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Abstract This paper presents a new framework for modeling topological relations
among objects of type point, line, and region. The main contributions are in two
directions: First, the formalism proposed allows specifying all possible relations
by means of symmetric matrices (whereas the usual formulation of such relations
does not have this property). Symmetric matrices enable the efficient and automatic
verification of valid matrices associated only with the possible topological relations.
Second, it allows the specification of cases where two objects are spatially related in
more than one way (e.g., a line that crosses a given region in one part and is adjacent
to the same region region in another part). This increases the flexibility that users are
offered to model queries on spatial databases using topological relations.

Keywords Topological relations · 3-axis-Intersection · Conceptual neighborhood
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1 Introduction

Spatial relations play a central role in their (GIS) description into database query
and spatial constructs, down to the query processing level (Clementini et al. 1992;
Clementini et al. 1994). Most spatial query languages provide facilities and functions
for expressing different spatial predicates, usually referring to topological and metric
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relations (Egenhofer 1991; Frank 1982; Herring et al. 1988; Raper and Bundock
1991; Roussopoulos et al. 1988). In order to support these operations, different
formal frameworks have been introduced. Topological relations are the ones that
have so far been studied the most. Direction relations have also been studied, and a
recent formal model thereof can be found in Papadias et al. (1996).

In this paper, we present a new formal model for expressing topological relations
among geometric objects. In particular, we focus on intersection matrices represen-
tations, which describe spatial relations in terms of the intersections of interiors,
boundaries, and exteriors of objects. Existing matrix representations only allow for
either the mere detection of empty intersection (i.e., disjoint objects) or the enumer-
ation of the dimension of intersections.

The various possible types of intersections between interiors, boundaries, and
exteriors of geometric objects, once identified, are much more elucidative than simply
knowing that an intersection exists or the set of intersection components’ dimensions.
In this sense, better models are needed to obtain a greater level of detail that allows for
better distinction of seemingly identical topological relations making it possible for
the user to focus on specific situations. However, this generality makes it necessary to
define groups of relations that can be used to guide the user of the query system among
the exceedingly large number of possibilities. Once such groups are well defined, one
can take full advantage of the exact definitions of relations and consider all possible
combinations of intersections. In this sense, Alboody et al. (2009) proposed detailed
descriptions for four topological relations between regions in the intersection and
difference model (Deng et al. 2007) using the separation number.

In this paper, we present a new formalism for topological relations where the (flat)
intersection matrix representation is expanded into a (3-d) cube. The third and new
dimension of this (3-d) cube, named the 3-axis-intersection model, is the means for
expressing and counting the ways in which two geometric objects are spatially related.
A major contribution of this new framework is allowing the formal description of
complicated scenarios. In these complicated scenarios, users are required to express
when two objects maintain multiple different spatial relations at the same time (e.g., a
line that crosses a given region in one part and is adjacent to the same region in another
part). Existing formalisms only describe a single topological relation at a time. In
addition to that, our model allows to discriminate when two objects maintain the
same topological relation multiple times by counting the number of such instances.
We show that, by using our framework, one can determine beforehand an upper
bound for all possible types of topological relations composed of combinations of
multiple relations.

Our formalism uses definitions of topological parts (i.e., interior, boundary, and
exterior) for simple objects based on the topology of metric spaces. These definitions
are slightly different from the ones used by previous models. Our approach leads to
automatic methods to quantitatively compare different relations (i.e., a topological
distance). Based on this topological distance and on the ability to validate matri-
ces, our approach allows the automatic computation of a conceptual neighborhood
diagram.
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A conceptual neighborhood diagram (Egenhofer and Mark 1995; Freksa 1992) is
a graph where every node is a different topological relation and two nodes are linked
if their topological distance is minimum. The quantitative comparison between dif-
ferent topological relations allows the automatic construction of conceptual neigh-
borhood diagrams. Therefore, using our formalism, one can automatically establish
a detailed conceptual neighborhood diagram. This lowest-level diagram can be parti-
tioned into groups of similar topological relations. This process results into a general-
ized hierarchy of conceptual neighborhood diagrams, thereby helping users express
their view of reality in more abstract ways and at different levels or granularities.

