ = x]x = 1, hence p = 0 is
an equational invariant of x′ = x but p is no invariant function, because p = 1
is no equational invariant. In particular, we can tell by simulation, whether a
polynomial p can be an invariant function, which gives a good falsification test.

The structure of invariant functions is that they form an algebra.

Lemma 18 (Structure of invariant functions). The invariant functions (or
the invariant polynomials) of x′ = θ&H form an R-algebra.

Proof. As a function of time t, let x(t) be a solution of the differential equation
under consideration. If p, q are invariant functions and λ ∈ R is a number (or
constant symbol), then p + q, pq, λp are invariant functions, because, for any
operator ⊕ ∈ {+, ·}:
(p⊕ q)(x(t)) = p(x(t)) ⊕ q(x(t()) = p(x(0)) ⊕ q(x(0)) = (p⊕ q)(x(0)) ��

According to Lemma18, it is enough to find a generating system of the algebra
of invariant functions, because all algebraic expressions built from this gener-
ating set are invariant functions. A generating system of an algebra is a set S
such that the set of all elements that can be formed from S by operations of
the algebra coincides with the full algebra. More precisely, the smallest algebra
containing S is the full algebra of invariant functions. This generating system is
not necessarily small, however, because, whenever p is an invariant function and
F an arbitrary (sufficiently smooth) function, e.g., polynomial, then F (p) is an
invariant function. This holds accordingly for (sufficiently smooth) functions F
with multiple arguments. The situation improves if we take a functional gener-
ating set G. That is, a set G that gives all invariant functions when closing it
under composition with any (sufficiently smooth) function F , i.e., F (p1, . . . , pn)
is in the closure for all pi in the closure.

A useful structure of the invariant equations is that they form an ideal. For a
fixed dynamics x′ = θ or x′ = θ&H we define the following sets of valid formulas
and provable formulas, respectively:

I=(Γ ) := {p ∈ R[x] : � Γ → [x′ = θ&H]p = 0}
DCI=(Γ ) := {p ∈ R[x] : �DI=+DC Γ → [x′ = θ&H]p = 0}

rI= := {p ∈ R[x] : � p = 0 → [x′ = θ&H]p = 0}
rDCI= := {p ∈ R[x] : �DI=+DC p = 0 → [x′ = θ&H]p = 0}

The set I=(Γ ) collects the polynomials whose variety forms an invariant equation
(p ∈ I=(Γ )). The set DCI=(Γ ) collects the polynomials for whose zero set it
is provable using equational differential invariants (DI=) and differential cuts
(DC) that they are invariant equations (p ∈ DCI=(Γ )). The sets I=(Γ ) and
DCI=(Γ ) are relative to a dL formula (or set) Γ that is used as assumption.
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The reflexive sets rI= and rDCI=, instead, assume that the precondition and
postcondition are identical. It turns out that the reflexive versions do not have a
very well-behaved structure (see the following proof). The invariant sets I=(Γ )
and DCI=(Γ ), instead, are well-behaved and form a chain of differential ideals.

Lemma 19 (Structure of invariant equations). Let Γ be a set of dL for-
mulas, then DCI=(Γ ) ⊆ I=(Γ ) is a chain of differential ideals (with respect to
the derivation θ ·∇, in particular (θ ·∇)p ∈ DCI=(Γ ) for all p ∈ DCI=(Γ )).
Furthermore, the varieties of these ideals are generated by a single polynomial.

Proof. We prove each of the stated properties.

1. The inclusion follows from soundness. The inclusion rDCI= ⊆ rI= even still
holds for rI=.

2. It is easy to see that p, q ∈ I=(Γ ) and r ∈ R[x] imply p+ q, rp ∈ I=(Γ ).
Both properties do not hold for rI=, because x, x2 ∈ rI= for the dynamics
x′ = x, but the sum/product x2 + x = x(x + 1) �∈ rI=

3. Let p, q ∈ DCI=(Γ ), then p+ q ∈ DCI=(Γ ), because Γ → p = 0 ∧ q = 0 im-
plies Γ → p+ q = 0 (for the antecedent) and θ ·∇ is a linear operator:

(θ ·∇)(p+ q) = (θ ·∇)p+ (θ ·∇)q = 0 + 0 = 0

The second equation holds after sufficiently many uses of DC that are needed
to show that p, q ∈ DCI=(Γ ).

4. Let p ∈ DCI=(Γ ) and r ∈ R[x], then rp ∈ DCI=(Γ ), because Γ → p = 0
implies Γ → rp = 0 (for the antecedent) and θ ·∇ is a derivation operator:

(θ ·∇)(rp) = p(θ ·∇)r + r (θ ·∇)p︸ ︷︷ ︸
0

= p︸︷︷︸
0

(θ ·∇)r = 0

The second equation holds after sufficiently many uses of DC that are needed
to show that p ∈ DCI=(Γ ). The last equation holds after one more use of DC
by p = 0, which entails p = 0 on the (new) domain of evolution H ∧ p = 0.

5. The fact that the ideal DCI=(Γ ) is a differential ideal follows from [20, Lem
3.7], which just uses differential weakening. In detail: p ∈ DCI=(Γ ) implies
that (θ ·∇)p = 0 is provable after sufficiently many DC. Hence, after the
same DC, invariance of (θ ·∇)p = 0 is provable by DW.

6. From p ∈ I=(Γ ), we conclude (θ ·∇)p ∈ I=(Γ ) as follows. Let p(x(t)) = 0 ∀t.
Then ((θ ·∇)p)(x(t)) =

∑
i θi(x(t))

∂p
∂xi

(x(t)) = 0 follows from the necessity
direction of Theorem3.

7. p = 0∧ q = 0 is a propositional equation that is invariant iff p2 + q2 ∈ I(Γ ),
i.e., p2 + q2 = 0 gives an invariant equation. The same holds for DCI=(Γ )
by previous work [19,23]. By repeating this construction, we obtain a variety
generated by a single polynomial, because, by Hilbert’s basis theorem [12],
every ideal in the (multivariate) polynomial ring of a Noetherian ring (e.g., a
field) is finitely generated ideal. Yet the ring of polynomials is not a principal
ideal domain except in dimension 1.



A Differential Operator Approach to Equational Differential Invariants 43

8. p = 0 ∨ q = 0 is a propositional equational invariant iff pq ∈ I=(Γ ), i.e.,
pq = 0 gives an invariant equation. The same holds for DCI=(Γ ) by previous
work [19,23]. ��

Observe that the differential cut rule DC needs to be included to make DCI= an
ideal (not closed under multiplication with other polymials). Without differential
cuts, the set of provable equational differential invariants is generally no ideal.
As a corollary to Lemma 19, it is sufficient to find a complete set of differential
ideal generators, because these generators describe all other invariants. Without
taking functional generators into account, there are still infinitely many invariant
equations, because every invariant function induces infinitely many invariant
equations by Lemma16.

According to Lemma19, however, there is a single generator of the variety of
the differential ideals, which is the most informative invariant.

5 Assuming Equations and Equational Invariants

Theorem3 gives an equivalence characterization of invariant functions on open
domains. Another seminal result due to Lie provides a similar equivalence charac-
terization for invariant equations of full rank. This equivalence characterization
assumes the invariant F during its proof, which is not sound in general; see
Counterexample 8. In the case of full rank, this is different.

Theorem 20 (Lie [15,16][17, Theorem 2.8]). The following rule is sound

(
←−
DIp)

n∧
i=1

pi = 0 → [x′ = θ&H ]
n∧

i=1

pi = 0

H ∧
n∧

i=1

pi = 0→
n∧

i=1

(θ ·∇)pi = 0

If rank ∂pi

∂xj
= n on H ∧

∧n
i=1 pi = 0, then the premise and conclusion are equiv-

alent.

Rule
←−
DIp provides a necessary condition for an equation system to be an invari-

ant and can, thus, be used to disprove invariance. Rule DI= provides a sufficient
condition, but implies a stronger property (invariant function instead of just in-

variant equation). In the full rank case,
←−
DIp is an equivalence and can decide

whether
∧n

i=1 pi = 0 is an invariant equation. Whether
∧n

i=1 pi = 0 satisfies the
full rank condition is decidable in real-closed fields, but nontrivial without opti-
mizations. The invariant in Example 9 has full rank 2, except when x = y = 0,
which does not satisfy the invariant x2 + y2 = 1:(

∂(x2+y2−1)
∂x

∂(x2+y2−1)
∂y

∂(x2+y2−1)
∂e

∂(e−x)
∂x

∂(e−x)
∂y

∂(e−x)
∂e

)
=

(
2x 2y 0

−1 0 1

)
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In Counterexample 8, however, the full rank condition is, in fact, violated, since
∂(x2−6x+9)

∂y = 0 and ∂(x2−6x+9)
∂x = 2x− 6 has a zero when x = 3, which satisfies

x2 − 6x+ 9 = 0. This explains why it was not sound to assume x2 − 6x+ 9 = 0
when attempting to prove it.

It is sound to use equations in the following style (also see [30]):

Theorem 21. This rule is sound for any choice of smooth functions Qi,j:

(
−→
DIp)

H→
n∧

i=1

(θ ·∇)pi =
∑
j

Qi,jpj

n∧
i=1

pi = 0 → [x′ = θ&H ]
n∧

i=1

pi = 0

If rank ∂pi

∂xj
= n on H ∧

∧n
i=1 pi = 0, then the premise of

−→
DIp is equivalent to the

conclusion of
←−
DIp.

Proof. This result follows from [17], since the premise of
−→
DIp is equivalent to

the conclusion of
←−
DIp by [17, Proposition 2.10] in the maximal rank case. We

only sketch the (simple) soundness direction for n = 1 and H ≡ true. At any ζ,
by Lemma 2, the premise, and the antecedent of the conclusion:

dϕ(t)[[p]]

dt
(ζ) = ϕ(ζ)[[(θ ·∇)p]] = ϕ(ζ)[[Qp]] = ϕ(ζ)[[Q]] · ϕ(ζ)[[p]]

ϕ(0)[[p]] = 0

The constant function zero solves this linear differential equation (system). Since
solutions are unique (Q and p smooth), this implies ϕ(ζ)[[p]] = 0 for all ζ. ��

According to Theorem20, it is necessary for invariance of
∧n

i=1 pi = 0 that
(θ ·∇)pi is in the variety, i.e., (θ ·∇)pi ∈ V (p1, . . . , pn) for all i. But, accord-
ing to Theorem21 it is only sufficient if (θ ·∇)pi is in the ideal (p1, . . . , pn)
generated by the pj , i.e., the set {

∑
j Qjpj : Qj ∈ R[x]}. In the full rank case,

both conditions are equivalent.

Counterexample 22 (Full rank). Full rank is required for equivalence. For exam-
ple, h := x− 1 vanishes on p := (x− 1)2 = 0, but no smooth function Q satisfies
h = Qp, since the required Q := (x− 1)−1 has a singularity at p = 0.

6 Partial Differential Equations and the Inverse
Characteristic Method

In this section, we study the connection of differential invariants with partial
differential equations. The operator θ ·∇ defined in (1) is a differential operator.
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Then the premise H → (θ ·∇)p of DIc, which is the same as the premise of DI=,
is a partial differential equation on the domain H .

(θ ·∇)p = 0 on H (5)

This equation is a first-order, linear, homogeneous partial differential equation,
which are well-behaved partial differential equations. By Theorem3, p is a so-
lution of the partial differential equation (5) on domain H iff p is an invariant
function of x′ = θ&H. Thus, with the caveats explained in Section 3, solving
partial differential equations gives a complete approach to generating invariant
functions, which are the strongest type of differential invariants.

This approach first seems to be at odds with what we wanted to achieve in
the first place. Differential equations are complicated, their solutions hard to
compute. So we work with differential invariants instead, which are perfect for
verification if only we find them. In order to find differential invariants, we solve
a partial differential equation, which, in general, is even harder than solving or-
dinary differential equations. In fact, many numerical and symbolic algorithms
for solving partial differential equations are based on solving a number of ordi-
nary differential equation systems as subproblems. The characteristic method,
see [5, Theorem 3.2.1][32, §1.13.1.1], studies the characteristic ordinary differen-
tial equations belonging to a partial differential equation in order to understand
the partial differential equation.

We nevertheless proceed this way and call it the inverse characteristic method,
i.e., the study of properties of ordinary differential equations by studying the
partial differential equation belonging to its Lie-type differential operator.

Theorem 23 (Inverse characteristic method). A (sufficiently smooth) func-
tion f is an invariant function of the differential equation x′ = θ on the domain
H iff f solves the partial differential equation (5) on H, i.e.,

(θ ·∇)f = 0 on H

Proof. This is a consequence of Theorem3. ��

The inverse characteristic method is insightful for two reasons. First, it identifies
a mathematically well-understood characterization of the problem of generating
differential invariants, at least for the equational case of invariant functions on
domains. Second, the inverse characteristic method can be quite useful in prac-
tice, because the resulting partial differential equations are rather well-behaved,
and solvers for partial differential equations are built on very mature founda-
tions. Note that it is beneficial for the purposes of building a verification tool
that the partial differential equation solver can work as an oracle and does not
need to be part of the trusted computing base, since we can easily check its
(symbolic) solutions for invariance by rule DIc just using symbolic derivatives
and polynomial algebra.

Example 24 (Deconstructed aircraft). For the deconstructed aircraft from Coun-
terexample 5, the dynamics yields the corresponding partial differential equation
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−y
∂f

∂x
+ e

∂f

∂y
− y

∂f

∂e
= 0

whose solution can easily be computed to be

f(x, y, e) = g

(
e− x,

1

2
(2ex− x2 + y2)

)
Thus, the solution is a function g of e− x and of 1

2 (2ex− x2 + y2), which turns
both terms into invariant functions:

e− x (6)

2ex− x2 + y2 (7)

Contrast this with the invariant equation (e2 + y2 − 1)2 + (e − x)2 = 0 from the
proof of (4) in Example 11. In order to relate this creative invariant to the
systematically constructed invariants (6)–(7), we note that the initial state and
postcondition in (4) is x2 + y2 = 1 ∧ e = x. Hence, y2 = 1− x2, e = x, which we
substitute in (7) to obtain 2xx− x2 + (1 − x2) = 1. Thus, for the purpose of
proving (4), the initial value for (6) is 0 and that for (7) is 1. Using e− x = 0,
the invariant e2 + y2 − 1 can be obtained from (7) and the initial value 1 by
polynomial reduction.

Example 25 (Aircraft). For the actual aircraft dynamics in Example 12, the cor-
responding partial differential equation

d1
∂f

∂x1
+ d2

∂f

∂x2
− ωd2

∂f

∂d1
+ ωd1

∂f

∂d2
= 0

whose solution can easily be computed to be (recall ω �= 0)

f(x1, x2, d1, d2) = g

(
d2 − ωx1,

d1 + ωx2

ω
,
1

2
(d21 + 2ωd2x1 − ω2x2

1)

)
revealing the invariant functions d2 − ωx1, d1 + ωx2, d

2
1 + 2ωd2x1 − ω2x2

1. From
these, the creative invariant in Example 12 can be constructed in retrospect with
initial value 0, 0, and ω2p2, respectively. The value ω2p2 can be found either by
polynomial reduction or by substituting ωx1 = d2 in as follows

d21 + 2ωd2x1 − ω2x2
1 = d21 + 2d22 − d22 = d21 + d22 = ω2p2

7 Conclusions and Future Work

Differential invariants are a natural induction principle for differential equations.
The structure of general differential invariants has been studied previously. Here,
we took a differential operator view and have studied the case of equational dif-
ferential invariants in more detail. We have related equational differential invari-
ants to Lie’s seminal work and subsequent results about Lie groups. We have
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shown how the resulting equivalence characterization of invariant equations on
open domains can be used, carefully illustrate surprising challenges in invariant
generation, explain why they exist, and show with which techniques they can
be overcome. We have studied the structure of invariant functions and invariant
equations, their relation, and have shown that, in the presence of differential
cuts, the invariant equations and provable invariant equations form a chain of
differential ideals and that their varieties are generated by a single invariant.
Finally, we relate differential invariants to partial differential equations and ex-
plain how the inverse characteristic method reduces the problem of equational
differential invariant generation to that of solving partial differential equations.

The results we present in this paper relate equational differential invariants to
other problems. They show equivalence characterizations and methods for gener-
ating equational differential invariants. While the connection with other aspects
of mathematics makes a number of classical results available, their complexity
indicates that the study of differential invariants has the potential for many fur-
ther discoveries. In this paper, we have focused exclusively on the equational
case. In the theory of differential invariants, however, the equational and gen-
eral case have quite different characteristics [23]. The general case of differential
invariants that are logical formulas with equations and inequalities has been
studied elsewhere [23].

Acknowledgements. I thank David Henriques and the PC chairs of ITP for
helpful feedback.
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Abella: A Tutorial

Andrew Gacek

Rockwell Collins, Inc.

Abella is an interactive theorem prover aimed at developing the meta-theory of
programming languages, logics, and other systems with binding. Abella uses a
higher-order abstract syntax representation of object systems, and the Abella
logic provides rich features for manipulating this representation. The result is
that binding-related issues are handled automatically by Abella, so users are
freed to focus directly on the interesting parts of their proofs. This tutorial
explains these concepts in depth and illustrates them through examples from
various domains.

The most fundamental component of Abella is higher-order abstract syntax
which enriches traditional abstract syntax with λ-binders. These terms succinctly
encode object languages with binding structure such as programming languages
and logics. Moreover, common operations such as renaming of bound variables
and capture-avoiding substitution correspond exactly to the rules of λ-conversion
which are integrated into the term language. Thus these issues are lifted up into
the logic of Abella where they are treated once-and-for-all, freeing users from
tedious and error-prone work related to binding.

The reasoning logic underlying Abella is a first-order logic with a higher-
order term structure [2]. The logic is enriched with user-defined inductive and
co-inductive definitions with corresponding induction and co-induction rules. In
order to reason over higher-order terms, two recent research advancements are
incorporated into the logic. The first is the ∇-quantifier which represents generic
quantification. Intuitively, this quantifier introduces a “fresh name” which is used
to deconstruct binding structure in a logically sensible way. The second research
advancement is the notion of nominal abstraction which allows for sophisticated
recognition of terms which have resulted from uses of the ∇-quantifier. These
additions to the logic allow additional binding-related issues to be treated once-
and-for-all by Abella.

Abella includes a specification logic which can optionally be used to encode
object language specifications. The specification logic is executable; in fact, it is
a subset of the λProlog language. This allows for rapid prototyping and checking
of specifications. The deeper benefit of the specification logic is that it has been
encoded into the reasoning logic and general properties of it have been proven.
These properties typically correspond to useful lemmas about the structure of
object language judgments. For example, the cut-elimination result on the spec-
ification logic implies a substitution principle on typing judgments encoded in
the specification logic. This is called the two-level logic approach to reasoning,
and in practice it yields significant benefits.

Abella has been used to prove a variety of results [1]. In the domain of
logic, it has been used to prove cut-elimination for the LJ sequent calculus,
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c© Springer-Verlag Berlin Heidelberg 2012
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correctness and completeness for a focusing logic, and equivalences between
natural deduction, Hilbert calculus, and sequent calculus. For programming lan-
guages, it has been used to solve the POPLmark Challenge, to prove the equiv-
alence of various notions of evaluation, and to assist graduates students in an
advanced programming languages course. In the λ-calculus, it has been used to
prove the Church-Rosser property, standardization, and strong normalization (in
the typed setting). Most recently, Abella was used to prove properties of various
notions of bisimulation in the π-calculus. These developments and more includ-
ing downloads, tutorials, and papers are available at http://abella.cs.umn.edu/.
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Abstract. We present a formalization in ACL2(r) of three proofs orig-
inally done by Cantor. The first two are different proofs of the non-
denumerability of the reals. The first, which was described by Cantor
in 1874, relies on the completeness of the real numbers, in the form
that any infinite chain of closed, bounded intervals has a non-empty
intersection. The second proof uses Cantor’s celebrated diagonalization
argument, which did not appear until 1891. The third proof is of the
existence of real transcendental (i.e., non-algebraic) numbers. It also
appeared in Cantor’s 1874 paper, as a corollary to the non-denumerability
of the reals. What Cantor ingeniously showed is that the algebraic num-
bers are denumerable, so every open interval must contain at least one
transcendental number.

Keywords: ACL2, nonstandard analysis, non-denumerability of the re-
als, denumerability of algebraic numbers.

1 Introduction

In an important paper first published in 1874[1,2] and later popularized by
Dunham among others [3], Cantor presented a new proof of the existence of tran-
scendental numbers, those numbers that are not the root of any polynomial with
rational coefficients. Cantor’s proof was quite unlike Liouville’s earlier demon-
stration of a transcendental number. While Liouville actually constructed a tran-
scendental number (indeed, a whole family of them), Cantor used a counting
argument to show that the set of real numbers must include many transcenden-
tal numbers.

Cantor’s counting argument proceeds as follows. First, he showed that no se-
quence {x1, x2, . . . } of real numbers can completely enumerate all the numbers
in an open interval (a, b). That is, there must be some x ∈ (a, b) such that
x �∈ {x1, x2, . . . }. Second, he constructed an enumeration of the algebraic num-
bers, that is, all the roots of all polynomials with rational coefficients. Since the
algebraic numbers could be placed in a sequence, it followed that every non-
empty open interval must contain at least one number that is not among the
algebraic numbers, i.e., a transcendental number.

Although Cantor’s 1874 paper emphasized the application to transcendental
numbers, the more revolutionary result was the non-denumerability of the real

L. Beringer and A. Felty (Eds.): ITP 2012, LNCS 7406, pp. 51–66, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.cs.uwyo.edu/~ruben


52 R. Gamboa and J. Cowles

numbers! In 1891, Cantor proved, by diagonalization, that non-denumerable sets
exist. This diagonalization proof is easily adapted to showing that the reals are
non-denumerable, which is the proof commonly presented today [4,2].

We present a formalization of Cantor’s two proofs of the non-denumerability
of the reals in ACL2(r). In addition, we present a formalization of Cantor’s
application of this theorem to the existence of transcendental numbers. The
formalizations rely on some uncommon techniques of ALC2(r). So we begin the
presentation in Sect. 2 by briefly describing ACL2(r) and the main techniques
on which the proofs rely. We follow in Sect. 3 with the formalization of Cantor’s
two proofs of the non-denumerability of the reals. Then in Sect. 4 we present
Cantor’s enumeration of the algebraic numbers, which immediately establishes
the existence of an infinite number of transcendental numbers. Finally, we present
some concluding remarks in Sect. 5.

2 Background: ACL2(r)

In this section, we briefly describe ACL2(r), a variant of ACL2 with support for
the real numbers, including an overview of nonstandard analysis, the founda-
tional theory of ACL2(r). Our description is limited to those elements of ACL2
and ACL2(r) that are needed for the main results described later in this paper.
Readers familiar with ACL2 or ACL2(r) may wish to skip this section.

In the tradition of the Boyer-Moore family of theorem provers, ACL2 is a
first-order theorem prover with a syntax similar to Common Lisp’s [5]. The pri-
mary inference rules are term rewriting with equality (and with respect to other
equivalence relations) and induction up to ε0. ACL2 supports the explicit intro-
duction of new function symbols via explicit definitions as well as implicitly via
constraints, using the events1 defun and encapsulate, respectively. In addition,
ACL2 permits the introduction of “choice” functions via Skolem axioms using
the defchoose event. For example, let φ(x, y) be a formula whose only free vari-
ables are x and y. Then the Skolem axiom introducing the function f from the
formula φ(x, y) with respect to y is

(∀x, y)(φ(x, y) ⇒ φ(x, f(x)))

What this axiom states is that the new function f can “choose” an appropriate
y for a given x as long as such a y exists. For example, if φ(x, y) states that
y2 = x, then the choice function will select one of ±

√
x for a non-negative real

x. What it does for other values of x is unspecified.
Choice functions in ACL2 are also used to define expressions that capture

the essence of existential and universal quantifiers in the event defun-sk. For
example, the following event captures the concept that an object has a square
root:

1 An ACL2 “event” is the unit of interaction between the user and the theorem prover,
e.g., a command.
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(defun-sk exists-square-root (x)

(exists (y)

(and (realp y)

(equal (* y y) x))))

These “quantification” functions can then be used in theorems, such as the
following, which states that non-negative reals have square roots:

(defthm nonneg-reals-have-square-roots

(implies (and (realp x) (<= 0 x))

(exists-square-root x)))

Choice functions in ACL2 are also used to justify the definition of “partial”
functions with the event defpun [6]. The basic idea behind defpun is that under
certain circumstances a recursive expression can be used to define a function
symbol, even when there is no guarantee that the function terminates for all
inputs. For example, consider the following function, which returns the next
highest prime number.

(defpun next-prime (n)

(if (primep (1+ n))

(1+ n)

(next-prime (1+ n))))

A naive attempt to define next-prime by replacing defpun with defun will fail,
because ACL2 is unable to find a measure that decreases in the recursive call.
However, using defpun, the definition is admitted. The function next-prime

defined in this way is not truly partial, because it has a value for every input.
Rather, it is underspecified, because its value is only known for certain input
values. E.g., it would be possible to prove that (next-prime 80) is equal to
83, but it would not be possible to prove what (next-prime 1/2) is equal to,
even though it must surely be equal to something, since ACL2 is a logic of total
functions.

ACL2(r) modifies the base ACL2 theorem prover by introducing notions from
nonstandard analysis, as axiomatized by Nelson [7,8]. In Nelson’s formulation
of nonstandard analysis, the real numbers can be further characterized as stan-
dard, small, limited, or large. The standard reals include all the real numbers
that can be uniquely characterized, such as 0, 1, π,

√
2, etc. Small reals, also

called infinitesimals, are those that are smaller in magnitude than any non-zero
standard real. Zero is the only standard number that is also small, but there are
other small numbers. Necessarily, there are also large numbers, namely those
that are larger in magnitude than all standard reals. Real numbers x that are
not large are called limited, and they can always be written as x = ∗x+ ε, where
∗x is standard and ε is small. The number ∗x is called the standard part of x.
Finally, two numbers are said to be close if their difference is small. It is impor-
tant to note that all the usual algebraic properties of the real numbers are still
true in nonstandard analysis. E.g., x · 1/x = 1 for all non-zero x, whether x is
small, large, limited, standard, etc. Also, the properties close, small, and so on
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have nice algebraic properties. E.g., the sum of two small numbers is small, the
product of a small and a limited number is small, and the standard part of the
sum of two numbers is the sum of their standard parts.

Formulas and functions in nonstandard analysis are said to be classical if
they do not mention any of the “new” functions of nonstandard analysis, i.e.,
standard, large, etc. Thus, all functions of traditional analysis, such as square
root and sine, are classical. One of the most important principles of nonstandard
analysis is the transfer principle, which states that any first-order classical for-
mula that is true of all standard values must also be true of all values. That is,
in order to prove that a classical formula P (x) is true of all x, it is sufficient to
prove that standard(x) ⇒ P (x). This principle is captured in the ACL2(r) event
defthm-std. This same principle also justifies an indirect definitional principle,
where only the values of f(x) for standard values of x are specified. Under cer-
tain conditions, this is sufficient to define f as the only classical function that
maps x to f(x) for all standard values of x.

We conclude this section by mentioning that many of the traditional notions
of analysis can be stated more naturally in nonstandard analysis. For example,
we say that a sequence of real numbers {a1, a2, . . . } converges to a value A if
and only if aN is close to A for all large values of N . This is remarkably simpler
than the traditional “epsilon” definition of convergence.

3 Non-denumerability of the Reals

In this section, we present two proofs of the non-denumerability of the reals. We
start with Cantor’s 1874 proof, based on the completeness of the real number
line [1]. Then we formalize the more familiar proof based on his 1891 paper [4].
In both cases, we present first a mathematical description of the proof that
we actually formalized in ACL2(r), and then we present highlights from the
formalization.

Note that this is not the first formalization of the non-denumerability of the
reals! As of this writing, there are five others in Freek Wiedijk’s list, Formalizing
100 Theorems [9]—and this list is not comprehensive. However, our interest here
is not just to prove that the reals are non-denumerable, but to formalize Cantor’s
actual arguments in ACL2(r).

3.1 The First Proof: Using the Completeness of the Reals

3.1.1 The Informal Argument
Consider a sequence {sn} of real numbers and a real interval (a, b). Cantor
showed that there must be at least one x ∈ (a, b) such that x �∈ {sn}. The
following argument is a slight variant of Cantor’s argument, which we formalized
in ACL2(r).

First, construct an infinite chain of nested, closed, and bounded intervals as
follows. Let [a0, b0] = [a, b]. The interval [a1, b1] � [a0, b0] is then defined as
[si1 , sj1 ], where i1 and j1 are chosen to be the smallest indexes such that i1 < j1
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and si1 < sj1 are both in (a0, b0)—as long as such indexes can be found. Repeat
this process, so that in and jn as the smallest indexes such that jn−1 < in < jn
and sin < sjn are both in (an−1, bn−1)

2. By construction, if appropriate indexes
can be found at every step, the intervals [an, bn] form an infinite chain of nested,
closed, and bounded intervals.

However, the construction can fail at a step if no in and jn can be found such
that jn−1 < in < jn and sin and sjn are both in (an−1, bn−1). But if this is the
case, we have found a point in [an−1, bn−1] ⊂ (a, b) that cannot be one of the
{sn}, as desired. This is because either (i) for all in > jn−1, sin /∈ (an−1, bn−1)
or (ii) if in is the first index such that in > jn−1 and sin ∈ (an−1, bn−1), then
for all jn > in if sjn ∈ (an−1, bn−1), then sjn ≤ sin . In case (ii) holds, then for
all jn > in, sjn /∈ (sin , bn−1).

Conversely, suppose the construction does succeed in building an infinite chain
of nested intervals. Then there is some point x such that x ∈ [an, bn] for all n. The
claim is that x is not any of the sn. This follows by considering the possible values
of the indexes in and jn. First, it’s clear that i1 ≥ 1 and jn ≥ 2, since these are the
first two indexes that can be considered; in general, in ≥ 2n−1 and jn ≥ 2n. Sec-
ond, we observe that for i such that j1 < i < i2, si �∈ (a1, b1), since i2 is chosen to
be the first i in that interval. Moreover, for i such that i1 < i < j1, we also know
that si �∈ (a1, b1), since j1 is the first index such that j1 > i1 and sj1 ∈ [a0, b0].
Combining and generalizing these facts, it follows that for i in the range in ≤
i < in+1, si �∈ (an, bn). This statement can be used to show, by induction, that
for all i in the range 1 ≤ i < in+1, si �∈ (an, bn).

Finally, the two observations above can be combined to observe that if 1 ≤
i < 2n+1, si �∈ (an, bn), since in+1 ≥ 2(n+1)−1. In particular, sn �∈ (an, bn) for
any n. Since (an, bn) � [an+1, bn+1], it follows that sn �= x, since x was chosen
previously such that x ∈ [an, bn] for all n.

3.1.2 The Completeness of the Reals
Cantor’s proof makes use of the fact that the real numbers are complete, in
the form that a sequence of nested, closed, bounded intervals has a non-empty
intersection. It is necessary, therefore, to formalize this result in ACL2(r). To do
so, we introduce the constrained function nested-interval, which represents
a sequence of closed intervals, i.e., a mapping from each positive integer n to
a pair of real numbers an and bn such that an ≤ bn. In addition, the intervals
are constrained to form a nested chain by requiring that am ≤ an ≤ bn ≤ bm
whenever m ≤ n.

We limit ourselves to standard sequences of nested closed and bounded inter-
vals, since the transfer principle of nonstandard analysis permits us to generalize
this result to all sequences later. Since the sequence {[an, bn]} is standard, it fol-
lows that both a1 and b1 are standard. Moreover, since the intervals are nested,
we find that a1 ≤ an ≤ bn ≤ b1 for all n. In particular, |an| ≤ max(|a1|, |b1|),
and this implies that an must be limited for all values of n.

2 Cantor’s original proof does not require that in < jn. Rather, Cantor finds the next
two sequence points in the interval, then chooses in and jn so that sin < sjn . That
is the only difference between his proof and the one formalized in ACL2(r).
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Now, let N be an arbitrary large positive integer—the ACL2(r) constant
i-large-integer serves this purpose. Since aN is limited, we can define A ≡
∗aN . Notice that A is necessarily standard, since it is the standard part of a
limited number. Moreover, for all standard n, n < N (since all standard in-
tegers are less than all large integers), and since the intervals are nested, it
follows that an ≤ aN . Taking standard parts of both sides, we can conclude that
an ≤ ∗aN = A, and using the transfer principle we conclude that an ≤ A for all
n (standard or not).

Similarly, notice that an ≤ bn for all n, so that ∗an ≤ ∗bn. Taking standard
parts of both sides, it follows that A ≤ bn for all standard values of n, and hence
for all values n by the transfer principle. What this means is that we have found
a real number A such that an ≤ A ≤ bn for all n; i.e., A ∈ [an, bn] for all n,
and hence the intersection of the intervals [an, bn] is not empty. This result is
summarized in the following ACL2(r) theorem:

(defthm standard-part-car-interval-in-intersection

(and (realp (standard-part-car-interval-large))

(implies (posp n)

(and (<= (car (nested-interval n))

(standard-part-car-interval-large))

(<= (standard-part-car-interval-large)

(cdr (nested-interval n))))))

:hints ...)

This argument depends crucially on the use of the transfer principle to show
that an ≤ A = ∗aN ≤ bn for all n. However, the transfer principle only applies
to classical statements, which this statement is not, since it uses the function
standard part. The reason we can do this is that we can define two versions of
A, one using defun and the other defun-std.

(defun standard-part-car-interval-large ()

(standard-part (car (nested-interval (i-large-integer)))))

(defun-std standard-part-car-interval-large-classical ()

(standard-part-car-interval-large))

As explained in the introduction, the version that uses defun-std is classical,
but its definition is only equal to the expression in the body when the arguments
to the function are standard—a condition that is vacuously true in this case, so
ACL2(r) can prove that these two definitions are equivalent.

As it turns out, this is the only step in this first proof that uses the non-
standard analysis features of ACL2(r). The remainder of the proof could just as
easily be carried out in ACL2 (with the exception that it refers to real numbers,
not just the rationals).
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3.1.3 Constructing the Chain of Nested, Closed, and Bounded
Intervals

We now consider some of the highlights of the formalization of the construction
of the chain of intervals. The sequence {sn} itself is formalized by defining a
constrained function seq whose only constraint is that it maps the positive
integers to real numbers.

The construction repeatedly looks for the smallest index i such that i ≥ n and
si ∈ [a, b], for some choice of a, b, and n. This is implemented by the function
next-index-in-range:

(defpun next-index-in-range (n A B)

(if (in-range (seq n) A B)

n

(next-index-in-range (1+ n) A B)))

Of course, there is no guarantee that such an i can be found, so the function
next-index-in-range is not guaranteed to always terminate as written. Thus,
it can only be admitted into ACL2(r) by the use of defpun instead of defun.
However, this also means that to reason about next-index-in-range, we have
to consider the possibility that it fails for a given n, A, and B.

To do so requires the use of existential quantifiers, which we can do with
defun-sk. The following function, for example, is used to determine which values
of n, A, and B lead to success:

(defun-sk exists-next-index-in-range (n A B)

(exists m

(and (posp m)

(<= n m)

(in-range (seq m) A B))))

It is then possible to define the function cantor-sequence-indexes which re-
turns the nth interval in the construction, or nil if no such interval can be
found.

Now, suppose that cantor-sequence-indexes ever returns nil; i.e., that
the construction of nested intervals stops after a finite number of iterations.
This means that next-index-in-rangemust have been false for some choice of
n, A, and B. In this case, we find a point x �∈ {sn} as follows. First, we observe
that given the choice of n, none of the si with i > n can be in [A,B]. This means
that at most a finite number of points (i.e., n) in the sequence can be in [A,B].
But then it is easy to find a point x ∈ (A,B) that is not one of these n points.
The simple, recursive function counter-example does just that.

So now suppose that cantor-sequence-indexes never returns nil; i.e., that
the construction of nested intervals continues ad infinitum. It can be easily shown
that the resulting sequence of intervals satisfies all the constraints of an infinite
chain of nested, closed, bounded intervals, as defined in Sect.3.1.2. Thus, the
theorems of that section apply to cantor-sequence-indexes, and we can con-
clude using the principle of functional instantiation that there is some point that
is in each of the intervals.
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At this point, the remainder of the proof can be carried out. The only difficult
portion is the proof that for i in the range 1 ≤ i < in+1, si �∈ [an, bn]. This was
done using natural induction on n, with the key lemmas being that the theorem
holds for i in the range in ≤ i < in+1, and that the intervals are nested, so that
if si �∈ [an−1, bn−1], then it trivially follows that si �∈ [an, bn].

The final statement of the theorem makes use of the (limited) support for
quantifiers in ACL2(r). Because this support does not extend directly to nested
quantifications, it is necessary to introduce several functions to express the re-
sult. First, the function exists-in-sequence captures the notion that x is one of
the {sn}. Similarly, the function exists-in-interval-but-not-in-sequence

states that x is in the interval [a, b] but is not one of the {sn}. This uses
exists-in-sequence to capture that nested quantification. With that, the final
statement of the theorem is that exists-in-interval-but-not-in-sequence
holds (over an arbitrary interval).

(defun-sk exists-in-sequence (x)

(exists i

(and (posp i)

(equal (seq i) x))))

(defun-sk exists-in-interval-but-not-in-sequence (A B)

(exists x

(and (realp x)

(< A x)

(< x B)

(not (exists-in-sequence x)))))

(defthm reals-are-not-countable

(exists-in-interval-but-not-in-sequence (a) (b))

:hints ...)

3.2 The Second Proof: Using Diagonalization

3.2.1 The Informal Argument
Cantor’s second proof of the non-denumerability of the real numbers is based on
diagonilization. The familiar idea is as follows. As before, let {sn} be a sequence
of real numbers, but this time further assume that sn ∈ [0, 1].

Now, any number x such that x ∈ [0, 1] can be written as a sequence of
digits, e.g., x = 0.d1d2d3 . . . , where each digit di is an integer from 0 to 9. This
expansion of x into digits follows from the fact that x can be written in the form
x =

∑∞
i=1

di

10i .
Obviously, if two numbers have the same expansions they are equal to each

other. However, it is possible for two different expansions to result in the the same
number, e.g., 0.1999 . . . = 0.2000 . . .. This strictly technical difficulty prevents us
from casually swapping between the number and its representation as a sequence
of digits, but this difficulty can be addressed in a number of different ways. We
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chose to address it by considering how different two expansions have to be in
order for them to represent two different numbers.

Suppose x =
∑∞

i=1
di

10i and y =
∑∞

i=1
ei
10i , where each of the di and ei are

digits, and suppose that k is such that dk �= ek. Obviously, we can divide the
expansion of x as follows, and similarly for y:

x =

∞∑
i=1

di
10i

=

(
k−1∑
i=1

di
10i

)
+

dk
10k

+

( ∞∑
i=k+1

di
10i

)
= Lx +

dk
10k

+Rx,

where Lx and Rx (and similarly Ly and Ry) are introduced as shorthands for
the respective sums. We can now find bounds for the two sums on the right.
For instance, since di ≤ 9 for all i, it follows that Rx =

∑∞
i=k+1

di

10i ≤ 1/10k.
This also gives us a (rough, but sufficient) estimate of the maximum difference
between Rx and Ry, i.e., |Rx −Ry| ≤ 2/10k. Similarly, we can consider possible
differences between Lx and Ly. This time, we find a minimum difference, i.e.,
|Lx − Ly| ≥ 10/10k, unless Lx = Ly. This follows, because if Lx and Ly are
different, then the minimum difference is when only the least significant digits
differ and then only by 1, which yields a minimum difference of 1/10k−1.

So when dk �= ek, we have

|x− y| ≤ |Lx − Ly|+ |dk − ek|+ |Rx −Ry|.

We have an upper bound for |Rx − Ry|, so if |dk − ek| is large enough, the
difference between Rx and Ry will be insufficient to make x and y equal to each
other. That’s enough to show that if Lx = Ly, then x �= y. So suppose Lx �= Ly.
Again, we have a lower bound for the difference, so as long as |dk − ek| is small
enough, the difference will be insufficient to make x and y equal. Thus, as long
as dk is sufficiently different from ek (i.e., 3 ≤ |dk − ek| ≤ 7), we can show that
x �= y.

ACL2(r) does not support infinite computations, such as x =
∑∞

i=1
di

10i . In-
stead, we use the standard part of a partial sum up to a large integer. So, if N
is an arbitrary, fixed, large integer, we can say x = ∗∑N

i=1
di

10i . As before, we
can split this sum into three parts, so that x = ∗(Lx + dk + Rx), where Lx is
as before and Rx is similar, but with upper limit N instead of ∞. We can limit
ourselves to standard x and k, since the transfer principle will carry over the
results to all x and k. When x is standard, so are Lx and dk (as these are finite
sums), so x = Lx+dk+

∗Rx. Earlier, the upper and lower bounds on Lx and Rx

were enough to show that if dk is sufficiently different from ek, then x �= y. But
the argument is more subtle in the nonstandard case: It is not enough to show
that the sums Lx + dk +Rx and Ly + ek +Ry differ, because two numbers may
be different even though their standard parts are the same. So what we need to
show is that these two sums have different standard parts, or equivalently that
they are not close to each other. We can do so by observing that if dk is suffi-
ciently different from ek, then |(Lx+dk+Rx)− (Ly+ek+Ry)| ≥ 2/10k. Since k
is standard, 2/10k is not small. This means that Lx+ dk +Rx and Ly + ek +Ry

must have different standard parts, so x �= y.
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We have established that every number x ∈ [0, 1] can be converted into a
sequence of digits, and that whenever two sequences of digits are “sufficiently
different” at a given position, the numbers that correspond to those sequences
are different. That is all we need to carry out Cantor’s diagonalization argument.

Start with the sequence {sn} and convert each sn into a sequence of digits,
sn = 0.dn,1dn,2dn,3 . . . . Then construct a new sequence {tn} by choosing tn to be
sufficiently different from dn,n—for example, let tn = 7 if dn,n < 5, and tn = 2
otherwise. Then the sequence {tn} is sufficiently different than the sequence (in
k) {dn,k} in the nth digit, so if t is the number corresponding to {tn}, we have
that t �= sn for all n.

3.2.2 Remarks on the ACL2(r) Formalization
The formalization of this argument in ACL2(r) is mostly straightforward. The
function digit-seq is constrained to map positive integers to digits, and
digit-seq-sum converts a portion of this sequence into a number in [0, 1]. Then
we can define the limit of this sum as follows:

(defun-std digit-seq-sum-limit ()

(standard-part (digit-seq-sum 1 (i-large-integer))))

To prove that different (enough) sequences correspond to different numbers, we
introduce a second constrained function digit-seq-2 with its own partial sum
and limit functions. Then we can carry out the argument as before and show
that these limits must be different.

(defthm different-enough-digits-implies-different-numbers-of-limit

(implies (and (posp i)

(<= (abs (- (digit-seq i) (digit-seq-2 i))) 7)

(>= (abs (- (digit-seq i) (digit-seq-2 i))) 3))

(not (equal (digit-seq-sum-limit)

(digit-seq-2-sum-limit))))

:hints ...)

To complete the proof, it is only necessary to convert each sn in the sequence
into a sequence of digits, and this can be done with the function nth-digit,
which is defined as |x · 10n| mod 10. As before, we define the summation func-
tions nth-digit-seq-sum and nth-digit-seq-sum-limit, which take partial
sums and their limit, respectively. The important lemma is that the limit of
these partial sums is the same as the original number that was taken apart by
nth-digit. This lemma can be proved by finding an upper bound on the dif-
ference between the original number and the partial sum up to an arbitrary
index k. Now that we can convert a number to a sequence of digits and vice
versa, the rest of the proof goes through easily, yielding a second version of the
non-denumerability of the reals:
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(defthm diag-seq-sum-limit-not-in-sequence

(and (realp (diag-seq-sum-limit))

(<= 0 (diag-seq-sum-limit))

(<= (diag-seq-sum-limit) 1)

(implies (posp i)

(not (equal (diag-seq-sum-limit) (seq i)))))

:hints ...)

The statement of diag-seq-sum-limit-not-in-sequence is typical of theorems
in ACL2(r), as it avoids the use of quantifiers. E.g., instead of saying that some
x ∈ [0, 1] is not among the {sn}, the theorem explicitly names a specific x that is
not among the {sn}. The way diag-seq-sum-limit-not-in-sequence is stated
is very much in the tradition of ACL2, as exposed in [5] and [10]. Of course, it is
trivial to restate this result using quantifiers, in which case, the final statement
of the theorem is almost identical to that in Sect. 3.1. The only difference is
that the theorem in this section is specialized for the interval [0, 1], whereas in
Sect. 3.1 an arbitrary open interval was permitted.

We close this section by mentioning some differences in the ACL2(r) formaliza-
tions of Cantor’s two proofs. When we started this project, we were not certain
that the second proof could be carried out in ACL2(r), since the argument about
the equivalence of sequences and numbers appeared to be significantly different
than the usual arguments that have been formalized in ACL2(r). In contrast, we
expected the first proof to be much easier to formalize in ACL2(r), since it was
based on the notion of completeness, which is directly embedded in ACL2(r) with
the function standard-part. However, the reverse turned out to be the case.

The first proof limited the use of the nonstandard features of ACL2(r) to the
proof that the real numbers are complete. In contrast, the second proof used
these features extensively, as they are needed to reason about the equivalence
of numbers and infinite sums, as well as the fact that different sums correspond
to different numbers. However, the arguments in Cantor’s diagonalization proof
translated more directly to ACL2(r), very much in the Boyer-Moore tradition.
We believe the main reason is that the first proof relied on universally quantified
hypotheses—which required the explicit use of quantifiers in ACL2(r)—as well
as partially defined functions. Nevertheless, we are pleased to report that the
admittedly limited support for quantifiers and partial functions in ACL2(r) was
sufficient to formalize both proofs.

4 Existence of Trasncendental Numbers

We conclude this paper with a formalization of Cantor’s proof of the exis-
tence of transcendental numbers. This turns out to be a corollary of the non-
denumerability of the reals, since Cantor proceeds by showing how the algebraic
numbers can be enumerated. Some aspects of the proof could be simplified sig-
nificantly by using more modern arguments. For instance, the fact that the set
of polynomials with integer coefficients is denumerable follows directly from the
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denumerability of words from a finite (even denumerable) alphabet. However,
we avoid these modern notions, since our goal is to follow Cantor’s argument
closely.

4.1 The Informal Argument

A number x is algebraic if there is some nontrivial polynomial P with rational
coefficients such that P (x) = 0; otherwise, x is called transcendental. It is suffi-
cient to consider polynomials Q with integer coefficients, because if there exists
some nontrivial polynomial P with rational coefficients such that P (x) = 0,
then there must also exists a nontrivial polynomial Q with integer coefficients
such that Q(x) = 0—just let Q(x) = q · P (x), where q is the product of the
denominators of the coefficients of P .

So we wish to show that there is some real number x such that P (x) �= 0 for
all polynomials P with integer coefficients. We do so with a counting argument
as follows. First, define the height3 of the polynomial P =

∑n
i=0 aix

i of degree n
to be h(P ) = n− 1+

∑n
i=0 |ai|. Clearly, xh is of degree h, so there is at least one

polynomial for each positive height h. More important, there are only a finite
number of polynomials for each height h. This follows, because any polynomial
of degree greater than h will have height greater than h. Moreover, a polynomial
with a coefficient greater than h or less than −h will have height greater than
h. So at most (2h+ 1)h+1 polynomials can be of height h.

This means that we can enumerate all the polynomials of height h, and this
leads to an enumeration of all polynomials with integer coefficients. Simply enu-
merate the (finite) polynomials of height 1, then the (finite) polynomials of height
2, and so on.

The next step is to use this plan to enumerate the algebraic numbers instead
of the polynomials. Simply enumerate the roots of the (finite) polynomials of
height 1, then the roots of the (finite) polynomials of height 2, and so on.

Finally, we observe that no sequence of real numbers can completely cover
the interval (0, 1) (or any other non-trivial interval), as shown in Sect. 3. That
means there is an x ∈ (0, 1) such that x is not algebraic. I.e., we have shown
that there exists at least one transcendental number (and indeed many more).

4.2 Formalizing Polynomials

The first step in the ACL2(r) proof is a formalization of polynomials. We repre-
sent polynomials using lists, so that the polynomial 3x3 + 2x− 6 is represented
as (-6 2 0 3). This allows us to define the function eval-polynomial that
evaluates a polynomial at a point. The root of a polynomial is then defined as
a number x such that eval-polynomial returns 0. We can now define what we
mean by an algebraic number; i.e, one that is the root of some polynomial with
rational coefficients. The definition uses the support for quantifiers in ACL2(r):

3 There are different notions of “polynomial height”; the one used here is due to
Cantor.
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(defun-sk algebraic-numberp (x)

(exists poly

(and (rational-polynomial-p poly)

(non-trivial-polynomial-p poly)

(polynomial-root-p poly x))))

We will need the fact that a polynomial of degree n has at most n roots. We
prove this by dividing a polynomial P by x−a whenever P (a) = 0. An important
lemma is that the resulting quotient is of degree one less than P , as long as P is
of degree at least 1 (what we call a “non-trivial” polynomial). Another important
lemma is that if P (b) = 0 and a �= b, then Q(b) = 0 where Q is the quotient
polynomial, i.e., Q(x) = P (x)/(x− a). Once these facts are known, we can show
by induction that if P is of degree n, then it has at most n roots.

We now have the tools to find a list containing all the roots of a given polyno-
mial. Although it would be possible to compute many of the (algebraic) roots,
it is sufficient to use ACL2(r)’s choice functions to successively add a new root
to an existing list of roots.

(defchoose choose-new-root (x) (poly roots)

(and (polynomial-root-p poly x)

(not (member x roots))))

It is then a simple matter to define the function find-roots-of-poly which
chooses all the roots of a given polynomial. It is trivial to show that find-roots-
of-poly is of length at most equal to the degree of the polynomial, and that if x
is a root of the polymonial, then it must be in the result of find-roots-of-poly.

4.3 Enumerating the Algebraic Numbers

We now turn our attention to the enumeration of the algebraic numbers. The
first step is to enumerate all the polynomials of height h, and the function
generate-polys-with-height is defined to do so. The definition is typical of
combinatorial functions. I.e., a polynomial p is of degree at most n and height
h if either

– p = ax for some constant a and h = |a|, or
– p is of degree at most n− 1 and height h, or
– p = axn+p′ where a �= 0 and p′ is of degree at most n−1 and height h−|a|.

Since the degree n and leading coefficient a have bounds as explained above,
this definition can be implemented recursively. However, the function generate-

polys-with-height is difficult to introduce into ACL2(r), as many cases need
to be considered and it is not obvious why the function terminates—which must
be proven before the definition can be accepted. The exact form of the definition
is not important, so we omit it here4. Instead, we mention the key theorem,
namely that the function is guaranteed to generate all the polynomials of the
given height.

4 Interested readers can refer to the supporting materials.
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(defthm generate-polys-with-height-valid

(implies (and (integer-polynomial-p poly)

(non-trivial-polynomial-p poly))

(member poly (generate-polys-with-height

(polynomial-height poly))))

:hints ...)

We can enumerate all the algebraic numbers: We have an enumeration of the
polynomials with integer coefficients, so we simply need to find the roots of each
polynomial, using find-roots-of-poly.

(defun enumerate-roots-of-polys (polys)

(if (consp polys)

(append (pad-list (length (car polys))

(find-roots-of-poly (car polys)))

(enumerate-roots-of-polys (cdr polys)))

nil))

The function pad-list is there for a technical reason. It simply adds zeros to
the list of roots, in order to ensure that the list of roots for a polynomial of
degree n has n + 1 elements, even though the polynomial has fewer (or no)
real roots. What this means is that the enumeration returns more than just the
list of roots, but this is unimportant. What matters is that all the roots of the
polynomials are accounted for. The padding simply makes it easier to associate
the ith element of the list of roots with the jth polynomial.

The two functions enumerate-roots-of-polys and generate-polys-with-

height can be used to define enumerate-roots-of-polys-of-height, which
enumerates the roots of polynomials of the given height. In turn, this can be
generalized into enumerate-roots-of-polys-up-to-height, which returns all
the roots of polynomials of height 1, then those of height 2, and so on, up to a
chosen limit:

(defun enumerate-roots-of-polys-up-to-height (height)

(if (zp height)

nil

(append (enumerate-roots-of-polys-up-to-height (1- height))

(enumerate-roots-of-polys-of-height height))))

The definition of enumerate-roots-of-polys-up-to-heightwas carefully cho-
sen so that the algebraic numbers come in a predictable order. I.e., calling this
function with a higher limit returns additional roots at the end of the list, not in
the front. We say that the enumeration of enumerate-roots-of-polys-up-to-
height is monotonic.

Intuitively, if we call enumerate-roots-of-polys-up-to-height repeatedly,
we will generate all the roots of all polynomials with integer coefficients; i.e., we
can enumerate the algebraic numbers. But we have to make this explicit. I.e., we
have to define a mapping from the positive integers into the algebraic numbers,
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and we have to be able to produce the index n such that the mapping yields a
particular algebraic number. The mapping can be defined as follows:

(defun algebraic-number-sequence (idx)

(if (posp idx)

(nth (1- idx) (enumerate-roots-of-polys-up-to-height idx))

0))

Note that the definition uses enumerate-roots-of-polys-up-to-height to
enumerate all the polynomials up to height idx. This works, because of the prop-
erties of enumerate-roots-of-polys-up-to-height mentioned above. First,
we know that the roots of polynomials of height h is non-empty, since there is
at least one polynomial of height h (namely xh) and we are padding the list of
roots in the definition of enumerate-roots-of-polys. This means that there
are at least idx roots of polynomials with height at most idx, so the call to
nth in the definition returns a valid element. Second, since the enumeration of
enumerate-roots-of-polys-of-height is monotonic, it does not matter that
the call to enumerate-roots-of-polys-of-height uses a height limit (idx)
that is almost certainly larger than necessary, since there are bound to be many
more than one root at each height!

What remains is to show that if root is a root of some polynomial with integer
coefficients, say poly, then there is an index n such that root is the nth element
in the sequence algebraic-number-sequence. We already know that root is in
enumerate-roots-of-polys-of-height h, where h is the height of poly, and
we can find the index k of root in this list using a simple recursive function.
Now, let M be the length of enumerate-roots-of-polys-up-to-height h− 1.
Then M+k is the index of root in enumerate-roots-of-polys-up-to-height

h′ for any h′ ≥ h. To complete the argument, it is only necessary to observe that
M + k ≥ h, and again this follows because there is at least one root at each
height. What this means is that M + k is a suitable choice of n, as the following
theorem demonstrates, where get-index-in-last-list returns M + k − 1:

(defthm algebraic-number-sequence-valid

(implies (and (integer-polynomial-p poly)

(non-trivial-polynomial-p poly)

(polynomial-root-p poly root))

(equal (algebraic-number-sequence

(1+ (get-index-in-last-list root poly)))

root))

:hints ...)

Now we can prove the existence of transcendental numbers. Using the previous
theorem, we can show that the sequence algebraic-number-sequence contains
all the algebraic numbers. Moreover, algebraic-number-sequence satisfies the
constraints of the function seq defined in Sect. 3.1. That means we can apply the
main result of that section to conclude that every open interval (for concreteness,
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the interval (0, 1)) must contain at least one number that is not in the sequence.
By definition, this number must be transcendental. The final statement of the
theorem is as follows:

(defun-sk exists-transcendental-number ()

(exists x

(and (realp x)

(not (algebraic-numberp x)))))

(defthm existence-of-transcendental-numbers

(exists-transcendental-number)

:hints ...)

5 Conclusions

This paper describes a formalization of Cantor’s proofs of the non-denumerability
of the continuum, a result listed in FreekWiedijk’s Formalizing 100 Theorems [9].
Following Cantor’s 1874 paper, this paper also formalizes his proof of the exis-
tence of transcendental numbers. The formalization depends on features of ACL2
that are rarely used in ACL2(r), such as choice functions, explicit quantifiers,
and partial (or rather underspecified) functions.

Given the two proofs, it would appear that the formalization based on Can-
tor’s familiar diagonalization argument would be the more difficult to formalize
in ACL2(r). However, our experience demonstrates that the diagonalization ar-
gument can be formalized more directly in the ACL2 (or Boyer-Moore) tradition.
It turns out that the original proof is more difficult to formalize in ACL2(r), as
it requires explicit use of quantifiers and choice functions.
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Abstract. This paper shows a construction in Coq of the set of real
algebraic numbers, together with a formal proof that this set has a struc-
ture of discrete Archimedean real closed field. This construction hence
implements an interface of real closed field. Instances of such an interface
immediately enjoy quantifier elimination thanks to a previous work. This
work also intends to be a basis for the construction of complex algebraic
numbers and to be a reference implementation for the certification of
numerous algorithms relying on algebraic numbers in computer algebra.

Introduction

Real algebraic numbers form the countable subset of real numbers which are
roots of polynomials with rational coefficients. This strict sub-field of real num-
bers has interesting properties that make it an important object for algorithms
in computer algebra and in constructive and effective mathematics. For example,
they can be substituted for real numbers in the ongoing constructive formaliza-
tion of Feit-Thompson Theorem. Indeed, there is an effective algorithm to com-
pare two algebraic numbers and all field operations can be defined in an exact
way. Moreover, they can be equipped with a structure of discrete Archimedean
real closed field, which is an Archimedean ordered field with decidable ordering
satisfying the intermediate value property for polynomials.

The aim of this paper is to show how we define in Coq a data-type repre-
senting the real algebraic numbers and to describe how to formally show it is an
Archimedean real closed field. This construction and these proofs are described
in many standard references on constructive mathematics [11] or in computer
algebra [2]. However, the implementation of these results in a proof assistant
requires various changes in their presentation. Hence our development is not a
literate translation of a well-chosen reference, but is rather a synthesis of results
from the mathematical folklore which are often unused in the literature because
they are subsumed by classical results.

In order to define real algebraic numbers, standard references usually sug-
gest one of the following strategies. The first one takes a type representing real
numbers and builds the type representing the subset of reals which are roots
of a polynomial with rational coefficients. One must then show that induced
arithmetic operations on this subset have the expected properties. The second
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strategy starts from a type representing rational numbers and formalizes the
real closure of rational numbers, which is the smallest real closed field contain-
ing them. An element of the closure is usually represented as a pair polynomial
- interval, satisfying the invariant that the polynomial has a unique root in the
interval. This selected root is the algebraic number encoded by that pair. From
a constructive point of view, there is no reason to prefer one or the other of
these strategies: it may of course be possible to complete the required proofs in
any of these two cases. However, there are significant differences in the nature
of objects and proofs we handle when formalized in type theory.

In this work, we combine the two approaches in order to get the advantages
of both and to eliminate their respective drawbacks.

Constructive formal libraries on exact reals are available in the Coq sys-
tem [8]. However, for the requirements of this formalization we developed a
short library constructing exact reals as Cauchy sequences from an arbitrary
Archimedean field. We explain these formalization choices and our construction
in Section 2.

Then, in Section 3 we introduce a first type for algebraic real numbers which
we call algebraic Cauchy reals, together with its comparison algorithm and arith-
metic operations. In particular, we show how to compute annihilating polyno-
mials, decide the equality and more generally the comparison.

We then describe in Section 4 how to construct the real closure of rational
numbers to get a second data-type for real algebraic numbers, that we call real
algebraic domain.

Thanks to this second data-type and to the equality decision procedure, we
show in Section 5 how to form the real algebraic numbers and we prove that it
is a real closed field. The key ingredient is the proof of the intermediate value
property for polynomials, which concludes this work.

The complete Coq formalization we describe in this paper is available at
http://perso.crans.org/cohen/work/realalg. The code excerpts of the pa-
per may diverge from the actual code, for the sake of readability. However, we
wrote the proofs in a way which is very close to their Coq formalization.

1 Preliminaries

In this work, we use the SSReflect library of the Mathematical Components
project [13]. We base our development on the algebraic hierarchy [7], with the
extensions we already brought to describe discrete ordered structures [5]. We
use mostly the discrete real closed field structure. We also take advantage of
the available libraries on polynomials with coefficients in rings or fields. More
precisely, we use the polynomial arithmetic library which grants the following
definitions and properties: arithmetic operations, euclidean division, Bézout the-
orem, Gauss theorem.

We explain in more details some elements of the SSReflect library we use.
In the SSReflect library, algebraic structures are equipped with a decidable

equality and a choice operator.

http://perso.crans.org/cohen/work/realalg
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Decidable Equality Structure

Decidable equality structures are instances of an interface called eqType. Such
a structure is a dependently typed record that bundles a type, together with a
boolean relation (eq_op : T → T → bool) and a proof it reflects the Leibniz
equality, which means:

∀ (T : eqType) (x y : T), x = y ↔ (eq_op x y = true)

The SSReflect library provides a rich theory about eqType, such as for ex-
ample the uniqueness of equality proofs on such types. The importance of this
structure also comes from the SSReflect methodology to go back and forth
between boolean statements and propositional statements in order to alternate
computational steps with deductive steps.

Choice Structure

Choice structures are instances of an interface called choiceType in the library.
They provide us the choice operator xchoose of type:

xchoose : ∀ (T : choiceType) (P : T → bool), (∃ x, P x) → T.

which satisfies the two following properties :

xchooseP : ∀ (T : choiceType) (P : T → bool) (xP : ∃ x, P x),
P (xchoose T P xP).

eq_xchoose : ∀ (T : choiceType) (P Q : T → bool)
(xP : ∃ x, P x) (xQ : ∃ x, Q x),

(∀ x, P x = Q x) → xchoose T P xP = xchoose T Q xQ.

which respectively ensure the correctness and uniqueness of the chosen element
with respect to the predicate P.

For instance, in Coq, any countable type can be provably equipped with such
a structure. This means we can take T to be the type Q of rational numbers.

The choice structure is fundamental to formalize both the comparison of
Cauchy reals in Section 2.2 and the construction of the effective quotient type
in Section 5.

Resultant of Two Polynomials and Corollary to Bézout Theorem

The resultant of two polynomials P =
∑m

i=0 piX
i et Q =

∑n
i=0 qiX

i is usually
defined as the determinant of the Sylvester matrix.

ResX(P,Q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pm pm−1 ··· p0 0 0 ··· 0
0 pm pm−1 ··· p0 0 ··· 0

...
. . . . .. . .. . . . . . .

...
0 ··· 0 pm pm−1 ··· p0 0
0 ··· 0 0 pm pm−1 ··· p0

qn qm−1 ··· q0 0 0 ··· 0
0 qn qm−1 ··· q0 0 ··· 0

...
. . . . .. . .. . . . . . .

...
0 ··· 0 qn qm−1 ··· q0 0
0 ··· 0 0 qn qm−1 ··· q0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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The notion of resultant is well described and studied in numerous books, we
invite the reader to look in one of them, for instance in [10]. If the polynomials
are univariate the resultant is a scalar, if they are bivariate, it is a univariate
polynomial in the remaining variable. In our development we use only the two
following properties of the resultant ResX(P (X,Y ), Q(X,Y )) ∈ F [Y ] of polyno-
mials P,Q ∈ F [X,Y ] where F is a field:

∃U, V ∈ F [X,Y ], ResX(P,Q) = UP + V Q
ResX(P,Q) = 0 ⇔ P and Q are not coprime as polynomials in X

which respectively express that the resultant of P and Q is in the ideal generated
by P and Q, and is zero if and only if P and Q are not coprime as polynomials
in X with coefficients in F [Y ], i.e. they have no common factor in (F [Y ])[X ].

Moreover we use the following corollary to Bézout theorem: If P and Q are
not coprime as polynomials in X with coefficients in F [Y ], there exist U and V
in F [X,Y ] such that U is non zero, degX(U) < deg(Q) and

U(X,Y )P (X,Y ) = V (X,Y )Q(X,Y )

2 Construction and Properties of Cauchy Reals

From now on, we denote by F an ordered Archimedean field equipped with a
decidable equality structure and with a choice structure. All the constructions
are done over F which is, for our purpose, an appropriate generalization of Q.
Although it is necessary for this construction, we do not detail the use of the
Archimedean property for the sake of readability.

It remains unclear whether an axiomatization of Cauchy reals as described
in [8] would fit our needs. Moreover, our implementation is shorter and more
direct, but less generic, when compared with Russell O’Connor’s [12].

2.1 Mathematical Description and Coq Data-Type

We define a Cauchy real as a sequence (xn)n∈N in FN, together with a con-
vergence modulus mx : F → N such that from the index mx(ε), the dis-
tance between any two elements is smaller than ε. This “Cauchy property” is
stated as:

∀ε ∀i ∀j , mx(ε) ≤ i ∧ mx(ε) ≤ j ⇒ |xi − xj | < ε

We encode sequences of elements of F as functions from natural numbers to F .
Hence, we encode Cauchy reals by packaging together the sequence (xn)n, the
modulus mx and the “Cauchy property”:

Definition creal_axiom (x : nat → F) :=
{m : F → nat | ∀ ε i j, m ε ≤ i → m ε ≤ j → |x i - x j| < ε}.

Inductive creal := CReal
{cauchyseq : (nat → F); _ : creal_axiom cauchyseq}.
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We remind that {m : F → nat | ...} is called a sigma-type and can be read
“there exist a function (m : F →nat) such that”.

The C-CoRN library also provides an interface for Cauchy reals and a con-
struction of Cauchy sequences, which is used to instantiate the interface in [8].
Although their definition is close enough to ours, we redefine and re-implement
Cauchy reals from scratch, mainly because our algebraic structures are incom-
patible. We use this as an opportunity to restate the definitions in a way which
is more compatible with our proof style.

In this paper, we often denote a Cauchy sequence (xn)n of convergence mod-
ulus mx by the notation x̄. We call such an element a Cauchy real and it repre-
sents a constructive real number. We often take the ith element of the underlying
Cauchy sequence of x̄, and we denote it as xi. Moreover, in Coq code, mx is
encoded as a function (cauchymod x) of type (F → nat). A Coq user will re-
mark that such a function is definable because the existential modulus in the
definition of the Cauchy sequence is in Type.

By definition of Cauchy sequences, we get the following property:

Lemma cauchymodP (x : creal) (ε : F) (i j : nat) :
cauchymod x ε ≤ i →cauchymod x ε ≤ j → |x i - x j| < ε

It is important to note that when we apply this lemma, we produce a sub-goal
(which we call side condition) of the form f(ε) ≤ i. This is a general scheme in
our development: during a proof we may generate n side conditions fk(ε) ≤ i for
k ∈ {1, . . . , n}. Indeed, if all constraints on i are formulated like this, it suffices
to take i to be the maximum of all the fk(ε), in order to satisfy all the side
conditions on i. We even have designed an automated procedure to solve this
kind of constraints using the Ltac language [6] available in Coq, so that many
proofs begin with a command meaning “let i be a big enough natural number”.

From cauchymod we can define a function ubound to bound above the values
of elements of a Cauchy sequence. It then satisfies the following property:

Lemma uboundP : ∀ (x : creal) (i : nat), |x i| ≤ ubound x.

In the rest of the development, this function is used to compute the convergence
moduli of numerous Cauchy sequences. We use the notation �x� for (ubound x).

2.2 Comparison

On Cauchy reals, the Leibniz equality is not a good notion to compare numbers,
as two distinct sequences may represent the same real number. In fact, the good
correct of equality on Cauchy reals states that x̄ and ȳ are equivalent if the
sequence of point-wise distances (|xn − yn|)n converges to 0.

A type together with an equivalence relation is called a setoid, and the equiv-
alence is the setoid equality. Coq provides tools to declare setoids, to declare
functions that are compatible with the setoid equality, and eventually to rewrite
using the setoid equality in contexts that are compatible with it [1].
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Although the comparison of Cauchy reals is not decidable, telling whether x̄
and ȳ are distinct is semi-decidable: classically, if they are not equal, there exist
a quantity δ and an index k such that δ ≤ |xi − yi| for all i greater than k.
Hence the primitive notion for comparison is not equality but apartness, which
contains additional information: a witness for the non-negative lower bound of
the gap separating the two sequences.

For the sake of clarity we write x̄ �= ȳ for apartness and x̄ ≡ ȳ for its negation.
The notion of non apartness coincides with the notion of equivalence stated
above and is declared as the setoid equality on Cauchy reals.

From a proof of apartness x̄ �= ȳ we must be able to extract a rank k and
a non-negative witness δ which bounds below the sequence (|xn − yn|)n from
the rank k. This lower bound is needed to define the inverse as described in
Section 2.4. So we could define apartness as follows, using a witness in Type to
make it available for computation:

Definition bad_neq_creal x y : Type := {δ : F | 0 < δ &
∀ i, cauchymod x δ ≤ i → cauchymod y δ ≤ i → δ ≤ |x i - y i|}.

But to be fully compatible with the setoid mechanism, the apartness must be
in Prop, not in Type. Robbert Krebbers and Bas Spitters [9] already encoun-
tered this problem in C-CoRN and solved it using the “constructive indefinite
description” theorem, which is provable for decidable properties whose domain
is nat. Our solution uses a variant of this theorem, thanks to the choiceType
structure of F.

We define apartness ( �= ) as follows:

Definition neq_creal (x y : creal) : Prop :=
∃ δ, (0<δ) && (3 * δ ≤ |x (cauchymod x δ) - y (cauchymod y δ)|).

Then, using xchoose, we can define the non-negative lower bound function:

Definition lbound x y (neq_xy : x �= y) : F := xchoose F _ neq_xy.

Given two Cauchy reals x̄ and ȳ which are provably apart from each other,
let δ be their non-negative lower bound of separation as defined above. From
xchooseP we get that 3δ ≤

∣∣xmx(δ) − ymy(δ)

∣∣. Thus:

∀i, 3δ ≤
∣∣xmx(δ) − xi

∣∣+ |xi − yi|+
∣∣yi − ymy(δ)

∣∣
But since we work on Cauchy sequences, we know how to bound the distance
between any two elements of the sequence, starting from a well chosen index:
∀ i ≥ mx(δ),

∣∣xmx(δ) − xi

∣∣ < δ and ∀ i ≥ my(δ),
∣∣yi − ymy(δ)

∣∣ < δ. So:

∀ i ≥ max(mx(δ),my(δ)), δ ≤ |xi − yi|

Hence we prove the lemma:
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Lemma lboundP (x y : creal) (neq_xy : x �= y) i :
cauchymod x (lbound neq_xy) ≤ i →
cauchymod y (lbound neq_xy) ≤ i →lbound neq_xy ≤ |x i - y i|.

2.3 Order Relation

The order relation is handled the same way as apartness. The primitive notion
is the strict ordering, the negation of which defines the non-strict ordering. For
the sake of space we don’t write much about comparison as beyond noting it is
derivable from a proof of apartness:

Lemma neq_ltVgt (x y : creal) : x �= y → {x < y} + {y < x}.

where the operator + is the disjunction in Type.

2.4 Arithmetic Operations on Cauchy Reals

We build the negation, addition and multiplication on Cauchy reals and prove
their output are Cauchy sequences in a systematic way: we perform the appro-
priate operation on each element of the sequence and we forge a convergence
modulus for each operation.

To build the negation, addition and multiplication, we exhibit the convergence
moduli of negation, addition and multiplication of Cauchy reals. Given the
convergence modulus mx of x̄, we prove the convergence moduli of (−xn)n,
(xn + yn)n and (xnyn)n are respectively: mx, ε  → max

(
mx

(
ε
2

)
,my

(
ε
2

))
and

ε  → max
(
mx

(
ε

2
y�
)
,my

(
ε

2
y�
))

To build the inverse, we need to know a non-negative lower bound δ for the
sequence (|xn|)n of absolute values from some arbitrary rank, and use it to prove
that the sequence of point-wise inverses ( 1

xn
)n is a Cauchy sequence. According

to Section 2.2, such a non-negative lower bound δ is given by (lbound x_neq0)
when given a proof (x_neq0 : x �= 0) that x̄ is apart from 0 (in the sense of
Cauchy sequences). This value δ is such that ∀i > mx(δ), δ ≤ |xi|

If i and j are greater than mx(εδ
2), we have |xi − xj | < εδ2 By definition

of δ and if i and j are greater than mx(δ), we get δ ≤ |xi| and δ ≤ |xj |, thus
|xi − xj | < ε|xixj |. And finally: ∣∣∣∣ 1xi

− 1

xj

∣∣∣∣ < ε

Thus, a convergence modulus is ε  → max
(
mx(εδ

2),mx(δ)
)

Morphism property of arithmetic operations. We can check that all arithmetic
operations are compatible with the equality for Cauchy sequences, using a simple
point-wise study. The order relation is also a compatible. However, there is no
need to systematically study the compatibility with apartness.
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2.5 Bounds and Evaluation for Polynomials

Using the Taylor expansion of polynomial P , we define the following bounds:

B0(P, c, r) = 1 +

n∑
i=0

|pi|(|c|+ |r|)i

B1(P, c, r) = max(1, 2r)n

(
1 +

n∑
i=1

B0(P
(i), c, r)

i!

)

B2(P, c, r) = max(1, 2r)n−1

(
1 +

n∑
i=2

B0(P
(i), c, r)

i!

)

These bounds satisfy the following properties, for all x and y in [c− r, c+ r]:

|P (x)| ≤ B0(P, c, r)

|P (y)− P (x)| ≤ |y − x|B1(P, c, r)∣∣∣∣P (y)− P (x)

y − x
− P ′(x)

∣∣∣∣ ≤ |y − x|B2(P, c, r)

These bounds are constructive witnesses for well-known classical mathematical
results on continuous or derivable functions, specialized to univariate polyno-
mials. The bound B0 is only an intermediate step to bounds B1 and B2. The
bound B2 is used in Section 4.2 to prove that polynomials whose derivative does
not change sign on an interval are monotone on it.

The bound B1 is used to show that polynomial evaluation preserves the
Cauchy property for sequences. Indeed, we build polynomial evaluation of a
polynomial P ∈ F [X ] in a Cauchy real as the point-wise operation, and in order
to prove that the result is a Cauchy sequence, we bound |P (x)−P (y)| when |x−y|
is small enough. The convergence modulus is given by ε  → mx

(
ε

B1(P,0,
x�)
)
. We

then prove that P (x̄) �= P (ȳ) ⇒ x̄ �= ȳ, which implies that x̄ ≡ ȳ ⇒ P (x̄) ≡
P (ȳ), hence the evaluation of a polynomial in a Cauchy real is compatible with
the equality of Cauchy reals.

3 An Existential Type for Algebraic Cauchy Reals

3.1 Construction of Algebraic Cauchy Reals

Now, we formalize real algebraic numbers on top of Cauchy reals.

Inductive algcreal := AlgCReal {
creal_of_alg : creal;
annul_algcreal : {poly F};
_ : monic annul_algcreal;
_ : annul_algcreal.[creal_of_alg] ≡ 0

}.
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Here, an algebraic Cauchy real (AlgCReal x P monic_P root_P_x) represents
an algebraic number as a Cauchy real x and a polynomial P with a proof monic_P
that P is monic (its leading coefficient is 1) and a proof root_P_x that x is a root
of P. The notation p.[x] stands for polynomial evaluation in the source code.

First we prove that Cauchy reals setoid equality is decidable on algebraic
Cauchy reals, then we build arithmetic operations.

3.2 Equality Decision Procedure

Whereas the comparison on Cauchy reals is only semi-decidable, the compari-
son on algebraic Cauchy reals is decidable. We call eq_algcreal this decision
procedure. It uses the additional data given by the annihilating polynomials. In
fact, we only need to decide if some algebraic Cauchy real is zero, because we
can test whether x̄ = ȳ by comparing x̄− ȳ to 0 once we have the subtraction.

Let (x̄, P ) be an algebraic Cauchy real we wish to compare to 0, so P is the
annihilating polynomial of the Cauchy real x̄. There are two possibilities:

– Either the indeterminate X does not divide P , then 0 is not a root of P , thus
x̄ �= 0.

– Or X divides P . If P = X then x̄ ≡ 0, so let us suppose that X is a proper
divisor of P . Then there exist a divisor D of P whose degree is smaller than
the one of P and such that D(x̄) ≡ 0. The existence of such a D is given by
a general lemma stating that if x̄ is a Cauchy real and P,Q two polynomials
that are not coprime and such that P (x̄) ≡ 0 and P does not divide Q, then
there exist D of smaller degree than P such that D(x̄) ≡ 0.
We can now iterate this reasoning on (x̄, D) where the degree of D is smaller
than the one of P .

3.3 Operations on Algebraic Cauchy Reals

We build all the operations (negation, addition, multiplication, inverse) from the
constants 0 and 1 and using the subtraction and the division. The embedding of
the constants c ∈ F is obtained from the pair (c̄, X − c) (where c̄ is a constant
Cauchy sequence).

In the remainder of this section we consider two algebraic Cauchy reals x
and y, whose respective Cauchy sequences are x̄ and ȳ, and whose respective
annihilating polynomials are P and Q.

Let us recall (Section 2.4) that the subtraction x̄− ȳ (resp. division x̄
ȳ ) is ob-

tained as the point-wise subtraction (resp. division) of elements of the sequence.
Let us find a polynomial whose root is this new sequence.

Subtraction. Our candidate is the following resultant:

R(Y ) = ResX (P (X + Y ), Q(X))

There are two essential properties to prove about this resultant it is non zero
and it annihilates the subtraction.
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R is non zero. Let us suppose that R is zero and find a contradiction. Since R
is zero, P (X + Y ) and Q(X) are not coprime.

Thanks to the corollary to Bézout theorem, we know there exist U, V ∈
F [X ] such that U is non zero, degX(U) < deg(Q) and U(X,Y )P (X + Y ) =
V (X,Y )Q(X).

Taking the Y -leading coefficient, we get u(X)p = v(X)Q(X) where u(X) and
v(X) are the respective Y -leading coefficients of U(X,Y ) and V (X,Y ), and p
is the leading coefficient of P . This equation gives that deg(Q) ≤ deg(u), but
deg(u) ≤ degX(U) < deg(Q). This is a contradiction.

R annihilates the subtraction. Let us prove that R annihilates the Cauchy se-
quence x̄ − ȳ. Since R is in the ideal generated by P (X + Y ) and Q(X), there
exist U and V such that R(Y ) = U(X,Y )P (X + Y ) + V (X,Y )Q(X). Hence by
evaluation at X = yn and Y = (xn − yn):

R(xn − yn) = U(yn, xn − yn)P (xn) + V (yn, xn − yn)Q(yn)

But P (x̄) ≡ 0 and Q(ȳ) ≡ 0. As xn and yn are bounded and U is bounded on a
bounded domain (cf Section 2.5) we have that R(x̄− ȳ) ≡ 0.

Remark that now the subtraction is defined, we can decide the equality of two
arbitrary values by comparing their subtraction to zero, using the result from
Section 3.2.

Division. When ȳ is zero, we return the annihilating polynomial X . When
it is non zero, we can find a new Q annihilating ȳ such that Q(0) �= 0. The
annihilating polynomial of x̄

ȳ is the following resultant:

R(Y ) = ResX (P (XY ), Q(X))

R is non zero. Let us suppose that R is zero and find a contradiction. Since R
is zero, P (XY ) and Q(X) are not coprime.

Thanks to the corollary to Bézout theorem, we know there exist U, V ∈
F [X ] such that U is non zero, degX(U) < deg(Q) and U(X,Y )P (XY ) =
V (X,Y )Q(X).

By evaluation at Y = 0 we get: U(X, 0)P (0) = V (X, 0)Q(X). Since F [Y ] is
an integral domain, if V (X, 0) = 0 we know that Y |V (X,Y ), and that there are
two possibilities:

– Either U(X, 0) = 0, which means Y |U(X,Y ). Hence, there exists U ′(X,Y )
and V ′(X,Y ), whose degrees in Y are strictly smaller than the ones of U
and V , and such that: U ′(X,Y )P (XY ) = V ′(X,Y )Q(X).

– Or P (0) = 0, which means X |P (X), thus XY |P (XY ). But we also know
that U(0, Y )P (0) = V (0, Y )Q(0). And since Q(0) �= 0, we necessarily have
V (0, Y ) = 0. It follows that X |V (X,Y ) and as we knew that Y |V (X,Y ), we
find that XY |V (X,Y ).

Thus, there exist P ′ and V ′ whose degrees are strictly smaller than those
of P and V respectively, such that U(X,Y )P ′(XY ) = V ′(X,Y )Q(X).
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In both cases, we can repeat the same reasoning until we get an equation of
the following form, such that no member cancels: U(X, 0)P (0) = V (X, 0)Q(X).
This equation gives deg(Q) ≤ deg(U(X, 0)), but we also had deg(U(X, 0)) ≤
degX(U) < deg(Q). This is a contradiction.

R annihilates the division. In the same way we did for subtraction, we show
that R( x̄ȳ ) ≡ 0.

4 Encoding Algebraic Cauchy Reals

The data-type of algebraic Cauchy reals is a setoid whose equivalence is decid-
able, and it is difficult to show that algebraic Cauchy reals form a countable
setoid if F is countable. However, we can do better and build a type whose
decidable equivalence reflects Leibniz equality, and for which we can exhibit a
bijection with N if F is countable.

In order to get the type of real algebraic numbers, we should quotient the
type of algebraic Cauchy reals by the setoid equality. We know from [3] that
this quotient can be done inside Coq as soon as the type which gets quotiented
has a choiceType structure and the equivalence relation by which we quotient
is decidable. Since algcreal cannot directly be equipped with a choiceType
structure, we create a type algdom which we call real algebraic domain. The type
algdom only serves as an encoding of algcreal in order to forge the quotient,
the construction of which we detail in Section 5.

Inductive algdom := AlgRealDom {
annul_algdom : {poly F};
center_alg : F;
radius_alg : F;
_ : monic annul_algdom;
_ : annul_algdom.[center_alg - radius_alg]

* annul_algdom.[center_alg + radius_alg] ≤ 0
}.

An element (AlgRealDom P c r monic_P chg_sign_P) of algdom represents
one of the roots of the polynomial P in the interval [c - r, c + r], with a
proof monic_P that P is monic and a proof chg_sign_P that P changes sign on
the interval. We know which root is selected by running the decoding procedure
described in Section 4.1.

This data-type is only using elements of F and two proofs. It thus can be
encoded as sequences of elements of F and inherits the choiceType structure
of F . We also notice that algdom is countable as soon as F is. This fact was
not obvious for the setoid of algebraic Cauchy reals. The quotient type will also
inherit from the choiceType structure and will be countable if F is.

We show that algdom is an explicit encoding of algebraic Cauchy reals. Re-
mark that algcreal is still useful because arithmetic operations are easier to
define on it.
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4.1 Decoding to Algebraic Cauchy Reals

We build the decoding function to_algcreal: algdom →algcreal.
An element from the real algebraic domain contains a polynomial P , a center

c and a radius r such that P (c− r)P (c + r) ≤ 0. The root we wish to select is
in the interval I = [c− r, c+ r].

We decode an element from the real algebraic domain into an algebraic Cauchy
real by dichotomy. We form the Cauchy sequence x̄ = (xn)n, such that all the
xn are in the interval I and such that P (x̄) ≡ 0̄.

We proceed by induction on n to define the sequence x̄. It should satisfy the
following invariant, which expresses that P must change sign on the interval of
radius 2−nr and centered in xn:

Hn = P (xn − 2−nr)P (xn + 2−nr) ≤ 0

In the induction step, we pick either xn − 2−(n+1)r or xn + 2−(n+1)r to satisfy
the invariant Hn+1.

The condition that it changes sign is sufficient to show the existence of a root,
and doesn’t assert anything about its unicity. However, we have no need for
unicity as the decoding procedure selects a root in a deterministic manner.

4.2 Encoding of Algebraic Cauchy Reals

This step is more difficult, we construct the encoding function to_algdom:
algcreal → algdom. In order to satisfy the coding property:

Lemma to_algdomK x : to_algcreal (to_algdom x) ≡ x.

Given an algebraic Cauchy real (x̄, P ) we try to find a rational interval containing
only one root, in order for the decoding to return an element equivalent to x̄.

There are two possibilities:

– Either P and its derivative P ′ are coprime, so there exist U and V such that
UP + V P ′ = 1. Since P (x̄) converges to 0 and if n is big enough we get
P ′(xn) ≥ 1

2
V (x̄)� . By taking a small enough interval [a, b] containing xn, we
get that P is monotone on [a, b] (thanks to the B2 bound of Section 2.5)
Without loss of generality, we can suppose that P is increasing, we then get
P (a) ≤ P (xi) ≤ P (b) for all i ≥ n. But P (xi) converges to 0, so P (a) ≤ 0 ≤
P (b). We found an interval with only one root for P .

– Or P and P ′ are not coprime, so we can find a proper divisor D of P that still
annihilates x, thanks to the same general lemma mentioned in Section 3.2,
in the second case of the disjunction. We fall back to the study of (x̄, D),
where the degree of D is strictly smaller that the one of P .

4.3 Transferring the Operations to the Encoding

We can transpose all the operations and properties of algebraic Cauchy reals to
its encoding real algebraic domain. More particularly, equality between algebraic
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Cauchy reals ≡ (which we showed decidable in 3.2) gives a decidable equivalence
on real algebraic domain, using the following definition:

eq_algdom x y := (eq_algcreal (to_algcreal x) (to_algcreal y))

All the properties of these new operators are easily derived from the properties
of the original operators.

5 Real Algebraic Numbers as a Quotient Type

The construction of the quotient is done in a generic way, but for this paper to
be self-contained, we describe its construction as it is automatically done by the
mechanism presented in [3].

5.1 Construction of the Quotient Type

First we define a notion of canonical element. To each element x in algdom, we
associate an element (canon x) which must be equal to any (canon y) if and
only if eq_algdom x y. We use the unique choice operator xchoose to do this:

Lemma exists_eq (y : algdom) : ∃ x : algdom, y ≡ x.
Proof. exists y; reflexivity. Qed.

Definition canon (y : algdom) = xchoose (exists_eq y).

Moreover, canon is constant on each equivalence class thanks to the unicity
property of xchoose.

Then we define the quotient type of real algebraic numbers by forming the
sigma-type of elements of the real algebraic domain that are canonical:

Definition alg := {x : algdom | canon x = x}

Thanks to the uniqueness of equality proofs on algdom, two elements x and y
in alg are equal if and only if (val x = val y), where val is the projection
on the first component of the sigma-type. From canon, we can now build the
canonical surjection (pi : algdom → alg), which maps any element of algdom
to the unique representative for its equivalence class.

By composing to_algdom with pi we can now see alg as the type of equiv-
alence classes of elements of algcreal. We now see F as a parameter for the
whole construction, so that alg becomes (alg F), which we denote by F̄ .

We prove that arithmetic operations (and the order relation) are compatible
with the quotient. This is a direct consequence of the morphism property of
operations with regard to setoid equality, which we dealt with in Section 3.3.

We also build a function (to_alg: F → alg F) which embeds any element c
of F into F̄ , by mapping c to the equivalence class of the element (c̄, (X − c)) of
algcreal. We then prove it is a field morphism and that this morphism is also
compatible with comparison. The mathematical notation for this function is ↑.
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We remark that by construction of algdom, the following property holds: given
a polynomial P ∈ F [X ] and two points a < b ∈ F such that P (a) ≤ 0 ≤ P (b),
there exist c ∈ F̄ such that c ∈ [a, b] and P (c) = 0. This is a weak version of the
intermediate value property for polynomials.

5.2 Real Algebraic Numbers Form a Real Closed Field

Note that F̄ is a totally ordered Archimedean field with decidable comparison.
Indeed, as those properties already hold for F , they transfer to F̄ by studying
the Cauchy sequences underlying its elements.

The difficulty is to prove F̄ is a real closed field, which amounts to prove the
intermediate value theorem for polynomials in F̄ [X ].

Let P be a polynomial in F̄ [X ] and a and b two elements of F̄ such that a < b
and P (a) ≤ 0 ≤ P (b). Let us show that there exist an real algebraic number c
in F̄ such that P (c) = 0.

Iteration of the Closure. Thanks to the remark in the end of Section 5.1,
applied to the ordered Archimedean field F̄ , we get that the polynomial P ∈
F̄ [X ] has a root ξ in the “double closure” ¯̄F .

If we find a function ↓: ¯̄F → F̄ , such that ∀ζ ∈ ¯̄F, ↑ (↓ ζ) = ζ, then (↓ ξ) ∈ F̄
would be a root of P . The Coq name for this function is from_alg. The existence
of such a function means that the closure process we design terminates in one
step only.

Let ξ be in ¯̄F , and let us build (↓ ξ). By transforming ξ in an algebraic Cauchy
real (ξ̄, P ) we get a Cauchy sequence ξ̄ in F̄N, and a polynomial P ∈ F̄ [X ].

Each element ξn is a Cauchy sequence x̄n = (xn,k)k which we can choose
such that |x̄n+1 − x̄n| < 2−(n+1). Then, the sequence x̄ = (xn,n)n is a Cauchy
sequence such that ↑ x̄ = ξ̄. We hence have the first component of (↓ ξ).

Polynomial Annihilating the Algebraic Cauchy Real x̄. We must find a
polynomial R ∈ F [X ] which annihilates x̄. The coefficients pi of P are a finite
number of values in the field extension F̄ of F , so we can apply the primitive
element theorem to find an element α ∈ F̄ , whose annihilating polynomial is Q
of degree q + 1 such that for all i, pi is in the simple extension F [α]. We can
then re-factorize P as P =

∑q
l=0 α

lPl.
We take the resultant R(Y ) = ResX

(∑q
l=0 X

lPl(Y ), Q(X)
)
. We now show

that it is non zero and it annihilates x̄.

R is non zero. Let us suppose R is zero and find a contradiction. The property
of Bézout gives U, V ∈ F [X ] such that U is non zero, degX(U) < deg(Q) and:

U(X,Y )

q∑
l=0

X lPl(Y ) = V (X,Y )Q(X)
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Then by embedding in F̄ and evaluation at X = α we get: U(α, Y )P (Y ) = 0.
But P �= 0, thus U(α, Y ) = 0. Then by taking the Y -leading coefficient u(X) of
U(X,Y ) we get:

u(α) = 0 and u ∈ F [X ] and u �= 0 and deg(u) < deg(Q)

This gives a polynomial u annihilating α of degree smaller than the one of Q,
and we can proceed by induction on the degree of Q.

R annihilates x̄. We have:

R(xn,n) = U(αm, xn,n)

(
q∑

l=0

αl
mPl(xn,n)

)
+ V (αm, xn,n)Q(αm)

and we notice that the right hand side converges to 0 when m and n grow.

Conclusion

The theory of real closed fields presented in [5] is based on an interface we
now provide an instance of. A direct consequence is that real algebraic numbers
immediately enjoy quantifier elimination which proves decidable its first order
theory. The formalization we describe comes from various classical sources that
had to be adapted, made constructive and simplified for the needs of the for-
malization. The methodology applied here to build algebraic numbers and make
proofs feasible and quick is, up to our knowledge, original. This is also, as far
as we know, the first certified formalization of real algebraic numbers in a proof
assistant.

It would be interesting to provide an efficient implementation of algebraic
numbers, relying on [2] and on [9] for example. The formalization we show in
this paper would then serve as a reference implementation. We would need to
prove the relative correctness of the efficient implementation with regard to the
abstract one. But no proofs about the algebraic structure of the new implemen-
tation would be required.

It would be natural to continue this work by extending the real algebraic num-
bers by the imaginary unit i. Thanks to the constructive fundamental algebra
theorem, generalized to real closed fields [4], this new field would be algebraically
closed, partially ordered and would then represent the data-type of (complex) al-
gebraic numbers. In the framework of Galois theory, it would also be interesting
to formalize the type of algebraic extensions over rational numbers: we could
then use the classical presentation and study them into their algebraic closure.

Finally, we formalized the construction of the real closure of fields of zero char-
acteristic, which is a step in constructing the algebraic closure. It is a completely
different work to formalize the algebraic closure of fields of non-zero characteris-
tic. Moreover the efficient algorithms for the non-zero characteristic are treated
in [2] and are more intricate than the ones for the zero characteristic.
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Abstract. We describe a step-by-step approach to the implementation
and formal verification of efficient algebraic algorithms. Formal specifi-
cations are expressed on rich data types which are suitable for deriving
essential theoretical properties. These specifications are then refined to
concrete implementations on more efficient data structures and linked
to their abstract counterparts. We illustrate this methodology on key
applications: matrix rank computation, Winograd’s fast matrix prod-
uct, Karatsuba’s polynomial multiplication, and the gcd of multivariate
polynomials.

Keywords: Formalisation of mathematics, Computer algebra, Efficient
algebraic algorithms, Coq, SSReflect.

1 Introduction

In the past decade, the range of application of proof assistants has extended its
traditional ground in theoretical computer science to mainstream mathematics.
Formalised proofs of important theorems like the fundamental theorem of algebra
[2], the four colour theorem [6] and the Jordan curve theorem [10] have advertised
the use of proof assistants in mathematical activity, even in cases when the pen
and paper approach was no longer tractable.

But since these results established proofs of concept, more effort has been
put into designing an actually scalable library of formalised mathematics. The
Mathematical Components project (developing the SSReflect library [8] for
the Coq proof assistant) advocates the use of small scale reflection to achieve
a nearly comparable level of detail to usual mathematics on paper, even for
advanced theories like the proof of the Feit-Thompson theorem. In this approach,
the user expresses significant deductive steps while low-level details are taken
care of by small computational steps, at least when properties are decidable.
Such an approach makes the proof style closer to usual mathematics.

One of the main features of these libraries is that they heavily rely on rich
dependent types, which gives the opportunity to encode a lot of information
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directly into the type of objects: for instance, the type of matrices embeds their
size, which makes operations like multiplication easy to implement. Also, algo-
rithms on these objects are simple enough so that their correctness can easily
be derived from the definition. However in practice, most efficient algorithms
in modern computer algebra systems do not rely on dependent types and do
not provide any proof of correctness. We show in this paper how to use this
rich mathematical framework to develop efficient computer algebra programs
with proofs of correctness. This is a step towards closing the gap between proof
assistants and computer algebra systems.

The methodology we suggest for achieving this is the following: we are able
to prove the correctness of some mathematical algorithms having all the high-
level theory at our disposal and we then refine them to an implementation on
simpler data structures that will be actually running on machines. In short,
we aim at formally linking convenient high-level properties to efficient low-level
implementations, ensuring safety of the whole approach while enjoying better
performance thanks to the separation of proofs and computational content.

In the next section, we describe the methodology of refinements. Then, we give
two examples of such refinements for matrices in Section 3, and polynomials in
Section 4. In Section 5, we give a solution to unify both examples by describing
CoqEAL1, a library built using this methodology on top of the SSReflect
libraries.

2 Refinements

Refinements are commonly used to describe successive steps when verifying a
program. Typically, a specification is expressed in Hoare logic, then the program
is described in a high-level language and finally implemented in C. Each step
is proved correct with respect to the previous one. By using several formalisms,
one has to trust every translation step or prove them correct in yet another
formalism.

Our approach is similar: we refine the definition of a concept to an efficient
algorithm described on high-level data structures. Then, we implement it on data
structures that are closer to machine representations, once we no longer need
rich theory to prove the correctness. Thus the implementation is an immediate
translation of the algorithm, see Fig. 1.

However, in our approach, the three layers can be expressed in the same
formalism (the Calculus of Inductive Constructions), though they do not use
exactly the same features. On one hand, the high-level layers use rich dependent
types that are very useful when describing theories because they allow abuse of
notations and concise statements which quickly become necessary when working
with advanced mathematics. On the other hand, the efficient implementations
use simple types, which are closer to standard implementations in traditional

1 Documentation available at
http://www-sop.inria.fr/members/Maxime.Denes/coqeal/

http://www-sop.inria.fr/members/Maxime.Denes/coqeal/
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Abstract definitions

Algorithmic refinement

Implementation

Correctness proof

Morphism lemma

Fig. 1. The three steps of refinement

programming languages. The main advantage of this approach is that the cor-
rectness of translations can easily be expressed in the formalism itself, and we
do not rely on any additional external proofs.

In the next sections, we are going to use the following methodology to build
efficient algorithms from high-level descriptions:

1. Implement an abstract version of the algorithm using SSReflect’s struc-
tures and use the libraries to prove properties about them. Here we can use
the full power of dependent types when proving correctness.

2. Refine this algorithm into an efficient one using SSReflect’s structures and
prove that it behaves like the abstract version.

3. Translate the SSReflect structures and the efficient algorithm to the low-
level data types, ensuring that they will perform the same operations as their
high-level counterparts.

3 Matrices

Linear algebra is a natural first test-case to validate our approach, as a pervasive
and inherently computational area of mathematics, which is well covered by
the SSReflect library [7]. In this section, we will detail the (quite simple)
data structure we use to represent matrices and then review two fundamental
examples: rank computation and efficient matrix product.

3.1 Representation

Matrices are represented by finite functions over pairs of ordinals (the indices):

(* ’I_n *)

Inductive ordinal (n : nat) : predArgType := Ordinal m of m < n.

(* ’M[R]_(m,n) *)

Inductive matrix R m n := Matrix of {ffun ’I_m * ’I_n -> R}.
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This encoding makes many properties easy to derive, but it is inefficient for
evaluation. Indeed, a finite function over ’I_m * ’I_n is internally represented
as a flat list of m× n values which has to be traversed whenever the function is
evaluated. Moreover, having the size of matrices encoded in their type allows
to state concise lemmas without explicit side conditions, but it is not always
flexible enough when getting closer to machine-level implementation details.

To be able to implement efficient matrix operations we introduce a low-level
data type seqmatrix representing matrices as lists of lists. A concrete matrix is
built from an abstract one by mapping canonical enumerations (enum) of ordinals
to the corresponding coefficients in the abstract matrix:

Definition seqmx_of_mx (M : ’M[R]_(m,n)) : seqmatrix :=

[seq [seq M i j | j <- enum ’I_n] | i <- enum ’I_m].

To ensure the correct behaviour of concrete matrices it is sufficient to prove that
seqmx_of_mx is injective (== denotes boolean equality):

Lemma seqmx_eqP (M N : ’M[R]_(m,n)) :

reflect (M = N) (seqmx_of_mx M == seqmx_of_mx N).

Operations like addition are straightforward to implement, and their correctness
is expressed through a morphism lemma, stating that the concrete representation
of the sum of two matrices is the concrete sum of their concrete representations:

Definition addseqmx (M N : seqmatrix) : seqmatrix :=

zipwith (zipwith (fun x y => add x y)) M N.

Lemma addseqmxE :

{morph (@seqmx_of_mx m n) : M N / M + N >-> addseqmx M N}.

Here morph is notation meaning that seqmx_of_mx is an additive morphism from
abstract to concrete matrices. It is worth noting that we could have stated all
our morphism lemmas with the converse operator (from concrete matrices to
abstract ones). But these lemmas would then have been quantified over lists of
lists, with poorer types, which would have required a well-formedness predicate
as well as premises expressing size constraints. The way we have chosen takes
full advantage of the information carried by richer types.

Like the addseqmx operation, we have developed concrete implementations of
most of the matrix operations provided by the SSReflect library and proved
the corresponding morphism lemmas. Among these operations we can cite: sub-
traction, scaling, transpose and block operations.

3.2 Computing the Rank

Now that the basic data structure and operations have been defined, it is possible
to apply our approach to an algorithm based on Gaussian elimination which
computes the rank of a matrix A = (ai,j) over a field K. We first specify the
algorithm using abstract matrices and then refine it to the low-level structures.
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An elimination step consists of finding a nonzero pivot in the first column of
A. If there is none, it is possible to drop the first column without changing the
rank. Otherwise, there is an index i such that ai,1 �= 0. By linear combinations
of rows (preserving the rank) A can be transformed into the following matrix B:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 a1,2 − a1,1×ai,2

ai,1
· · · a1,n − a1,1×ai,n

ai,1

0
...

...
ai,1 ai,2 · · · ai,n

0
...

...

0 an,2 − an,1×ai,2

ai,1
· · · an,n − an,1×ai,n

ai,1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
R1...

0
ai,1 · · · ai,n
0

R2...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Now pose R =

(
R1

R2

)
, since ai,1 �= 0, this means that rank A = rank B =

1 + rank R. Hence the current rank can be incremented and the algorithm can
be recursively applied on R.

In our development we defined a function elim_step returning the matrix R
above and a boolean b indicating if a pivot has been found. A wrapper function
rank_elim is in charge of maintaining the current rank and performing the
recursive call on R:

Fixpoint rank_elim (m n : nat) {struct n} : ’M[K]_(m,n) -> nat :=

match n return ’M[K]_(m,n) -> nat with

| q.+1 => fun M =>

let (R,b) := elim_step M in (rank_elim R + b)%N

| _ => fun _ => 0%N

end.

Note that booleans are coerced to natural numbers: b is interpreted as 1 if true
and 0 if false. The correctness of rank_elim is expressed by relating it to the
\rank function of the SSReflect library:

Lemma rank_elimP n m (M : ’M[K]_(m,n)) : rank_elim M = \rank M.

The proof of this specification relies on a key invariant of elim_step, relating
the ranks of the input and output matrices:

Lemma elim_step_rank m n (M : ’M[K]_(m, 1 + n)) :

let (R,b) := elim_step M in \rank M = (\rank R + b)%N.

Now the proof of rank_elimP follows by induction on n. The concrete version
of this algorithm is a direct translation of the algorithm using only concrete
matrices and executable operations on them. This executable version (called
rank_elim_seqmx) is then linked to the abstract implementation by the lemma:

Lemma rank_elim_seqmxE : forall m n (M : ’M[K]_(m, n)),

rank_elim_seqmx m n (seqmx_of_mx M) = rank_elim M.
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The proof of this is straightforward as all of the operations on concrete matrices
have morphism lemmas which means that the proof can be done simply by
expanding the definitions and applying the translation morphisms.

3.3 Fast Matrix Product

In the context we presented, the näıve matrix product (i.e. with cubic complex-
ity) of two matrices M and N can be implemented by transposing the list of
lists representing N and then for each i and j compute

∑
k Mi,kN

T
j,k:

Definition mulseqmx (M N : seqmatrix) : seqmatrix :=

let N’ := trseqmx N in

map (fun r => map (foldl2 (fun z x y => x * y + z) 0 r) N’) M.

