

Lecture Notes in Artificial Intelligence 7471

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Martin Beer Cyril Brom Frank Dignum
Von-Wun Soo (Eds.)

Agents for
Educational Games
and Simulations

International Workshop, AEGS 2011
Taipei, Taiwan, May 2, 2011
Revised Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Martin Beer
Sheffield Hallam University, UK
E-mail: m.beer@shu.ac.uk

Cyril Brom
Charles University in Prague, Czech Republic
E-mail: brom@ksvi.mff.cuni.cz

Frank Dignum
Utrecht University, The Netherlands
E-mail: f.p.m.dignum@uu.nl

Von-Wun Soo
National Tsing Hua University, Hsinchu, Taiwan
E-mail: soo@cs.nthu.edu.tw

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-32325-6 e-ISBN 978-3-642-32326-3
DOI 10.1007/978-3-642-32326-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012943170

CR Subject Classification (1998): I.2, H.5, H.4, D.2.8, D.2, H.3, C.2

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This book consists mainly of revised papers that were presented at the Agents
for Educational Games and Simulations (AEGS) workshop held on May 2, 2011,
as part of Autonomous Agents and MultiAgent Systems (AAMAS) conference in
Taipei. This was the latest of a series of workshops that have been held at AAMAS
conferences coveringdifferent aspects of how agents interactwith humans in a vari-
ety of situations. Examples of these can be found in various human activities, such
as in education, business transactions, military operations, medical care, and crisis
management. Human–agent interaction is particularly important where training
and support can be provided effectively using serious games and simulations. The
role of agents to model and simulate naturally behaving characters becomes more
and more important in these types of games and simulations. This is especially
true where the games are not just meant to provide fun, but are used to support
the learning process.

The workshop brought together various aspects of current work in this area.
It was divided into four sessions:

– Middleware Applications
– Dialogues and Learning
– Adaption and Convergence
– Agent Applications

Three papers were presented in the first session, Middleware Applications. The
first by Ranathunga et al. entitled “Interfacing a Cognitive Agent Platform
with Second Life” describes how the authors developed a framework to facil-
itate agent-based interactions on the basis of the JASON BDI interpreter within
the popular Second Life virtual world. In their paper “CIGA: A Middleware for
Intelligent Agents in Virtual Environments,” Van Oijen et al. present CIGA, a
middleware to facilitate this coupling by tackling the design issues in a struc-
tured approach, not only for embodied agent design but also for the system as
a whole. In “How to Compare Usability of Techniques for the Specification of
Virtual Agents’ Behavior? An Experimental Pilot Study with Human Subjects,”
Gemrot et al., investigate the effectiveness of using a high-level AI system, POSH,
to program behaviors against using Java. While their results were inconclusive,
in that POSH outperforms Java in one task but not the other, they discuss the
lessons learnt from the evaluation process and propose possible improvements to
the experimental design.

The second session considered Dialogues and Learning and again consisted
of three papers. In “Dialog Designs in Virtual Drama: Balancing Agency and
Scripted Dialogs,” Kao and Von-Wun Soo present a speech-based dialogue gen-
eration framework to define the relationship between dialogues and story plots.
In “Learning by Playing in Agent-Oriented Virtual Learning Environment,” Cai

VI Preface

and Shen propose an agent-oriented virtual learning environment to support a
new learning by playing paradigm, in which each learning object is built up as
a goal of a goal-oriented learning agent. In “Collection and Analysis of Multi-
modal Interaction in Direction Giving Dialogues: Toward an Automatic Gesture
Selection Mechanism for Met-averse Avatars,” Tsukamoto et al. report an em-
pirical study designed to build a spatial gesture mechanism in Metaverse avatars
(the avatars used in Second Life).

In the third session, entitled Adaption and Convergence, Westra et al. dis-
cussed “Organizing Scalable Adaptation in Serious Games” and show that using
agent organizations to coordinate the agents is scalable, allowing adaptation in
very complex scenarios while ensuring that the storyline is preserved at the right
difficulty level for the trainee. Chien and Soo investigated how dialogical inter-
actions affect the mental states of individual agents, and the relations between
them in “Inferring Pragmatics from Dialogue Contexts in Simulated Virtual
Agent Games.” Alvarez-Napagao et al. propose an extension of their framework
to support emergent narrative in games in “Socially Aware Emergent Narra-
tive.” An additional paper by Wißner et al., “Increasing Learners’ Motivation
Through Pedagogical Agents: The Cast of Virtual Characters in the DynaLearn
ILE,” describes different character roles; how their knowledge is generated and
related to the pedagogical purpose at hand; how they interact with the learners;
and finally how this interaction helps increase the learners’ motivation.

The final session considered Agent Applications. Two papers were presented.
Hadad and Rosenfeld in “ADAPT: Abstraction Hierarchies to Better Simulate
Teamwork Under Dynamics” present a lightweight teamwork implementation
by using abstraction hierarchies. The basis of this implementation is ADAPT,
which supports Autonomous Dynamic Agent Planning for Teamwork. ADAPT
succinctly decomposes teamwork problems into two separate planners: a task
network for the set of activities to be performed by a specific agent and a separate
group network for addressing team organization factors. Finally Campano et
al. in “An Architecture for Affective Behaviour Based on the Conservation of
Resources” offer a model for autonomous virtual agents that enables them to
adopt behaviors that can be perceived by human observers as emotional.

We would like to thank all the authors, the Program Committee and the
referees, without whose help and hard work, we would not have been able to run
a successful workshop.

May 2012 Frank Dignum
Martin Beer

Von-Wun Soo
Cyril Brom

Organization

Program Committee

Martin Beer Sheffield Hallam University, UK
Cyril Brom Charles University, Czech Republic
Frank Dignum Utrecht University, The Netherlands
Von-Wun Soo National Tsing Hua University, Taiwan

Table of Contents

Interfacing a Cognitive Agent Platform with Second Life 1
Surangika Ranathunga, Stephen Cranefield, and Martin Purvis

CIGA: A Middleware for Intelligent Agents in Virtual
Environments . 22

Joost van Oijen, Löıs Vanhée, and Frank Dignum

How to Compare Usability of Techniques for the Specification of
Virtual Agents’ Behavior? An Experimental Pilot Study with Human
Subjects . 38

Jakub Gemrot, Cyril Brom, Joanna Bryson, and Michal Bı́da

Dialog Designs in Virtual Drama: Balancing Agency and Scripted
Dialogs . 63

Edward Chao-Chun Kao and Von-Wun Soo

Learning by Playing in Agent-Oriented Virtual Learning
Environment . 79

Yundong Cai and Zhiqi Shen

Collection and Analysis of Multimodal Interaction in Direction-Giving
Dialogues: Towards an Automatic Gesture Selection Mechanism for
Metaverse Avatars . 94

Takeo Tsukamoto, Yumi Muroya, Masashi Okamoto, and
Yukiko Nakano

Organizing Scalable Adaptation in Serious Games . 106
Joost Westra, Frank Dignum, and Virginia Dignum

Inferring Pragmatics from Dialogue Contexts in Simulated Virtual
Agent Games . 123

Alex Yu-Hung Chien and Von-Wun Soo

Socially-Aware Emergent Narrative . 139
Sergio Alvarez-Napagao, Ignasi Gómez-Sebastià, Sofia Panagiotidi,
Arturo Tejeda-Gómez, Luis Oliva, and Javier Vázquez-Salceda

Increasing Learners’ Motivation through Pedagogical Agents: The Cast
of Virtual Characters in the DynaLearn ILE . 151

Michael Wißner, Wouter Beek, Esther Lozano, Gregor Mehlmann,
Floris Linnebank, Jochem Liem, Markus Häring, René Bühling,
Jorge Gracia, Bert Bredeweg, and Elisabeth André

X Table of Contents

ADAPT: Abstraction Hierarchies to Better Simulate Teamwork under
Dynamics . 166

Meirav Hadad and Avi Rosenfeld

An Architecture for Affective Behaviour Based on the Conservation of
Resources . 183

Sabrina Campano, Etienne de Sevin, Vincent Corruble, and
Nicolas Sabouret

Author Index . 195

Interfacing a Cognitive Agent Platform

with Second Life

Surangika Ranathunga, Stephen Cranefield, and Martin Purvis

Department of Information Science, University of Otago,
P.O. Box 56, Dunedin 9054, New Zealand

{surangika,scranefield,mpurvis}@infoscience.otago.ac.nz

Abstract. Second Life is a popular multi-purpose online virtual world
that provides a rich platform for remote human interaction. It is in-
creasingly being used as a simulation platform to model complex human
interactions in diverse areas, as well as to simulate multi-agent systems.
It would therefore be beneficial to provide techniques allowing high-level
agent development tools, especially cognitive agent platforms such as
belief-desire-intention (BDI) programming frameworks, to be interfaced
to Second Life. This is not a trivial task as it involves mapping poten-
tially unreliable sensor readings from complex Second Life simulations to
a domain-specific abstract logical model of observed properties and/or
events. This paper investigates this problem in the context of agent in-
teractions in a multi-agent system simulated in Second Life. We present
a framework that facilitates the connection of any multi-agent platform
with Second Life, and demonstrate it in conjunction with an extension
of the Jason BDI interpreter.

1 Introduction

Second Life [1] is a popular multi-purpose online virtual world that is increas-
ingly being used as a simulation platform to model complex human interactions
in diverse areas such as eduction, business, medical and entertainment. This is
mainly because of the rich platform it provides for remote human interactions,
including the possibility of enabling software-controlled agents to interact with
human-controlled agents. Second Life is more sophisticated than conventional
2D simulation tools, and is more convenient than cumbersome robots, thus it
has started to gain attention as a simulation platform for testing multi-agent sys-
tems and other AI concepts. Because of its provisions for creating simulations
for a multitude of scenarios, Second Life is more suitable for agent-based simula-
tions compared to simulations created in game-based virtual environments such
as UnrealTournament. It would therefore be beneficial to provide techniques al-
lowing high-level agent development tools, especially cognitive agent platforms
such as belief-desire-intention (BDI) programming frameworks, to be interfaced
with Second Life.

When interfacing agent platforms with Second Life, there are two important
issues to be addressed: how the sensor readings from Second Life environments

M. Beer et al. (Eds.): AEGS 2011, LNAI 7471, pp. 1–21, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 S. Ranathunga, S. Cranefield, and M. Purvis

are mapped to a domain-specific abstract logical model of observed properties
and/or events, and how the agent actions are performed in the Second Life
virtual environment. The first aspect can be quite complex when considering
the high volumes of potentially unreliable sensor readings an agent receives. This
is essentially the problem of identifying a suitable abstraction level to present
the low-level data received from a virtual world to the agent, as identified by
research related to virtual worlds [2,3,4]. As for the second issue, it is important
to identify ways of correctly interfacing the agents with their representation
module inside Second Life (the Second Life avatar), because Second Life may
have synchronisation issues with respect to carrying out the actions specified by
the agent model.

With the use of the LIBOMV client library [5], we have developed a frame-
work that facilitates the connection of any multi-agent framework with Second
Life and addresses the above challenges. The main focus of this paper is to high-
light the importance and difficulty of creating an abstract logical model of the
sensory inputs of an agent deployed in Second Life, and to present the solution
we developed in our connection framework to address this problem. We propose
two mechanisms that lead to the creation of an abstract logical model of the low-
level data received from Second Life, and note that these solutions are general
enough to be used in the context of other virtual worlds.

Creating a high-level abstract logical model of agent sensory data involves
two main steps: extracting sensory readings from Second Life accurately, and
formulating a high-level domain-specific abstract logical model to be passed to
an agent’s cognitive module. The latter has not gained much attention in the
research on deploying intelligent agents inside Second Life.

In our framework, an agent deployed in Second Life can sense the Second Life
environment around it with the use of its LIBOMV client, and the framework
records these sensor readings. There are some difficulties in obtaining accurate
sensor readings from Second Life simulations. Therefore we have introduced a
novel technique in our framework, which extracts sensor readings from Second
Life more accurately than the commonly used data extraction methods.

The extracted sensory data result in a high volume of low-level information
(avatar and object position information and avatar animation information), mak-
ing it difficult to directly use these data in an agent’s reasoning process. It may
also result in generating a cognitive overload for an agent [4]. However, generat-
ing a complete picture of the environment around an agent is also important in
identifying information at different abstraction levels.

We present a data amalgamationmechanism that generates snapshots of a given
Second Life environment based on the individually received data items. In order to
convert this low-level information into a suitable abstraction level that can be used
by the multi-agent system, we first process it to identify ‘contextual information’
mainly based on the spatial relationships of avatars and objects. This contextual
information is also included in the snapshot. We then employ a complex event
processing mechanism on these snapshots, and identify the high-level temporally
correlated complex events. To the best of our knowledge no previous research has

Interfacing a Cognitive Agent Platform with Second Life 3

attempted this approach to close the information representation gap between vir-
tual worlds and agent systems.

The output of the framework is a snapshot of the Second Life environment that
contains all the low-level and high-level events and other contextual information
that took place in a given instant of time, encoded as propositions. This provides
an agent a complete view of the environment around it, thus eliminating the
possibility of having to base its reasoning on a partial set of data. At this level, it
is also possible to remove low-level data received from Second Life, thus reducing
the amount of data being sent to the agent.

We also note that our framework facilitates the co-existence of agents be-
longing to multiple agent platforms in the same Second Life simulation. In this
paper, we demonstrate this framework in conjunction with an extension of the
Jason BDI interpreter that allows agents to specify their expectations of future
outcomes in the system and to respond to fulfilments and violations of these
expectations [6]. An agent may base its practical reasoning on the assumption
that one or more of its expectations will hold, while ensuring that it will receive
notification events when these rules are fulfilled and/or violated.

With the extended functionality of the Jason platform, we demonstrate how
a Jason agent deployed in Second Life using our framework can take part in
complex simulations. We also demonstrate how the identification of high-level
abstract information helps in making the agent more reactive to the important
events taking place around it, and respond to the received percepts from Second
Life, as well as to the identified fulfilments and violations of its expectations.
The fulfilments and violations of an agent’s expectations are detected by an
expectation monitor [7] that is integrated with the framework through an inter-
face, and the agent’s expectations are defined as temporal logic formulae to be
monitored by the expectation monitor. The framework forwards the processed
sensory readings from Second Life to both the Jason environment and the ex-
pectation monitor. Therefore, in parallel to a Jason agent being able to respond
to the observed changes in the environment, the expectation monitor matches
these changes with the monitored formulae and identifies the fulfilment or vio-
lation of the defined expectations. The notifications of the identified fulfilments
or violations are also passed to the Jason agent, and the agent can have plans
that respond to these identified fulfilments and violations.

The rest of the paper is organised as follows. Section 2 describes the poten-
tial of Second Life as a simulation environment and the related implementation
problems. Section 3 describes the developed framework and in Section 4, we
demonstrate this developed system by means of an example. Section 5 discusses
some related work. Section 6 concludes the paper.

2 Second Life as a Simulation Environment

Second Life provides a sophisticated and well developed virtual environment
for creating simulations for different domains and to test AI theories, including
agent-based modelling. With the average monthly repeated user logins at around

4 S. Ranathunga, S. Cranefield, and M. Purvis

8000001, and with the virtual presence of many organisations [8], Second Life
contains many interaction possibilities, which inherently lead to the provision of
new scenarios to be used in simulations. Second Life is not restricted to a specific
gaming or training scenario. Developers can create a multitude of scenarios as
they wish, using the basic building blocks that are provided. For example, in
Second Life, these scenarios could be in the areas of education, business, enter-
tainment, health or games. The significance of using Second Life scenarios lies
in the fact that they can be carried out between software-controlled agents, and
also between software-controlled agents and human-controlled agents.

Second Life has been identified as a good simulation platform for testing AI
theories [9] and specifically multi-agent systems [10]. A detailed analysis on the
benefits of using Second Life over traditional 2D simulations and physical robots
has also been done [9], with the main advantage reported being the ability to
create sophisticated test beds in comparison to 2D simulations, and more cost
effective test beds compared to physical robots. The ability to create different
simulations makes Second Life a better platform for agent-based simulations,
compared to other game-based virtual environments. For example, researchers
trying to adopt the UnrealTournament game environment for a non-game simu-
lation have reported the difficulty in creating such general purpose agent simula-
tions in UnrealTournament [11]. Using game engines such as UnrealTournament
containing violent actions is identified to be limiting AI related research [12].

Despite this, still we do not see Second Life being used for complex simula-
tions of AI theories or multi-agent systems modelling. The lack of use of Second
Life as a simulation environment for AI research can be, to a certain extent,
attributed to the previous lack of a convenient programming interface. Tradi-
tional programming in Second Life is done using in-world scripts created using
the proprietary Linden Scripting Language (LSL). These scripts are associated
with objects, and in order to use them to control an agent inside Second Life,
the objects should be attached to the agent. This approach has many limitations
when used for AI simulations, for reasons such as the limited control over the
agent wearing the scripted object. We discuss this in more detail in Section 2.1.

With the development of the third party libraryLibOpenMetaverse (LIBOMV),
Second Life can now be accessed through a more sophisticated programming
interface. LIBOMV is a “.Net based client/server library used for accessing and
creating 3D virtual worlds” [5], and is compatible with the Second Life commu-
nication protocol. Using the LIBOMV client-side API, “bots” can be defined to
control avatars in Second Life. With appropriate programming techniques, the LI-
BOMV library can be used to create avatars that have behavioural abilities similar
to those controlled by humans. This includes moving abilities such as walking, run-
ning or flying, performing animations such as crying, or laughing, communication
abilities using instant messaging or public chat channels, and the ability to sense
the environment.

1 http://community.secondlife.com/t5/Featured-News/

The-Second-Life-Economy-in-Q4-2010/ba-p/674618

http://community.secondlife.com/t5/Featured-News/The-Second-Life-Economy-in-Q4-2010/ba-p/674618
http://community.secondlife.com/t5/Featured-News/The-Second-Life-Economy-in-Q4-2010/ba-p/674618

Interfacing a Cognitive Agent Platform with Second Life 5

2.1 Challenges in Monitoring Agent Interactions in Second Life

For Second Life simulations that contain a lot of agents and objects moving at
speed, there is a challenge in retrieving accurate position information at a high
frequency to make sure that important events are not missed out.

Although an in-world sensor created using an LSL script can retrieve accurate
position information of avatars and objects, it has limitations when extracting
position and animation information of a large number of moving objects and
avatars. A sensor can detect only 16 avatars and/or objects in one sensor function
call, and the maximum sensor range is 96 metres. One approach to overcoming
this problem is to employ multiple sensors; however multiple scripts operating
for long durations at high frequency introduce “lag” to the Second Life servers2,
i.e. they slow the rate of simulation. For the same reason, and because of the
imposed memory limitations on scripts, an LSL script cannot undertake complex
data processing, and since there is no provision to store the recorded data in-
world at runtime, recorded data must be communicated outside the Second Life
servers using HTTP requests, which are throttled to a maximum of only 25
requests per 20 seconds. Moreover, there is a possibility that avatar animations
with a shorter duration (e.g. crying or blowing a kiss) may go undetected, because
a sensor can record only animations that are played during the sensor operation.

With a LIBOMV client deployed in Second Life, all the aforementioned limita-
tions can be avoided. Avatar and object movements and avatar animations inside
a Second Life environment generate corresponding update events in the Second
Life server, and the server passes this information to the LIBOMV client using
the Second Life communication protocol. The processing of this information is
done outside the Second Life servers, thus causing no server lag.

However, this approach does have its own limitations that affect the accuracy
of recorded information. As with other viewer clients, the Second Life server
sends information to the LIBOMV client only if there is any change in the
environment perceived by the LIBOMV client. This means that the client has to
“assume” its perceived environment. For objects and avatars that are moving, the
client has to keep on extrapolating their position values based on the previously
received velocity and position values until it receives an update from the server.
Extrapolated position values may not be completely in tally with the server-sent
values and this situation is evident when extrapolating position values for objects
and avatars that move fast. Moreover, it was noted that there is an irregularity
in the recorded position data for small objects that may easily go out of the
viewing range of the LIBOMV client, which directly affects the recording of
accurate position information for small objects.

In order to overcome these challenges, we introduce a combined approach
(described in Section 3) based on attaching an object containing an LSL script
to a LIBOMV client deployed in Second Life. These communicate with each
other and produce near-accurate position information about avatars and objects
that move at speed.

2 http://lslwiki.net/lslwiki/wakka.php?wakka=lag

http://lslwiki.net/lslwiki/wakka.php?wakka=lag

6 S. Ranathunga, S. Cranefield, and M. Purvis

Both LSL-based and LIBOMV-based data extraction mechanisms only gener-
ate low-level position and animation information, making it difficult for a multi-
agent system to directly utilise the retrieved data. Therefore the retrieved data
should be further processed to identify the high-level domain-specific informa-
tion embedded in the low-level data. In doing this, it is important that the data
collected using the LIBOMV client and the LSL script are formed into one co-
herent snapshot that resembles the state of the Second Life environment. When
deducing the high-level domain-specific information, it is important that these
coherent snapshots are used, in order to make use of all the events and other
related information that took place in a given instant of time. Otherwise an
agent’s decision may be based on partial information.

3 System Design

Figure 1 shows how different components of the system are interfaced with each
other. The LIBOMV client creates and controls an avatar inside the Second Life
server. It continuously senses the environment around it, and carries out move-
ment, animation and communication acts as instructed and passes back the
result notifications to the connected agent module whenever necessary (e.g. the
result notification of the login attempt). We have used the Jason agent devel-
opment platform [13], which is based on the BDI agent model, to demonstrate
the integration of multi-agent platforms with Second Life using our framework.
Here, a Jason agent acts as the coordinator component of this system. It instan-
tiates the LIBOMV client to create the corresponding Second Life avatar, and
commands the LIBOMV client to carry out actions inside Second Life on behalf
of it.

3.1 The Extended Jason Platform

The Jason platform we have integrated with the framework is an extended ver-
sion [6] of Jason. The Jason agent platform contains an environment interface
that facilitates the easy integration of Jason agents with other simulations. With
this interface, it is possible to execute agent actions in an external simulated en-
vironment and it is also possible to retrieve the sensory readings of the simulated
environment to be presented as percepts for agents.

The extended version of the Jason architecture used in this work implements
a tight integration of expectation monitoring with the Jason BDI agent model.
With this Jason extension, domain-specific individual agents can directly react
to the identified fulfilments and violations of their expectations, by specifying
plans that are executed in response to those fulfilments and violations. The Jason
interpreter is extended with built-in actions to initiate and terminate monitoring
of expectations, and with these built in actions, any expectation monitoring tool
can be “plugged in” to the Jason environment.

Interfacing a Cognitive Agent Platform with Second Life 7

Fig. 1. Overall System Design

3.2 Interface between the LIBOMV Client and the Jason Agent

The interface between the LIBOMV client and the Jason agent is facilitated using
a simple protocol we have developed (which we intend to develop further), and
they communicate through sockets (denoted by ‘S’ in Figure 1). This decoupling
makes it possible to connect any agent platform with the LIBOMV clients easily,
and it could well be the case that different LIBOMV clients are connected with
agents in different agent platforms. The protocol currently defines how an agent
should pass commands to the LIBOMV client such as requesting the LIBOMV
client to log into the Second Life server, uttering something in the public chat
channels, sending instant messages to other avatars, moving to a given location
and executing an animation. It also defines how an agent platform can interpret
a message sent by the LIBOMV client. These messages mainly consist of the
snapshots generated by our framework. The Jason environment class makes use
of this protocol and converts the agent actions into the corresponding protocol
constructs and passes them to the LIBOMV client. Similarly, it interprets the
messages sent by LIBOMV clients to generate percepts for the Jason agents.

The module that contains LIBOMV clients is capable of handling multiple
concurrent LIBOMV clients and socket connections. Therefore, if the correspond-
ing multi-agent system is capable of creating concurrently operating agents, this
can easily create a multi-agent simulation inside Second Life. Consequently, the
module that contains the Jason platform is designed in such a way that it is ca-
pable of handling multiple concurrent instances of socket connections connected
to the Jason agents. As shown in Figure 1, a Jason agent connects to its in-
terface socket through the Jason Environment class, and the Jason Connection
Manager interface. The Jason connection manager and the LIBOMV connection

8 S. Ranathunga, S. Cranefield, and M. Purvis

manager together ensure that all these individual Jason agents are connected to
the correct LIBOMV client, through the interface sockets.

3.3 Interface between the LIBOMV Client and the Second Life
Server

The LIBOMV client connects to Second Life using the Second Life commu-
nication protocol. In the current implementation of the framework, we have
mainly focused on how a LIBOMV client can extract data from Second Life.
Consequently, the emphasis placed on executing agent actions in Second Life is
minimal. Currently the actions performed by an agent are limited to performing
movements (stand, walk, run, and fly), and playing animations.

As an attempt to overcome the limitations of data extraction using LSL and
LIBOMV, we have implemented a combined approach to extract data from Sec-
ond Life. In this new approach, a scripted object is attached to the bot deployed
in Second Life, as shown in Figure 1.

The LIBOMV client detects avatars and objects in its viewing range and
records their UUIDs. It then sends this UUID list to the script. The LIBOMV
client continuously checks for new avatars or objects that entered the Second
Life environment or simulation, based on the movement and animation updates
it receives. Whenever a new avatar or an object is detected, the UUID list is
updated with the newly found UUID, and the list is sent to the script. This
makes sure newly arrived avatars and objects are also detected. Since the script
receives UUIDs of the avatars and objects, it can use the llGetObjectDetails
LSL function to extract position and velocity information for the correspond-
ing avatar and or object. llGetObjectDetails is a light-weight function and
is much faster than the sensor operation because it is sensing a given set of
avatars and objects. This function is repetitively called for the UUIDs in the
received string. When trying to locate an avatar or an object, this function cov-
ers the entire Second Life “region”. The llGetObjectDetails is executed by a
timer and the collected data are sent back to the LIBOMV client. The timer
interval can be decided according to the requirements of the simulation. If the
llGetObjectDetails function cannot detect an avatar or an object specified by
a given UUID, an empty string is returned instead of the recorded position and
velocity information. In this case, the corresponding UUID is removed from the
globally maintained UUID list and the list is re-sent to the script, in order to
avoid searching for avatars or objects that are no longer there.

This function cannot detect the animation that an avatar is currently playing.
Therefore we use the LIBOMV client to directly receive the animation changes of
avatars. Communication taking place in the public chat channel is also captured
directly by the LIBOMV client. In this combined approach, the accuracy of
extracted movement data is high, because the position extraction is done on
the server side. The extracted values are always server-generated, rather than
extrapolated by the client to predict the positions of objects and avatars.

Because of the light-weight nature of the script, it does not introduce any
noticeable lag on the Second Life servers [14].

Interfacing a Cognitive Agent Platform with Second Life 9

3.4 Data Processing Module

The data processing module consists of three main components; the data pre-
processor, the complex event detection module and the data post-processor.
The responsibility of the data processing module is to map the received sensor
readings from complex Second Life environments to a domain-specific abstract
logical model. In essence, it creates snapshots of the system that include low-level
movement and animation information of avatars and movement information of
objects in the given Second Life environment in a given instant of time, along
with the identified high-level domain-specific information and other contextual
information, which are encoded as propositions.

Data Pre-processor: The responsibility of the data pre-processor is to amalga-
mate data received from the different sources (LSL script, animation and message
updates) and create a coherent snapshot that represents the state of the Second
Life environment at a given instant of time. It is also responsible for identifying
the domain-specific ‘contextual information’ of a simulation.

As mentioned above, the LIBOMV client receives movement information of
objects and avatars from the script, and updates corresponding to avatar anima-
tions and communication messages are directly captured by the LIBOMV client.
This means that a received movement information update does not contain the
information about the current animation of the avatars, and the received ani-
mation and message updates do not contain the information about the current
position or velocity of the avatar. Moreover, these animation and communication
updates do not contain the movement information of other avatars and objects
in the environment, or animation information of avatars. However, whenever an
update is received by the LIBOMV client (whether it be the movement updates
from the script, or an animation or a communication update), it is important
that we create a snapshot that contains movement and animation information of
all the avatars and objects of interest, in order to make it a complete snapshot
representing the Second Life environment.

Therefore the data pre-processor caches the latest received animation and
movement information for all the avatars and objects of interest. When a new
set of movement information is received from the script, for all the avatars that
have a movement record in that received information set, their cached animation
values are associated with the received movement information. The LIBOMV
client receives an update corresponding to every avatar animation change (e.g. if
an avatar is currently standing and suddenly starts running, the LIBOMV client
receives an animation update ‘run’). Therefore it is safe to assume that an avatar
keeps on performing the animation already recorded in the cache. When an an-
imation update is received for an avatar, it is associated with the extrapolated
movement information of that avatar, based on the cached movement informa-
tion. If the frequency of the position updates received from the script is high, the
extrapolation error can be assumed to be very low. We also generate the move-
ment and animation information of other avatars and objects in that Second Life
environment, for the time instant represented by that received animation update.

10 S. Ranathunga, S. Cranefield, and M. Purvis

This is because a received animation update does not contain any information
related to other avatars and objects in that simulation, as mentioned earlier.
Whenever, a communication message is received by the LIBOMV client, the
movement and animation information of avatars and objects are generated for
the time instant corresponding to that communication update, using the cached
information. Thus, for every set of movement information sent by the script and
every animation and communication message update sent by the Second Life
server, the data pre-processor generates a complete snapshot of the environment
that contains the avatar and object movement information and avatar animation
information. These snapshots can be easily distinguished from each other with
the use of the associated timestamp.

The low-level data included in a snapshot are used to deduce basic high-level
information about avatars and objects, which are termed ‘contextual informa-
tion’. Contextual information is the first level of abstraction identified on the
data received from Second Life. Contextual information depends on the avatar
and object relations that are identified at a given instant of time (i.e. in a single
snapshot), and makes the complex event identification easy. Some of the contex-
tual information that can be identified are whether an avatar is moving, and if
so, in which direction and the movement type (e.g. walking, running or flying),
and whether an avatar is in close proximity to another avatar or an object of
interest. Other contextual information such as the location of the avatar or the
role it is playing can also be attached to this retrieved information as needed.
As the nature of contextual information that should be identified depends on
a given simulation, the related logic is included in a script that is dynamically
linked with the data pre-processor. It is also possible to make use of pre-recorded
static information such as regional locations and land marks when identifying
contextual information. Vosinakis and Panayiotopoulos have proposed the iden-
tification of ‘geometric information’ from virtual environments [15], which closely
relates to our approach in identifying contextual information.

The processed data are then sent to another sub-component of the data pre-
processor that prepares data to be sent to the complex event detection module.
We specifically extracted this sub-component from the main data pre-processing
logic in order to make it possible to easily customise the data preparation logic
according to the selected complex event detection module. For example, for the
complex event detection module we have employed currently, this sub-component
decomposes the generated snapshot into the constituent data structures corre-
sponding to individual avatars and objects, and sends the information related
to objects to the complex event detection module before those corresponding to
avatars.

Complex Event Detection Module: The responsibility of the complex event
detection module is to identify information at different abstraction levels, by
identifying the temporal relations between the data items in the snapshots gen-
erated by the data pre-processor.

Interfacing a Cognitive Agent Platform with Second Life 11

An event stream processing engine called Esper [16] is used to identify the
complex high-level domain-specific events embedded in the data streams gener-
ated by the data pre-processor. The Esper engine allows applications to store
queries and send the low-level data streams through them in order to identify the
high-level aggregated information. Esper keeps the data received in these data
streams for time periods specified in these queries, thus acting as an in-memory
database. Esper also has the ability to process multiple parallel data streams.

Esper provides two principal methods to process events: event patterns and
event stream queries. We make use of both these methods when identifying the
high-level domain-specific events. The received data streams are sent through
the event stream queries first, to filter out the needed data. Then these filtered
data are sent through a set of defined patterns corresponding to the high-level
events that should be identified. Event identification using patterns is done in
several layers to facilitate the detection of events with a duration. The output of
each layer is subsequently passed on to the layer that follows, thus building up
hierarchical patterns. The ability to define hierarchical patterns helps in iden-
tifying information at different abstraction levels, using the same set of basic
data.

The output of the complex event detection module is sent to the data post-
processor.

Data Post-processor: The responsibility of the data post-processor is to recre-
ate the snapshot that was decomposed into its constituent data structures while
being input to the complex event detection module. In addition to the low-level
data, the snapshot now includes the high-level information identified by the
complex event detection module.

The data post-processor converts the data included in the snapshot into a
proposition string that can be sent to the agent module. At this stage, it is
possible to remove the low-level data received from Second Life, as these have
a very low abstraction level to be used by an agent depending on declarative
information.

When looking at these different components in the data processing module, it
can be seen that only the snapshot generation part of the data pre-processor is
dependent on Second Life. Identification of contextual information and complex
temporal events are concepts that can be readily used to bridge the informa-
tion representation gap between agent systems and any virtual world. In fact,
by introducing data structures general enough to capture avatar and object in-
formation received from different virtual worlds, the framework can be easily
extended to be used with other virtual worlds.

Expectation Monitor Interface: The expectation monitor interface shown
in Figure 1 is an optional sub-component that processes the output of the data
post-processor a step further by adding a reference to the dependent state for
those events that depend on previous other high-level events. It sends these data
to an expectation monitor attached to it, and in this work we use an expec-
tation monitor that was developed in previous research [7]. The responsibility

12 S. Ranathunga, S. Cranefield, and M. Purvis

of the expectation monitor is to identify the fulfilments and violations of agent
expectations that are defined using the extended version of the Jason platform
explained in Section 3.1.

When an expectation monitor is initially started, it receives a rule to start
monitoring (a condition and an expectation) and expectation monitoring mode
(fulfilment or violation) through the expectation monitor interface. The rule’s
condition and resulting expectation are provided as separate arguments using a
specific form of temporal logic, with the expectation expressing a constraint on
the future sequence of states [7]. When the monitor starts receiving the output of
the data post-processor as a sequence of states, it matches these against the rule’s
condition to determine if the expectation has become active. It also evaluates
any active expectations (created by a condition evaluating to true), progressively
simplifies the monitored expectation and finally deduces fulfilment or violation
of the expectation3.

The fulfilments and violations of agent expectations add a new level of abstrac-
tion above the state descriptions generated by the data post-processor, where
the expectations are introduced by the agent dynamically and the fulfilments
and violations of those expectations are detected based on the already identified
information in the snapshots. Therefore, in addition to the continuous stream
of domain-specific high-level events and state information that our framework
supplies to the agent from Second Life, an agent developed using this extended
version of the Jason platform can dynamically subscribe to fulfilment and viola-
tion events for specific rules of expectation that are appropriate to its personal
or social context.

4 Example - A Jason Agent Engaged in the Football
Team Play Scenario “Give and Go”

In this section we demonstrate how a Jason agent can engage in a SecondFoot-
ball [17] virtual football training scenario with a human controlled player4, and
how it can reason based on received percepts and the detected fulfilments and
violations of its expectations.

SecondFootball is a simulation in Second Life that enables playing virtual
football. It is a multi-avatar, fast-moving scenario that promises to be a hard test
case to test our framework when compared with most of the publicly accessible
environments in Second Life. The simulation provides scripted stadium and ball
objects that can be deployed inside Second Life, as well as a “head-up display”
object that an avatar can wear to allow the user to initiate kick and tackle
actions.

3 The system employs multiple expectation monitor instances in parallel in order to
monitor multiple concurrently active expectations an agent may have. This is due
to a limitation in the expectation monitor we have employed that it cannot monitor
for concurrently active individual expectations.

4 One of our agents is currently controlled by a human as our Jason agents are still
not capable of handling complex reasoning involved with playing football.

Interfacing a Cognitive Agent Platform with Second Life 13

In this example, we implement a simplified version of the football team play
scenario “give and go”. Here, the Jason agent Ras Ruby is engaged in the team
play scenario with the player Su Monday, who is controlled by a human. When
Ras Ruby receives the ball, she adopts the expectation that Su Monday will
run until she reaches the PenaltyB area, so that she can pass the ball back to
Su Monday, to attempt to score a goal.

In order to implement this team-play scenario, the high-level complex events
of the SecondFootball domain we wanted to detect were whether the ball was in
the possession of a particular player, whether the ball is being advanced towards
a goal, and successful passing of the ball among players by means of up-kicks
and down-kicks. Though not used in the example, the framework is also capable
of detecting goal scoring by up-kicks and down-kicks, dribbling the ball over the
goal line, and successful or unsuccessful tackles.

4.1 Esper Patterns to Identify “successful pass by up kick ”

The identification of the high-level event related to successful passing of the ball
between two players using an up kick is done using three Esper patterns, as
shown below.

Level One — Identifying the “up kick” Event
The incoming data stream is analysed to find out whether a player performed
the up-kick animation when he has got the possession of the ball. The following
complex event pattern identifies this “up kick” event, where a and b are aliases
for two data item inputs to the Esper engine. Here, EntitySnapshot is the data
structure corresponding to an avatar or an object.

SELECT * FROM PATTERN [

EVERY a = EntitySnapshot(Name = ’ball’

AND Possession LIKE ’%in possession%’)

->

(b = EntitySnapshot(AnimationName = ’up shot’

AND Timestamp = a.Timestamp

AND Name = GetPlayer(a.Possession)))

WHERE timer:within(0.5 sec)]

This complex event pattern searches for a sequence of basic data items where
an EntitySnapshot corresponding to the soccer ball is followed by (identified by
the sequence operator ‘− >’) an EntitySnapshot corresponding to a player, in
which the player has the possession of the ball when he performed the animation
up-kick. The check for the equality of timestamps makes sure that we consider
basic data items belonging to the same snapshot. The method GetPlayer in the
connected programme is used to extract the name of the player in possession
of the ball. Using a timer avoids the necessity of keeping the basic data items
related to the ball in memory for unnecessarily long periods. The wild card

14 S. Ranathunga, S. Cranefield, and M. Purvis

option in the select clause specifies that all the attributes of both ‘a’ and ‘b’
should be selected.

Level Two— Identifying the “ball land” Event:Depending on the strength
of the up kick, the ball may travel an arbitrary distance above the ground before
landing on the ground. This is captured by the “ball land” event described below.

If a is the “up kick” event identified in level one and b and c are EntitySnap-
shots, a “ball land” event is identified by the following pattern:

SELECT * FROM PATTERN [

EVERY a = up_kick

->

(b = EntitySnapshot(Name = ’ball’

AND PositionZ > region_height)

UNTIL ([2]c = EntitySnapshot(Name = ’ball’

AND PositionZ = region_height)

)

)

]

Here, after an “up kick” event is detected, we look for one basic data item that
records the ball being above the ground level and two basic data items that
record the ball at the ground level immediately following it. We use two basic
data items recording the ball at the ground level to cater for the uncertainty in
the accuracy of the received data values.

There is a third level pattern called “successful pass by up kick” (which is
not shown here) that identifies the ball in the possession of another player.

As can be seen, complex events identified in earlier levels are used in the
levels that follow. Identification of higher level contextual information such as
the player in possession of the ball and the location of the ball makes it much
easier to implement the Esper patterns.

4.2 Jason Agent Program for the “Give and Go Scenario”

When the system starts, the Jason agent corresponding to Ras Ruby is ini-
tialised. When the Jason agent starts executing, it first tries to log itself in to
Second Life. The following Jason plan initiates the login process.

// The ‘+!’ prefix resembles a new goal addition

+!start

<-

connect_to_SL("xxxx", "Manchester United, 88, 118, 2500");

!check_connected.

The parameters specify the login password and the login location, respectively.
After sending this login request to the LIBOMV client, the agent has to wait

until it gets the confirmation of the successful login from the LIBOMV client,
as shown in the following plan:

Interfacing a Cognitive Agent Platform with Second Life 15

+!check_connected: not connected

<-

.wait(2000);

// ‘!!’ means tail-recursion optimised posting of a goal

!!check_connected.

When it finally receives the successful login notification, the agent instructs the
LIBOMV client to run the avatar to the area MidfieldB2 using the plan shown
below.

+!check_connected: connected

<-

action("run","MidfieldB2").

Once in the area MidfieldB2, the agent Ras Ruby waits for Su Monday to kick
and pass the ball to it. Once it successfully receives the ball the agent gets
the “successful kick(su monday, ras ruby)” percept (which is generated by the
framework and states that Su Monday successfully passed the ball to Ras Ruby
through a kick), and this generates a new belief addition event (‘+success-
ful kick’) that triggers the corresponding plan given below. Note that the agent
would not be able to easily react to such a high-level event if it only had to rely
on the low-level data received from Second Life.

In this plan, we have used the internal action start monitoring defined in
the extended version of the Jason platform [6], and initiate monitoring for the
fulfilment and violation of the expectation. Here, in the first parameter we define
the type of expectation; whether it is a fulfilment or a violation. The second
parameter assigns a name for the expectation. The third parameter is the name
of the expectation monitor used. The fourth parameter is the triggering condition
for the expectation, and in this example, it is a keyword with a special meaning
(#once). For this scenario the initiating agent wants the rule to fire precisely
once, as soon as possible, and this can be achieved in our current expectation
monitor by using a ‘nominal’ (a proposition that is true in exactly one state)
for the current state as the rule’s condition. However, the BDI execution cycle
only executes a single step of a plan at each iteration, and any knowledge of
the current state of the world retrieved by the plan may be out of date by the
time the monitor is invoked. The #once keyword instructs the monitor to insert
a nominal for the current state of the world just before the rule begins to be
monitored. Here, the actual expectation formula is given by the fifth parameter,
and the sixth parameter is a list of optional context information, which we do
not utilise in this example.

The fulfilment of this expectation occurs when Su Monday advances towards
GoalB (’advanceToGoalB(su monday)’), until (’U’) she reaches PenaltyB,
denoted by ’penaltyB(su monday)’. Similarly, the violation of this expectation

16 S. Ranathunga, S. Cranefield, and M. Purvis

occurs if Su Monday stopped somewhere before reaching penaltyB, or she moves
in the opposite direction before reaching the PenaltyB area5.

//The ‘+’ prefix resembles an event relating to belief addition

+successful_kick(su_monday,ras_ruby)

<-

//internal actions

.start_monitoring("fulf",

"move_to_target",

"expectation_monitor",

"#once",

"(’U’,

’advanceToGoalB(su_monday)’,

’penaltyB(su_monday)’)",

[]);

.start_monitoring("viol",

"move_to_target",

"expectation_monitor",

"#once",

"(’U’,

’advanceToGoalB(su_monday)’,

’penaltyB(su_monday)’)",

[]).

If Su Monday fulfilled Ras Ruby’s expectation, the expectation monitor detects
this and reports back to the Jason agent. The following plan handles this detected
fulfilment and instructs the avatar to carry out the kick action.

+fulf("move_to_target", X)

<-

//Calculate kick direction and force, turn, then ...

action("animation", "kick").

If Su Monday violated the expectation, the expectation monitor reports the
violation to the Jason agent, and the agent uses the first plan below to de-
cide the agent’s reaction to the detected violation, which creates a goal to
choose a new tactic for execution. The second plan (responding to this new
choose and enact new tactic) is then triggered, and the agent adopts the tactic
of attempting to score a goal on its own by running towards the PenaltyB area
with the ball6 .

5 The conditions and expectations are defined in temporal logic and we do not wish
to elaborate on them in the scope of this paper. These are written as nested Python
tuples, as this is the input format for the expectation monitor written in Python.

6 When an avatar is in possession of the ball and the avatar starts moving, the ball
moves in front of the avatar.

Interfacing a Cognitive Agent Platform with Second Life 17

+viol("move_to_target",X)

<-

!choose_and_enact_new_tactic.

+!choose_and_enact_new_tactic : .my_name(Me)

<-

action("run", "penaltyB").

5 Related Work

Research on programming with Second Life has focused either on extracting sen-
sory readings from Second Life, or controlling avatar movement and conversa-
tional behaviours to create Intelligent Virtual Agents (IVAs). Not much research
has attempted to model reactive agents that generate behavioural responses to
their observations on the Second Life environment, or addressed the issue of
mapping low-level sensory data to high-level domain-specific information.

Most of the research on extracting sensory readings from Second Life has
utilised this retrieved information for statistical purposes. Both LSL scripts and
LIBOMV clients have been used for sensory data extraction from Second Life
servers, but the latter has been more effective in collecting large amounts of data.
LIBOMV clients have been successfully used to create crawler applications that
collected large amounts of data about avatars and user-created content, in order
to statistically analyse the number of avatars and objects present in various Sec-
ond Life regions over periods of time [18,19]. LSL scripts and LIBOMV clients
have been used in combination to produce a data gathering tool that collected
more than 200 million records over a period of time [20]. There have also been
several investigations into the collection of data from Second Life to examine so-
cial norms related to gender, interpersonal distance, interaction proximities and
spatio-temporal dynamics of user mobility in a virtual environment [21,22,23].

Cranefield and Li presented an LSL script-based framework that sensed the
Second Life environment and tried to identify the fulfilments and violations of
rules defined in structured virtual communities [24]. However, this research was
conducted in a narrow scope that addressed only animations of human-controlled
avatars.

Burden provided a theoretical proposal for creating IVAs inside Second Life
with the sophisticated abilities of concurrent perception, rational reasoning and
deliberation, emotion and action, and also pointed out the complexities of a
practical implementation [25]. A theoretical framework has also been proposed to
integrate different modules that handle these different capabilities [10]. However,
the practical implementation of both of these approaches is still limited to simple
sensory, movement and conversational abilities.

There have been several approaches for creating IVAs inside Second Life using
LIBOMV clients, but their main focus has been on improving the conversational
and animation abilities of virtual agents [26,27].

18 S. Ranathunga, S. Cranefield, and M. Purvis

Research has been carried out by Bogdanovych et al. [28] on connecting agents
to Second Life in specially designed environments that are instrumented to con-
nect to “electronic institution” middleware. As part of this work they have de-
veloped a number of useful libraries, including their own BDI interpreter for
controlling agents inside Second Life. In contrast, our research focused on devel-
oping a framework that supports connecting multi-agent systems with existing
Second Life environments. Moreover, they have not much focused on how to
create coherent snapshots that provide a complete view of a given Second Life
environment at a given instant of time to be presented to the multi-agent sys-
tem, or how the extracted low-level data can be used to identify much complex
high-level information, which was the main focus of our work.

Although research related to Second Life-based agent simulations is still in
its infancy, there is a considerable amount of research that has used virtual
environments for agent-based simulations. Such research not only helps to test
agent systems better, but virtual agents created using these agent systems help
to improve the usability of the virtual worlds as well.

A virtual environment that has been extensively used for AI research is the
UnrealTournament. The Gamebots project was the first attempt to extend the
UnrealTournament environment to be used for multi-agent systems related re-
search [29]. The Pogamut project later extended the Gamebots system to be
compatible with the later versions of UnrealTournament [12]. The Pogamut
framework also contains different cognitive modules such as an episodic memory
component and an emotion handling component that can be used to improve the
cognitive ability of an agent. There have also been other uses of this framework
in agent-related research (e.g. [4]). Currently the Pogamut framework is tightly
coupled with the UnrealTournament environment, however there are proposals
to generalise the framework to be used in the context of other virtual environ-
ments, including Second Life [12].

CIGA is middleware that is designed to facilitate the coupling between agent
technology and game engine technology in a generic manner [30]. Similar to
our framework, this middleware contains a component that is dependent on the
selected virtual world, and currently it has been only tested with a game engine
developed by the authors. In order to fill the representational gap between agent
systems and virtual worlds, CIGA presents the concept of a ‘social world model’.
This is based on semantic data generated using a given domain ontology, and is
only concerned with static information.

In our opinion, our framework will not replace any of these frameworks.
Rather, it will complement them when trying to integrate them with Second
Life, because the potential of Second Life for agent-based virtual simulations is
enormous. Firstly, our Second Life related implementation techniques are useful
for these aforementioned frameworks to be integrated with Second Life. Secondly,
the concepts of ‘contextual information’ based on relations between avatars and
objects, and the identification of complex events based on the temporal corre-
lations of information in different states can be readily integrated with these
frameworks. In particular, the ability to identify dynamic high-level information

Interfacing a Cognitive Agent Platform with Second Life 19

is very useful in creating more rational agents, as so far the attention has been
only on identifying relatively static high-level information [31,32,15,30].

6 Conclusion

In this paper we presented a framework that can be used to deploy multiple
concurrent agents in complex Second Life simulations, and focused on how the
potentially unreliable data received by an agent deployed in a Second Life simu-
lation should be processed to create a domain-specific high-level abstract model
to be used by the agent’s cognitive modules. This problem has not gained much
attention from the past research on Second Life. We hope the implementation
details we provided will be a valuable road map for future researchers hoping to
use Second Life for multi-agent simulations in different paradigms, apart from
the developed framework being a potential starting point for further research in
integrating multi-agent systems with Second Life. The solutions we proposed for
identifying high-level abstract information are generic enough to be used in the
context of any other virtual world.

We note that any multi-agent platform can be connected with Second Life
using our framework, and demonstrated this with an extended version of the
Jason BDI interpreter. With the use of an example, we showed how a Jason
agent can execute actions inside Second Life and how it can respond to the
observed changes in the environment. We also integrated an expectation monitor
with our framework and demonstrated how Jason agents can use the sensory
data to identify higher level events associated with fulfiled and violated personal
expectations, based on the complex interactions that they take part in.

Most of the simulation-specific logic in our framework is required by the con-
textual information generation and by the Esper module. Therefore by changing
the logic in these two components, the framework can be easily customised to be
used for different simulations. In future, we plan to identify a generic data repre-
sentation that is suitable for many of the virtual worlds that are commonly used
for agent-based simulations. There is also a possibility to experiment with our
framework in various simulations such as medical training scenarios. Moreover,
the framework requires a data filtering mechanism to send only the information
that is of interest to the agent, in order to further reduce the cognitive overload
of an agent.