All existing formalizations are based on modelling topological relations between
simple spatial objects. The applications of our approach also extends to consider
relations among complex spatial objects—e.g., a region composed of disjoint regions.
The relationships between two complex objects are described in terms of the relations
among their individual components.

Ultimately, our framework contributes to provide formal methods to naive geogra-
phy, where users’ intuitive descriptions can be mathematically modelled in a formal
and compact notation. This notation enables the specification of queries according to
topological relations and allows the search and retrieval of spatial and geographical
entities in a database.

In summary, the main contributions of our new formalism for topological rela-
tions are (1) allowing the formal description of scenarios when two spatial objects
have multiple relations at the same time, (2) enabling the automatic construction of
conceptual neighborhood diagrams at different levels, (3) generalizing to complex
spatial objects by considering the relations of individual components, and (4) pro-
viding formal methods to naive geography and to the specification of spatial queries.

The rest of this paper is organized as follows. Section 2 gives a brief overview
of the main formal models that have been proposed to describe binary topological
relations. Section 3 shows how these notions can be re-stated by using mathematical
topology definitions. Section 4 extends this formalism by considering that two objects
can simultaneously relate in several ways. Section 5 introduces the topological dis-
tance between relations and the construction of conceptual neighborhood diagrams.
Finally, Sect. 6 presents conclusions and future work.

2 Related Work

In this section, we give an overview of the theoretical basis for defining binary
topological relations and summarize matrix-based representations reported in the
literature.

The 4-intersection model is a widely accepted means for the representation of
topological relations between region objects (Egenhofer and Herring 1990), in which
the definition of relations between objects A and B is based on the four intersection
sets of their interiors (◦) and boundaries (∂). The intersection sets are denoted by
Si, j , where i, j indicate the operands of the intersections as follows:
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S0,0 = A◦ ∩ B◦,
S0,1 = A◦ ∩ ∂ B,

S1,0 = ∂ A ∩ B◦,
S1,1 = ∂ A ∩ ∂ B.

A 2 × 2-matrix �4 concisely represents these criteria (Eq. 1). These four inter-
section sets form a topological invariant of the relation between A and B. The set
of values that represents the content of the intersection sets is denoted by domain
Dom(S), where S is an intersection set. The 4-intersection method regards only the
values empty and non-empty as domain (Dom4(S) = {∅,¬∅}).

�4(A, B) =
(

S0,0 S0,1
S1,0 S1,1

)
(1)

Egenhofer and Herring (1991a,b) introduced the 9-intersection model
extending the 4-intersection model to account for intersections between pairs of
objects other than (2-d) regions, such as pairs of lines, or a line and a region. The
9-intersection model describes binary topological relations based on the intersec-
tions of the interiors, boundaries, and exteriors (−) of two given spatial objects
A and B:

S0,2 = A◦ ∩ B−,

S1,2 = ∂ A ∩ B−,

S2,0 = A− ∩ B◦,
S2,1 = A− ∩ ∂ B,

S2,2 = A− ∩ B−.

The nine intersections provide a formal description of the topological relations
between the objects, which can be concisely represented by a 3×3-matrix �9 (Eq. 2).
This model applies the same domain of 4-intersection: Dom9(S) = Dom4(S).

�9(A, B) =
⎛
⎝ S0,0 S0,1 S0,2

S1,0 S1,1 S1,2
S2,0 S2,1 S2,2

⎞
⎠ (2)

In the dimension extended method (Clementini and Felice 1995; Clementini
et al. 1992), Clementini et al. take into account the highest dimension of the inter-
section, instead of only distinguishing the content (emptiness or non-emptiness)
of the intersection. This method is also an extension of the 4-intersection model,
where the intersection set S can now be either ∅ , 0-d, 1-d, or 2-d: Domdim(S) =
{∅, 0−d, 1−d, 2−d}. For instance, the 4 intersections between a line and a region
result in the following possible cases:
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Table 1 The number of relations for all relation groups

Relation groups 4-int 9-int ext-dim ref-dim

Region/region 8 8 9 16
Region/line 19 17 43
Line/line 33 18 61
Region/point 3 3
Line/point 3 3
Point/point 2 2

Domdim(S0,0) = {∅, 1-d},
Domdim(S0,1) = {∅, 0-d},
Domdim(S1,0) = {∅, 0-d, 1-d},
Domdim(S1,1) = {∅, 0-d}.