Lemma mulseqmxE (M : ’M[R]_(m,p)) (N : ’M[R]_(p,n)) :

mulseqmx (seqmx_of_mx M) (seqmx_of_mx N) = seqmx_of_mx (M *m N).

*m is SSReflect’s notation for the matrix product. Once again, the rich type
information in the quantification of the morphism lemma ensures that it can be
applied only if the two matrices have compatible sizes.

In 1969, Strassen [19] showed that 2 × 2 matrices can be multiplied using
only 7 multiplications without requiring commutativity. This yields an imme-
diate recursive scheme for the product of two n × n matrices with O(nlog2 7)
complexity.2 This is an important theoretical result, since matrix multiplication
was commonly thought to be intrinsically of cubic complexity, it opened the way
to many further improvements and gave birth to a fertile branch of algebraic
complexity theory.

However, Strassen’s result is also still of practical interest since the asymp-
totically best algorithms known today [4] are slower in practice because of huge
hidden constants. Thus, we implemented a variant of this algorithm suggested by
Winograd in 1971 [20], decreasing the required number of additions and subtrac-
tions to 15 (instead of 18 in Strassen’s original proposal). This choice reflects the
implementation of matrix product in most of modern computer algebra systems.
A previous formal description of this algorithm has been developed in ACL2
[17], but it is restricted to matrices whose sizes are powers of 2. The extension
to arbitrary matrices represents a significant part of our development, which is
to the best of our knowledge the first complete formally verified description of
Winograd’s algorithm.

We define a function expressing a recursion step in Winograd’s algorithm.
Given two matrices A and B and an operator f representing matrix product, it
reformulates the algebraic identities involved in the description of the algorithm:

Definition winograd_step {p : positive} (A B : ’M[R]_(p + p)) f :=

let A11 := ulsubmx A in let A12 := ursubmx A in

let A21 := dlsubmx A in let A22 := drsubmx A in

2 log2 7 is approximately 2.807.
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let B11 := ulsubmx B in let B12 := ursubmx B in

let B21 := dlsubmx B in let B22 := drsubmx B in

let X := A11 - A21 in let Y := B22 - B12 in

let C21 := f X Y in

let X := A21 + A22 in let Y := B12 - B11 in

let C22 := f X Y in

let X := X - A11 in let Y := B22 - Y in

let C12 := f X Y in

let X := A12 - X in

let C11 := f X B22 in

let X := f A11 B11 in

let C12 := X + C12 in let C21 := C12 + C21 in

let C12 := C12 + C22 in let C22 := C21 + C22 in

let C12 := C12 + C11 in

let Y := Y - B21 in

let C11 := f A22 Y in let C21 := C21 - C11 in

let C11 := f A12 B21 in let C11 := X + C11 in

block_mx C11 C12 C21 C22.

This is an implementation of matrix multiplication that is clearly not suited for
proving algebraic properties, like associativity. The correctness of this function is
expressed by the fact that if f is instantiated by the multiplication of matrices,
winograd_step A B should be the product of A and B (=2 denotes extensional
equality):

Lemma winograd_stepP (p : positive) (A B : ’M[R]_(p + p)) f :

f =2 mulmx -> winograd_step A B f = A *m B.

This proof is made easy by the use of the ring tactic (the script is two lines
long). Since version 8.4 of Coq, ring is applicable to non-commutative rings,
which has allowed its use in our context.

Note that the above implementation only works for even-sized matrices. This
means that the general procedure has to implement a strategy for handling odd-
sized matrices. Several standard techniques have been proposed, which fall into
two categories. Some are static, in the sense that they preprocess the matrices
to obtain sizes that are powers of 2. Others are dynamic, meaning that parity
is tested at each recursive step. Two standard treatments can be implemented
either statically or dynamically: padding and peeling. The first consists of adding
rows and/or columns of zeros as required to get even dimensions (or a power
of 2), these lines are then simply removed from the result. Peeling on the other
hand removes rows or columns when needed, and corrects the result accordingly.

We chose to implement dynamic peeling because it seemed to be the most
challenging technique from the formalisation point of view, since the size of
matrices involved depend on dynamic information and the post processing of
the result is more sophisticated than using padding. Another motivation is that
dynamic peeling has shown to give good results in practice.
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The function that implements Winograd multiplication with dynamic peeling
is called winograd and it is proved correct with respect to the usual matrix
product:

Lemma winogradP : forall (n : positive) (M N : ’M[R]_n),

winograd M N = M *m N.

The concrete version is called winograd_seqmx and it is also just a direct trans-
lation of winograd using only concrete operations on seq based matrices. In the
next section, Fig. 2 shows some benchmarks of how well this implementation
performs compared to the näıve matrix product, but we will first discuss how to
implement concrete algorithms based on dependently typed polynomials.

4 Polynomials

Polynomials in the SSReflect library are represented as records with a list
representing the coefficients and a proof that the last of these is nonzero. The
library also contains basic operations on this representation like addition and
multiplication and proofs that the polynomials form a commutative ring using
these operations. The implementation of these operations use big operators [3]
which means that it is not possible to compute with them.

To remedy this we have implemented polynomials as lists without any proofs
together with executable implementations of the basic operations. It is very easy
to build a concrete polynomial from an abstract polynomial, simply apply the
record projection (called polyseq) to extract the list from the record. The sound-
ness of concrete polynomials is proved by showing that the pointwise boolean
equality on the projected lists reflects the equality on abstract polynomials:

Lemma polyseqP p q : reflect (p = q) (polyseq p == polyseq q).

Basic operations like addition and multiplication are slightly more complicated to
implement for concrete polynomials than for concrete matrices as it is necessary
to ensure that these operations preserve the invariant that the last element is
nonzero. For instance multiplication is implemented as:

Fixpoint mul_seq p q := match p,q with

| [::], _ => [::]

| _, [::] => [::]

| x :: xs,_ => add_seq (scale_seq x q) (mul_seq xs (0%R :: q))

end.

Lemma mul_seqE : {morph polyseq : p q / p * q >-> mul_seq p q}.

Here add_seq is addition of concrete polynomials and scale_seq x q means
that every coefficient of q is multiplied by x (both of these are implemented
in such a way that the invariant that the last element is nonzero is satisfied).
Using this approach we have implemented a substantial part of the SSReflect
polynomial library, including pseudo-division, using executable polynomials.
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4.1 Fast Polynomial Multiplication

The näıve polynomial multiplication algorithm presented in the previous sec-
tion requires O(n2) operations. A more efficient algorithm is Karatsuba’s al-
gorithm [1,11] which is a divide and conquer algorithm based on reducing the
number of recursive calls in the multiplication. More precisely, in order to mul-
tiply two polynomials written as aXk + b and cXk + d the ordinary method

(aXk + b)(cXk + d) = acX2k + (ad+ bc)Xk + cd

requires four multiplications (as the multiplications by Xn can be implemented
efficiently by padding the list of coefficients by n zeroes). The key observation is
that this can be rewritten as

(aXk + b)(cXk + d) = acX2k + ((a+ b)(c+ d)− ac− bd)Xk + bd

which only requires three multiplication: ac, (a+b)(c+d) and bd. Now if the two
polynomials have 2n coefficients and the splitting is performed in the middle at
every point then the algorithm will only require O(nlog2 3) which is better than
the näıve algorithm.3 If the polynomials do not have 2n coefficients it is possible
to split the polynomials at for example #n/2$ as the formula above holds for any
k ∈ N and still obtain a faster algorithm. This algorithm has been implemented
in Coq previously for binary natural numbers [15] and for numbers represented
by a tree-like structure [9]. But as far as we know, it has never been implemented
for polynomials before. When implementing this algorithm we first implemented
it using dependently typed polynomials as:

Fixpoint karatsuba_rec (n : nat) p q := match n with

| 0%N => p * q

| n’.+1 => if (size p <= 2) || (size q <= 2) then p * q else

let m := minn (size p)./2 (size q)./2 in

let (p1,p2) := splitp m p in

let (q1,q2) := splitp m q in

let p1q1 := karatsuba_rec n’ p1 q1 in

let p2q2 := karatsuba_rec n’ p2 q2 in

let p12 := p1 + p2 in

let q12 := q1 + q2 in

let p12q12 := karatsuba_rec n’ p12 q12 in

p1q1 * ’X^(2 * m) + (p12q12 - p1q1 - p2q2) * ’X^m + p2q2

end.

Here splitp is a function that splits the polynomial at the correct point using
take and drop. There is also a wrapper function named karatsuba that calls
karatsuba_seq with the greatest degree of p and q. The correctness of this
algorithm is expressed by:

Lemma karatsubaE : forall p q, karatsuba p q = p * q.

3 log2 3 is approximately 1.585.
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As p and q are SSReflect polynomials this lemma can be proved using all of
the theory in the library. The next step is to implement the executable version
(karatsuba_seq) of this algorithm which is done by changing all the operations
in the above version to executable operations on concrete polynomials. The cor-
rectness of the concrete algorithm is then proved by:

Lemma karatsuba_seqE :

{morph polyseq : p q / karatsuba p q >-> karatsuba_seq p q}.

The proof of this is straightforward as all of the operations have morphism
lemmas for translating back and forth between the concrete representation and
the high-level ones.

In Fig. 2 the running time of the different multiplication algorithms that we
have implemented is compared:
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Fig. 2. Benchmarks of Winograd and Karatsuba multiplication

The benchmarks have been done by computing the square of integer matrices
and polynomials using the Coq virtual machine (i.e. by running vm_compute).
It is clear that both the implementation of Winograd matrix multiplication and
Karatsuba polynomial multiplication is faster than their näıve counterparts, as
expected.

4.2 GCD of Multivariate Polynomials

An important feature of modern computer algebra systems is to compute the
greatest common divisor (gcd) of multivariate polynomials. The main idea of our
implementation is based on the observation that in order to compute the gcd of
elements in R[X1, . . . , Xn] it suffices to show how to compute the gcd in R[X ]
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given that it is possible to compute the gcd of elements in R. So to compute the
gcd of elements in Z[X,Y ] we model it as (Z[X ])[Y ], i.e. univariate polynomials
in Y with coefficients in Z[X ], and then use that there is a gcd algorithm in Z.

The algorithm that we implemented is based on the presentation of Knuth in
[12] which uses that in order to compute the gcd of two multivariate polynomials
it is possible to instead consider the task of computing the gcd of primitive
polynomials, i.e. polynomials where all coefficients are coprime. Using that any
polynomial can be split in a primitive part and a non-primitive part by dividing
by the gcd of its coefficients (this is called the content of the polynomial) we
get an algorithm for computing the gcd of any two polynomials. Below is our
implementation of this algorithm together with explanations of the operations:

Fixpoint gcdp_rec (n : nat) (p q : {poly R}) :=

let r := modp p q in

if r == 0 then q

else if n is m.+1 then gcdp_rec m q (pp r) else pp r.

Definition gcdp p q :=

let (p1,q1) := if size p < size q then (q,p) else (p,q) in

let d := (gcdr (gcdsr p1) (gcdsr q1))%:P in

d * gcdp_rec (size (pp p1)) (pp p1) (pp q1).

– modp p q computes the remainder after pseudo-dividing p by q.
– pp p computes the primitive part of p by dividing it by its content.
– gcdsr p computes the content of p.
– gcdr (gcdsr p1)(gcdsr q1) computes the gcd (using the operation in the

underlying ring) of the content of p1 and the content of q1.

The correctness of this algorithm is now expressed by:

Lemma gcdpP : forall p q g, g %| gcdp p q = (g %| p) && (g %| q).

Here p %| q computes whether p divides q or not. As divisibility is reflexive this
equality is a compact way of expressing that the function actually computes the
gcd of p and q.

Our result is stated in constructive algebra [14] as: If R is a gcd domain then
so is R[X ]. Our algorithmic proof is different (and arguably simpler) than the
one in [14]; for instance, we do not go via the field of fractions of the ring.

As noted in [12], this algorithm may be inefficient when applied on the poly-
nomials over integers. The reference [12] provides a solution in this case, based
on subresultants. This would be a further refinement of the algorithm, which
would be interesting to explore since subresultants have been already analysed
in Coq [13].

The executable version (gcdp_seq) of the algorithm has also been imple-
mented and is linked to the abstract version above by:

Lemma gcdp_seqE :

{morph polyseq : p q / gcdp p q >-> gcdp_seq p q}.



94 M. Dénès, A. Mörtberg, and V. Siles

But when running the concrete implementation there is a quite subtle problem:
the polyseq projection links the abstract polynomials with the concrete poly-
nomials of type seq R where R is a ring with a gcd operation. Let us consider
multivariate polynomials, for example R[x, y]. In this case the concrete type will
be seq (seq R), but seq R is not a ring so our algorithm is not applicable! The
next section explains how to resolve this issue so that it is possible to implement
computable algorithms of the above kind that rely on the computability of the
underlying ring.

5 Algebraic Hierarchy Of Computable Structures

As noted in the previous section there is a problem when implementing multi-
variate polynomials by iterating the polynomial construction, i.e. by representing
R[X,Y ] as (R[X ])[Y ]. The same problem occurs when considering other struc-
tures where the computation relies on the computability of the underlying ring
as is the case when computing the characteristic polynomial of a square ma-
trix for instance. For this, one needs to compute with matrices of polynomials
which will require a concrete implementation of matrices with coefficients being
a concrete implementation of polynomials.

However, both the list based matrices and polynomials have something in
common: we can guarantee the correctness of the operations on a subset of
the low-level structure. This can be used to implement another hierarchy of
computable structures corresponding to the SSReflect algebraic hierarchy.

5.1 Design of the Library

We have implemented computable counterparts to the basic structures in this
hierarchy, e.g. Z-modules, rings and fields. These are implemented in the same
manner as presented in [5] using canonical structures. Here are a few examples
of the mixins we use:

Record trans_struct (A B: Type) : Type := Trans {

trans : A -> B;

_ : injective trans

}.

(* Mixin for "Computable" Z-modules *)

Record mixin_of (V : zmodType) (T: Type) : Type := Mixin {

zero : T;

opp : T -> T;

add : T -> T -> T;

tstruct : trans_struct V T;

_ : (trans tstruct) 0 = zero;

_ : {morph (trans tstruct) : x / - x >-> opp x};

_ : {morph (trans tstruct) : x y / x + y >-> add x y}

}.
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(* Mixin for "Computable" Rings *)

Record mixin_of (R : ringType) (V : czmodType R) : Type := Mixin {

one : V;

mul : V -> V -> V;

_ : (trans V) 1 = one;

_ : {morph (trans V) : x y / x * y >-> mul x y}

}.

The type czmodType is the computable Z-module type parametrized by a Z-
module. The trans function is the translation function from SSReflect struc-
tures to the computable structures and the only property that is required of it
is that it is injective, so we are sure that different high-level objects are mapped
to different computable objects.

This way we can implement all the basic operations of the algebraic structures
the way we want (for example using fast matrix multiplication as an implemen-
tation of *m instead of a näıve one), and the only thing we have to prove is that
the implementations behave the same as SSReflect’s operations on the subset
of “well-formed terms” (e.g. for polynomials, lists that do not end with 0). This
is done by providing the corresponding morphism lemmas.

The operations presented in the previous sections can then be implemented by
having computable structures as the underlying structure instead of dependently
typed ones. This way one can prove that polynomials represented as lists is a
computable ring by assuming that the coefficients are computable and hence
get ring operations that can be applied on multivariate polynomials built by
iterating the construction.

It is interesting to note that the equational behavior of an abstract structure
is carried as a parameter, but does not appear in its computable counterpart,
which depends only on the operations to be implemented. For instance, the same
computable ring structure can implement a commutative ring or an arbitrary
one, only its parameter varies.

5.2 Example: Computable Ring of Polynomials

Let us explain how the list based polynomials can be made a computable ring.
First, we define:

Variable R : comRingType.

Variable CR : cringType R.

This says that CR is a computable ring parametrized by a commutative ring which
makes sense as any commutative ring is a ring. Next we need to implement the
translation function from {poly R} to seq CR and prove that this translation is
injective:

Definition trans_poly (p : {poly R}) : seq CR :=

map (@trans R CR) (polyseq p).

Lemma inj_trans_poly : injective trans_poly.
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Assuming that computable polynomials already are an instance of the com-
putable Z-module structure it is possible to prove that they are computable
rings by implementing multiplication (exactly like above) and then prove the
corresponding morphism lemmas:

Lemma trans_poly1 : trans_poly 1 = [:: (one CR)].

Lemma mul_seqE :

{morph trans_poly : p q / p * q >-> mul_seq p q}.

At this point, we could also have used the karatsuba_seq implementation of
polynomial multiplication instead of mul_seq since we can prove its correctness
using the karatsubaE and karatsuba_seqE lemmas. Finally this can be used to
build the CRing mixin and make it a canonical structure.

Definition seq_cringMixin := CRingMixin trans_poly1 mul_seqE.

Canonical Structure seq_cringType :=

Eval hnf in CRingType {poly R} seq_cringMixin.

5.3 Examples of Computations

This computable ring structure has also been instantiated by the Coq imple-
mentation of Z and Q which means that they can be used as basis when building
multivariate polynomials. To multiply 2 + xy and 1 + x + xy + x2y2 in Z[x, y]
one can write:

Definition p := [:: [:: 2]; [:: 0; 1]].

Definition q := [:: [:: 1; 1]; [:: 0; 1]; [:: 0; 0; 1]].

> Eval compute in mul p q.

= [:: [:: 2; 2]; [:: 0; 3; 1]; [:: 0; 0; 3]; [:: 0; 0; 0; 1]]

The result should be interpreted as (2 + 2x) + (3x + x2)y + 3x2y2 + x3y3. The
gcd of 1 + x+ (x+ x2)y and 1 + (1 + x)y + xy2 in Z[x, y] can be computed by:

Definition p := [:: [:: 1; 1] ; [:: 0; 1; 1] ].

Definition q := [:: [:: 1]; [:: 1; 1]; [:: 0; 1]].

> Eval compute in gcdp_seq p q.

= [:: [:: 1]; [:: 0; 1]]

The result is 1 + xy as expected. The following is an example over Q[x, y]:

Definition p := [:: [:: 2 # 3; 2 # 3]; [:: 0; 1 # 2; 1 # 2]].

Definition q := [:: [:: 2 # 3]; [:: 2 # 3; 1 # 2]; [:: 0; 1 # 2]].

> Eval compute in gcdp_seq p q.

= [:: [:: 1 # 3]; [:: 0; 1 # 4]]

The two polynomials are 2
3 + 2

3x+ 1
2xy + 1

2x
2y and 2

3 + 2
3y +

1
2xy + 1

2xy
2. The

resulting gcd should be interpreted as 1
3 + 1

4xy.
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6 Conclusions and Further Work

In this paper, we showed how to use high-level libraries to prove properties
of algorithms, while retaining good execution capabilities by providing efficient
low-level implementations. The need of modularity of the executable structure
appears naturally and the methodology explained in [5] works quite well. The
only thing a user has to provide is a proof of an injectivity lemma stating that
the translation behaves correctly.

The methodology we suggest has already been used in other contexts, like the
CoRN library, where properties of real numbers described in [16] are obtained
by proving that these real numbers are isomorphic to an abstract, pre-existing
but less efficient version. We tried to show that this approach can be applied in
a systematic and modular way.

The library we designed also helps to solve a restriction of SSReflect: due
to a lot of computations during deduction steps, some of the structures are
locked to allow type-checking to be performed in a reasonable amount of time.
This locking prevents full-scale reflection on some of the most complex types
like big operators, polynomials or matrices. Our implementation restores the
ability to perform full-scale reflection on abstract structures, and more generally
to compute. For instance, addition of two fully instantiated polynomials cannot
be evaluated to its actual numerical result but we can refine it to a computable
object that will reduce. This is a first step towards having in the same system
definitions of objects on which properties can be proved and some of the usual
features of a computer algebra system.

However, in its current state, the inner structure of our library is slightly more
rigid than necessary: we create a type for computable Z-modules, but in prac-
tice, all the operations it contains could be packaged independently. Indeed, on
each of these operations we prove only a morphism lemma linking it to its ab-
stract counterpart, whereas in usual algebraic structures, expressing properties
like distributivity require access to several operations at once. This specificity
would make it possible to reorganise the library and create independent struc-
tures for each operation, instead of creating one of them for each type. Also,
we could use other packaging methods, like type classes [18], to simplify the
layout of the library. However, modifying the library to use type classes on top
of SSReflect’s canonical structures is still on-going work, since we faced some
incompatibilities between the different instance resolution mechanisms.
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Abstract. Before low-level imperative code can be reasoned about in
an interactive theorem prover, it must first be converted into a logi-
cal representation in that theorem prover. Accurate translations of such
code should be conservative, choosing safe representations over represen-
tations convenient to reason about. This paper bridges the gap between
conservative representation and convenient reasoning. We present a tool
that automatically abstracts low-level C semantics into higher level spec-
ifications, while generating proofs of refinement in Isabelle/HOL for each
translation step. The aim is to generate a verified, human-readable spec-
ification, convenient for further reasoning.

1 Introduction

Low-level imperative C is still the most widely used language for developing soft-
ware with high performance and precise memory requirements, especially in em-
bedded and critical high-assurance systems. The challenge of formally verifying
C programs has been attacked with approaches ranging from static analysis for
eliminating certain runtime errors to full functional correctness with respect to a
high-level specification. This paper addresses the latter by improving automation
in the verification process while preserving the strength of the correctness proof.

The first step required to formally reason about a program is to parse the
code into a formal logic. The parser is necessarily trusted, giving rise to two
approaches: either the parser is kept simple, minimising the assumption we make
about its correctness, but resulting in a low-level formal model; or the parser
generates a specification that is more pleasant to reason about, but resulting in
a weaker trust chain.

We advocate the first approach, increasing the level of trustworthiness of the
final proof. In this context, existing solutions either bear the burden of working
with the low level C semantics, as for instance in Verisoft [2], or manually bridge
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i n t max( i n t a , i n t b ) {
i f ( a < b )

r e t u r n b ;
r e t u r n a ;

}

i n t gcd ( i n t a , i n t b ) {
i n t c ;
wh i l e ( a != 0) {

c = a ;
a = b % a ;
b = c ;

}
r e t u r n b ;

}

max a b ≡
if a <s b then b else a

gcd a b ≡
do
(a, b) ← while (λ(a, b) s. a �= 0 )

(λ(a, b). return (b mod a, a))
(a, b);

return b
od

Fig. 1. C functions max and gcd and their corresponding abstractions

The contribution of this paper is a new tool1 that automatically abstracts
low-level C semantics into higher level specifications, while generating proofs in
Isabelle/HOL for each translation step. The aim is to generate a human-readable
specification that is easier and more convenient to reason about than the original
code. Simpler specifications are more amenable to proving further high-level
properties: instead of 25 person years reasoning on the code level, establishing
integrity and authority confinement for seL4 merely took 10 person months,
because it could be proved about the much simpler, abstract specification instead
(with the functional correctness proof guaranteeing that it is then true down to
the C code level). One third of these 25 person years were dedicated to refinement
proofs of the form we envision our tool to eventually automate. The novelty here
lies in providing both automated abstraction and correctness proofs.

As a running example, we will consider two simple functions, computing the
maximum and the greatest common divisor respectively of two numbers. The
C implementation of these two functions is given in Fig 1 on the left and the
translation output of our tool on the right. In comparison, Fig 2 shows the
output of the L4.verified C parser by Norrish [14,11] in the Simpl language [12]
embedded in Isabelle/HOL [10]. The output of this parser is the starting point
of our translation.

Compared to the C parser output, the result of our tool is significantly simpler
and more abstract. The raw parser output is so complex because the C semantics
have to deal with abrupt termination (e.g., return statements), with ensuring
the C standard is obeyed (guard statements), with non-terminating loops, etc.
Modelling these conservatively and precisely with a minimal trusted computing
base induces overhead. Our tool aims to automatically distill the interesting
semantic content without sacrificing trust.

While the above are toy examples for presentation, the tool is not: it success-
fully translates, for instance, the seL4 microkernel with ca. 8 700 lines of code, a
malloc-style allocator, and a real-time operating system task scheduler. Where
insightful, we will mention results of applying the tool to these code bases.

1 Available at http://ssrg.nicta.com.au/projects/TS/autocorres/

http://ssrg.nicta.com.au/projects/TS/autocorres/
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TRY
IF {|´a <s ´b|} THEN

´ret-int :== ´b;
´exn-var :== Return;
THROW

ELSE
SKIP

FI;
´ret-int :== ´a;
´exn-var :== Return;
THROW;
GUARD DontReach ∅

SKIP
CATCH

SKIP
END

(a) max Simpl Translation

TRY
NonDetInit c- ′ c- ′-update;
WHILE {|´a �= 0 |} DO

´c :== ´a;
GUARD Div-0 {|´a �= 0 |}

´a :== ´b mod ´a;
´b :== ´c

OD;
´ret-int :== ´b;
´exn-var :== Return;
THROW;
GUARD DontReach ∅

SKIP
CATCH

SKIP
END

(b) gcd Simpl Translation

Fig. 2. The C functions from Fig 1 parsed into Simpl

Current limitations of the tool are: recursion is not supported, and a limited
number of features of the C language are not supported, most notably taking the
address of local variables. The first limitation is planned for future work, while
the second limitation stems from the C parser front-end.

In the following, Sec 2 describes the supported C subset, the input language
Simpl and the monadic framework the tool is working in. Sec 3 presents the core
of the tool by explaining the translations in the abstraction process and their
proofs, while Sec 3.7 describes the final theorem between tool input and output.

2 Background

2.1 Parsing C

Before code can be reasoned about, it must first be translated into the theo-
rem prover. In this work, we consider programs in C99 [6] translated into Is-
abelle/HOL using Norrish’s C parser [14,11]. This parser supports a subset of C,
including loops, function calls, type casting, pointer arithmetic and structures.
Integer arithmetic is defined to match a two’s-complement 32-bit system. The
parser emits inline guards to ensure that undefined operations, such as divide-by-
zero or signed integer overflow, do not occur. As the parser must be trusted, it
attempts to be simple, giving the most literal translation of C wherever possible.

The parser does not support goto statements, expressions with side-effects,
references to local variables, switch statements using fall-through, unions, float-
ing point arithmetic, or calls to function pointers. Finally, while the parser does
support recursion, our tool does not yet handle such inputs. Our tool remains
useful despite these limitations as embedded and systems code is often stack
depth-constrained and typically avoids recursion.
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2.2 Simpl

The parser translates C source code into Schirmer’s Simpl language [12] em-
bedded in Isabelle/HOL. Simpl is a generic imperative language with deeply
embedded statements and shallowly embedded expressions, designed to be a
target for embedding programs in a variety of languages, such as C, Java and
Ada.

The Simpl language consists of 11 commands. The commands of interest are:

c ≡ SKIP | BASIC m | c1 ; c2 | IF e THEN c1 ELSE c2 FI | WHILE e DO c OD
| TRY c1 CATCH c2 END | THROW | CALL f | GUARD F P c | SPEC r

The statement BASIC m modifies the state by applying function m to it; in the
common case where m is a function that updates a variable a to the value b, we
use the notation ´a :== b. GUARD F P c asserts property P before executing c,
otherwise aborting execution with fault F . SPEC r non-deterministically selects
a new state s′ based on the current state s such that (s, s′) ∈ r holds; we use
such non-determinism to model hardware and uninitialised memory.

Fig 2(a) shows an example of a simple C function max parsed into Simpl. In-
put parameters a and b are set up by the caller and otherwise treated as local
variables, while the return value of the function is recorded in the ghost variable
ret-int. The function body is surrounded by an exception handler with the empty
SKIP body; this pattern is used to model abrupt termination as in return, break
and continue. The ghost variable exn-var records the reason for the current ex-
ception, so that, for instance, return statements inside loops are not handled by
the break handler surrounding the loop. Finally, the GUARD command rules out
particular undefined behaviour in C; in this case asserting that execution does
not fall off the end of the (non-void) function. Fig 2(b) is similar in structure,
but additionally initialises the variable c to a non-deterministically chosen value.

All Simpl programs execute on a particular state type. In our case it always
contains a record with local variables and a record with global variables, among
them the heap, a partial function mapping addresses in memory to their byte val-
ues. We use Schirmer’s notation Γ� 〈C , Normal s〉 ⇒ Normal t to specify that
the Simpl program C starting in state Normal s has at least one execution path
resulting in Normal t . Other state types include Abrupt s , indicating the program
is currently propagating an exception; Fault f , indicating an irrecoverable failure
f ; or Stuck, indicating stuck execution. The variable Γ maps function names to
function bodies, and is used for making function calls in Simpl. We additionally
use Schirmer’s notation Γ�C ↓ Normal s to specify that all execution paths of
the program C starting in state Normal s terminate.

2.3 Monadic Framework

Our goal is to abstract imperative programs encoded in Simpl into a represen-
tation that eases reasoning. But which representation is best suited to such
reasoning? Any representation we choose must encode the same functionality as
Simpl, including programs that read and write global state; contain loops that
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Simpl Monad Monadic Definition

– returnE x λs. ({(Norm x , s)}, False)
SKIP skipE λs. ({(Norm (), s)}, False)
BASIC m modifyE m λs. ({(Norm (), m s)}, False)
THROW throwE () λs. ({(Exc (), s)}, False)
IF c THEN L ELSE R FI condE c L R λs. if c s then L s else R s
GUARD t g B guardE g condE g skipE failE
WHILE c DO B OD whileE c B () (see text)

Fig. 3. A selection of monadic functions with corresponding Simpl commands

potentially do not terminate; raise and catch exceptions; are non-deterministic;
and have execution paths that result in irrecoverable failure.

Our chosen representation is a state monad with additional support for non-
determinism, exceptions and failure (representing irrecoverable program failure).
We name this monad the exception monad which has type ′s ⇒ (( ′e + ′a) ×
′s) set × bool abbreviated as ( ′s , ′a, ′e) monadE . The monad accepts a single
input state ′s and returns a tuple. The first half of this tuple contains the results
of the execution: a set of pairs containing a return value and state. The result is
a set so that functions may return more than one resulting state, modelling non-
determinism. Each return value is either a standard value of type ′a indicating
normal execution, or an exception value of type ′e. The second half of the tuple
is a flag indicating whether any execution of the monad failed. We name the first
and second halves of this tuple results and failed respectively. A full description
of the motivation for and formalisation of this monad with VCG support are
presented in earlier work [3].

Fig 3 lists the monadic commands used in this paper and their Simpl equiv-
alents where applicable. Monadic commands are suffixed with the character E
to indicate they operate on the exception monad. Monadic functions may be
joined together by the bind operator, where a >>=E (λx. b x) denotes that a is
executed with its return value passed into b, bound to the variable x. We ad-
ditionally use the notation doE x ← a; b x odE as alternative syntax for bind.
returnE f simply returns the value f , allowing it to be used later as a bound
variable.

To represent loops, we define a combinator whileE c B i with type:

( ′a ⇒ ′s ⇒ bool) ⇒ ( ′a ⇒ ( ′s, ′a, ′e) monadE ) ⇒ ′a ⇒ ( ′s, ′a, ′e) monadE

The combinator takes a loop condition c, a loop body B, and an initial loop iter-
ator value i. While the condition c remains true, the loop body will be executed
with the current loop iterator value. The return value from each iteration of the
loop body will become the loop iterator value for the next loop iteration, or the
return value for the whileE block if the loop condition is false. This allows us
to bind variables in one iteration of the loop and use them in either the next
iteration of the loop or after the loop completes. Formally, whileE returns the
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Fig. 4. The process of converting Simpl to an abstracted output program. Dashed
arrows represent trusted translations, white arrows represent refinement proofs, while
solid arrows represent term rewriting. Each phase beyond parsing is in Isabelle/HOL.

set of all results that can be reached in a finite number of loop iterations. Ad-
ditionally, whileE fails if any computation within the loop fails or if there exists
any non-terminating computation.

3 Abstraction Process

This section describes in detail the transformations that take place from our
input Simpl specification to the output specification presented to the user, as
well as the proofs of correctness generated at each step. Fig 4 depicts the trans-
formations applied, each of which is described below.

3.1 Conversion to Shallow Embedding

When C code is parsed into Isabelle/HOL, it is converted into the Simpl language
with deeply-embedded statements. While such a deep embedding is sufficient
for reasoning about program behaviour, in practice it is a frustrating experi-
ence: standard Isabelle mechanisms such as term rewriting, which can replace
sub-terms of a program with equivalent alternatives, cannot be used, as two se-
mantically equivalent programs are only considered equal if they are structurally
identical. While tools can be developed to alleviate some of this burden [15], still
much of the support provided by Isabelle remains unavailable.

Our first step towards generating an abstraction is thus converting the deeply-
embedded Simpl input into a monadic shallow embedding. We name the output
of this translation stage L1.

The conversion process is conceptually easy: Simpl constructs are simply sub-
stituted with their monadic equivalents shown in Fig 3. Our goal, however, is to
also generate a proof that the conversion is sound. We achieve this by proving a
property corresL1 stating that the original Simpl program is a refinement of our
translated program, defined as follows:

corresL1 Γ A C ≡
∀ s. ¬ failed (A s) −→

(∀ t . Γ� 〈C , Normal s〉 ⇒ t −→
(case t of Normal s ′ ⇒ (Norm (), s ′) ∈ results (A s)
| Abrupt s ′ ⇒ (Exc (), s ′) ∈ results (A s) | - ⇒ False)) ∧

Γ�C ↓ Normal s
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corresL1 Γ (modifyE m) (BASIC m)
corresL1 Γ L L ′ corresL1 Γ R R ′

corresL1 Γ (L >>=E (λy . R)) L ′; R ′

L1CorresSkip L1CorresSeq

corresL1 Γ L L ′ corresL1 Γ R R ′

corresL1 Γ (condE c L R) (IF c THEN L ′ ELSE R ′ FI)
L1CorresCond

corresL1 Γ B B ′

corresL1 Γ (whileE (λ-. c) (λ-. B) ()) (WHILE c DO B ′ OD)
L1CorresWhile

Fig. 5. Selection of rules, compositionally proving corresL1 in the Simpl to L1 translation

The definition reads as follows: Given a Simpl context Γ mapping function
names to function bodies, a monadic program A and a Simpl program C, then,
assuming that the monadic program A does not fail: (i) for each normal execu-
tion of the Simpl program there is an equivalent normal execution of the monadic
program; (ii) similarly, for each execution of the Simpl program that results in
an exception, there is an equivalent monadic execution also raising an exception;
and, finally (iii) every execution of the Simpl program terminates.

The final termination condition may initially seem surprising. Recall, however,
that these conditions must only hold if A does not fail, while our definition of
whileE ensures that infinite loops will raise the failure flag. Consequently, proving
termination of C is reduced to proving non-failure of A.

We prove corresL1 automatically using a set of syntax-directed rules such as
those listed in Fig 5. The final L1 output is a program that has the same structure
as the source Simpl program, but is in a more convenient representation.

3.2 Control Flow Peephole Optimisations

The Simpl output generated by the C parser is, by design, as literal a conversion
of C as possible. This frequently leads to clutter such as: (i) unnecessary skipE
statements, generated from stray semicolons (which remain after the preproces-
sor strips away debugging code); (ii) guardE statements that are always true;
(iii) dead code following throwE or failing guardE statements; or (iv) conditional
condE statements where the condition is True or False. As the L1 specification
is a shallow embedding, we are able to use Isabelle’s rewrite engine to apply a
series of peephole optimisations consisting of 21 rewrite rules, removing signifi-
cant amounts of unnecessary code from the L1 programs. Table 1 at the end of
this paper measures the size reduction in each translation stage.

3.3 Exception Rewriting

Statements in C that cause abrupt termination such as return, continue or
break are modelled in Simpl with exceptions, as described in Sec 2.2. While
exceptions accurately model the behaviour of abrupt termination, their presence
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no-throw A

catchE A E = A

CatchNoThrow

always-throw A

A >>=E B = A

SeqAlwaysThrow

catchE (throwE a) E = E a

CatchThrow

no-throw A

catchE (A >>=E B) C = A >>=E (λx . catchE (B x) C )
SeqNoThrow

catchE (condE c L R) E = condE c (catchE L E ) (catchE R E ) CatchCond

catchE (condE C L R >>=E B) E
= condE C (catchE (L >>=E B) E ) (catchE (R >>=E B) E )

CatchCondSeq

Fig. 6. Rewrite rules to reduce exceptions in control flow

complicates reasoning about the final program: each block of code now has two
exit paths that must be considered.

Fortunately, most function bodies can be rewritten to avoid the use of excep-
tions. Fig 6 shows the set of rewrite rules we use to reduce exceptional control
flow. CatchNoThrow eliminates exception handlers surrounding code that
never raises exceptions (denoted by no-throw). Analogously, SeqAlwaysThrow
removes code trailing a block that always raises an exception (denoted by
always-throw). The no-throw and always-throw side-conditions are proved auto-
matically using a syntax-directed set of rules.

Not all rules in this set can be applied blindly. In particular, the rules Catch-
Cond and CatchCondSeq duplicate blocks of code, which may trigger ex-
ponential growth in pathological cases. For CatchCond, which duplicates the
exception handler, knowledge of our problem domain saves us: inputs originating
from C only have trivial exception handlers generated by the parser, and hence
duplicating them is of no concern.

The rule CatchCondSeq, however, also duplicates its tail B , which may be
arbitrarily large. We carry out the following steps to avoid duplication: (i) if nei-
ther branch of the condition throws an exception, then SeqNoThrow is applied;
(ii) if both branches throw an exception, then SeqAlwaysThrow is applied;
(iii) if one branch always throws an exception, then the rule CatchCondSeq
is applied followed by SeqAlwaysThrow on that branch, resulting in only a
single instance of B in the output; finally (iv) if the body B is trivial, such as
a simple returnE or throwE statement, we apply CatchCondSeq and duplicate
B under the assumption the rewritten specification will still be simpler than the
original. Otherwise, we leave the specification unchanged, and let the user reason
about the exception rather than a larger output specification.

Using these rules, all exceptions can be eliminated other than those in nested
condition blocks described above, or those caused by break or return statements
inside loop bodies. Applying the transformation to the seL4 microkernel, 96%
of functions could be rewritten to eliminate exceptional control flow. Of the
remaining 4%, 10 could not be rewritten due to nested condition blocks, 13
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doE
modifyE (λs. s(| a- ′ := 3 |));
condE (λs. 5 ≤ a- ′ s)

(modifyE (λs. s(| b- ′ := 5 |)))
(modifyE (λs. s(| c- ′ := 4 |)));

modifyE (λs. s(| ret-int- ′ := a- ′ s |))
odE

(a) Locals in state

doE
a ← returnE 3 ;
(b, c) ← condE (λs. 5 ≤ a)

(returnE (5 , c))
(returnE (b, 4 ));

returnE a
odE

(b) Local lifted form

Fig. 7. Two program listings. The first stores locals in the state, while the second uses
bound variables. The shaded region does not affect the final return value; this is clearly
apparent in the second representation.

because of either return or break statements inside a loop, and one function
for both reasons independently.

3.4 Local Variable Lifting

Both the Simpl embedding of our original input programs and our L1 translation
represent local variables as part of the state: each time a local is read it is
extracted from the state, and each time a local is written the state is modified.
While this representation is easy to generate, it complicates reasoning about
variable usage. An example of this is shown in Fig 7(a): the variable a is set to
the value 3 at the top of the function and later returned by the function. However,
to prove that the function returns the value 3, the user must first prove that the
shaded part of the program preserves a’s value.

An alternative approach to representing locals is using the bound variables
feature provided by our monadic framework that we have so far ignored. To
achieve this, we remove locals from the state type and instead model them as
bound Isabelle/HOL variables. We name this representation lifted local form
and the output of this translation L2. The representation is analogous to static
single-assignment (SSA) form used by many compilers as an intermediate rep-
resentation [9], where each variable is assigned precisely once.

Fig 7(b) shows the same program in lifted local form. The function returns
the variable a, which is bound to the value 3 in the first line of the function. As
variables cannot change once bound, the user can trivially determine that the
function returns 3 without inspecting the shaded area.

Two complications arise in representing programs in local lifted form. The
first is that variables bound inside the bodies of condE and catchE blocks are
not available to statements after the block. To overcome this, we modify the
bodies of such blocks to return a tuple of all variables modified in the bodies
and subsequently referenced, as demonstrated in Fig 7(b); statements following
the block can then use the names returned in this tuple. The second, similar
complication arises from loops, where locals bound in one iteration not only
need to be accessible after the loop, but also accessible by statements in the
next iteration. We solve this by passing all required locals between successive
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iterations of the loop as well as the result of the loop in the iterator of the whileE
combinator. The gcd function in Fig 1 shows an example. In both cases, the tool
must perform program analysis to determine which variables are modified. The
emitted proofs imply correctness of this analysis as we shall see below.

For the soundness proof of the translation from L1 to L2 we use a refinement
property corresL2 defined as follows:

corresL2 st rx ex P A C ≡
∀ s. P s ∧ ¬ failed (A (st s)) −→

(∀ (r , t)∈results (C s).
case r of Exc () ⇒ (Exc (ex t), st t) ∈ results (A (st s))
| Norm () ⇒ (Norm (rx t), st t) ∈ results (A (st s))) ∧

¬ failed (C s)

The predicate has several parameters: st is a state translation function, con-
verting the L1 state type to the L2 state type by stripping away local variable
data; P is a precondition used to ensure that input bound variables in the L2
program match their L1 values; and A and C are the abstract L2 and concrete
L1 programs respectively. The values rx and ex are a return extraction function
and an exception extraction function respectively; they are required because the
L2 monads return or throw variables, while the corresponding L1 monads store
these values in their state. The return extraction function rx extracts a value
out of the L1 state to compare with the return value of the L2 monad, while ex
is used to compare an exception’s payload with the corresponding L1 state.

The corresL2 definition can be read as: for all states matching the precondition
P , assuming that A executing from state st s does not fail, then the following
holds: (i) for each normal execution of C there is an equivalent execution of
A whose return value will match the value extracted using rx from C’s state;
(ii) similarly, every exceptional execution of the C will have an equivalent exe-
cution of A with an exception value that matches the value extracted using ex
from C’s state; and, finally (iii) the execution of C will not fail.

The first two conditions ensure that executions in L2 match those of L1 with
locals bound accordingly. The last condition allows us to later reduce non-failure
of L1 programs to non-failure of L2 programs.

As a concrete example, Fig 9 shows our example max function after local
variable lifting has taken place. The generated corresL2 predicate for max is:

corresL2 globals ret-int- ′ (λs. ()) (λs. a- ′ s = a ∧ b- ′ s = b) (maxL2 a b) maxL1

In this example the state translation function globals strips away local variables
from the L1 state; the return extraction function rx ensures the value returned
by maxL2 matches the variable ret-int- ′ of maxL1, while the exception extraction
function ex is unused and simply returns unit, as no exceptions are thrown by the
max function. The remainder of the predicate states that, assuming the inputs a
and b to our maxL2 function match those of the L1 state, then the return value
of our maxL2 function will match the L1 state variable ret-int after executing
maxL1.
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∀ s. P s −→ st s = st (M ′ s) ∀ s. P s −→ rx (M ′ s) = v

corresL2 st rx ex P (returnE v) (modifyE M ′)
L2CorresReturn

∀ s. P s −→ M (st s) = st (M ′ s)

corresL2 st rx ex P (modifyE M ) (modifyE M ′)
L2CorresModify

corresL2 st rx ex QA A A ′ ∀ x . corresL2 st rx ′ ex (QB x) (B x) B ′

{|P |} A ′ {|λ- s. QB (rx s) s|}, {|λ- -. True|} ∀ s. P s −→ QA s

corresL2 st rx ′ ex P (A >>=E B) (A ′ >>=E (λx . B ′))
L2CorresSeq

∀ x . corresL2 st rx ex (Q ′ x) (A x) B
{|λs. Q (rx s) s|} B {|λ- s. Q (rx s) s|}, {|λ- -. True|}

∀ s. Q (rx s) s −→ c ′ s = c (rx s) (st s)
∀ s x . Q x s −→ Q ′ x s ∀ s. Q x s −→ rx s = x ∀ s. P x s −→ Q x s

corresL2 st rx ex (P x) (whileE c A x) (whileE (λ-. c ′) (λ-. B) ())

L2CorresWhile

Fig. 8. Selected rules used in the corresL2 proofs

We prove the predicate corresL2 compositionally using a syntax-directed ap-
proach similar to our rule set for corresL1. Fig 8 shows a sample of the rules
used to carry out the proofs. We use the Hoare-style syntax {|P |} C {|Q |}, {|E |}
to state that program C starting in a state satisfying P ensures Q in the event
of normal termination or E in the event of an exception.

The rule L2CorresReturn shows that the L1 statement modifyE M ′ refines
the L2 statement returnE v if the state-update function M ′ only modifies locals,
and the L2 return value v corresponds to the local updated in L1, extracted
using rx. The rule L2CorresModify is similar, but is used when an L1 modifyE
statement updates non-local state. Automating such proofs requires: (i) parsing
the termM ′; (ii) determining if it has a local or non-local effect; (iii) emitting the
corresponding abstract statement; and finally (iv) generating the corresponding
proof term. If an L2 term is correctly generated then the side-conditions of the
rule are discharged automatically by Isabelle’s simplifier.

The composition rules are more involved. For instance, L2CorresSeq states
the L1 program fragment A ′ >>=E (λ-. B ′) refines the L2 program fragment
A >>=E B . For the rule to apply, A′ must refine A under the precondition QA,
and B′ must refine B under precondition QB. This latter precondition has an
additional parameter x representing the return value from A. We must prove
that executing A′ from a state satisfying P leads to a state s where the second
precondition QB (rx s) is satisfied. This second parameter to QB is what ensures
that the locals stored in the L1 state match the bound variables used in L2.

To automatically prove an application of the L2CorresSeq rule, we must
calculate a suitable precondition P that both implies the first precondition QA

and will lead to QB being satisfied. We generate such a P stating that all bound
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condE (λs. a <s b)
(doE

ret ← returnE b;
exn-var ← returnE Return;
returnE ret

odE)
(doE

ret ← returnE a;
exn-var ← returnE Return;
returnE ret

odE)

Fig. 9. The max function after local
variable lifting

condE (λs. a <s b)
(returnE b)
(returnE a)

Fig. 10. The max function after flow-
sensitive optimisations

returnE ( if a <s b then b else a )

Fig. 11. The max function after type-
strengthening

variables required by A match their L1 state; and all bound variables required by
B and not modified by A match their L1 state. Using this P , we can discharge
the Hoare-style side-condition by showing that A′ preserves all variables required
by B which it does not otherwise pass in by bound variables; these proofs are
again automated using a syntax-directed rule-set.

3.5 Flow-Sensitive Simplifications

A significant benefit of lifted local form is that it allows us to easily determine
how local variables are used, and carry out simplifications based on this. Such
simplifications include: (i) removing code that writes to locals that are never
subsequently read from; (ii) using assumptions from guardE, condE and whileE
statements to simplify later expressions; and (iii) collapsing variables that are
only used once into the locations where they are used. By allowing constant
valued expressions to be folded into the location they are used, we are also
able to discharge many more guardE statements not previously provable and
determine that some condE conditions always have the same value.

Fig 10 shows the max function after flow-sensitive optimisations: the redun-
dant exn-var variable is detected, and the two returnE terms in each branch of the
condE are collapsed into a single statement, resulting in a much simpler program.

3.6 Type Specialisation

So far, all of our generated programs have been written using our exception
monad. Sec 2.3 outlined some of the motivations for using this monad, including
our aim to represent C that supports reading and writing from global state;
abrupt termination; non-determinism; or code that may fail.

For the majority of the code we translate, many of these features are not
required. For example, Sec 3.3 describes how the majority of exception usage can
be eliminated from specifications; the use of non-determinism is mostly limited
to setting up uninitialised variables, many of which are eliminated using the
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simplifications in Sec 3.5; further, many functions do not modify the state of the
system at all, either only reading the global state or having results that depend
entirely on their input parameters. In these cases, the exception monad is far
more expressive than required. Less expressive monads would constrain program
behaviour by type and give the user free theorems by notation alone.

We therefore specialise the type of individual functions to contain only the
features they require. The types we use are as follows, in decreasing strength:

Pure functional: These are standard Isabelle functions, where the function
returns a deterministic output depending only on its input parameters. Our
example max function falls into this category.

Option monad: The C standard is littered with restrictions that result in
guardE statements that cannot be automatically discharged. Unfortunately,
such a guardE statement will prevent a function from being translated into a
pure Isabelle function, as we must consider failed executions. We can, how-
ever, use the option monad, where every computation either results in a
single value a (represented as Some a), or failure (represented as None). Any
intermediate failure results in failure of the entire computation.

Functions that may potentially fail, but are deterministic, have simple con-
trol flow, and only read from global state can be transformed into the option
monad. Callers of such functions will translate a result of None into failure.

State monad: Functions which need to modify global state or use non-deter-
minism but do not use exceptional control flow are translated into a state
monad without exceptions.

Type specialisation takes place using a series of rewrite rules that attempt
to strengthen individual parts of the program, and then combine partial
results to strengthen larger parts of the program. For instance, the rewrite rules
we use to strengthen the exception monad to a pure Isabelle function are as
follows:

skipE = returnE ()
condE (λ-. c) (returnE A) (returnE B) = returnE (if c then A else B)
returnE A >>=E (λx . returnE (B x )) = returnE (let x = A in B x)

Fig 11 shows the result of applying these rules to our example max function.
To determine which type we can strengthen each function to, we attempt to

apply each set of strengthening rules in order from strongest type to weakest
type. If a particular function can be completely rewritten, the transformation
was successful and a new definition for the function is emitted. Otherwise, we
continue to try alternative, more expressive, representations. If all translations
fail, we simply continue to use the exception monad.

Table 2 shows statistics of type strengthening used on the seL4 microkernel
source code, with almost 96% of functions being strengthened into another type.
The remaining 4% of functions correspond to the functions unable to be rewritten
to avoid using exceptions in Sec 3.3.
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Table 1. Average function term size after
each translation phase of the seL4 source

Specification Avg. Size

Simpl 356.7
Shallow Embedding 362.5
Control-Flow Peephole 286.2
Exception Rewriting 281.1
Lifted Local Vars 249.2
Flow-Sensitive Opts. 173.6
Type Strengthening 173.5
Polish 168.9

Table 2. Number of functions in the seL4
microkernel translated into each type

Type Count

Pure function 151
Option monad 51
State monad 309
Exception monad 24

Total 535

3.7 Final Theorem

Along with the abstracted program specification, the tool emits a proof of cor-
rectness. In particular, the final refinement theorem between the input Simpl
and output monadic program is as follows:

corresF st Γ rx P A C ≡
∀ s. P s ∧ ¬ failed (A (st s)) −→

(∀ t . Γ� 〈C , Normal s〉 ⇒ t −→
(∃ s ′. t = Normal s ′ ∧

(Norm (rx s ′), st s ′) ∈ results (A (st s)))) ∧
Γ�C ↓ Normal s

It composes the two previous theorems, and is proved with the following rule:

corresL2 st rx (λ-. ()) P A B corresL1 Γ B C no-throw A

corresF st Γ rx P A C

Our final corresF definition, while differing from the definition given in previous
work on C abstraction in L4.verified [15], is strong enough to prove it.

In summary, we have shown the following transformations: (i) from deep into
shallow embedding, which enables us to use rewriting; (ii) simple control flow
peephole rewrites, exploiting the shallow embedding; (iii) exception rewriting,
which further simplifies control flow; (iv) local variable lifting, which allows us
to make use of Isabelle’s built-in bound variables, substitution, and unification;
(v) flow-sensitive rewrites, enabled by explicit bound variables; (vi) and, type
specialisation, giving the user convenient notation and implicit free theorems.

The final additional step is a polishing phase which rewrites internal terms into
a more human-friendly form. Table 1 quantifies the effect of each transformation
by showing the average term size after each phase for the translation of seL4.

4 Related Work

The motivation for this work is the paperMind the Gap: A verification framework
for low-level C by Winwood et al. [15] in the context of the seL4 microkernel
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verification. They showed that formal, interactive verification of low-level C code
at scale is possible, but noted that automation could be improved. Our final
refinement theorem implies their ccorres statement. Some of the automation
ideas are present in early forms in this previous work, such as lifting a single
variable from the state into a bound variable in the monad. In addition to our
other transformations, we generalise this approach to completely automatically
lift all variables of all functions in a program. On the technical side, our rule sets
and refinement statements are tuned for full automation. The idea is to remove
all unnecessary manual work in low-level C verification and enable the human
to concentrate on the interesting reasoning instead.

Two further projects have treated large low-level code bases interactively. The
Verisoft project [1] reasoned directly about Simpl using a VCG that translates
Hoare triples about Simpl code into proof obligations. While the VCG provides
some automation, it performs less abstraction. Consequently, the verification
overhead in Verisoft was similarly high as in L4.verified.

The Verisoft-XT project applied the VCC tool [4]. VCC does not attempt
automated abstraction of this form either, but instead uses a powerful SMT
solver as backend reasoner to increase productivity. The increased automation
comes at the cost of reduced expressiveness in annotations and explicit ghost
state to guide the reasoner. While our focus is on interactive reasoning, we
believe the approach is complementary: our tool could be used to generate a
higher-level, less detailed model, and automated reasoners could then be used
on top.

The FramaC framework [5] with the Jessie plug-in [8] also supports deductive
verification of C. Annotated C code is translated into the functional language
Why on which verification then proceeds. The translation touches on some trans-
formations that are close to ours. The main difference is that these transforma-
tions need to be trusted whereas our work produces proofs. The necessarily
trusted translation step from C into a formal logic is much smaller in our work.

5 Conclusions

We have presented a tool that automatically abstracts low-level C semantics
into higher-level specifications with automatic proofs of correctness for each of
the transformation steps. The tool consists of 3 300 lines of ML code and 5 000
lines of Isabelle proof script, on top of existing libraries for monads, Simpl and
parsing.

While our main case study is the seL4 microkernel, because it provides a
convenient known target for comparison, the tool is not specific to this kernel.
We have also applied it to Tuch’s memory allocator case study [14], and other
projects such as the scheduler of a small commercial real-time system. We believe
that the general idea can be applied to languages other than C, and that the
tool may even be directly applicable to these as long as a front-end to Simpl
exists.
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The tool accepts anything the C parser front-end accepts, but presently does
not translate recursive functions. While not a problem for embedded code, this
is one of the obvious next steps for future work. The second direction for future
work is to provide further translation steps, for instance exploiting Tuch’s inter-
active framework [13] to automatically generate a more abstract heap format for
type safe fragments of the program.

Our experience indicates a significant improvement in clarity and ease of
reasoning for the output of the tool. Our long term goal is to completely au-
tomate the low-level C verification phase in Winwood et al. [15] for projects
like L4.verified.

Acknowledgements. We are grateful to Matthias Daum, Daniel Matichuk,
Thomas Sewell and the anonymous reviewers for their feedback on drafts of this
paper.
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of Annotated Commands

Tobias Nipkow�
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Abstract. This paper formalizes a generic abstract interpreter for a
while-language, including widening and narrowing. The collecting seman-
tics and the abstract interpreter operate on annotated commands: the
program is represented as a syntax tree with the semantic information
directly embedded, without auxiliary labels. The aim of the paper is sim-
plicity of the formalization, not efficiency or precision. This is motivated
by the inclusion of the material in a theorem prover based course on
semantics.

1 Introduction

The purpose of this work is to formalize the basics of abstract interpretation in
a theorem prover in as simple a manner as possible. The background is a course
on semantics [10] that is completely based on Isabelle/HOL [11]. The first 4
weeks of the course are dedicated to the theorem prover; the rest of the course
focuses on the semantics of a simple while-language and on its applications (e.g.
compiler correctness). In particular, the last 4 weeks are dedicated to abstract
interpretation. Hence the need to concentrate on the essence and simplify the
technicalities. A second desideratum was to stick with the unifying represen-
tation of programs as abstract syntax trees employed throughout the course.
Finally we wanted to visualize the stepwise computation of the semantics and
the abstract interpreter as directly as possible. As a result we chose syntax trees
annotated with (concrete or abstract) semantic information and a Jacobi-like it-
eration strategy. That is, displaying the annotated program after each iteration
step animates the stepwise approximation of the result. This paper presents the
formalization of a collecting semantics, a derived small-step operational seman-
tics, and a stepwise development of a series of abstract interpreters, up to and
including widening and narrowing. Just like previous formalizations, we only
consider concretization, not abstraction, and verify only correctness, not opti-
mality of the interpreter. Due to space limitations, this is not a tutorial paper
and readers are assumed to be familiar with abstract interpretation [4,5,8].

Abstract interpretation is a vast research area, but only a few formalizations
have been published, primarily the impressive work by Pichardie [12,13,3], who
employs Coq’s expressive type and module system to great effect. The key dif-
ferences to our approach are that Pichardie labels the nodes of the syntax tree
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whereas we annotate the tree directly with information, his whole approach is
denotational (i.e. nested iterations) whereas ours is based on one global iteration,
the termination proofs for widening and narrowing are very different, and overall
his model is more refined and ours is simpler, which reflects the different aims.
Bertot [1] presents an approach that is also based on annotating the program
directly but is otherwise very different from ours: Bertot’s reference point is a
Hoare logic, not a collecting semantics. There have also been a number of specific
applications of abstract interpretation, eg [9,2], but without a formalization of
the generic theory.

2 Notation

The logic HOL of the Isabelle proof assistant conforms largely to everyday math-
ematical notation. This section summarizes non-standard notation.

The function space is denoted by ⇒. Type variables are denoted by ′a, ′b,
etc. The notation t :: τ means that term t has type τ . Type constructors follow
postfix syntax, eg ′a set is the type of sets of elements of type ′a. Lists over
type ′a, type ′a list, come with the empty list [], the infix constructor ·, and
enumeration syntax [x 1, . . ., xn]. The datatype ′a option = None | Some ′a
is predefined. The notation [[ A1, . . ., An ]] =⇒ B is an implication with the
premises Ai and the conclusion B.

3 Annotated Commands

There are arithmetic and boolean expressions, where vname = string:

datatype aexp = N int | V vname | Plus aexp aexp
datatype bexp = Bc bool | Not bexp | And bexp bexp | Less aexp aexp

Their evaluation is defined as usual: aval :: aexp ⇒ state ⇒ int and bval :: bexp
⇒ state ⇒ bool, where state = vname ⇒ int. There are commands (type com)
and annotated commands, with the customary concrete syntax; annotations of
type ′a are enclosed in braces:

datatype ′a acom =
SKIP { ′a }

| string ::= aexp { ′a }
| ′a acom ; ′a acom
| IF bexp THEN ′a acom ELSE ′a acom { ′a }
| { ′a } WHILE bexp DO ′a acom { ′a }

Type com is not shown as it is identical to acom, but without the annotations.
Annotations positioned at the end of a command refer to the very end of

that command, not to some subcommand (eg the ELSE branch or the WHILE
body). The annotation in front of WHILE is meant to hold the invariant.
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There are many alternatives as to the placement and number of annotations.
Our choice fits our formalization of semantics and abstract interpretation, but
other choices are possible.

There are a number of auxiliary functions: post :: ′a acom ⇒ ′a extracts the
post-annotation of a command (post (c1; c2) = post c2), strip :: ′a acom ⇒
com removes all annotations, and anno :: ′a ⇒ com ⇒ ′a acom annotates a
command with the same annotation everywhere.

We say that c1 and c2 are strip-equal if strip c1 = strip c2.

4 Collecting Semantics

The purpose of the collecting semantics is to collect the set of all reachable states
at some program point as an annotation. Both the collecting semantics and later
the abstract interpreter are defined by iterated simultaneous “micro-step” execu-
tion of all atomic commands, similar to the Jacobi method for linear equations.
This is very different from a denotational approach where whole subcommands
are executed in one go. We define a function step :: state set ⇒ state set acom
⇒ state set acom that pushes a set of initial states one step into an annotated
command c and propagates the state set annotations inside c one step further:

step S (SKIP {P}) = SKIP {S}
step S (x ::= e {P}) = x ::= e {{s ′ | ∃ s∈S . s ′ = s(x := aval e s)}}
step S (c1; c2) = step S c1; step (post c1) c2
step S (IF b THEN c1 ELSE c2 {P}) = IF b THEN step {s ∈ S | bval b s} c1

ELSE step {s ∈ S | ¬ bval b s} c2
{post c1 ∪ post c2}

step S ({Inv}WHILE b DO c {P}) = {S ∪ post c}
WHILE b DO step {s ∈ Inv | bval b s} c
{{s ∈ Inv | ¬ bval b s}}

Annotations for IF and WHILE are (in principle) redundant, but the invariant
is conceptually important and the post-annotations allow a uniform definition
of post for arbitrary annotations.

The beauty of annotated commands is the ability to visualize the semantics by
evaluating step. This is possible thanks to Isabelle’s evaluation mechanism, which
can handle finite sets. Here is a small (contrived) example, further examples
follow. Given the command cs-ex =

′′x ′′ ::= Plus (V ′′x ′′) (N 1 ) {{λx . 5 , λx . 6 , λx . 7}};
′′x ′′ ::= Plus (V ′′x ′′) (N 2 ) {∅}

evaluation of show-acom [ ′′x ′′] (step {λx . −1 , λx . 1} cs-ex ) yields

′′x ′′ ::= Plus (V ′′x ′′) (N 1 ) {{[( ′′x ′′, 0 )], [( ′′x ′′, 2 )]}};
′′x ′′ ::= Plus (V ′′x ′′) (N 2 ) {{[( ′′x ′′, 7 )], [( ′′x ′′, 8 )], [( ′′x ′′, 9 )]}}

In the input, states are functions, but in the output, the pretty-printing function
show-acom converts states into variable-value pairs, for a given list of variables.
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In order to find least fixed-points of step, we extend orderings ≤ on type ′a
to ′a acom:

SKIP {S} ≤ SKIP {S ′} ←→ S ≤ S ′

x ::= e {S} ≤ x ′ ::= e ′ {S ′} ←→ x = x ′ ∧ e = e ′ ∧ S ≤ S ′

c1; c2 ≤ d1; d2 ←→ c1 ≤ d1 ∧ c2 ≤ d2

IF b THEN c1 ELSE c2 {S} ≤ IF b ′ THEN d1 ELSE d2 {S ′}
←→ b = b ′ ∧ c1 ≤ d1 ∧ c2 ≤ d2 ∧ S ≤ S ′

{I } WHILE b DO c {P} ≤ {I ′} WHILE b ′ DO c ′ {P ′}
←→ b = b ′ ∧ c ≤ c ′ ∧ I ≤ I ′ ∧ P ≤ P ′

In all other cases c ≤ c ′ is defined to be False. We can now compare commands
annotated with state sets. The underlying ordering on the state sets is ⊆. A
simple inductive proof shows monotonicity of step:

Lemma. If c1 ≤ c2 and S 1 ⊆ S 2 then step S 1 c1 ≤ step S 2 c2.

To show that step has a least fixed point we turn acom into a complete lattice.

4.1 Indexed Complete Lattices

Only subsets of acom form a complete lattice, namely {c ′ | strip c ′ = c} for any
c. Hence we define a little theory of indexed complete lattices parameterized by

L :: ′i ⇒ ′a set and Glb :: ′i ⇒ ′a set ⇒ ′a

where ′i is the index type and L i the carrier set. We assume that Glb is the
greatest lower bound and that L i is closed under Glb:

[[A ⊆ L i ; a ∈ A]] =⇒ Glb i A ≤ a
[[b ∈ L i ; ∀ a∈A. b ≤ a]] =⇒ b ≤ Glb i A
A ⊆ L i =⇒ Glb i A ∈ L i

In this context we can prove that lfp f i = Glb i {a ∈ L i | f a ≤ a} is indeed
the least fixed and post-fixed point. Note that we define post-fixed point to mean
f x ≤ x, which is customary in the abstract interpretation literature, although
usually this is called a pre-fixed point.

4.2 Application to Collecting Semantics

The Glb of a set of annotated commands is taken pointwise, assuming the com-
mands are all strip-equal. More generally, any function on annotation sets can
be lifted to sets of annotated commands in this pointwise manner (where f ‘ M
is the image of a function over a set):

lift :: ( ′a set ⇒ ′a) ⇒ com ⇒ ′a acom set ⇒ ′a acom
lift F SKIP M = SKIP {F (post ‘ M )}
lift F (x ::= a) M = x ::= a {F (post ‘ M )}
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lift F (c1; c2) M = lift F c1 (sub1 ‘ M ); lift F c2 (sub2 ‘ M )
lift F (IF b THEN c1 ELSE c2) M = IF b THEN lift F c1 (sub1 ‘ M )

ELSE lift F c2 (sub2 ‘ M )
{F (post ‘ M )}

lift F (WHILE b DO c) M = {F (invar ‘ M )}
WHILE b DO lift F c (sub1 ‘ M )
{F (post ‘ M )}

Subcommands and the invariant are accessed by auxiliary functions:

sub1 (c1; c2) = c1
sub1 (IF b THEN c1 ELSE c2 {S}) = c1
sub1 ({I } WHILE b DO c {P}) = c
sub2 (c1; c2) = c2
sub2 (IF b THEN c1 ELSE c2 {S}) = c2
invar ({I } WHILE b DO c {P}) = I

Lemma. Type ′a set acom is a complete lattice indexed by com where L c =
{c ′ | strip c ′ = c} and Glb = lift

⋂
.

Of course this works for any complete lattice of annotations, but we only need
it for sets. We can now define the collecting semantics as a least fixed-point:

CS :: com ⇒ state set acom
CS c = lfp (step UNIV ) c

where UNIV is the set of all elements of a type, in this case the set of all states.
That is, the set of initial states are all states. This is a standard choice but any
other set is equally possible.

4.3 Small-Step Semantics

The collecting semantics can be specialized to a small-step semantics executing
a command c starting in a state s : annotate c with ∅ everywhere, make a single
step with initial state set {s} (now s has been “injected” into c), but now keep
stepping c with empty initial state set:

steps s c n = (step ∅)n (step {s} (anno ∅ c))

This describes n+1 steps of a small-step operational semantics. The resulting
command will take one of two forms: either it is annotated with ∅ everywhere,
which means that the execution terminated and the state has “dropped out” at
the end; or it contains exactly one non-empty annotation, which is a singleton
{s ′} that shows exactly where the execution currently is.

We can animate the small-step semantic just like the full collecting semantics,
by evaluating steps. The output below is generated by executing

value show-acom [ ′′x ′′] (steps (λx . 0 ) ss-ex n)
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in Isabelle, for increasing n, which is very effective in class. The first 4 iterations
produce the following output:

{{[( ′′x ′′, 0 )]}}
WHILE Less (V ′′x ′′) (N 1 ) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 2 ) {∅}
{∅}

{∅}
WHILE Less (V ′′x ′′) (N 1 )
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 2 ) {{[( ′′x ′′, 2 )]}}
{∅}

{{[( ′′x ′′, 2 )]}}
WHILE Less (V ′′x ′′) (N 1 ) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 2 ) {∅}
{∅}

{∅}
WHILE Less (V ′′x ′′) (N 1 ) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 2 ) {∅}
{{[( ′′x ′′, 2 )]}}

One more step, and the single state drops out.
The whole point of this operational semantics is to justify the least-fixed

point construction of CS with respect to it. More precisely, we show that CS
overapproximates the operational semantics:

Lemma. steps s c n ≤ CS c

The two semantics actually coincide, but we only need one direction. Later we
show that the abstract interpreter overapproximates the collecting semantics.
Together this proves that the abstract interpreter overapproximates the small-
step semantics.

The above small-step semantics is rather non-standard (but attractively sim-
ple). Cachera and Pichardie [3] present a proof relating a standard small-step
semantics to a collecting semantics. Their proof should carry over to our frame-
work if their program points are simulated by our annotations.

5 Abstract Interpretation

This and the following two sections develop and refine a generic abstract in-
terpreter. Initially, boolean expressions are not analysed. This is corrected in a
second step. In a last step, widening and narrowing are added.

5.1 Orderings

The various orderings we need are defined as type classes. The notation τ :: C
means that type τ is of class C.
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A type ′a is a preorder ( ′a :: preord) if there is a reflexive and transitive
relation ' :: ′a ⇒ ′a ⇒ bool. We do not assume antisymmetry because we
want to cover types with multiple different representations for the same abstract
element, e.g. pairs as intervals, where all pairs (l, h) with h < l represent the
empty interval.

Any relation ' on type ′a extends to type ′a acom exactly like ≤ in the
definition of the collecting semantics in Section 4.

Lemma. If ′a :: preord then ′a acom :: preord.

In Isabelle, such lemmas are expressed as so-called instance statements. They
allow the type checker to infer the class of complex types automatically.

Our abstract domains will initially be semilattices. Later we extend them to
lattices. A type ′a is a semilattice with top ( ′a :: SL-top) if it is a preorder and
there is a least upper bound (join) operation � :: ′a ⇒ ′a ⇒ ′a, i.e.

x ' x � y y ' x � y [[x ' z ; y ' z ]] =⇒ x � y ' z

and there is a top element ( :: ′a, i.e. x ' (.
Both option and function types preserve semilattices:

Lemma. If ′a :: SL-top then ′a option :: SL-top.

The extension adjoins None as the least element.

Lemma. If ′a :: SL-top then ′b ⇒ ′a :: SL-top.

The orderings extends pointwise in the usual manner.

5.2 Abstract Interpretation with Functional Abstract States

We start with an abstract interpreter that operates on abstract states that are
functions. It is not yet executable, but a first, conceptually simple design that
is made executable in a second step.

The abstract interpreter is parameterized with a type ′av :: SL-top of abstract
values that comes with a concretization function γ. In Isabelle this is expressed
as a locale:

locale Val-abs =
fixes γ :: ′av ::SL-top ⇒ val set
assumes a ' b =⇒ γ a ⊆ γ b and γ ( = UNIV

The fixes part declares the parameters, the assumes part states assumptions
on the parameters. As explained in the introduction, we only model half the
abstract interpretation theory: we drop the abstraction function α and do not
calculate abstract interpreters from concrete ones but merely prove given ab-
stract interpreters correct.

In the context of this locale we define abstract interpreters for aexp and acom.
They operate on a lifted abstract state of type ′av st option where

′av st = vname ⇒ ′av



Abstract Interpretation of Annotated Commands 123

Type option allows us to model unreachable program points by annotating
them with None, the counterpart to ∅ in the collecting semantics.

The concretization function γ is extended to ′av option st acom in the canon-
ical manner, preserving monotonicity:

γf :: ′av st ⇒ state set
γf S = {s | ∀ x . s x ∈ γ (S x )}
γo :: ′av st option ⇒ state set
γo None = ∅
γo (Some S ) = γf S

γc :: ′av st option acom ⇒ state set acom
γc c = map-acom γo c

where map-acom f c applies f to all annotations in c.
Now we come to the actual interpreters. An abstraction of aval requires ab-

stractions of the basic arithmetic operations. Hence locale Val-abs is actually
richer than we pretended above: it contains abstractions of N and Plus, too:

fixes num ′ :: val ⇒ ′av
assumes n ∈ γ (num ′ n)
fixes plus ′ :: ′av ⇒ ′av ⇒ ′av
assumes [[n1 ∈ γ a1; n2 ∈ γ a2]] =⇒ n1 + n2 ∈ γ (plus ′ a1 a2)

The abstract interpreter for aexp is standard

aval ′ :: aexp ⇒ ′av st ⇒ ′av

aval ′ (N n) S = num ′ n
aval ′ (V x ) S = S x
aval ′ (Plus a1 a2) S = plus ′ (aval ′ a1 S ) (aval ′ a2 S )

and its correctness (s ∈ γf S =⇒ aval a s ∈ γ (aval ′ a S )) is trivial.
The abstract interpreter for annotated commands is defined like the collecting

semantics in two stages. We start with an abstraction of step, where the notation
f (x := y) is predefined and means function update:

step ′ :: ′av st option ⇒ ′av st option acom ⇒ ′av st option acom

step ′ S (SKIP {P}) = SKIP {S}
step ′ S (x ::= e {P})
= x ::= e {case S of None ⇒ None | Some S ⇒ Some (S (x := aval ′ e S ))}
step ′ S (c1; c2) = step ′ S c1; step

′ (post c1) c2
step ′ S (IF b THEN c1 ELSE c2 {P})
= IF b THEN step ′ S c1 ELSE step ′ S c2 {post c1 � post c2}
step ′ S ({Inv} WHILE b DO c {P})
= {S � post c} WHILE b DO step ′ Inv c {Inv}

Correctness of step ′ wrt step is proved by induction on c:
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Lemma. If S ⊆ γo S ′ and c ≤ γc c ′ then step S c ≤ γc (step ′ S ′ c ′)

The abstract interpreter is defined by fixed-point iteration of step ′. This raises
the termination question. Because proof assistants like Coq and Isabelle/HOL
build on logics of total functions, previous formalizations (e.g. the work by
Pichardie) built the termination requirement into the ordering '. We define the
iteration for arbitrary orderings and prove termination separately. The slight
advantage in a teaching context is that it allows us to postpone the discussion
of termination. Our trick is to use while-option :: ( ′a ⇒ bool) ⇒ ( ′a ⇒ ′a) ⇒
′a ⇒ ′a option from the Isabelle/HOL library. It satisfies the recursion equation

while-option b c s = (if b s then while-option b c (c s) else Some s)

which makes it executable. Mathematically, while-option b c s = None in case
the recursion does not terminate. We define a generic post-fixed point finder

pfp :: ( ′a ⇒ ′a) ⇒ ′a ⇒ ′a option
pfp f = while-option (λx . ¬ f x ' x ) f

and as a special case the abstract interpreter:

AI :: com ⇒ ′av st option acom option
AI c = pfp (step ′ () (⊥c c)

where ⊥c = anno None (note that ⊥c is one symbol). Iteration starts with
⊥c c, the least annotated version of c, thus making sure we obtain the least
post-fixed point (if f is monotone). This is nice to know, but not used later on:
for correctness, any post-fixed point will do. We iterate step ′ (, corresponding
to step UNIV in the collecting semantics.

Theorem. (Correctness of AI wrt CS ) AI c = Some c ′ =⇒ CS c ≤ γc c ′

It follows essentially because CS is defined as the least (post-)fixed point, AI
returns a post-fixed point, and step ′ and step operate in lock-step.

This is the initial version of our generic abstract interpreter. Unfortunately it
is not executable: in each iteration of pfp we need to test if the old and the new
version of the annotated command are related by '. This in turn requires us to
compare all annotations, which are (optional) functions. But ' on functions is
not computable if the domain is infinite, which vname is. Before we fix this, a
remark on monotonicity.

So far, monotonicity at the abstract level has not entered the picture: it is not
needed for correctness of the basic abstract interpreter but will be required for
termination. We define an extension of locale Val-abs (locales are hierarchical)
where we also assume monotonicity of the abstract operations

assumes [[a1 ' b1; a2 ' b2]] =⇒ plus ′ a1 a2 ' plus ′ b1 b2

and call this the monotone framework. In this framework we can prove mono-
tonicity of step ′:

Lemma. If S ' S ′ and c ' c ′ then step ′ S c ' step ′ S ′ c ′.
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5.3 Abstract Interpretation with Computable Abstract States

We replace vname ⇒ ′av by finite functions because the state only needs to
record values of variables that actually occur in the command being analysed. We
could parameterize our abstract interpreter wrt a type of finite functions [12], but
since we do not intend to provide multiple implementations, we fix a particularly
simple model and redefine ′a st as follows:

datatype ′a st = FunDom (vname ⇒ ′a) (vname list)

That is, we record the domain of the finite function as a list. The two projection
functions are fun (FunDom f xs) = f and dom (FunDom f xs) = xs. Function
update is easy:

update F x y =
FunDom ((fun F )(x := y)) (if x ∈ set (dom F ) then dom F else x ·dom F )

where set converts a list into a set and “·” is Cons. Function application is called
lookup and requires ′a to have a ( element which is returned outside the domain:

lookup F x = (if x ∈ set (dom F ) then fun F x else ()

Why (? This reflects that our analysis assumes that uninitialized variables can
have arbitrary values.

Lemma. If ′a :: SL-top then ′a st :: SL-top.

The ordering is again pointwise (but expressed with lookup). The join intersects
the domains because outside the domain lookup returns (.

The development of the abstract interpreter stays exactly the same, except
that application and update on type ′av st are called lookup and update. We have
arrived at our first executable abstract interpreter. The initial development in
terms of abstract states as functions was merely presented for didactic reasons,
to keep it as simple as possible and introduce improvements gradually.

In addition we also prove a generic termination theorem. It is phrased directly
in terms of measures because this is most convenient for our applications. In the
context of the monotone framework (see end of previous subsection) we obtain

Theorem. ∃ c ′. AI c = Some c ′ if there is a measure m :: ′av ⇒ nat such that
x ' y ∧ ¬ y ' x −→ m y < m x and x ' y ∧ y ' x −→ m x = m y.

The fact that while-option b f x = Some y means termination follows from
the recursion equation for while-option (see above) together with the fact that

while-option b f x = None in case b (f k x ) for all k.

6 Backward Analysis of Boolean Expressions

So far we have not analyzed boolean expressions at all. Now we take them
into account by defining an analysis that “filters” an abstract state S wrt some
boolean expression b and some intended result r of b: the resulting abstract state
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S ′ should be more precise than S, i.e. γo S ′ ⊆ γo S, but no state that makes b
evaluate to r must be lost: if s ∈ γo S and bval b s = r then also s ∈ γo S ′.
This filtering of abstract states corresponds to an intersection and is realized by
the dual of the join, the meet. We also need to model the situation that some
variable has no possible value, which corresponds to a least abstract element ⊥.
Therefore we upgrade from a semilattice to a lattice. A type ′a is a lattice with
top and bottom ( ′a :: L-top-bot) if it is a semilattice with top and there is a
greatest lower bound (meet) operation � :: ′a ⇒ ′a ⇒ ′a, i.e.

x � y ' x x � y ' y [[x ' y; x ' z ]] =⇒ x ' y � z

and there is a bottom element ⊥ :: ′a, i.e. ⊥ ' x.
We specialize the Val-abs interface further by requiring ′av ::L-top-bot and by

adding two further assumptions:

assumes γ a1 ∩ γ a2 ⊆ γ (a1 � a2) and γ ⊥ = ∅

The first assumption actually implies γ (a1 � a2) = γ a1 ∩ γ a2. Moreover we
require abstract filter functions for all basic arithmetic and boolean operations:

fixes test-num ′ :: int ⇒ ′av ⇒ bool
fixes filter-plus ′ :: ′av ⇒ ′av ⇒ ′av ⇒ ′av × ′av
fixes filter-less ′ :: bool ⇒ ′av ⇒ ′av ⇒ ′av × ′av
assumes test-num ′ n a = (n ∈ γ a)
assumes filter-plus ′ a a1 a2 = (b1, b2) =⇒
[[ n1 ∈ γ a1; n2 ∈ γ a2; n1 + n2 ∈ γ a ]] =⇒ n1 ∈ γ b1 ∧ n2 ∈ γ b2
assumes filter-less ′ (n1 < n2) a1 a2 = (b1, b2) =⇒
[[ n1 ∈ γ a1; n2 ∈ γ a2 ]] =⇒ n1 ∈ γ b1 ∧ n2 ∈ γ b2

The filter functions are similar to inverse functions: but instead of computing the
arguments from the result, they are given both the arguments and the result and
should return the filtered arguments where values that cannot lead to the given
result may be removed. The assumes clauses express it the other way around:
the filter-plus ′ clause says that values in the conretization of a1 and a2 that
lead into γ a must not be filtered out. This assumptions guarantees soundness.
Based on the basic filtering functions we can now filter wrt aexp and later bexp
as explained in the introduction of this section:

afilter :: aexp ⇒ ′av ⇒ ′av st option ⇒ ′av st option

afilter (N n) a S = (if test-num ′ n a then S else None)
afilter (V x ) a S =
(case S of None ⇒ None
| Some S ⇒

let a ′ = lookup S x � a
in if a ′ ' ⊥ then None else Some (update S x a ′))

afilter (Plus e1 e2) a S =
(let (a1, a2) = filter-plus ′ a (aval ′′ e1 S ) (aval ′′ e2 S )
in afilter e1 a1 (afilter e2 a2 S ))
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where aval ′′ is just a lifted version of aval ′:

aval ′′ e None = ⊥
aval ′′ e (Some S ) = aval ′ e S

Note that the test a ′ ' ⊥ in the afilter (V x ) clause prevents an imprecision. We
could always return Some (update S x a ′), as some authors do [14]. But if a ′ is ⊥,
this is really an unreachable state. However, this information can be overwritten
in subsequent assignments, and when the resulting state is joined with another
execution path, e.g. at the end of a conditional, the unreachable state can lead
to a loss of precision. Hence we avoid creating states with ⊥ components and
work with the least state None instead.

Filtering with bexp is similar:

bfilter :: bexp ⇒ bool ⇒ ′av st option ⇒ ′av st option

bfilter (Bc v) res S = (if v = res then S else None)
bfilter (Not b) res S = bfilter b (¬ res) S
bfilter (And b1 b2) res S =
(if res then bfilter b1 True (bfilter b2 True S )
else bfilter b1 False S � bfilter b2 False S )
bfilter (Less e1 e2) res S =
(let (res1, res2) = filter-less ′ res (aval ′′ e1 S ) (aval ′′ e2 S )
in afilter e1 res1 (afilter e2 res2 S ))

Note that the then-case in bfilter (And b1 b2) is a tricky way to express bfilter
b1 True � bfilter b2 True, thus obviating the need to define � on abstract states.
It is debatable if this trick is a good idea in a teaching context.

Two of the defining equations for step ′ are now refined

step ′ S (IF b THEN c1 ELSE c2 {P}) =

IF b THEN step ′ (bfilter b True S ) c1 ELSE step ′ (bfilter b False S ) c2
{post c1 � post c2}

step ′ S ({Inv} WHILE b DO c {P}) =

{S � post c}
WHILE b DO step ′ (bfilter b True Inv) c
{bfilter b False Inv}

but the definition of the abstract interpreter AI itself is unchanged. The cor-
rectness proof stays largely the same but requires two new lemmas:

Lemma. If s ∈ γo S and aval e s ∈ γ a then s ∈ γo (afilter e a S ).

Lemma. If s ∈ γo S then s ∈ γo (bfilter b (bval b s) S ).
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7 Widening and Narrowing

Widening is meant to ensure termination of fixed point iteration even in lattices
of infinite height, eg intervals. More generally, it is meant to accelate convergence.
Instead of computing f i(⊥) for i = 0, 1, . . . until a post-fixed point is found (see
pfp), widening allows us to take bigger steps thus avoiding nontermination. These
bigger stepsmay lose precision. Narrowing, another iteration, is meant to regain it.

A widening operator + has type ′a ⇒ ′a ⇒ ′a and satisfies x ' x + y and
y ' x + y. A narrowing operator , has type ′a ⇒ ′a ⇒ ′a and satisfies y '
x =⇒ y ' x , y and y ' x =⇒ x , y ' x. For convenience we put both of
them in class WN and make it a subclass of SL-top.

Normally the axioms of widening and narrowing also include an ascending
chain condition. We have again chosen to separate the termination argument.
(Strictly speaking, widening would not need any axioms for correctness but only
for termination.) Both operators can be extended to type option and st :

Lemma. If ′a :: WN then ′a st :: WN.

Lemma. If ′a :: WN then ′a option :: WN.

For the didactic reason of simplicity we have chosen not to apply widening or
narrowing selectively at individual annotations but simultaneously everywhere.
This can be less precise than more selective strategies [3] but is much simpler.

We define a function map2-acom :: ( ′a ⇒ ′a ⇒ ′a) ⇒ ′a acom ⇒ ′a acom ⇒
′a acom that applies a function simultaneously to the corresponding annotations
of two strip-equal annotated commands. This permits us to lift + and , to +c

and ,c on annotated commands: c1 +c c2 = map2-acom (op +) c1 c2 and
c1 ,c c2 = map2-acom (op ,) c1 c2, where (op ��) is the function some infix
operator �� stands for.

Iterative widening and narrowing on acom are expressed as loops:

iter-widen f = while-option (λc. ¬ f c ' c) (λc. c +c f c)
iter-narrow f = while-option (λc. ¬ c ' c ,c f c) (λc. c ,c f c)

This formalizes one of the widening variants proposed by Cousot [6, footnote 6].
Pichardie and Monniaux [7] propose other formalizations.

The overall analysis performs widening first and then narrowing:

pfp-wn f c =
(case iter-widen f (⊥c c) of None ⇒ None | Some c ′ ⇒ iter-narrow f c ′)

Later we show that the None case cannot arise under certain assumptions about
widening. By definition, iter-widen f (⊥c c) finds a post-fixed point c ′ of f if
it terminates. Assuming f is monotone, induction together with the narrowing
properties shows that iter-narrow f c ′ finds another post-fixed point of f below
c ′ if it terminates.

In the context of the monotone framework we define AI-wn with the help of
pfp-wn instead of pfp, as previously:

AI-wn = pfp-wn (step ′ ()

The correctness (AI-wn c = Some c ′ =⇒ CS c ≤ γc c ′) proof is as before.
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7.1 Termination

Correctness of widening and narrowing was easy. Termination is quite technical,
although we have adopted an approach that does not refer to infinite chains but
is phrased in terms of measure functions. For widening, each type needs to come
with a measure function m into nat such that

x ' y =⇒ m y ≤ m x
¬ y ' x =⇒ m (x + y) < m x

The first measure property guarantees that the measure cannot go up with a
widening step: the first widening axiom implies m (x + y) ≤ m x (the second
widening axiom is never needed). The second measure property guarantees that
with every widening step of iter-widen, the measure goes down. The second
property is the one we need, the first one is only auxiliary.

Both measure properties together allow us to lift them to composite data
types, especially abstract states and annotated commands. Both types are just
glorified tuples and hence we can explain the mechanism in terms of pairs without
having to bother with the technical details of the more complex types. Every-
thing on pairs is defined componentwise, including the measure function and the
function f whose post-fixed point we seek:

((y1, y2) ' (x 1, x 2)) = (y1 ' x 1 ∧ y2 ' x 2)
(x 1, x 2) + (y1, y2) = (x 1 + y1, x 2 + y2)
m (x 1, x 2) = m1 x 1 + m2 x 2

f (x 1, x 2) = (f 1 x 1, f 2 x 2)

The first measure property, anti-monotonicity, lifts trivially to pairs. Let us now
consider the second measure property and assume ¬ f (x 1, x 2) ' (x 1, x 2), i.e.
either ¬ f 1 x 1 ' x 1 or ¬ f 2 x 2 ' x 2. In the first case we have m1(x 1 + f 1 x 1)
< m1 x 1 (by the second measure property) and m2(x 2 + f 2 x 2) ≤ m2 x 2 (by
the first measure property) and thus m ((x 1, x 2) + f (x 1, x 2)) = m1 (x 1 + f 1
x 1) + m2 (x 2 + f 2 x 2) < m1 x 1 + m2 x 2. The second case is dual.

This way we can lift the two measure properties from the basic domain of ab-
stract values up to annotated commands. However, there are some technicalities.
The x and y in the measure properties need to fulfill additional invariants, in
particular at the acom level: both must be strip-equal annotated commands over
the same fixed finite set of variables. Hence the full measure theorem becomes

If finite X, strip c ′ = strip c, c ∈ Com X, c ′ ∈ Com X and ¬ c ′ ' c,
then m (c +c c ′) < m c.

where m is the measure function on acom and Com X is the set of commands
whose annotations mention only variables in X. Of course step ′ preserves these
invariants.

Termination of narrowing is proved in a similar manner, using measure func-
tions called n that must also satisfy two properties:

x ' y =⇒ n x ≤ n y
y ' x =⇒ ¬ x ' x , y =⇒ n(x , y) < n x
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Again, the first property lifts trivially but it is the second one we are really
after. It is lifted to pairs in a similar manner as for widening, using the second
narrowing axiom. Obtaining the final measure theorem for narrowing on the
acom level is again technical in the same way as for widening. At the end of the
day, here is the unconditional termination statement for AI-ivl ′, the instantiation
of AI-wn with intervals:

Theorem ∃ c ′. AI-ivl ′ c = Some c ′

7.2 Intervals

We have instantiated the various frameworks above with the standard analyses,
in particular intervals. Our definition of intervals is extremely basic:

datatype ivl = I (int option) (int option)

where None represents infinity. For readability we install some syntactic sugar:
{i . . .j} stands for I (Some i) (Some j ); infinite lower or upper bounds are simply
dropped. For example, {i . . .} is I (Some i) None. The only drawback is that the
empty interval has many representations, but this is why our value abstraction is
based on preorders, not partial orders. We refrain from giving the details of the
operations on intervals. They follow the literature, except for the representation.

Just like for the small-step semantics, we can animate the computation of the
abstract interpreter by iterating the step function and widening/narrowing. We
evaluate show-acom ((λc. c +c step-ivl ( c)n (⊥c testc)) for increasing n. The
pretty-printing function show-acom shows an abstract state as a list of pairs
(x ,ivl) — no need to supply the list of variables, it is part of the abstract state.

For n = 1 we obtain the program annotated with None everywhere except
after the first assignment:

′′x ′′ ::= N 7 {Some [( ′′x ′′, {7 . . .7})]};
{None}
WHILE Less (V ′′x ′′) (N 100 ) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1 ) {None}
{None}

The next step merely initializes the invariant:

′′x ′′ ::= N 7 {Some [( ′′x ′′, {7 . . .7})]};
{Some [( ′′x ′′, {7 . . .7})]}
WHILE Less (V ′′x ′′) (N 100 ) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1 ) {None}
{None}

Now the invariant filtered with the loop condition is propagated to the end of
the loop body:

′′x ′′ ::= N 7 {Some [( ′′x ′′, {7 . . .7})]};
{Some [( ′′x ′′, {7 . . .7})]}
WHILE Less (V ′′x ′′) (N 100 )
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1 ) {Some [( ′′x ′′, {8 . . .8})]}
{None}
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In the next step, widening has an effect and combines {7 . . .7} and {8 . . .8} into
the new invariant {7 . . .}:

′′x ′′ ::= N 7 {Some [( ′′x ′′, {7 . . .7})]};
{Some [( ′′x ′′, {7 . . .})]}
WHILE Less (V ′′x ′′) (N 100 )
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1 ) {Some [( ′′x ′′, {8 . . .8})]}
{None}

One more iteration yields a (post-)fixed point of step-ivl :

′′x ′′ ::= N 7 {Some [( ′′x ′′, {7 . . .7})]};
{Some [( ′′x ′′, {7 . . .})]}
WHILE Less (V ′′x ′′) (N 100 )
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1 ) {Some [( ′′x ′′, {8 . . .})]}
{Some [( ′′x ′′, {100 . . .})]}

Switching to narrowing now, we obtain a second (post-)fixed point of step-ivl
after 3 more iterations:

′′x ′′ ::= N 7 {Some [( ′′x ′′, {7 . . .7})]};
{Some [( ′′x ′′, {7 . . .100})]}
WHILE Less (V ′′x ′′) (N 100 )
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1 ) {Some [( ′′x ′′, {8 . . .100})]}
{Some [( ′′x ′′, {100 . . .100})]}

8 Conclusion

The above material was covered in 4 weeks (with two 90 minutes lectures per
week) in a 15 weeks MSc course on semantics via a theorem prover. Much of it
worked well, although a few points are still a bit technical. In particular, we did
not cover termination formally, especially for widening/narrowing. We intend to
streamline this issue further in the future.

The Isabelle theories are available online at http://isabelle.in.tum.de/

library/HOL/HOL-IMP/ (the relevant theories are named *ITP) and in the
Isabelle distribution in src/HOL/IMP/Abs Int ITP/.

Acknowledgement. David Pichardie’s exemplary review and his many expla-
nations greatly improved my understanding of his work and of abstract inter-
pretation in general. Brian Huffman’s comments improved the presentation.
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Abstract. We present the formalized theory of a weakest precondition calculus
for procedures on complex data with integrity constraints. The theory defines the
assertion language and the wp-transformer. It contains the proofs for soundness
and “weakestness” of the preconditions. Furthermore, we formalize a normal-
ization process that eliminates all elementary updates from preconditions. This
normalization property is important for efficient checking of the preconditions in
programs. The theory is completely realized in Isabelle/HOL and used for gen-
erating the Haskell implementation of the wp-transformer and the normalization
process.

The wp generation is developed for procedures on complex data with integrity
constraints, for example XML documents satisfying a schema. Efficient checka-
bility allows maintaining the constraints with acceptable computing resources. It
is a central motivation of our work and has influenced many design decisions.

Keywords: Interactive verification, Isabelle/HOL, structured data, paths, invari-
ants, precondition generation, language semantics.

1 Introduction

We present the formalized theory of a weakest precondition calculus for procedures
on complex data with integrity constraints. The theory defines the assertion language
and the wp-transformer. It contains the proofs for soundness and “weakestness” of the
preconditions. Furthermore, we formalize a normalization process that eliminates all
elementary updates from preconditions. This normalization property is important for
efficient checking of the preconditions in programs. The theory is completely real-
ized in Isabelle/HOL and used for generating the Haskell implementation of the wp-
transformer and the normalization process.

Our main application area are procedures on complex structured data with integrity
constraints, for example XML documents satisfying a schema. Such data is used in
many different areas of computing, for example as objects satisfying a class invariant,
as parameters of complex types used in web services, or as data stored in a database.
Accordingly, the data should only be manipulated by procedures pc maintaining the
integrity constraints. That is, the constraints play the role of data invariants Cinv . Each
procedure consists of a sequence of elementary modifications of the data where the
invariant might be violated in between. The goal is to compute preconditions Cpre(pc) of
these procedures, i.e., assertions ranging over the current data state and the parameters
of pc, with the following properties:
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1. If Cpre(pc)∧ Cinv holds in the prestate of pc, then Cinv holds in the poststate.
2. Cpre(pc) can be checked efficiently in a given prestate.

Efficient checkability has two aspects. First, Cpre(pc) should avoid existential quantifiers
and only use read operations on the complex data. Second, Cpre(pc) should not express
properties that are covered by the invariant, because this would lead to redundant check-
ing. These properties allow us to efficiently maintain even complex and large invariants
by only checking Cpre(pc) whenever pc is called (cf. Sect. 2).

Related to our work are wp-transformers for programs with heap allocated data [12,
17, 8] and language settings designed for XML or tree updates [11, 2, 18, 3]. Whereas
these approaches either result in inefficient preconditions or work only for structural
constraints, we aim to generate efficiently checkable preconditions for complex data
with integrity constraints going beyond structure. In particular, preconditions should be
normalized such that they only read the data in the prestate and do not contain updates.
The central contribution of this paper is a theory for a core wp-calculus satisfying the
described requirements. It contains:

– A path-based representation of structured data together with a suitable assertion
and update language

– A wp-transformer together with proofs that it is sound and produces weakest pre-
conditions

– A normalization process for assertions
– A theory for infinite multisets and a three-valued logic as semantical foundation for

the assertion language, the transformer, and the normalization
– A proof technique and concept for syntactic transformations under semantic equiv-

alence, using explicit partiality and a concept of safe formulas

The theory is formalized in Isabelle/HOL [16] (over 9000 lines) and is used to gener-
ate Haskell programs for the wp-transformer and the normalization (about 2200 lines
of generated Haskell code). This tool-based approach proved to be indispensable, in
particular for the rather complex normalization process.

Overview. Section 2 explains our approach to complex data in more detail. Section 3
presents the data representation and the core assertion language. Sections 4 to 6 sum-
marize and discuss important aspects of the wp-theory. Section 7 discusses related work
and Sect. 8 concludes.

2 Approach

In this section, we describe and motivate our approach by two small examples. The first
shows how the different aspects of the approach work together, focusing on precondi-
tions. The second is about a more realistic data type. To illustrate that our approach is
not tied to a specific language setting we use a programming language syntax for the
first example and an XML-related syntax for the second.

Preconditions. By complex data, we refer to hierarchical data structures with integrity
constraints going beyond purely structural schemas. As first example, we consider a
record type container with two components: the component items is an array of
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numbers storing for item i its weight; the component owght stores the overall sum of
the weights of all items. As invariant of containers c, we have:

Cinv ≡ sum(c.items) = c.owght ∧ c.items[i]> 0 ∧ c.owght< 1000

where i quantifies over the defined indices of the array. A basic incremental procedure
on containers could, for instance, modify the weight of an item:

PROC modifyWeight(container c, int ix, int wght)
c.owght = c.owght - c.items[ix] + wght;
c.items[ix] = wght;

Using the techniques from [12], the generated weakest precondition for Cinv is

sum(update(c.items, ix, wght)) = c.owght− c.items[ix] +wght ∧
update(c.items, ix, wght)[i]> 0 ∧ c.owght− c.items[i x]+wght< 1000

where update describes an array update and where we ignore index out of bounds prob-
lems for simplicity. Even for this simple example, the generated precondition is not suit-
able for efficient checking. The update-operation causes unneccessary overhead and the
precondition essentially forces us to check the invariant Cinv for the prestate although we
may assume that it holds. A much nicer precondition avoiding updates and rechecking
of the invariant would be:

wght> 0 ∧ c.owght− c.items[i x]+wght< 1000

Generating such preconditions for efficient checking is the central goal of
wp-transformation with normalization. Our normalization technique eliminates all
update-operations. Furthermore, in the normalized form, the invariant can be factored
out from the precondition using regrouping and simplification. We focus on loop-free,
atomic procedures for incremental updates on complex data. For details on this design
decision and how our approach can be used in practice see [14, 15].

Schemas for Complex Data. To illustrate the kinds of complex data that our approach
supports, we consider an extension of the container datatype above. We use a schema
notation in the style of the XML schema language RelaxNG [10]. The (extended) con-
tainer type has a capacity attribute, contains a collection of items and a collection of
products. Collections are multisets of elements (or attributes), i.e., have unordered con-
tent; elements in collections are referenced by a key that has to be provided on entry.
Each item in the extended container type is considered to be an instance of a specific
product and refers to the product entry using the corresponding key. Products have a
positive weight less or equal to the capacity of the container.

element container {
attribute capacity { integer

�
. > 0
�
},�

./capacity ≥ sum (./product[./item/productref]/weight)
�

element item * {
attribute productref { key

�
//product[.] ∈ $

�
}

},
element product * {
attribute weight { integer

�
. > 0
� �

. ≤ //capacity
�
}

} }
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To formulate constraints, we use path-based expressions. The dot ‘.’ refers to the
value of the current attribute or element. The ‘$’-sign refers to the overall document. For
example, the constraint//product[.] ∈ $ of attribute productref states that there
has to be a product with this key in the current document. The global constraint in line 3
enforces that the capacity of the container is larger or equal to the sum of the weights of
all items; i.e., the expression ./product[./item/productref]/weight rep-
resents the multiset of all paths obtained by placing a key at ./item/productref
into ./product[_]/weight. A more detailed presentation of our data description
approach is given in [15].

We used our approach to define the schema, integrity constraints, and procedures for
the persistent data of a mid-size web application [13]. The definition of the schema and
integrity constraints is about 100 lines long. We developed 57 basic procedures for the
manipulation of the data.

3 Core Assertions

This section defines the syntax and semantics of our core assertion language for com-
plex data structures. This language is the heart of our theory, as the choice of the core
operators play a central role to achieve our goals. On the one hand, syntactic transfor-
mations and normalizations require operators with homomorphic and further semantical
properties. On the other hand, to define useful invariants, to handle partiality of op-
erators, to manage the wp-transformations, and to support certain normalization steps
within the language, we need enough expressive power. The developed language is kind
of a sweet spot between these partially conflicting requirements. It essentially follows
the ideas of [5] (cf. Sect. 7). It is a core language in the sense that syntactical extensions
and further operators having the required transformation properties can be added on top
of the language.

Data representation in the assertion language is based on the concepts of paths and
the idea that every basic element of a hierarchical data structure should be addressable
by a unique path. A path is essentially a sequence of labels l , which can be thought of as
element names in XML or attribute names in Java, etc. As inner nodes of a hierarchical
data structure might represent collections, the path has to be complemented by a key for
each step to select a unique element of the collection at each point. Following XML,
we call a hierarchical data structure a document.

Definition 1 (Paths and Documents). A path is a sequence of label-key pairs. The
special key null is used for path steps which need no disambiguation. The sequence of
labels of a path alone defines the so-called kind of the path. A document is a finite
mapping from a prefixed-closed set of paths to values.

Syntax and Semantics. Based on the concept of documents, we define the syntax of
the assertion language as follows:

value expr. V ::= c | v | $(P) | VSI � VI | V ⊕ V | sum VI | size V | count V VS | tally T V
path expr. P ::= root | P/l[VK] | P/l types T ::= key | int | string | unit

relations R ::= VS = VS | VSI < VSI disjunctions D ::= false | L ∨ D
literals L ::= R | ¬ R conjunctions C ::= true | D ∧ C
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Basic values are of type key, int, string, or unit where unit is a singleton type with the
constant (). Expressions and assertions B are interpreted with respect to an environment
E, denoted by ‖ B ‖E . The environment assigns keys to the variables and a document to
the $-symbol that refers to the document underlying the assertion.1

Path expressions denote the root node, select children by label-key pairs, or select
all children for a label. The latter is called a kind step, as it selects all children of
this particular kind. The semantic domain of path expressions are (possibly infinite)
multisets of paths. The semantic equations are as follows:

‖ root ‖E = root
‖ P/l[VK] ‖E = { p/l[k] | p ← ‖ P ‖E , k ← ‖ VK ‖E , k ∈ Univ(key) }
‖ P/l ‖E = { p/l[k] | p ← ‖ P ‖E , k ← Univ(key) }

where we denote the universe of keys by Univ(key) and use multiset comprehensions to
denote all paths p/l[k] where p and k are generated from multisets.