References

1. Linden Lab. Second Life Home Page, http://secondlife.com
2. Gemrot, J., Brom, C., Plch, T.: A Periphery of Pogamut: From Bots to Agents and

Back Again. In: Dignum, F. (ed.) Agents for Games and Simulations II. LNCS,
vol. 6525, pp. 19–37. Springer, Heidelberg (2011)

3. Dignum, F., Westra, J., van Doesburg, W.A., Harbers, M.: Games and agents:
Designing intelligent gameplay. International Journal of Computer Games Tech-
nology 2009, 1–18 (2009), doi: 10.1155/2009/837095

http://secondlife.com

20 S. Ranathunga, S. Cranefield, and M. Purvis

4. Hindriks, K.V., van Riemsdijk, B., Behrens, T., Korstanje, R., Kraayenbrink, N.,
Pasman, W., de Rijk, L.: Unreal Goal Bots: Conceptual Design of a Reusable In-
terface. In: Dignum, F. (ed.) Agents for Games and Simulations II. LNCS, vol. 6525,
pp. 1–18. Springer, Heidelberg (2011)

5. OpenMetaverse Organization. LibOpenMetaverse developer wiki,
http://lib.openmetaverse.org/wiki/Main_Page

6. Ranathunga, S., Cranefield, S., Purvis, M.: Integrating Expectation Monitoring
into BDI Agents. In: Dennis, L.A., Boissier, O., Bordini, R.H. (eds.) ProMAS
2011. LNCS, vol. 7217, pp. 74–91. Springer, Heidelberg (2012)

7. Cranefield, S., Winikoff, M.: Verifying social expectations by model checking trun-
cated paths. Journal of Logic and Computation 21(6), 1217–1256 (2011)

8. Jennings, N., Collins, C.: Virtual or virtually U: Educational institutions in Second
Life. International Journal of Social Sciences 2, 180–187 (2007)

9. Veksler, V.D.: Second Life as a simulation environment: Rich, high-fidelity world,
minus the hassles. In: Proceedings of the 9th International Conference on Cognitive
Modeling (2009)

10. Weitnauer, E., Thomas, N.M., Rabe, F., Kopp, S.: Intelligent Agents Living in
Social Virtual Environments – Bringing Max into Second Life. In: Prendinger, H.,
Lester, J., Ishizuka, M. (eds.) IVA 2008. LNCS (LNAI), vol. 5208, pp. 552–553.
Springer, Heidelberg (2008)

11. Richards, D., Porte, J.: Developing an agent-based training simulation using game
and virtual reality software: experience report. In: Proceedings of the Sixth Aus-
tralasian Conference on Interactive Entertainment, pp. 9:1–9:9. ACM (2009)

12. Gemrot, J., Brom, C., Kadlec, R., B́ıda, M., Burkert, O., Zemčák, M., Ṕıbil, R.,
Plch, T.: Pogamut 3 — virtual humans made simple. In: Gray, J. (ed.) Advances
in Cognitive Science, pp. 211–243. The Institution Of Engineering And Technology
(2010)

13. Bordini, R.H., Hubner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. John Wiley & Sons Ltd., England (2007)

14. Ranathunga, S., Cranefield, S., Purvis, M.: Extracting Data from Second Life.
Discussion Paper 2011/07, Department of Information Science, University of Otago
(2011), http://otago.ourarchive.ac.nz/handle/10523/1802

15. Vosinakis, S., Panayiotopoulos, T.: Programmable Agent Perception in Intelligent
Virtual Environments. In: Rist, T., Aylett, R.S., Ballin, D., Rickel, J. (eds.) IVA
2003. LNCS (LNAI), vol. 2792, pp. 202–206. Springer, Heidelberg (2003)

16. EsperTech. Esper Tutorial,
http://esper.codehaus.org/tutorials/tutorial/tutorial.html

17. Vstex Company. SecondFootball Home Page, http://www.secondfootball.com
18. Varvello, M., Picconi, F., Diot, C., Biersack, E.: Is there life in Second Life? In:

Proceedings of the ACM CoNEXT Conference, pp. 1:1–1:12. ACM (2008)
19. Eno, J., Gauch, S., Thompson, C.: Intelligent crawling in virtual worlds. In: Pro-

ceedings of the IEEE/WIC/ACM International Joint Conference on Web Intel-
ligence and Intelligent Agent Technology, vol. 3, pp. 555–558. IEEE Computer
Society (2009)

20. Kappe, F., Zaka, B., Steurer, M.: Automatically detecting points of interest and
social networks from tracking positions of avatars in a virtual world. In: Proceed-
ings of the International Conference on Advances in Social Network Analysis and
Mining, pp. 89–94. IEEE Computer Society (2009)

21. Friedman, D., Steed, A., Slater, M.: Spatial Social Behavior in Second Life. In:
Pelachaud, C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.)
IVA 2007. LNCS (LNAI), vol. 4722, pp. 252–263. Springer, Heidelberg (2007)

http://lib.openmetaverse.org/wiki/Main_Page
http://otago.ourarchive.ac.nz/handle/10523/1802
http://esper.codehaus.org/tutorials/tutorial/tutorial.html
http://www.secondfootball.com

Interfacing a Cognitive Agent Platform with Second Life 21

22. Yee, N., Bailenson, J.N., Urbanek, M., Chang, F., Merget, D.: The unbearable
likeness of being digital; the persistence of nonverbal social norms in online virtual
environments. Cyberpsychology and Behavior 10, 115–121 (2007)

23. La, C.-A., Michiardi, P.: Characterizing user mobility in Second Life. In: Proceed-
ings of the First Workshop on Online Social Networks, pp. 79–84. ACM (2008)

24. Cranefield, S., Li, G.: Monitoring Social Expectations in Second Life. In: Padget,
J., Artikis, A., Vasconcelos, W., Stathis, K., da Silva, V.T., Matson, E., Polleres,
A. (eds.) COIN 2009. LNCS (LNAI), vol. 6069, pp. 133–146. Springer, Heidelberg
(2010)

25. Burden, D.J.H.: Deploying embodied AI into virtual worlds. Knowledge-Based Sys-
tems 22, 540–544 (2009)

26. Ullrich, S., Bruegmann, K., Prendinger, H., Ishizuka, M.: Extending MPML3D to
Second Life. In: Prendinger, H., Lester, J., Ishizuka, M. (eds.) IVA 2008. LNCS
(LNAI), vol. 5208, pp. 281–288. Springer, Heidelberg (2008)

27. Jan, D., Roque, A., Leuski, A., Morie, J., Traum, D.: A Virtual Tour Guide for
Virtual Worlds. In: Ruttkay, Z., Kipp, M., Nijholt, A., Vilhjálmsson, H.H. (eds.)
IVA 2009. LNCS, vol. 5773, pp. 372–378. Springer, Heidelberg (2009)

28. Bogdanovych, A., Rodriguez-Aguilar, J.A., Simoff, S., Cohen, A.: Authentic in-
teractive reenactment of cultural heritage with 3D virtual worlds and artificial
intelligence. Applied Artificial Intelligence 24(6), 617–647 (2010)

29. Adobbati, R., Marshall, A.N., Scholer, A., Tejada, S., Kaminka, G., Schaffer, S.,
Sollitto, C.: Gamebots: A 3D virtual world test-bed for multi-agent research. In:
Proceedings of the Second International Workshop on Infrastructure for Agents,
MAS, and Scalable MAS (2001)

30. van Oijen, J., Vanhée, L., Dignum, F.: CIGA: A middleware for intelligent agents
in virtual environments. In: Proceedings of the International Workshop on the Uses
of Agents for Education, Games and Simulations (AEGS 2011), pp. 17–32 (2011)

31. Chang, P.H.-M., Chen, K.-T., Chien, Y.-H., Kao, E., Soo, V.-W.: From Reality to
Mind: A Cognitive Middle Layer of Environment Concepts for Believable Agents.
In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS
(LNAI), vol. 3374, pp. 57–73. Springer, Heidelberg (2005)

32. Zhang, W., Hill Jr., R.W.: A template-based and pattern-driven approach to situ-
ation awareness and assessment in virtual humans. In: Proceedings of the Fourth
International Conference on Autonomous Agents, pp. 116–123. ACM (2000)

CIGA: A Middleware for Intelligent Agents

in Virtual Environments

Joost van Oijen1,2, Löıs Vanhée3,1, and Frank Dignum1

1 Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

{oijen,lois,dignum}@cs.uu.nl
2 VSTEP

Weena 598, 3012 CN Rotterdam, The Netherlands
joost@vstep.nl

3 ENS de Cachan - Antenne de Bretagne

Abstract. Building intelligent behavior in (educational) games and sim-
ulations can greatly benefit from the use of agent technology. Intelligent
agents within a multi-agent system can be developed for controlling vir-
tual characters in a simulation environment within a game engine. Cou-
pling a multi-agent system to a game engine is not a trivial task and
introduces several conceptual design issues concerning embodied agent
design. In this paper we present CIGA, a middleware to facilitate this
coupling tackling the design issues in a structured approach, not only for
embodied agent design but also for the system as a whole.

Keywords: Middleware, Multi-Agent Systems, Virtual Environments,
Intelligent Agents, Simulation.

1 Introduction

As the technology to create more realistic, complex and dynamic virtual environ-
ments advances, there is an increasing interest to create intelligent virtual agents
(IVAs) to populate these environments for the purpose of games, simulations or
training. Designing an IVA, game engine technology can be employed to simulate
its physical embodiment, equipped with sensors and actuators interacting with
the virtual environment. The use of agent technology in the form of multi-agent
systems (MASs) is a good fit to realize the cognitive and decision-making aspects
of an IVA.

Combining these technologies is not a trivial task and introduces conceptual
and technical design issues. First of all, both technologies often work at different
abstraction levels. Games engines work with low-level data representations for
virtual environments and the characters populating it. MASs work with more
high-level semantic concepts designed to form a suitable abstraction from the
physical environment representing an agent’s perceptive view on the environ-
ment and the actions for influencing it. Second, agent actions in a typical MAS

M. Beer et al. (Eds.): AEGS 2011, LNAI 7471, pp. 22–37, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

CIGA: A Middleware for Intelligent Agents in Virtual Environments 23

environment are non-durative. When embodied in a real-time environment, ac-
tions become durative and low-level reasoning over their execution is required.
MASs are generally not designed to handle this aspect. Third, the designs of an
agent’s embodiment in a game engine and its cognitive counterpart in the MAS
are highly depend on each other. An agent’s view on the environment is depen-
dent on his sensory capabilities provided by its embodiment whereas its ability
to influence the environment through its embodiment is bounded by the possible
control over an avatar in the game engine. This, in turn, has implications on an
agent’s deliberation on possible goals, plans and actions. Last, the required con-
nection between the two specialized software systems introduces some technical
issues concerning software engineering.

Current attempts in combining these technologies often use a pragmatic ap-
proach when tackling these design issues. A direct connection between a game
engine and a MAS is created either with or without the help of standard tech-
nologies or interfaces that may provide access to a specific game engine [1] or
range of MASs [3]. Although such an approach can be a productive solution,
design decisions are often influenced and bounded by the individual capabilities
of the employed technologies. There is often no structured approach in bridging
the conceptual gap between the two systems. There are systems that focus more
on the conceptual issues attempting to employ agent technology by translating
the physical world model to a social world model suitable for cognitive reasoning
[5,16]. Though, these systems don’t pretend to give a structured approach for
tackling the technical issues when using their system with alternative MASs or
game engines.

In this paper we present CIGA1, a middleware to facilitate the coupling be-
tween agent technology and game engine technology, tackling the inherent design
issues in a structured way. An architecture for using this middleware is presented
to solve technical issues when connecting agents in a MAS to their embodiments
in a game engine. Additionally we show the need for using ontologies to provide
a design contract between not only an agent’s mind and body connection but
also for the system as a whole. This can lead to a new methodology for game
design using agent technology. An initial fully functional version of CIGA has
been implemented and currently undergoes evaluation.

The paper is organized as follows. In the following section we outline the
motivation for introducing CIGA. Section 3 describes the architectural design of
the proposed middleware. In section 4 we compare the middleware with related
technologies. Finally, section 5 we conclude and discuss results.

2 Bridging the Conceptual Gap

Designing an embodied agent with current game engine and agent technology,
one must overcome several inherent conceptual design issues. In this section, we
provide a description of each issue and present the functional role CIGA plays
to overcome these issues.

1 Creating Intelligent Games with Agents.

24 J. van Oijen, L. Vanhée, and F. Dignum

2.1 Social World Model

In a MAS, an agent’s interpretation of the environment is based on semantic
concepts forming an abstraction of the virtual physical world. The data repre-
sentations of these concepts in a game engine often are at a different abstraction
level than what is suitable for agents in a MAS to work with. For example, an
agent’s concept of ”a person sitting on a chair” may be represented in the game
engine by a character’s location in the vicinity of a chair in combination with the
positions of each skeletal bone, forming a sitting posture. Instead of the physi-
cal world state representations in a game engine, agents work with (high-level)
semantics concepts. The use of rich semantic concepts is particularly important
for the more socially-oriented simulations with communicating agents like in se-
rious games. Though, the demand for rich semantics in the more action-oriented
games is getting increasingly important [17].

CIGA overcomes the difference of data representation by translating the phys-
ical simulation to a social simulation for agents. To accomplish this, semantic
data is generated during agent sensing which is translated from raw data of
game objects or events. This semantic information forms the basis for an agent’s
view and interpretation of the environment. Inferences can be made to provide
agents with semantic concepts relevant for the social simulation. For example,
the meaning of a certain gesture performed by an embodied agent can be in-
ferred from an animation in the game engine. Making higher-level information
directly available for agents is efficient as agents don’t have to infer these them-
selves. CIGA employs domain ontologies to specify a formal representation of
the semantic concepts. The ontologies are accessible in both the game engine to
perform the required translations and in the MAS representing the agent’s social
world model.

The risk of translating raw data to semantic data is the problem of over-
inference. As implemented inferences are the same for all agents we might make
an inference we don’t want a certain agent to be able to make. Further, we might
loose the ability for an agent to interpret perceived information in his own way.
For example, how an agent interprets the meaning of a perceived gesture can
be dependent on an agent’s cultural identity. This makes it important to design
the semantic concepts in the domain ontology at the right abstraction level such
that agents don’t have to perform too much low-level inferences on their own,
but can still make different interpretations based on their individual context.
CIGA doesn’t enforce the use of any abstraction level as this is dependent on
the application domain.

2.2 Perception

Agents in a MAS get information from their environment through percepts. If an
agent becomes embodied in a virtual environment, these percepts are based on
sensory information retrieved from one or more sensors attached to the embod-
iment in a game engine. When creating percepts directly from sensory informa-
tion, we do not only face the problem of information representation as described

CIGA: A Middleware for Intelligent Agents in Virtual Environments 25

above, but there’s also the risk for an agent to become flooded with percepts
that are irrelevant with respect to his current state of mind. An agent should
have the ability to direct his attention to selected information from the envi-
ronment such that irrelevant information can be filtered, though still allowing
an agent to be susceptible to unexpected events. Filtering sensory information
should not be performed in the game engine as this process is dependent on the
agent’s mind in a MAS. On the other hand, delegating this process to the MAS
is not ideal as the cost of communicating the unfiltered information can have
a negative performance impact on the system as a whole. Additionally, MASs
generally don’t provide standard facilities implementing perception filtering.

CIGA tackles this problem by introducing a filtering mechanism located
closely to an agent’s sensors in the game engine. Agents in a MAS can show
their interest in the environment in the form of subscriptions that define how
sensory information has to be filtered. Using the environment semantics defined
in the domain ontology introduced before, powerful subscriptions can be made
to give an agent full control over the range of percepts to receive. A description
of this mechanism can be found in [20] and falls out of the scope of this paper.

2.3 Action

In a MAS, an agent’s capability to influence the environment is defined by a set
of actions designed to change the state of an environment. The success or failure
of an action denotes that the desired state of the environment was reached or
could not be reached respectively. In a typical MAS environment, actions are
instantaneous and the result is known immediately. When an agent becomes
embodied in a virtual environment, its capability to influence the environment
becomes bounded by the available actuators of the embodiment. Since these ac-
tuators work in real-time, actions become durative and the environment may
change during the execution, possibly preventing the action from finishing suc-
cessfully. For example, an action like open door can fail during execution if the
door is opened from the other side by another agent. Further, this raises ques-
tions about the meaning of the success or failure of an action performed by
an embodied agent. Is an action said to be successfully executed if the body
performed the action or if the desired state of the environment was reached?

To deal with this different view on actions, CIGA provides a generic action
monitoring facility to deliver action requests from an agent to its embodiment
and communicate feedback about the realization of the action, allowing an agent
to follow the progress and intervene if necessary. The meaning of the success
or failure of an action is left to the designer where he can use the feedback
mechanism to specify the state of the action and how it was reached (E.g. the
agent didn’t fully perform the action in the environment, but we still consider the
action to be succeeded as the desired environment state defined by the semantics
for the action was reached). A more elaborate overview is given in section 3.2.

A well known design issue is the need for finding a suitable abstraction level
for behavior control. Choosing an abstraction level has implications on both

26 J. van Oijen, L. Vanhée, and F. Dignum

agent design and system performance. The use of more low-level, physically-
oriented actions gives an agent more control over its body but increases the
communication cost of delivering the instructions to the game engine. Using
more high-level, cognitive-oriented actions delegates more control to the game
engine, but the ability is lost to take an agent’s individuality into account. For
example, it becomes harder to reflect an agent’s own personality or mental state
on his behavior if this information is defined in the MAS (E.g. drunk and sober
agents will walk in the same way). Although the communication cost for sending
instructions is decreased, agents are more dependent on perception to see if the
intents of their actions have been achieved. The aim is to find the right balance
of intelligence distributed between the mind and body of an agent in the MAS
and game engine respectively. CIGA doesn’t enforce the use of any abstraction
level for actions as this is dependent on the specific application domain.

2.4 Communication

MASs often provide an inter-agent communication mechanism for agents to com-
municate. The messages being communicated usually adhere to standards like
FIPA ACL where content can be represented using formal semantics understood
by both agents. Simulating human-like communication requires agents to per-
form (non)verbal communicative behavior and perception through their body’s
actuators and sensors in the environment. Like actions, communication becomes
durative. Further, the desired effect of the communication cannot easily be de-
termined as this is dependent on mental processes within the receiving agent.
Successful reception of a communicative act is not trivial as this depends on
the available medium from sender to receiver, bounded by the simulated laws of
physics in the environment. For example, two agents may not be able to hear
each other in a noisy bar when they are at different sides of the room.

CIGA facilitates in the communication process between embodied agents by
introducing its own communication mechanism taking into account both the
durative nature of communication and environmental factors. For example, the
delivery of a communication message is only performed when the correspond-
ing action realizing the communicative act in the environment is successfully
achieved and the receiving agent is physically able to perceive this act. This
mechanism is briefly mentioned later in this section but an elaborate functional
overview falls outside the scope of this paper.

3 CIGA Framework

In this section we present an architectural framework for integrating the CIGA
middleware with both game engine and agent technology. An illustration of the
main framework is given in figure 1.

Since the proposed middleware must connect to two specialized software sys-
tems, the common design approach was taken to internally divide the middleware
into two functional components. The Physical Interface layer connects to a game

CIGA: A Middleware for Intelligent Agents in Virtual Environments 27

Fig. 1. Middleware Framework

engine whereas the Cognitive Interface layer connects to a MAS. Both compo-
nents are internally connected using a communication mechanism. The Ontology
Model provides access to domain ontologies specified for a specific application
domain containing formal representations of the communicated content between
an agent’s mind and body.

This internal distributed design several advantages. First, it helps to bridge
the conceptual gap between a game engine and a MAS by dedicating separate
components for the integration with the technologies. Second, from a technical
point of view, it allows both components to be implemented in different pro-
gramming languages. It is often the case that the used game engine and MAS
are written in different languages. For the middleware as a whole to be able to
interface with both technologies while matching the language of that technology
results in an easy integration process and an efficient, tight connection. Last, the
design introduces connection transparency since the game engine and MAS can
run in different processes or distributed over different computers or platforms,
depending on the used internal connection mechanism.

Next we’ll first describe the role of ontologies within the middleware after
which we’ll look at the individual components connecting to game engine and
MAS respectively.

3.1 The Role of Ontologies

The Ontology Model represents a storage facility for semantic concepts. It con-
sists of domain ontologies designed for a specific application domain to capture
an agent’s perceptual and interactional capabilities within an environment. The
use of ontologies forces an agreement between a game engine and a MAS on the
required domain concepts. This is known as a design by contract [14], increasing
robustness and reusability within the system.

Building a domain ontology for the simulation environment encompasses defin-
ing object and event classes with their attributes. Attributes for objects represent
their physical or functional properties whereas attributes for events represent pa-
rameters specifying event details. Classes can be organized in a hierarchical fash-
ion where attributes are inherited from parent classes. To form an agreement on

28 J. van Oijen, L. Vanhée, and F. Dignum

the actions agents can perform in an environment, (parameterized) action classes
should be specified in the domain ontology.

Domain ontologies can be created using an ontology editor like Protégé. An
interesting feature is the ability to change and extend meta-classes for objects,
events or actions. This allows the ontology to support custom data fields for
specific types of concepts. For example, a perceptibility type can be assigned to
an object property to specify its perceivability (e.g. visual, auditory or tactile)
which use will be described later. Additionally, affordances can be specified for
object classes which can facilitate agents in understanding their world in terms
of interactions they can have with it. The use of Affordance Theory has been
previously explored in [6,4]. Related to affordances, information associated with
smart objects can be stored [11,15]. A small example showing the possibilities of
a simple domain ontology is illustrated in figure 2.

Fig. 2. Domain Ontology Example

The left side of the illustration shows a domain ontology consisting of several
object classes and actions for human actors. The right side of the example shows
a simple scene with two human agents (A and B), a fire and two objects which
can be used to attack a fire. Now assume agent A notices a small fire starting
near agent B who is unaware of this. Agent A would like to resolve the situation
and has several options. He can pick up the fire extinguisher and use it to put out
the fire or he can use the bucket of water positioned near agent B. This choice
may depend on the size and type of the fire and the type fire extinguisher. For
example, an electrical fire should not be extinguished using water which makes
the first option preferable if it concerns a chemical fire extinguisher. Further,
agent A can communicate with agent B to advise him to deal with the fire,
although this choice may not be suitable if agent B is a small child.

Agent A is able to perform this line of reasoning based on the given domain
ontology. Here, object properties provide information about the objects (E.g. ob-
ject positions, the type of fire extinguisher or the age of Agent B). Object classes
can be annotated with conditional affordances helping an agent to understand
how he can interact with objects being perceived. For example, physical objects
of a certain size can be picked up or a bucket filled with water can be used to

CIGA: A Middleware for Intelligent Agents in Virtual Environments 29

attack a fire. The concepts in the domain ontology are also interesting for use
as content in communication languages between agents [21].

These domain ontologies cover concepts relevant to both an agent’s embod-
iment and his mind. In CIGA they are fully accessible at runtime to both the
game engine and MAS as will become clear in the next parts of this section.

3.2 Connecting the Game Engine

As shown in Figure 1, the Physical Interface layer of CIGA connects to a game
engine. Its main task is the administration of agent embodiments participating in
the middleware and individually control their sensors and actuators. Abstraction
from the game engine is achieved using an intermediate layer, hereafter called
the GE Interface layer, connecting a specific game engine. Figure 3 illustrates
the design focusing on the functional interfaces and data flows.

Fig. 3. Integration Middleware in Game Engine

A prerequisite for using CIGA is the ability to modify the game engine al-
lowing implementation of the GE Interface layer. This layer is responsible for
integrating CIGA’s Physical Interface component as an external game engine
component to be included in the engine’s update loop which allows it to run
processes on its own. For example, agent sensing can be controlled to run at a
configurable frequency or the MAS can be provided with regular time updates.
This approach makes CIGA less dependent on specific features that may or may
not be available in a specific game engine. Next we describe each horizontal layer
from figure 3 in more detail.

30 J. van Oijen, L. Vanhée, and F. Dignum

Management. The role of the Governor in the Physical Interface is to provide
a connection mechanism for synchronizing the simulation between the game en-
gine and the MAS. It monitors the creation and destruction of entities in the
environment that are candidates for agent embodiment and notifies the MAS
about their existence. Additionally, simulation time is synchronized by send-
ing regular time updates to the MAS, who often don’t have an internal clock
explicitly defined.

Semantic Processing. The goal of semantic processing is to translate raw
object and event data available in the game engine to semantic data. Semantic
data is used as sensory information which allows an agent to build a social model
of the environment based on meaningful concepts. The Ontology Model can be
accessed to retrieve the formal representation of those concepts.

Creating semantic data from raw data at runtime is a process performed in the
GE Interface layer. Here, at design time, entity bridges are created associating
object classes from a domain ontology to entities defined in the game engine
(E.g. associating the fire concept to a fire class in the game engine). During
runtime, the object’s attributes are generated from raw entity data (E.g. an
object’s size property is calculated). This translation process is performed when
agents sense environment entities. Furthermore, semantic event classes can be
generated based on raw game events or as a result of custom inferences. Inference
based on previously sensed information is achieved using a cache belonging to
an agent’s sensory processor.

Note that translation and inference rules for generating semantic data are the
same for all agents. At this stage, although agents have their individual view
of the environment determined by their sensors, their interpretation of it is the
same as specified by the domain ontology. This fact must be taken into account
when designing the ontology.

Agent Sensing. Agent sensing is performed using a Sensory Processor pro-
vided for each participating agent within CIGA. Its goal is to collect sensory
information from all sensors assigned to an agent’s embodiment and prepare
them as percepts for the MAS agent to receive.

Sensors obtain sensory information from the environment. The processing
logic for a sensor is implemented in the Physical Interface using a sensor base
class. Specific sensors must be created in the GE Interface layer and are required
to assign a perceptibility type (e.g. visual, auditory, tactile) to the sensor and
provide an implementation of the abstract method GetObservableEntities().
This method is responsible for building a list of entities from the environment the
sensor is currently able to observe. Access to game engine queries can support
this process (E.g. to determine if an agent can observe another agent standing
behind a wall or if a sound can still be heard at a certain distance from its origin).
We assume the game engine offers us the functionality to achieve the required
queries. With this approach, one can easily build a sensor library in the GE
Interface layer to store different sensors with more or less advanced algorithms.

CIGA: A Middleware for Intelligent Agents in Virtual Environments 31

Since sensors can be dynamically replaced, one can support different level of
details (LODs) for sensors.

Based on the list of observable entities, sensing in the base class continues by
extracting sensory information from these entities using the Semantic Processing
described before. The sensor’s perceptability type is used to filter the object
properties and events that can be sensed. E.g., In the example from figure 2, the
heat property of the fire entity can only be sensed by a tactile sensor.

After all sensors have been processed, the Sensory Processor filters the col-
lected data as further described in [20].

Agent Acting. Agent behavior is performed using a Behavior Realizer provided
for each agent participating within CIGA. Its goal is to realize semantic actions
instructed by a MAS by managing an action’s life cycle and communicating
feedback about its state back to the MAS agent. Actions are executed in parallel
in an interleaved fashion driven by the game engine loop.

Actions themselves are implemented in the GE Interface layer. They are re-
sponsible for realizing the intended action semantics by accessing game engine
instructions. The Physical Interface layer provides an abstract base class for
actions. Creating specific actions involves implementing the following methods:

• CheckPreconditions(): This method is called before the action is exe-
cuted. Here any preconditions can be checked which must pass before the
realization of the action can be started. If the preconditions are not met the
action will not continue further and the agent is notified.

• Body(): This is the main execution loop. Here game engine functionality
can be addressed to realize the intent of the action. This includes controlling
the actuators of the agent’s embodiment and monitoring its progress. For
virtual characters, this often involves interacting with an Animation System
in the game engine. The action can end prematurely when problems arise
during realization after which the agent is notified about the cause.

• CheckEffects(): This method is called after the action was successfully
realized. Here the intended effects of the action on the game state can be
validated. If the effects are not met the action will end with a corresponding
notification.

• OnAborted(): A MAS agent has the ability to abort any scheduled action.
This method is called when it decides to do so. Here logic can be implemented
to properly interrupt and clean up the action’s realization in the game engine.

Note that it is up to the MAS agent to infer success or type of failure of an ac-
tion based on the received action feedback notifications. Further, CIGA doesn’t
impose any rules for the implementation technique or data formats used for ac-
tions. It merely provides a generic facility to deliver instructions from a MAS
agent to its embodiment and to communicate feedback about the realization
of these instructions. For example, a common technique for behavior control
is the use of parameterized actions representing an API for agents to control

32 J. van Oijen, L. Vanhée, and F. Dignum

their embodiment [1,22,2]. In CIGA, parameterized actions can be defined in the
domain ontology to form an agreement on the used API.

This does not restrict the use of more specialized techniques. For example,
upcoming language standards such as BML can still be used [12], which is an
XML-based language for communicative behavior realization. Here, a single ac-
tion can be defined for communicative behavior sending BML data and feedback
information between the MAS and the game engine.

3.3 Connecting the MAS

The Cognitive Interface layer of CIGA connects to a MAS, providing a generic
interface for agents in a MAS with their embodiment in a real-time environment.
This interface should allow for the communication of percept data and action
instructions whose data is associated with semantic concepts from the domain
ontology. Similar to the interface with the game engine, abstraction from the
MAS is achieved using an intermediate layer, hereafter called the MAS Interface
layer. Figure 4 illustrates the connection framework.

Fig. 4. Integration Middleware in MAS

Unlike the Physical Interface, the Cognitive Interface is a pure event-based
component passing information to and from the MAS. An MAS Interface layer
must be implemented for a specific MAS to comply with the provided interfaces
by the Cognitive Interface layer. This layer is less complex than the GE Interface
layer since it’s a simple message-passing connection for data that is already
rooted in semantics (no conceptual translation is required).

Management Interface. As described previously, the Governor notifies the
MAS about the creation and destruction of candidate embodiments in the sim-
ulation. Based on this information, the MAS can create and destroy agents. To
link an agent with an embodiment, the MAS must notify the Governor about

CIGA: A Middleware for Intelligent Agents in Virtual Environments 33

the entity it wants to embody. The Governor Bridge in the MAS Interface can
achieve this functionality for a specific MAS to be used. The Ontology Model can
be accessed to retrieve semantic data about the embodiments. This information
can support the MAS in deciding what type of agent to associate with an entity.

Agent Interface. The agent interface between CIGA and a MAS consists of
the common act and sense interfaces required for MAS agents. The Agent Bridge
in the MAS Interface is responsible for converting the different message formats
used between the CIGA middleware and a specific MAS. Here, the Ontology
Model can play several roles. The model can be accessed to retrieve semantic
meta-data associated with incoming percepts. For example, agents can retrieve
the affordances associated with perceived objects. Also type hierarchies of ob-
jects in the ontology can be inspected, allowing agents to make generalizations
about objects they perceive. In addition, the model can be used to validate
the semantics of action instructions performed by a MAS agent. Being able to
validate actions can greatly support the development of agents whose code for
action-selection cannot be type-checked at design time (E.g. in 2APL).

Three types of percepts have been defined in CIGA’s Cognitive Interface layer:

• Object percepts contain semantic data about objects perceived from the en-
vironment. A unique object identifier is provided giving agents the ability to
relate subsequent percepts with the same object.

• Event percepts contain semantic data about events from the environment.
An object’s identifier provides the source where the event originated from.

• Action percepts contain feedback information about ongoing actions. The
MAS agent can associate this feedback with a dispatched action using the
included unique action identifier. Feedback information includes the progress
status of the action and possible failure conditions.

Two types of actions have been defined in CIGA’s Cognitive Interface layer:

• Action instructions are used for the physical (durative) actions agents per-
form. They correspond to the actions implemented in the GE Interface layer
described previously and are executed by the Behavior Realizer.

• Communication instructions are used for physical communication between
agents. These are special actions consisting of two parts. The first part con-
tains the physical action the agent performs to realize the communication,
corresponding to the previous type of instruction. The second part includes
the communicative intent which may be represented in an agent communica-
tion language. This part cannot be send directly to the receiving agent if the
physical communication action has not started yet. The Cognitive Interface
layer is responsible for orchestrating this process.

For the implementation of the MAS Interface layer, interface standards like
EIS [3] can be employed which has been explored to interface with multi-agent
platforms like 2APL, GOAL, Jadex and Jason. Though, such platforms focus

34 J. van Oijen, L. Vanhée, and F. Dignum

on high-level decision-making and deliberation aspects of agents and lack other
aspects of behavior that may be required to form a fully cognitive architecture
(E.g. the modeling of physiology, emotion or reflexive behaviors). These aspects
can play an important role in simulating virtual humans for example. This issue
has been addressed before as seen in CoJACK [8] which extends the JACK
platform by combining its symbolic decision-making module with what is called a
moderator layer for emotional and physiological factors. TheMAS Interface layer
can easily be used to connect such an additional MAS layer with its environment.

4 Related Technologies

In this section, we compare CIGA with related research and technologies with
similar functionalities. First we’ll look at technologies providing an interface to
an environment in a game engine for external access. Gamebots [1] is a modifi-
cation of the UT game engine and provides fixed sense-act interfaces for in-game
avatars accessible using socket communication. It is often used in research on
embodied agents mainly because of the lack of good alternatives for accessing
virtual environments [7,9]. Gamebots can be compared to CIGA’s GE Inter-
face layer (see Figure 3). Though, in Gamebots, there is no methodology for
using domain ontologies as the interface messages are fixed and geared specifi-
cally towards the UT engine. Further, action monitoring is not supported since
Gamebots doesn’t offer explicit execution and monitoring of actions.

The High Level Architecture (HLA) is an architecture for distributed simu-
lations. Its goal is to synchronize environments running in separate simulations.
There have been attempts to connect external agents to simulation environments
using HLA [13]. We consider HLA not suitable for connecting MASs since it was
not designed for this purpose and therefore lacks facilities for agent-centric sens-
ing and acting. Similarities between CIGA and HLA are the use of ontologies as
a design contract and the use of a subscription mechanism to control the flow of
information sent between components. For CIGA, this is described in [20].

Next we’ll compare the system of Pogamut which has a goal similar to CIGA.
Pogamut is designed as a mediation-layer between a game engine (GE) and
a decision-making system (DMS) to bridge the ”representational gap” [10]. It
is based on a general abstract framework for connecting a DMS to a GE [9].
The architecture of a Pogamut agent consists of a WorldView component for
GE facts, augmented with optional components like a Working Memory, an In-
ference Engine, a Reactive Layer and a DMS. The main conceptual difference
between Pogamut and CIGA is that where Pogamut presents an agent archi-
tecture connected to a game engine, the CIGA middleware offers facilities to
connect an agent in a MAS directly to an avatar in the game engine. It doesn’t
enforce any agent architecture as we consider this to be contained in the MAS.
Providing a tight connection with an avatar in the game engine requires CIGA
to enforce modifying the game engine. Although this is a strong requirement, we
think it is a necessity to better aid in the connection design of an agent’s mind
and body, allowing us to perform perception filtering and action monitoring in

CIGA: A Middleware for Intelligent Agents in Virtual Environments 35

the game engine’s native programming language. Although Pogamut is more
flexible in connecting to different game engines (using Gamebots or HLA), it is
highly dependent on the specific game engine. Here, the game engine not only
dictates the mechanisms for sensing and acting, but also the use of fixed data
representations for actions and sensory information. Although ontologies can be
implicitly defined as Java classes, there is no explicit formal agreement between
the GE and a Pogamut agent.

Facilitating the connection between MAS agents and MAS environments, the
Environment Interface Standard (EIS) has been proposed. It provides a general
purpose interface for associating environment entities with MAS agents and their
sense-act interface [3]. The proposed interface is not primarily geared towards
connecting agents directly to a real-time virtual environment. Although EIS can
be used for real-time environments, little is said on how to deal with the design
issues presented in section 2. EIS has been used in connecting agents to an
environment using Pogamut [18].

Last, there are systems which have addressed a subset of the design issues
presented in the paper. For example, in [22,16], Mimesis is presented as an archi-
tecture to integrate special-purpose intelligent components with a game engine.
The architecture addresses both the gap of information representation and ac-
tion execution, though its design is less geared towards an agent-body connection
such that issues in perception and communication are not addressed. In [5], a
cognitive middleware layer is introduced which has a similar goal to the semantic
processing in CIGA, providing agents with a social world model. Unlike CIGA,
this system doesn’t discuss the technological issues in creating embodied agents.
In [19], the ION Framework is said to separate the simulation environment from
a realization engine. Although it recognizes similar issues, it is unclear about the
methods for implementing these guidelines.

5 Conclusion and Future Work

In this paper we presented CIGA, a middleware for facilitating the coupling of
MASs to game engines providing a connection between a MAS agent and its
embodiment in a virtual environment. It is designed as a general-purpose mid-
dleware employable in a wide range of applications with different requirements
for agents. For example, in one simulation, believable embodied conversational
agents (ECAs) are required where detailed (non)verbal communicative behav-
ior and perception is important. In another simulation an agent’s interaction
and understanding of the environment may be more important requiring a more
extended model of the environment and the actions for influencing it. A combi-
nation of such qualitative and quantitative aspects may also be desired. Here,
CIGA facilitates the development of such simulations by supporting develop-
ers to bridge the conceptual gap between a MAS and a game engine without
enforcing agent design decisions.

CIGA employs domain ontologies to form an agreement between the game
engine and the MAS on the semantics of an agent’s perceptual and behavioral

36 J. van Oijen, L. Vanhée, and F. Dignum

interfaces. This allows designers to formally specify the concepts used within a
specific application domain and reference them directly from within the game
engine or the MAS. A sensory processing mechanism allows an agent to per-
ceive its environment and build a social world model based on formal semantics.
Designers are able to choose the required realism for sensors and control the
way sensory information is filtered [20]. An action monitoring mechanism en-
ables agents to be synchronized with the realization of their actions performed
by their embodiments. Designers are left to provide an implementation of the
actions specified for the application domain.

CIGA has been implemented connecting several MASs to an in-house de-
veloped game engine1. The Physical Interface of CIGA has been developed in
C++ and the Cognitive Interface in Java. The internal connection mechanism
employs TCP/IP sockets. MASs that have been tested include 2APL, Jadex and
a custom developed MAS testing industry-standard techniques. On top of the
middleware platform a graphical user interface has been developed to provide
logging and debugging facilities during the development process.

Future work involves validating the principled approach taken by CIGA by
exploring different application settings where agents have different requirements.
This also involves creating an interface with an alternate game engine. On the
conceptual side, further research will be performed concerning the topic of agent
communication within CIGA, dealing with formal agent communication in MASs
on one side and believable human-like interactions in real-time environments on
the other side.

References

1. Adobbati, R., Marshall, A.N., Scholer, A., Tejada, S.: Gamebots: A 3d virtual
world test-bed for multi-agent research. In: Proceedings of the Second International
Workshop on Infrastructure for Agents, MAS, and Scalable MAS (2001)

2. Badler, N.I., Bindiganavale, R., Allbeck, J., Schuler, W., Zhao, L., Palmer, M.:
Parameterized action representation for virtual human agents. In: Embodied Con-
versational Agents, pp. 256–284. MIT Press, Cambridge (2000)

3. Behrens, T., Hindriks, K., Dix, J.: Towards an environment interface standard for
agent platforms. Annals of Mathematics and Artificial Intelligence, pp. 1–35 (2010)

4. Brom, C., Lukavskỳ, J., Šerỳ, O., Poch, T., Šafrata, P.: Affordances and level-of-
detail AI for virtual humans. In: Proceedings of Game Set and Match 2 (2006)

5. Chang, P.H.-M., Chen, K.-T., Chien, Y.-H., Kao, E., Soo, V.-W.: From Reality to
Mind: A Cognitive Middle Layer of Environment Concepts for Believable Agents.
In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS
(LNAI), vol. 3374, pp. 57–73. Springer, Heidelberg (2005)

6. Cornwell, J., O’Brien, K., Silverman, B., Toth, J.: Affordance theory for improving
the rapid generation, composability, and reusability of synthetic agents and objects.
In: Proceedings of the Twelfth Conference on Behavior Representation in Modeling
and Simulation (2003)

1 www.vstep.nl

www.vstep.nl

CIGA: A Middleware for Intelligent Agents in Virtual Environments 37

7. Davies, N.P., Mehdi, Q., Gough, N.: A framework for implementing deliberative
agents in computer games. In: Proceedings of the 20th European Conference on
Modeling and Simulation, ECMS 2006 (2006)

8. Evertsz, R., Ritter, F.E., Busetta, P., Pedrotti, M., Bittner, J.L.: CoJACK - Achiev-
ing Principled Behaviour Variation in a Moderated Cognitive Architecture. In:
Proceedings of the 17th Conference on Behavior Representation in Modeling and
Simulation (2008)

9. Gemrot, J., Brom, C., Plch, T.: A Periphery of Pogamut: From Bots to Agents and
Back Again. In: Dignum, F. (ed.) Agents for Games and Simulations II. LNCS,
vol. 6525, pp. 19–37. Springer, Heidelberg (2011)

10. Gemrot, J., Kadlec, R., B́ıda, M., Burkert, O., Ṕıbil, R., Havĺıček, J., Zemčák, L.,
Šimlovič, J., Vansa, R., Štolba, M., Plch, T., Brom, C.: Pogamut 3 Can Assist
Developers in Building AI (Not Only) for Their Videogame Agents. In: Dignum,
F., Bradshaw, J., Silverman, B., van Doesburg, W. (eds.) Agents for Games and
Simulations. LNCS, vol. 5920, pp. 1–15. Springer, Heidelberg (2009)

11. Kallmann, M., Thalmann, D.: Modeling objects for interaction tasks. In: Proc.
Eurographics Workshop on Animation and Simulation, pp. 73–86 (1998)

12. Kopp, S., Krenn, B., Marsella, S., Marshall, A.N., Pelachaud, C., Pirker, H.,
Thórisson, K.R., Vilhjálmsson, H.: Towards a Common Framework for Multimodal
Generation: The Behavior Markup Language. In: Gratch, J., Young, M., Aylett,
R.S., Ballin, D., Olivier, P. (eds.) IVA 2006. LNCS (LNAI), vol. 4133, pp. 205–217.
Springer, Heidelberg (2006)

13. Lees, M., Logan, B., Theodoropoulos, G.: Agents, games and hla. Simulation Mod-
elling Practice and Theory 14(6), 752–767 (2006)

14. Meyer, B.: Applying ”design by contract”. Computer 25, 40–51 (1992)
15. Peters, C., Dobbyn, S., MacNamee, B., O’Sullivan, C.: Smart objects for attentive

agents. In: WSCG (2003)
16. Riedl, M.O.: Towards Integrating AI Story Controllers and Game Engines: Recon-

ciling World State Representations. In: Proceedings of the 2005 IJCAI Workshop
on Reasoning, Representation and Learning in Computer Games (2005)

17. Tutenel, T., Bidarra, R., Smelik, R.M., Kraker, K.J.D.: The role of semantics in
games and simulations. Computers in Entertainment 6, 57:1–57:35 (2008)

18. Hindriks, K.V., van Riemsdijk, B., Behrens, T., Korstanje, R., Kraayenbrink, N.,
Pasman, W., de Rijk, L.: Unreal Goal Bots. In: Dignum, F. (ed.) Agents for
Games and Simulations II. LNCS, vol. 6525, pp. 1–18. Springer, Heidelberg (2011)

19. Vala, M., Raimundo, G., Sequeira, P., Cuba, P., Prada, R., Martinho, C., Paiva,
A.: ION Framework – A Simulation Environment for Worlds with Virtual Agents.
In: Ruttkay, Z., Kipp, M., Nijholt, A., Vilhjálmsson, H.H. (eds.) IVA 2009. LNCS,
vol. 5773, pp. 418–424. Springer, Heidelberg (2009)

20. van Oijen, J., Dignum, F.: Scalable Perception for BDI-Agents Embodied in Vir-
tual Environments. In: Proceedings of the 2011 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (2011)

21. van Oijen, J., van Doesburg, W., Dignum, F.: Goal-Based Communication Using
BDI Agents as Virtual Humans in Training: An Ontology Driven Dialogue Sys-
tem. In: Dignum, F. (ed.) Agents for Games and Simulations II. LNCS, vol. 6525,
pp. 38–52. Springer, Heidelberg (2011)

22. Young, R., Riedl, M., Branly, M., Jhala, A., Martin, R., Saretto, C.J.: An ar-
chitecture for integrating plan-based behavior generation with interactive game
environments. Journal of Game Development 1(1) (2004)

M. Beer et al. (Eds.): AEGS 2011, LNAI 7471, pp. 38–62, 2012.
© Springer-Verlag Berlin Heidelberg 2012

How to Compare Usability of Techniques
for the Specification of Virtual Agents’ Behavior?

An Experimental Pilot Study with Human Subjects

Jakub Gemrot1, Cyril Brom1, Joanna Bryson2, and Michal Bída1

1 Faculty of Mathematics and Physics, Charles University in Prague,
Malostranske namesti 25,

118 00, Prague 1, Czech Republic
2 University of Bath,

Bath, BA2 7AY, United Kingdoms

Abstract. Reactive or dynamic planning is currently the dominant paradigm for
controlling virtual agents in 3D videogames. Various reactive planning techniques
are employed in the videogame industry while many reactive planning systems
and languages are being developed in the academia. Claims about benefits of
different approaches are supported by the experience of videogame programmers
and the arguments of researchers, but rigorous empirical data corroborating
alleged advantages of different methods are lacking. Here, we present results of a
pilot study in which we compare the usability of an academic technique designed
for programming intelligent agents’ behavior with the usability of an unaltered
classical programming language. Our study seeks to replicate the situation of
professional game programmers considering using an unfamiliar academic system
for programming in-game agents. We engaged 30 computer science students
attending a university course on virtual agents in two programming assignments.
For each, the students had to code high-level behavior of a 3D virtual agent
solving a game-like task in the Unreal Tournament 2004 environment. Each
student had to use Java for one task and the POSH reactive planner with a
graphical editor for the other. We collected quantitative and qualitative usability
data. The results indicate that POSH outperforms Java in terms of usability for
one of the assigned tasks but not the other. This implies that the suitability of an
AI systems-engineering approach is task sensitive. We also discuss lessons learnt
about the evaluation process itself, proposing possible improvements in the
experimental design. We conclude that comparative studies are a useful method
for analyzing benefits of different approaches to controlling virtual agents.

1 Introduction

Reactive planning is currently the dominant paradigm for controlling virtual agents in
3D videogames and simulations. Prominent reactive planning techniques used in the
industry are derivations of finite state machines (FSMs) [1], and more recently,
behavior trees [2]. Technically, these are implemented in a scripting language, be it a

 An Experimental Pilot Study with Human Subjects 39

general-purpose language such as Lua [3] or a special-purpose language tailored at a
particular game, such as UnrealScript [4], or hard-coded in a game’s native language,
typically C++ [5]. Advantages and drawbacks of different approaches used by the
industry have been commented on widely [6,7,8].

At the same time, academic action-selection systems for AI planning are becoming
increasingly mature, and the question arises whether they have advantages over the
solutions employed presently by the industry. These systems include decision making
modules of several cognitive architectures, e.g., Soar and ACT-R [9, 10], stand-alone
BDI-based programming languages, e.g. GOAL [11], and stand-alone reactive
planners such as POSH [12]. It has been already demonstrated that some of these
systems, for instance Soar [9], POSH [13], GOAL [11] and Jazzyk [14], can be used
for controlling virtual agents acting in game-like environments. From the perspective
of efficacy of code execution, these systems are sluggish and can be considered as
prototypes only at the present stage of maturity; however, they could potentially
outperform some industry solutions in terms of usability (from the programmers’
perspective), re-usability (of parts of code) and agent’s cognitive performance, as
assumed, for instance, by part of the academic community studying BDI-based
languages [15].

Sound empirical data demonstrating the alleged advantages of different reactive
planning technique, both industrial and academic, are generally lacking. Tyrell
analyzed various robotics and ethology-based action selection mechanisms in terms of
agent performance given approximately equal amounts of time devoted by a
programmer [16]. This work was extended by Bryson in an effort to provide an
evaluation for her own POSH action selection. [17]. Tyrrell’s system was to test a
single action-selection mechanism over a large number of “lifespans” by agents
inhabiting an extremely rich and varied environment. The complexity of the
environment lead to enormous variation in the results, so statistical significance was
determined by running enough trials to compare the standard error rather than the
standard deviation.

Bryson also provided a more theoretically formal but less rigorous comparison of
POSH action selection to FSMs, showing that POSH plans were able to express
action an intelligence was likely to choose to do in a more efficient way than an FSM
[18]. However, none of these studies engaged programmers other than the authors
themselves in the mechanisms’ evaluation. In contrast, Hindriks et al [19] conducted
an extensive qualitative analysis of the code of 60 first year computer science students
developing (in teams of five students) three Capture The Flag agents for the
videogame Unreal Tournament 2004 (UT 2004) using GOAL agent programming
language. Hindriks’s team aimed at “providing insight into more practical aspects of
agent development” and “better understanding problems that programmers face when
using (an agent programming) language” and identified a number of structural code
patterns, information useful for improvements to the language. However, that study
was not comparative and did not report the programmers’ feedback.

Here, we are interested in a complementary approach, namely feasibility of
quantitative comparative quasi-experimental studies (as used in psychology and social
sciences) for investigating usability of action selection systems from the users’
(programmers’) perspective. We specifically address the usability issue as opposed to
the efficiency or performance issue. This perspective encompasses various objective

40 J. Gemrot et al.

and subjective measures, such as steepness of the learning curve, time spent by
development, programming vs. testing time ratio, number of bugs made by the
programmer, subjective attitude towards the technique etc. We designed and
conducted a pilot study with the following objectives:

a) to investigate the subjectively-perceived usability of an academic action
selection system designed to be useful for programming agents’ behavior, when
compared to perceived usability of an unenhanced classical programming
language; this mimics the situation of game programmers considering using an
academic system they are not familiar with for programming in-game artificial
intelligence;

b) to compare the quality of solutions implemented in the academic action
selection system and in the classical programming language; this measure
plays an important role in the adoption of new systems in general;

c) to consider whether the experimental method per se is useful and whether (and
under which conditions) it can produce helpful results.

We have been running a course on virtual agents development for computer science
students at Prague University since 2005. Students are taught various techniques for
controlling virtual agents [20] and trained to program their behavior in the virtual
environment UT 2004 (similarly to Hindriks et al.). For that task, our integrated
development environment Pogamut [21] is used by the students. In the academic year
2009/10, we turned the final exam for the course into a scientific experiment engaging
30 computer science students in two programming assignments lasting 3 hours each.
Each student had to code the high-level behavior of a 3D virtual agent solving a
game-like task in the UT 2004. The conventional language and the language
underlying the academic system were both Java. We use Java because its learning
curve is less steep than that of C++ (a more usual game development language) and
because our students are expected to be at least to some extent familiar with Java. For
the academic system, we used the POSH reactive planner with a graphical editor. This
is because POSH has been already demonstrated for controlling UT agents [13] and
because POSH has previously been investigated by our postgraduates and integrated
into Pogamut.

For both the tasks and in both programming environments, the students’ task was
to organize low-level action and sensory primitives to produce complex behavior, but
not to program the primitives as such. The drag-and-drop graphical editor we
developed for POSH disguised its Lisp-like underlying plan syntax students might
have struggled with. The study was only possible because the Pogamut platform
provided the same development environment for both tasks and allowed us to
predesign the same sets of behavior primitives, isolating the features of the language
as the subject of the study.

We collected various quantitative and qualitative usability data in four
questionnaires. Our main hypothesis was that subjects’ attitude towards POSH would
be at least as high as towards Java. As this is a pilot study, we kept the research
question as simple as possible. Of course, for practical, commercial application of
POSH, it would be an advantage to specifically identify its benefits compared to Java
(and other systems), but this was not our aim for this study and is left for future work.

 An Experimental Pilot Study with Human Subjects 41

The rest of the paper proceeds as follows. We introduce POSH in Section 2 and
detail the methods of our study in Section 3. The results are presented in Section 4
and discussed in Section 5, and Section 6 concludes.

2 POSH

POSH action selection was originally developed in the late 1990s in response to
criticism of what was at the time an extremely popular agent design approach (at least
in academic discussion): the Subsumption Architecture (SA) [27]. SA was used to
produce considerable advances in real-time intelligent agents, particularly robotics. It
consists primarily of two components: a highly modular architecture where every
action is coded with the perception it needs to operate; and a complex, highly
distributed form of action selection to arbitrate between the actions that would be
produced by the various modules. Although extremely well-known and heavily cited,
the SA was seldom really used outside of its developers. Bryson hypothesized that the
emphasis on modular intelligence was actually the core contribution of SA, but that
the complexity of action selection, while successfully enforcing a reactive approach,
confused most programmers who were not used to thinking about concurrent
systems.

POSH was developed then to simplify the construction of action selection for
modular AI. Briefly, a programmer used to thinking about conventional sequential
programs is asked to first consider a worst-case scenario for their agent, then to break
each step of the plan to resolve that scenario into a part of a reactive plan. Succeeding
at a goal is the agent’s highest priority, so should be the thing the agent does if it can.
The programmer then describes for the agent how to perceive that its goal has been
met. Then for each step leading up to the goal the same process is followed: a
perceptual condition is defined allowing the agent to recognize if it can take the action
leading most directly to its goal [12, 18]. The actions are each small chunks of code
that control the agent, so-called behavior primitives (see Tab. S2 – all supplementary
figures and tables can be found in the appendix), and the perceptions are sensory
primitives (Tab. S4).

After a period of experimenting with the system, Bryson embedded POSH in a
more formal development methodology called Behavior Oriented Design (BOD).
BOD emphasizes the above development process, and also the use of behavior
modules written in ordinary object-oriented languages to encode the majority of the
agent’s intelligence, and to provide the behaviour and sensory primitives. BOD
includes a set of heuristics for recognizing when intelligence should be refactored
either from a plan towards a behavior module or from a module into a plan. BOD and
POSH have now been adopted or recommended by a number of leading thinkers and
toolkits in AI, including Pogamut [21], RePast [28] and AIGameDev [6].

Recently, a graphical editor for POSH plans has been developed as part of the
Pogamut effort. Its new version is used in the present study (Fig. S1).

42 J. Gemrot et al.

3 Method

3.1 Experimental Design

As explained earlier, the study compares the usability of an academic reactive
planner, POSH, and an unenhanced classical programming language, Java. Low-level
behavior primitives were prepared for both groups in advance by the authors of the
study. The set of primitives were fully sufficient for solving the presented tasks.

The study was set in an AI course for computer science students in Charles
University in Prague. The syllabus of course is described in [20, 22]. Subjects were
given a pretest (3 hours) after the course to ensure that they have acquired elementary
skills for solving sub-problems from the final exam. Only subjects that have passed
the pretest were admitted to the final exam.

The final exam was structured to obtain comparative data on Java and POSH
usability. In the final exam, each subject had to solve two tasks, the Hunter Task (3
hours) and the Guide Task (3 hours), see Sec. 3.3. Subjects were split into two groups,
Group A and Group B. Group A was instructed to solve Hunter Task in POSH first
and Guide Task in Java second while Group B was instructed to solve Hunter Task in
Java first and Guide Task in POSH second. For both tasks, syntax highlighting was
available for Java and a graphical editor for POSH plans (Fig. S1).

Fig. 1. The course of the experiment

Subjects were given 4 questionnaires in total during the exam (15 minutes each).
There was a 30 minutes long break for a light lunch between the tasks. The course of
the experiment is summarized in Fig. 1. Subjects were informed that the study will
take about 8 hours in total in advance, but the structure and the exact content were
revealed only during the study. The assignments were administered immediately prior
to each task and the subjects given 30 minutes to read them.

 An Experimental Pilot Study with Human Subjects 43

3.2 Participants

We recruited 30 students for the study out of 52 attendants of the AI course. The
study was the course’s final exam and if students succeeded in its both parts, they
were given a final grade based on their agent’s performance. Students had the option
of withdrawing from the study if they preferred a different kind of final exam.

We excluded 3 students from the analysis due to data incompleteness. In total, we
analyzed data from 27 students of which 2 were female. Students were sampled into
two groups. Due to the low number of subjects, the groups were not assigned to
conditions entirely at random. Rather the students were ranked by their ability as
determined by their pretest performance, and then the two groups were matched with
as close to equal sums of rank status as possible. The number of students according to
their years of study and assigned groups is presented in Tab. S1.

