
Chapter 6
Believable Bot Navigation via Playback
of Human Traces

Igor V. Karpov, Jacob Schrum and Risto Miikkulainen

Abstract Imitation is a powerful and pervasive primitive underlying examples of
intelligent behaviour in nature. Can we use it as a tool to help build artificial agents
that behave like humans do? This question is studied in the context of the BotPrize
competition, a Turing-like test where computer game bots compete by attempting to
fool human judges into thinking they are just another human player. One problem
faced by such bots is that of human-like navigation within the virtual world. This
chapter describes the Human Trace Controller, a component of the UTˆ2 bot which
took second place in the BotPrize 2010 competition. The controller uses a database of
recorded human games in order to quickly retrieve and play back relevant segments
of human navigation behaviour. Empirical evidence suggests that the method of
direct imitation allows the bot to effectively solve several navigation problems while
moving in a human-like fashion.

6.1 Introduction

Building robots that act human requires solutions to many challenging problems,
ranging from engineering to vision and natural language understanding. Imitation is
a powerful and pervasive primitive in animals and humans, with recently discovered
neurophysiological correlates [1]. Children observing adult behaviour are able to
mimic and reuse it rationally even before they can talk [2]. As robotics platforms
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continue to develop, it is becoming increasingly possible to use similar techniques
in human-robot interaction [3].

How can we use imitation when building agents with the explicit goal of human-
like behaviour in mind? We study this question in the setting of the BotPrize 2010
competition, which explicitly rewards agents for exhibiting believable human-like
behaviour [4].

One problem faced by such bots is that of human-like navigation within the virtual
world. Due to problems in level design and the interface used by the bots when acting
in the environment, bots can get stuck on level geometry or fail to appear human when
following the built in navigation graph.

As a way to address such challenges, this chapter introduces the Human Trace
Controller (HTC) , a component of the UTˆ2 bot inspired by the idea of direct imita-
tion of human behaviour. The controller draws upon a previously collected database
of recorded human games, which is indexed and stored for efficient retrieval. The
controller works by quickly retrieving relevant traces of human behaviour, translat-
ing them into the action space of the bot, and executing the resulting actions. This
approach proves to be an effective way to recover from navigation artefacts in a
human-like fashion.

This chapter is organized as follows. Related work is discussed in Sect. 6.2.
The necessary background including a description of the BotPrize competition and
domain used in it is discussed in Sect. 6.3. The main focus of this chapter, the Human
Trace Controller, is described in detail in Sect. 6.4. Section 6.5 presents the results
of qualitative and comparative evaluations of the controller. Sections 6.6 and 6.7
discuss future work and conclusions.

6.2 Related Work

An active and growing body work uses games as a domain to study Artificial Intel-
ligence [5–8].

The use of human player data recorded from games in order to create realistic
game characters is a promising direction of research because it can be applied both
to games and to the wider field of autonomous agent behaviour. This approach is
closely related to the concept of Imitation Learning or Learning from Demonstration,
especially when expanded to generalize to unseen data [9–11].

Imitation of human traces has previously been used to synthesize and detect
movement primitives in games [12], however this approach has not been evaluated
in the framework of a human-like bot competition. The use of trajectory libraries
was introduced for developing autonomous agent control policies and for transfer
learning [13, 14]. Hladky et al., developed predictive models of player behaviour
learned from large databases of human gameplay and used them for multi-agent
opponent modeling [15]. Human game data is also collected in an attempt to design
non-player characters capable of using natural language [16]. Imitation learning using
supervised models of human drivers was used in order to train agent drivers in the
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TORCS racing simulator [17]. In robotics, imitation learning approaches have been
shown effective as well, for example in task learning and programming robosoccer
players in simulation [18]. Statistical analysis of player trajectories was used in order
to detect game bots in the Quake first person shooter game [19]. Sukthankar et al. use
similar techniques in order to assign teams and recognize team player behaviour in
multiagent settings [20]. Most recently, a competitor team, ICE, is using an interface
for creating custom recordings of human behaviour in the BotPrize competition [21].

While human behaviour traces and learning from demonstration techniques are
finding increasing use in both games and robotics applications, the BotPrize com-
petition offers a unique opportunity to test such methods in creating human-like
behaviour directly. The challenge of combining imitation and demonstration meth-
ods with other types of policy design methods remains to be met.

6.3 Background

This section describes the domain of Unreal Tournament, the BotPrize Competition,
and some of the challenges to developing human-like game bot behaviour posed by
the software interface used when developing the bot.