Basic value expressions are constants c, such as 1,−1, 0 and null, and variables v for
keys. Variables are implicitly universally quantified at top level. To handle single values
and multisets of values uniformly, we identify single values with the singleton multisets
containing exactly that value and vice versa. The read expression $(P) selects all values
from the underlying document $ that are stored at paths P:

‖ $(P) ‖E = { E($)(p) | p ← ‖ P ‖E , p ∈ dom E($) }
On multisets, we provide four aggregate functions: sum VI returns the sum of all integer
elements of VI ; size V returns the number of elements in V ; count V VS returns the number
of occurrences of singleton VS in V ; tally T V returns the number of occurrences of
elements of type T in V . Furthermore, we support the scalar multiplication� of a single
integer with a multiset of integers and a union operation⊕ for multisets with count (V1⊕
V2) VS = count V1 VS + count V2 VS .

The rest of the syntax defines boolean formulas in conjunctive normal form with the
polymorphic equality of singleton values and the ordering relation on singleton integers.
The constants false and true are used for empty disjunctions or empty conjunctions. To
handle partiality, all semantic domains include the bottom element ⊥. All operators
except for ∨ and ∧ are strict: ∨ evaluates to true if one of the operands evaluates to true;
otherwise its evaluation is strict (similar for ∧).

In summary, the assertion language allows us to formulate document properties. Ev-
ery hierarchical document model, in which values are accessed using a path concept,
can be supported by our approach. As the core syntax does not support document up-
dates, checking whether an assertion holds for a given document only needs to read
values in the document by following access paths.

Syntactic Extensions. We extended the core language in two ways. Firstly, we support
assertions that are not in conjunctive normal form. These more general forms are auto-
matically transformed back into the core syntax. Secondly, we added further operators
and abbreviations. We have taken great care in the design of the operators and their
theory to avoid large blow-ups of the formula size as a result of eliminating the new
operators (for details, we refer to the accompanying Isabelle/HOL theory).

1 The document corresponds to the state of the heap in assertions for programming languages.
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In particular, we provide the following abbreviations and operators:

{} ≡ 0� null empty V ≡ size V = 0
⊥ ≡ null� 0 unique V ≡ size V = 1
−V ≡ −1� V unique P ≡ ... count P2 P1 ≡ ...

V1 + V2 ≡ sum (V1⊕ V2) P1 ∈ P2 ≡ count P2 P1 > 0
V1 − V2 ≡ V1 + (−V2) P1 � P2 ≡ count P2 P1 = 0
V is T ≡ tally T V = size V P ∈ $ ≡ unique P ∧ unique $(P)

V is− not T ≡ tally T V < size V P � $ ≡ unique P ∧ empty $(P)

The left column shows simple abbreviations for the empty multiset, bottom, an embed-
ding of integer arithmetic, and type tests. The right column adds some predicates for
value multisets, as well as containment relations for paths regarding path multisets and
the document. unique(P) yields true if P evaluates to a singleton path; count denotes the
count-operator on path expression (both operators are realized by syntactic transforma-
tion into a value expression of the core syntax).

4 WP-Transformer for Linear Programs

As explained in Sect. 2, the basic goal of our approach is to generate preconditions for
procedures manipulating complex data or documents. The preconditions should be ef-
ficiently checkable and should guarantee that integrity constraints are maintained. This
section defines the imperative language for document manipulation and the weakest
precondition generation.
Language for Document Manipulation. Procedures have a name, a list of parameter
declarations, and a statement of the following form as body:

statements S ::= skip | S; S | p := VS | if L then S else S fi | assert C |
insert PS l VSK | update PS VS | delete PS

The skip-statement and sequential statement composition are as usual. The assignment
has a local variable or parameter on the left-hand side and a (singleton) value ex-
pression free of (logical) variables as right-hand side. The boolean expression in the
if-statement is restricted to literals. The assert-statement uses arbitrary assertions and
allows strengthening of the precondition which can simplify it. There are three basic
update-operations for documents:

– insert PS l VSK assumes that the singleton path PS exists in $, but not the singleton
path PS/l[VSK]; it inserts path PS/l[VSK] with default value ().

– update PS VS changes the value at an existing singleton path PS to the singleton value
VS . In combination with insert, it allows us to insert arbitrary paths and values into
a document.

– delete PS removes all values in the document associated with the existing singleton
path PS or any of its descendants.

We do not provide a loop-statement, because we want the wp-generation to be fully
automatic and because loops are available in programs in which the procedures for
document manipulation are called. The statements are designed (and proven) in such a
way that they maintain the property that the set of paths in a document is prefix-closed.
The semantics of statements is defined in big-step operational style:
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Definition 2 (Semantics of Statements). The semantics of statements is inductively
defined as a judgment S, E1 � E2. The judgment holds if the execution of statement S
starting in environment E1 terminates, without errors, with environment E2. The envi-
ronments capture the state of the document, the parameters of the procedure, and the
local program variables.

Based on the semantics, we define Hoare-Triples for total correctness, i.e., if the pre-
condition holds, no errors occur and a poststate exists. We have proven that statement
execution is deterministic, i.e., the post environment is unique, if it exists.

Definition 3 (Hoare-Triple). Hoare-Triples {C} S {C} have the following semantics:
� {CP} S {CQ} ≡ ∀E. ‖ CP ‖E → ∃E′. S, E� E′ ∧ ‖ CQ ‖E′

WP Generation. The central goal of WP generation is to take an assertion CQ and a
statement S and generate the weakest assertion CP such that � {CP} S {CQ}. Unfortu-
nately, the restriction of the assertion language to read operations in documents that is
profitable for efficient checking has its downsides when it comes to wp generation. The
classical approach to handle compound data in wp-calculi is to move updates in the
programming language into updates in the assertions (as demonstrated by array c.items
in Sect. 2). We solve this problem in two steps: First, we make the assertion language
more expressive by adding document update operators such that wp generation can be
expressed following the classical approach. Second, we show how these operators can
be eliminated by a normalization process (see Sect. 6).

Besides document updates, we introduce program variables p (parameters, local vari-
ables) into the value expressions:

value expr. V ::= c | v | p | M(P) | ...
documents M ::= $ | M[PS �→ VS] | M[PS �→]

M[PS �→ VS] combines insert and update: If PS ∈ dom M , the value at PS is changed; other-
wise a new binding is created. M[PS �→] deletes all bindings of PS and all its descendants.
With these additions, the wp-transformer can be defined as follows.

Definition 4 (WP-Transformer)
wp skip C = C
wp (S1; S2) C = wp S1 (wp S2 C)
wp (delete P) C = P ∈ $ ∧ C[$/$[P �→]]
wp (insert P l V ) C = P ∈ $ ∧ C[$/$[P/l[V ] �→ ()]] ∧ P/l[V] � $

∧ unique V ∧ V is key
wp (update P V ) C = P ∈ $ ∧ C[$/$[P �→ V ]] ∧ unique V
wp (if L then S1 else S2 fi) C = (L→ wp S1 C) ∧ (¬L→ wp S2 C) ∧ (L ∨¬L)
wp (p := V ) C = C[p/V ]
wp (assert Ca) C = C ∧ Ca

The notation C[a/b] defines the substitution of all occurrences of a in C with b. The
third conjunct in the precondition of the conditional is needed to make sure that evalu-
ation of L does not lead to an error.

For the normalization, it is important to note how the data invariant, i.e., the postcon-
dition of the procedure is changed by the transformer. As it does not refer to parameters
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or local variables, it is only modified at the document variable $ and gets augmented
by new conjuncts. As core results for the wp-transformer, we have formally proven that
the generated precondition is sound and is “weakest”:

Theorem 1 (WP Sound and Weakest)
1. � {wp S C} S {C}
2. � {CP} S {CQ} ∧ ‖ CP ‖E = true =⇒ ‖ wp S CQ ‖E = true

5 Aspects of the Theory Formalization

In this section we discuss some of the techniques used to formalize the presented theory.
Furthermore, we explain several of our design decisions, partly triggered by limitations
of Isabelle/HOL, and introduce concepts needed for normalization.

Formalizing Semantic Domains. The lack of multi parameter type classes in
Isabelle/HOL made it impossible to define a function symbol for the semantics, which
is both polymorphic in the syntactic element and its semantic domain. To circumvent
this, we defined a union type named domain, containing all semantic domains, as well
as the bottom value. This makes the handling of bottom easier, because all semantic
domains literally share the same bottom value. On the other hand, we had to prove
that the semantics of a syntactic element is indeed either from its semantic domain or
bottom. The resulting theorems in their different flavors (intro, elim and dest) are used
extensively in the proofs of semantics related theorems.

Value, Path and Document Semantics. As the semantics of path expressions can be
infinite path multisets, we developed a theory of infinite multisets.2 More precisely, the
multisets can contain infinitely many different values, but each value has only finitely
many occurrences, i.e., the number of occurrences is still based on a function α →
nat. This decision allows to give a natural semantics to operators like kind steps and
reads, yet it also makes dealing with multisets a bit more complicated in general. As
an example consider the semantics of an operation map mapping a function f over
all elements of a multiset and returning the multiset of the results. For instance, if f
is constant for all elements, like the scalar multiplication with zero, the result of the
mapping might not be covered by our multiset definition. Consequently, the definition
and application of map has to take special care for such situations. However, in our
framework, such a multiset theory is a good tradeoff, as it simplifies the treatment of
paths which might lead to infinite multisets and gets restricted to finitely many values
if used for value expressions.

The semantic domain of documents is based on the theory of partial functions as
provided by the Map theory from Isabelle/HOL.

Mapping and Folding. With the abstract syntax defined for expressions, assertions,
and statements, we want both to be able to make syntactic transformations and ex-
press properties. In a functional setting – and especially in Isabelle/HOL – a transfor-
mation is a bottom-up mapping of a family of functions onto the mutually recursive

2 The multiset theory shipped with Isabelle/HOL is for finite multisets only.
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datatypes. Bottom-up is important in Isabelle/HOL to guarantee termination. The fam-
ily of functions has to contain an adequate function for every type involved, in our case
P, V, M , L, R, D and C . We define the mapping function in a type class, such that it is
polymorphic in the syntactic element.

A property on the other hand is described by a folding with a family of functions.
We use the single parameter of the type class to make the function polymorphic in the
type being folded, but we have to fix it with regard to the type being folded to. We
are mostly interested in properties, i.e. boolean foldings, but also counting functions to
support proving properties, i.e. nat foldings.

What we end up with are three functions xmap, xprop and xcount, which all take an
adequate family of functions and then map or fold all the abstract syntax types we
presented. We also defined instances for statements, so we can use the same properties
on programs and their contained assertions and expressions.

Well-Formed Assertions. In the design of the assertion language, we decided for a very
simple type system. In particular, we do not distinguish between singleton multisets and
single values and paths. The main reason for this was to keep the assertion syntax as
concise as possible and to avoid the introduction of similar operators for both cases.
We can also avoid to deal with partiality from operators like read. Where we need the
uniqueness property that an expression yields at most one value or path, we enforce it
by checking expressions or assertions for well-formedness:

Definition 5 (Well-Formed Expressions and Assertions). An expression is statically
unique, if it denotes at most one singleton value in all environments. An expression or
assertion is well-formed, if parameters of operators, whose semantics require a single-
ton value, are statically unique.

On the core syntax, well-formedness can be checked based on the following criterion:
all relations, as well as one of the parameters each in the count-operation and the scalar
multiplication, must not directly contain the multiset plus or a read operation based on
a path expression using kind steps. As paths and values form a mutual recursion, the
property is also mutually recursive and excludes many more combinations. Once we
introduce more operators to the syntax, the condition therefore gets more restrictive,
yet we maintain the property at every step, so we can use it in the central steps of the
normalization.

Safety. The main reason to include bottom into the semantics and use a three-valued
logic was to handle partiality, i.e., exceptional behavior within the logic. It allows us
to define the domain of assertions and expressions as the set of environments in which
their semantics is not bottom. And, as we can use assertions as guards to widen the
domains of the guarded assertions, we can construct assertions that are always defined.
Such assertions are called safe. A function (or family of functions) f is considered to
be a domain identity idE f , if it does not change the semantics of an argument x within
the domain of x .
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Definition 6 (Safety and Domain Identities)
safe B ≡ ∀E. ‖ B ‖E � ⊥ idE f ≡ ‖ B ‖E � ⊥ −→ ‖ f B ‖E = ‖ B ‖E

Having such a notion of failure and safety is beneficial for syntactic transformations
and proving that such transformations are sound. Most transformations simply do not
preserve semantics in all corner cases, as they might widen the domain of expressions.
Using the notion of safety, we are able to prove, that xmap does not alter the semantics
of a safe formula, if it uses a family of domain identities.

Theorem 2 (Safe Transformations)
idE f ∧ safe C =⇒ ‖ xmap f C ‖E = ‖ C ‖E

6 Normalization

The goal of this section is to eliminate update-operations from generated preconditions
and to get preconditions into a form where we can identify unchanged parts of the
original invariant and separate them from new conjuncts. To reach this point, we need
multiple, increasingly complex steps.

The wp generation with normalization starts with the invariant in core syntax and
uses the wp function to generate a precondition with document updates. After establish-
ing safety, we replace updates by conditionals and multiset arithmetic simulating their
effects on expressions. We then remove the conditionals and in a final step eliminate the
multiset arithmetic. This brings us back to a core syntax assertion such that new parts
are separated from the invariant.

We first define conditionals and arithmetic operators on multisets:

for V, P, M and R α ::= ... | if L then α else α fi
value expr. V ::= ... | VSI ⊗ V
path expr. P ::= ... | VSI ⊗ P | P ⊕ P | P � P

Every expression type and the relations get a conditional, guarded by a single literal.
The operator n ⊗ V replicates the elements of V n-times, i.e., the first argument has
to denote a positive integer. The operators ⊕ and � denote multiset plus and minus for
paths. With these additions – and the concepts we discussed earlier – we can now define
all necessary properties:

wform ≡ well-formed
dufree ≡ does not contain document updates
strict ≡ does not contain conditionals

straight ≡ does not contain additional multiset operations
safe ≡ does never yield bottom (see Def. 6)

Except for safety, all other properties are purely syntactic and are defined using xprop
(cf. Sect. 5). The following figure summarizes the normalization process. The details of
the individual steps are described in the remainder of the section.
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6.1 Establishing Safety

Safety is important for the elimination of updates and multiset arithmetic. As the wp-
transformer might return an unsafe assertion, we introduce guards. This is realized by
the function safeguard that adds appropriate conjuncts to the assertion. This guarding
step works because the assertion language allows to express these guards for all its
operators. Our function safeguard assumes that assertions are strict and straight.

Theorem 3 (Secure)
1. strict C ∧ straight C ∧ ‖ C ‖E � ⊥ =⇒ ‖ safeguard C ‖E = ‖ C ‖E

2. strict C ∧ straight C ∧ ‖ C ‖E = ⊥ =⇒ ‖ safeguard C ‖E = false
3. strict C ∧ straight C =⇒ safe (safeguard C)

6.2 Elimination of Document Updates

The assertion language was designed in such way that document updates can only occur
as parameters of read operations. Thus, we are concerned with expressions like Ve ≡
M[Pu �→ V?](Pr) where Pu is the singleton path at which the update occurs and Pr is a
multiset of paths at which the document is read. To make the elimination work, we
need to exploit the context of Ve and the specific properties of the assertion language.
We distinguish the following two cases.

Unique Path. If Ve does not appear in an expression context with a surrounding aggre-
gate function, then we can prove that Pr denotes a singleton path, i.e., the read access
is unique (using the safety and well-formedness property). Thus, we can use a case
distinction to express the update:

elimU M[Pu �→ V ](Pr) = if Pr = Pu then V else M(Pr) fi
elimU M[Pu �→](Pr) = if Pr ∈ intersect Pr Pu then {} else M(Pr) fi
elimU V = V

where intersect Pr Pu is a syntactic function that calculates an expression representing
the multiset of paths that are contained in Pr and are descendants of Pu.

Updates in Aggregates. Now, we consider document updates that have a context with
a surrounding aggregate function. In such a context, Pr denotes a general multiset of
paths. The basic idea is to split Pr into the multiset Pr � (count Pr Pu ⊗ Pu) that is not
affected by the update and the multiset of paths count Pr Pu ⊗ Pu that is affected. For the
first set, we return the old values, for the other set we return new value. And similarly,
for the delete operation:

elimB M[Pu �→ V](Pr) = M(Pr � (count Pr Pu⊗ Pu)) ⊕ (count Pr Pu ⊗ V )
elimB M[Pu �→](Pr) = M(Pr � intersect Pr Pu)
elimB V = V

Correctness Properties. For the definitions of elimU and elimB we proved the following
properties:
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Theorem 4 (Basic Eliminations Semantics)
1. wform V ∧ ‖ V ‖E = {x} ∧ V statically unique =⇒ ‖ elimU V ‖E = ‖ V ‖E

2. wform V ∧ ‖ V ‖E � ⊥ =⇒ ‖ elimB V ‖E = ‖ V ‖E

Using elimU and elimB , we develop a function elimdu that eliminates all occurrences of
updates in an assertion. elimdu is based on the xmap facility in a non-trivial way. Putting
this machinery together, we can prove the following central elimination properties:

Theorem 5 (Elim DM)
1. wform C ∧ safe C =⇒ ‖ elimdu C ‖E = ‖ C ‖E

2. strict C =⇒ dufree (elimdu C)

The proof of the semantic equivalence is based on properties of the xmap facility stated
in Thm. 2. Besides eliminating updates, the function elimdu preserves well-formedness
and safety.

6.3 Eliminating Conditionals

Conditionals in expressions are eliminated by pulling them up to the assertion level
and replace them by corresponding logical operators. This is realized by the function
strictify which is based on a polymorphic pull function and the xmap facility. The central
properties are:

Theorem 6 (Strictify)
‖ strictify C ‖E = ‖ C ‖E and strict (strictify C)

Whereas this elimination is simple in principle, the direct realization in Isabelle/HOL
did not work, because it produced a huge combinatorial blow up in internally generated
function equations (resulting from the patterns in the function definitions). Our solution
was to make the pull operation polymorphic in a type class and realize instances for each
abstract syntax type. Although well separated from all other aspects, the conditional
elimination constitutes an Isabelle/HOL theory of 600 lines.

6.4 Eliminating Multiset Arithmetic

We are now ready for the final normalization step, which brings us back to the core syn-
tax by eliminating the remaining multiset arithmetic. This elimination is quite complex
and not only depends on the concept of safety and well-formed assertions, as was the
case in the elimination of updates, but also on the choice of the core syntax operators.

We eliminate the remaining multiset arithmetic by pulling ⊗, ⊕ and � out of both
value and path expressions, up to an enclosing aggregate function, which we know
exists because of well-formedness. The homomorphic property of each aggregate then
allows us to pull them out of the aggregate, i.e., we can express their effect on the
aggregate by using only the core operators ⊕ and � on value expressions. For the pull-
out process to work, we also designed the core language in such a way that all other
operators which can contain multiset arithmetic are homomorphic too.
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All these homomorphic properties are captured by a non-trivial family of functions,
which consists of one function per aggregate, one for kind steps and two for path steps,
as path steps can contain both path and value expressions with offending operators. As
an example we show a selection of homomorphic properties, which demonstrate a lot
of different cases:

sum (V1� V2) ≡ V1 � sum V2 P/l[V1⊕ V2] ≡ P/l[V1]⊕ P/l[V2]
sum (V1⊗ V2) ≡ V1 � sum V2 sum d(P1� P2) ≡ sum d(P1)− sum d(P2)

count (V1 � (V2 ⊕ V3)) V4 ≡ count (V1� V2) V4 + count (V1 � V3) V4

It starts with the simple case of the distribution law of multiplication over summation.
Next, the path operator is homomorphic with regard to the multiset plus on values and
paths. The third example shows how operators can change when pulled out, in this case
the replication becomes a scalar multiplication. This example also shows, that all such
equivalences only need to hold within the domain of the left side, as this is enough to
use Thm. 2 to exploit safety.

The summation of a read operation containing a multiset minus shows that we some-
times need combinations of operators to be able to pull them out. In this case we simply
don’t have the minus on values, although the read operation itself is homomorphic with
regard to it and the minus on paths. For this reason we also do not define a function
for read, but distribute the read cases over the other aggregates. Last but not least, the
count operation misses a usable homomorphic property regarding the multiplication,
such that we have to pull offending operators out of both.

Based on the family of functions, we define the function straighten based on the
xmap facility in a non-trivial way. We haven proven the following central elimination
properties:

Theorem 7 (Normalize)
1. safe C =⇒ ‖ straighten C ‖E = ‖ C ‖E

2. wform C ∧ strict C =⇒ straight (straighten C)

As for elimdu, the proof of the semantic equivalence is based on safety. The well-
formed property comes into play to guarantee that all operations can be eliminated. The
function straighten of course also preserves all other properties established in the steps
before.

6.5 Splitting the Generated Precondition

In Sect. 4 we remarked that the generated precondition strongly resembles the invariant
and is only augmented with additional conjuncts and stacked updates at each $. Making
the result safe does not change the precondition at all, but only augments more con-
juncts. The real transformation starts with elimdu, which removes the stacks of updates
and replaces it with either conditionals or multiset arithmetic.

Conditionals are then eliminated using strictify, which leads to two versions of the
surrounding disjunction, one which does not contain the read operation at all, but a
value expression or empty set instead, and one which has exactly the form of the invari-
ant, with added literals that only make it weaker. By this process, we gradually split up
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specific, much simpler versions of the original disjunction from the one staying generic
– but getting weaker – which is still implied by the invariant and can be dropped at the
end.

The part of the elimination based on elimB is more complicated, but looking at its
two cases we notice that the original document M appears in a read operation with its
original parameter Pr and some other path which is subtracted. As the straighten function
uses homomorphisms to drag all multiset operations up to a surrounding aggregate, the
original read M(Pr) from the invariant is quickly recombined, split up from the other
introduced expressions and its surrounding expression restored. It then depends on the
context of the aggregate how the simplification can use this property. If the aggregate
was embedded in an equality, for example, we can use the equality of the invariant to
completely replace the aggregate in the precondition.

7 Related Work

The presented work is related to formalizations of wp-transformations and logics in
interactive theorem provers, languages for data properties and schemas, and to literature
about the modeling of semistructured data.

Formalizations. Weakest precondition generation has a well-established theory (see,
e.g., [12]) and many researchers formalized the wp-generation in theorem provers. For
example in [20], the proof assistant Coq has been used to formalize the efficient weak-
est precondition generation, as well as the required static single assignment and pas-
sification transformations, and prove all of them correct. In [19], Schirmer formalizes
a generic wp-calculus for imperative languages in Isabelle/HOL. He leaves the state
space polymorphic, whereas our contribution focuses on its design and the design and
deep embedding of a matching assertion language. Related work is also concerned with
formalizing the languages of the XML stack (e.g., Mini-XQuery [9]) and the soundness
and correctness proofs for programming logics (e.g., [1, 17]).

Data Properties and Schemas. A lot of research on maintaining schema constraints
has been done using regular languages and automata [2, 18, 3] or using complex modal
logics, e.g., context logic [8, 11]. Both can handle structure more naturally and are
more powerful in this regard compared to our approach. They can also handle refer-
ences, but only global ones, as they lack the means to specify targets for constraints. It
is therefore not surprising that it is shown in [7], that context logic formulas define reg-
ular languages. Incremental checks with these kinds of constraints are well researched,
especially for automata.

The main difference to our work is our support for value-based constraints, including
aggregates, even in combination with non-global references. To express these kinds of
context-dependent constraints, we use a classical three-valued logic together with paths
and a core set of aggregate functions and predicates, which allows us to combine type
and integrity constraints. Precondition generation is also used for context logic in [11],
but they do not support update elimination and incremental checks.
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Data Models. Our work is based on a concept of paths with integrated local key con-
straints. With this design decision, we follow many of the ideas of Buneman et al.
[4, 5, 6]. They argue for the importance of keys to uniquely identify elements, that keys
should not be globally unique and that keys should be composed to “hierarchical keys”
for hierarchical structures (see [5]). Their hierarchical keys resemble our core concept
of paths. They advocate the usage of paths to specify key constraints and the need for
a simpler language than XPath to reason about them, which in particular means paths
should only move down the tree and should not contain predicates.

Although they are not in favor of document order – and argue against predicates
which could observe it in paths – they use the position of elements to create the unique
paths to elements they need for reasoning. By incorporating a simple variant of local key
constraints in our paths, we can use element names, rather than positions, to uniquely
identify elements. We believe that most of the more complex keys they suggest can be
expressed in our logic. This decision, to uniformly handle typical type constraints and
more complex integrity constraints within one formalism, is also discussed and backed
up by [4].

8 Conclusion

Maintaining data invariants is important in many areas of computing. An efficient ap-
proach is to check invariants incrementally, i.e., make sure that invariants are estab-
lished on data object creation and maintained when data objects are manipulated. To
apply this approach one needs to compute the preconditions for all basic procedures
manipulating the data. We are interested in automatic and efficient techniques for main-
taining integrity constraints going beyond structural properties. To generate efficiently
checkable preconditions for such integrity constraints, we needed a normalization pro-
cess that eliminates update operations from the preconditions and splits the generated
precondition into the invariant and the part to be checked.

First attempts to develop such a process by hand failed. The combination of (a) mul-
tisets resulting from kind steps in the integrity constraints, (b) intermediate syntax ex-
tensions, and (c) exceptional situation caused, e.g., by reading at paths not in the doc-
ument, is very difficult to manage without tool support. The use of Isabelle/HOL was
indispensable for developing succinct definitions, proving the correctess of the trans-
formation, and generating the implementation. The resulting theory3 consists of more
than 9000 lines, the generated Haskell code for the wp-transformer about 2200. This
includes the implementation and correctness proof of a first version of a simplifier for
preconditions we developed.

Our next steps are the improvement of the simplifier and the development of an
appropriate schema language on top of the core assertion language (similar to the one
discussed in Sect. 2). With the first version of such a schema language and our approach,
we made very positive experiences during the development of the student registration
system [13]. This system is in practical use and very stable.

3 The Isabelle/HOL theory files and PDFs can be found at https://xcend.de/
theory/

https://xcend.de/theory/
https://xcend.de/theory/
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Bag Equivalence via a

Proof-Relevant Membership Relation

Nils Anders Danielsson

Chalmers University of Technology and University of Gothenburg

Abstract. Two lists are bag equivalent if they are permutations of each
other, i.e. if they contain the same elements, with the same multiplic-
ity, but perhaps not in the same order. This paper describes how one
can define bag equivalence as the presence of bijections between sets of
membership proofs. This definition has some desirable properties:

– Many bag equivalences can be proved using a flexible form of equa-
tional reasoning.

– The definition generalises easily to arbitrary unary containers, in-
cluding types with infinite values, such as streams.

– By using a slight variation of the definition one gets set equivalence
instead, i.e. equality up to order and multiplicity. Other variations
give the subset and subbag preorders.

– The definition works well in mechanised proofs.

1 Introduction

Bag (or multiset) equivalence is equality up to reordering of elements. For sim-
plicity we can start by considering lists. The lists [1, 2, 1] and [2, 1, 1] are bag
equivalent: [1, 2, 1] ≈bag [2, 1, 1]. These lists are not bag equivalent to [1, 2],
because of differing multiplicities. Set equivalence, equality up to reordering and
multiplicity, identifies all three lists: [1, 2, 1] ≈set [2, 1, 1] ≈set [1, 2].

Bag equivalence is useful when specifying the correctness of certain algorithms.
Themost obvious examplemay be provided by sorting. The result of sorting some-
thing should be bag equivalent to the input: ∀ xs . sort xs ≈bag xs. In many cases
the two sides of a bag equivalence (in this case sort xs and xs) have the same type,
but this is not necessary. Consider tree sort, for instance:

tree-sort : List N → List N
tree-sort = flatten ◦ to-search-tree

The function to-search-tree constructs binary search trees from lists, and flatten
flattens trees. We can prove ∀ xs . tree-sort xs ≈bag xs by first establishing the
following two lemmas:

∀ xs . to-search-tree xs ≈bag xs ∀ t . flatten t ≈bag t

These lemmas relate trees and lists.

L. Beringer and A. Felty (Eds.): ITP 2012, LNCS 7406, pp. 149–165, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Another example of the utility of bag equivalence is provided by grammars.
Two grammars are typically said to be equivalent if they generate the same
language, i.e. the same set of strings. However, this is a coarse form of equivalence
which identifies ambiguous and unambiguous grammars. If the languages are
instead seen as bags, then one gets a form of equivalence which takes ambiguity
into account.

Assume that Grammar represents grammars annotated with semantic actions,
and that we have a function parse : Grammar → (String → List Result) which
gives the semantics of a grammar as a function from strings to lists of results
(multiple results in the case of ambiguous grammars). It is then reasonable to
require that a program opt which transforms grammars into more optimised
forms should satisfy the following property:

∀ g s . parse (opt g) s ≈set parse g s ∧ parse (opt g) s �bag parse g s

Here �bag is the subbag preorder : xs �bag ys if every element in xs occurs at
least as often in ys . The property states that the new grammar should yield the
same results as the old grammar ( ≈set ), with no more ambiguity ( �bag ).
The order of the results is unspecified. Note that if we have infinitely ambiguous
grammars, then the lists returned by parse can be infinite, in which case we need
notions of set equivalence and subbag preorder adapted to such lists.

Many definitions of bag equivalence and related concepts are available in
the literature, including classical definitions of permutations; definitions of bag
equivalence for lists in the Coq [19], Ssreflect [7] and Coccinelle [5] libraries; and
definitions of the type of bags in the Boom hierarchy [14], in terms of quotient
containers [2], and in terms of combinatorial species [21, 13]. However, I want
to propose another definition, based on bijections between sets of membership
proofs (Sect. 3). This definition has several useful properties:

– It makes it possible to prove many equivalences using a flexible form of
equational reasoning. This is demonstrated using examples in Sects. 4, 5
and 7.

– By modifying the definition slightly one gets definitions of set equivalence
and the subset and subbag preorders (Sect. 8). By taking advantage of the
similarity of these definitions one can avoid proof duplication: many preser-
vation results, such as the fact that the list monad’s bind operation preserves
the various equivalences and preorders, can be established uniformly for all
the relations with a single proof.

– The definition works for any type with a suitable membership predicate.
Hoogendijk and de Moor [10] characterise a container type as a “relator” with
an associated membership relation, so one might expect that the definition
should work for many container types. Section 6 shows that it works for
arbitrary unary containers, defined in the style of Abbott et al. [1]; this
includes containers with infinite values, such as infinite streams.

– The definition works well in mechanised proofs, and has been used in prac-
tice: I used it to state and formally prove many properties of a parser
combinator library [6].



Bag Equivalence via a Proof-Relevant Membership Relation 151

Section 9 compares the definition to other definitions of bag equivalence.
To demonstrate that the definition works well in a formal setting I will use

the dependently typed, functional language Agda [16, 18] below. The language is
introduced briefly in Sect. 2. Code which includes all the main results in the text
is, at the time of writing, available to download from my web page. (The code
does not match the paper exactly. The main difference is that many definitions
are universe-polymorphic, and hence a bit more general.)

2 Brief Introduction to Agda

In Agda one can define the types of finite (inductive) lists and unary natural
numbers as follows:

data List (A : Set) : Set where
[ ] : List A
:: : A → List A → List A

data N : Set where
zero : N
suc : N → N

Here Set is a type of (small) types, and :: is an infix constructor; the under-
scores mark the argument positions. Values inhabiting inductive types can be
destructed using structural recursion. For instance, the length of a list can be
defined as follows:

length : {A : Set} → List A → N
length [ ] = zero
length (x :: xs) = suc (length xs)

Here {A : Set} is an implicit argument. If Agda can infer such an argument
uniquely from the context, then the argument does not need to be given explic-
itly, as witnessed by the recursive call to length. In some cases explicit arguments
can be inferred from the context, and then one has the option of writing an
underscore ( ) instead of the full expression.

Types do not have to be defined using data declarations, they can also be
defined using functions. For instance, we can define the type Fin n, which has
exactly n elements, as follows:

Fin : N → Set
Fin zero = ⊥
Fin (suc n) = ( + Fin n

data + (A B : Set) : Set where
left : A → A + B
right : B → A + B

Here ⊥ is the empty type, ( the unit type (with sole inhabitant tt), and A + B
is the disjoint sum of the types A and B . By treating Fin n as a bounded number
type we can define a safe lookup function:

lookup : {A : Set} (xs : List A) → Fin (length xs) → A
lookup [ ] ()
lookup (x :: xs) (left ) = x
lookup (x :: xs) (right i) = lookup xs i
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This function has a dependent type: the type of the index depends on the length
of the list. The first clause contains an absurd pattern, (). This pattern is used
to indicate to Agda that there are no values of type Fin (length [ ]) = Fin zero
= ⊥; note that type-checking can involve normalisation of terms, and that Agda
would not have accepted this definition if we had omitted one of the cases.

Below we will use equivalences and bijections. One can introduce a type of
equivalences between the types A and B using a record type as follows:

record ⇔ (A B : Set) : Set where
field to : A → B

from : B → A

To get a type of bijections we can add the requirement that the functions to and
from are inverses:

record ↔ (A B : Set) : Set where
field to : A → B

from : B → A
from-to : ∀ x → from (to x ) ≡ x
to-from : ∀ x → to (from x ) ≡ x

Here ∀ x → . . . means the same as (x : ) → . . .; Agda can infer the type of x
automatically.

The type x ≡ y is a type of equality proofs showing that x and y are equal:

≡ : {A : Set} → A → A → Set

I take ≡ to be the ordinary identity type of intensional Martin-Löf type theory.
In particular, I do not assume that the K rule [17], which implies that all proofs
of type x ≡ y are equal, is available.1 (The reason for this choice is discussed in
Sect. 10.) However, for the most part it should be fine to assume that ≡ is
the usual notion of equality used in informal mathematics.

Note that ↔ is a dependent record type; later fields mention earlier ones. We
can use a dependent record type to define an existential quantifier (a Σ -type):

record ∃ {A : Set} (B : A → Set) : Set where
constructor ,
field fst : A

snd : B fst

A value of type ∃ (λ (x : A) → B x ) is a pair (x , y) containing a value x of type
A and a value y of type B x . We can project from a record using the notation
“record type.field”. For instance, ∃ comes with the following two projections:

∃.fst : {A : Set} {B : A → Set} → ∃ B → A
∃.snd : {A : Set} {B : A → Set} (p : ∃ B) → B (∃.fst p)

We can also use the existential quantifier to define the cartesian product of two
types:

1 By default the K rule is available in Agda, but in recent versions there is a flag that
appears to turn it off.
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× : Set → Set → Set
A × B = ∃ (λ ( : A) → B)

The relations ⇔ and ↔ are equivalence relations. We can for instance
prove that ↔ is symmetric in the following way:

sym : {A B : Set} → A ↔ B → B ↔ A
sym p = record { to = ↔ .from p ; from-to = ↔ .to-from p

; from = ↔ .to p ; to-from = ↔ .from-to p}

I will also use the following combinators, corresponding to reflexivity and tran-
sitivity:

� : (A : Set) → A ↔ A
↔〈 〉 : (A : Set) {B C : Set} →

A ↔ B → B ↔ C → A ↔ C

Here � is a unary postfix operator and ↔〈 〉 a right-associative ternary
mixfix operator. The choice of names and the choice of which arguments are
explicit and which are implicit may appear strange, but they allow us to use a
notation akin to equational reasoning for “bijectional reasoning”. For instance,
if we have proofs p : A ↔ B and q : C ↔ B , then we can prove A ↔ C as
follows:

A ↔〈 p 〉
B ↔〈 sym q 〉
C �

The idea to use mixfix operators to mimic equational reasoning notation comes
from Norell [16].

To avoid clutter I will usually suppress implicit argument declarations below.

3 Bag Equivalence for Lists

For simplicity, let us start by restricting the discussion to (finite) lists. When
are two lists xs and ys bag equivalent? One answer: when there is a bijection f
from the positions of xs to the positions of ys , such that the value at position i
in xs is equal to the value at position f i in ys . We can formalise this as follows:

record ≈′
bag (xs ys : List A) : Set where

field bijection : Fin (length xs) ↔ Fin (length ys)
related : ∀ i → lookup xs i ≡ lookup ys ( ↔ .to bijection i)

However, I prefer a different (but equivalent) definition.
Let us first define the Any predicate transformer [15]:

Any : (A → Set) → List A → Set
Any P [ ] = ⊥
Any P (x :: xs) = P x + Any P xs
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Any P xs holds if P x holds for at least one element x of xs: Any P [x1, . . . , xn ]
reduces to P x1 + . . . + P xn + ⊥. Using Any we can define a list membership
predicate:

∈ : A → List A → Set
x ∈ xs = Any (λ y → x ≡ y) xs

This can be read as “x is a member of xs if there is any element y of xs which
is equal to x”: x ∈ [x1, . . . , xn ] = (x ≡ x1) + . . . + (x ≡ xn) + ⊥. Note that
x ∈ xs is basically a subset of the positions of xs, namely those positions which
contain x . Bag equivalence can then be defined as follows:

≈bag : List A → List A → Set
xs ≈bag ys = ∀ z → z ∈ xs ↔ z ∈ ys

Two lists xs and ys are bag equivalent if, for any element z , the type of positions
z ∈ xs is isomorphic to (in bijective correspondence with) z ∈ ys .

It is important that x ∈ xs can (in general) contain more than one value,
i.e. that the relation is “proof-relevant”. This explains the title of the paper:
bag equivalence via a proof-relevant membership relation. If the relation were
proof-irrelevant, i.e. if any two elements of x ∈ xs were identified, then we would
get set equivalence instead of bag equivalence.

The intuitive explanation above has a flaw. It is based on the unstated as-
sumption that the equality type itself is proof-irrelevant: if there are several
distinct proofs of x ≡ x , then x ∈ [x ] does not correspond directly to the po-
sitions of x in [x ]. However, in the absence of the K rule the equality type is
not necessarily proof-irrelevant [9]. Fortunately, and maybe surprisingly, one can
prove that the two definitions of bag equivalence above are equivalent even in
the absence of proof-irrelevance (see Sect. 5).

The first definition of bag equivalence above is, in some sense, less compli-
cated than ≈bag , because it does not in general involve equality of equality
proofs. One may hence wonder what the point of the new, less intuitive, more
complicated definition is. My main answer to this question is that ≈bag lends
itself well to bijectional reasoning.

4 Bijectional Reasoning

How can we prove that two lists are bag equivalent? In this section I will use an
example to illustrate some of the techniques that are available. The task is the
following: prove that bind distributes from the left over append,

xs >>= (λ x → f x ++ g x ) ≈bag (xs >>= f ) ++ (xs >>= g).

Here bind is defined as follows:

>>= : List A → (A → List B) → List B
xs >>= f = concat (map f xs)
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The concat function flattens a list of lists,map applies a function to every element
in a list, and ++ appends one list to another.

Bag equivalence is reflexive, so any equation which holds for ordinary list
equality also holds for bag equivalence. To see that the equation above does
not (in general) hold for ordinary list equality, let xs be 1 :: 2 :: [ ] and f and
g both be λ x → x :: [ ], in which case the equivalence specialises as follows:
1 :: 1 :: 2 :: 2 :: [ ] ≈bag 1 :: 2 :: 1 :: 2 :: [ ].

Before proving the left distributivity law I will introduce some basic lemmas.
The first one states that Any is homomorphic with respect to ++ / + . The
lemma is proved by induction on the structure of the first list:

Any-++ : (P : A → Set) (xs ys : List A) →
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [ ] ys =
Any P ys ↔〈 sym +-left-identity 〉
⊥ + Any P ys �

Any-++ P (x :: xs) ys =
P x + Any P (xs ++ ys) ↔〈 +-cong (P x �) (Any-++ P xs ys) 〉
P x + (Any P xs + Any P ys) ↔〈 +-assoc 〉
(P x + Any P xs) + Any P ys �

Note that the list xs in the recursive call Any-++ P xs ys is structurally smaller
than the input, x :: xs. The proof uses the following lemmas:

+-left -identity : ⊥ + A ↔ A
+-assoc : A + (B + C ) ↔ (A + B) + C
+-cong : A1 ↔ A2 → B1 ↔ B2 →

A1 + B1 ↔ A2 + B2

They state that the empty type is a left identity of + , and that + is asso-
ciative and preserves bijections. These lemmas can all be proved by defining two
simple functions and proving that they are inverses.

Some readers may wonder why I did not include the step Any P ([ ] ++ ys) ↔
Any P ys in the first case of Any-++. This step can be omitted because the two
sides are equal by definition: [ ] ++ ys reduces to ys . For the same reason the
step Any P ((x :: xs) ++ ys) ↔ P x + Any P (xs ++ ys), which involves two
reductions, can be omitted in the lemma’s second case.

Note that if Any-++ is applied to ≡ z , then we get that list membership is
homomorphic with respect to ++ / + : z ∈ xs ++ ys ↔ z ∈ xs + z ∈ ys .
We can use this fact to prove that ++ is commutative:

++-comm : (xs ys : List A) → xs ++ ys ≈bag ys ++ xs
++-comm xs ys = λ z →
z ∈ xs ++ ys ↔〈 Any-++ ( ≡ z ) xs ys 〉
z ∈ xs + z ∈ ys ↔〈 +-comm 〉
z ∈ ys + z ∈ xs ↔〈 sym (Any-++ ( ≡ z ) ys xs) 〉
z ∈ ys ++ xs �
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x ≡ y → (z ≡ x) ↔ (z ≡ y)
∀ x → (∃ λ y → y ≡ x) ↔ �
B x ↔ (∃ λ y → B y × y ≡ x)

(∃ λ (i : Fin zero)→ P i) ↔ ⊥

A1 ↔ A2 → B1 ↔ B2 →
A1 × B1 ↔ A2 × B2

A × ⊥ ↔ ⊥
A × � ↔ A
(A + B) × C ↔ (A × C ) + (B × C )
(∃ λ x → B x + C x) ↔ ∃ B + ∃ C

(∃ λ (i : Fin (suc n))→ P i) ↔
P (left tt) + (∃ λ (i : Fin n)→ P (right i))

(∃ λ (x : A)→ ∃ λ (y : B)→ C x y) ↔
(∃ λ (y : B)→ ∃ λ (x : A)→ C x y)

(p : A1 ↔ A2) → (∀ x → B1 x ↔ B2 ( ↔ .to p x)) → ∃ B1 ↔ ∃ B2

Fig. 1. Unnamed lemmas used in proofs in Sects. 4–5 (some are consequences of others)

Here I have used the fact that + is commutative: +-comm : A + B ↔ B + A.
Note how commutativity of ++ follows from commutativity of + .

In the remainder of the text I will conserve space and reduce clutter by not
writing out the explanations within brackets, such as 〈 +-comm 〉. For complete-
ness I list various (unnamed) lemmas used in the proofs below in Fig. 1.

Let us now consider two lemmas that relate Any with concat and map:

Any-concat : (P : A → Set) (xss : List (List A)) →
Any P (concat xss) ↔ Any (Any P) xss

Any-concat P [ ] = ⊥ �
Any-concat P (xs :: xss) = Any P (xs ++ concat xss) ↔

Any P xs + Any P (concat xss) ↔
Any P xs + Any (Any P) xss �

Any-map : (P : B → Set) (f : A → B) (xs : List A) →
Any P (map f xs) ↔ Any (P ◦ f ) xs

Any-map P f [ ] = ⊥ �
Any-map P f (x :: xs) = P (f x ) + Any P (map f xs) ↔

(P ◦ f ) x + Any (P ◦ f ) xs �

Here ◦ is function composition. If we combine Any-concat and Any-map, then
we can also relate Any and bind:

Any->>= : (P : B → Set) (xs : List A) (f : A → List B) →
Any P (xs >>= f ) ↔ Any (Any P ◦ f ) xs

Any->>= P xs f = Any P (concat (map f xs)) ↔
Any (Any P) (map f xs) ↔
Any (Any P ◦ f ) xs �

Note that these lemmas allow us to move things between the two arguments
of Any, the list and the predicate. When defining bag equivalence I could have
defined the list membership predicate ∈ directly, without using Any, but I
like the flexibility which Any provides.
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Sometimes it can be useful to switch between Any and ∈ using the following
lemma (which can be proved by induction on xs):

Any-∈ : Any P xs ↔ (∃ λ x → P x × x ∈ xs)

This lemma can for instance be used to show that Any preserves bijections and
respects bag equivalence:

Any-cong : (P Q : A → Set) (xs ys : List A) →
(∀ x → P x ↔ Q x ) → xs ≈bag ys →
Any P xs ↔ Any Q ys

Any-cong P Q xs ys p eq =
Any P xs ↔
(∃ λ z → P z × z ∈ xs) ↔
(∃ λ z → Q z × z ∈ ys) ↔
Any Q ys �

We can now prove the left distributivity law using the following non-recursive
definition:

>>=-left-distributive : (xs : List A) (f g : A → List B) →
xs >>= (λ x → f x ++ g x ) ≈bag (xs >>= f ) ++ (xs >>= g)

>>=-left-distributive xs f g = λ z →
z ∈ xs >>= (λ x → f x ++ g x ) ↔
Any (λ x → z ∈ f x ++ g x ) xs ↔
Any (λ x → z ∈ f x + z ∈ g x ) xs ↔
Any (λ x → z ∈ f x ) xs + Any (λ x → z ∈ g x ) xs ↔
z ∈ xs >>= f + z ∈ xs >>= g ↔
z ∈ (xs >>= f ) ++ (xs >>= g) �

The proof amounts to starting from both sides, using the lemmas introduced
above to make the list arguments as simple as possible, and finally proving the
following lemma in order to tie the two sides together in the middle:

Any-+ : (P Q : A → Set) (xs : List A) →
Any (λ x → P x + Q x ) xs ↔ Any P xs + Any Q xs

Any-+ P Q xs =
Any (λ x → P x + Q x ) xs ↔
(∃ λ x → (P x + Q x ) × x ∈ xs) ↔
(∃ λ x → P x × x ∈ xs + Q x × x ∈ xs) ↔
(∃ λ x → P x × x ∈ xs) + (∃ λ x → Q x × x ∈ xs) ↔
Any P xs + Any Q xs �

Note how the left distributivity property for bind is reduced to the facts that
× and ∃ distribute over + (second and third steps above).
The example above suggests that the definition of bag equivalence presented

in this paper makes it possible to establish equivalences in a modular way, us-
ing a flexible form of equational reasoning: even though we are establishing a
correspondence of the form xs ≈bag ys the reasoning need not have the form
xs ≈bag xs ′ ≈bag . . . ≈bag ys .
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5 The Definitions Are Equivalent

Before generalising the definition of bag equivalence I want to show that the two
definitions given in Sect. 3 are equivalent.

Let us start by showing that ≈bag is complete with respect to ≈′
bag . We

can relate the membership predicate and the lookup function as follows:

∈-lookup : z ∈ xs ↔ ∃ (λ (i : Fin (length xs)) → z ≡ lookup xs i)

This lemma can be proved by induction on the list xs. It is then easy to establish
completeness:

complete : (xs ys : List A) → xs ≈′
bag ys → xs ≈bag ys

complete xs ys eq = λ z →
z ∈ xs ↔
∃ (λ (i : Fin (length xs)) → z ≡ lookup xs i) ↔
∃ (λ (i : Fin (length ys)) → z ≡ lookup ys i) ↔
z ∈ ys �

The second step uses the two components of eq.
Using the ∈-lookup lemma we can also construct an isomorphism between the

type of positions ∃ λ z → z ∈ xs and the corresponding type of indices:

Fin-length : (xs : List A) → (∃ λ z → z ∈ xs) ↔ Fin (length xs)
Fin-length xs =
(∃ λ z → z ∈ xs) ↔
(∃ λ z → ∃ λ (i : Fin (length xs)) → z ≡ lookup xs i) ↔
(∃ λ (i : Fin (length xs)) → ∃ λ z → z ≡ lookup xs i) ↔
Fin (length xs) × ( ↔
Fin (length xs) �

The penultimate step uses the fact that, for any x , types of the form ∃ λ y →
y ≡ x are “contractible” [20, Lemma idisweq], and hence isomorphic to the unit
type. One can easily reduce this fact to the problem of proving that (x , refl) is
equal to (y, eq), for arbitrary y and eq : y ≡ x , where refl : {A : Set} {z : A} →
z ≡ z is the canonical proof of reflexivity. This follows from a single application
of the J rule—the usual eliminator for the Martin-Löf identity type—which in
this case allows us to pattern match on eq, replacing it with refl and unifying y
and x .

As an aside one can note that Fin-length is a generalisation of the fact above
(this observation is due to Thierry Coquand). The statement of Fin-length may
be a bit more suggestive if the existential is written as a Σ -type:

(Σ x : A. x ≡ x1 + . . . + x ≡ xn) ↔ Fin n.

Note that this statement is proved without assuming that the equality type is
proof-irrelevant. We can for instance instantiate A with the universe Set and all
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the xi with the type N.2 In homotopy type theory [20] there are infinitely many
distinct proofs of N ≡ N, but Fin-length is still valid.

We can use Fin-length to construct an index bijection from a bag equivalence:

Fin-length-cong : (xs ys : List A) → xs ≈bag ys →
Fin (length xs) ↔ Fin (length ys)

Fin-length-cong xs ys eq =
Fin (length xs) ↔
∃ (λ z → z ∈ xs) ↔
∃ (λ z → z ∈ ys) ↔
Fin (length ys) �

All that remains in order to establish soundness of ≈bag with respect to
≈′

bag is to show that the positions which the bijection Fin-length-cong xs ys eq
relates contain equal elements. This bijection is defined using a number of lemmas
which I have postulated above. If these lemmas are instantiated with concrete
definitions in a suitable way (as in the code which accompanies the paper), then
the result can be established using a short proof. Thus we get soundness:

sound : (xs ys : List A) → xs ≈bag ys → xs ≈′
bag ys

6 Bag Equivalence for Arbitrary Containers

The definition of bag equivalence given in Sect. 3 generalises from lists to many
other types. Whenever we can define the Any type we get a corresponding notion
of bag equivalence. The definition is not limited to types with finite values. We
can for instance define Any for infinite streams (but in that case Any can not
be defined by structural recursion as in Sect. 3).

It turns out that containers, in the style of Abbott et al. [1], make it very
easy to define Any. The unary containers which I will present below can be
used to represent arbitrary strictly positive simple types in one variable (in a
certain extensional type theory [1]), so we get a definition of bag equivalence
which works for a very large set of types. By using n-ary containers, or indexed
containers [4], it should be possible to handle even more types, but I fear that
the extra complexity would obscure the main idea, so I stick to unary containers
here.

A (unary) container consists of a type of shapes and, for every shape, a type
of positions:

record Container : Set1 where
constructor �

field Shape : Set
Position : Shape → Set

� � : Container → Set → Set� S � P � A =
∃ λ (s : S ) → (P s → A)

2 After making the definitions universe-polymorphic; see the accompanying code.
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(Set1 is a type of large types.) A container C can be interpreted as a type
constructor � C �. Values of type � S � P � A have the form (s , f ), where s is a
shape and f is a function mapping the positions corresponding to s to values.

Let us take some examples:

– We can represent finite lists using N � Fin: the shape is the length of the
list, and a list of length n has n positions.

– Infinite streams can be represented as follows: ( � (λ → N). There is only
one shape, and this shape comes with infinitely many positions.

– Consider finite binary trees with values in the internal nodes:

data Tree (A : Set) : Set where
leaf : Tree A
node : Tree A → A → Tree A → Tree A

This type can be represented by S � P , where S and P are defined as follows
(note that Agda supports overloaded constructors):

data S : Set where
leaf : S
node : S → S → S

P : S → Set
P leaf = ⊥
P (node l r) = P l + ( + P r

The shapes are unlabelled finite binary trees, and the positions are paths to
the internal nodes.

Note that the type of shapes can be obtained by applying the container’s type
constructor to the unit type. For instance, S is isomorphic to Tree (.

Given a container we can define Any as follows [3] (where I have written out
the implicit argument {S � P} in order to be able to give a type signature for p):

Any : {C : Container} {A : Set} → (A → Set) → (� C � A → Set)
Any {S � P} Q (s , f ) = ∃ λ (p : P s) → Q (f p)

Any Q (s , f ) consists of pairs (p, q) where p is an s-indexed position and q is a
proof showing that the value at position p satisfies the predicate Q .

We can now define bag equivalence as before. In fact, we can define bag
equivalence for values of different container types, as long as the elements they
contain have the same type:

∈ : A → � C � A → Set
x ∈ xs = Any (λ y → x ≡ y) xs

≈bag : � C1 � A → � C2 � A → Set
xs ≈bag ys =

∀ z → z ∈ xs ↔ z ∈ ys

We can also generalise the alternative definition ≈′
bag from Sect. 3:

≈′
bag : {C1 C2 : Container} {A : Set} → � C1 � A → � C2 � A → Set

≈′
bag {S1 � P1} {S2 � P2} (s1, f1) (s2, f2) =

∃ λ (b : P1 s1 ↔ P2 s2) → ∀ p → f1 p ≡ f2 ( ↔ .to b p)
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This definition states that two values are bag equivalent if there is a bijection
between their positions which relates equal elements. As before ≈bag and
≈′

bag are equivalent. The proof is easier than the one in Sect. 5: the gen-
eralisation of ∈-lookup holds by definition.

7 More Bijectional Reasoning

Let us now revisit the tree sort example from the introduction. To avoid minor
complications related to the container encoding I use the direct definition of the
Tree type from Sect. 6, and define Any and membership explicitly:

AnyTree : (A → Set) → (Tree A → Set)
AnyTree P leaf = ⊥
AnyTree P (node l x r) =
AnyTree P l + P x + AnyTree P r

∈Tree : A → Tree A → Set
x ∈Tree t =
AnyTree (λ y → x ≡ y) t

The flatten function can be defined (inefficiently) as follows:

flatten : Tree A → List A
flatten leaf = [ ]
flatten (node l x r) = flatten l ++ x :: flatten r

The flatten lemma from the introduction can then be proved as follows (where
∈List refers to the definition of list membership from Sect. 3):

flatten-lemma : (t : Tree A) → ∀ z → z ∈List flatten t ↔ z ∈Tree t
flatten-lemma leaf = λ z → ⊥ �
flatten-lemma (node l x r) = λ z →
z ∈List flatten l ++ x :: flatten r ↔
z ∈List flatten l + z ≡ x + z ∈List flatten r ↔
z ∈Tree l + z ≡ x + z ∈Tree r �

In the leaf case the two sides evaluate to the empty type. The node case contains
two steps: the first one uses Any-++, and the second one uses the inductive
hypothesis twice.

With a suitable definition of to-search-tree it is not much harder to prove the
following lemma (see the accompanying code):

to-search-tree-lemma :
(xs : List N) → ∀ z → z ∈Tree to-search-tree xs ↔ z ∈List xs

It is then easy to prove that tree-sort produces a permutation of its input:

tree-sort-permutes : (xs : List N) → tree-sort xs ≈bag xs
tree-sort-permutes xs = λ z →
z ∈List flatten (to-search-tree xs) ↔
z ∈Tree to-search-tree xs ↔
z ∈List xs �



162 N.A. Danielsson

8 Set Equivalence, Subsets and Subbags

It is easy to tweak the definition of bag equivalence so that we get set equivalence:

≈set : List A → List A → Set
xs ≈set ys = ∀ z → z ∈ xs ⇔ z ∈ ys

This definition states that xs and ys are set equivalent if, for any value z , z is
a member of xs iff it is a member of ys . We can also define subset and subbag
relations:

�set : List A → List A → Set
xs �set ys =
∀ z → z ∈ xs → z ∈ ys

�bag : List A → List A → Set

xs �bag ys =

∀ z → z ∈ xs � z ∈ ys

Here A � B stands for the type of injections from A to B : xs is a subbag of ys
if every element occurs at least as often in ys as in xs.

It is now easy to generalise over the kind of function space used in the four
definitions and define xs ∼[ k ] ys , meaning that xs and ys are k -related, where k
ranges over subset, set, subbag and bag. Using this definition one can prove many
preservation properties uniformly for all four relations at once (given suitable
combinators, some of which may not be defined uniformly). Here is one example
of such a preservation property:

>>=-cong : (xs ys : List A) (f g : A → List B) →
xs ∼[ k ] ys → (∀ x → f x ∼[ k ] g x ) → xs >>= f ∼[ k ] ys >>= g

Details of these constructions are not provided in the paper due to lack of space.
See the accompanying code for more information.

9 Related Work

Morris [15] defines Any for arbitrary indexed strictly positive types. The dual
of Any, All , goes back at least to Hermida and Jacobs [8], who define it for
polynomial functors. In Hoogendijk and de Moor’s treatment of containers [10]
membership is a lax natural transformation, and this implies that the follow-
ing variant of Any-map (with ⇔ rather than ↔ ) holds: x ∈ map f ys ⇔
∃ λ y → x ≡ f y × y ∈ ys .

In a previous paper I used the definitions of bag and set equivalence given
above in order to state and formally prove properties of a parser combinator
library [6]. That paper did not discuss bijectional reasoning, did not discuss
alternative definitions of bag equivalence such as ≈′

bag , and did not define
bag and set equivalence for arbitrary containers, so the overlap with the present
paper is very small. The paper did define something resembling bag and set
equivalence for parsers. Given that x ∈ p · s means that x is one possible result
of applying the parser p to the string s we can define the relations as follows:
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p1 ≈ p2 = ∀ x s → x ∈ p1 · s ∼ x ∈ p2 · s . When ∼ is ⇔ we get language
equivalence, and when it is ↔ we get the stronger notion of parser equivalence,
which distinguishes parsers that exhibit differing amounts of ambiguity. Correct-
ness of the parse function, which takes a parser and an input string to a list of
results, was stated as follows: x ∈ p · s ↔ x ∈ parse p s . Notice the flexibility
provided by the use of bijections: the two sides of the correctness statement refer
to different things—an inductive definition of the semantics of parsers to the left,
and list membership to the right—and yet they can be usefully related.

Abbott et al. [2] define bags using quotient containers. A quotient container
is a container S � P plus, for each shape s , a set G s of automorphisms on
P s , containing the identity and closed under composition and inverse. Quotient
containers are interpreted as ordinary containers, except that the position-to-
value functions of type P s → A (for some A) are quotiented by the equivalence
relation that identifies f1 and f2 if f2 = f1 ◦ g for some g : G s . Abbott et al.
define bags by taking the list container N � Fin and letting G n be the symmet-
ric group on Fin n: G n = Fin n ↔ Fin n. The position-to-value functions of
N � Fin correspond to the lookup function, so this definition of bags is very close
to what you get if you quotient lists by ≈′

bag , the alternative definition of bag
equivalence given in Sect. 3. Quotient containers only allow us to identify values
which have the same shape, so one could not define bags by starting from the bi-
nary tree container defined in Sect. 6 and turning this into a quotient container,
at least not in an obvious way.

In the SSReflect [7] library bag equivalence (for finite lists containing elements
with decidable equality) is defined as a boolean-valued computable function: the
list xs is a permutation of ys if, for every element z of xs ++ ys , the number of
occurrences of z in xs is equal to the number of occurrences in ys .

The Coq [19] standard library contains (at least) two definitions related to
bag equivalence. A multiset containing values of type A, where A comes with
decidable equality, is defined as a function of type A → N, i.e. as a function
associating a multiplicity with every element. There is also an inductive definition
of bag equivalence which states (more or less) that xs and ys are bag equivalent
if xs can be transformed into ys using a finite sequence of transpositions of
adjacent elements. It is easy to tweak this definition to get set equivalence, but
it does not seem easy to generalise it to arbitrary containers.

Contejean [5] defines bag equivalence for lists inductively by, in effect, enu-
merating where every element in the left list occurs in the right one. It seems
likely that this definition can be adapted to streams, but it is not obvious how
to generalise it to branching structures such as binary trees.

In the Boom hierarchy (attributed to Boom by Meertens [14]) the type of
bags containing elements of type A is defined as the free commutative monoid
on A, i.e. bags are lists where the append operation is taken to be commutative.
The type of sets is defined by adding the requirement that the append opera-
tion is idempotent. Generalising to types with infinite values seems nontrivial.
Hoogendijk [11] and Hoogendijk and Backhouse [12], working with the Boom
hierarchy in a relational setting, prove various laws related to bags and sets
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(as well as lists and binary trees). One result is that the map function preserves
bag and set equivalence.

Yorgey [21] points out that one can define the type of bags as a certain (fini-
tary) combinatorial species [13]. A species is an endofunctor in the category of
finite sets and bijections; one can see the endofunctor as mapping a set of posi-
tion labels to a labelled structure. Bags correspond to the species which maps a
set A to the singleton set {A }, and lifts a bijection A ↔ B in the obvious way.

10 Conclusions

Through a number of examples, proofs and generalisations I hope to have shown
that the definition of bag equivalence presented in this paper is useful. I do
not claim that this definition is always preferable to others. For instance, in
the absence of proof-irrelevance it seems to be easier to prove that cons is left
cancellative using the definition ≈′

bag from Sect. 3 (see the accompanying
code). However, ≈bag and ≈′

bag are equivalent, so in many cases it should
be possible to use one definition in one proof and another in another.

As mentioned above I have been careful not to use the K rule when formalising
this work. The reason is the ongoing work on homotopy type theory [20], a form
of type theory where equality of types is (equivalent to) isomorphism and equality
of functions is pointwise equality. With this kind of type theory bag equivalence
can be stated as xs ≈bag ys = (λ z → z ∈ xs) ≡ (λ z → z ∈ ys), the bijectional
reasoning in this paper can be turned into equational reasoning, and preservation
lemmas like +-cong do not need to be proved (because equality is substitutive).
However, homotopy type theory is incompatible with the K rule, which implies
that all proofs of A ≡ B are equal: the equalities corresponding to the identity
function and the not function should be distinct elements of Bool ≡ Bool .
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Abstract. We provide a framework for program and data refinement in
Isabelle/HOL. It is based on a refinement calculus for monadic expres-
sions and provides tools to automate canonical tasks such as verification
condition generation. It produces executable programs, from which Is-
abelle/HOL can generate verified, efficient code in various languages,
including Standard ML, Haskell and Scala.

In order to demonstrate the practical applicability of our framework,
we present a verified implementation of Hopcroft’s algorithm for au-
tomata minimisation.

1 Introduction

When verifying algorithms, there is a trade-off between the abstract version of
the algorithm, that captures the algorithmic ideas, and the actual implemen-
tation, that exploits efficient data structures and other kinds of optimisations.
While the abstract version has a clean correctness proof, it is usually inefficient or
not executable at all. On the other hand, the correctness proof of the implemen-
tation version is usually cluttered with implementation details that obfuscate the
main ideas and may even render proofs of more complex algorithms unmanage-
able. A standard solution to this problem is to stepwise refine [3] the abstract
algorithm to its implementation, showing that each refinement step preserves
correctness. A special case is data refinement [16], which replaces operations on
abstract datatypes (e. g. sets) by corresponding operations on concrete datatypes
(e. g. red-black trees). In Isabelle/HOL [27], there is some support for data refine-
ment during code generation [14]. However, it is limited to operations that can
be fully specified on the abstract level. This limitation is an inherent problem,
as the following example illustrates:

Example 1. Consider an operation that selects an arbitrary element from a
nonempty set S. Ideally, we would like to write ε x. x ∈ S in the abstract algo-
rithm, where ε is the Hilbert-choice operator. However, this already over-specifies
the operation, as one cannot prove that an implementation of this operation ac-
tually returns the same element as the choice operator does.

A common solution for this problem is nondeterminism. For the functional
language of Isabelle/HOL, this means to use relations instead of functions. How-
ever, in order to make refinement of relational programs manageable, some tool

L. Beringer and A. Felty (Eds.): ITP 2012, LNCS 7406, pp. 166–182, 2012.
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support is required. Our first approach in this direction was a formalisation of re-
lational WHILE-loops [20]. It was successfully used to verify a depth first search
algorithm [20] and basic tree automata operations [21]. However, it is tailored
to algorithms with a single while loop and involves some lengthy boilerplate
code.

In contrast, this paper presents a general framework for nondeterministic (re-
lational) programs in Isabelle/HOL. Programs are represented by a monad [35],
on which we define a refinement calculus [4,33]. Monads allow a seamless and
lightweight integration within the functional logic of Isabelle/HOL. Moreover,
we implemented proof tools that automate canonical tasks such as verification
condition generation. Thus, the user of our framework can focus on verifying
the algorithmic ideas of the program, rather than coping with the details of the
underlying refinement calculus. Our framework also integrates nicely with the
Isabelle Collection Framework (ICF) [20,19], which makes many verified, effi-
cient data structures readily available. When an algorithm has been refined to
its implementation, the code generator of Isabelle/HOL [13,15] produces efficient
code in various languages, including Standard ML, Haskell and Scala.

We have conducted several case studies that demonstrate the practical ap-
plicability of our framework: The framework itself [22] comes with a collec-
tion of simple examples and a userguide that helps one getting started. A
more complex development is the formalisation of Dijkstra’s shortest path al-
gorithm [28]. In this paper, we present the largest case study so far: As part of
the Computer Aided Verification of Automata-project1, we successfully verified
Hopcroft’s minimisation algorithm [17] for finite automata. The correctness proof
of this algorithm is non-trivial even at an abstract level. Moreover, efficient im-
plementations usually use some non-obvious optimisations, which would make
a direct correctness proof unmanageable. Thus, it is a good candidate for using
stepwise refinement, which allows a clean separation between the algorithmic
idea and the optimisations.

Related Work. Data refinement dates back to Hoare [16]. Refinement calculus
was first proposed by Back [3] for imperative programs and has been subject
to extensive research. Good overviews are [4,11]. There are various mechanised
formalisations of refinement calculus for imperative programs (e. g. [23,34,31]).
They require quite complicated techniques like window reasoning. Moreover,
formalisation of an universal state space, as required for imperative programs,
is quite involved in HOL (cf. [32]). As also observed in [9], these complications
do not arise in a monadic approach. Schwenke and Mahony [33] combine mon-
ads with refinement calculus. However, their focus is different: While we aim
at obtaining a simple calculus suited to our problems, they strive for introduc-
ing more advanced concepts like angelic nondeterminism. Moreover, they do not
treat data refinement. The work closest to ours is the refinement monad used in
the seL4 project [9]. While they use a state monad to model kernel operations
with side-effects, we focus on refinement of model-checking algorithms, where a

1 See http://cava.in.tum.de/

http://cava.in.tum.de/
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simpler monad without state is sufficient. In some cases, deterministic specifica-
tions and parametrisation may be viable alternatives to relational specifications
(cf. [24,14]). However, the relational approach is more general and scalable.

Despite being a widely-used, non-trivial algorithm, we are aware of only one
other formalisation ofHopcroft’s algorithm,whichwas performed byBraibant and
Pous [8] in Coq. However, they do not verify Hopcroft’s algorithm, but a simplified
one. The level of abstraction used there is a compromise between having a correct-
ness proof of manageable size and allowing code generation. In addition, there is
a formalisation of the Myhill/Nerode theorem in Nuprl by Constable, Jackson,
Naumov and Uribe [10]. This formalisation allows the extraction of an inefficient
minimisation algorithm.

Contents. The rest of this paper is organised as follows: In Section 2, we describe
our refinement framework. In Section 3, a verified, efficient implementation of
Hopcroft’s algorithm is presented as a case study. Finally, Section 4 provides a
conclusion and sketches current and future research.

2 The Refinement Framework

2.1 Basic Concepts

To describe nondeterministic programs, we use a monad over the datatype
(a)M ::= res (a set) | fail. Here, a denotes the type of values, and a set denotes
sets of values. Intuitively, a result of the form resX means that the program non-
deterministically returns some value x ∈ X . The result failmeans that there exists
an execution where some assertion failed. On results, we define the ordering ' by
res X ' res Y iff X ⊆ Y and m ' fail for all m ∈ (a)M . If we have m ' m′, we
say that m refines m′. Intuitively, m ' m′ means that all values in m are also in
m′.

With this ordering, (a)M is a complete lattice with least element res ∅ and
greatest element fail. The return and bind operations are defined as follows:

return x := res {x} bind (res X) f :=
⊔

(f X) bind fail f := fail.

Note that our monad is a combination of the set and exception monad [35].
Intuitively, the return x operation returns a single value x, and the bind m f
operation nondeterministically chooses a value from m and applies f to it. If
f fails for some value in m, the operation bind m f also fails. We use a do-
notation similar to Haskell, e. g. we write do{x←M ; let y = t; f x; g y} for
bind M (λx. let y = t in bind (f x) (λ . g y)).

A program is a function f : a → (r)M from argument values to results. Cor-
rectness is defined by refinement: for a precondition Φ : a → B and a postcondi-
tion Ψ : a → r → B, we define |= {Φ} f {Ψ} := ∀x. Φ x =⇒ f x ' spec (Ψ x),
where we use spec synonymously for res to emphasise that a set of values is
used as specification. Identifying sets with their characteristic predicates, we also
use the notation spec x. Φ x := res {x | x ∈ Φ}. In this context, fail is the
result that refines no specification. Dually, res ∅ is the result that refines any
specification. We use succeed := res ∅ to emphasise this duality.
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2.2 Data Refinement

When deriving a concrete program from an abstract one, we also want to replace
abstract data types (e. g. sets) with concrete ones (e. g. hashtables). This process
is called data refinement [16]. To formalise data refinement, we use an abstraction
relation R ⊆ c × a that relates concrete values c with abstract values a. We
implicitly assume that R can be written as R = {(c, αR c) | IR c}, where IR is
called data type invariant and αR is called abstraction function. This restricts
abstraction relations to those relations that map a concrete value to at most one
abstract value, which is a natural assumption in our context.

Example 2. Sets of integers can be implemented by lists with distinct elements.
The invariant IR asserts that the list contains no duplicates and the abstraction
function αR maps a list to the set of its values.

This example illustrates two properties of data refinement: First, the invariant
is required to sort out invalid concrete values, in our case lists with duplicate
elements. Second, an implementation is not required to be complete w. r. t. the
abstract data type. In our case, lists can only implement finite sets, while the
abstract data type may represent arbitrary sets.

We define a concretisation function ⇓R : (a)M → (c)M that maps a result over
abstract values to a result over concrete values:

⇓R (res X ′) := res {x | IR x ∧ αR x ∈ X ′} ⇓R fail := fail

Intuitively, ⇓R m′ is the greatest concrete result that corresponds to the abstract
result m′. In Example 2, we have ⇓R (return {1, 2}) = res {[1, 2], [2, 1]}, i. e.
the set of all distinct lists representing the set {1, 2}.

We also define an abstraction function ⇑R : (c)M → (a)M by

⇑R (res X) :=

{
αR X if ∀x ∈ X. IR x

fail otherwise
⇑R fail := fail

We have ⇑Rm ' m′ ⇔ m ' ⇓Rm′, i. e. ⇑R and ⇓R are a Galois-connection [25].
Galois-connections are commonly used in data refinement (cf. [26,5]). We exploit
their properties for proving the rules for our recursion combinators.

To improve readability, we define the notations

m 'R m′ := m ' ⇓R m′ and f 'Ra→Rr f ′ := ∀(x, x′) ∈ Ra. f x 'Rr f ′ x′.

Intuitively, m 'R m′ means that the concrete result m refines the abstract result
m′ w. r. t. the abstraction relation R; f 'Ra→Rr f ′ means that the concrete
program f refines the abstract program f ′, where Ra is the abstraction relation
for the arguments and Rr the one for the results.

The operators 'R and 'Ra→Rr are transitive in the following sense:

m 'R1 m′ ∧m′ 'R2 m′′ =⇒ m 'R1R2 m′′

f 'Ra1→Rr1 f ′ ∧ f ′ 'Ra2→Rr2 f ′′ =⇒ f 'Ra1Ra2→Rr1Rr2 f ′′
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where R1R2 := {(x, x′′) | ∃x′. (x, x′) ∈ R1 ∧ (x′, x′′) ∈ R2} is relational compo-
sition. This allows stepwise refinement, which is essential for complex programs,
such as our case study presented in Section 3.

The following rule captures the typical course of program development with
our framework:

|= {Φ} f1 {Ψ} ∧ fn 'Ra→Rr f1

=⇒ |= {λx. IRa x ∧ Φ (αRa x)} fn {λx x′. IRr x′ ∧ Ψ (αRa x) (αRr x′)}

First, an initial program f1 is shown to be correct w. r. t. a specification. Then,
it is refined (possibly in many steps) to a program fn. The conclusion of the rule
states that the refined program is correct w. r. t. a specification that results from
the abstract specification and the refinement relation: the precondition requires
the argument x to satisfy its data type invariant IRa and the abstraction of the
argument αRa x to satisfy the abstract precondition Φ. Then, the postcondi-
tion guarantees that the result x′ satisfies the data type invariant IRr and its
abstraction αRr x′ satisfies the abstract postcondition Ψ .

Ideally, f1 captures the basic ideas of the algorithm on an abstract level, and
fn uses efficient data structures and is executable. In our context, executable
means that the Isabelle code generator [13,15] can generate code for the program.
This is the case if the program is deterministic and the expressions used in the
program are executable. For technical reasons, we require fn : a → (r)M to have
the form λx. return (fplain x) (for total correct programs) or λx. nres-of (fdet x)
(for partial correct programs). Here, fplain : a → r is a plain function that
does not use the result monad at all, and fdet : a → (r)Mdet is a function over a
deterministic result monad, which is embedded into the nondeterministic monad
via the function nres-of : (a)Mdet → (a)M . For deterministic programs fn−1, the
framework automatically generates fn and proves that fn ' fn−1 holds.

2.3 Combinators

In this section, we describe the combinators that are used as building blocks for
programs. Note that due to the shallow embedding, our framework is extensible,
i. e. new combinators can be added without modifying the existing code.

We already covered the monad operations return and bind, as well as the re-
sults fail and succeed. Moreover, standard constructs provided by Isabelle/HOL
can be used (e. g. if, let, case, λ-abstraction).

Assertions. A useful combinator is assert Φ := if Φ then return () else fail,
where () is the element of the unit type. Its intended use is do{assert Φ;m}.
Assertions are used for refinement in context (cf. [4, Chap. 28]), as illustrated
by the following example:

Example 3. Reconsider Example 2, where sets are implemented by distinct lists.
This time we select an arbitrary element from a set, i. e. we implement the
specification spec x. x ∈ S for some nonempty set S. The concrete operation
is implemented by the hd-function, which returns the first element of a list. We
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obviously have S �= ∅∧ (l, S) ∈ R =⇒ return hd l ' spec x. x ∈ S. However, to
apply this rule, we have to know that S is, indeed, nonempty. For this purpose,
we use do{assert S �= ∅; spec x. x ∈ S} as the abstract operation. Thus, non-
emptiness is shown during the correctness proof of the abstract program, and
refinement can be proved under the assumption that S is not empty.

Recursion. In our lattice-theoretic framework, recursion is naturally modelled as
a fixed point of a monotonic functional. Functionals built from monad operations
are always monotonic and already enjoy some tool support in Isabelle/HOL [18].

Assume that we want to define a function f : a → (r)M according to the
recursion equation f x = B f x, where B : (a → (r)M) → a → (r)M is
a monotonic functional describing the body of the function. To reason about
partial correctness, one naturally chooses the least fixed point of B, i. e. one
defines f := lfp B (cf. [4]2). To express the monotonicity assumption, we define

rec B x := do{assert mono B; lfp B x}.

Intuitively, this definition ignores nonterminating executions. In the extreme
case, when there is no terminating execution for argument x at all, we get
rec B x = succeed, which trivially satisfies any specification.

Dually, total correctness is naturally described by the greatest fixed point:

recT B x := do{assert mono B; gfp B x}.

Intuitively, already a single non-terminating execution from argument x results
in recT B x = fail, which trivially does not satisfy any specification.

Note, that the intended correctness property (partial or total) is determined
by the combinator (rec or recT) used in the program. It would be more natural
to determine this by the specification. The Egli-Milner order [12,30] provides a
tool for that. Using it in our framework is left for future work.

From the basic recursion combinators, we derive the combinators while,
whileT and foreach, which model tail-recursive functions and iteration over
the elements of a finite set, respectively. These combinators allow for more read-
able programs and proofs. Moreover, a foreach-loop can easily be refined to
a fold operation on the data structure implementing the set, which usually re-
sults in more efficient programs. The Isabelle Collection Framework [19] provides
such fold-functions (called iterators there), and our refinement framework can
automatically refine foreach-loops to iterators.

2.4 Proof Rules

In this section, we describe the proof rules provided by our framework. Given
a proof obligation m 'R m′, these rules work by syntactically decomposing m
and m′, generating new proof obligations for the components of m and m′.
2 The description there [4, Chap. 20] is based on weakest preconditions. Their lattice
is dual to ours, i. e. fail (called abort there) is the least element and succeed (called
magic there) is the greatest element. Hence, they take the greatest fixed point for
partial correctness and the least fixed point for total correctness.
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Typically, a refinement step refines spec-statements to their implementations
and performs data refinements that preserve the structure of the program. Thus,
we distinguish two types of refinement: Specification refinements have the form
m 'R spec Φ, and pure data refinements have the form m 'R m′, where the
topmost combinator in m and m′ is the same. For each combinator, we provide
a proof rule for specification refinement and one for pure data refinement.

Note that in practice not all refinements are specification or pure data re-
finements. Some common cases, like introduction or omission of assertions, are
tolerated by our verification condition generator. For more complex structural
changes, we provide a method to convert a refinement proof obligation into a
boolean formula, based on pointwise reasoning over the underlying sets. This
formula is solved using standard Isabelle/HOL tools. In practice, this works well
for refinements that do not involve recursion.

For the basic combinators, we use the following rules:

(∀a. Φ a =⇒ f a � spec (Ψ a)) =⇒ |= {Φ} f {Ψ} (fun-sp)(
∀a a′. (a, a′) ∈ Ra =⇒ f a �Rr f ′ a′) =⇒ f �Ra→Rr f ′ (fun-dr)(
m � spec x. ∃ x′. (x, x′) ∈ R ∧ Φ x′) =⇒ m �R spec Φ (spec-dr)

(∀x. Φ x =⇒ Ψ x) =⇒ spec Φ � spec Ψ (spec-sp)

Φ r =⇒ return r � spec Φ (ret-sp)

(r, r′) ∈ R =⇒ return r �R return r′ (ret-dr)

m � spec x. (f x � spec Φ) =⇒ bind m f � spec Φ (bind-sp)

m �R1 m′ ∧ f �R1→R2 f ′ =⇒ bind m f �R2 bind m′ f ′ (bind-dr)

mono B ∧ Φ x0 ∧ (∀f x. Φ x ∧ |= {Φ} f {Ψ} =⇒ B f x � spec (Ψ x))

=⇒ rec B x0 � spec (Ψ x0) (rec-sp)

mono B ∧ Φ x0 ∧ wf V

∧
(
∀f x. Φ x ∧ |= {λx′. Φ x′ ∧ (x′, x) ∈ V } f {Ψ} =⇒ B f x � spec (Ψ x)

)
=⇒ recT B x0 � spec (Ψ x0) (rect-sp)

mono B ∧ (x, x′) ∈ Ra ∧
(
∀f f ′. f �Ra→Rr f ′ =⇒ B f �Ra→Rr B′ f ′)

=⇒ rec B x �Rr rec B′ x′ ∧ recT B x �Rr recT B′ x′ (rec(t)-dr)

Note that, due to space constraints, we omitted the rules for some standard
constructs (if, let, case). The rules (fun-sp) and (fun-dr) unfold the shortcut
notations for programs with arguments, and (spec-dr) pushes the refinement re-
lation inside a spec-statement. Thus, the other rules only need to consider goals
of the form m ' ⇓R m′ and m ' spec Φ. The (spec-sp)-rule converts refinement
of specifications to implication. The (ret-sp) and (ret-dr)-rules handle refine-
ment of return statements. The (bind-sp)-rule decomposes the bind-combinator
by generating a nested specification. The (bind-dr)-rule introduces a new refine-
ment relation R1 for the bound result. The (rec-sp)-rule requires to provide an
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invariant Φ and to prove that the body of the recursive function is correct, under
the inductive assumption that recursive calls behave correctly. The (rect-sp)-rule
additionally requires a well-founded3 relation V , such that the parameters of re-
cursive calls decrease according to V . Note, that these rules resemble the rules
used for Hoare-Calculus with procedures (cf. [29] for an overview). The intuition
of the (rec-dr)-rule is similar: One has to show that the function bodies are in
refinement relation, under the assumption that recursive calls are in relation.

Also the rules for while-loops, which are displayed below, resemble their coun-
terparts from Hoare-Calculus:

I x0 ∧ (∀x. I x ∧ b x =⇒ f x � spec I) ∧ (∀x. I x ∧ ¬b x =⇒ Φ x)

=⇒ while b f x0 � spec Φ (while-sp)

wf V ∧ I x0 ∧ (∀x. I x ∧ b x =⇒ f x � spec (λx′. I x′ ∧ (x′, x) ∈ V ))

∧ (∀x. I x ∧ ¬b x =⇒ Φ x)

=⇒ whileT b f x0 � spec Φ (whilet-sp)

(x0, x
′
0) ∈ R ∧

(
∀(x, x′) ∈ R. b x = b′ x′ ∧

(
b x =⇒ f x �R f ′ x′))

=⇒ while b f x0 �R while b′ f ′ x′
0 ∧whileT b f x0 �R whileT b′ f ′ x′

0

(while(t)-dr)

Verification Condition Generator. The proof rules presented above are engi-
neered such that their iterated application decomposes a refinement proof obli-
gation into new proof obligations that do not contain combinators any more.
We implemented a verification condition generator (VCG) that automates this
process. Invariants and well-founded relations are specified interactively during
the proof. We also provide versions of while-loops that are annotated with their
invariant. To also make this invariant available for refinement proofs, the an-
notated while-loops assert its validity. The rules for the recursion combinators
introduce monotonicity proof obligations, which our VCG discharges automati-
cally, exploiting monotonicity of monad expressions (cf. [18]).

When data-refining the bind-combinator (bind-dr), a refinement relation R1

for the bound result is required. Here, we provide a heuristics that guesses an
adequate relation from its type, which works well for most cases. In those cases
where it does not work, refinement relations can be specified interactively.

3 Hopcroft’s Algorithm

3.1 Motivation

As part of the Computer Aided Verification of Automata-Project4 a library for
finite automata is currently developed in Isabelle/HOL [27]. A minimisation al-
gorithm is an important part of such a library. First Brzozowski’s minimisation
algorithm [36] was implemented, because its verification and implementation is

3 We define wf V iff there is no infinite sequence 〈xi〉i∈N with ∀i. (xi+1, xi) ∈ V .
4 See http://cava.in.tum.de/

http://cava.in.tum.de/
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straightforward. As the automata library matured, providing Hopcroft’s minimi-
sation algorithm [17] was desirable, because it is more efficient.

When we first implemented Hopcroft’s algorithm, the refinement framework
was not yet available. We therefore used relational WHILE-loops [20]. Unluckily,
this technique does not support nondeterministic, nested loops. Therefore, we
first verified a very abstract version of Hopcroft’s algorithm that does not require
an inner loop. In one huge step, this abstract version was then refined to an
executable one that uses a deterministic inner loop. Intermediate refinement
steps were not possible due to the missing support for nondeterministic, nested
loops. A simple refinement step finally led to code generation using the Isabelle
Collection Framework [20,19].

Using one large refinement step, resulted in a lengthy, complicated proof.
Many ideas were mixed and thereby obfuscated. Another problem was that
reusing invariants during refinement was tricky. As a result, some parts of the
abstract correctness proof had to be repeated. Worst of all, the implementation
of Hopcroft’s algorithm used only simple data structures and optimisations. As
the refinement proof was already complicated and lengthy, we did not consider
it manageable to verify anything more complex. For our examples, the resulting
implementation was not significantly faster than the simple, clean implementa-
tion of Brzozowski’s algorithm. Thus, we did not achieve our goal of providing
an efficient minimisation algorithm.

Using the refinement framework solved all these problems. The monadic
approach elegantly handles nondeterminism. In particular, nested, nondetermin-
istic loops are supported. Therefore, the huge, cluttered refinement step of the
first attempt could be replaced with several small ones. Each of these new refine-
ment steps focuses on only one issue. Hence, they are conceptually much easier
and proofs are cleaner and simpler, especially as the refinement framework pro-
vides good automation. Constructs like assert transport important information
between the different layers. This eliminates the need to reprove parts of the
invariant. Moreover, these improvements of the refinement infrastructure make
it feasible to refine the algorithm further. The generated code behaves well for
our examples.

In the following, the new version of the implementation of Hopcroft’s algo-
rithm [17] is presented. The presentation focuses on refinement. We assume that
the reader is familiar with minimisation of finite automata. An overview of min-
imisation algorithms can be found in Watson [36].

3.2 Basic Idea

Let A = (Q, Σ, δ, q0,F) be a deterministic finite automaton (DFA) consisting of
a finite set of states Q, an alphabet Σ, a transition function δ : Q×Σ → Q, an
initial state q0 and a set of accepting states F ⊆ Q. Moreover, let A contain only
reachable states. Hopcroft’s algorithm computes the Myhill-Nerode equivalence
relation in the form of the partition {{q′ | q′ is equivalent to q} | q ∈ Q}. Given
this relation, the minimal automaton can easily be derived by merging equivalent
states.
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The abstract idea is to first partition states into accepting and non-accepting
ones: partF := {F ,Q − F} − {∅}. The algorithm then repeatedly splits the
equivalence classes of the partition and thereby refines the corresponding equiv-
alence relation, until the Myhill-Nerode relation is reached. With the following
definitions this leads to the pseudocode shown in Alg. 1. A correctness proof of
this abstract algorithm can e. g. be found in [36].

splitA(C, (a, Cs)) := ( {q | q ∈ C ∧ δ(q, a) ∈ Cs},
{q | q ∈ C ∧ δ(q, a) �∈ Cs} )

splittableA(C, (a, Cs)) := let (Ct, Cf ) = splitA(C, (a, Cs)) in Ct �= ∅ ∧Cf �= ∅

initialise P with partF ;
while there are C ∈ P and (a,Cs) ∈ Σ × P with splittableA(C, (a,Cs)) do

choose such C and (a,Cs);
update P by removing C and adding the two results of splitA(C, (a,Cs));

end
return P ;

Algorithm 1. Pseudocode for the Basic Idea of Hopcroft’s Algorithm

3.3 Abstract Algorithm

The tricky part of Alg. 1 is finding the right splitter (a, Cs). Hopcroft’s algo-
rithm maintains an explicit set L of all splitters that still need to be tried.
Two observations are used to keep L small: once a splitter has been tried,
it does not need to be retried later. Moreover, given C, Ct, Cf , a, Cs with
splitA(C, (a, Cs)) = (Ct, Cf ), it is sufficient to consider only two of the three
splitters (a, C), (a, Ct), (a, Cf ). With some boilerplate to discharge degenerated
corner-cases, these ideas lead to Alg. 2.

Hopcroft step abstract(A, a, Cs,P , L) =
spec (P ′, L′). P ′ = SplitA(P , (a,Cs)) ∧ splitter PA(P , (a,Cs), L, L

′);

Hopcroft abstract(A) =
if (Q = ∅) then return ∅ else
if (F = ∅) then return {Q} else
whileHopcroft abstract invar

T (λ(P , L). L �= ∅) (λ(P , L). do {
(a,Cs)← spec x. x ∈ L;
(P ′, L′)← Hopcroft step abstract(A, a, Cs,P , L);
return (P ′, L′);

}) (partF , {(a,F) | a ∈ Σ})

Algorithm 2. Abstract Hopcroft

Notice, that Alg. 2 is written in the syntax of the refinement framework.
Therefore, the formal definition in Isabelle/HOL looks very similar to the one
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presented here. Due to space limitations, some details are omitted here, though.
In particular, the loop invariant Hopcroft abstract invar, as well as the formal
definitions of Split and splitter P are omitted5. Informally, the function Split
splits all equivalence classes of a partition. splitter P is an abstract specification
of the desired properties of the new splitter set L′. It states that every element
(a, C) of L′ is either a member of L or that C was added to P ′ in this step.
All splitters (a, C) such that C �= Cs and C has not been split, remain in the
splitter set. For all classes C that are split into Ct and Cf and for all a ∈ Σ at
least one of the splitters (a, Ct) or (a, Cf ) needs to be added to L′. If (a, C) is
in L, both need to be added.

3.4 Set Implementation

In a refinement step, Split and splitter P are implemented using a loop (see
Alg. 3). First a subset P ′ of P is chosen, such that all classes that need to be
split are in P ′. Then the foreach loop processes each class C ∈ P ′ and updates
L and P . Hopcroft step set is a correct refinement of Hopcroft step abstract (see
Alg. 2) provided the invariant of Alg. 2 holds. The refinement framework allows
us to use this invariant without reproving it.

Alg. 3 is a high-level representation of Hopcroft’s algorithm similar to the
ones that can be found in literature (e. g. [36]). By fixing a set representation it
would be easily possible to generate code. From now on, refinement focuses on
performance improvements.

Hopcroft step set(A, a, Cs,P , L) =
P ′ ← spec P ′. P ′ ⊆ P ∧ (∀C ∈ P . splittableA(C, (a,Cs))⇒ C ∈ P ′);
(P ′, L′)← foreachHopcroft set invar P ′ (λC (P ′, L′). do {

let (Ct, Cf ) = splitA(C, (a,Cs));
if (Ct = ∅ ∨ Cf = ∅) then return (P ′, L′) else do {

(C1, C2)← spec x. x ∈ {(Cf , Ct), (Ct, Cf )};
let P ′ = (P ′ − {C}) ∪ {C1, C2};
let L′ = (L′−{(a,C) | a ∈ Σ}) ∪ {(a,C1) | a ∈ Σ} ∪ {(a,C2) | (a,C) ∈ L′};
return (P ′, L′);

}
}) (P , L− {(a,Cs)});
return (P ′, L′);

Algorithm 3. Hopcroft Step

3.5 Precomputing the Predecessors

The loop of Alg. 3 computes split(C, (a, Cs)) for many different classes C, but
a fixed splitter (a, Cs). As an optimisation, the set pre := {q | δ(q, a) ∈ Cs} is
precomputed. It is used to compute split. Moreover, the choice of C1 and C2 is
fixed using the cardinality of Cf and Ct. Provided only finite classes are used, the

5 They are available at http://cava.in.tum.de as part of the Isabelle/HOL sources.

http://cava.in.tum.de
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resulting algorithm is a refinement of Alg. 3. Again, the refinement framework
allows us to use the invariant of Alg. 2 to derive this finiteness condition.

3.6 Representation of Partitions

Representing partitions as sets of sets leads to inefficient code. Therefore, the
following data refinement changes this representation to one based on finite
maps. im maps an integer index to a class (represented as a set). sm maps a
state to the index of the class it belongs to. An integer n is used to keep track
of the number of classes. The following abstraction function and invariant are
used for the resulting triples (im, sm, n):

partition map invar(im, sm, n) :=
dom(im) = {i | 0 ≤ i < n} ∧ (∀0 ≤ i < n. im(i) �= ∅) ∧
(∀q. sm(q) = i ⇔ (0 ≤ i < n ∧ q ∈ im(i)))

partition map α(im, sm, n) := {im(i) | 0 ≤ i < n}

Using this representation leads to Alg. 4. When splitting a class C, the old in-
dex is updated to point to Cmax. As a result, the update of L becomes much
simpler, as the replacement of splitters (a, C) with (a, Cmax) now happens implic-
itly. In contrast to previous refinement steps, the data-refinement also requires
a straightforward refinement of the outer loop. Due to space limitations, this
refinement is not shown here.

Hopcroft step map(A, a, is, (im, sm, n), L) =
let pre = {q | δ(q, a) ∈ im(is)};
I ← spec I. I ⊆ {sm(q) | q ∈ pre} ∧

(∀q ∈ pre. splittableA(im(sm(q)), (a, im(is)))⇒ sm(q) ∈ I);
((im′, sm′, n′), L′)← foreachHopcroft map invar I (λi ((im′, sm′, n′), L′). do {

let (Ct, Cf ) = ({q | q ∈ im(i) ∧ q ∈ pre}, {q | q ∈ im(i) ∧ q �∈ pre});
if (Cf = ∅) then return ((im′, sm′, n′), L′) else do {

let (Cmin, Cmax) = if (|Cf | < |Ct|) then (Cf , Ct) else (Ct, Cf );
let (im′, sm′, n′) = ( im′(i �→ Cmax, n �→ Cmin),

λq. if q ∈ Cmin then n else sm′(q), n′ + 1);

let L′ = {(a, n) | a ∈ Σ} ∪ L′;
return ((im′, sm′, n′), L′);

}
}) ((im, sm, n), L− {(a, is)});
return ((im′, sm′, n′), L′);

Algorithm 4. Hopcroft Map Representation

3.7 Representation of Classes

Alg. 4 is already executable efficiently. However, refining the representation of
classes leads to further performance improvements. Following the implementa-
tion of Hopcroft’s algorithm by Baclet and Pagetti [6], we use a bijective, finite
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map pm from Q to {i | 0 ≤ i < |Q|} and its inverse pim. By carefully updating
pm and pim during the run of the algorithm, it can be ensured that all classes
that are needed are of the form {pim(i) | l ≤ i ≤ u}. Therefore, classes can
be represented by a pair of indices l, u. Due to space limitations, details are
omitted here5.

3.8 Code Generation

Thanks to the good integration of our refinement framework with the Isabelle
Collection Framework (ICF) [19], it is straightforward to implement the sets
and finite maps used in Hopcroft’s algorithm with executable datastructures
provided by the ICF.

For the implementation we fix states to be natural numbers. This allows us
to implement finite maps like pm, pim, im or sm by arrays. Other finite maps as
well as most sets are implemented by red-black-trees.

For computing the set of predecessors pre, it is vital to be able to efficiently
iterate over the union of many sets. This is achieved by using sorted lists of
distinct elements for computing pre. In order to efficiently look up the set of
predecessors for a single state and label, a datastructure using arrays and sorted
lists is generated in a preprocessing step.

The set of splitters is implemented by an unsorted list of distinct elements.
Lists can easily be used as a stack and then provide the operations of inserting a
new element and removing an element very efficiently. More importantly though,
the choice of the splitter influences the runtime considerably. Experiments by
Baclet and Pagetti [6] suggest that implementing L as a stack is a good choice.

Once the datastructures have been instantiated, Isabelle is able to generate
code in several programming languages including SML, OCaml, Haskell and
Scala.

3.9 Experimental Results

To test our implementation, we benchmarked it against existing implementa-
tions of minimisation algorithms. We compare our implementation with a highly
optimised implementation of Hopcroft’s algorithm by Baclet and Pagetti [6] in
OCaml. Moreover, we compare it with an implementation of Blum’s algorithm [7]
that is part of an automaton library by Leiß6 in Standard ML. It is unfortunate
for the comparison that Leiß implements Blum’s algorithm instead of Hopcroft’s.
However, we believe that a comparison is still interesting, because Blum’s algo-
rithm has the same asymptotic complexity. As it was written for teaching, Leiß’
library is using algorithms and code that are comparably easy to understand.
Keeping this in mind, a bug7 that was discovered after 10 years in the minimi-
sation algorithm is a strong argument for verified implementations.

For a fair comparison, we generated code in OCaml and PolyML for our im-
plementation and benchmarked it against these two implementations. It is hard

6 http://www.cis.uni-muenchen.de/~leiss
7 See changelog in fm.sml.

http://www.cis.uni-muenchen.de/~leiss
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to decide though, what exactly to measure. Most critically, Leiß’ implementa-
tion as well as ours compute the minimal automaton, while the code of Baclet
and Pagetti stops after computing the Myhill-Nerode equivalence relation. This
is significant, because with our red-black-tree based automata implementation,
between 35 and 65 % of the total runtime is spent with constructing the minimal
automaton. Implementations based on arrays would be considerably faster for
this operation.

Another problem are integers. Baclet and Pagetti use the default integer type
of OCaml, which is – depending on the architecture – either 31 or 63 bit wide. In
contrast, Leiß’ and we use arbitrary size integers. The OCaml implementation of
arbitrary size integers is slow. Replacing them leads to a speedup of our OCaml
code of a factor of about 2.5, but results in unsound code for huge automata.

Because of these issues, we decided to provide measurements for a version
that generates the minimal automaton and uses arbitrary size integers as well as
measurements for a version that stops after computing the Myhill-Nerode equiv-
alence relation and uses the default integers of OCaml. A random generator for
DFAs [2], which is available as part of the FAdo [1] library, was used to generate
sets of benchmark automata. Fig. 1 shows how long each implementation needs
to minimise all the automata in these benchmark sets. The numbers in paren-
theses denote the runtime when stopping after generating the Myhill-Nerode
equivalence relation.

No. No. No. Baclet/Pagetti Lammich/Tuerk Leiß
DFAs states labels OCaml OCaml PolyML PolyML

10000 50 2 0.17 s 6.59 s (1.62 s) 1.88 s (1.02 s) 5.38 s
10000 50 5 0.27 s 12.62 s (3.34 s) 3.51 s (1.83 s) 19.34 s
10000 100 2 0.31 s 14.31 s (3.30 s) 3.97 s (1.89 s) 16.41 s
10000 100 5 0.51 s 26.13 s (6.79 s) 7.56 s (3.78 s) 63.21 s
10000 250 2 0.69 s 41.02 s (11.12 s) 11.09 s (5.17 s) 83.62 s

1000 1000 2 0.51 s 18.61 s (4.92 s) 5.37 s (2.36 s) 134.21 s
1000 2500 2 1.44 s 51.35 s (13.52 s) 17.88 s (6.89 s) 905.82 s

Fig. 1. Experimental Results (measured on an Intel Core I7 2720QM)

The implementation of Leiß behaves worst, especially on larger automata.
This might be partly due to the different algorithm. The implementation by
Baclet and Pagetti clearly performs best. It outperforms our implementation
roughly by one order of magnitude.

4 Conclusion

We have presented a framework for stepwise refinement of monadic programs
in Isabelle/HOL. The stepwise refinement approach leads to a clean separation
between the abstract model of an algorithm, which has a nice correctness proof,
and the optimisations that eventually yield an efficient implementation. Our
framework provides theorems and tools that simplify refinement steps and thus
allow the user to focus on the ideas of the algorithm. We have demonstrated
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the usefulness of our framework by various examples. The most complex ones,
verified implementations of Dijkstra’s algorithm [28] and Hopcroft’s algorithm,
would not have been manageable without this framework.

Current and Future Research. A topic of current research is to add even more
automation to our framework. For example, we have implemented a prototype
tool that automatically refines abstract data types to efficient implementations
taken from the Isabelle Collection Framework [19]. The translation is controlled
by a map between abstract and concrete types, and optional annotations to
resolve ambiguities. The tool works well for examples of medium complexity, like
our formalisation of Dijkstra’s algorithm [28], but still requires some polishing.

Another interesting topic is to unify our approach with the one used in the
seL4 project [9]. The goal is a general framework that is applicable to a wide
range of algorithms, including model-checking algorithms and kernel-functions.

Acknowledgements. We thank Manuel Baclet and Thomas Braibant for in-
teresting discussions and their implementations of Hopcroft’s algorithm. We also
thank Petra Malik for her help with formalising finite automata.

References

1. Almeida, A., Almeida, M., Alves, J., Moreira, N., Reis, R.: FAdo and GUItar: Tools
for Automata Manipulation and Visualization. In: Maneth, S. (ed.) CIAA 2009.
LNCS, vol. 5642, pp. 65–74. Springer, Heidelberg (2009)

2. Almeida, M., Moreira, N., Reis, R.: Enumeration and generation with a string
automata representation. Theor. Comput. Sci. 387, 93–102 (2007)

3. Back, R.J.: On the correctness of refinement steps in program development. PhD
thesis, Department of Computer Science, University of Helsinki (1978)

4. Back, R.J., von Wright, J.: Refinement Calculus — A Systematic Introduction.
Springer (1998)

5. Back, R.J., von Wright, J.: Encoding, decoding and data refinement. Formal As-
pects of Computing 12, 313–349 (2000)

6. Baclet, M., Pagetti, C.: Around Hopcroft’s Algorithm. In: Ibarra, O.H., Yen, H.-C.
(eds.) CIAA 2006. LNCS, vol. 4094, pp. 114–125. Springer, Heidelberg (2006)

7. Blum, N.: An O(n log n) implementation of the standard method for minimizing
n-state finite automata. Information Processing Letters 6(2), 65–69 (1996)

8. Braibant, T., Pous, D.: A tactic for deciding kleene algebras. In: First COQ Work-
shop (2009)

9. Cock, D., Klein, G., Sewell, T.: Secure Microkernels, State Monads and Scalable
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Abstract. We present a methodology for the automatic synthesis of
certified, distributed, mobile programs with side effects in Erlang, using
the Coq proof assistant.

First, we define monadic types in the Calculus of Inductive Construc-
tions, using a lax monad covering the distributed computational aspects.
These types can be used for the specifications of programs in Coq. From
the (constructive) proofs of these specifications we can extract Haskell
code, which is decorated with symbols representing distributed nodes and
specific operations for distributed computations. These syntactic anno-
tations are exploited by a back-end compiler to produce actual mobile
code for a suitable runtime environment (Erlang, in our case).

Then, we introduce an object type theory for distributed computa-
tions, which can be used as a front-end programming language. These
types and terms are translate to CIC extended with monadic types; this
allows us to prove the soundess of the object type theory, and to obtain
an implementation of the language via Coq’s extraction features.

This methodology can be ported to other computational aspects, by
suitably adapting the monadic type theory and the back-end compiler.

1 Introduction

One of the most interesting features of type-theory based proof assistants, like
Coq, is the possibility of extracting programs from proofs [9,6]. The main mo-
tivation for this extraction mechanism is to produce certified programs: each
property proved in Coq (e.g., a precise specification between input and output
of programs) will still be valid after extraction. Since the extraction mechanism
relies on the well-known Curry-Howard “proofs-as-programs”, “propositions-as-
types” isomorphism, the extracted programs are naturally expressed in func-
tional languages such as OCaml, Haskell or Scheme.

However, there are many other computational aspects that a programmer
has to deal with, and whose programs are quite difficult to reason on; e.g., dis-
tributed concurrent programs, web services, mobile code, etc. These scenarios
would greatly benefit from mechanisms for extraction and automatic synthesis
of certified programs. Unfortunately, the programming languages implementing
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these aspects usually do not feature a rich type theory supporting a Curry-
Howard isomorphism. Even if such a theory were available, implementing a spe-
cific proof-assistant with its own extraction facilities would be a daunting task.