3.3 Materials

The Course. The students attended an introductory course on the control of virtual
characters. The course is intended for students without previous AI or 3D graphics
knowledge but with previous programming experience. Only students from the
second or a higher year of study can attend. The course comprises of 12 theoretical
lectures (90 minutes each) and 6 practical lessons at computers (90 minutes each).
The theoretical classes are detailed in [20, 22]. During practical lessons, the students
are taught how to work with Pogamut 3 platform library (2 lessons) and develop
behavior of virtual agents using both Java (2 lessons) and POSH (2 lessons) [23].

The Pretest. The general aim of the Pretest was to rule out subjects that were not
sufficiently prepared for the final exam. Unprepared subjects would bias the data as
they would likely fail during the final exam which would influence their answers in
questionnaires.

The Pretest task was to create an agent capable of exploring the environment of
UT2004 game and collect items of a specific type only. The agent had no adversaries
in this task. Subjects were not given behavior primitives in advance; they had to
create them in Java for themselves. Regarding programming of a high-level behavior,
subjects had the opportunity of choosing between Java and POSH. This approach was
chosen to test the level of subjects’ comprehension of the Pogamut library so that they
would be able understand behavior primitives provided to them during the final exam.

Three programmers skilled in VR technology solved the pretest task in advance to
calibrate the difficulty of the test. The time allotment (3 hours) was at least three
times longer than average time needed by these programmers to finish the task.
Subjects had 3 attempts to pass the Pretest. Most passed on their first attempt.

Task Hunter. The Hunter Task was designed as a game-like scenario. Subjects were
to create an agent (called Hunter) that explores the environment collecting blood
samples of another computer-driven agent called Alien either by finding them around
in the environment or by shooting Alien. Alien was an adversary agent that was
capable of killing Hunter when nearby. If Hunter or Alien got killed, they were

44 J. Gemrot et al.

restarted in the environment far from each other. In addition, Hunter started with no
weapons. Thus, the AI behavior must correctly prioritize the following intentions: 1)
finding a weapon, 2) collecting blood samples, 3) responding to Alien. For instance,
the Hunter agent should stop pursuing a blood sample item and responded to Alien if
Alien has approached, otherwise Hunter could be killed resulting in the loss of
weapons and blood samples collected so far.

In contrast to the Pretest, subjects were given a full set of behavior primitives
(canSeeEnemy, runToItem, shootEnemy etc., see list in Tab. S2) that were
sufficient to solve the task. All behavior primitives were carefully commented inside
the code to make their usage clear. Action primitives did not contain any decision
making logic, e.g., shootEnemy action did not contain any checks whether the agent
has a loaded weapon to shoot from or whether the enemy is close enough for the
weapon to be effective. Such logic was to be created by each subject using proper
sensors, e.g., hasWeapon and getEnemyDistance (example can be seen in the Fig.
S1). The task was again solved by two skilled programmers in advance using these
primitives and their feedback was used to adjust them.

After filling in a pre-exam questionnaire, each subject was given the assignment
written on the paper and was provided a sufficient time (30 minutes) to read it and ask
questions to clarify any ambiguities. Group A was then instructed to solve the task in
Java while Group B in POSH. Time allotment was 3 hours, which is roughly three
times more than was required by the skilled programmers. Both groups had the same
set of primitives. The POSH version of the primitives differed only in implementation
details so that they could be easily used inside POSH reactive plans.

Group A and Group B were working in parallel in two different rooms. Subjects
were not allowed to cooperate on the solution but they were allowed to utilize any
documentation about the Pogamut library available on the Internet [24].

Task Guide. The Guide Task was designed to be more cognitive than the Hunter
Task. Subjects were to create an agent called Guide that can find a Civilian agent
inside the environment and guide it back to its home. The Civilian agent was created
to wander aimlessly around the environment far from its home unless the Guide agent
instructed it otherwise. The Guide agent must communicate with the Civilian agent if
it wants the Civilian agent to follow its lead. The communication has a fixed and
rather simplistic protocol described in the assignment (see Tab. S3).

Communication was reliable and the two agents could hear each other up to a
specific distance. Apart from finding Civilian, there were three obstacles that Guide
had to overcome in order to successfully lead Civilian home. First, Civilian was
willing to start to follow Guide only if it can see it. Second, if Civilian lost Guide
from view, it stopped following. Third, Civilian was created to be absent-minded and
ceased to follow the Guide agent from time to time for no reason. Thus, the challenge
was not only to find Civilian and persuade it to follow the Guide agent to its home,
but also to constantly observe whether Civilian is doing so.

As in the previous task, subjects were given a full set of behavior primitives (Tab.
S4) and the task was tested by two skilled programmers both in Java and POSH. The
only exception was the handling of the communication was always in Java, but it was
sufficient to write three lines of Java code to solve the task in the POSH variant.

 An Experimental Pilot Study with Human Subjects 45

Group A was instructed to solve the task in POSH while Group B in Java.
Everything else (the assignment description, the space for questions, the prohibition
of cooperation, the allowance of Internet usage, slight differences in the POSH
primitives) remained the same as in the previous task.

3.4 Questionnaires

Every subject was given four questionnaires in total. The timing of administration of
each questionnaire is pictured in Fig. 1. Questionnaires were:

1) PreExam questionnaire,
2) Hunter Task questionnaire (in Java and POSH variants),
3) Guide Task questionnaire (in Java and POSH variants),
4) PostExam questionnaire.

The PreExam questionnaire contained questions about the subject’s biographical
background and their AI/Agent/Programming literacy. Only relevant results are
presented in this paper. The main questions for the present interest are: “How many
person-months of programming/AI/Java experiences do you have?” and “How many
hours have you spent experimenting with Pogamut at home?”

The two task questionnaires were designed to elicit data about comprehensibility of
sensory and behavior primitives and subjects’ preferences for the programming
formalism used in the task. The main questions for present interest are:

“Did you find POSH/Java sensor/action primitives comprehensible?”
Answers (Likert item with 5-point Likert scale):

1) I had a lot of troubles understanding them.
2) I did not understand a few primitives.
3) I had no troubles at all, everything was perfectly clear.

“Did you find the number of POSH/Java sensor/action primitives sufficient?”
Answers (Likert item with 5-point Likert scale):

1) Totally insufficient.
2) I had to create a few for myself.
3) Totally sufficient.

“Which formalism do you prefer, Java or POSH?”
Answers (Likert item with 5-point Likert scale):

1) Strong Java preference.
2) Weak Java preference.
3) Cannot tell which is better.
4) Weak POSH preference.
5) Strong POSH preference.

The PostExam questionnaire contained many questions about the comfort of the
Pogamut library API, Java, POSH GUI and other features of the Pogamut platform. It

46 J. Gemrot et al.

also contained the final question about the overall preference between POSH and
Java:

“Which formalism do you generally prefer for high-level behavior specification,
POSH or Java?”

Answers (Likert item with 5-point Likert scale):

1) Strong POSH preference.
2) Weak POSH preference.
3) Can’t tell which is better.
4) Weak Java preference.
5) Strong Java preference.

Subjects were also given a space for a free-text explanation of their answer.
The POSH/Java preference question was given three times in total and they have

appeared in both (POSH/Java) variants of task’s questionnaires. Our aim was to
observe subject preferences with regard to the different tasks (Hunter Task vs. Guide
Task) they had to solve as well as their overall. The questionnaires were not
anonymous so we were able to pair them with concrete agents later on (see 4.2).

3.5 Data Analysis

Answers of subjects from questionnaires of both groups were analyzed. We used χ2-
tests of independence to test whether both groups had same or different language
preferences. As the number of subjects in each group is rather small, we have grouped
subjects with Java/POSH preferences into 3 classes (instead of 5) for the purpose of
the χ2-tests. Answer 1-2 is considered as Java preference, answer 4-5 as POSH
preference and answer 3 as indifference.

Additionally, all agents were tested for quality. We executed a corresponding task
scenario for every agent 15 times and checked whether the agent fulfilled the task’s
objective within the time frame of 10 minutes. We marked every run with either 0
(agent failure) or 1 (agent success). Average number of successes was counted as the
agent success rate (ASR). Even though every run was identical (the same environment
setup was used, the same starting positions of bots were used, the same random seeds,
etc.), we had to perform multiple runs due to small non-determinism caused by
UT2004 and by asynchronous execution of agents’ behaviors which resulted in
different outcomes from the behavior deliberations.

ASR was taken as the degree of agent quality. An ASR of 1 indicates the agent
always succeeded, while an ASR of 0 indicates the agent always failed – real values
could fall between these. Logistic regression was used to identify relationships
between the agent quality and the chosen technique, subject experiences and their
understanding of the provided primitives. The regression was made for every
task/group combination (4 regression models) as well as for all agent runs for Task 1
and for Task 2 (combining data from Group 1 and Group 2, model is including the
group parameter) and is presented in 4.2.

There were 4 questions testing subject understanding of the behavior primitives.
For the subsequent analysis, we averaged responses of these questions and used this
average as the Primitives apprehension variable.

 An Experimental Pilot Study with Human Subjects 47

4 Results

4.1 Comparison of the Two Groups with Regards to Subjective Java/POSH
Preference

The attitude of the students towards the languages in the two tasks is shown in Tab. 1,
3, S2-S7 together with their means and standard deviations.

Regarding the first task, Group A exhibits a strong preference to POSH (Hunter in
POSH) while Group B (Hunter in Java) was more indifferent. The contingency table
of Java/POSH preference after the first task is shown in Tab. 2. The preferences in
Group A and B are not significantly different (p-value = 0.12).

Table 1. Left: Group A, Hunter Task (in POSH), Java/POSH preference. Right: Group B,
Hunter Task (in Java), Java/POSH preference.

Table 2. Contingency table of the Java/POSH preferences after the first task

 Java pref. (1-2) Can't decide (3) POSH pref. (4-5) Total
Group A 2 1 10 13
Group B 5 4 5 14
Total 7 5 15 27

Concerning the second task, Group A (using Java) was indifferent and Group B

(using POSH) exhibited preference to Java (Tab. 4). The preferences in Group A and
B are not significantly different (p-value = 0.36). In general, the students shifted their
preference to Java after the second task, which is summarized by Tab. S5.

General preference between Java and POSH, as assessed by PostExam
questionnaires, is not a clear one. The preferences in Group A and B were
significantly different with Group A preferring POSH while Group B preferring Java
(p-value = 0.01) (summarized in the Tab. 5).

Table 3. From left to right: i) Group A, Guide Task (in Java), Java/POSH preference, ii) Group
B, Guide Task (in POSH), Java/POSH preference, iii) Group A, PostExam, Java/POSH
preference, iv) Group B, PostExam, Java/POSH preference

Ans. # %
1 0 0
2 2 15.4
3 1 7.6
4 3 23.1
5 7 53.9

Mean 4.15±1.14

Ans. # %
1 0 0
2 5 35.7
3 4 28.6
4 1 7.1
5 4 28.6
Mean 3.29±1.27

Ans. # %
1 2 15.4
2 4 30.8
3 1 7.6
4 4 30.8
5 2 15.4

Mean 3.00±1.41

Ans. # %
1 3 21.5
2 7 50.0
3 2 14.3
4 1 7.1
5 1 7.1

Mean 2.29±1.14

Ans. # %
1 0 0
2 3 23.1
3 2 15.4
4 3 23.1
5 5 38.4

Mean 3.77±1.19

Ans. # %
1 3 21.5
2 6 42.8
3 4 28.6
4 1 7.1
5 0 0

Mean 2.21±0.86

48 J. Gemrot et al.

Table 4. Contingency table of the Java/POSH preferences after the second task

 Java pref. (1-2) Can't decide (3) POSH pref. (4-5) Total
Group 1 6 1 6 13
Group 2 10 2 2 14
Total 16 3 8 27

Table 5. Contingency table of the general Java/POSH preferences as answered in the PostExam
questionnaire

 Java pref. (1-2) Can't decide (3) POSH pref. (4-5) Total
Group A 3 2 8 13
Group B 9 4 1 14
Total 12 6 9 27

4.2 Comparison of the Two Groups with Regards to Objective Task Solution
Quality

Logistic regression was used to identify relationships between an agent’s quality
(dependent variable) and chosen technique (Java or POSH), subject experiences and
apprehensions of provided primitives. The parameter for the group was not
statistically significant and was left out from the model for the sake of simplicity. We
have created 3 models (using data from both Group A and B, from Group A only and
from Group B only) for both tasks (6 models in total).

Models Description. The models’ parameters are summarized in Tab. 6. Some
dependencies between model variables and agent’s quality are presented in Figs. S8 –
S10. Every figure contains graphs for Task 1 (left) and Task 2 (right) models
separately. Models using data from both groups contain the additional discrete
variable Technique (Java / POSH), therefore they are visualized with two graphs
separately in each picture (for the Java and POSH cases separately). As all models
amount to a function from the n-dimensional space (yielded from the Cartesian
product of model variables’ ranges) into <0;1> (agent success rate, model dependent
variable), every presented graph can be seen as a planar cut through chosen variable
of the whole model’s n+1-dimensional graph where all other variables are fixed at
data’s means.

Tasks Comparison. Task 1 was solved considerably better by subjects from higher
years of study (Fig. S8, left). The data for Task 1 also suggests that subjects’
comprehension of provided primitives affects the quality of their agents (Fig. S9, left);
this is more pronounced in Group A’s subjects. Additionally, solutions from Group B
(implementing the Hunter agent in Java) indicate correlation with previous Java
experiences (Fig. S10, left). The chosen technique (Java or POSH) did not influence the
agents’ success (see first row POSH-influence column in Tab. 6) in Task 1.

The interpretation of results of Task 2 is not as clear. Task 2 was also sensitive to
Java experience as well as primitive comprehension (Fig. S10, S9, right), but results
were more widely distributed this time. Also, agents of Group B driven by POSH did
considerably worse than agents of Group A that were controlled by Java (see the
fourth row POSH influence column in Tab. 6).

 An Experimental Pilot Study with Human Subjects 49

Table 6. Logistic models of agent success with respect to programming technique, subject’s
year of study, his/her experiences and primitives comprehension. Every row contains the
parameters of one model. Column POSH-influence (discrete variable) explains how the
probability of an agent’s success changes when the agent was programmed using POSH
(present only when data from both groups are used). All other columns (continuous variables)
show how respective variables contribute to ASR. Odds ratio describes how the variable
influences the probability of an agent’s success. Values greater than one indicate that the
probability grows proportionally with the variable and vice versa. Values in bold are discussed
in Section 5.

Data used

Model fit
comp.
against
empty
model

POSH
influence

Year of study
Java

experience
Pogamut used

at home

Primitives
comprehensi-

on

P-Value
Odds
ratio

Sig.
Odds
ratio

Sig.
Odds
ratio

Sig.
Odds
ratio

Sig.
Odds
ratio

Sig.

GA+B, T1 10-12 1.10 2.08 *** 1.08 0.96 2.58 ***

GA, T1 (POSH) 10-10 X 2.10 ** 1.19 1.04 1.24 ***

GB, T1 (Java) 10-6 X 1.81 *** 1.30 ** 0.96 0.74

GA+B, T2 10-5 0.44 ** 0.88 1.11 ** 1.05 . 1.58 *

GA, T2 (Java) 0.057 X 0.99 0.91 0.91 * 2.37 **

GB, T2 (POSH) 10-7 X 0.81 1.09 1.23 ** 1.46

Significance (P-Value): 0 < *** < 0.001 < ** < 0.01 < * 0.05 < . < 0.1

5 Discussion

This pilot study compared the usability of an academic reactive planning system to
the usability of a common programming language when applied to programming the
behavior of virtual agents in 3D game-like tasks. The POSH reactive planner
empowered by a graphical editor of plans was chosen for the former and the Java
programming language for the latter. This quantitative experimental study is, to our
knowledge, the first in the field of virtual agent programming techniques (but see also
[29]). The purpose of the study was twofold. First, we aimed at investigating
objectively the usability of the two techniques, making a small step towards the grand
goal: isolating features that contribute to usability of different approaches to control
virtual agents in 3D videogames and simulations. Secondly, we aimed at answering
the question whether the chosen experimental method per se is promising for future
studies. We now discuss these two points.

5.1 Results

Summary of the Data. The answer for the question of usability of Java and POSH
has two sides which are intertwined. First, there is a subjective answer of comfort in
using a chosen system as presented in Sec. 4.1. Second, there is an objective answer
that comes of assessing the quality of agents as presented in Sec. 4.2.

50 J. Gemrot et al.

Regarding the subjective answer, there are two main outcomes:

a) Subjects, in general, reported that they preferred POSH for the first task
(Tab. 1, 2, S2, S3) while they preferred Java for the latter (see Tab. 3, 4, S4,
S5);

b) group A subjects tend to prefer POSH while Group B subjects tend to prefer
Java (Tab. 5).

The objective answer as showed by logistic regression indicates several outcomes:
c) Students in a higher year of study tend to perform better in the first task while

there was no such influence in the second task (see Fig. S8);
d) previous Java experience was important in Task 1 in Group B (using Java in

that task) but not in Task 2 in Group A (using Java in that task) (Fig. S10, left;
Tab. 6);

e) comprehension of the provided primitives was high in general (Fig. S9 left;
means in both tasks were higher than 4.1) and seems to influence ASR a bit
(Fig. S9 left; Tab. 6);

f) the first task was done equally well in both POSH and Java (see Odds ratio of
POSH influence in the first row of Tab. 6) while in the second task, subjects
using POSH performed significantly worse (see Odds ratio of POSH influence
in the third row of Tab. 6).

General Comments. Arguably, the main underlying theme is that the data indicates
different outcomes for the two groups. Why? Let us start with comments on
distribution of subjects into Group A and B with respect to major variables (Comment
1), proceed with comments on several uncontrolled variables that may have
influenced the outcome (Comments 2, 3, 4), and finally return to the individual
outcomes A-F above.

1. Is the average programming experience of the subjects the same for the two
groups? Tab. S6 indicates that Group B may have consisted of slightly more
Java experienced subjects, but the difference between the groups is rather
small. Data for the total previous programming experience look similarly (note
that mean is not a useful aggregative variable here since the learning curve is
not linear). Students from Group B also have higher years of study on average
(A: mean=3.3; SD=1. B: mean=4.4; SD=1.5). This is the outcome of the rank-
based sampling procedure, which will be commented in Sec. 5.2. For present
purpose, it is important that Group B may have comprised slightly more
experienced programmers on average than Group A.

2. Subjects were undergoing a coding marathon as the final exam lasted 8 hours
so the results from the second task could have been biased by subjects’
tiredness. However, it seems reasonable to assume that both groups were
equally tired.

3. It may be that the second task is harder in general, independently of the
tiredness. We did not consider the complexity of tasks beforehand; therefore
we have asked post hoc four independent VR experienced programmers to
judge tasks’ complexity out of the assignments (they did not perform them, we

 An Experimental Pilot Study with Human Subjects 51

have just presented them written assignments) and task suitability for the
chosen technique. The second task was perceived as easier only by one of
them; the others thought that the second task is harder. Their comments
regarding the suitability of techniques diverged.

4. It also may be that POSH fits better for solving the first task while Java for the
second. This idea is actually supported by free-report parts of questionnaires.
Some subjects indicated that Java was more suitable for the second task while
none the other way round. Some subject’s comments to the 2nd task:
“There were more if-then rules in the first task than here, therefore POSH
would have suited the first task more, using it here was mere overkill.”
“Using POSH for this task would be a nuisance.”
“In contrast with the first task, this was too complex to niggle with POSH plan
graphical editor. It was better to address it in Java.”

Main Interpretation. In our opinion, the most plausible explanation of the results is
that they are produced by combination of two effects: the fact that the second task can
be more easily solved using Java (unlike the first task), and the fact that the graphical
drag&drop editor and POSH (it is not clear which of these or whether both of them
together) is more appealing to a less skilled audience and such an audience can use it
more effectively than Java. This statement agrees with Results (A) and (B) and partly
with (C), and is further supported by Comments 1 and 4. Of course, our data only
indicates that this can be the case; a useful hypothesis for further testing rather than a
conclusive result.

It is also possible that the essential difference was that Task 2 was best completed
by altering or adding to the provided the primitives. Because of the way POSH was
introduced with the emphasis on the graphical tool, most subjects appeared to feel
obliged not to alter any Java code while they were in the POSH condition. One
student did provide an exceptionally good agent in Task 2 by combining POSH and
altered Java primitives. This strategy is more in keeping with the way POSH is
presented in the academic literature as a part of a development methodology
(Behaviour Oriented Design) rather than a stand-alone approach. However, only one
exceptional programmer tried this strategy.

Another way of looking at the data is that POSH scored surprisingly well (Tab. 2,
4, 5) given many subject’s initial Java experience but no initial POSH experience.
Investigation of steepness of the learning curve might be fruitful in the future. Useful
information could also come out of studies of programmers already skilled in using an
agent-based technique. Sadly, finding such a subject pool is presently a difficult task.

It is not surprising that understanding the primitives (Result (E)) has a positive
effect on ASR. In fact, the influence is rather small, which is most likely caused by a
ceiling effect: the average understanding of primitives was high in general, suggesting
that our primitives were well chosen, prepared and documented.

Several questions remain open. We do not know why there was no influence of the
students’ years of study on the agents’ performance in the 2nd task (Result (C), 2nd
part); perhaps the assignment was not sensitive enough, or perhaps the difference on
the 1st task indicated more advanced students become more adept at a new problem

52 J. Gemrot et al.

more quickly, whether through learning more quickly or due to being less stressed by
exam conditions.

Concerning Result (D), it is not surprising that previous Java experience was
important in Task 1 in Group B but not A, because the former group used Java. We do
not know why previous Java experience had no influence on Group A in Task 2;
again perhaps the 2nd assignment was not sufficiently sensitive to this variable. Also
the sensitivity to previous Java experience in Task 1 suggests that classical
programming languages are not as suitable for less-experienced programmers such as
game designers as higher-level graphical tools and planning languages are.

Generalization. The results of this study indicate that academic techniques may in
certain cases provide advantages over classical programming languages, but it is too
soon to generalize based on the results of one study performed on two particular
approaches and tasks. More studies are needed to obtain more conclusive data for
further supporting or refuting such a claim. Nevertheless, it is a good sign for
developers of various agent-based languages such as Jason [26] or GOAL [11]. Closer
examination is needed to identify different complexities underlying virtual agents’
development. Such examination may help recognize possibilities and limits of various
techniques and uncover their strong and weak points. For instance, it may be that
when augmented by drag&drop graphical editors (as POSH was in our study), some
of these languages may be better suited than scripting languages for people with
mediocre programming skills, such as some game designers. We believe that without
such analysis the gaming industry would unlikely embrace academic techniques for
virtual agent’s development.

5.2 Lessons Learned

As the comparative study of different techniques usable for virtual behavior
development is new, we report lessons learned and suggest improvements for future
studies. The main lessons are:

1. Performing the study in two consecutive parts promotes biased data on the
second part due to subjects’ tiredness. This can be addressed by altering the
experiment design either by a) dividing subjects into 4 groups giving every
group only one combination from the task-technique pairs, which would
however require at least twice as many subjects, or b) by dividing each group
into two subgroups, which would solve both tasks each but in the reverse
order; that would allow the statistical computation of the effect of tiredness, or
c) to perform the second task in another day.

2. It would be beneficial to administer one more questionnaire during the pretest
to obtain the initial preferences of subjects regarding the techniques compared
in the study. In general, several other variables could be controlled better, e.g.
the task difficulty (see also Comments 2, 3, 4 in Sec. 6.1).

3. The analysis should be complemented with qualitative studies to gain more
insight. This may have several forms. a) Interesting data can be obtained by
analyzing the agent code as has been previously done by Hindriks and

 An Experimental Pilot Study with Human Subjects 53

colleagues [19]. We may still do this with the code from the present study. b)
Focus groups or structured interviews can be conducted after the main study to
obtain more precise explanations for subjects’ preferences and their solutions’
quality. c) Questionnaires should encourage subjects to describe reasons for
their preference (the importance of this has been highlighted in Comment 4 in
Sec. 5.1).

4. Attention should be paid to the evaluation’s tasks. Each task should be judged
not only for its general difficulty by programmers skilled with VR
technologies, but also for its difficulty regarding the technique being tested. In
general it is presumably a good thing to make assigned tasks varied so that an
over-general conclusion is not reached without adequate justification. After the
evaluation, subjects should be asked for their own assessment of the tasks to
check if it correlates with the experts’. Note that both subject and expert
assessment should be checked against actual quantifiable results.

5. The sampling procedure should be carefully considered. Evidently, even a
rank-based sampling may produce unequal groups (with respect to some
variables). When there are a lot of variables and a relatively small sample size,
such an outcome may be inevitable. The sampling procedure will also be
different for different questions asked, e.g., if one would like to assess group of
experienced Java programmers against inexperienced ones, the criterion for
sampling would be previous Java experience.

6. Pretests are important in order to ensure that students have certain minimal
skills for the main study, e.g. from the present study the ability to understand
behavior primitives. Pretests are also important for obtaining data for the
sampling procedure.

5.3 Future Work

Our results clearly indicate a need to continue with comparative studies and to begin
to identify the different aspects of the complex task of virtual behavior development.
We are considering performing another study this year, taking into account the
lessons learnt, possibly utilizing GOAL [10] as an academic reactive planning
technique that is based on the BDI paradigm. We may also run the same test again but
with POSH clearly set forward not as an alternative to Java but rather as a way to
supplement it. AI action selection systems are intended to simplify the development
of agent intelligence, not to replace it.

6 Conclusions

This pilot study compared an academic reactive planning technique (namely POSH)
against a common programming language (namely Java) with respect to their
usability for programming behaviors of virtual agents in 3D game-like tasks. The
study has investigated the performance of subjects’ agents with respect to the
technique used as well as subjects’ preferences towards the techniques.

54 J. Gemrot et al.

The conclusion, stated with caution, is threefold. First, from a general perspective,
POSH scored comparable to Java. Second, in a more fine-grained manner, usability of
Java and POSH seem to be task-sensitive and subjectively perceived usability of the
techniques as well as objective quality of the subjects’ agents with respect to the
techniques may change with subjects’ programming experience. Third, the
experimental method is useful, but should be complemented by other approaches.

Taken together, these are promising news for agent-based control mechanism
developers. Future studies are needed and they should focus on isolating mechanisms’
features that contribute most to the mechanisms’ usability for different target groups
of users, e.g., game designers vs. programmers.

Acknowledgement. Students’ assignments were developed at Charles University in
Prague as part of subproject Emohawk developed under the project
CZ.2.17/3.1.00/31162 that is financed by the European Social Fund and the Budget of
the Municipality of Prague. The subsequent research was partially supported by grant
P103/10/1287 (GA ČR) (C.B., J.G., J.B.), SVV project number 263 314 (J.G., M.B.),
research project MSM0021620838 (MŠMT ČR) (C.B.) and by students grant GA UK
No. 0449/2010/A-INF/MFF (M.B.). We thank our students. The questionnaires were
designed by J.G. and C.B. Human data were collected respecting APA ethical
guidelines.

References

1. Fu, D., Houlette, R.: The Ultimate Guide to FSMs in Games. In: AI Game Programming
Wisdom II, pp. 283–302. Charles River Media (2004)

2. Champandard, A.J.: Behavior Trees for Next-Gen Game AI. Internet presentation (January 18,
2011), http://aigamedev.com/insider/presentations/behavior-trees

3. Schuytema, P.: Game Development with Lua. Charles River Media (2005)
4. UnrealScript programming language (January 18, 2011),

http://unreal.epicgames.com/UnrealScript.htm
5. Schwab, B.: AI Game Engine Programming, 2nd edn. Charles River Media (2008)
6. AiGameDev community (January 18, 2011), http://aigamedev.com/
7. Rabin S.: AI Game Programming Wisdom series (January 18, 2011),

http://www.aiwisdom.com/
8. Gamasutra webpage (January 18, 2011), http://www.gamasutra.com/
9. Magerko, B., Laird, J.E., Assanie, M., Kerfoot, A., Stokes, D.: AI Characters and Directors

for Interactive Computer Games. In: Proceedings of the 2004 Innovative Applications of
Artificial Intelligence Conference, San Jose, CA. AAAI Press (July 2004)

10. Best, B.J., Lebiere, C.: Cognitive agents interacting in real and virtual worlds. In: Sun, R.
(ed.) Cognition and Multi-Agent Interaction: From Cognitive Modeling to Social
Simulation. Cambridge University Press, NY, NY (2006)

11. Hindriks, K.V., van Riemsdijk, B., Behrens, T., Korstanje, R., Kraayenbrink, N., Pasman,
W., de Rijk, L.: UNREAL GOAL Bots: Conceptual Design of a Reusable Interface. In: Dignum,
F. (ed.) Agents for Games and Simulations II. LNCS (LNAI), vol. 6525, pp. 1–18. Springer,
Heidelberg (2011)

 An Experimental Pilot Study with Human Subjects 55

12. Bryson, J.J.: Inteligence by design: Principles of Modularity and Coordination for
Engineering Complex Adaptive Agent. PhD Thesis, MIT, Department of EECS, Cambridge,
MA (2001)

13. Partington, S.J., Bryson, J.J.: The Behavior Oriented Design of an Unreal Tournament
Character. In: Panayiotopoulos, T., Gratch, J., Aylett, R.S., Ballin, D., Olivier, P., Rist, T.
(eds.) IVA 2005. LNCS (LNAI), vol. 3661, pp. 466–477. Springer, Heidelberg (2005)

14. Köster, M., Novák, P., Mainzer, D., Fuhrmann, B.: Two Case Studies for Jazzyk BSM. In:
Dignum, F., Bradshaw, J., Silverman, B., van Doesburg, W. (eds.) Agents for Games and
Simulations. LNCS (LNAI), vol. 5920, pp. 33–47. Springer, Heidelberg (2009)

15. Dignum, F., Bradshaw, J., Silverman, B., van Doesburg, W. (eds.): Agents for Games and
Simulations. LNCS, vol. 5920. Springer, Heidelberg (2009)

16. Tyrrell, T.: Computational Mechanisms for Action Selection. Ph.D. Dissertation. Centre
for Cognitive Science, University of Edinburgh (1993)

17. Bryson, J.J.: Hierarchy and Sequence vs. Full Parallelism in Action Selection. In:
Simulation of Adaptive Behavior 6, Paris, pp. 147–156 (2000)

18. Bryson, J.J.: Action Selection and Individuation in Agent Based Modelling. In: Proceedings
of Agent 2003: Challenges of Social Simulation, Argonne National Laboratory, pp. 317–330
(2003)

19. Hindriks, K.V., van Riemsdijk, M.B., Jonker, C.M.: An Empirical Study of Patterns in
Agent Programs. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS,
vol. 7057, pp. 196–211. Springer, Heidelberg (2012)

20. Brom, C.: Curricula of the course on modelling behaviour of human and animal-like
agents. In: Proceedings of the Frontiers in Science Education Research Conference,
Famagusta, North, Cyprus (2009)

21. Gemrot, J., Brom, C., Kadlec, R., Bída, M., Burkert, O., Zemčák, M., Píbil, R., Plch, T.:
Pogamut 3 – Virtual Humans Made Simple. In: Gray, J. (ed.) Advances in Cognitive
Science, pp. 211–243. The Institution Of Engineering And Technology (2010)

22. Brom, C., Gemrot, J., Burkert, O., Kadlec, R., Bída, M.: 3D Immersion in Virtual Agents
Education. In: Spierling, U., Szilas, N. (eds.) ICIDS 2008. LNCS, vol. 5334, pp. 59–70.
Springer, Heidelberg (2008)

23. Artifical beings course, practical lessons slides (January 18, 2011),
http://diana.ms.mff.cuni.cz/pogamut-devel/doku.php?id=lectures

24. Pogamut 3 platform documentation (January 25, 2011),
http://diana.ms.mff.cuni.cz/
main/tiki-index.php?page=Documentation

25. Artificial beings course, final exam package (January 18, 2011),
http://diana.ms.mff.cuni.cz/pogamut-devel/doku.php?id=
human-like_artifical_agents_2009-10_summer_semester_exam_info

26. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak Using Jason. John Wiley & Sons, Ltd. (2007)

27. Brooks, R.A.: Intelligence Without Representation. Artificial Intelligence 47(1-3), 139–159
(1991)

28. Bozada, T.A., Perkins, T.K., North, M.J., Kathy, K.L., Simunich, L., Tatara, E.: An Applied
Approach to Representing Human Behavior in Military Logistics Operations. In: Fall
Simulation Interoperability Workshop, Simulation Standards Interoperability Organization,
Orlando, FL USA (September 2006)

29. Desai, N.: Using Describers To Simplify ScriptEase. Master Thesis. Department of
Computing Science, University of Alberta, Edmonton, Alberta, Canada (2009)

56 J. Gemrot et al.

Appendix

This section contains additional tables, figures and some additional text concerning
presented study.

Reusable Package. The package containing the assignment texts, Pogamut 3 platform,
template agent projects and the scenario map can be downloaded from [25].

Table S1. Number of students in groups according to their types of study and years of study.
Master students have number of years spent for their bachelor studies included into their years
of study. Note that bachelor studies last 3-4 years typically and master studies takes usually
extra 2-3 years.

Group A
Study / Year of

study
2nd 3rd 4th 5th Total

Bachelor 4 2 0 0 6
Masters 0 0 6 1 7

Total 4 2 6 1 13

Group B
Study / Year of

study
2nd 3rd 4th 5th 6th 8th Total

Bachelor 2 1 3 0 0 0 6
Masters 0 0 3 2 2 1 7

Total 2 1 6 2 2 1 14

 An Experimental Pilot Study with Human Subjects 57

Table S2. List of all behavior primitives that were provided in the Task 1

Sensors
class of primitives X parameter Y parameter

canSee X AlienBlood, Ammo, Enemy,
Weapon, WeaponOrAmmo

get/know X NavPointToExplore
know X Y SpawningPoint AlienBlood, Ammo, Weapon,

WeaponOrAmmo
Spawned AlienBlood, Ammo, Weapon,

WeaponOrAmmo
get X Y Random NavPoint

Nearest NavPoint
NearestVisible AlienBlood, Ammo,

AmmoOrWeapon, Enemy,
NavPoint, Weapon

NearestSpawned AlienBlood
Ammo
Weapon
WeaponOrAmmo

AlienBlood, Ammo, Item,
Weapon, DistanceToTarget

has X Ammo, Weapon
is X Moving, Shooting,

RunningToItem,
RunningToPlayer,
RunningToNavPoint

wantToSwitchToItem

Actions
run X ToItem

ToNavPoint
ToPlayer

shootEnemy
stop X Movement, Shooting

58 J. Gemrot et al.

Fig. S1. Example of the code that the subjects were creating. Top: part of a POSH plan of the
Hunter task as visualized by the graphical editor. Below: Hunter code in Java. The code and the
plan were taken from an exemplary solution created by one of VR experienced programmers.

Table S3. List of possible commands that can be issued by the Guide and corresponding possible
answers

Guide commands Possible Civilian answers
commandCivilianCanSee answerAngry

answerDontUnderstand
answerCanSee
answerCantSee

commandCivilianFollowMe answerAngry
answerDontUnderstand
answerCantFollowingCantsee
answerFollowingOk

commandCivilianStop answerAngry
answerDontUnderstand
answerStopped

commandCivilianTurn answerAngry
answerDontUnderstand
answerTurning

 An Experimental Pilot Study with Human Subjects 59

Table S4. List of all behavior primitives that were provided in the Task 2

Sensors
class of primitives X parameter Y parameter

can X Y See Civilian, Player
 FollowCivilian
get/know X NavPointToExplore
get X Y NearestVisible NavPoint, Player

DistanceTo Civilian, NearestPlayer, Target
is X CivilianFollowing,

CivilianMoving, CivilianNear
PlayerInTalkingDistance, Moving,
RunningToPlayer,

Actions

command X Y Civilian CanSee, FollowMe, Turn, Stop
faceCivilian
followCivilian
run X ToNavPoint, ToPlayer
set X CivilianSpeed, GuideSpeed
stopMovement

Fig. S2. Group A, Hunter Task (in POSH), Java/POSH preference

Fig. S3. Group B, Hunter Task (in Java), Java/POSH preference

Ans. # %
1 0 0
2 5 35.7
3 4 28.6
4 1 7.1
5 4 28.6

Mean 3.29±1.27

Ans. # %
1 0 0
2 2 15.4
3 1 7.6
4 3 23.1
5 7 53.9

Mean 4.15±1.14

60 J. Gemrot et al.

Fig. S4. Group A, Guide Task (in Java), Java/POSH preference

Fig. S5. Group B, Guide Task (in POSH), Java/POSH preference

Fig. S6. Group A, PostExam, Java/POSH preference

Fig. S7. Group B, PostExam, Java/POSH preference

Ans. # %
1 0 0
2 3 23.1
3 2 15.4
4 3 23.1
5 5 38.4

Mean 3.77±1.19

Ans. # %
1 3 21.5
2 7 50.0
3 2 14.3
4 1 7.1
5 1 7.1

Mean 2.29±1.14

Ans. # %
1 2 15.4
2 4 30.8
3 1 7.6
4 4 30.8
5 2 15.4

Mean 3.00±1.41

Ans. # %
1 3 21.5
2 6 42.8
3 4 28.6
4 1 7.1
5 0 0

Mean 2.21±0.86

 An Experimental Pilot Study with Human Subjects 61

Table S5. Contingency table of the Java/POSH preferences shift

Change in preferences of Group A
 T2 - Java T2 - Can't decide T2 - POSH Total (Task 1)
T1 - Java 2 0 0 2
T1 - Can’t decide 1 0 0 1
T1 - POSH 3 1 6 10
Total (Task 2) 6 1 6 13

Change in preferences of Group B

 T2 - Java T2 - Can't decide T2 - POSH Total (Task 1)

T1 - Java 5 0 0 5

T1 - Can’t decide 3 1 0 4

T1 - POSH 2 1 2 5

Total (Task 2) 10 2 2 14

Table S6. Table summarizing previous Java experiences in both groups (in man-months)

 0-1 months 2-5 months 6-9 months > 9 months Total
Group A 9 2 0 2 13
Group B 6 4 1 3 14
Total 15 6 1 5 27

Fig. S8. Dependency of ASR on subject’s year of study (Left – Task 1; Right – Task 2)

62 J. Gemrot et al.

Fig. S9. Dependency of ASR on primitives’ comprehension (Left – Task 1; Right – Task 2)

Fig. S10. Dependency of ASR on previous Java experience (Left – Task 1; Right – Task 2)

Dialog Designs in Virtual Drama:

Balancing Agency and Scripted Dialogs

Edward Chao-Chun Kao and Von-Wun Soo

Institute of Information Systems and Applications, National Tsing Hua University
101, Section 2, Kuang-Fu Road, Hsinchu City, Taiwan 30013, R.O.C.

{edkao,soo}@cs.nthu.edu.tw

Abstract. Scripts are automatically generated by a story generator and
subsequently played by virtual agents. The scripts for actors consist of
two parts: movements and dialogs, however, the dialogs are insufficiently
addressed in current research of story generation, thereby limiting the
generated stories. Therefore, our initial goal was to enable story gen-
erators to generate dialogs as sets of character-based actions that are
integrated with original story plots. This paper presents a speech-act-
based dialog generation framework to define the relationship between
dialogs and story plots. In addition, we introduce the manner in which
agents may improvise scripted dialogs by selecting various courses of
actions. Lastly, a sample scenario was generated according to this frame-
work and demonstrated by virtual agents with the Unreal Development
Kit. Our initial results indicated that this framework maintains a bal-
ance between agency and scripted dialogs, and that improvised dialogs
of virtual agents do not affect the consistency of stories.

Keywords: speech act theory, dialog generation, virtual drama.

1 Introduction

The rise of intelligent virtual agents has formed a new interdisciplinary research
community comprising artificial intelligence, computer graphics, cognitive sci-
ence, natural language processing, and narrative theories.

Although the future direction of virtual agents may vary according to the
major domain of researchers, a significant domain is virtual drama because it
occurs in existing applications, such as computer games, emotion counseling,
and simulation-based training. We identified virtual drama as a play with the
following characteristics:

1. Virtual environments: rendering computer graphics with either realistic or
cartoon-style pictures as the scenes in the play. The virtual environments
often serve as the engine that integrates other components, such as camera
controllers and physics.

2. Virtual actors: virtual agents may be implemented by various methods in
virtual environments and intended to act as characters in the play. They are
equipped with the abilities to display believable gestures and facial expres-
sions, and to synthesize voices and other interactions.

M. Beer et al. (Eds.): AEGS 2011, LNAI 7471, pp. 63–78, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

64 E.C.-C. Kao and V.-W. Soo

3. Play scripts: the actions of virtual actors and virtual environments are de-
scribed in the play scripts, which are either manually written or automati-
cally generated. Although they differ from movie scripts, which are intended
for human actors and directors, play scripts in virtual drama are often de-
fined with formalisms and/or markup languages, for example, PDDL [14] in
the planning domain and BML [29] to describe the action timing of virtual
actors.

Although the virtual environments and virtual actors are important research
topics in virtual agents, we focused on the generation of the third part, which is
identified as story generation or narrative generation in academic terms.

The need for automated story generation is because audiences consume stories
markedly faster that human authors write stories. The scripts are automatically
generated with the use of a story generator and are subsequently played out by
virtual actors who are situated in virtual environments. Therefore, we argue that
story generation is the starting point for virtual drama to become completely
automated and to provide on-demand digital content.

However, although recent research in story generation applies various types of
planning [8][25] and theories in narrative analysis to generate plots, these plots
contain only high level actions that consist of physical actions only , and the
dialogs between characters are often ignored or are hand-crafted, resulting in
speechless or domain-specific scenarios. The high level actions require human
authors to fill in the dialogs; however, the dialogs of the characters are limited
to current storylines, and are difficult to apply to other generated stories.

To address this problem, the main aim of our research was to model a gen-
erative framework of dialogs to generate dialogs for various stories and actors
without losing its generality. Because the entire domain of natural language
generation is beyond our research problem, our framework is based on a sim-
plified yet well-structured form of language that is known as speech acts, which
are treated as ordinary actions in the planning domain, therefore, the state-of-
the-art techniques of story planning may use them during the planning process
without several modifications.

In particular, this novel dialog framework is flexible to both virtual actors
and story plots. It allows virtual agents to choose more detailed dialogs based
on internal character profiles and the play scripts, and also allows human authors
to specify constraints at the level of story discourse.

The remainder of this paper is described as follows: section 2 presents re-
views of related literatures in the domains of agent communication and story
generation, which focuses our work and identifies its scope; section 3 provides a
description of our desiderata and an explanation for the selection of hierarchi-
cal speech acts as the foundation of our framework; section 4 provides a formal
representation of virtual drama and our dialog framework in Z notation; section
5 presents the application of this framework to an abstract scenario to evaluate
the use of our model to generate balanced dialogs between characters and plots;

Dialog Designs in Virtual Drama: Balancing Agency and Scripted Dialogs 65

and a sample scenario is illustrated in section 6 to demonstrate the whole frame-
work. Lastly, section 7 offers conclusions by summarizing our main findings and
future work.

2 Related Work

2.1 Narrative Generation

In general, research of narrative generation is based in literary structuralism.
Based on their work, a narrative world is described by a series of events, which
are known as fabula. The pieces of fabula that are chosen by storytellers to
be retold to the audience are identified as sujet. Because story discourse (the
sequence of sujet) may differ from fabula in temporal order and appearance (for
example, not every piece of fabula will appear in sujet), various stories may be
generated, including those based on the same fabula.

Fabula and sujet, when formulated as actions, may be generated with POP-
based planning. Although structuralists [7][24] analyzed stories as a set of specific
patterns of sujet, the goal of narrative generation is to generate stories according
to these patterns. The further decompositions of these overall story patterns lead
to the formulation of causal constraints in planning. By contrast, the continuity
of character intention that is expressed in sujet is also a crucial factor to stories
and is identified as intentional constraints by Riedl et al. and was utilized by
their story planner IPOCL [25].

The POP-based narrative planning yields optimal stories, which may be fur-
ther processed into various styles of sujet, such as suspense. Riedl extended his
method by incorporating vignettes [27], which are considered good scenarios and
used as existing plan fragments during the planning process, enabling the story
to be reused. However, the actions used by planners are defined as major events
at the level of overall fabula rather than at the level of sujet, which consists of
lines of dialogs between characters.

2.2 Interactive Narratives

A parallel trend of research in narrative intelligence is interactive narratives,
which focuses on interactions between human users and virtual actors. In the
I-Storytelling system [4], each virtual actor interacts with users and other virtual
actors based on a pre-scripted HTN plan, allowing others to change its behavior
based on the actual interactions on-stage. The sujet emerges from real-time
interactions without definite fabula, and therefore, this method is also identified
as emergent narratives. The method of emergent narratives leads to multiple
possible fabula, as it may generate inconsistent stories with the same set of
HTN plans.

The formulation of interactive narratives may be more suitable in describing
dialogs because dialogs are a type of interaction. As the number of pre-scripted

66 E.C.-C. Kao and V.-W. Soo

interactions increase, users may experience varied dialogs. In most applications,
the definition of story directions at various levels is still preferred to avoid virtual
actors from becoming random chat bots and thereby losing the focus of the in-
tended stories. Therefore, a drama manager is required to determine appropriate
interactions according to the current development of stories. With fine-grained
interaction segments, such systems can yield highly interactive stories of excellent
quality, as exemplified by Faade [19]. However, in contrast to those actions which
are general events in POP-based story planning, all the dialogs and other inter-
actions in interactive narratives are domain (story) specific. Consequently, recent
development about dialog generation in interactive narratives demonstrates the
differences among characters regarding various forms of expressions [5], charac-
ter archetypes [28], personality [18], culture [11], and multi-modal dialogs [22].
These dialogs require time to build and refine, however, they are difficult to
reuse in new stories due to the lack of explicit notations related to high level
plots because they intertwine with implicit and possibly multiple fabula.

2.3 Simulation-Based Training

By contrast, negotiation formalisms from agent communication languages were
introduced into applications of simulation-based training [30]. The virtual actors
must interact with users through protocols of normal coordination and commu-
nication because their goal is to train human users with virtual agents in virtual
environments. Although the actual lines of dialogs are pre-recorded, the virtual
actors reason about their communication with users and evaluate it as vari-
ous, based on explicit task models of standard operation procedures. A set of
negotiation-related speech acts were used to allow users to negotiate with virtual
actors, , and either the actors or the users interacted with each other through
speech acts and related parameters that were defined in the task models, and the
speech acts of the user were identified automatically with voice recognition and
further natural language processing. If negotiated properly, the virtual actors
take various courses of actions and hence change the following story.

This method is applied in several related training projects [10][31]. From our
point of view, the task models and speech acts are defined explicitly within
interactions, and the gestures, facial expressions, and other movements of virtual
actors are configured independently in the visualization process, making this
dialog model modularized and plausible to stories. Based on this research, our
study introduces a speech act classification system to serve as the foundation
of the dialog framework that is revealed in the next section, and to integrate it
with the narrative generation process.

3 Dialog Framework

In this section, we clarify the purpose and the definition of dialogs with for-
malisms.

Dialog Designs in Virtual Drama: Balancing Agency and Scripted Dialogs 67

Dialogs, which are either a monologue or a conversation involving multiple
participants, are conducted in any part of the narratives and describe a part of
the story from the point of view of particular characters. The presented story
may change, depending on the points of view of various characters [23]. However,
Austin indicated that the purpose of statements is not only to describe, but also
to do things with words [1], and that the purpose of dialogs in narratives is not
just to describe the story, but also to represent the actions of characters toward
the narrative world. To model these actions, we used the theory of speech acts
and viewed dialogs as sequences of various speech acts.

Although the model of domain knowledge in dialog contents were conducted
in recent research [17], the speech acts in interactive narratives are usually cus-
tomized according to the tasks in stories [6][19][30] in an ad-hoc manner without
a determined hierarchy or relations among the various speech acts, therefore,
speech acts are difficult to use by either story planners or virtual actors that
intend to emerge narratives. Considering these findings, we progressively intro-
duce what we assume to be the essential classification of speech acts, and the
manner in which it is applied to build a consistent schema that captures the
dialogs in narratives.

Although we intended to only allow virtual actors to adopt and mimic the
structures of human dialogs to generate similar sentences, we first categorized
and identified the relations among numerous speech acts that are used by hu-
mans. Our approach was based on Ballmer and Brennenstuhls speech act clas-
sification [2] because it provided explicit relationships among various groups of
speech acts. Their classification identified four main groups of speech activi-
ties as hierarchical linguistic functions. The functional effect of each category of
speech acts does not overlap although a semantic verb may appear in various
categories. Consequently, we believe it is possible for story generators to select
corresponding categories based on the effects of speech acts. We explain groups
of speech acts in the context of narratives, as follows:

Fig. 1. Speech Act Classification from [2]

68 E.C.-C. Kao and V.-W. Soo

– Level1-Expression: including all emotional reactions. Expression contains the
most primitive and direct speech acts that present the profiles of characters,
such as angry, afraid, and grateful.

– Level2-Appeal: Appeal represents speech acts in a focused sense, where the
speaker attempts to influence and control the listener (for example, order,
threaten, encourage).

– Level3-Interaction: similar to Appeal, however, the listener can influence the
speaker, whereas the speaker may try to avoid the influence, which forms a
series of Appeals in various directions.

– Level4-Discourse: appropriately conducted and more rigidly organized In-
teraction(s), which implies that Interactions occur in a particular order and
appearance according to the definition of this Discourse.

Although we only used a subset of speech acts in our system, we argue that it is
the relationship among these levels that link character dialogs (low levels) to nar-
rative discourses (high levels). As indicated in the classification definition, there
is a vital property that allows us to utilize this speech act model in narratives.

Property 1. (Speech Act Hierarchy): Being the higher linguistic functions imply
being the lower ones.

That is, if a Discourse is described between two actors, it should contain one or
more interactions, all of which lead to several Appeals in both directions. These
Appeals occur with various (emotional) Expressions.

With this property, the plot symbols in narrative structures are expanded
into one or more speech acts (which are later realized as dialogs) in addition to
ordinary actions. For example, when two persons A and B argue about something
in a play script (its the performance of which is sujet), if we describe this speech
act as primitive actions in the domain theory of planning, this speech act can
be illustrated as:

argue(A,B, sth) (1)

During the process of argue, a number of forms of protocols must exist in the
knowledge of both participants, such as rebut, undercut, and negotiate. These
protocols contain a series of speech acts that designate verbal attacks and de-
fenses toward each other, which may be chosen by both parties during the run
time. When A and B execute these speech acts, they may also express their
current emotions.

In the previous example, argue belongs to the Discourse (level-4); and rebut,
undercut, and negotiate are its associated Interactions (level-3). Those attacks,
defenses, and evasions that follow the Interaction protocols are Appeal (level-2),
and their emotional behaviors are considered Expression (level-1).

Based on this property, we defined a dialog frame based on speech acts within
narratives.

Definition 1. (Speech Act): four major groups of speech acts occur, which are
Expression, Appeal, Interaction, and Discourse, from low to high levels.

A high level speech act may include speech acts from the lower levels.

Dialog Designs in Virtual Drama: Balancing Agency and Scripted Dialogs 69

Definition 2. (Dialog Frame): a dialog frame must contain more than one
speech act.

Although these definitions do not provide precise information as to what type of
speech acts are included in each model, we indicate the rules among each group.
Although our focus was not to re-examine whether speech acts in each model
are appropriate in human language, we provide several examples to demonstrate
the manner in which these models are used as parameters for virtual drama, and
explain the pros and cons with various approaches. The users are responsible
for customizing their own sets of speech acts in each level, and the associated
relations among these groups. Interested readers may refer to speech act classi-
fication for further details.

4 Virtual Drama

As stated in section1, anautomatedvirtual drama systemmust containaminimum
of 3 components, as follows: story generators to generate play scripts, virtual actors
to play according to the scripts, and a virtual environment that integrates these
components. Although the mechanism of story generation is outside the scope of
this paper, we assume that the scripts are already generated as a sequence of high
level actions such as those in [13][25].Under this assumption,we specify themanner
in which dialog frames are elaborated in virtual drama as these high level actions,
and how virtual actors may improvise during the play of dialog frames.

4.1 Virtual Actors

To specify without losing generality, we define the schema of each component
based on environment and autonomous agents of the SMART Agent Framework
[9] in Z notation.

Virtual Enviromnent. Themain difference between virtual drama systems and
general agent systems is the existence of play scripts. These play scripts should be
perceived by virtual actors to indicate the play, therefore, they must be defined in
the virtual environment, above the original environment schema Env.

Definition 3. (Virtual Environment)

70 E.C.-C. Kao and V.-W. Soo

In Definition 3, the virtual environment includes not only play scripts, but also
the social commitments and social relations among virtual actors. All of these
attributes may affect the play of virtual actors. As Karunatillake et al. indicated,
since most (social) relationships involve the related parties carrying out certain
actions for each other, we can view a relationship as an encapsulation of social
commitments between the associated roles.[16] We omitted the notion of social
roles in favor of this notion, and only used them as parameters during the play,
especially the play of dialog frames.