6.3.1 Unreal Tournament 2004

Unreal Tournament 2004 is a commercial sequel in a series of first person shooter
computer games developed by Epic Games and Digital Extremes [22]. After it was
published in 2004, the game received Multiplayer Game of the Year awards from
IGN, Gamespy and Computer Gaming World.

The Unreal 2004 game engine consists of a server which runs the game simulation
including 3D collision detection, physics, player score, statistics, inventories and
events. Importantly, the Unreal 2004 game engine includes an embedded scripting
system that uses Unreal Script, an interpreted programming language that provides
an API to the game engine. This scripting interface is used by higher-level wrappers
such as GameBots2004 and Pogamut to allow external programs to control bot
players and receive information about their state [23, 24]. Unreal Script also allows
the recording of detailed game traces from games played by humans and bots.

Players connect to the server using Unreal Tournament clients (either locally or
via a network using TCP and UDP protocols). Clients provide 3D graphics and audio
rendering of the view of the Unreal level from the perspective of the player, and allow
the player to control their character via keyboard and mouse commands. Commands
are customizable, but basic keyboard controls include movement forward, back,
left and right, jumping up, crouching, and selecting a weapon from the player’s
inventory, while the mouse allows the player to turn, aim, and fire primary and
secondary weapons. Each player has some amount of health and armour and an
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array of weapons from one of the predefined weapon types as well as some amount
of ammunition for each.

Multiplayer games can include up to sixteen players per game simultaneously.
These players can include both humans and bots. Normally players can choose from
a number of native bots within Unreal—these are implemented as internal subrou-
tines within the engine and can have a different skill level depending on a numerical
parameter. Both bots and human players can choose from a wide variety of avatars or
skins which represent them during the game. These are all humanoid in appearance
and roughly similar in size—the engine uses the same underlying character anima-
tions during movement, using custom animations only in special situations such as
taunts.

The goal of the normal Death Match mode is to be the first to eliminate a prede-
termined number of opponents by hitting them with weapon fire and reducing their
health and armour to zero. Players who are killed quickly re-spawn at one of several
predefined spawn locations on the level map. Games can optionally have a time limit,
at the end of which the player with the highest number of frags (kills) wins.

6.3.2 The BotPrize 2010 Competition

The BotPrize competition aims to create a Turing-like interactive test for bot behav-
iour [4, 25]. During the 2010 competition, five teams competed during the course
of three one-hour rounds consisting of three 20-minute games each. Each game
took place on one of the three large levels pre-selected by the competition organizer
(and known to the participants beforehand). These levels (Goatswood, IceHenge and
Colosseum), were created by the Unreal Tournament player community after the
release of the original game and are large relative to the character avatar and avatar
motion speed, allowing a large number of participants to interact frequently but with-
out too much interference from other players. The levels also contain complex 3D
geometry and visual and physical obstacles such as trees, walls, columns, fences,
bridges and water. Equal number of bot participants, human judges and native bots
participate in each game. All the participants are anonymized by using a random
in-game name and a random in-game skin. The rules of the game are modified from
a regular death match as follows:

• One of the default weapons in the player arsenal is a “Judging gun” that allows
players (both humans and bots) to record on-the-fly decisions about whether or
not they think their opponent is a human.

• Damage by normal weapons is reduced to 40 % to allow players more time to
interact.

Hitting a player with the primary fire of the judging gun for the first time designates
the player as a human. Hitting a player with the secondary fire of the judging gun for
the first time designates the player as a bot. If the designation is correct (the player
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correctly guesses whether the opponent is a human) the player gets 10 frags and the
opponent is instantly killed. If the designation is incorrect (the player fails to guess
whether the opponent is a human) the player gets —10 frags and dies instantly. The
judgement can only be made once per opponent—judging the same opponent twice
has no effect.

The goal of the human players is to get the highest score—thus it is in their interest
to guess whether or not their opponents are bots correctly. The goal of the bot players
is to appear human, thus ideally their policy should be indistinguishable from what
is expected from a human player in a given situation.

Additional details about the competition are available in previous publications by
the organizer, Philip Hingston [4, 25], and in Chap. 5 of this book.

6.3.3 The GameBots2004 and Pogamut Interfaces

The GameBots2004 interface allows a program to control a bot within Unreal
Tournament using a network socket connection [23]. Synchronous and asynchronous
messages are exchanged between the agent and theGameBots2004BotConnection
running on the Unreal Tournament server, allowing the agent to receive updates about
the game and the bot state and to send commands controlling its motion and its actions.