In this paper, we propose a methodology for circumventing this problem
using the extraction mechanisms of existing proof assistants, namely Coq. Ba-
sically, the idea is that the proof assistant’s type theory (e.g., the Calculus of
Inductive Constructions) can be extended with a suitable computational monad
IO : Set -> Set, covering the specific non-functional computational aspect, simi-
larly to what is done in pure functional languages (e.g., Haskell). These monadic
types can be used in the statements of Propositions to specify the types of (non-
functional) programs, like e.g., f:A -> IO B. These propositions can be proved con-
structively as usual, possibly using the specific properties of the monad operators.
From these proofs we can extract functional programs (e.g., in Haskell) by taking
advantage of the standard Coq extraction facility. In general these programs can-
not be immediately executed because the functional language may not support
the specific computational feature we are dealing with. Nevertheless, we can cover
this gap by implementing a suitable “post-extraction” translation from Haskell to
a suitable target language, with the required features. In fact, the non-functional
features in the extracted Haskell programs are represented by the constructors of
the computational monad, and these informations can be easily exploited by the
post-extraction translation to generate the target program. Thus, Haskell can be
seen as an intermediate language, and the post-extraction translation is techni-
cally a back-end compiler.

Overall, this methodology can be summarized in the following steps:

1. Define a IO monad over Set in Coq, with the required constructors covering
the intended computational aspects.

2. Implement the back-end compiler from Haskell to the target language. Basi-
cally this means to define how each constructor of the IO monad is actually
implemented in the target language. These implementations have to respect
the assumptions/the reference implementations.

3. State and constructively prove propositions over types of the form IO A. A
typical format is the following: forall x:A, {y:(IO B) | P(x,y)}. These
proofs can use the properties of the monad operators.

4. Extract the Haskell function from the proof, and use the back-end compiler
to translate this code into the target language.

5. Execute in the target environment the program obtained in this way.

This approach is quite general and powerful, as it can be effectively used for pro-
gramming in Coq in different notions of computational. However, it requires the
user to have a non trivial knowledge of the Coq proof system. In fact, a program-
mer may prefer to use a high-level language, possibly specialized ad hoc for some
particular aspects. Being more specialized, these front-end languages are not as
expressive as the Calculus of Inductive Constructions, but simpler to use. Still we
can consider to translate these languages into Coq, by means of a front-end com-
piler : each syntactic type of the object language is interpreted as a Set (possibly
using the monad), and terms of the object syntax denote CIC terms between these
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Sets. Thus, CIC extended with the computational monad is used as a framework
for the semantic interpretation of a given object type theory. This allows to take
advantage of Coq type checking for checking object level terms; moreover, we can
obtain readily and implementation of the front-end language by means of the Coq
extraction mechanisms and the backend compiler.

Hence, we can extend the above methodology with the following steps:

6. Define a front-end language, i.e., an object theory of types and terms. Non-
functional computational aspects should be covered by a lax modality.

7. Formalize in Coq the object type theory, the terms, and the typing judgment,
via a deep encoding (i.e., as Inductive Sets).

8. Define a translation of the object types to Coq Sets. In particular, object
types with lax modality are interpreted to sets of the form IO A.

9. Prove that the type theory is consistent w.r.t. the semantics, giving a trans-
lation of well-typed object terms to functions among the corresponding Sets.

At this point, we can specify a program using the object type theory; translate
this specification into a Coq Proposition; prove it as usual; extract the Haskell
program, and compile it into the target language. Or we can write a program
directly in the object term language, translate it to a Coq proof via the soundess
result, extract the Haskell program and compile it to the target language.

In the rest of this paper we will apply this methodology for the synthesis
of distributed, mobile programs in Erlang [1,11]. This is particularly relevant
since Erlang is an untyped language, with little or no support for avoiding many
programming errors. On the other hand Erlang offers excellent support for dis-
tributed, mobile computations.

First, in Section 2 we introduce the “semantic” monad IO in Coq, with cor-
responding constructors covering the intended computational aspects (namely,
code mobility, side-effects and errors). In Section 3 we describe the back-end
compiler from Haskell to Erlang, together with a complete working (although
quite simple) example. Then, in Section 4 we will define λXD, a type theory
for distributed computations with effects similar to Licata and Harper’s HL5 [7],
together with its formalization in Coq (using both weak HOAS and de Bruijn in-
dexes at once). We show how these syntactic datatypes and terms are translated
into Coq Sets (using the IO monad) and functions, thus proving the soundness
of the object type theory. As a not-so-trivial example, in Section 5 we give a
complete specification (in λXD) and extraction of remote read/write operations.
Concluding remarks and directions for further work are in Section 6.

The Coq and Haskell code of the whole development, with examples, is avail-
able at http://sole.dimi.uniud.it/~marino.miculan/LambdaXD/ .

2 Monadic Types for Distributed Computations in Coq

In order to model distributed computation with effects we need to define what
a store is, and take into account that we are in a distributed scenario. To this
end we define a monad (actually, a world-indexed family of monads) covering all

http://sole.dimi.uniud.it/~marino.miculan/LambdaXD/
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non-functional computational aspects: distributed dependency of resources and
memory operations and side effects, possibly with failure.

The type Store models distributed stores. Among several possibilites, the
simplest is to keep a global store which contains all the memory locations of
every host. Let us assume to have a type world of “worlds”, i.e., host identifiers,
and for simplicity that locations and values can be only natural numbers. Then,
a store is a list of triples “(world, location, value)”:

Inductive Ref (w : world): Set := Loc : nat -> Ref w.

Inductive Store : Set :=

Empty : Store | SCons : (world * (nat * nat)) -> Store -> Store.

We can now define the family of monads: given a world w, for each type A
the type IO w A is the type of computations returning values in A on world w:

Definition Result (w: world) (A: Set): Set := A * Store.

Definition IO (w : world) (A : Set) : Set :=

Store -> option (Result w A).

where option is the counterpart of Haskell’s Maybe. Thus a computation yields
either an error or a value of type Result w A which contains a value of type A,
localized at w, and the new store. Thus, a computation of type (IO w A) carries
the stores of all worlds, not only w. This is needed for allowing a computation
at w to execute computations on other worlds, possibly modifying their stores.
As a consequence, a term of type (Ref → ©A) <w> actually is a function of type
(Ref w) -> (IO w A<w>): the argument must be a reference local to world w.

Now we have to define the constructors for the monadic types. The first two
constructors are those of any monad, namely “return” and “bind”. IOret em-
beds a value as a computation, i.e., a function from states to results; IObind
“concatenates” the effects.

Definition IOret (w : world) (A: Set) (x : A): IO w A :=

fun (s: Store) => Some (pair x s).

Definition IObind (w:world)(A B:Type)(a:IO w A)(f:A -> IO w B):IO w B :=

fun s : Store =>

match (a s) with Some (pair a’ s’) => (f a’) s’ | None => None end.

Then, the state is manipulated by the usual “lookup” and “update”:

Definition IOlookup (w:world)(A:Set):Ref w -> (nat -> IO w A) -> IO w A:=

fun addr f s =>

match (do_seek_ref s addr) with Some result => f result s

| None => None end.

Definition IOupdate (w: world) (A: Set):

Ref w -> nat -> IO w A -> IO w A :=

fun addr v m s => match m s with

Some (result, result_state) =>

let r := (do_update w result_state addr v) in

match r with None => None

| Some s’ => Some (pair result s’)

end

| None => None

end.



Synthesis of Distributed Mobile Programs Using Monadic Types in Coq 187

where do_seek_ref and do_update are suitable auxiliary functions. Basically,
(IOlookup w A n f) first finds the value v associated to location n on world w,
then executes the computation f v; similarly, (IOupdate w A n v M) executes
M in the state obtaned by updating the location n with the value v. (For sake
of simplicity, all references are given a different location number, even if they
reside on different worlds.)

New locations are generated by means of IOnew, which adds a new local
reference at the top of the state, before executing the continuation:

Definition IOnew (w:world)(A:Set): nat -> (Ref w -> IO w A) -> IO w A :=

fun (x : nat) (f: Ref w -> IO w A) (s : State) =>

let location := (Loc w (IOfree_index w s)) in

let new_state := (SCons (pair (pair w (IOfree_index w s)) x) s) in

f location new_state.

For modeling distributed computations, we add a function allowing for remote
executions and retrieving the value as a local result.

Definition IOget (w remote: world) (A: Type) : (IO remote A) -> IO w A :=

fun (a : IO remote A) (s : Store) => (a s)

Given a state s, IOget function executes the remote computation by giving it
the state and returning the same object but in a different world. This could look
strange, as the result is untouched—but the type is different, since it becomes IO
w A (automatically inferred by Coq typing system). Notice that we can pass the
remote computation the state of a local one, because each s: Store contains
the locations and corresponding values for every world.

Remark 1. We have given an explicit definition of the data structures and oper-
ations needed for the IO monad. A more abstract approach would be to define
the operations of the monads as atomic constructors of an abstract data type,
together with suitable equational laws defining their behaviour:

Record Monad := mkMonad {

IO : world -> Type -> Type;

IOreturn : forall w A, A -> (IO w A);

IObind : forall w A B, (IO w B) -> (B -> (IO w A)) -> (IO w A);

IOlookup : forall w A, Ref w -> (nat -> IO w A) -> (IO w A);

IOupdate : forall w A, Ref w -> nat -> (IO w A) -> (IO w A);

IO_H1 : forall w A a f, (IObind w A A (IOreturn w A a) f) = (f a);

...

}.

This approach would be cleaner, since it abstracts from the particular imple-
mentation. However, in order to be able to prove all properties we may be in-
terested in, we need to know an equational theory (more precisely, a (Σ,E)
algebraic specification) complete with respect to the intended computational as-
pects. This is a not trivial requirement. Power and Plotkin have provided in [10]
a complete specification for the state monad, but we do not know of a simi-
lar complete axiomatizations for distributed computations, nor if and how this
would “merge” with the former. Hence, we preferred to give an explicit definition
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for each operation: on one hand, the required properties can be proved instead to
be assumed, and on the other these definitions have to be intended as “reference
implementations” of the computational aspects.

3 Extraction of Distributed Programs

The monadic types described above, can be used for specifying programs for
mobile distributed computation, as in the following example:

Example 1 (Remote procedure call). We prove a Lemma stating that a procedure
on a world server can be seen as a procedure local to a world client:

Lemma rpc : forall client server,

(nat -> (IO server bool)) -> (nat -> (IO client bool)).

intros f n; eapply IOget; apply f; assumption.Qed.

From the proof of this Lemma, using the Recursive Extraction command we
obtain a Haskell program (together with all functions and datatypes involved):

rpc :: world -> world -> (Nat -> IO Bool) -> Nat -> IO Bool

rpc client server f n = iOget client server (f n)

The type of the function extracted from the proof of rpc is essentially the
same as of the specification, and its body is stripped of all logical parts. No-
tice that monadic constructors (e.g., IOget) are not unfolded in the extracted
code, which therefore contains undefined symbols (iOget). We could define these
symbols directly in Haskell, but this would be cumbersome and awkward due
the distributed aspects we have to deal with. In this section, we discuss how
this Haskell code is turned into a distributed Erlang program, by means of a
“back-end compiler”. (For an introduction to Erlang, we refer to [1,11].)

Let us denote by �·�ρ the translating function from Haskell to Erlang, where ρ
is the environment containing the Erlang module name and, for each identifier,
a type telling whether this is a function or a variable, and in the former case
the arity of that function. This is needed because in Haskell function variables
begin with a capital letter, while in Erlang only variables do; the arity is needed
to circumvent the currying of Haskell, which is not available in Erlang.

Most of Haskell syntax is translated into Erlang as expected, both being
functional languages (but with different evaluation strategies). Monad operations
need special care: each IO function must be implemented by a suitable code
snippet, conforming to the intended meaning as given by their definition in Coq.
One may think of Coq definitions as “pseudo-” or “high-level” code, and the
Erlang implementations as the actual, “low level” code.

Implementation of Mobility: IOget. An application of the IOget construc-
tor is extracted as a Haskell term (iOget A1 A2 (F A3)), where A1 is the actual
world, A2 is the remote world, and F is the term to be remotely evaluated with
parameters A3. This term is translated in Erlang as follows:
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�iOget A1 A2 (F A3)�ρ = spawn(element(2, �A1�ρ), ρ("modulename"),

dispatcher,[fun () -> �F �ρ�A3�ρend,�A2�ρ, {self(), node()}]),
receive{result, Z -> Z}

Basically, this code spawns a process on the remote host, sending it the code
to be executed, and waits for the result with a synchronous receive. Let us
examine the arguments of spawn. The first argument is the host address we are
going to send the code to; in fact, in Erlang a process is identified by the pair
(pid, host-address), and hence we use these pairs as the implementations
of λXD worlds. The second and third arguments are the module name and the
function name to execute, respectively, which we will describe below. The fourth
argument is a triple whose first component is the code to be executed applied to
its parameters. Since Erlang is call-by-value, we have to suspend the evaluation
of the program before sending to the remote site; to this end the application is
packed in a vacuous λ-abstraction. The second and third components are the
address of the final target (i.e., where the computation must be executed) and
of the local node (i.e., the process which the result must be sent back to).

The function we spawn remotely is dispatcher, which takes a function and
send it to another host where there is an executer function listening:

dispatcher(Mod, Fun, Executer, Target) ->

spawn(element(2,Executer),update,executer,[Mod,Fun,Target]).

executer(Mod, Fun, FinalHost) ->

Z = Fun(), element(1,FinalHost) ! {result, Z}.

The dispatcher behaves as a code forwarder: it spawns a new executer process on
the Executer machine passing it the code and the final target where the result has
to be sent back. When the executer function receives the module, the function
to execute and the target host, it simply evaluates the function by applying to
(); then the result is sent back to the caller.

Implementation of References: IOnew, IOupdate, IOlookup. Being a
declarative language, Erlang does not feature “imperative-style” variables and
references. Nevertheless, we can represent a location as an infinite looping process
which retains a value and replies to “read” messages by providing the value, and
to “update” messages by re-starting with the new value:

location(X) -> receive

{update, Val} -> location(Val);

{get, Node} -> element(1, Node) ! {result, X}, location(X)

end.

Therefore, creating a new location at a given world is simply spawning a new
location process on the host corresponding to that world. The spawning primi-
tive embedded in Erlang returns the pid of the spawned process which is passed
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to the continuation program. This is implemented in the translation of the iOnew
function (which is extracted from the IOnew monad constructor):

�iOnew A1 A2 A3�ρ =(�A3�ρ)(spawn(element(2, �A1�ρ), ρ("module name"),

location, [�A2�ρ]))
On the other hand, the implementation of IOupdate sends an “update” message
to process whose pid is A1, so it updates its internal value and continues with
continuation program which takes no argument:

�iOupdate w A1 A2 A3�ρ =�A1�ρ!{update, �A2�ρ}, �A3�ρ
Notice that the Erlang typing discipline does not ensure either that A1 is a pid
referring to a local process (i.e., a local location), or that it is actually executing
location/1. However, both these properties are guaranteed by Coq typing rules.

Finally the implementation of IOlookup is quite similar to IOupdate’s: the
translation sends a “get” message, along with the caller address in order to get
the response, and synchronously waits for the answer. The result of the operation
is passed to the rest of the program:

�iOlookup w A1 A2�ρ =�A1�ρ!{get, {self(),node()}},
receive{result, Z} → (�A2�ρ)(Z)

Example 2. Let us consider the remote procedure call function of Example 1.
From that Haskell code, we can extract an Erlang procedure for the remote
execution of any program that takes a natural, running our Haskell-to-Erlang
compiler. We obtain the following Erlang program:

rpc (Client, Server, F, N)->

spawn (element (2, Client), rpc, dispatcher, [rpc,

(fun () -> F (N)end),

Server,

{ self (), node () } ]),

receive { result, Z } -> Z end .

As expected, the extracted program has been translated into a spawn function
which passes the term X(H) to the dispatcher on w, which in turn executes the
function at w’ by spawning a remote process; then it receives the result from the
server, and finally returns it.

4 A Type Theory for Distributed Computations

The monadic type theory we have presented above can be used for specifying and
synthesizing Erlang distributed programs, but it requires the user to have a non
trivial knowledge of the Coq proof system. In fact, a programmer may prefer to
use a high-level language, possibly focused on some particular aspects (e.g., web
service orchestration, code mobility, etc.). Being more specialized, these front
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end languages may be not as expressive as the Coq internal logic, but simpler
to use. Nevertheless, we can consider to translate these languages into CIC for
taking advantage of the type checking and program extraction features of Coq.

As an example of this approach, in this section we present a simple type theory
for distributed computation with references, called λXD (“lambda-cross-D”), and
give it an interpretation in Coq using the monadic type theory above.

4.1 λXD

The theory λXD is similar to Licata and Harper’s HL5 [7], the main difference is
that we have an explicit language for terms. This type theory has hybrid modal
constructors for dealing with worlds, mobile computations, and references.

Syntax. The syntax of types and terms is defined as follows.

Types A ::= Unit | Bool | Nat | Ref
| A×B | A → B | ∀w.A | ∃w.A | A@w | ©A

Terms N,M ::= x | n | true | false
| return M | get w M | bind MN | assign MN | new M

| deref M | (M,N) | π1 M | π2 M | MN | λx.M
| hold M | leta x = M in N | letd (w, x) = M in N

| some w M | Λw.M | unbox w M

The types → and × represent functions and products. The types ∀ and ∃ repre-
sent quantifiers over worlds. Next, @ is a connective of hybrid logic, which allows
to be set the world at which a type must be interpreted. Finally, © and Ref
represent monadic computations and references; note that they are not indexed
by a world. The usual modal connectors � and � can be defined using quantifiers
and @: �A = ∀w.A@w and �A = ∃w.A@w.

Regarding terms, we have variables, numbers and booleans, etc. Constructors
λ, leta, letd, Λ bind their variables as usual. leta is the usual “let” constructor,
which binds x to the value of M , then evaluates N ; letd is the elimination of
existential types: M is expected to evaluate to some u V , and w, x are bound to
u, V before evaluatingN . Notice that worlds are not first class objects (this would
lead to computations accepting and returning worlds, with a correspondingly
more complex type theory). For monadic types we have the standard monadic
constructors return and bind, plus constructors for local state manipulation such
as deref, assign and new; the latter allocates a memory region and returns its
address. Finally, get allows access to a remote resource as if it were local.

Typing Rules. Since the computations are related to worlds, a term can be given
a type only with respect a world. Therefore, the typing judgment has the form
“Γ �XD t : A[w]” which is read “in the context Γ , the term t has type A in the
world w”. (We will omit the index XD when clear from the context.) The typing
contexts Ctxt are defined as usual: Γ ::= 〈〉 | Γ, x : A[w] x �∈ dom(Γ )
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Γ, x : A[w] �M : B[w]

Γ � λx.M : A→ B[w]
Lam

Γ �M : A→ B[w] Γ � N : A[w]

Γ � (M N) : B[w]
App

Γ �M : A[w] Γ � N : B[w]

Γ � (M,N) : A×B[w]
Pair

Γ �M : A×B[w]

Γ � π1M : A[w]
Proj1

Γ �M : A×B[w]

Γ � π2M : B[w]
Proj2

Γ �M : A[w′] w fresh in Γ

Γ � Λw.M : ∀w.A[w′]
Box

Γ �M : ∀w.A[w]

Γ � unbox w′M : A[w]
Unbox

� Γ x : A[w] ∈ Γ

Γ � x : A[w]
Var

Γ �M : A[w]

Γ � some w M : ∃w.A[w]
Some

Γ �M : ∃u.A[w] Γ, x : A{z/u}[w] � N : C[w′] z fresh in Γ

Γ � letd (z, x) = M in N : C[w′]
LetD

Γ �M : A[w]

Γ � hold M : A@w[w′]
Hold

Γ �M : A@z[w] Γ, x : A[z] � N : C[w]

Γ � leta x = M in N : C[w]
LetA

Γ �M : A[w]

Γ � return M :©A[w]
Ret

Γ �M :©A[w] Γ � N : A→©B[w]

Γ � bind M N :©B[w]
Bind

Mobile A Γ �M :©A[w′]
Γ � get w′ M :©A[w]

Get
Γ �M : Nat[w] Γ � N : Ref→©A[w]

Γ � new M N :©A[w]
New

Γ �M : Ref [w] Γ � N : Nat→©A

Γ � lookup M N :©A[w]
Lookup

Γ � T1 : Ref [w] Γ � T2 : Nat[w] Γ � T3 :©A[w]

Γ � update T1 T2 T3 :©A[w]
Update

Fig. 1. Typing system for λXD

The typing system is given in Figure 1. Many typing rules are straightforward;
we just focus on the most peculiar ones.

For monadic types, beside the standard rules for return and bind, we have
rules for references and mobile computation. We have chosen that references
can contain only naturals (rules New, Update, Lookup), but clearly this can be
easily generalized. A computation at a given world can be “moved” to another
only by means of the get primitive, which can be seen as a “remote procedure
call”. However, not all computation types can be moved safely; in particular, a
reference is meaningful only with respect to the world it was generated from.
Therefore, following [7], we define the class of mobile types. Intuitively, a type is
mobile if its meaning does not depend on the world where it is interpreted. This
is formalized by an auxiliary judgment Mobile over types, defined as follows:

b ∈ {Unit, Nat, Bool}
Mobile b Mobile A@w

Mobile A Mobile B

Mobile A×B

Mobile A Q∈{∀,∃}
Mobile Qw.A

A computation returning Nat can be accessed remotely, even if it has some side
effect on the remote world, like e.g., get w′ ((new 0 (λx.lookup x (λy.return y)))
(which has type ©Nat at any world w). On the other hand, a computation of
type ©Ref cannot be executed remotely. Still, a reference becomes mobile if we
indicate which world it comes from, using the hold constructor; e.g., the term
get w′ ((new 0(λx.return (hold x))) has type ©(Ref@w′) at any world w.



Synthesis of Distributed Mobile Programs Using Monadic Types in Coq 193

4.2 Formalization of λXD in Coq

The next step is to formalize the object type theory in the Calculus of Inductive
Constructions, by means of a “deep encoding” of types and terms.

Types are represented by an inductively defined Set. The definition is stan-
dard, using the “weak HOAS” technique for representing binders ∀ and ∃ [3,2]:

Hypothesis world : Set.

Inductive typ : Set :=

typ_unit : typ

| typ_nat : typ

| typ_bool : typ

| typ_pair : typ -> typ -> typ

| typ_fun: typ -> typ -> typ

| typ_forall : (world -> typ) -> typ

| typ_exists : (world -> typ) -> typ

| typ_at : typ -> world -> typ

| typ_monad : typ -> typ

| typ_ref : typ.

As an example, ∀w.A@w is represented as (typ forall (fun w => (typ at A

w)). Notice that world is not defined inductively (otherwise we would get exotic
terms), the only terms inhabiting world are variables and possibly constants.

The encoding of terms deals with two kinds of variables and binders. Since
we will define a typing judgment with explicit typing contexts, we use de Bruijn
indexes for representing first-class variables x; instead, variables w ranging over
worlds are represented via weak HOAS, as shown in the following definition:

Inductive location : Set := loc : world -> nat -> location.
Inductive term : Set :=

term_var : nat -> term

| term_tt : term

| term_location : location -> term

| term_o : term

| term_s : term -> term

| term_return : term -> term

| term_get : world -> term -> term

| term_bind : term -> term -> term

| term_new : term -> term -> term

| term_update : term -> term ->

term -> term

| term_lookup : term -> term -> term

| term_pair : term -> term -> term

| term_prj1 : term -> term

| term_prj2 : term -> term

| term_app : term -> term -> term

| term_lam : term -> term

| term_hold : term -> term

| term_leta : term -> term -> term

| term_letd : term -> (world -> term)

-> term

| term_some : world -> term -> term

| term_box : (world -> term) -> term

| term_unbox : world -> term -> term.

Thus, (typ_fun (typ_var 0)) is the usual “de Bruijn-style” encoding of λx.x,
while (typ_box fun w => (term_get w M)) is the encoding of Λw.(get w 0)
in “weak HOAS style”. The constructor letd is represented by term_letd using
both techniques at once: weak HOAS for the world binding and de Bruijn indexes
for the term binding. This mixed approach has many advantages: first, we do not
need an additional type to represent term variables, secondly, the correctness is
easier to prove. Other language constructors are self-explaining.

Finally the typing judgment �XD is represented by an inductive type as fol-
lows (for lack of space, we show only the most complex rule, i.e., that for letd)



194 M. Miculan and M. Paviotti

Inductive typing: env -> term -> typ -> world -> Set := ...

| typing_letd: forall E t1 t2 A C w w’,

E |= t1 ~: typ_exists A [ w’ ] ->

(forall z, E & A z ~ w’ |= t2 z ~: C [ w ]) ->

E |= term_letd t1 t2 ~: C [ w ]

where env is the datatype of typing contexts, in de Bruijn style:

Inductive env:Set := env_empty:env | env_cons:env -> typ -> world -> env.

Intuitively, the term E |= t ~: A [ w ] represents the typing judgment Γ �XD

M : A[w]. More formally, we can define the obvious encoding functions εTerms :
Terms → term, εTypes : Types → typ, εCtxt : Ctxt → env, such that the following
holds (where we omit indexes for readability):

Proposition 1. For all type A, term M , world w and context Γ , if the worlds
appearing free in A,M, Γ,w are w1, . . . , wn, then Γ �XD M : A[w] ⇐⇒
w1:world,...,wn:world � : ε(Γ ) |= ε(M)~: ε(A) [ w ].

This result can be proved by induction on the derivation of Γ �XD M : A[w]
(⇒) and on the derivation of ε(Γ )|=ε(M) ~: ε(A) [ w ] (⇐). In virtue of this
result, in the following we will use the “mathematical” notation for types, terms
and typing judgments (i.e., Γ � M : A[w]) in place of their Coq counterpart.

4.3 Translation of λXD into CIC Sets

In this section we give the translation of types and well-typed terms of the object
type theory λXD, into sets and terms of the Calculus of Inductive Construction,
respectively, using the IO monad. This translation can be seen as a way for
providing a shallow encoding of λXD in Coq.

Interpretation of Object Types. Object types are interpreted in worlds by a
function · < ·> : typ -> world -> Set, inductively defined on its first argument:

Unit <w> = unit A×B <w> = A <w> * B <w>

Nat <w> = nat A → B <w> = A <w> -> B <w>

Bool <w> = bool ∀w′.A <w> = forall w’, (A w′) <w>
Ref <w> = ref w ∃w′.A <w> = { w’ : world & (A w′) <w> }

A@w′ <w> = A <w’> ©A <w> = IO w (A <w>)

Basic types are translated into native Coq types, except for references which are
mapped to a specific data type, as explained below. Most constructors are inter-
preted straightforwardly as well. In particular, note that ∃w′.A is interpreted as a
Σ-type, whose elements are pairs (z,M) such that M has type (A z) <w>. The type
A@w′ is translated simply by changing the world in which A is interpreted. Fi-
nally, the lax type ©A is translated using the type monad IO w : Set -> Set,
parametric over worlds, defined in Section 2.
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Now we can extend the intepretation of types to typing judgments. Loosely
speaking, a judgment Γ � t : A[w] should be interpreted as a term of type Γ →
A[w]. More precisely, this Set is obtained by a Coq function � � : env -> typ

-> world -> Set, defined recursively over the first argument, such that:

�(A1[w1], ..., A[wn]), A[w]� = A1 <w1> * ... * An <wn> ->A <w>

Interpretation of Object Terms. Once the type theory has been interpreted
as Sets, we can give the interpretation of λXD terms as functions among these
sets. Due to lack of space we do not describe in detail this translation, as it is as
expected. Most constructors are immediately mapped to their semantic counter-
parts, e.g., pair is mapped to pair, some to exist, λ to abstraction, etc. Monadic
constructors like term_return, term_get, . . . , are mapped to the corresponding
constructors of the IO monad. For more details, we refer to the Coq code.

Soundness. Now, we aim to prove that if a λXD type A is inhabited by a term t,
then also the interpretation of A must be inhabited—and the corresponding in-
habitant is obtained by translating the object term t. Before stating and proving
this result, we need a technical lemma about mobile types:

Lemma 1 (Mobility). For all A ∈ Type, if Mobile A, then for all w, w′ ∈
World, A <w> = A <w′>. [Coq proof]

This result means that “mobile” types can be translated from one world to
another. The Mobile assumption is needed because there are types whose inter-
pretation cannot be moved from one world to another (e.g., Ref). However this
“remote access” property is needed only in the case of the get constructor, and
its typing rule requires the type to be mobile (Figure 1), so Lemma 1 applies.

Theorem 1 (Soundness). Let Γ ∈ Ctxt, t ∈ Term, A ∈ Type, w ∈ World,
let {w1, . . . , wn} be all free worlds appearing in Γ,A, t, w. Then, if Γ �XD t : A[w]
then there exists a term �t� such that w1:world,...,w2:world � �t� : �Γ,A[w]�.
[Coq proof]

Proof. (sketch) The proof is by induction on the derivation of Γ �XD t : A[w].
Most cases are easy; in particular, constructors of monadic types are translated
using the constructors defined above.

Let us focus on the case of get, where we move from ©A[w′] to ©A[w] with
the rule Get. In the translation we have to build a term of type ©A <w>, i.e.,
IO w (A <w>), from a term in IO w’ (A <w′>) given by inductive hypothesis. In
fact, this type is equal to IO w (A <w′>), because A is Mobile and by Lemma 1.
Then, using IOget we can replace w’ with w as required.

For the remaining cases, we refer the reader to the Coq script. ��

It is worth noticing that this theorem is stated in Coq as follows
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Theorem soundness: forall (t : term),

forall (w: world), forall (A : typ), forall (E : env),

E |= t ~: A [ w ] -> Interp E A w.

and its proof is precisely the encoding function from λXD well-typed terms to
their semantic interpretations in Coq, i.e., functions among Sets.

Remark 2. In this section, we have encoded separately the type of terms and the
typing judgment. Another possibility is to define an inductive type of implicitly
typed terms, representing both the syntax and the typing system, as in [7]:

Inductive term : env -> typ -> world -> Set :=

term_var : nat -> term

| term_o : forall G w, (term G typ_nat w)

| term_s: forall G w, (term G typ_nat w) -> (term G typ_nat w)

| term_fun : forall A B G w, (term G::(A,w) B w) ->

(term G (typ_fun A B) w)

| term_app : forall A B G w, (term G (typ_fun A B) w) ->

(term G A w) -> (term G B w)

| ...

In this way, terms inhabiting (term G A w) are automatically well typed. Also
the soundness statement would be simplified accordingly:

Theorem soundness: forall G A w, (term G A w) -> (Interp G A w).

Although this approach may simplify a bit the technical development in Coq, we
have preferred to keep separated terms and type system because it is sticking to
the original definition “on the paper” (i.e., that in Section 4.1), and hence easier
to adapt to other languages and type systems.

5 Example: Synthesis of Remote Read/Write

In this section we describe an example application of our framework, showing
how to give the specification of two distributed functions which have to satisfy
together some property. In particular, we want to show that, if we store a given
value in some remote location created on the fly and afterwards we read from
the same address, we will find exactly the same value and no error can arise.
From the proof of this property, we will extract the corresponding Erlang code,
yielding two functions, remoteread and remotewrite, which behave as required.

We begin with giving the type of the remotewrite function which takes the
value at the world w1 and gives a computation at w1 which produces a location
at the world w2.

Lemma remotewrite: forall w1 w2:world,

(typ_nat @ w1 ==> (0 (typ_ref@w2))) < w1 >.

Notice that this specification does not guarantee that the function will not run
without errors, since the monad allows also for faulty computations.

The remoteread function takes the reference to the location and gives a com-
putation which returns the value contained in the location. Notice the world of
the location is different from the world of the resulting computation:
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Lemma remoteread: forall w1 w2, typ_ref@w2 ==> (0 typ_nat) < w1 >.

Clearly, these two specifications do not impose anything about the combined
behaviour of these two functions—they just declare their types. In order to
achieve the correct specification, we have to state and prove the following lemma,
declaring that there exists a computation and a function which behave correctly:

Lemma update: forall (w w’: world) (value : typ_nat < w >),

{o : (0 (typ_ref@w’) < w >) *

((typ_ref@w’) ==> 0 typ_nat < w >) |

forall s, getvalue ((IObind (fst o) (fun l => (snd o) l)) s)

= Some value}.

This lemma can be proved using the properties of the monad operators. Then,
executing Coq’s Extraction command, we obtain an Haskell code, which can
be translated to Erlang by our back-end compiler. In the end, we obtain the
following distributed code:

remotewrite (W1, W2, Value)->

spawn (element (2, W1),

update2,

dispatcher,

[update2,

(fun () -> (fun (Address)-> Address end)

(spawn (element (2, W2),

update2,

location, [Value])) end),

W2, {self (), node ()}]),

receive {result, Z} -> Z end .

remoteread (W1, W2, Address)->

spawn (element (2, W1),

update2,

dispatcher,

[update2,

(fun () -> Address ! {get, {self (), node ()}},

receive {result, X0} ->

(fun (H)-> H end)(X0)

end end),

W2, {self (), node ()}]),

receive {result, Z} -> Z end.

The function remotewrite spawns a process at W1 with final destination W2,
which creates a new location with Value as initial value and waits for the address
of that location. On the other hand, remoteread spawns a process to W1 with
final target W2, which sends to the Address location a request for the value and
waits for the response. The target process computes and sends back the result
of the computation, which is received by the final receive.

Clearly, these functions can execute only when they are called by some other
program. we can define the main/0 function, which can be seen as the “orches-
tration” part for executing the distributed code. As an example, let us consider
the following implementation where we declare the remote world Pub and the
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Dispatcher, then remotewritewill create a new location and put in it the value
254. remoteread is then called to read the same value from the same address:

main() -> Pub = {pub, ’pub@<IP>’},

Dispatcher = {disp, ’disp@<IP>’},

Val = 254,

Address = remotewrite(Dispatcher, Pub, Val),

Value = remoteread(Dispatcher, Pub, Address).

6 Conclusions

In this work we have presented a methodology for the synthesis of distributed,
mobile programs in Erlang, through the extraction facility offered by Coq. First,
we have defined monadic types in Coq, covering the computational features we
are dealing with (i.e., side-effects and distributed computation). These monadic
types can be used in the specification of Haskell programs, which can be ob-
tained by extraction from the proofs of these specifications. These programs
contain monadic constructors for distributed imperative computations, which
are exploited by a “post-extraction” Haskell-to-Erlang compiler, which gener-
ates the requested distributed mobile program. Moreover, in order to simplify
the burden of programming in Coq, we have defined λXD, a monadic type theory
for distributed computations similar to Licata and Harper’s HL5, which can be
seen as a front-end programming language. In fact, this type theory has been
given a formal interpretation within the Calculus of Inductive Constructions,
which allows a λXD type to be converted into a CIC specification and a λXD

program into a CIC proof. Using the back-end compiler above, these proofs can
be turned into runnable Erlang programs.

Several directions for future work stem from the present one. First, we can ex-
tend the language to consider also worlds as first-class objects. This would allow
computations to take and returns “worlds”, so that a program can dynamically
choose the world where the execution should be performed.

Although we have considered distributed computations with references, our
approach can be ported to other computational aspects, possibly implemented in
other target languages. The monad IO has to be extended with new (or different)
constructors (possibly in a quite different target language), the post-extraction
back-end compiler should be extended to cover these new constructors, and the
front-end type theory must be adapted as needed.

However, the most important future work is to prove that the post-extraction
compiler, i.e., the translation from Haskell to Erlang, is correct. To this end,
we could follow the approach of the CompCert project described by Leroy [4,5].
This can be achieved by giving in Coq a formal semantics to the fragments
of Haskell and Erlang that the back-end compiler targets. In particular, the
crux of the correctness proof is proving that the Erlang implementations of
mobility, plus state effects as threads, are correct with respect to the “reference
implementation” of the corresponding monad operators.
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A Erlang Concurrency Fragment

A process is a self-contained, separate unit of computation which exists concur-
rently with other processes in the system. There is no inherent hierarchy among
processes; the designer of an application may explicitly create such a hierarchy.

The spawn/3 function creates and starts the execution of a new process:

Pid = spawn(Module, FunctionName, ArgumentList)

spawn/3 creates a new concurrent process to evaluate the function and returns its
Pid (process identifier). The call to spawn/3 returns immediately when the new
process has been created and does not wait for the given function to evaluate.
We want point out that Erlang does not distinguish between a local spawn or a
remote spawn, in the sense that the pid the spawn returns is unique and global for
all the hosts and we can use it transparently. So, a spawn like Pid=spawn(Host,

Module, Function, ArgumentList), will create a remote process on the Host
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target and the Pid can be used to communicate with it. The process identifier of
the new process is now known only to process which called the spawn function.
Pids are necessary for all forms of communication, so security in an Erlang
system is based on restricting the spread of the Pid of a process.

In Erlang, processes can communicate only by message passing, according to
the “actors” model. A message is sent to a process by the primitive ’!’ (send):

Pid ! Message

Pid is the identifier of the process to which Message is sent. A message can be
any valid Erlang term, which is evaluated before being sent; then, send returns
the message sent as its value. Sending a message is an asynchronous operation so
the send call will not wait for the message either to arrive at the destination or
to be received. This is in line with the asynchronous nature of message passing:
the application must itself implement all forms of checking. Messages are always
delivered to the recipient, and in the same order they were sent. Moreover, since
Erlang is a full-fledged functional language, messages can be also functions.

The primitive receive is used to receive messages:

receive

Message1 -> Actions1 ;

Message2 -> Actions2 ;

...

end

Each process has a mailbox and all messages which are sent to the process are
stored in the mailbox in the same order as they arrive. In the above, Message1
and Message2 are patterns which are matched against messages that are in the
process’s mailbox. When a matching message is found and any corresponding
guard succeeds the message is selected and removed from the mailbox. receive
acts as any other forms of pattern matching: any unbound variabl in the message
pattern becomes bound. receive is blocking, i.e., the process evaluating it will
be suspended until a message is matched.
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Abstract. Watermarking techniques are used to help identify copies of
publicly released information. They consist in applying a slight and se-
cret modification to the data before its release, in a way that should
be robust, i.e., remain recognizable even in (reasonably) modified copies
of the data. In this paper, we present new results about the robust-
ness of watermarking schemes against arbitrary attackers, and the for-
malization of those results in Coq. We used the Alea library, which
formalizes probability theory and models probabilistic programs using
a simple monadic translation. This work illustrates the strengths and
particularities of the induced style of reasoning about probabilistic pro-
grams. Our technique for proving robustness is adapted from methods
commonly used for cryptographic protocols, and we discuss its relevance
to the field of watermarking.

1 Introduction

Watermarking consists in embedding some information inside a document in
a robust and usually imperceptible way. It is notably used in digital property
claims: a content owner may mark a document before its release, in order to be
able to recognise copies of it and claim ownership. Of course, this cannot be done
in a reliable and convincing way unless properties of the watermarking scheme
have been solidly established.

A wide literature is dedicated to techniques for marking sound, still images
and videos [7] that are robust against common transformations such as scal-
ing, resampling, cropping, etc. This is achieved by using meaningful notions of
distance and performing watermarking in an adequate space, such as frequency
spectra. One may also consider documents as unstructured bit strings, and mea-
sure distortions using the Hamming distance, i.e., the number of positions where
bits differ. In this setting, simple watermarking techniques may be used. The bit-
flipping scheme involves a secret mask K which is a bitstring of the same length
as the original document that is to be marked. Marking a document O (called
support in this context) is done by changing the value of bits at positions set inK
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— we say a position is set when the corresponding bit is 1. This can be expressed
as a bitwise xor: mark(K,O) = O ⊕K. The induced distortion is the number k
of bits set in K; this quantity is typically chosen to be a small fraction of the size
of the support, and its value is assumed to be public. Detection of suspect copies
O′, written detect(O,K,O′), is done by counting the number of positions set
in K where O and O′ differ — in other words, the number of positions set in K
where O′ coincides with mark(K,O). If that number exceeds a predefined thresh-
old, the suspect document O′ is claimed to be a copy of mark(K,O). The idea
behind this scheme is that an attacker who does not know K has little chance of
changing enough bits for evading detection unless it also distorts the document
so much that it renders it worthless. A variant of this technique is substitution
watermarking where, instead of flipping bits at chosen positions in the original
support, a secret message is used as a substitution for those bits. It is important
to point out that although working with unstructured bitstrings is idealized,
it has practical counterparts. For instance, the Agrawal, Haas and Kiernan’s
method [2] for watermarking numerical databases hides a mark by applying a
substitution to least significant bits, and quality measurement is proportional to
the Hamming distance.

Watermarked documents may be subject to attacks by malevolent users. A
protocol is said to be robust against a particular attack if the mark can still be de-
tected with high probability in copies modified by this attack. As observed above,
it is useless to consider attacks that introduce excessive distortion: though such
attacks are usually easy, they result in valueless data. Numerous attack scenarios
can be envisioned, and it is impossible to test them all one by one. Nevertheless,
we expect a protocol to be provably robust, i.e., robust against any attack. Prov-
able security for watermarking is difficult to achieve, and there is currently little
work in that direction. One reason for this is that watermarking protocols may be
attacked at various levels, sometimes independently of the nature of documents
and the marking algorithms. For example, in the context of digital property,
someone may apply his own mark to marked data in order to claim ownership.
To address such issues separately, Hopper, Molnar and Wagner [9] have intro-
duced a distinction between strong watermarking schemes and non-removable
embeddings (NREs). The former refers to the general protocol used to claim
ownership, while the latter is the core technique for marking documents, con-
sisting of a marking and a detection algorithm. Using cryptography and trusted
third parties, they have formally proved (on paper) that strong watermarking
protocols, robust against arbitrary attackers, can be derived from NREs. How-
ever, they did not address the robustness of particular embedding techniques,
which depends on the kind of document that is considered. More generally, there
is surprisingly little literature on robustness against arbitrary attackers, even in
the idealised setting of bitstring algorithms. The problem has been identified, and
several authors have proposed definitions and methodologies [1,11], but they did
not provide proofs of their results even for simple schemes. To the best of our
knowledge, the only such proof has been carried out in the context of graph
watermarking [12]. This proof relies on complex assumptions, concerning in
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particular the limited knowledge of the attacker, which may be hard to formalise.
In contrast, our approach is very elementary, relying on a clear formalisation and
basic combinatorics. We also note that, although a central piece in that proof
of robustness for graphs is the (proved) robustness of a technique for marking
integer vectors, this technique is not suitable for marking bitstrings under the
Hamming distance, since it applies a modification to each component of the
vector — which also eases considerably the robustness argument.

In this paper, we make two important steps towards provably secure water-
marking protocols. First, we present a new proof of robustness against arbitrary
attackers, which applies to bit-flipping and substitution watermarking for bit-
strings. The key idea here is an efficient reduction of robustness to secrecy of
the key K, which is used to obtain a tight enough bound on the probability
of successful attacks. Second, we have fully formalised these proofs using the
Coq proof assistant and the Alea library for reasoning about probabilities and
probabilistic programs. Therefore, we provide a solid methodology for further
work in the area. The formalisation of our work is also interesting in that it in-
volves aspects such as information, secret and probabilistic algorithms which are
challenging for the formal methods community. There are indeed few significant
formalisations of randomised programs, although this field is receiving increas-
ing attention [3,8,10]. Our work is most closely related to Certicrypt [4,5], a
framework built on top of Alea for formalising proofs of cryptographic proto-
cols. Those proofs proceed by program transformations, reducing cryptographic
games (represented using a deep embeding approach) to simpler ones corre-
sponding to mathematical assumptions on cryptographic primitives, e.g., the
computational hardness of discrete logarithms in cyclic groups. As we shall see,
our work on watermarking does not necessitate a model as complex as the one
used in Certicrypt. But the main difference lies in the nature of our proofs:
while our argument also revolves around a reduction, it mainly relies on con-
crete computations on bitstrings. The end result is also quite different: our proof
is self-contained and does not use assumptions about complex mathematical
primitives. Therefore, our Coq development provides an interesting case study
for Alea, showing how elements of computational information theory may be
carried out in that framework.

The rest of the paper is structured as follows. In Section 2 we motivate high-
level modelling choices and present the Alea library which is used to formally
realise these choices in Coq. Then, we describe our robustness proof in Section 3,
detailing the main steps of the reduction for bit-flipping watermarking, and
showing how it applies to substitution watermarking as well. We conclude by
discussing our results and directions for future work in Section 4.

2 Formalisation

Security properties are commonly expressed as games played by the implemen-
tation of a service against an attacker. This methodology has the advantage of
providing a clear and concrete characterisation of the flaw we want to avoid. The
security of NREs has been defined in this way [9], and we shall formally define
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robustness as a variant of it. We assume that dist(O,O′) represents the distance
between O and O′ and that detect(O,K,O′) is true when O′ is a marked copy
of O with key K. An attacker A will break the robustness of a watermarking
scheme when the following game answers true, i.e., the attacker produced an
object close to the original and the mark is no longer detected:

O′ ← mark(K,O)
O′′ ← A(O′)
dist(O′, O′′) < γ ∧ ¬detect(O,K,O′′)

Of course, attacking watermarking schemes in this game is usually going to
be easy unless we assume that the attacker does not know K and O. Other
parameters affect the difficulty and meaning of our game, most notably the
degree of abstraction of the model and the assumptions on the computational
resources of the attacker. These parameters have to be investigated in order to
obtain a meaningful formalisation.

Symbolic models, where secrets are perfect and cannot be guessed, can be
used to reveal security breaches in some protocols. However, their high level of
abstraction would trivialise the study of watermarking schemes. We are inter-
ested in quantifying how hard it is for an attacker to remove a mark, potentially
relying on random choices and leaked information. In order to do this, we place
ourselves in a probabilistic computational model where secrets are regular data
that has been randomly chosen and may therefore be guessed by another party.
In that context, our robustness game can be rephrased as follows, where all
computations are probabilistic:

O ← random support()
K ← random key()
O′ ← mark(K,O)
O′′ ← A(O′)
dist(O′, O′′) < γ ∧ ¬detect(O,K,O′′)

The computational resources available to the attacker are also a very important
parameter of security games. In the case of cryptography, security often relies on
the (supposed) hardness of a few problems: for example, inverting a logarithm
is essentially as hard as guessing its argument. Under such circumstances, it
is possible for an attacker to succeed if it is allowed to compute long enough,
but security can be preserved if the time needed is exponential in a parameter
that can be chosen at will, typically the size of the secret key. The case of
watermarking differs a lot. In that context, the size of the key is limited by the
support, and does not offer significant control on the computational cost of an
attack. But it does not matter because this cost is in fact irrelevant: unlike in
cryptography, the attacker has (usually) no way to know if he succeeded, which
makes brute force attacks impossible. Therefore, we only need to prove that the
attacker has a low probability of removing the mark in one attempt, and we can
do so without any constraint on the time or space available to the attacker.

As we have seen, formalising robustness requires the notions of probability
and probabilistic program. Since we do not need to make restrictions on the
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use of resources by attackers, they can also be modelled using the same notion
of probabilistic algorithm. Thus, we chose to carry out our formalisation in the
Coq libraryAlea, since it provides exactly those fundamental ingredients. Note,
however, that there is no essential reason why our work could not be done with
another proof assistant.

2.1 ����

Alea is a Coq library containing a formalisation of complete partial orders, of
the unit interval U ([0; 1]), of probability theory, and tools for reasoning about
probabilistic programs. We quickly recall some of the key concepts used in Alea.
More details can be found in [3].

A standard, deterministic program of type A evaluates to a single value of
type A. A probabilistic program may evaluate to different values in different
runs, defining a probability distribution over A. This is the approach taken in
Alea, which provides machinery for building such distributions in a functional
programming style, using a monadic interpretation.

A probabilistic program of type A is thus viewed as a distribution, i.e., a
Coq object of type distr A. The distribution may also be called a measure, or
experiment. It is something that one can integrate over: it roughly has the type
(A → [0; 1]) → [0; 1], taking a weight function over A and returning its sum over
the measure. The integral

∫
f dP is written mu P f in Coq (we also use the

notation μ P f). Given a property Q on A, let 1Q be the function which is 1
when Q holds and 0 otherwise, then μ P 1Q represents the probability that the
output of program P satisfies Q. The distribution P comes with some properties,
e.g., it must be guaranteed to preserve addition, μ P (f+g) = (μ P f)+(μ P g).

The basic programming constructs for randomised computation include:

– return a which given a : A, returns the Dirac’s distribution at point a;
– let x = d1 in d2 which given a probabilistic program d1 of type distr A

and a probabilistic program d2 of type distr B depending on x of type A,
evaluates d1, bind the resulting value to x and then evaluates d2.

As an example of Alea, we shall show how to encode probabilistic Turing ma-
chines. We need a set Σ of states and a set A of letters. A predicate accept of
type Σ → bool distinguishes accepting states. The output of a transition will
be a record {next : Σ; write : A; move : dir} with dir the type of directions
with two values L and R. A transition is a function trans which takes a state
and a letter as arguments and gives an output. The configuration of the machine
is given by a state, a tape and the current position of the tape, it is represented
by a record {cur : Σ; tape : Z → A; pos : Z}.

It is trivial to define a deterministic function update which given a config-
uration and an output produces the new configuration. The Turing machine
itself works as a program which recursively applies transitions and stops when
it reaches an accepting state:

let rec run m = if accept (cur m) then return m
else let o = trans (cur m) (tape m (pos m)) in run (update m o)
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For the deterministic case, we cannot define this function in general in Coq
because there is no way to guarantee the termination of the fixpoint. In Alea
however, the type distr A includes sub-probabilities (μ P 1 < 1) which mod-
els possibly non terminating programs. This type is equipped with a complete
partial order structure and thus any monotonic continuous operator of type
(A → distr B) → A → distr B has a fixpoint. In order to model proba-
bilistic Turing machines, we just have to see the transition function as a prob-
abilistic transformation: trans : Σ → A → distr output and interpret the
previous definition of run as a function of type config → distr config using
the monadic constructions for return and let and the general fixpoint on dis-
tributions. We can then measure the probability for the machine to terminate
from an initial configuration m0: it is given by the expression μ (runm0) 1.

In the development of the watermarking algorithms, we only define simple
probabilistic programs using structural recursion. However, the robustness of a
watermarking scheme will be established using a quantification over all possible
attackers. It is important to make sure that our formalisation covers everybody.
The main restriction of our model is that random primitives are limited to dis-
crete distributions. However this is sufficient for modelling probabilistic Turing
machines, because we only need to express a distribution on outputs which is a
finite set. Thus, our formalisation in Coq is adequate: any probabilistic attack
can be expressed in our framework, and is thus covered by our results.

2.2 Reasoning with ����

We shall describe a simple proof, establishing that some function implements the
uniform probability law on bit vectors of a given length. We define the BVrandom
function which given a natural number n, computes uniformly a bit vector of
size n. It is defined by structural induction on n, using the Flip program which
returns true with probability 1

2 and false otherwise:

Fixpoint BVrandom n : distr (Bvector n) :=
match n with
| 0 ⇒ return Bnil

| Sm ⇒ let hd = Flip in let tl = BVrandom m in return (Vcons hd tl)
end

Then we seek to show that BVrandom implements a uniform distribution which
means that the probability that BVrandom n returns a particular vector x of
length n is 2−n. Formally, it is written as follows where BVeq is a boolean function
testing the equality of two bit vectors and B2U is the conversion of booleans to
0 and 1 in the set U.

Theorem BVrandom eq : ∀n (x : Bvector n),
μ (BVrandom n) (fun y ⇒ B2U (BVeq y x)) == (1/2)n.

The interpretation of randomised programs as measures gives us a direct way to
establish such a result by using simple algebraic transformations following the
structure of the program. Examples of transformations are:
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– μ (return x) f == f x ,
– μ Flip f == (1/2)× f true+ (1/2)× f false,
– μ (let x = P in Q x) f == μ P (fun x ⇒ μ (Q x) f)

The BVrandom function is defined by structural induction on n, thus we naturally
reason on it by induction on n or (preferably) on the vector x. The base case
is trivial: BVrandom 0 computes to return Bnil and both sides simplify to 1,
so we can invoke reflexivity. When the list has a head and tail, we unfold
the computation of BVrandom (S n) and simplify the obtained measure to make
μ (BVrandom n) f (almost) appear as:

(1/2)× μ (BVrandom n) (fun y ⇒ B2U (BVeq (Vcons true y) (Vcons a x)))+
(1/2)× μ (BVrandom n) (fun y ⇒ B2U (BVeq (Vcons false y)(Vcons a x)))
== (1/2)Sn

We can conclude by doing a case analysis to compare the heads of those lists,
followed by the invocation of the induction hypothesis, some simplifications (no-
tably killing the branch where a is not the correct head) and finally we obtain
equalities on measures and on reals in U which are solved automatically.

In the rest of the paper, we omit most occurrences of B2U, implicitly treat de-
cidable propositions (e.g., equality on bit vectors) as booleans, and we simply
write P(e) for μ e B2U, which represents the probability that e returns true

when e is a probabilistic program computing a boolean, i.e., a Coq object of
type distr bool.

3 Proof of Robustness

We shall now present our results. They have been fully formalised using Coq
version 8.3, the AAC plugin [6] for reasoning modulo associativity commutativ-
ity, and version 7 of the ALEA library which benefited from several contributions
as part of this work. The full development can be downloaded or replayed online
at http://www.lix.polytechnique.fr/~dbaelde/watermarking/.

Our proof follows the main language-based technique for proving properties
against arbitrary attackers: we reduce robustness to the simpler property of
secrecy of the key. In the following, we detail the main steps of our proof for the
bit flipping scheme: we first quantify secrecy, then use an efficient reduction of
robustness to secrecy, and finally show that the obtained bound is exponentially
small in the size of the support. For each step, we provide the informal argument
and discuss how this argument carries to the Coq formalisation. Finally, we
observe that the substitution algorithm can be treated in the exact same fashion.

3.1 Operations on Bit Vector

Since our algorithms rely heavily on bit vectors, we had to develop libraries for
common bit vector operations, both deterministic and probabilistic. This part

http://www.lix.polytechnique.fr/~dbaelde/watermarking/
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of our formalisation is mostly straightforward. It benefited a lot from reasoning
modulo associativity and commutativity, and we also used type classes to reflect
the boolean algebra structure that bit vectors inherit from booleans.

In this paper, we shall use the following notations, which depart slightly from
our Coq notations. If X and Y are bit vectors of same length, X ⊕ Y , X &Y
and X ‖ Y respectively denote bit-wise xor, conjunction and disjunction, and
¬X is the bit-wise negation of X . The number of bits set to 1 in X is |X |1. The
Hamming distance dist X Y is defined as |X ⊕ Y |1. We also define |X \ Y |1 as
|X &¬Y |1: it counts the number of bits set in X but not in Y .

We defined a couple of uniform random generators: BVrandom n returns a
bit vector of length n; BVrandom k k n returns a vector of length n with k bits
set; BVrandom k mask k M returns a vector of the same length as the mask M ,
having k bits set, only at positions where M is also set. This last function is used
to randomly modify a vector, in a uniform way that is interesting to consider
more closely.

Lemma 1 (RandomBV.correct eq). We define a correction function that takes
a vector X, removes i bits among those set in X and adds m among those not
set.

correct X i m :=

⎧⎨⎩
let I = BVrandom k mask i X in
let M = BVrandom k mask m (¬X) in

return ((X &¬I) ‖M)

For any bit vectors K and K ′ of length n, correct K ′ |K ′\K|1 |K \K ′|1 returns
K with the following probability:(

|K ′|1
|K ′ \K|1

)−1(
n− |K ′|1
|K \K ′|1

)−1

Proof. Our lemma simply says that choices of I and M in the correction are
independent, and thus the probability of success is the product of the proba-
bilities of finding the two right vectors. However, the corresponding Coq proof
turns out to be quite interesting. The key point is that we do not use conditional
probabilities to express independence, but rely instead on the structure of the
distribution (that is, the probabilistic program) to make independence explicit.

After unfolding a few constructs, and writing i for |K ′\K|1 andm for |K\K ′|1,
the probability that we are considering is the following:

μ (BVrandom k mask i K ′) (λI.
μ (BVrandom k mask m (¬K ′)) (λM.

K = (K ′ &¬I) ‖M))

One can show that BVrandom k mask k X always ranges among vectors Y such
that |Y \X |1 = 0. This can be used (twice) to enrich our expression:

μ (BVrandom k mask i K ′) (λI. (|I \K ′|1 = 0) ×
μ (BVrandom k mask m (¬K ′)) (λM. (|M \ (¬K ′)|1 = 0) ×
(K = (K ′ &¬I) ‖M)))
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By the stability of distributions under scalar multiplication, we can push mul-
tiplications under μ constructs, at which point we observe that (|I \ K ′|1 =
0)∧(|M \(¬K ′)|1 = 0)∧(K = (K ′ &¬I) ‖M) is equivalent to (I = (K ′ &¬K))∧
(M = (K &¬K ′)). This relies on basic boolean algebra, proved notably by ob-
serving that for any two vectors u and v of size n, u& v = 0 implies u&¬v = u.
Thus, we have simplified our probability distribution as follows:

μ (BVrandom k mask i K ′) (λI.
μ (BVrandom k mask m (¬K ′)) (λM.
(I = (K ′ &¬K))× (M = (K &¬K ′))))

In other words, we have succeeded in splitting the result of our computation in
two independent parts, one for each probabilistic variable. Using the stability
under multiplication in the opposite direction as before, we can thus split the
whole computation in two:(

μ (BVrandom k mask i K ′) (λI. (I = (K ′ &¬K))
)

×
(
μ (BVrandom k mask m (¬K ′)) (λM. (M = (K &¬K ′))

)
From there, it is easy to conclude by uniformity of our choice primitive.

3.2 Bit Flipping Watermarking

We now define the bit flipping watermarking scheme and its two security prop-
erties. Our definitions rely on a few parameters, which are considered public: n
is the size of the mask and support; k is the number of marked bits; δ is the
detection threshold, i.e., a message is considered marked if it has more than
δ marked bits; γ is the deformation threshold, i.e., two messages are consid-
ered indistinguishable if their Hamming distance is less than γ. Obviously, those
four parameters should be strictly positive integers. More assumptions will be
introduced after the definitions.

For bit flipping on supports of size n, the key is a mask with only k bits set
to 1, marking is done by flipping the bits set in the mask, and the number of
marked bits in O′ is the number of positions set in K where O′ and O differ.

genkey := BVrandom k n k

mark K O := K ⊕O

#marks O K O′ := |K &(O ⊕O′)|1
We then give games defining robustness and secrecy. Robustness is the ability to
resist unmarking challenges, where the attacker is given a marked message and
has to return an unmarked message that is indistinguishable from the marked
one:

unmark A :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
let K = genkey in
let O = BVrandom n in
let O′ = mark K O in
let O′′ = A O′ in
return (dist O′ O′′ < γ & #marks O K O′′ < δ)
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Secrecy is the impossibility for an attacker to guess the key, given only a marked
message:

find mask A :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
let K = genkey in
let O = BVrandom n in
let O′ = mark K O in
let K ′ = A O′ in
return (K = K ′)

Finally, we make the following natural assumptions on our parameters:

δ ≤ k ∧ γ ≤ n ∧ k ≤ γ + δ ∧ 2k ≤ n (1)

The first two require that the detection threshold is less than the number of
marked bits, and that the deformation threshold is less than the support size.
Values of δ and γ outside these ranges would be meaningless; another way to
put it is that bounding them by k and n respectively does not change the prob-
lem at all. The third equation is more interesting: it states that an attack is
possible. Indeed a successful attack must alter more than k− δ bits. Finally, the
last inequality states that less than half of the bits should be marked. This is
obviously desirable for a watermarking application. In any case, if more than
half of the bits are marked, the problem is more simply attacked by trying to
find the unmarked bits and we are back to a situation where the constraint is
satisfied.

3.3 Secrecy

We prove that the key does not leak through marking: the knowledge of marked
messages does not allow a better attack than the blind attack consisting of guess-
ing the key from scratch. While the proof of this first lemma would be deemed
straightforward on paper, its formalisation reveals a few interesting steps.

Lemma 2 (Xor analysis.secrecy). Guessing the key given a marked support
is as hard as a blind guess:

∀A, P(find mask A) ≤
(
n

k

)−1

Proof. By definition, find mask A is:

μ genkey (λK. μ (BVrandom n) (λO. μ (K ⊕O) (λO′.
μ (A O′) (λK ′. return (K = K ′)))))

The key observation is that for any vector K, the distribution K⊕BVrandom n is
equal to BVrandom n. This is proved in RandomBV.BVxor noise by induction on
the size of vectors and straightforward computation on the distributions. Using
it, we can rewrite find mask A as follows:

μ genkey (λK. μ (BVrandom n) (λO′.
μ (A O′) (λK ′. return (K = K ′))))
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From there, the proof is routine: we simply need to permute the various choices
to make it explicit that A is blindly guessing the outcome of the uniform choice
genkey. InAlea, the permutation of probabilistic let-definitions corresponds to
commuting integrals, which is not a trivially valid operation in general. However,
it has been proved (in Alea) to always be admissible for discrete distributions,
and our distributions are indeed discrete because their domain itself is so. So we
permute the introduction of K after that of O′ and K ′, and use the uniformity
of genkey, that is BVrandom k:⎛⎝μ (BVrandom n) (λO′.

μ (A O′) (λK ′.
μ genkey (λK. K = K ′)))

⎞⎠ ≤

⎛⎝μ (BVrandom n) (λO′.
μ (A O′) (λK ′.
1/
(
n
k

)
))

⎞⎠
From there, we conclude easily by simplifying the right hand-side program into
1/
(
n
k

)
multiplied by the probabilities that BVrandom n and A O′ terminate.

3.4 Robustness

We now proceed to reduce robustness to secrecy. Given an attacker that can
unmark messages, we build an attack on the key that runs the attack on the
mark, considers the changes as an estimation of the key, and randomly attempts
to correct it in order to obtain the secret key. In order to do this efficiently,
we first bound the error on the estimated key, and then show that it suffices to
guess the error to know how many bits are incorrectly set and how many bits
are missing in the estimated key.

For the next two lemmas, we consider a run of an attack on the mark. Let K
be a mask, i.e., a vector of size n satisfying |K|1 = k. Let O be an arbitrary vector
of size n, and O′ be mark K O. Let O′′ be another vector of size n, representing
the attackers’ attempt at removing the mark, and let ka = dist O′ O′′ be the
number of attacked bits. We define K ′ to be O′ ⊕ O′′. From the viewpoint of
considering this set of changes as an approximation of K, we define the error e
to be dist K K ′, the number of incorrect bits ki to be |K ′ \K|1 (these are the
bits set to 1 in K ′ but not in K, they have no influence on mark detection but
affect distortion) and the number of missing bits km to be |K \K ′|1 (these are
the bits which are 0 in K ′ but 1 in K so where the mark is not removed). We
finally define the number of correct bits kc to be k − km (these are the bits set
to 1 in both K and K ′).

Lemma 3 (Maximum error emax). If the attack succeeds, i.e., dist O′ O′′ <
γ and #marks O K O′′ < δ, then dist K K ′ < emax where emax := γ+2δ−k.

Proof. The hypothesis #marks O K O′′ < δ gives us km < δ. We also observe
that dist K K ′ = ki+km, and ki+kc = |K ′|1 = dist O′ O′′ < γ. We conclude
that dist K K ′ = (ki + kc)− kc + km = (ki + kc) + 2km − k < γ + 2δ − k.

In our Coq development, this reasoning is done directly in the proof that the
reduction is correct, since it is quite simple, relying only on simple properties of
boolean operations and linear arithmetic facts, which are proved automatically
using the omega tactic of Coq.
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For example, with γ = k and δ = k/2, we have emax = k. This is a tight bound,
in the sense that it can be reached, but it does not bring much information about
K: in general, guessing K from K ′ with dist K K ′ < k is essentially as hard as
guessing from scratch the positions of the k bits set in K. Fortunately, we can
extract much more information, as the next lemma shows.

Lemma 4 (Xor analysis.ki km). The quantities ki and km can be derived
from ka and e, since we have ki =

e+ka−k
2 and km = e+k−ka

2 .

Proof. Follows immediately from ka = ki + kc = ki + (k− km) and e = ki + km.

Definition 1 (Reduction). Given an attack A on the mark, we build an attack
on the key by starting with the estimated key K ′ corresponding to the attack on
the mark, guessing randomly an error 0 ≤ e < emax, deducing ki and km, and
guessing the correction of K ′ according to those parameters.

A′ A O′ def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

let O′′ = A O′ in
let K ′ = O′ ⊕O′′ in
let ka = dist O′ O′′ in
let e = random int emax in
let ki = (e + ka − k)/2 in
let km = (e+ k − ka)/2 in

return (correct K ′ ki km)

Note that A′ can be enhanced to not consider values of e which yield non-integer
ki and km. We do not care to do it here since this would not change asymptotic
results.

Lemma 5 (Xor analysis.reduction)

∀A. P(unmark A) ≤ emax ×
(

γ

�γ/2�

)
×
(
n− k + δ

δ

)
× P(find mask (A′ A))

Proof. We consider an execution, introducing O, K, O′, then executing A′ A O′.
With probability P(unmark A) we’ll obtain an unmarked copy O′′ from A O′.
Then, the correct error dist K K ′ will be guessed with a probability of one
in emax, and the correct values for ki and kc will follow from it. Finally,
correct K ′ ki km will return K with a probability of one in(

ka
ki

)
×
(
n− ka
km

)
It only remains to bound those two terms independently of ki, km and ka, using
monotonicity properties of the combinatorial function and assumptions on our
parameters and on the success of the unmarking attack.

Theorem 1 (Xor analysis.robustness)

∀A. P(unmark A) ≤
emax ×

(
γ

γ/2�
)
×
(
n−k+δ

δ

)(
n
k

)
Proof. Immediate from Lemmas 2 and 5.



Towards Provably Robust Watermarking 213

3.5 Asymptotic Behaviour

We now show that the bound derived in Theorem 1 is negligible, i.e., that it
is eventually bounded by a negative exponential. This standard practice with
security bounds is less relevant in watermarking than, for example, in cryptog-
raphy, because the size of our secret key is fixed. Thus, a precise expression of the
bound may be more useful in practice than an asymptotic over-approximation.
Nevertheless, addressing the latter is an interesting challenge in terms of formal
proofs. In order to achieve this, we move from [0; 1] to positive real numbers,
which are better behaved and notably form a semi-ring. Specifically, we use a
new experimental formalisation of R+ built on top of U in which a real number
is represented as a pair with an integral part in nat and a fractional part in U.

In the following, we are going to study the behaviour of our bound for n large
enough. To do so, we need some information on how other parameters grow
with n. We shall essentially assume that those parameters are linear in n, which
is the standard choice in practice. In addition to (1), we make the following
assumptions for some 0 < α < 1, c ∈ N and e, g ∈ R+ with non-null c and g:

k/n ≤ α (2)

(n/k)c ≥ 4 (3)

emax ≤ e× n (4)

k − δ ≥ n× g + #γ/2$ × c (5)

The last assumption is formulated in an ad-hoc fashion, but it essentially requires
that the difficulty of the attack is large enough and growing linearly with n.
Indeed, it quantifies the gap between the maximum number of bits that can
be attacked (γ) and the minimum that has to be changed in order to evade
detection (k − δ).

When all parameters are linear, we can always determine α, c and e. However,
a suitable value for g in (5) can only be found when k − δ > #γ/2$ × c. For
example, suppose we want to mark k = #n/100$ bits with a detection threshold
δ = #n/200$. We can take c = log(4)/ log(100), and assumption (5) roughly
requires that γ is less than six times k − δ. Thus, our hypotheses still allow us
to cover a satisfyingly wide range of attacks. Our asymptotic bound will become
tighter when the attack is made more difficult, i.e., γ is made smaller relative to
k − δ.

Lemma 6 (Asymptotic.final). There exists β ∈ R+∗ and m ∈ N such that
for any n ≥ m,

emax ×
(

γ
γ/2�

)
×
(
n−k+δ

δ

)(
n
k

) ≤ αβn�

Proof. We first show that:

emax ×
(

γ

#γ/2$

)
×
(
n−k+δ

δ

)(
n
k

) ≤ emax × (2× 4γ/2�)× (
k

n
)k−δ
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This is proved by approximating separately each term. For the second term, we
use the following precise bound: ∀k,

(
2k
k

)
≤ 4k. For the third term, we show that(

n−k+δ
δ

)(
n
k

) =
δ + 1× . . .× k

(n− k + δ + 1)× . . .× n
=

δ + 1

n− k + δ + 1
× δ + 2

n− k + δ + 2
× . . .× k

n

and we conclude by observing that we have k − δ increasing factors.
We choose β to be g/2, and m is chosen to be large enough so that 2×emax ≤

α−gn/2�, which can always be obtained since emax is only linear in n by (4).
We obtain the following bound: α−gn/2� × 4γ/2� × ( kn )

k−δ . By assumption (3)

we can further enlarge this into α−gn/2� × (k/n)−cγ/2� × (k/n)k−δ. Using (5)
we obtain α−gn/2� × (k/n)ng� and we finally obtain αgn/2� by (2).

Corollary 1 (Asymptotic.robustness). Provided that assumptions (1-5) hold,
there exists β > 0 and m ∈ N such that for any n ≥ m,

∀A. P(unmark A) ≤ αβn�

3.6 Substitution Watermarking

We now consider marking by substitution. In this scheme, the secret key is made
of two parts: a mask M and a messageK, both of the same length as the support
to be marked. Instead of flipping bits according to the mask as in the previous
scheme, bits of the support are replaced by those of the message at positions
indicated by the mask. Although the message contains irrelevant information (at
positions not set in the mask) in this presentation, this is not a problem for our
development.

genkey :=

⎧⎨⎩
let M = BVrandom k n k in
let K = BVrandom n in
return (M,K)

mark (M,K) O := (O&¬M) ‖(K &M)

#marks (M,K) O′ := |M &¬(K ⊕O′)|1

Note that this scheme is blind, i.e., the detection method does not need to refer
to the initial support O as before. This property is the reason why substitution
is preferred to bit flipping in practice. Indeed, blind schemes allow to delegate
the search of marked copies to several agents without having to communicate
much information to those agents: When the secret key is generated using a
pseudo-random number generator (PRNG) it suffices to communicate the seed
that was used to initialise it. Of course, this compression advantage disappears
in our theoretical setting; we discuss this in conclusion.

The definition of the robustness game unmark is the same as before, and it turns
out that we can derive the exact same bound as for bit-flipping watermarking, un-
der the same hypotheses on parameters n, k, δ and γ. The reason is that although
there is more information in the secret key, it suffices to guess the mask M to ob-
tain the (useful part of) the messageK. Therefore the problem is exactly the same
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as for bit flipping, the same reduction applies and we obtain the same bound. For-
mally, the only change is in the definition of the secrecy game:

find mask A :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
let (M,K) = genkey in
let O = BVrandom n in
let O′ = mark (M,K) O in
let M ′ = A O′ in
return (M = M ′)

Lemma 7 (Substitution analysis.secrecy)

∀A, P(find mask A) ≤
(
n

k

)−1

Lemma 8 (Substitution analysis.reduction). Using A′ in Definition 1:

∀A. P(unmark A) ≤ emax ×
(

γ

�γ/2�

)
×
(
n− k + δ

δ

)
× P(find mask (A′ A))

4 Conclusion

We have given a robustness result for bit-flipping and substitution schemes
against arbitrary attackers, based on a new reduction to secrecy. This reduc-
tion and the associated proofs have been fully formalised in Coq on top of the
Alea library. Our work is one of the few large examples of using this library,
illustrating most of its key aspects with the notable exception of non-terminating
probabilistic functions and fixpoints of (sub)distributions. In itself, our develop-
ment totals around 900 lines of specification and 1500 lines of proofs. But it also
required further developments of Alea, including properties of binomial coeffi-
cients, a few dedicated tactics to simplify expressions involving distributions, the
integration of material about discrete distributions adapted from Certicrypt
and the development of the library on positive real numbers (1100 lines of spec
and 1700 lines of proofs). Ignoring all the infrastructure work, the core of our
development is satisfyingly concise: each of the two robustness proof has only
about 200 lines of proofs that follow quite closely the informal presentation.

Our work could be pushed further in several directions. Now that basic water-
marking primitives have been formalised and proved robust, one could consider
formalising and proving more complex schemes and protocols. For instance, one
could prove the security of complete watermarking protocols built from robust
NREs. In order to formalise existing proofs in that domain [9], on needs notions
such as oracles and polynomial time attackers, and therefore we would naturally
turn to the more complex framework of Certicrypt. But there are also funda-
mental questions which remain open even at the level of the basic embedding prim-
itives. In some contexts, it is relevant to consider repeated attacks, and one should
study the advantage that attackers can gain by having access to multiple supports
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markedwith the same key, or multiple marked copies of the same support with dif-
ferent keys. A related question will be to study the impact on robustness of non-
uniform distributions for supports, messages, and of other distortion measures
than Hamming distances. For example, in the context of watermarking numeri-
cal databases, the meaningful notion of distance is based on query answers, which
opens up the possibility of subsetting attacks that consist in removing a few lines
or columns from the database. There are techniques to prevent such attacks, that
could be formalised in our framework. Finally, a very important question is the
issue of pseudo-random number generators. To the best of our knowledge, there is
no formal security work that takes pseudo-randomgenerators into account. This is
not a problem in many applications, since true randomness becomes increasingly
accessible from physical devices. However, as discussed in the substitution water-
marking section, pseudo-random generators are used as a compression device in
watermarking. Evaluating the security impact of this practice is thus unavoidable,
and promises to be very difficult.

References

1. Adelsbach, A., Katzenbeisser, S., Sadeghi, A.-R.: A Computational Model for Wa-
termark Robustness. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P.
(eds.) IH 2006. LNCS, vol. 4437, pp. 145–160. Springer, Heidelberg (2007)

2. Agrawal, R., Haas, P.J., Kiernan, J.: Watermarking Relational Data: Framework,
Algorithms and Analysis. VLDB J. 12(2), 157–169 (2003)

3. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in COQ. MPC
2006 74(8), 568–589 (2009); A preliminary version appeared in the Proc. of MPC
2006
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Abstract. In real-time systems with threads, resource locking and priority sched-
uling, one faces the problem of Priority Inversion. This problem can make the be-
haviour of threads unpredictable and the resulting bugs can be hard to find. The
Priority Inheritance Protocol is one solution implemented in many systems for
solving this problem, but the correctness of this solution has never been formally
verified in a theorem prover. As already pointed out in the literature, the original
informal investigation of the Property Inheritance Protocol presents a correctness
“proof” for an incorrect algorithm. In this paper we fix the problem of this proof
by making all notions precise and implementing a variant of a solution proposed
earlier. Our formalisation in Isabelle/HOL uncovers facts not mentioned in the
literature, but also shows how to efficiently implement this protocol. Earlier cor-
rect implementations were criticised as too inefficient. Our formalisation is based
on Paulson’s inductive approach to verifying protocols.

Keywords: Priority Inheritance Protocol, formal correctness proof, real-time sys-
tems, Isabelle/HOL.

1 Introduction

Many real-time systems need to support threads involving priorities and locking of re-
sources. Locking of resources ensures mutual exclusion when accessing shared data or
devices that cannot be preempted. Priorities allow scheduling of threads that need to fin-
ish their work within deadlines. Unfortunately, both features can interact in subtle ways
leading to a problem, called Priority Inversion. Suppose three threads having priori-
ties H(igh), M (edium) and L(ow). We would expect that the thread H blocks any other
thread with lower priority and the thread itself cannot be blocked indefinitely by threads
with lower priority. Alas, in a naive implementation of resource locking and priorities
this property can be violated. For this let L be in the possession of a lock for a resource
that H also needs. H must therefore wait for L to exit the critical section and release
this lock. The problem is that L might in turn be blocked by any thread with priority M ,
and so H sits there potentially waiting indefinitely. Since H is blocked by threads with
lower priorities, the problem is called Priority Inversion. It was first described in [5] in
the context of the Mesa programming language designed for concurrent programming.

If the problem of Priority Inversion is ignored, real-time systems can become un-
predictable and resulting bugs can be hard to diagnose. The classic example where
this happened is the software that controlled the Mars Pathfinder mission in 1997 [9].
Once the spacecraft landed, the software shut down at irregular intervals leading to
loss of project time as normal operation of the craft could only resume the next day
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(the mission and data already collected were fortunately not lost, because of a clever
system design). The reason for the shutdowns was that the scheduling software fell
victim to Priority Inversion: a low priority thread locking a resource prevented a high
priority thread from running in time, leading to a system reset. Once the problem was
found, it was rectified by enabling the Priority Inheritance Protocol (PIP) [11]1 in the
scheduling software.

The idea behind PIP is to let the thread L temporarily inherit the high priority from
H until L leaves the critical section unlocking the resource. This solves the problem of
H having to wait indefinitely, because L cannot be blocked by threads having priority
M . While a few other solutions exist for the Priority Inversion problem, PIP is one that
is widely deployed and implemented. This includes VxWorks (a proprietary real-time
OS used in the Mars Pathfinder mission, in Boeing’s 787 Dreamliner, Honda’s ASIMO
robot, etc.), but also the POSIX 1003.1c Standard realised for example in libraries for
FreeBSD, Solaris and Linux.

One advantage of PIP is that increasing the priority of a thread can be dynamically
calculated by the scheduler. This is in contrast to, for example, Priority Ceiling [11],
another solution to the Priority Inversion problem, which requires static analysis of the
program in order to prevent Priority Inversion. However, there has also been strong crit-
icism against PIP. For instance, PIP cannot prevent deadlocks when lock dependencies
are circular, and also blocking times can be substantial (more than just the duration of
a critical section). Though, most criticism against PIP centres around unreliable imple-
mentations and PIP being too complicated and too inefficient. For example, Yodaiken
writes in [15]:

“Priority inheritance is neither efficient nor reliable. Implementations are ei-
ther incomplete (and unreliable) or surprisingly complex and intrusive.”

He suggests avoiding PIP altogether by designing the system so that no priority inver-
sion may happen in the first place. However, such ideal designs may not always be
achievable in practice.

In our opinion, there is clearly a need for investigating correct algorithms for PIP.
A few specifications for PIP exist (in English) and also a few high-level descriptions
of implementations (e.g. in the textbook [12, Section 5.6.5]), but they help little with
actual implementations. That this is a problem in practice is proved by an email by
Baker, who wrote on 13 July 2009 on the Linux Kernel mailing list:

“I observed in the kernel code (to my disgust), the Linux PIP implementation is
a nightmare: extremely heavy weight, involving maintenance of a full wait-for
graph, and requiring updates for a range of events, including priority changes
and interruptions of wait operations.”

The criticism by Yodaiken, Baker and others suggests another look at PIP from a more
abstract level (but still concrete enough to inform an implementation), and makes PIP
a good candidate for a formal verification. An additional reason is that the original
presentation of PIP [11], despite being informally “proved” correct, is actually flawed.

1 Sha et al. call it the Basic Priority Inheritance Protocol [11] and others sometimes also call it
Priority Boosting or Priority Donation.
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Yodaiken [15] points to a subtlety that had been overlooked in the informal proof
by Sha et al. They specify in [11] that after the thread (whose priority has been raised)
completes its critical section and releases the lock, it “returns to its original priority
level.” This leads them to believe that an implementation of PIP is “rather straight-
forward” [11]. Unfortunately, as Yodaiken points out, this behaviour is too simplistic.
Consider the case where the low priority thread L locks two resources, and two high-
priority threads H and H ′ each wait for one of them. If L releases one resource so
that H , say, can proceed, then we still have Priority Inversion with H ′ (which waits for
the other resource). The correct behaviour for L is to switch to the highest remaining
priority of the threads that it blocks. The advantage of formalising the correctness of
a high-level specification of PIP in a theorem prover is that such issues clearly show
up and cannot be overlooked as in informal reasoning (since we have to analyse all
possible behaviours of threads, i.e. traces, that could possibly happen).

Contributions: There have been earlier formal investigations into PIP [2,4,14], but they
employ model checking techniques. This paper presents a formalised and mechanically
checked proof for the correctness of PIP (to our knowledge the first one). In contrast to
model checking, our formalisation provides insight into why PIP is correct and allows
us to prove stronger properties that, as we will show, can help with an efficient imple-
mentation of PIP in the educational PINTOS operating system [8]. For example, we
found by “playing” with the formalisation that the choice of the next thread to take over
a lock when a resource is released is irrelevant for PIP being correct—a fact that has not
been mentioned in the literature and not been used in the reference implementation of
PIP in PINTOS. This fact, however, is important for an efficient implementation of PIP,
because we can give the lock to the thread with the highest priority so that it terminates
more quickly.

2 Formal Model of the Priority Inheritance Protocol

The Priority Inheritance Protocol, short PIP, is a scheduling algorithm for a single-
processor system.2 Following good experience in earlier work [13], our model of PIP
is based on Paulson’s inductive approach to protocol verification [7]. In this approach
a state of a system is given by a list of events that happened so far (with new events
prepended to the list). Events of PIP fall into five categories defined as the datatype:

datatype event = Create thread priority
| Exit thread
| Set thread priority reset of the priority for thread
| P thread cs request of resource cs by thread
| V thread cs release of resource cs by thread

whereby threads, priorities and (critical) resources are represented as natural num-
bers. The event Set models the situation that a thread obtains a new priority given
by the programmer or user (for example via the nice utility under UNIX). As in

2 We shall come back later to the case of PIP on multi-processor systems.
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Paulson’s work, we need to define functions that allow us to make some observations
about states. One, called threads, calculates the set of “live” threads that we have seen
so far:

threads []
def
= ∅

threads (Create th prio::s)
def
= {th} ∪ threads s

threads (Exit th::s)
def
= threads s − {th}

threads ( ::s)
def
= threads s

In this definition :: stands for list-cons. Another function calculates the priority for a
thread th, which is defined as

priority th []
def
= 0

priority th (Create th ′ prio::s)
def
= if th ′= th then prio else priority th s

priority th (Set th ′ prio::s)
def
= if th ′= th then prio else priority th s

priority th ( ::s)
def
= priority th s

In this definition we set 0 as the default priority for threads that have not (yet) been
created. The last function we need calculates the “time”, or index, at which time a
process had its priority last set.

last set th []
def
= 0

last set th (Create th ′ prio::s)
def
= if th = th ′ then |s| else last set th s

last set th (Set th ′ prio::s)
def
= if th = th ′ then |s| else last set th s

last set th ( ::s)
def
= last set th s

In this definition |s| stands for the length of the list of events s. Again the default value
in this function is 0 for threads that have not been created yet. A precedence of a thread
th in a state s is the pair of natural numbers defined as

prec th s
def
= (priority th s, last set th s)

The point of precedences is to schedule threads not according to priorities (because what
should we do in case two threads have the same priority), but according to precedences.
Precedences allow us to always discriminate between two threads with equal priority
by taking into account the time when the priority was last set. We order precedences so
that threads with the same priority get a higher precedence if their priority has been set
earlier, since for such threads it is more urgent to finish their work. In an implementation
this choice would translate to a quite natural FIFO-scheduling of processes with the
same priority.

Next, we introduce the concept of waiting queues. They are lists of threads associated
with every resource. The first thread in this list (i.e. the head, or short hd) is chosen to
be the one that is in possession of the “lock” of the corresponding resource. We model
waiting queues as functions, below abbreviated as wq. They take a resource as argument
and return a list of threads. This allows us to define when a thread holds, respectively
waits for, a resource cs given a waiting queue function wq.
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holds wq th cs
def
= th ∈ set (wq cs) ∧ th = hd (wq cs)

waits wq th cs
def
= th ∈ set (wq cs) ∧ th �= hd (wq cs)

In this definition we assume set converts a list into a set. At the beginning, that is in the
state where no thread is created yet, the waiting queue function will be the function that
returns the empty list for every resource.

all unlocked
def
= λ . [] (1)

Using holds and waits, we can introduce Resource Allocation Graphs (RAG), which
represent the dependencies between threads and resources. We represent RAGs as rela-
tions using pairs of the form

(T th, C cs) and (C cs, T th)

where the first stands for a waiting edge and the second for a holding edge (C and T
are constructors of a datatype for vertices). Given a waiting queue function, a RAG is
defined as the union of the sets of waiting and holding edges, namely

RAG wq
def
= {(T th, C cs) | waits wq th cs} ∪ {(C cs, T th) | holds wq th cs}

Given four threads and three resources, an instance of a RAG can be pictured as follows:

th0 cs1

th1

th2 cs2

cs3

th3

holding
waiting

waiting
holding

holding

waiting

The use of relations for representing RAGs allows us to conveniently define the notion
of the dependants of a thread using the transitive closure operation for relations. This
gives

dependants wq th
def
= {th ′ | (T th ′, T th) ∈ (RAG wq)+}

This definition needs to account for all threads that wait for a thread to release a re-
source. This means we need to include threads that transitively wait for a resource
being released (in the picture above this means the dependants of th0 are th1 and th2,
which wait for resource cs1, but also th3, which cannot make any progress unless th2

makes progress, which in turn needs to wait for th0 to finish). If there is a circle of
dependencies in a RAG, then clearly we have a deadlock. Therefore when a thread re-
quests a resource, we must ensure that the resulting RAG is not circular. In practice, the
programmer has to ensure this.

Next we introduce the notion of the current precedence of a thread th in a state s. It
is defined as

cprec wq s th
def
= Max ({prec th s} ∪ {prec th ′ s | th ′∈ dependants wq th}) (2)
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where the dependants of th are given by the waiting queue function. While the prece-
dence prec of a thread is determined statically (for example when the thread is created),
the point of the current precedence is to let the scheduler increase this precedence, if
needed according to PIP. Therefore the current precedence of th is given as the maxi-
mum of the precedence th has in state s and all threads that are dependants of th. Since
the notion dependants is defined as the transitive closure of all dependent threads, we
deal correctly with the problem in the informal algorithm by Sha et al. [11] where a
priority of a thread is lowered prematurely.

The next function, called schs, defines the behaviour of the scheduler. It will be
defined by recursion on the state (a list of events); this function returns a schedule state,
which we represent as a record consisting of two functions:

(|wq fun, cprec fun|)

The first function is a waiting queue function (that is, it takes a resource cs and returns
the corresponding list of threads that lock, respectively wait for, it); the second is a
function that takes a thread and returns its current precedence (see the definition in (2)).
We assume the usual getter and setter methods for such records.

In the initial state, the scheduler starts with all resources unlocked (the corresponding
function is defined in (1)) and the current precedence of every thread is initialised with

(0, 0); that means initial cprec
def
= λ . (0, 0). Therefore we have for the initial shedule

state

schs []
def
=

(|wq fun = all unlocked, cprec fun = initial cprec|)

The cases for Create, Exit and Set are also straightforward: we calculate the waiting
queue function of the (previous) state s; this waiting queue function wq is unchanged
in the next schedule state—because none of these events lock or release any resource;
for calculating the next cprec fun, we use wq and cprec. This gives the following three
clauses for schs:

schs (Create th prio::s)
def
=

let wq = wq fun (schs s) in
(|wq fun = wq, cprec fun = cprec wq (Create th prio::s)|)

schs (Exit th::s)
def
=

let wq = wq fun (schs s) in
(|wq fun = wq, cprec fun = cprec wq (Exit th::s)|)

schs (Set th prio::s)
def
=

let wq = wq fun (schs s) in
(|wq fun = wq, cprec fun = cprec wq (Set th prio::s)|)

More interesting are the cases where a resource, say cs, is locked or released. In these
cases we need to calculate a new waiting queue function. For the event P th cs, we have
to update the function so that the new thread list for cs is the old thread list plus the
thread th appended to the end of that list (remember the head of this list is assigned to
be in the possession of this resource). This gives the clause
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schs (P th cs::s)
def
=

let wq = wq fun (schs s) in
let new wq = wq(cs := (wq cs @ [th])) in
(|wq fun = new wq, cprec fun = cprec new wq (P th cs::s)|)

The clause for event V th cs is similar, except that we need to update the waiting queue
function so that the thread that possessed the lock is deleted from the corresponding
thread list. For this list transformation, we use the auxiliary function release. A simple
version of release would just delete this thread and return the remaining threads, namely

release []
def
= []

release ( ::qs)
def
= qs

In practice, however, often the thread with the highest precedence in the list will get
the lock next. We have implemented this choice, but later found out that the choice of
which thread is chosen next is actually irrelevant for the correctness of PIP. Therefore
we prove the stronger result where release is defined as

release []
def
= []

release ( ::qs)
def
= SOME qs ′. distinct qs ′∧ set qs ′= set qs

where SOME stands for Hilbert’s epsilon and implements an arbitrary choice for the
next waiting list. It just has to be a list of distinctive threads and contain the same
elements as qs. This gives for V the clause:

schs (V th cs::s)
def
=

let wq = wq fun (schs s) in
let new wq = release (wq cs) in
(|wq fun = new wq, cprec fun = cprec new wq (V th cs::s)|)

Having the scheduler function schs at our disposal, we can “lift”, or overload, the no-
tions waits, holds, RAG and cprec to operate on states only.

holds s
def
= holds (wq fun (schs s))

waits s
def
= waits (wq fun (schs s))

RAG s
def
= RAG (wq fun (schs s))

cprec s
def
= cprec fun (schs s)

With these abbreviations in place we can introduce the notion of a thread being ready
in a state (i.e. threads that do not wait for any resource) and the running thread.

ready s
def
= {th ∈ threads s | ∀ cs. ¬ waits s th cs}

running s
def
= {th ∈ ready s | cprec s th = Max (cprec s ‘ ready s)}
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In the second definition ‘ stands for the image of a set under a function. Note that
in the initial state, that is where the list of events is empty, the set threads is empty and
therefore there is neither a thread ready nor running. If there is one or more threads
ready, then there can only be one thread running, namely the one whose current prece-
dence is equal to the maximum of all ready threads. We use sets to capture both possi-
bilities. We can now also conveniently define the set of resources that are locked by a
thread in a given state and also when a thread is detached that state (meaning the thread
neither holds nor waits for a resource):

resources s th
def
= {cs | holds s th cs}

detached s th
def
= (� cs. holds s th cs) ∧ (� cs. waits s th cs)

The second definition states that th in s.
Finally we can define what a valid state is in our model of PIP. For example we can-

not expect to be able to exit a thread, if it was not created yet. These validity constraints
on states are characterised by the inductive predicate step and valid state. We first give
five inference rules for step relating a state and an event that can happen next.

th /∈ threads s

step s (Create th prio)

th ∈ running s resources s th = ∅

step s (Exit th)

The first rule states that a thread can only be created, if it is not alive yet. Similarly, the
second rule states that a thread can only be terminated if it was running and does not
lock any resources anymore (this simplifies slightly our model; in practice we would
expect the operating system releases all locks held by a thread that is about to exit). The
event Set can happen if the corresponding thread is running.

th ∈ running s

step s (Set th prio)

If a thread wants to lock a resource, then the thread needs to be running and also we
have to make sure that the resource lock does not lead to a cycle in the RAG. In practice,
ensuring the latter is the responsibility of the programmer. In our formal model we brush
aside these problematic cases in order to be able to make some meaningful statements
about PIP.3

th ∈ running s (C cs, T th) /∈ (RAG s)+

step s (P th cs)

Similarly, if a thread wants to release a lock on a resource, then it must be running and
in the possession of that lock. This is formally given by the last inference rule of step.

th ∈ running s holds s th cs

step s (V th cs)

3 This situation is similar to the infamous occurs check in Prolog: In order to say anything mean-
ingful about unification, one needs to perform an occurs check. But in practice the occurs check
is omitted and the responsibility for avoiding problems rests with the programmer.
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A valid state of PIP can then be conveniently be defined as follows:

valid state []

valid state s step s e

valid state (e::s)

This completes our formal model of PIP. In the next section we present properties that
show our model of PIP is correct.

3 The Correctness Proof

Sha et al. state their first correctness criterion for PIP in terms of the number of low-
priority threads [11, Theorem 3]: if there are n low-priority threads, then a blocked job
with high priority can only be blocked a maximum of n times. Their second correctness
criterion is given in terms of the number of critical resources [11, Theorem 6]: if there
are m critical resources, then a blocked job with high priority can only be blocked
a maximum of m times. Both results on their own, strictly speaking, do not prevent
indefinite, or unbounded, Priority Inversion, because if a low-priority thread does not
give up its critical resource (the one the high-priority thread is waiting for), then the
high-priority thread can never run. The argument of Sha et al. is that if threads release
locked resources in a finite amount of time, then indefinite Priority Inversion cannot
occur—the high-priority thread is guaranteed to run eventually. The assumption is that
programmers must ensure that threads are programmed in this way. However, even
taking this assumption into account, the correctness properties of Sha et al. are not true
for their version of PIP—despite being “proved”. As Yodaiken [15] pointed out: If a
low-priority thread possesses locks to two resources for which two high-priority threads
are waiting for, then lowering the priority prematurely after giving up only one lock, can
cause indefinite Priority Inversion for one of the high-priority threads, invalidating their
two bounds.

Even when fixed, their proof idea does not seem to go through for us, because of
the way we have set up our formal model of PIP. One reason is that we allow critical
sections, which start with a P-event and finish with a corresponding V-event, to arbi-
trarily overlap (something Sha et al. explicitly exclude). Therefore we have designed a
different correctness criterion for PIP. The idea behind our criterion is as follows: for
all states s, we know the corresponding thread th with the highest precedence; we show
that in every future state (denoted by s ′@ s) in which th is still alive, either th is running
or it is blocked by a thread that was alive in the state s and was waiting for or in the
possession of a lock in s. Since in s, as in every state, the set of alive threads is finite, th
can only be blocked a finite number of times. This is independent of how many threads
of lower priority are created in s ′. We will actually prove a stronger statement where we
also provide the current precedence of the blocking thread. However, this correctness
criterion hinges upon a number of assumptions about the states s and s ′@ s, the thread
th and the events happening in s ′. We list them next:



226 X. Zhang, C. Urban, and C. Wu

Assumptions on the states s and s ′@ s: We need to require that s and s ′@ s
are valid states:

valid state s, valid state (s ′@ s)

Assumptions on the thread th: The thread th must be alive in s and has the
highest precedence of all alive threads in s. Furthermore the priority of th is
prio (we need this in the next assumptions).

th ∈ threads s
prec th s = Max (cprec s ‘ threads s)
prec th s = (prio, )

Assumptions on the events in s ′: We want to prove that th cannot be blocked
indefinitely. Of course this can happen if threads with higher priority than th are
continuously created in s ′. Therefore we have to assume that events in s ′ can
only create (respectively set) threads with equal or lower priority than prio of
th. We also need to assume that the priority of th does not get reset and also that
th does not get “exited” in s ′. This can be ensured by assuming the following
three implications.

If Create th ′ prio ′∈ set s ′ then prio ′≤ prio
If Set th ′ prio ′∈ set s ′ then th ′ �= th and prio ′≤ prio
If Exit th ′∈ set s ′ then th ′ �= th

The locale mechanism of Isabelle helps us to manage conveniently such assumptions [3].
Under these assumptions we shall prove the following correctness property:

Theorem 1. Given the assumptions about states s and s ′ @ s, the thread th and the
events in s ′, if th ′∈ running (s ′@ s) and th ′ �= th then th ′∈ threads s, ¬ detached s th ′

and cprec (s ′@ s) th ′= prec th s.

This theorem ensures that the thread th, which has the highest precedence in the state
s, can only be blocked in the state s ′ @ s by a thread th ′ that already existed in s and
requested or had a lock on at least one resource—that means the thread was not detached
in s. As we shall see shortly, that means there are only finitely many threads that can
block th in this way and then they need to run with the same current precedence as th.

Like in the argument by Sha et al. our finite bound does not guarantee absence of
indefinite Priority Inversion. For this we further have to assume that every thread gives
up its resources after a finite amount of time. We found that this assumption is awkward
to formalise in our model. Therefore we leave it out and let the programmer assume the
responsibility to program threads in such a benign manner (in addition to causing no
circularity in the RAG). In this detail, we do not make any progress in comparison with
the work by Sha et al. However, we are able to combine their two separate bounds into
a single theorem improving their bound.

In what follows we will describe properties of PIP that allow us to prove Theorem 1
and, when instructive, briefly describe our argument. It is relatively easy to see that

running s ⊆ ready s ⊆ threads s
If valid state s then finite (threads s).
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The second property is by induction of valid state. The next three properties are

If valid state s and waits s th cs1 and waits s th cs2 then cs1 = cs2.
If holds s th1 cs and holds s th2 cs then th1 = th2.
If valid state s and th1 ∈ running s and th2 ∈ running s then th1 = th2.

The first property states that every waiting thread can only wait for a single resource
(because it gets suspended after requesting that resource); the second that every re-
source can only be held by a single thread; the third property establishes that in every
given valid state, there is at most one running thread. We can also show the following
properties about the RAG in s.

If valid state s then:
acyclic (RAG s), finite (RAG s) and wf ((RAG s)−1),
if T th ∈ Domain (RAG s) then th ∈ threads s and
if T th ∈ Range (RAG s) then th ∈ threads s.

The acyclicity property follows from how we restricted the events in step; similarly the
finiteness and well-foundedness property. The last two properties establish that every
thread in a RAG (either holding or waiting for a resource) is a live thread.

The key lemma in our proof of Theorem 1 is as follows:

Lemma 1. Given the assumptions about states s and s ′@ s, the thread th and the events
in s ′, if th ′∈ threads (s ′@ s), th ′ �= th and detached (s ′@ s) th ′

then th ′ /∈ running (s ′@ s).

The point of this lemma is that a thread different from th (which has the highest prece-
dence in s) and not holding any resource, cannot be running in the state s ′@ s.

Proof. Since thread th ′ does not hold any resource, no thread can depend on it. There-
fore its current precedence cprec (s ′ @ s) th ′ equals its own precedence prec th ′ (s ′ @
s). Since th has the highest precedence in the state (s ′@ s) and precedences are distinct
among threads, we have prec th ′ (s ′ @ s) < prec th (s ′ @ s). From this we have cprec
(s ′ @ s) th ′ < prec th (s ′ @ s). Since prec th (s ′ @ s) is already the highest cprec (s ′

@ s) th can not be higher than this and can not be lower either (by definition of cprec).
Consequently, we have prec th (s ′ @ s) = cprec (s ′ @ s) th. Finally we have cprec (s ′

@ s) th ′ < cprec (s ′ @ s) th. By defintion of running, th ′ can not be running in state s ′

@ s, as we had to show. ��

Since th ′ is not able to run in state s ′@ s, it is not able to issue a P or V event. Therefore
if s ′ @ s is extended one step further, th ′ still cannot hold any resource. The situation
will not change in further extensions as long as th holds the highest precedence.

From this lemma we can deduce Theorem 1: that th can only be blocked by a thread
th ′ that held some resource in state s (that is not detached). And furthermore that the
current precedence of th ′ in state (s ′ @ s) must be equal to the precedence of th in s.
We show this theorem by induction on s ′ using Lemma 1. This theorem gives a stricter
bound on the threads that can block th than the one obtained by Sha et al. [11]: only
threads that were alive in state s and moreover held a resource. This means our bound is
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in terms of both—alive threads in state s and number of critical resources. Finally, the
theorem establishes that the blocking threads have the current precedence raised to the
precedence of th.

We can furthermore prove that under our assumptions no deadlock exists in the state
s ′@ s by showing that running (s ′@ s) is not empty.

Lemma 2. Given the assumptions about states s and s ′@ s, the thread th and the events
in s ′, running (s ′@ s) �= ∅.

Proof. If th is blocked, then by following its dependants graph, we can always reach a
ready thread th ′, and that thread must have inherited the precedence of th. ��

4 Properties for an Implementation

While our formalised proof gives us confidence about the correctness of our model of
PIP, we found that the formalisation can even help us with efficiently implementing it.

For example Baker complained that calculating the current precedence in PIP is quite
“heavy weight” in Linux (see the Introduction). In our model of PIP the current prece-
dence of a thread in a state s depends on all its dependants—a “global” transitive notion,
which is indeed heavy weight (see Def. shown in (2)). We can however improve upon
this. For this let us define the notion of children of a thread th in a state s as

children s th
def
= {th ′ | ∃ cs. (T th ′, C cs) ∈ RAG s ∧ (C cs, T th) ∈ RAG s}

where a child is a thread that is only one “hop” away from the thread th in the RAG (and
waiting for th to release a resource). We can prove the following lemma.

Lemma 3. If valid state s then

cprec s th = Max ({prec th s} ∪ cprec s ‘ children s th).

That means the current precedence of a thread th can be computed locally by consider-
ing only the children of th. In effect, it only needs to be recomputed for th when one of
its children changes its current precedence. Once the current precedence is computed in
this more efficient manner, the selection of the thread with highest precedence from a
set of ready threads is a standard scheduling operation implemented in most operating
systems.

Of course the main work for implementing PIP involves the scheduler and coding
how it should react to events. Below we outline how our formalisation guides this im-
plementation for each kind of events.

Create th prio: We assume that the current state s ′ and the next state s
def
= Create th

prio::s ′ are both valid (meaning the event is allowed to occur). In this situation we can
show that

RAG s = RAG s ′,
cprec s th = prec th s, and
If th ′ �= th then cprec s th ′= cprec s ′ th ′.
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This means in an implementation we do not have recalculate the RAG and also none
of the current precedences of the other threads. The current precedence of the created
thread th is just its precedence, namely the pair (prio, |s|).

Exit th: We again assume that the current state s ′ and the next state s
def
= Exit th::s ′ are

both valid. We can show that

RAG s = RAG s ′, and
If th ′ �= th then cprec s th ′= cprec s ′ th ′.

This means again we do not have to recalculate the RAG and also not the current prece-
dences for the other threads. Since th is not alive anymore in state s, there is no need to
calculate its current precedence.

Set th prio: We assume that s ′ and s
def
= Set th prio::s ′ are both valid. We can show that

RAG s = RAG s ′, and
If th ′ �= th and th /∈ dependants s th ′ then cprec s th ′= cprec s ′ th ′.

