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Abstract In advanced spatio-temporal scenarios, such as the simulation of complex
geo-processes, the analysis of complex surface- and volume-based objects changing
their locations and shapes in time is a central task. For example, the documenta-
tion of landfills, mass movements or volcanic activities requires 4D modeling based
on dynamic geometric and topological database structures. In this contribution we
present our concepts and implementation efforts for the effective handling of geospa-
tial and time-dependent data realized in DB4GeO, a service-based geo-database
architecture. The topological and geometric data models of DB4GeO are described
in detail. A geoscientific application of an open-pit mine demonstrates the usefulness
of the concepts introduced at the beginning of the paper. Finally, an outlook is given
on future geo-database work dealing with extensions of DB4GeO and the handling
of geo-objects in the context of cooperative 4D metro tracks planning
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1 Introduction

The spatial data handling community looks back on a history of more than 25 years
(Goodchild 1990; Marble DF 1984). During this time the geospatial data han-
dling of volumetric 3D objects and their operations have been examined under
different aspects by (Balovnev et al. 2004; Breunig 2001; Breunig et al. 1994;
Doner et al. 2010; Mintyld 1988; Pigot 1992; Pouliot et al. 2007, 2008, 2010;
Schaeben 2003) and by other authors.

Based on this tradition and on the experiences of GeoToolKit, an object-oriented
geo-database kernel for the management of 3D geometries (Balovnev et al. 2004), we
have developed a geo-database architecture called DB4GeO (Bar 2007
Breunig et al. 2010). Right from the beginning, DB4GeO has been designed to
support advanced geo-scenarios that require a web-based 3D/4D data access. It is
implemented completely in the Java programming language and is based on the
free object-oriented database management system db4objects (Versant 2011). The
services of DB4GeO can be divided into primitive and complex services (Breunig
et al. 2010). The primitive services contain basic geometric and topological oper-
ations such as calculating the distance between two objects, their relative position
to each other (distinct, meet, overlap etc.), and the computation of the intersection
between two objects. An example for a complex service is the “3D-2D service”
that computes a profile section—i.e. the intersection of a vertical plane with 3D
geometries—within a geological block model (Breunig et al. 2010). At the moment,
the service architecture is implemented using REST (Fielding and Taylor 2002).

The paper is organized as follows. Sections 2 and 3 are dedicated to the concepts
and implementations for spatio-temporal data handling in DB4GeO focusing on
topological and geometric database support. In Sect. 4, a geoscientific application is
presented. Finally, Sect. 5 gives an outlook on our future work.

2 Spatio-Temporal Concepts of DB4GeO

2.1 Geometric and Topological Core Model

The DB4GeO core API implements the simplicial complex model for the spatial part
of its 3D object model.! The core API defines a 3D object to be an object in 3D space
that has a spatial part which can be a sample, a curve, a surface or a volume. These
abstract geometry concepts are specified by specific geo-objects as follows?:

! For an elaborate UML class diagram of the DB4GeO kernel geo-object model cf. Bir (2007),
p. 65.

2 For a visual overview of the geometry model of DB4GeO, cf. Butwilowski and Breunig (2010).
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Fig. 1 Part of the incidence graph for simplicial complex model of the DB4GeO kernel

sample as point net,

curve as segment net,
surface as triangle net, and
volume as tetrahedron net.

The aforementioned nets are subdivided into disconnected net components. A net
component itself consists of connected simplices (also simple geo-object). By means
of the core APl it is possible to navigate on top of net components by iterating over the
explicitly stored contact relations between the simplices of the net.® Figure 1 shows
a part of the incidence graph of the simplicial complex model as it is implemented
in DB4GeO.

The arrows (left side) represent the connections between the simplices. Depicted is
an example of two triangles T, 75 that are adjacent by the segments S>, S3 (see right
side). There are directed top-down incidence relations from triangles to segments
to points as well as “next to” connections between multiple triangles and between
multiple segments. This incidence graph is commonly used in geometry modeling
systems (Lévy and Mallet, 1999, cf. p. 3), but obviously there are also some insuffi-
ciencies concerning the navigational properties of this structure. For example, there
are no back references from lower to higher dimension simplices as well as there
is e.g. no direct connection between S> and S3, which makes navigation quite dif-
ficult. In some cases, it is necessary to traverse the whole structure to do one step
in navigation.* While this model is suitable for many applications, it also has some
shortcomings. For example, it is not possible to distinguish subdivisions on a net
component, i.e. cells (e.g. faces/volumes) composed of multiple simple geo-objects
(triangles/tetrahedrons) forming a net component. A potential improvement of this
shortcoming will be discussed in Sect.2.3.