The Pogamut framework is a Java library that uses GameBots2004 to pro-
vide the developer with a convenient API for accessing game and agent state and
writing custom behaviours for Unreal Tournament 2004 bots [24]. In particular, the
framework takes care of the details of updating agent’s memory (state) information,
wraps GameBots2004messaging protocol in a Java API, and provides a class hier-
archy for representing useful data structures for building bot behaviour, including
navigation graphs, inventory items, sensors, actions, and so on.

6.3.4 Navigation in Unreal Tournament 2004

The interfaces to the Unreal Tournament game engine support two main styles of
navigation for bots. In one of these, the bot specifies the location (or locations)
in its immediate vicinity where it wishes to move, and the game engine executes
this motion, calculating the appropriate animations and adjusting the bot’s location
according to reachability and physical constrains. In the second mode of navigation,
a navigation graph provided by the creators of the level maps can be used in order
plan longer-term routes that take the bot from one location on the level to another.

In general, a navigation graph for a level consists of a relatively small (on the order
of several hundred) number of named vertices, or navpoints, distributed throughout
the level and connected by a network of reachability edges (Fig. 6.1). If two adjacent
navpoints are connected by an edge, the engine should be able to successfully move
the avatar between them.

http://dx.doi.org/10.1007/978-3-642-32323-2_5
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(a) (b)

Fig. 6.1 A side-by-side comparison of the two-dimensional projections of the navigation graph
(a) used by native Unreal bots and of three-dimensional view of the position and event samples of
human behaviour (b) used by the Human Trace Controller and on one of the competition levels. a
Navigation graph for Colosseum. b Human traces for Colosseum

Bots can use standard A* pathfinding such as the Floyd-Warshall method [26]
to get from one location on the map to another. A* and Floyd-Warshall are pre-
packaged in the Pogamut framework, and they work well, but they are different (and
seemingly not quite as good as) what is built into UT2004 and used by the native
bots. Part of the reason for this difference may be that path following sometimes
involves well-timed jumps. The navigation and jumping capability is dramatically
improved in the Pogamut 3.1 release, however, the BotPrize 2010 and the evaluations
presented in this chapter were done using the competition version.

Even with the best of interfaces, error-free navigation is not usually available for
domains with high complexity. This is certainly the case with mobile robot navigation
where sensor and motor errors, physical slips and other inaccuracies can combine
to both stochastic and systemic errors over time. Even in simulated environments
such as Unreal Tournament, the well-timed execution of new destination commands
along the path could be adversely affected by the additional network latency or
computational overhead of the interfaces.

Because navigation primitives used by the bot are not error-free, it often gets
“stuck”, where the actions that it chooses to execute as part of the path following
(or combat) behaviour do not cause any progress because an obstacle is in the way.
This can be caused by navigation command execution errors, by collisions with
other players, by imprecisions in the navigation graph, or by simulated physics inter-
actions with weapon fire. Humans do not play in this manner, and judges often
exploit this behaviour to make negative decisions . The UTˆ2 bot uses the Human
Trace Controller (HTC) in order to quickly detect and recover from such navigation
problems.
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6.4 The Human Trace Controller

The UTˆ2 bot is implemented using a method similar to behaviour trees. The overall
architecture of the bot is described in detail in Chap. 5. In the BotPrize 2010 compe-
tition, the bot uses the HTC in order to improve its navigation behaviour: when the
bot gets stuck while moving along a path or during combat (Sect. 6.4.3), it executes
actions selected by the controller.

The HTC uses a database of previously recorded human games to execute naviga-
tion behaviour similar to that of human players. This section describes how the data
is recorded (Sect. 6.4.1) and indexed (Sect. 6.4.2) to select what actions to execute
(Sect. 6.4.4).

6.4.1 Recording Human Games

Player volunteers were selected from graduate and undergraduate students at UT
Austin. All players had considerable previous experience with video games in general
and first person shooter games in particular. Familiarity with the Unreal Tournament
2004 game varied between the players.

An early version of the competition mod that allowed the judging gun to be used
was instrumented with the ability to log each player’s pose and event information into
a text file, as follows. The standard BotPrize mod was decompiled into its original
UnrealScript using the standard tools that come with the Unreal Tournament 2004.
The script was then modified to write out a detailed log of the events and commands
used by the players into a text file. The text file was then processed in order to extract
traces of human behaviour, and these traces were stored in a SQLite database [27].
The frequency of the samples in the human database thus roughly coincided with
the average logic cycle of the Pogamut/GameBots configuration, around ten times a
second.