The first property is again telling us we do not need to change the RAG. The second
shows that the cprec-values of all threads other than th are unchanged. The reason is
that th is running; therefore it is not in the dependants relation of any other thread. This
in turn means that the change of its priority cannot affect other threads.

V th cs: We assume that s ′ and s
def
= V th cs::s ′ are both valid. We have to consider two

subcases: one where there is a thread to “take over” the released resource cs, and one
where there is not. Let us consider them in turn. Suppose in state s, the thread th ′ takes
over resource cs from thread th. We can prove

RAG s = RAG s ′− {(C cs, T th), (T th ′, C cs)} ∪ {(C cs, T th ′)}

which shows how the RAG needs to be changed. The next lemma suggests how the
current precedences need to be recalculated. For threads that are not th and th ′ nothing
needs to be changed, since we can show

If th ′′ �= th and th ′′ �= th ′ then cprec s th ′′= cprec s ′ th ′′.

For th and th ′ we need to use Lemma 3 to recalculate their current precedence since
their children have changed.

In the other case where there is no thread that takes over cs, we can show how to
recalculate the RAG and also show that no current precedence needs to be recalculated.

RAG s = RAG s ′− {(C cs, T th)}
cprec s th ′= cprec s ′ th ′

P th cs: We assume that s ′ and s
def
= P th cs::s ′ are both valid. We again have to analyse

two subcases, namely the one where cs is not locked, and one where it is. We treat the
former case first by showing that
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RAG s = RAG s ′∪ {(C cs, T th)}
cprec s th ′= cprec s ′ th ′

This means we need to add a holding edge to the RAG and no current precedence needs
to be recalculated.

In the second case we know that resource cs is locked. We can show that

RAG s = RAG s ′∪ {(T th, C cs)}
If th /∈ dependants s th ′ then cprec s th ′= cprec s ′ th ′.

That means we have to add a waiting edge to the RAG. Furthermore the current prece-
dence for all threads that are not dependants of th are unchanged. For the others we
need to follow the edges in the RAG and recompute the cprec. To do this we can start
from th and follow the RAG-edges to recompute using Lemma 3 the cprec of every
thread encountered on the way. Since the RAG is loop free, this procedure will always
stop. The following lemma shows, however, that this procedure can actually stop often
earlier without having to consider all dependants.

If th ∈ dependants s th ′, th ′∈ dependants s th ′′ and cprec s th ′= cprec s ′ th ′

then cprec s th ′′= cprec s ′ th ′′.

This lemma states that if an intermediate cprec-value does not change, then the pro-
cedure can also stop, because none of its dependent threads will have their current
precedence changed.

As can be seen, a pleasing byproduct of our formalisation is that the properties in this
section closely inform an implementation of PIP, namely whether the RAG needs to be
reconfigured or current precedences need to be recalculated for an event. This informa-
tion is provided by the lemmas we proved. We confirmed that our observations translate
into practice by implementing our version of PIP on top of PINTOS, a small operating
system written in C and used for teaching at Stanford University [8]. To implement PIP,
we only need to modify the kernel functions corresponding to the events in our formal
model. The events translate to the following function interface in PINTOS:

Event PINTOS function
Create thread create
Exit thread exit
Set thread set priority
P lock acquire
V lock release

Our implicit assumption that every event is an atomic operation is ensured by the archi-
tecture of PINTOS. The case where an unlocked resource is given next to the waiting
thread with the highest precedence is realised in our implementation by priority queues.
We implemented them as Braun trees [6], which provide efficient O(log n)-operations
for accessing and updating. Apart from having to implement relatively complex data-
structures in C using pointers, our experience with the implementation has been very
positive: our specification and formalisation of PIP translates smoothly to an efficent
implementation in PINTOS.
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5 Conclusion

The Priority Inheritance Protocol (PIP) is a classic textbook algorithm used in many
real-time operating systems in order to avoid the problem of Priority Inversion. Al-
though classic and widely used, PIP does have its faults: for example it does not prevent
deadlocks in cases where threads have circular lock dependencies.

We had two goals in mind with our formalisation of PIP: One is to make the notions
in the correctness proof by Sha et al. [11] precise so that they can be processed by
a theorem prover. The reason is that a mechanically checked proof avoids the flaws
that crept into their informal reasoning. We achieved this goal: The correctness of PIP
now only hinges on the assumptions behind our formal model. The reasoning, which is
sometimes quite intricate and tedious, has been checked by Isabelle/HOL. We can also
confirm that Paulson’s inductive method for protocol verification [7] is quite suitable for
our formal model and proof. The traditional application area of this method is security
protocols.

The second goal of our formalisation is to provide a specification for actually im-
plementing PIP. Textbooks, for example [12, Section 5.6.5], explain how to use various
implementations of PIP and abstractly discuss their properties, but surprisingly lack
most details important for a programmer who wants to implement PIP (similarly Sha
et al. [11]). That this is an issue in practice is illustrated by the email from Baker we
cited in the Introduction. We achieved also this goal: The formalisation allowed us to
efficently implement our version of PIP on top of PINTOS [8], a simple instructional
operating system for the x86 architecture. It also gives the first author enough data to
enable his undergraduate students to implement PIP (as part of their OS course). A
byproduct of our formalisation effort is that nearly all design choices for the PIP sched-
uler are backed up with a proved lemma. We were also able to establish the property
that the choice of the next thread which takes over a lock is irrelevant for the correctness
of PIP.

PIP is a scheduling algorithm for single-processor systems. We are now living in a
multi-processor world. Priority Inversion certainly occurs also there. However, there is
very little “foundational” work about PIP-algorithms on multi-processor systems. We
are not aware of any correctness proofs, not even informal ones. There is an implemen-
tation of a PIP-algorithm for multi-processors as part of the “real-time” effort in Linux,
including an informal description of the implemented scheduling algorithm given in
[10]. We estimate that the formal verification of this algorithm, involving more fine-
grained events, is a magnitude harder than the one we presented here, but still within
reach of current theorem proving technology. We leave this for future work.

The most closely related work to ours is the formal verification in PVS of the Pri-
ority Ceiling Protocol done by Dutertre [1]—another solution to the Priority Inversion
problem, which however needs static analysis of programs in order to avoid it. There
have been earlier formal investigations into PIP [2,4,14], but they employ model check-
ing techniques. The results obtained by them apply, however, only to systems with a
fixed size, such as a fixed number of events and threads. In contrast, our result applies
to systems of arbitrary size. Moreover, our result is a good witness for one of the major
reasons to be interested in machine checked reasoning: gaining deeper understanding
of the subject matter.
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Our formalisation consists of around 210 lemmas and overall 6950 lines of read-
able Isabelle/Isar code with a few apply-scripts interspersed. The formal model of PIP
is 385 lines long; the formal correctness proof 3800 lines. Some auxiliary definitions
and proofs span over 770 lines of code. The properties relevant for an implementation
require 2000 lines.

Acknowledgements. We are grateful for the comments we received from anonymous
referees.
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in SSReflect-Coq
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Abstract. The most fundamental results of information theory are Shan-
non’s theorems. These theorems express the bounds for reliable data
compression and transmission over a noisy channel. Their proofs are
non-trivial but rarely detailed, even in the introductory literature. This
lack of formal foundations makes it all the more unfortunate that cru-
cial results in computer security rely solely on information theory (the
so-called “unconditional security”). In this paper, we report on the for-
malization of a library for information theory in the SSReflect extension
of the Coq proof-assistant. In particular, we produce the first formal
proofs of the source coding theorem (that introduces the entropy as the
bound for lossless compression), and the direct part of the more difficult
channel coding theorem (that introduces the capacity as the bound for
reliable communication over a noisy channel).

1 Introduction

“Information theory answers two fundamental questions in communication the-
ory: What is the ultimate data compression (answer: the entropy H), and what
is the ultimate transmission rate of communication (answer: the channel capac-
ity C).” This is the very first sentence of the reference book on information
theory by Cover and Thomas [5]. This paper is precisely about the formalization
of Shannon’s theorems that answer these two fundamental questions.

The proofs of Shannon’s theorems are non-trivial but are rarely detailed
(let alone formalized), even in the introductory literature. Shannon’s original
proofs [1] in 1948 are well-known to be informal; rigorous versions appeared
several years later. Even today, the bounds that appear in Shannon’s theorems
(these theorems are asymptotic) are never made explicit and their existence is
seldom proved carefully.

This lack of formal foundations makes it all the more unfortunate that several
results in computer security rely crucially on information theory: this is the
so-called field of “unconditional security” (one-time pad protocol, evaluation
of information leakage, key distribution protocol over a noisy channel, etc.). A
formalization of information theory would be a first step towards the verification
of cryptographic systems based on unconditional security, and, more generally,
for the rigorous design of critical communication devices.
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In this paper, our first contribution is to provide a library of formal definitions
and lemmas for information theory. First, we formalize finite probability, up to
the weak law of large numbers, and apply this formalization to the formalization
of basic information-theoretic concepts such as entropy and typical sequences.
This line of work has already been investigated by Hasan et al. [6,11,13] and by
Coble [9], with the HOL proof-assistants. The originality of our library (besides
the fact that we are working with the Coq proof-assistant [10]) lies in the formal-
ization of advanced concepts such as channels, codes, jointly typical sequences,
etc., that are necessary to state and prove Shannon’s theorems.

Our second and main contribution is to provide the first (to the best of our
knowledge) formal proofs of Shannon’s theorems. Precisely, we formalize the
source coding theorem (direct and converse parts), that introduces the entropy
as the bound for lossless compression, and the direct part of the channel coding
theorem, that introduces the channel capacity as the bound for reliable commu-
nication over a noisy channel.

The formalization of Shannon’s theorems is not a trivial matter because, in
addition to the complexity of a theorem such as the channel coding theorem, the
literature does not provide proofs that are organized in a way that facilitates
formalization. Most importantly, it is necessary to rework the proofs so that
the (asymptotic) bounds can be formalized. Indeed, information theorists often
resort to claims such as “this holds for n sufficiently large”, but there are in
general several parameters that are working together so that one cannot choose
one without checking the others. Another kind of approximation that matters
when formalizing is the type of arguments. For example, in the proof of the
source coding theorem, it is mathematically important to treat the source rate
as a rational and not as a real, but such details are often overlooked. In order
to ease formalization, we make several design decisions to reduce the number of
concepts involved. For example, we do not use conditional entropy in an explicit
way, and, more generally, we avoid explicit use of conditional probabilities, except
for the definition of discrete channels. In fact, we believe that this even facilitates
informal understanding because proofs are more “to the point”.

We carried out formalization in the SSReflect extension [12] of the Coq
proof-assistant [10]. This is because information theory involves many calcu-
lations with Σ/Π-notations over various kinds of sets (tuples, functions, etc.)
for which SSReflect’s library (in particular, canonical big operators [7]) are
well-suited. Formal definitions and lemmas that appear in this paper are taken
directly from the scripts (available at [14]), modulo enhancements with colors
and standard non-ASCII characters to improve reading.

Paper Outline. In Sect. 2, we formalize definitions and properties about finite
probability to be used in the rest of the paper. In Sect. 3, we introduce the
concept of typical sequence. In Sect. 4, we state the source coding theorem and
give an outline of the proof of the direct part. In Sect. 5, we formalize the concept
of channel and illustrate related definitions thoroughly using the example of the
binary symmetric channel. Finally, we state and prove the direct part of the
channel coding theorem in Sect. 6. Section 7 is dedicated to related work.
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2 The Basics: Finite Probability

We introduce basic definitions about probability (to explain the notations to
be used in this paper) and formalize the weak law of large numbers. We do
not claim that this formalization is a major contribution in itself because there
exist more general formalizations of probability theory (in particular in the HOL
proof-assistant [6,11,13]) but providing a new formalization using SSReflect
will allow us to take advantage of its library to prove Shannon’s theorems.

2.1 Probability Distributions

A distribution over a finite type A (i.e., of type finType in SSReflect) is de-
fined as a real-valued probability mass function pmf (R is the type of reals in
Coq standard library) with positive outputs (proof pmf0 below) that sum to 1
(proof pmf1; the big sum operator comes from SSReflect [7]):

0 Record dist := mkDist {

1 pmf :> A → R ;

2 pmf0 : ∀ a, 0 ≤ pmf a ;

3 pmf1 : Σ_(a ∈ A) pmf a = 1 }.

P : dist A is a Record but, thanks to the coercion line 1, we can write “P a” as
a function application to represent the probability associated with a.

We will be led to define several kinds of distributions in the course of this
paper. Here is a first example. Given distributions P1 over A and P2 over B, the
product distribution P1 × P2 over A * B is defined as follows:

Definition Pprod_dist : dist [finType of A * B].

apply mkDist with (fun x ⇒ P1 x.1 * P2 x.2) ... Defined .

(We omit the proofs of pmf0 and pmf1 in this paper; the .1 (resp. .2) notation
is for the first (resp. second) pair projection); the notation [finType of ...] is
just a type cast.)

Given a distribution P over A, the probability of an event (encoded as a boolean
predicate of type pred A) is defined as follows:

Definition Pr (Q : pred A) := Σ_(a ∈ A | Q a) P a.

2.2 Random Variables

We formalize a random variable as a distribution coupled with a real-valued
function: Record rvar A := {rv_dist : dist A ; rv_fun :> A →R }. (This def-
inition is sufficient because A is a finite type.) Again, thanks to the coercion, given
a random variable X and a belonging to its sample space, one can write “X a”
as in standard mathematical writing despite the fact that X is actually a Record.
Furthermore, we note p_X the distribution underlying the random variable X.

Given a random variable X over A, and writing img X for its image, we define
for example the expected value as follows:
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Definition E := Σ_(r ← img X) r * Pr p_X [pred i | X i =R r].

Let us now define the sum of random variables. Below, n.-tuple A is the SSRe-
flect type of n-tuples over A (An in standard mathematical writing).

Given distributions P1 over A and P2 over n.-tuple A the joint distribution P

over n+1.-tuple A is defined in terms of marginal distributions by the following
predicate:

Definition joint :=

(∀ x, P1 x = Σ_(i ∈ {:n+1.-tuple A} | thead i = x) P i) ∧
(∀ x, P2 x = Σ_(i ∈ {:n+1.-tuple A} | behead i = x) P i).

Informally speaking, joint P1 P2 P is a relation that defines the distribution P1

(resp. P2) from the distribution P by taking into account only the first element
(resp. all the elements but the first) of the tuples from the sample space (thead
returns the first element of a tuple; behead returns all the elements but the first).

The random variable X is the sum of X1 and X2 when the distribution of X is
the joint distribution of the distributions of X1 and X2 and the output of X is the
sum of the outputs of X1 and X2:

Definition sum := joint p_X1 p_X2 p_X ∧
X =1 [ffun x ⇒ X1 (thead x) + X2 [tuple of (behead x)]].

([ffun x ⇒...] is a SSReflect notation to define partial functions over finite
domains: [tuple of ...] is just a type cast.)

The random variables X over A and Y over n.-tuple A are independent for a
distribution P over n+1.-tuple A when:

Definition inde_rvar := ∀ x y,

Pr P [pred xy | (X (thead xy) =R x) ∧
(Y [tuple of (behead xy)] =R y)] =

Pr p_X [pred x | X x =R x] * Pr p_Y [pred y | Y x =R y].

We define the sum of several random variables by generalizing sum to an induc-
tive predicate (like in [6]). Let Xs be a tuple of n random variables over A and X

be a random variable over n.-tuple A. sum_n Xs X holds when X is the sum of Xs.
We also specialize this definition to the sum of independent random variables.
Equipped with above definitions, we derive the standard properties of the ex-
pected value, such as its linearity, but also properties of the variance. See [14]
for details.

2.3 The Weak Law of Large Numbers

The weak law of large numbers is the first fundamental theorem of probability.
Intuitively, it says that the average of the results obtained by repeating an ex-
periment a large number of times is close to the expected value. Formally, let Xs
be a tuple of n identically distributed random variables, i.e., random variables
with the same distribution P. Let us assume that these random variables are in-
dependent and let us write X for their sum, μ for their common expected value,
and σ2 for their common variance. The weak law of large numbers says that the
outcome of the average random variable avg_rv X gets closer to μ:



Formalization of Shannon’s Theorems in SSReflect-Coq 237

Lemma wlln ε : 0 < ε →
Pr p_X [pred x | Rabs (avg_rv X x - μ) ≥R ε] ≤

σ2 / (n+1 * ε ^ 2).

See [14] for the proof of this lemma using the Chebyshev inequality.

3 Entropy and Typical Sequences

We formalize the central concept of a typical sequence. Intuitively, a typical
sequence is an n-tuple of symbols (where n is large) that is expected to be ob-
served. For example, a tuple produced by a binary source that emits 0’s with
probability 2/3 is typical when it contains approximately two thirds of 0’s. The
precise definition of typical sequences requires the definition of the entropy and
their properties relies on a technical result known as the Asymptotic Equiparti-
tion Property. (One can find an alternative HOL version of most definitions and
properties in this section in [13].)

3.1 Entropy and Asymptotic Equipartition Property

We define the entropy of a random variable with distribution P over A as follows
(where log is the binary logarithm, derived from the standard library of Coq):

Definition H := - Σ_(i ∈ A) P i * log (P i).

The Asymptotic Equipartition Property (AEP) is a property about the outcome
of several random variables that are independent and identically distributed
(i.i.d.). Let us assume an n-tuple of i.i.d. random variables with distribution P

over A. The probability of the outcome x (of type n.-tuple A) is:

Definition Ptuple x := Π_(i < n) P x_i.

(The big product operator comes from SSReflect, x_i is for accessing the ith
element of the tuple x.) Informally, the AEP states that, in terms of probabil-
ity, - (1 / n) * log(Ptuple P x) is “close to” the entropy H P. Here, “close to”
means that, given an ε > 0, the probability that - (1 / n) * log(Ptuple P x)

and H P differ by more than ε is less than ε, for n greater than the bound
aep_bound ε defines as follows:

Definition aep_ σ2 := Σ_(x ∈ A) P x * (log (P x))^2 - (H P)^2.

Definition aep_bound ε := aep_ σ2 P / ε ^3.

The probability in the AEP is taken over a tuple distribution. Given a distribu-
tion P over A, the tuple distribution P^n over n.-tuple A is defined as follows:

Definition Ptuple_dist : dist [finType of n.-tuple A].

apply mkDist with Ptuple. ... Defined .

Using above definitions, the AEP can now be stated formally. Its proof is an
application of the weak law of large numbers (Sect. 2.3):

Lemma aep : aep_bound P ε ≤ n+1 →
Pr (P^n+1) [pred x | 0 <R P^n+1 x ∧

Rabs (- (1 / n+1) * log (Ptuple P x) - H P) ≥R ε ] ≤ ε.



238 R. Affeldt and M. Hagiwara

3.2 Typical Sequences: Definition and Properties

Given a distribution P over A and an ε, a typical sequence is an n-tuple with
probability “close to” 2−nHP :

Definition typ_seq (x : n.-tuple A) ε :=

exp (- n * (H P + ε)) <R= Ptuple P x <R= exp (- n * (H P - ε)).

Let us note T S the set of typical sequences. Using the AEP, we prove that the
probability to observe a typical sequence for large n is close to 1, corresponding
to the intuition that it is expected to be observed in the long run:

Lemma Pr_T S_1 : aep_bound P ε ≤ n+1 →
Pr (P^n+1) [pred i ∈ T S P n+1 ε] ≥ 1 - ε.

The cardinal of T S is nearly 2nHP . Precisely, it is upper-bounded by 2n(HP+ε),
and lower-bounded by (1− ε)2n(HP−ε) for n big enough:

Lemma T S_sup : | T S P n ε | ≤ exp (n * (H P + ε)).
Lemma T S_inf : aep_bound P ε ≤ n+1 →

(1 - ε) * exp (n+1 * (H P - ε)) ≤ | T S P n+1 ε |.

4 The Source Coding Theorem

The source coding theorem (a.k.a. the noiseless coding theorem) is a theorem
for data compression. The basic idea is to replace frequent words with alphabet
sequences and other words with a special symbol. Let us illustrate this with an
example. The combination of two Roman alphabet letters consists of 676 (= 262)
words. Since 29 < 676 < 210, 10 bits are required to represent all the words.
However, by focusing on often-used English words (“as”, “in”, “of”, etc.), we can
encode them with less than 9 bits. Since this method does not encode rarely-used
words (such as “pz”) decoding errors can happen. Given an information source
known as a discrete memoryless source (DMS) that emits all symbols with the
same distribution P, the source coding theorem gives a theoretical lower-bound
(namely, the entropy H P) for compression rates for compression with negligible
error-rate.

4.1 Definition of a Source Code

Given a set A of symbols, a k,n-source code is a pair of an encoder and a decoder.
The encoder maps a k-tuple of symbols to an n-tuple of bits and the decoder
performs the corresponding decoding operation:

Definition encT := k.-tuple A → n.-tuple bool.

Definition decT := n.-tuple bool → k.-tuple A.

Record scode := mkScode { enc : encT ; dec : decT }.

The rate of a k,n-source code sc is defined as the ratio of bits per symbol:

Definition SrcRate (sc : scode) := n / k.
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Given a DMS with distribution P over A, the error rate of a source code sc

(notation: ēsrc(P , sc)) is defined as the probability of failure for the decoding
of encoded sequences:

Definition SrcCodeErrRate :=

Pr (P^k) [pred x | dec sc (enc sc x) �= x].

4.2 Source Coding Theorem—Direct Part

Given a source of symbols from the alphabet A with distribution P, there exist
source codes of rate r ∈Q+ (the positive rationals) larger than the entropy H P

such that the error rate can be made arbitrarily small:

Theorem source_coding_direct : ∀ λ, 0 < λ < 1 →
∀ r : Q+, H P < r ≤ 1 →
∃ k, ∃ n, ∃ sc : scode A k n,

r = SrcRate sc ∧ ēsrc(P , sc) ≤ λ.

Source Coding using the Typical Set. The crux of the proof is to instantiate with
an adequate source code. We first define the corresponding encoder and decoder
functions. For a set S of k+1-tuples, the encoder f encodes the ith element of S
as the binary encoding of i+ 1 and elements not in S as a string of 0’s:

Definition f : encT A k+1 n := fun x ⇒
if x ∈ S then

let i := index x (enum S) in Tuple (size_nat2bin_b i+1 n)

else

[tuple of nseq n false].

(enum S is the lists of all the elements of S; index returns the index of an element
in a list; nat2bin_b is a function that converts an integer i < 2n to a bitstring,
size_nat2bin_b being the proof that this bitstring has length n.)

The definition of the decoder requires to have a default element def ∈ S. The
decoder φ returns the i− 1th element of S if i is smaller than the cardinal of S,
and some default value from S otherwise:

Definition φ : decT A k+1 n := fun x ⇒
let i := tuple2N x in

if i is 0 then def else

if i-1 < | S | then nth def (enum S) i-1 else def.

(tuple2N interprets bitstrings as Peano integers; nth picks up the nth element of
a list.) By construction, f and φ perform lossless coding:

Lemma φ_f i : φ (f i) = i ↔ i ∈ S.

In the proof of the source coding theorem, the set S is actually taken to be the
set T S of typical sequences and there exists a default element def ∈ T S when
k is big enough, bound to be made more precise below.
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Formalization of the Bounds. Above, we explained how to construct the required
source code. Technically, in the formal proof, it is also important to correctly
instantiate n and k (given the source rate r, λ and the distribution P), such
that k is “big enough” for the lemma φ_f to hold. This aspect of the proof is
usually overlooked in the information theory literature, so that the (precise)
formal definition of these bounds is one of our contributions.

Let us define the following quantities:

Definition ε := Rmin (r - H P) λ.
Definition δ := Rmax (aep_bound P (ε / 2)) (2 / ε).

k must satisfy δ ≤k and k * r must be a natural. Such a k can be constructed
using the following lemma:

Lemma SrcDirectBound n d m : 0 < m →
{ k | m ≤ (k+1 * d+1) ∧

frac_part ((k+1 * d+1) * (n / d+1)) = 0}.

Let us assume that the rate is r = num / den+1. If we note k’ the natural con-
structed via the above lemma by taking n to be the numerator num, d to be den,
and m to be δ, then it is sufficient to take n equal to k’+1 * num and k equal to
k’+1 * den+1.

At this point, we have thoroughly explained how to instantiate the source code
required by the source coding theorem. The proof is completed by appealing to
the properties of typical sequences (in particular, lemmas Pr_T S_1 and T S_sup
from Sect. 3.2). The successive steps of the proof can be found in [14].

4.3 Source Coding Theorem—Converse Part

The converse of the Shannon’s source coding theorem shows that any source code
whose rate is smaller than the entropy of a source with distribution P over A has
non-negligible error-rate:

Theorem source_coding_converse : ∀ λ, 0 < λ < 1 →
∀ r : Q+, 0 < r < H P →
∀ n k (sc : scode A k+1 n),

r = SrcRate sc →
SrcConverseBound P (num r) (den r) n λ ≤ k+1 →
ēsrc(sc , P) ≥ λ.

where the bound SrcConverseBound gives a precise meaning to the claim that
would otherwise be informally summarized as “for k big enough”:

Definition ε := Rmin ((1 - λ) / 2) ((H P - r) / 2).

Definition δ := Rmin ((H P - r) / 2) (ε / 2).

Definition SrcConverseBound := Rmax (Rmax

(aep_bound P δ ) (- ((log δ ) / (H P - r - δ )))) (n / r).

The proof of the converse part of the source coding theorem is a bit simpler than
the direct part because no source code needs to be constructed. See [14] for the
detail of the proof steps.
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5 Formalization of Channels

5.1 Discrete Memoryless Channel

A discrete channel with input alphabet X and output alphabet Y is a (probability
transition) matrix (ptm) that expresses the probability of observing an output
symbol given some input symbol; it associates to each input a distribution of
the corresponding outputs (as ensured by the proofs ptm0 and ptm1):

Record W := mkW {

ptm :> Y → X → R ;

ptm0 : ∀ y x, 0 ≤ ptm y x ;

ptm1 : ∀ x, Σ_(y ∈ Y) ptm y x = 1 }.

The nth extension of a discrete channel is the generalization of a discrete channel
to the communication of several symbols:

Record Wn n := mkWn {

nptm :> {: n.-tuple Y} → {: n.-tuple X} → R ;

nptm0 : ∀ (y : n.-tuple _) x, 0 ≤ nptm y x ;

nptm1 : ∀ x, Σ_(y ∈ {: n.-tuple Y}) nptm y x = 1 }.

A discrete memoryless channel (DMC) models channels whose inputs do not
depend on past outputs. It is the special case of the nth extension of a discrete
channel defined as follows (again, we omit the proofs for nptm0 and nptm1):

Definition DMC (w : W) n : Wn n.

apply mkWn with (fun y x ⇒ Π_(i < n) w y_i x_i). ... Defined.

5.2 Mutual Information and Channel Capacity

Given a discrete channel w with input alphabet X and output alphabet Y, and an
input distribution P, there are two important distributions: the output distribu-
tion and the mutual distribution. The output distribution (notation: d(P , w))
is the distribution of the outputs:

Definition out_dist (P : dist X) (w : W Y X) : dist Y.

apply mkDist with (fun y ⇒ Σ_(x ∈ X) w y x * P x). ... Defined.

The mutual distribution (notation: d(P ; w)) is the joint distribution of the
inputs and the outputs:

Definition mut_dist (P : dist X) (w : W Y X) :

dist ([finType of X * Y]).

apply mkDist with (fun xy ⇒ w xy.2 xy.1 * P xy .1). ... Defined.

The output entropy (resp. mutual entropy) is the entropy of the output distri-
bution (resp. mutual distribution), hereafter noted H(P , w) (resp. H(P ; w)).

The mutual information (notation: I(P ; w)) is a measure of the amount of
information that the output distribution contains about the input distribution:

Definition mut_info_W (P : dist X) (w : W Y X) :=

H P + H(P , w) - H(P ; w).
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Finally, the information channel capacity is defined as the least upper bound of
the mutual information taken over all possible input distributions:

Definition upper_bound {A} (f : A → R) b := ∀ a, f a ≤ b.

Definition lub {A} (f : A → R) b :=

upper_bound f b ∧ ∀ b’, upper_bound f b’ → b ≤ b’.

Definition capacity (w : W Y X) c := lub (fun P ⇒ I(P ; w)) c.

It may not be immediate why the supremum of the mutual information is called
capacity. The goal of the channel coding theorem is to ensure that we can distin-
guish between two outputs (actually sets of outputs because of potential noise),
so as to be able to deduce the corresponding inputs without ambiguity. For each
input (of n symbols), there are approximately 2n(H(P ;w)−HP ) typical outputs
because H(P ;w)−HP is the entropy of the output knowing the input. On the
other hand, the total number of typical outputs is approximately 2nH(P,w). Since
this set has to be divided into sets of size 2n(H(P ;w)−HP ), the total number of
disjoint sets is less than or equal to 2n(H(P,w)−(H(P ;w)−HP )) = 2nI(P ;w).

5.3 Example: The Binary Symmetric Channel

We illustrate above definitions with the simplest model of channel with errors:
the p-binary symmetric channel (BSC below). In such a channel, the input and
output symbols are taken from the same alphabet X with only two symbols
(hypothesis noted HX below). Upon transmission, the input is flipped with prob-
ability p (with hypothesis Hp : 0 < p < 1):

Definition BSC : W X X.

apply mkW with (fun y x ⇒ if x = y then 1 - p else p).

... Defined .

For convenience, we introduce the binary entropy function:

Definition H2 p := - p * log p - (1 - p) * log (1 - p).

For any input distribution P, we prove that the mutual information can actually
be expressed by only the entropy of the output distribution and the binary
entropy function:

Lemma IPW : I(P ; BSC HX Hp) = H(P , BSC HX Hp) - H2 p.

The maximum of the binary entropy function on the interval (0, 1) is 1, fact that
we proved formally in Coq by appealing to the standard library for reals1:

Lemma H2 _max : ∀ q, 0 < q < 1 → H2 q ≤ 1.

This fact gives an upper-bound for the entropy of the output distribution:

Lemma H_out_dist_max : H(P , BSC HX Hp) ≤ 1.

The latter bound is actually reached for the uniform input distribution:

1 Modulo a slight extension of the corollary of the mean value theorem to handle
derivability of partial functions.
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Definition binary_uniform : dist X.

apply mkDist with (fun x ⇒ 1 / 2). ... Defined.

Lemma H_binary_uniform : H(binary_uniform , BSC HX Hp) = 1.

Above facts imply that the capacity of the p-binary symmetric channel can be
expressed by a simple closed formula:

Theorem BSC_capacity : capacity (BSC HX Hp) (1 - H2 p).

5.4 Jointly Typical Sequences

Let us consider a channel w with input alphabet X, output alphabet Y, and input
distribution P. A jointly typical sequence is a pair of two sequences such that:
(1) the first sequence is typical for P, (2) the second sequence is typical for
the output distribution d(P , w), and (3) the pair is typical for the mutual
distribution d(P ; w)2:

Definition jtyp_seq n (xy : n.-tuple (X * Y)) ε :=

typ_seq P ε (uzip1 xy) ∧
typ_seq (d(P , w)) ε (uzip2 xy) ∧
typ_seq (d(P ; w)) ε xy.

We note JT S the set of jointly typical sequences. The number of jointly typical
sequence is upper-bounded by 2n(H(P ;w)+ε):

Lemma JT S _sup ε : | JT S P w n ε| ≤ exp (n * (H(P ; w) + ε)).

Now follow two lemmas that will be key to prove the channel coding theorem.
With high probability (probability taken over the tuple distribution of the mu-
tual distribution), the sent input and the received output are jointly typical:

Lemma JT S _1 : JT S _1_bound ≤ n →
Pr ((d( P ; w)^n)) [pred x ∈ JT S P w n ε] ≥ 1 - ε.

The bound JT S_1_bound is defined as follows:

Definition JT S _1_bound :=

maxn (up (aep_bound P (ε /3)))
(maxn (up (aep_bound (d(P , w)) (ε /3)))

(up (aep_bound (d(P ; w)) (ε /3)))).

(up r is the ceiling of r, this is a function from the Coq standard library.)
This bound will later appear again in the proof of the channel coding theorem
(Sect. 6.3).

In contrast, the probability of the same event (joint typicality) taken over
the product distribution of the inputs and the outputs considered independently
tends to 0 as n gets large:

Lemma non_typical_sequences : Pr ((P^n) × ((d(P , w))^n))

[pred x ∈ JT S P w n ε] ≤ exp (- n * (I( P ; w) - 3 * ε)).

2 Informal definitions about jointly typical sequences seeminglessly switch between
(X×Y )n and Xn×Y n; this translates formally to projections and casts that we do
not represent explicitly in this paper.
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6 The Channel Coding Theorem

6.1 Formalization of a Channel Code

The purpose of a code is to transform the input of a channel (typically, by adding
some form of redundancy) so that the transmitted information can be recovered
correctly from the output despite of potential noise. Concretely, given input
alphabet X and output alphabet Y, a (channel) code is (1) a set M of codewords,
(2) an encoding function that turns a codeword into n input symbols, and (3) a
decoding function that turns n output symbols back into the original codeword
(or possibly fails):

Definition encT := {ffun M → n.-tuple X}.

Definition decT := {ffun n.-tuple Y → option M}.

Record code := mkCode { enc : encT ; dec : decT }.

The rate of a code is defined as follows:

Definition CodeRate (c : code) := log (| M |) / n.

For convenience, we introduce the following predicate to characterize (channel)
code rates:

Definition CodeRateType r := ∃ n, ∃ d,

0 < n ∧ 0 < d ∧ r = log n / d.

We now define the error-rate. For this purpose, we introduce a new kind of distri-
bution. Given a channel w and a tuple of inputs x, we define (and note “w (| x )”)
the distribution of outputs knowing that x was sent:

Definition DMC_cond (w : W) n (x : n.-tuple X) :

dist [finType of n.-tuple Y].

apply mkDist with (fun y ⇒ (DMC w n) y x). ... Defined .

Using this distribution, we first define the probability of decoding error knowing
that the codeword m from the code c was sent (notation: e(w , c) m):

Definition e (w : W Y X) c m :=

Pr (w (| enc c m) ) [pred y | dec c y �= Some m].

Finally, we define the error rate as the average probability of error for a code c

over channel w (notation: ēcha(w , c)):

Definition ChanCodeErrRate := 1 / | M | * Σ_(m ∈ M) e(w, c) m.

6.2 Channel Coding Theorem—Statement of the Direct Part

The (noisy-)channel coding theorem (a.k.a. Shannon’s theorem) is a theorem
for reliable information transmission over a noisy channel. The basic idea is to
represent the original message by a longer message. Let us illustrate this with an
example. Assume the original message is either 0 or 1 and is sent over a p-binary
symmetric channel (see Sect. 5.3). The receiver obtains the wrong message with
probability p. Let us now consider that the original message is 0 and encode 0
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into 000 before transmission (in other words, we use a repetition encoding with
code rate 1/3). The receiver obtains a message from {000, 001, 010, 100} with
probability (1−p)3+3p(1−p)2 and it guesses the original message 0 by majority
vote. The error probability 1− ((1− p)3 + 3p(1− p)2) is smaller than p.

One may guess that the smaller the code rate is, the smaller the error prob-
ability becomes. Given a discrete channel w (with input alphabet X and output
alphabet Y), the channel coding theorem guarantees the existence of an encod-
ing function and a decoding function such that the code rate is not small (but
smaller than the capacity cap—hypothesis capacity w cap) but is with negligible
error-rate:

Theorem channel_coding r : CodeRateType r → r < cap →
∀ ε, 0 < ε →
∃ n, ∃ M, ∃ c : code X Y M n,

r = CodeRate c ∧ ēcha(w, c) < ε.

6.3 Channel Coding Theorem—Proof of the Direct Part

We formalize a proof by “random coding”. In a nutshell: we first fix the decod-
ing function and then select an appropriate encoding function by checking all
the possible ones. Selection operates using a criterion about the average error-
rate of all the possible encoding functions, weighted according to a well-chosen
distribution.

Decoding by Joint Typicality. We first fix the decoding function jtdec. Given the
channel output y, jtdec looks for a codeword m such that the channel input f m

is jointly typical with y. If a unique such codeword is found, it is declared to be
the sent codeword ([pick m | P m] is a SSReflect construct that picks up an
element m satisfying the predicate P):

Definition jtdec P w ε (f : encT X M n) : decT Y M n :=

[ffun y ⇒ [pick m |

((f m, y) ∈ JT S P w n ε) ∧
(∀ m’, (m’ �= m) ⇒ ((f m’, y) �∈ J T S P w n ε ))]].

Criterion for Encoder Selection. We are looking for a code such that the error-
rate can be made arbitrarily small. The following lemma provides a sufficient
condition for the existence of such a code:

Lemma good_code_sufficient_condition (P : dist X) w ε
(φ : encT X M n → decT Y M n) :

Σ_(f : encT X M n) (wght P f * ēcha(w , mkCode f (φ f))) < ε →
∃ f, ēcha(w , mkCode f (φ f)) < ε.

where wght is the distribution of encoding functions defined as follows:

Definition wght (P : dist X) : dist [finType of (encT X M n)].

apply mkDist with

(fun f : encT X M n ⇒ Π_(m ∈ M) Ptuple P (f m)). ... Defined.
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The Main Lemma. Our theorem can be derived from the following technical
lemma by just proving the existence of appropriate ε0 and n. This lemma estab-
lishes that there exists a set of codewords M such that decoding by joint typicality
meets the above criterion:

0 Lemma random_coding_good_code : ∀ ε, 0 ≤ ε →
1 ∀ r, CodeRateType r →
2 ∀ ε0, ε0_condition r ε ε0 →
3 ∀ n, n_condition r ε0 n →
4 ∃ M : finType , 0 < |M| ∧ |M| = Int_part (exp (n * r)) ∧
5 let Jtdec := jtdec P w ε0 in

6 Σ_(f : encT X M n) (wght P f * ēcha(w , mkCode f (Jtdec f))) < ε.

In this lemma, the fact that the rate r is bounded by the mutual information
appears in the condition ε0_condition:

Definition ε0_condition r e e0 :=

0 < e0 ∧ e0 < e / 2 ∧ e0 < (I(P ; w) - r) / 4.

The condition n_condition corresponds to the formalization of the restriction
“for n big enough” (we saw the bound JT S_1_bound in Sect. 5.4):

Definition n_condition r e0 n := O < n ∧ - log e0 / e0 < n ∧
frac_part (exp (n * r)) = 0 ∧ JT S _1_bound P w e0 ≤ n.

Proof of the Main Lemma. The first thing to observe is that by construction
the error-rate averaged over all possible encoders does not depend on which
codeword m was sent:

Lemma error_rate_symmetry (P : dist X) (w : W Y X) ε :

0 ≤ ε → let Jtdec := jtdec P w ε in

∀ m m’,

Σ_(f : encT X M n) (wght P f * e(w, mkCode f (Jtdec f)) m) =

Σ_(f : encT X M n) (wght P f * e(w, mkCode f (Jtdec f)) m’).

Therefore, the left-handside of the conclusion of the main lemma (line 6 above)
can be rewritten by assuming that the codeword 0 was sent:

Σ_(f : encT X M n)

wght P f * Pr (w (|f 0)) [pred y ∈ not_preimg (Jtdec f) 0]

where not_preimg (Jtdec f) 0 is the set of outputs that do not decode to 0.
Let us write E f m for the set of outputs y such that (f m, y) ∈ JT S P w n ε.

Assuming that 0 was sent, a decoding error occurs when (1) the input and the
output are not jointly typical, or (2) when a wrong input is jointly typical with
the output (~: is a notation for set complementation):

[set x ∈ not_preimg (JTdec f) 0] =i

(~: E f 0) ∪
⋃
_(i : M | i �= 0) E f i.

Using the fact that the probability of a union is smaller that the sum of the prob-
abilities, the left-handside of the conclusion of the main lemma can be bounded
by the following expression:
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Σ_(f : encT X M n)

wght P f * Pr (w (|f 0)) [pred y ∈ ~: E f 0] + (∗ (1) ∗)
Σ_(i|i �= 0)Σ_(f : encT X M n)

wght P f * Pr (w (|f 0)) [pred y ∈ E f i] (∗ (2) ∗)

The first summand (1) can be rewritten into

Pr (d(P ; w)^n) [pred y ∈ ~: JT S P w n ε0]

which can be bounded using the lemma JT S_1 (Sect. 5.4). The second sum-
mand (2) can be rewritten into

k * Pr (P^n × (d(P, w))^n) [pred x ∈ JT S P w n ε0]

which can be bounded using the lemma non_typical_sequences (Sect. 5.4). The
bounds ε0 and n have been carefully chosen so that the proof can be concluded
with symbolic manipulations. See [14] for details.

7 Related Work

The formalization of Shannon’s theorems in this paper as well as the formal-
ization of advanced information-theoretic concepts (channels, jointly typical se-
quences, etc.) are new. Yet, one can find formalization of more basic concepts
of information theory in the literature. [9] formalizes (conditional) entropy and
(conditional) mutual information (based on the seminal work by Hurd [4]), de-
fines a notion of information leakage, and applies it to the verification of privacy
properties of a protocol. [13] provides a formalization of the AEP and presents the
source coding theorem as a potential application; in other words, our paper can
be seen as the direct continuation of [13], though in a different proof-assistant.

For the purpose of this paper, we formalized finite probability using SSRe-
flect. As we have hinted at several times in this paper, this formalization was
important to take advantage of SSReflect’s library (in particular, canonical
big operators [7]). We limit ourselves to finite probability because it is enough
for our purpose (as for the information theory formalized in [9]). [8] provides an
alternative formalization of probabilities in Coq but that is biased towards ver-
ification of randomized algorithms. Hasan et al. formalize probability theory on
more general grounds in the HOL proof-assistant: [6] formalizes the expectation
properties (this is also based on the work by Hurd [4]), [11] provides a formal-
ization of the Chebyshev inequality and of the Weak Law of Large Numbers.

Our formalization of the source coding theorem follows [3, Chapter 1] with
nevertheless much clarification (in particular, formalization of bounds).

8 Conclusion and Future Work

We presented a formalization of information-theoretic definitions and lemmas
in the SSReflect extension of the Coq proof-assistant. Besides basic material
such as finite probability and typical sequences, this formalization includes a
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formalization of channels (duly illustrated with the example of the binary sym-
metric channel), codes (for source and channel coding), and jointly typical se-
quences. We use this formalization to produce the first formal proofs of the
source coding theorem (direct and converse parts), that establishes the limit to
possible data compression, and the direct part of the channel coding theorem,
that establishes the limit to reliable data transmission over a noisy channel.
Compared to pencil-and-paper proofs, our formalization has the added value to
make precise the construction of asymptotic bounds.

We believe that the library that we have formalized can be used to formalize
further results about information theory (primarily, the converse of the channel
coding theorem) and also results of unconditional security (e.g., the proof of the
perfect secrecy of the one-time pad [2]).

The channel coding theorem proves the existence of codes for reliable data
transmission. Such codes play a critical role in IT products (e.g., LDPC codes in
storage devices). As a first step towards the verification of the implementation of
codes, we have been working on formalizing their basic properties ([14] already
provides several standard proofs about coding theory).
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Abstract. Disjunctive well-foundedness, size-change termination, and
well-quasi-orders are examples of techniques that have been successfully
applied to program termination. Although these works originate in dif-
ferent communities, they rely on closely related principles and both em-
ploy similar arguments from Ramsey theory. At the same time there is
a notable absence of these techniques in programming systems based on
constructive type theory. In this paper we’d like to highlight the afore-
mentioned connection and make the core ideas widely accessible to the-
oreticians and programmers, by offering a development in type theory
which culminates in some novel tools for induction. Inevitably, we have
to present some Ramsey-like arguments: Though similar proofs are typ-
ically classical, we offer an entirely constructive development based on
the work of Bezem and Veldman, and Richman and Stolzenberg.

1 Introduction

Program termination has always been an exciting subject, dating back to the
early days of computing. The reason is because program termination is at the
same time important for software reliability, and difficult for general classes of
programs. Despite the difficulties, however, several research communities have
managed to make good progress.

Over the recent years, the transition invariants [26] method has been an ex-
tremely successful approach for automatic proofs of program termination, lead-
ing to industrial-strength tools [9]. Size-change termination (SCT) [21,16,30] is
another very successful recent method, though similar techniques date back to
the early 90’s [28]. Both lines of work rely on formal arguments from Ramsey
theory [15], first introduced in the termination literature in [14] and also used
in [12]. Furthermore, research on online termination testing [22] and supercompi-
lation [31] has for a while been using termination criteria for function reductions
and inlining based on well-quasi-orders, often employing Ramsey-like arguments
to form more complex termination testing criteria from simpler ones.

There is an intimate connection between these worlds, and a notable absence
of similar techniques to help programmers prove the totality of their definitions in
programming systems based on constructive type theory. To quote some related
work on size-change termination for Isabelle [18]:

L. Beringer and A. Felty (Eds.): ITP 2012, LNCS 7406, pp. 250–265, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Stop When You Are Almost-Full 251

“Our proof uses classical logic, including the (infinite, but countable)
axiom of choice. It would be interesting to investigate if the proof can be
modified to work in a weaker framework”

We show that this is indeed possible. We reveal the connection between the
aforementioned previous works, and make the core ideas widely accessible to
theoreticians and programmers, by offering a development which introduces some
novel variations of induction principles. Inevitably, we have to present some
Ramsey-like arguments, proved constructively, in the footsteps of Bezem and
Veldman [35], and Richman and Stolzenberg [27]. Specifically, our contributions
with this paper are:

– We introduce a novel tool for proving termination, that of almost-full re-
lations (Section 2), which is a weaker version of the more traditional well-
quasi-orders, originating in intuitionistic mathematics.

– We formally explain the connection between almost-full relations and well-
founded relations (Section 3), and prove a new induction theorem based on
almost-full relations. (Section 3.1)

– We demonstrate that almost-full relations compose nicely to form other
almost-full relations (Section 4), yielding intuitive proof obligations for ter-
mination which involve relation inclusion lemmas instead of accessibility
predicates. In this context, we prove and use an intuitionistic version of
Ramsey’s theorem for binary relations.

– We can use our method to show complex examples from SCT (Section 5).
We show that the SCT principle can be intuitionistically proved from our
induction principle. We show that this is also the case for the Terminator
rule (based on the so-called disjunctive well-foundedness). (Section 6)

– We generalize our statement of the intuitionistic Ramsey theorem to relations
of transfinite arities, and offer an elegant and simpler proof of this theorem
than older attempts [10,13].(Section 7)

Our accompanying Coq development does not make use of any “non-standard”
axioms (such as classical facts). In addition to the Coq formalization, we’ve also
produced an Agda formalization of Section 7.1

The new induction principles proposed in this paper are not-necessarily more
expressive or easier to use than other (particularly recent [8,17,33]) related work
– this is a topic that deserves more engineering and automation support. On the
other hand, our new induction principles are quite amenable to the same automa-
tion that made Terminator and SCT successful, thanks to the composability of
almost-full relations and the nature of the user obligations that arise.

Apart from contributing to the large arsenal of techniques for recur-
sion [4,7,23,33,8], the other significant contribution of this article is to
bring together ideas from different research communities in a type-theoretic
framework.

1 http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.

IntuitionisticRamseyTheorem

http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.IntuitionisticRamseyTheorem
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.IntuitionisticRamseyTheorem
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2 Well-Quasi-Orders and Almost-Full Relations

Our starting point will be the well-known notion of a well-quasi-order (WQO):

Definition 1 (Well-quasi-order). A binary relation 3 on a set X is a well
quasi order if (i) it is transitive and (ii) for every infinite sequence s of elements
of X there exist i and j with i < j such that si 3 sj.

For example, on the type nat, the relation ≤ (le in Coq) is such a WQO.
A great use of WQOs is for online termination testing: Assume that the ob-

served state of a program forms a sequence of values s1, s2, . . . – online termina-
tion testing aims to detect if that sequence s could be infinite by examining a
finite prefix of s. Consider the following online termination tester which accepts a
user-provided WQO 3 as input: We keep a record of all values we have observed
already and every time a new value snew appears, we check if for some old value
sold it is sold 3 snew. If this is true then we raise an error, otherwise we record
snew in our history and wait for the next value. Now, if the sequence was infinite
then we will definitely raise an error at some point (because 3 is a WQO). Of
course, conservatively, we might raise an error even when the sequence is not
infinite because the WQO provided was too conservative.

The merits of WQOs for online termination testing have been discussed in
previous work [22] so we will not go into details here. Their main advantage is
that they can form extremely lenient termination tests by combining simpler
WQOs (at the cost of having to record big portions of history).

2.1 Almost-Full Relations

The mechanism described above is by now well-established for online termination
testing, so it is quite natural to ask how it would look in type theory and check
if it can be used to prove termination, in addition to testing for termination.

Surprisingly, it turns out that relations that satisfy property (ii) in the defi-
nition of WQOs have been proposed by mathematicians in an entirely different
domain: the development of an intuitionistic version of Ramsey theory [35]. These
are the almost-full (AF) relations (term coined by Wim Veldman), and for the
rest of this paper we will focus on binary AF relations. Bezem and Veldman
used condition (ii) as the defining condition of AF relations (see also [34]). They
additionally postulated the axiom of bar induction to develop an intuitionistic
proof of Ramsey’s theorem. We give below a direct inductive characterization of
AF relations:

Inductive almost_full X : (X → X → Prop) → Prop :=

| AF_ZT : ∀ (R : X → X → Prop), (∀ x y, R x y) → almost_full R

| AF_SUP : ∀ R,

(∀ x, almost_full (fun y z ⇒ R y z ∨ R x y)) → almost_full R.

Our goal with this definition is to characterize relations that eventually “go up”:
if we repeatedly request elements from an opponent, these elements are guaran-
teed eventually to “go up” from some element we have previously encountered
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in the sequence. Concretely, assume that we know that a relation R satisfies
almost_full R. If the proof object is AF_ZT then we know that any two elements
in an infinite sequence will be related. If on the other hand the proof object is
built from the AF_SUP constructor then, if we receive a first element x in a se-
quence we know that almost_full (fun y z ⇒ R y z ∨ R x y). This means that
in any infinite sequence that starts with x, either there exist two elements in the
rest of the sequence related by R, or some element which is related to the first
element x.

In fact we can prove condition (ii) of the definition of WQOs:

Corollary af_inf_chain (X : Set) (R : X → X → Prop):

almost_full R → ∀ (f : nat → X), ∃ m, ∃ n, (m < n) ∧ R (f m) (f n).

It is interesting to observe that corollary af_inf_chain is quite analogous to the
“no infinite descending chain” property which can be proved intuitionistically
from Coq’s inductive definition of well-founded relations (based on accessibility
predicates) [4]. The converse of af_inf_chain holds only classically (paragraph
8.6.1 of [35] suggests that intuitionistically there exists a counterexample, unless
intuitionistic type theory is inconsistent with Church’s thesis). This makes it
difficult to use property (ii) as the very defining property of AF relations (instead
of our inductive characterization) because that alternative definition cannot be
used for induction (see Theorem wf_from_af in Section 3.1).

Notice also that – perhaps surprisingly – we have ignored the transitivity
condition (i) of WQOs, an issue that we return to in Section 4.2.

3 Well-Founded vs. Almost-Full Relations

To build up some more intuitions about AF relations, we now turn to the connec-
tion between AF relations and well-founded relations. A well-founded relation
can be constructively characterized as a relation where every element in its do-
main is accessible. The corresponding (standard) Coq definitions are:

Inductive Acc (X:Type) (R:X→ X→ Prop) (x:X) : Prop :=

Acc_intro : (∀ y : X, R y x → Acc R y) → Acc R x.

Definition well_founded := fun (X:Type) (R:X→ X→ Prop) ⇒ ∀ a:X, Acc R a.

Coq comes with a library for constructing well-founded relations as well as proofs
that several relations on commonly used datatypes are well-founded, the < re-
lation on nat being the simplest example.

It is easy to construct AF relations from decidable well-founded relations: If
we are given a decidable WF relation R then we will show next that the relation
fun x y ⇒ not (R y x) is AF. This will enable us to re-use Coq libraries and
lemmas for WF relations in developments for AF relations.

Definition dec_rel (X:Set) (R:X→ X→ Prop) := ∀ x y,{not (R y x)}+{R y x}.

Corollary af_from_wf (X:Set) (R : X → X → Prop) :

well_founded R → dec_rel R → almost_full (fun x y ⇒ not (R y x)).

With this principle, and taking into account that < is decidable and a total
order, we can actually prove, for example:
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Lemma leq_af : almost_full le.

since ∀xy, x ≤ y ↔ ¬(y < x) on natural numbers.

3.1 From Almost-Full to Well-Founded Relations

It is now time we saw how AF relations can be used to prove termination. The
key intuition comes from online termination testing with WQOs. Recall that a
WQO-based termination checker takes a WQO 3 and a “history” of past values
and when presented with a new value checks whether some old value from the
history is related to this new value.

Think now of the relation T : X → X → Prop which relates all adjacent values
si+1 and si (and only those) in the input sequence. This is often called the
transition relation of the program that generates this sequence. As a convention
we will be using the first argument of T as the “next” value and the second as
the “current” value (so that we have T si+1 si for every i). The termination test
that our WQO-based checker effectively implements is that:

T+ ∩ (3)op = ∅

where T+ is the transitive closure of T and (3)op is just the inverse of 3. No
infinite sequence can pass this test, because an infinite sequence will necessarily
have elements related by 3! Put another way, if the test succeeds the transition
relation cannot have infinite chains – well, it is well-founded!

Generalizing our intuition from transition relations to arbitrary relations, and
weakening the assumptions from WQOs to AF relations, the following lemma is
the most important result of this paper, hence we put it in a big box:

Lemma wf_from_af (X:Set) (R T : X → X → Prop):

(∀ x y, clos_trans_1n X T x y ∧ R y x → False) →
almost_full R → well_founded T.

In the wf_from_af lemma, clos_trans_1n X T is just the transitive closure of T, as
defined in Coq’s standard library. Notice that it is easy to show that a relation
is WF iff its transitive closure is WF, and hence the previous theorem could be
restated to say that if the intersection of a transitive relation with the inverse of
an AF relation is empty, then the relation is WF. Accordingly, using wf_from_af

we can also derive the following simple lemma for transitive AFs (WQOs):

Lemma wf_from_wqo :

∀ (X:Set) (R : X → X → Prop), transitive X R → almost_full R →
well_founded (fun x y ⇒ R x y ∧ not (R y x)).

For instance, for the ≤ relation on natural numbers, it is clearly the case that
λxy.x ≤ y ∧ ¬(y ≤ x) is WF. This relation is simply <.

3.2 A New Induction Principle

If we can use lemma wf_from_af to form WF relations, then we can surely use it
to perform induction. The theorem af_induction in Figure 1 demonstrates a new
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af_induction

: ∀ (X : Set) (T R : X → X → Prop),

almost_full R →
(∀ x y : X, clos_trans_1n X T x y ∧ R y x → False) →
∀ P : X → Set,

(∀ x : X, (∀ y : X, T y x → P y) → P x) → ∀ a : X, P a

well_founded_induction

: ∀ (X : Set) (T : X → X → Prop),

well_founded T →
∀ P : X → Set,

(∀ x : X, (∀ y : X, T y x → P y) → P x) → ∀ a : X, P a

Fig. 1. AF vs WF induction principles

induction principle, based on wf_from_af. Intuitively T is the relation between
the argument in the “next” recursive call (y), and the previous (x) and we are
simply requiring that the transitive closure of T has an empty intersection with
(the inverse of) some AF relation R.

Hence, when using AF induction, the programmer must (i) provide an AF re-
lation, (ii) show the emptyness of the intersection, and (iii) provide a functional.
It is worth contrasting af_induction with well-founded induction in Figure 1.
Notably, well_founded_induction only requires a proof that T is WF. As a fi-
nal remark we have also developed mutual induction variations of af_induction,
which we will not describe in this paper for lack of space.

4 Constructions on AF Relations

So far we have derived a new AF-based induction principle, and now we move
on to describing some of the benefits of using AF relations for proving programs
terminating. The nicest feature of AF relations is their composability. Together
with our results from Section 3, which can be used to give “ground” AF from ex-
isting WF relations, this section presents a powerful toolkit for the af_induction

user. As a remark, there exist similar results for classical WQOs [34,6].

4.1 AF Unions

If we are given an infinite sequence in which there exist two related elements by
relation R then clearly these two elements are also related by R ∪ T. Thus:

Corollary af_union (X:Set) (R T : X → X → Prop):

almost_full R → almost_full (fun x y ⇒ R x y ∨ T x y).

4.2 AF Intersections

Intersections are much more interesting. Imagine that we have AF relations R

and T. If we are presented with an infinite sequence then we definitely know
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that R relates some elements in the sequence, and T relates some elements in the
sequence, but are there any elements that are simultaneously related by R and T?
Remarkably, the answer is affirmative. A generalization of this theorem to k-ary
AF relations is often called the “intuitionistic version of Ramsey’s theorem” [35].

Here we focus on the binary case. We will not present the proof in detail here;
the theorem follows from a much more general theorem in Section 7.

Corollary af_intersection (X:Set) (R T :X→ X→ Prop):

almost_full R → almost_full T → almost_full (fun x y ⇒ R x y ∧ T x y).

The binary version of the Ramsey theorem is, using classical logic, a direct
consequence of af_intersection: consider a binary relation R on nat and call a
subset A of nat homogeneous iff:

– For all n and m in A such that n < m it is the case that R n m, or
– For all n and m in A such that n < m it is the case that ¬(R n m).

Ramsey’s theorem states that for every binary relation R there exists an infinite
homogeneous subset of nat, A. To prove this, assume by contradiction that no
such infinite homogeneous subset exists. This means that both R and ¬R are AF,
which means that their intersection is AF by af_intersection. But the empty
relation cannot be AF because it relates no elements whatsoever!

As a final remark, the classical proof of the intersection theorem for the case
of WQOs is simpler due to the transitivity assumption [34,25].

4.3 Type-Based Combinators

In this section we show how to derive AF relations from simpler ones in a type-
directed way, and how we may use them to define recursive functions.

Ranking Functions. We can show a theorem that is useful when we would like
to map complicated data structures to nat values through “ranking functions”.

Corollary af_cofmap (X Y:Set) (f:Y→ X) (R:X→ X→ Prop):

almost_full R → almost_full (fun x y ⇒ R (f x) (f y)).

For instance we may map our data structures to natural numbers and re-use the
≤ relation and the leq_af witness that ≤ is AF.

Example 1 (Use of a ranking function). Consider the following definition (in
Haskell notation here, AFExamples.v gives the Coq version):

flip1 (0,_) = 1

flip1 (_,0) = 1

flip1 (x+1,y+1) = flip1 (y+1,x)

Through the use of af_cofmap we may define flip by observing that the tran-
sition relation is T x y := fst x <= snd y ∧ snd x < fst y. We may now take
R x y := fst x + snd x <= fst y + snd y as our AF relation. Showing that
∀ x y, clos_trans T x y ∧ R y x → False is easy and the proof that R is AF is
just (af_cofmap leq_af).
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Finite Types. There is a very natural AF relation on types that have finitely
many inhabitants, and that is simply the equality on elements of these types.
The simplest interesting such finite type is bool. Why is equality on booleans
AF? Because in any infinite sequence we are guaranteed that in the first three
elements of the sequence two of them will be equal. Hence we can show:

Lemma af_bool : almost_full (@eq bool).

and the proof involves three applications of AF_SUP followed by a AF_ZT.
We are not going to generalize here this construction to arbitrary finite types,

but the reader should be convinced that this is possible to do – a proof object
with k+1 uses of AF_SUP before returning AF_ZT does the job for any finite type
inhabited by k values. Our Coq development includes this construction.

Products. The intersection property and cofunctoriality are already extremely
powerful – here is the simplest construction to create an AF relation for products
based on these components:

Lemma af_product (X : Set) (Y : Set) :

∀ (R : X → X → Prop) (T : Y → Y → Prop),

almost_full R → almost_full T →
almost_full (fun x y ⇒ R (fst x) (fst y) ∧ T (snd x) (snd y)).

The proof is just applications of af_intersection and af_cofmap through the fst

and snd projections out of pairs.
Of course, this is not the only AF relation on products – it’s just a particular

one. For instance one could completely ignore the second component of a pair
and only use an AF relation on the first component though the use of af_cofmap.

Example 2 (Lexicographic order). Consider the definition (in Haskell notation):

flex (0,_) = 1

flex (_,0) = 1

flex (x+1,y+1) = f (x,y+2) + f (x+1,y)

This is an example of a definition where the arguments descend lexicographically.
We can also observe that in any recursive call, one of the two arguments is
decreasing. This immediately suggests that we should use the AF relation

R x y := fst x <= fst y ∧ snd x <= snd y

Recall that ≤ is AF and hence, using af_product, the relation R is AF. The
transition relation of the program is also what you’d expect:

T x y := fst x < fst y ∨ (fst x = fst y ∧ snd x < snd y)

since in the first recursive call, the first argument becomes smaller, and in the
second recursive call the second argument becomes smaller, while the first re-
mains the same. It is then simple to show the proof obligations of af_induction.

Sums. If we are given two AF relations on types X and Y respectively, is there a
natural AF relation that we can define on X+Y? One that we find often useful is
the relation that lifts these two relations in the following way:
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Definition sum_lift (X Y:Set) (R:X→ X→ Prop) (T:Y→ Y→ Prop) (x y:X+Y):=

match (x,y) with

| (inl x0, inl y0) ⇒ R x0 y0

| (inl x0, inr y0) ⇒ False

| (inr x0, inl y0) ⇒ False

| (inr x0, inr y0) ⇒ T x0 y0

end.

If two elements have the same tags they are compared with one or the other
relation, otherwise they are not related. We have proved that if R and T are
AF, then so is sum_lift R T. The key intuition behind our construction is the
connection between tagged sums and products where the first component is the
“tag” and the second is the value, and is omitted for lack of space. Our result is:

Corollary af_sum_lift (X Y:Set) (R:X→ X→ Prop) (T:Y→ Y→ Prop):

almost_full R → almost_full T → almost_full (sum_lift R T).

We do not give here an example of af_sum_lift, but our Coq development in-
cludes examples that use it in the context of mutual induction.

Dependent Products and Recursive Types. We do not currently include combi-
nators for dependent products nor recursive types, though nothing seems to be
prohibitive about either. We leave this as future work, following past work on
homeomorphic embeddings in classical and intuitionistic settings [25,20,3,29].

5 Size-Change Termination and AF Induction

We have examined combinators on AF relations, and simple examples such as
lexicographic descent. Lexicographic orders are not terribly difficult (In fact, Coq
already comes with combinators to compose lexicographically two well-founded
relations) but the power of the method shows itself in examples that go beyond
lexicographic orders. Consider the following example.

Example 3 (Beyond lexicographic order). Consider:

gnlex (0,_) = 1

gnlex (_,0) = 1

gnlex (x+1,y+1) = gnlex (y+1,y) + gnlex (y+1,x)

To define gnlex as a function, we will use the AF R for products, and the “obvi-
ous” transition relation T:

T x y := (fst x = snd y ∧ snd x < snd y)∨ (fst x = snd y ∧ snd x < fst y)

R x y := fst x <= fst y ∧ snd x <= snd y

It’s now possible to show that the transitive closure of T has an empty intersection
with the inverse of R and our development derives gnlex using af_induction.

Ben-Amram [2] notices that examples like gnlex belong in a syntactic class of pro-
grams that can be shown terminating by size-change termination (SCT) [21,16,2]
but not by a direct lexicographic descent argument, although semantically the
class of mathematical functions one may define using SCT and those that can be
defined with lexicographic descent orders coincide. It is then reassuring to see
that examples from that syntactic class can be written quite straightforwardly!
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5.1 Formal Connection

In fact, the connection to size-change termination can be made more precise.
The short summary of this section is that the soundness of size-change termina-
tion follows from our general wf_from_af lemma. For the rest of this section we
show this connection, using gnlex as our working example. This section is not
formalized in our development.

The first step in showing that a recursive definition is terminating with SCT
is to identify the various recursion patterns and abstract each as a size-change
graph. A size-change graph for a k-argument function is a labeled graph with
nodes labeled from {0, . . . , k − 1} and arcs with labels < and ≤.

Example 4 (Size-change graph for gnlex). For our two-argument gnlex we get
the following two size-change graphs:

00

11

≤

<

00

11

≤
<

G0 G1

A size-change graph G for a k-argument function schema induces a relation on k-
tuples and we say that a size-change graph approximates a relation T iff T ⊆ TG.
In our gnlex example, each of the two graphs approximates a disjunct from T.

Size change graphs compose so that the composition of two arcs one of which
is < creates a new arc <, whereas the composition of two ≤ arcs gives a new
≤ arc. We write this composition with notation G1;G2 (written G12 for brevity
below). Graph composition satisfies the following proposition.

Proposition 1. If G1 approximates T1 and G2 approximates T2 then G1;G2

approximates T1·T2 (where · is transitive relation composition).

Assume now that the transition relation of a program is given by n-disjuncts
T = T1 ∪ . . . Tn each of which corresponds to some recursion pattern and is
approximated by a size-change graph Gi (as in our example with n = 2). Size-
change termination then considers the set S, defined as the transitive closure of
the set {G1, . . . , Gn} under graph composition.

Example 5 (Transitive closure of size-change graphs). What is this set S in our
gnlex example? If we start off with G0 and G1, we have to consider the compo-
sitions G0;G0, G0;G1, G1;G0, and G1;G1. We observe that G00 is a new graph

with edges 0
<−→ 1, 1

<−→ 1, G01 is a new graph with edges 0
<−→ 0, 1

<−→ 0,

G10 is exactly G00 and G11 is a new graph with edges 0
<−→ 0, 1

<−→ 1. If we
continue in this fashion we can compute that the set S is just:

S = {G0, G1, G00, G01, G11, G111}
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What is the importance of the set S? We have seen that T can be approximated
by {G0, G1} and we have seen that compositions of graphs approximate compo-
sitions of relations. This means that for every k, the composition of T with itself
k times T k (which we will call the k-th power of T ) can be approximated by the
set of graphs in S (which will typically, as in our example, be finite): Precisely,
for every x and y such that T k x y it is the case that TG x y for some G ∈ S.
This, in turn, enables the following lemma.

Lemma 1. Assume that T = T1∪ . . .∪Tn and Gi approximates Ti, and let S be
the transitive closure of the set {Gi, . . . , Gn}. If every G ∈ S induces a relation
TG such that TG ∩Rop = ∅ for some AF R then T is well-founded.

Proof. By wf_from_af we only have to show that for all x and y such that T+x y
it is not the case that R y x. If T+x y then there exists some k such that T kx y,
hence there exists some G ∈ S such that TG x y and we know that TG∩Rop = ∅.

Next, consider the size-change graph I with edges i
≤−→ i for each i, and let us

call the induced relation TI x y =
∧
xi ≤ yi. By af_intersection, TI is AF.

Example 6. We can now show that gnlex is terminating by checking that every
graph G ∈ S has empty intersection with (TI)

op and using Lemma 1.

Size-change termination uses the same AF relation TI and Lemma 1, through
the following auxiliary lemma.

Lemma 2. If G approximates T and some power Gn of G contains an arc

i
<−→ i then T ∩ T op

I = ∅.

Proof. Assume that T x y and TI y x. We then have (T ·TI) x x and (T ·TI)
n x x.

But I approximates TI and because compositions of graphs approximate com-
positions of relations and G; I = G it follows that Gn approximates (T ·TI)

n.
this means that xi < xi, which is a contradiction.

Theorem 1 (Size-change termination). Assume that T = T1 ∪ . . .∪ Tn and
Gi approximates Ti, and let S be the transitive closure of the set {Gi, . . . , Gn}.
If every G ∈ S has a power with an arc i

<−→ i then T is well-founded.

Proof. By Lemma 2 we know that TG∩T op
I = ∅ for everyG ∈ S, and by Lemma 1

we are done.

Hence, we have proved the SCT condition using the wf_from_af theorem. The
reader can observe that the condition is true for the set S we have computed
for gnlex. Finally, the SCT criterion is often stated by requiring that every

idempotent graph G ∈ S has an arc i
<−→ i, which is an equivalent condition,

since any size-change graph has an idempotent power.
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5.2 Mutually Recursive Definitions

What about mutual induction schemes, a common application of SCT? The
modifications to our previous setup are small: For mutual induction schemes
each of the size-change graphs can be extended so that each argument tuple
is paired up with a tag, drawn from a finite set of tags, each corresponding to
a definition in a group of mutual definitions. Composing transitively a graph
with another is possible when the target of the first and source of the second
graphs are also equal. The SCT criterion then requires that every graph G in
the transitive closure of the size-change graphs with the same source and target

tags has a power with an arc i
<−→ i. The proof is an extension of our previous

proof using the AF relation TI (f, x) (g, y) = (
∧

xi ≤ yi) ∧ f = g, where f and
g are the tags. This relation is AF because of af_intersection and the fact that
equality on finite types (the finite set of tags) is AF.

6 The Terminator Rule

We have used online termination and WQOs as a way to approach AF relations
and af_induction, but it turns out that af_induction is general enough to capture
the proof principle behind Terminator [9,26]. The key theorem behind Termina-
tor is the following disjunctive well-foundedness proposition: IfR+ ⊆ R1∪. . .∪Rn

and R1 . . . Rn are well-founded then so is R .
The proof relies on a Ramsey argument [26], but here we have proved it –

intuitionistically – from theorem wf_from_af from Section 3.1. In the case where
n = 2 it suffices to instantiate wf_from_af with

R x y := not (R1 y x) ∧ not (R2 y x)

We can easily then use disjunctive well-foundedness to deduce the standard
Terminator proof rule (for the union of two WF relations):

Lemma disj_wf_induction:

∀ (X:Set) (T : X → X → Prop)

(R1 R2 : X → X → Prop) (decR1:dec_rel R1) (decR2:dec_rel R2),

well_founded R1 → well_founded R2 →
(∀ x y, clos_trans_1n X T x y → R1 x y ∨ R2 x y) →
∀ P : X → Set, (∀ x, (∀ y, T y x → P y) → P x) → ∀ a, P a.

7 Generalized Ramsey’s Theorem

We now turn our attention to the intersection theorem for AF relations, given
in Section 4.2. We will show here a much more general result for relations of
inductive arities. We start with defining predicates on lists

Definition LRel (X:Set) := list X → Prop.

We can generalize our almost_full definition for predicates over lists:
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Inductive almost_full_l X : LRel X → Prop :=

| AF_ZT : ∀ (R : LRel X), (∀ xs, R xs) → almost_full_l R

| AF_SUP : ∀ (R : LRel X),

(∀ x, almost_full_l (fun ys ⇒ R ys ∨ R (x::ys))) → almost_full_l R.

Again there exist two constructors – the AF_ZT constructor asserts that the pred-
icate is true for every list, whereas the AF_SUP constructor asserts that when
presented with one new element x, the predicate fun ys ⇒ R ys ∨ R (x :: ys)

is AF. We will be interested in predicates over lists which have an “inductive
arity”, which we formalize with the definitions below:

Inductive WFT (X:Set):=

| ZT: WFT X

| SUP: (X→ WFT X)→ WFT X.

Fixpoint Arity(X:Set) (p:WFT X) (R:LRel X):=

match p with

| ZT ⇒ ∀ ys, R ys ↔ R nil

| SUP w ⇒ ∀ x,

Arity (w x) (fun ys ⇒ R (x::ys))

end.

WFT encodes well-founded trees over a set X. The Arity fixpoint defines when
a relation R has an “inductive” arity. If we are given a ZT well-founded tree then
the truth value of the predicate R is constant. However if we are given a SUP w

tree then for every element x, the relation fun ys ⇒ R (x::ys) has an inductive
arity. One can see that since WFT is inductive this fixpoint ensures that after
a finite number of inputs (which nevertheless depends on the individual input
sequence each time) the value of the predicate will become constant.

Our main result is the following:

Lemma af_intersection_l_cor (X:Set):

∀ (p : WFT X) R T, Arity p R → Arity p T →
almost_full_l R → almost_full_l T → almost_full_l (fun xs⇒ R xs ∧ T xs).

Its proof is done by generalizing the statement to:

Lemma af_intersection_l (X:Set):

∀ (p:WFT X),

∀ (R:LRel X), almost_full_l R → ∀ (T:LRel X), almost_full_l T →
∀ (C:LRel X), ∀ A B, Arity p A → Arity p B →
(∀ xs, R xs → C xs ∨ A xs) → (∀ xs, T xs → C xs ∨ B xs) →
almost_full_l (fun xs ⇒ C xs ∨ A xs ∧ B xs).

and proceeding by induction on the arity witness p, and then the AF proof for
R, and then the AF proof for T.

We can move to and from LRels with inductive arities. For instance, for a
binary relation R we may define an LRel (BinRelExtension R) so that the value
of the predicate on any list with more than one elements is the value of the
relation on the first two. The value on smaller lists is just False. With this
definition in place we have proved the following:

Corollary af_l_af (X:Set) (R : X → X → Prop) :

almost_full_l (BinRelExtension R) ↔ almost_full R.

from which the usual af_intersection theorem from Section 4.2 follows.
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8 Related and Future Work

We have discused the Terminator rule [9,26] in Section 6, which is itself related
to the proposition that if the union of WF is transitive, then it is also WF [14].
Why has Terminator been so successful? One answer is composability: The way
the implementation works is by trying to iteratively synthesize WF relations
R1 . . . Rn so that R+ ⊆ R1 ∪ . . . ∪Rn, where R is the transition relation of the
program, starting from ∅, and unioning-up WF relations until the proof goes
through. There has also been work on (classical) proofs of SCT in the context
of Isabelle [18]: the author leaves the problem of justifying SCT constructively
as open – this is the problem we have solved in our work.

Porting Ramsey theory in a constructive setting seems to have been a fascinat-
ing subject among mathematicians and computer scientists, since the original
proof and definitions seem hopelessly classical. Our development is based on
Bezem and Veldman’s original ideas [35]; however unlike their work we do not
postulate bar induction and our AF relations are over arbitrary sets, not natural
numbers. Side-stepping bar induction, our definition of AF relations directly en-
codes all possible “choices”. This is similar to previous work [10,3,29,13], which
also does not postulate bar induction but rather inductively defines bars inside
type theory. Finally, AF relations have further – independent of termination –
uses, for instance one may define a set to be finite inside type theory iff the
equality on elements of that set is AF [11,24].

Nowadays there exists a large set of recursion-encoding techniques in type
theory and Coq, some of which include good support for automation. The most
straightforward way to program recursion in Coq [4] is either by structural re-
cursion or by using subset types [32] and measure arguments. The Coq CoLoR
library [5] can be used to manipulate well-founded relations and measures. An
extension of “guarded” recursion (and co-recursion) implemented in a variant of
Agda is sized-types [1] (not to be confused with size-change termination).

The Bove and Capretta method [7] is the de-facto way to define complex
recursive programs in Type Theory: For each definition the user introduces an
indexed type family with constructors corresponding to the recursive calls. After-
the-fact, she can provide such an inductive witness at the call-sites. Krauss [19]
proposes a related technique for showing automatically the termination of Is-
abelle functions by extracting their inductive graph and using induction on
that graph. In followup work, Krauss et al. [17] show how to re-use termi-
nation proofs for term rewrite systems to certify the termination of Isabelle
functions.

Charguéraud [8] has recently presented a well-engineered library that uses a
measure-based fixpoint combinator inspired from recursion theory (on “optimal
fixpoints”). Finally, Megacz [23] gave a monadic way to write recursive definitions
using a coinductive type, which allows one to prove that the definition will
terminate after-the-fact.
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8.1 Directions for Future Work

We have already mentioned several possibilities for future work. An important
direction is the design of better variations on AF mutual induction. Another
ambitious direction is tool support and automation, in order to help the user
synthesize a termination argument (perhaps driven by failed proofs, as Termina-
tor), or to automatically discharge the generated relation inclusion obligations.
Finally, we would like to further improve the practicality of our method; for
example have automatic derivation of function simplification theorems.
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Abstract. Automatic tools for proving (non)termination of term
rewrite systems, if successful, deliver proofs as justification. In this work,
we focus on how to certify nontermination proofs. Besides some tech-
niques that allow to reduce the number of rules, the main way of show-
ing nontermination is to find a loop, a finite derivation of a special shape
that implies nontermination. For standard termination, certifying loops
is easy. However, it is not at all trivial to certify whether a given loop
also implies innermost nontermination. To this end, a complex decision
procedure has been developed in [1]. We formalized this decision proce-
dure in Isabelle/HOL and were able to simplify some parts considerably.
Furthermore, from our formalized proofs it is easy to obtain a low com-
plexity bound. Along the way of presenting our formalization, we report
on generally applicable ideas that allow to reduce the formalization effort
and improve the efficiency of our certifier.

Keywords: nontermination, formalization, interactive theorem prov-
ing, term rewriting.

1 Introduction

In program verification the focus is on proving that a function satisfies some
property, e.g., termination. However, in presence of a bug it is more important
to find a counterexample indicating the problem. In this way, we can save a
lot of time by abandoning a verification attempt as soon as a counterexample
is found. In term rewriting, a well known counterexample for termination is a
loop, essentially giving some “input” on which a “program” does not terminate.
As soon as specific evaluation strategies are considered it might not be easy to
verify whether a given loop constitutes a proper counterexample. However, since
many programming languages employ an eager evaluation strategy, methods
for proving innermost nontermination are important. What is more, some very
natural functions are not even expressible without evaluation strategy. Take for
example equality on terms. There is no (finite) term rewrite system (TRS) that
encodes equality on arbitrary terms (the problem is the case where the two given
terms are different). Using innermost rewriting, encoding equality is possible by
the following four rules, as shown by Daron Vroon (personal communication; he
used this encoding to properly model the built-in equality of ACL2).
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x == y → chk(eq(x, y)) (1)

eq(x, x) → true (2)

chk(true) → true (3)

chk(eq(x, y)) → false (4)

Current techniques for proving innermost nontermination of TRSs consist
of preprocessing techniques (narrowing the search space by removing rules)
followed by finding a loop, for which the complex decision procedure of
[1] allows to decide whether it implies innermost nontermination. We for-
malized this decision procedure as part of our Isabelle Formalization of
Rewriting (IsaFoR). The corresponding certifier CeTA can be obtained by Is-
abelle/HOL’s code generator [2,3]. Both IsaFoR and CeTA are freely available
at http://cl-informatik.uibk.ac.at/software/ceta/ (the relevant theories
for this paper are Innermost_Loops and Nontermination, together with their
respective implementation theories, indicated by the suffix _Impl).

During our formalization we were able to simplify some parts of the decision
procedure considerably. Mostly, due to a new proof which, in contrast to the
original proof, does not depend on Kruskal’s tree theorem. As a result, we can
replace the most complicated algorithm of [1] by a single line. Moreover, we
report on how we managed to obtain efficient versions of other algorithms from
[1] within Isabelle/HOL [4].

The remainder is structured as follows. In Sect. 2 we give preliminaries. Then,
in Sect. 3, we describe the preprocessing techniques (narrowing the search space
for finding a loop) that are supported by our certifier. Afterwards, we present
details on loops w.r.t. the innermost strategy in Sect. 4. The main part of this
paper is on our formalization of the decision procedure for innermost loops in
Sect. 5, before we conclude in Sect. 6.

2 Preliminaries

We assume basic familiarity with term rewriting [5]. Nevertheless, we shortly
recapitulate what is used later on. A term t (�, r, s, u, v) is either a variable x
(y, z) from the set V , or a function symbol f (g) from the disjoint set F ap-
plied to some argument terms f(t1, . . . , tn). The root of a term is defined by
root(x) = x and root(f(t1, . . . , tn)) = f . The set args(t) of arguments of t is
defined by the equations args(x) = ∅ and args(f(t1, . . . , tn)) = {t1, . . . , tn}. The
set of variables occurring in a term t is denoted by V(t). A context C (D) is a
term containing exactly one occurrence of the special hole symbol �. Replacing
the hole in a context C by a term t is written C[t]. The term t is a (proper)
subterm of the term s, written (s � t) s � t, iff there is a (non-hole) context C
such that s = C[t], iff there is a (non-empty) position p such that s|p = t. We
write s �F t iff s � t and t /∈ V . A substitution σ (μ) is a mapping from vari-
ables to terms whose domain dom(σ) = {x | σ(x) �= x} is finite. The range of
a substitution is ran(σ) = {σ(x) | x ∈ dom(σ)}. We represent concrete substi-
tutions using the notation {x1/t1, . . . , xn/tn}. We use σ interchangeably with
its homomorphic extension to terms, writing, e.g., tσ to denote the application
of the substitution σ to the term t. A (rewrite) rule is a pair of terms � → r

http://cl-informatik.uibk.ac.at/software/ceta/
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and a term rewrite system (TRS) R is a set of such rules. The rewrite relation
(induced by R) →R is defined by s →R t iff there is a context C, a rewrite rule
� → r ∈ R, and a substitution σ such that s = C[�σ] and t = C[rσ]. Here, we
call �σ a redex (short for reducible expression) and sometimes write s →R,�σ t
to make it explicit. A normal form is a term that does not contain any redexes.
When a rewrite step s →R,�σ t additionally satisfies that all arguments of �σ are
normal forms, it is called an innermost (rewrite) step, written s

i→R t. We freely
drop R from s →R t if it is clear from the context.

A term t is (innermost) nonterminating w.r.t. R, iff there is an infinite (in-
nermost) rewrite sequence starting at t, i.e., a derivation of the form

t = t1
(i)→R t2

(i)→R t3
(i)→R · · ·

A TRS R is (innermost) nonterminating iff there is a term t that is (innermost)
nonterminating w.r.t. R.

3 A Framework for Certifying Nontermination

As for termination, there are several techniques that may be combined in order
to prove nontermination. On the one hand, there are basic techniques, i.e., those
that immediately prove nontermination; and on the other hand, there are trans-
formations, i.e., mappings that turn a given TRS R into a transformed TRS R′

(for which, proving nontermination is hopefully easier). Such transformations are
complete iff (innermost) nontermination of R′ implies (innermost) nontermina-
tion of R. In order to prove nontermination, arbitrary complete transformations
can be applied, before finishing the proof by a basic technique.

In our development we formalized the following basic techniques and complete
transformations. Except for innermost loops and string reversal, none of these
techniques posed any difficulties in the formalization.

Well-Formedness Check. A TRS R is (weakly) well-formed iff no left-hand side
is a variable and all (applicable) rules � → r satisfy V(r) ⊆ V(�). Where a rule
is applicable iff the arguments of its left-hand side are normal forms (otherwise
the rule could never be used in the innermost case).

Lemma 1. If R is not (weakly) well-formed, it is (innermost) nonterminating.

Thus a basic technique is to check whether a TRS is (weakly) well-formed and
conclude (innermost) nontermination, if it is not.

Finding Loops. The second basic technique is to find a loop and it is treated in
more detail in Sect. 4.

Rule Removal. One way to narrow the search space when trying to prove nonter-
mination, is to get rid of rules that cannot contribute to any infinite derivation.
This can be done by employing the same techniques that are already known
from termination, namely monotone reduction pairs [6,7].
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String Reversal. A special variant of TRSs are string rewrite systems, where all
function symbols are fixed to be unary. For this special case, string reversal (see,
e.g., [8] and [9] for its formalization) can be applied.

Dependency Pair Transformation. As for termination, also for nontermination,
it is possible to switch from TRSs to dependency pair problems (DPPs) [10].
This is done by the so called dependency pair transformation, which intuitively,
identifies the mutually recursive dependencies of rewrite rules and makes them
explicit in a second set of rewrite rules, the dependency pairs.

For nontermination of (innermost) DPPs, we support the following techniques:

Finding Loops. For DPPs (P ,R) the search space for finding loops is further
restricted by the fact that pairs from P are only applied at the root position.

Rule Removal. Also for DPPs it is possible to narrow the search space by em-
ploying reduction pairs to remove pairs and rules that do not contribute to any
infinite derivation. Note that for nontermination analysis, also the dependency
graph processor and the usable rules processor do just remove pairs and rules.

Note. Since R is (innermost) nonterminating (by the well-formedness check)
whenever R contains a rule x → r for some x ∈ V , we only consider TRSs where
all left-hand sides of rules are not variables in the remainder.

4 Loops

Loops are derivations of the shape t →+
R C[tμ]. They always imply nontermina-

tion where the corresponding infinite reduction is

t →+
R C[tμ] →+

R C[Cμ[tμ2]] →+
R C[Cμ[Cμ2[tμ3]]] →+

R · · · (5)

A TRS which admits a loop is called looping.
Note that for innermost rewriting, loopingness does not necessarily imply

nontermination, since the innermost rewrite relation is not closed under substi-
tutions. More precisely, it is not enough to have an “innermost loop” of the form
t

i→+
R C[tμ], since this does not necessarily imply an infinite sequence (5) when

restricting to innermost rewriting. Therefore, in [1], the notion of an innermost
loop was introduced. To facilitate the certification of innermost loops (i.e., to
decide for a given loop, whether it is innermost or not), we need its constituting
steps, i.e., a derivation of length m > 0 with redexes �iσi:

t = t1 →R,�1σ1 t2 →R,�2σ2 · · · →R,�mσm tm+1 = C[tμ] (6)

Definition 2 (Innermost Loops). A loop (6) is an innermost loop iff for all
1 � i � m and n ∈ N, the term �iσiμ

n is an innermost redex.

That is, no matter how often μ is applied, all steps should be innermost.

Lemma 3. A loop (6) is an innermost loop iff (5) is an innermost derivation.
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Corollary 4. An innermost loop implies innermost nontermination.

Note that for every loop (6) and all n ∈ N, the term �iσiμ
n is a redex. Hence,

to make sure that those redexes are innermost, it suffices to check whether all
arguments of �iσiμ

n are normal forms for all n ∈ N. Since �iσi is not a variable
(we ruled out variables as left-hand sides of R) this is equivalent to checking that
for all arguments t of �iσi, the term tμn is a normal form for all n ∈ N. Thus, to
decide whether a loop is innermost, we can use the following characterization.

Lemma 5. Let R be a TRS, (6) a loop, and A =
⋃

1�i�m args(�iσi) the set of
arguments of redexes in (6). Then, (6) is an innermost loop, iff for all t ∈ A
and n ∈ N the term tμn is a normal form, iff for all t ∈ A and � → r ∈ R the
term tμn does not contain a redex �σ for any n ∈ N and σ.

Hence, we can easily check, whether a loop is innermost, whenever for two terms
t and �, and a substitution μ, we can solve the problem whether there exist n and
σ, such that tμn contains a redex �σ. Such problems are called redex problems
and a large part of [1] is devoted to develop a corresponding decision procedure.

Example 6. Consider a loop t →+ C[tμ] for a TRS R containing rules (1)-(4),
where μ = {x/cons(z, y), y/cons(z, x), z/0}. Let D[chk(eq(x, y))] → D[false] be
a step of the loop. Then, for an innermost loop we must ensure that the term
eq(x, y)μn does not contain a redex w.r.t. R, especially not w.r.t. rule (2).

The above decision procedure works in three phases: first, redex problems are
simplified into a set of matching problems. Then, a modified matching algorithm
is employed, where in the end identity problems have to be solved. Finally, a
decision procedure for identity problems is applied.

In the remainder, let μ be an arbitrary but fixed substitution (usually origi-
nating from some loop t →+

R C[tμ]).

Definition 7 (Redex, Matching, and Identity Problems). Let s, t, and �
be terms. Then a redex problem is a pair t |� �, a generalized matching problem
is a set of pairs {t1 � �1, . . . , tk � �k} (we call a generalized matching problem
having only one pair, a matching problem, and drop the surrounding braces),
and an identity problem is a pair s � t.

A redex problem t |� � is solvable iff there is a context C, a substitution σ, and
an n ∈ N such that tμn = C[�σ]. A (generalized) matching problem is solvable iff
there is a substitution σ and an n ∈ N such that tiμ

n = �iσ for all pairs ti � �i.
An identity problem is solvable iff there is an n ∈ N such that sμn = tμn. In
those respective cases, we call (C, σ, n), (σ, n), and n, the solution.

5 Formalization

In [11] a straightforward certification algorithm for loops is described which does
nothing else than checking rewrite steps. We extend this result significantly by
also formalizing the necessary machinery to decide whether a loop is innermost.
In the following, we discuss the three phases of the decision procedure from [1].
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From Redex Problems to Matching Problems. A redex problem t |� � with � ∈ V
is trivially solvable using the solution (�, {�/t}, 0). Thus, in the following we
assume that � /∈ V . Then, solvability of t |� � is equivalent to the existence of
a non-variable subterm s of tμn such that s = �σ (i.e., � matches s). In order
to simplify redex problems, we represent these subterms in a finite way and
consequently generate only finitely many matching problems.

Either, s starts inside t, so s = uμn for some u 	F t, or s is completely
inside μn. But then, it must be of the form uμn for some u 	F xμ and x in
W(t) =

⋃
n V(tμn), where W(t) collects all variables which can possibly occur in

a term of the form tμn. In both cases, the equality s = �σ can be reformulated
to uμn = �σ, i.e., solvability of the matching problem u � �. In total, the redex
problem is solvable iff one of the matching problems u � � is solvable for some
u ∈ U(t), where U(t) = {u | t �F u or xμ �F u ∧ x ∈ W(t)}.

The following theorem (whose formalization was straightforward), corresponds
to [1, Theorem 10].

Theorem 8. Let t |� � be a redex problem. Let

Minit (t, �) = if � ∈ V then {t � �} else {u � � | u ∈ U(t)}

be the set of initial matching problems. Then t |� � is solvable iff one of the
matching problems in Minit (t, �) is solvable.

Example 9. Continuing with Example 6, from each redex problem eq(x, y) |� �
we obtain the matching problems eq(x, y) � �, cons(z, y) � �, cons(z, x) � �, and
0 � � where � is an arbitrary left-hand side of the TRS.

Theorem 8 shows a way to convert redex problems into matching problems.
However, for certification, it remains to develop an algorithm that actually com-
putes Minit . To this end, we need to compute U(t), which in turn requires to
enumerate all subterms of a term and to compute W(t). Whereas the former
is straightforward, computing W(t) is a bit more difficult: its original definition
contains an infinite union.

Note that W(t) is only finite since we restrict to substitutions of finite domain
and can be computed by a fixpoint algorithm: iteratively compute V(t), V(tμ),
V(tμ2), . . . , until some V(tμk) is reached where no new variables are detected. In
principle, it is possible to formalize this algorithm directly, but we expect such a
formalization to require tedious manual termination and soundness proofs. Thus
instead, we characterize W(t) by the following reflexive transitive closure.

Lemma 10. Let R = {(x, y) | x �= y, x ∈ V , y ∈ V(xμ)}. Then W(t) = {y |
∃x ∈ V(t), (x, y) ∈ R∗}.
Note that R in Lemma 10 can easily be computed since whenever (x, y) ∈ R
then x ∈ dom(μ). Moreover, R is finite since we only consider substitutions of
finite domain. Hence, the above characterization allows us to compute W by the
algorithm of [12] (generating the reflexive transitive closure of finite relations).

Note that W(t) can also be defined inductively as the least set such that
V(t) ⊆ W(t) and x ∈ W(t) =⇒ V(xμ) ⊆ W(t). And whenever a finite set
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S is defined inductively, instead of implementing an executable algorithm for S
manually, it might be easier to characterize S via reflexive transitive closures and
afterwards execute it via the algorithm of [12]. This approach is not restricted to
W : it has been applied in the next paragraph and also in other parts of IsaFoR.

An alternative might be Isabelle/HOL’s predicate compiler [13]. It can be
used to obtain executable functions for inductively defined predicates and sets.
However, without manual tuning we were not able to obtain appropriate equa-
tions for the code generator. Furthermore, additional tuning is required to ensure
termination of the resulting code in the target language. Ultimately, the current
version of the predicate compiler provides a fixed execution model for predi-
cates and sets (goal-oriented depth-first search) which might not yield the best
performance for the desired application. Thus, for the time being we use our
proposed solution via reflexive transitive closures, but perhaps in future versions
of Isabelle/HOL, the predicate compiler will be a more convenient alternative.

From Matching Problems to Identity Problems. To decide solvability of a (gen-
eralized) matching problem {t1 � �1, . . . , tk � �k}, in [1], a variant of a standard
matching algorithm is used which simplifies (generalized) matching problems
until they are in solved form, i.e., all right-hand sides �i are variables (or ⊥ is
obtained which represents a matching problem without solution).

Definition 11 (Transformation of Matching Problems). In [1] the follow-
ing transformation ⇒ on general matching problems is defined. If M is a general
matching problem with M = {t � �} 4M′ where � /∈ V, then

1. M ⇒ {t1 � �1, . . . , tk � �k} ∪M′, if t = f(t1, . . . , tk) and � = f(�1, . . . , �k)
2. M ⇒ ⊥, if t = f(. . .), � = g(. . .), and f �= g
3. M ⇒ ⊥, if t ∈ V \ Vincr

4. M ⇒ {t′μ � �′ | t′ � �′ ∈ M}, if t ∈ Vincr

The first two rules are the standard decomposition and clash rules. Moreover,
there are two special rules to handle the case where t is a variable. Here, the set
of increasing variables Vincr = {x | ∃n. xμn /∈ V} plays a crucial role. It collects
all those variables for which μ, if applied often enough, introduces a non-variable
term. In other words, xμn will always be a variable for x /∈ Vincr.

In our development, instead of using the above relation, we formalized the
rules directly as a function simplify-mp applying the transformation rules deter-
ministically (thereby avoiding the need for a confluence proof, as was required in
[1]). As input it takes two generalized matching problems (represented by lists)
where the second problem is assumed to be in solved form. Here, [] and · are the
list constructors, and @ denotes list concatenation. The possibility of failure is
encoded using Isabelle/HOL’s option type, which is either None, in case of an
error, or Some r for the result r. In contrast to Definition 11 of [1], our algorithm
also returns an integer i which provides a lower bound on how often μ has to
be applied to get a solution. The function is given by the following equations
(where for brevity do-notation in the option-monad is used):
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simplify-mp [] s = return (s, 0)
simplify-mp ((t, x) ·mp) s = simplify-mp mp ((t, x) · s)
simplify-mp ((f(ss), g(ts)) ·mp) s = do { guard (f = g); ps ← zip-option ss ts;

simplify-mp (ps@mp) s }

simplify-mp ((x, g(ts)) ·mp) s = do { guard (x ∈ Vincr);
(mp′, i) ← simplify-mp
(map-μ ((x, g(ts)) ·mp)) (map-μ s);
return (mp′, i+ 1) }

where, map-μ = map (λ(t, �).(tμ, �)) using the standard map function for lists,
zip-option combines two lists of equal length into Some list of pairs and yields
None otherwise, and guard aborts with None if the given predicate is not satisfied.

Example 12. For � = eq(x, x), only one of the redex problems of Example 9
remains (all others are simplified to None), namely eq(x, y) � eq(x, x), for which
we obtain the simplified matching problem {x � x, y � x}.

In our formalization we show all relevant properties of simplify-mp, i.e., termi-
nation, preservation of solvability, and that simplify-mp mp [], if successful, is in
solved form. Moreover, we prove the computed lower bound to be sound.

Theorem 13. The function simplify-mp satisfies the following properties:

– It is terminating.
– It is complete, i.e., if (n, σ) is a solution for mp then simplify-mp mp [] =

Some (mp′, i), i � n, and (n− i, σ) is a solution for mp′;
– It is sound, i.e., if (n, σ) is a solution for mp′ and simplify-mp mp [] =

Some (mp′, i) then (n+ i, σ) is a solution for mp;
– If simplify-mp mp [] = Some (mp′, i) then mp′ is in solved form.

Proof. For termination of simplify-mp mp s , where mp = [(t1, �1), . . . , (tk, �k)],
we use the lexicographic combination of the following two measures: first, we
measure the sum of the sizes of the �i; and second, we measure the sum of the
distances of the ti before turning into non-variables. Here, the distance of some
term ti before turning into a non-variable is 0 if ti ∈ V \ Vincr and the least
number d such that tiμ

d /∈ V , otherwise.
For this lexicographic measure, we get a decrease in the first component for

the first and the second recursive call, and a decrease in the second component
for the third recursive call.

Proving soundness and completeness is done via the following property which
is proven by induction on the call structure of simplify-mp.

Whenever simplify-mp mp s = r then

– if r = None then mp ∪ s is not solvable,
– if r = Some (mp′, i), there is no solution (n, σ) for mp ∪ s where n < i, and

(n, σ) is a solution for mp′ iff (n+ i, σ) is a solution for mp ∪ s .
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Finally, the fact that simplify-mp mp [] is in solved form is shown by an easy
induction proof on the call structure of simplify-mp, where [] is generalized to
an arbitrary generalized matching problem that is in solved form. ��

Although simplify-mp is defined as a recursive function, it cannot directly be
used as a certification algorithm, due to the following two problems:

The first problem is that Vincr is not executable, since it contains an existential
statement (remember that we had a similar problem for W earlier). Again, Vincr

could be computed via a fixpoint computation accompanied by a tedious manual
termination proof. Instead, we once more employ reflexive transitive closures to
characterize Vincr, which allows us to use the algorithm of [12] to compute it.

Lemma 14. Let R = {(x, y) | x �= y, x = yμ, x ∈ V , y ∈ V}. Then Vincr = {y |
∃x ∈ V , xμ /∈ V , (x, y) ∈ R∗}.

The second problem is the usage of implicit parameters. Recall that at the end
of Sect. 4 we just fixed some substitution μ (which corresponds to what we did
in our formalization using Isabelle/HOL’s locale mechanism). Obviously, both
Vincr and simplify-mp depend on μ. Hence, we have to pass μ as argument to
both. As a result, the modified version of the last equation of simplify-mp looks
as follows:

simplify-mp μ ((x, g(ts)) ·mp) s = do {guard (x ∈ Vincr(μ));
(mp′, i) ← simplify-mp μ (map-μ ((x, g(ts)) ·mp)) (map-μ s);
return (mp′, i+ 1) }

(7)

The problem of equation (7) is its inefficiency: In every recursive call, the set of
increasing variables Vincr(μ) is newly computed. Therefore, the obvious idea is
to compute Vincr(μ) once and for all and pass it as an additional argument V .

simplify-mp μ V ((x, g(ts)) ·mp) s = do {guard (x ∈ V );
(mp′, i) ← simplify-mp μ V (map-μ ((x, g(ts)) ·mp)) (map-μ s);
return (mp′, i+ 1) }

(8)

This version does not have the problem of recomputing Vincr(μ) and we just have
to replace the initial call simplify-mp μ mp [] by simplify-mp μ Vincr(μ) mp [].

Although, this looks straightforward and maybe not even worth mentioning,
we stress that this solution does not work properly. The problem is that by
introducing V , we can call simplify-mp using some V �= Vincr(μ), which can cause
nontermination. Take for example μ as the empty substitution and V = {x},
then the function call simplify-mp μ V [(x, g(ts))] [] directly leads to exactly
the same function call via (8). Hence, termination of simplify-mp defined by
(8) cannot be proven. Therefore, Isabelle/HOL’s function package [14] weakens
equality (8) by the assumption that simplify-mp has to be terminating on the
arguments μ, V , ((x, g(ts) ·mp), and s .

Of course, we can instantiate (8) by V = Vincr(μ). Then we can get rid of the
additional assumption. But still, the corresponding unconditional equation is not
suitable for code generation, since Vincr on the left-hand side is not a constructor.
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Our final solution is to use the recent partial-function [15] command of Is-
abelle/HOL which generates unconditional equations even for nonterminating
functions, provided that some syntactic restrictions are met (only one defining
equation and the function must either return an option type or be tail-recursive).

Since simplify-mp already returns an option type, we just had to merge all
equations into a single case statement. (If the result is not of option type, we can
just wrap the original return type into an option type). Afterwards the partial-
function command is applicable and we obtain an equation similar to (8) which
can be processed by the code generator and efficiently computes simplify-mp
without recomputing Vincr(μ). Moreover, since we have already shown termina-
tion of the inefficient version of simplify-mp, we know that also the efficient
version does terminate whenever it is called with V = Vincr(μ). In our formal-
ization we actually have two versions of simplify-mp: an abstract version which
is unsuitable for code generation (and also inefficient) and a concrete version.
All the above properties are proven on the abstract version neglecting any effi-
ciency problems. Afterwards it is shown that the concrete version computes the
same results as the abstract one (which is relatively easy since the call-structure
is the same). In this way, we get the best of two worlds: abstraction and ease
of reasoning from the abstract version (using sets, existential statements, and
the induction rules from the function package), and efficiency from the concrete
version (using lists and concrete functions to obtain witnesses).

The above mentioned problem is not restricted to simplify-mp. Whenever the
termination of a function relies on the correct initialization of some precomputed
values, a similar problem arises. Currently, this can be solved by writing a second
function via the partial-function command, as shown above. Although the second
definition is mainly a copy of the original one, we can currently not recommend
to use it as a replacement, since the function package provides much more con-
venience for standard definitions than when using the partial-function command.
If the functionality of partial functions is extended, the situation might change
(and we would welcome any effort in that direction).

Continuing with deciding matching problems, we are in the situation, that
by using simplify-mp we can either directly detect that a matching problem is
unsolvable or obtain an equivalent generalized matching problem in solved form
M = {t1 � x1, . . . , tk � xk}. In principle, M has the solution (n, σ) where n
is arbitrary and σ(xi) = tiμ

n. However, this definition of σ is not always well-
defined if there are i and j such that xi = xj and i �= j. To decide whether it is
possible to adapt the proposed solution, we must know whether tiμ

n = tjμ
n for

some n, i.e., we must solve the identify problem ti � tj .
The following result of [1, Theorem 14 (iv)] is easily formalized and also poses

no challenges for certification. Afterwards it remains to decide identity problems.

Theorem 15. Let M = {t1 � x1, . . . , tk � xk} be a generalized matching prob-
lem in solved form. Define Iinit = {ti � tj | 1 � i < j � k, xi = xj}. Then M is
solvable iff all identity problems in Iinit are solvable.

To prove this theorem, the key observation is that we can always combine sev-
eral solutions of identity problems: Whenever nij are solutions to the identity
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problems ti � tj , respectively, then the maximum n of all nij is a solution to
all identity problems ti � tj . And then also (n, σ) is a solution to M where
σ(xi) = tiμ

n is guaranteed to be well-defined.