Character Profiles. In addition to social relations, the virtual actors should
have particular internal parameters to maintain consistency between various
states during the play to not interrupt the character believability, as proposed
by Riedl and Young [26]. In addition to the intention of characters, we argue that
the continuity of affective states also plays a vital role in maintaining character
believability because if a character suddenly laughs whereas it cried a few minutes
ago, this will cause unpredictable expressions to the audience. During a scene of
dialogs, a virtual actor must be able to interact in various manners based on its
affective states and the changes of affective states.

We defined the affective states as character profiles, following the ALMA
affective model [12]. The reason that we used ALMA is due its elegant notation,
which integrates emotions, mood, and personality in a single three-dimension
space where the axes are pleasure, arousal, and dominance, rather than defining
each of them in a different model [3][20][21].

Definition 4. (Character Profile)

The difference between virtual actors and autonomous agents is its definition of
motivation, which is based on script and character profiles.

Dialog Designs in Virtual Drama: Balancing Agency and Scripted Dialogs 71

Virtual Actors. Scripts and character profiles are independent of each other,
although their combination determines the motivation of virtual actors. As we
defined motivation in terms of scripts and character profiles, the definitions of
agent perceptions and actions may not require further modification from those
in autonomous agents because they percept and act upon virtual environments
instead of environments. The action and perception schema of virtual actors was
omitted to maintain the clarity of this paper.

Based on the previous definition, we may define the virtual actor state as
follows:

Definition 5. (Virtual Actor State)

Three possible effects occur on the virtual environments and virtual actors during
the play, as follows:

1. Change of character profiles, which change the motivation of virtual actors
and leads to various choices of Interaction in the case of dialogs.

2. Change of social commitments, which lead to the change of available op-
tions in Interaction because social commitments serve as preconditions of
Interaction.

3. Changes of scripts: because scripts are also a part of the virtual environment,
the result of speech acts may also change the scripts and cause re-planning
of scripts. Although we acknowledge its importance and effects, the topic of
story re-planning is outside the scope of this paper.

Dialog Frame. The usage of dialog frames is summarized in this paragraph.
First, because dialog frames are considered high level actions in a play script, the
mapping of speech act models should also be specified in the script to provide
virtual actors with available courses of actions during the play. Second, the
character profiles of each virtual actor determine its goal selection on the courses
of actions. Conversely, the effects of dialogs not only change character profiles,
but also change social commitments, which alter the available options of speech
acts within the script. Lastly, speech acts may also change scripts in the Discourse
level, which leads to the re-planning of scripts.

4.2 Improvisation of Dialog Frames

Although dialog frames provide virtual actors with various options to select from
during the play, these options are occasionally insufficient to reflect the character

72 E.C.-C. Kao and V.-W. Soo

profiles of virtual actors because a script is a linear sequence of action events.
Although each event may be divided into various sub events (speech acts in
lower levels), these sub events are limited to the script, and defining specialized
mapping among speech act models for individual virtual actors is ad-hoc and
inflexible. Based on Gebhards justification to the ALMA model [12], we propose
an improvisation mechanism to achieve a higher degree of believability. This
improvisation allows virtual actors to use particular speech acts in the Appeal
and Expression levels to reflect extreme cases of character profile values and
changes.

The add-on of improvisation mechanisms satisfies the previous specification
of virtual actors. Because character profiles are one of the determinants of moti-
vation, improvisation is defined in terms of affecting the thresholds and changes
of < p, a, d > vectors in virtual actors instead of virtual environments.

Furthermore, improvisation is triggered despite the current script, therefore,
other virtual actors must be able to cope with improvisation at the time that
improvisation occurs; otherwise, the behaviors that follow will contrast audience
prediction and sabotage character believability. These coping behaviors are lim-
ited to insert right after improvisation occurs, and thus, the entire play script will
not require re-planning. By defining the coping behaviors in secondary scripts
parallel to play scripts, the virtual actors may conduct improvisation and coping
speech acts by selecting various scripts to play, without re-planning the primary
play scripts. The coping behaviors between improvised speech acts and coping
speech acts are defined as follows:

Definition 6. (Script of Coping Behaviors)

The overview of dialog frames is illustrated in Fig. 2 with an intuitive script of
a detective story, which is illustrated in section 6.

5 System Implementation

To demonstrate this dialog framework, we used a first-stage implementation of
a virtual drama system according to the specifications. The system overview is
illustrated in Fig 3.

Dialog Designs in Virtual Drama: Balancing Agency and Scripted Dialogs 73

Fig. 2. Dialog Frames in Detective Scenario

The system was divided into two main parts, as follows:

1. Virtual Drama Server: The server was implemented with a JACK [15] agent
platform because it supports the capacity, plan, and communication of au-
tonomous agents. The Virtual Environment was also implemented in JACK
as the data set. Consequently, the server may generate various sujet of play
scripts in a plain-text format.

2. Visualization Frontend: The frontend is responsible for providing visual and
audio experience for the audience of virtual drama. We chose the UDK3 (Un-
real Development Kit 3) [32] as our frontend platform because it comprises
a built-in full functional GUI editor and APIs that were written in Unreal
Scripts that allowed us to write drama manager within it. Once the server
passed sujet of a play script, the drama manager allocated the correspond-
ing virtual actor, customized the SoundNodeWave library corresponding to
speech acts with a built-in text-to-speech function, and gestures, all of which
were regarded as parameters of matinee in cinematic mode.

At this stage of the implementation, the purpose of the virtual drama system
was to achieve full automation of sujet performance; therefore, user interaction
was not implemented to simplify the process.

6 Sample Scenarios

In this section, we provide a sample scenario to demonstrate the effect of dialog
frames in our implemented system, which is illustrated in Fig. 3.

This sample scenario is a typical detective story, as the play script only con-
tains three high level speech actions in Discourse, as follows: search for alibi,
question the witness, and identify the criminal. Assuming that this play script is

74 E.C.-C. Kao and V.-W. Soo

Fig. 3. System Implementation Overview

sufficiently simple to be generated by state-of-the-art story planners; our system
was demonstrated the following functionalities:

1. Our dialog framework simplified each speech act into the Interaction level,
which corresponds to various interaction protocols.

2. When these protocols were provided as dialog options, each virtual actor
chose protocols in which the preconditions matched its character profiles
while playing that part of the script.

3. Improvised dialogs may occur during the play, because each move in the
Interaction protocol affects the character profiles of the opponent, which
triggers improvisation in the stipulated thresholds. After improvisation, the
virtual actors return to the former part of the script and continue the main
storyline.

7 Conclusion and Future Work

The development of story planning led to the possibility of an automated drama
system, in which play scripts are generated by story generators and subsequently
played by virtual actors in a virtual environment with the ability of visual and
audio expression. Although few studies attempted to generate dialogs based on
the provided fabula, we used speech act classification that was derived from
empirical studies of speech act designating verbs to generate dialog in a virtual
drama. This study offers three contributions, as follows:

1. We propose a dialog framework with the ability to promote flexible dialog
selection and to improvise character-based dialogs from existing play scripts.

2. The core specifications of virtual actors and virtual environment are speci-
fied in Z notation to elaborate the desiderata of virtual drama components
without losing generality.

Dialog Designs in Virtual Drama: Balancing Agency and Scripted Dialogs 75

3. A first-stage virtual drama system was implemented to demonstrate the
selection of dialogs during a sample scenario.

Although the initial results were satisfactory, several components must be ad-
dressed in future studies to achieve a fully automated virtual drama system, as
follows:

1. Generating natural dialogs from speech acts to advance the automation of
dialogs.

2. Treating Discourse-level speech acts as vignettes [27] in story planning may
lead to improvements in script generation. Because Discourse-level speech
acts are combinations of Interaction-level protocols, they may represent a
source of vignettes.

3. The domain knowledge of speech acts and their parameters may be further
elaborated as more structured data, therefore, virtual actors may reason with
the play script rather than profile-based selection in the available options.

Acknowledgement. This research is supported by National Science Council
of ROC under grant number NSC 99-2221-E-007-090-MY3.

References

[1] Austin, J.L.: How to Do Things with Words. Oxford University Press, London
(1962)

[2] Ballmer, T., Brennenstuhl, W.: Speech Act Classification: a Study of the Lexical
Analysis of English Speech Activity Verbs. Springer, Berlin (1981)

[3] Campos, A.M., Santos, E.B., Canuto, A.M., Soares, R.G., Alchieri, J.C.: Flexible
Framework for Representing Personality in Agents. In: 5th International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 97–104. ACM,
New York (2006)

[4] Cavazza, M., Charles, F., Mead, S.J.: Interacting with Virtual Characters in Inter-
active Storytelling. In: 1st International Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 318–325. ACM, New York (2002)

[5] Cavazza, M., Charles, F.: Dialogue Generation in Character-based Interactive Sto-
rytelling. In: AAAI First Annual Artificial Intelligence and Interactive Digital
Entertainment Conference, Marina del Rey, California, USA (2005)

[6] Cavazza, M., Pizzi, D., Charles, F., Vogt, T., Andr, E.: Emotional Input for
Character-based Interactive Storytelling. In: 8th International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 313–320. ACM, New York (2009)

[7] Cavazza, M., Pizzi, D.: Narratology for Interactive Storytelling: a Critical In-
troduction. In: Göbel, S., Malkewitz, R., Iurgel, I. (eds.) TIDSE 2006. LNCS,
vol. 4326, pp. 72–83. Springer, Heidelberg (2006)

[8] Charles, F., Lozano, M., Mead, S.J., Bisquerra, A.F., Cavazza, M.: Planning For-
malisms and Authoring in Interactive Storytelling. In: Gobel, S., et al. (eds.) 1st
International Conference on Technologies for Interactive Digital Storytelling and
Entertainment. Fraunhofer IRB Verlag, Darmstadt (2003)

76 E.C.-C. Kao and V.-W. Soo

[9] D’Inverno, M., Luck, M.: Understanding Agent Systems. Springer, New York
(2004)

[10] Endrass, B., Andr, E., Huang, L., Gratch, J.: A Data-driven Approach to Model
Culture-specific Communication Management Styles for Virtual Agents. In: 9th
International Conference on Autonomous Agents and Multiagent Systems, pp.
99–108. ACM, New York (2010)

[11] Endrass, B., Rehm, M., Andr, E.: Planning Small Talk Behavior with Cultural
Influences for Multiagent Systems. Comput. Speech Lang. 25, 158–174 (2011)

[12] Gebhard, P.: ALMA: A Layered Model of Affect. In: 4th International Joint Con-
ference on Autonomous Agents and Multiagent Systems, pp. 29–36. ACM, New
York (2005)

[13] Gervs, P., Daz-Agudo, B., Peinado, F., Hervs, R.: Story Plot Generation Based
on CBR. Know.-Based Syst. 18(4-5), 235–242 (2005)

[14] Helmert, M.: Concise Finite-domain Representations for PDDL Planning Tasks.
Artif. Intell. 173(5-6), 503–535 (2009)

[15] JACK (Java Agent Compiler and Kernel), http://aosgrp.com/index.html
[16] Karunatillake, N.C., Jennings, N.R., Rahwan, I., McBurney, P.: Dialogue Games

that Agents Play Within a Society. Artif. Intell. 173(9-10), 935–981 (2009)
[17] Larsson, S., Traum, D.R.: Information State and Dialogue Management in the

TRINDI Dialogue Move Engine Toolkit. Nat. Lang. Eng. 6(3-4), 323–340 (2000)
[18] Mairesse, F., Walker, M.: PERSONAGE: Personality Generation for Dialogue.

In: 45th Annual Meeting of the Association of Computational Linguistics,
pp. 496–503. ACL, Stroudsburg (2007)

[19] Mateas, M., Stern, A.: Structuring Content in the Faade Interactive Drama Ar-
chitecture. In: First Artificial Intelligence and Interactive Digital Entertainment
Conference, pp. 93–98. AAAI, Palo Alto (2005)

[20] Mehrabian, A.: Pleasure-arousal-dominance: A General Framework for Describ-
ing and Measuring Individual Differences in Temperament. Curr. Psychol. 14(4),
261–292 (1996)

[21] Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cam-
bridge University Press, Cambridge (1988)

[22] Piwek, P., Hernault, H., Prendinger, H., Ishizuka, M.: T2D: Generating Dialogues
between Virtual Agents Automatically from Text. In: Pelachaud, C., Martin, J.-
C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007. LNCS (LNAI),
vol. 4722, pp. 161–174. Springer, Heidelberg (2007)

[23] Porteous, J., Cavazza, M., Charles, F.: Narrative Generation through Characters’
Point of View. In: 9th International Conference on Autonomous Agents and Mul-
tiagent Systems, pp. 1297–1304. ACM, New York (2010)

[24] Propp, V.: Morphology of the Folktale. University of Texas Press (1968)
[25] Riedl, M.O., Young, R.M.: An Intent-Driven Planner for Multi-Agent Story Gen-

eration. In: 3rd International Joint Conference on Autonomous Agents and Mul-
tiagent Systems, pp. 186–193. ACM, New York (2004)

[26] Riedl, M.O., Young, R.M.: Narrative Planning: Balancing Plot and Character. J.
Artif. Intell. Res. 39, 217–268 (2010)

[27] Riedl, M.O., Sugandh, N.: Story Planning with Vignettes: Toward Overcoming
the Content Production Bottleneck. In: Spierling, U., Szilas, N. (eds.) ICIDS 2008.
LNCS, vol. 5334, pp. 168–179. Springer, Heidelberg (2008)

[28] Rowe, J.P., Ha, E.Y., Lester, J.C.: Archetype-Driven Character Dialogue Gener-
ation for Interactive Narrative. In: Prendinger, H., Lester, J., Ishizuka, M. (eds.)
IVA 2008. LNCS (LNAI), vol. 5208, pp. 45–58. Springer, Heidelberg (2008)

http://aosgrp.com/index.html

Dialog Designs in Virtual Drama: Balancing Agency and Scripted Dialogs 77

[29] Thiebaux, M., Marsella, S., Marshall, A.N., Kallmann, M.: SmartBody: Behav-
ior Realization for Embodied Conversational Agents. In: 7th International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 151–158. ACM,
New York (2008)

[30] Traum, D., Rickel, J., Gratch, J., Marsella, S.: Negotiation over Tasks in Hybrid
Human-agent Teams for Simulation-based Training. In: 2nd International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 441–448. ACM,
New York (2003)

[31] Traum, D., Swartout, W., Marsella, S., Gratch, J.: Virtual Humans for Non-team
Interaction Training. In: AAMAS Workshop on Creating Bonds with Embodied
Conversational Agents (2005)

[32] Unreal Development Kit 3, http://www.udk.com/

http://www.udk.com/

78 E.C.-C. Kao and V.-W. Soo

Appendix

Learning by Playing in Agent-Oriented Virtual

Learning Environment

Yundong Cai1 and Zhiqi Shen2

1 School of Computer Engineering
2 School of Electrical and Electronic Engineering,

Nanyang Technological University, Singapore
{ydcai,zqshen}@ntu.edu.sg

Abstract. Virtual environments have gained tremendous popularity
among young generation in recent years. Learning in the virtual envi-
ronment becomes a new learning perspective that helps to promote the
learning interests of students. However, there is a lack of methodology to
develop and deploy a personalized and engaging virtual learning environ-
ment to various learning subjects. In our paper, we propose an Agent-
oriented VI rtual Learning Environment (AVILE) as a new “learning by
playing” paradigm, in which each learning object is built up as a goal of
a Goal-Oriented Learning Agent (GOLA). In AVILE, students conduct
the personalized virtual experiments through the simulations and engag-
ing role-playing games for knowledge acquisition by interacting with the
intelligent GOLAs. Each GOLA provides most appropriate instructions
by analyzing the students’ learning process, and stimulates the students
to make deeper learning within the exploration and knowledge transfer
on real problems in the virtual learning environment. We adopted this
methodology to teach plant transportation for secondary school students
and received very positive results.

Keywords: Virtual learning environment, agent, virtual experiment,
personalization.

1 Introduction

Virtual environments have gained tremendous popularity among young users in
recent years for its openness, convenience, and mobility, e.g. World of Warcraft,
Second life. People are able to communicate with each other in the virtual com-
munity and share information easily and efficiently in 3D virtual presentation,
which is rather limited in the real world. Learning in the virtual environment
becomes a new learning perspective that helps to promote the learning interests
of students in the new era. The potential for innovative and ground breaking re-
search in virtual learning environments has been recognized by leading education
research scientists [1] [7]. Preliminary studies on using virtual worlds as learning
environments to promote highly immersive experiential learning have achieved
encouraging results [6]. However, it is still a big challenge to make a personalized

M. Beer et al. (Eds.): AEGS 2011, LNAI 7471, pp. 79–93, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

80 Y. Cai and Z. Shen

virtual learning environment for designers (e.g. teachers), based on the students’
preferences and real-time interactions, due to a lack of systematic methodologies.
Agent-based learning environment has been studied by researchers as a research
tool for investigating teaching and learning [2], which presents a new perspec-
tive to the future learning method in virtual environment with intelligent virtual
entities.

In this paper, we propose an Agent-oriented Virtual Learning Environment
(AVILE) as a “teaching by learning” paradigm targeting to the raised challenges.
In our system, each learning object is modeled as the goal of a goal-oriented
learning agent (GOLA). AVILE is constructed as a multi-agent system of GO-
LAs, which construct the virtual laboratory that students perform the virtual
simulations, and a virtual world environment that students can engage and in-
teract with. GOLAs are created to perceive the students’ actions and simulate
customized laboratory and playing experience in the virtual environment, in the
form of non-player characters (NPCs) or invisible observers (or instructors). In
order to model different related learning objects in consequences, Fuzzy Cogni-
tive Goal Net (FCGN) is used to model the hierarchical goals with alternatives,
through which GOLA selects the goals and actions by reasoning the real-time in-
teractions and context variables. Evolutionary Fuzzy Cognitive Maps (E-FCMs)
is used as the reasoning model about the dynamic causal relationships among
the user interactions, contexts and agent goals, thus to present a personalized
learning object.

The rest of the paper is organized as below. Section 2 will illustrate our agent
oriented virtual learning environment system and the involved agents. Section
3 will focus on Fuzzy Cognitive Goal Net which models leaning objects as the
goals and cognition model to provide personalized playing and learning. We will
show a case study of using the paradigm to teach secondary school students
plant transportation system in Section 4. Lastly we will draw the conclusions
and future plan.

2 Agent-Oriented Virtual Learning Environment
(AVILE)

Agent-oriented virtual learning environment (AVILE) provides a new approach
for students to learn by playing in the virtual environment, which might not be
easy to achieve in the conventional classroom learning (CL) or the real-life exper-
iments, due to the communication constraint, physical limitation, and building
cost etc. Each student is unique, in terms of the learning curve of new knowl-
edge and learning habit, while a generic virtual learning environment or virtual
laboratory might not suit the needs of all the students easily. Therefore, there
is a need to customize the virtual learning experience with many alternatives to
serve different learners.

In current agent-based virtual learning environment, learning contents are
mainly delivered through the non-player characters [5, 8, 9, 11] with limitations
of delivering knowledge. In our approach, agents are not only used to model

Learning by Playing in Agent-Oriented Virtual Learning Environment 81

non-player characters, but also to model any learning object which can be either
visible or invisible.

2.1 Learning Structure

Personalization is a key to promote the learning experience of the student at
knowledge acquisition. Agent-oriented virtual learning environment (AVILE)
augments the virtual learning environment with a number of intelligent goal-
oriented learning agents (GOLAs), which enable personalized virtual learning
to students by reasoning the students’ preferences and real-time interactions
with the students.

Virtual Laboratory
(2D/3D)

Role-Playing
Learning

AVILE

Learning Content

LO LO LO...

GOLA GOLA GOLA...Player

Preference

Interactions

Fig. 1. Learning structure in the Agent-oriented Virtual Learning Environment

Figure 1 shows the learning structure of agent based virtual learning envi-
ronment. Learning content is decomposed to a series of learning objects (LO),
e.g. “diffusion” and “osmosis” are two learning objects in plant transportation
chapter. Each LO is assigned to one or more GOLAs as their goals. For example,
water molecules and plat root are two GOLAs to show the “diffusion” concept.
The GOLAs are created in the role-playing learning virtual environment and
virtual laboratory that the students can learn from the interactions.

In order to provide a fast-responsive and personalized learning experience, the
user preferences are firstly gathered off-line for each student, e.g. age, gender,
interests and prior knowledge. After that, the students play and learn in the agent
mediated virtual learning environment by two methods: virtual laboratory and
role-playing learning. In the virtual laboratory, the students are able to conduct
2D or 3D simulations of learning objects, by acting as a “God”. Moreover, the
students are able to immerse through a role-playing learning by acting as a
“Player”, to verify the concepts they have learnt in the virtual laboratory. Stories
are created to motivate the students in the role-playing learning by linking the
learning objects together seamlessly. Agents perceive the real-time interactions
of a student, reason about them and act back to the student, i.e. to provide a
unique learning experience eventually.

82 Y. Cai and Z. Shen

Experiment Explore
Apply

Knowledge

Fig. 2. Learning model in AVILE

There are three learning phases in AVILE as shown in Figure 2, which are
carried out iteratively:

Experiment: The students conduct the virtual simulation in the virtual labo-
ratory to study the basic concepts of learning objects.

Explore: The students explore the virtual environment and interact with GO-
LAs to verify the concepts they have learnt in the virtual laboratory.

Apply Knowledge: The students transfer their knowledge they have learnt to
solve real problems in the virtual world.

2.2 Goal Oriented Learning Agent (GOLA)

Different from other agent-based virtual environment, each learning object in
AVILE is modeled as a goal-oriented learning agent (GOLA), which can be visi-
ble or invisible in the virtual environment. Visible GOLAs include the non-player
characters (e.g. humans, animals, and context objects) that deliver the knowl-
edge to students directly through interactions; while invisible GOLAs include
the contexts (e.g. temperature, weather, time and instructions) that deliver the
knowledge indirectly.

A capable agent is able to perceive, reason and act in the virtual environment
by defining its goals and cognitive variables initially. Fuzzy Cognitive Goal Net
is used as the goal model for GOLAs to act in the agent-oriented virtual learning
environment, which is explained in details in next section.

In the AVILE, the following agents interact with students to help them and
to analyze the learning process in real-time:

– Instructor Agent Each instructor agent is responsible to provide meaning-
ful instructions to the students. By monitoring the learning process of the
students (e.g. difficulty, speed), the agent is able to tune the instructions in
terms of difficulty, speed and detail.

– Assessment Agent An assessment agent evaluates the learning progress of
the students, in order to master the learning efficiency of the students. Then
it will send feedbacks to the instructor agent.

– Inhabitant Agent Inhabitant agents are the believable non-player char-
acters to deliver the learning contents in the virtual learning environments,
which could be a human or a tree, etc.

In order to provide an engaging learning experience, each GOLA presents the
following properties:

Learning by Playing in Agent-Oriented Virtual Learning Environment 83

Interactive: The agents are able to interact with the students in real-time.
Protocols of interactions are defined, e.g. dialog or interaction mechanisms.

Intelligent: The agents are able to “perceive, reason and act” in real-time in
order to create intelligent interactions.

Adaptive: The agents are able to learn from the students’ behaviors and con-
text changes, in order to provide “believable” interactions to the students.

Emotional: The agents are emotional as a feedback to user interactions.

As a result, the students are able to immerse into the virtual learning environ-
ment.

2.3 Virtual Laboratory

3D virtual laboratory is a good place that allows students to do experiments
intuitively. In our AVILE, both 2D and 3D virtual experiments are designed as
simulations in the virtual laboratory.

Table 1. Comparison of 2D and 3D Simulations

2D Experiment 3D Experiment

Implementation Easy Hard
Immersion Low High
Role “God” “Player”
Collaboration No Yes
Suitable Contents Intuitive Explorative

2D or 3D virtual simulations have their own strengths and limitations. Table
1 shows a brief comparison between the two kinds of simulations. 3D simulation
provides a better immersive experience to the students, and allows the inter-
actions and collaborations of students at the learning. It is more suitable for
students to explore and induct new knowledge in the science learning. However,
the implementation of 3D simulation is more expensive at the implementation.
On the other hand, 2D simulation is more suitable to present the intuitive con-
cepts, e.g. specific science terms. In our real implementation, we use a hybrid of
2D and 3D simulations as a balance of production cost and user experience.

Virtual laboratory provides a basis of concepts for the students to learn
through the simulation. Thus, the students are able to recall the simulation
when they explore the virtual learning environment and explain the concepts in
the real activities.

2.4 Role-Playing Learning

In AVILE, role-playing learning is a main concept that the student can immerse
into the virtual environment to learn. Inhabitant agents are distributed in the
virtual environments to deliver the related learning objects. Thus, the students

84 Y. Cai and Z. Shen

need to compare, evaluate and induct the knowledge gathered at different places,
which would help them to achieve the deeper learning. Moreover, students are
encouraged to apply the knowledge they have learnt in the virtual experiments
or exploration to solve real problems in the virtual learning environment. Stories
are incorporated in the virtual learning environment to motivate the students to
acquire new knowledge step by step.

3 Fuzzy Cognitive Goal Net

How to model numerous earning objects in an organized way is a big challenge.
Fuzzy Cognitive Goal Net is a computational model to simulate the goals that
GOLA pursuits in the virtual environment. As shown in Figure 3, goals, denoted
as circles, are used to represent the goals that an agent pursues. Transitions,
represented by arcs and vertical bars, connecting from the input goal to the
output goal, specify the relationship between the two goals. Each transition is
associated with a task list which defines the possible tasks that an agent needs
to perform in order to transit from the input goal to the output goal. Here,
each learning object is modeled as a goal of GOLA. A simple learning object
(e.g. “diffusion”) is modeled as an atomic goal; while a complex learning object
(e.g. “molecule movement” is modeled as a composite goal, which can be further
divided to “diffusion” goal and other goals.

Root Goal

Atomic Goal

Transition

Composite Goal

Fig. 3. A sample Fuzzy Cognitive Goal Net which is composed of goals and transitions

As an extension to generic Goal Net model [10], Fuzzy Cognitive Goal Net
perceives and reasons the goal-related variables/events to choose the suitable
goals in real-time [3]. With the “choice” transition, different goals can be achieved
based on fuzzy context, user preferences or real-time interactions. For example,
the agent can present different learning objects to different learners based on the
learners’ levels, past activities etc.

The pseudo code of running fuzzy cognitive goal net is shown here to select
learning objects in real-time. By modeling the learning objects as goal net in

Learning by Playing in Agent-Oriented Virtual Learning Environment 85

Algorithm 1. RunningofFuzzyCognitiveGoalNettoSelectLearningObject

Require: Root Goal G
1: Push G into Goal Queue Q
2: while Q is not empty do
3: Pop goal g from Q
4: Perceive Environment e
5: if g requires e then
6: if g is Atomic then
7: Get action A from g
8: Execute action A
9: else
10: Get Sub-goals g1, g2, ..., gn
11: Push Sub-goals g1, g2, ..., gn into Goal Queue Q
12: end if
13: end if
14: end while

a hierarchical way, the students are able to take a smooth learning curve sys-
tematically, from the easy learning object to difficult learning object, and from
atomic learning object piece to complex learning object cluster.

In the “learning by playing” paradigm, a personalized learning is achieved
by the goal selection mechanism of GOLAs. Each GOLA can use different goal
selection mechanisms to choose an appropriate goal to handle user interactions
correctly at playing. Evolutionary Fuzzy Cognition Map is a soft computing
model to simulate the dynamic context variables and to conduct real-time rea-
soning [4]. It is adopted as the reasoning and simulation tool in the Fuzzy Cogni-
tive Goal Net for goal selection. It models two main components: concepts Si and
causal relationships Ri. Concept can be input (context variables, user interaction
variables), intermediate (i.e. variables that connect input and output), or output
(agent goals, states etc). Causal relationship represents the interconnection from
one concept to another. In the virtual learning, the concepts includes students’
preference (i.e. gender, age, interests), students’ activities in the learning envi-
ronment and learning objects. By studying the causal relationships among the
students and the learning objects, GOLA is capable to select a most appropriate
learning curve to each student in real-time. The details of the model and its
inference process can be found in [4].

4 Case Study: Plant Transportation in Banana Tree

4.1 Learning Content

The agent-oriented virtual learning environment is used for secondary level sci-
ence learning about plant transportation in Catholic High Secondary School,
Singapore in year 2011. The learning content of the virtual learning environment
is plant transportation system. The related learning concepts (LO) include:

86 Y. Cai and Z. Shen

Xylem and Phloem of Root, Stem and Leaf: the cross section and func-
tionalities of xylem and phloem inside the plant.

Osmosis and Diffusion: different movement methodologies of the water and
mineral molecules.

Photosynthesis: chemical reaction of how the energy and oxygen are generated
inside the leaf with water, light and carbon-dioxide.

4.2 Implementation

In order to motivate the students to learn the concepts in the plant transporta-
tion, we generate a story scenario, namely “saving the dying banana tree”.

“The banana trees in Singapura town are quite sick. The farmer
Uncle Ben asks the investigators to explore the whole plant trans-
portation system of the tree, in order to find how to save them.”

We have implemented our agent-oriented virtual learning environment with
Torque 3D Game Engine.

4.3 Sample GOLAs

There are a set of agents involved in the virtual learning environment to facilitate
the students at the learning of plant transportation system as investigators.
Three main GOLAs that provide the personalized learning are illustrated here.

Lab Supervisor. Lab supervisor “Miss Lee” is a tutor in the virtual laboratory,
who determines the learning objects of the student based on the student’s current
level and preferences.

Goal of Miss Lee

Ask to explore the tree

Entry Level

Expert Level

Start End

Ask to do
Experiment

Greet
Student

Test

Fig. 4. Fuzzy Cognitive Goal Net of lab supervisor agent to choose the learning object

The goal net used by the supervisor agent is shown as Figure 4. If the student
is at the entry level, she will lead the student to do the virtual experiment, e.g.
diffusion or osmosis; otherwise, she will recommend the student to enter into the
banana tree to watch the diffusion or osmosis process of water molecules at the

Learning by Playing in Agent-Oriented Virtual Learning Environment 87

Fig. 5. Lab supervisor “Miss Lee” greets students with an introduction (‘greet student’
goal in Figure 4)

Fig. 6. Diffusion experiment with 2D simulation: add ink drops to observe the move-
ments of molecules of diffusion (‘experiment’ goal in Figure 4)

88 Y. Cai and Z. Shen

root. Figure 5 shows a snapshot that the lab supervisor “Miss Lee” greets the
student with some introductions by pursuing “greet student” goal (Figure 4).
Figure 6 illustrates a 2D diffusion simulation that the student can play. Through
this observation, the students are able to learn the diffusion concept by checking
how the ink molecules move in the water and the variables that might affect the
diffusion process.

Director Agent. Besides the simulations in the virtual laboratory, the students
can watch the diffusion or osmosis at plant root immersively, which is impossible
in the real world experiments. The invisible director agent directs the whole role-
playing learning. It provides hints and analyzes the students’ behaviors at the
students’ playing.

The goal net used by the director agent is shown as Figure 7. It can schedule
the students to talk to different non-player characters to find the sick banana
tree to start the plant transportation journey. The “visit plant transportation”
is a composite goal. When the director agent pursues this goal, it will load the
sub-goals of it, which is shown as Figure 8. Figure 9−11 are some screenshots of
the students at the playing when the goals of the director agent are executed.
In Figure 9, the student is exploring the stem xylem through flying upward.
Through this, the students are able to observe the inner structure of the stem
xylem and the molecules that flow in it. Figure 10 shows the cross section of
the leaf (i.e. xylem is on top of the phloem), which is different from the cross
section at the root or at the stem. Figure 11 shows that the student pushes
the water molecule to carbon-dioxide molecule to generate food and oxygen in
the leaf. Through this process, the students are able to learn the photosynthesis
intuitively.

Director Goal

N
ot

 F
ou

nd

Found

Start

Talk with
NPC

Find Sick
Banana Tree

Visit Plant
Transportation

Get
Reward

Fig. 7. Fuzzy Cognitive Goal Net of director agent to control the role-playing of stu-
dents

Water Molecule. Water molecule is an inhabitant GOLA in the learning ad-
venture, who asks for help from the student to take them into the leaf where the
photosynthesis is carried out. The goal net used by the water molecule agent is

Learning by Playing in Agent-Oriented Virtual Learning Environment 89

Start End
Visit
Root

Visit
Stem

Visit
Leaf

Visit Plant
Transportation

Exit

Distribute
Food

Generate
Food

Fig. 8. Sub-goal of director agent to visit plant transportation

Fig. 9. Student meets panic water molecules at the root (‘visit root’ goal in Figure 8)

Fig. 10. Cross section of leaf: xylem on top and phloem at bottom (‘visit leaf’ goal in
Figure 8)

90 Y. Cai and Z. Shen

Fig. 11. The student pushes the water molecule to carbon-dioxide molecule to generate
food (‘generate food’ transition in Figure 8)

Water Molecule Goal

Start EndEnter
Root

Arrive
Leaf

Make
Food

Fig. 12. Fuzzy Cognitive Goal Net of water molecule agent to go through root, stem,
leaf and generate the food

shown as Figure 12. Depending on the learning scenario, the water molecule’s
goal is composed of a series of goals linearly.

4.4 Assessments

We conducted a comparative study in the Catholic High School to evaluate
the students’ performance in the agent oriented virtual learning environment.
One group of 36 students (Group 1) used the agent-mediated virtual learning
environment to learn and another group of 34 students (Group 2) used the formal
classroom learning as a comparison. Group 1 used a same learning time as group
2 which is around 2 hours. After the learning, both groups were given a MCQ
test about plant transportation. The group using AVILE has a mean score of
13.55 and the group using CL has a mean score of 14.05. As shown in Figure
13, AVILE group’s learning result is quite close to that of CL. Considering that
the students need to use around 1 hour to be familiar with the virtual learning

Learning by Playing in Agent-Oriented Virtual Learning Environment 91

Fig. 13. Distribution of scores in agent-oriented virtual learning environment group
(AVILE) and classroom learning (CL) group

Fig. 14. Average of each question in agent-oriented virtual learning environment
(AVILE) and classroom learning CL

environment, AVILE students still learn quite well. Moreover, more students got
highest score (18 scores) in AVILE than those in CL. Because MCQ questions
include some open questions that require the reasoning of concepts, the students
perform well in AVILE which stimulates the exploration and thinking at the
learning process, rather than just memorizing the knowledge. Figure 14 shows
the average score of each question in both AVILE group and CL group. It is
found that, students of the two groups perform well in different questions.

Some questions require the students to make the reasoning based on what
they know, e.g. question 21.

92 Y. Cai and Z. Shen

Suppose you killed the plant cell in the Figure of
question 14A with poison (that does not destroy
the cell membrane) and immediately placed the
dead cell in a 25% saltwater solution.
1. Osmosis and diffusion would not occur.
2. Osmosis and diffusion would continue.
3. Only diffusion would continue.
4. Only osmosis would continue.

In this case, students in AVILE perform better. On the other hand, students
in CL perform slightly better in the questions about concepts memorizing. The
students in AVILE might focus on the exploration process with less concept
memorization, as agents help them at all the memorizing.

4.5 Discussions

Through the test results, we found that agent-oriented virtual learning environ-
ment helps the students at deep learning by encouraging them gain knowledge
through thinking and reasoning. The students can also transfer their knowledge
easily, e.g. they apply the “osmosis” knowledge learnt in the virtual laboratory
to help molecules enter into the root.

According to our observation and interview, the students are very engaged and
motivated in the learning in the virtual environment. With the similar computer
game experience, they adapt to the virtual learning environment very fast. The
students are excited to experience in the virtual world differently with their
classmates, and assisted well by the learning agents. However, the test results
are not as good as expected, which might be due to the following reasons:

1. The students have little training time to be familiar with the virtual learn-
ing environment. They need more time to be comfortable with the learning
method.

2. AVILE is a good compensation but not a replacement to the classroom
learning. Especially when we conduct the virtual learning with the teachers
supervised, the students are easy to be panic.

3. We choose the students who have very good academic performance as the test
groups, which might not be very sensitive of the different learning methods.

In the future, it will be used an informal learning method as a testbed to prove
the concepts which are learnt in the classroom, rather than replacing the whole
classroom teaching.

5 Conclusion

In the paper, we have proposed an agent oriented virtual learning environment
(AVILE) with a mixture of 3D virtual laboratory and role-playing learning. The
learning objects are modeled as goals of goal-oriented learning agents (GOLAs),

Learning by Playing in Agent-Oriented Virtual Learning Environment 93

which provide personalized learning experiences through real-time goal selection.
The results prove the learning efficiency and students’ interests boost over that
of the classical classroom learning.

Currently, mouse and keyboard are the main interaction methods for students
to conduct the virtual experiments. In the future, we expect to have a more
intuitive user-computer interfaces to enhance the engaging experience. Moreover,
we will continue to improve the learning ability of the agent to study the students’
behaviors in real-time in order to provide a better personalization of learning
contents.

Acknowledgment. The authors would like to acknowledge the grant support
of NRF/MOE, Singapore.

References

1. Bainbridge, W.S.: The scientific research potential of virtual worlds. Sci-
ence 317(5837), 472–476 (2007)

2. Baylor, A.L.: Agent-based learning environments as a research tool for investigating
teaching and learning. Journal of Education Computing Research 26(3), 227–248
(2002)

3. Cai, Y., Miao, C., Tan, A.-H., Shen, Z.: Modeling believable virtual characters
with evolutionary fuzzy cognitive maps in interactive storytelling. In: AAAI Spring
Symposium on Intelligent Narrative Technologies II. AAAI Press (November 2009)

4. Cai, Y., Miao, C., Tan, A.-H., Shen, Z., Li, B.: Creating an immersive game world
with evolutionary fuzzy cognitive maps. IEEE Computer Graphics and Applica-
tions 30(2), 58–70 (2008)

5. Cavazza, M., Charles, F., Mead, S.J.: Interacting with virtual characters in inter-
active storytelling. In: Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems, Bologna, Italy, pp. 318–325 (2002)

6. Dede, C.: Immersive interfaces for engagement and learning. Science 323(5910),
66–69 (2009)

7. Dillenbourg, P., Schneider, D.K., Synteta, P.: Virtual learning environments. In:
Proceedings of the Third Hellenic Conference Information & Communication Tech-
nologies in Education, pp. 3–18 (2002)

8. Figa, E., Tarau, P.: The vista architecture: experiencing stories through virtual
storytelling agents. ACM SIGGROUP Bulletin 23(2), 27–28 (2002)

9. Gratch, J., Marsella, S.: Tears and fears: modeling emotions and emotional behav-
iors in synthetic agents. In: Proceedings of the Fifth International Conference on
Autonomous Agents, pp. 278–285. ACM, New York (2001)

10. Shen, Z., Miao, C., Miao, Y., Tao, X., Gay, R.: A goal-oriented approach to goal
selection and action selection. In: Proceedings of IEEE International Conference on
Fuzzy Systems, pp. 114–121. American Association of Artificial Intelligence (2006)

11. Theune, M., Faas, S., Heylen, D.K.J., Nijholt, A.: The virtual storyteller: Story
creation by intelligent agents. In: Göbel, S., Braun, N., Spierling, U., Dechau, J.,
Diener, H. (eds.) Technologies for Interactive Digital Storytelling and Entertain-
ment, pp. 204–215. Fraunhofer IRB Verlag, Darmstadt (2003)

Collection and Analysis of Multimodal

Interaction in Direction-Giving Dialogues:
Towards an Automatic Gesture Selection

Mechanism for Metaverse Avatars

Takeo Tsukamoto1, Yumi Muroya2, Masashi Okamoto2, and Yukiko Nakano2

1 Seikei University, Graduate School of Science and Technology, Tokyo, Japan
2 Seikei University, Faculty of Science and Technology, Tokyo, Japan

{dm106216,us072149}@cc.seikei.ac.jp,
explicature@gmail.com, y.nakano@st.seikei.ac.jp

Abstract. With the aim of building a spatial gesture generation mech-
anism in Metaverse avatars, we report on an empirical study for mul-
timodal direction-giving dialogues and propose a prototype system for
gesture generation. First, we conducted an experiment in which a direc-
tion receiver asked for directions to some place on a university campus,
and the direction giver gave directions. Then, using a machine learning
technique, we annotated the direction giver’s right-hand gestures auto-
matically and analyzed the distribution of the direction of the gestures.
As a result, we proposed four types of proxemics and found that the
distribution of gesture directions differs with the type of proxemics be-
tween the conversational participants. Finally, we implement a gesture
generation mechanism into a Metaverse application and demonstrate an
example.

Keywords: Gesture, Direction giving, Proxemics, Empirical study,
Metaverse.

1 Introduction

Online three-dimensional virtual worlds based on Metaverse applications as typ-
ified by Second Life have been growing steadily in popularity. Communication
in such a virtual world is mainly through online chat using an avatar, which is a
user’s representation of himself/herself. However, the current avatar’s chat has
a limitation in its expressiveness in that it largely depends on speech balloons
except in some extended systems that allow avatars to communicate based on
speech and gesture.

Moreover, many communication studies suggest that a large part of human
face-to-face communication depends on nonverbal behavior, which can compen-
sate for verbal information [1,4,5]. In particular, many spatial gestures are used
in direction-giving dialogues to illustrate directions and physical relationships of

M. Beer et al. (Eds.): AEGS 2011, LNAI 7471, pp. 94–105, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Multimodal Interaction in Direction Giving Dialogues 95

buildings and landmarks. Therefore, a spatial gesture generation mechanism in
multimodal direction-giving dialogues between two avatars in a virtual world is
expected to facilitate their users’ communication.

We thus report on an empirical study for multimodal direction-giving di-
alogues with the goal of building a spatial gesture generation mechanism in
Metaverse avatars. First, we collected multimodal interaction data by conduct-
ing an experiment in which a direction receiver asked for directions to some
place on a university campus, and the direction giver gave him/her directions.
Then, using a machine learning technique, we annotated the direction giver’s
right-hand gestures automatically and analyzed the distribution of the direc-
tion of the gestures. As a result, we illustrated that the distribution of gesture
directions differs with the proxemics of the conversational participants.

2 Related Work

Gestures frequently accompany speech, emphasizing its important points or co-
ordinating its rhythm. McNeill [6] classifies speech-accompanying gestures, in
view of function, into iconic gestures, metaphoric gestures, beats, and so on.
Based on this classification, several automatic gesture generation systems have
been developed. Nakano et al. [7] implemented an embodied conversational agent
system, which selects appropriate gestures and facial expressions based on lin-
guistic information and calculates a time schedule for the set of agent actions.
Breitfuss et al. [3] built a system that automatically adds different types of
gestural behavior and eye gaze to a given dialogue script between two virtual
embodied agents. Their gestures, generated based on the analysis of linguistic
and contextual information of the input text, are generally limited to ”beat”
gestures represented by the repetitive up-and-down motion of hands or arms.

However, these studies have not fully dealt with iconic or metaphoric gestures,
the shape and motion of which should be decided according to their meaning. The
difficulty in implementing these types of gestures lies in their differences among
individuals, thus preventing their coherent subclassification. It is nevertheless
indispensable to precisely determine the shape and motion of a gesture as well
as its functional type to be able to achieve genuine automatic gesture generation.

To tackle this problem, Tepper et al. [8] focused on direction-giving dialogues
and proposed a new method for the generation of novel iconic gestures. They
used spatial information about the locations and shapes of landmarks to repre-
sent the concept of words with multidimensional properties. Novel iconic gestures
can be generated from a set of parameters without relying on a lexicon of gesture
shapes. Moreover, Bergmann & Kopp [2] represented the individual variation of
gesture shape using the Bayesian network. Based on the transcription of spo-
ken words and the segmentation and coding of coverbal gestures, they built an
extensive corpus of multimodal behaviors in the direction-giving and landmark
description task, from which both general and personalized networks were built.
As a result, they could simulate a variety of gestures of different speakers for the
same referent in the same situation.

96 T. Tsukamoto et al.

Fig. 1. Snapshot of experiment

We thus focus on the direction-giving situation, aiming at establishing an
automatic gesture selection system. Though the previous methods described
above were largely dependent on the form of landmarks, we pay more attention
to the relationship between the proxemics and the gesture distribution.

3 Experiment

To determine appropriate gesture shapes for direction-giving utterances in Meta-
verse avatars, we conducted an experiment to collect direction-giving conversa-
tions and analyzed human gestures used in the conversations.

3.1 Experimental Procedure

A Seikei University student, who acted as a direction giver (DG), stood in front
of a big screen on which a snapshot of a virtual university campus was displayed
(Fig. 1). DGs were students of that university, and they knew the directions to
any place on campus. Another student, who acted as a direction receiver (DR),
approached the DG and asked for directions to a specific building. Then, the
DG explained how to get to the building.

Instructions: The DR was instructed to completely understand the direction
to the target destination through a conversation with the DG. Moreover, the
DG was instructed to ensure that the DR understood the direction correctly.
To confirm the DR’s understanding, the DG asked the DR to repeat the di-
rection after the DG finished explaining. If the explanation by the DR was not
correct, the DG explained the direction again. In each session, the DG was re-
quested to remember two landmarks to which the DG must refer during the
conversation.

Multimodal Interaction in Direction Giving Dialogues 97

Fig. 2. Three experimental conditions

Experimental Materials: As the experimental materials, six pictures were
created by screen capture. Target destinations, which were not visible in the
picture, were assigned to each picture.

Experimental Conditions: The following three types of initial positions of
the DG were used as experimental conditions (Fig. 2).

(a) Side: The screen was on the left-hand side of the DR. The DG was facing
the screen.

(b) Front: The screen was in front of the DR and was on the right-hand side
of the DG.

(c) Back: The screen was at the back of the DR and was on the left-hand side
of the DG.

Note that a 50cm square sheet was used to mark the position of the DG, and the
DG was instructed to remain one leg on the sheet. In this way, the movement
of the DG was restricted. Since we plan to implement a proxemics coordination
system by guiding (or automatically moving) the DR avatar, we needed to collect
human interaction data in a similar situation.

Under all the conditions, the DR approached the DG from her/his side and
initiated the conversation by asking for a direction. Six scene pictures were ran-
domly assigned to three conditions. Therefore, two conversations were recorded
for each condition.

Equipment: Subjects used a wireless (Bluetooth) headset microphone to record
their voice, and each wore a cardigan on which motion-capture markers were
mounted. An OptiTrack motion-capture system with 10 cameras was used to
capture the subject’s upper body motions. The subject’s interactions were video-
recorded from their side and above. Fig. 3-(a) (side) and Fig. 3-(b) (overhead)
show pictures for the ”Back” experimental condition.

98 T. Tsukamoto et al.

(a) Side camera (b) Overhead camera

Fig. 3. Videos in ”Back” condition

Subjects: Fourteen university students (7 male and 7 female) joined as DRs,
and fourteen male students of Seikei University joined as DGs. Thus, we had 14
pairs of subjects in this experiment.

3.2 Collected Data

We collected video data from two directions, speech audio of each subject, tran-
scription of utterances, and motion-capture data tracking each subject’s upper
body motions. Each subject’s motion was tracked for her/his head, shoulder,
back, right arm, and left arm at 100 fps.

We had 14 pairs of subjects, and each pair had 6 sessions. Therefore, we
collected 84 direction-giving dialogues in all. The average length of conversation
was 68.6 s.

4 Analysis

By analyzing the collected data, we investigated how a DG’s gesture directions
for indicating the spatial information differ with the proxemics between the
DR and the DG. We analyzed 30 dialogues collected from 10 pairs for further
analysis.

4.1 Automatic Gesture Annotation

Since it is very time consuming to manually annotate nonverbal behaviors, we
automatically annotated the gesture occurrence (start and end time of a gesture).

Since more than 77% of the gestures observed in this study were right-hand
gestures, we built a decision tree that judges the occurrence of right-hand ges-
tures using Weka J48. From the motion-capture data of the DG’s right arm and
the right shoulder, 10 features were extracted: position (x, y, z), rotation (x, y,
z), movement of the z position, relative position of the right arm to the right

Multimodal Interaction in Direction Giving Dialogues 99

Fig. 4. Definition of proxemics

shoulder (x, y, z), and distance between the centroid of the right arm and that
of the right shoulder. We annotated right-hand gestures for two subjects for six
sessions to create training data.

As the result of 10-fold cross validation, the accuracy of binary judge (ges-
turing or not gesturing) was 97.5%, which is accurate enough for automatic
annotation. Thus, we applied the decision tree to the rest of the data and auto-
matically annotated right-hand gestures. Through this process, we obtained 161
right-hand gestures for further analysis.

4.2 Proxemics between the Direction Giver and the Direction
Receiver

To characterize the proxemics between DG and DR, we defined a gesture display
space. As illustrated in Fig. 4, the gesture display space is specified as the overlap
between the DG’s front area and the DR’s front field of vision towards the screen.
The width of the DG’s front area is determined by the distance between the
left shoulder and the right shoulder. Then, the center of the display space is
calculated as follows. First, a shoulder vector is defined by connecting the left
shoulder position and the right shoulder position. Then, another vector, which
is orthogonal to the shoulder vector, is defined as a body direction vector. The
intersection between the DG’s body direction vector and the DR’s body direction
vector is defined as the center of the gesture display space.

Then, we categorized the pair’s proxemics based on the distance from the
center of the gesture display space. We assumed that if the gesture display space
is far from the DG, the gesturer needs to stretch her/his arm to show her/his
gestures to the DR. In contrast, if the gesture display space is very close to

100 T. Tsukamoto et al.

Normal Close to DG Close to DR Close to Both

Fig. 5. Distribution of gestures with respect to proxemics

both participants, the DG does not need to use large motions; small gestures
are enough to communicate. Since human arm length is 60 to 80 cm, by adding
a 15-cm margin we defined 450 to 950 mm as the standard distance from the
center of the gesture display space. Based on this, we defined the following five
categories of proxemics.

(i) Normal: Both participants are standing within the standard distance (450
to 950 mm) from the center of the gesture display space.

(ii) Close to DG: The DG is standing close (less than 450 mm from the cen-
ter) to the gesture display space, and the DR is maintaining the standard
distance.

(iii) Close to DR: The DR is standing close to the gesture display space, and
the DG is maintaining the standard distance.

(iv) Close to Both: Both participants are standing close to the gesture dis-
play space.

(v) Far from Both: Either of the participants is standing far (more than 950
mm from the center) from the gesture display space.

As a result of analyzing the motion data for 30 sessions, 11 were categorized
as Normal, 4 as Close to DG, 9 as Close to DR, 2 as Close to Both, and 4 as
Far from Both. Far from Both is a very inconvenient proxemics because it is
almost impossible for the DR to see the DG’s gesture. For example, both par-
ticipants were facing the screen, or the DG was standing behind the DR. Thus,
for gesture analysis in the next section, we will exclude the data classified as
belonging to this category. Table 1 lists the average distances from the center of
the gesture display space for each category.

4.3 Relationship between Proxemics and Gesture Distribution

To investigate the relationship between the proxemics and the DG’s right-hand
gestures, we analyzed the distribution of gestures by plotting the DG’s right
arm position, which was the centroid of the right forearm calculated from four
data points: one on the right elbow and three on the right wrist. Fig. 5 shows
some examples. As shown in the plots, Normal and Close to DG are similar in
gesture distribution range. In Close to Both, the range of gesture distribution
is much smaller. This suggests that the DG uses smaller gestures because both
participants were close to each other and the gesture display space was smaller
than that in other proxemics. In contrast, in Close to DR, the range of gesture

Multimodal Interaction in Direction Giving Dialogues 101

distribution was much wider, specifically in the z position. This suggests that the
DG was slightly far from the display space and tried to show her/his gestures
by stretching her/his arm to the front.

To confirm this observation, we measured the area of the gesture distribution.
Table 1 shows the average width, length, and the square measure for four types
of proxemics.

Table 1. Gesture distribution area

Normal Close to DG Close to DR Close to Both

Distance to DG (mm) 665.9 395.0 596.4 392.0

Distance to DR (mm) 706.5 638.7 281.9 359.0

Width (mm) 197.2 214.0 237.6 189.5

Length (mm) 246.2 188.0 368.9 119.5

Area (mm2) 48557.1 46388.0 91257.8 23218.0

The data support our discussion above. The gesture distribution range (Area)
is similar in Normal and Close to DG because, in both categories, the gesture
display space is not far from the DG and the DG can choose the directions of
gestures in a wide space. In Close to DR, the distribution range is much larger,
specifically in length (z position), because the gesture display space is slightly
far from the DG and the DG needs to stretch her/his arm to make the gestures
reach the gesture display space. In Close to Both, the gesture space is not very
wide, because the participants are too close to each other and there is insufficient
space for gesturing.

5 Gesture Generation Mechanism for a Metaverse Avatar

In this section, we propose a gesture generation mechanism for a direction-giving
Metaverse avatar.