Two types of data points were recorded in the database for each human player:
pose data and event data. The player’s pose includes the current position, orien-
tation, velocity and acceleration of the player. This data was recorded every logic
cycle, or around ten times a second. The player’s events were recorded as they hap-
pened together with their time stamp, and included actions taken by the player or
various kinds of interactions with other players or the environment. Example event
types include picking up inventory items, switching weapons, firing weapons, taking
damage, jumping, falling of edges, and so on. Taken together, all the pose and event
samples for a particular player in a particular game form a sequence, and are stored
in such a way as to allow the controller to recover both preceding and succeeding
event and pose samples from any given pose or event.

Games were conducted on the three levels selected for the competition (Fig. 6.1).
Knowledge of the levels in this competition allowed the possibility of using a method
that does not generalize to previously unseen levels.

http://dx.doi.org/10.1007/978-3-642-32323-2_5
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Three types of games were recorded: standard games, judging games, and syn-
thetic coverage games. Standard games were recorded in order to capture what human
players do when playing a standard first person shooter death match variant of Unreal
Tournament 2004. The judging games were recorded in order to overcome the poten-
tial differences in behaviour that manifest themselves when human players are also
judging. Finally, because the competition levels were relatively large and because
some problematic parts of the maps were visited infrequently by human players in the
other data sets, synthetic data sets were collected where human players intentionally
spent time navigating around areas with low data coverage.

In the first type of recorded games, two human volunteers were separated so that
they could not see or hear each other outside of the game. They were joined by an
equal number of native Unreal bot players. The rules were standard death match rules
(first player to get 15 frags wins) and the human data was recorded and used as part
of the database of human behaviour.

In the second type of recorded game, two human volunteers unfamiliar with the
details of the bot were separated in two different rooms such that they could not see or
hear each other outside the game. One of the authors (alternating) and two instances
of an early version of the bot constituted the other participants of the games. The
volunteers were asked to be vocal about what their thought process is and how their
judgements were made. Recorded human traces of all participants in these games
were stored in the database and used as part of the dataset for the Human Trace
Controller.

In the third type of game recording, the authors participated in games designed
specifically to fill in the areas of the dataset where the performance of the Human
Trace Controller was found to be weaker due to lack of human data. These games
involved alternating normal combat with movement localized to areas of the map
where most of the stuck events were seen during testing, such as under the bridge in
Goatswood or among the columns in the Colosseum.

The results presented in this chapter were obtained using a relatively modest num-
ber of human traces (Table 6.1), however, even for this dataset an efficient storage
scheme had to be developed to support timely retrieval and playback. The next section
discusses three data indexing schemes that were used over the course of develop-
ment with properties that make it possible to scale this method to much larger data
sets.

Table 6.1 Size of the recorded human game dataset used in the competition

Level Unique players Events Pose samples

Colosseum 6 4,318 40,474
GoatswoodPlay 7 6,085 40,961
IceHenge 4 8,927 29,736
Total 17 19,330 1,11,171

The total dataset represents about ten hours of play time
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6.4.2 Indexing Databases of Human Behaviour

In order to be able to quickly retrieve the relevant human traces, an efficient indexing
scheme of the data is needed. In particular, it is necessary to quickly find all segments
of the recorded games database that pass within the vicinity of the bot’s current loca-
tion. Throughout the course of development of the UTˆ2 bot, several such schemes
were tested. Two of the most effective indexing schemes are described below.

6.4.2.1 Octree Based Indexing

An octree is a data structure routinely used in computer graphics and vision to index
spatial information [28]. It is constructed by finding the geometric middle of a set
of points, and subdividing the points into eight subsets defined by the three axis-
aligned hyperplanes passing through the point. The process continues recursively
until a termination condition, such as depth, smallest leaf dimension, or smallest
number of points per leaf, is reached.

In order to index the pose data in the database of human game traces, an octree
was constructed over the set of all points with the termination condition defined to
be the first of (a) reaching the smallest leaf radius (set to twice the average distance
moved per logic cycle), or (b) reaching the minimum number of points allowed in a
leaf (set to 20).

Each point in the pose database was then labeled with an octree leaf. Given
the bot’s location, it is possible to traverse the octree index structure and find the
smallest octree node that encloses it, and quickly retrieve the set of points within this
octree node. Only part of the octree is stored in memory, while the rest is backed
by SQL queries which dynamically retrieve the points needed. The Java/SQLite
implementation allows the entire database to be stored in memory if it is small or to
scale to other storage if it exceeds available memory.

6.4.2.2 Navigation Graph Based Indexing

As described in Sect. 6.3.4, levels in Unreal Tournament and many other similar
games come with navigation graphs, which connect a number of named vertices
distributed throughout the level with reachability edges.