Example 16. For the remaining matching problem of Example 12 we generate
one identity problem: x � y.

Deciding Identity Problems. In [1, Section 3.4] a complicated algorithm is pre-
sented to decide solvability of an identity problem s � t. The main idea is to
iteratively generate (s, t), (sμ, tμ), (sμ2, tμ2), . . . until either some (sμi, tμi) with
sμi = tμi is generated, or it can be detected that no solution exists. For the lat-
ter, some easy conditions for unsolvability are identified, e.g., sμi = C[f(ss)] and
tμi = C[x] where x /∈ Vincr. However, these conditions do not suffice to detect all
unsolvable identity problems. Therefore, in each iteration conflicts (indicating
which subterms have to become equal after applying μ several times, to obtain
overall equality), are stored in a set S, and two sufficient conditions on pairs of
conflicts from S are presented that allow to conclude unsolvability.

For the overall algorithm, soundness is rather easy to establish, completeness
is more challenging, and the termination proof is the most difficult part. To
be more precise, it is shown that nontermination of the algorithm allows to
construct an infinite sequence of terms where no two terms are embedded into
each other (which is not possible due to Kruskal’s tree theorem). Hence, the
formalization would require a formalization of the tree theorem. Moreover, the
implicit complexity bound on the number of required iterations is quite high.

The reason for using Kruskal’s tree theorem is that in [1] the conflicts in S
consist of a variable, a position, and a term which is not bounded in its size. So,
there is no a priori bound on S. We were able to simplify the decision procedure
for s � t considerably since we only store conflicts whose constituting terms are
in the set of conflict terms

CT (s, t) = {u | v � u, v ∈ {s, t} ∪ ran(μ)}.

To be more precise, all conflicts are of the form (u, v,m) where (u, v) is contained
in the finite set S = (CT (s, t)∩V)×CT (s, t). Whenever we see a conflict (u, v, )
for the second time, the algorithm stops. Thus, we get a decision procedure which
needs at most |S| iterations and whose termination proof is easy. In contrast to
[1], our procedure does neither require any preprocessing on μ nor unification.

The key idea to get an a priory bound on the set of conflicts, is to consider
identity problems of a generalized form s � tμn which can be represented by the
triple (s, t, n). Then applying substitutions can be done by increasing n, and all
terms that are generated during an execution of the algorithm are terms from
CT (s, t).

Before presenting the main algorithm for deciding identity problems s � tμn,
we require an auxiliary algorithm conflicts (s, t, n) that computes the set of
conflicts for an identity problem, i.e., subterms of s and tμn with different roots.
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conflicts (s, y, n+ 1) = conflicts (s, μ(y), n)
conflicts (x, y, 0) = if x = y then ∅ else {(x, y, 0)}
conflicts (f(ss), y, 0) = {(y, f(ss), 0)}
conflicts (x, g(ts), n) = {(x, g(ts), n)}
conflicts (f(ss), g(ts), n) = if f = g ∧ |ss | = |ts |

then
⋃

(si,ti)∈zip ss ts conflicts (si, ti, n)

else {(f(ss), g(ts), n)}

We identified and formalized the following properties of conflicts and CT .

Lemma 17. – sσ = tμnσ iff ∀(u, v,m) ∈ conflicts (s, t, n). uσ = vμmσ.
– if (u, v,m) ∈ conflicts (s, t, n) then

• root(u) �= root(v)
• v ∈ V implies m = 0 ∧ u ∈ V
• ∃k p. n = m+ k ∧ ((s|p, tμk|p) = (u, v) ∨ ((s|p, tμk|p) = (v, u) ∧m = 0))
• {u, v} ⊆ CT (s, t)

– {u, v} ⊆ CT (s, t) implies CT (u, v) ⊆ CT (s, t)
– CT (u, v) ⊆ CT (uμ, v) whenever u ∈ V

Using conflicts we can now formulate the algorithm ident-solve which decides
identity problem s � t if invoked with ident-solve ∅ (s, t, 0).

ident-solve S idp =
let C = conflicts idp in
if (f(us), , ) ∈ C ∨ ((u, v, ) ∈ C ∧ (u, v, ) ∈ S) then None else do {
ns ← map-option (λ(u, v,m). ident-solve ({(u, v,m)} ∪ S) (uμ, v,m+ 1)) C;
return (max {n+ 1 | n ∈ ns}) }

where map-option is a variant of the map function on lists whose overall result
is None if the supplied function returns None for any element of the given list.

Example 18. We continue Example 16 by invoking ident-solve ∅ (x, y, 0). This
leads to the conflict (x, y, 0). Afterwards, ident-solve {(x, y, 0)} (cons(z, y), y, 1)
is invoked which results in the conflict (y, x, 0). Finally, the conflict (x, y, 0) is
generated again when calling ident-solve {(x, y, 0), (y, x, 0)} (cons(z, x), x, 1) and
the result None is obtained.

We formalized termination, soundness, and completeness of ident-solve.

Lemma 19 (Termination). ident-solve is terminating.

Proof. Take the measure function λS (s , t , ). |(CT (s, t)∩V)×CT (s, t)\ {(a, b) |
(a, b, ) ∈ S}|. Then the actual termination proof boils down to showing

L := (CT (s, t) ∩ V)× CT (s, t) \ {(a, b) | (a, b, ) ∈ S}
⊃ (CT (uμ, v) ∩ V)× CT (uμ, v) \ {(a, b) | (a, b, ) ∈ {(u, v,m)} ∪ S} =: R

whenever ident-solve S (s, t, n) leads to a recursive call ident-solve ({(u, v,m)}∪
S) (uμ, v,m + 1), i.e., whenever (u, v,m) ∈ conflicts (s, t, n), (u, v, ) /∈ S, and
u ∈ V . By Lemma 17 we obtain {u, v} ⊆ CT (s, t) and CT (uμ, v) ⊆ CT (u, v) ⊆
CT (s, t). Hence, L ⊇ R and since (u, v) ∈ L \R we even have L ⊃ R. ��
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Lemma 20 (Soundness). If ident-solve S (s, t, n) = Some i then sμi = tμnμi.

Proof. We perform induction on the call-structure of ident-solve. So, assume
ident-solve S (s, t, n) = Some i. By definition of ident-solve we know that for all
(u, v,m) ∈ conflicts (s, t, n) there is some j such that ident-solve ({(u, v,m)} ∪
S) (uμ, v,m + 1) = Some j and i is the maximum of all j + 1. Using the
induction hypothesis, we conclude uμj+1 = uμμj = vμm+1μj = vμmμj+1 for all
(u, v,m) ∈ conflicts (s, t, n), and since i ≥ j + 1 we also achieve uμi = vμmμi.
But this is equivalent to sμi = tμnμi by Lemma 17 (where σ = μi). ��

Lemma 21 (Completeness). Whenever the identity problem s � t is solvable
then ident-solve ∅ (s, t, 0) �= None.

Proof. If s � t is solvable then there is some N such that sμN = tμN . Our
actual proof shows the following property ( ) for all S, s′, t′, n, n′, and p where
(a, b)

↔
= (c, d) abbreviates (a, b) = (c, d) ∨ (a, b) = (d, c).1

(sμn|p, tμn|p) ↔
= (s′, t′μn′

) (9)

−→ (∀(u, v,m) ∈ S. (m = 0 ∨ v /∈ V) ∧ root(u) �= root(v) ∧ (10)

(∃q1 q2 n1. p = q1q2 ∧ n1 < n ∧ (sμn1 |q1 , tμn1 |q1)
↔
= (u, vμm)))

−→ ident-solve S (s′, t′, n′) �= None (11)

Once ( ) is established, the lemma immediately follows from ( ) which is instan-
tiated by S = ∅, s′ = s, t′ = t, n′ = n = 0, and p = ε (the empty position).

To prove ( ), we perform induction on the call-structure of ident-solve. So,
we assume (9) and (10), and have to show (11). By sμN = tμN we conclude
sμn|pμN = sμNμn|p = tμNμn|p = tμn|pμN , and thus s′μN = t′μn′

μN by (9). By
Lemma 17 this shows uμN = vμmμN for all (u, v,m) ∈ conflicts (s′, t′, n′) =: C.
In a similar way we prove uμN = vμmμN for all (u, v,m) ∈ S using (10).

Next we consider an arbitrary (u, v,m) ∈ C. By Lemma 17 we have root(u) �=
root(v), m = 0 ∨ v /∈ V , and there are q1 and k such that n′ = m + k and
(s′|q1 , t′μk|q1) = (u, v) ∨ ((s′|q1 , t′μk|q1) = (v, u) ∧ m = 0). In particular, this

implies (s′|q1 , t′μk|q1μm)
↔
= (u, vμm). Moreover, we know uμN = vμmμN .

First, we show that u ∈ V , and hence the condition (f(us), , ) ∈ C is not
satisfied. The reason is that u /∈ V also implies v /∈ V by Lemma 17 which implies
the contradiction root(u) = root(uμN) = root(vμmμN ) = root(v) �= root(u).

Second, ident-solve ({(u, v,m)} ∪ S) (uμ, v,m+ 1) �= None. To show this, we
just apply the induction hypothesis where it remains to show that (9) and (10)
are satisfied (where the values of S, s′ ,t′ ,n, n′, p are {(u, v,m)}∪S, uμ, v, n+1,
m+ 1, and pq1, respectively). To this end, we derive the following equality.

(sμn|pq1 , tμn|pq1) = (sμn|p|q1 , tμn|p|q1)
↔
= (s′|q1 , t′μn′ |q1)

= (s′|q1 , t′μk|q1μm)
↔
= (u, vμm).

(12)

1 In the formalization, (�) looks even more complicated, since here we dropped all
parts that restrict p and q1 to valid positions.
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Using (12), root(u) �= root(v), and m = 0 ∨ v /∈ V , we conclude that (10) is
satisfied for the new conflict (u, v,m). Moreover, (10) is trivially satisfied for all
(old) conflicts in S, by using (10) (for the old inputs (s′, t′, n′), . . .). Finally, by
applying μ on all terms in (12) we obtain (sμn+1|pq1 , tμn+1|pq1)

↔
= (uμ, vμm+1)

which is exactly the required (9).
The last potential reason for ident-solve S (s′, t′, n′) to be None, is that there

is some m′ such that (u, v,m′) ∈ S. We assume that such an m′ exists and
eventually show a contradiction (the most difficult part of this proof). By (10)
we conclude that m′ = 0 ∨ v /∈ V and there are p1, q3, and n2 where p = p1q3,
n2 < n, and (sμn2 |p1 , tμ

n2 |p1)
↔
= (u, vμm′

). Since n2 < n there is some k1 with
n = n2 + k1 and k1 > 0. Starting from (12) we derive

(u, vμm)
↔
= (sμn|pq1 , tμn|pq1)

= (sμn2+k1 |p1q3q1 , tμ
n2+k1 |p1q3q1) = (sμn2 |p1σ|q, tμn2 |p1σ|q)↔

= (uσ|q, vμm′
σ|q)

(13)

where σ and q are abbreviations for μk1 and q3q1, respectively. Using (13) it is
possible to derive a contradiction via a case analysis.

If m′ = m then (13) yields both uσσ|qq = u and vμmσσ|qq = vμm. Thus,
u(σσ)i|(qq)i = u and vμm(σσ)i|(qq)i = vμm for all i. For m′ = m we can further
show u �= vμm and hence, u(σσ)i|(qq)i �= vμm(σσ)i|(qq)i for all i. This leads to the
desired contradiction since we know that uμN = vμmμN , and hence u(σσ)N =
uμ2k1N = uμNμ(2k1−1)N = vμmμNμ(2k1−1)N = vμmμ2k1N = vμm(σσ)N , which
shows that for i = N the previous inequality does not hold.

Otherwise m �= m′. Hence, m �= 0 ∨ m′ �= 0 and in combination with m =
0 ∨ v /∈ V and m′ = 0 ∨ v /∈ V we conclude v /∈ V . Thus, u ∈ V by Lemma 17
as (u, v,m) ∈ conflicts (s′, t′, n′). Then by a case analysis on (13) we can show
that there are i and j such that uμi � uμj . Moreover, from uμN = vμmμN and
uμN = vμm′

μN we obtain uμN+m = uμN+m′
. In combination with m �= m′ and

uμi � uμj this leads to the desired contradiction. ��

Putting all lemmas on ident-solve together, we can even give a decision procedure
for identity problems which does not require ident-solve at all, and shows an
explicit bound on a solution.

Theorem 22. An identity problem s � t is solvable iff sμn = tμn where n =
|CT (s, t) ∩ V| · |CT (s, t)|.

Proof. If an identity problem is solvable, then the result of ident-solve ∅ (s, t, 0) =
Some i for some i by Lemma 21. From the termination proof in Lemma 19 we
know that i � |CT (s, t) ∩ V| · |CT (s, t)| = n (unfortunately, in Isabelle/HOL we
could not extract this knowledge from the termination proof and had to formalize
this simple result separately). And by Lemma 20 we infer that sμi = tμi. But
then also sμn = tμn. ��

Note that |CT (s, t)| � |s| + |t| + |μ| where |μ| is the size of all terms in the
range of μ. Hence, the value of n in Theorem 22 is quadratic in the size of
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the input problem. We conjecture that even a linear bound exists, although
some proof attempts failed. As an example, we tried to replace the condition
(u, v, ) ∈ C ∧ (u, v, ) ∈ S by (u, , ) ∈ C ∧ (u, , ) ∈ S in ident-solve to get a
linear number of iterations. However, then ident-solve is not complete anymore.

6 Conclusions

We have formalized several techniques to certify compositional (innermost) non-
termination proofs, where the hardest part was the decision procedure of [1],
which decides whether a loop is an innermost loop. In our formalization, we
were able to simplify the algorithm and the proofs for identity problems consid-
erably: a complex algorithm can be replaced by a single line due to Theorem 22.

With this result we can also show (but have not formalized) that all considered
decision problems of this paper are in P.

Theorem 23. Deciding whether an identity problem, a matching problem, or
a redex problem is solvable is in P. Moreover, deciding whether a loop is an
innermost loop is in P.

Proof. We start with identity problems. By Theorem 22 we just have to check
sμn = tμn for n = |CT (s, t) ∩ V| · |CT (s, t)|. When using DAG compressed
terms we can represent sμn and tμn in polynomial space and in turn use the
algorithms of [16,17] to check equality in polynomial time. Note that even if the
input (s, t, μ) is already DAG compressed, the problem is still in P. The reason
is that |CT (s, t)| � |s| + |t| + |μ| also holds when sizes of terms are measured
according to their DAG representation.

For matching problems t � �, we first observe that simplify-mp [(t, �)] [] re-
quires at most |Vincr| · |�| many iterations, and when using DAG compression, the
resulting simplified matching problem can be represented in polynomial space.
Hence, the resulting identity problems can all be solved in polynomial time.

Using the result for matching problems, by Theorem 8 it follows that redex
problems t |� � are decidable in P: The number of matching problems in Minit

as well as the size of each element of Minit is linear in the sizes of t, �, and μ.
Finally, since redex problems can be decided in P, by Lemma 5 this also holds

for the question, whether a loop is an innermost loop. ��

We have also shown how reflexive transitive closures can be used to avoid ter-
mination proofs, and how partial functions help to develop efficient algorithms.

We tested our algorithms within our certifier CeTA (version 2.3) in combination
with the termination analyzer AProVE [18], which is (as far as we know) currently
the only tool, that can prove innermost nontermination of term rewrite systems.
Through our experiments, a major soundness bug in AProVE was revealed: one of
the two loop-finding methods completely ignored the strategy. After this bug was
fixed, all generated nontermination proofs could be certified. Since the overhead
for certification is negligible (AProVE required 151 minutes to generate all proofs,
whereas CeTA required 4 seconds to certify them), we encourage termination tool
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users to always certify their proofs. Formore details on the experiments, we refer to
http://cl-informatik.uibk.ac.at/software/ceta/experiments/nonterm/.

Future work consists of integrating further techniques for which completeness
is not obvious into our framework. Examples are innermost narrowing [10] and
the switch from innermost termination to termination for TRSs and DPPs.

Acknowledgments. We thank Lukas Bulwahn for helpful information on Is-
abelle/HOL’s predicate compiler.
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for Regular Expression Equivalence
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Abstract. The article describes a compact formalization of the relation
between regular expressions and deterministic finite automata, and a
formally verified, efficient algorithm for testing regular expression equiv-
alence, both based on the notion of pointed regular expression [8].

1 Introduction

In this paper, we give a simple formalization of the construction of a deterministic
finite automaton associated with a given regular expression, and of a bisimilarity
algorithm to check regular expression equivalence. Our approach is based on the
notion of pointed regular expression (pre), introduced in [8] (a similar notion
has been independently presented in [14]). A pointed regular expression is just
a regular expression internally labelled with some additional points. Intuitively,
points mark the positions inside the regular expression which have been reached
after reading some prefix of the input string, or better the positions where the
processing of the remaining string has to be started. Each pointed expression for
e represents a state of the deterministic automaton associated with e; since we
obviously have only a finite number of possible labellings, the number of states
of the automaton is finite.

Pointed regular expressions provide the tool for an algebraic revisitation of
McNaughton and Yamada’s algorithm for position automata [19], making the
proof of its correctness, that is far from trivial (see e.g. [9,11,12]), particularly
clear and simple. In particular, pointed expressions offer an appealing alternative
to Brzozowski’s derivatives (see e.g. [20] for a recent revisitation), avoiding their
weakest point, namely the fact of being forced to quotient derivatives w.r.t. a
suitable notion of equivalence in order to get a finite number of states (that is not
essential for recognizing strings, but is crucial for comparing regular expressions).

All the proofs in this paper have been formalized in the Interactive Theorem
Prover Matita [6].

2 Preliminaries

An alphabet is an arbitrary set of elements, equipped with a decidable equality:

L. Beringer and A. Felty (Eds.): ITP 2012, LNCS 7406, pp. 283–298, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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� �

record DeqSet : Type :=
{ carr :>Type; (∗ coercion ∗)

eqb: carr → carr → bool; (∗ notation: a == b ∗)
eqb true: ∀x,y. (eqb x y = true) ↔ (x = y)

}.
� �

A string (or word) over the alphabet S is just an element of list S. We need
to deal with languages, that is, sets of strings. A traditional way to encode sets
of elements in a given universe U in type theory is by means of predicates over
U , namely elements of U → Prop. A language over an alphabet S is hence an
element of list S → Prop.

Languages inherit all the basic operations for sets, namely union, intersection,
complementation, substraction, and so on. In addition, we may define some new
operations induced by string concatenation, and in particular the concatenation
A · B of two languages A and B, the so called Kleene’s star A∗ of A and the
derivative of a language A w.r.t. a given character a:
� �

definition cat :=λS,A,B.λw:word S.
∃w1,w2.w1 @ w2 = w ∧A w1 ∧B w2.

definition star :=λS,A,λw:word S.
∃lw.flatten S lw = w ∧ list forall S lw A.

definition deriv :=λS,A,a,w. A (a::w).
� �

In the definition of star, f latten and l ist forall are standard functions over
lists, respectively mapping [l1, . . . , ln] to l1@l2 . . .@ln and [w1, w2, . . . , wn] to
(A w1) ∧ (A w2) · · · ∧ (A wn).

Two languages are equal if they are equal as sets, namely if they contain
the same words. This notion of equality, called eqP and denoted with the infix
operator 7, is an extensional equality, different from the primitive intensional
equality of Matita. In particular, we can rewrite with an equation A 7 B inside
a context C[A], only if the context is compatible with “7”.
� �

definition eqP :=λA:Type.λP,Q:A →Prop.∀a:A.P a ↔Q a.
� �

The main equations between languages that we shall need for the purposes
of this paper (in addition to the set theoretic ones, and those expressing exten-
sionality of operations) are listed below; the simple proofs are omitted.
� �

lemma epsilon cat r: ∀S.∀A:word S →Prop. A ·{ε} � A.
lemma epsilon cat l: ∀S.∀A:word S →Prop. {ε} ·A � A.
lemma distr cat r: ∀S.∀A,B,C:word S →Prop. (A ∪B) ·C � A · C ∪ B · C.
lemma deriv union: ∀S,A,B,a. deriv (A ∪B) a � (deriv A a) ∪ (deriv B a).
lemma deriv cat: ∀S,A,B,a. ¬A ε→deriv (A·B) a � (deriv A a) · B.
lemma star fix eps : ∀S.∀A:word S →Prop. A∗ � (A − {ε}) ·A∗ ∪ {ε}.
� �
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3 Regular Expressions

The type re of regular expressions over an alphabet S is the smallest collection
of objects generated by the following constructors:
� �

inductive re (S: DeqSet) : Type :=
z: re S (∗ empty ∗)

| e: re S (∗ epsilon ∗)
| s : S → re S (∗ symbol ∗)
| c: re S → re S → re S (∗ concatenation ∗)
| o: re S → re S → re S (∗ plus ∗)
| k: re S → re S. (∗ kleene ’s star ∗)

� �

In Matita, similarly to most interactive provers, we provide mechanisms to let
the user define his own notation for syntactic constructs, and in the rest of
the paper we shall use the traditional notation for regular expressions, namely
∅, ε, a, e1 · e2, e1 + e2, e

∗.
The language sem r (notation: �r�) associated with the regular expression r

is defined by the following function:
� �

let rec sem (S : DeqSet) (r : re S) on r : word S →Prop :=
match r with
[ z ⇒ ∅
| e ⇒ {ε}
| s x ⇒ {[x]}
| c r1 r2 ⇒ �r1� · �r2�
| o r1 r2 ⇒ �r1� ∪ �r2�
| k r1 ⇒ �r1�∗ ].

� �

4 Pointed Regular Expressions

A pointed item is a data type used to encode a set of positions inside a regular
expression. The idea of formalizing pointers inside a data type by means of a
labelled version of the data type itself is probably one of the first, major lessons
learned in the formalization of the metatheory of programming languages (see
e.g. [16] for a precursory application to residuals in lambda calculus). For our
purposes, it is enough to mark positions preceding individual characters, so we
shall have two kinds of characters •a (pp a) and a (ps a) according to the case
a is pointed or not.
� �

inductive pitem (S: DeqSet) : Type :=
pz: pitem S

| pe: pitem S
| ps: S → pitem S
| pp: S → pitem S
| pc: pitem S →pitem S → pitem S
| po: pitem S →pitem S → pitem S
| pk: pitem S →pitem S.

� �
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A pointed regular expression (pre) is just a pointed item with an additional
boolean, that must be understood as the possibility to have a trailing point at
the end of the expression. As we shall see, pointed regular expressions can be
understood as states of a DFA, and the boolean indicates if the state is final or
not.
� �

definition pre :=λS.pitem S ×bool.
� �

The carrier |i| of an item i is the regular expression obtained from i by re-
moving all the points. Similarly, the carrier of a pointed regular expression is the
carrier of its item. The formal definition of this functions are straightforward, so
we omit them. In the sequel, we shall use the same notation for functions defined
over items or pres, leaving to the reader the simple disambiguation task (matita
is also able to solve autonomously this kind of notational overloading).

The intuitive semantic of a point is to mark the position where we should start
reading the regular expression. The language associated to a pre is the union of
the languages associated with its points. Here is the straightforward definition
(the question mark is an implicit parameter):
� �

let rec semi (S : DeqSet) (i : pitem S) on i : word S →Prop :=
match r with
[ pz ⇒ ∅
| pe ⇒ ∅
| ps ⇒ ∅
| pp x ⇒ {[x]}
| pc i1 i2 ⇒ (semi ? i1) · � | i2 |� ∪ (semi ? i2)
| po i1 r2 ⇒ (semi ? i1) ∪ (semi ? i2)
| pk i1 ⇒ (semi ? i1) · � | i1 |�∗ ].

definition semp :=λS : DeqSet.λp:pre S.
if (snd p) then semi ? (fst p) ∪ {ε} else semi ? ( fst p).

� �

In the sequel, we shall often use the same notation for functions defined over re,
items or pres, leaving to the reader the simple disambiguation task (matita is also
able to solve autonomously this kind of notational overloading). In particular,
we shall denote with �e� all semantic functions sem , semi and semp.

Example 1.

1. If e contains no point then �e� = ∅
2. �(a+•bb)∗� = �bb(a+bb)∗� �
Here are a few, simple, semantic properties of items
� �

lemma not epsilon item : ∀S:DeqSet.∀i:pitem S. ¬ (�i� ε).
lemma epsilon pre : ∀S.∀e:pre S. (� i� ε) ↔ (snd e = true).
lemma minus eps item: ∀S.∀i:pitem S. �i� � �i�−{ε}.
lemma minus eps pre: ∀S.∀e:pre S. �fst e� � �e�−{ε}.
� �

The first property is proved by a simple induction on i; the other results are
easy corollaries.



A Compact Proof of Decidability for Regular Expression Equivalence 287

4.1 Intensional Equality of Pres

Items and pres are a very concrete datatype: they can be effectively compared,
and enumerated. This is important, since pres are the states of our finite au-
tomata, and we shall need to compare states for bisimulation in Section 7.

In particular, we can define beqitem and beqitem true enriching the set
(pitemS) to a DeqSet.
� �

definition DeqItem :=λS.
mk DeqSet (pitem S) (beqitem S) (beqitem true S).

� �

Matita’s mechanism of unification hints [7] allows the type inference system
to look at (pitemS) as the carrier of DeqSet, and at beqitem as if it was the
equality function of DeqSet.

The product of two DeqSets is clearly still a DeqSet. Via unification hints,
we may enrich a product type to the corresponding DeqSet; since moreover the
type of booleans is a DeqSet too, this means that the type of pres automatically
inherits the structure of a DeqSet (in Section 7, we shall deal with pairs of pres,
and in this case too, without having anything to declare, the type will inherit
the structure of a DeqSet).

Items and Pres can also be enumerated. In particular, it is easy to define a
function pre enum that takes in input a regular expression and gives back the
list of all pres having e for carrier. Completeness of pre enum is stated by the
following lemma:
� �

lemma pre enum complete : ∀S.∀e:pre S.
memb ? e (pre enum S (|fst e|)) = true.

� �

5 Broadcasting Points

Intuitively, a regular expression e must be understood as a pointed expression
with a single point in front of it. Since however we only allow points before
symbols, we must broadcast this initial point inside e traversing all nullable
subexpressions, that essentially corresponds to the ε-closure operation on au-
tomata. We use the notation •(·) to denote such an operation; its definition is
the expected one: let us start discussing an example.

Example 2. Let us broadcast a point inside (a+ ε)(b∗a+ b)b. We start working
in parallel on the first occurrence of a (where the point stops), and on ε that
gets traversed. We have hence reached the end of a + ε and we must pursue
broadcasting inside (b∗a + b)b. Again, we work in parallel on the two additive
subterms b∗a and b; the first point is allowed to both enter the star, and to
traverse it, stopping in front of a; the second point just stops in front of b. No
point reached that end of b∗a + b hence no further propagation is possible. In
conclusion:

•((a+ ε)(b∗a+ b)b) = 〈(•a+ ε)((•b)∗ • a+ •b)b, false〉 �
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Broadcasting a point inside an item generates a pre, since the point could pos-
sibly reach the end of the expression. Broadcasting inside a pair i1 + i2 amounts
to broadcast in parallel inside i1 and i2. If we define

〈i1, b′1〉 ⊕ 〈i2, b2〉 = 〈i1 + i2, b1 ∨ b2〉
then, we just have •(i1 + i2) = •(i1)⊕ •(i2).

Concatenation is a bit more complex. In order to broadcast an item inside
i1 · i2 we should start broadcasting it inside i1 and then proceed into i2 if and
only if a point reached the end of i1.

This suggests to define •(i1 · i2) as •(i1) � i2, where e � i is a general operation
of concatenation between a pre and item (named pre concat l) defined by cases
on the boolean in e

〈i1, true〉 � i2 = i1 � •(i2) 〈i1, false〉 � i2 = 〈i1 · i2, false〉
In turn, � (named pre concat r) says how to concatenate an item with a pre,
that is however extremely simple:

i1 � 〈i1, b〉 = 〈i1 · i2, b〉
The different kinds of concatenation between items and pres are summarized in
Fig. 1, where we also depict the concatenation between two pres of Section 5.3.

item pre

item i1 · i2 i1 � e2
i1 � 〈i1, b〉 := 〈i1 · i2, b〉

pre e1 � i2 e1� e2
〈i1, true〉 � i2 := i1 � •(i2) e1 � 〈i2, b〉 := let 〈i′, b′〉 = e1 � i2

〈i1, false〉 � i2 := 〈i1 · i2, false〉 in 〈i′, b ∨ b′〉

Fig. 1. Concatenations between items and pres and respective equations

The definition of •(·) (eclose) and � (pre concat l) are mutually recursive. In
this situation, a viable alternative that is usually simpler to reason about, is to
abstract one of the two functions with respect to the other.
� �

definition pre concat l :=λS.λbcast:∀S.pitem S → pre S.λe1:pre S.λi2:pitem S.
let 〈 i1 ,b1〉 := e1 in
if b1 then i1 � (bcast ? i2) else 〈 i1 · i2 , false 〉 .

let rec eclose (S: DeqSet) (i: pitem S) on i : pre S :=
match i with
[ pz ⇒ 〈pz S, false 〉
| pe ⇒ 〈pe S, true〉
| ps x ⇒ 〈ps S x, false 〉
| pp x ⇒ 〈pp S x, false 〉
| po i1 i2 ⇒ •i1 ⊕ •i2
| pc i1 i2 ⇒ •i1 � i2
| pk i ⇒ 〈(fst (•i ))∗ ,true〉 ].

� �
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The definition of eclose can then be lifted from items to pres:
� �

definition lift :=λS.λf:pitem S → pre S.λe:pre S.
let 〈 i ,b〉 := e in 〈 fst ( f i ), snd (f i ) ∨ b〉.

definition preclose :=λS. lift S (eclose S).
� �

By induction on the item i it is easy to prove the following result:
� �

lemma erase bullet : ∀S.∀i:pitem S. | fst (•i )| = |i |.
� �

5.1 Semantics

We are now ready to state the main semantic properties of ⊕, �, � and •(−):
� �

lemma sem oplus: ∀S:DeqSet.∀e1,e2:pre S.
�e1 ⊕ e2� � �e1� ∪ �e2�.

lemma sem pre concat r : ∀S,i.∀e:pre S.
� i � e� � � i� · � | fst e |� ∪ �e� .

lemma sem pre concat l : ∀S.∀e1:pre S.∀i2:pitem S.
�e1 � i2� � �e1� · � | i2 |� ∪ � i2� .

theorem sem bullet: ∀S:DeqSet. ∀i:pitem S.
�•i� � � i� ∪ � | i |� .

� �

The proofs of sem oplus and sem pre concat r are straightforward. For the
others, we proceed as follow: we first prove the following auxiliary lemma, that
assumes sem bullet
� �

lemma sem pre concat l aux : ∀S.∀e1:pre S.∀i2:pitem S.
�•i2� � � i2� ∪ � | i2 |� →

�e1 � i2� � �e1� · � | i2 |� ∪ �i2� .
� �

Then, using the previous result, we prove sem bullet by induction on i. Finally,
sem pre concat l aux and sem bullet give sem pre concat l.

It is important to observe that all proofs have an algebraic flavor. Let us
consider for instance the proof of sem pre concat l aux. Assuming e1 = 〈i1, b1〉
we proceed by cases on b1. If b1 is false, the result is trivial; if b1 is true, we have

�〈i1, true〉 � i2�7 �i1� � •(i2) by def. of �
7 �i1� · �|f st • (i2)|� ∪ �•(i2)� by sem pre concat r
7 �i1� · �|i2|� ∪ �i2� ∪ �|i2|� by erase bullet and sem bullet
7 �i1� · �|i2|� ∪ �|i2|� ∪ �i2� by assoc. and comm.
7 (�i1� ∪ {ε}) · �|i2|� ∪ �i2� by distr cat r
7 �〈i1, true〉� · �|i2|� ∪ �i2� by the semantics of pre

As another example, let us consider the proof of sem bullet. The proof is by
induction on i; let us consider the case of i1 · i2. We have:
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�•(i1 · i2)�7�•(i1)� � �i2� by definition of • (·)
7�•(i1)� · �|i2|� ∪ �i2� by sem pre concat l
7(�i1� ∪ �|i1|�) · �|i2|� ∪ �i2� by induction hypothesis
7�i1� · �|i2|� ∪ �|i1|� · �|i2|� ∪ �i2� by distr cat r
7(�i1� · �|i2|� ∪ �i2�) ∪ �|i1 · i2|� by assoc. and comm.
7�(i1 · i2)� ∪ �|i1 · i2|� by definition of � �

5.2 Initial State

As a corollary of theorem sem bullet, given a regular expression e, we can easily
find an item with the same semantics of e: it is enough to get an item (blank e)
having e as carrier and no point, and then broadcast a point in it:

�•(blank e)� 7 �(blank e)� ∪ �e� 7 �e�
The definition of blank is straightforward; its main properties (both proved by
an easy induction on e) are the following:
� �

lemma forget blank: ∀S.∀e:re S.|blank S e| = e.
lemma sem blank: ∀S.∀e:re S. �blank S e� � ∅.
theorem re embedding: ∀S.∀e:re S. �•(blank S e)� � �e�.
� �

5.3 Lifted Operators

Plus and bullet have been already lifted from items to pres. We can now do a
similar job for concatenation (8) and and Kleene’s star (�).
� �

definition lifted cat :=λS:DeqSet.λe:pre S. lift S (pre concat l S eclose e).

definition lk :=λS:DeqSet.λe:pre S.
let 〈 i1 ,b1〉 := e in if b1 then 〈(fst ( eclose ? i1 ))∗ , true〉 else 〈 i1∗ , false 〉 .

� �

We can easily prove the following properties:
� �

lemma sem odot: ∀S.∀e1,e2: pre S.
�e1 � e2� � �e1� · � | fst e2|� ∪ �e2� .

theorem sem ostar: ∀S.∀e:pre S.
�e�� � �e� · � | fst e |�∗ .

� �

For example, let us look at the proof of the latter. Given e = 〈i, b〉 we proceed
by cases on b. If b is false the result is trivial; if b is true we have:

�〈i, true〉��7�(f st •(i))∗� ∪ {ε} by definition of �
7�f st •(i)� · �f st |•(i)|�∗ ∪ {ε} by definition of � �
7�f st •(i)� · �|i|�∗ ∪ {ε} by erase bullet
7(�•(i)� − {ε}) · �|i|�∗ ∪ {ε} by minus eps pre
7((�i� ∪ �|i|�) − {ε}) · �|i|�∗ ∪ {ε} by sem bullet
7((�i� − {ε}) ∪ (�|i|� − {ε})) · �|i|�∗ ∪ {ε} by distr minus
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7(�i� ∪ (�|i|� − {ε})) · �|i|�∗ ∪ {ε} by minus eps item
7�i� · �|i|�∗ ∪ (�|i|� − {ε}) · �|i|�∗ ∪ {ε} by distr cat r
7�i� · �|i|�∗ ∪ �|i|�∗ by star fix eps
7(�i� ∪ {ε}) · �|i|�∗ by distr cat r
7�〈i, true〉� · �|i|�∗ by definition of � �

6 Moves

We now define the move operation, that corresponds to the advancement of the
state in response to the processing of an input character a. The intuition is clear:
we have to look at points inside e preceding the given character a, let the point
traverse the character, and broadcast it. All other points must be removed.

We can give a particularly elegant definition in terms of the lifted operators
of the previous section:
� �

let rec move (S: DeqSet) (x:S) (E: pitem S) on E : pre S :=
match E with
[ pz ⇒ 〈pz S, false 〉
| pe ⇒ 〈pe S, false 〉
| ps y ⇒ 〈ps S y, false 〉
| pp y ⇒ 〈ps S, x == y〉 (∗ the point is advanced if x==y, erased otherwise ∗)
| po e1 e2 ⇒ (move ? x e1) ⊕ (move ? x e2)
| pc e1 e2 ⇒ (move ? x e1) � (move ? x e2)
| pk e ⇒ (move ? x e)� ].

� �

Example 3. Let us consider the pre (•a+ ε)((•b)∗ • a+ •b)b and the two moves
w.r.t. the characters a and b. For a, we have two possible positions (all other
points gets erased); the innermost point stops in front of the final b, the other
one broadcast inside (b∗a+ b)b, so

move a ((•a+ ε)((•b)∗ • a+ •b)b) = 〈(a+ ε)((•b)∗ • a+ •b) • b, false〉
For b, we have two positions too. The innermost point stops in front of the final
b too, while the other point reaches the end of b∗ and must go back through b∗a:

move b ((•a+ ε)((•b)∗ • a+ •b) • b) = 〈(a+ ε)((•b)∗ • a+ b) • b, false〉 �
Obviously, a move does not change the carrier of the item, as one can easily
prove by induction on the item
� �

lemma same carrier: ∀S:DeqSet.∀a:S.∀i:pitem S.
| fst (move a i)| = |i |.

� �

Here is our first, major result.
� �

theorem move ok: ∀S:DeqSet.∀a:S.∀i:pitem S.
�move a i� � deriv � i� a.

� �
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The proof is a simple induction on i. Let us see the case of concatentation:

�move a (i1 · i2)� 7 �move a i1 8move a i2� by def. of move
7 �move a i1� · �|f st (move a i2)|� ∪ �move a i2� by sem odot
7 �move a i1� · �|i2|� ∪ �move a i2� by same carrier
7 (deriv �i1� a) · �|i2|� ∪ (deriv �i2� a) by ind. hyp.
7 (deriv (�i1� · �|i2|�) a) ∪ (deriv �i2� a) by deriv cat
7 deriv (�i1� · �|i2|� ∪ �i2�) a by deriv union
7 deriv �i1 · i2� a by definition of � �

The move operation is generalized to strings in the obvious way:
� �

let rec moves (S : DeqSet) w e on w : pre S :=
match w with
[ nil ⇒ e
| cons a tl ⇒ moves S tl (move S a (fst e ))].

lemma same carrier moves: ∀S:DeqSet.∀w.∀e:pre S.
| fst (moves ? w e)| = | fst e |.

theorem decidable sem: ∀S:DeqSet.∀w: word S. ∀e:pre S.
(snd (moves ? w e) = true) ↔ �e� w.

� �

The proof of decidable sem is by induction on w. The case w = ε is trivial; if
w = a :: w1 we have

snd (moves (a :: w1) e) = true
↔ snd (moves w1 (move a (f st e))) = true by def. of moves
↔ �move a (f st e)� w1 by ind. hyp.
↔ �e� a :: w1 by move ok

It is now clear that we can build a DFA De for e by taking pre as states, and
move as transition function; the initial state is •(e) and a state 〈i, b〉 is final if
and only if b = true. The fact that states in De are finite is obvious: in fact,
their cardinality is at most 2n+1 where n is the number of symbols in e. This
is one of the advantages of pointed regular expressions w.r.t. derivatives, whose
finite nature only holds after a suitable quotient.

Example 4. Figure 2 describes the DFA for the regular expression (ac+ bc)∗.
The graphical description of the automaton is the traditional one, with nodes
for states and labelled arcs for transitions. Unreachable states are not shown.
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Fig. 2. DFA for (ac+ bc)∗
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Final states are emphasized by a double circle: since a state 〈e, b〉 is final if and
only if b is true, we may just label nodes with the item.

The automaton is not minimal: it is easy to see that the two states corre-
sponding to the pres (a • c+ bc)∗ and (ac+ b • c)∗ are equivalent (a way to prove
it is to observe that they define the same language!). In fact, each state has a
clear semantics given in terms of the associated pre e and not of the behaviour
of the automaton. As a consequence, the construction of the automaton is not
only direct, but also extremely intuitive and locally verifiable. �
Example 5. Starting from the regular expression (a+ ε)(b∗a+ b)b, we obtain the
automaton in Figure 3. Remarkably, this DFA is minimal, testifying the small
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Fig. 3. DFA for (a+ ε)(b∗a+ b)b

number of states produced by our technique (the pair of states 6− 8 and 7 − 9
differ for the fact that 6 and 7 are final, while 8 and 9 are not). �
7 Equivalence

We say that two pres 〈i1, b1〉 and 〈i2, b2〉 are cofinal if and only if b1 = b2.
As a corollary of decidable sem, we have that two expressions e1 and e2 are

equivalent iff for any word w the states reachable through w are cofinal.
� �

theorem equiv sem: ∀S:DeqSet.∀e1,e2:pre S.
�e1� � �e2� ↔ ∀w.cofinal 〈moves w e1,moves w e2〉.

� �
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This does not directly imply decidability: we have no bound over the length of
w; moreover, so far, we made no assumption over the cardinality of S. Instead
of requiring S to be finite, we may restrict the analysis to characters occurring
in the given pres. This means we can prove the following, stronger result:
� �

lemma equiv sem occ: ∀S.∀e1,e2:pre S.(∀w.(sublist S w (occ S e1 e2))→
cofinal 〈moves w e1,moves w e2〉) → �e1� � �e2�.

� �

The proof essentially requires the notion of sink state and a few trivial properties:
� �

definition sink pre :=λS.λi.〈blank S (| i |), false 〉 .

lemma not occur to sink: ∀S,a.∀i:pitem S. memb S a (occur S (|i|)) �= true →
move a i = sink pre S i .

lemma moves sink: ∀S,w,i. moves w (sink pre S i) = sink pre S i.
� �

Let us say that a list of pairs of pres is a bisimulation if it is closed w.r.t.
moves, and all its members are cofinal.
� �

definition sons :=λS:DeqSet.λl:list S.λp:(pre S)×(pre S).
map ?? (λa.〈move a (fst ( fst p)),move a (fst (snd p))〉) l .

definition is bisim :=λS:DeqSet.λl: list ?.λalpha: list S. ∀p:(pre S)×(pre S).
memb ? p l = true → cofinal ? p ∧ ( sublist ? (sons ? alpha p) l ).

� �

Using lemma equiv sem occ it is easy to prove
� �

lemma bisim to sem: ∀S:DeqSet.∀l:list ?.∀e1,e2: pre S.
is bisim S l (occ S e1 e2) →memb ? 〈e1,e2〉 l = true → �e1� � �e2�.

� �

As observed in [18] this is already an interesting result: checking if l is a bisim-
ulation is decidable, hence we could generate l with some untrusted piece of
code and then run a (boolean version of) is bisim to check that it is actually a
bisimulation. However, in order to prove that equivalence of regular expressions
is decidable we must prove that we can always effectively build such a list (or
find a counterexample). The idea is that the list we are interested in is just the
set of all pair of pres reachable from the initial pair via some sequence of moves.

The algorithm for computing reachable nodes in a graph is a very traditional
one. We split nodes in two disjoint lists: a list of visited nodes and a frontier,
composed by all nodes connected to a node in visited but not visited already. At
each step we select a node a from the frontier, compute its sons, add a to the
set of visited nodes and the (not already visited) sons to the frontier.

Instead of fist computing reachable nodes and then performing the bisimilarity
test we can directly integrate it in the algorithm: the set of visited nodes is closed
by construction w.r.t. reachability, so we have just to check cofinality for any
node we add to visited.
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Here is the extremely simple algorithm
� �

let rec bisim S l n ( frontier , visited : list ?) on n :=
match n with
[ O ⇒ 〈false,visited〉 (∗ assert false ∗)
| S m ⇒
match frontier with
[ nil ⇒ 〈true,visited〉
| cons hd tl ⇒
if beqb (snd (fst hd)) (snd (snd hd)) (∗ cofinality ∗) then
bisim S l m (unique append ? (filter ? (λx.notb (memb ? x (hd::visited)))
(sons S l hd)) tl ) (hd:: visited )

else 〈 false , visited 〉
]

].
� �

The integer n is an upper bound to the number of recursive calls, equal to the
dimension of the graph. It returns a pair composed by a boolean and the set of
visited nodes; the boolean is true if and only if all visited nodes are cofinal.

The main test function is:
� �

definition equiv :=λSig.λre1,re2:re Sig.
let e1 :=•(blank ? re1) in
let e2 :=•(blank ? re2) in
let n :=S (length ? (space enum Sig (|fst e1 |) (| fst e2 |))) in
let sig :=(occ Sig e1 e2) in
(bisim ? sig n [〈e1,e2〉 ] []).

� �

We proved both correctness and completeness; in particular, we have
� �

theorem euqiv sem : ∀Sig.∀e1,e2:re Sig.
fst (equiv ? e1 e2) = true ↔ �e1� � �e2�.

� �

For correctness, we use the invariant that at each call of bisim the two lists
v isited and f rontier only contain nodes reachable from 〈e1, e2〉: hence it is ab-
surd to suppose to meet a pair which is not cofinal. For completeness, we use
the invariant that all the nodes in visited are cofinal, and the sons of v isited are
either in v isited or in the f rontier; since at the end f rontier is empty, v isited
is hence a bisimulation. All in all, correctness and completeness take little more
than a few hundreds lines.

8 Discussion, Related Works, Conclusions

Most of the formal proofs contained in this paper go back to 2009, preceding the
technical report where we introduced the notion of pointed regular expression
[8]; the long term idea, still in progress, was to use this material as a base for
wrting an introductory tutorial to Matita. Since then, a small bunch of related
works have appeared [2,18,13,22], convincing us we could possibly add our two
cents to this interesting, and apparently never exhausted topic.
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Most of the above mentioned works are based on the notion of derivative,
either in Brzozowski’s acception [18,13] or in Antimirov’s one [2,22]. This is
not particularly surprising, since the algebraic nature of derivatives make them
particularly appealing for a formal development. However, as remarked in [18],
“in the large range of algorithms that turn regular expressions into automata,
Brzozowski’s procedure is on the elegant side, not the efficient one”.

In order to get an efficient implementation, Braibant and Pous [10] resort to a
careful implementation of finite state automata, encoding them as matrices over
the given alphabet; automata are build using a variant of Thompson’s technique
[21] due to Ilie and Yu [17] (simpler to formalize then [21] but still complex).

Our approach based on pointed regular expressions provides a simple, alge-
braic revisitation of McNaughton and Yamada’s algorithm [19] that, in contrast
to Brzozowski’s procedure, is traditionally reputed for its efficiency [1]; as a
result, our approach is both efficient and compact.

Compactness, is maybe the most striking feature: from the definition of lan-
guages and regular expressions to the correctness proof of bisimilarity, our de-
velopment takes less than 1200 lines. A self contained (not minimal) snapshot of
the library can be found at http:\\www.cs.unibo.it\~asperti\re.tar, and
it takes about 3400 lines. The development described in [18] has about the same
size, but in this case the comparison is not fair, since they only check correctness,
but do not address neither termination nor completeness. Especially, termination
for Brzozowski’s procedure is a delicate issue, taking quite an effort to [13].

The formalization in [13] is unexpectedly verbose: 7414 lines, not including
relevant fragments of the standard library. This is particularly surprising since it
has been written in ssreflect [15], that is reputed to be a compact dialect of Coq.
We should observe that [13] contains two bisimilarity algorithms: one slow and
naif (similar to that described in [18]) and one more complex, but more difficult
to prove correct (taking, respectively, 1109 and 2576 lines). The point is that
the efficiency of Brzozowski’s procedure largely relies on the quotient made over
derivatives: associative and commutative rewriting is enough for termination, but
more complex rewritings are required to get a really performant implementation.

In spite of this huge effort, the actual performance of the bisimilarity test
in [13] remains modest. Let us consider a couple of examples. The first one is
an encoding of Bezout’s identity discussed in [13]; exploiting the fact that set
inclusion can be reduced to equality expressing A ⊆ B as A ∪ B = B, the
arithmetical statement

∀n ≥ c.∃x, y.n = xa+ yb

can be expressed as the following regular expression problem

A(a, b, c) = (0c)0∗ + (0a + 0b)∗ 7 (0a + 0b)∗

The second problem, borrowed from [3], consists in proving the following
equality:

B(n) = (ε + a+ aa+ · · ·+ an−1)(an)∗ 7 a∗
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problem answer pres [13] problem answer pres [13]
A(3, 5, 8) yes 0.19 2.09 B(6) yes 0.15 0.29
A(4, 5, 11) no 0.18 5.26 B(8) yes 0.20 1.24
A(4, 5, 12) yes 0.24 5.26 B(10) yes 0.26 3.98
A(5, 6, 19) no 0.30 31.22 B(12) yes 0.31 10.71
A(5, 6, 20) yes 0.43 31.23 B(14) yes 0.45 25.04
A(5, 7, 23) no 0.38 70.09 B(16) yes 0.61 53.15
A(5, 7, 24) yes 0.57 70.19 B(18) yes 0.80 104.16

Fig. 4. Performance

In Figure 4 we compare our technique (pres) with that of [13]; execution times
are expressed in seconds and have been computed on a machine with a Pentium
M Processor 750 1.86GHz and 1GB of RAM.

The main achievement of our work, is however the very notion of pointed
regular expression. The important facts are that

1. pointed expressions are in bijective correspondence with states of DFA
2. each pointed expression has a clear and intuitive semantics
3. the relation between a state and its sons is immediate and very natural

This allows a direct, intuitive and locally verifiable construction of the determin-
istic automaton for e, that is not only convenient for formalization, but also for
didactic purposes. Since their discovery, we systematically used pointed expres-
sions for teaching the argument to students and, according to our experience,
they are largely superior to any other method we are aware of. In our opinion,
pointed regular expressions are a nice example of the kind of results we may
expect from the revisitation of methods and notions of computer science and
mathematics induced by mechanical formalization, and which is probably the
most ambitious and challenging objective of this discipline (see e.g. [4,5]).
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Abstract. In this paper, we present an agent-based logic called Rely-
Guarantee Temporal Logic (RGTL), developed using the Isabelle theorem
prover. RGTL provides a formalism for expressing complex temporal-logic
specifications of multi-agent systems, as well as a compositional method
of reasoning about the dependencies between components in such a sys-
tem. Taking advantage of Isabelle’s locale functionality, we are able to ex-
press various choices about the notion of “strategy” used in the logic (e.g.,
memoryless/memory-based) as parameters to the semantics, whereas pre-
viously these choices were considered to define semantics for distinct vari-
ants of agent-based logics. We can then state and formally verify various
aspects of RGTL, including its reasoning principles and its expressiveness
relative to Alternating-time Temporal Logic (ATL), independently of the
type of underlying strategies, by using locales to axiomatize the necessary
requirements on strategies.

Keywords: logics for agency, temporal logic, reasoning about strategies,
modular specification, Isabelle proof assistant.

1 Introduction

Alternating-time temporal logic (ATL) [2] is an extension of temporal logic to
a system with multiple players, agents whose choices influence the evolution of
a system. By introducing quantification over the strategies defining the future
actions of some set of players, ATL provides a mechanism for formulating prop-
erties of the form “A can guarantee ϕ” or “A must allow ϕ”. However, when
dealing with systems containing multiple components working in concert, “can
guarantee” and “must allow” are of less interest than “will guarantee” or “does
not guarantee”. These properties can be expressed, for instance, using the ATL-
STIT language proposed by Broersen et al. [6], where STIT is an acronym for
“sees to it that”. Rely-Guarantee Temporal Logic (RGTL) expands on this ap-
proach, providing a formalism for expressing temporal-logic properties of and
dependencies between components, as well as generalizing the notion of “strat-
egy” from a deterministic function on states and agents to a range of potentially
nondeterministic, progressively refined objects. RGTL is a logic designed to sup-
port the concepts of rely-guarantee reasoning and agency as first-class concepts,
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providing a flexible logic for specifying and checking requirements on complex
multi-component systems.

The design of the semantics of RGTL was done using the Isabelle proof assis-
tant, and in particular takes advantage of Isabelle’s locale facility, which provides
a mechanism for collecting and manipulating the assumptions required by vari-
ous theories [3]. Through successive layers of locales, we build up the necessary
framework for defining RGTL, including the underlying automata (concurrent
game structures), a fundamental notion of strategies, and various axioms and
operations on strategies. By minimizing the assumptions made in any given
locale, we can give a general statement of the logic, independent of various dis-
tinctions that in past work have been considered to define different logics. For
example, ATL with irrevocable strategies [1] has been defined in two variants,
IATL (in which strategies are memoryless) and MIATL (in which strategies have
unbounded memory). By abstracting away from the details of strategy compu-
tations, we are able to give a single definition of RGTL for both memoryless and
memory-based strategies (as well as various other potential distinctions), which
can be specialized to either case by plugging in the corresponding sublocale.
Using the same approach in our analysis of expressiveness, we are able to prove
that RGTL is more expressive than ATL∗ regardless of the type of strategies
used, as long as the type of strategies is consistent across the two logics.

2 Example: A First Look

To understand the extra flexibility afforded to us by RGTL over ATL, let us
consider a simple example with two agents, A and B, and a system. The system
offers to each agent a toggle, which, at each instant, the agent associated with
the toggle may either push or leave alone. The toggles jointly control whether a
light is on or off. If, in a given instant, just one agent pushes their toggle, the
light will change state: if it was on it will go off, and if it was off it will go on.
If both agents either leave their toggles alone, or simultaneously push them, the
light will not change state: if it was on, it will stay on, and if it was off, it will
stay off.

Now let us consider the property P that at some point the light will be on and
remain on from that point forward. In Linear Temporal Logic (LTL) [14], this
can be stated as ♦ � light on, i.e., “eventually always the light is on”. Obviously,
if the two agents are free at each instant to choose whether to push the toggle or
not, the system will display some traces that satisfy this property, but also many
that do not. If we want to know whether the two players can collaborate to assure
P , then we are effectively asking if there exists a trace satisfying P , which is a
property that can be expressed in branching-time temporal logics such as CTL*
[4]. However, if we wish to focus on what one agent can control without joint
collaboration with the other, we are unable to prove any meaningful results. In
particular, speaking in ATL terms, it should be clear that a single agent cannot
guarantee P , and indeed must allow ¬P (written as �A��♦¬light on). No matter
what strategy agent A pursues, there is a way for agent B to mess things up.



Using Locales to Define a Rely-Guarantee Temporal Logic 301

However, were agent A able to make use of certain properties of the behavior of
agent B, then it might be possible for A to craft a strategy to always guarantee
P , even if A did not know exactly what B would do at any given instant. For
example, if B could definitely be relied upon to eventually stop toggling, then the
strategy for A to always push the toggle on when the light is off will guarantee
that eventually the light will be on and stay on. It is this kind of conditional
component-wise reasoning that we aim to express and support in RGTL.

3 RGTL Syntax

Intuitively, the ATL path quantifier 〈〈A〉〉 allows us to express “can-guarantee”
properties; 〈〈A〉〉ϕ holds of a system when there is some strategy for A that
ensures ϕ (despite the actions of the remaining agents). The dual operator,�A�ϕ ≡ ¬〈〈A〉〉¬ϕ, holds when for any strategy for A, the remaining agents can
ensure ϕ; this can be intuitively understood as a “must-allow” property. In the
case in which we have an existing strategy on which we want to check properties,
neither of these operators provides the correct formalism.

Instead, we would like to say that a program does satisfy a property, and more
generally that agent a satisfies some property Pa as long as agent b satisfies its
own property Pb, which may be thought of as the protection envelope for agent
b. The concept of the protection envelope appears in the work of Gunter et al.
[9]. While it may be possible to show that a particular workflow for b satisfies a
desired property, minor variations in the workflow for b may violate the property.
The protection envelope is a more general property that may be satisfied by vari-
ations on b’s expected workflow, while providing enough information to ensure

safety of the overall system. The
A
� operator is designed to facilitate this style

of system specification: the left-hand side of the implication is the protection
envelope for A, and the right-hand side is the property enabled by this envelope.
Because of its similarity to the rely-guarantee approach originally proposed by
Jones [10], we refer to this operator as the “rely-guarantee arrow”.

Following CTL* and ATL∗, an RGTL formula is either a state formula or
a path formula; the semantics of a state formula depends only on information
about the current state, while the semantics of a path formula includes assertions
on possible future states. The path and state formulae of RGTL defined as:

ϕ ::= ϕ ∧ ϕ | ¬ϕ | �ϕ | ϕ U ϕ | ψ

ψ ::= true | π | ψ ∧ ψ | ¬ψ | ψ
A
� ψ | Λϕ

where π ∈ Π is an atomic proposition and A ⊆ A is a set of agents. As in
LTL, �ϕ (read “next ϕ”) asserts that ϕ holds in the next state along a path,
while ϕ1 U ϕ2 (read “ϕ1 until ϕ2”) asserts that ϕ1 holds at every point along
the path until the first point at which ϕ2 holds. RGTL also includes the rely-

guarantee operator
A
�, and the Λ operator, which quantifies over the outcomes

of a strategy. The semantics of these operators is given in the following section.
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4 Semantics

4.1 Concurrent Game Structures and Strategies

The semantics of RGTL in Isabelle is built up through a series of nested locales.
Each locale introduces a set of objects and axioms defining one of the concepts
needed to give semantics to RGTL formulae, and provides useful constructs and
lemmas for working with that concept. Ideally, each locale introduces exactly
the assumptions needed for the definitions and proofs it provides. Through this
approach, our semantics remains agnostic of the underlying implementation of
various features of the semantics, in particular that of the type of strategies
introduced below.

The first locale, CGS, introduces the concept of a concurrent game structure,
a type of automata that moves from state to state according to the actions of
a set of agents. The semantics of ATL and related logics, including RGTL, are
evaluated with concurrent game structures as their underlying automata.

Locale Definition 1. A concurrent game structure (abbreviated CGS) is a tu-
ple (A, Q,Π, π,Σ, e, δ), where A is a finite and non-empty set of agents (also
called players), Q is a finite set of states, Π is a finite set of atomic propositions,
π is a labeling function from each state q ∈ Q to the set of atomic propositions
that hold in q, Σ is a finite set of actions available to the agents, e : A×Q → 2Σ

is a function that gives the (non-empty) set of enabled actions for each combi-
nation of agent and state, and δ : Q × ΣA → Q defines the transitions between
states based on the actions of each agent.

As in other agent-based logics, satisfaction of an RGTL formula is defined in
terms of strategies for sets of agents and the outcomes of those strategies. Var-
ious definitions of strategies have been presented for ATL; for instance, strate-
gies may have no memory, bounded memory, or unbounded memory [5], and
may be deterministic or nondeterministic [17]. In the strategy locale for RGTL,
CGS strategies, we give an extremely general definition of strategies, and re-
quire only the operations needed to define the semantics of strategy-based logics.

Locale Definition 2. Let (A, Q,Π, π,Σ, e, δ) be a CGS.
Let R be the type of state information, which supports the operations

current state(ρ), init(q) (creation of initial state information), and ρ · q (update
with a new state).

A strategy is an object supporting the function � � : A × R → 2Σ such that
for all agents a and state information ρ, �S�(a, ρ) is a non-empty subset of
e(a, current state(ρ)).

Intuitively, �S�(a, ρ) is the set of actions allowed by S for agent a, given knowl-
edge ρ of past states. In a concrete instance, ρ may be a state, finite history,
or infinite history; for example, we can obtain memoryless strategies by taking
R = Q and letting current state(q) = q, init(q) = q, and q · q′ = q′.

Given these axioms, we can define the following constructs on strategies.
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Definition 1. A strategy S is deterministic if for each agent a, either
|�S�(a, ρ)| = 1 for all ρ or else �S�(a, ρ) = e(a, current state(ρ)) for all ρ.

A deterministic strategy is one that either completely determines the actions of
an agent, or else places no restrictions on it. This is the type of strategies used
in the original definition of ATL [2]; in general, RGTL strategies may offer any
number of choices for each agent.

Definition 2. The outcomes out of a strategy S and state information ρ are
defined as out(S, ρ) = {λ. λ0 = current state(ρ) ∧ ∀i. ∃σ. (∀a. σa ∈ �S�(a, ρ ·
λ[1,i])) ∧ λi+1 = δ(λi, σ)}, where σ is a vector of actions, one for each agent.

We write λi for the ith element of the sequence λ, λ[i,j] for the subsequence of λ

starting at the ith element and ending at the jth element (or the empty sequence
when j < i), and ρ · λ for ρ updated with the elements of λ.

An infinite path λ through the underlying CGS is an outcome of a strategy S
given state information ρ if λ starts in the current state current state(ρ) and
there is a way to proceed from each state in λ to the next that is allowed by
S. Note that in the case where S is deterministic and ρ is a single state q, this
corresponds exactly to the original ATL definition of outcomes. As outcomes are
infinite sequences of states, we make use of the theory of infinite lists from the
Archive of Formal Proofs [15] to help us reason about them in Isabelle.

Definition 3. We say that a strategy T is a refinement of a strategy S, written
T ' S, when �T �(a, ρ) ⊆ �S�(a, ρ) for each agent a and state information ρ.

We also refer to a strategy T such that T ' S as a sub-strategy of S. As one might
expect, reducing the nondeterminism of a strategy reduces the set of outcomes;
this result follows directly from the relevant definitions.

Lemma 1. If T ' S, then out(T, ρ) ⊆ out(S, ρ) for any ρ.

As part of the CGS strategies locale, we also assume several methods of de-
riving strategies from existing strategies, forming an implementation-agnostic
algebra of strategies. The first such axiom allows us to derive strategies that
ignore or presume particular state information. This will be of particular use in
showing the relationship between RGTL and ATL (Section 6.3).

Locale Axiom 1. In CGS strategies, for any strategyS and state information ρ,
there is a strategy T such that ∀a λ. �S�(a, ρ ·λ) = �T �(a, init(current state(ρ)) ·λ),
and a strategyR such that ∀a λ. �S�(a, init(current state(ρ)) · λ) = �T �(a, ρ · λ).
Second, we assume that given a potentially nondeterministic strategy with a
range of possible outcomes, we can pick out a sub-strategy that produces any
particular outcome.

Locale Axiom 2. In CGS strategies, for any outcome λ ∈ out(S, ρ), there is
a strategy T such that T ' S and out(T, ρ) = {λ}.
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4.2 Strategies in RGTL

While these definitions are sufficient to allow us to talk about strategies and
satisfaction for ATL and its variants, RGTL requires several additional strategy
operators. We axiomatize these operators in the RGTL semantics locale.

Locale Definition 3. ( is a strategy such that for any agent a and state in-
formation ρ, �(�(a, ρ) = e(a, current state(ρ)).

Given a strategy S for the system and a set of agents A ⊆ A, we define the
restriction of S to A by

�S|A�(a, ρ) = { �S�(a, ρ) a ∈ A
e(a, current state(ρ)) a /∈ A

We can use restriction to talk about strategies for individual agents or groups
of agents, which place no restrictions on the behavior of the rest of the system.
Note that ( has the same semantics as S|∅ for any S.

In order to determine satisfaction of the rely-guarantee operator, we also need
a mechanism for combining multiple strategies.

Locale Definition 4. We say that two strategies S and T are consistent if for
all input we have �S�(a, ρ) ∩ �T �(a, ρ) �= ∅. We define the join of two consistent
strategies, written S � T , by �S � T �(a, ρ) = �S�(a, ρ) ∩ �T �(a, ρ).
In other words, S�T allows only actions that are allowed by both S and T . When
S and T are inconsistent, the output of S � T is ill-defined, since all strategies
must allow at least one action for any input. We take care to ensure that this
case does not arise in the evaluation of the satisfaction of RGTL formulae. We
also assume that the � operator is associative, commutative, idempotent, and
has ( as an identity; in other words, � induces a semilattice on strategies, with
( as the top element.

The � operator can be shown to have the following properties with respect to
refinement:

Lemma 2. If T ' S, then T � S′ ' S � S′ for any S′ consistent with T .

Lemma 3. (S � T )|A ' S|A and (S � T )|A ' T |A for any consistent S and T .

These properties are useful in establishing a framework for component-wise rea-
soning in RGTL (see Section 6).

4.3 RGTL Semantics

The satisfaction of a RGTL state formula is defined with respect to a CGS C, a
strategy S, and state information ρ, as follows:

– C, S, ρ |= true
– C, S, ρ |= p iff p ∈ π(current state(ρ)) where p ∈ Π is an atomic proposition
– C, S, ρ |= ψ1 ∧ ψ2 iff C, S, ρ |= ψ1 and C, S, ρ |= ψ2
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– C, S, ρ |= ¬ψ iff C, S, ρ �|= ψ

– C, S, ρ |= ψ1

A
� ψ2 iff ∀T. T |A ' S|A ∧ (∀R. C, T |A �R|A, ρ |= ψ1) ⇒

C, S � T |A, ρ |= ψ2

– C, S, ρ |= Λϕ iff ∀λ ∈ out(C, S, ρ). C, S, ρ, λ |= ϕ

Of particular note is the semantics of the rely-guarantee arrow, which formally

expresses the core of the rely-guarantee reasoning principle: ψ1

A
�ψ2 holds when,

for any strategy T |A for A that guarantees ψ1 regardless of the behavior of the
rest of the agents (R|A), that strategy combined with the current strategy S
guarantees ψ2. In other words, as long as T |A can be relied on to provide ψ1, S
and T |A together guarantee ψ2.

The satisfaction of a path formula also depends on a future path λ, which in
general is provided by the strategy S through evaluation of the Λ operator.

– C, S, ρ, λ |= ϕ1 ∧ ϕ2 iff C, S, ρ, λ |= ϕ1 and C, S, ρ, λ |= ϕ2

– C, S, ρ, λ |= ¬ϕ iff C, S, ρ, λ �|= ϕ
– C, S, ρ, λ |= �ϕ iff C, S, ρ · λ1, λ[1,∞) |= ϕ
– C, S, ρ, λ |= ϕ1 U ϕ2 iff ∃i. C, S, ρ · λ[1,i], λ[i,∞) |= ϕ2 ∧

∀j < i. C, S, ρ · λ[1,j], λ[j,∞) |= ϕ1

– C, S, ρ, λ |= ψ iff C, S, ρ |= ψ

This satisfaction relation is defined as a primitive recursive function in the
RGTL semantics locale, and forms the basis for all of the following theorems
and proofs.

5 Example: Verifying Rely-Guarantee Properties

Recall the simple light-switch system of Section 2. In this section, we will use
RGTL to formally state and verify the rely-guarantee property described previ-
ously.

We begin by describing the concurrent game structure C that we will use to
model the system. We have two agents, A and B, each in charge of a toggle.
We will model the state of our system with a collection of boolean variables:
light on, which is true when the light is on in the current state; pushedA, which
is true when A’s toggle was pushed in the previous state; and pushedB, which
is true when B’s toggle was pushed in the previous state. Thus, our system has
a total of eight states. Our variables will also act as our atomic propositions:
each holds on a state exactly if it is true in the state. The actions available to
each agent are either to push their toggle, or to do nothing (a τ action). In every
state, both actions are enabled for each agent. Then our transition function can
be described as:

δ(q, (σA, σB)) =

⎧⎨⎩
light on = if σA = σB then light on q else ¬light on q
pushedA = (σA = push)
pushedB = (σB = push)

⎫⎬⎭
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For this example, we will take our state information to be histories, that is,
finite sequences of states already seen. We can take the set of strategies to be
all functions mapping elements of {A,B} and sequences of states to non-empty
subsets of {τ, push}. The strategy ( is the function that assigns to each agent the
full set {τ, push} in each state. The join of two strategies is the component-wise
intersection of the outputs of the strategies. We will show in Section 6.4 that the
axioms of the RGTL semantics locale are satisfied by this model.

Finally, recall the system property we wish to verify: that eventually the light
will always be on. As in LTL, this property may be expressed in RGTL as
Λ♦�light on (where ♦ (“eventually”) and � (“always”) can be defined in terms
of the U operator). As stated earlier, this is not a property that one agent alone
can guarantee. However, if we assume that agent B will eventually stop pushing
their toggle (Λ♦�¬pushedB), then there is a strategy for A to pursue, namely:

S(a, {light on, pushedA, pushedB} =

⎧⎨⎩
{τ} if a = A ∧ light on
{push} if a = A ∧ ¬light on
{τ, push} if a = B

⎫⎬⎭
S is a strategy for A in the sense that S|A = S, that is, S only restricts the
behavior of A.

Using these pieces, we can prove the following for any history ρ:

Lemma 4. C, S, ρ |= (Λ♦�¬pushedB)
B
� (Λ♦�light on).

Proof. By the semantics of RGTL, we can prove this by fixing a strategy T
such that T |B ' SB, assuming that ∀R. C, T |B � R|A, ρ |= Λ♦�¬pushedB, and
showing that C, S �T |B, ρ |= Λ♦�light on. In particular, since S|A = S, we may
assume that C, T |B � S, ρ |= Λ♦�¬pushedB . By the semantics of Λ, this means
that along every outcome λ ∈ out(T |B �S, ρ), there is some point i such that for
any j ≥ i, ¬pushedB λj . Given our labeling, this is true only if σB = τ from point
i onwards, that is, if B only performs τ after point i. Now, either light on λi, or
¬light on λi. In the former case, the action prescribed by S for A is τ , and since
B must also perform τ , the light will remain on indefinitely. In the latter case,
the action prescribed by S for A is push, and since B must perform τ , the light
will go on in the next state. In either case, by the above logic, once the light
is on it will remain on indefinitely, as both agents continue to perform τ . Thus
C, S � T |B, ρ |= Λ♦�light on, and the proof is complete. ��

In this manner, we can use RGTL to state and verify properties on a single agent
given some assumptions on the remainder of the system. In Section 6.2, we will
state a theorem that allows us to compose properties of this form to construct
general specifications for a larger system.

6 Logical Properties of RGTL

Here we present various theorems that facilitate reasoning about specifications
in RGTL, all of which have been formally proved in Isabelle. All theorems are



Using Locales to Define a Rely-Guarantee Temporal Logic 307

proved in the context of the RGTL semantics locale, and so can be generalized
to any interpretation of concurrent game structures, strategies, and strategy
operators.

6.1 Properties of the � Operator

First, we examine the behavior of the rely-guarantee operator
A
� at the extremes,

that is, when A is either the full set of agents A or the empty set.

Lemma 5. C, S, ρ |= ψ1

A
� ψ2 iff C, T, ρ |= ψ1 implies C, T, ρ |= ψ2 for all

T ' S.

In other words,
A
� is a stronger form of implication that holds not only for the

current strategy S but for all sub-strategies of S as well.

Lemma 6. C, S, ρ |= ψ1

∅
� ψ2 iff C, S, ρ |= ψ2 only if C, T, ρ |= ψ1 for all T .

This lemma shows that ψ1

∅
� ψ2 states the rather unintuitive property that ψ2

holds under the current strategy only if ψ1 is true under any strategy, i.e., ψ1

is a constant that holds regardless of strategy. While at first this property may
seem too restrictive to be of use, we can in fact use it to construct several defined
operators that provide general quantification over strategies.

Definition 4. Let exS ψ ≡ (¬ψ)
∅
� false and allS ψ ≡ ¬exS ¬ψ.

Lemma 7. C, S, ρ |= exS ψ iff ∃S′. C, S′, ρ |= ψ.

Lemma 8. C, S, ρ |= allS ψ iff ∀S′. C, S′, ρ |= ψ.

These operations help us bridge the gap between RGTL, in which established
strategies are carried throughout a formula, and ATL, in which strategies are
reselected at each strategy quantifier.

6.2 Reasoning in RGTL

The core of component-wise reasoning in RGTL is the following theorem, modeled
on the rule given by Xu et al. for parallel composition in concurrent programs [16].

Theorem 1. Suppose we have a CGSC, a strategy S, and disjoint sets of agentsA

andB such that C, S|A, ρ |= relyA

A
� guarA and C, S|B , ρ |= relyB

B
� guarB . Fur-

thermore, suppose that for all T ,C, T, ρ |= (relyA ∧ guarA) ⇒ relyB andC, T, ρ |=

(relyB ∧ guarB) ⇒ relyA. Then C, S|A∪B, ρ |= relyA

A∪B
� guarA ∧ guarB.
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Proof. We show that C, S|A∪B , ρ |= relyA

A∪B
� guarA∧guarB by fixing a strategy

T |A∪B for agents not in A ∪ B, assuming that T |A∪B guarantees relyA for any
behavior of A and B, and showing that therefore U = S|A∪B � T |A∪B satisfies
guarA∧guarB. In particular, we may assume that T |A∪B�S|B guarantees relyA.

Then since C, S|A, ρ |= relyA

A
� guarA, we know that S|A � T |A∪B � S|B = U

guarantees guarA.
Similarly, we may assume that T |A∪B guarantees relyA, and thus show that

S|A � T |A∪B guarantees guarA. Using our assumption once more, we have that
S|A � T |A∪B also satisfies relyA, and so satisfies relyB. Then, since C, S|B , ρ |=

relyB

B
� guarB, we can conclude that S|B � S|A � T |A∪B = U satisfies guarB as

well, and the proof is complete. ��

This theorem connects RGTL to the method of rely-guarantee reasoning for
which it is named [10]. The pre- and post-conditions used by Xu et al. are
absent, since RGTL deals with properties on infinite executions rather than
terminating processes, but otherwise the rely-guarantee method of reasoning fits

neatly with the
A
� operator, justifying our intuitive understanding of it as the

“rely-guarantee arrow”.While the language of Xu et al. uses an interleaved model
of concurrency, the CGS model provides true synchronization, so the disjunctive
requirements on the rely- and guarantee-formulae can be replaced with stronger
conjunctive conditions. Using this rule, if we prove that each component of a
system satisfies its specification (its guarantee) given the protection envelope of
the rest of the system, we can then conclude that the combined system satisfies
the combination of each component specification.

6.3 Expressiveness

With the help of the exS operator defined in Section 6.1, we can construct an
embedding of ATL∗ in RGTL. In particular, we can define a syntactic transfor-
mation h from a formula in ATL∗ to an RGTL formula as follows:

– hstate(p) = p where p ∈ Π is an atomic proposition
– hstate(¬ψ)state = ¬hstate(ψ), and hstate(ψ1 ∧ ψ2) = hstate(ψ1) ∧ hstate(ψ2)

– hstate(〈〈A〉〉ϕ) = exS ¬(Λ(hpath (ϕ))
A
� false)

– hstate(¬ϕ)path = ¬hpath(ϕ), and hpath(ϕ1 ∧ ϕ2) = hpath(ϕ1) ∧ hpath(ϕ2)
– hpath(ψ) = hstate(ψ) where ψ is a state formula
– hpath( �ϕ) = �hpath(ϕ)
– hpath(ϕ1 U ϕ2) = hpath(ϕ1) U hpath(ϕ2)

In order to show that this translation preserves the semantics of ATL∗, we first
must address two major disparities between RGTL and ATL. The first is revo-
cability of strategies: while in ATL all strategies are cleared from the context
at each quantification operator, RGTL may in general retain its strategies in-
definitely once chosen. The use of the exS operator allows us to simulate the
revocable behavior of ATL:
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Lemma 9. For any strategy S, C, S, ρ |= hstate(ψ) iff C,(, ρ |= hstate(ψ), and
C, S, ρ, λ |= hpath(ϕ) iff C,(, ρ, λ |= hpath(ϕ).

The second point of disparity is in the treatment of state information. In ATL,
the information available to a strategy begins at the point the strategy is chosen;
while it may build up knowledge of the past over its lifetime, it has no access to
the states visited before reaching the strategy quantifier where it was invoked.
In RGTL, by contrast, a strategy may have available the entire history built up
over the course of evaluation of a formula. This gap is bridged by use of Locale
Axiom 1 from Section 4; given that there exists a strategy that produces certain
outcomes given some state information, we can provide one that produces the
same outcomes given only the current state, and vice versa. (Note that, since the
type of state information is a parameter to the CGS strategies locale, the state
information used may not necessarily be a history; in the case where the type
of state information is instantiated to be simply the current state, the following
lemma is trivial.)

Lemma 10. For any strategy S, C, S, ρ |= hstate(ψ) iff the single-state state
information C, S, init(current state(ρ)) |= hstate(ψ), and C, S, ρ, λ |= hpath(ϕ) iff
C, S, init(current state(ρ)), λ |= hpath(ϕ).

With these two differences reconciled, we can then prove the following theorem.

Theorem 2. For any ATL∗ state formula ψ, path formula ϕ, and state infor-
mation ρ, C, ρ |=ATL ψ if and only if C,(, ρ |=RGTL hstate(ψ), and C, λ |=ATL ϕ
if and only if C,(, init(λ0), λ |=RGTL hpath(ϕ).

Proof. By simultaneous induction on the structure of ψ and ϕ.
While most cases of the translation are straightforward, the translation of the

strategy quantifier 〈〈A〉〉 is of particular interest. To understand the correctness
of the embedding, we must unfold the semantics of our translation for 〈〈A〉〉ψ. By
Lemma 7, exS ¬(Λ(ϕ)

A
� false) is true given state information ρ iff ∃S. C, S, ρ |=

¬(Λ(ϕ)
A
�false). In general, for any formula ψ, we have that C, S, ρ |= ¬(ψ

A
�false)

iff ∃T. T |A ' S|A∧(∀R. T |A�R|A, ρ |= ψ). Choosing S to be equal to T , we then

have that C, S, ρ |= exS ¬(Λ(ϕ)
A
� false) iff ∃T. ∀R. C, T |A �R|A, ρ |= Λ(ϕ), that

is, there is some strategy T for A such that for all strategies R for the remaining
agents, in all outcomes, ϕ holds. This is precisely the definition of the strategy
quantification operator 〈〈A〉〉. ��

Thus, h is a semantics-preserving embedding of ATL∗ in RGTL, and we can
conclude that RGTL is at least as expressive as ATL∗. This proof is completed
in the RGTL semantics locale, and so is independent of implementation details,
and in particular of the type of strategies used. In other words, we have shown
that RGTL is at least as expressive as ATL∗ for all variants of strategies –
whether memory-based, memoryless, deterministic, or nondeterministic – as long
as RGTL and ATL∗ use the same type of strategies.
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As Alur et al. have shown that model-checking for ATL∗ is 2EXPTIME-
complete (for memory-based deterministic strategies), model-checking for RGTL
with these strategies is at least 2EXPTIME-complete. Model-checking for memo-
ryless strategies may be more tractable, since the space of memoryless strategies
is sharply constrained by the size of the CGS; on the other hand, model-checking
for fully nondeterministic strategies is likely to be more complex.

6.4 Concrete Interpretation

Thus far, all our reasoning has taken place inside the RGTL semantics locale,
under the assumption of a type of strategies supporting the various operations
used in the semantics of RGTL. In order to show that these properties hold
for any actual logical system, we must show that there exists an interpretation
of the locale, i.e., a concrete instantiation of the various required types and
sets that satisfies the locale’s axioms. In this section, we present a model of
nondeterministic strategies with unbounded memory, and use it to construct an
interpretation of the RGTL semantics locale.

Definition 5. A nondeterministic strategy with unbounded memory on a CGS
(A, Q,Π, π,Σ, e, δ) is a function S : A × Q+ → 2Σ such that for any agent a
and history ρ, S(a, ρ) ⊆ e(a, last(ρ)) and S(a, ρ) is non-empty.

Using this definition, we can construct an interpretation of RGTL semantics in
two steps. More precisely, we will construct a proof that the CGS locale, ex-
tended with this notion of strategies, is a sublocale of RGTL semantics; that
is, we will provide concrete interpretations for strategies and strategy opera-
tors, but continue to axiomatize the definition of a concurrent game structure.
Since RGTL semantics is built on top of the CGS strategies locale, we begin
by showing that CGS extended with this notion of strategies is a sublocale of
CGS strategies.

Lemma 11. A CGS along with its nondeterministic strategies with unbounded
memory is an instance of CGS strategies.

Proof. To prove this, we must show that the type of state information supports
the operations current state(ρ), init(ρ), and ρ · q, and that the type of strategies
supports the operation �S�. Our type of state information is Q+, the set of finite
non-empty sequences of states in Q, and so we can define current state(ρ) =
last(ρ), init(q) = q, and ρ · q = ρ · q in the sense of concatenation of sequences.
Similarly, our strategies are already functions from A×Q+ to 2Σ that are non-
empty and consistent with e, so we may define � � to be simply the identity
function.

In addition, we must show that the two strategy-creation axioms are sat-
isfied by our interpretation. Given a strategy S with certain behavior on a
sequence ρ, the strategy λa ρ′. S(a, ρ[0,|ρ|−1) · ρ′) produces the same behav-
ior on current state(ρ); similarly, for a given sequence ρ, if S has some behavior
on current state(ρ), the strategy λa ρ′. S(a, ρ′[|ρ|−1,|ρ′|)) has the same behavior
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on ρ. Finally, we must show that for any outcome λ ∈ out(S, ρ), there exists a
sub-strategy T ' S such that out(T, ρ) = {λ}. This is the most complex part
of the proof of interpretation; putting aside the technical details, the intuition
is to provide the strategy that, for each history of the form ρ · λ[1,i], produces a
vector of actions σ such that δ(λi, σ) = λi+1. We know that such a vector exists
at each point i because S has produced λ as an outcome through precisely such
a vector, and so can create a strategy that at each step mirrors the behavior of
S in producing λ. ��

Since our strategy interpretation function is the identity function, it follows
naturally that the strategy operators are given by their axiomatized semantics.

Definition 6. Let ( = λa ρ. e(a, current state(ρ)), S|A = λa ρ. if a ∈ A then
S(a, ρ) else e(a, current state(ρ)), and S � T = λa ρ. S(a, ρ) ∩ T (a, ρ).

Lemma 12. Under these definitions, a CGS with nondeterministic strategies
with unbounded memory is an instance of RGTL semantics.

Proof. We must simply show that each strategy operator satisfies its axioms,
which follows directly from the definitions of the operators. ��

7 Conclusion

In this paper, we have presented the rely-guarantee-based temporal logic RGTL,
and demonstrated its use as a compositional method for verifying properties of
multi-agent concurrent systems. We have shown a semantics-preserving embed-
ding of ATL∗ into RGTL parameterized by the type of strategies used by the
agents, so that we can be assured of the relative expressiveness of RGTL as long
as certain assumptions hold on the type of strategies. We also have presented
an instantiation of the generic type of strategies, and demonstrated that one
common notion of strategy satisfies the necessary assumptions. All theorems
have been formally verified in the Isabelle theorem prover, giving us a strong
assurance of their correctness.

While we believe RGTL has appeal as a logic in its own right, it has also
benefited considerably from the use of Isabelle in its development. By building
RGTL on top of Isabelle’s locale system, we are able to define several variants of
the logic – deterministic, nondeterministic, memoryless, memory-based – with a
single semantic function. The use of locales on the one hand allows us to state
our theorems and write our proofs in their full generality, and on the other hand
forces us to explicitly state our assumptions and demonstrate that they are sat-
isfied by the intended models. The building blocks of our proofs, including the
locales CGS and CGS strategies, may be reused in the Isabelle development of
other strategy-based logics, allowing for strategy-agnostic expressiveness results
such as ours with respect to ATL∗. The strategy operators defined in our locales
may also have uses beyond the semantics of RGTL; for instance, our join opera-
tion � on strategies is related to the † operation used in IATL to update a CGS
with a strategy [1]. Recent research in agent-based formalisms has given rise to
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a plethora of ATL-related logics (see for instance Brihaye et al.’s taxonomy of
ATL variants [5]); we believe that movement towards a general, strategy-agnostic
framework for defining the semantics of these logics will considerably simplify
the process of formally stating, verifying, and comparing them.

The Isabelle development described in this paper can be found online at
https://netfiles.uiuc.edu/mansky1/www.

8 Future Work

While RGTL represents a step forward in expressing properties of multi-agent
systems, there are still various features of real-world programs that are not re-
flected in the logic. For instance, using the ordinary temporal logic connectives
of LTL/CTL/ATL, it is difficult to compare values across states in a path; a
property such as “the value of x always increases” is non-intuitive to state and
prove. The Temporal Logic of Actions (TLA) [11] is a variant of LTL that ad-
dresses this problem by expanding the atomic propositions to relations over pairs
of states (“actions”). Work is in progress to extend RGTL to the setting of ac-
tions, allowing a more concise intuitive description of software- and workflow-like
properties.

One clear area for further work is the problem of incomplete information; in
practice, not every player in a game may have full access to the current state.
There has been extensive work on this problem as it relates to ATL and similar
logics; see for instance the work of Dima et al. [8] Through approaches such as
imposing equivalence classes on histories, thus limiting each player’s knowledge of
the environment, we can more accurately model partial-knowledge scenarios, for
instance parallel programs in which each thread can only access certain variables.

Strategy Logic [7] is a logic related to ATL, with facilities for more general
quantification over strategies. We are currently exploring an extension of strategy
logic with strategy satisfaction and refinement, which we believe to be strictly
more expressive than RGTL. Since strategy logic is known to be decidable, this
may provide a method of proving the decidability of model-checking for RGTL.

While the complexity of model-checking full RGTL is as yet undetermined,
in practice, the full expressiveness of RGTL may not be required. For instance,

note that in the case study, arbitrary nesting of the
A
� operator is not required

to express the protection-envelope properties. If we restrict our language to a
Horn-clause-like fragment of RGTL, in which the rely-guarantee operator is used
in a strictly “positive” manner, the model-checking problem may become more
tractable.

9 Related Work

In previous work by Nieto [13], the original Owicki-Gries method (as refined by
Jones [10]) was formalized in Isabelle/HOL. This approach relies on axiomatic
semantics (Hoare-style reasoning) rather than temporal logic for program veri-
fication, but provides a similar principle of modular reasoning.
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Our notion of strategy satisfaction is similar to and borrows concepts from
the STIT-extension of ATL proposed by Broersen et al. [6]; however, the STIT
extension is restricted to the case of deterministic strategies, and does not address
the subtleties of strategy combination and refinement. We also build on the work
of Yasmeen on varieties of ATL and logics with strategies [17].

Mogavero et al. [12] define a semantics for ATL∗ that, like RGTL, retains
knowledge of the execution complete history ρ rather than only the current
state and future execution. In Mogavero’s “relentful” approach, the temporal
operators are evaluated on the combination of history and future execution, so
that for instance 9ϕ is satisfied if ϕ held sometime in the past. In our semantics,
players may take history into account when making their strategic decisions, but
each temporal formula is still evaluated beginning at the moment its strategy
comes into effect, with the history serving only to increase the range of possible
strategies.

GL (game logic) is a generalization of ATL/ATL∗ proposed by Alur et al.
[2], which allows arbitrary quantification over sets of strategies. In combination
with strategy satisfaction and refinement, this provides a mechanism similar to
(but not equivalent to) the rely-guarantee operator of RGTL. Strategy logic,
mentioned above, can also be seen as an extension of GL with more flexible
strategy quantification.

ATL with Strategy Contexts and Bounded Memory [5] is another step to-
wards greater control over the strategy quantification of ATL, providing several
quantification operators that allow switching between revocable (ATL-style) and
irrevocable (IATL-style) use of strategies. We have not yet determined the ex-
pressiveness of RGTL with respect to ATL∗

sc, which would be an interesting area
for future work.
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Charge!

A Framework for Higher-Order Separation Logic in Coq

Jesper Bengtson, Jonas Braband Jensen, and Lars Birkedal

IT University of Copenhagen

Abstract. We present a comprehensive set of tactics for working with a
shallow embedding of a higher-order separation logic for a subset of Java
in Coq. The tactics make it possible to reason at a level of abstraction
similar to pen-and-paper separation-logic proof outlines. In particular,
the tactics allow the user to reason in the embedded logic rather than
in the concrete model, where the stacks and heaps are exposed. The
development is generic in the choice of heap model, and most of the
development is also independent of the choice of programming language.

1 Introduction

Higher-order separation logic [3] (HOSL) is an extension of separation logic that
allows for quantification over predicates in both the assertion logic (the logic of
pre and postconditions) and the specification logic (the logic of Hoare triples).
Higher-order separation logic has proved useful for modular reasoning about
programs that use shared mutable data structures and data abstraction, via
quantification over resource invariants, and for reasoning about various forms of
higher-order programming (higher-order functions, code pointers, interfaces in
object-oriented programming) [4,10,12,15,8,2].

This paper describes Charge!, a separation-logic verification tool that aims
to (1) prove full functional correctness of Java-like programs using higher-order
separation logic, (2) produce machine-checkable correctness proofs, (3) work as
close as possible to how informal separation logic proofs are carried out on pen
and paper, and (4) automate tedious first-order reasoning where possible.

The first and second goal virtually mandate that we build the tool inside an
existing proof assistant for higher-order logic such as Coq. All other tools with
these properties that we know of [6,16,11,1] have been built this way; building
them from the ground up instead would be a very ambitious undertaking.

To achieve the third goal, it is important that the user has the feeling of rea-
soning in the program logic, rather than in the model of the logic. For separation
logic, this entails reasoning about the linear fragments of the logic, like on paper,
rather than reasoning about concrete machine states, such as the stack or the
heap, and disjointness properties of various heap fragments. In our own earlier
work [2], based on a shallow embedding of higher-order separation logic in the
Coq proof assistant, this goal was achieved and the programs were verified with-
out the user ever seeing an explicit heap or a stack in the proof context. However,
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as the built-in tactics of Coq are not designed to handle the linear fragments of
separation logic, our proofs were long, tedious, and to a large degree focusing
mainly on rewriting the proof state modulo associativity and commutativity of
separating conjunction.

In this article, we improve on that work and present a comprehensive set
of tactics for working with a shallow embedding of a higher-order separation
logic for a subset of Java. The tactics make it possible to reason at a level of
abstraction similar to pen and paper proofs. In particular, the tactics allow the
user to reason in the embedded logic rather than in the concrete model, where
the stacks and heaps are exposed. The use of these tactics significantly reduce
the size of the proofs compared to our earlier development [2].

The remainder of this paper is structured as follows. In Section 2, we discuss
how we deal with program variables in Charge! – how the relation between logical
variables and program variables is made as transparent as possible in a proof
assistant. In Section 3, we present an extended example of how a user can prove
correctness of an implementation of binary search trees using Charge!. Then, in
Section 4 we present the most prominent tactics in our development and discuss
how they affect the goal states in Coq. Sections 5 covers specifics on how the
tactics are implemented and Section 6 touches on how Charge! can be adapted
to new languages. Section 7 covers related work, and Section 8 concludes.

This paper is structured top-down: we only include the definitions that are
required for the exposition and focus on describing what the tactics do before
going into how they do it. The interested reader can find all of the core definitions
of the assertion and specification logics as well as examples on how these are
used to verify object-oriented programs in [2]. Our Coq development can be
downloaded from http://itu.dk/research/charge.

2 Program Variables

A key to approaching pen-and-paper style of reasoning is to handle program
variables naturally. We feel that the variables-as-resource approach [13] is too
unnatural for this purpose. The approach of McCreight [11], while practical,
also looks very different from pen-and-paper proofs. Our philosophy is that a
user must be able to blur the boundaries between logical variables and program
variables, as is often done on paper, in a proof assistant. In this section we discuss
how we make this blurring formal.

It is typical in a richly typed separation logic to distinguish between program
variables, whose values are restricted to the types offered by the programming
language, and logical variables, which can be lists, functions, and other types
offered by the logic. Program variables occurring in triples {P}c{Q} refer to
local (stack) variables in c. For example, the heap-write rule can be written

{x.f ˙ → e} x.f := e′ {x.f ˙ → e′}

Here, x : var is a program variable name, typically a pointer to an object,
e, e′ : expr are programming language expressions, and f : field is a field name.



Charge! 317

The expression x.f ˙ → e reads that the expression e can be found at the memory
address x.f . There are free program variables in these assertions since x is itself
a program variable, and e and e′ may contain program variables.

In pen-and-paper theories of Hoare logic, it is often imagined that the frag-
ment of mathematics required for the proof, such as the theory of lists, is recre-
ated inside the assertion logic in a version where program variables may occur in
assertions. When encoding this in a proof assistant, it is not enough to imagine
it, and actually doing it would be far too much work. We want to reuse existing
theories as they are, and we want to build new theories without being concerned
about program variables before there even is a program.

This includes the theory of heap assertions, which is independent of program
variables [17,11] even though the two are very often defined together and become
inseparable [1,8]. One primitive in this theory is the points-to predicate ( →) :
val → field → val → (heap → Prop)1, where val is the type of data values for
the programming language under consideration. To use the points-to predicate
in pre and postconditions, like we saw in the heap-write rule above, we lift it to
( ˙ →) : expr → open field → expr → open (heap → Prop).

An open T is intuitively a T that may have free program variables:

open T � stack → T stack � var → val expr � open val

In general, the operator liftn will lift constants and functions of type
(T1 → · · · → Tn → U) into (open T1 → · · · → open Tn → open U). Unfolding
the definition of the lifted points-to predicate ( ˙ →) makes the write-rule read

{(lift3 ( →)) (ve x) (lift0 f) e} x.f := e′ {(lift3 ( →)) (ve x) (lift0 f) e′}

where ve is the injection from variable names to expressions. Further unfolding
the definitions of lift3 and ve, the rule reads

{λs. (s x).f  → (e s)} x.f := e′ {λs. (s x).f  → (e′ s)}

Note that this is only an exposition – the user will never see an explicit stack in
the proof context. We see that nothing very deep is involved in this treatment of
program variables, but it offers some very convenient properties. First, it avoids
an explicit mentioning of stacks s. Second, the property of substitutions that
(e1.f ˙ → e2){e/x} = e1{e/x}.f ˙ → e2{e/x} follows from the definition of the lifting
and is independent of the definition of  →. As long as all operators in an assertion
are lifted, substitutions will propagate automatically over the connectives and be
applied when they reach the program variables – Coq does this computationally,
hence it is very fast, and the tactics do not have to reason about any meta-
theoretical properties of substitution.

1 For the sake of exposition, we assume that our heap assertions are of type heap →
Prop. See [2] for the full definition.
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3 Example

To introduce our tactics, we use a library of binary search trees. The specification
and the code in this example are transliterations of the sorted bintree example
that comes with the VeriFast tool [9]. By stepping through a method of the
library command by command, we demonstrate how our tactics modify the goal
of the proof assistant while allowing the user to reason strictly at the level of
the assertion logic – in this section there are no explicit stacks, there are no
explicit heaps, and there are no explicit substitutions. They are all present in
the background, but they are hidden from the user.

The library has methods init(x) for creating a singleton tree, contains(t, x)
for membership query and add(t, x) for adding a single element. We specify the
methods in terms of the representation predicate tree(t, b), which describes the
memory footprint of a tree with root pointer t and contents b, with b : bintree
defined as b � empty | node n b b, where n is an integer. We also create a
predicate indorder of type bintree → Prop that holds if b is a proper search tree,
and a function t cont of type bintree → Z → bool that assumes that b is a search
three and checks for membership of a value in the standard way. We also have a
TreeRec-predicate that describes the footprint of a binary search tree

TreeRec t b �
match b with
| empty ⇒ t = null
| node v bl br ⇒ t.value →v ∗ ∃l. ∃r. t.left  →l ∗ t.right  →r ∗

TreeRec l bl ∗ TreeRec r br
end

where t is a pointer to the heap, and b is of type bintree. The connective ∗ is the
standard separating conjunction where p ∗ q reads that p is true for one part of
the heap, and q is true for another disjoint part of the heap. Finally, we use this
definition to define tree t b � TreeRec t b ∧ inorder b. The library is specified as
follows, where ḟ x1 · · · xn means (liftn f) x1 · · · xn, and C::m( #»x )  → {p} {q}
means that the class C contains a method m, with arguments #»x , that has a
specification with the precondition p and the postcondition q.

Tree spec � ∀b.
Tree::init(x)  → {(̇} { ˙tree ret ( ˙node x ˙empty ˙empty)} ∧
Tree::contains(t, x)  → { ˙tree(t, ḃ)} { ˙tree(t, ḃ) ∧̇ ret =̇ ˙t cont(ḃ, x)} ∧

Tree::add(t, x)  → { ˙tree(t, ḃ) ∧̇ b �= ˙empty ∧̇ ˙t cont(ḃ, x) =̇ ˙false}
{ ˙tree(t, ˙tree add(ḃ, x))}

This is a predicate in our specification logic; for a full disclosure, see [2]. It
lists the methods of a specification as well as their pre and their postconditions.
The program variable ret in the postconditions store the return value of the
method. In this example, we focus on verifying the contains-method. We need
the following lemmas
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TreeRec null � ∀b. (TreeRec null b � TreeRec null b ∧ b = empty)

TreeRec not null � ∀t b. t �= null → (TreeRec t b � TreeRec t b ∧ b �= empty)

Both lemmas follow directly from the definition of TreeRec. The connectives in
the predicates are not lifted. The contains-method is defined as follows.

contains(t, x) =
if t =̇ null then ret := false else
v := t.value; if x =̇ v then ret := true

else if x <̇ v then l := t.left; ret := t.contains(l, x)
else r := t.right; ret := t.contains(r, x)

The operators in the conditional statements are lifted from Coq’s standard li-
brary. To demonstrate how our tactics operate on this method, we step through
the proof one command at a time. After some initial boiler-plate setup, our state
looks as follows. For the exposition, we omit lifting constants such as ḃ.

b : bintree

{ ˙tree t b}if t =̇ null then ret := false else . . .{ ˙tree t b ∧̇ ret =̇ ˙t cont b x}

We denote the postcondition of this triple with P . Using the forward-tactic gen-
erates two sub-goals – one for each branch of the if-statement.

b : bintree
1 {

˙tree t b ∧̇
t =̇ null

}
ret := false{P}

b : bintree
2 {

˙tree t b ∧̇
t ˙�= null

}
v := t.value; . . . {P}

We start by proving subgoal 1. There is only one command, and applying the
forward-tactic provides the following proof obligation.

b : bintree n : Z H : inorder b
TreeRec null b � false = t cont b n

A few things have happened here. First of all, since the only command in the
triple has been evaluated, the user is left with an assertion logic entailment to
prove, the stack has been applied, and all liftings have been evaluated. Secondly,
the program variable x has been replaced with an integer n, representing its
value on the stack. Thirdly, the equivalence t = null has been applied. Finally,
the tree-predicate has been evaluated and its non-spatial components (that do
not depend on the heap) have been placed in the context. To prove the goal, we
must infer that b is empty. The command sl_apply TreeRec_null applies the
lemma TreeRec null using forward-reasoning and places the non-spatial parts of
the consequent in the context.

b : bintree n : Z H : inorder b H1 : b = empty

TreeRec null b � false = t cont b n

The command sl_auto then solves the goal. We now proceed to prove goal 2. We
cannot immediately apply the forward-tactic as the precondition does not assert
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what t.value is on the heap. The command unfold tree; triple_nf unfolds
the tree-predicate and places the non-spatial predicate inorder b in the context.

b : bintree H : inorder b

{ ˙TreeRec t b ∧̇ t ˙�= null}v := t.value; . . .{P}

More precisely, triple_nf places the goal in a normal form; this is discussed in
more detail in sections 4 and 5.3. The command sl_apply TreeRec_not_null

applies the lemma TreeRec not null in a forward-reasoning style to the precondi-
tion of the triple, again moving the non-spatial components of the consequent of
the lemma to the context. Remember that the lemma is defined as an assertion
logic formula, and its connectives are not lifted.

b : bintree H : inorder b H1 : b �= empty

{ ˙TreeRec t b ∧̇ t ˙�= null}v := t.value; . . .{P}

The command destruct b; [congruence| clear H1] does case-analysis on
b. The proof for the case where b is empty is trivial as there is a contradiction in
H1. For the remaining case, H1 is not needed and is cleared from the context.

v : Z b1 : bintree b2 : bintree H : inorder ( ˙node v b1 b2){
˙TreeRec t ( ˙node v b1 b2)

∧̇ t ˙�= null

}
v := t.value;
B

{
˙tree t ( ˙node v b1 b2) ∧̇

ret =̇ ˙t cont ( ˙node v b1 b2) x

}
We denote the postcondition of this triple with P ′, and the rest of the program B.
The forward-tactic can now be applied as reducing TreeRec provides the content
of t.value.

v : Z b1 : bintree b2 : bintree x1 : val x2 : val
H : inorder (node v b1 b2){

t.value ˙ →v ∗̇ t.left ˙ →x1 ∗̇ t.right ˙ →x2 ∗̇ ˙TreeRec x1 b1 ∗̇
˙TreeRec x2 b2 ∧̇ (v =̇ v ∧̇ t ˙�= null)

}
B{P ′}

Here the TreeRec-predicate has been unfolded and its existentially quantified
variables have been extracted to the context. We denote the context of this goal
with C and the spatial component of the precondition with S. The forward-tactic,
following the structure of the code, again splits the conditional into two cases.
For space reasons, we only cover the first case.

C
{S ∧̇ (x =̇ v ∧̇ v =̇ v ∧̇ t ˙�= null)}ret := true{P ′}

Since there is only one command in the triple, applying the forward-tactic leaves
the user to prove the following entailment.

C k : val H2 : k �= null(
k.value �→v ∗ k.left �→x1 ∗ k.right �→x2

∗ TreeRec x1 b1 ∗ TreeRec x2 b2

)
�
(
tree k (node v b1 b2) ∧
true = t cont (node v b1 b2) v

)
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Here, the program variable t is evaluated to k, and x is replaced by v as they are
equivalent. To prove the entailment we must prove that t cont (node v b1 b2) v
holds, which it does by definition. Moreover, to prove that tree k (node v b1 b2)
holds we must prove that inorder (node v b1 b2) holds, which we have from
the context, and that TreeRec k (node v b1 b2) holds, which assuming that we
instantiate the existential quantifiers of TreeRec correctly, is provable directly
from the hypothesis of the entailment. The tactic sl_simpl solves the goal.

The rest of the proof follows the same pattern and is not more complicated.
For the recursive method call, the precondition is proven as a separate assertion
logic entailment, but also that follows the same pattern.

One of the main points of the trace above is to demonstrate what is not there
as much as what is there. There are three notable things that are not in the
trace: there are no visible stacks, there are no visible heaps, and there are no
visible substitutions. They are all present, and they all play important roles, but
they are never exposed to the user.

4 Tactics

For the rest of the paper, we will split assertions into three different categories:
spatial assertions that depend on both the heap and the stack, denoted by t, u,
or v, pure assertions that depend only on the stack, denoted by p, q, or r, and
propositional assertions that depend on neither the heap nor the stack, denoted
by P , Q, or R. We will denote assertions that can be either spatial, pure, or
propositional with a, b, or c. Propositional assertions can be viewed as the stan-
dard Prop-sort in Coq. There are injections from propositional assertions to pure
assertions to spatial assertions, but we leave these implicit in the presentation.