Based on the dimension extended model, Clementini et al. also show that, from
the users’ point of view, all binary relations can be expressed in terms of 5 operators
(cross, in, overlap, disjoint, touch) and two boundary functions. This means that, in
order to formulate queries or to describe a scenario, users can precisely express what
they want using only this vocabulary.

McKenney et al. (2005) proposed the 9-intersection dimension matrix based on
the dimension of an intersection as the topological invariant. In their model, the
refined dimension of a given point set is the union of dimensions of its maximal
connected components. Hence, the dimension matrix actually considers all possi-
ble dimension combinations of points, lines, and regions: {⊥, 0-d, 1-d, 2-d, 01-
d, 02-d, 12-d, 012-d}, where ⊥ is the undefined dimension of an empty set, 0
is the dimension of single points, 1 is the dimension of single lines, and so on.
Besides considering all possible combinations of dimensions in a more explicit man-
ner where each unique dimension has its own entry in the matrix, our approach counts
the number of components per intersection and for each dimension. This enables a
higher level of discriminative power to represent more details in terms of topological
relations. Furthermore, the basic predicates defining topological parts (i.e., interior,
boundary, exterior) are fundamentally different in our model. We follow a more strict
topological definition.

Each matrix-based model allows representing a number of feasible binary topolog-
ical relations among objects. These numbers are shown in Table 1. The table shows,
for instance, that the 9-intersection model allows representing up to 8 different cases
of relations among regions, and up to 33 cases of relations among lines.

The 9+-intersection model (Kurata and Egenhofer 2007) considers the
intersections of topological primitives of spatial objects. A topological primitive
is a self-connected and mutually-disjoint subset of a topological part of the spatial
object. Therefore, the 9+-intersection model describes topological relations between
complex objects that may consist of multiple disjoint subparts.
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The intersection and difference model (Deng et al. 2007) uses only the interior
and the boundary of regions. The model describes topological relations according to
intersection sets (A◦ ∩ B◦ and ∂ A ∩ ∂ B) and difference sets (A − B and B − A) of
two given spatial objects A and B.

Kurata (2009) proposed a method to build a conceptual neighborhood graph for a
given set of topological relations according to the 9+-intersection model. The graph
links pairs of topological relations according to a smooth transformation that changes
one relation into the other. Two topological relations ra and rb are conceptual neigh-
bors when there exists a smooth transformation that changes the topological relation
of two simple objects from ra to rb. Instead of using a smooth transformation, we
construct conceptual neighborhood diagrams similarly to the snapshot model (Egen-
hofer and Al-Taha 1992). This approach considers similarity as the smallest number
of different elements in a matrix-based representation. This allows the automatic
computation of conceptual neighbors for a set of topological relations.

3 Simple Spatial Objects

The interior, boundary, and exterior are the topological parts of objects used in the
literature to describe topological relations. Some of the previous representations are
based on formal definitions for topological parts different from the pure mathematical
theory (Alexandroff 1961). The difference lies in the definition of “boundary”. First,
unlike mathematical topology, points have no boundaries. Second, the boundary of
a line is defined as being composed of two nodes at which exactly one 1-cell ends;
its interior is the union of all interior nodes and all connections between the nodes.

Our definitions strictly follow the theory of general topology with a single def-
inition of topological parts for all spatial objects. As some other previous models
(Egenhofer and Franzosa 1991), our approach uses definitions of interior, bound-
ary, and exterior for a simple object based on the standard general topology. These
definitions are slightly different from the ones used by previous models. Here, we
stress the differences between our work and the related literature with regards to the
definitions concerning topological parts of simple spatial objects.

3.1 Definitions

To review the main definitions, we briefly recap a couple of them from topology of
metric spaces. Let S be a subset of R

2.

• A point p ∈ S is an interior point of S if there is an open disc1 centered at p totally
contained in S. The set of all interior points of S is the interior of S—denoted S◦.

1 An open disc centered at a point p is the set {q ∈ R
2|d(p, q) < r} for some positive radius r ,

where d is the Euclidean distance.
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Fig. 1 Topological parts of
simple objects interior

boundary

exterior

• A point p ∈ R
2 is a boundary point of S if all discs of positive radius centered at

p intersect both S and its complement (or exterior) S− = R
2 − S. The set of all

boundary points of S is the boundary of S—denoted ∂S.
• S is said to be (topologically) closed if it contains its boundary.