It turns out that the nodes of the navigation graph can be used as labels for the
points in the trace database, allowing the controller to quickly retrieve those points
which are closest to a particular node. While this indexing process does take some
time, it can be done efficiently by forming a KD-tree [29] over the navigation graph
and iterating over the points in the database, performing a nearest neighbour search
over the (relatively few) vertices in the navigation graph.

Once the nearest navpoints to the bot’s location is found, the database yields the set
of points in the pose database that are closest to the navpoint (belong to the navpoint’s
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Voronoi cell [30, 31]). Like the octree implementation above, the database-backed
data structure can scale to a very large number of points because the tradeoff between
memory and speed is adjustable.

Both of these schemes yield a subset of the pose database which is considered
during playback (Sect. 6.4.4), however, the navigation graph scheme relies more on
the availability of good level meta-data, while the octree-based indexing relies more
on the quality of the human games database.

6.4.3 Detecting When the Bot is Stuck

Several different heuristics were employed in order to quickly determine when the
bot is stuck. These were formulated after observing the behaviour of several earlier
versions of the bot and characterizing the times when it was stuck.

• SAME_NAV—the bot keeps track of the number of logic cycles it finds itself next
to the same navigation point as the previous cycle. The SAME_NAV condition is
triggered when this number increases past a threshold.

• STILL—the bot keeps track of the number of logic cycles it finds itself within
a short distance of the previous position. The STILL condition is triggered when
this number increases past a threshold.

• COLLIDING—the Unreal Tournament game engine and the GameBots2004
API report when the bot is colliding with level geometry, and this information is
incorporated into the bot’s senses by the Pogamut framework. The COLLIDING
condition is set to true whenever the corresponding sense is true.

• BUMPING—the Unreal Tournament game engine and the GameBots2004API
report when the bot is bumping into movable objects such as other players and this
information is incorporated into the bot’s senses by the Pogamut framework. The
BUMPING condition is set to true whenever the corresponding sense is true.

• OFF_GRID—this condition is triggered when the bot finds its distance from the
nearest navpoint reach a threshold.

If one of these conditions is set to true, the bot is considered stuck and the Human
Trace Controller is executed as the controller for that logic cycle.

6.4.4 Retrieval and Playback of Human Behaviour Traces

When the bot finds itself stuck, if calls upon the Human Trace Controller in order to
get unstuck. The controller keeps track of when it was last called, and either follows
a previous path or creates a new one.

Several conditions have to be met in order for the bot to follow an existing path.
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These are:

• The path was started recently enough.
• The bot has not strayed from the selected path. The “current” point along the path

is within a set distance of the bot’s current position.
• The path is not interrupted or terminated by recorded events such as falls, death,

or large gaps between sampled positions.

If one or more of these conditions is not met, the Human Trace Controller attempts
to start a new path. Otherwise, it continues along the previously started one.

The bot selects a set of relevant points from the pose database using one of the
indexing techniques described in Sect. 6.4.2. Once the points are selected, one of
them is picked as the starting point. Two methods for doing so that were tested
during the development of the UTˆ2 bot—the random point selection and the nearest
point selection. Based on the results of these tests, the competition version of the
bot picks the nearest point unless this point is picked twice in a row, in which case a
random point is selected.

Selecting a point from the subset specifies the sequence the agent will follow. The
agent can then estimate the parameters of the movement action by using an estimate
of the logic cycle length and the time stamps of the pose records.

In order to continue along the path, the agent uses the time passed since the starting
point was selected in order to pick the next point from the database. The time delay
between the pose samples along the stored paths in the database and the logic frames
executed by the agent are both variable and different from each other. In order to
address this problem, the agent interpolates between two database points in order
to get an estimate for where on the path it should move to. The controller keeps an
estimate (arithmetic mean) of the logic frame cycle length from its experience in
order to do so.

Executing the planned motions outside of the navigation mesh poses its own
challenges. If a point is not specified far enough in advance as the target of motion,
the bot will appear to stall after every logic cycle. If a point too far ahead is specified,
however, the bot will appear to change directions suddenly. The navigation interface
provided by the GameBots API includes several different kinds of location-based
movement primitives. Because the logic frame rate can be variable and latency can
influence when an action actually reaches the engine and begins to execute, the
MoveAlong primitive is used. This primitive takes two positions, p1 and p2, in
order to make the movement appear smooth in the face of unpredictable latency. In
effect, the MoveAlong action schedules the motion to p1 and then to p2, making
the assumption that the next MoveAlong command will arrive when the agent is
somewhere between p1 and p2. If the actions are interpolated carefully as part of a
continuous path such as a trace of a human game, the resulting path appears smooth
and purposeful.