5.1 System Architecture

The system consists of four modules: (1) Second Life Manipulator (SLM), (2)
Direction Coordinator, (3) Gesture Decision and Speech Production Module
(GDM), and (4) Action-Voice Controller (AVC). We use OpenSim as an open
source platform for Second Life. Fig. 6 shows the system architecture of our
gesture generation mechanism.

(1) Second Life Manipulator (SLM). In Second Life, avatars can be con-
trolled via an object called a prim. A prim contains a script described in Linden
Scripting Language (LSL), which is the scripting language for Second Life, and
the prim is attached to the avatar. The SLM used this feature to control the
avatar, to get chat text, or to obtain location information.

102 T. Tsukamoto et al.

Fig. 6. System architecture for a direction-giving Metaverse avatar

(2) Direction Coordinator. The Direction Coordinator determines the ap-
propriate position of the Direction Receiver Avatar (DR avatar) if it is too far
from the Direction Giver Avatar (DG avatar), and it moves the DR avatar if
it is necessary. It also coordinates the direction of both avatars to make them
redirect towards the destination.

(3) Gesture Decision and Speech Production Module. Gesture timing
is determined by CAST [7], which receives text as input and makes a Japanese
morphological analysis using JUMAN and a dependency analysis by KNP to
determine where in the sentence gestures are assigned. The GDM also determines
the viseme animations for lip synchronization.

Then, the GDM determines proxemics types based on the DR and DG avatars’
coordinates and the body orientation obtained from Second Life. The intersec-
tion of the DR avatar’s orientation vector and that for the DG avatar is the
center of the gesture display space. The distances from the center to the posi-
tion of the DG avatar and to the position of the DR avatar are calculated. Then,
according to the distances, the proxemics type is determined by referring to
Table 1.1.

Hand shape and trajectory are determined by our shape-selection rules, which
were manually formulated by analyzing the video data in Section 3 [9]. In ad-
dition, the arm direction and stretch are determined based on the proxemics.
These parameters are applied to the shape-selection rules and a gesture anima-
tion ID is determined. The gesture animation ID is added to the input text in
XML format, and the text is sent to TTS (Text-To-Speech) to generate synthe-
sized speech and save it as an audio file. Then, the animation time schedule is
determined using the phoneme timing obtained from the TTS.

1 Since the scale in the Second Life is different from the real world. We used normalized
distance values.

Multimodal Interaction in Direction Giving Dialogues 103

7-1 7-2 7-3

Fig. 7. Snapshots of the direction-giving system

(4) Action-Voice Controller (AVC). In addition to playing the audio file,
the AVC sends animation commands to the SLM according to the animation
schedule. Then, the SLM applies the animation to the DG avatar to execute the
gesture.

The mechanism described above allows the users to create DG avatars that
express gestures synchronized with synthesized speech by only typing Japanese
text in the Second Life chat window.

5.2 Example

This section presents an example of gesture generation. First, when a user for
a DR avatar clicks on the DG avatar, a menu opens on the right corner (Fig.
7-1). If the user of the DR avatar chooses ”Building 7” from the menu as her/his
destination, the SLM obtains the coordinates<101.8, 104.2> and the orientation
<107> of the DG avatar as well as the coordinates <102.2, 103.2> and the
orientation<76> of the DR avatar, and finally the coordinates of the destination,
<74.6, 15.5>. The SLM sends these data to the Direction Coordinator, which
computes the rotation angle to redirect the DG and DR avatars towards the
destination and sends the angle data back to the SLM. The rotation command
is executed on OpenSim through the SLM. As a result, the coordinates are
changed as follows: The coordinates of the DR avatar are <101.8, 104.2>, its
orientation is <172> , the coordinates of the DG avatar are <102.2, 103.2>,
and its orientation is <167> (Fig. 7-2). The coordinate information is sent to
the GDM. Then, the user of the DG avatar inputs a direction-giving statement
in the chat window (e.g., ”When you turn left, there is a connecting corridor”).
The SLM obtains the input text and sends it to the GDM.

The GDM performs a morphological and dependency analysis, as well as a
search for synonyms for the input text, and selects words and phrases to which
avatar gestures should be assigned. In this example, the system decides to assign
gestures to ”turn left” and ”a connecting corridor.” Then, the GDM calculates
the center of the gesture display space based on the coordinates received from
the SLM and determines the proxemics type. In this example, the proxemics
type is ”Normal.” Next, the gesture animation ID is determined based on the
proxemics type and the information for hand shape and trajectory determined

104 T. Tsukamoto et al.

by our shape-selection rules. The gesture animation ID ”A-Left-M” is assigned
to ”turn left,” and ”LaR” is assigned to ”a connecting corridor.”

Then, synthesized speech is generated for the sentence and an animation time
schedule is computed based on the phoneme information. Once the AVC receives
the time schedule, it executes ”A-Left-M” and ”LaR” animations at the right
timing on the DG avatar (Fig. 7-3).

6 Conclusion and Future Work

With the goal of automatic generation of direction-giving gestures in Metaverse
avatars, we conducted an empirical study to collect human gestures in direction-
giving dialogues. Then, we investigated the relationship between the proxemics
and the gesture distribution, and we proposed four types of proxemics charac-
terized by the distance from the gesture display space. Finally, we proposed a
mechanism that determines the timing and the form of avatar gestures using
proxemics information and the language information obtained from the chat
text. We also showed an example of how the proposed mechanism can generate
animation and speech on a Metaverse avatar in Second Life.

In future work, we need to investigate other factors that may influence the
gesture shape. One important aspect is the relationship between the experimen-
tal conditions and the gesture distributions. We intend to analyze whether the
preferable proxemics differs with the direction from which the direction receiver
is approaching. Another important future objective is to evaluate the effective-
ness of the gesture generation mechanism by testing whether the users perceive
the avatar’s gestures as being appropriate and informative.

Acknowledgment. This work was partially funded by JSPS under a Grant-
in-Aid for Scientific Research (S) (19100001) and by MEXT Grant-in-Aid for
Building Strategic Research Infrastructures.

References

1. Argyle, M.: Non-verbal communication in human social interaction. In: Hinde, R.A.
(ed.) Non-verbal Communication. Cambridge University Press, Cambridge (1972)

2. Bergmann, K., Kopp, S.: GNetIc – Using Bayesian Decision Networks for Iconic
Gesture Generation. In: Ruttkay, Z., Kipp, M., Nijholt, A., Vilhjálmsson, H.H. (eds.)
IVA 2009. LNCS, vol. 5773, pp. 76–89. Springer, Heidelberg (2009)

3. Breitfuss, W., Predinger, H., Ishizuka, M.: Automatic generation of gaze and ges-
tures for dialogues between embodied conversational agents. Int’l Journal of Seman-
tic Computing 2(1), 71–90 (2008)

4. Bull, P.E.: Posture and Gesture. Pergamon Press, Elmsford (1987)

5. Kendon, A.: Some functions of gaze-direction in social interaction. Acta Psycholig-
ica 26, 22–63 (1967)

6. McNeill, D.: Hand and Mind: What Gestures Reveal about Thought. University of
Chicago Press, Chicago (1992)

Multimodal Interaction in Direction Giving Dialogues 105

7. Nakano, Y.I., Okamoto, M., Kawahara, D., Li, Q., Nishida, T.: Converting Text into
Agent Animations: Assigning Gestures to Text. In: Human Language Technology
Conference of the North American Chapter of the Association for Computational
Linguistics (HLT-NAACL 2004), Companion Volume, Boston (2004)

8. Tepper, P., Kopp, S., Cassell, J.: Content in Context: Generating Language and
Iconic Gesture without a Gestionary. In: Proc. of the Workshop on Balanced Per-
ception and Action in ECAs at AAMAS 2004 (2004)

9. Tsukamoto, T., Nakano, Y.: Gesture Generation for Metaverse Avatars using Lin-
guistic and Spatial Information. In: Proc. of the 74th National Convention of IPSJ
(in Japanese) (to appear)

Organizing Scalable Adaptation in Serious

Games�

Joost Westra1, Frank Dignum1, and Virginia Dignum2

1 Universiteit Utrecht
2 Delft University of Technology

Abstract. Serious games and other training applications have the re-
quirement that they should be suitable for trainees with different skill
levels. Current approaches either use human experts or a completely
centralized approach for this adaptation. These centralized approaches
become very impractical and will not scale if the complexity of the
game increases. Agents can be used in serious game implementations
as a means to reduce complexity and increase believability but without
some centralized coordination it becomes practically impossible to fol-
low the intended storyline of the game and select suitable difficulties for
the trainee. In this paper we show that using agent organizations to co-
ordinate the agents is scalable and allows adaptation in very complex
scenarios while making sure the storyline is preserved the right difficulty
level for the trainee is preserved.

1 Introduction

In serious games, quality is measured in terms of how well the components in the
game are composed, how they encourage the player (or trainee) to take certain
actions, the extent to which they motivate the player, i.e. the level of immer-
siveness the game provides, and how well the gaming experience contributes to
the learning goals of the trainee [3]. Thus believability is a main driver of game
development. The search for enhanced believability has increasingly led game de-
velopers to exploit agent technology in games [11] in order to preserve believable
storylines.

Dynamic difficulty adjustment is an important aspect in training applications
that need to be suitable for a large variety of users with different skill levels.
Having the correct difficulty level ensures that the game will contribute to the
learning goals of the trainee. Current approaches of dynamic difficulty adjust-
ment in games use a purely centralized approach for this adaptation [21,9]. This
becomes impractical if the complexity increases and especially if past actions of
the non player characters (NPC’s) need to be taken into account while trying to
adapt to the skill level of the trainee (as is needed for serious games [18,20]). The

� This research has been supported by the GATE project, funded by the Netherlands
Organization for Scientific Research (NWO) and the Netherlands ICT Research and
Innovation Authority (ICT Regie).

M. Beer et al. (Eds.): AEGS 2011, LNAI 7471, pp. 106–122, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Organizing Scalable Adaptation in Serious Games 107

use of software agents has also been advocated as a means to deal with the com-
plexity of serious games [11]. Distributing the responsibility of staying believable
and adjusting to game progress, over the different non player characters creates
a much more manageable situation, but this might lead to unwanted situations
if their adaptation is not well coordinated.

Current agent approaches have no coordination over the adaptation at all. We
argue that a system without any coordination will not result in good adaptation
if the complexity of the game and the number of different adaptable elements in-
creases. Multiple elements could adapt in the same direction and will overshoot
the desired target difficulty for the trainee. Or the agents all adapt in a very
similar way, resulting in state where the NPC’s are not performing all the tasks
required by the scenario. We will also show in this paper that a nave centralized
approach will become too slow if the numbers of tasks that NPC’s can perform
becomes too big. While this might not be problematic with the current enter-
tainment games yet where adaptation to the user is very limited, it will be a
problem with more complex serious games. In this paper we propose to use agent
organizations plus a related adaptation engine to manage the control of the co-
ordination and adaptation of the agents, while leaving them enough autonomy
to determine their next actions. We will show that this gives the right balance
between distributing decision making (leading to scalability) and keeping the
game believable and immersive.

The paper is organized as follows. In the next section we will look at the
requirements for the adaptive serious games we are investigating. In section 3
we will look at the current approaches that are used in games. In section 4
we further explain the agent organization based framework we are using. We
show how this framework can be used to create scalable serious in section 5. In
section 6 we will show the order of magnitude of a resulting design compared to
a nave centralized approach. Conclusions are discussed in the last section.

2 Adaptation

The type of adaptive serious games we are investigating have certain require-
ments and properties that are usually not found in current entertainment games.
The biggest difference is that the NPC’s in these games can perform a lot of dif-
ferent types of actions. In most commercial games that do adapt to the user,
the NPC’s can only perform a very limited number of different tasks and the
adaptation isn’t done on the task type level but only by adjusting certain sim-
ple parameters within the same task definition. In most serious games we want
to expose the trainee to a much larger variety of different tasks. This is partly
caused by the fact that the trainee needs to learn separate skills and different
combinations of these skills. For example, the trainee needs to learn to extin-
guish fire while making sure the victims are safely extracted from the building.
For each skill we also want to expose the trainee to a larger variety of challenges
that do not only differ in simply tunable parameters but require a substantially
different response from the trainee. For example the trainee should learn to ex-
tinguish basic home fires but also chemical fires at a chemical plant. Even within

108 J. Westra, F. Dignum, and V. Dignum

the basic home fire category we want the trainee to be able to cope with fire
that started on the ground floor and fires that started on the higher floors.

Also if current games progress each character type will keep performing very
similar throughout the game. In serious games we want the NPC to exhibit
different behaviors throughout the game. This is required because we want to
expose the trainee to significantly different scenarios with different skill com-
binations to allow the trainee to learn to handle a larger variation of different
situations. The behavior of the NPC’s also has very big influence on the diffi-
culty level for the trainee. Because we want these serious games to be suitable
for a large variation of trainees with different skill levels and different learning
rates we want the game to continuously adapt. This also requires a much larger
number of plans that can be performed by the agent (while keeping an overall
goal) because they do not only need to operate in varying scenarios but also to
operate in these scenarios with different difficulty levels.

Without a clear organization structure, adaptation can quickly lead to a dis-
turbed storyline and the believability of the game will be diminished and will
lead to an explosion of possible combinations. Furthermore, characters in serious
games are usually active for relatively long periods. This poses an extra burden
on the believability of the game, namely coherence of long-term behavior [13].
When there are multiple NPC’s that all have their own preferences and can
all adapt to the trainee independently, it becomes almost impossible to create
a coherent game that has a natural progression of the game and is the right
difficulty for the user. The game progression is much more controllable if there
is a monitoring system in the application where the desired progression (could
have different paths) is specified. We propose a system where we do not only
have a monitoring system that specifies the desired storyline but that also tracks
the current progression within the storyline. The NPC’s are still programmed
with their own preferences but they receive updates of the game progression.
The agents can then easily be programmed to perform different plans, not only
dependent on their own beliefs but also dependent on the game progression.

Coordination of agent actions (that are still autonomous most of the time)
also becomes a lot more manageable if there is a central control system that
allows the designer to put restrictions on the possible plans performed by the
agents. A very simple example is that the designer can specify that at a certain
point in the game, one of the NPC’s should always check the left hallway. A
possibility would be that all the agents are programmed with this restriction in
mind and that they communicate directly with each other to make sure that
one goes left. We propose an efficient coordination system where all the agents
propose multiple actions with preference weights corresponding to each of these
proposals. From these proposals the adaptation engine will select the optimal
solution that also keeps the restrictions of the designer and the preferences of
the agents in mind. In this example, this means that at least one agent prefers
to check the left hallway but it puts a lot less burden on the designer to allow
autonomy within the agents while making sure that certain critical criteria are
always met.

Organizing Scalable Adaptation in Serious Games 109

An added challenge for user adaptation in games is that it can only be done
while the user is playing the game [2,5]. Online adaptation requires that the
algorithm adapts quicker with a lot less episodes and learning data. Because the
game is adapting while the user is participating in the game, it is also important
that no unwanted and unpredictable situations are introduced by the adapta-
tion. This means that the adaptation should only try promising and believable
solutions while exploring different options.

Another important aspect of adaptation in (serious) games is the distinction
between direct and indirect adaptation. Direct adaptation occurs when the de-
signer specifies possible behavior of the agents in advance and specifies how and
when to change this behavior. The designer also specifies what input informa-
tion should be used. Direct adaptation only allows adaptation to aspects that
the designer has foreseen. No unexpected behavior can emerge when using direct
adaptation. On the other hand, in indirect adaptation performance is optimized
by an algorithm that uses feedback from the game world. This requires a fitness
function and usually takes many trials to optimize. If indirect optimization is
used the algorithm also needs to be able to cope with the inherent randomness
of most computer games.

In previous work [23,22] we proposed the use of multi-agent organizations
to define a storyline (defining coordination restrictions on the agents) in such a
way that there is room for adaptation while making sure that believability of the
game is preserved. This approach has the benefits of direct adaptation without
the need for the designer to directly specify how the adaptation should be done.
The designer is able to specify certain conditions on the adaptation to guarantee
the game flow but does not have to specify which implementations are chosen
after each state. In this paper we show how the agents are implemented and
show the coordination of tasks and proof that it is scalable enough and works in
practice

3 Current Approaches

Even though many commercial games do not use any dynamic difficulty adapta-
tion [15], already some research has been done on difficulty adaptation in games.
Most of this research focuses on adaptation of certain simple quantitative ele-
ments in the game that do not influence the storyline of the game. For example
better aiming by opponents or adding more or a stronger type of opponents.

Current research on online adaptation in games is mostly based on a cen-
tralized approach [21,10]. Centralized approaches define the difficulty of all the
subtasks from the top down. This is only feasible if the number of adaptable el-
ements is small enough and if the separate adaptable elements have no separate
time lines that need to be taken into account. In shooting games, for example,
these requirements are not problematic. The games only adapt to the shooting
skill of the trainee and most characters only exist for a very limited amount
of time. In the type of adaptable serious games we are researching, completely
centralized approaches will not be scalable enough.

110 J. Westra, F. Dignum, and V. Dignum

Research has been done on using reinforcement learning in combination with
adaptation to the user [21,1]. Most of these algorithms rely on learning relatively
simple subtasks. Moreover, the aim of these adaptation approaches is learning
the optimal policy (i.e. making it as difficult as possible for the user). In order
to avoid that the game becomes too difficult for the user, some approaches filter
out the best actions to adjust the level of difficulty to the user. This results
in unrealistic behavior where characters that are too successful suddenly start
behaving worse again.

Little attention is paid to preserving the storyline in present online adaptation
mechanisms, because they only adjust simple subtasks that do not influence the
storyline of the game. Typical adjustments are, for example, changing the aiming
accuracy of the opponents or adding more enemies.

Somework has been done onpreserving the storylinewith adapting agents [12,4]
but they focus onpreserving theplot, not onadapting to the trainee.Otherwork [16]
has also been done on interaction between the agents and the storyline while ad-
justing to the trainee. This framework adjusts to the trainee to preserve and repair
the plot of the game, this is very different from adapting the difficulty level for the
trainee. Some work has been done [19] on adjusting the goals of the agents to facil-
itate learning of the trainee, but they also do not take skill levels of the trainee into
account.

4 Framework

To get a better understanding of the different elements of the whole framework
we first briefly describe the different elements and the information that is passed
between them. Figure 1 shows a schematic overview of all the different elements
of the framework. We are currently using a custom Java environment as our
game world, but our approach is also applicable to other games. The NPC’s and

Agent model• 2APL Agent

• Game world

• Game state • User Model

Update

User Performance

Translate

Update Beliefbase

Task Weights Skill Levels

Preferences &
T i ti

Agent model• Agent Bidding

• Agent interface

• Adaptation Engine

• NPC• NPC• NPC• NPC

Plans Bid

External Action
SelectionGame Actions

Temination
Scene StatesApplicable plans

• Game Model

Fig. 1. Framework overview

Organizing Scalable Adaptation in Serious Games 111

other dynamic game elements in the game are controlled by 2APL agents. The
agents in the game have the capability to perform basic actions, like walking to
a certain location or opening a door. The higher level behaviors are specified in
the 2APL agents which sent the basic external actions to the agent interface
which translates these commands to basic game actions.

The game state is used to update the beliefs of the agents, update the pro-
gression of the game and pass the performance of the trainee to the user model.
The user model uses this information and the task weights from the adaptation
engine to update the estimated skill level for each state. These updated skill
levels can then be used again to find better matching agent behaviors.

The 2APL agents can perform different actions depending on their beliefs and
dependent on the scene states. The game model contains information about the
desired storyline of the game and keeps track of how far the game has progressed
in the storyline. This information is passed to the 2APL agents to influence
the possible actions they can perform. The agent bidding module specifies the
agent preferences for all the applicable plans. The adaptation engine uses this
information and the information from the user model to find the plan assignment
for the agents that best serves the situation for the trainee. The bidding module
of the agent uses this information to control the plans that are selected by the
agents.

4.1 Agent Organizations

Adapting the game to the trainee for complex learning applications requires both
learning capabilities and decentralized control. However, in order to guarantee
successful flow of the game and the fulfillment of the learning objectives, the
system needs to be able to describe global objectives and rules. Although many
applications with learning agents exist, multi-agent systems with learning agents
are usually very unpredictable [14]. In order to limit unpredictability in MAS,
organization-oriented approaches have been advocated such as OperA [7] and
MOISE+ [8]. In this framework it is possible to define conditions when certain
plans are allowed or not. The ordering of the different possible plans can also be
defined in this framework. This allows the designer to make sure that the users
are not exposed to tasks that are not suitable yet or would ruin the storyline.
In previous work we have shown how to use agent organizations to specify the
boundaries of the game [22,23].

The OperA model for agent organizations enables the specification of organi-
zational requirements and objectives, and at the same time allows participants
to have the freedom to act according to their own capabilities and demands. In
OperA, the designer is able to specify the flow of the game by using landmarks.
The different sub-storyline definitions of the game are represented by scenes
which are partially ordered without the need to explicitly fix the duration and
real time ordering of all activities. That is, OperA enables different scenes of
the game to progress in parallel. In the scenes, the results of the interaction are
specified and how and in what order the different agents should interact.

112 J. Westra, F. Dignum, and V. Dignum

4.2 Adaptation Engine

The adaptation engine consists of two different parts. One part selects the best
combination of plans for all the different agents. The other part keeps track of
the game progress and is responsible for checking if the combinations of plans
are currently valid depending on the state of the game. The adaptation engine
has to optimize on two possibly conflicting objectives. On the one hand we want
to optimize on the preferences of the agents while on the other hand we want
to select the combination which is the optimal difficulty for the user. Because
we focus on adapting to the trainee, we give the highest priority to finding the
best match for the trainee. Remember that we optimize on different skills of the
trainee. Slight variations in difficulty level are not problematic but we do want
to prevent large deviations from the desired skill levels for each separate skill.
This means that we rather have deviations that are a bit larger for each skill
than have multiple skill levels that are perfectly chosen but a large deviation in
one remaining skill.

While optimizing on the skills of the trainee we also want to optimize on the
preferences of the agents to keep their preferences into account to keep the game
as believable as possible. This process uses a form of a combinatorial auction [17].
This needs to be a combinatorial auction because the agents can give a higher
score for performing a certain action depending on which plans the other agents
will perform. This preference dependence is only used for tasks that require co-
ordination between the agents. For example, it is more believable for a fireman
to lift a heavy object if another agent helps him. We try to limit the amount of
preference dependencies because it is much more labor intensive for the game
designer to specify the preferences of the agents and it is also more computa-
tionally expensive to find the best solution. Similar to finding the best match for
the skill level we also want to avoid large deviations from the preferences. This
means that we do not optimize on the highest combination of preferences from
the agents but on the smallest squared deviations from the preferred proposal.
The deviation in the skill levels are combined with the deviation of the agent
preferences, giving more influence to the skill deviation.

In the game model we do not only allow the designer to specify the progress
of the game but we also allow the designer to specify different difficulties corre-
sponding to certain phases in the storyline. We also allow the designer to specify
an absolute difficulty level, which can be a desired option especially for serious
games because one would like to be able to know that if the trainee finishes
the training that the skill level of the trainee is high enough. Updating the user
model can be done in different ways. Our proposed user model update function
is beyond the scope of this paper but is described in [22].

Selecting the best combination of plans from the different agents is easiest if
they all terminate at the same moment. If all plans are terminated and started at
the same time the optimal combination for the trainee can be selected. However,
the time to execute the different plans by the agents is not always the same, and
to keep the storyline flowing, it is not always a possibility to terminate plans of
all the agents when a few agents have completed their task. In our framework we

Organizing Scalable Adaptation in Serious Games 113

specify different subtasks of the game application by using scenes. The scenes
usually begin when certain agents start interacting and end when that group
of agents end their interaction or an organizational objective has been reached.
The end of a scene usually is a natural time for all the participating agents
to terminate or change their behavior. This gives enough control to make the
necessary changes both for the gameflow and to optimize learning for the user.

Because multiple scenes can be active at the same time, it also does not mean
that if a scene is finished all agents have terminated their plans. The goal is to
have the most suitable task combination for the trainee during the whole game.
Our solution is to assume that all plans that have not terminated are fixed and
that newly created plan combinations keep these active plans into account. This
results in a good combination for the trainee when the new plans are started.
If plans are terminated the difficulty of the task changes again (becomes easier
most of the time), but this can usually be compensated very quickly with new
plans from the same agents (instant correction) or new plans from other agents.
This results in a system that adapts quickly while keeping the behavior of the
agents realistic.

4.3 Agent Implementation

The high level actions of the NPC’s are implemented using the 2APL [6] lan-
guage. This allows modeling of the NPC’s using the BDI architecture. Using
BDI agents is a suitable implementation because it allows us to create intelli-
gent characters that are goal directed and able to deliberate on their actions.
2APL is an effective integration of programming constructs that support the
implementation of declarative concepts such as belief and goals with imperative
style programming such as events and plans. Like most BDI-based programming
languages, different types of actions such as belief and goal update actions, test
actions, external actions, and communication actions are distinguished. These
actions are composed by conditional choice operator, iteration operator, and se-
quence operator. The composed actions constitute the plans of the agents. The
agents are created with the game model structure in mind. This is done in such a
way that the applicable plans are not only dependent on the game state and the
internal state of the agent but also on the scenes that are currently active. This
process makes it a lot easier for the developer to ensure the certain behaviors
are only performed at the right moment in the game progress. The 2APL agents
are created in such a way that multiple plans are applicable at the same time.
These applicable plans can vary in difficulty for the trainee but they can also
have the NPC perform substantially different tasks in the game.

When the agents receive a request to perform a new behavior they reply with
a number of different applicable plans according to the game state, the active
scenes and the internal state of the agent. This bidding process is not part of the
normal 2APL deliberation cycle but is a separate part of the agent. We separated
these tasks because it would be very inefficient and unnecessarily complex if the
agents use the BDI reasoning process to decide why they want to perform a
certain plan. This separate bidding part of the agent is also responsible for

114 J. Westra, F. Dignum, and V. Dignum

estimating the believability of each action. One important factor in estimating
the believability of a new plan is dependent on the difference compared to the
previous plan.

5 Designing Scalable AI

In this section we will show how our design approach can be used and why
it gives a natural and effective implementation. One simple example is used
throughout this section to show how the different aspects of the framework
function. Figure 2 shows part of an interaction structure of a possible game.
In the same figure we also display the partial ordering of the Evacuate Victims
scene. On the interaction structure level we only define the ordering of the scenes
and when it is allowed to transition to the next scene. The scenes are defined by
scene scripts that specify which roles participate and how they interact with each
other. The definition of the organization can be so strict that it almost completely
defines the strategy. But it is also possible to specify the organization in such a
way that all the agents in the game work towards achieving the goals of the game
but are still able to do this using different strategies. In these scenes the results
of the entire scene is specified and how and in what order the different agents
should interact. It is also possible to defines norms in the scene description. This
makes it possible to put extra restriction on the behavior of the agents. The
agents can be programmed to break the norms. Agents that do not follow norms
can be an essential part of the training. In a scene script is also possible to define
certain time constraints to make sure that the game progresses fast enough.

Gather Info Search
Building

Secure Area Evacuate
Victims

Extinguish
FireGet to site

Kitchen Fire

Multiple
victims

EndStart

Fig. 2. Interaction structure

When scripting languages or hard coding of NPC behavior is used, it will
become very difficult to read and understand the intended behavior if the project
becomes more complex. In our approach we use NPC’s that are based on BDI
agents. This means that agent behavior is specified using high level goals and act
according to their internal believes. This makes it much easier to identify why
a NPC why an agent performs a certain plan. We specially use the term ”high
level” goals because some of the lower level behaviors can better by specified

Organizing Scalable Adaptation in Serious Games 115

by other approaches then BDI. For example path planning can much better be
handled by an A* algorithm then to incorporate this into the BDI part of the
NPC. The BDI part still selects where to go but the lower level behavior handles
exactly how this is done. This also results in a nice and modular approach. Using
a combination of BDI agents with an agent organization architecture, results in
very natural agent objectives. The whole storyline of the game is build from a
collection of partially ordered different scenes. In each scene we specify the scene
objective and the roles that are being played in this scene. Each participating
agent plays one of these roles and therefore helps to complete the scene objective.
This results in agents goals and plans that are very natural and relevant to the
scene and therefore relevant to the storyline.

An obvious danger of coordinating actions between agents is that, if all possi-
bilities are always sent to a central point which finds the best the combination,
we can run into scaling problems and you might as well use completely central
control instead of an agent based approach. One of the differences between a
completely centralized approach and our approach is that the agents make a
pre-selection of the plans that are applicable in regards to their internal state
and the current game state.

5.1 Scenes

As discussed earlier the rough outline of the game is specified in the interac-
tion structure. This interaction structure is build up from the scenes where the
action required behavior of the participating agents is outlined. Only a limited
number of scenes can be active at the same time. Each arrow in the interaction
structure defines a scene transition with its corresponding transitions require-
ment. A transition always means that the old scene is no longer active (a scene
transition could spawn multiple new scenes). From Figure 2, where we show a
small part of an interaction structure, it can be seen that in this specific case
only one or two scenes can be active at the same time. The scene get to site
has two outgoing arrows, this type of arrow is used for situations where both
transition are valid at the same time. In our framework the agents are always
informed which scenes are currently active. The agents are designed in such a
way that they know which plans are applicable in which scene. This allows the
agents to make a very fast selection on all the plans. They do not have to check
the applicability of these plans according to their believes. Because the kind of
serious games we investigate have a lot of specialized plans for each scene this
filtering has a very big influence on the performance of the whole system. Every
scene is also build of a partial ordered collection of sub-scenes. This allows the
agents to make an even more fine grained pre-selection.

Technically it functions as follows. As can be seen in Figure 1 the adaptation
engine updates every 2APL agent with the most current scene states. Each 2APL
agent extends a basic GameCharacter agent. From this definition every agent
will inherit the standard ability to update its believes according to the scene
states update. This specific 2APL plan adds the current active sub-scene to the
beliefbase of the agent.

116 J. Westra, F. Dignum, and V. Dignum

Example 1
I n c l u d e : GameCharacter . 2 a p l
// h and l e s s cene t r a n s i t i o n messages
//and c h a r a c t e r s movement

Be l i e fUpda te s :
[. . .]

Be l i e f s :
SubScene (Mu l t i p l eV i c t im s)
Subscene (K i t ch enF i r e)

Goa l s :
E x t r a c tV i c t im s (d i s a s t e r A r e a)
StoveO f f (d i s a s t e r A r a e)

P l an s :
@d i s a s t e rA r e a (en t e r (8 , 8 , r ed) ,)

PG−r u l e s :
t r u e<−SubScene (Mu l t i p l eV i c t im s) // i n i t sub−s cene
| { [. . .] }

t ru e<−Scene (K i t ch enF i r e) // i n i t sub−s cene
| { [. . .] }

Ex t r a c tV i c t im s (d i s a s t e r A r e a)<−SubScene (Mu l t i p l eV i c t im s)
// ea s y
| { [. . .] }

Ex t r a c tV i c t im s (d i s a s t e r A r e a)<−SubScene (Mu l t i p l eV i c t im s
) // hard
| { [. . .] }

StoveO f f (d i s a s t e r A r a e)<−Scene (K i t ch enF i r e) // ea s y
| { [. . .] }

StoveO f f (d i s a s t e r A r a e)<−Scene (K i t ch enF i r e) // hard
| { [. . .] }

PC−r u l e s :
[. . .]

Example 1 shows a simplified version of the code of a fireman agent. In this
example only the Evacuate victims scene is active. As can be seen the agent
has the current active sub-scene available as beliefs. These beliefs are used as
conditions for the PG-rules of the agents. A planning goal rule (PG-rule) specifies
that an agent should generate a plan if it has certain goals and beliefs. This
means that these plans are only generated if the sub-scene conditions is true.
Some generic plans can be used in multiple scenes. This can easily be achieved
because the conditions check is a belief query that can also include the logical
OR.

For every sub-scene we use a special rule that will be applicable when the
corresponding belief is added to the belief base. These specific rules will be
applicable independent of the agents current goals (it could have no goal at
all). In this plan we specify which goals should be added to the added goals
base (and which should be removed). These goals that are added to goal base
match the goals that should be fulfilled in the scene. For example in the evacuate
victims scene each victim agent will have the goal to play a victim in that specific

Organizing Scalable Adaptation in Serious Games 117

scenario while a fireman agent could have a goal to locate the victims and a goal
protect them from harm. In Example 1 it can be seen that the scenes are already
initialized because the corresponding goals are already active.

Most of the time when a sub-scene is finished the participating agents are
finished with their sub-scene specific goals and plans. However this is not always
true. In some cases a different agent satisfies the requirements to move to the
next sub-goal while a different agent is in the middle of a task. The agent will
now have more applicable plans then just the new plans corresponding to the
new sub-scene. In other systems it would be very difficult to manage these kinds
of situations. In our system the agent would just propose the applicable from
the old task and from the new sub-scene. The agent can also give a much higher
believability rating to the old plan if terminating the plan would disrupt the flow
of the game.

An important thing to note is that the scenes start and end in natural situa-
tions in the games, it is not just split up into arbitrary pieces. Scenes correspond
to natural occurring phases in the training game. The scene Get to site in Fig-
ure 2 for example is clearly a separate and phase in the progress of the game.
The goals of the agents that are active during this scene will correspond to the
goal of the scene and will usually be fulfilled when the termination criteria of
the scene are reached. This also makes the transition between scenes a very nat-
ural moment to adapt to the trainee and to coordinate this adaptation with the
participating agents.

5.2 Believability

Besides the pre-selection on the scene level we also prune the number of suggested
plans that the agent can suggest by using their believability preferences. This
means that the agents will estimate the believability for all the remaining and
exclude the plans that have a believability below the set threshold. In quite a
number of cases there will be plans that have a believability that is very low or
even zero. This is mainly caused by past events that are already observed by the
trainee. It could happen for example, that the agent is currently playing a victim
with a broken leg because that was the best fit with the current skill levels of the
trainee. It would then be completely unbelievable if the agent suddenly switches
to a plan where he runs away.

The believability filtering will have a larger influence if the characters are
interacting for a larger part of the game. The trainee will have more knowledge
about the NPC and the numbers of believable actions will be more limited. A
factor that is frequently limited because of this is the intelligence or autonomy
of the NPC. It is possible for an NPC to perform a task a bit more intelligent
(as if the NPC would have learned) but it would be very strange if the NPC
suddenly becomes much more intelligent or very stupid.

On the implementations level it works as follows. 2APL builds a list of all the
applicable plans exactly in the same way as the default 2APL implementation.
This list is already quite limited because of the scene restrictions we discussed
earlier. For all these we calculate the believability number. This is always between

118 J. Westra, F. Dignum, and V. Dignum

zero and one. The actual calculation of the believability is domain dependent. For
example, a fire agent can only increase or decrease the fire expansion rate within
certain limits. NPC’s that simulate humans will have very different limitations
in order to make sure the agent does not appear schizophrenic while adapting
to the trainee.

The calculation of the believability is done in a separate module in our in-
tended 2APL implementation. The believability is usually dependent on past
actions and believes from the agent. The agents for example need to keep track
of the level of intelligence of its past actions to make sure it will stay consistent
from the perspective of the trainee. We also store this data in the belief base of
the agent. This means that not only the extra believability module has access to
this but that the reasoning part of the agent is also able to use this data. This
means that the agent can reason that it cannot run away because it is aware that
it has a broken leg. This allows the designer to implement these dependencies on
the past more naturally. It also helps to make the framework to scale better be-
cause more plans are excluded in an earlier phase. The believability calculations
are allowed to be a bit more computationally expensive then some of the calcu-
lations in the framework because they only have to be performed on a relatively
small number of plans. A cutoff threshold is set and all the plans that fall below
this level will be excluded from the agent proposal. The threshold level for a part
defines the tradeoff between accurate adaptation and believability. Only filtering
out plans with believability zero will already help a lot in solving the disruptive
changes that can be observed in some more traditional adaptive games.

5.3 Combinations

After all the agents have finished selecting the possible plans that possible fit in
the current situation they send this proposal to the adaptation which checks the
tasks that are currently performed by agents and then checks all the new pro-
posals from possibly different agents (remember that the agents can use the co-
ordination asynchronously). The adaptation engine uses the specifications from
the game model of the scenes that are currently active (for example only the
extract victims scene could be active). This means that number of plan combi-
nations is not only limited by the number of plans proposed by the agents but
also by checking the validity of the combinations before they are evaluated on
skill difficulties. In some cases this pruning can have a big influence. If we for
example assume that the (sub)scene defines that at least fireman should explore
the left corridor and that there is currently only one fireman active then we
can very quickly throw away all the combinations that contain the fireman per-
forming a different plan than exploring the left corridor. In most cases however
this pruning is little less efficient because most requirements require to really
check the plans of multiple agents. For example, if the (sub)scene specifies that
a stretcher needs to be carried by at least two agents then we need to check each
combination until from all the corresponding plans there are at least two agents
that perform the carry stretcher plan.

Organizing Scalable Adaptation in Serious Games 119

The agents also do not use the adaptation engine for all their plan selections.
If there is no need for adaptation, then the agents will keep running their normal
2APL program with the current preferences. The adaptation engine will request
a new bidding round if the deviation from the intended difficulty becomes too
large. The bidding process is also started at fixed points in the game scenario
where it is logical for the agents to start performing different actions. Updated
preferences also do not mean that the agents have to stop performing their
current plan but the selection of the first new plan is influenced. A third way
of managing the scaling problem is that multiple scenes can be active at the
same time and not all agents are part every scene. This splits the optimization
problem into smaller subtasks which makes it more efficient to optimize.

6 Scalability Analysis

In this section we will analyze the scaling difference between a näıve centralized
approach and our coordinated distributed approach. Both approaches will have
a very similar approach of combining the actions of the NPC’s but the main
difference will be in the remaining number of plans proposed by the agents.
We aim to use reasonable assumptions that correspond to the type of serious
games we have encountered during our research. The example in Figure2 shows
a part an interaction structure of a game. This part of the interaction structure
shows six scenes. A reasonable assumption is that a whole game can be split
into 30 different scenes of which on average two scenes are active at the same
time. Because the scenes are independent of each other, the total number of
scenes hardly influences the execution time if our distributed approach is used.
In Figure 2 only one or two scenes can be active at the same time. In practice
most interaction structures are very similar and it hardly ever happens that more
than two scenes can be active at the same time. Using an average of two scenes
at the same time will therefore give a pessimistic estimation of the performance.
The ability of the agents to filter the possible actions depending on the active
scenes makes a huge difference in the number of possible actions that can be
proposed by the agents. In this example the agent will filter out more than 93%
((30-2)/30) from its complete plan base. In the same figure we also see an example
of scene with different sub-scenes. In this case there are only two sub-scenes but
an average of four will give a more realistic estimation. We again pessimistically
assume that on average two sub-scenes are active at the same time (per scene).
We assume that every agent has 6 unique plans for each sub-scene. The ability
to also select plans according to the sub-scenes will cut the remaining number of
plan in half again (2 of 4 sub-scenes are active for each scene). As explained in
section 5 the agents can also filter out some of the remaining plans by cutting out
the plan that are not believable enough. In some cases this filtering percentage
will be very low but in the kind of serious games where the NPC also cooperate
with the trainee a reasonable assuming will be that 50% of the remaining plans
are filtered out. We will leave out the optimization on the invalid combinations
because it is very difficult to give accurate estimations for this and it will also

120 J. Westra, F. Dignum, and V. Dignum

make it more difficult to compare to the nave approach. This means that we
will compare the number of combinations that can be made from the actions
proposed by the agents. For each of these combinations the difficulties for the
different skill levels needs to be calculated. Even though this calculation itself is
not very time consuming the exponential nature of making these combinations
will really become a factor in complex scenarios.

The purely nave approach will have 720 (30 scenes * 4 sub-scenes * 6 actions
per sub-scene) different plans for each agent active at the same time. Our ap-
proach will have 12 (6 actions per sub-scene *2 sub-scenes active per scene * 2
active scenes /2 for believability filtering) In figure 3 we plotted the out the num-
ber of combinations for both approaches depending on the number of agents. As
can be seen the number of combinations already add up very quickly with our
distributed filtering but it is much more manageable then without the filtering.
Even with four agents the filtered approach is already 12960000 times as slow.
With more than four agents the nave approach becomes completely impractical.

Fig. 3. Number of possible action combinations

Keep in mind that in practice our distributed approach will be much faster
because we are also efficiently filtering out impossible combinations. This means
that in practice the number of combinations that will be evaluated will be much
lower than the estimations from our graph. We, however, also realize that the
term scaling is relative. The coordination is fast enough by using our distributed
approach for the type of games we are investigating and is much faster than
the nave approach. But because of the exponential nature of the remaining
coordination it will not scale to games with massive numbers of NPC’s.

7 Conclusion

In this paper we discussed online adaptation in serious games. The adaptation
is based on the use of learning agents. In order to coordinate the adaption of the

Organizing Scalable Adaptation in Serious Games 121

agents we use an organizational framework that specifies the boundaries of the
adaptation in each context. We argue that an agent based approach for adapting
complex tasks is more practical than a centralized approach. It is much more
natural when the different elements are implemented by separate software agents
that are responsible for their own believability.

We mainly concentrated on the different phases of plan selection performed on
the agent level. However, we also have shown that by using an agent organization
framework we can segment the game in scenes in a natural way to describe which
of the possible actions of the agents are relevant at the current moment. Every
selection phases reduces the number of plans that need to be coordinated. This
greatly reduces the scaling problems when coordination multiple agent with a
large variety of possible actions.

The system is implemented using 2APL for the agents and tested with artifi-
cial trainees on the fire fighting example also used in this paper. The next step
is to couple the system to a game engine and test it with real trainees.

References

1. Andrade, G., Ramalho, G., Santana, H., Corruble, V.: Extending Reinforcement
Learning to Provide Dynamic Game Balancing. In: Reasoning, Representation, and
Learning in Computer Games (2005)

2. Beal, C., Beck, J., Westbrook, D., Atkin, M., Cohen, P.: Intelligent modeling of
the user in interactive entertainment. In: AAAI Spring Symposium on Artificial
Intelligence and Interactive Entertainment, Stanford, CA (2002)

3. Brusk, J., Lager, T., Hjalmarsson, A., Wik, P.: Deal: dialogue management in
scxml for believable game characters. In: Future Play 2007: Proceedings of the
2007 Conference on Future Play, pp. 137–144. ACM, New York (2007)

4. Cavazza, M., Charles, F., Mead, S.: Characters in search of an author: AI-based
virtual storytelling. Virtual Storytelling Using Virtual Reality Technologies for
Storytelling, 145–154

5. Chen, J.: Flow in games. Communications of the ACM 50(4), 31–34 (2007)
6. Dastani, M.: 2APL: A practical agent programming language. Autonomous Agents

and Multi-Agent Systems 16, 214–248 (2008)
7. Dignum, V.: A Model for Organizational Interaction: based on Agents, founded in

Logic. SIKS Dissertation, series (2004)
8. Hübner, J.F., Sichman, J.S., Boissier, O.: S −Moise+: AMiddleware for Developing

Organised Multi-agent System. In: Boissier, O., Padget, J., Dignum, V., Lindemann,
G., Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) ANIREM
and OOOP 2005. LNCS (LNAI), vol. 3913, pp. 64–78. Springer, Heidelberg (2006)

9. Hunicke, R., Chapman, V.: AI for Dynamic Difficulty Adjustment in Games. In:
Proceedings of the Challenges in Game AI Workshop, Nineteenth National Con-
ference on Artificial Intelligence, AAAI 2004 (2004)

10. Hunicke, R., Chapman, V.: AI for dynamic difficulty adjustment in games. In:
Challenges in Game Artificial Intelligence AAAI Workshop, pp. 91–96 (2004)

11. Lees, M., Logan, B., Theodoropoulos, G.: Agents, games and HLA. Simulation
Modelling Practice and Theory 14(6), 752–767 (2006)

12. Magerko, B., Laird, J., Assanie, M., Kerfoot, A., Stokes, D.: AI characters and
directors for interactive computer games. Ann Arbor 1001, 48109–2110

122 J. Westra, F. Dignum, and V. Dignum

13. Moffat, D.: Personality Parameters and Programs. In: Petta, P., Trappl, R.
(eds.) Creating Personalities for Synthetic Actors. LNCS, vol. 1195, pp. 120–165.
Springer, Heidelberg (1997)

14. Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the art.
Autonomous Agents and Multi-Agent Systems 11(3), 387–434 (2005)

15. Rabin, S.: AI Game Programming Wisdom. Charles River Media (2002)
16. Riedl, M., Stern, A.: Failing believably: Toward drama management with au-

tonomous actors in interactive narratives. Technologies for Interactive Digital Sto-
rytelling and Entertainment, 195–206

17. Sandholm, T.: Algorithm for optimal winner determination in combinatorial auc-
tions. Artificial Intelligence 135(1-2), 1–54 (2002)

18. Schurr, N., Marecki, J., Lewis, J.P., Tambe, M., Scerri, P.: The DEFACTO system:
Training tool for incident commanders. In: Veloso, M.M., Kambhampati, S. (eds.)
AAAI, pp. 1555–1562. AAAI Press / The MIT Press (2005)

19. Si, M., Marsella, S., Pynadath, D.: Thespian: An architecture for interactive ped-
agogical drama. In: Proc. Of AIED, Citeseer (2005)

20. Silverman, B., Bharathy, G., O’Brien, K., Cornwell, J.: Human behavior models
for agents in simulators and games: part II: gamebot engineering with PMFserv.
Presence: Teleoperators and Virtual Environments 15(2), 163–185 (2006)

21. Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I., Postma, E.: Adaptive game AI
with dynamic scripting. Machine Learning 63(3), 217–248 (2006)

22. Westra, J., Dignum, F., Dignum, V.: Modeling agent adaptation in games. In:
Proceedings of OAMAS 2008 (2008)

23. Westra, J., van Hasselt, H., Dignum, F., Dignum, V.: Adaptive Serious Games Us-
ing Agent Organizations. In: Dignum, F., Bradshaw, J., Silverman, B., van Does-
burg, W. (eds.) Agents for Games and Simulations. LNCS, vol. 5920, pp. 206–220.
Springer, Heidelberg (2009)

M. Beer et al. (Eds.): AEGS 2011, LNAI 7471, pp. 123–138, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Inferring Pragmatics from Dialogue Contexts
in Simulated Virtual Agent Games

Alex Yu-Hung Chien1 and Von-Wun Soo1,2

1 Department of Computer Science,
2 Institute of Information Systems and Applications,

Nationial Tsing Hua University,
30013 No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan, R.O.C.

knightsot@gmail.com, soo@cs.nthu.edu.tw

Abstract. Virtual agents in video games may conduct two types of interactions:
physical and dialogical. While the former is recognized as gazes and gestures,
which received significant attention, the latter is often simplified in simulated
virtual agent games. However, dialogical interactions affect the mental states of
individual agents, and the relations between them, therefore playing a more
important role than physical interactions in games. An implemented dynamic
Bayesian Network (DBN) based on speech acts is proposed to model the
dialogical effects as dialogue contexts in different aspects, such as emotion
states, social relations, and social roles. We adopt a scene in the famous movie
Doubt that has 53 dialogue sentences as the test corpus and implement 21 types
of speech acts in the experiments. The results indicate that, with our DBN
model, agents have the ability of context awareness to infer indirect speech acts
from given direct speech acts, and that this ability may assist agents to plan
dialogues based on speech acts in future work.

Keywords: Speech act theory, Bayesian networks, Pragmatics, Context
awareness, Agent dialogue, Virtual games.

1 Introduction

While computer entertainment and education games have evolved into a huge industry
in recent years, they have brought us into a new era full of imagination and creativity.
Computer games today could simulate virtual worlds more believably than before, and
could immerse people with realistic presentations to their cognition. Various techniques
including 3D graphics and sound effects have been implemented in the latest games to
make them more vividly and lively in the virtual worlds, and we can act as a virtual
character role and interact with non-player characters (NPCs) and the virtual
environment in the virtual games for entertainment or education. Therefore, in virtual
world, we need to enrich the NPCs ability in their reasoning, dialogues and context
awareness, whereas NPCs are usually treated as a multi-agent system (MAS).

In MAS, either rational or non-rational agents rely on communication to solve
problems, resolve conflicts, argue about disagreements, form teams for cooperation, come
up with a joint plan, and conduct social activities. Different modes of communication for

124 A.Y.-H. Chien and V.-W. Soo

agents have been developed for MAS. In 1993, DARPA KES defined a standard of agent
communication language (ACL) called Knowledge Query Manipulation Language
(KQML) that was based on the speech act theory for intelligent agents [7]. FIPA-ACL
extended KQML and defined 22 performatives for agents to communicate. Both KQML
and FIPA-ACL [8] basically pre-suppose that agent’s dialogue pragmatics must to some
extent follow Grice’s maxims [10] in order to achieve effective communication and avoid
ambiguity and misunderstanding. However, in computer games, the ability for NPCs to
accurately interpret the semantics and pragmatics in a dialogue can be seriously restricted
by the sanction of Grice’s maxims, since indirect speech acts, which are appearing
frequently in story dialogues such as metaphors, jokes, ironies, or even lies can easily
violate the Grice’s maxims. Therefore, if we insist agents to communicate strictly within
Grice’s maxims, it would be difficult for agents to infer different pragmatics from its
semantics in the dialogue context.

Our research objective is to establish a dialogue context awareness model for
virtual agents who play as NPCs in computer games so that they can ”understand” the
dialogue context to some extent and infer the true intentions of other agents in the
dialogue from emergent narratives. From our point of view, a virtual agent who can
conduct dialogue properly with other agents must have at least the following
capabilities: 1. awareness of the situations in the dialogue including the observable
environment and dialogue history; 2. ability to reason about other agent’s mental
states; 3. ability to predict possible consequence or other agent’s possible reactions at
current dialogue situations; 4. ability to explain what might have possibly happened
based on current dialogue context situations. We consider these abilities all related to
the dialogue context awareness, which is needed for a dialogue agent to be able to
infer pragmatics from semantics of a dialogue under various dialogue contexts. On the
other hand, for an agent to conduct dialogue properly, it implies the agent can select a
proper speech act with respect to situated dialogue contexts. Therefore, agents must
be able to model speech acts not only by considering its preconditions but also by
projecting its post-conditions and effects in a dialogue, so they can select a speech act
properly. However, unlike physical actions, speech acts normally involve contexts
that are related to participants’ mental states and social situations and are difficult to
specify. The context models are needed to be clarified first before speech act models
are defined. Besides, since mental states of agents and dialogue pragmatics are in
general unobservable and uncertain, we need a probabilistic reasoning model to
support the uncertain reasoning both forward and backward between the dialogue
pragmatics and dialogue contexts. We adopt dynamic Bayesian networks [13] (DBN)
as the framework to support the simulation of the context awareness reasoning based
on a sequence of dialogue sentences in the dialogue.

This paper focuses on how to model the speech acts so that they can facilitate
agents to be aware of dialogue contexts by mapping from the dialogue semantics to its
pragmatics. In section 2, we survey related works. In section 3 we describe our
method of modeling speech acts and various dialogue contexts, the computation
models of DBN for context awareness. In section 4, we describe the simulation
experiments against a test dialogue corpus from a movie script and we show our
results and discuss their significance. We conclude in section 5.

 Inferring Pragmatics from Dialogue Contexts in Simulated Virtual Agent Games 125

2 Related Works

Traditionally, context-awareness refers to the extraction and purification of information
with low-level signals from the real world. Dey and Abowd [6] defined the term
“context” as “any information that can be used to characterize the situation of an entity".
The closest related research to our work in context-aware applications is emotion
detection from texts, speeches, or videos in human-machine interactions [11][12].

Stolcke et al. [18] used a hidden Markov model as a Bayesian network to
determine the likelihood from speech signals to 42 dialogue acts based on 1,155
switchboard conversations with high accuracy. In contrast, our goal is to determine
the likelihood from speech acts to contexts.

Galley et al. [9] applied a statistical approach for modeling agreements and
disagreements in dialogues. They rank the maximum entropy, based on several
observable features, to identify participants in conversation. In contrast, our approach
uses a wider variety of unobservable dialogue contexts than it does agreements and
disagreements.

In contrast to our statistical approach, Bentahar [3] designed the Commitment and
Argument Network to enable agents to reason about communicative acts and
conversation states with logical inference, as long as agents follow Grice’s maxims
(being honest and precise) [10]. In addition to difficulties in implementing Grice’s
maxims, it is advisable not to follow them in many dramatic scenes. Therefore, we
aim to develop probability-based models to infer the mental states of each agent.

Conati [4] proposed a model based on a dynamic decision network to monitor the
emotions of users in educational games by assessing the actions of users and agents as
evidence of the causes and effects of users’ emotional arousal. This model is closely
related to our research. In addition to proposing theoretical models on evidences and
hidden states at the same context level with a wider variety, we implement our models
and conduct experiments to justify our assumptions.

3 Methods

In In speech act theory, all speech acts must accompany some context to be
meaningful. For example, the speech act: Order must be used in the context that
corresponds to a hierarchical relation, in which a person in a relatively higher position
has the right to command, and people in a lower position have the obligation to obey
this command. In other words, to define a speech act, it must be associated with
relevant social situations and changes in mental states of both dialogue agents.