3 This structure can be seen as the implicit topology model of the DB4GeO/DB3D core APL
4 For example, if it is necessary to find all neighboring segments to a given point.
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Fig. 2 Representation of a
4D object (Rolfs 2005)

2.2 A First Geometric 4D Model

To support spatio-temporal data handling in DB4GeO, a 4D model on top of the
described geometric core model has been developed (Rolfs 2005). Due to this first
4D model, DB4GeO was able to handle simplex-based data within a fixed time
interval. Such a 4D object has a spatial part which can be a sample, a curve, a
surface or a volume (cf. 3D object) and is located in a 4D space. Figure2 shows
the representation of such a 4D object, which is comparable to the representation of
Worboys’s spatio-temporal model (Worboys 1992).

Due to the internal implementation, the first geometric 4D model of DB4GeO
is not able to extend the time interval of an existing 4D object with further data.
Furthermore, the data needs to meet several constraints to work properly. The major
constraints are:

e The import format is proprietary;
e The net topology cannot change within the time interval;
e The sequence of time intervals is fixed and cannot be modified.

According to these constraints a new 4D model to handle spatio-temporal data
was developed in Kuper (2010). The techniques to improve the functionality, user
experience, and performance are described in Sects. 2.4 and 3.2.

2.3 Topological Structure

For the construction of regions by aggregation of multiple triangles or tetrahedra,
following a naive approach, it would be sufficient to assign to every individual triangle
or tetrahedron of the simplicial complex an attribute that determines to which region
the respective simplex belongs. However, with this naive approach it would not
be possible e.g. to navigate along the edge geometries of the regions (for example
along the boundary surface between two volumes or along the boundary segment
between two surfaces) efficiently. That is why DB4GeO handles topology in a more
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generic way following works of the 3D modeling community by Lienhardt (1989),
Brisson (1989), and Lévy and Mallet (1999).

Brisson and Lienhardt proposed explicit generic topology models that address
cell-tuple structures and Generalized Maps, respectively. The way to the cell-tuple
structures and the Generalized Maps was paved by prior topological models that have
widely been used in the CAD community, such as the winged edge representation
of Baumgart and the half-edge structure and radial edge representation of Weiler
(Baumgart 1975; Weiler 1985, 1986). The cell-tuple structure has finally been pro-
posed by Brisson (Brisson 1989).

Brisson introduced the notion of cell-tuple that is defined as an ordered sequence
of cells of decreasing dimension: a cell-tuple corresponds to a path in the inci-
dence graph (cf. Fig. 1). The cell-tuples are “connected” through the concept of adja-
cency that is inherent to the cell-tuple structure: two cell-tuples C and C’ are called
i-adjacent (A;) if exactly one cell, namely the cell of dimension i of the cell-tuple
is exchanged (so called swifch operation) so that another tuple of the set of valid
cell-tuples (a permutation) is obtained in return.

Lienhardt proposed the d-Generalized Map, (d-G-Map), a more abstract model
of the topology of a d-dimensional cellular complex, based on algebraic topology
(Lienhardt 1989). A d-G-Map is defined as a pair of a set of darts and of a set of d + 1
involutions, noted «;, i.e. transformations defined on the darts verifying o;o; = id
fori = 0,1,...d. Moreover, for any pair of indexes i, j with j = i +2 + k,
Bij = ajo; again is an involution, which implies that o; and «; commute. With
this structure, a d-G-Map can be interpreted as a special abstract simplicial complex.
A possible representation of a d-G-Map is a d-celltuple structure. Another possible
representation is a graph G(D,A) with the set D of darts as nodes, and the set A
of edges composed of d classes of pairs of darts defined by the d + 1 involutions
Qp...oyq.

A particular class of G-Maps are orientable d-G-Maps. These can be represented
by bipartite graphs with two classes of darts with opposite “polarity”, linked by the
edges defined by the ¢; involutions. For our practical applications in geosciences,
only orientable G-Maps are considered. A spatial model of a d-G-Map (or of a
celltuple structure) is obtained by an immersion into the euclidean space R¢. Thus
different spatial models can be derived from the same G-Map by applying different
immersions.

2.4 Advanced Geometric 4D Model

The new model to handle geometric spatio-temporal data in DB4GeO improving
the first model introduced in Sect.2.2 is based on three main techniques with the
following objectives:
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Fig. 3 Workflow adding a
time step to a 4D object in
DB4GeO (Kuper 2010)
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e PointTubes: to handle and store the points of a time-dependent 2-3D simplex net
efficiently;

e Pre- and post-objects (Polthier and Rumpf 1995): to offer a solution for changing
net topology within time;

e Delta-storage (Strathoff 1999): to avoid redundant storage of points and topology
information.

The spatio-temporal handling of data is focused on moving vertices in a 3D space
within a time interval. DB4GeO handles the information about the net topology
separately from the vertices. Due to the implementation of the spatio-temporal model
presented in Polthier and Rumpf (1995), the net topology can change in time. At
every time step, a pre-object and a post-object exist. The pre-object of time step ¢;
and the post-object of time step #;_ have the same net topologies, i.e. discretizations.
The pre-object and the post-object of one time step have the same geometry, i.e. the
location of the vertices, while their net topologies can differ. The discretization can
change at every time step #; while the geometry can change between two time steps.