The recorded and indexed human data, the firing conditions, and the retrieval and
playback of the human trajectories together constitute the entirety of the Human
Trace Controller component of the UTˆ2 bot. The next section discusses how this
component was evaluated.
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6.5 Results and Discussion

The performance of the human trace module was evaluated in several ways. First,
it was used in the competition version of the UTˆ2 bot, which placed second out of
five competing systems in the BotPrize 2010 competition (Sect. 6.5.1). The results
of this evaluation were limited to high-level performance metrics based on human
judgements and to qualitative insights extracted after the competitions based on video
recordings of agent performance. The second type of evaluation was performed after
the competition and was aimed at empirically comparing how the different variants
of the unstuck controller contributed to the bot’s ability to get unstuck and to the
overall performance (Sect. 6.5.2).

6.5.1 BotPrize 2010 Competition Results

A summary of the overall bot humanness rating results is given in Table 6.2. In
addition to these results, the detailed records of the judgements as well as game
demo files from the games were made available after the competition.1 This section
summarizes the qualitative evaluation of the Human Trace Controller part of the bot
based on these records.

The game records are provided in the Unreal demo format, which allows playback
of the entire game from the perspective of a free camera (spectator mode) or from the
perspective of any human player (follow mode). Several qualitative observations can
be made based on reviewing these records. These observations are described below.

6.5.1.1 Data Sparseness

One problem that the bot frequently encountered on one of the levels, Colosseum,
was getting stuck in the narrow hallways radiating outward from the centre of the
level. Because the navigation graph does not extend into these areas, the bot will
often bump into a wall if it tries to run to a node or an item after finding itself there.

Table 6.2 BotPrize 2010
results, including the average
humanness rating of the
native bots. The humanness
rating is the percentage of
judgements of the bot (by
humans) that identified it as a
human player

Bot Humanness

Native UT2004 Bot 35.3982
Conscious-Robots 31.8182
UTˆ2 27.2727
ICE-2010 23.3333
Discordia 17.7778
w00t 9.3023

1 http://www.botprize.org/2010.html

http://www.botprize.org/2010.html
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The Human Trace Controller can solve this problem, but only when a record exists
for the particular area where the bot is stuck. Observations of the competition records
from the UTˆ2 bot confirm this, because the first version of the bot’s database used
on the Colosseum level resulted in the bot being often stuck in the columns area,
and this situation improved dramatically with the addition of traces specifically in
the problem areas.

However, as noted below, one future direction for the controller is to use machine
learning techniques in conjunction with egocentric sensors to generalize between
environments that look similar. The hallways are a great example of where such an
approach would be particularly useful.

6.5.1.2 Correspondence Problem

One fundamental problem faced by all designers of human-like behaviour is the
correspondence problem, or the difference between the actions and observations
available to humans and those available to artificial agents [11]. This problem
can include differences in decision frequency, the kind and amount of information
expressed in the sensors, differences in body morphology or capability and so on.

This problem sometimes leads to the bot’s inability to reproduce a human reaction
either because its observations are insufficient or because its actions are limiting.

For example, in the BotPrize competition, the human players control the bot via
keystrokes and mouse movements that are processed by the game engine at a very high
frequency. They receive information about the environment from a two-dimensional
rendering of the three-dimensional world, which includes rich information such as
texture, colour, shadow, effects of explosions, sounds, and so on. Further, they can
rely on the powerful ability of the human mind to interpret and synthesize these
events into higher-level stimuli, using highly parallel and complex “wet-ware”, the
workings of which we are only beginning to understand.

Bots, in contrast, send commands controlling their player about ten times a second,
and the command repertoire does not include direct equivalents to keystroke and
mouse based control of a human player. The observations of a bot include a lot of
information about the environment that the human is not given immediately (such as
reachability grids, navigation graphs, exact locations of items and event notifications)
but also exclude important features, such as an effective way to react to sound, the
ability to see the nature and extent of different environments such as lava or water,
and an effective ability to deal with level geometry.

As a concrete example of this problem, in the Goatswood level, the bot would
sometimes get stuck next to short obstacles in its path, and trying to follow a human
trace would not lead to a successful navigation because in order to do so the bot would
have needed to send a (well timed) jump command in addition to a MoveAlong
action. Humans, in contrast, were able to “push through” such obstacles because
such small jumps are built in to the pawn behaviour.
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6.5.1.3 Environmental Features

Another class of problems has to do with special features of the environment. For
example, both the Goatswood and the IceHenge level contain areas with water flowing
through them. These special areas change the way the bot responds to commands,
making movement slower in some directions and faster in others. This in turn causes
human path execution to fail, because the bot tries to execute the same actions in two
very different environments, as it does not operate in the same action space as the
human did.