Figure 1 shows possible contexts involved in dialogue. Agents can obtain dialogue
context information regarding their dialogue situations through the observation on the
environment, such as the physical states of location, room arrangement, temperature,
and brightness. In addition, agents can memorize all previous dialogues as contextual
information. This type of contextual information can be obtained via agent sensors as
evidence, and can become more reliable and refined as the sensor technologies
available to the agents are improved and diversified.

126 A.Y.-H. Chien and V

Fig. 1.

Another type of contextu
reasoning, based on prior
The mental states of othe
relations, personalities, beli
usually hidden and unobse
100 % certain that the con
with sound logic. Since G
other agents. Agents mus
decisions, even though
unobservable contextual in
contextual information.

We refer to these two ty
speech act because they a
Section 3.1. To design t
observable evidence and
networks, which are describ

In a dialogue, agents c
tones of speech and facial e
in the dialogue sentences
generally be obtained from
discussions and focus on
semantics of a dialogue hav

V.-W. Soo

Agent’s mental states and physical context

ual information is unobservable, and must be obtained
knowledge and evidence gathered from the environm
er agents, including their emotions, cognition of so
iefs, goals, intentions, or even atmosphere of dialogue,
ervable contextual information. Usually, agents cannot
ntextual information inferred is correct, even by reason

Grice’s maxims cannot be assumed, agents cannot beli
t rely on unobservable contextual information to m
there is uncertainty in such information. Therefo

nformation is no less important than directly observa

ypes of contextual information as the dialogue context o
are useful in defining a speech act. This is described
the reasoning of contextual information, based on
unobservable information, we adopt dynamic Bayes

bed in Section 4.
an obtain contextual information directly from not o
expressions of other agents, but also the content seman
. The content semantics of a dialogue sentence co
complex natural language processing steps to simplify
the theme of the paper. We assume that the cont

ve been extracted and processed separately.

d by
ment.

cial
are

t be
ning
ieve

make
ore,
able

of a
d in

the
sian

only
ntics
ould

the
tent

 Inferring Pragmatics from

3.1 Models of Speech A

Speech Acts
In traditional planning, eac
preconditions, to be execute
effects or post-conditions.
action is executed or succes

A speech act has simila
mental states of agents tha
mode of reasoning. There
particular speech act can a
dialogue context.

An action can only be a
model. However, the speec
there are many related dialo
a speech act can be trigger
example, the emotion cont
“blame.” However, an ang
experience the reproach em
model and the action model

In our speech act model,
the listener’s mind. All men
mental states of each ag
Network (DBN) models. Th

In Figure 2, we show t
contexts, which indicates th
a speech act, and that a spe
based on the observation of

Fig. 2. A speech act affects
audience are hard to know unti

m Dialogue Contexts in Simulated Virtual Agent Games

Acts and Dialogue Context

ch action must satisfy some physical states, referred to
ed, after which it can cause a change to the world state
These states are generally observable to ensure that

ssfully performed.
ar properties, except that a speech act only changes

at cannot be verified via direct observation, without so
efore, we must first define which dialogue context
affect, and the manner and degree to which it affects

applied when all preconditions are matched in the act
ch act model is less rigid than the action model. Althou
ogue contexts that can trigger a speech act, we assume t
red by a partial match with related dialogue contexts.
texts “anger” and “reproach” are related to the speech
gry agent might still blame someone even if they did
motion. This is a major difference between the speech
l.
, a speech act affects not only the speaker’s mind, but a
ntal contexts of the agents cannot be combined because
ent are formulated by independent Dynamic Bayes
his is explained further in Section 3.2.
that a speech act is modeled by the changes in vari
hat the mental states of an agent can affect the selection
eech act can affect the mental states of agents and oth
f current dialogue contexts.

both speaker’s and audience’s mental contexts. The effect
il the agent conduct some speech acts in conversation.

127

o as
s as
the

the
ome
ts a
the

tion
ugh
that
For
act
not
act

also
the

sian

ious
n of

hers,

ts to

128 A.Y.-H. Chien and V.-W. Soo

As discussed above, if we assume that all agents conduct dialogues by obeying
Grice’s maxims, we could convert the dialogue content semantics directly into
pragmatics (infer speech acts directly from their dialogue content semantics).
However, in emergent narratives, we forego the assumption of Grice’s maxims for
agent communication, and therefore, could not directly obtain the pragmatics or
speech acts from the dialogue content semantics. Since the agent mental states are
essentially unobservable, we cannot confirm whether the pragmatics in a dialogue
sequence of inferred speaker agents are indeed the true intentions (or speech acts) of
the speakers. Therefore, we distinguish between two different dialogue sequences: (1)
a coherent semantic sequence, in which all the dialogue semantics of speech acts in
the dialogue sequence can be treated as pragmatics and no incompatible speech acts
can be found in the sequence; and (2) an incoherent semantic sequence in which the
dialogue semantics of speech acts are treated directly as pragmatics, and if so, the
dialogue semantics of certain speech acts might be in conflict with their true
pragmatics. Dialogues in the emergent narratives are generally incoherent semantic
sequences, and therefore, we must find an explanation of the most likely pragmatic
speech act sequence for a given dialogue sequence.

Dialogue Context. In the work of speech act classification [1], approximately 4,800
speech acts and 600 categories were divided into four major layers: expression,
appeal, interaction, and discourse. Each speech act can be defined by the changing or
triggering of specific contexts. It is impossible to list all applicable context conditions
for a speech act since it falls into the frame problem, where all contingent conditions
involved could not be specified. The ramification effects of a speech act on the mental
states of other agents cannot be easily and clearly framed, due to the unobservable
property of their mental states.

In designing the dialogue context model, we only considered the major conditions
and effects that an independent speech act can achieve in a dialogue. Some principles
and commonly encountered contexts, while considered arbitrary, can still be adopted
in the dialogue context modeling to render the context awareness feasible.

We often encounter the matter of the degree of effect in describing the relationship
between the dialogue context and a speech act; to distinguish whether an agent is
more likely to choose a particular speech act over another under a certain context, or
whether a particular speech act is more likely than others to affect a given context.
Our solution is to divide the degree of effect into five levels. Each level maps a
probability in the Bayesian network, as follows: Level 1: 15 %, Level 2: 35 %, Level
3: 50 %, Level 4: 65 %, and Level 5: 85 %. We then subjectively annotate the
information into each speech act. Although the subjective annotation can cause
inaccurate predictions in the beginning, we can later adjust the degree of effect
dynamically at a separate learning stage based on the dialogue records, when the
inaccurate predictions are found. For example, when we find that all agents tend to
have low estimation toward the “angry” emotion, we could raise the levels of the
effects of all speech acts that have affected the “angry” emotion.

To demonstrate our approach, we focus on three types of dialogue contexts:
emotion context, social relations, and social roles.

 Inferring Pragmatics from Dialogue Contexts in Simulated Virtual Agent Games 129

Emotion Context. The OCC emotion model [2] proposed an emotion model for 22
types of emotions according to their triggering conditions in terms of an agent’s
appraisal on objects, agents and events with respect to his/her utility. Using OCC
model to logically describe the emotion context for speech acts encounters not much
difficulty. However, the strength of an emotion cannot have a common standard way
to model. For example, if Peter requests Mary something, he will have emotions of
hope if Mary accepts or have emotion of fear if Mary rejects. However, if there is no
difference in the strength of emotions, it is hard to distinguish the emotional
differences that could be brought from the use of three different speech acts: request,
beg, and order. Intuitively speaking, speaker agents using order should have less fear
and hope emotion than beg after using it. Table 1 shows an example of speech act
models of beg and order respectively in their post-conditions to distinguish such a
difference.

Table 1. The effects on speaker’s emotion of speech acts of order and beg

As discussed above, not only can a speech act affect an emotion at a different

degree to an agent, but the strength of an emotion can also affect the selection of a
speech act for an agent. In Ballmer’s speech act classification, 155 speech acts have
been identified under Expression Layer that are used to express agent’s self-emotion.
In other words, in dialogue context, expressing self-emotion can play a very important
role in agent communication that can help an agent to make other agents understand
his reactions to previous conversation or release his emotional pressure.

In Table 2, we show an example of model emotion expression speech act blow-up
that is adopted by a speaker whose angry emotion has reached a higher degree than a
specified threshold (according to his personality) in the precondition and that might
also affect its listener’s emotion toward negative in the post-condition. The figures in
the parentheses indicate the tendency of increase or decrease emotion toward a
positive or negative condition.

Table 2. The emotion context of speech act blow up

．A blow_up B．

P(blow_up | A_emotion_anger) = 0.85
P(B_emotion_NEGATIVE | blow_up) = 0.5

．A order B．(effects on the speaker A only)

P(A_emotion_hope | order) = 0.15
P(A_emotion_fear | order) = 0.15

．A beg B．(effects on the speaker A only)

P(A_emotion_hope | beg) = 0.65
P(A_emotion_fear | beg) = 0.65

trigger
effect

130 A.Y.-H. Chien and V.-W. Soo

On the other hand, in accompany with different emotions, the speech act adopted
by an agent for a dialogue can be different even it has nothing to do with emotion
expression. For example, if a boss has a very positive emotion toward his/her
subordinate then he might use the speech act of request rather than order. We
classify 22 emotions into categories of positive and negative as shown in Table 3.
Then we could model speech acts in terms of positive and negative emotions.

Table 3. Classification of 22 OCC emotions into positive and negative emotion types

Positive
Emotion

Love, Pride, Admiration, Happy-for, Gloating, Satisfaction, Relief, Hope, Joy,
Gratification, Gratitude

Negative
Emotion

Hate, Shame, Reproach, Resentment, Pity, Disappointment, Fear-confirmed, Fear, Distress,
Remorse, Anger

Social Context. Besides emotion, a dialogue can be directed to different styles and
directions according to different social relations among speakers and the listeners.
After all, a dialogue can be conducted with more than one agent. To maintain a
normal dialogue, agents will more or less respond with a proper speech act that
follows some conventions or protocols. Random selection of speech acts among
dialogue agents cannot possibly make the dialogue be pursued smoothly. Therefore
under most situations, agents would choose certain speech acts according to the social
context in the dialogue. For example, a subordinate rarely yells to his/her boss under a
normal social context, while we would more than often see a warm greeting among
friends. We therefore include social norms, agent social roles and social relations in
the social context modeling for a speech act.

Social Relation. Social relations refer to organizational relations, friendship/enemy
relations, or family relations. We focus on those relations in terms of two aspects that
must be specified in the speech act: the relations that can be suggested or implied
when a given speech act is adopted, and the relations that can be affected by the
speech act. The social relations can affect the speech act at different degrees of
influence toward the emotions of the listener agent. In table 4, we show an example of
speech act order that has preconditions related to social relations. The positive and
negative signs represent either a must or a must- not condition.

Table 4. The part of social role context in speech act order

Social Role. Some speech acts can only be used by the agents having certain social
roles. The speech acts “Sentence (in court)” or “Diagnose (a disease)” must be
adopted by a judge or a medical doctor respectively to be considered as the proper
utilization of a speech act. On the other hand, when a speech act is adopted by an
agent, it might be naturally to make other agents believe that the speaker agent
actually plays the social role that is implied in the speech act.

．A order B．(partial trigger conditions only)

P(blow_up | A_social_relation_be_authority) = 0.85
P(blow_up | B_social_relation_be_subordinate) = 0.85

 Inferring Pragmatics from Dialogue Contexts in Simulated Virtual Agent Games 131

Social Norm. The social norm refers to the rules or conventions that are usually the
common knowledge for all agents and that in a dialogue context can usually specify
whether a given speech act should be used under certain social contexts. However,
social norms can also be violated. For example, take greeting as an example, someone
can ignore the step of greeting and directly cut in the main topics of the dialogue. To
deal with this, we would maintain a personality context of an agent and record the
frequency of violation of norms in the speech act behaviors of the agent so that it
could predict more accurately the pragmatics and dialogue context of the agent in the
future dialogue.

Personality Context. Personality context specifies the tendencies of the reactions of an
agent toward certain emotions and social norms. At the current stage, we assume
personality cannot be altered by speech acts, and thereby remain static during
dialogue to simplify the evaluation of other contexts.

Preference Context. In the preference context, we record the frequencies of speech
acts used by a particular agent toward other agents under certain dialogue situations
so that the tendency of choosing a particular speech act for the agent can be analyzed
for future prediction. Similar to Personality context, we could assume preferences are
also fixed at some prior constant for all dialogue agents.

Discourse Context. Discourse context here refers to a sequence of speech acts that
often appear together under certain patterns to achieve a particular function of social
interaction for the dialogue agents. For example, in a discourse context of quarrel, the
dialogue agents might fire speech acts as angry, disagreement, scolding, argue, and
attack upon each other, whereas in a discourse context of negotiation, there can be
speech acts as proposal, counter-offer, acceptance or rejection.

3.2 Computational Model of Context Awareness Reasoning Using DBN

In DBN modeling and implementation [16], we must generally specify the domain
sensor model and transition model in terms of conditional probabilities P (Et|Xt) and P
(Xt+1|Xt), respectively, where Et represents the evidence collected from sensors at time
t, and Xt+1 and Xt represent the domain states at time t+1 and t. With an assigned initial
state P (X0), we can obtain the states of X at any t :
 P : , : | |

Since each speech act is modeled by the change of dialogue contexts, we could
subjectively attach the probability of the possible change of context preconditions and
post conditions in the speech act as a transition model. The sensor model gathers
evidence from the physical context, which includes the content semantics of the
dialogue sentence and other information cues via observations, such as tone of
speech, facial expression, gesture, and object location. As shown in Figure 3, we used
two DBN models for two participants, agent A and agent B, during conversation. At
and Bt are unobservable dialogue contexts for their mental state in dialogue step t. The
observable data (Obt), which include the speech act (SAt), are the sensor model that

132 A.Y.-H. Chien and V

reflects states of observable
affect the dialogue context.
to change with probability
DBN, we can infer context
conversation. With the spe
step t: P : , :

Fig. 3. Two DBN models fo
speech act and other observatio

Combine CPT with Noise
we use a noisy-or model, u
probabilities are independen
act SA with n trigger conte
the probability that {SA = tp SA
The limitation of using the
design triggers for a speech
context might reduce the po
To use the noisy-or model,
can be substantial. Howe
computation complexity of
reducing all 2n combinat
computation.

4 Experiments

We obtained a dialogue se
2008 film adapted from th
Parable” by John Patrick
characters, Father Flynn, S
dialogue. We illustrated the

V.-W. Soo

e dialogue contexts evidence Et. The speech act could a
 The effects of speech act could cause the dialogue cont
P (Xt | Xt-1, SAt-1), in which SAt is an action model. Us
t states that we designed, based on the observation of

eech act model, we can obtain the states of X at dialo

 | , |

or both the speaker’s and the listener’s dialogue contexts.
on information are sensor model in DBN.

-or Model. To combine the related conditional probabil
under the assumption that all the contexts with conditio
nt. The idea behind Noisy-OR [5] function is that a spe

exts Ci, before there are n probability values pi, where p
true} on {Ci = true} and {Cj = false} for all j ≠ i. | C1 , … , C 1 – ∏ 1 p:C

e noisy-or model to calculate the CPT is that we can o
h act. We cannot describe the type of condition in whic
ossibility of inducing a speech act with the noisy-or mo
 the assumption that all dialogue contexts are independ

ever, using the noise-or model, we could simplify
f calculating the conditional probabilities table (CPT),
tions of true-false possible conditions to only n-it

equence from the script of a film called “Doubt” [17
he Pulitzer Prize winning fictional stage play “Doubt

Shanley. In the film, there is a scene in which th
Sister Aloysius, and Sister James, are having an argum
e scene, which has 53 dialogue sentences, in Table 5,

also
text
sing
the

ogue

The

lity,
onal
eech
pi is

only
ch a
del.

dent
the

, by
tem

7], a
t: A
hree

ment
and

 Inferring Pragmatics from Dialogue Contexts in Simulated Virtual Agent Games 133

manually annotated the dialogue sentence with observable evidence and possible
mental states (such as emotions and other context), as well as correct speech acts, as
our test corpus. We modeled and implemented 21 types of speech acts, according to
the approaches discussed in Section 3, of which 18 actually appeared in the scene of
the selected film script.

Table 5. The dialogue sentences from a scene script from the file Doubt

4.1 Speech Act Model with Multiple Contexts

Speech Act Classification. In the Doubt scenarios, the pragmatic speech acts: ask and
interrogations are frequently used in the conversation. Due to the lack of a well-
designed domain ontology for the semantic content of the dialogue in the
communication language, the two pragmatic speech acts are hard to distinguish. It is
because both of them belong to semantic speech act ask. However, the pragmatic
speech act: ask affects the listener’s emotion merely in general sense. In table 6, we
defined four kinds of semantic speech act classification and each can be elaborated or
interpreted as three to six pragmatic speech acts according to its context. Some of the
speech acts can change the emotion context, and some of them need to have special
social roles or social relations involved. To distinguish speech acts in such speech act
classifications can show that the agent has the ability to identify a proper pragmatic
speech act under different context states.

Table 6. Four semantic speech acts and their elaborated pragmatic speech acts in Doubt’s scene

Request Recount
．Request ．Recount
．Order ．Censure
．Propose ．Accuse

Ask Reply
．Ask ．Reply
．Interrogate ．Reject
．Interpellate ．Accept
．Threaten ．Controvert
 ．Threaten
 ．Not-intimidated

#1 Aloysius: “The boy’s well-being is my responsibility.”
#2 Flynn: “His well-being is not a issue.”
#3 Aloysius: “I’m not satisfied that that is true.”

…
#50 Aloysius: “Intolerance”
#51 Flynn: “That’s right. I’m not pleased with how you handled this.”
#52 Flynn: “Sister”
#53 Flynn: “Sister”

134 A.Y.-H. Chien and V.-W. Soo

Dialogue Context Scheme. We obtained a dialogue sequence from the script of a
film called “Doubt” [17], a 2008 film adapted from the Pulitzer Prize winning
fictional stage play “Doubt: A Parable” by John Patrick Shanley. In the film, there is a
scene in which three characters, Father Flynn, Sister Aloysius, and Sister James, are
having an argument dialogue. We illustrated the scene, which has 53 dialogue
sentences, in Table 1, and manually annotated the dialogue sentence with observable
evidence and possible mental states (such as emotions and other context), as well as
correct speech acts, as our test corpus. We modeled and implemented 21 types of
speech acts, according to the approaches discussed in Section 3, of which 18 actually
appeared in the scene of the selected film script.

In addition to emotion context, we also model several social relation contexts, such
as friendly_with to model the positive relation, and a set of paired relations
{be_authority_to, be_subordinate_to} to model hierarchical relationship, which is the
precondition of the pragmatic speech act: Order.

4.2 Experiment 1: Pragmatic Prediction with Dialogue Contexts

In experiment 1, we intend to show that a dialogue agent can predict the correct
pragmatic speech act to some extent from its semantic speech act of a dialogue
sentence in the agent dialogue conversation given the dialogue contexts of the speech
act model.

Table 7. 21 Semantic and pragmatic speech act sequences in Doubt scenario

In Table 7, we demonstrated that 21 speech acts occurred in the conversation. The
21 semantic and pragmatic speech acts used in the “Doubt” script, from 53 dialogue
sentences, are labeled with a symbol from a to u in which: a: Announce, b:
Controvert, c: Dissatisfied, d: Recount, e: Ask, f: Reply, g: Interrogate, h: Reject, i:
Censure, j: Rebut, k: Say-goodbye, l: Accuse, m: Agree-with, n: Request, o: Propose,
p: Be-glad, q: Threaten; r: Not-intimidated, s: Pride, t: Praise, and u: Grumble. The
annotations of semantic speech act sequence and pragmatic speech act sequence,
corresponding to the 53 dialogue sentences in the dialogue script, are annotated as A
and B, respectively. Each dialogue character is labeled with a number: 1. Father

A. Semantic speech acts input sequence:
(21a)(12b)(21c)(21d)(13e)(31f)(21e)(12e)(21f)(12f)(21e)
(12f)(21e)(32e)(23f)(12i)(21j)(12e)(21f)(21e)(12e)(21f)
(21e)(12h)(12k)(13k)(21d)(12e)(31f)(21e)(12n)(21h)
(31n)(12n)(21h)(12f)(31p)(21e)(12f)(12f)(31t)(13s)(31t)
(32e)(23f)(12m)(12e)(21f)(12d)(21u)(12l)(12k)(12k)

B. Pragmatic speech acts input sequence:
(21a)(12b)(21c)(21b)(13e)(31f)(21g)(12e)(21f)(12h)(21g)
(12h)(21g)(32e)(23f)(12i)(21j)(12e)(21f)(21g)(12e)(21f)
(21g)(12h)(12k)(13k)(21l)(12e)(31m)(21g)(12n)(21h)
(31n)(12n)(21h)(12b)(31p)(21q)(12r)(12q)(31t)(13s)(31t)
(32e)(23f)(12m)(12e)(21f)(12d)(21u)(12l)(12k)(12k)

 Inferring Pragmatics from Dialogue Contexts in Simulated Virtual Agent Games 135

Flynn, 2. Sister Aloysius, and 3. Sister James. Each dialogue sentence can be
abbreviated as: (speaker + audience + speech act). For example, Sister Aloysius
makes an announcement speech act (a) to Father Flynn, which will be annotated as
(21a), in the semantic speech act sequence. The pragmatic speech act is the same as
the semantic speech act in this dialogue context, and therefore, it is also annotated as
(21a), in the pragmatic speech act sequence.

We assume the correct pragmatic speech acts in the first half of the speech acts in
the script are given as known, and then each dialogue sentence is input one by one by
continuing the second half of the dialogue. We model two different agents as a test.
The first agent will be given the preloaded context information in the first half part of
dialogue log. By the pre-loaded context information, we mean all the pragmatic
speech acts in the dialogue sequence that has been conducted so far. We observe its
prediction ability on the pragmatics on every dialogue sentence in the dialogue
sentences at the second half. The second agent will not be given any preloaded
context information, so he/she is the third party agent and join in the conversation in
the middle. Intuitively, we expect the second agent to have a lower accuracy for
prediction than the first one as a contrast, and the result confirmed this intuition. In
the Table 8, the first row is the pragmatic speech act sequence for the second half part
in the scenario. The second row is the predicted results of the first agent with pre-
loaded context information. The third row is the predicted result from the second
agent without pre-loaded context information. The third column in row 2 and 3, we
calculated the accuracy ratios of precition of the two agent respectively. All the
mismatchs are indicated in grey shade.

Table 8. The accuracy of pragmatic speech act prediction with/without preloaded context

Correct data lemgnfnnhbpqrqtstefmefdulkk Accuracy

Results with

context info.
lemgnfnnhbpefftstefmefdudkk 15/19

Results w/o

context info.
demenfnnffpefftstefmefdudkk 11/19

We only calculate the accuracy with the predicted result for the speech act
classification. There are 16 classified speech acts, and 5 speech acts are not classified.
It means that if a semantic speech act is not classified, the pragmatic speech act will
be equivalent to the semantic speech act. In this experiment, only 19 of 26 sentences
have classified semantic speech acts.

The first result in the experiment 1 with preloaded context knowledge has four
error predictions with accuracy rate 15/19. The reason of error is due to, in the end of
the conversation, emotion intensity is at normal level, so agent can’t easily distinguish
the pragmatic speech acts using Emotion context.

The second result shows a worse performance of an agent without context
information. However, it still has an accuracy rate of 11/19. This is due to the
Discourse Act context used to predict the speech act pair ask-reply does not require
previous contexts to be identified.

136 A.Y.-H. Chien and V.-W. Soo

In the experiment 1, we show that the accuracy with preloaded context knowledge
(namely, the accumulated context information during dialogue) helps in predicting the
pragmatic speech act from a semantic one.

4.3 Experiment 2: The Most Likely Pragmatic Speech Acts Sequence

In experiment 2, we assume only semantics of dialogue sentences are given as known,
we attempt to assess if the speech act model could find out the most likely explanation
of the dialogue context. Since most dialogue sentences are ask/reply speech acts, but
sometimes emotions of dialogue agents can become incompatible with the contexts,
the goal of this experiment is to find out to what extent the model could find an
explanation of pragmatic context (e.g. interrogate) for each dialogue speech act (e.g.
ask) sentence. With the same reason mentioned in section 4.2, we calculate the
accuracy based on the classified speech acts.

Table 9. The probability and accuracy of the most likely pragmatic speech act sequence

Correct

data

abcbefgefhghgefijefgefghkk

lemgnfnnhbpqrqtstefmefdulkk

Probability

Accuracy

Result adcdefeeffghgefijefeefehkk

lgmgnhnnhbpefftstefmefdudkk

6.792e-11

29/40

Using DBN, we calculate a most likely pragmatic speech act sequence from it
corresponding semantic sequence whose overall probability is 6.792e-11 with 29
correct pragmatic speech acts matching out of 40 semantic speech acts as shown in
Table 9. We reason that the error could be due to the “peaceful” conversation at the
beginning of the scenario that provides little emotional context. So the prediction of
the pragmatic speech act interrogate from semantic speech act ask is incorrect at the
beginning for about the first one third of conversation.

5 Conclusion

We have established a speech act model to serve as a bridge for virtual agents to
reason about multiple sophisticated dialogue contexts that include norms, social
relations, emotion, personality, intention or goals among agents in a dialogue scene.
We have relaxed the traditional agent communication assumption of ACL that
assumes speech acts used by virtual agents be modeled as precisely and as sincerely
possible as suggested by the Grice maxims to avoid ambiguity in communication.
By proper modeling the preconditions and post conditions of these contexts in speech
acts of various types, and by adopting DBN to conduct the uncertain reasoning and
inference among the contexts, it provides a powerful and flexible method to support
complicated context awareness reasoning. We experiment our method with a scenario
using the dialogue script in a movie as a test bed to show the performance feasibility
of this approach. The results show that, with proper model of speech acts in terms of

 Inferring Pragmatics from Dialogue Contexts in Simulated Virtual Agent Games 137

change of dialogue contexts, it could support agent reasoning about pragmatics of
other agents in the dialogue. This is important in supporting virtual agents toward
more context awareness in various simulated virtual games.

DBN model is adopted and the probabilities are devised based on evidences from
the domain and data corpus. We implemented it with customizing subjective
conditional probabilities that are reconciled under various constraints to show the
feasibilities. It could possibly lead to poor accuracy and some bias in rigorous
evaluation. However, after the implementation when an agent detects mass error
predictions or encounters misunderstandings of a particular semantic speech act with
high frequency, it has a space for incorporating some learning mechanism to
automatically refine the parameters in the speech act model.

Therefore, the study has not only shed some light on the context awareness for
virtual agents to conduct dialogue, but also pointed out many interesting research
directions. The future work includes more elaborated design of the speech acts in
various types as well as the automated acquisitions of proper parameters in supporting
DBN reasoning. Since we have simplified the semantics of an entire dialogue
sentence into a dialogue semantic label (speaker-audience-speech_act) by ignoring its
actual dialogue content semantic, we are aware that in some situations, context
awareness does require the content semantics of a dialogue sentence as well as its
background context knowledge to resolve semantic ambiguities. The refined content
semantics and background knowledge can not only improve the accuracy of the
awareness, but also lead to deeper context awareness in dialogue. To achieve this aim,
we need to augment not only the speech act model, but also to augment the domain
content ontology and sentence parsing and understanding. Another direction of future
research is to integrate with various signal sensor technologies to collect more
evidence cues from environment and other agents that can support DBN to achieve a
full-fledge context awareness model for the virtual agents to conduct various
believable conversations in dialogue.

Acknowledgement. This research is supported by National Science Council of ROC
under grant number NSC 99-2221-E-007-090-MY3.

References

1. Ballmer, T., Brennenstuhl, W.: Speech Act Classification. Springer, Heidelberg (1981)
2. Bartneck, C.: Integrating the OCC model of emotions in embodied characters. In:

Proceedings of the Workshop on Virtual Conversational Characters: Applications,
Methods, and Research Challenges, Melbourne (2002)

3. Bentahar, J., Moulin, B., Chaib-draa, B.: A persuasion dialogue game based on
commitments and arguments. In: Proc. of the International Workshop on Argumentation in
Multi-Agent Systems (2004)

4. Conati, C.: Probabilistic Assessment of User’s Emotions in Educational Games. Applied
Artificial Intelligence 16(7-8), 555–575 (2002)

5. Cozman, F.G.: Axiomatizing Noisy-OR. In: 16th European Conference on Artificial
Intelligence, pp. 979–980. IOS Press, Valencia (2004)

138 A.Y.-H. Chien and V.-W. Soo

6. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a
Better Understanding of Context and Context-Awareness. In: Gellersen, H.-W. (ed.) HUC
1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999)

7. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communication
language. In: Proceedings of the Third International Conference on Information and
Knowledge Management, pp. 456–463. ACM, Gaithersburg (1994)

8. Foundation for Intelligent Physical Agents (FIPA). FIPA Communicative Act Library
Specification. FIPA00037, http://www.fipa.org/specs/fipa00037/

9. Galley, M., Mckeown, K., Hirschberg, J., Shriberg, E.: Identifying agreement and
disagreement in conversational speech: use of Bayesian network to model pragmatic
dependencies. Proceedings of the 42nd Annual Meeting on Association for Computational
Linguistics, Stroudsburg, article 669, PA, USA (2004)

10. Grice, P.: Studies in the Way of Words, pp. 22–40. Harvard University Press (1989)
11. Inanoglu, Z., Caneel, R.: Emotive alert: HMM-Based emotion detection in voicemail

messages. In: Proceedings of the 10th International Conference on Intelligent User
Interfaces, pp. 251–253. ACM, San Diego (2005)

12. Kim, S., Georgiou, P.G., Sungbok, L., Narayanan, S.: Real-time emotion detection system
using speech: multi-model fusion of different timescale features. In: Proceedings of IEEE
9th Workshop Multimedia Signal Processing (MMSP), Chania, Greece, pp. 48–51 (2007)

13. Murphy, K.P.: Dynamic Bayesian Networks: Representation, Inference and Learning.
Ph.D. Thesis, UC Berkley, USA (July 2002)

14. Poesio, M., Traum, D.: Representing conversation acts in unified Semantic/Pragmatic
Framework. In: Proceedings of the AAAI Fall Symposium on Communicative Action in
Humans and Machines (1997)

15. Pulman, S.G.: Conversation al games, belief revision and Bayesian networks. In:
Proceedings of the 7th Computational Linguistics in the Netherlands Meeting (1996)

16. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn., pp. 566–599.
Prentice Hall (2009)

17. Schilit, B.N., Adams, N., Want, R.: Context-aware computing applications. In:
Proceedings of the Workshop on Mobile Computing System and Applications (1994)

18. Stolcke, A., Ries, K., Coccaro, N., et al.: Dialogue act modeling for automatic tagging and
recognition of conversational speech. Computational Linguistics 26(3), 339–373 (2000)

19. The script of the movie: Doubt,
http://www.screenplaydb.com/film/scripts/doubt/

Socially-Aware Emergent Narrative

Sergio Alvarez-Napagao, Ignasi Gómez-Sebastià, Sofia Panagiotidi,
Arturo Tejeda-Gómez, Luis Oliva, and Javier Vázquez-Salceda

Universitat Politècnica de Catalunya
{salvarez,igomez,panagiotidi,jatejeda,loliva,jvazquez}@lsi.upc.edu

Abstract. In agent research, emergent narrative aims for practical so-
lutions to the narrative paradox problem in both drama and interactive
scenarios. At the same time, organisational frameworks can be used in
games to provide flexibility, adaptiveness, or social-awareness. In this
paper, we propose an extension of our cOncienS framework to sup-
port emergent narrative in games with two objectives: 1) provide social-
awareness in emergent narrative by means of an organisational model,
and 2) create convincing dynamic and flexible storytelling in games.

1 Introduction

The main objective of the use of Artificial Intelligence (AI) in both fun and seri-
ous games is to deliver the illusion of “intelligence” in the non-player characters’
(NPCs) behaviour. While some aspects – e.g., pathfinding – have evolved to a
mature state in both the industry and academic research, it is not the case with
some important ones such as individual behaviour or strategical reasoning.

Current challenges deal with high-level concepts of gaming such as realistic
virtual actors, automatic content and storyline generation, dynamic learning, or
social behavior. Tackling these issues could represent a qualitative improvement
on gaming experience from the player perspective and academic research on AI
has good opportunities to provide solutions to these challenges [9,15].

Solutions taken by the industry are mainly based on domain-dependent low-
level approaches. These solutions arise some obvious issues [3]: lack of flexibility
and adaptation to environmental change, predictable or strange behaviour, low
reusability, or blind specifications of NPCs – i.e. the NPCs always know how to
act, few times they know what they are doing, but very rarely they know why.

One important factor that leads to these problems is the need for a plot or
storyline. NPCs are usually mere enactors of a story previously designed, and
their main use is to help advancing the story rather than acting on their own. It
is well known that there is a compromise between narrative control and character
autonomy [18]. This has been a topic of interest from the agent community in
what has usually been called emergent narrative: stories can emerge through
simulation of a virtual world inhabited by virtual characters.

As a result of research on emergent narrative, some theoretical frameworks
and implementations have appeared, focusing on both plot and characters. In
this paper we add a social aspect to this formula by linking our previous work
on organisational frameworks for games.

M. Beer et al. (Eds.): AEGS 2011, LNAI 7471, pp. 139–150, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

140 S. Alvarez-Napagao et al.

2 Emergent Narrative

Emergent narrative tries to break the common conception of linear narrative
being the only possible product of human authorship over a story: human au-
thorship can also be applied to the creation of a more open narrative by balancing
character models, event sequences, and narrative landmarks. Furthermore, re-
search on this topic tries to tackle the problem of the narrative paradox : virtual
environments – such as games – and narratives exist on different ontological
levels, and thus there is a fundamental conflict between free-form interactivity
provided by the virtual environment and the level of satisfaction produced by a
man-made narrative structure [18]. The main hypothesis of emergent narrative
is that this problem cannot be solved by treating both issues as separate and
combining them, but by treating narrative as a direct result of the actions of the
characters [5].

FearNot! [6], is a project based on virtual drama that allows children to ex-
plore the consequences of bullying actions. In a virtual environment, a child
would act as an invisible friend of the victim, influencing his behaviour while
treating the victim as a character with an independent inner life by not com-
promising their autonomy of action. In FAtiMA [10], the architecture FearNot!
is based on, narrative control is achieved by organising the story in episodes
at design-time and sequencing them at run-time. Each episode defines pre- and
post-conditions, as well as sets of possible locations, objects, choices, and goals
available. However, as discussed in [18], such a strong episodic design is limiting,
as a global sense of time – and what happens during scenes, or what happens
between them in the “world”– or emotional residue after each scene are not ac-
counted for.

One way to reduce rigidness in narrative control is distributed drama manage-
ment, combined with double appraisal [14]. The main idea is that characters take
responsibility in managing the drama, including in their plan selection mecha-
nism a bias towards choices that have the greatest impact on the emotions of
other characters. This idea of distributed drama management has been adopted
by the Virtual Storyteller [18], the architecture of which is depicted in Figure 1.
Character agents are based on the FAtiMA agent architecture and the world
agent is the interface to a simulation layer. The plot agent acts as an intermedi-
ary, setting up the simulation and sending perceptions to, and receiving actions
from the character agents.

Stories are stored using Fabula [18], a formal model based on causal network
theory to represent events already occurred with respect to the story. Events are
linked to other narrative concepts such as goals, actions, outcomes, or percep-
tions, via causal relationships which can be, for example, physical, psychological,
or motivational. The resultant graph is then used by both the presentation and
simulation layers, and can be used for further analysis.

In this framework, characters enact two highly coupled roles: in-character
(IC) and out-of-character (OOC) [4]. The former refers to the character be-
haviour and is driven by individual motivations, as normal agents. The latter,
however, constrains the behaviour by trying to increase narrative impact – e.g.,

Socially-Aware Emergent Narrative 141

Fig. 1. Virtual Storyteller architecture

adopting goals that will probably cause conflict with other characters, looking
for a modification on the relationship with them, or making sure that there are
always goals to pursue. The action pursued by a story character will then be a
function [18] upon believability (IC role), dramatic opportunity and variability
(OOC role).

In Virtual Storyteller, emergent narrative is achieved by influencing the event
sequence in order to create choices for the IC role while giving more chances
to achieve the OOC role. This can be done in two ways, taken from drama
improvisation techniques. Making events happen consists in creating an event
that will likely enforce an advancement in the plot, e.g., the Princess has been
kidnapped by a dragon, thus forcing those characters looking for brave actions
to go and save her. Late commitment is based on the assumption that parts
of the initial state of the world do not need to be fixed at authoring time, but
dynamically determined at run time when it is purposeful for narrative purposes.
In late commitment, OOC roles look for feasible and consistent properties to be
added to the initial state and which will provide opportunities to advance the
plot towards the storyline objectives, e.g., the story could advance by suddenly
discovering that the governor is, in fact, a spy of the enemy.

Although the Virtual Storyteller presents a sound architecture for emergent
narrative, it is strongly focused on non-interactive storytelling. This has already
been noted in [18], stating that games allow for more radical applications of
narrative control techniques such as late commitment. Also, from our point of
view, the social aspect of multi-agent systems is somehow ignored by keeping
character agents as a separate component from the simulation layer.

3 Organizational Frameworks and Games

As discussed on [3], our hypothesis is that it is possible to create elaborate
solutions for the issues of both individual behavior control and collective strategy
techniques by integrating models based on Organization Theoretical methods to
control NPCs’ behavior. This theory contributes to the systematic study of how
actors behave within organizations. Hence, the actors in a game are described

142 S. Alvarez-Napagao et al.

as an organization the behaviour of which is based on specific roles, norms,
dependencies, and capabilities.

There are already examples showing that higher levels of abstraction can
be successfully used in commercial games’ AI. Actually, some recent important
commercial games such as F.E.A.R[16] or Fallout 3, have started to apply more
complex cognitive patterns by using GOAP (Goal-Oriented Action Planning),
a simplified and optimized version of STRIPS that allows for real-time plan-
ning of actions with pre- and post-conditions, even outperforming Finite State
Machine-based algorithms in some scenarios[13]. Thus, these games execute com-
plex symbolic reasoning not only about how to execute certain actions, but also
about what to execute at each moment.

In fact, organizational frameworks such as OperA [11] are already being ex-
plored for their use in serious games. In [19], organizational specifications are
used to create a distributed intelligent task selection system that adapts to the
player skill level and models the storyline.

cOncienS [2] advances on this line of work by generalizing the use of organi-
zational models for fun games, more focused on the realism of gaming experience,
rather than on user modeling and learning. cOncienS adapts the ALIVE frame-
work [1] to its use in games and allows Game AI developers to think in terms
of why-what-how when defining the decision-making actions for NPCs. That is,
at the Organizational level, the developer defines “why to do something” by de-
scribing the elements of the organizational structure in terms of organization ob-
jectives, roles, norms, and restrictions. At the Coordination level, the developer
defines “what to do” based on possible solutions and tasks to realize in specific
situations; finally, at the Game Enacting level, the developer defines “how to do
it” in terms of which actual, game-specific actions to perform in order to realize
those tasks.

cOncienS has been part of the research for the European Project ALIVE
[1], the objective of which was to combine existing work in coordination and
organizational structures with the state-of-the-art in service-oriented comput-
ing, allowing system architects to build service-oriented systems based on the
definition of organizational structures and on how they interact.

The ALIVE framework adapted for cOncienS defines three structural levels,
which form the cOncienS environment depicted in Figure 2.

The set of tools and methods of cOncienS provides inherent support to the
development of complex, re-usable Game AI solutions, extending the ALIVE
environment by providing:

1. A practical solution to couple agents to the Game Engine, by defining the
Game Enactor programming interface.

2. A tool to describe the Organization Ontology, which contains a representa-
tion of agent structures.

3. The elements to describe game actors’ behavior via social structures based on
norms, roles and their enactment, promoting the balance between autonomy
and story direction.

Socially-Aware Emergent Narrative 143

Fig. 2. cOncienS architecture

The research aim of cOncienS is to provide solutions to the issues presented
in Section 1 by representing the interactions between players and NPCs as com-
pliant to an organisational structure. This approach provides extended flexibil-
ity to the elements that imply intelligent behavior, e.g. actors and characters,
teams of individuals, and narrative storylines. In addition, it can take advantage
of ALIVE’s methodology and metrics [17] that can be applied to evaluate the
organizational behavior using the games’ environments as simulation scenarios.
Hence, it would be possible to compare, learn, and improve NPC’s behavior with
an approach based on organization theoretical solutions for Game AI, contribut-
ing to overall flexibility and adaptiveness.

cOncienS has already been used to implement automatic and flexible team
direction in real-time strategy games [2], and to showcase an improved method
to detect and enforce traffic violations in free roaming games [3]. The next goal
in our research is to test adaptive storytelling in multiplayer games by using
narrative emergence, and we will show in Section 4 how we intend to achieve it.

4 Our Proposal

In this section we present our proposal, an extension of cOncienS to adopt
the architecture and some mechanisms of Virtual Storyteller to enable emergent
narrative in games.

144 S. Alvarez-Napagao et al.

4.1 Mapping Virtual Storyteller Components to cOncienS

In cOncienS, everything starts from the organisational description (Figure 3),
instanced as OperA documents. OperA consists of two main components, the So-
cial Structure and the Interaction Structure. The Social Structure assigns roles
to human players based on their preferences, and can be adapted to meet player’s
needs, for instance, Apprentice role can be removed if there is no player willing
to play it. The Interaction Structure shows a set of scenes important to the
overall plot. Each scene contains a set of landmarks that are important states
of the world regarding the scene. Both scenes and landmarks are connected
via transition arcs that allow navigating through them. Therefore, agents rep-
resenting NPCs and players, by using these organisational constructs, become
social-aware: they will be able to reason about their relationship with each other
in terms of joint objectives, social rules and common interaction patterns.

Fig. 3. Organisational Model Example

We intend to incorporate the components of the Virtual Storyteller (see Fig-
ure 1) as an adaptation of the cOncienS framework as depicted in Figure 4. The
components that enable emergent narrative are: the Character Agents, which
support both NPCs and players and are represented in cOncienS by the al-
ready existing agents of the agent layer; the World Agent, represented by the
Global Monitor; the Narrator layer, implemented by the Game Enactor – i.e.,
converting the world state into generic game concepts such as movement orders
or player quests –; and the Presenter layer, in our case the Game Engine. The
only new component required is the Plot Agent.

4.2 Constructing the Plot

The Plot Agent will receive a storyline from the story designer. This storyline is
implemented as a set of scenes and landmark patterns: the minimal set of states

Socially-Aware Emergent Narrative 145

Fig. 4. Adapted cOncienS architecture

that conform the story and that have to be fulfilled in its proper order, from the
beginning to the end of the gameplay time. This agent will continuously observe
the state of the world and dynamically plan an order of the scenes needed to get
to the next storyline landmark. The roles in each scene are assigned to specific
Character Agents.

The story designer can decide, in this way, how rigid / flexible the story
should be by adding more or less landmarks, and by declaring stronger or weaker
conditions as landmarks. The designer will also design the set of possible late
commitments and non-causal related events (see Section 2) in the form of framing
operators [18], that is, sets of preconditions and a set of effects on these operators
that can be done if the change in a specific case is consistent with the history of
events – by the use of Fabula [18].

4.3 Character Conflicts and Personality

The Character Agent is a BDI agent implemented inside each agent of the cOn-
cienS agent level. Every NPC, as well as every player, has a representation as
a Character Agent. The IC role (as seen in Section 2) is already implemented
at the cOncienS framework. Egoistic motivations, aims, capabilities, individual
behaviour and organisational constraints (social objectives and norms acting as
constraints to its behaviour or capabilities) are taken into account by the agent
in an autonomous decision making process that produces an appropriate plan.
This plan fulfills the agent’s personal specifications bringing its own ways into
the organisational society as well.

146 S. Alvarez-Napagao et al.

On the other hand, as seen earlier, the agent receives from the Plot Agent a set
of landmarks that is processed by the OOC role to help advancing the story. Due
to this dual nature of the Character Agents, conflicts between the IC and the
OOC can –and probably will– arise. This can be solved by applying negotiation
processes, such as argumentation, and will be one of the main focuses of research
on this project.

In order to apply personality to the characters –including players–, we will
characterise them by using stereotypes or play styles. There are two main tax-
onomies to identify play styles –DGD1 [8]– and interaction between players –
Interest Model [7]–. The DGD1 model defines four types of play styles:
Conqueror, Manager, Wanderer, and Participant. The Interest Model identifies
four types of players: Achievers, Explorers, Socialisers, and Killers. Basically,
these taxonomies identify the type of characters by analysing their psychology
and behaviour, respectively. NPCs stereotypes will be given by the story de-
signer, but in order to classify players, we will focus on their behavior: every
player’s action, chat log, and/or evolution will be monitored to identify which
stereotype they belong to.

The use of tags on actions or states will be implemented to allow each Char-
acter Agent’s planner to identify the appropriate actions to fulfill a given land-
mark: two characters can fulfill the same landmark in different ways, creating
the illusion of personality.

4.4 Adding Interactivity to Narrative

Interactivity is achieved by giving enough choices to the player to give an illusion
of free will. The actions planned by the Character Agents representing actual
players will be enforced in the form of missions or quests offered to the corre-
spondent player taking into account both the IC and the OOC roles. The player,
however, will be free to choose; if the player gets too far from the story line, its
Character Agent can negotiate (as seen above) changes to the environment to
keep the action in the boundaries of the storyline.

However, if the OOC role of a player’s Character Agent predicts that the story
plans incoming from the Plot Agent are not feasible or too incompatible with
the individual plan, framing operators will be checked and studied, and there
will be a negotiation process with the Plot Agent to propose and apply them,
resulting in applications of making events happen or late commitment.

In the example shown in Figure 5, the player is supposed to kill the dragon
(either with a sword or a bow) in order to obtain the fire gem from it. How-
ever, instead of performing the attack, the player decides to cast a spell on the
dragon, sending it to another dimension. As the dragon and the player are in
different dimensions, the player cannot obtain the fire gem, and thus, the plot
cannot advance. The Plot Agent is able to recover the plot from this deviation
by: 1) receiving the event that the player has sent the dragon to another dimen-
sion, 2) reacting by introducing an event (make events happen) on the game via

Socially-Aware Emergent Narrative 147

Fig. 5. System Architecture and usage of late commitment and make events happen

the game enactor, e.g., an old rogue appears, as he was hiding1 in the shadows
of the dragon cave, and 3) introducing a late commitment in the plot, via the
game enactor, e.g. it comes out that the old rogue has the fire gem, as he had
stolen it from the dragon before, and decides to give it to the player.

5 Conclusions

In this paper we have proposed an adaptation of an already existing organisa-
tional framework for games for its use in scenarios where the narrative paradox
can be tested. The purpose is two-fold. First, we want to test storyline dynamic
adaptation in cOncienS applied to free-roaming games such as multiplayer role-
playing games. Second, we want to explore if emergent narrative can improve
with the use of organisational models, strongly focusing on the compromise be-
tween character freedom and plot design.

We use cOncienS as a sandbox for applying the research of our agents group.
By combining emergent narrative to the framework, we want to do research
not only on narrative in itself but also applied to social aspects, both in-game
(NPCs behaving as part of a society), and out-of-game (studying the interaction
between players and between a player and the NPCs), from different perspectives:

1 This is only an example of an inferred possible event, assuming it is consistent with
the game history.

148 S. Alvarez-Napagao et al.

Fig. 6. Example of a simplified plot tree

organisational, normative, emotion representation and detection, user profiling,
gamification, and so on.

Our immediate plan is to completely automatise the dynamic generation and
parametrisation of missions by using the techniques described in Section 4. For
this purpose, we have designed a mechanism for the automatic classification of
players into fuzzy stereotyped. This classification is based on the monitoring
of the players’ actions and will be used to guide the planning of personalised
plots. On one hand, we have conducted a survey on almost 300 actual World of
Warcraft players based on a personality test with ideas taken from work done in
[7] and [20]. On the other hand, we have taken actual player public data from
the same volunteers by using Blizzard’s API2. By using a combination of PCA
and clustering techniques, and taking the survey results as training sets, we are
currently building and testing an unsupervised learning algorithm capable of
classifying World of Warcraft players by monitoring their public data.

In order to provide empirical results, we have already connected cOncienS to
an open-source World of Warcraft server, and we have implemented several small
plots with its corresponding missions and free actions for double appraisal (see
Figures 6 and 7). Although the Plot Agent is still quite simple and the missions
are chosen based on basic hardcoded triggers, i.e. specific actions executed by the
player, it will allow us to test this small scenario, combined with the automatic
classification of players, with a set of actual players and the validation will be
driven by using evaluation methods on user experience over time [12].

This paper introduces an approach currently being developed. However, prac-
tical results of this research, especially regarding automatic classification of
players, are being validated by experts and will be published soon. The source
code used for this project is being continuously released as open-source at the

2 http://blizzard.github.com/api-wow-docs/

http://blizzard.github.com/api-wow-docs/

Socially-Aware Emergent Narrative 149

Fig. 7. A mission exemplifying the making events happen mechanism

cOnscienS website3. Other results, such as anonymised sets of data from the
players and documentation on how to test our system, will also be released at
the same location.

References

1. Aldewereld, H., Padget, J., Vasconcelos, W., Vázquez-Salceda, J., Sergeant, P.,
Staikopoulos, A.: Adaptable, Organization-Aware, Service-Oriented Computing.
Intelligent Systems 25(4), 80–84 (2010)

2. Alvarez-Napagao, S., Gómez-Sebastià, I., Vázquez-Salceda, J., Koch, F.: cOncienS:
Organizational Awareness in Real-Time Strategy Games. In: Proc. of the 13th Int.
Conf. of the Catalan Assoc. for Artificial Intelligence, vol. 220, pp. 69–78. IOS
Press (2010)

3. Alvarez-Napagao, S., Koch, F., Gómez-Sebastià, I., Vázquez-Salceda, J.: Mak-
ing Games ALIVE: An Organisational Approach. In: Dignum, F. (ed.) Agents
for Games and Simulations II. LNCS (LNAI), vol. 6525, pp. 179–191. Springer,
Heidelberg (2011)

4. Arinbjarnar, M., Kudenko, D.: Duality of Actor and Character Goals in Virtual
Drama. In: Ruttkay, Z., Kipp, M., Nijholt, A., Vilhjálmsson, H.H. (eds.) IVA 2009.
LNCS (LNAI), vol. 5773, pp. 386–392. Springer, Heidelberg (2009)

5. Aylett, R.: Narrative in Virtual Environments - Towards Emergent Narrative. In:
AAAI Narrative Intelligence Symposium FS-99-01, pp. 83–86 (1999)

3 http://kemlg.github.com/consciens/

http://kemlg.github.com/consciens/

150 S. Alvarez-Napagao et al.

6. Aylett, R., Louchart, S., Dias, J., Paiva, A., Vala, M.: FearNot! - An Experiment
in Emergent Narrative. In: Panayiotopoulos, T., Gratch, J., Aylett, R.S., Ballin,
D., Olivier, P., Rist, T. (eds.) IVA 2005. LNCS (LNAI), vol. 3661, pp. 305–316.
Springer, Heidelberg (2005)

7. Bartle, R.: Designing Virtual Worlds. New Riders Games (2003)
8. Bateman, C., Boon, R.: 21st Century Game Design. Charles River Media (2006)
9. Charles, D.: Enhancing gameplay: Challenges for artificial intelligence in digital

games. In: Proceedings of the 1st World Conference on Digital Games (2003)
10. Dias, J., Paiva, A.: Feeling and Reasoning: A Computational Model for Emotional

Characters. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI),
vol. 3808, pp. 127–140. Springer, Heidelberg (2005)

11. Dignum, V.: A model for organizational interaction: based on agents, founded in
logic PhD Thesis, Utrecht University (2004)

12. Karapanos, E., Zimmerman, J., Forlizzi, J., Martens, J.B.: User experience over
time: an initial framework. In: CHI 2009: Proceedings of the 27th International
Conference on Human Factors in Computing Systems. ACM Request Permissions
(2009)

13. Long, E.: Enhanced NPC behaviour using goal oriented action planning. PhD
Thesis, University of Abertay-Dundee (2007)

14. Louchart, S., Aylett, R.: Building Synthetic Actors for Interactive Dramas. In:
AAAI Fall Symposium on Intelligent Narrative Technologies FS-07-05, pp. 63–71
(2007)

15. Nareyek, A.: Game AI Is Dead. Long Live Game AI. Intelligent Systems (2007)
16. Orkin, J.: Three states and a plan: the AI of FEAR. In: Proc of the 2006 Game

Developers Conference (2006)
17. Penserini, L., Dignum, V., Staikopoulos, A., Aldewereld, H., Dignum, F.: Balanc-

ing Organizational Regulation and Agent Autonomy: An MDE-based Approach.
In: Aldewereld, H., Dignum, V., Picard, G. (eds.) ESAW 2009. LNCS (LNAI),
vol. 5881, pp. 197–212. Springer, Heidelberg (2009)

18. Swartjes, I.: Whose story is it anyway? How improv informs agency and authorship
of emergent narrative. PhD Thesis, University of Twente (2010)

19. Westra, J., van Hasselt, H., Dignum, V., Dignum, F.: On-line Adapting Games
using Agent Organizations. In: IEEE Symposium on Computational Intelligence
and Games (CIG 2008), pp. 243–250 (2008)

20. Yee, N.: Motivations for Play in Online Games. CyberPsychology & Behavior 9(6),
772–775 (2006)

Increasing Learners’ Motivation

through Pedagogical Agents: The Cast
of Virtual Characters in the DynaLearn ILE

Michael Wißner1, Wouter Beek2, Esther Lozano3, Gregor Mehlmann1,
Floris Linnebank2, Jochem Liem2, Markus Häring1, René Bühling1,

Jorge Gracia3, Bert Bredeweg2, and Elisabeth André1

1 Human Centered Multimedia, Augsburg University, Germany
{wissner,mehlmann,haering,buehling,andre}@informatik.uni-augsburg.de

2 Human-Computer Studies, University of Amsterdam, The Netherlands
{w.g.j.beek,f.e.linnebank,j.liem,b.bredeweg}@uva.nl

3 Ontology Engineering Group, Universidad Politécnica de Madrid, Spain
{elozano,jgracia}@fi.upm.es

Abstract. Motivation is a critical requirement for successful learning.
Previous research has identified that animated pedagogical agents can
increase motivation. Following these results, we present the cast of peda-
gogical agents in the DynaLearn Intelligent Learning Environment. Each
of these agents is associated with one of the different support types avail-
able in the environment, giving each agent a clearly defined role. We
describe the different character roles, how their knowledge is generated
and related to the pedagogical purpose at hand, how they interact with
the learners and finally how this interaction helps increasing the learners’
motivation. To assess this, we conducted a preliminary evaluation with
three of the characters and report our findings.