Like most custom-made tactics, we make use of existential variables in Coq.
An existential variable is a variable in Coq’s meta-logic. It has a type, but it has
not yet been assigned a value. It can be thought of as a hole in the proof waiting
to be filled. Existential variables will be preceded by a ? (for instance ?x, ?y, or
?z). A valid proof can have no uninstantiated existential variables.

Tactics are split into two sub-categories – those that operate on the assertion
logic, and those that operate on Hoare-triples. Both types of tactics require, and
enforce, that the goal is in a normal form. Neither the premise of an entailment
nor the precondition of a triple may contain existential quantifiers or proposi-
tional assertions; if they do, they are extracted to the Coq context. Moreover, in
the case of triples, pure and spatial assertions are kept separate. More formally,
the following goals are in normal form

−−−→
H : P

{(t1 ∗ · · · ∗ tn) ∧ (p1 ∧ · · · ∧ pm)}c{a}

−−−→
H : P

t1 ∗ · · · ∗ tn � a

where
−−−→
H : P are the premises (zero or more) in the Coq-context. In both cases,

t1 to tn and p1 to pm are atomic, i.e. they contain no further occurrences of ∗
and ∧ respectively. We say that t1 ∗ · · · ∗ tn is a linear assertion. The reason that
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pure assertions are kept in the precondition for triples and not in entailments is
that pure and propositional assertions are indistinguishable in the assertion logic
– the stack has already been fully applied and all liftings have been computed.
In Section 5.3 we cover how to rewrite a goal to normal form.

4.1 Tactics on the Assertion Logic

All of the tactics for the assertion logic are language and memory-model inde-
pendent. We achieve this by using the notion of separation algebras by Calcagno
et al. [5]. For a full exposition, see [2], but in a nutshell, as long as the user
provides a memory model that satisfies the axioms of separation algebras, all of
the following tactics can be applied.

sl simpl. This tactic attempts to simplify an entailment. All modifications to
the goal are safe in the sense that the tactic will not make a goal unprovable. It
assumes that the goal is in normal form, and given an entailment t � a does the
following simplifications:

– Split a into a spatial component u and a propositional component P . Split
the goal and simplify t � u and t � P independently.

– For each sub-formula of u, step through t to see if it is present there as well.
If so, remove it from both assertions.

– Remove every sub-formula of P that is present in the Coq-context.
– If u contains an existential quantifier, replace it with an existential variable

and rerun the simplification. However, this step rolls back unless the simpli-
fier manages to solve the assertion under the binder completely; an incorrect
guess of the existential variable can otherwise lead to an unprovable goal.

The reason that the goal is split in the first step, and before the spatial com-
ponents are simplified, is that the spatial components are often needed to prove
propositional assertions. If the spatial simplification is done before the split, the
tactic can make the goal unprovable.

The sl simpl tactic is parametric on another tactic that guides the simplifier
when instantiating existential variables. This tactic dictates what safe instan-
tiations are, i.e., which instantiations are allowed even if the entire assertion
under the quantifier cannot be discharged by the tactic. As a default, this tac-
tic is the fail-tactic; it will never succeed, and no instantiation is considered
safe. However, for our Java-fragment, we allow the simplifier to instantiate ex-
istential variables if either they are checked for equality under the binder, or if
they appear in the range of a pointsto-predicate. For instance, the entailment
o.f  →v � ∃x y. o.f  →x ∗ i.g  →w ∧ x = y is simplified to true � i.g  →w even
though the goal is not solved completely.

sl auto. This tactic is a more aggressive version of sl simpl. It unfolds the
definition of the available representation predicates, and simplifies commonly
occurring sub-expressions using rewriting tactics. Finally it runs sl simpl. This
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heuristic can put the goal in an unprovable state, and the tactic will never be
applied automatically by any of the other tactics.

sl apply. Standard tactics in Coq like apply or rewrite do not work in the desired
way when reasoning with entailments. In Section 3, we use lemmas TreeRec null
and TreeRec not null to modify the proof goal, but neither the goal nor the
lemmas are in a form that apply or rewrite can use in the intended way. The
tactic sl apply is designed to allow for forward reasoning in the following manner:

Assume that we have a goal with an entailment in normal form
−−−→
H : P → t � a

and a lemma L that we wish to apply that has the form ∀ #»x . S1
#»x → · · ·Sn

#»x →
(b #»x � c #»x ) where the variables #»x can be of any Coq type. The first step of
the tactic is to replace all universally-quantified variables in L with existential
variables and to split b and c into its spatial and propositional components,
leaving the lemma in the form S1 → · · ·Sn → (u ∧ Q � v ∧ R) where b :� u ∧ Q,
c :� v ∧ R, and all quantifiers #»x have been replaced by existential variables
that are free in u, v, Q, R, and S1 to Sn. The next step is to frame u out of t,
i.e., find a t′ such that t :� u ∗ t′. If this is successful, the tactic will leave the
user to prove the following goals

−−−→
H : P H1 : R

v ∗ t′ � a

−−−→
H : P

t � Q

−−−→
H : P

t � S1
· · ·

−−−→
H : P

t � Sn

where the first goal is the result of the original goal state after the application
of L, and the rest are the proofs of the propositional premises of L. If the tactic
is unable to find t′, it will fail. The existential variables that are introduced in
place of the quantifiers #»x are typically unified by Coq when t′ is obtained or
when Q or S1 to Sn are proven. Uninstantiated variables are left in the goal.
This behaviour is similar to the eapply-tactic in Coq.

4.2 Tactics on Triples

Unlike entailments, the predicates in triples contain program variables. A typical
triple can have the form {t ∗̇ u ∧̇ p}c{b} where ∗̇ and ∧̇ are the lifted versions of
∗ and ∧ respectively, as described in Section 2. One of the more common rules
in separation logic is the rule of consequence, which allows the pre and post-
conditions of a triple to be rewritten. Since triples operate on lifted assertions,
and entailments operate on standard ones, our rule of consequence has a slightly
different form than the standard one.

∀s. (a s � a′ s) {a′}c{b′} ∀s. (b′ s � b s)
RoC{a}c{b}

By applying a stack s to the lifted assertions, we obtain standard assertions.
Even though this rule exposes the stack s, it is only used in intermediate steps
of the tactic and the user will never see an explicit stack.
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sl apply. We extend the sl apply-tactic from Section 4.1 to work on triples as
well as entailments. The general idea is to allow forward-reasoning by rewriting
the precondition of a triple using the rule of consequence and the sl apply-tactic
for entailment. However, the tactics described so far are not sufficient. To demon-
strate, we attempt to rewrite the triple {(a −̇∗ b) ∗̇ a ∗̇ d}c{e} to {b ∗̇ d}c{e} us-
ing a modus ponens rule for −∗ that states that ∀a b. (a −∗ b) ∗ a � b. Remember
that the connectives are not lifted in the lemmas we apply.

???
b s ∗ d s � ?x s −∗–mp

(a s −∗ b s) ∗ a s ∗ d s � ?x s
∀–I

∀s. (((a −̇∗ b) ∗̇ a ∗̇ d) s � ?x s)

...
{?x}c{?y}

Refl.
?y s � e s

∀–I∀s. (?y s) � (e s)
RoC

{(a −̇∗ b) ∗̇ a ∗̇ d}c{e}

Applying the rule of consequence generates the existential variables ?x and ?y for
the pre and the postcondition respectively. Instantiating ?y is straightforward,
and follows immediately by reflexivity of �. Instantiating ?x is more problem-
atic. First, we introduce the stack s; the stack then propagates over the lifted
connectives resulting in assertions with corresponding un-lifted connectives. Coq
does this automatically. We then apply the modus-ponens lemma. To conclude,
we need to unify ?x with b ∗̇ d, in effect reversing the computation that un-lifted
the connectives. This, however, Coq is not able to do automatically – the proof
does go through if the user manually instantiates ?x but for large proofs this
quickly becomes tedious. We require a tactic that will transform the assertion
b s ∗ d s to (b ∗̇ d) s. How we solve this is described in Section 5.2.

forward. The forward-tactic is the work horse tactic of Charge!. Given a triple
{p}c1; · · · ; cn{q} the tactic symbolically executes the command c1, given that its
requisites are met by the precondition p, rewriting p to a new predicate p′. The
user is left to prove either the triple {p′}c2; · · · ; cn{q}, or, if the triple initially
had only one command, the entailment p′ � q. The tactic only works for goals
in normal form.

charge. The charge-tactic is the tactic that gives our framework its name. The
tactic repeatedly applies the forward-tactic until either forward fails or provides
the user with more than one subgoal to prove.

5 Tactic Building Blocks

We have several automatic heuristics that solve frequently occurring sub-goals of
our tactics. The tactics sl simpl and sl apply use a framing tactic that attempts to
find one occurrence of a spatial formula in another and remove that instance; the
sl apply-tactic for triples require a tactic that lifts all connectives of an assertion;
finally, most tactics require that triples and entailments are in normal form,
hence we have a tactic that transforms a goal to normal form. These tactics
work using a combination of hint-databases and reflective tactics.
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5.1 Framing

In order to frame the spatial assertion u out of t, we have to find a t′ such
that t :� t′ ∗ u. This is achieved by rewriting t modulo commutativity and
associativity of ∗. Since we know that t is spatial, we do not have to cover the
cases of there being any pure assertions or occurrences of standard conjunction
in t. The first step is to define a predicate Frame t u t′ � t :� t′ ∗ u that holds
if framing u out of t results in t′. This predicate is then inserted into the proof
wherever framing is required. In the derivation

Frame t u ?x

...
?x ∗ u � a

t � a

an existential variable ?x is introduced, and the job of the framing tactic is to
find a solution for the predicate Frame t u ?x, instantiating ?x in the process.
The following inference rules accomplish this, assuming that t is linear, which
the normal form guarantees.

Frame t true t

Frame u t u′′ Frame u′′ t′ u′

Frame u (t ∗ t′) u′
t = u

Frame (t ∗ t′) u t′

Frame t′ u t′′

Frame (t ∗ t′) u (t ∗ t′′)
t = u

Frame t u true

We add these rules in a left-to-right priority order to a hint database. The Coq
auto-tactic is then used to solve the predicate.

5.2 Lifting Connectives

Coq will reduce any term in the form (ḟ a1 · · · an) s to f (a1 s) · · · (an s), but
as is demonstrated in Section 4.2, we need a tactic to reverse this computation.
Similarly to framing, we have a predicate Lift a b � a = b that in effect is a
wrapper for standard Leibniz-equality. This predicate is then inserted into the
proof derivations where required. For instance, in Section 4.2 we need to lift the
term b s ∗ d s to (b ∗̇ d) s when using the sl apply-tactic in a triple. Inserting
the Lift-predicate in the derivation accomplishes this

Lift (b s ∗ d s) (?x s)

b s ∗ d s �?x s
· · ·

and similarly to the Frame-predicate, the tactics instantiate the existential vari-
able ?x when proving the predicate. We add the following inference rules to a
hint database in order to prove occurrences of the Lift-predicate.

Lift (s x) ((ve x) s)

Lift a1 (x1 s) · · · Lift an (xn s)

Lift (f a1 · · · an) ((ḟ x1 · · · xn) s) Lift a a
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The first rule reverse a variable lookup on the stack; the second lifts any n-ary
function; the final one is the base case that will fire when everything is lifted as
far as possible. In our formalisation, we have one hint for every arity of function.
We also have hints for a few other cases, like un-applied substitutions, quantifiers,
and if-then-else-statements.

5.3 Normal Form

Most tactics require that the goal is in normal form. Recall that the normal form
ensures that, whether the goal is a triple or an entailment, that all existential
variables and propositional assertions in the precondition have been extracted
to the Coq-context. We create a tactic that given an assertion a, obtains a spa-
tial assertion t, a pure assertion p, and a propositional assertion P , such that
a :� ∃ #»x . (t #»x ∧ p #»x ) ∧ P #»x where neither t, p, or P , contain any existential
quantifiers. When such an assertion is in the precondition of an entailment or a
triple, extracting the existentially quantified variables and propositional asser-
tions to the Coq context is straightforward. The tactic that converts an assertion
to normal form is a mix of reflective tactics, and hint-databases.

A Deep Embedding of Assertions. We create a Galina term that represents
an assertion in normal form. The normal form requires that all existentially
quantified variables are at the top level – this means that we must reason about
open terms in order to describe the spatial, pure, and propositional predicates
that appear under the binders. In effect, these assertions will be n-ary functions
where n is the number of free logical variables in the assertion. We parametrise
the deep embedding with a list of types corresponding to the types that have
been existentially quantified so far. That list of types is converted to a tuple and
the n-ary assertions are converted to unary ones that take one member of this
tuple type, rather than a sequence of members of each binding type.

The type exs Ts takes a list of types Ts and returns a tupled version of that
list (exs [] = (), exs [Z, val , bool ] = (Z, (val , (bool , ()))), et c.). An open term
is a tuple of three lists: ts, of type list (exs Ts → (heap → Prop)), and ps and Ps
of type list (exs Ts → Prop). Intuitively, ts is a list of spatial terms separated
by the ∗-operator, and ps and Ps are lists of pure and propositional terms
respectively, separated by the ∧-operator. We will use the notation 〈ts, ps , Ps〉
for such a tuple and give it the type deep asn Ts , where Ts is the list of types
that the components of the tuple are parametrised on. Note that the type of the
lists for pure and propositional assertions are of the same type since we cannot
distinguish between these types of assertions in the assertion logic. Finally, we
create a function [T ]d that given a term d of type deep asn (T :: Ts) closes the
term and returns a term of the type deep asn Ts . Moreover, we will use π1 and π2

to denote projection of the first and the second element out of tuples respectively.
To demonstrate, the deep embedding of the assertion ∃x y. o.f  →x ∗ i.g  →w ∧
x = y is [val ][val ]〈[λt. o.f  →(π1 t), λt. i.g  →w]∗, [], [λt. π1 t = π1(π2 t)]〉
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Transforming an Assertion to Normal Form. The transformation of asser-
tions to normal form is done using hint databases. The first step is to create an
evaluation function eval of type deep asn Ts → exs Ts → (heap → Prop) that
given an open term in normal form and a tuple instantiating the free variables,
returns an equivalent assertion. We will write �d�x for eval d x . Next, we define
the following assertion NF d a x � �d�x :� a x that holds if �d�x evaluates to
a x, given two open assertions, one deeply embedded d and one shallowly embed-
ded a, and a tuple x that instantiates the free variables of d and a. This assertion
is then inserted into proof trees when an assertion needs to be transformed to
normal form. For instance, the following derivation puts the precondition of a
triple in normal form.

NF ?y (a s) ()

a s � �?y�()
Lift (�?y�()) (?x s)�?y�() �?x s

Trans.
a s �?x s ∀–I∀s. (a s �?x s)

...
{?x}c{?y}

Refl.
?z s � b s ∀–I∀s. (?z s � b s)

RoC{a}c{b}

The evaluation order of the predicates is important. Proving the predicate
NF ?y (a s) () instantiates ?y, obtaining an assertion in normal form. Proving
the predicate Lift (�?y�()) (?x s) in turn instantiates ?x and lifts all connectives,
allowing us to prove the triple, but with the precondition in normal form.

The next step is to create the hint-database that proves occurrences of the
NF-predicate. We create two merge functions merge nf sc and merge nf and ,
both of type deep asn Ts → deep asn Ts → deep asn Ts and written with the
infix operators ©∗ and ©∧ respectively. The merger functions and the evaluation
function are designed such that the following inferences hold.

NF da a x NF db b x

NF (da©∗ db) (λy. a y ∗ b y) x

NF da a x NF db b x

NF (da©∧ db) (λy. a y ∧ b y) x

∀y : T. NF d (λz. a (π1 z) (π2 x)) (y, x)

NF ([T ]d) (λz. ∃y : T. a y z) x
NF 〈[t], [], []〉 t x

NF 〈[], [p], []〉 p x NF 〈[], [], [P ]〉 P x

The design of the merging functions is a bit intricate. When merging the terms da
and db, their top level existential quantifiers are traversed and added in sequence
to the resulting term. The difficulty comes when merging the two open terms –
this requires a bit of work, and is left out for space reasons.

Recall that we cannot distinguish between pure and propositional assertions in
the assertion logic, i.e. �〈[], [p], []〉�x :� �〈[], [], [p]〉�x. When turning a proposi-
tional assertion to normal form, the tactics will check if there syntactically exists
a stack in the assertion – if so, it is classified as pure, otherwise as propositional.
It is important that this classification is correct or a pure assertion can end up
in the Coq-context, rather than in the precondition of a triple.
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6 Custom Hoare Triples

The core of Charge! is designed to be language independent – the majority of
the tactics are usable regardless of language or memory model. Once a language
is defined, and all meta-theoretical properties have been proven, adapting the
language to Charge! is relatively straightforward. In this section we demonstrate
how to incorporate a standard read-rule from separation logic into Charge!. In
separation logic, the Hoare-triple for the read rule often has the form

x �= y x /∈ fv e

{y.f  →e}x := y.f{y.f  →e ∧ x = e}
Read

and stores the value of the expression e found at the memory location y.f in the
program variable x. There is also a side condition stating that x must not be a
free variable in e and disjoint from y. This rule provides a minimal footprint of
the read-command, but is often not directly usable as it requires the goal to be
in a very specific form.

In [2] we provided an alternative read-rule that does not require the precon-
dition to be of a certain shape, or impose any freshness conditions on x.

a � y.f  →e

{a}x := y.f{∃v. a{v/x} ∧ x = e{v/x}}
ReadEnt

When this rule is used, we need to prove that y.f  →e can be inferred from a.
This is typically done by framing y.f  →e out of a. The substitutions perform the
alpha-renamings required to enforce the side-conditions of the Read-rule. We
use the tactics from Section 5 to create a new version of the rule that assumes
that the goal is in normal form before it is applied, and ensures that the goal
stays in normal form.

∀s. ∃u v ps . (p s → Frame (a s) ((s y).f  →v) u) ∧
Lift v (e s) ∧ PureBase (λt. (p{π1 t/x}) s) ps ∧�
[val ]〈[(λt. a{π1 t/x} s)]∗,

[(λt. s x = e{π1 t/x} s) :: ps , []〉]

	
()

= ?b s

{a ∧ p}x := y.f{?b}
ReadNF

This rule is a bit intimidating, but solvable by the tactics described so far. When
applied, the quantifiers are introduced and existential variables created for the
existentially quantified variables. We assume that the postcondition of the triple
is an existential variable. If this is not the case, the rule of consequence can be
used to obtain an existential variable for the postcondition. The Frame-predicate
corresponds to the premise of the ReadEnt-rule, and the pure facts p can be
used when proving the predicate. The range of the pointsto-predicate v, which is
instantiated when Frame is proven, is then lifted using the Lift-predicate instan-
tiating the expression e in the process. The predicate PureBase p ps instantiates
ps to the empty list if p reduces to true, and [p] otherwise – this is to avoid clut-
tering up the precondition with true-predicates. The evaluation of the normal
form evaluates to the postcondition of ReadEnt. All of our triple-rules are in
a similar form.
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7 Related Work

Adapting proof assistants to reason in separation logic has been proposed be-
fore. Some of the earliest work is an unpublished article by Appel [1] where he
creates a family of tactics that reasons about a small imperative language. The
core philosophy is the same as ours – the user should be able to reason in the
separation logic, not in its model, and there should never be an explicit stack or
a heap in the proof context.

In later work, McCreight expanded on Appel’s ideas and created a compre-
hensive set of tactics for verifying Cminor programs using separation logic in Coq
[11]. This seminal piece of work drastically cut down proof script sizes, yet their
approach differs from ours. In McCreight’s work, the user will find the heap in the
proof context. Where we have an entailment of the form a ∗ b � c ∗ d, McCreight
unfolds the definition of entailment exposing the heap (a ∗ b) m → (c ∗ d) m,
and the antecedent of the implication is then moved to the Coq context. The
reason this approach works fine is that the definition of ∗ is never unfolded and
even though the heap is exposed, the user never has to reason about sub-heaps
or their disjointness-properties. One of the main motivations of our work was
that we wanted to see whether or not it is possible to retain the simplicity of
McCreight’s tactics while keeping with the overall philosophy of Appel’s ideas
and strictly reason inside the separation logic. We claim that we have achieved
this. One point of comparison is that all three formalisations have verified the
standard in-place list reversal algorithm. In [1], Appel uses 200 lines and 795
words to verify this program by count of wc; McCreight uses 68 lines and less
than 400 words [11]. We use 25 lines and 105 words. These numbers do not
include the definition of the program, just the proofs themselves.

Other work includes the Bedrock framework by Chlipala [6]. Similar to Charge!,
Bedrock strives to automate the tedium of program verification using separation
logic in Coq. The focus on Bedrock lies on low level languages, including support
to work with hardware registers.

Another interactive approach is Holfoot, by Tuerk [16], which verifies Small-
foot specifications inside HOL4. This approach is similar to ours in that the core
of Holfoot also builds on the theories of abstract separation algebras by Calcagno
et al. [5]. Holfoot also has impressive automation results, but to the best of our
knowledge does not handle object-oriented programs or nested triples [14].

Another Coq-framework for separation logic by Dockins et al. is the MSL-
library [7]. It provides extensive meta-theoretical results of separation algebras
of different flavours, however it currently has very few tactics.

One very prominent tool for program verification is VeriFast [9]. VeriFast al-
lows the user to write, specify, and compile C and Java-programs and prove
their correctness. The approach is mostly interactive and, as the name sug-
gests, fast. However, the tool provides no formal proof of program correctness.
The binary tree example presented in Section 3 is taken from the VeriFast
web-site.
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8 Conclusion

We have developed Charge! – a comprehensive framework for verifying the cor-
rectness of Java-like programs using higher-order separation logic in Coq. Our
tactics allow the user to focus on the actual program verification, as opposed to
manually proving all of the tedious and repetitive steps that proofs of full func-
tional program correctness typically require. Moreover, the work-flow is very
close to the style of reasoning used for pen-and-paper proof outlines in sep-
aration logic, allowing users to freely exchange logical variables and program
variables in the assertion logic predicates. Charge! is memory-model indepen-
dent, and the modular design of the tactics makes adding new language features
and commands simple and straightforward.
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Abstract. We present an Isabelle/HOL library with a generic type class
implementation of separation algebra, develop basic separation logic con-
cepts on top of it, and implement generic automated tactic support that
can be used directly for any instantiation of the library. We show that the
library is usable by multiple example instantiations that include struc-
tures such as a heap or virtual memory, and report on our experience
using it in operating systems verification.
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1 Introduction

The aim of this work is to support and significantly reduce the effort for fu-
ture separation logic developments in Isabelle/HOL by factoring out the part of
separation logic that can be treated abstractly once and for all. This includes
developing typical default rule sets for reasoning as well as automated tactic
support for separation logic. We show that both of these can be developed in
the abstract and can be used directly for instantiations.

The library supports users by enforcing a clear axiomatic interface that defines
the basic properties a separation algebra provides as the underlying structure for
separation logic. While these properties may seem obvious for simple underlying
structures like a classical heap, more exotic structures such as virtual memory
or permissions are less straight-forward to establish. The library provides an
incentive to formalise towards this interface, on the one hand forcing the user
to develop an actual separation algebra with actual separation logic behaviour,
and on the other hand rewarding the user by supplying a significant amount of
free infrastructure and reasoning support.

Neither the idea of separation algebra nor its mechanisation is new. Separation
algebra was introduced by Calcagno et al [2] whose development we follow, trans-
forming it only slightly to make it more convenient for mechanised instantiation.
Mechanisations of separation logic in various theorem provers are plentiful, we
have ourselves developed multiple versions [5,6] as have many others. Similarly a
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number of mechanisations of abstract separation algebra exist, e.g. by Tuerk [7]
in HOL4, by Bengtson et al [1] in Coq, or by ourselves in Isabelle/HOL [5].

The existence of so many mechanisations of separation logic is the main
motivation for this work. Large parts of developing a new separation logic in-
stance consist of boilerplate definitions, deriving standard properties, and often
re-invented tactic support. While separation algebra is used to justify the sepa-
ration logic properties of specific developments [5], or to conduct a part of the
development in the abstract before proceeding to the concrete [1,7], the number
of instantiations of these abstract frameworks so far tends to be one. In short,
the library potential of separation algebra has not been exploited yet in a prac-
tically re-usable way. Such lightweight library support with generic interactive
separation logic proof tactics is the contribution of this paper.

A particular feature of the library presented here is that it does not come
with a programming language, state space, or a definition of hoare triples. In-
stead it provides support for instantiating your own language to separation logic.
This is important, because fixing the language, even if it is an abstract generic
language, destroys most of the genericity that separation algebra can achieve.
We have instantiated our framework with multiple different language formalisa-
tions, including both deep and shallow embeddings. The library is available for
download from the Archive of Formal Proofs [4].

In Sec 2 we show the main interface of the separation algebra class in Isabelle/
HOL and describe how it differs from Calcagno et al. Sec 3 describes the generic
tactic support, and Sec 4 describes our experience with example instances.

2 Separation Algebra

This section gives a brief overview of our formulation of abstract separation alge-
bra. The basic idea is simple: capture separation algebra as defined by Calcagno
et al [2] with Isabelle/HOL type class axioms, develop separation logic concepts
in the abstract as far as can be done without defining a programming language,
and instantiate simply using Isabelle’s type class instantiations. This leads to a
lightweight formalisation that carries surprisingly far.

Calcagno et al define separation algebra as a cancellative, partial commutative
monoid (Σ, ·,u). A partial commutative monoid is given by a partial binary oper-
ation where the unity, commutativity and associativity laws hold for the equality
that means both sides are defined and equal, or both are undefined. [2]

For a concrete instance, think of the carrier set as a heap and of the binary
operation as map addition. The definition induces separateness and substate re-
lations, and is then used to define separating conjunction, implication, etc. Since
the cancellative property is needed primarily for completeness and concurrency,
we leave it out at the type class level. If necessary, it could be introduced in a
second class on top. The definition above translates to the following class axioms.

x ⊕ 0 = Some x x ⊕ y = y ⊕ x a ++ b ++ c = (a ++ b) ++ c

where op ⊕::’a ⇒ ’a ⇒ ’a option is the partial binary operator and op ++ ::’a

option ⇒ ’a option ⇒ ’a option is the ⊕ operator lifted to strict partiality
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with None ++ x = None. From this the usual definitions of separation logic can be
developed. However, as to be expected in HOL, partiality makes the ⊕ operator
cumbersome to instantiate; especially the third axiom often leads to numerous
case distinctions. Hence, we make the binary operator total, re-using standard +

as syntax. Totality requires us to put explicit side conditions on the laws above
and to make disjointness ## a parameter of the type class leading to further
axioms. The full definition of separation algebra with a total binary operator is

class sep_algebra = zero + plus +

fixes op ## ::’a ⇒ ’a ⇒ bool

assumes x ## 0 and x ## y =⇒ y ## x and x + 0 = x

assumes x ## y =⇒ x + y = y + x

assumes [[x ## y; y ## z; x ## z ]] =⇒ x + y + z = x + (y + z)

assumes [[x ## y + z; y ## z ]] =⇒ x ## y

assumes [[x ## y + z; y ## z ]] =⇒ x + y ## z

This form is precisely as strong as Calcagno et al’s formulation above in the
sense that either axiom set can be derived from the other. The last two ax-
ioms are encapsulated in the original associativity law. The more intuitive form
x ## y =⇒ x + y ## z = (x ## z ∧ y ## z) is strictly stronger.

While 7 axioms may seem a higher burden than 3, the absence of lifting and
type partiality made them smoother to instantiate in our experience, in essence
guiding the structure of the case distinctions needed in the first formulation.

Based on this type class, the definitions of basic separation logic concepts
are completely standard, as are the properties we can derive for them. Some
definitions are summarised below.

P ∧* Q ≡ λh. ∃ x y. x ## y ∧ h = x + y ∧ P x ∧ Q y

P −→* Q ≡ λh. ∀ h’. h ## h’ ∧ P h’ −→ Q (h + h’)

x  y ≡ ∃ z. x ## z ∧ x + z = y

� ≡ λh. h = 0∧
* Ps ≡ foldl (op ∧*) � Ps

On top of these, we have formalised the standard concepts of pure, intuitionistic,
and precise formulas together with their main properties. We note to Isabelle that
separating conjunction forms a commutative, additive monoid with the empty
heap assertion. This means all library properties proved about this structure
become automatically available, including laws about fold over lists of assertions.

From this development, we can set up standard simplification rule sets, such
as maximising quantifier scopes (which is the more useful direction in separation
logic), that are directly applicable in instances.

The assertions we cannot formalise on this abstract level are maps-to predi-
cates such as the classical p �→ v. These depend on the underlying structure and
can only be done on at least a partial instantiation.

Future work for the abstract development could include a second layer intro-
ducing assumptions on the semantics of the programming language instance. It
then becomes possible to define locality, the frame rule, and (best) local actions
generically for those languages where they make sense, e.g. for deep embeddings.
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3 Automation

This section gives a brief overview of the automated tactics we have introduced
on top of the abstract separation algebra formalisation.

There are three main situations that make interactive mechanical reasoning
about separation logic in HOL frameworks cumbersome. Their root cause is that
the built-in mechanism for managing assumption contexts does not work for the
substructural separation logic and therefore needs to be done manually.

The first situation is the application of simple implications and the removal of
unnecessary context. Consider the goal (P ∧* p �→ v ∧* Q) h =⇒ (Q ∧* P ∧*
p �→ -) h. This should be trivial and automatic, but without further support
requires manual rule applications for commutativity and associativity of ∧* be-
fore the basic implication between p �→ v and p �→ - can be applied. Rewriting
with AC rules alleviates the problem somewhat, but leads to unpleasant side
effects when there are uninstantiated schematic variables in the goal. In a nor-
mal, boolean setting, we would merely have applied the implication as a forward
rule and solved the rest by assumption, having the theorem prover take care of
reordering, unification, and assumption matching.

While in a substructural logic, we cannot expect to always be able to remove
context, at least the order of conjuncts should be irrelevant. We expect to apply
a rule of the form (P ∧* Q) h =⇒ (P’ ∧* Q) h either as a forward, destruction,
or introduction rule where the real implication is between P and P’ and Q tells us
it can be applied in any context. Our tactics sep_frule, sep_drule, and sep_rule

try rotating assumptions and conclusion of the goal respectively until the rule
matches. If P occurs as a top-level separation conjunct in the assumptions, this
will be successful, and the rule is applied. This takes away the tedium of posi-
tional adjustments and gives us basic rule application similar to plain HOL. The
common case of reasoning about heap updates falls into this category. Heap up-
date can be characterised by rules such as (p �→ - ∧* Q) h =⇒ (p �→ v ∧* Q)

(h(p �→ v)) if h is a simple heap map. If we encounter a goal with an updated
heap h(p �→ v) over a potentially large separating conjunction that mentions
the term p �→ v, we can now make progress with a simple sep_rule application.

Note that while the application scenario is instance dependent, the tactic is
not. It simply takes a rule as parameter.

The second situation is reasoning about heap values. Again, consider a simple
heap instantiation of the framework. The rule to apply would be (p �→ v ∧* Q) h

=⇒ the (h p) = v. The idea is similar to above, but this time we extend Isabelle’s
substitution tactic to automatically solve the side condition of the substitution
by rotating conjuncts appropriately after applying the equality. It is important
for this to happen atomically to the user, because the equality will instantiate
the rule only partially in h and p, while the side condition determines the value
v. Again, the tactic is generic, the rule comes from the instantiation.

The third situation is clearing context to focus on the interesting implication
parts of a separation goal after heap update and value reasoning are done. The
idea is to automatically remove all conjuncts that are equal in assumption and
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conclusion as well as solve any trivial implications. The tactic sep_cancel that
achieves this is higher-level than the tactics above, building on the same principles.

Finally, we supply a low-level tactic sep_select n that rotates conjunct n to
the front while leaving the rest, including schematics, untouched.

With these basic tactics in place, higher-level special-purpose tactics can be
developed much more easily in the future. The rule application and substitution
tactics fully support backtracking and chaining with other Isabelle tactics.

One concrete area of future work in automation is porting Kolanski’s machin-
ery for automatically generating mapsto-arrow variants [5], e.g. automatically
lifting an arrow to its weak variant, existential variant, list variant, etc, includ-
ing generating standard syntax and proof rules between them which could then
automatically feed into tools like sep_cancel. Again, the setup would be generic,
but used to generate rules for instances.

4 Instantiations

We have instantiated the library so far to four different languages and variants
of separation logic.

For the first instance, we took an existing example for separation logic that
is part of the Isabelle distribution and ported it to sit on top of the library.
The effort for this was minimal, less than an afternoon for one person, and
unsurprisingly the result was drastically smaller than the original, because all
boilerplate separation logic definitions and syntax declarations could be removed.
The example itself is the classic separation logic benchmark of list reversal in
a simple heap of type nat ⇒ nat option on a language with a VCG, deeply
embedded statements and shallowly embedded expressions.

The original proof went through almost completely unchanged after replacing
names of definitions. We then additionally shrunk the original proof from 24 to
14 lines, applying the tactics described above and transforming the script from
technical details to reasoning about semantic content.

While a nice first indication, this example was clearly a toy problem. A more
serious and complex instance of separation logic is a variant for reasoning about
virtual memory by Kolanski [5]. We have instantiated the library to this variant
as a test case, and generalised the virtual memory logic in the process.

The final two instantiations are taken from the ongoing verification of user-
and kernel-level system initialisation in the seL4 microkernel [3]. Both instan-
tiations are for a shallow embedding using the nondeterministic state monad,
but for two different abstraction levels and state spaces. In the more abstract,
user-level setting, the overall program state contains a heap of type obj_id ⇒
obj option, where obj is a datatype with objects that may themselves contain
a map slot ⇒ cap option as well as further atomic data fields. In this setting
we would like to not just separate parts of the heap, but also separate parts of
the maps within objects, and potentially their fields. The theoretical background
of this is not new, but the technical implementation in the theorem prover is
nontrivial. The clear interface of separation algebra helped one of the authors
with no prior experience in separation logic to instantiate the framework within
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a week, and helped an undergraduate student to prove separation logic specifica-
tions of seL4 kernel functions within the space of two weeks. This is a significant
improvement over previous training times in seL4 proofs.

The second monadic instance is similar in idea to the one above, but techni-
cally more involved, because it works on a lower abstraction level of the kernel,
where in-object maps are not partial, some of the maps are encoded as atomic
fields, and the data types are more involved. To use these with separation logic,
we had to extend the state space by ghost state that encodes the partiality de-
manded by the logic. The instantiation to the framework is complete, and we
can now proceed with the same level of abstraction in assertions as above.

Although shallow embeddings do not directly support the frame rule, we have
found the approach of baking the frame rule into assertions by appending ∧* P to
pre- and post-conditions productive. This decision is independent of the library.

5 Conclusion

We have presented early work on a lightweight Isabelle/HOL library with an
abstract type class for separation algebra and generic support for interactive
separation logic tactics. While we have further concrete ideas for automation
and for more type class layers with deeper support of additional separation logic
concepts, the four nontrivial instantiations with productive proofs on top that
we could produce in a short amount of time show that the concept is promising.

The idea is to provide the basis for rapid prototyping of new separation logic
variants on different languages, be they deep or shallow embeddings, and of new
automated interactive tactics that can be used across a number of instantiations.

Acknowledgements. We thankMatthias Daum for his comments on this paper.
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Directions in ISA Specification

Anthony Fox

Computer Laboratory, University of Cambridge, UK

Abstract. This rough diamond presents a new domain-specific language
(DSL) for producing detailed models of Instruction Set Architectures,
such as ARM and x86. The language’s design and methodology is dis-
cussed and we propose future plans for this work. Feedback is sought
from the wider theorem proving community in helping establish future
directions for this project. A parser and interpreter for the DSL has been
developed in Standard ML, with an ARMv7 model used as a case study.

This paper describes recent work on developing a domain-specific language (DSL)
for Instruction Set Architecture (ISA) specification. Various theorem proving
projects require ISA models; for example, for formalizing microprocessors, oper-
ating systems, compilers and machine code. As such, (often partial) ISA models
exist for a number of architectures (e.g. x86, ARM and PowerPC) in a number of
theorem provers (e.g. ACL2, PVS, HOL-Light, Isabelle/HOL, Coq and HOL4).
These models differ in their presentation style, precise abstraction level (fidelity)
and degrees of completeness. In part this reflects the nature of the projects for
which the models have been originally developed, e.g. compiler verification [4]
and machine code verification [7]. There are also differences based on the expres-
siveness and features of the theorem provers that are used. The ACL2 theorem
prover has been used very successfully in this field for many years, where it
has the advantage of providing very fast model evaluation. Recently, Warren
Hunt has developed an ACL2-based specification of the Y86 processor, which
implements a subset of the x86 architecture; see [3].

The main objective of the DSL is to make the task of modelling ISAs simpler,
more reliable and less tedious. In particular, it should be possible for people who
are not experts in HOL4 to readily read, develop and create ISA specifications
for use in HOL4. Furthermore, it is also hoped that this work will help facilitate
the dissemination of ISA models — enabling various concrete ISA models to be
derived for different settings, tools and use cases.

Although various ISA DSLs currently exist, often these have been developed
for writing compiler backends and binary code analysis tools, e.g. λ-RTL [9] and
TSL [5]. The most closely related work is Lyrebird [1], which was developed as
part of the seL4 project at NICTA. This tool supports fast simulation but it has
not been successfully used in a theorem proving setting. Also of interest is the
RockSalt project [6], which modelled x86 in Coq through the use of embedded
DSLs. The aim of this work is to produce high-fidelity specifications that are
inherently formal and yet prover/tool agnostic. The DSL and generated native
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prover specifications should be acceptable to both the engineering (computer
architecture) and formal methods communities.

1 Language Design and Methodology

The design of the DSL has been influenced by our experiences in specifying the
ARM architecture in HOL4, which is described in [2]. In particular, the DSL has
been developed and tested through the production of a completely new version
of the ARMv7 specification.1 However, it is believed that the DSL is flexible
enough to produce good models of other ISAs, such as the x86 architecture.

Methodology. The requirements for the DSL are based on our current speci-
fication approach, where we define:

– A state space. This represents all of the programmer visible registers, flags
and memory. It may also include components that are not directly visible,
such as static system configuration information (e.g. describing the archi-
tecture version and extension support) as well as any helpful shadow state
components (e.g. the bit width of the current instruction).

– An instruction datatype. This provides an interface between instruction de-
coders and the instruction set semantics.

– A collection of definitions, specifying the semantics of each instruction class.
This provides an operational (next state) semantics for each element of the
instruction datatype.

– A decoder. This maps machine code values to the instruction datatype.
– An encoder (optional). This maps elements of the instruction datatype to

concrete machine code values.
– A top-level next state function. This fetches an instruction from memory,

decodes it and then applies the appropriate semantics definition for that
instruction.

This approach has been implemented directly in HOL4 for the ARM, x86 and
PowerPC architectures. However, there are areas where producing and maintain-
ing ISA specifications in HOL4 is unduly tedious and potentially error prone.

The DSL improves upon native HOL4-based specifications in a few key areas:

– In HOL4 the state space is declared as a type, which means that all state
components must be introduced early on and all in one go. It is also necessary
to manually introduce collections of functions for accessing and updating
state components and sub-components (e.g. named bit-fields).
It is more natural to introduce state components in context, as and when
they are needed. For example, within separate sections for the specification
of machine registers and main memory. In the DSL state components are
treated as global variables that may be declared anywhere at the top-level.

1 The new model actually covers the very latest incarnation of ARMv7, which adds
support for a new “hypervisor” mode.
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– The instruction datatype is also declared as a HOL4 type, which is somewhat
tedious to specify and to maintain.

The instruction datatype can be built incrementally, using the type signa-
tures of the functions that define the instruction semantics.

– Writing a good decoder is particularly challenging in HOL4. This is primarily
because HOL4 does not provide direct support for matching over bit pat-
terns. There is also the challenge of making the decoder evaluate efficiently,
which currently requires some degree of HOL4 expertise.
Matching over bit patterns is built into the DSL. We hope to support efficient
evaluation for the generated HOL4 model.

These and other language features make it much easier to write ISA specifications
in a natural style; making it possible to automatic generate HOL4 specifications
that are otherwise hard or tedious to write manually.

Language Overview. The DSL is a first-order language with a fairly basic
type system.2 The intention is to keep the design of the DSL reasonably simple;
shunning features that are not directly focussed on the ISA domain. This reduces
the effort required to implement the language and it should help simplify the task
of targeting models to different settings. Although the DSL is not particularly
sophisticated, there were no problems in concisely specifying ARMv7.

Types. The primitive types of the language are: unit, bool, string, nat, int,
bitstring and bits(n), where n is either fixed or is constrained to a (possibly
infinite) set of positive integers at the point of a function definition.3 Type
checking is implemented using Hindley-Milner inference, with some additional
light-weight support for bit-vectors. Users can declare type synonyms, records,
enumerations and non-recursive sum types. Constructors for product, map and
set types are provided. For example, the following are valid declarations:

type reg = bits(4) -- type synonym (this is a comment)
type mem = bits(32) → bits(8) -- map

construct SRType -- enumerated type
{ SRType_LSL, SRType_LSR, SRType_ASR, SRType_ROR, SRType_RRX }

construct offset -- sum type
{ register_form :: reg * SRType * nat -- product

immediate_form :: bits(32) }

Syntax and Constructs. The DSL syntactically distinguishes between statements
and expressions. Mutable values can be declared and updated in statements
but not in expressions. There are if-then-else, when-do, match-case and for-do
constructs. Function calls are strictly call-by-value but side-effects are possible,

2 Recursive types, type polymorphism and dependent types are not supported.
3 Floating-point support will be added in the future.
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i.e. the global state can be updated. Exceptions can be declared and called, but
not handled. A wide selection of primitive data operations are provided.

Users can define their own operations but cannot give these symbolic or in-
fix/mixfix syntax. The following declaration defines n-byte word alignment:

bits(N) Align (w::bits(N), n::nat) = return [n * ([w] div n)]

The operation ‘[·]’ is used as a general casting map for primitive types. All types
are inferred above using the function’s arguments, which must be annotated.

Registers. The DSL supports declarations of register types with named bit-fields.
The following declares a type for ARM’s Programme Status Registers:

register PSR :: word
{ 31: N 30: Z

29: C 28: V -- Negative, Zero, Carry, oVerflow flags
27: Q -- Cumulative saturation flag
15-10, 26-25: IT -- If-Then
24: J -- Jazelle bit
23-20: RAZ! -- reserved
19-16: GE -- Greater-equal flags (SIMD)
9: E -- Endian bit (T: Big, F: Little)
8: A -- Asynchronous abort disable
7: I -- Interrupt disable
6: F -- Fast interrupt disable
5: T -- Thumb mode
4-0: M -- Mode field }

This introduces a new type PSR that corresponds with a 32-bit word. The named
bit-field M is a 5-bit word, N is a Boolean flag and the special value RAZ! (read-
as-zero) signifies an anonymous field. The expression CPSR.IT is equivalent to
&CPSR<15:10>: &CPSR<26:25>; where the overloaded operator ‘&’ maps regis-
ters to their bit-vector values, ‘·<·:·>’ is bit-field extraction and ‘:’ is bit-vector
concatenation. In the HOL4 model [2], PSRs are defined using a record type
and encoding/decoding functions are manually defined. It is now relatively easy
to automatically generate these types and functions for each of ARM’s system
registers, saving users time and effort.

State. Global state components are declared as follows:

declare CPSR :: PSR
declare MEM :: bits(32) → bits(8)

These components can be updated with various assignment forms, for example:

CPSR.N ← true; &CPSR<31> ← true; CPST.M ← ’11010’;
&CPSR ← 0x11; &CPSR<31:28> ← ’1101’; CPSR ← PSR(0x11);
MEM(4) ← &CPSR<15:8>
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The dot syntax also applies to conventional record types. Users can define their
own update operations; for example, consider the following declaration:

component NZCV :: bits(4)
{ value = &CPSR<31:28>
assign v = &CPSR<31:28> ← v }

This declaration makes it easy to access and modify the NZCV status flags. The
component construct is particularly useful for declaring operations that access
registers and memory. For example, one can specify:

NZCV ← NZCV && ’0101’;
R(12)<15:0> ← MemU(address, 2);
MemU(address + 2, 2) ← R(12)<31:16>

where the operations R and MemU provide an interface to the general-purpose
registers and memory. Note that the physical register corresponding with the
argument 12 actually depends on the current processor mode, given by CPSR.M;
and memory accesses are affected by the endian bit CPSR.E.

Instruction Specification. The following DSL code specifies the semantics of the
ARM instruction BLX (register):

define Branch > BranchLinkExchangeRegister ( m :: reg ) =
{ target = R(m);

if CurrentInstrSet() == InstrSet_ARM then
{ next_instr_addr = PC - 4;

LR ← next_instr_addr
} else
{ next_instr_addr = PC - 2;

LR ← next_instr_addr<31:1> : ’1’
};
BXWritePC (target)

}

This declaration extends an abstract syntax tree (AST) datatype instruction.
A primitive operation Run :: instruction → unit runs the code associated
with the given AST. The > notation allows instructions to be grouped into a
hierarchy of instruction categories.

Instruction Decoding. A decoder is any function that takes the output of an
instruction fetch and returns values of type instruction. Users are free to de-
fine such functions in any way that they see fit. A natural choice for decoding
ARM instructions is through pattern matching over bit patterns. The ARMv7
decoder is approximately four thousand lines of code (including comments),
with 233 top-level cases. Missing and redundant patterns are reported, which
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is essential in this context. Below is a code snippet relating to the BLX
instruction:

instruction DecodeARM (w::bits(32)) =
match w
{ ...

case ’cond : 00010010 : (111111111111) : 0011 : Rm’ =>
if Take (cond, ArchVersion() >= 5) then
{ when Rm == 15 do DECODE_UNPREDICTABLE (mc, "BLX (register)");

Branch (BranchLinkExchangeRegister (Rm))
} else Skip ()
...

}

Bit patterns are surrounded by apostrophes. Bracketed bit fields are “should-be”
tokens — they match any field of the appropriate length. The bit-widths of vari-
ables can be annotated or given default values: cond and Rm were declared as 4-bit
values. When an op-code is not valid the user function DECODE_UNPREDICTABLE
is called, which raises a suitable exception. The user defined functions Take and
Skip take care of conditional (no-op) and undefined instructions.

2 Directions

At the time of writing the new DSL has a parser and an evaluator/interpreter.
Good progress has been made on exporting to HOL4 — the initial objective is to
generate a first-order functional specification for ARMv7. One of the advantages
of having a custom DSL is that different models can be generated from the same
source. For example, it should be possible to generate deeply embedded models
or monadic specifications similar to those already in HOL4. One key objective is
to generate “evaluation friendly” code, i.e. to support fast evaluation for machine
code verification (see [2]).

The back-end model export should be readily configurable, facilitating transla-
tions into various other settings, such as different theorem provers (ACL2, Coq,
HOL-Light and Isabelle/HOL), high-level languages (e.g. SML and Bluespec)
or OpenTheory.4 This would enable the same model to be used in wide range
of projects, potentially avoiding duplicated effort. In this regard our objective
is similar to that of Lem [8]. A key challenge will be to generate satisfactory
models (meeting the requirements of end-users) under each setting. Our main
priority is to improve our own, well-understood HOL4 workflow. In targeting
other theorem provers, dialogue and collaboration with other end-users will be
essential.

Acknowledgments. Many thanks to Magnus Myreen, Mike Gordon and Peter
Sewell for providing motivation and stimulating discussions.

4 http://www.gilith.com/research/opentheory
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Abstract. Sledgehammer for Isabelle/HOL integrates automatic theorem provers
to discharge interactive proof obligations. This paper considers a tighter inte-
gration of the superposition prover SPASS to increase Sledgehammer’s success
rate. The main enhancements are native support for hard sorts (simple types) in
SPASS, simplification that honors the orientation of Isabelle simp rules, and a pair
of clause-selection strategies targeted at large lemma libraries. The usefulness of
this integration is confirmed by an evaluation on a vast benchmark suite and by a
case study featuring a formalization of language-based security.

1 Introduction

The interactive theorem proving community has traditionally put more emphasis on
trustworthiness, expressiveness, and flexibility than on raw deductive power. Automa-
tion in proof assistants typically takes the form of general-purpose proof methods or
tactics, complemented by decision procedures for specific domains. Recent large-scale
efforts such as the proofs of the four color theorem [16], of a C compiler [23], and of a
microkernel [20] have highlighted the need for more automation [24].

There have been many attempts at harnessing decades of research in automated rea-
soning by integrating automatic theorem provers in proof assistants. The most success-
ful integration is undoubtedly Sledgehammer for Isabelle/HOL (Sects. 2.1 and 2.2). The
tool invokes several first-order automatic provers in parallel, both superposition-based
provers and SMT solvers [5], and reconstructs their proofs in Isabelle. In an evaluation
on a representative corpus of older formalizations, Sledgehammer discharged 43% of
the goals that could not be solved trivially using an existing Isabelle proof method [5].

Sledgehammer’s usefulness is regularly confirmed by users; Guttmann et al. [17]
relied almost exclusively on it to derive over 1000 propositions relating to relational
and algebraic methods for modeling computing systems. Yet, there are many indica-
tions that more can be done. Integrated verification tool chains such as VCC/Boogie/
Z3 [12] claim much higher success rates, typically well above 90%. Isabelle goals are
certainly more diverse than verification conditions for a fixed programming language,
which makes fine-tuning less practicable; however, typical Isabelle goals are not neces-
sarily more difficult than typical verification conditions. Another indicator that Sledge-
hammer can be significantly improved is that it solves only about 80% of the goals that
standard proof methods (such as simp, auto, and blast) solve trivially [5]. This lackluster
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performance points to weaknesses both in Sledgehammer’s translation of higher-order
constructs and in the automatic provers themselves.

What is easy in a proof assistant can be surprisingly difficult for first-order auto-
matic theorem provers. For example, Isabelle’s simplifier can easily prove goals of the
form rev [x1, . . . , xn] = [xn, . . . , x1] (where rev is list reversal) by applying equations as
oriented rewrite rules, or simp rules. The presence of hundreds of registered simp rules
hardly slows it down. In contrast, superposition provers such as E [38], SPASS [44],
and Vampire [34] perform an unconstrained search involving the supplied background
theory. They can use equations as rewrite rules but must often reorient them to obey a
specific term ordering. In exchange, these provers are complete for classical first-order
logic: Given enough resources, they eventually find a (first-order) proof if one exists.

Much work went into making Sledgehammer’s translation from higher-order logic
as efficient as possible [6,27]. However fruitful this research may have been, it appears
to have reached a plateau. To achieve higher success rates, a new approach is called
for: Implement the features that make proof search in Isabelle successful directly in an
automatic prover. By combining the best of both worlds, we target problems that cannot
be solved by either tool on its own.

Our vehicle is SPASS (Sect. 2.3), a widely used prover based on a superposition
calculus (a generalization of resolution). It is among the best performing automatic
provers, and one of the few whose development is primarily driven by applications,
including mission-critical computations in industry. Its source code is freely available
and well-structured enough to form a suitable basis for further development. In the
automated reasoning community, SPASS is well-known for its soft sorts, which can
comfortably accommodate many-sorted, order-sorted, and membership logics, its inte-
grated splitting rule, employing competitive decision procedures for various decidable
first-order fragments, and its sophisticated simplification machinery.

This paper describes the first part of our work program. It focuses on three aspects.

• Hard sorts (Sect. 3): Soft sorts are overly general for most applications. By support-
ing a more restrictive many-sorted logic in SPASS and combining it with monomor-
phization, we get a sound and highly efficient representation of HOL types, without
the spurious unreconstructible proofs that have long plagued Sledgehammer users.

• Configurable simplification (Sect. 4): Superposition provers reorient the equations
in the problem to make the right-hand sides smaller than the left-hand sides with re-
spect to a term ordering. Advisory simplification adjusts the ordering to preserve the
orientation of simp rules as much as possible; mandatory simplification forcefully
achieves rewriting against the term ordering if necessary.

• Clause selection for large theories (Sect. 5): Sledgehammer problems include hun-
dreds of lemmas provided as axioms, sorted by likely relevance. It makes sense for
SPASS to focus on the most likely relevant lemmas, rather than hopelessly try to
saturate the entire background theory.

A case study demonstrates the SPASS integration on a formalization pertaining to
language-based security (Sect. 6), an area that calls for strong automation in combina-
tion with the convenience of a modern proof assistant. The new features are evaluated
both in isolation and against other popular automatic theorem provers (Sect. 7).
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2 Background

2.1 Isabelle/HOL

Isabelle/HOL [30] is a proof assistant based on classical higher-order logic (HOL) ex-
tended with rank-1 polymorphism and axiomatic type classes. The term language con-
sists of simply-typed λ-terms augmented with constants (of scalar or function types)
and polymorphic types. Function application expects no parentheses around the argu-
ments (e.g., f x y); familiar operators are written in infix notation. Functions may be
partially applied (curried), and variables may range over functions. Types can option-
ally be attached to a term using an annotation t : σ to guide type inference.

The dominant general-purpose proof method is the simplifier, which applies equa-
tions as oriented rewrite rules to rewrite the goal. It performs conditional, contextual
rewriting with hooks for customizations based on the vast library of registered simp
rules. At the user level, the simplifier is upstaged by auto, a method that interleaves
simplification with proof search. Other commonly used methods are the tableau prover
(blast) and the arithmetic decision procedures (linarith and presburger).

2.2 Sledgehammer

Sledgehammer [31] harnesses the power of superposition provers and SMT solvers.
Given a conjecture, it heuristically selects a few hundred facts (lemmas, definitions, or
axioms) from Isabelle’s libraries [28], translates them to first-order logic along with the
conjecture, and delegates the proof search to external provers—by default, E [38], Vam-
pire [34], Z3 [29], and of course SPASS [44]. Because automated deduction involves a
large share of heuristic search, the combination of provers is much more effective than
any single one of them. Proof reconstruction relies on the built-in resolution prover
metis [19, 32] and the Z3-based smt proof method [11].

Given that automatic provers are very sensitive to the encoding of problems, the
translation from higher-order logic to unsorted first-order logic used for E, SPASS, and
Vampire is a crucial aspect of Sledgehammer. It involves two steps [27]:

1. Eliminate the higher-order features of the problem. Curried functions are passed
varying numbers of arguments using a deeply embedded application operator, and
λ-abstractions are rewritten to SK combinators or supercombinators (λ-lifting).

2. Encode polymorphic types and type classes. Type information can be encoded in a
number of ways. Traditionally, it has been supplied as explicit type arguments to the
function and predicate symbols corresponding to HOL constants. In conjunction
with Horn clauses representing the type class hierarchy, this suffices to enforce
correct type class reasoning and overload resolution, but not to prevent ill-typed
variable instantiations. Unsound proofs are discarded at reconstruction time.

Example 1. In the recursive specification of map on lists, the variable f : α→ β is
higher-order both in virtue of its function type and because it occurs partially applied:

map f Nil = Nil
map f (Cons x xs) = Cons ( f x) (map f xs)
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Step 1 translates the second equation to

map(F, cons(X, Xs)) = cons(app(F, X), map(F, Xs))

where F : fun(α, β) is a deeply embedded function (or “array”) and app is the embedded
application operator (or “array read”).1 Step 2 introduces type arguments encoded as
terms, with term variables A,B for α, β:

map(A, B, F, cons(A, X, Xs)) = cons(B, app(A, B, F, X), map(A, B, F, Xs))

2.3 SPASS

SPASS (= Spaß = “fun” in German) is an implementation of the superposition calculus
with various refinements, including unique support for soft (monadic) sorts and splitting
[15, 43, 44]. It is a semi-decision procedure for classical first-order logic and a decision
procedure for various first-order logic fragments.

The input is a list of axioms and a conjecture expressed either in the TPTP FOF syn-
tax [40] or in a custom syntax called DFG. SPASS outputs either a proof (a derivation
of the empty, contradictory clause from the axioms and the negated conjecture) or a
saturation (an exhaustive list of all normalized clauses that can be derived); it may also
diverge for unprovable problems with no finite saturation.

Well-founded term orderings are crucial to the success of the superposition calculus.
For example, from the pair of clauses p(a) and ¬p(X) ∨ p(f(X)), resolution will derive
infinitely many facts of the form p(f i(a)), whereas for superposition p(f(X)) is maximal
and no inferences can be performed. Nonetheless, superposition-based reasoning is very
inefficient when combined with order-sorted signatures, because completeness requires
superposition into variables, which dramatically increases the search space. Soft sorts
were designed to remedy this problem: When they are enabled, SPASS views every
monadic predicate as a sort and applies optimized inference and simplification rules
[15]. Monadic predicates can be used to emulate a wide range of type systems.

3 Hard Sorts

After eliminating the higher-order features of a problem, Sledgehammer is left with
first-order formulas in which Isabelle’s polymorphism and axiomatic type classes still
occupy a prominent place. The type argument scheme presented in Section 2.2 is un-
sound, and the traditional sound encodings of polymorphic types introduce too much
clutter to be useful [6, 10, 27]. This state of affairs is unsatisfactory. Even with proof
reconstruction, there are major drawbacks to unsound type encodings.

First, finite exhaustion rules of the form x = c1 ∨·· ·∨ x = cn or (x = c1 =⇒ P) =⇒
··· =⇒ (x = cn =⇒ P) =⇒ P must be left out because they force an upper bound on
the cardinality of the universe, rapidly leading to unsound cardinality reasoning; for
example, automatic provers can easily derive a contradiction from (u : unit) = () and
(0 : nat) �= Suc n if type information is simply omitted. The inability to encode such
rules prevents the discovery of proofs by case analysis on finite types.

1 Following a common convention in the automated reasoning and logic programming com-
munities, we start first-order variable names with an upper-case letter, keeping lower-case for
function and predicate symbols. Nullary functions (constants) are written without parentheses.
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Second, spurious proofs are distracting and sometimes conceal more difficult sound
proofs. Users eventually learn to recognize facts that lead to unsound reasoning and
mark them with a special attribute to remove them from the scope of Sledgehammer’s
relevance filter, but this remains a stumbling block for novices.

Third, it would be desirable to let SPASS itself perform relevance filtering, or even
use a sophisticated system based on machine learning, where successful proofs guide
subsequent ones. However, such approaches tend to quickly detect and exploit contra-
dictions in the large translated axiom set if type information is omitted.

How can we provide SPASS with the necessary type information in a sound, com-
plete, and efficient manner? The original plan was to exploit SPASS’s soft sorts, by
monomorphizing the problem (i.e., heuristically instantiating the type variables with
ground types) and inserting monadic predicates, or guards, pσ(X) to ensure that a given
variable X has type σ. Following this scheme, the nat → int instance of the second
equation in Example 1 would be translated to the unsorted formula

pfun(nat, int)(F) ∧ pnat(X) ∧ plist(nat)(Xs)−→
mapnat, int(F, consnat(X, Xs)) = consint(appnat, int(F, X), mapnat, int(F, Xs))

where subscripts distinguish instances of polymorphic symbols. The guards are dis-
charged by deeply embedded typing rules for the function symbols occurring in the
problem. SPASS views each pσ predicate as a sort.

Monomorphization is necessarily incomplete [9, §2] and often dismissed because it
quickly leads to an explosion in the number of formulas. Nonetheless, with suitable
bounds on the number of monomorphic instances generated, our experience is that it
vastly outperforms complete encodings of polymorphism [6]. It also relieves SPASS of
having to reason about type classes—only the monomorphizer needs to consider them.

The outcome of experiments with SPASS quickly dashed our hopes: Sure enough,
soft sorts were helping SPASS, but the resulting encoding was still no match for the
unsound scheme based on type arguments. Explicit typing requires a particular form
of contextual rewriting to simulate typed rewriting efficiently. The needed mechanisms
are not available in any of today’s first-order theorem provers, not even in SPASS’s
soft typing machinery. For example, consider a constant a of sort σ and an uncon-
ditional equation f(X) = X where X : σ. Sorted rewriting transforms f(a) into a in
one step. In contrast, the soft typing version of the example is a conditional equation
pσ(X)−→ f(X) = X and the typing axiom pσ(a). Rewriting f(a) requires showing pσ(a)
to discharge the condition in the instance pσ(a)−→ f(a) = a.

We came up with a new plan: Provide hard sorts directly in SPASS, orthogonally to
soft sorts. Hard sorts can be checked directly to detect type mismatches early and avoid
ill-sorted inferences. We focused on monomorphic sorts, which require no matching or
unification. The resulting many-sorted first-order logic corresponds to that offered by
the TPTP TFF0 format [42]. Polymorphism is eliminated by monomorphization.2

2 For future work, we want to extend the hard sorts to ML-style polymorphism as provided by
Alt-Ergo [8] and TPTP TFF1 [7]. Besides the expected performance benefits [14], this is a
necessary step toward mirroring Isabelle’s hierarchical theory structure on the SPASS side:
Once theories are known to SPASS, they can be preprocessed (e.g., finitely saturated) and
reused, which would greatly speed up subsequent proof searches.
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Although superposition with hard sorts is well understood, adding sorts to a highly
optimized theorem prover is a tedious task. Predicate and function symbols must be
declared with sort signatures. Variables must carry sorts, and unification must respect
them. The term index that underlies most inference rules must take sort constraints into
consideration; the remaining rules must be adapted individually. There are many other
technical aspects related to variable renaming, skolemization, and of course parsing
and printing of formulas. We made all these changes and found that hard sorts are much
more efficient than their soft cousins, and even than the traditional unsound scheme,
which we so desperately wanted to abolish.

In a fortuitous turn of events, a group of researchers including the first author recently
discovered a lightweight yet sound guard-based encoding as well as many variants [6].
These are now implemented in Sledgehammer. They work well in practice but fall short
of outperforming hard sorts. Moreover, hard sorts are more suitable for applications
that require not only soundness of the overall result but also type-correctness of the
individual inferences, such as step-by-step proof replay [32].

4 Configurable Simplification

The superposition calculus is parameterized by a well-founded total ordering on ground
terms. Like most other provers, SPASS employs the Knuth–Bendix ordering [22], which
itself is determined by a weight function w from symbols to N and a total precedence
order ≺ on function symbols. Weights are lifted to terms by taking the sum of the
weights of the symbols that occur in it, counting duplicates.

Let s = f(s1, . . . , sm) and t = g(t1, . . . , tn) be two terms. The (basic) Knuth–Bendix
ordering (KBO) induced by (w,≺) is the relation ≺ such that s ≺ t if and only if for any
variable occurring in s it has at least as many occurrences in t and a, b, or c is satisfied:

a. w(s) < w(t);
b. w(s) = w(t) and f ≺ g;
c. w(s) = w(t), f = g, and there exists i such that s1 = t1, . . . , si−1 = ti−1, and si ≺ ti.

Assuming w and ≺ meet basic requirements, the corresponding KBO is a well-founded
total order on ground terms that embeds the subterm relation and is stable under substi-
tution, as required by superposition. The main proviso for the application of an equation
l = r to simplify a clause is that l must be larger than r with respect to the given KBO.

By default, SPASS simply assigns a weight of 1 to every symbol and heuristically
selects a precedence order. Then it reviews each equation l = r in the light of the in-
duced KBO to determine whether l = r, r = l, or neither of them can be applied as a
left-to-right rewrite rule to simplify terms. Since the left-hand side of an Isabelle defini-
tion tends to be smaller than the right-hand side, SPASS will often reorient definitions,
making it much more difficult to derive long chains of equational reasoning.

Intuitively, a better strategy would be to select a weight function and a precedence
order that maximize the number of definitions and simp rules that SPASS can use for
simplification with their original orientation. For example, to keep the equation

shift(cons(X, Xs)) = append(Xs, cons(X, nil))
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oriented, SPASS could take w(shift)≥ 3 (or even w(shift) = 2 with append≺ shift) while
setting w(nil) = w(cons) = w(append) = 1; the occurrences of X and Xs on either side
cancel each other out. The weight function normally plays a greater role than the prece-
dence order, but for some equations precedence is needed to break a tie—for example:

append(cons(X, Xs), Ys) = cons(X, append(Xs, Ys))

Our approach for computing a suitable weight function w is to build a dependency
graph, in which edges f ← g indicate that f is simpler than g. The procedure first consid-
ers definitional equations of the form f(s1, . . . , sm) = t, including simple definitions and
equational specifications of recursive functions, and adds edges f ← g for each symbol g
that occurs in s1, . . . , sm, or t, omitting any edge that would complete a cycle (which
may happen if f is recursive through g). In a second step, simp rules are considered in the
same way to further enrich the graph. The cycle-detection mechanism is robust enough
to cope with nondefinitional lemmas such as rev(rev(Xs)) = Xs.

Once the graph is built, the procedure assigns weight 2d+1 to symbols with depth d
and uses a topological order for symbol precedence. For example, given the usual re-
cursive definitions of append (in terms of nil and cons) and rev (in terms of append, nil,
and cons), it computes w(nil) = w(cons) = 1, w(append) = 2, w(rev) = 4, and either
nil ≺ cons ≺ append ≺ rev or cons ≺ nil ≺ append ≺ rev for the precedence. With these
choices of w and ≺, SPASS proves rev [x1, . . . , xn] = [xn, . . . , x1] in no time even for
large values of n (e.g., 50) and in the presence of hundreds of axioms, whereas the other
automatic provers time out.

Regrettably, there are many equations that cannot be oriented in the desired way with
this approach. KBO cannot orient an equation such as

map(F, cons(X, Xs)) = cons(app(F, X), map(F, Xs))

in a left-to-right fashion because of the two occurrences of F on the right-hand side. It
will also fail with

rev(cons(X, Xs)) = append(rev(Xs), cons(X, nil))

because the occurrences of rev and cons on the left-hand side are canceled out by those
on the right-hand side; no matter how heavy we make these, the right-hand side will
weigh even more due to append’s and nil’s contributions.

An especially thorny yet crucial example is the S combinator, defined in HOL as
λx y z. x z (y z). It manifests itself in most problems generated by Sledgehammer to
encode λ-abstractions. In first-order logic, it is specified by the axiom

app(app(app(s, X), Y), Z) = app(app(X, Z), app(Y, Z))

For simplification, the left-to-right orientation is clearly superior, because it eliminates
the combinator whenever the third argument is supplied, emulating β-reduction. Unfor-
tunately, the duplication of Z on the right-hand side makes this orientation incompatible
with KBO; in fact, either orientation is incompatible with the subterm condition and
substitution stability requirements on admissible term orderings.

All is not lost for equations that cannot be ordered in the natural way. It is possi-
ble to extend superposition with controlled simplification against the term ordering. To
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achieve this, we extended SPASS’s input syntax with annotations for both advisory sim-
plifications, which only affect the term ordering, and mandatory simplifications, which
force rewriting against the ordering if necessary.

To avoid infinite looping, the mandatory simplification rules must terminate. Isabelle
ensures that simple definitions have acyclic dependencies and recursive function spec-
ifications are well-founded, so these can safely be made mandatory. Artifacts of the
translation to first-order logic, such as the SK combinators, can also be treated in this
way. We could even trust the Isabelle user and make all simp rules mandatory, but it
is safer to keep the advisory status for these. However, even assuming termination of
mandatory simplifications, our implementation is generally incomplete; to ensure com-
pleteness, we would need to treat such simplifications as a separate inference rule of the
superposition calculus, rather than as a postprocessing step.

Of course, excessive rewriting, especially of the mandatory kind, can give rise to
large terms that hamper abstract reasoning. We encountered a striking example of this
in the innocuous-looking HOL definitions Bit0 k = k+ k and Bit1 k = 1+ k+ k, which
together with Pls and Min (i.e., 0 and −1) encode signed numerals—for example, ‘4’ is
surface syntax for Bit0(Bit0(Bit1(Pls))). Rewriting huge numerals to sums of 1s is ob-
viously detrimental to SPASS’s performance, so we disabled mandatory simplification
for these two definitions.

5 Clause Selection for Large Theories

Superposition provers work by exhaustively deriving all possible (normalized) clauses
from the supplied axioms and the negated conjecture, aiming at deriving the empty
clause. New clauses are produced by applying inference rules on already derived pairs
of clauses. The order in which clauses are selected to generate further inferences is
crucial to a prover’s performance and completeness.

At the heart of SPASS is a set of usable (passive) clauses U and a set of worked-off
(active) clauses W [43]. The set U is initialized with the axioms and negated conjecture,
whereas W starts empty. The prover iteratively performs the following steps:

1. Heuristically select a clause C from U.

2. Perform all possible inferences between C and each member of W ∪ {C} and insert
the resulting clauses into U.

3. Simplify U and W using W ∪ {C} and move C to W .

A popular variant, the set of support (SOS) strategy [45], keeps the search more goal-
oriented by initially moving the axioms into the worked-off set rather than into the
usable set; only the negated conjecture is considered usable. This disables inferences
between axioms, allowing only inferences that directly or indirectly involve the negated
conjecture. SOS is complete for resolution but incomplete for superposition. It often
terminates very fast, with either a proof or an incomplete saturation. A study found it
advantageous for Sledgehammer problems [10, §3].

The heuristic that chooses a usable clause in step 1 is called the clause-selection
strategy. SPASS’s default strategy alternately chooses light clauses (to move toward the
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empty clause) and shallow clauses (to broaden the search) in a fair way. The weight of
a clause is the sum of the weights of its terms (cf. Sect. 4); the depth is the height of its
derivation tree. However, this strategy scales poorly with the number of facts provided
by Sledgehammer; beyond about 150 facts (before monomorphization), additional facts
harm more than they help. To help SPASS cope better with large theories, we experi-
mented with two custom strategies.

The goal-based strategy first chooses the negated conjecture and each axiom in turn
from the usable set; this way, single-inference proofs are found early if they exist (i.e.,
if the conjecture is implied by an axiom). From then on, only clauses employing al-
lowed symbols may be selected. Initially, the set of allowed symbols consists of those
appearing in the conjecture. If no appropriate clause is available, the strategy looks
for inferences that produce such a clause; failing that, the lightest clause is chosen, its
symbols are added to the allowed symbols, and the maximal depth is incremented.

The ranks-based strategy requires each clause to carry a rank indicating its likely
relevance. Like the goal-based strategy, it first selects the negated conjecture and the ax-
ioms. From then on, it always chooses the clause that minimizes the product weight ×
depth × rank. The rank of a derived clause is the minimum of the ranks of its parents.
Conveniently, the facts returned by Sledgehammer’s relevance filter are ordered by syn-
tactic closeness to the goal to prove, a rough measure of relevance. The formula for
assigning ranks interpolates linearly between .25 (for the first fact) and 1 (for the last
fact). We have yet to experiment with other coefficients and interpolation methods.

Having several strategies to choose from may seem a luxury, but in conjunction with
a simple optimization, time slicing, it helps find more proofs, especially if the strate-
gies complement each other well. Automatic provers rarely find proofs after having run
unsuccessfully for a few seconds, so it usually pays off to schedule a sequence of strate-
gies, each with a fraction (or slice) of the total time limit. This idea can be extended to
other aspects of the translation and proof search: the number of facts, type encodings,
and λ-abstraction translation schemes, as well as various prover options.

Sledgehammer implements time slicing for any automatic prover, so that it is run
with its own optimized schedule. We used a greedy algorithm to compute a schedule
for SPASS based on a standard benchmark suite (Judgment Day [10]). The schedule
incorporates both the goal- and the rank-based strategies, sometimes together with SOS.

6 Case Study: Formalization of Language-Based Security

As part of a global trend toward formalized computer science, the interactive theorem
proving community has in recent years become interested in formalizing aspects of
language-based security [37]. The pen-and-paper proofs of security results (typically,
the soundness of a security type system) tend to be rather involved, requiring case anal-
yses on the operational semantics rules and tedious bisimilarity reasoning. Formaliza-
tions of these results remain rare heroic efforts.

To assist such efforts, we are developing a framework to reason uniformly about a
variety of security type systems and syntax-directed quantitative analyses. The central
notion is that of compositional bisimilarity relations, which yield sound type systems that
enforce security properties. The bulk of the development establishes compositionality of
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language constructs (e.g., sequential and parallel composition, ‘while’) with respect to
bisimilarity relations (e.g., strong, weak, 01-bisimilarity) [33].

We rely heavily on Sledgehammer to automate the tedious details. Besides easing the
proof development, automation helps keep the formal proofs in close correspondence
with the original pen-and-paper proof. To illustrate this point, we review a typical proof
of compositionality: sequential composition (;) with respect to strong bisimilarity (≈).
The goal is c1 ≈ d1 ∧ c2 ≈ d2 =⇒ c1;c2 ≈ d1;d2. The proof involves three steps:

1. Define a relation R that witnesses bisimilarity of c1;c2 and d1;d2.
2. Show that R is a bisimulation.
3. Conclude that R ⊆≈ by the definition of ≈ as greatest bisimulation.

Step 1 is the creative part of the argument. Here, the witness is unusually straight-
forward: R = {(c,d). ∃c1 c2 d1 d2. c = c1;c2 ∧ d = d1;d2 ∧ c1 ≈ d1 ∧ c2 ≈ d2}. Steps
2 and 3 are left to the reader in textbook presentations and constitute good candidates for
full automation. Unfortunately, the goal is beyond the reach of Isabelle’s proof methods,
and the translated first-order goals are too difficult for the automatic provers.

For step 2, we must show that if (c,d) ∈ R and s and t are states indistinguishable to
the attacker, written s ∼ t, then any step taken by c in state s is matched by a step taken
by d in state t such that the continuations are again in R and the resulting states are again
indistinguishable. Assume c = c1;c2 and (c, s)→ (c′, s′) represents a step taken by c in
state s with continuation c′ and resulting state s′.

2.1. By rule inversion for the semantics of sequential composition, either
a. c′ has the form c′1;c′2 and (c1, s)→ (c′1, s

′); or
b. (c1, s)→ s′ (i.e., c1 takes in s a terminating step to s′) and c′ = c2.

2.2. Assume case a. From c1 ≈ d1 we obtain d′
1 and t′ such that (d1, t)→ (d′

1, t
′),

c′1 ≈ d′
1, and s′ ∼ t′. (Case b is analogous, with c2 ≈ d2 instead of c1 ≈ d1.)

2.3. By one of the intro rules for the semantics of sequential composition, namely,
(c1, s)→ (c′1, s

′) =⇒ (c1;c2, s)→ (c′1;c2, s′), we obtain (d1;d2, t)→ (d′
1;d2, t′).

Hence, the desired matching step for d = d1;d2 is (d, t)→ (d′
1;d2, t′).

Until recently, we would discharge 2.2 and 2.3 by invoking the simplifier enriched with
the intro rules for the language construct (here, sequential composition) followed by
Sledgehammer. The SPASS integration now allows us to discharge 2.2 and 2.3 without
the need to customize and invoke the simplifier. In addition, if we are ready to wait a
full minute, SPASS can discharge the entire step 2 in a single invocation, replacing the
old cliché “left to the reader” with the more satisfying “left to the machine.”

SPASS also eases reasoning about execution traces, modeled as lazy lists. Isabelle’s
library of lazy list lemmas is nowhere as comprehensive as that of finite lists. Reasoning
about lazy lists can often exploit equations relating finite and lazy list operations via
coercions. For example, under the assumption that the lazy lists xs and ys are finite, the
following equations push the list_of coercion inside terms:

list_of (LCons x xs) = Cons x (list_of xs)
list_of (lappend xs ys) = append (list_of xs) (list_of ys)

The proper orientation of such equations helps discharge many goals for which we
previously needed to engage at a tiresome level of detail.
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7 Evaluation

This section attempts to quantify the enhancements described in Sections 3 to 5, both by
evaluating each new feature in isolation and by letting the new SPASS compete against
other automatic provers. 3 Our benchmarks are partitioned into three sets:

• Judgment Day (JD, 1268 goals) consists of seven theories from the Isabelle distri-
bution and the Archive of Formal Proofs [21] that served as the main benchmark
suite for Sledgehammer over the last two years [5, 6, 10, 31]. It covers areas as di-
verse as the fundamental theorem of algebra, the completeness of a Hoare logic,
and the type soundness of a Java subset.

• Arithmetic Extension of Judgment Day (AX, 616 goals) consists of three Isabelle
theories involving both linear and nonlinear arithmetic that were used in evaluations
of SMT solvers and type encodings [5, 6].

• Language-Based Security (LS, 1042 goals) consists of five Isabelle theories belong-
ing to the development described in Section 6.

Running Sledgehammer on a theory means launching it on the first subgoal at each
position where a proof command appears in the theory’s script.

To test the new SPASS features, we defined a base configuration and test variants
of the configuration where one feature is disabled or replaced by another. Hard sorts,
advisory and mandatory simplification, and goal-based clause selection are all part
of the base configuration. The generated problems include up to 500 facts (700 after
monomorphization). For each problem, SPASS is given 60 seconds of one thread on
64-bit Linux systems equipped with two Quad-Core Intel Xeon processors running at
2.4 GHz. We are interested in proof search alone, excluding proof reconstruction.

When analyzing enhancements to automatic provers, it is important to remember
what difference a modest-looking gain of a few percentage points can make to users.
The benchmarks were chosen to be representative of typical Isabelle goals and include
many that are either too easy or too hard to effectively evaluate automatic provers.
Indeed, some of the most essential tools in Isabelle, such the arithmetic decision pro-
cedures, score well below 10% when applied indiscriminately to the entire Judgment
Day suite. Furthermore, SPASS has been fine-tuned over nearly two decades; it would
be naive to expect enormous gains from isolated enhancements.

With this caveat in mind, let us review Fig. 1. It considers six representations of
types: three polymorphic and three monomorphic. Guards and tags are two traditional
encodings. “Type arguments” was until recently the default in Sledgehammer; its actual
success rate after reconstruction is lower than indicated, because some of the proofs
found with it are unsound. “Light guards” is the new lightweight guard-based encoding.
Many other encodings are implemented; in terms of performance, they are sandwiched
between polymorphic guards and monomorphic light guards [6]. The results are fairly
consistent across benchmark sets and confirm that hard sorts are superior to any encod-
ing. The better translation schemes are also noticeably faster: Proofs with hard sorts
require 3.0 seconds on average, compared with 5.0 for monomorphic guards.

3 The test data set is available at http://www21.in.tum.de/˜blanchet/
itp2012-data.tgz

http://www21.in.tum.de/~blanchet/itp2012-data.tgz
http://www21.in.tum.de/~blanchet/itp2012-data.tgz
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* unsound JD AX LS All

Guards 28.7 17.9 29.7 25.6
Tags 37.3 23.8 39.1 33.5
Type args.* 46.9 30.8 51.6 42.6

(a) Polymorphic

JD AX LS All

Guards 40.7 29.8 46.1 37.9
Light guards 50.5 33.5 50.0 45.6
Hard sorts 52.0 34.1 50.8 46.7

(b) Monomorphic

Fig. 1. Success rates (%) for the main type encodings

JD AX LS All

Advisory +2.7 −2.9 +0.4 +0.9
Mandatory +3.2 −1.4 +1.5 +1.8
Both +3.8 −1.9 +1.9 +2.2

(a) Simplification

JD AX LS All

SOS +9.9 −10.4 −4.2 +1.1
Goal-based +15.3 +2.0 −1.5 +6.5
Rank-based +17.6 +6.9 +9.2 +12.6

(b) Clause selection

Fig. 2. Improvements (%) over the default setup for each proof heuristic

Fig. 2(a) presents the impact of advisory and mandatory simplification as a percent-
age improvement over a configuration with both features disabled. The overall gain is
2.2% (i.e., SPASS solves 102.2 goals with both mechanisms enabled whenever it would
solve 100 goals without them). Fig. 2(b) compares three clause selection strategies with
SPASS’s default strategy. Our custom goal- and rank-based strategies are considerably
more successful than the traditional SOS approach.

Fig. 3 shows how the main clause-selection strategies scale when passed more facts,
compared with the default setting. Both custom strategies degrade much less sharply
than the default. The goal-based strategy scales the best, with a peak at 800 facts com-
pared with 150 for the default strategy and 400 for the rank-based strategy. There is
potential for improvement: With rank annotations, it should be possible to design a
strategy that actually improves with the number of facts. As a thought experiment, a
variant of the goal-based strategy that simply ignores all facts beyond the 800th would
flatly outclass every strategy on Fig. 3 when given, say, 900 or 1000 facts.

Finally, we measure the new version of SPASS against the latest versions of E (1.4),
SPASS (3.7), Vampire (1.8 rev. 1435), and Z3 (3.2). Vampire and Z3 support hard sorts,
and Z3 implements arithmetic decision procedures. This evaluation was conducted on
the same hardware as the original Judgment Day study: 32-bit Linux systems with a
Dual-Core Intel Xeon processor running at 3.06 GHz. The time limit is 60 seconds for
proof search, potentially followed by minimization and reconstruction.

Fig. 4(a) gives the success rate for each prover on each benchmark set. Overall,
SPASS now solves 13% more goals than before, or 6.1 percentage points; this is enough
to make it the single most useful automatic prover. About 45% of the goals from the
chosen Isabelle theories are “trivial” in the sense that they can be solved directly by
standard proof methods invoked with no arguments. If we ignore these and focus on the
more interesting 1625 nontrivial goals, SPASS’s improvements are even more signifi-
cant: It solves 21% more goals than before (corresponding to 6.5 percentage points) and
10% more than the closest competitor (3.3 percentage points), as shown in Fig. 4(b).
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Fig. 3. Scalability of each clause-selection strategy

JD AX LS All

New SPASS 56.2 38.3 60.4 53.9
Z3 53.5 40.4 57.6 52.2
Vampire 54.2 35.2 57.9 51.5
E 53.0 39.0 56.1 51.2
Old SPASS 50.0 31.8 54.6 47.8

Together 63.6 51.3 67.8 62.5

(a) All goals

JD AX LS All

New SPASS 41.4 23.7 41.3 37.4
Z3 38.6 21.3 36.7 34.1
Vampire 38.7 19.9 37.4 34.0
E 37.0 22.4 38.2 34.0
Old SPASS 34.2 19.7 34.2 30.9

Together 49.3 32.6 46.6 44.7

(b) Nontrivial goals

Fig. 4. Success rates (%) with proof reconstruction for selected provers

Two years ago, the combination of (older versions of) E, SPASS, and Vampire run-
ning in parallel for 120 seconds solved 48% of Judgment Day [10]. Largely thanks to
the developments presented in this paper, SPASS alone now solves 56% of the bench-
mark suite in half of the time, on the very same hardware.

8 Related Work

The most notable integrations of automatic provers in proof assistants, either as oracles
or with proof reconstruction, are probably Otter in ACL2 [25]; Bliksem and veriT in
Coq [2, 4]; Gandalf in HOL98 [18]; Z3 in HOL4 [11]; CVC Lite in HOL Light [26];
Vampire in Mizar [35]; Bliksem, EQP, LEO, Otter, PROTEIN, SPASS, TPS, and Wald-
meister in ΩMEGA [39]; and Yices in PVS [36]. Of these, only LEO and Yices appear
to have been significantly tailored to their host system. For program verification, Z3 in
Boogie [3] and Alt-Ergo in Why3 [8] are examples of integrated proof environments.

Much of the developments currently taking place in first-order automatic theorem
provers focus on solving particular classes of problems. This includes, for example, the
automatic generation of inductive invariants for some theory or the efficient decision of
large ontologies belonging to some decidable first-order fragment. From this point of
view, our work on tailoring SPASS toward a better combination with Isabelle is the first
dedicated contribution of its kind.
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9 Conclusion

This paper described a tight, dedicated integration of Isabelle and SPASS. The heart
of the approach is to communicate in a rich format that augments classical first-order
logic with annotations for sorts, simplification rules, and fact relevance, and to let that
information guide the proof search. The new version of SPASS outperforms E, Vampire,
and Z3 on our extensive benchmark suites, and it is already helping us fill in the tedious
details in language-based security proofs.

There is much room for future work, notably to support polymorphism and to extend
the configurable simplification mechanisms to inductive and coinductive predicates and
their intro and elim rules. It would also be desirable to polish and exploit SPASS’s hier-
archical support for linear and nonlinear arithmetic [1,13] and accommodate additional
theories, such as algebraic datatypes, that are ubiquitous in formal proof developments.
Finally, a promising avenue of work that could help derive deeper proofs within the
short time allotted by Sledgehammer would be to have SPASS cache inferences across
invocations, instead of re-deriving the same consequences from the same background
theories over and over again.

We hope this research will serve as a blueprint for others to tailor their provers for
proof assistants. Interactive theorem proving provides at least as many challenges as
the annual competitions that are so popular in the automated reasoning community.
Granted, there are no trophies or prizes attached to these challenges (a notable exception
being the ISA category at CASC-23 [41]), but the satisfaction of assisting formalization
efforts should be its own reward.
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Abstract. This paper describes the language of patterns that equips
the SSReflect proof shell extension for the Coq system. Patterns are
used to focus proof commands on subexpressions of the conjecture under
analysis in a declarative manner. They are designed to ease the writing
of proof scripts and to increase their readability and maintainability.

A pattern can identify the subexpression of interest approximating
the subexpression itself, or its enclosing context or both. The user is free
to choose the most convenient option.
Patterns are matched following an extremely precise and predictable dis-
cipline, that is carefully designed to admit an efficient implementation.

In this paper we report on the language of patterns, its matching algo-
rithm and its usage in the formal library developed by the Mathematical
Components team to support the verification of the Odd Order Theorem.

1 Introduction

In the design of proof languages many aspects have to be considered. Among
them, the one that interests us the most is efficiency, both in writing proof scripts
and in fixing them when they break.

Efficiency in writing and maintaining scripts is a crucial aspect for a language
to be successfully adopted in a large development like the Mathematical Compo-
nents library. That library comprises more than ten thousands lemmas, spread
over one hundred files totalling over 113 thousand lines of code. For this devel-
opment the SSReflect proof language was chosen, after its successful use in
the formalization of the Four Color Theorem [10].

SSReflect is an extensionof theCoq system, and inherits someof its strengths
andweaknesses.The higher order logic ofCoq allows to use computation as a form
of proof and to enforce many invariants through its rich type system. These fea-
tures were key ingredients in the formalization of Four Color Theorem, as well as
in the development of many decision procedures [6,11], in interfacingCoqwith ex-
ternal tools [18,2] and in organizing mathematical theories into higher-level pack-
ages [8,16]. The down side of this sophistication is that all basic operations, such as

� The research leading to these results has received funding from the European Union’s
7th Framework Programme under grant agreement nr. 243847 (ForMath).

L. Beringer and A. Felty (Eds.): ITP 2012, LNCS 7406, pp. 361–376, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



362 G. Gonthier and E. Tassi

term comparison or term matching, have to take computation into account, thus
becoming harder to predict due to the additional complexity.

SSReflect achieves efficiency in writing proof scripts giving the user a very
precise and predictable language to assemble together carefully stated lemmas.
The language is designed to be compact and compositional, with very few basic
building blocks. Among them rewriting plays a special role and is indeed the
most often used proof command. We describe how we improved its expressiveness
while retaining, and in some circumstances even improving, its predictability.

To achieve efficiency in maintaining scripts the language constructs are
equipped with a precise semantics that forces failures to happen early and locally.
This is supplemented by support for script readability. SSReflect encourages
to mix declarative steps, which assert intermediate results, and procedural state-
ments that prove them. Declared statements are check points from which the
user is likely to start replaying a broken proof, and the closer the failure is to
one of these check points the easier is the fix. In this paper we describe how the
rewrite command was made more declarative and less ambiguous.

Rewriting in particular, but also any other command that deals with subex-
pressions of the current conjecture, can in fact be rather ambiguous. Similar
subexpressions are quite common in large conjectures and rewrite rules usually
admit several different instantiations, each of which may occur multiple times.
The two sources of ambiguity are thus: 1) the instantiation of the rewriting rule
arguments to obtain a completely specified expression; 2) the selection of the
occurrences of this expression to be affected. The standard approach to cope
with the first source of ambiguity is to manually instantiate the rewriting rule.
This approach requires the user to remember the nature and the order or names
of the arguments of any rule, and thus hardly scales to a library with thousands
of rewriting rules. Occurrences are usually selected by numbers. As we will show,
this turns out to be rather inconvenient for script maintenance.

In this paper we describe the different approach adopted in the SSReflect
proof language. The user is given a language of patterns to express in a concise
and precise way which subterms of the current conjecture are affected by proof
commands like rewrite.

The SSReflect Coq extension version 1.3pl2 for Coq 8.3 is available for
download at the Mathematical Components web site[1]. The reader is not re-
quired to be acquainted with the specific logic of Coq or the proof language of
SSReflect, but may find the reference manuals of the two tools [13,9] helpful.

In Section 2 we describe the language of patterns and give some examples on
their intended use. Section 3 details the term matching algorithm. Section 4 com-
pares our approach with the ones adopted in Coq, Matita and Isabelle/Isar.

2 A Language of Patterns

Most lines in a SSReflect proof script are procedural: they modify the current
conjecture without explicitly stating the expected result. The rewrite com-
mand, whose argument is a list of rules, is a perfect example of this: instead of
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displaying a list of conjectures and expecting the system (and reader) to guess
how to change one line into the next, the user quotes explicitly the rules names
that justify the changes, and lets Coq do them sequentially. As Coq can usually
reliably figure out how to apply each rule, this avoids a repetition of the parts of
the conjecture that are not concerned by each change, and this is good for both
writing and maintaining.

For example, consider these inequalities taken from Theorem 14.7 [4], that is
the main result of the Local Analysis part of the Odd Order Theorem:

g ≤
(
1 +

n

z
−

∑
Mi∈MX

(kMi)
−1 +

∑
Mi∈MX

((kMi)
−1 − (2z)−1)

)
· g

g ≤
(
1 +

n

z
−

∑
Mi∈MX

(kMi)
−1 +

∑
Mi∈MX

(kMi)
−1 + (−(2z)−1 · |MX |)

)
· g

Rather than spelling out the second term above, we explicitly describe how to
turn the fist inequality into the second one: the rightmost summation is split
into two simpler ones using big_split; then the resulting summation of con-
stant terms

∑
Mi∈MX(−(2z)−1) is solved with sumr_const. This manipulation

is expressed by the following command:

rewrite big_split sumr_const.

This is clearer and much more concise than the complex term it yields; indeed,
in the actual proof we add more rules to carry out further simplifications.

However, sometimes guidance is needed, and we claim that it is best provided
declaratively, using a little pattern language. Patterns are declarative in the sense
that the user writes (an approximation of) the subterm that should be affected by
a proof command. We will however assign a precise procedural interpretation to
the pattern language in order to preserve the predictability of proof commands. It
is also worth mentioning that the subterm a proof command may be focused on is
often much smaller than the whole conjecture, and can usually be approximated
by an even smaller pattern. So compactness is also retained.

We now give an informal presentation of patterns by some examples. We show
how ambiguities in the execution of the rewrite proof command can be avoided
thanks to a pattern and why the solution we propose is superior to existing ones.

Example 1 (Simple pattern)
This example lies in the context of the algebraic hierarchy [8] of the SSRe-

flect library, where the infix notation for subtraction is a short hand for the
addition of the opposite.

Infix "a - b" = (a + -b).

Lemma addrC x y : x + y = y + x.

Lemma addNKr x y : x + (- x + y) = y.

Lemma example : a + (b * c - a) + a = b * c + a.
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The idea in the proof that will follow is to cancel the leftmost a with its op-
posite -a, thanks to addNKr. To rewrite with that lemma a preliminary step to
move -a closer to a is needed: commutativity of addition must be used on the
correct subexpression. Unluckily there are many occurrences of the addition op-
eration. If no extra information is provided, the left hand side of the rule is the
very ambiguous pattern (_ + _), where _ denotes a wild card. Its first instance
encountered in pre-visit order is (a + (b * c - a) + a) that is not not the
desired one, so additional information to disambiguate the rule is really needed.

To cope with this first form of ambiguity, instantiation, we have to specify
the values of the quantified variables x and y to addrC. The standard approach
adopted in many procedural proof languages, like the Coq’s standard one, is to
instantiate these variables manually, as in one of the following commands:

rewrite (addrC (b * c) (-a)) rewrite (addrC (x := b * c))

Both the previous commands turn the conjecture in the following one. From now
on we will use a wave to underline the effect of a proof command.

a +
��
(-

�
a
��
+
����
b

��
*

��
c

�
) + a = b * c + a

In the first case x and y are passed as arguments to the lemma by position.
The left hand side of the rule becomes (b * c - a). This expression has just
one instance in the conjecture, thus the second kind of ambiguity, occurrence
selection, does not occur. The second command passes the argument for x by
name and leaves y undefined. The left hand side of the rule is thus a pattern
(b * c + _) where _ is a wild card. The system looks for an instance of that
pattern in a prefix traversal of the conjecture, again finding the correct instance.

As anticipated in the introduction the main problem of this approach is that
the user has to remember the order in which the variables of a rewrite rule
are abstracted, or their names. What looks easy for the simple common lemma
addrC quickly becomes an issue in the context of a large formalization like the
one for the Odd Order Theorem, comprising over ten thousands lemmas.

The approach we propose is not only solving this usability issue but is also
more compact, as shown in the following snippet.

rewrite [_ - a]addrC

The square brackets prefixing the rewrite rule addrC delimit the pattern (_ - a).
The pattern has a single, non ambiguous instance in the conjecture, namely
(b * c - a). Prefixing the rewriting rule name with a pattern the user substi-
tutes the inferred pattern with a more specific one, better approximating the
instance on which she wants to focus the proof command. ��

A good interface design is most crucial to the usability of a theory library, and
achieving one often requires several rounds of incremental refinement. When a
potential improvement is identified, the statement of many lemmas is changed
accordingly and their proofs are likely to break and thus require time consum-
ing maintenance work. The general approach of the SSReflect language to
lowering the cost of these refactoring activities is to detect failures as early as
possible.
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Example 2 (Proof script breakage). The lemma of the previous statement could
be replaced (on purpose or by accident) by the following one:

a + (b * c
�
+

��
a) + a = b * c + a.

The user provided pattern [_ - a] seen before has no instance in this conjecture
thus failure is immediately detected. On the contrary the command where x is
instantiated by name with (b * c) would continue to produce an output, even
if a different one. In that case the pattern (b * c + _) does have an instance
occurring twice in the conjecture, namely (b * c + a). Instead of signalling an
error, the system changes the conjecture into the following one.

a +
�
(
�
a
��
+
���
b
���
*

��
c

�
) + a =

�
a
��
+
��
b
��
*
���
c.

Failure will then happen at a later stage, with a conjecture that is very different
from the one the author of the original proof script was seeing. Moreover the
original intention of the user to move (-a) to the left can be recognized in the
pattern [_ - a] but not in the instantiation (addrC (x := b * c)). ��
As mentioned in the introduction the logic of Coq identifies terms up to con-
version, i.e., unfolding of definitions and recursive functions computation. To
develop a large library in a convenient way, the user often defines new concepts
in terms of preexisting ones. In most cases part of the theory already developed
naturally transports to the new concepts. As we see in the following example
this may introduce an additional degree of ambiguity the user has to deal with.

Example 3 (Pattern forcing definition unfolding). In the context of the library
on lists the user finds the function map to apply a function over a list and some
of its properties. The related lemma eq_in_map states that a function f can be
replaced with another function g if f and g are point wise equal (denoted =1) on
the list they are mapped on. map_comp proves that mapping two functions in a
row is the same as mapping their functional composition (denoted with \o). id
is the identify function.

Lemma eq_in_map s f g : {in s, f =1 g} -> map f s = map g s.

Lemma map_comp f g s : map (f \o g) s = map f (map g s).

Lemma map_id s : map id s = s.

The iota function builds the list of consecutive integers given the first element
and the list length. On top of map and iota the user defines the graph of a
function over an integer interval [0,n[ as the list of its values on that interval.
An obvious property is that if a function f behaves as the identity on the graph
of g on a given interval, then the graph of (f \o g) is equal to the graph of g
on the same interval.

Definition graph f n := map f (iota 0 n).

Lemma graph_comp f g n (pf : {in graph g n, f =1 id}) :

graph (f \o g) n = graph g n.

The property follows trivially from the theory of lists, but the conjecture does
not mention any list operation. Nevertheless the map_comp rewrite rule can be
used as follows:
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rewrite [graph _ n]map_comp

The first instance of the pattern [graph _ n], traversing the conjecture
(graph (f \o g) n = graph g n) from left to right, is (graph (f \o g) n).
This is where the map_comp rule can apply. In fact, unfolding the definition of
graph exposes (map (f \o g) (iota 0 n)) that is clearly an instance of the
pattern (map (_ \o _) _) given by the rule map_comp. The resulting conjecture
is reported below.

���
map

��
f
��
(
����
map

���
g

��
(

����
iota

��
0
��
n
�
)
�
) = graph g n.

One can then complete the proof rewriting with the eq_in_map lemma, whose
hypothesis is indeed equivalent to the pf assumption, and then conclude with
map_id. ��

One could argue that in the previous example the system is not “clever enough”
and could exploit the fact that graph is defined in terms of map to find the
subterms to be rewritten. According to our experience this would make the
rewrite command less predictable. For example consider a conjecture in which
both graph and map occur in that order. The graph occurrence may be rewritten
even if the user does not know that graph is defined in terms of map. Moreover
the user still needs a way to focus on map if that is what she wants.

The usual alternative approach is to manually unfold some of the occurrences
of graph to expose map. This is again not only more verbose, but less informative
in the script. With the pattern [graph _ n] the user clearly states that the
whole matched expression is an instance of the left hand side of the rewriting
rule. If graph is redefined with a different expression that strictly contains an
occurrence of map, the script with the pattern breaks immediately, while the one
just unfolding graph may signal an error at a later stage.

The previous examples may look a bit artificial, and in fact they were chosen
to be reasonably self contained at the cost of resulting a bit simplistic. On the
contrary the one below is taken from the quite involved proof of the Wielandt
fixpoint [12] Theorem formalized by A. Mahboubi. It is a rather technical re-
sult required to prove the Odd Order Theorem, and was one of the motivating
examples for contextual patterns, that are introduced immediately after.

Example 4 (Contextual pattern). The context of this example is group theory
and the study of group morphisms. The system prints above the double bar the
hypotheses accumulated by the user so far. In particular that X is equal to the
image of the morphism fact_g over X quotiented by the kernel of g. The user
needs to rewrite the first occurrence of X with the imgX equation in order to
advance in her proof.

nkA : joing_group A X \subset ’N(’ker g)

fact_g := factm skk nkA : coset_groupType (’ker g) -> gT

imgX : X = fact_g @* (X / ’ker g)

=================================

minnormal (fact_g @* (A / ’ker g)) X ->

minnormal (A / ’ker g) (X / ’ker g)
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Here the rewrite rule is fully instantiated, thus the ambiguity is given by the fact
that its left hand side X occurs at least twice in the conjecture (the implication
below the double bar). In fact, the notation system of Coq hides many other
occurrences of X. The morphism image construction @* is polymorphic over the
type of the morphism fact_g, that is itself a dependently typed construction. In
particular it depends on the assumption nkA whose type mentions X. The logic of
Coq features explicit polymorphism, like system F , so types occur as arguments
of polymorphic functions even if some syntactic sugar hides them. As it turns
out, the occurrence of X we are interested in is number twenty-nine, even if it
the first one displayed by the system.

The pattern we propose to unambiguously identify that desired occurrence
uses its enclosing context. In the following snippet, R is a name bound in the
expression following the in keyword.

rewrite [R in minnormal _ R]imgX

The intended meaning is to focus the rewrite command on the subterm iden-
tified by R in the first occurrence of the context (minnormal _ R). While being
more verbose than the occurrence number {29}, it is way easier to write, since
no guessing is needed. Moreover in case the script breaks the original intent of
the user is clearly spelled out. ��

2.1 Syntax and Semantics

The syntax is defined by two grammar entries: 〈c-pattern〉 for contextual patterns
and 〈r-pattern〉 for their superset rewrite patterns. Contextual patterns are meant
to identify a specific subterm, and can be used as arguments of the SSReflect
commands set, elim and : (colon), see [9, Sections 4.2 and 5.3], respectively
used to declare abbreviations, perform induction or generalize the current con-
jecture. Rewrite patterns are a strict superset of contextual patterns adding the
possibility of identifying all the subterms under a given context. They can be
used as arguments of the SSReflect rewrite command, see [9, Section 7].

〈c-pattern〉 ::= [〈tpat〉 as | 〈tpat〉 in] 〈ident〉 in 〈tpat〉 | 〈tpat〉
〈r-pattern〉 ::= 〈c-pattern〉 | in [〈ident〉 in] 〈tpat〉

Here 〈tpat〉 denotes a term pattern, that is a generic Coq term, possibly con-
taining wild cards, denoted with _ (underscore).

We now summarize the semantics of both categories of patterns. We shall call
redex the pattern designed to identify the subterm on which the proof command
will have effect. We shall also use the word match in an informal way recalling
the reader’s intuition to pattern matching. The precise meaning of matching will
be described in Section 3.

Contextual Patterns 〈c-pattern〉. For every possible pattern we identify the
redex and define which subterms are affected by a proof command that uses such
pattern. We then point out the main subtleties with some examples.
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〈tpat〉 is the degenerate form of a contextual pattern, where the context is indeed
empty. The redex is thus the whole 〈tpat〉. The subterms affected by this
simple form of pattern are all the occurrences of the first instance of the
redex. See Example 5.

〈ident〉 in 〈tpat〉 is the simplest form of contextual pattern. The redex is the
subterm of the context 〈tpat〉 bound by 〈ident〉. The subterm affected are all
the subterms identified by the redex 〈ident〉 in all the occurrences of the first
instance of 〈tpat〉. See Example 6.

〈tpat〉1 as 〈ident〉 in 〈tpat〉2 is a form of contextual pattern where the redex
is explicitly given as 〈tpat〉1. It refines the previous pattern by specifying a
pattern for the context hole named by 〈ident〉. The subterms affected are
thus the ones bound by 〈ident〉 in all the occurrences of the first instance
of 〈tpat〉2[〈tpat〉1/〈ident〉], i.e., 〈tpat〉2 where 〈ident〉 is replaced by 〈tpat〉1. See
Example 8.