Because the water hazards are particularly difficult for the human trace controller
to navigate, during the competition the UTˆ2 bot used a specially designed Water
Controller when it was stuck in water areas. The controller uses a goto primitive
along with additional hand-crafted navigation nodes in order to get out of the water
as quickly and smoothly as possible. Additionally, proximity to important items
located on the side of the water hazard in IceHenge can cause the bot to go to that
location instead.

While this partial solution improved the performance of the bot on levels with
water hazards, it does not result in a particularly human-like behaviour. For example,
people occasionally used water as cover to sneak up on opponents or to escape
pursuit.

Taken together, these observations provide important insights into the kinds
of problems that need to be addressed when designing human-like behaviour. In
Sect. 6.6, we discuss some future work that may help address these issues.

6.5.2 Comparative Evaluation

In order to evaluate the contribution of the Human Trace Controller to the overall
UTˆ2 bot, comparisons were made between three versions of the bot, where the
only difference was the controller used to get the bot unstuck. The following three
controllers were used in the comparison:

• The Null Controller simply ignores the stuck condition and continues to whatever
action would fire in the bot otherwise.

• The Scripted Unstuck Controller is a scripted controller designed to get the bot
unstuck during evolution (Sect. 6.5.2.1).

• The Human Trace Controller as used during the BotPrize 2010 competition.

In all three versions the overall bot is modified from the competition version by
removing level-specific special cases and the WaterController in order to make
sure that only one controller is used to get unstuck during the comparison.
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6.5.2.1 The Scripted Unstuck Controller Baseline

The Scripted Unstuck Controller is a scripted controller designed to get the bot
unstuck reliably and quickly. Because it is relatively simple and does not rely on
changing external human databases, the Scripted Unstuck Controller was used when-
ever the bot got stuck while evolving the battle controller for the UTˆ2 bot (see
Chap. 5). It also provides a strong benchmark for comparisons with the performance
of the Human Trace Controller.

In our experiments, the controller picks one of the following actions depending
on the current state of the bot:

• If the bot is currently at location x1 and detected a collision at x2, the controller
requests a move of 5 · (x2 − x1).

• If the bot is currently at location x1 and detects a bump at location x2, the controller
requests a move of 5 · (x2 − x1).

• Otherwise,

– with probability 0.5, the controller performs a DodgeShotAction, which
results in a single jump in a random direction.

– with probability 0.25, the controller requests the bot to run forward continuously
until another command is selected.

– with probability 0.25, the controller requests the bot to go to the nearest item.

6.5.2.2 Comparison Results

The results of these comparisons for the three levels are given in Figs. 6.2, 6.3 and 6.4.
The three bars represent UTˆ2 bot using no unstuck controller (NONE), the Human
Retrace Controller (HTC), and the scripted controller (SCRIPTED). Each bar is an
average of thirty runs, where each run represents ten minutes of game time in a game
with two Hunter bots and the modified UTˆ2 bot. Standard error is indicated by the
error bar.

Overall, both the Scripted Unstuck Controller and the human trace controller
perform similarly in terms of the number of cycles stuck. However, the Human
Trace Controller still has two advantages: it generates qualitatively smoother paths
when executed in isolation with random restarts, and the average length of a
stuck segment for the Human Trace Controller is shorter than that of the scripted
controller. Because the evaluations are very noisy, further evaluations are needed
in order to determine statistical significance of these findings. However, the need
for an unstuck controller is significant in that both controllers outperform the Null
Controller.

http://dx.doi.org/10.1007/978-3-642-32323-2_5
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Fig. 6.2 Number of logic cycles stuck by condition on the Colosseum level. Averages of thirty
ten-minute runs and standard error are shown

Fig. 6.3 Number of logic cycles stuck by condition on the Goatswood level. Averages of thirty
ten-minute runs and standard error are shown

6.5.2.3 Post-competition Improvements

After the 2010 BotPrize competition, the UTˆ2 bot was modified to improve several
aspects of using human traces. First, the scripted unstuck controller was integrated
with the Human Trace Controller to allow the scripted controller to take over when
traces are unavailable or failing to replay correctly. Second, the HTC was also used
by an additional top-level UTˆ2 controller that allowed the bot to explore the level
in a human-like fashion in the absence of any other goals. Third, the database was
filtered to include only smooth segments, not interrupted by jumps or other artefacts.
Finally, HTC playback was modified to ensure that positive path progress was made
by keeping an estimate of bot speed and selecting points along the path by distance
traveled according to this estimate.