From now on, the notions of interior, boundary, and exterior are to be regarded as
those from traditional topology (Alexandroff 1961) whereby they are to be viewed
in relation to the whole embedding topological space (R2), and not to a subspace
of it.

We consider here any spatial objects in R
2 of three possible dimensions, namely,

(0-d) points, (1-d) curves, and (2-d) regions, provided that the last two satisfy certain
conditions. A curve (which we often refer to as a line) must be a topologically closed
arc of a simple Jordan curve of finite length. This means that it may have either
two endpoints (included in the curve, in which case it is homeomorphic to a closed
interval), or no endpoints (in which case it is homeomorphic to a circle—and is
alluded to as a cycle). A region must be bounded and homeomorphic to a closed
disc. Therefore, a line is connected, without self intersection, of finite length; and a
region is topologically closed, connected, bounded, and simply-connected (without
holes).

The interior of a point and that of a line are empty, while each of these is equal to
its own boundary2 (see Fig. 1). The interior of a region is homeomorphic to an open
disc and its boundary is a line.

We will use the term feature to represent any spatial object of the types above.
A simple spatial object obeys two properties:

a) it is (topologically) closed; and
b) it is connected, that is, it is not the union of two separated features.

4 A New Formalization for Spatial Relations

As shown in Sect. 2, previous formalizations of spatial relations between two objects
are based on the specification of one relation at a time. This precludes the possibility
of describing cases where two objects are related to each other in multiple ways.
Figure 2 shows one such example: the line L both crosses and touches the region R.

2 Some authors consider the boundary of a (non cycle) line as consisting of its two endpoints and
its interior as the (non-empty) remaining arc.
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Fig. 2 A situation with two
objects related in multiple
ways

L

R

Users can still describe this, but the 4- or 9-intersection models are no longer able to
represent this.

If one uses the 4- or 9-intersection models, these multiple relations would require a
set of matrices, each of which describing one such relation. Furthermore, L touches R
three times and also crosses it three times. Again, this cannot be expressed in previous
formalizations. We now present a model, named the 3-axis-intersection model, that
can be used to express these multiple relations.

Let us now build upon the formalism described in the previous section. We
introduce the mechanisms needed to define the binary topological relations in terms
of intersections of the topological parts of spatial objects. This new formalism con-
siders the dimension of the intersection. More specifically, we use the 9-intersection
matrices for the 0-d, 1-d, and 2-d components as different sets. These components are
represented by the three 3 × 3-matrices, �3−axis0−d ,�3−axis1−d ,�3−axis2−d , which
we call the 3-axis-intersections:

�3−axis0−d (A, B) =
⎛
⎝ S0,0,0 S0,1,0 S0,2,0

S1,0,0 S1,1,0 S1,2,0
S2,0,0 S2,1,0 S2,2,0

⎞
⎠ ,

�3−axis1−d (A, B) =
⎛
⎝ S0,0,1 S0,1,1 S0,2,1

S1,0,1 S1,1,1 S1,2,1
S2,0,1 S2,1,1 S2,2,1

⎞
⎠ ,

�3−axis2−d (A, B) =
⎛
⎝ S0,0,2 S0,1,2 S0,2,2

S1,0,2 S1,1,2 S1,2,2
S2,0,2 S2,1,2 S2,2,2

⎞
⎠ .

Each of these three matrices corresponds to nine intersection sets. Each of these
usual intersection sets is generated as the union of connected intersection components
in a particular dimension (0-d, 1-d, and 2-d), amounting to a total of 27 possible sets
Si, j,k . The first index (i) indicates the topological part of the first object, the second
index ( j) specifies the topological part of the second spatial object, while the last index
(k) indicates the dimension of the connected components in the set. For example,
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Fig. 3 The 3-axis-
intersection model

o

-

2-d

1-d

0-d

\patial

o \partial   -

S1,2,1 identifies the intersection set of the boundary of the first object with the exterior
of the second object including only 1-dimensional connected components.

The 27 elements can be graphically represented as a 3 × 3 × 3 cube composed
of 27 unit cubes, each of which represents an intersection set (see Fig. 3). The cube
is depicted in three layers of unit cubes, where the bottom layer corresponds to the
0-d matrix, the middle layer corresponds to the 1-d matrix, and the topmost layer
corresponds to the 2-d matrix.