〈tpat〉1 in 〈ident〉 in 〈tpat〉2 is the last form of contextual pattern and is meant
to identify deeper contexts in two steps. The redex is given as 〈tpat〉1 and
the subterms affected are all the occurrences of its first instance inside the
subterms bound by 〈ident〉 in all the occurrences of the first instance of
〈tpat〉2. The context described by this pattern is thus made of two parts: an
explicit one given by 〈tpat〉2, and an implicit one given by the matching of
the redex 〈tpat〉1 that could occur deep inside the term identified by 〈ident〉.
See Example 7.

Example 5. We have already seen in Example 4 the first form of pattern. Here
we give another example to stress that all the occurrences of the first instance
of the pattern are affected. Take the conjecture:

(a - b) + (b - c) = (a - b) + (d - b)

The proof command rewrite [_ - b]addrC changes the conjecture as follows
because the first instance of the pattern (_ - b) is (a - b), and not (d - b)

since the conjecture is traversed in pre visit order.

��
(-

�
b
��
+
��
a
�
) + (b - c) =

��
(-

�
b
��
+
��
a
�
) + (d - b)

The subterm (a - b) has another occurrence in the right hand side of the
conjecture that is affected too. ��

The second form of contextual pattern comes handy when the subterm of interest
occurs immediately under a context that is easy to describe.

Example 6. Take the following conjecture:

0 = snd (0 * c, 0 * (a + b))

To prove this conjecture it is enough to use the annihilating property of 0 on
(a + b) and compute away the snd projection. Unfortunately that property
also applies to (0 * c). We can easily identify (0 * (a + b)) with the sec-
ond form of contextual pattern, mentioning the context symbol snd and mark-
ing with X the argument we are interested in. The resulting command is thus
rewrite [X in snd (_, X)]mul0n. ��
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A typical example of the last form is with the set command, that creates a local
definition grabbing instances of the definendum in the conjecture.

Example 7. Take the following conjecture:

a + b = f (a^2 + b) - c

To make it more readable one may want to abbreviate with n the expression
(a^2 + b). The command set n := (_ + b in X in _ = X) binds to n all
the occurrences of the first instance of the pattern (_ + b) in the right hand
side only of the conjecture.

a + b = f
��
n - c

Note that the pattern (_ + b) could also match (a + b) in the left hand side of
the conjecture, but the (in X in _ = X) part of the contextual pattern focuses
the right hand side only. From now on we will always underline with a straight
line the subterm selected by the context part of a pattern (i.e., the subterm
identified by the bound variable X in the previous example). ��

In Section 2.3 we describe how the user can define shortcuts for commonly used
contexts, and thus write the previous pattern as: set n := (_ + b in RHS).

We give an example of the third 〈c-pattern〉 form together with the examples
for 〈r-pattern〉s.

Rewrite Patterns 〈r-pattern〉. The rewrite command supports two more
patterns obtained by prefixing the first two 〈c-pattern〉s with the in keyword.
The intended meaning is that the pattern identifies all subterms of the specified
context. Note that the rewrite command can always infer a redex from the
shape of the rewrite rule. For example the addrC rule of Example 1 gives the
redex pattern (_ + _).

in 〈tpat〉 is the simplest form of rewrite pattern. The redex is inferred from
the rewriting rule. The subterms affected are all the occurrences of the first
instance of the redex inside all the occurrences of the first instance of 〈tpat〉.

in 〈ident〉 in 〈tpat〉 is quite similar to the last form of contextual pattern seen
above, but the redex is not explicitly given but instead inferred from the
rewriting rule. The subterms affected are all the occurrences of the first
instance of the redex inside the subterms identified by 〈ident〉 in all the
occurrences of the first instance of 〈tpat〉.

Example 8. The first form of 〈r-pattern〉 is handy when we want to focus on the
subterms of a given context. Take for example the following conjecture:

f (a + b) (2 * (a + c)) + (c + d) + f a (c + d) = 0

The command rewrite [in f _ _]addrC focuses the matching of the redex
inferred from the addrC lemma, (_ + _), to the subterms of the first instance
of the pattern (f _ _). Thus the conjecture is changed into
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f
�
(
�
b
��
+
��
a
�
) (2 * (a + c)) + (c + d) + f a (c + d) = 0

If the user had in mind to exchange a with c instead, she could have used a
pattern like [in X in f _ X]addrC, to focus the matching of the redex on the
second argument of f, obtaining:

f (a + b) (2 *
�
(

�
c
��
+
��
a)) + (c + d) + f a (c + d) = 0

The last form of 〈c-pattern〉 could be used to focus on the last occurrence of
(c + d). The pattern [_ + d as X in f _ X] would first match the context
substituting (_ + d) for X. The pattern (f _ (_ + d)) focuses on the second
occurrence of f, then the X identifier selects only its second argument that is
exactly where the rewriting rule addrC is applied.

f (a + b) (2 * (a + c)) + (c + d) + f a (
�
d
��
+
��
c) = 0

It is important to note that even if the rewrite proof command always infers a
redex from the rewrite rule, a different redex can be specified using a 〈c-pattern〉.
This is especially convenient when the inferred redex is masked by a definition,
as in Example 3 .

2.2 Matching Order

In the previous examples we implicitly followed a precise order when matching
the various 〈tpat〉s part of a 〈c-pattern〉 or 〈r-pattern〉. For example we always
matched the context part first. We now make this order explicit.

〈tpat〉, 〈ident〉 in 〈tpat〉 All the subterms of the conjecture are matched against
〈tpat〉.

〈tpat〉1 as 〈ident〉 in 〈tpat〉2 All the subterms of the conjecture are matched
against 〈tpat〉2[〈tpat〉1/〈ident〉].

〈tpat〉1 in 〈ident〉 in 〈tpat〉2 First, subterms of the conjecture are matched
against 〈tpat〉2. Then the subterms of the instantiation of 〈tpat〉2 identified
by 〈ident〉 are matched against 〈tpat〉1.

in 〈ident〉 in 〈tpat〉 First, subterms of the conjecture are matched against 〈tpat〉.
Then the subterms of the instantiation of 〈tpat〉 identified by 〈ident〉 are
matched against the inferred redex (that is always present since this pattern
has to be used with the rewrite proof command).

in 〈tpat〉 First, subterms of the conjecture are matched against 〈tpat〉. Then the
instantiation of 〈tpat〉 is matched against the inferred redex.

If one of the first four patterns is used in conjunction with rewrite, the instance
of the redex is then matched against the pattern inferred from the rewriting rule.
The matching order is very relevant to predict the instantiation of patterns.

Example 9. For example in the pattern ((_ + _) in X in (_ * X)), the matching
of the sub pattern (_ + _) is restricted to the subterm identified by X. Take the
following conjecture:
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a + b + (a * ((
�
a

��
+
��
b) * d)) = 0

The dash underlined subterm would be a valid instance of (_ + _) but is skipped
since it does not occur in the right context. In fact (_ * X) is matched first. The
subterm corresponding to X is ((a + b) * d). Then its subterms are matched
against (_ + _) and the first, and only, occurrence is (

�
a
��
+
��
b). ��

2.3 Recurring Contexts

Whilst being quite expressive, contextual patterns tend to be a bit verbose and
quite repetitive. For example to focus on the right hand side of an equational
conjecture, one may have to specify the pattern (in X in _ = X).

With a careful use of the notational mechanism of Coq we let the user define
abbreviations for common contexts, corresponding to the 〈ident〉 in 〈tpat〉 part
of the pattern. The definition of the abbreviation RHS is as follows.

Notation RHS := (X in _ = X)%pattern.

There the notational scope %pattern interprets the infix in notation in a peculiar
way, encoding in a non ambiguous way the context (X in _ = X) in a simple
〈tpat〉. Then, when the system parses (in RHS) as an instance of in 〈tpat〉 it
recognizes the context encoded in 〈tpat〉 and outputs the abstract syntax tree for
in 〈ident〉 in 〈tpat〉.

3 Term Matching

We now give a precise description of the matching operation for 〈tpat〉. The main
concerns are performances and predictability.

Predictability has already been discussed in relation to Example 3. A lemma
that talks about the map function should affect occurrences of the map function
only, even if other subterms are defined in terms of map, unless the user really
means that. Indeed the most characterizing feature of the logic of Coq is to
identify terms up to definition unfolding and computation. That allows to com-
pletely omit proof steps that are pure computations, for example (0 + x) and x

are just equal (not only provably equal) for the standard definition of addition.
Performance is a main concern when one deals with large conjectures. To take

advantage of the computational notion of comparison the logic offers, one could
be tempted to try to match the pattern against any subterm, even if the subterm
shares no similarity with the pattern itself. A higher order matching procedure
could find that the pattern actually matches up to computation. Nevertheless,
this matching operation could be expensive. Especially because it is expected to
fail on most of the subterms and failure is certain only after both the pattern
and the subterm are reduced to normal forms.

The considerations about performances and predictability lead to the idea of
keyed matching. The matching operation is attempted only on subterms whose
head constant is equal to the head constant (the key) of the pattern, verbatim.
Arguments of the key are matched using the standard higher order matching
algorithm of Coq, which takes computation into account.
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Take for example the conjecture (huge + x * (1 - 1) = 0) and the rewrite
rule muln0 that gives the redex (_ * 0). The key of the redex * is compared with
the head of all the subterms of the conjecture. This traversal is linear in size of
the conjecture. The higher order matching algorithm of Coq is thus run on the
candidate subterms identified by the keyed filtering phase, like (x * (1 - 1)).
In that case the second argument of the pattern, 0, matches (1 - 1) up to
reduction. The huge subterm, assuming it contains no *, is quickly skipped,
and the expensive but computation aware matching algorithm of Coq is never
triggered on its subterms.

3.1 Gadgets

To adhere to the keyed matching discipline, that is different from the stan-
dard one implemented in Coq, we had to implement our own stricter matching
algorithm inside the SSReflect extension, piggybacking on Coq’s general uni-
fication procedure. This gave us the opportunity to tune it towards our needs,
adding some exceptions for unit types, abstract algebraic structures, etc.

Unit types are types that have only one canonical inhabitant. In a library of
the extent of the SSReflect’s one, there are many of them. For example there
is only one matrix of 0 rows or 0 columns, there is only one natural number in
the interval subtype [0,1[, there is only one 0-tuple, etc.

In the statement of the canonicity lemma for these types, the inferred redex
is just a wild card, i.e., there is no key. In the following example the type ’I_n

denotes the subtype of natural numbers strictly smaller than n.

Lemma ord1 (x : ’I_1) : x = 0.

A pattern with no key results in a error message in SSReflect. Nevertheless
SSReflect supports a special construction to mark wild cards meant to act
as a key. In that case the search is driven by the type of the wild card. In the
following example the (unkeyed x) notation denotes any subterm of type ’I_1.

Notation unkeyed x := (let flex := x in flex).

Lemma ord1 (x : ’I_1) : unkeyed x = 0.

Another notable exception is the case in which the key is a projection. The
logic of Coq can represent dependently typed records [15], that are non ho-
mogeneous n-tuples where the type of the i-th element can depend on the
values of the previous i − 1 elements. This is a key device to model abstract
algebraic structures [16,8,17,6], like a Monoid as a record with three fields: a
type mT, a binary operation mop on mT and the associative property for mop1.

Structure Monoid := {

mT : Type;

mop : mT -> mT -> mT;

massoc : assoc mop }

mT (M : Monoid) : Type

mop (M : Monoid) : mt M -> mt M -> mt M

massoc (M : Monoid) (x y z : mt M) :

mop M x (mop M y z) = mop M (mop M x y) z

1 We omit the unit for reasons of space.
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Constants mT, mop and massoc are projections for the corresponding record fields.
Their types are reported on the right.

If we look at the statement of any lemma equating Monoid expressions we
note that the key for the operation is mop, as in the statement of massoc that
leads to the pattern (mop _ _ (mop _ _ _)).
Algebraic reasoning is interesting because all the results proved in the abstract
setting apply to any instance of the algebraic structure. For example lists and
concatenation form a Monoid. Nevertheless, any conjecture about lists is going to
use the concrete concatenation operation cat. The higher order matching algo-
rithm ofCoq can be instrumented to exploit the fact that there exists a canonical
Monoid over lists and is thus able to match (mop _ _ _) against (cat s1 s2)

assigning to the first wild card this canonical Monoid structure. Unfortunately,
our matching algorithm would fail to match any occurrence of cat against the
key mop, because they not equal verbatim.
The exception to the keyed matching discipline we considered is to compare as
verbatim equal keys that happen to be projections with any of their canonical
values. For example the key mop will match list concatenation, but also integer
addition etc. and any other operation that is declared to form a Monoid. Note
that this matching requires to correctly align the pattern with the term to be
matched. In case of the term (cat s1 s2), the pattern (mop _ _ _) has to be
matched as follows: the cat term has to be matched against the initial part
of the pattern (mop _), that corresponds to the projection applied to the un-
known Monoid structure. Then the following two arguments s1 and s2 have to
be matched against the two wild cards left.

The last exception is for patterns with a flexible key but some arguments,
like (_ a b). The intended meaning is that the focus is on the application of
a function whose last two arguments are a and b. This kind of pattern lacks a
key and its match is attempted on any subterms. This is very convenient when
the head constant of the expression to be focused is harder to write than the
arguments. For example the expression ([predI predU A B & C] x) represents
the application of a composite predicate to x. This expression can be easily
identified with the pattern (_ x).

3.2 Verbatim Matching of the Pattern

There is an important exception to the keyed matching discipline worth explain-
ing in more details. We begin with a motivating example, showing a situation in
which the keyed matching prevents the user from freely normalizing associativity.

Example 10 (Motivating example)

Lemma example n m : n + 2 * m = m + (m + n)

by rewrite addnA addnC !mulSn addn0.

Without the verbatim matching phase, the application of the first rewrite rule,
addnA, would turn the conjecture into:

�
n
��
+
��
m
��
+
����
(1

���
*

��
m

�
) = m + (m + n)
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In fact, the redex inferred from addnA is (_ + (_ + _)), and the first occurrence
of its key + is in the left hand side of the conjecture. Since the definition of
multiplication for natural numbers is computable Coq compares (2 * m) and
(m + (1 * m)) as equal. Thus (n + (m + (1 * m))) is successfully matched
against the redex failing the user expectations. Thus the user is forced to add a
pattern like (m + _) to addnA that is somewhat unnatural, since there is only
one visible occurrence of the redex (_ + (_ + _)). ��

To address this issue, the term pattern matching algorithm performs two phases.
In the first no reduction takes place, and syntactic sugar, like hidden type argu-
ments or explicit type casts, is taken into account, essentially erasing invisible
arguments from the pattern and the conjecture. The second phase is driven by
the pattern key and allows full reduction on its arguments.

Once the pattern is instantiated the search for its occurrences is again keyed,
and arguments are compared pairwise allowing conversion. For example con-
sider the pattern (_ + _) and its first instance (1 + m). Other occurrences are
searched using + as the key, and arguments are compared pairwise. Thus a term
like (0 + (1 + m)), that is indeed computationally equal to (1 + m), is not an
occurrence of (1 + m), since 1 does not match 0 and m does not match (1 + m).
On the contrary (1 + (0 + m)) is an occurrence of (1 + m).

4 Related Works

In order to compare the approach proposed in this paper with other approaches
we consider the following conjecture f (a + 0) = a + 0 * b where we want to
replace (a + 0 * b) with a using the equation forall x, x + 0 = x named
addn0. Note that the logic of Coq compares (0 * b) and 0 as equal.

The first comparison that has to be made is with the standard Coq mech-
anism to focus on subexpressions. The pattern command ([5, Section 6.3.3])
pre-processes the conjecture putting in evidence the sub term of interest. The
user has to spell out completely this subexpression, and if it occurs multi-
ple times she can specify occurrence numbers. This leads to the proof script:
pattern (a + 0 * b); rewrite addn0. Note that the two expressions (a + 0)

and (a + 0 * b) are not consider as equal by the matching algorithm used by
pattern and by Coq’s rewrite. For example pattern (a + 0) at 2 fails as
well as rewrite (addn0 a) at 2. We believe our approach is superior because
the intent of the user is not obfuscated by commands to prepare the conjecture
and because it takes computation into account when comparing terms. In SS-
Reflect one can perform the desired manipulation with rewrite [RHS]addn0

where RHS is a pattern notation as in Section 2.3.
Matita [3] is an ITP based on the same logic of Coq with a modern graphical

interface. Its proof language is similar to the one of Coq but (parts) of proof
commands can be generated by mouse gestures. In particular the user can focus
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on a sub term selecting it with the mouse. The selection of the right hand side of
the running example results in the following snippet rewrite add0n in |- ???%

where % marks the subterm of interest, while the three ? respectively stand for
the head symbol (=), the invisible type parameter nat and the left hand side, all
of which have to be ignored by the rewrite tactic. While this approach is in-
tuitive and effective in writing proof scripts, it does not ease their maintenance,
since the textual representation of the visual selection is not very informative
for the reader, especially when selection happens deep inside the conjecture.

The Isabelle prover [14] implements a framework on top of which different
logics and proof languages are built. The most used combination is higher or-
der logic and the declarative proof language Isar [19]. In this setting some of
the complexity introduced by the logic of Coq disappears. For example terms
are not considered to be equal taking definitions into account. Moreover in the
declarative style proposed by Isar language the user spells out the conjecture
more frequently, and some automation tries to prove it, finding for example
which occurrences need to be rewritten. To avoid repeating large expressions
the Isar language provides the (is 〈pattern〉) construct [19, Section 3.2.6] to
bind expressions to schematic variables that can be reused later on.

5 Conclusion

This paper presents the language of patterns adopted by the SSReflect proof
shell extension for the Coq system. The language was introduced in SSReflect
version 1.3 in March 2011 mainly to improve the effectiveness of the rewrite

proof command. Version 1.4 makes the pattern language consistently available
to all language constructs that have to identify subexpressions of the conjecture.

The choices made in the design of the pattern language and its semantics
are based on the experience gathered in the Mathematical Components team
on the formal proof of the Odd Order Theorem during the last five years, and
the implementation has been validated by roughly one year of intense use. As of
today this formalization comprises 113,384 lines of code, of which 34,077 contain
a rewrite statement. Of these 2,280 have been changed to take advantage of the
pattern language, and some other 2,005 lines (of which 1,705 contain a rewrite

command) still make use of occurrence numbers and could be modified too.
A line of ongoing development is to separate the code implementing the pat-

tern matching algorithm and the parsing of patterns concrete syntax from the
rest of the SSReflect extension, making a separate extension. This will allow
proof commands provided by other Coq extensions to benefit from the same
pattern language. A possible application is in the AAC Coq extension that
automates proofs dealing with associativity and commutativity. In fact in [7]
Braibant and Pous express the need for a linguistic construct to select subex-
pressions other than occurrence numbers.

We thank Frédéric Chyzak for some very productive discussions on the topic.
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18. Théry, L., Hanrot, G.: Primality Proving with Elliptic Curves. In: Schneider, K.,
Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 319–333. Springer, Heidel-
berg (2007)

19. Wenzel, M.T.: Isar - A Generic Interpretative Approach to Readable Formal Proof
Documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.)
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Abstract. Many ordinary differential equations (ODEs) do not have a
closed solution, therefore approximating them is an important problem
in numerical analysis. This work formalizes a method to approximate
solutions of ODEs in Isabelle/HOL.

We formalize initial value problems (IVPs) of ODEs and prove the
existence of a unique solution, i.e. the Picard-Lindelöf theorem. We in-
troduce generic one-step methods for numerical approximation of the
solution and provide an analysis regarding the local and global error of
one-step methods.

We give an executable specification of the Euler method as an instance
of one-step methods. With user-supplied proofs for bounds of the differ-
ential equation we can prove an explicit bound for the global error. We
use arbitrary-precision floating-point numbers and also handle rounding
errors when we truncate the numbers for efficiency reasons.

Keywords: Formalization of Mathematics, Ordinary differential equa-
tion, Numerical Analysis, One-Step method, Euler method, Isabelle/HOL.

1 Introduction

Ordinary differential equations (ODEs) have a lot of important applications.
They are for example used to describe motion or oscillation in Newtonian me-
chanics, the evolution or growth of organisms in biology, or the speed of chemical
reactions.

The Picard-Lindelöf theorem states the existence of a unique solution (under
certain conditions) but unfortunately, many problems do not allow an explicit
closed formula as solution (e.g. the seemingly simple ODE ẋ = x2 − t for initial
values x(t0) = x0). In such cases, one has to content oneself with numerical
methods that give approximations to the solution.

In order to evaluate the quality of an approximate solution (which depends
very much on the concrete problem) you need to choose the parameters of your
numerical method (i.e. step size, precision) wisely. This is where the use of an
interactive theorem prover might be useful: We formalize initial value problems
(IVPs) of ODEs and prove the existence of a unique solution in Isabelle/HOL.
We give an executable specification of the Euler method – a basic numerical
algorithm – and prove the error bound of the approximation.
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2 Related Work

When an ODE has a solution representable in a closed form, an approximation
method for this closed form can be used. Muñoz and Lester [12] use rational
interval arithmetic in PVS to efficiently approximate real valued functions in
theorem provers. In addition to basic arithmetic operations they also support
trigonometric functions. Melquiond [11] implements a similar method in Coq.
He also implements interval arithmetic, but uses floating-point numbers and
sophisticated methods to avoid loss of correlation.

An alternative to interval arithmetic is to approximate real numbers by a
sequence of rational numbers. Each element in this sequence has a defined dis-
tance to the exact result. Harrison [5] uses this approach to compute the loga-
rithm. O’Connor [15] approximates real numbers by organizing their completion
of rational numbers in a monad. O’Connor and Spitters [14] use this monadic
construction in order to implement arbitrary approximations of the Riemann
integral. Krebbers and Spitters [9,10] extend this work to use arbitrary-precision
floating-point numbers. Similar to the proof of the existence of the unique so-
lution of an IVP, one can iterate an integral operation in order to approximate
the solution (as suggested in [17]).

Boldo et al. [1] formalize partial differential equations stemming from acoustic
wave equations in Coq. As they analyse partial differential equations they can not
show a general existence or uniqueness theorem. Their particular problem admits
an analytical solution and they simply assume that the solution is unique. They
also show consistency and stability and that in their case convergence follows.
However, they needed to find an analytical formula for the rounding errors.

3 Preliminaries

3.1 Isabelle/HOL

The formalizations presented in this paper are done in the Isabelle/HOL theorem
prover. In this section we give an overview of our syntactic conventions.

The term syntax follows the λ-calculus, i.e. function application is juxtaposi-
tion as in f t and function abstraction is written as λx. t. The notation t :: τ
means that t has type τ . Types are built from base types like N (natural num-
bers), R (real numbers), Rn (Euclidean spaces of dimension n), type variables
(α, β, etc.), functions α → β, sets P(α), and pairs α× β.

Our work builds on the Multivariate_Analysis library which was ported
from Harrison’s Euclidean spaces for HOL-Light [6]. In our formalization the
Euclidean space Rn is not just the function space n → R; it is a type class
denoting a Euclidean space. Rn × Rm, R, and n → R are in this type class.

We write (a, b) :: α×β for pairs, A×B := {(a, b) | a ∈ A∧ b ∈ B} :: P(α×β)
for the Cartesian product of A and B (do not confuse with the product type), ‖x‖
for the norm of x, Br(x) := {y | ‖x− y‖ ≤ r} :: P(Rn) for the closed ball around
x with radius r :: R, and sup A and inf A for the supremum and infimum of A.
With ẋ(t) = y we denote that x :: R → Rn has at t the derivative y :: Rn, and
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with
∫ b

a
f x dx we denote the integral of f :: Rn → Rm over [a; b]. Hilbert choice

is (ε x. P x), i.e. (∃x. P x) ⇒ P (ε x. P x) holds. In this section xi is the i-th
projection of the vector x. We write [a; b] := {x | ∀i. ai ≤ xi ∧ xi ≤ bi} :: P(Rn)
for hyperrectangles on Euclidean spaces (which are closed intervals on R), and
Rr(x) := {y | ∀i. yi ∈ [xi − r;xi + r]} for hypercubes around x. The predicate
is-interval S := (∀a, b ∈ S. ∀x. (∀i. xi ∈ [ai; bi] ∪ [bi; ai]) ⇒ x ∈ S) accepts
intervals in general, mixtures of open and closed, and infinite ones.

3.2 Arbitrary-Precision Floating-Point Numbers (F)

The previous formalization of arbitrary-precision floating-point numbers in Isa-
belle/HOL [13,7] used pairs of integer exponents e and mantissas m, representing
the real numbers m · 2e. Unfortunately this results in a type which has multiple
representations for the same number, e.g. zero is represented by 0 · 2e for every
e. Therefore the resulting type does not support any interesting type class, like
linear order, commutative groups for addition, etc.

Hence, we introduce a new type F as the dyadic rationals, i.e. all numbers x
which are representable as m · 2e. We have an injective function (·)R :: F → R
and its partially specified inverse (·)F :: R → F. As (non-injective) constructor
we introduce Float m e = (m · 2e)F and declared it as a datatype constructor for
code generation [3]. We lift the arithmetic constants 0, 1, +, −, ·, <, ≤ from the
reals and provide executable equations, e.g. for multiplication:

(Float m1 e1) · (Float m2 e2) = Float (m1 ·m2) (e1 + e2).

3.3 Bounded Continuous Functions

The proof for the existence of a unique solution to an IVP is based on an ap-
plication of the Banach fixed point theorem, which guarantees the existence of
a unique fixed point of a contraction mapping on metric spaces. The textbook-
proof of Walter [18] defines a metric space on continuous functions with a com-
pact domain. As functions in Isabelle/HOL are required to be total, one cannot
simply restrict the domain, hence a slightly different approach is necessary: We
define a type C carrying bounded continuous functions, i.e. functions which are
continuous everywhere and whose values are bounded by a constant:

C = {f :: Rn → Rm | f continuous on Rn ∧ (∃B. ∀t. ‖f t‖ ≤ B)}

The morphisms Rep C : C → (Rn → Rm) and Abs C : (Rn → Rm) → C allow to
use an element of type C as function and to define elements of type C in terms of
a function. We define a norm on C as the supremum of the range and operations
+, −, · pointwise.

‖f‖ := sup {‖RepC f x‖ | x ∈ Rn}
f + g := Abs C(λx. f x+ g x)
f − g := Abs C(λx. f x− g x)
a · f := Abs C(λx. a · f x)
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We prove that C is a normed vector space, hence also a metric space. In order
to be able to apply the Banach fixed point theorem we need to show that C is
a complete space, meaning that every Cauchy sequence converges. A function
f : Rn → Rm that is continuous on a compact interval [a; b] is converted to C by
extending the function continuously outside the domain with the help of clamp:

(clamp[a;b] x)i := if xi ≤ ai then ai else (if xi ≥ bi then bi else xi)

ext-cont[a;b] f := Abs C(λx. f (clamp[a;b] x))

The key property we use is that an extended function is continuous everywhere
when it was continuous on the interval. Inside the interval the resulting function
takes the same values as the original function:

f continuous on [a; b] ⇒ Rep C(ext-cont[a;b]f) continuous on Rn

x ∈ [a; b] ⇒ Rep C(ext-cont[a;b]f) x = f x

4 Initial Value Problems

4.1 Definition

An equation in which an unknown function u :: R → Rn and derivatives of this
function occur is an ODE. ODEs with derivatives of higher order can be reduced
to a first order system, which is why we handle ODEs of first order only. An
ODE together with values t0, x0 for an initial condition u t0 = x0 is an IVP and
can always be written in terms of a right-hand side f which is supposed to be
defined on a domain I ×D (Compare with Figure 1):

u̇ t = f(t, u t) u t0 = x0 ∈ D t0 ∈ I

We define IVPs in Isabelle as a record, which is a named tuple of elements

f :: R× Rn → Rn, t0 :: R, x0 :: Rn, I :: P(R), D :: P(Rn)
ivp = (f, t0, x0, I,D).

For the rest of the paper, we assume an IVP ivp with (t0, x0) ∈ I×D and use the
symbols f, t0, x0, I, and D without further notice as part of this IVP.1 We will
notate modified IVPs in subscripts, for example ivpf :=g for the IVP ivp with the
right-hand side g instead of f . Other components are updated analogously. Later
definitions implicitly depend on ivp and may be updated in a similar fashion.

4.2 Solutions

We capture the notion of a solution to an IVP in the predicate is-solution: A
solution needs to satisfy the initial condition and the derivative has to be given
by f . Apart from that, we need to state explicitly that the potential solution
must not leave the codomain. Mathematicians usually do that implicitly when
declaring f as a function with domain I ×D.

is-solution u := u t0 = x0 ∧ (∀t ∈ I. u̇ t = f(t, u t) ∧ u t ∈ D)

1 In Isabelle/HOL: ivp is fixed as a locale parameter.
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x0

solution
(t, x)

f (t, x)

‖fc‖

t0 TI

b

D

Fig. 1. The solution of an IVP on a rectangular domain and related variables

unique-solution. The Picard-Lindelöf theorem states the existence of a unique
solution. We formalize the notion of a unique solution as follows: If two functions
are solutions, they must attain the same values on I. We use Hilbert choice to
obtain solution and relate all upcoming facts about solutions to IVPs to it.

has-solution := (∃u. is-solution u)
solution := (εu. is-solution u)

unique-solution := has-solution∧ (∀v. is-solution v ⇒ (∀t ∈ I. v t = solution t))

4.3 Combining Initial Value Problems

Working with IVPs in a structured way helped us to implement the proofs in
a maintainable fashion. An important operation is to be able to “connect” two
solutions at a common point. We therefore assume two IVPs ivp1 and ivp2 that
we want to combine to an IVP ivpc:

ivp1 = (f1, t0, x0, [t0; t1], D)
ivp2 = (f2, t1, solutionivp1

t1, [t1; t2], D)
fc := (λ(t, x). if t ≤ t1 then f1(t, x) else f2(t, x))

ivpc := (fc, t0, x0, [t0; t2], D)

Assuming unique solutions for ivp1 and ivp2, we prove a unique solution for ivpc:

f1(t1, solutionivp1
t1) = f2(t1, solutionivp1

t1) ⇒
unique-solutionivp1

⇒ unique-solutionivp2
⇒ unique-solutionivpc

4.4 Quantitative Picard-Lindelöf

In this section, we show that certain sets of assumptions (bnd-strip, strip, rect)
imply unique-solution, i.e. the existence of a unique solution and therefore several
variants of the Picard-Lindelöf theorem2. We will present key parts of the proofs
2 In Isabelle/HOL: We show that e.g. rect is a sublocale of unique-solution.
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and how they have been implemented in Isabelle, especially to show how our
choice of formalization helped to structure the proofs. The proofs in this section
are inspired by Walter [18] and follow closely the structure which is given there.
All of the proofs provide concrete results that we use later in the numerical
approximation of IVPs.

Lipschitz continuity is a basic assumption for the Picard-Lindelöf theorem. It
is stronger than continuity: it limits how fast a function can change. A function
g is (globally) Lipschitz continuous on a set S if the slope of the line connecting
any two points on the graph of g is bounded by a constant:

lipschitz S g L := (∀x, y ∈ S. ‖g x− g y‖ ≤ L · ‖x− y‖)

bnd-strip. If we choose I = [t0;T ] and D = Rn for the domain of a function f
that is continuous on I ×D and assume a global Lipschitz constant L on D, we
can show the existence of a unique solution, provided that (T − t0) ·L < 1 holds.
We call this set of assumptions bnd-strip:

bnd-strip T L := f continuous on I ×D ∧
(∀t ∈ I. lipschitz D (λx. f(t, x)) L) ∧
I = [t0;T ] ∧D = Rn ∧ (T − t0) · L < 1

Using the fundamental theorem of calculus, any solution to the equalities of the
IVP must also satisfy u t−x0 =

∫ t

t0
f(τ, u τ)dτ for all t in I. This equality can be

seen as an iteration of functions, known as Picard iteration which we conduct in
the space of bounded continuous functions (moving explicitly between functions
R → Rn and C is the most prominent difference to the textbook proof):

P x := ext-cont[t0;T ]

(
λt. x0 +

∫ t

t0

f
(
τ,Rep C x τ

)
dτ

)
; P :: C → C

In this metric space, we show that P is Lipschitz continuous for the constant
(T − t0) · L. The Lipschitz constant is less than 1 (i.e. (T − t0) · L < 1). This
is a necessary assumption – together with the completeness of C – to apply
the Banach fixed point theorem (from the Multivariate_Analysis library). It
guarantees the existence of a unique fixed point x∗ for the mapping P.

Together with the fundamental theorem of calculus we show that the fixed
point x∗ of P is a solution. Moreover every (continuously extended) solution u
is a fixed point of P

is-solution (Rep C x∗)

is-solution u ⇒ P(ext-cont[t0;T ] u) = ext-cont[t0;T ] u

from which we conclude the existence of a unique solution:

Theorem 1 (Picard-Lindelöf). If f is continuous and Lipschitz continuous
in its second variable and the interval I = [t0;T ] is small enough, then there
exists a unique solution:

bnd-strip T L ⇒ unique-solution.
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strip. According to bnd-strip, the size of the interval [t0;T ] in which we have
proven the existence of a unique solution depends on the Lipschitz-constant L.

In strip we drop the restriction T − t0 <
1
L to the size of the interval. This can

be done by splitting the desired interval [t0;T ] into n sub-intervals, such that
T−t0
n is small enough to satisfy the assumptions of bnd-strip. In an inductive

(on n ≥ 1) proof, one has (as hypothesis) the existence of a unique-solution on
[t0;T − 1

n (T − t0)]. The interval [T − 1
n (T − t0);T ] satisfies the assumptions

for bnd-strip – consequently we have a unique-solution there, too. The respective
solutions can then be combined. The argumentation in the textbook proof relies
on geometric intuition when one combines solutions – doing this formally requires
more efforts, but section 4.3 helped in retaining structure in the proofs.

rect. In strip, there is the assumption D = Rn for the codomain of the solution.
One might want to restrict this part – e.g. if there is no Lipschitz constant on
the whole codomain – to D = Rb(x0). In this case (which we will call rect) we
continuously extend the right-hand side f outside the rectangle to fc:

fc := ext-cont[t0;T ]×Rb(x0) f ; fc :: C

The textbook also works with a continuous extended function, but we do so
more explicitly with the utilization of ext-cont. We used ext-cont to obtain fc,
hence Rep C fc is continuous on the whole domain I ×Rn. We apply Theorem 1
to obtain the existence of a unique solution for RepC fc. We show that the
solution does not leave the codomain D – to ensure that f = Rep C fc. For
this, one has to choose a small enough upper bound T of the existence interval
[t0;T ]. This depends on the maximum slope of the solution which is bounded
by ‖fc‖, see Fig. 1. The formal proof centers around an application of the mean
value theorem, this is tedious compared to the geometric intuition given in the
textbook.

rect T b L := f continuous on I ×D ∧ (∀t ∈ I. lipschitz D (λx. f(t, x)) L) ∧
I = [t0;T ] ∧D = Rb(x0) ∧ b ≥ 0 ∧ T ≤ t0 + b/‖fc‖

Under these assumptions, we show that any solution to ivp cannot leave D.

rect T b L ⇒ is-solution u ⇒ (∀t ∈ I. u t ∈ D)

Having this, we can show that solutionf :=fc is a solution to ivp and that every
other solution to ivp is also a solution to ivpf :=fc . Consequently:

Theorem 2 (Picard-Lindelöf on a restricted domain)

rect T b L ⇒ unique-solution

4.5 Qualitative Picard-Lindelöf

In this section, we present a variant of the Picard-Lindelöf theorem (following the
textbook proof of Walter [18] closely), which is mainly of mathematical interest:
One does not get explicit values that could be used to estimate the error in a
numerical approximation – which is what we need in the upcoming sections.
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local-lipschitz. Many functions do not have a global Lipschitz constant L (e.g.
f(t, x) = x2 on R). The weaker assumption of local Lipschitz continuity allows to
prove the existence of a solution in a neighborhood of the initial value. A function
f is locally Lipschitz continuous in its second variable if for every point (t, x)
of the domain, there exists a neighborhood Bε(t, x) inside which there exists a
Lipschitz constant L:

local-lipschitz := ∀(t, x) ∈ I ×D. ∃ε > 0. ∃L.
∀u ∈ Bε(t) ∩ I. lipschitz (λx.f(u, x)) (Bε(x) ∩D) L

open-domain. Together with the notion of local Lipschitz continuity, we get a
very general result for the existence of a unique solution if we assume an open
domain. We will use the set of assumptions open-domain to prove the existence
of a unique solution on a maximal existence interval.

open-domain := local-lipschitz∧ open I ∧ open D

Under these assumptions, we construct a small enough rectangle inside a neigh-
borhood of the initial values that is inside the domain and possesses a Lipschitz-
constant. From this we can conclude

∃T > t0. [t0;T ] ⊆ I ∧ unique-solutionI:=[t0;T ].

We define Φ (similar to the textbook, but more explicit) to be the set of all
solutions to ivp and upper bounds of their existence intervals starting from t0:

Φ := {(u, T ) | t0 < T ∧ [t0;T ] ⊆ I ∧ is-solutionI:=[t0;T ] u}

For this set, we can show that all solutions u, v in Φ take the same values on
the intersection of their existence intervals. We do so by falsely assuming that
they differ at a point t1 (u(t1) �= v(t1)) and showing that there has to be a
maximal point tm at which u and v are equal. Then, however, one can use the
previous theorem about the existence of a unique solution in a neighborhood of
tm, to show that the two solutions have to be equal at larger points than tm,
contradicting its maximality.

One can then define a solution on the interval J :=
⋃

(u,T )∈Φ[t0;T ] for which
unique-solutionI:=J holds. Additionally, for every other interval K for which there
exists a solution, K is a subset of J and the solution is only a restriction. From
a mathematical point of view this is an important result, stating the existence
of a maximal existence interval for the unique solution:

Theorem 3 (Picard-Lindelöf on an open domain, maximal existence
interval)

unique-solutionI:=J ∧
∀K ⊆ I. is-interval K ⇒ inf K = t0 ⇒ has-solutionI:=K ⇒

(K ⊆ J ∧ (∀t ∈ K. solutionI:=K t = solutionI:=J t))
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5 One-Step Methods

The aim of this paper is to approximate solutions of IVPs with the Euler method.
The Euler method is a one-step method: it approximates a function (the solution)
in discrete steps, each step operating exclusively on the results of one previous
step. For one-step methods in general, one can give assumptions under which
the method works correctly – where the error of the approximation goes to zero
with the step size.

The methodology is as follows (cf. Bornemann [2]): If the error in one step
goes to zero with the step size, the one-step method is called consistent. One
can show that every consistent one-step method is convergent: the global error
– the error after a series of steps – goes to zero with the step size, too.

For efficiency reasons, we want to limit the precision of our calculations –
which causes rounding errors. The effect of small errors in the execution of a
one-step method is studied with the notion of stability: The error between the
ideal and the perturbed one-step method goes to zero with the step size.

We first give a formal definition of one-step methods, formalize the notions of
consistency, convergence and stability. We prove that consistent one-step meth-
ods are convergent and stable. We are going to use these definitions and results
in the upcoming section to show that the Euler method is consistent and can
therefore be used to approximate IVPs.

5.1 Definition

Following the textbook [2], we want to approximate the solution u : R → Rn

at discrete values given by Δ :: N → R with ∀j. Δ j ≤ Δ (j + 1). We notate
Δj := Δ j, denote by hj := Δj+1 −Δj the step size, and by hmax := maxj hj

its maximum.
The approximation should be given by a one-step method (or grid function)

gf such that gf j ≈ u Δj . One-step methods use for the approximation at Δj+1

only the information of the previous point at Δj . A one-step method gf on a grid
Δ for a starting value x0 can therefore be defined recursively. It is characterized
by an increment function ψ which gives the slope of the connection (the so called
discrete evolution Ψ) between two successive points (depending on the step size
h and the position (t, x) of the previous point):

h, t :: R; x, x0 :: Rn; ψ, Ψψ :: R → R → Rn → Rn

Ψψ h t x := x+ h · ψ h t x

gf Δ ψ x0 0 := x0

gf Δ ψ x0 (j + 1) := Ψψ hj Δj (gf Δ ψ x0 j)

5.2 Consistency Implies Convergence

We now describe up to which extent one-step methods can be used to approx-
imate an arbitrary function u : R → Rn on an interval I := [Δ0;T ]. We first
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formalize the notion of consistency (bounding the local error), then summarize
a set of required assumptions in the predicate convergent from which we show
that one-step methods converge.

The error in one step (the local error) is given by ‖u (t + h) − Ψψ h t (u t)‖
at a point (t, u t) for a step size h. We (as well as the textbook) call a one-step
method consistent with u of order p if the local error is in O(hp+1). This means
that there exists a constant B such that the local error is less than B · hp+1:

consistent u B p ψ :=(
∀t ∈ [Δ0;T ]. ∀h ∈ [0;T − t]. ‖u (t+ h)− Ψψ h t (u t)‖ ≤ B · hp+1

)
convergent. As in the proof of the Picard-Lindelöf theorem, we need the no-
tion of Lipschitz continuity: The textbook defines a cylindrical neighborhood
of radius r around u in which the increment function ψ needs to be Lipschitz
continuous. Moreover the increment function is assumed to be consistent with
u. The definition of convergent summarizes the assumptions required to show
convergence.

convergent u B p ψ r L := consistent u B p ψ ∧ p > 0 ∧B ≥ 0 ∧ L ≥ 0 ∧(
∀t ∈ [Δ0;T ]. ∀h ∈ [0;T − t].

lipschitz (Br(u t)) (ψ h t) L
)

We need to give a constant C such that the global error is less than C · hp.
This constant depends on B and L and the length S of the interval I. We need
this constant as a bound in several upcoming proofs, hence we define it here as
boundS B L for the sake of readability. We want to limit the step size depending
on this constant, the order of consistency, and the radius r of the neighborhood
with a Lipschitz constant, hence we introduce step-bnd B L p r.

boundS B L := B
L ·
(
eL·S+1 − 1

)
step-bnd B L p r := p

√
‖r‖

boundT−Δ0 B L

Given a one-step method gf satisfying the assumptions of convergent, we show
(inductively on the number of the step j) for a small enough step size that gf is
convergent: the global error ‖u Δj − gf Δ ψ x0 j ‖ is in O(hp).

Theorem 4 (Convergence of One-Step methods)

convergent u B p ψ r L ⇒ hmax ≤ step-bnd B L p r ⇒
(∀j. Δj ≤ T ⇒ ‖u Δj − gf Δ ψ x0 j ‖ ≤ boundT−Δ0 B L · hmax

p)

5.3 Stability

Since we want to limit the precision of our calculations for reasons of efficiency
we need to take the sensitivity against (rounding) errors into account. This is
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captured by the notion of stability. For a one-step method defined by ψ, we want
to study the effect of small perturbations in every step.

For this, we introduce (as in Reinhardt [16]) an error function s and an initial
error s0 and study the perturbed one-step method defined by ψs

ψs h t x := ψ h t x+ s h t x

stable. Small perturbations do not affect the results of a convergent one-step
method too much if we assume a convergent ideal one-step method defined by ψ,
a sufficiently small step size, and errors in the order of the step size (the textbook
states the theorem for ‘sufficiently small‘ errors, to obtain an explicit bound we
basically make the perturbations part of the error we allow for consistency). We
summarize this set of assumptions in the definition of stable:

stable u B p ψ r L s s0 := convergent u B p ψ r L ∧

hmax ≤ step-bnd B L p
r

2
∧ s0 ≤ bound0 B L · hmax

p ∧

(∀j. ‖s hj Δj (gf Δ ψs (x0 + s0) j)‖ ≤ B · hj
p)

Under these assumptions, we can show that the error between the distorted
gf Δ ψs (x0 + s0) and the ideal one-step method gf Δ ψ x0 is in O(hp):

Theorem 5 (Stability of one-step methods)

stable u B p ψ r L s s0 ⇒
∀j. Δj ≤ T ⇒ ‖gf Δ ψ x0 j − gf Δ ψs (x0 + s0) j‖ ≤ boundT−Δ0 B L · hmax

p

The textbook proof contains an induction quite similar to the one for the proof
of convergence, and in fact, we managed to generalize the common part (the
accumulation of an error) which we could re-use in both proofs.

6 Euler Method

In this section, we define a simple one-step method, namely the Euler method.
We show that the Euler method applied to an IVP is consistent and therefore
convergent. For reasons of efficiency, we introduce an approximate implementa-
tion of the Euler method on floating point numbers and show that it is stable.
We conclude that the approximate Euler method works correctly.

6.1 Definitions

We now assume an IVP ivp with domain I ×D := [Δ0;T ]×Rb+r(x0) and take
the assumptions from rect T (b + r) L. We want to approximate the solution
of this IVP with the Euler method on a grid Δ. The Euler method connects a
point (t, x) with its subsequent point by a line with the slope given by f(t, x) –
independently of the step size. Notice that in contrast to the previous sections,
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we restrict ourselves and the Euler-method to the univariate case (f :: R×R →
R, solution :: R → R): The proof requires Taylor series expansion, which – in
Isabelle/HOL – is only available for the one-dimensional case.

ψf
euler h t x := f(t, x)

eulerf Δ x0 j := gf Δ ψf
euler x0 j; eulerf :: (N → R) → R → N → R

6.2 Euler on R

Recall Theorem 4 about the convergence of one step methods and its set of
assumptions convergent. The Euler method is clearly a one-step method. In order
to prove convergence for the Euler method, we need to show that it is Lipschitz
continuous and consistent with the solution.

In rect T (b + r) L we have the assumption that f is Lipschitz continuous,
hence the Euler method is Lipschitz continuous, too.

We show consistency with the solution with a Taylor series expansion of the
solution around t, which requires explicit bounds for the derivative of f . Recall
that ‖fc‖ (as defined in the assumptions of rect) is a bound for the values of f
on the domain I ×D. In deriv-bnd we summarize the fact that f ′ is the (total)
derivative of f and that at every point in I ×D, the derivative in every possible
direction the solution might take (bounded by ‖fc‖) is bounded by B. It follows
that under these assumptions the Euler method is consistent with the solution.

deriv-bnd f ′ B := (∀y ∈ I ×D. ∀dx. ‖dx‖ ≤ ‖fc‖ ⇒ f ′ y (1, dx) ≤ 2 · B)

deriv-bnd f ′ B ⇒ consistent solution B 1 ψf
euler

The Euler method being consistent and Lipschitz continuous, we can conclude
with Theorem 4 that the Euler method converges:

Theorem 6 (Convergence of Euler). When Picard-Lindelöf guarantees a
unique solution on a rectangular domain (rect T (b + r) L) and with explicit
bounds on the derivative of f (deriv-bnd f ′ B), the Euler method converges for
a small enough step size (hmax ≤ step-bnd B L 1 r) against the solution:

convergent solution B 1 ψeuler r L

6.3 Euler on F

We decided to add an implementation of the Euler method on arbitrary-precision
floats for efficiency reasons. We define the approximate Euler method ẽuler as a
one-step method operating on floating point numbers. As an increment function,
we work with an approximation f̃ of f in the sense that (f̃

(
t̃, x̃
)
)R approximates

f((t̃)R, (x̃)R) for t̃, x̃ ∈ F. The error of the approximation may stem from trun-
cating the floating point numbers for reasons of efficiency.

We show that the approximate Euler method works correctly as follows: From
Theorem 6, we have a bound on the error between the result of the ideal Euler
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method and the solution (convergence). We apply Theorem 5 to obtain a bound
on the error between the ideal and the approximate Euler method (stability). We
summarize the required assumptions in euler-rounded: We need rect and deriv-bnd
to show convergence. In addition to that, we need bounds on the error of the
approximations x̃0 and f̃ to obtain stability.

euler-rounded b r L f ′ B := rect T (b+ r) L ∧ deriv-bnd f ′ B ∧
t0 = (Δ̃0)R ∧ ‖x0 − (x̃0)R‖ ≤ bound0 B L · (h̃0)R ∧
(∀j x̃. ‖f((Δ̃j)R, (x̃)R)− (f̃(Δ̃j , x̃))R‖ ≤ B · (h̃j)R

One subtle point is the fact that Theorem 5 applies only to one-step methods on
real numbers. We therefore need to instantiate the theorem with the perturbed
increment function fs(t, x) := (f̃ ((t)F, (x)F))R and show that the result of eulerfs

equals (ẽuler ˜f )R, which is easy since eulerfs operates exclusively on real numbers
representable as floating point numbers.

Having convergence of the ideal Euler method (depending on the step size) and
stability of the approximate Euler method (depending on the rounding error),
we can approximate IVPs: The execution of ẽuler˜f on a grid Δ̃ results in an error
compared to solution that can be made arbitrarily small by choosing smaller step
sizes.

Theorem 7 (Convergence of the approximate Euler method on F).
When Picard-Lindelöf guarantees a unique solution on a rectangular domain
(rect T (b+r) L) and with explicit bounds on the derivative of f and appropriate
error bounds for the approximations (x̃0)R and (f̃)R (euler-rounded b r L f ′ B),
the approximate Euler method converges for a small enough step size
(h̃max ≤ step-bnd B L 1 r

2) against the solution (for every j with (Δ̃j)R ≤ T ):∥∥∥solution (Δ̃j)R − (ẽuler˜f Δ̃ x̃0 j)R

∥∥∥ ≤ 2 · boundT−t0 B L · (h̃max)R

7 Example: u̇ t = u2 − t

As a simple case-study, we chose the ODE u̇ t = (u t)2− t which does not admit
a closed formula as solution. In this section we show how we compute u 1

2 . First
we introduce an IVP depending on the user supplied values t̃0, x̃0, T̃ , b, r:

f (t, x) := x2 − t

I ×D := [(t̃0)R; (T̃ )R]× Bb+r((x̃0)R)

(t0, x0) := ((t̃0)R, (x̃0)R)

We then analyze this IVP: We provide the Lipschitz-constant L and the bound-
ary B. We prove a bound of ‖fc‖, and the (total) derivative ḟ of f :

L := 2 ·max ‖(x̃0)R − (b+ r)‖ ‖(x̃0)R + (b+ r)‖
B := 2 ·max ‖(x̃0)R − b‖ ‖(x̃0)R + b‖+ 1

2
‖fc‖ ≤ (max ‖(x̃0)R − b‖ ‖(x̃0)R + b‖)2

ḟ (t, x) (dt, dx) = 2 · x · dx− dt
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The Euler method ẽuler˜f is defined with f̃(t̃, x̃) := roundp(x̃2 − t̃) on an equidis-
tant grid Δ̃j := t̃0 + j · h̃. For a fast computation we use the rounding operator
roundp x which reduces the precision of x, i.e. ‖roundp x− x‖ ≤ 2−p.

We now set the parameters to

t̃0 := 0, x̃0 := 0, b := 1, r := 2−8, T := 1, h̃ := 2−14, and p := 14.

The error to the solution is bounded by 0.001 due to Theorem 7. We discharge
all assumptions with the approximation method [7], as all parameters are fixed.

Theorem 8 (Approximation of the solution to u̇ t = u2 − t)

∀j ≤ 213.
∥∥∥solution (Δ̃j)R − ẽuler˜f Δ̃ x̃0 j

∥∥∥ ≤ 0.001

The execution of ẽuler˜f Δ̃ x̃0 2
13 in the target language SML (where we represent

floating point numbers as pairs of integers) returns −33140952·2−28 ≈ −0.123 . . .
and takes about 2 seconds on a CoreTM2 Duo (E8335) and 2.93 GHz. We put
everything together and obtain a result that is correct for two digits:

u
1

2
= solution (Δ̃213)R ∈ [−0.124 . . . ;−0.122 . . .]

This proposition bypassed the LCF kernel of Isabelle since we trust code gener-
ation for the approximation method and the evaluation of ẽuler˜f , but it could
(at least in principle) be proved by Isabelle’s simplifier.

In order to evaluate the overestimations that stem from the proofs, it is worth
noticing that one gets a result inside the same bounds with the choice of 2−11

instead of 2−14 for stepsize and rounding error. In an experiment with u̇ t = u
(i.e. u t := et), the actual error is more than a factor 22 smaller than the
estimated error. Notice also that for our choice of parameters, 1

2 is the maximum
argument where our theorems guarantee correctness.

8 Conclusion and Discussion

We formalized the Picard-Lindelöf theorem to show the existence of a unique
solution for IVPs in the multivariate case (R → Rn). We conducted an analysis of
the numerical errors of one-step methods that approximate arbitrary functions in
R → Rn, which we could use to show that an ideal Euler method eulerf (without
rounding errors) approximates the solution (but only in the univariate case,
since a multivariate version of Taylor series expansion has not been formalized
in Isabelle/HOL yet). Analysis of stability for one-step methods yielded stability
for the Euler method: small errors f − f̃ do not affect the global behaviour of
an approximate Euler method ẽuler˜f . See these relations summarized in Fig. 2.
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ẽuler ˜f
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Fig. 2. Relationship between the
differential f and the different ap-
proximations

rect deriv-bnd

euler euler-rounded

stable

consistent

convergent

ẽulerf̃ ≈ solution

Fig. 3. Context hierarchy

Most of the theorems we presented require a large set of assumptions, where
the use of locales [4] helped us structuring the theories (compare Fig. 3): We
presented the basic Picard-Lindelöf theorem under assumptions with restrictions
on the size of the interval bnd-strip, then dropped this restriction in strip. More
realistic applications require restricting the codomain of the solution in rect and a
variant of the Picard-Lindelöf in the context of open domains of open-domain is of
mathematical interest. We showed that consistent one step methods (consistent)
are convergent (convergent) and (with additional assumptions) stable (stable)
and showed these properties for the Euler method. We could conclude that an
approximate Euler method converges against the solution.

The Euler method is rarely used in real applications but was relatively easy
to analyze. However, the results from one-step methods apply to the widely used
Runge-Kutta methods, therefore one can profit from our developments when one
implements Runge-Kutta methods of higher order (e.g. the method of Heun or
the “classical” Runge-Kutta method) where one only needs to show consistency
in order to obtain results about convergence.

In order to obtain explicit bounds for the error of the Euler method in a con-
crete application, we rely on code generation. The user needs to provide proofs
that the concrete application satisfies the assumptions of the contexts in which
the error bounds hold. To some extent, an analysis of the differential equation is
also necessary when one wants to evaluate the quality of the approximation ob-
tained by some arbitrary numerical method. It might still be desirable to provide
more automatization e.g. computing the bounds of the derivative or for deriving
a minimum step size automatically.

Our development is available in the AFP [8] and consists of a total of 5020
lines, 1715 for C and the floating-point numbers, 1696 for IVPs, 1217 for one-step
methods, and 392 for the example.
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Abstract. The Girth-Chromatic number theorem is a theorem from
graph theory, stating that graphs with arbitrarily large girth and chro-
matic number exist. We formalize a probabilistic proof of this theorem in
the Isabelle/HOL theorem prover, closely following a standard textbook
proof and use this to explore the use of the probabilistic method in a
theorem prover.

1 Introduction

A common method to prove the existence of some object is to construct it
explicitly. The probabilistic method, which we explain below, is an alternative
if an explicit construction is hard. In this paper, we explore whether the use of
the probabilistic method is feasible in a modern interactive theorem prover.

Consider the Girth-Chromatic Number theorem from graph theory: Roughly,
this states that there exist graphs without short cycles, which nevertheless have
a high chromatic number (i.e., one needs a large number of colors to color the
vertexes in a way such that no adjacent vertexes have the same color). On first
glance, these properties seem contradictory: For a fixed number of vertexes, the
complete graph containing all edges has the largest chromatic number. On the
other hand, if the cycles are large, such a graph is locally acyclic and hence
locally 2-colorable. This discrepancy makes it hard to inductively define a graph
satisfying this theorem.

Indeed, the first proof of this theorem given by Erdős [14] used an entirely
non-constructive approach: Erdős constructed a probability space containing all
graphs of a certain order n. Using tools from probability theory he then proved
that, for a large enough n, randomly choosing a graph yields a witness for the
Girth-Chromatic Number theorem with a non-zero probability. Hence, such a
graph exists. It took 9 more years before a constructive proof was given by
Lovász [22].

This use of probability theory is known as probabilistic method. Erdős and
Rényi are often considered the first conscious users of this method and devel-
oped it in their theory of Random Graphs [7, 15]. Other applications include
Combinatorics and Number Theory. In this work, we explore how well this tech-
nique works in a modern theorem prover.

The well-known Girth-Chromatic Number theorem is one of the early applica-
tions of Random Graphs and often given as an example for applications for the

L. Beringer and A. Felty (Eds.): ITP 2012, LNCS 7406, pp. 393–404, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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probabilistic method. The chromatic number of a graph is the minimal number
of colors which is needed to color the vertexes in a way such that adjacent ver-
texes have different colors. Moreover, the girth g is the size of the shortest cycle in
the graph. The Girth-Chromatic number theorem then states that for an arbitrary
natural number � there exists a graphG with both χ(G) > � and g(G) > �.

The proof we present here follows the one given in [11]. The Isabelle/HOL
theory files containing our formalization can be found in the Archive of Formal
Proofs [26].

The paper is structured as follows: Section 2 provides a brief introduction to
Isabelle. Section 3 defines basic graph properties and operations and Section 4
introduces a probability space on graphs. In Section 5 we describe how we handle
asymptotic properties. Section 6 gives a high-level description of the proof of
the Girth-Chromatic Number theorem before our formalization of this proof is
described in Section 7. We reflect on this formalization in Section 8 and review
related work in Section 9. Section 10 concludes this paper.

2 Isabelle/HOL

Isabelle/HOL is an implementation of classical Higher Order Logic in the generic
interactive theorem prover Isabelle [25]. We just write Isabelle instead of Is-
abelle/HOL throughout this paper. Formulas and terms are stated in standard
mathematical syntax and 2X denotes the power set of X . The term bound by a
quantifier extends as far to the right as possible.

Lists are constructed from nil ([]) and cons (·) and hd and tl decompose a list
such that hd(x · xs) = x and tl(x · xs) = xs.

3 Modeling Graphs

We consider undirected and loop-free graphs G = (V,E) where V and E are sets
of vertexes and edges, respectively. Edges are represented as sets of vertexes. For
conciseness of presentation, we fix the vertexes to be a subset of N. The graphs
may be infinite, however usually we are only interested in finite graphs.

We use VG and EG to refer to the vertexes and edges of a graph G. The order
of a graph is the cardinality of its vertex set. A graph is called wellformed, if
every edge connects exactly two distinct vertexes of the graph. This is expressed
by the following predicate:

wellformed(G) := (∀e ∈ EG. |e| = 2 ∧ (∀u ∈ e. u ∈ VG))

A walk is a sequence of vertexes of a graph, such that consecutive vertexes are
connected by an edge. We represent walks as non-empty lists of vertexes and
define the edge list of a walk recursively. The length of a walk (denoted by || · ||)
is the length (denoted by | · |) of its edge list. A cycle is represented as a walk
of length at least 3 where first and last vertex are equal, but each other vertex
occurs at most once. Note that a cycle of length k is represented by 2k different
walks.
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walk-edges([]) := []

walk-edges([x]) := []

walk-edges(x · y · xs) := {x, y} · walk-edges(y · xs)

||p|| := |walk-edges(p)|

walks(G) := {p | p �= [] ∧ set(p) ⊆ VG ∧ set(walk-edges(p)) ⊆ EG}
cycles(G) := {p ∈ walks(G) | ||p|| ≥ 3 ∧ distinct(tl(p))

∧ hd(p) = last(p)}

The girth g of a graph is the length of its shortest cycle; the girth of a graph
without cycles will be denoted by∞. As N∞, the set of natural numbers extended
with ∞, forms a complete lattice, we can define the girth of a graph as the
infimum over the length of its cycles:

g(G) := inf
p∈cycles(G)

||p||

A vertex coloring is a mapping of the vertexes of a graph to some set, such that
adjacent vertexes are mapped to distinct elements. We are only interested in the
partition defined by this mapping. The chromatic number χ is the size of the
smallest such partition.

colorings(G) := {C ⊆ 2VG |
⋃
V ∈C

= VG

∧ (∀V1, V2 ∈ C. V1 �= V2 ⇒ V1 ∩ V2 = ∅)

∧ (∀V ∈ C. V �= ∅ ∧ (∀u, v ∈ V. {u, v} �∈ EG))}

χ(G) := inf
C∈colorings(G)

|C|

These definitions suffice to state the Girth-Chromatic Number theorem:

∃G. wellformed(G) ∧ � < χ(G) ∧ � < g(G)

However, we need a few auxiliary definitions; most notably the notion of an
independent set and the independence number α.

EV := {{u, v} | u, v ∈ V ∧ u �= v}
independent-sets(G) := {V | V ⊆ VG ∧ EV ∩ EG = ∅}

α(G) := sup
V ∈independent-sets(G)

|V |

Here, EV is the set of all (non-loop) edges on V . We also write En for E{1,...,n}.
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3.1 Removing Short Cycles

Besides the usual graph theoretic definitions, we will need an operation to remove
all short cycles from a graph. For a number k, a short cycle is a cycle with length
at most k:

short-cycles(G, k) := {c ∈ cycles(G) | ||c|| ≤ k}
We remove the short cycles by repeatedly removing a vertex from a short cycle
until no short cycle is left. To remove a vertex from a graph, all edges adjacent
to this vertex are also removed.

G− u := (VG \ {u}, EG \ {e ∈ EG | u ∈ e})
choose-v(G, k) := εu(∃p ∈ short-cycles(G, k). u ∈ p)

kill-short(G, k) := if short-cycles(G, k) = ∅ (1)

then G else kill-short(G− choose-v(G, k), k)

To select an arbitrary vertex we use Hilbert’s choice operator ε. Given a predicate
P , this operator returns either some element satisfying P (if such an element
exists) or an arbitrary element from the domain of P otherwise.

Equation (1) defines a recursive function which does not terminate on some
infinite graphs. However, an (underspecified) function with this equation can
easily defined by the partial function command of Isabelle. To prove some
properties about the graphs computed by kill-short, a specialized induction rule
is useful.

Lemma 1 (Induction rule for kill-short). Let k be a natural number. If for
all graphs H both

short-cycles(H, k) = ∅ ⇒ P (H, k)

and

finite(short-cycles(H, k)) ∧ short-cycles(H, k) �= ∅

∧P (H − choose-v(H, k)) ⇒ P (H, k)

hold, then P (G, k) holds for all finite graphs G.

The canonical induction rule would have finite(H) as assumption for the second
rule, but we strengthened the induction hypothesis with the additional assump-
tion finite(short-cycles(G, k)) as it saves a little amount of work when we prove
Lemma 4 below. With this induction rule, we can easily prove the following
theorems about kill-short for finite graphs G:

Lemma 2 (Large Girth). The girth of kill-short(G, k) exceeds k, i.e.,

k < g(kill-short(G, k)) .

Lemma 3 (Order of Graph). kill-short(G, k) removes at most as many ver-
texes as there are short cycles, i.e.,

|VG| − |Vkill-short(G,k)| ≤ |short-cycles(G, k)| .
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Lemma 4 (Independence Number). Removing the short cycles does not in-
crease the independence number, i.e., α(kill-short(G, k)) ≤ α(G).

Lemma 5 (Wellformedness). Removing short cycles preserves wellformed-
ness, i.e., wellformed(G) ⇒ wellformed(kill-short(G, k)).

4 Probability Space

There are a number of different probability models which are commonly used for
the analysis of random graphs. To prove the Girth-Chromatic number theorem,
we consider a series of probability spaces Gn of graphs of order n, for n going
to infinity. Gn consists of all graphs G with VG = {1, . . . , n} and EG ⊆ En. A
randomly chosen graph G ∈ Gn contains an edge e ∈ En with probability pn.
As VG is fixed to {1, . . . , n}, a graph G ∈ Gn is uniquely defined by its edges;
so instead of a space of graphs Gn, we define a space En of edge sets. This turns
out to be slightly more convenient.

To define such a probability space in a canonical way, for each edge in En

one defines a probability space on {0, 1}, such that 1 occurs with probability pn
and 0 with probability 1 − pn. Then, Gn is identified with the product of these
probability spaces.

This construction is supported by Isabelle’s extensive library on probability
theory [17]. However, the elements of the product space of probability spaces

are functions 22
N → {0, 1} which are only specified on En. Identifying these

with edge sets triggers some amount of friction in a theorem prover. To avoid
this, we construct a probability space on edge sets without using the product
construction. This is easily possible as En is finite for all n.

For the definition of En, we consider the following. In the setting above, the
probability that a randomly chosen edge set contains a fixed edge e is pn; the
probability of the negation is 1− pn. As the probabilities of the edges are inde-
pendent, the probability that a randomly chosen edge set is equal to a fixed set

E ⊆ En is the product of the edge probabilities, i.e., p
|E|
n · (1 − pn)

|En−E|.

Definition 6 (Probability Space on Edges). Let n ∈ N and p ∈ R with 0 ≤
p ≤ 1. Let f(E) = p|E| · (1 − p)|En−E| for all E ∈ 2En. Then En,p = (2En ,Pn,p)
is the probability space whose domain consists of all the subsets of En and whose
probability function is Pn,p(X) = ΣE∈Xf(E) for all X ⊆ En. When a function
p : N → R is given from the context, we also write En and Pn instead of En,pn

and Pn,pn .

Isabelle’s probability library provides a locale [4] for probability spaces. One
option to specify such a space is by a finite domain X and a function f with the
following properties: For each x ∈ X holds 0 ≤ f(x) and we have

∑
x∈X f(x) = 1.

When we show that those two properties hold in Def. 6, then Isabelle’s locale
mechanism transfers all lemmas about probability spaces to En,p. We need in
particular the following lemma:
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Lemma 7 (Markov’s Inequality). Let P = (X,μ) be a probability space,
c ∈ R and f : X → R such that 0 < c and for all x ∈ X holds 0 ≤ f(x). Then

μ({x ∈ X | c ≤ f(x)} ≤ 1/c ·Σx∈X(f(x) · μ{x}) .

To prove that En,p is an instance of the locale of probability spaces we need the
lemma below.

Lemma 8 (Sum of Probabilities Equals 1). Let S be a finite set. Then for
all p ∈ R holds ΣA⊆S

(
p|A| · (1− p)|S−A|) = 1 .

A similar lemma describes the probability of certain sets of edge sets.

Lemma 9 (Probability of Cylinder Sets). Let En,p be a probability space
and cyln(A,B) := {E ⊆ En | (∀x ∈ A. x ∈ E) ∧ (∀x ∈ B. x /∈ E)} the set of all
edge sets containing A but not B. Then Pn,p(cyln(A,B)) = p|A| · (1 − p)|B| for
all disjoint A,B ⊆ En.

5 Handling Asymptotics

As mentioned in Section 4, we consider a series of probability spaces, as the
order grows towards infinity. In many cases, it suffices if a property P holds
after some finite prefix, i.e., ∃k. ∀n > k. P (n). Often, we can avoid dealing with
these quantifiers directly. For example, to prove

(∃k1. ∀n > k1. P (n)) ∧ (∃k2. ∀n > k2. Q(n)) ⇒ ∃k3. ∀n > k3. R(n)

we can prove ∃k. ∀n > k. P (n) ∧Q(n) ⇒ R(n) or even just ∀n. P (n) ∧Q(n) ⇒
R(n) instead. However, such a rule would be inconvenient to use in practice,
as proof automation tends to destroy the special form of the quantifiers. This
can be prevented by using a specialized constant instead of the quantifiers. In
Isabelle, such a constant (with suitable lemmas) is already available in the form
of filters [8] and the eventually predicate. Filters generalize the concept of a
sequence and are used in topology and analysis to define a general notion of
convergence; they can also be used to express quantifiers [6]. In rough terms, a
filter is a non-empty set of predicates closed under conjunction and implication
and eventually is the membership test. We use eventually with the filter

sequentially := {P | ∃k. ∀n > k. P (n)}

as kind of a universal quantifier. This fits nicely Isabelle’s definition of a limit:

lim
n→∞ f(n) = c ⇒ ∀ε. eventually ((λn. |f(n)− c| < ε), sequentially)

The formula ∃k. ∀n > k. P (n) is equivalent to eventually(P, sequentially). We
will denote this as ∀∞n. P (n) or write “P (n) holds for large n”. We mostly used
the following three rules when dealing with this quantifier:
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∀n. k < n ⇒ P (n)

∀∞n. P (n)
(eventually-sequentiallyI )

∀∞n. P (n) ∀∞n. (P (n) ⇒ Q(n))

∀∞n. Q(n)
(eventually-rev-mp)

∀∞n. P (n) ∀∞n. Q(n) ∀n. (P (n) ∧Q(n)) ⇒ R(n)

∀∞n. R(n)
(eventually-elim2 )

Apart from rule eventually-sequentiallyI , these hold for the eventually predicate
in general. The rule eventually-elim2 is actually just a convenience rule, which
can be easily derived from the other two rules by dropping the condition k < n.

6 Proof Outline

We start with a high-level outline of the proof. Let � be a natural number. A cycle
c with ||c|| ≤ � is called a short cycle. We recall the Girth-Chromatic Number
theorem:

∃G. wellformed(G) ∧ � < χ(G) ∧ � < g(G)

Instead of working with the chromatic number, we will work with the inde-
pendence number α. Estimating probabilities for this number is easier, as an
independent set is a cylinder set, cf. Lemma 9. The following lemma relates
chromatic and independence number.

Lemma 10 (Lower Bound for χ(G)). For all graphs G, |G|/α(G) ≤ χ(G).

The basic idea of the probabilistic proof of existence is to show that, for large
enough n, choosing a random graph G ∈ Gn (respectively E ∈ En) yields a graph
with the desired properties with a non-zero probability.

A reasonable approach would be to choose the probability function pn, such
that we can show Pn{G | g(G) < �}+Pn{G | α(G) > n/�} < 1. This would imply
that a graph G satisfying neither g(G) < � nor χ(G) < � exists, i.e., a graph
satisfying the Girth-Chromatic number property. However, such a probability
does not exist [11]. Instead, by choosing pn correctly, we can show the weaker
property

Pn{G | n/2 ≤ |short-cycles(G, �)|}+ Pn{G | 1/2 · n/� ≤ α(G)} < 1

and obtain a graph with at most n/2 short cycles and an independence number
less than 1/2 ·n/� (i.e., 2� < χ(G) by Lemma 10). From this graph, we remove a
vertex from every short cycle. The resulting graph then has large girth and the
chromatic number is still large.

7 The Proof

As a first step, we derive an upper bound for the probability that a graph has
at least 1/2 · n/k independent vertexes.
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Lemma 11 (Probability for many Independent Edges). Given n, k ∈ N
such that 2 ≤ k ≤ n, we have

Pn{E ⊆ En | k ≤ α(Gn,E)} ≤
(
n

k

)
(1 − pn)

(k2) .

Proof. Holds by a simple combinatorial argument and Lemma 9.

Lemma 12 (Almost never many Independent Edges). Assume that 0 < k
and ∀∞n. 0 < pn ∧ pn < 1. If in addition ∀∞n. 6k · lnn/n ≤ pn holds, then there
are almost never more then 1/2 · n/k independent vertexes in a graph, i.e.,

lim
n→∞Pn{E ⊆ En | 1/2 · n/k ≤ α(Gn,E)} = 0

Proof. With Lemma 11.

Then we compute the expected number of representatives of cycles of length k
in a graph. Together with Markov’s Lemma, this will provide an upper bound
of Pn{E ∈ En | n/2 ≤ |short-cycles(Gn,E , �)|}.

Lemma 13 (Mean Number of k-Cycles). If 3 ≤ k < n, then the expected
number of paths of length k describing a cycle is(

ΣE∈En |{c ∈ cycles(Gn,E) | k = ||c||}| · Pn({E})
)
=

n!

(n− k)!
· pk

We arrive at our final theorem:

Theorem 14 (Girth-Chromatic Number). Let � be a natural number. Then
there exists a (wellformed) graph G, such that � < g(G) and � < χ(G):

∃G. wellformed(G) ∧ � < g(G) ∧ � < χ(G)

To prove this, we fix pn = nε−1 where ε = 1/(2�) and assume without loss of
generality that 3 ≤ �. These assumptions hold for all of the following proposi-
tions. With Lemma 13, we can derive an upper bound for the probability that
a random graph of size n has more than n/2 short cycles:

Proposition 15

∀∞n. Pn{E ⊆ En | n/2 ≤ |short-cycles(Gn,E , �)|} ≤ 2(�− 2)nε�−1

As this converges to 0 for n to infinity, eventually the probability will be less
than 1/2:

Proposition 16

∀∞n. Pn{E ⊆ En | n/2 ≤ |short-cycles(Gn,E , �)|} < 1/2

Similarly, with these choices, the conditions of Lemma 12 are satisfied:
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Proposition 17

∀∞n. Pn{E ⊆ En | 1/2 · n/� ≤ α(Gn,E)} < 1/2

Therefore, the sum of these probabilities will eventually be smaller than 1 and
hence, with a non-zero probability, there exists a graph with only few short cycles
and a small independence number:

Proposition 18. There exists a graph G ∈ Gn satisfying both 1/2 · n/� > α(G)
and n/2 > |short-cycles(G, �)|.

By removing the short cycles, this graph will be turned into a witness for the
Girth-Chromatic Number theorem. This completes the proof of Theorem 14.

Proposition 19. Let G be a graph obtained from Lemma 18. Then the graph
H := kill-short(G, �) satisfies � < g(H) and � < χ(H). Moreover, H is well-
formed.

Proof. By Lemmas 2–5 and 10.

Actually, we almost proved an even stronger property: The probabilities in
Propositions 16 and 17 converge both to 0, so almost all graphs satisfy the
condition of Proposition 18. Hence, almost every graph can be turned into a
witness for the Girth-Chromatic Number theorem by removing the short cycles.
This is typical for many proofs involving the probabilistic method.

8 Discussion

In this work, we formally proved the Girth-Chromatic Number theorem from
graph theory, closely following the text book proof. The whole proof consists
of just 84 theorems (1439 lines of Isabelle theories), split into three files and is
therefore quite concise. Around 41 of these lemmas are of general interest, reason-
ing about reals with infinity and some combinatorial results. Partly, these have
been added to the current developer version of Isabelle. Moreover, 18 lemmas
are given about basic graph theory and the core proof of the theorem consists
of the remaining 25 lemmas (around 740 lines). For the core proof, we mostly
kept the structure of the text book proof, so auxiliary propositions only needed
for one lemma are not counted separately.

The result looks straight-forward, but there are some design choices we like
to discuss. In an early version of this formalization, we represented edges by
an explicit type of two-element sets. However, it turned out that this made
some proof steps a lot more complicated: Isabelle does not support subtyping,
so defining a two-element-set type yields a new type disjoint from sets with a
partial type constructor. When we need to refer to the vertexes connected by
an edge, this partiality makes reasoning harder. This easily offsets the little gain
(we only need wellformedness explicitly in two theorems) an explicit edge type
gives in our setting.
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One should note that our definition of the chromatic number is not as ob-
viously correct as it appears from the first glance: For an infinite graph G,
χ(G) = 0. This is due to the standard definition of cardinality in Isabelle map-
ping infinite sets to 0. We decided not to care about this, as we only are interested
in finite graphs (and our final theorem assures a positive chromatic number any-
way).

The main reason we decided to use N∞ instead of N was to be able to give
a natural definition of the girth – without infinity, we would need an extra
predicate to handle the “no cycles” case. A nice side effect is that α and χ are
easier to handle, as we do not have to care about emptyness or finiteness to
evaluate infimum and supremum. However, as a result of this choice, we need
to deal with real numbers including infinity (R∞, with ±∞). If this had not
been already available as a library, it would probably have been easier to avoid
infinity altogether and special case the girth of acyclic graphs.

Our use of eventually turned out to be quite rewarding. For the proofs for
Lemma 12 and the propositions for Theorem 14 we quite often collect a number
of facts holding for large n and eliminate them like in Section 5. This made
for more elegant proofs, as we needed less bookkeeping for (mostly irrelevant)
explicit lower bounds.

Now, which capabilities are needed to use the probabilistic method in a the-
orem prover? Obviously some amount of probability theory. Different fragments
of probability theory are now formalized in many theorem provers, including
HOL4, HOL-light, PVS, Mizar and Isabelle [12, 17, 18, 21, 23]. Surprisingly, for
the proof presented here, not much more than Markov’s Inequality is required.
For other proofs, more stochastic vocabulary (like variance and independence)
is needed.

If one makes the step from finite to infinite graphs (for example to prove the
Erdős-Rényi theorem that almost all countably infinite graphs are isomorphic
[13, 27]), infinite products of probability spaces are required. To our knowledge,
the only formalization of these is found in Isabelle [17].

Furthermore, good support for real arithmetic including powers, logarithms
and limits is needed. Isabelle has this, but proving inequalities on complex terms
remains tedious as often only very small proof steps are possible. However, the
calculational proof style [5] (inspired by Mizar) is very helpful here.

In the future, an automated reasoner for inequalities over real-value functions
like MetiTarski [1] might be useful. However, the set of a few example inequalities
from our proof which L. Paulson kindly tested for us is still outside the reach of
MetiTarski.

9 Related Work

Proofs with the probabilistic method often lead to randomized algorithms. Prob-
ably the first formalization in this area is Hurd’s formalization of the Miller-
Rabin primality test [19]; other work on this topic is available in Coq [3]. A
constructive proof of a theorem similar to the Girth-Chromatic Number theo-
rem was formalized by Rudnicki and Stewart in Mizar [28].
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There are a few general formalizations of graph theory available in various
theorem provers, for example [9, 10, 20]; but often proof developments rather
use specialized formalizations of certain aspects of graph theory [16, 24] to ease
the proof. For the Girth-Chromatic Number theorem, the common definition of
graphs as pairs of vertexes and edges seems quite optimal. Even though, we did
not find the lack of a general graph theory in Isabelle to be a major obstacle: The
Girth-Chromatic Number theorem does not rely on any deep properties about
graphs and the formalization of graphs we give here is rather straight-forward.

10 Conclusion

We gave a concise (and, to our knowledge, the first) formal proof for the well-
known Girth-Chromatic Number theorem and explored the use of the proba-
bilistic method in theorem provers, which worked well for this theorem. It will
be interesting to see whether this continues to hold true for more involved the-
orems. An interesting example for this could be Lovász Local Lemma: Many
probabilistic proofs show not only that the probability is non-zero, but even
that it tends to 1 for large graphs. The Local Lemma can be used to show that
a property holds with a positive, but very small probability. This enables some
combinatorical results, for which no proof not involving this lemma is known [2].

Acknowledgments. We thank the anonymous reviewers for their feedback and
pointing us to [10].
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Abstract. Proof tools in interactive theorem provers are usually devel-
oped within and tied to a specific system, which leads to a duplication
of effort to make the functionality available in different systems. Many
verification projects would benefit from access to proof tools developed
in other systems. Using OpenTheory as a language for communicating
between systems, we show how to turn a proof tool implemented for one
system into a standalone tactic available to many systems via the inter-
net. This enables, for example, LCF-style proof reconstruction efforts to
be shared by users of different interactive theorem provers and removes
the need for each user to install the external tool being integrated.

1 Introduction

There are many LCF-style systems for interactively developing machine-checked
formal theories, including HOL4 [1], HOL Light [2], ProofPower [3] and Is-
abelle/HOL [4]. The logic implemented by these systems is essentially the same,
but the collections of theory libraries and proof tools built on top of the logical
kernels differ. Where similar proof tools exist in multiple systems it is usually
the result of duplicated effort.

Examples of duplicated effort on tactics include the integration of external
tools into HOL-based provers. For instance, Kumar andWeber [5] and Kunčar [6]
give independent integrations of a quantified boolean formula solver into HOL4
and HOL Light. Weber and Amjad [7] give high-performance integrations of
SAT solvers into three HOL-based systems; each integration requires a separate
implementation. Sledgehammer [8] is only available for Isabelle/HOL, but its
functionality would also be useful in other systems.

In addition to the development effort, the cost of maintenance can also be
multiplied over different systems, and improvements in functionality can become
restricted to a single system unnecessarily. For instance, the Metis first order logic
prover [9] is integrated in multiple systems in the HOL family, but the HOL4
version is very old compared to the latest version in Isabelle/HOL. Slind’s TFL
package for defining recursive functions [10], originally implemented for both
Isabelle/HOL and HOL4, was superseded in Isabelle/HOL by Krauss’s function
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definition package [11]. The improvements of Krauss’s method over TFL ought
to be applicable to other HOL-based provers, but a direct reimplementation
would require substantial effort.

It makes sense to speak of similar proof tools in different interactive theo-
rem provers not just because they implement essentially the same logic, but
also because there is a shared base of concepts: booleans, inductive datatypes,
recursive functions, natural numbers, lists, sets, etc. The OpenTheory standard
library [12] formalises this shared base as a collection of theory packages contain-
ing proofs written in the simple article format designed for storing and sharing
higher order logic theories [13]. We use OpenTheory as a language for interac-
tive theorem provers to communicate with proof tools on a remote server, and
thereby obtain the following two benefits:

1. Proof Articles: A standard format to encode the goals that will be sent to
the remote proof tools and the proofs that will be received in response.

2. Standard Library: An extensible way to fix the meaning of constants and
type definitions between systems.

We contend that proof tools for interactive theorem provers need only be written
and maintained in one place rather than once per system, using standalone
tactics that are available online and communicate using OpenTheory. An added
advantage when the tactic is an integration of an external tool is that a user of
the interactive theorem prover need not install the external tool: it only needs
to be available on the server hosting the standalone tactic.

The contributions of this rough diamond are:

1. A general method for turning existing proof tools implemented in interactive
theorem provers into standalone tactics (Section 2).

2. Preliminary results profiling the performance of working examples of stan-
dalone tactics (Section 3).

2 Lifting Proof Tools into the Cloud

2.1 OpenTheory for Tactic Communication

An example: the user of an interactive theorem prover faced with the goal

∀n. 8 ≤ n ⇒ ∃s, t. n = 3s+ 5t

decides to pass it off to a standalone tactic for linear arithmetic.
The input for the standalone tactic is the goal term, and the output is a

proof of the theorem. Standalone tactics use the OpenTheory article format for
communicating terms and proofs. The interactive theorem prover serializes the
goal term from its local internal format to an article file, and sends the article
over the internet to the standalone tactic. If successful, the standalone tactic
sends back another article file encoding a proof of the goal, which the interactive
theorem prover replays through its logical kernel to create the desired theorem.

This example illustrates the key requirements for an interactive theorem
prover to use standalone tactics:



Standalone Tactics Using OpenTheory 407

1. Ability to replay proofs by reading OpenTheory articles.
2. Ability to write terms as OpenTheory articles.
3. Ability to communicate with external programs.

Requirements 1 and 2 can be satisfied for an interactive theorem prover by
implementing an OpenTheory interface that can interpret and construct articles.
The central concept in OpenTheory is that of a theory package, Γ � Δ, which
proves that the set of theorems Δ logically derive from the set of assumptions
Γ . An article is a concrete representation of a theory package, consisting of
instructions for a virtual machine whose operations include construction of types
and terms, and the primitive inference rules of higher order logic. To read an
article, an interactive theorem prover performs the primitive inferences and other
instructions listed in the file. The OpenTheory logical kernel is based on HOL
Light’s logical kernel, and the instructions are chosen to make it easy to read
articles into any system that can prove theorems of higher order logic.

An article file represents a theory Γ � Δ. By takingΔ to be the set of theorems
proved by a proof tool and Γ to be the set of theorems used by the proof tool, we
can view the result of executing a proof tool as a logical theory. In our example
above of using a linear arithmetic standalone tactic on the given goal, this theory
might be⎧⎨⎩

� ∀n. n+ 0 = n
� ∀m,n. mn = nm
· · ·

⎫⎬⎭ �
{
� ∀n. 8 ≤ n ⇒ ∃s, t. n = 3s+ 5t

}
where the assumptions consist of a collection of standard arithmetic facts.

The main benefit of using OpenTheory for communication is that it pro-
vides a standard ontology for fixing the meanings of constants and type op-
erators between different systems. For example, the numerals 3, 5 and 8 in
the example goal term can be encoded in binary using the standard constants
Number.Natural.bit0 and Number.Natural.bit1. The full names and proper-
ties of these constants are indicated in the OpenTheory standard library, and
interactive theorem provers can maintain translations to and from their local
names and theorems. A system using a different encoding for numbers (say
unary, with Number.Natural.suc and Number.Natural.zero) could use addi-
tional standalone tactics to translate between encodings.

Implementing an OpenTheory interface to satisfy Requirements 1 and 2 above
carries the additional benefit of giving the interactive theorem prover access to
all logical theories stored as OpenTheory packages, not just those that are the
output of standalone tactics.

2.2 Extracting Tactics from Interactive Theorem Provers

There are two approaches to obtaining a standalone tactic: either write one
directly; or extract an existing tactic from an interactive theorem prover. We
have experimented with the second approach, extracting tactics from HOL4 and
from HOL Light. The procedure is reasonably lightweight, but less flexible than
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writing a standalone tactic directly. For tactic extraction to succeed, the key
requirements on the interactive theorem prover are:

1. Ability to read and write OpenTheory article files.
2. Ability to record proofs and reduce them to the OpenTheory kernel.
3. Ability to make a standalone executable encompassing the tactic function-

ality separated from the usual interface to the interactive theorem prover.

Just as the requirements for an interactive theorem prover to use standalone
tactics also enable it to import OpenTheory packages in general, the first two
requirements to create standalone tactics also enable a system to create and ex-
port OpenTheory packages. (The last requirement enables running on a server.)

Requirement 2 poses the highest barrier: a standalone tactic must record each
proof at a level of detail sufficient to prove the same theorem using the OpenThe-
ory kernel. The following method can be used if the system implementing the
tactic has an LCF-style design, that is, theorems can only be created by a small
number of primitive inference rules: (i) augment the internal theorem type with
a type of proofs to track the system primitive inferences used; and (ii) express
each system primitive inference as a derived rule of the OpenTheory kernel. We
applied this method to meet Requirement 2 for both HOL4 and HOL Light. For
some primitive inferences (such as reflexivity of equality) there is a direct trans-
lation to the OpenTheory logical kernel. But, for example, HOL4’s primitive rule
for definition by specification must be emulated in the OpenTheory kernel, for
example by using Hilbert choice. Although Isabelle/HOL uses the LCF architec-
ture, its logical kernel is quite different from OpenTheory; we therefore expect
translating Isabelle/HOL proofs to be more difficult than HOL4 and HOL Light
proofs.

To satisfy Requirement 3 in HOL4, we used the ‘export’ facility of the Poly/ML
compiler, which creates a standalone executable that runs an ML function. For
each tactic, we captured a function that reads an article representing the input
term, runs the tactic (recording the proof), and writes an article containing the
proof. The situation for HOL Light is more complicated because OCaml does
not provide such an ‘export’ facility, and a HOL Light session typically starts by
proving the standard library. We used a general-purpose checkpointing facility
to capture a HOL Light session at the point where it is ready to read an article
and run a tactic.

3 Preliminary Performance Results

We collected preliminary performance data for two test standalone tactics ex-
tracted from HOL4, and called from HOL Light. They are QBF [5], which proves
quantified boolean formulas, and SKICo, which rewrites terms to combinatory
form like so: � (∀x. x ∨ ¬x) = (∀) (S (∨) (¬)). We used the following three test
goals:
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Table 1. Performance profiling for the test standalone tactics

Tactic- Goal Remote Proof Total Local
Problem Size Time Time Size Time Time Time

(b) (s) (s) (b) (s) (s) (s)

QBF-1 927 0.001 1.064 10,991 0.022 1.088 0.002
QBF-2 1,474 0.001 1.892 79,944 0.139 2.034 0.024
QBF-3 1,546 0.001 1.821 91,639 0.172 1.996 0.024
SKICo-1 927 0.001 1.212 20,047 0.041 1.255 0.000
SKICo-2 1,474 0.002 1.557 52,249 0.113 1.673 0.001
SKICo-3 1,546 0.002 1.716 60,642 0.125 1.844 0.005

1. ∀x. x ∨ ¬x
2. ∃p. (∀q. p ∨ ¬q) ∧ ∀q. ∃r. r
3. ∃x. ∀y. ∃z. (¬x ∨ ¬y) ∧ (¬z ∨ ¬y)

For each invocation of a standalone tactic on a test goal, Table 1 profiles the
time and space requirements of the three phases of execution: encoding the goal
as an article; communicating with and executing the standalone tactic remotely;
and replaying the proof article received. For comparison, the time to run the
tactic locally within HOL4 is given in the rightmost column.

The sizes of the articles for the test goals and the resulting proofs are com-
parable to the typical size of web requests and the resulting pages, so we can
be confident that we are within the normal operating range of the web tools we
use (curl on the client and CGI scripts on the server). For problems involving
larger articles (bigger goals or longer proofs) we may wish to compress them us-
ing gzip before sending them over the network—previous experiments showed
a compression ratio of 90% is typical for article files [13].

Turning now to execution time, we can see that it is significantly more ex-
pensive to call a standalone tactic over the internet compared to executing it
locally. However, most of the time is spent on ‘Remote Time’, which includes
communicating with the remote standalone tactic and waiting for it to read
the goal article, run the proof tool, and write the resulting proof article. Using
traceroute we see a 0.173s network delay between the test client in Portland,
OR, USA and the test server in Cambridge, UK, which accounts for at least
0.346s of delay. The overall time is in the 1–2s range, which is very slow for
workaday tactics but may well be tolerated by the user to gain access to the
functionality of a proof tool on another system.

4 Related Work

The PROSPER project [14] pioneered the technique of sending goals over the in-
ternet to a remote solver, and packaging such procedures as tactics in the HOL4
theorem prover. The standalone tactics described in this paper further system-
atize this by using OpenTheory as a standard language and ontology to make it
easier for interactive theorem provers and remote solvers to communicate.
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An impressive example of providing reasoning infrastructure over the internet
is System on TPTP [15], which enables a user to remotely execute a collection
of automatic theorem provers on a problem expressed in a standard format.
The usual scenario is to decide the validity of first order logic formulas (TPTP
format), but there is also support for higher order terms (THF format), and for
returning proofs expressed in a standard language (TSTP format).

The idea of separate reasoning tools communicating to enhance a proof devel-
opment environment is also being pursued in the Evidential Tool Bus [16] and
the MathServe System [17]. This idea is a natural extension of the integration
of automatic tools with interactive theorem provers.

5 Conclusion

We have shown how, using OpenTheory for communication, we can write tools
for higher order logic reasoning tasks as standalone tactics, making them avail-
able to multiple interactive theorem provers and independently maintainable.
Existing proof tools can be extracted from their home systems for reuse. There
is a substantial but hopefully tolerable overhead of communicating goals and
proofs in article files over the internet.
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Functional Programs: Conversions

between Deep and Shallow Embeddings

Magnus O. Myreen

Computer Laboratory, University of Cambridge, UK

Abstract. This paper presents a method which simplifies verification
of deeply embedded functional programs. We present a technique by
which proof-certified equations describing the effect of functional pro-
grams (shallow embeddings) can be automatically extracted from their
operational semantics. Our method can be used in reverse, i.e. from
shallow to deep embeddings, and thus for implementing certifying code
synthesis: we have implemented a tool which maps HOL functions to
equivalent Lisp functions, for which we have a verified Lisp runtime.
A key benefit, in both directions, is that the verifier does not need to
understand the operational semantics that gives meanings to the deep
embeddings.

1 Introduction

For purposes of program verification, programs can be represented in theorem
provers either in terms of syntax (a deep embedding), e.g. using an abstract
datatype or as a string of ASCII characters

(defun APPEND (x y)

(if (consp x)

(cons (car x) (APPEND (cdr x) y))

y))

or alternatively, directly as functions in the logic of a theorem prover (shallow
embeddings),

append x y = if consp x �= nil then
cons (car x) (append (cdr x) y)

else y

Shallow embeddings are easier to work with. Consider e.g. proving associativity
of APPEND. Proving this over the shallow embedding is straightforward.

append x (append y z) = append (append x y) z

Proving the same for a deep embedding, w.r.t. an operational semantics ev−→ ,
involves a tedious proof over a transition system: for all res , env , x, y, z,

(App (Fun "APPEND") [x,App (Fun "APPEND") [y, z]], env , s) ev−→ (res , s) ⇐⇒
(App (Fun "APPEND") [App (Fun "APPEND") [x, y], z], env , s) ev−→ (res , s)

L. Beringer and A. Felty (Eds.): ITP 2012, LNCS 7406, pp. 412–417, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In some cases, proofs over deep embeddings are unavoidable, e.g. if we are to
connect the verification proof to the correctness theorem of a verified compiler
or runtime, since these are stated in terms of semantics of deep embeddings.

This paper presents a novel proof-producing technique for converting between
the two forms of embedding. Our conversions produce a proof for each run; the
result is a certificate theorem relating the shallow embedding (append) to the
deep embedding (APPEND) w.r.t. an operational semantics ap−→ which specifies
how deeply embedded programs evaluate. This will be explained in Section 2.

∀x y state.
code for append in state =⇒
(Fun "APPEND", [x, y], state) ap−→ (append x y, state)

The proof-producing translation technique described in this paper means that
the verifier can let automation deal with the operational semantics and thus
avoid even understanding the definition of the operational semantics. This work
has applications in verification and code synthesis.

Program verification: Given a functional programs written in a deep embed-
ding, e.g. ASCII, we can parse this into an abstract syntax tree and use the
translation from deep to shallow to simplify verification. We have used this tech-
nique to significantly simplify the task of verifying a 2,000-line Lisp program,
the Milawa theorem prover [5], w.r.t a semantics of Lisp [6].

Program synthesis. The ability to translate shallow embeddings into certified
deep embeddings can be used to implement high-assurance code synthesis. We
have implemented such proof-producing code synthesis from HOL4 into our pre-
viously verified Lisp runtime [6]. This improves on the trustworthiness of current
program extraction mechanisms in HOL4, Isabelle/HOL and Coq which merely
print functions into the syntax of SML, Ocaml, Haskell or Lisp without any
assurance proof or connection to a semantics of the target language.

2 From Deep to Shallow Embeddings

For purposes of brevity and clarity we will base our examples in this paper on
the following abstract syntax for Lisp programs. This is a subset of the input
language of our verified Lisp runtime [6].

term ::= Const sexp | Var string
| If term term term | App func (term list) | . . .

func ::= PrimitiveFun prim | Fun string | Funcall | Define | . . .

prim ::= Cons | Car | Cdr | Add | . . .

sexp ::= Val nat | Sym string | Dot sexp sexp

We define the operational semantics for this language using inductively defined
relations: apply ap−→ and eval ev−→ . Term exp evaluates, in environment env,
to x (of type sexp) if (exp, env , state) ev−→ (x, new state); and the application
of function f to arguments xs evaluates to x if (f, xs, state) ap−→ (x, new state).
Certain functions, e.g. Define, Print and Error, alter state.
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2.1 Method

When converting deep embeddings into shallow embeddings our task is to derive
a definition of a function append and prove a connection between them, e.g.

(Fun "APPEND", [x, y], state) ap−→ (append x y, state)

The method by which we accomplish this has two phases. The first phase derives
a theorem of the following form, for some hypothesis and expression .

hypothesis =⇒ (body , env , state) ev−→ (expression , state)

This derivation proceeds as a bottom-up traversal of the abstract syntax tree
for the body of the function we are extracting. At each stage a lemma is applied
to introduce the relevant syntax in body and, at the same time, construct the
corresponding shallowly embedded operations in expression .

The second phase defines a shallow embedding using expression as the right-
hand side of the definition and discharges (most of) the hypothesis using the
induction that arises from the termination proof for the shallow embedding.

There is no guess work or heuristics involved in this algorithm, which means
that well-written implementations can be robust.

2.2 Example: Append Function

An example will illustrate this algorithm. Consider APPEND from above. For the
first phase, we aim to derive a theorem describing the effect of evaluating the
body of the APPEND function, i.e.

If (App (PrimitiveFun Consp) [Var "X"])
(App (PrimitiveFun Cons) [. . . ,App (Fun "APPEND") [. . .]])
(Var "Y")

(1)

Our bottom-up traversal starts at the leaves. Here we have variable look-ups
and thus instantiate v to "X" and "Y" in the following lemma to get theorems
describing the leaves of the program.

v ∈ domain env =⇒ (Var v, env , state) ev−→ (env v, state)

Now that we have theorems describing the leaves, we can move upwards and
instantiate lemmas for primitives, e.g. for Cdr using modus ponens against:

(hyp =⇒ (x, env , state) ev−→ (exp, state)) =⇒
(hyp =⇒ (App (PrimitiveFun Cdr) [x], env , state) ev−→ (cdr exp, state))

When we encounter the recursive call to APPEND we, of course, do not have a
description yet. In this case, we insert a theorem where hypothesis makes the
assumption that some function variable append describes this application.

(Fun "APPEND", [x, y], state) ap−→ (append x y, state) =⇒
(Fun "APPEND", [x, y], state) ap−→ (append x y, state)
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The result of the first phase is a theorem of the form

hypothesis =⇒ (body , env , state) ev−→ (expression , state)

Here body is the abstract syntax tree for the body of APPEND; and expression is
the following, if env = {"X"  → x, "Y"  → y},

if consp x �= nil then
cons (car x) (append (cdr x) y)

else y
(2)

and, with the same env instantiation, hypothesis is:

consp x �= nil =⇒
(Fun "APPEND", [cdr x, y], state) ap−→ (append (cdr x) y, state)

Next we enter the second phase: we define append so that its right-hand side is
(2) with append replaced by append. As part of the straightforward termination
proof for this definition, we get an induction principle

∀P.
(∀x y. (consp x �= nil =⇒ P (cdr x) y) =⇒ P x y) =⇒
(∀x y. P x y)

(3)

which we will use to finalise the proof of the certificate theorem as follows.
For the running example, let P abbreviate the following.

λx y. (Fun "APPEND", [x, y], state) ap−→ (append x y, state)

We now restate the result of phase one using P and the definition of append:

∀x y. (consp x �= nil =⇒ P (cdr x) y) =⇒
(body, {"X"  → x, "Y"  → y}, state) ev−→ (append x y, state)

(4)

Let code for append in state state that the deep embedding (1) is bound to the
name APPEND and parameter list ["X", "Y"] in state. Now the operational seman-
tics’ rule for function application (Sec. 4.2 of [6]) gives us the following lemma.

∀x y. (body, {"X"  → x, "Y"  → y}, state) ev−→ (append x y, state) ∧
code for append in state =⇒ P x y

(5)

By combining (4) and (5) we can prove:

∀x y. code for append in state =⇒
(consp x �= nil =⇒ P (cdr x) y) =⇒ P x y

(6)

And a combination of (3) and (6) gives us:

∀x y. code for append in state =⇒ P x y (7)

An expansion of the abbreviation P shows that (7) is the certificate theorem we
were to derive for APPEND: it states that the shallow embedding append is an
accurate description of the deep embedding APPEND.

∀x y state.
code for append in state =⇒
(Fun "APPEND", [x, y], state) ap−→ (append x y, state)
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2.3 Example: Reverse Function

Now consider an implementation for REVERSE which calls APPEND. In the first
phase of the translation, the certificate theorem for APPEND (from above) can be
used to give a behaviour to Fun "APPEND". The second phase follows the above
proof very closely. The result is the following shallow embedding,

reverse x = if consp x �= nil then
append (reverse (cdr x)) (cons (car x) nil)

else nil

and a similar certificate theorem:

∀x state.
code for reverse in state =⇒
(Fun "REVERSE", [x], state) ap−→ (reverse x, state)

Here code for reverse in state also requires that code for APPEND is present.

2.4 More Advanced Language Features

The most advanced feature our Lisp language supports is dynamic function calls
using Funcall: the name of the function to be called is the first argument to
Funcall. The equivalent in ML is a call to a function variable. The difference is
that Funcall is potentially unsafe, e.g. if called with an invalid function name or
with the wrong number of arguments. (ML’s type system prevents such unsafe
behaviour in ML.) We can support Funcall as follows. First two definitions:

funcall ok args state = ∃v. (Funcall, args , state) ap−→ (v, state)
funcall args state = εv. (Funcall, args , state) ap−→ (v, state)

We use the following lemma in the first phase of the translation algorithm when-
ever Funcall is encountered.

funcall ok args state =⇒ (Funcall, args , state) ap−→ (funcall args state, state)

The result from phase two is a certificate theorem containing a side-condition
which collects the hypothesis that the induction is unable to discharge, e.g. if
we were translating a function CALLF that uses Funcall then we get:

∀x state.
code for callf in state ∧ callf side x state =⇒
(Fun "CALLF", [x], state) ap−→ (callf x state, state)

So far we have only considered pure functions, i.e. functions that don’t alter state.
Impure functions are also supported: they translate into shallow embeddings that
take the state as input and produce a result pair: the return value and the new
state, e.g. (Fun "IMPURE FUN", [x], state) ap−→ (impure fun x state).
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3 From Shallow to Deep Embeddings

Thedescriptionabove explains howproof-producing translations fromdeepto shal-
low embeddings canbe performed.The same algorithmcanbe used for translations
in the opposite direction: start by inventing a deep embedding corresponding to the
given shallow embedding and, at phase two, refrain from inventing a shallow em-
bedding, instead use the given shallow embedding and its induction principle.

4 Summary and Related Work

This paper has presented a proof-producing algorithm for translating between
shallow and deep embeddings of untyped first-order Lisp programs.

Trustworthy program synthesis is one application area of this work. Li et
al. [4] have worked on compiling shallowly embedded functions into assembly
code directly from HOL. In this paper we instead establish a connection between
HOL and a high-level language (which has a verified runtime). Work by Hardin
et al. [2] on decompiling Guardol programs has similar goals.

Program verification is another application area of this work. In this area,
Charguéraud [1] has proposed a completely different way of verifying deep em-
beddings of functional programs. Charguéraud proposes that reasoning is to be
carried out using characteristic formulae for functional programs. These formu-
las provide a way of unrolling the operational semantics without dealing with
the operational semantics directly. His approach does not require functions to be
total, unlike our approach. However, his technique provides relations, while our
approach produces equations which fit better with powerful rewriting tactics.

The algorithm presented here bears some resemblance to work by Krauss et
al. [3] on constructing termination proofs from termination of rewriting systems.
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