Keywords: Pedagogical Agents, Virtual Characters, Intelligent Learn-
ing Environments, Motivation, Engagement.

1 Introduction

Embodied conversational agents are widely used in virtual learning and training
environments [1,2,3]. Beside possible negative effects of virtual characters [4],
there is evidence that virtual pedagogical agents and learning companions can
increase the learners’ commitment to the virtual learning experience [5,6]. They
can promote the learners’ motivation and self-confidence, help to prevent or
overcome negative affective states and minimize undesirable associations with
the learning task, such as frustration, boredom or fear of failure.

It has been shown that a one-sided coverage of knowledge transfer or the em-
ployment of only a single educational role may either lead to satisfying learning
success or motivation, but usually not both at the same time [7]. The usage of
multiple virtual characters with different but complementing roles can have posi-
tive influence on both the learners’ learning success and their engagement. Teams

M. Beer et al. (Eds.): AEGS 2011, LNAI 7471, pp. 151–165, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

152 M. Wißner et al.

of pedagogical agents can help the learners to better understand the conveyed
knowledge [8].

The context of our research is DynaLearn [9], an intelligent learning envi-
ronment (ILE) in which learners learn by expressing their conceptual knowledge
through qualitative reasoning models [10]. In this paper, we present DynaLearn’s
cast of pedagogical agents that were added to the ILE, the educational principles
they are built upon and how they interact with each other and the learner. The
goal of our research is to increase learners’ motivation and learning success when
using the learning environment.

The remainder of this paper contains related work (Section 2), a section on the
different characters (3), the overall architecture of the system (4), the evaluation
we conducted (5) and a critical reflection of our work as well as an outlook (6).

2 Related Work

Kim and Baylor [7,11] reported in their work on virtual learning companions
three different aspects like competence, activity and realism. As we did in the
DynaLearn project, they adopted human metaphors in their visual designs and
focused especially on the three qualities competency, activity and realism. The
competency assigned to a virtual character depends for example on the role the
character takes. For example instructor-like expertise might weaken the peer-
likeness which works against being helpful or motivating. Their experiments show
that a high competence avatar decreases self-efficacy belief in tasks but leads to
good learning effects and recall-results. Low competence on the other hand may
increase self-esteem, confidence and the learner’s sense of responsibility, but can
be useful for introducing novices to learning and to motivate to explore further
fields of the learning objectives. Further research showed that people attribute
human properties to computers each time they are using them. Virtual charac-
ters may utilize this phenomenon for naturally engagements by adapting and
simulating human like behaviors. Nevertheless it was found that too realistic
designs leads to unrealistic expectations and therefore to disappointed or irri-
tated feelings for the user. Consequently virtual characters experience a higher
acceptance if the user’s expectations for the creature’s behavior meet the actual
experience.

The classical role of an agent in a learning environment is that of a teacher,
see for example [12] and [1]. ”AutoTutor” [13] allows learners to learn facts from
a given domain by having a natural language conversation with a talking head,
the virtual tutor. These dialogs are very interactive since both the learner and
the virtual tutor work together to improve the learner’s answer.

”Betty’s Brain” [14] features the virtual character Betty (realized as a talking
head) who is a so-called teachable agent. As the name implies, learners can teach
Betty by building a concept map (i.e. her brain) and asking questions about it.
The goal for the learner is to prepare Betty for a quiz about a given domain.
Blair et al. also suggest to have multiple teachable agents compete against each
other in a quiz show like application. Questions are asked by a virtual quizmaster
and each agent responds according to their concept map.

Increasing Learners’ Motivation through Pedagogical Agents 153

In [15] another virtual character is mentioned that was added to ”Betty’s
Brain”: Mr. Davis, the teacher (also realized as a talking head). Mr. Davis helps
the learner to teach Betty by giving guidelines about teaching in general or hints
that address specific situations that learners might find themselves in. Since these
hints are directed at the learner, there is no real interaction between Mr. Davis
and Betty. Moreover, his hints only refer to teaching, not the task or domain at
hand.

A closer look at these interactive learning environments shows that all three
feature a teacher-like character that interacts with the learner to help or teach.
However, how this interaction looks like and what is actually communicated
differs widely: One of the systems follows the Learning by Teaching paradigm
by introducing a character that is taught by the learner. One system features
fully embodied agents, that can also communicate through gestures. Finally, one
of the systems features more than one virtual character or rather more than one
character role. However, as stated above, these characters only interact with the
learner and not with each other.

We hypothesize that a combination of these features, implemented in an in-
tegrated set of educational characters may better leverage learning. Hence, in
the DynaLearn approach we decided to integrate the following character roles
into our learning environment: A Teacher who answers specific questions and
offers help about the learning environment itself. A Mechanic that analyzes a
learner’s model and offers a diagnosis through an interactive dialog. A Teachable
Agent who can be taught by the learner. A Critic who gives quality feedback
and finally a Quizmaster who adds a playful and competitive element by asking
the learner questions, but who also directly interacts with the teachable agent
to form a presentation team as suggested in [8]. Before we start with describing
each of the characters in detail in the next section, Figure 1 gives an overview
by showing each of the characters with a typical line of dialog with regard to the
model depicted in the center.

3 The Characters in DynaLearn

As we delineated in [16], the characters in DynaLearn are cartoonish hamsters.
Also, we employ three established teaching methods: Learning by Teaching [15],
Scaffolding [17] and Educational Quizzes [18]. The design of our character inter-
actions also incorporates some of the different dialog modes (such as lecture or
highlighting) identified for expert tutors by Cade et. al in [19].

During learners’ interaction with the software, all virtual characters are avail-
able all the time and it is up to the learners which one to consult, depending
on the desired type of support. Learners can interact with the characters in two
different ways: Buttons above the characters’ heads (for starting specific kinds
of interactions) and multiple-choice selections in the characters’ speech bubbles
(for answers and follow-up questions). Figure 2 shows four examples of these
interaction possibilities.

154 M. Wißner et al.

Fig. 1. The DynaLearn Characters (clockwise from top left): Quizmaster, Teachable
Agent, Critic, Teacher, Mechanic

3.1 Teachable Agent (TA)

The DynaLearn TA brings the Learning by Teaching paradigm into the ILE.
The TA has a knowledge representation that can be created by the learner.
From this structured knowledge the TA can extract answers to questions asked
by the learner. The TA is also able to explain its reasoning, so the learner can see
how causal chains arise in his own model. By testing the TA’s understanding of
the matter through questioning, the learner can evaluate his own presentation of
the knowledge and detect mistakes when the TA does not answer as expected. In
DynaLearn, learners can chose between a male and a female TA and also name
it. Similar to ”Betty’s Brain”, the interactions learners can perform with their
TA are: Ask (TA answers single questions), Explain (TA provides a step-by-step
explanation of an answer) and Challenge (TA takes a quiz).

Constant verification of the own understanding is an important part in the
learning process that unfortunately often comes short due to the learners’ aver-
sion to tests. However, learners are less restrained in confronting an agent sev-
eral times with the same test than in retaking this test themselves. That’s why
we allow the learner in our application to take part in a quiz and to send his

Increasing Learners’ Motivation through Pedagogical Agents 155

Fig. 2. Examples of interaction possibilities with the characters (from left to right):
Mechanic offering different ways to proceed, interactions with Teachable Agent trough
buttons, multiple-choice answer to question asked by the Quizmaster, hyperlinks in
Teacher’s answer for follow-up questions

personal teachable agent to this quiz in his place. Since the TA’s knowledge
mirrors an image of the learner’s knowledge, he may serve as a proxy in an
educational quiz. We will discuss this learning scenario later in section 3.4.

Though Learning by Teaching aims for learning success the role of the teach-
able agent is more a motivating one. Following the research of Kim et al. [7] our
TA forges a more peer-like relationship to the learner with his low-competent
behavior. For example some dialog contents convey an insecure personality of the
agent to emphasize his dependence on the learner. There are also dialog parts
in which the agent takes a moment to think about a question (either asked by
the learner or the quizmaster) so the agent does not seem smarter as the human
learner who also needs some time to think in such situations.

3.2 Mechanic

The task of the mechanic is to support learners in analyzing their model. Often-
times, the simulations results of the model the learner created are not in line with
the learner’s expected outcome. An automated diagnostic component (based on
[20]) detects these discrepancies, and identifies a minimum number of model
components that caused this discrepancy. The mechanic is used to communicate
these diagnosis results. The learner can then engage with the mechanic character
in several ways: First, the learner can alter the model components that the char-
acter has suggested and then rerun the simulation to see whether the outcome is
now satisfactory. Alternatively, the learner can reaffirm that the model is actu-
ally correct, in which case the mechanic points out that under those conditions
the fault must be in the learner’s expectation regarding the simulation results.

156 M. Wißner et al.

We chose the constructivist approach of Scaffolding as learning principle for
this role. Scaffolding emphasizes that the learner should do as much work by
himself as possible. The teacher or tutor only provides assistance if the learner
does not possess the necessary skills or knowledge to solve the current prob-
lem on his own. According to [21], this helps the learner to become more and
more independently. While this describes the effect of scaffolding in the long
run, in short-term it aims for maximum learning success by keeping the learner
motivated and ensuring he makes constant progress in his work.

The work of Lipscomb et al. [17] , Larkin [22] and Cade et al. helped us identify
the means for reaching this goal. While Cade et al. mention scaffolding as one of
their mutual exclusive dialog modes in one-on-one tutoring sessions, Lipscomb
et al. and Larkin describe scaffolding as a more extensive teaching principle. We
incorporated both ideas in our mechanic role. The more widespread scaffolding
of Lipscomb et al. determines the general behavior of our mechanic, while we
use some of the dialog modes of Cade et al. as dialog steps within this behavior.

The aids used by the mechanic during this process are assigned to one of
the following three categories: Lecture, Scaffolding, Modeling. These categories
are similar to the dialog modes described by Cade et al., although their mode
of Highlighting is part of our Scaffolding aid. The agent usually chooses with
an equal chance between lecture and scaffolding when providing an aid. These
chances are again based on the observations of Cade et al. where lectures and
scaffolding were the most present dialog modes with a very similar frequency. As
we ideally want the learner to find the solution by himself modeling, the exact
correction of the mistake, is only appropriate if the mechanic has exhausted all
other means. In this way, we ensure the learner can proceed with the correction
of his model even if he can not cope with a particular problem.

3.3 Teacher

In contrast to the mechanic, the teacher offers a more direct kind of help by com-
municating knowledge pertaining to those aspects of the ILE that are visible to
learners and that they can directly interact with. There are three kinds of such
directly visible aspects, and each is covered by a different kind of help: Firstly,
there is the diagrammatic representation of the learner-created model, consisting
of the various modeling ingredients. With respect to any one of these, a “What
is X?”-question can be posed. Secondly, there is the visualization of the behavior
of the model. This consists of a manifold of changes (each with a cause) in val-
ues. With respect to each value a “Why was X derived?”-question can be asked.
Thirdly, there are the screens, dialogs and buttons that constitute the interface
of the software. A menu of “How to X?”-questions is constantly generated (where
X is a task), based on the tasks that are available given the learner-created model
and the state of the software. The answers that the teacher character commu-
nicates are concise and focused with respect to individual knowledge requests.
If the learner wants to know more, the help message contains hyperlinks that
pose follow-up questions that allow the exploration of related material. In ad-
dition, a glossary of important terms is provided. Whenever a virtual character

Increasing Learners’ Motivation through Pedagogical Agents 157

mentions one of these glossary terms, they are also displayed as hyperlinks. The
descriptions in the glossary are interlinked, amounting to a traversable graph of
explanatory messages.

3.4 Quizmaster

The quizmaster may be employed in a quiz directly with the human learner
or with the learner’s TA. The entertaining performance of quizmaster and TA
helps to point out flaws and verifies the correct parts of the learner’s model.
The question generator for the quizmaster is based on the QUAGS question
generator [23]. The generation of questions is domain independent and done in
four steps: First the given restrictions are analyzed with respect to the simulation
and completed with built-in heuristics. Then the resulting criteria lead to the
generation of a set of question designs based on the simulation input and a set
of templates. Thirdly a selection inference determines the best set of questions
given the full set of successful designs. Fourthly this final set of questions is put
in a logical order with groups of questions for every state in the simulation.

Knowledge tests are usually perceived as stressful situations having negative
effects on concentration or motivation. In observations of quiz forms in several
well known television quiz shows we found out that quizmasters sometimes try to
loosen up such situations in order to countervail their negative effects and to pro-
vide an enjoyable form of test. For that purpose, they start lively conversations
with their candidates and discuss topics that are familiar to the participants
such as job or leisure activities. We mimic this behavior with our quizmaster
character. Beside the quizmaster’s general behavior of asking questions and giv-
ing feedback, we integrate smalltalk utterances into the dialog. They serve as
short, preferable humorous distraction for the participant that actually need no
connection to the current topic of the quiz and its questions.

Fig. 3. Different ways of running the quiz: Quizmaster and TA (top), Quizmaster and
learner (bottom)

158 M. Wißner et al.

As mentioned in section 3.1 the quizmaster may be employed in a quiz with
the human learner or with the learner’s teachable agent. The entertaining per-
formance of quizmaster and teachable agents helps to point out flaws in the
learner’s model and verifies the correct parts of the learner’s model. Usually the
latter should be the case if the learner follows the suggested order, which means
the educational quiz comes after the correction of the model in the instructional
scaffolding phase. But this order is not obligatory since the learner can activate
the agents whenever he wants. The quiz with the teachable agent as participant
might also be used as a test of the model and taken again after the correction
phase as a knowledge verification.

Figure 3 shows both ways the quizmaster can be employed: With a learner’s
TA or directly with a learner.

3.5 Critic

In contrast to the content delivered by the mechanic or teacher characters, the
critic’s quality feedback about a learner’s model is generated through the seman-
tic repository in the DynaLearn software. Also, while the others are friendly and
helpful, the critic is characterized as more strict and unforgiving. The semantic
repository of DynaLearn is intended to store the models created by the users
and to provide feedback during the model creation process [24]. These models
are semantically grounded, so the terms of the model are linked to semantic de-
scriptions in a common vocabulary (which in our system is DBpedia [25]). The
quality feedback is the result of comparing the learner’s model with a reference
model by using techniques like ontology matching [26], semantic reasoning, and
QR specific comparisons between the models.

If two terms are grounded to the same semantic description we infer that they
are equivalent terms, even if they are expressed using different lexical informa-
tion or even in different languages. Then, the set of equivalent terms is enhanced
by applying ontology matching techniques. The next step is to analyze each pair
of equivalent terms looking for possible differences. These provide the following
types of feedback: i)Improvement of terminology (suggest label of reference term
if different from current label), ii)Missing and extra ontological elements (point
out terms only present in one of the two models), iii)Inconsistencies between hi-
erarchies (point out inconsistencies in entity hierarchies found through semantic
reasoning) and iv)Differences between the structures (point put differences in
model structure).

4 Architecture

The overall architecture of the Virtual Character Component (VC) and its con-
nection to the Conceptual Modeling Component (CM) can be seen in Figure 4.
In DynaLearn, the CM is where learners actually build their models and where
the various kinds of conceptual knowledge are generated.

Increasing Learners’ Motivation through Pedagogical Agents 159

Fig. 4. The Virtual Character Component Architecture

The VC in itself consists of two different components, the InteractionManager
(IM) and the HamsterLabClient (HL). The HL is responsible for actually dis-
playing the virtual characters which is handled by a Flash-based render engine.
Also, the HL generates the characters’ speech using the Mary Text-to-Speech
System [27]. The IM’s main responsibility is to create the characters’ behavior
by requesting appropriate content from the CM, arrange it into dialogs between
the different characters and create the appropriate scene script that can then be
played by the HL. Scene scripts are XML-based and consist of different instruc-
tions such as “move”, “say” or “animate”. A feedback channel informs the IM
when a scene script is over. The IM itself consists of three different modules:

– The Dialog Manager governs the overall interaction between the characters
and the learner. When necessary, it requests new data from the CM and
then decides “What to say”. In our implementation, we use SceneMaker [28]
as the Dialog Manager.

– The Verbalizer decides “How to say it”, i.e. what words to use.

– The User Model keeps track of the learner’s knowledge and interactions.
The data provided by it can act as a filter or decision criteria for the Dialog
Manager.

We will now take a closer look at how these modules interact with each other
when creating a dialog for the characters. Figure 5 shows an overview of this
process.

Fig. 5. Character Dialog Generation Process

160 M. Wißner et al.

The process starts with the input from the CM, i.e. a certain kind of concep-
tual knowledge. As an example let us assume that a learner just sent his TA to
take a quiz. As a result the conceptual knowledge submitted in this case will be
questions generated by the system, answers to these questions generated from
the learner-created-model and finally the correct answers. First the dialog con-
tent needs to be decided. This can be based on previous actions by the learner
(derived from the User Model) or the characters, as well as certain pedagogical
strategies.

Next, the content needs to be assigned to the different characters. In our
example, the quizmaster character will ask the questions and present the correct
answers, while the TA will present the answers generated by the learner-created-
model. Also, the quizmaster will comment on the TA’s success and the TA will
show a reaction to that.

After that, the dialog turns are verbalized using a collection of templates that
are filled in with the appropriate data. If there is more than one matching tem-
plate, one of them is chosen randomly. For example, the same question could be
verbalized as “What happens to cyanotoxins if carrying capacity decreases?” or
“Let’s suppose carrying capacity decreases, what would then happen to cyan-
otoxins?”, depending on the template selected.

Finally, nonverbal behavior is selected to accompany the dialogs. The char-
acters can move around the screen, perform gestures and facial animations and
point out spaces on the screen. In our example, after each question the quizmas-
ter will perform either a thumbs-up gesture or shake his head depending on the
TA’s success, and the TA will perform a cheering or sulking gesture accordingly.

Based on the decisions made, the scene script XML can then be constructed
and sent to the HL. Then, the content of “say”-tags is extracted and the speech
is created accordingly. Together with the appropriate data from the animation
library, the dialog can finally be presented by the render engine.

5 Evaluation

We conducted an evaluation to investigate the learners’ attitude towards and in-
teractions with three of the characters (teacher, quizmaster, teachable agent) and
the employed learning principles (instructional scaffolding, learning by teaching,
educational quiz). In addition, we compared the learners’ level of engagement
when they participated in a quiz as opposed to sending their TA. It should be
noted that the interaction with the teacher was based on a mock-up version
rather than a fully functional one.

5.1 Method

We recruited 20 subjects (10 male and 10 female, aged between 25 and 33, mostly
computer scientists) who interacted with the three characters in the following
situations: First, the subjects had a look at a faulty model and could ask the
teacher for help in order to correct the model. After that, they participated in a

Increasing Learners’ Motivation through Pedagogical Agents 161

quiz where they had to answer questions posed by the quizmaster. Finally, the
subjects were requested to train their own TA and test its performance in another
quiz with the quizmaster. Since it did not make sense to confront the subjects
with the TA before they got acquainted with the learning scenario, we decided
not to present the subjects with the single characters in a randomized order, but
in a didactically appropriate one. Each subject’s interaction with the characters
lasted 30 minutes, 10 for each of the three situations. After each interaction with
a character, subjects were asked to fill in a questionnaire, judging features of the
interaction on a 5-point Likert scale (1 to 5, where 5 meant full agreement).

5.2 Results

Attitude towards the Different Agents and the Educational Setting.
Overall, the subjects considered the agents’ behaviors as quite natural. A t-test
for one sample revealed that the ratings given to the agents were significantly
above the neutral value of 3.0. The learners rated the naturalness of the teacher
with a mean value of 3.65 (t(19)=2.459, p ≤ 0.03), the naturalness of the quiz-
master with a mean value of 4.2 (t(19)=8.718, p ≤ 0.001) and the naturalness
of the TA with a mean value of 4.0 (t(19)=6.164, p ≤ 0.001). Furthermore, we
were interested in the question of whether the agents’ role was properly con-
veyed. Our subjects attributed to the teacher the highest level of competence
with a mean value of 4.45 followed by the quizmaster with a mean value of 3.70.
The teachable agent was attributed the least level of competence with a mean
value of 3.25. Applying the Bonferroni post hoc test showed that the differences
between TA and teacher (p ≤ 0.001), as well as teacher and quizmaster (p ≤
0.05) were significant.

We also investigated the motivational effect of the agent roles. The learners
found the interaction with the teacher less enjoyable with a mean value of 3.55
than the interaction with the TA with a mean value of 4.15 and the interaction
with the quizmaster with a mean value of 4.3. Employing the Bonferroni post
hoc test showed that the difference between the ratings for teacher and TA were
significant (p ≤ 0.04).

Furthermore, we investigated whether the learners thought the employed
learning principle contributed to their learning process. The subjects found the
teacher helpful with a mean value of 4.30 (t(19)=8.850, p ≤ 0.001), they had
the feeling that the quiz contributed to their understanding with a mean value
of 4.60 (t(19)=11.961, p ≤ 0.001) and they thought that they learned something
themselves by teaching their own agent with a mean value of 4.20 (t(19)=6.0, p≤
0.001). In all cases, the mean values were significantly above the neutral value of
3.0. In addition, the learners thought it made sense to employ a virtual teacher
with a mean value of 3.7 (t(19)=2.774, p ≤ 0.02), to employ a quizmaster with
a mean value of 4.65 (t(19)=15.079, p ≤ 0.001) and to employ a teachable agent
with a mean value of 4.05 (t(19)=4.098, p ≤ 0.001).

Finally, we evaluated whether the learners understood the employed metaphor
when interacting with each character. In particular, we were interested in the
question of whether the learners would be able to see the connection between the

162 M. Wißner et al.

creation of a model and instructing an agent. We applied t-tests for one sample
to evaluate whether the ratings given by the learners were significantly above
the neutral value of 3.0. The learners had the feeling to ask a teacher a question
with a mean value of 3.7 (t(19)=2.774, p ≤ 0.02), to participate in a quiz with
a mean value of 4.65 (t(19)=15.079, p ≤ 0.001) and to teach somebody with a
mean value of 4.25 (t(19)=5.0, p ≤ 0.001). The results are shown in Figure 6.

Fig. 6. Attitude towards the different agents and the educational setting

Comparison of Direct and Indirect Participation. We also compared the
two versions of the educational quiz, i.e. learner as participant vs. TA as par-
ticipant. The learners showed more engagement when their TA participated in
the quiz than when participating themselves. In particular, they were more in-
terested in a good performance with a mean value of 4.25 as opposed to a mean
value of 3.85, more pleased about a good performance with a mean value of 4.55
as opposed to a mean value of 4.15 and more curious about the results with a
mean value of 4.20 as opposed to a mean value of 3.60. However, the difference
was not significant. The difference between the averaged ratings for the engage-
ment items was weakly significant (t(38)=-1936, p ≤ 0.061) with mean values
of 3.86 for participating themselves and 4.33 for participating via the agent. An
overview of the results is given in Figure 7.

Fig. 7. Learner as quiz participant vs. TA as quiz participant

Increasing Learners’ Motivation through Pedagogical Agents 163

6 Conclusion

In this document, we presented our approach to a cast of pedagogical agents,
whose interaction with the learner offer a variety of services that help learners to
verify and correct their models and conceptual knowledge, while motivating and
engaging them at the same time. We showed how presenting different kinds of
knowledge through different character roles and teams of characters can result in
an improvement in the use of virtual characters in ILEs. We also explained how
our approach to the virtual characters’ architecture supports this as it allows
us transform conceptual knowledge into multimodal dialog scripts for multiple
characters. We believe that our approach of an entire cast of pedagogical agents
is a viable option for ILEs that aim at conveying knowledge trough multiple
means: First, because each of these means can be linked to and associated with
a specific character for easier identification. Second, because providing characters
of different competence levels will positively affect both learners motivation and
learning success.

To a certain degree, this was confirmed by the findings of our preliminary
evaluation: Learners enjoyed the interaction with our pedagogical agents and
perceived the virtual classroom setting as engaging and motivating. They un-
derstood the employed metaphor with its different learning scenarios and the jus-
tification of each of the three characters. They felt that the pedagogical agents,
respectively their educational roles successfully helped learning.

However, since this is only a subjective measure of learning success, we plan to
conduct further evaluations with regard to this topic. Other pointers to future
work include evaluations of all character roles and learners’ attitude towards
them, as well as a measuring learners’ motivation and engagement while inter-
acting with the characters.

Acknowledgments. The work presented in this paper is co-funded by the EC
within the 7th FP, Project no. 231526, and Website: http://www.DynaLearn.eu.

References

1. Johnson, W.L., Rickel, J.W., Lester, J.C.: Animated pedagogical agents: Face-
to-face interaction in interactive learning environments. International Journal of
Artificial Intelligence in Education 11, 47–78 (2000)

2. Ndiaye, A., Gebhard, P., Kipp, M., Klesen, M., Schneider, M., Wahlster, W.:
Ambient Intelligence in Edutainment: Tangible Interaction with Life-Like Exhibit
Guides. In: Maybury, M., Stock, O., Wahlster, W. (eds.) INTETAIN 2005. LNCS
(LNAI), vol. 3814, pp. 104–113. Springer, Heidelberg (2005)

3. Kenny, P., Hartholt, A., Gratch, J., Swartout, W., Traum, D., Marsella, S., Piepol,
D.: Building interactive virtual humans for training environments. In: Proceedings
of IITSEC, pp. 1–16 (2007)

4. Rickenberg, R., Reeves, B.: The effects of animated characters on anxiety, task
performance, and evaluations of user interfaces. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 49–56. ACM (2000)

164 M. Wißner et al.

5. Lester, J.C., Converse, S.A., Kahler, S.E., Barlow, S.T., Stone, B.A., Bhogal, R.S.:
The persona effect: affective impact of animated pedagogical agents. In: CHI 1997:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 359–366. ACM, New York (1997)

6. van Mulken, S., André, E., Müller, J.: The persona effect: How substantial is it?
In: Proc. of HCI 1998, pp. 53–66 (1998)

7. Kim, Y., Baylor, A.L.: PALS Group: Pedagogical agents as learning companions:
The role of agent competency and type of interaction. Educational Technology
Research and Development 54, 223–243 (2006)

8. André, E., Rist, T., van Mulken, S., Klesen, M., Baldes, S.: The automated design of
believable dialogues for animated presentation teams. In: Embodied Conversational
Agents. The MIT Press (2000)

9. Bredeweg, B., Liem, J., Linnebank, F., Bühling, R., Wißner, M., del Ŕıo, J.G.,
Salles, P., Beek, W., Gómez Pérez, A.: DynaLearn: Architecture and Approach for
Investigating Conceptual System Knowledge Acquisition. In: Aleven, V., Kay, J.,
Mostow, J. (eds.) ITS 2010. LNCS, vol. 6095, pp. 272–274. Springer, Heidelberg
(2010)

10. Bredeweg, B., Linnebank, F., Bouwer, A., Liem, J.: Garp3 – workbench for quali-
tative modelling and simulation. Ecological Informatics 4, 263–281 (2009); Special
Issue: Qualitative models of ecological systems

11. Baylor, A.L., Kim, Y.: Pedagogical Agent Design: The Impact of Agent Realism,
Gender, Ethnicity, and Instructional Role. In: Lester, J.C., Vicari, R.M., Paraguaçu,
F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 592–603. Springer, Heidelberg (2004)

12. Conati, C., Zhao, X.: Building and evaluating an intelligent pedagogical agent
to improve the effectiveness of an educational game. In: Proceedings of the 9th
International Conference on Intelligent User Interfaces, pp. 6–13. ACM (2004)

13. Graesser, A.C., Person, N.K., Harter, D.: The Tutoring Research Group: Teaching
tactics and dialog in autotutor. International Journal of Artificial Intelligence in
Education 12, 257–279 (2001)

14. Blair, K., Schwartz, D., Biswas, G., Leelawong, K.: Pedagogical agents for learning
by teaching: Teachable agents. Special Issue of Educational Technology on Peda-
gogical Agents 47, 56–61 (2007)

15. Biswas, G., Roscoe, R., Jeong, H., Sulcer, B.: Promoting self-regulated learning
skills in agent-based learning environments. In: Proceedings of the 17th Interna-
tional Conference on Computers in Education (2009)

16. Mehlmann, G., Häring, M., Bühling, R., Wißner, M., André, E.: Multiple agent
roles in an adaptive virtual classroom environment. In: Safonova, A. (ed.) IVA
2010. LNCS, vol. 6356, pp. 250–256. Springer, Heidelberg (2010)

17. Lipscomb, L., Swanson, J., West, A.: Scaffolding - emerging perspectives on learn-
ing, teaching and technology. The University of Georgia (2008),
http://projects.coe.uga.edu/epltt/index.php?title=Scaffolding

18. Randel, J.M., Morris, B.A., Wetzel, C.D., Whitehill, B.V.: The effectiveness of
games for educational purposes: a review of recent research. Simulation and Gam-
ing 23, 261–276 (1992)

19. Cade, W.L., Copeland, J.L., Person, N.K., D’Mello, S.K.: Dialogue Modes in Ex-
pert Tutoring. In: Woolf, B.P., Aı̈meur, E., Nkambou, R., Lajoie, S. (eds.) ITS
2008. LNCS, vol. 5091, pp. 470–479. Springer, Heidelberg (2008)

20. de Koning, K., Breuker, J., Wielinga, B., Bredeweg, B.: Model-based reasoning
about learner behaviour. Artificial Intelligence 117, 173–229 (2000)

http://projects.coe.uga.edu/epltt/index.php?title=Scaffolding

Increasing Learners’ Motivation through Pedagogical Agents 165

21. Vygotsky, L., Cole, M., John-Steiner, V., Scribner, S., Souberman, E. (eds.): Mind
in Society: Development of Higher Psychological Processes. Havard University
Press (1978)

22. Larkin, M.: Using scaffolded instruction to optimize learning. eric digest. ERIC
Development Team (2002)

23. Goddijn, F., Bouwer, A., Bredeweg, B.: Automatically generating tutoring ques-
tions for qualitative simulations. In: Proceedings of the 17th International Work-
shop on Qualitative Reasoning, pp. 87–94 (2003)

24. Gracia, J., Liem, J., Lozano, E., Corcho, O., Trna, M., Gómez-Pérez, A., Bredeweg,
B.: Semantic Techniques for Enabling Knowledge Reuse in Conceptual Modelling.
In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z.,
Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 82–97.
Springer, Heidelberg (2010)

25. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R.,
Hellmann, S.: DBpedia - a crystallization point for the web of data. Web Semantics:
Science, Services and Agents on the World Wide Web 7, 154–165 (2009)

26. Euzenat, J., Shvaiko, P.: Ontology matching. Springer (2007)
27. Schröder, M., Trouvain, J.: The german text-to-speech synthesis system mary:

A tool for research, development and teaching. International Journal of Speech
Technology 6, 365–377 (2003)

28. Gebhard, P., Kipp, M., Klesen, M., Rist, T.: Authoring scenes for adaptive, inter-
active performances. In: Proc. of the 2nd Int. Joint Conf. on Autonomous Agents
and Multiagent Systems, pp. 725–732. ACM (2003)

ADAPT: Abstraction Hierarchies to Better Simulate
Teamwork under Dynamics�

Meirav Hadad1 and Avi Rosenfeld2

1 Research Division, Elbit Systems Ltd, Rosh Ha’Ayin 48091, Israel
2 Jerusalem College of Technology, Jerusalem 91160, Israel

Meirav.Hadad@elbitsystems.com, rosenfa@jct.ac.il

Abstract. In this paper we present a lightweight teamwork implementation by
using abstraction hierarchies. The basis of this implementation is ADAPT, which
supports Autonomous Dynamic Agent Planning for Teamwork. ADAPT’s nov-
elty stems from how it succinctly decomposes teamwork problems into two sepa-
rate planners: a task network for the set of activities to be performed by a specific
agent and a separate group network for addressing team organization factors.
Because abstract search techniques are the basis for creating these two compo-
nents, ADAPT agents are able to effectively address teamwork in dynamic en-
vironments without explicitly enumerating the entire set of possible team states.
During run-time, ADAPT agents then expand the teamwork states that are nec-
essary for task completion through an association algorithm to dynamically link
its task and group planners. As a result, ADAPT uses far fewer team states than
existing teamwork models. We describe how ADAPT was implemented within
a commercial training and simulation application, and present evidence detailing
its success in concisely and effectively modeling teamwork.

1 Introduction

Effectively quantifying teamwork problems is critical in many environments [5,12].
However, one of the key challenges in creating teamwork models is how inter-agent
rules can be encoded such that the team can still effectively behave in complex and dy-
namic environments [2,12]. In particular, when multiple agents operate in these types
of environments, their different mental states must be resolved so that a unified behav-
ior can be formed for the team. One key research challenge for distributed artificial
intelligence researchers is how these models can be created and implemented [12].

One leading solution is to decompose the group’s actions into a set of rules which
must be solved [12]. Following this approach, the group’s actions can be represented
as a hierarchical structure of joint intentions and individual intentions and beliefs about
others’ intentions. However, this approach has two major drawbacks. First, the size of
the model might be too large to realistically solve. Previous research found that many
classes of teamwork problems exist for which finding the optimal sequence of actions
is of intractable computational complexity [11]. Second, the structure of the tree must
be flexible to dynamically changing conditions, such as changes in the environment,
goal changes, and local or general constraints. Thus, even if a solution could be found
� This research is based on work supported in part by Israel’s Ministry of Science and Technol-

ogy grant # 44115.

M. Beer et al. (Eds.): AEGS 2011, LNAI 7471, pp. 166–182, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

ADAPT: Abstraction Hierarchies to Better Simulate Teamwork under Dynamics 167

for a given time period, that solution might quickly become irrelevant. Hence, solutions
must be found that reduce the size and structure of the team model such that it may be
tractably and quickly solved, even in dynamic environments.

In this paper we present ADAPT, a novel approach for Autonomous Dynamic Agent
Planning for Teamwork. The key difference between ADAPT and other teamwork hier-
archical approaches [2,5,6,12,13] stems from how teamwork is modeled. Previous ap-
proaches attempted to exhaustively depict all possible teamwork states. However, as has
been previously demonstrated [11], the number of possible interactions between team
members grows exponentially for many real-world domains, making these approaches
difficult to implement, even in small to medium-sized groups.

Instead, ADAPT uses hierarchical abstraction as its basis in order to reduce the num-
ber of states which need to be considered. While abstraction has previously been used
in planning and other problems [1], to the best of our knowledge it has never been
previously been used in teamwork problems. Specifically, a given teamwork problem
is converted into two hierarchical networks: a task network to model the set of activ-
ities a given agent can perform and a separate group network for addressing organi-
zation factors. Within both hierarchical networks, behaviors are decomposed such that
the general task and group problems are progressively redivided into partial plans in-
volving smaller sets of subtasks and subgroups. ADAPT contains two novel elements
designed to further reduce the size of these hierarchies. First, as hierarchical abstraction
is used, agents incrementally add only relevant task and group information during task
execution. Second, ADAPT uses an association algorithm to effectively perform task
allocation. Agents only check those constraints which it may possibly perform, further
adding to ADAPT’s concise nature. The net result is that ADAPT can effectively simu-
late teamwork problems, even in dynamic environments, yet uses far fewer states than
existing approaches.

While the ADAPT framework is general and is likely applicable to a variety of team-
work problems, in this paper we focus on how ADAPT was critical in implementing
a multi-agent simulation. In Section 2 we present related teamwork models and com-
pare those approaches to ADAPT, while Section 3 formally defines ADAPT and its
algorithms. Sections 4 and 5 detail how ADAPT was implemented. Specifically, Sec-
tion 4 focuses on describing the existing commercial multi-agent simulation into which
ADAPT added. In Section 5 we discuss how ADAPT was successfully implemented
into this framework, detail results which demonstrate the effectiveness of this frame-
work in dynamic environments and show that the number of teamwork states that
must be considered within ADAPT is significantly less than in other state-of-the-art
approaches. This allowed the existing simulation to more effectively handle complex
multi-agent tasks. Section 6 provides our conclusions.

2 Background and Motivation

Because of the importance of coordination problems, a variety of teamwork frameworks
and formalizations have been proposed by the multi-agent research community [5,2,12].
The SharedPlans approach [2] consists of creating teamwork recipes based on modeling
agents’ beliefs and intentions. Tambe’s STEAM teamwork engine [12] provides a set

168 M. Hadad and A. Rosenfeld

of generalized teamwork rules. The TAEMS framework [5] consists of hierarchical rule
based approach where coordination relationships are quantified into groups, tasks, and
methods.

ADAPT decomposes teamwork in a novel fashion by creating two hierarchical net-
works: a task network which addresses how the agent must plan its actions, and a
group network that addresses how inter-agent assignments must be set. Previous work
of multi-agent planning (e.g., [3]) and teamwork structures [5,2,12] suggested address-
ing the team’s task planning as one multi-agent network which needs to be decomposed.
Other works from social sciences [14] address how people within a team should be or-
ganized in order to facilitate the best planning of the activity. This approach parallels
our creating a group network based on the agents in the team. However, ADAPT’s nov-
elty stems from applying abstract search techniques [9] to address multi-agent planning
in its task and group network.

Previous approaches also separate team behavior into different components. Most
similar to our approach, BITE is a behavior based teamwork architecture that separates
task behaviors from behaviors between a single agent and its organization [6]. Similarly,
ADAPT compartmentalizes teamwork between the task and the group. More generally,
the TEAMCORE architecture uses a decision-theoretic structure to select different hi-
erarchical team behaviors [13]. TAEMS separates team activities into tasks that are per-
formed by the team with methods that can be performed by the agent [5]. However, in
previous approaches, teamwork models were completely defined before task execution.
They are required to explicitly define how every agent interacts with every other agent,
and even how dynamics may affect these relationships, a process that can potentially
lead to an exponential number of inter-agent states. When implementing these models,
this state explosion can be prohibitively difficult as the number of team members grows.

In ADAPT, the task and group abstractions are incrementally built and dynamically
changed during task execution. This difference allows us to significantly reduce the
number of inter-agent states even when addressing dynamics. Additionally, ADAPT
enables replanning for specific subproblems, allowing for more effective teamwork.
Consequently, ADAPT allows for a more concise model which, in turn, facilitates easier
simulation of complex, real-world tasks. We detail this approach in the next section.

3 Technique Description

ADAPT’s model is based on taking a teamwork problem and then decomposing it into
both task and group elaboration processes. As such, each of the task and group problems
are decomposed in a top-down manner from a higher level, into progressively lower
levels. The planning strategies of the elaboration processes in ADAPT are based on ab-
stract search techniques [9]. Accordingly, the planning procedures of each elaboration
process involves three major steps: (1) A branching step identifies possible candidates
for expanding a partial plan; (2) A refinement step for adding constraint information to
the partial plan; (3) a pruning step for removing unpromising candidates based on these
constraints in order to avoid failure. While abstract-search is a well known technique
for automated task planning [9], ADAPT’s contribution stems from applying these tech-
niques to teamwork modeling.

ADAPT: Abstraction Hierarchies to Better Simulate Teamwork under Dynamics 169

3.1 A Dynamic Planning Teamwork Example

To clarify how we intend to use these concepts, consider the following general example.
Assume that a group must work as a team on a joint mission, say to capture a flag. A
group of blue agents must plan how they will infiltrate the territory of the opposing
team of red agents who are defending the flag. This type of scenario is typified in many
real-world scenarios, such as military missions involving destroying an enemy target. In
dynamic environments it is almost impossible to predict all possible event permutations
that may occur while the blue agents complete their task.

Fig. 1. Four Stages in a Mission Storyboard

Figure 1 depicts one series of group states during the execution of the “Capture the
Flag mission”. At the start, a group of 4 red agents are divided into 2 subgroups of pairs
located on either side of the flag to defend it (see the top left corner). At the same time, a
group of 8 blue agents approach the flag area. In the second stage (see top right corner),
the blue group splits into two subgroups of 4 agents according to their capabilities. One
subgroup splits again into two subgroups of 2 agents and each subgroup approaches and
engages the 2 red subgroups. In the next stage (bottom left) the blue agents engage the
red ones to attempt to capture the flag. However, during this stage an unplanned event
occurs, and one of the blue agents is incapacitated by a member of the opposing red

170 M. Hadad and A. Rosenfeld

team. The result of this change is that the group must replan their mission with only 7
of the 8 agents. In the final stage (bottom right), we see the group of 7 remaining blue
agents still completing the task and capturing the flag.

Fig. 2. Three Stages in Building the Teamwork Model in a Mission Storyboard (see Figure 1)

3.2 High Level Overview of ADAPT

While the ADAPT agents plan their task, they use the branching, refinement and prun-
ing stages of abstract search techniques to limit the size of the teamwork model. We
depict the stages of the teamwork model formation for the blue team in Figure 2. As
previously described, ADAPT decomposes teamwork into both task and group net-
works. In the first stage (Stage 1 in Figure 2) each of these components are described
only generally in the form of one abstract node. To graphically differentiate between
the two task and group abstractions, we present the task hierarchy in rectangles, and
the group hierarchy in ovals. At the beginning of execution, one rectangular task node
describes the high level “Capture the Flag” task, and the group hierarchy “Package”
describes the blue agents’ attributes and capabilities which can be used to perform this
task. In order for the blue agents to perform the team task, “Capture the Flag”, their
group and task planners must decide exactly how they will properly connect these two
hierarchies. To make this decision, the agents’ planners must apply their branching step
to expand their abstract components of all applicable group and task options, which we

ADAPT: Abstraction Hierarchies to Better Simulate Teamwork under Dynamics 171

refer to as methods. This is graphically represented in Stage 2 of Figure 2. However,
unique to ADAPT and beyond similar previous teamwork approaches such as BITE
and TEAMCORE [6,12,13], we then apply a refinement step where each agent gener-
ates the best applicable option based on its locally available information and the set of
constraints associated with each option. We model each distributed agent as having a
planner which uses a Distributed Constraint Optimization Problem (DCOP) solver to
help create teamwork plans. In our implementation, the DCOP solver is based on the ex-
isting OptAPO algorithm [7]. As per the OptAPO algorithm, a mediator agent is elected
which collects each of the distributed agents’ constraints. In the next punning step, the
mediator agent selects the best option given the choices each distributed agent presents.
The mediator agent then informs each distributed agent about the option chosen, which
is then selected by the local agent and executed.

Referring again to the example in Figure 2, the distributed planner decides that the
best sequence for the blue agents to execute the team task, “Capture the Flag”, is to
first select the “Setup” subtask, then “Go to Flag”, and lastly the “Capture” subtask.
Within each subtask a further decomposition may occur into additional subtasks and
subgroups. For example, the “Capture” subtask is decomposed into two subtasks which
are assigned to 2 subgroups. One subgroup of four agents performs the “Patrol” sub-
task, while the second subgroup of four agents perform the “Engage” activity, where
they engage the red agents defending the flag. The allocation step, where each agent is
assigned to a given subtask, is also performed by the refinement step (Stage 3 of Figure
2). The best assignment is decided by the OptAPO mediator agent. As only a subset of
all agents can perform certain activities, we can then apply the pruning step by which
we reduce the teamwork model to only those states which are theoretically feasible.
The mediator is also responsible for checking, or associating, between the task and
group networks in order to ensure that the solution is feasible. Combining the refine-
ment and pruning steps allows for a significantly smaller teamwork model than previous
approaches [6,12,13] as their approaches stop model construction at the branching step.
Thus, our work searches for a teamwork solution in a much smaller state space than in
previous approaches.

In the following sections we formally describe and further detail the exact process
by which these group and task networks are built. We also describe how these networks
are associated such that teamwork problems can be solved in real-time and yet address
dynamic changes from within the problem.

3.3 Modeling ADAPT’s Constraint Networks

We model each task and group network as having a hierarchical structure which must
be solved as a type of distributed constraint optimization problem (DCOP). Following
previous DCOP work we define a DCOP problem as a set of variables where each
variable is assigned to an agent who has control of its value. Cooperative agents must
then coordinate their choice of values so that a global utility function is optimized.
Formally, this process has previously been described as [7]:

– A set of N agents A = A1, A2 . . . , AN

– A set of n variables V = X1, X2 . . . , Xn

172 M. Hadad and A. Rosenfeld

– A set of domains D = D1, D2 . . . , Dn where the value of Xi is taken from Di.
Each Di is assumed finite and discrete.

– A set of cost functions f = f1, f2 . . . , fm where each fi is a function fi: Di,1 × . . .
×Di,j → N ∪ ∞. Cost functions are also called constraints.

– A distribution mapping Q : V → A assigning each variable to an agent. Q(Xi) = Ai

denotes that Ai is responsible for choosing a value for Xi. Ai is given knowledge
of Xi, Di and all fi involving Xi.

– An objective function F defined as an aggregation over the set of cost functions.
Summation is typically used.

In the following sections we describe how we have implemented DCOP to create team-
work behavior in ADAPT’s task and group network.

Modeling ADAPT’s Task Network. As our goal is to succinctly implement the simula-
tion of group behavior, ADAPT contains many similarities to previous Hierarchical Task
Network (HTN) planning approaches [5,10,9,4,8] but includes extensions for dynamic
multi-agent environments. Formally, we define an atomic task (or primitive task) as an
action act(

→
v) that can be directly executed by the agents (e.g., FlyTo(origin, dest)).

A (higher-level) complex task c(
→
v) is one that cannot be executed directly and is de-

composed into subtasks (e.g.,Defend(v1, v2, v3, v4). Each task may be associated with
two kinds of boolean formulas – a precondition rule and postcondition rule – to indi-
cate the required situations for starting and ending the task execution (e.g., (IsFuel >
200.lib) ∧ (IsT ime = 5:00PM). We define tasks as being either a single-agent task
or a multi-agent task. A single-agent task can be executed by one agent by itself and
multi-agent tasks require 2 or more cooperative agents to complete the task.

To execute a high-level complex task c(
→
v), agents must identify a method that

encodes all constraints for how this task may be performed, including key in-
formation about which agent can perform this task and constraints as to how
it can be performed. Specifically, we define a method, m, as a 5-tuple contain-
ing: 〈name(m), task(m), constr(m), subtasks(m), relation(m)〉, where name(m) is the
name of the method and task(m) is the name of the complex task. We define
subtasks(m) as the sequence of tasks and constr(m) as the set of constraints
{ρ1 . . . ρp} that may apply when using the method m. Each constraint ρk involves a
subset of variables and specifies all combinations of values for these variables. We de-
fine these variables as the set of {X1 . . . Xn} where each value Xi is taken from a set
of Di possible values for a given problem. Constraints may include specific required
capabilities that a certain number of agents perform specific subtasks(m). For exam-
ple, there may be a constraint stating that the number of agents required to perform a
subtask must be between 2 and 5 (formally, 2 ≥ XagentNun ≤ 5). Alternatively, these
constraints may specify the type of agent that can perform a certain subtask, for example
that the type of agent must be a fighter plane. In our implementation, we assumed these
constraints were boolean. The relationship, relation(m), contains constraints on the
execution of the subtasks(m) and may be one of the following: (i) AND denotes that
the task(m) is accomplished iff all the subtasks(m) are accomplished; (ii) OR denotes
that the task(m) is accomplished iff at least one of the subtasks(m) is accomplished;
and (iii) NEXT orders constraints between subtasks(m) such that one subtask must be

ADAPT: Abstraction Hierarchies to Better Simulate Teamwork under Dynamics 173

performed before another. These constraints contain similarities to the QAF and NLE
constraints within the TAEMS teamwork framework [5].

We define a task network dtask = [Gtask, ρ] as a collection of tasks that have to
be accomplished under constraints ρ. The task network is represented by an acyclic
digraph Gtask = (Vtask, Etask) in which Vtask is node set, Etask is the edge set, and
each node v ∈ Vtask contains a task. The task planning domain Dtask = (Mtask,A)
consists of a library task methods Mtask of methods and library A of atomic tasks. A
task planning problem is defined as a triple Ptask = 〈dtask,B,Dtask〉 where dtask is
the task network to be executed, B is the initial state and Dtask is the planning domain.
A task plan is a sequence act1 . . . actn of atomic actions.

Given a task planning problem instance, the planning process involves the branching,
refinement and pruning steps. The branching step is defined by retrieving the entire set
of methods in Mtask which may be applied to the required task. Refinement then has
each local agent check its constr(m) and send what it considers to be its best option
to the mediator agent within the DCOP solver. More formally, given a set of possible
applicable methods {m1, . . . ,mt} each method contains constraints constr(mj) that
contain sets of variables {Xmj

1 . . . X
mj
n } where each value X

mj

i is taken from a set of
D

mj

i . Consistent to the general DCOP formalization, the ADAPT agent must minimize
the cost functions f = {f1, . . . , fm} where each fi(d

mj

i,1 , . . . , d
mj

i,k) is a function of
fi : D

mj

i,1 × . . . ×D
mj

i,k → N ∪∞. The teamwork problem is considered solved if an
assignment A∗ = {dmj

1 , . . . , d
mj
n |dmj

i ∈ D
mj

i } is found such that the global cost, Fmj ,
is minimized. As DCOP problems have been proven to be NP-complete [7], keeping
the search space as small as possible is critical for implementing a working application,
especially one capable of running in real-time even as it handles dynamics.

In ADAPT’s pruning stage, the mediator uses the OptAPO algorithm to search for
this teamwork solution. If a solution for Mtask cannot be constructed, the mediator
agent asks each agent to iteratively select its next possible method until a solution is
found. This process can either result with a plan being found, or a NULL plan in failure.
Assuming dynamics change the environment, the entire planning process is repeated
from the branching step.

For example, referring back to Figure 2, a complex task by the name of “Capture the
Flag” is to be performed (Stage 1). The complex task may be decomposed according to
a set of methods from MCapturetheF lag which can be used to indicate different ways to
plan this task (Stage 2). In this example, the selected method includes the subtask Setup
which is an atomic task, while the subtask Capture is a complex subtask which must
then continue to be decomposed by additional methods. Stage 3 in Figure 2 depicts the
last stage in task network for GCapturetheF lag .

Modeling ADAPT’s Group Network. In parallel to the task hierarchy, ADAPT also
deconstructs teamwork into a group component to model constraints about which agents
can perform given tasks. We refer to the hierarchy about the entities combined capabil-
ities as the group. Parallel to our task definitions, we decompose the hierarchy as per
the group decomposition into higher levels of complex entities and atomic entities
which cannot be divided into further levels.

174 M. Hadad and A. Rosenfeld

More formally, an atomic entity indicates a single agent and its basic capa-
bilities agent(

→
v) (e.g., Airplane(Engine, Fuel, . . .)). A (high-level) complex en-

tity c(
→
v) indicates a multi-agent group that can be decomposed into subgroups.

The decomposition of the complex entity into subgroups is done according to
group decomposition method. Specifically, method m is defined as a 4-tuple:
〈name(m), entity(m), constr(m), subgroups(m)〉, where name(m) is the name of the
method and entity(m) is the name of the complex entity. The subgroups(m) indicates
either atomic or complex entities. Similar to task method the constr(m) indicates set
of constraints {φ1 . . . φr} that may apply when using the method m. These constraints
indicate the required capabilities from agents to be assigned to the subgroups(m)
and the different constraints on the group (e.g, maximum group members). A group
network dgroup = [Ggroup, φ] is a collection of groups that have been organized
in a hierarchical manner under constraints φ. The group network is represented by
Ggroup = (Vgroup, Egroup) in which Vgroup is a node set, Egroup is the edge set,
and each node v ∈ Vgroup contains group information.