The domain of our formalism is the number of connected components per inter-
section (Dom3−axis(S) = {0, 1, 2, . . .}). Now, instead of just describing the absence
of an intersection or its highest dimension, Si, j,k “counts” the number of connected
components of an intersection. Figure 2 is now described using this formalism by
means of three matrices:

�3−axis0−d (L , R) =
⎛
⎝ 0 0 0

0 4 0
0 0 0

⎞
⎠ ,

�3−axis1−d (L , R) =
⎛
⎝ 0 0 0

3 2 4
0 6 0

⎞
⎠ ,

�3−axis2−d (L , R) =
⎛
⎝ 0 0 0

0 0 0
4 0 3

⎞
⎠ .

For instance, S1,1,1 = 2 denotes that the boundaries of L and R intersect twice in
terms of 1-d connected components. The 7 intersection sets with non zero values have
their geometric interpretations shown in Fig. 4. For instance, consider �3−axis2−d ,
which describes the intersections of L and R with respect to 2-d connected
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SS

SS

1,2,11,1,11,0,1

2,0,22,1,1 S2,2,2

SS1,1,0

Fig. 4 The geometric interpretations of the set of intersections

components. S2,0,2 = 4 because there are 4 connected components in the inter-
section set (L− ∩ R◦).

It may appear discouraging that there might be (n+1)27 possible relations between
two objects, where n is the maximum number of connected components. However, a
rather remarkable consequence of our restricting the spatial objects to be connected,
is that most such combinations are impossible for objects embedded in the plane
due to their topological properties (Egenhofer and Franzosa 1991; Egenhofer and
Herring 1991a) and their codimensions (Egenhofer and Herring 1990; Herring 1991;
Pigot 1991).

Since the dimension of the intersection cannot be higher than the lowest dimen-
sion of the object parts involved, some elements of the matrices are impossible
(non-occurring), denoting an unfeasible relation. When a given matrix element is
impossible, the corresponding unit cube does not exist. Figure 5 shows the cubes for
each relation group after impossible elements are discarded. It shows, for instance,
that there are at most 6 (point/point) intersection sets and at most 22 (region/region)
possible intersection sets. The point/point and region/region relations determine the
lower and upper bounds of the possible relations between two objects. Thus, we have
[(n + 1)6, (n + 1)22] possible relations, but the number is still unlimited.

Further simplification comes from the fact that the sets of intersections can only
have connected components with the highest possible dimension. The only exception
is in the boundary/boundary intersections that can have 0-d and 1-d components.
Thus, the lower and upper bounds become [(n + 1)4, (n + 1)10] possible relations.

Note that the boundary/boundary intersections (S1,1,0 and S1,1,1) determine the
maximum value, m, in the 3-axis intersection. Let c1 and c2 be integers such that

Dom3−axis(S1,1,0) = {0, . . . , c1}

and
Dom3−axis(S1,1,1) = {0, . . . , c2}.
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Line/LineRegion/LineRegion/Region

Region/Point Point/PointLine/Point

Fig. 5 The dimension of the intersection restricting the model

Table 2 The number of relations for all relation groups

Relation groups 3-axis-intersection

Region/region 10
Region/line 35
Line/line 42
Region/point 3
Line/point 5
Point/point 2

By restricting c1 and c2 to at most a certain constant value c, we are able to bound m
to at most (2 × c) + 1. By employing an appropriate value of c, we can control the
maximum value in the 3-axis intersection and limit the number of possible relations
to [((2 × c) + 2)4, ((2 × c) + 2)10].

Hereafter, we assume c = 1, that is, Dom3−axis(S1,1,0) = Dom3−axis(S1,1,1) =
{0, 1}. The number of feasible relations that can then be expressed is displayed in
Table 2. This table shows, for instance, that one can define at most 35 different ways
in which a line and a region can relate topologically simultaneously when c = 1 (i.e.,
when there is at most one connected component per intersection).