The results of these comparisons are shown in Fig. 6.5. The amount of time the
bot spends stuck decreases both when using Human Traces to get unstuck and when
using them to explore the environment. Additionally, the human trace replay used
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Fig. 6.4 Number of logic cycles stuck by condition on the IceHenge level. Averages of thirty
ten-minute runs and standard error are shown

Fig. 6.5 A comparison of several versions of the 2011 version of the UTˆ2 bot. Average unstuck
counts are shown when the bot is using no human traces (No traces), only to get unstuck (Unstuck),
only to explore the level (Explore), or both to get unstuck and to explore (Both). Average over 10
runs with standard error bars are shown for the Osiris2 level

for exploration allows the bot to avoid traveling along the navigation graph and looks
smooth and human-like when observing.

6.6 Discussion and Future Work

The Human Trace Controller presented in this chapter is a simple way to utilize
recorded human behaviour to improve parts of the agent’s navigation policy. How-
ever, the technique is much more generally applicable and can be extended to further
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improve the navigation system, to generalize to previously unseen environments, and
to support higher-level decision making such as opponent modeling.

One further area where human trace data can be useful is to improve other compo-
nents of the navigation subsystem. Because the levels for Unreal Tournament 2004
are designed by hand, some areas of the levels are missing navpoints or edges in
places where they would be quite useful to bots. In such places, it is possible to
use the human data to induce a more complete version of the navpoint graph. Such a
graph could then be used without modification by graph navigation and path planning
modules.

The Human Trace Controller as described in this chapter suffers from one major
weakness—it does not generalize to new environments (or even to unseen parts of
existing environments). Enabling the bot to generalize to previously unseen environ-
ments would require (1) recasting of the problem in an egocentric state space and
(2) selecting an appropriate machine learning technique to support better generaliza-
tion. Some work has already been done towards achieving (1)-the combat module
of the UTˆ2 bot uses a set of ego-centric and opponent-centric sensors and actions
which could be reused when building a human player model. In order to achieve
(2), the indexing techniques described in Sect. 6.4.2 can be naturally replaced with
an instance-based machine learning algorithm such as a decision tree or a nearest-
neighbour algorithm. This instance-based method can be compared and contrasted
with other machine learning methods capable of compressing the data such as neural
networks or probabilistic techniques. Whatever solution is used, one property that
would be useful to retain from the current implementation is the ability to select what
parts of what kinds of environments should be added to the database for maximum
gain in the model’s accuracy.

In order to address the correspondence problem, or the difference between the
human and the bot’s observation and action spaces, and to support the use of machine
learning for effective generalization based on previously seen human behaviour,
a translation scheme between human and bot observations and actions needs to
be developed. This could be done automatically by learning the bot actions and
parameters that most accurately recreate small sections of human behaviour, and
using those actions as primitives when replaying new traces or outputs of a learned
human behaviour model.

In addition to using a model of human behaviour to mimic it as part of the agent’s
policy, it is possible to use this information in other ways. For example, it may
be possible to use the human behaviour database to design a “humanness fitness
function” for evolving human-like control policies. Such a function can be used
for example as part of the multi-objective neuroevolution technique discussed in
Chap. 5 to compare the behaviour generated by a candidate bot with that available in
the human database. As another promising future use of human trace data, the bot
can use its model of human behaviour to predict and reacquire a human opponent it
is chasing if it loses track of him or her. Such behaviour can be seen as purposeful
and cognitively complex, and thus very human.

http://dx.doi.org/10.1007/978-3-642-32323-2_5
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6.7 Conclusion

The Human Trace Controller component of the UTˆ2 bot takes a step towards build-
ing human-like behaviour in a complex virtual environment by directly replaying
segments of recorded human behaviour.

Evaluation of the resulting controller as part of the BotPrize competition and via
comparative experiments suggests that the replay of human traces is an effective way
to address the navigation problems faced by the UTˆ2 bot. Additionally, human traces
can be used for exploration of the level in the absence of other goals. The resulting
behaviour appears smooth and human-like on observation, while also allowing the
bot to navigate the environment with a minimal number of failures.

Finally, the work demonstrates the feasibility of using large databases of human
behaviour to support online decision making. The approach can scale and improve
with experience gained naturally from domain experts; it is applicable to the explicit
goal of building human-like behaviour; and it supports imitation, a primitive that is
ubiquitous in examples of intelligent behaviour in nature.
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