The group planning domain Dgroup = (Mgroup, E) consists of a library Mgroup

of methods and a library E of atomic entities. A group planning problem is defined as
a triple containing Pgroup, which is defined as 〈dgroup,B,Dgroup〉 where dgroup is the
group network to be executed, B is a set of agents with their concrete capabilities and
Dgroup is the planning domain. A group plan assigns agents to the appropriate nodes in
the group network based on their capabilities in such a way that all the constraints are
satisfied.

Similar to the task planning process, given a group planning problem instance, the
planning process again involves the branching, refinement and pruning steps as well.
The branching step is defined by retrieving the entire set of methods in Mgroup which
may be applied to the complex entity. The refinement stage then has each local agent
check its constr(m) and send what it considers to be its best option to the mediator
node within the DCOP solver. In the pruning stage the mediator node then checks all
received constraints and checks if a solution for Mgroup can be constructed. If several
solutions are possible, it selects the solution with the highest expected utility (or the
lowest cost). If no plan can be formed based on these constraints, each agent iteratively
selects its next possible method until a solution is found. This process can either result
with a plan being found, or a NULL plan in failure. Assuming dynamics change the
environment, the entire planning process is repeated from the branching step.

For example, referring back to Figure 2, a complex entity, “Package” contains all
possible group configurations. The complex entity may be decomposed according to a
set of methods from MPackage which can be used to indicate different group compo-
sitions to plan this group organization. In this example, the selected method “FourShip
Formation” includes that a group decomposition of two groups of four agents to be
formed from the complex entity “Package”.

3.4 Association to Create Teamwork

It is important to stress that after the pruning stages described above in both the task
and group networks, the mediator agent must check the consistency, or what we refer

ADAPT: Abstraction Hierarchies to Better Simulate Teamwork under Dynamics 175

to as the association, between these two sets of constraints to see what teamwork ac-
tion should be selected. The association process serves as an intermediary between the
DCOP mediators for both the task and group planners within the two abstract networks.
The association process may connect one or more vertices of the task and group net-
works. Thus, the association enables loose coupling between the planners by allowing
each of them to modify the corresponding plan independently.

Algorithm 1. The major steps for dynamic association
Input: Initial vertices vt ∈ Vtask and vg ∈ Vgroup

Output: Teamwork plan for current world state W
01 Create initial links between vt and vg;
02 while the task plan is not completed:
03 if request from task planner is received then:
04 Send planning request to group planner
05 Receive the set of the vertices V

′
task and V

′
group

06 if Can-Associate (V
′
task , V

′
group) then:

07 Generate-links (V
′
task , V

′
group)

08 Apply partial teamwork plan if possible;
09 else
10 Send request for replanning (task or group)
11 Receive perceptions from the world:
12 if the new data causes to conflicts between links
13 Send request for replanning (task or group)

The major steps of solving a teamwork problem are given in Algorithm 1. The team-
work problem is divided into a two separate networks, dtask and dgroup. An initial
network is represented as a single vertex of the highest level task or group. The group
planner is responsible to assign the initial agent(s) to the vertex of the initial network
and the association process creates a link between these initial networks (line 1). Then
the task planner creates a partial plan by expanding its task network as much as possi-
ble based on the constraint’s world state W currently available to the agents’ mediator
(line 2). These constraints will typically include data such as the current states of the
environment (e.g. weather) or the informational status of the agent (e.g. fuel level or po-
sition). During the task planning process, the mediator is responsible to assign an agent
(or agents) to subtasks in the task network. The mediator then sends a request with the
proposed assignment to the association process so possible group constraints can be
checked. The association process connects to the group mediator (line 3) which checks
all possible ways a given task can be allocated by expanding its group network under
the constraints of the task planner (line 4). This is our implementation of the branching
step. The association process is then responsible for linking the new vertices that were
added to the group network to the corresponding vertices in the task network (lines 6-7).
ADAPT then applies the partial solution on the environment through interleaving plan-
ning with execution (line 8). In this way, plans are built incrementally during real-time.
Note that steps 6–8 correspond to the refinement and pruning stages of abstract search
techniques. Next, if it is impossible to generate a partial plan because of information

176 M. Hadad and A. Rosenfeld

obtained from the refinement step, the association sends a replanning request to either
the task planner or group planner (lines 9-10), and each local agent sends additional
constraints and the plan is expanded as described in the former section. Finally, the as-
sociation algorithm checks if the changes to the available data cause conflicts with the
existing assignments (lines 11-13). If any conflict with the existing plan is detected due
to the dynamic changes to the environment, the entire process is repeated.

4 Implementation Issues

We have implemented ADAPT within a commercial training and simulation system at
Elbit Systems LTD. Elbit specializes in large-scale defense solutions in the areas of avi-
ation, land and naval military systems with ten of thousands of workers worldwide. One
division within Elbit has been developing sophisticated simulation systems such that
personnel can be trained without the cost and potential risk of using actual equipment.
Towards this goal, Elbit has already developed realistic simulators for airplane cockpits,
naval stations and ground forces. We propose a new application that builds upon Elbit’s
existing simulators to simulate more complex team training missions through using
ADAPT to help reduce the teamwork model size so it may be effectively implemented.

Fig. 3. A high level overview of the simulation system

Towards this goal, we created a working system at Elbit by integrating ADAPT
within existing single-workstation simulation systems. Figure 3 depicts a high level
description of the system’s four major components. Elbit’s previously developed simu-
lation engine is still responsible for creating the base simulation environment. As part
of this component, a Geographical Knowledge Base (GKB) contains geographical data

ADAPT: Abstraction Hierarchies to Better Simulate Teamwork under Dynamics 177

about the training scenario and an exercise planner (EP) database is created with ini-
tial data of the training exercise (e.g., agents types, agents’ forces, their initial location,
their initial mission). Special to the ADAPT project, a Entity Knowledge Base (EKB) is
created containing properties on each agent (e.g. aircraft type, max,min velocity). In
addition, it includes various types of entities, including complex entities (e.g., platoon,
battalion), and their decomposition methods that describes possible ways of decom-
posing the groups into subgroups. Thus, this database contains all relevant information
about ADAPT’s group network. Also, a Task Knowledge Base (TKB) is created con-
taining a set of tasks that the agent can perform and their appropriate methods. Within
military applications, this database represents a doctrine, or the key task that must be
performed, or ADAPT’s task network. Agents’ decisions are based on the dynamic and
static knowledge that the agents gather from the simulation engine as well as the con-
straint information in the EKB and the TKB. The Real Time (RT) control component
enables the human trainer to interact with the simulated arena. Additionally, it provides
the human interface to the simulation system.

Fig. 4. General description of an ADAPT agent

Figure 4 provides a detailed description of how ADAPT and the algorithms pre-
sented in section 3, are integrated as the basis for creating this behavior. Moving from
top to bottom within the Figure, each simulated entity is comprised of: a decision mak-
ing process; a cooperation level; a failure handling process; and two types of planners
(connected through the association process). Note that the Task Planner in Figure 2 is
used to solve ADAPT’s task network, and the Group Planner is used to solve ADAPT’s
group network. The decision maker is responsible for receiving the agent’s perceptions
and deciding on the agent’s next steps accordingly.

178 M. Hadad and A. Rosenfeld

5 ADAPT’s Usefulness in a Simulation System

In studying ADAPT’s usefulness in Elbit’s simulation system, we focused on three key
issues: 1. Can content experts easily work with the application to effectively impart
their knowledge? 2. Does ADAPT indeed succinctly model teamwork, and how does it
compare with other state of the art models? 3. Does the system perform effectively, and
can it deal with system dynamics?

Specifically, we applied the general technique in Section 3 regarding the Capture the
Flag problem, and applied this technique to scenarios involving fighter jets attempting
to destroy an enemy target. Each scenario involved a target that needed to be destroyed,
as well as groups of attacking and defending planes. The attacking planes form the blue
group and are constructed from bomber and fighter planes (e.g. F16 fighters and Stealth
bombers), and the defending group consist exclusively of red fighter planes (F16). The
goal of the blue fighters is to disable the enemy’s red fighters after which the blue
bombers are able to destroy the target. The scenarios focused on different group sizes
for the blue and red teams. Dynamics focus on unknown issues including the number of
planes on each team that were disabled. In order to create the task and group networks,
we consulted with a group of professional fighter pilots whose expert knowledge was
then directly encoded. We relied on these experts to provide details about how they
would perform theoretical missions. We then successfully encapsulated this information
as the Task and Entity databases to form ADAPT’s task and group methods. In creating
the task’s methods we utilized the existing predicates 241 predicates) and the atomic
actions (135 actions) of the simulation engine. To demonstrate the above scenario we
created 103 task methods and 9 group methods. The number of complex tasks were
79 and the number of complex groups were 4 A pictorial description of one scenario
involving seven blue and six red planes is given in Figure 5.

Fig. 5. Attack a ground target - simulation view snapshot

ADAPT: Abstraction Hierarchies to Better Simulate Teamwork under Dynamics 179

To study the savings in the number of states within ADAPT versus other previous static
approaches [6,12,13], we focused on missions with groups of 5, 8 and 12 blue planes
which needed to destroy one target on the red team guarded by a fixed number of 5 jets.
We recorded the number of task and group nodes required to encode teamwork within
ADAPT throughout the task’s execution. We then compared how many states would be
needed in these same problems by BITE [6]. We decided to compare the number of states
needed by BITE as it too divides teamwork into Task and Group hierarchies and thus is
the closest comparable model to ADAPT. However, as ADAPT uses abstract search as
well, we would expect BITE to use a fixed number of possible task and group permuta-
tions, while ADAPT would only store those states actually needed to deal with problem
execution. Furthermore, one would expect that the number of states in ADAPT can and
will change during task execution, especially as problem dynamics are addressed. To
study this point, we assumed 2 blue agents were disabled during task execution.

Table 1. Comparing the number of task and group teamwork states in ADAPT versus BITE
teamwork models

BITE ADAPT max ADAPT average
Number of Agents Task States Group States Task States Group States Task States Group States

5 561 18 44 5 37.1 3.67
8 624 146 53 8 39.65 6.29

12 829 400 68 8 56.86 6.17

As Table 1 demonstrates, we found that ADAPT’s use of abstraction yielded an enor-
mous savings in the number of teamwork states needing to be stored. In columns 2 and
3, we present the size of BITE’s task and group network within the problems we im-
plemented. Compare these values to the maximal size of ADAPT’s task and group
networks in columns 4 and 5. The average state size is even smaller, and is presented in
columns 6 and 7. These very significant savings are because ADAPT only stores task
and group network nodes that are found to be relevant based on the current conditions
as dictated by branching, refinement, and pruning stages. In contrast, static approaches
such as BITE must preplan for all possible contingencies. This difference becomes
more pronounced as ADAPT uses real-time planning based on the agent’s current state.
ADAPT interleaves planning and execution and thus applies partial group and task net-
works. This is why ADAPT has no need to create complete plans for all contingencies
in advance. The net result is that ADAPT’s group and task networks are initially de-
fined abstractly and incompletely and built incrementally only as needed, based on the
specific environment settings that the agents encounter during task execution based on
ADAPT’s associative algorithm. Thus, the maximum number of task and group nodes
within ADAPT is far larger than its average. This difference can be observed by com-
paring the differences in the maximal model size and the average size for task states
(columns 4 and 6) and group states (columns 5 and 7).

In addition to studying the size of ADAPT’s teamwork model, we also evaluated
the ease by which ADAPT could be implemented to verify that in fact it did facili-
tate tractably computing the team’s optimal behavior even when faced with dynamics.

180 M. Hadad and A. Rosenfeld

Recall that the task and group planners are based on a state-of-the-art DCOP algorithm
[7] to solve these constraints. However, as these problems are NP-complete, no DCOP
algorithm can yield definite performance guarantees for all theoretical problems. As
our production simulation must be able to run without noticeable lags, even when sim-
ulating complicated scenarios with high levels of dynamics, we believe that having a
smaller teamwork model is critical towards achieving this goal. To evaluate this point,
we implemented 3 variations of scenarios involving a team of 8 blue agents attempting
to achieve their joint mission, i.e. attack ground target, versus a group of 5 red agents. To
study the impact of dynamics on ADAPT, three levels of dynamic changes were tested:
low-change, middle-change and high-change. In the low-change scenario the red force
tried to defend the ground target but could not eliminate any of the blue force members
and the group planner did not need to replan due to dynamics. This case represents the
baseline of the study, as it allowed the blue force to complete its task with no changes in
its force and with little need to change its mission plans. In the middle-change scenario,
the red force succeeded in eliminating one or two of the blue fighters from the arena
(based on non-deterministic effects), triggering some changes in the group hierarchy
of fighters and requiring a moderate degree of mission and group replanning. In the
high-change scenario the red force succeeded in eliminating three or more planes from
both the fighter and bomber planes, causing more changes in the group hierarchy. This
necessitated significant replanning efforts in both the task and group networks.

We measured the total planning time needed by the blue team agents using ADAPT
to plan successful joint missions. We defined mission success as the elimination of the
ground target and the blue team returning home. To examine ADAPT’s performance, we
compared the time needed by its problem solvers in 30 trials for each of the 3 different
levels of dynamic changes (90 total trials) from sets of 5 minute simulations. We ran
the ADAPT simulation on a 2.8 GHz Pentium D computer with 2 GHz of memory.

Fig. 6. The influence of dynamics on the total time needed by ADAPT’s teamwork planners

ADAPT: Abstraction Hierarchies to Better Simulate Teamwork under Dynamics 181

Fig. 7. The influence of dynamics on the average time per simulation cycle needed by ADAPT’s
teamwork planners

Figure 6 shows the total time utilized by the task planner, group planner and the
decision maker to completely plan the joint mission. The total time represents the overall
time used by the ADAPT engine to solve the teamwork problem. This time includes the
component needed by the task planner, the group planner and the association process. In
all cases, the task and group planners operated within fractions of seconds. Similarly, the
total time used by ADAPT was under 0.12 seconds in even the most dynamic scenarios.

Figure 7 shows the breakdown of the average time utilized by the task planner, the
group planner and the association processduring the decision maker cycle. In Elbit’s
simulator, each cycle lasts for 0.1 seconds (10 Hertz). Within this cycle, we measured
the length of time required by the task and team planners as well as by the association
process. Please note that any given cycle may have had need for planning, but often did
not. Similarly, it is possible that there was need for planning within the task planner
and not the group planner, or vice versa. For this reason, in Figure 7 is seems that the
Group planner required more time per cycle, while in Figure 6 the total time used by
the Task planner was greater. While the Task planner in the scenarios we considered
had to replan for dynamics less often than the Group planner, once one of these events
occurred it took slightly more time on average for the Group planner to generate a new
plan. Nonetheless, the average time required by both of these planners was minimal – of
the 0.1 seconds per cycle, averages were consistently less than 0.003 or 3% of the cycle
length within all scenarios. Thus, we found that ADAPT facilitated real-time teamwork
simulation, even in highly dynamic environments.

6 Conclusions

In this paper, we present ADAPT, a framework to decompose teamwork into abstract
task and group networks. As ADAPT is the first teamwork model to use abstract search

182 M. Hadad and A. Rosenfeld

methods, it represents a radical departure over previous models which need to exhaus-
tively describe all possible interactions prior to task completion [6,12,13]. As these
models can be of exponential size, the problem of finding the optimal teamwork behav-
ior can be of intractable complexity [11]. In contrast, ADAPT builds teamwork models
incrementally during task execution, thus allowing agents to apply refinement and prun-
ing steps to limit the size of the teamwork model needing to be stored. This fundamental
difference not only yields teamwork models that are smaller by several orders of magni-
tude, but allows agents to quickly find their optimal behavior within this smaller model
as described in this paper.

This paper also described how ADAPT was implemented within a challenging mili-
tary simulation domain. We present results pertaining to how ADAPT formed the basis
of a commercial system. We detail the specific task and group networks ADAPT cre-
ated, how ADAPT can handle domain dynamics, and the time required by ADAPT to
identify the optimal team behavior. While we have only implemented ADAPT to date
in one series of planning problems, we are confident that this approach can be equally
successful in other planning and scheduling problems due to ADAPT’s generality.

References

1. Bergmann, R., Wilke, W.: Building and refining abstract planning cases by change of repre-
sentation language. JAIR 3, 53–118 (1995)

2. Grosz, B.J., Kraus, S.: Collaborative plans for complex group action. AIJ 86(2), 269–357
(1996)

3. Hadad, M., Kraus, S., Gal, Y., Lin, R.: Time reasoning for a collaborative planning agent in
a dynamic environment. Annals of Math. and AI 37(4), 331–380 (2003)

4. Hoang, H., Lee-Urban, S., Muoz-Avila, H.: Hierarchical plan representations for encoding
strategic game AI. In: AIIDE 2005. AAAI Press (2005)

5. Horling, B., Lesser, V., Vincent, R., Wagner, T., Raja, A., Zhang, S., Decker, K., Garvey, A.:
The TAEMS White Paper (January 1999)

6. Kaminka, G.A., Frenkel, I.: Integration of coordination mechanisms in the BITE multi-robot
architecture. In: ICRA 2007, pp. 2859–2866 (2007)

7. Mailler, R., Lesser, V.: Using Cooperative Mediation to Solve Distributed Constraint Satis-
faction Problems. In: AAMAS 2004, pp. 446–453 (2004)

8. Muñoz-Ávila, H., McFarlane, D.C., Aha, D.W., Breslow, L., Ballas, J.A., Nau, D.S.: Us-
ing Guidelines to Constrain Interactive Case-Based HTN Planning. In: Althoff, K.-D.,
Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650, pp. 288–302.
Springer, Heidelberg (1999)

9. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kauf-
mann Publishers Inc. (2004)

10. Nau, D.S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.: Shop2: An
HTN planning system. J. Artif. Intell. Res (JAIR) 20, 379–404 (2003)

11. Pynadath, D.V., Tambe, M.: The communicative multiagent team decision problem: Analyz-
ing teamwork theories and models. JAIR 16, 389–423 (2002)

12. Tambe, M.: Toward flexible teamwork. JAIR 7, 83–124 (1997)
13. Tambe, M., Pynadath, D.V., Chauvat, N., Das, A., Kaminka, G.A.: Adaptive agent integration

architectures for heterogeneous team members, pp. 301–308 (2000)
14. Toseland, R.W., Rivas, R.F.: An Introduction to Group Work Practice. Allyn and Bacon

(2001)

An Architecture for Affective Behaviour

Based on the Conservation of Resources

Sabrina Campano, Etienne de Sevin, Vincent Corruble,
and Nicolas Sabouret

Université Pierre et Marie Curie, Laboratoire d’Informatique de Paris 6
4, place Jussieu, 75005 Paris, France

{sabrina.campano,etienne.de-sevin,vincent.corruble,
nicolas.sabouret}@lip6.fr

Abstract. The display of emotions in virtual agents’ behaviours is usu-
ally recognized as an important element to enhance their believability.
Therefore, applications aimed at realistic simulations or entertainment
have to consider this aspect. This paper presents a model for autonomous
virtual agents that enables them to adopt behaviours that can be per-
ceived by human observers as emotional. Our goal is to obtain believable
behaviours for several simulation scenari like a waiting line where con-
flicts can emerge between agents. The proposed architecture is based on
a principle of conservation and acquisition of resources.

Keywords: affect, emotion, virtual agent, simulation, behaviour.

1 Introduction

Modelling believable behaviours is required to design human-like agents that can
be used for credible simulations in domains such as security, urban planning, or
video games. In particular, emotions have been considered as necessary compo-
nents for lifelike virtual agents [1]. They are used to display natural gestures
or facial expressions, and also to drive the reactions of an agent to its environ-
ment or to other agents’ behaviours. However, the link between emotions and
behaviour remains insufficiently detailed to use them easily for simulation pur-
poses. The difficulties concerning the association of emotions with behaviours
have already been mentioned [4]. In this paper we present an architecture with-
out emotion categories, that enables autonomous virtual agents to display be-
haviours describable with affective terms, i.e. affective behaviours. This model
aims at several simulation contexts, as a realistic virtual city, with waiting lines
as locations where conflicts can emerge between agents, and where danger like
fire or riots can arise in the environment. Besides, we want it to be applicable
to basic physical actions like “run away”, but also to verbal communication acts
between agents like “threaten”. Our objective is to define a model able to pro-
duce lifelike affective behaviours compatible with these situations and behaviour
types.

M. Beer et al. (Eds.): AEGS 2011, LNAI 7471, pp. 183–194, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

184 S. Campano et al.

Several computational models have been already proposed in this direction.
Most of them rely on cognitive appraisal processes, inspired by psychological
theories [2], in which a category of emotion is triggered by a specific context,
and favours a set of cognitive strategies or behaviours [4,6]. However, neither
psychology nor computational science have come to an agreement on a basic set
of emotions necessary and sufficient to cover the range of human behaviours :
some claim for only two affective variables [7], others for six basic emotions [8], or
even for twenty-two emotion variables [4], and their choice is justified by different
criteria that all seem valid. This emotional parsing does not solve the issue of
behaviour in computational models, since the same emotion is associated with
multiple behaviours, and a behaviour can be associated with several emotions.

Considering these observations, and relying on the work of psychologist L.F.
Barrett [11], we propose to view emotions as concepts independent from the
core architecture that generate behaviours. Our hypothesis is that emotions are
categorizations that are useful for reasoning and communication purpose, but
are not components at the origin of most affective behaviours. Hence, we aim
at an architecture that should be able to generate behaviours describable with
a lexicon of emotions by a human observer, without using emotion categories as
components of the model. In this paper we present a generic model for affective
behaviours based on the theory of conservation of resources formulated by psy-
chologist S.E. Hobfoll [13]. The central tenant of this theory is that humans try
to protect their acquired resources, and seek to gain new ones.

After having considered related work, we present the core architecture of our
model. The description of resources and how they fulfill an agent’s needs will
be explained, along with the selection process for resource-oriented behaviours.
Finally we discuss the proposed evaluation of our model, based on observation
and human rating of the resulting behaviours.

2 Related Work

Common sense lets one think that everyone knows what an emotion is, and that
they are identifiable components of our brain system. “Fear”, “anger”, “joy”,
“sadness” are words often used in our everyday vocabulary. However, a close
look at the litterature shows that emotions are all but natural kinds [11], and
that there is currently no consensus on the number of existing emotions, neither
on their role or consequences on cognition and behaviour [5,15].

J. A. Russell [7] identifies only two types of core affect dimensions which are
valence, i.e. how good or bad a feeling is, and arousal. He points out that any
additional differenciation is based on contextual differences made upon various
non-emotional processes. In a study on culture and categorization of emotions,
Russell lists emotion words for which there is no equivalence from a language to
another, revealing that emotion categories are culture specific, and that even the
categories of fear and anger are not universal [9]. P. Ekman distinguishes among
six basic emotions, grounded on the hypothesis of universal facial expressions,
and on distinctive patterns of physiological changes during emotional episodes.

An Architecture for Affective Behaviours 185

These distinctions are still under debate, because even if autonomic specificity
has solid support, it is difficult to match these patterns with definite emotion
categories [3]. Besides, it is worthy of note that, according to R. W. Levenson,
these studies do not prove the existence of emotions, but the existence of a
correlation between an autonomic response and an emotional interpretation of
this response by the subject.

Psychological theories of emotion are numerous and propose different emotion
sets based on different valid criterias. S. S. Tomkins enumerates nine affects and
three valences [17], adopting a functional approach of emotions, and Ortony,
Clore and Collins (OCC model) account for twenty-six emotions [4]. The OCC
model has been widely used in computational science. It aims at predicting
which emotion category could be associated to a situation. However, it was not
originally intended to the simulation of behaviours. In this model categories are
issued from a cognitive appraisal of contextual variables. A difficulty in linking
emotions with behaviours is that it is not possible to match a unique behaviour
with each emotion. For example fear and anger could both lead to agressive
behaviours. Furthermore, Lazarus’ original model of cognitive appraisal [2] is
centered around the question of how individuals interpret a situation to cope
with it, not at how universal emotion categories could trigger behaviours.

Some work show that emotions are culture specific [9], and that they are
also individual specific [10]. According to psychologist L.F. Barret, if no set
of clearly defined emotion patterns has been found, it is because emotions are
concepts instead of being distinct entities in our affective system [11]. Human
beings experience emotions the same manner as they experience colors, they use
their kwnowledge to label their perceptions with categories. Hence if emotions
are concepts, it is possible to parse our affective space with a infinite number of
emotion sets.

From this conclusion, a question arises : which components are required for
an affective architecture producing behaviours labelled as “emotional” ? Our
hypothesis is that the theory of conservation of resources by psychologist S.E.
Hobfoll [13] offers an interesting lead. In this theory, the drive for the acquisition
and protection of resources is at the core of the dynamics which explains the
stress or well-being of an individual, and is even able to predict it. The notion
of resource refers to many types of objects : social ones such as self esteem
or caring for others, material ones such as a car, or physiological ones such as
energy. The main principle is that individuals strive to protect their resources,
and to acquire new ones. This model has been developped originally for the
domain of psychology, but we think that it can be adapted to the simulation of
credible agents. This framework is generic to every computational environment
where a description of available resources is provided, along with the behaviours
associated with the acquisition or protection of these resources.

3 Proposed Model

In the current section we propose a model for providing autonomous agents with
affective behaviours based on the theory of conservation of resources (COR)

186 S. Campano et al.

[13]. This model considers that behaviours are intended to acquire or protect
resources, with well-being as a consequence of these successfull or failed attempts.
The COR theory was not conceived in order to be implemented, since the initial
goal was to predict or explain an individual’s stress level. The original theory
focused only on critical resources involved in the psychological health of an
individual. We extended it to all other kind of resources, like a rank in a waiting
line, because we think that the principles of this theory are generic enough to
be used for simulation purposes.

3.1 Principle of the Model

The model is based on the following principles : (a) an agent strives to acquire
resources that it desires (b) once a resource is acquired, an agent tries to protect
it (c) an agent’s well-being depends on its capacity to acquire or protect resources
(d) an agent’s well-being regulates the tendency for acquisition or protection of
resources.

A desired resource triggers acquisition behaviours, and a threatened resource
triggers protective behaviours. Each resource type is associated with a partic-
ular set of acquisition and protective behaviours. For example an acquisition
behaviour for a resource “Rank” in a waiting line is “move forward”, and an
acquisition behaviour for a resource “Social Interaction” is “talk to somebody”.
A protective behaviour for an acquired “Rank” is “stay close to next agent”,
and a protective behaviour for an ongoing “Social Interaction” is “speak loud”
in order to be not interrupted by other agents.

The intensity with which a resource is desired by an agent is dynamic and
can change over time as a consequence of agents’ behaviour or events in the
environment. For example a fire will trigger a high need level for security, and
a long waiting time in a front of a ticket counter before a train departure will
increase the need for the “Train Ticket” resource.

3.2 Architecture

Our agent affective architecture is composed of five affective sets which constitute
the basis of the model. The presence of a resource in one of these sets is a key
factor influencing an agent’s behaviour. A distinction is made between a type
of resource and an instance of resource. For example a “Ticket Counter” type
could have several instances in the simulation environment, e.g. ticket counters
located on the map and effectively usable by an agent.

Let A the set of agents and R the set of resources in a simulated world S,
with A ⊂ R. ∀i ∈ A at time t, we denote the four following affective sets :

– Ni(t), the resource types that agent i needs;
– DRi(t), the resource instances desired by agent i;
– ARi(t), the acquired resource instances for agent i;
– TRi(t), the threatened resource instances for agent i;
– LRi(t), the resource instances that agent i has lost.

An Architecture for Affective Behaviours 187

Let V ∈ N be a finite set of values. ∀r ∈ DRi(t), we denote μr
i (t) ∈ V the level

of desire that i has for a resource instance r at time t. This value is defined by

the need value for the resource type of r denoted as μ
type(r)
i (t). For example if

an agent i needs a resource of type “Ticket Counter” in order to buy a resource
of type “Train Ticket”, its desire for two instances tc1 and tc2 with type(tc1) =
type(tc2) = T icketCounter is given by μTicketCounter

i (t).
Affective sets are initialized before the start of a simulation. It is possible

to set them empty, to generate random desired resources, or to set them with
specific resources in order to run a given scenario. Some needs for resource types
like “Food”, “Drink”, “Social Reputation” or “Safety” should always be added
for a realistic behaviour, unless no resource and no behaviour in the simulation
environment allow to acquire or protect these resources. An example for a default
setting could be : ∀i ∈ A, Ni(t) = {Food,Drink}, with μFood

i (0) = μDrink
i (0) =

x, where x corresponds to a need value. The setting for a scenario where an
agent i ∈ A has to buy a train ticket could be : Ni(t) = Ni(t) ∪ {TrainT icket},
with μTrainTicket

i (0) = f(TrainDepartureT ime), where the closer one gets to
the train departure time, the more the need for a train ticket is increased. The
dynamics of this process is detailed in 4.1.

∀r ∈ R, there is compensation degree Cr
i ∈ [−MAXV ,MAXV] which is the

level to which a resource r can decrease or increase μ
type(r)
i (t) when it is acquired

or lost by i. For example, two instances of type “Food” may not compensate
agent’s need for food at the same level. Given two instances of type “Food” in
the simulation environment which are hamburger and carrot, it is possible to set
Chamburger

i > Ccarrot
i > 0. This means that the instance hamburger decreases

μFood
i with a higher degree than the instance carrot. We assume that a resource

instance compensates a unique need type for simplification purpose.
During the simulation, addition and removal of resources in affective sets,

as well as behaviour selection, are handled by the Affective Controller. This
module takes into account resources available in agent’s environment, behaviours
executed by other agents, and agent’s needs level. Each behaviour selected by
this module has the purpose to acquire or protect a resource.

3.3 Behaviour Realization

The set of behaviours that can be performed by an agent i is composed of the
acquisition behaviours corresponding to the agent’s desired resources, and the
protective behaviours corresponding to the agent’s threatened resources. Let
Bi(t) the set of behaviours that can be performed by an agent i at time t. A
behaviour b ∈ Bi(t) has effects over resources during and after its realization for
a given set of agents denoted as ptnt(b). For example, if an agent i performs the
“insult” behaviour towards an agent j during a verbal confrontation in a waiting
line, the consequences of this behaviour is that j’s “Reputation” resource will be
threatened, and this will trigger protective behaviours from j in order to protect
this resource.

188 S. Campano et al.

Fig. 1. General Architecture

∀b ∈ Bi(t), ∀j ∈ ptnt(b), we denote :

– R+
b (j, t) : resource instances acquired by j at time t;

– R∼
b (j, t) : resource instances of j threatened at time t;

– Ro
b(j, t) : resource instances of j protected at time t;

– R−
b (j, t) : resource instances lost by j at time t;

These effects represent agents’ understanding of the consequences of their be-
haviours. However these effects are not guaranteed, because the behaviour is not
always successful, the behaviour can be interrupted, or it can trigger unexpected
reactions from other agents. For instance, if an agent j engages a protective be-
haviour, this may lead to an over agressive physical reaction from the other
agent. Our model does not consider such long term effects.

To perform behaviour selection, an utility value is computed for each be-
haviour b ∈ Bi(t), taking into account the behaviour’s effects described above.
This value is computed with the compensation value of a resource upon an
agent’s need level : a decrease of a need level is considered as a reward, and an
increase is considered as a cost. Hence the loss of a resource like “Reputation’
is a cost, since it causes an increase in agent’s need level for “Reputation” : the
agent no longer possesses the resource satisfying its need. The behaviour selected
by an agent i corresponds to the behaviour with the maximum positive utility
for i.

See figure 1 for an overwiew of the general architecture of the model.

An Architecture for Affective Behaviours 189

3.4 Personalization

An agent knows its needs, the behaviours it could trigger in its environment on
perceived resources, and the a priori effects of these behaviours. It can there-
fore anticipate immediate gains and costs. These raw values can be modified by
individual factors which are agent’s well-being, optimism/pessimism, and ego-
ism/altruism. We develop these parameters in section 4.4.

4 Needs, Rewards, and Costs

The need value for a resource type determines the utility value of resource in-
stances in the environment for an agent. If there is a strong need for i to obtain
a resource of type “Social Interaction”, then the utility of instances of social
interactions in the environment will be high for i.

Reminder :

– Ni(t) : resource types that an agent i needs at time t;
– μtype

i (t) ∈ V : need value of i for a type at time t;

– Cr
i ∈ [−MAXV ;MAXV] : compensation degree of r on μ

type(r)
i (t).

4.1 Computation of Needs

Some need values vary spontaneously as a function of time, whereas others vary
as a function of environment events. Events are agent’s behaviours, or physical
events like a fire in an enclosed space, or a storm. Variations as a function of time
are called intrinsic, and they relate to resource types like “Food” or “Drink”.
These needs increase over time until a resource satisfying the need is acquired.
Need variations as a function of events are called extrinsic, and occurs when a
resource instance corresponding to a need type is gained or lost. This variation
is determined by the compensation value of the resource.

Intrinsic Variation. Let RI a set of resource types whose value need level x
depends on an intrisic variation. We define a function ftype(x, I(x)) which ac-
tualizes a need value for a type type taking into account I(x), the time interval
in hours since the need value has not been actualized. ∀type ∈ RI, ∀i ∈ A,
μtype
i (t+ 1) ← fr(μ

type
i (t), I(μtype

i (t))).

Example: given the type “Food” ∈ RI, fFood(x, I(x)) is the intrisic variation
function associated to this type, and max(V) the maximum value of V ∈ N.

fFood(x, I(x)) =

⎧
⎪⎨

⎪⎩

MAXV , if x = MAXV

x+ 1, if I(x) > Δi

x, otherwise

190 S. Campano et al.

This means that if MAXV = 5, μFood
i (t) = 3, Δi = 4 (in hours), and five hours

has passed since the last modification of this need value, then μFood
i (t+ 1) = 4,

and I(μFood
i (t+ 1)) is initialized with 0. The need for the resource type “Food”

has increased from 3 to 4 after 5 hours. It is possible to refine this variation
function to make it closer to a biological model, but it is not in the scope of this
paper.

Extrinsic Variation. Each resource instance r ∈ R has a compensation value
for an agent i denoted as Cr

i ∈ [−MAXV ,MAXV]. A positive compensation
of r decreases the need of i for the type type(r), and a negative compensation
increases it. When an agent acquires a resource r, its need for type(r) is computed
as :

μ
type(r)
i (t+ 1) = μ

type(r)
i (t)− Cr

i (1)

with μ
type(r)
i (t+ 1) bounded by 0 and MAXV .

Example: let i be an agent for which μReputation
i (t) = 4, and MAXV = 5,

that means i is very interested in acquiring reputation. We define a resource
instance r with type(r) = Reputation, and Cr

i = 3. If r is acquired by i, then

μReputation
i (t+ 1) = μReputation

i (t) − Cr
i = 4 − 3 = 1. The agent’s need for type

“Reputation” has decreased, i is gives less importance to reputation.

For each resource type, each agent has a default need level μDef type
i . When an

agent looses a resource instance r, if no other resource of type(r) exists in agent’s

acquired resources ARi(t), then μ
type(r)
i (t) is set to its default level μDef type

i . If

other resources of type(r) exist in ARi(t), then μ
type(r)
i (t) is computed with the

resource of this type that has the maximum compensation value.

4.2 Activation of Behaviours

Each resource r is associated with a set of behaviours which contains acquisition
or protective behaviours. If r is desired, then acquisition behaviours for r are
activated, and if r is threatened, then protective behaviours for r are activated.
A behaviour originally aimed at acquiring a resource can also threatens other
agents’resources, since behaviours have multiple effects. Let Bi(t) the set of be-
haviours that can be performed by an agent i at time t, B+

r the set of acquisition
behaviours for r, and Bo

r the set of protective behaviours for r. The behaviours
activated for an agent i at time t is computed as :

Bi(t) = (
⋃

r∈DRi(t)

B+
r) ∪ (

⋃

r∈TRi(t)

Bo
r) (2)

Activated behaviours are concurrent and selected by an utility value computed
for each behaviour (see 4.5).

An Architecture for Affective Behaviours 191

4.3 Computation of Behaviour’s Payoff

The execution of a behaviour may change the state of a resource for an agent. A
resource can be desired, acquired, threatened, or lost. If a resource instance that
can decrease an agent’s need type is acquired or protected for this agent towards
a behaviour b, it entails a reward that is a positive value. On the contrary, if such
a resource is threatened or lost for this agent, it entails a cost that is a negative
value. These values computed before the possible execution of a behaviour b
represent the impact of this behaviour on an agent’s need level. The predicted
payoff at time t+1 of a behaviour b for an agent j allows us to proceed behaviour
selection (explained in section 4.5). It is computed as :

P (b, j, t+ 1) =
∑

r∈R+
b (j)∪Ro

b(j)

(1 + μ
type(r)
j (t)) ∗ Cr

j

−
∑

r∈R−
b (j)∪R∼

b (j)

(1 + μ
type(r)
j (t)) ∗ Cr

j

(3)

4.4 Individual Parameters Influencing Behaviours’ Payoff

Some parameters influence rewards and costs perceived by an agent, either
dynamically, or as a fixed characteristic of the agent. Well-being parameter
is directly linked to the architecture of conservation of resources, while opti-
mism/pessism and altruism/egoism are parameters that has been introduced to
make agents act differently in the same situation.

Well-Being. The well-being of an agent acts as a sensor that guides an agent
towards appropriate behaviours to readjust the state of its affectives sets. For
example an agent that has endured too many losses has a low well-being that
pushes it to acquire new resources. That means that if an agent has lost an
important resource as its job, it may try to readjust its well-being with easy
resource acquisitions like resource instances of “Food” type.

The state of well-being of an agent αWB
i (t) ∈ [0, 1] influences its sensitivity to

reward. Concretely, on our model, a value αWB
i (t) is computed based on LRi(t),

DRi(t), TRi(t), ARi(t), and the more this value is low, the more it increases
the positive payoffs that i anticipate for itself before executing a behaviour.
The computation of αWB

i (t) is not detailed in this paper. The predicted payoff
Pi(b, i, t+1) of an agent i from its own point of view for behaviour b executable
at time t+ 1 taking into account well-being is given by equation 4.

Pi(b, i, t+ 1) =

{
Pi(b, i, t+ 1) ∗ (1 + (1 − αWB

i (t))), if Pi(b, i, t+ 1) > 0

Pi(b, i, t+ 1), otherwise
(4)

Optimism and Pessimism. An optimistic agent gives more importance to re-
wards, and a pessimistic agent gives more importance to costs. Let i be an agent,

192 S. Campano et al.

αrew
i ∈ [0, 1] a variable representing the importance of rewards, and αcos

i ∈ [0, 1]
a variable representing the importance of costs. The predicted payoff Pi(b, j, t+1)
of an agent j from i’s point of view for behaviour b executable at time t+1 taking
into account optimism and pessimism is given by equation 5.

Pi(b, j, t+ 1) =

{
Pi(b, j, t+ 1) ∗ (1 + αrew

i), if Pi(b, j, t+ 1) > 0

Pi(b, j, t+ 1) ∗ (1 + αcos
i), if Pi(b, j, t+ 1) < 0

(5)

Egoism and Altruism. Egoistic agents give more importance to their own
payoff, and altruistic agents give more importance to other agents’ payoff. Let
αalt
i ∈ [0, 1] be the altruistic tendency of an agent, and αego

i ∈ [0, 1] be the
egoistic tendency of an agent. For a given behaviour b ∈ Bi(t) executable by
an agent i at time t, the behaviour’s payoff foreach agent j concerned by the
behaviour, as i considers it, is modified as below :

Pi(b, j, t+ 1) =

{
Pi(b, j, t+ 1) ∗ αalt

i , if j �= i

Pi(b, j, t+ 1) ∗ αego
i , else

(6)

4.5 Behaviour Selection

The behaviour selection consists in selecting a behaviour with the maximum
positive utility among all activated behaviours of an agent i. Let ptnt(b) be the
set of agents concerned by the effects of a behaviour b. Given Bi(t) the set of
activated behaviours for agent i at time t, ∀b ∈ Bi(t), ∀j ∈ ptnt(b), Pi(b, j, t+1)
is the payoff that j will receive from behaviour b at t+ 1 according to i’s point
of view. Behaviours’ utility for agent i at time t are computed as :

∀b ∈ Bi(t), Ui(b, t) =
∑

j∈ptnt(b)

Pi(b, j, t+ 1) (7)

The selected behaviour b∗i (t) is :

b∗i (t) = max
b∈Bi(t)

{b : Ui(b, t) > 0} (8)

If no behaviour with a positive utility value exists, then no behaviour is executed.
Since our model does not include planification, we assume that it is better for
an agent to do nothing than to execute a behaviour which is costly, even if
this behaviour could prevent in the future behaviours executed by other agents
with worse consequences. If there are more than one behaviour with a maximum
positive utility, a behaviour is randomly chosen among them.

5 Example

We consider a scenario where agents have to buy train tickets provided by ticket
counters in the simulation environment. The provided resources are “TicketCoun-
ters”, “Ranks” in the waiting line, and each agent has a “Reputation” resource.

An Architecture for Affective Behaviours 193

When agents are in a waiting line, they each possess a “Rank” corresponding to
their position in the waiting line. If an agent i starts to pass another agent j in the
waiting line, the resource “Rank” of j is threatened. Then j may choose to exe-
cute a protective behaviour in order to protect its resource “Rank”, like telling b
to go away, which threatens the “Reputation” resource of i. If the “Reputation”
resource of i is more valuable than the “Rank” it tries to acquire, then i goes back.
The acquisition of ranks in waiting lines in real life, as well asmany other resources,
are regulated by FIFO rule (First In, First Out)[12]. When an agent i ignores this
rule so as to gain ranks, it is costly for all agents between the current and previous
rank of i. If agent’s i need for a train ticket is very strong and if b is egoistic, it gives
a great importance to the reward brought by the acquisition of a better “Rank”,
and a small importance to the “Ranks” lost for other agents. So i can choose the
behaviour of ignoring waiting line’s rule.

6 Discussion and Future Work

We presented in this paper an architecture aimed at providing virtual agents
with affective behaviours in various environments as urban simulation. Our hy-
pothesis is that simulating behaviours that can be labelled as “emotional” do not
necessarily requires an architecture grounded on emotion categories. Behaviours
in a waiting line are assumed to be driven by emotions [14], and a waiting line is
also considered as a small social system regulated by the principles of property
[12]. Our hypothesis is that the processes of resource acquisition and protection
can be used as the basis of affective behaviours. Actually, this idea could be
applied to various contexts : in case we run from a fire, we try to protect our
primary resource which is our health, in case we become friends with someone,
it is because we find useful resources in this friendship (see the “social exchange
theory” by Thibaut and Kelley [16]), and so on. We believe that the architecture
presented in this paper can account for several principles in social science and
psychology theory, and is adaptable to various simulation scenari.

On another hand, an emotion vocabulary is used in human langage, and it
would be useful to derive emotion concepts from our architecture in order that
agents can use them to communicate. Thus, we plan to work on how the model
of conservation of resources can be associated with such emotion concepts for
verbal communication. To do so, we could derive emotion categories from the
current state of an agent’s affective sets and behaviours, following the approach
of cognitive evaluation already used in the OCC model [4]. For instance, if an
agent’s resources are threatened, and the agent cannot engage in a behaviour to
protect them, then this agent could be labelled as afraid. It could then verbally
communicate to other agents that it is afraid.

The model has been implemented and the evaluation of the model is part of
another work. Our evaluation relies on rating the credibility of agents’ behaviours
based on simulation video clips.We implemented twodifferent scenarii (one involv-
ing social communication, one considering only individual actions) and we asked
human observers to describe the scenes and to rate both the believability and the

194 S. Campano et al.

emotional aspect of the agents’ behaviours. Our first results show that human ob-
servers identify affective behaviours and that the model positively influences both
realism and emotion perception. However, further studies need to be conducted.
In particular, we would like to compare the agents’ behaviours in the simulation
with behaviours described in psychological and sociological studies.

Finally once the evaluation protocol is completed, we plan to extend our model
to groups and crowds, in order to use it for simulations with a large amount of
agents.

References

1. Bates, J.: The role of emotion in believable agents. Communications of the ACM 37,
122–125 (1994)

2. Lazarus, R.S., Folkman, S.: Stress, Appraisal and Coping. Springer, New York
(1984)

3. Levenson, R.W.: Autonomic specificity and emotion. In: Davidson, R.J., Scherer,
K.R., Goldsmith, H.H. (eds.) Handbook of Affective Sciences, pp. 212–224. Oxford
University Press, New York (2003)

4. Ortony, A., Clore, G.L., Collins, A.: The cognitive structure of emotions. Cam-
bridge University Press, New York (1988)

5. Ortony, A., Turner, T.J.: What’s basic about basic emotions? Psychological Re-
view 97, 315–331 (1992)

6. Elliott, C.: The affective reasoner: A process model of emotions in a multi-agent sys-
tem. Northwestern University Institute for the Learning Sciences, Chicago (1992)

7. Russell, J.A.: Core affect and the psychological construction of emotion. Psychol
Rev. 110(1), 145–172 (2003)

8. Ekman, P.: Basic Emotions. In: Dalgleish, T., Power, T. (eds.) The Handbook of
Cognition and Emotion, pp. 45–60. John Wiley & Sons, Ltd., Sussex (1999)

9. Russell, J.A.: Culture and the categorization of emotions. Psychological Bul-
letin 110(3), 426–450 (1991)

10. Barrett, L.F., Gross, J., Christensen, T.C., Benvenuto, M.: Knowing what you’re
feeling and knowing what to do about it: Mapping the relation between emotion
differentiation and emotion regulation. Cognition & Emotion 15(6), 713–724 (2001)

11. Barrett, L.F.: Solving the emotion paradox: Categorization and the experience of
emotion. Personality and Social Psychology Review 10, 20–46 (2006)

12. Gray, K.: The legal order of the queue. University of Cambridge (2007) (unpub-
lished paper)

13. Hobfoll, S.E.: Conservation of resources: A new attempt at conceptualizing stress.
American Psychologist 44(3), 513–524 (1989)

14. Norman, D.A.: The Psychology of Waiting Lines (2008)
15. Scherer, K.R.: Appraisal theory. In: Dalgleish, T., Power, M. (eds.) Handbook of

Cognition and Emotion, pp. 637–663. Wiley, Chichester (1999)
16. Thibaut, J.W., Kelley, H.H.: The social psychology of groups. Wiley, New York

(1959)
17. Tomkins, S.S.: Affect Imagery Consciousness: The Complete Edition, vol. 1-4.

Springer (2008)

Author Index

Alvarez-Napagao, Sergio 139
André, Elisabeth 151

Beek, Wouter 151
B́ıda, Michal 38
Bredeweg, Bert 151
Brom, Cyril 38
Bryson, Joanna 38
Bühling, René 151

Cai, Yundong 79
Campano, Sabrina 183
Chien, Alex Yu-Hung 123
Corruble, Vincent 183
Cranefield, Stephen 1

de Sevin, Etienne 183
Dignum, Frank 22, 106
Dignum, Virginia 106

Gemrot, Jakub 38
Gómez-Sebastià, Ignasi 139
Gracia, Jorge 151

Hadad, Meirav 166
Häring, Markus 151

Kao, Edward Chao-Chun 63

Liem, Jochem 151
Linnebank, Floris 151
Lozano, Esther 151

Mehlmann, Gregor 151
Muroya, Yumi 94

Nakano, Yukiko 94

Okamoto, Masashi 94
Oliva, Luis 139

Panagiotidi, Sofia 139
Purvis, Martin 1

Ranathunga, Surangika 1
Rosenfeld, Avi 166

Sabouret, Nicolas 183
Shen, Zhiqi 79
Soo, Von-Wun 63, 123

Tejeda-Gómez, Arturo 139
Tsukamoto, Takeo 94

Vanhée, Löıs 22
van Oijen, Joost 22
Vázquez-Salceda, Javier 139

Westra, Joost 106
Wißner, Michael 151

	Title
	Preface
	Organization
	Table of Contents
	Interfacing a Cognitive Agent Platform with Second Life
	Introduction
	Second Life as a Simulation Environment
	Challenges in Monitoring Agent Interactions in Second Life

	System Design
	The Extended Jason Platform
	Interface between the LIBOMV Client and the Jason Agent
	Interface between the LIBOMV Client and the Second Life Server
	Data Processing Module

	Example - A Jason Agent Engaged in the Football Team Play Scenario ``Give and Go''
	Esper Patterns to Identify ``successful_pass_by_up_kick ''
	Jason Agent Program for the ``Give and Go Scenario''

	Related Work
	Conclusion
	References

	CIGA: A Middleware for Intelligent Agents in Virtual Environments
	Introduction
	Bridging the Conceptual Gap
	Social World Model
	Perception
	Action
	Communication

	CIGA Framework
	The Role of Ontologies
	Connecting the Game Engine
	Connecting the MAS

	Related Technologies
	Conclusion and Future Work
	References

	How to Compare Usability of Techniques for the Specification of Virtual Agents’ Behavior? An Experimental Pilot Study with Human Subjects
	Introduction
	POSH
	Method
	Experimental Design
	Participants
	Materials
	Questionnaires
	Data Analysis

	Results
	Comparison of the Two Groups with Regards to Subjective Java/POSH Preference
	Comparison of the Two Groups with Regards to Objective Task Solution Quality

	Discussion
	Results
	Lessons Learned
	Future Work

	Conclusions
	References

	Dialog Designs in Virtual Drama: Balancing Agency and Scripted Dialogs
	Introduction
	Related Work
	Narrative Generation
	Interactive Narratives
	Simulation-Based Training

	Dialog Framework
	Virtual Drama
	Virtual Actors
	Improvisation of Dialog Frames

	System Implementation
	Sample Scenarios
	Conclusion and Future Work
	References

	Learning by Playing in Agent-Oriented Virtual Learning Environment
	Introduction
	Agent-Oriented Virtual Learning Environment (AVILE)
	Learning Structure
	Goal Oriented Learning Agent (GOLA)
	Virtual Laboratory
	Role-Playing Learning

	Fuzzy Cognitive Goal Net
	Case Study: Plant Transportation in Banana Tree
	Learning Content
	Implementation
	Sample GOLAs
	Assessments
	Discussions

	Conclusion
	References

	Collection and Analysis of Multimodal Interaction in Direction-Giving Dialogues: Towards an Automatic Gesture Selection Mechanism for Metaverse Avatars
	Introduction
	Related Work
	Experiment
	Experimental Procedure
	Collected Data

	Analysis
	Automatic Gesture Annotation
	Proxemics between the Direction Giver and the Direction Receiver
	Relationship between Proxemics and Gesture Distribution

	Gesture Generation Mechanism for a Metaverse Avatar
	System Architecture
	Example

	Conclusion and Future Work
	References

	Organizing Scalable Adaptation in Serious Games
	Introduction
	Adaptation
	Current Approaches
	Framework
	Agent Organizations
	Adaptation Engine
	Agent Implementation

	Designing Scalable AI
	Scenes
	Believability
	Combinations

	Scalability Analysis
	Conclusion
	References

	Inferring Pragmatics from Dialogue Contexts in Simulated Virtual Agent Games
	Introduction
	Related Works
	Methods
	Models of Speech Acts and Dialogue Context
	Computational Model of Context Awareness Reasoning Using DBN

	Experiments
	Speech Act Model with Multiple Contexts
	Experiment 1: Pragmatic Prediction with Dialogue Contexts
	Experiment 2: The Most Likely Pragmatic Speech Acts Sequence

	Conclusion
	References

	Socially-Aware Emergent Narrative
	Introduction
	Emergent Narrative
	Organizational Frameworks and Games
	Our Proposal
	Mapping Virtual Storyteller Components to cOncienS
	Constructing the Plot
	Character Conflicts and Personality
	Adding Interactivity to Narrative

	Conclusions
	References

	Increasing Learners’ Motivation through Pedagogical Agents: The Cast of Virtual Characters in the DynaLearn ILE
	Introduction
	Related Work
	The Characters in DynaLearn
	Teachable Agent (TA)
	Mechanic
	Teacher
	Quizmaster
	Critic

	Architecture
	Evaluation
	Method
	Results

	Conclusion
	References

	ADAPT: Abstraction Hierarchies to Better Simulate Teamwork under Dynamics
	Introduction
	Background and Motivation
	Technique Description
	A Dynamic Planning Teamwork Example
	High Level Overview of ADAPT
	Modeling ADAPT's Constraint Networks
	Association to Create Teamwork

	Implementation Issues
	ADAPT's Usefulness in a Simulation System
	Conclusions
	References

	An Architecture for Affective Behaviour Based on the Conservation of Resources
	Introduction
	Related Work
	Proposed Model
	Principle of the Model
	Architecture
	Behaviour Realization
	Personalization

	Needs, Rewards, and Costs
	Computation of Needs
	Activation of Behaviours
	Computation of Behaviour's Payoff
	Individual Parameters Influencing Behaviours' Payoff
	Behaviour Selection

	Example
	Discussion and Future Work
	References

	Author Index