The generalization of our approach to consider complex spatial objects (e.g., a
region composed of disjoint regions possibly including holes) is simple. Basically,
the relationships between two complex objects are described in terms of the relations
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among their individual components. Formally, let O1 and O2 be two complex spatial
objects O1 = {o1

1, . . . , o1
n1

} and O2 = {o2
1, . . . , o2

n2
}, where ok

i are the individual
components of Ok for k = 1, 2 and i = 1, . . . , nk , and nk is the number of individual
components of Ok . Each individual component of a complex object is a connected
simple object. We represent the topological relation �(O1, O2) between O1 and O2

as the set of topological relations �(o1
i , o2

j ) between the simple objects corresponding

to pairs (o1
i , o2

j ) of individual components o1
i and o2

j of the respective complex objects

O1 and O2 for i = 1, . . . , n1 and j = 1, . . . , n2.

5 Conceptual Neighbourhood Diagram

In order to help the user describe topological relations, they can be organized in a
diagram based on the snapshot model (Egenhofer and Mark 1995; Freksa 1992). The
snapshot model derives the conceptual neighborhoods among topological relations
considering their degree of similarity. Conceptual neighborhood diagrams are used
to schematize spatio-temporal relations. They enable spatio-temporal reasoning to
infer properties of the relations, list possible transitions of a particular relation (e.g.,
find a sequence of spatial configurations between two relations), and relax query
constraints by including neighboring relations.

Conceptual neighborhood diagrams are constructed according to a particular
smooth transformation or to a specific similarity measure. In this paper, we consider
a topological distance (Egenhofer and Al-Taha 1992) based on the3-axis-intersection
model. The topological distance τ(ra, rb) between two topological relations ra and
rb is the sum of absolute values of the differences of corresponding elements in the
3-axis-intersection model:

τ(ra, rb) =
2∑

i=0

2∑
j=0

2∑
k=0

|Sa
i, j,k − Sb

i, j,k |.

The shortest non-zero distance among all pairs of topological relations determines
that two relations are considered conceptual neighbors. They are represented by
graphs in which each relation is depicted as a node and conceptual neighbors are
linked by edges.

Let us consider the 35 relations between a line and a region shown in Fig. 6. The
35 situations of region/line group can be presented in a conceptual neighborhood
diagram. Each relation is a conceptual neighbor of at least one, and at most five
other relations. The diagram is disconnected and has one subgraph G1 with 15
nodes and another G2 with 20 nodes. This diagram is disconnected because we only
consider conceptual neighbors with a small (i.e., close to the minimum) topological
distance. This diagram has a particular symmetry with respect to the center, where
on the left-hand side are all relations in which some parts of the line are inside the
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Fig. 6 The 35 region/line topological relations distinguished by the 3-axis-intersection

region, while on the right-hand side are the relations in which the corresponding
parts of the line are outside. These diagrams allow partitioning groups of relations
into more general cases, which in turn help users express the underlying spatial
concepts.

6 Conclusions and Future Work

This paper presented a new framework for modeling topological relations among
objects of type point, line, and region, which subsumes and extends previous work.
It allows specification of complex scenarios where two objects are spatially related
in more than one way. These results allow increasing the flexibility that users are
offered to model their reality, thereby contributing to research in formal methods in
naive geography.

In terms of expressiveness, our new approach displays a much higher discrimi-
native power such that any relation represented by previous models will also have a
unique 3-axis-intersection matrix. For example, even though all points in a line are
considered boundary points, our model can differentiate between two open lines
which cross at the middle and a line that terminates at its endpoint on another line. In
the first situation, we have 5 components resulting from the intersection: the cross
point and the four pieces of both lines (2 per line). In the second situation, we have
only 4 components: the point where the lines touch, the entire second line (but the
touch point), and the two 1-d pieces of the first line. The fact that the entire line is
considered as a boundary does not decrease the representative power of our model.
However, the fact that we count intersection components at each dimension for
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all 9 intersections, actually, increases the number of possible relations represented
using our model. The intersection at end points of lines have a clear implication in
the intersection sets of our model: the number of connected components differ as
mentioned above. Therefore, the descriptive power of our model does not decrease
due to our definition of topological parts (specifically boundary of lines). On the
contrary, the fact that we count the number of components at each dimension for
all possible 9 intersections increases significantly the number of relations that can
be represented. By introducing the counting of components, the number of different
relations described with our model is infinite. However, if we bound the maximum
number of components per dimension per intersection, we bound the total number
of feasible relations.
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