DB4GeO provides two main functions to build a proper 4D object: addTimestep()
and addTopology. The former function adds the information about the vertices while
the latter adds the net topology. The topological information about the net structure
is added to the 4D object with every change of the topology, i.e. in a time step with
a pre- and post-object. Therefore, DB4GeO is able to interpolate between time steps
without paying attention to the net topology. It interpolates the vertices stored in
PointTubes and uses the applicable topology when needed.

The time interval is extensible, i.e. it is possible to add additional time steps to an
existing 4D object with a simultaneous update of the end date of the time interval. To
improve the performance and to reduce the amount of storage data, DB4GeO only
stores those objects of every new time step which contain new information, i.e. only
the changes are stored. Every insertion of a new time step compares the vertices to
the last one. Figure 3 provides an overview of the new 4D model workflow.
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anyCellTuple
AbstractCell | ____ > CellTuple

________________________

Fig. 4 References between abstract cell, cells and cell-tuples

3 Implementation of the Spatio-Temporal Concepts

3.1 Implementation of the Topology Concept

The G-Maps module for the management of the topology for 3D geo-objects in
DB4GeO conceptionally relies on the notion of cells as a means to describe a geo-
object by its decomposition. In the context of DB4GeO a cell may be any object that
is composed of a simply connected set of simple geo-objects, e.g. a curved surface
or a polyhedron or a solid. From a software modeling perspective, the conjunction
between the classes of simple geo-objects, as they are implemented in the DB4GeO
core API, and the cell classes, as provided by the G-Maps module (i.e. the con-
junction between DB4GeO and the G-Maps module), are depicted and described
in Butwilowski and Breunig (2010). Thus, the next step is to enable a connection
of the cell classes to a cell-tuple class. This model is represented in Fig.4, where
the topological cell classes Node, Edge, Face and Solid (these are supported by
the G-Maps module) are generalized by an AbstractCell class that has a ref-
erence anyCellTuple to a CellTuple class. Since all cell classes are of type
AbstractCell, any cell “has a” cell-tuple. This cell-tuple represents an arbitrary
cell-tuple of the cell. Conversely any cell-tuple has separate references to all four
cells (cf. Fig.4). This allows an unfettered back-and-forth navigation between the
objects of all the cell types and the respective cell-tuple objects.

The class diagram considers the definitions of cell-tuple structure and G-Maps of
Brisson and Lienhardt and serves as a basis for the innermost kernel of the G-Maps
module for DB4GeO. An object of the Cel1Tuple class is a composition of Cell
objects of different dimensions® (which represent the incident cells). The field of
each CellTuple object includes references to exactly four Cel1Tuple objects

Sie. of objects of the classes Node, Edge, Face and Solid.
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Fig. 5 Diagram of Orbitlterator class

called alpha0, alphal, alpha2, and alpha3.® These references provide the
means to perform fundamental/basic topological operations to navigate between the
cells in any direction (these are the above mentioned G-Map operations).

These fundamental operations can be combined to more complex topologi-
cal operations that are capable of traversing whole cells (so called orbits, cf.
(Lévy and Mallet 1999, p. 5)). Orbits fit well with the concept of iterators (key
concept of the Java programming language) which are defined by the interface
java.lang.Iterator.” In our implementation, an orbit is represented by an
OrbitIterator class that realizes the Tterator and the Tterable inter-
faces of Java (cf. Fig.5).

Thus an OrbitIterator provides itself through its iterator () method
and may directly be used in a for-loop. As a realisation of the Tterator inter-
face, the OrbitIterator provides the methods hasNext () and next () 3 For
the instantiation of an OrbitIterator object, its constructor needs an object of
type CellTuple (as its constructor parameters) which will be the start cell-tuple
(startCt) of the orbit (this can be any cell-tuple of a cell in fact) and an integer
value that defines the dimension of the orbit (cf. Fig.5). As a result, a complete
0-dimensional orbit traversal around the node with dart startCt (i.e. the traversal
of an orbit that would “collect” all cell-tuples around that node) is as simple and as
elegant in our Java implementation as in the following example:

6 These are not illustrated in Fig. 5 to reduce the diagram’s complexety.
7 Though, to be more precise, orbits are not only iterators but circulators (Devillers et al. 2011).

8 The OrbitIterator does not provide a remove () method (in conformity with the orbit
definition).
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for(CellTuple ct : new OrbitIterator (startCt, 0))
{

System.out.println(ct) ;
}

In our implementation, all connected cells of a cell net are summarized in a cell
net component. Every cell net component is further subdivided into two cell net
levels, i.e. a cell net component at network level or just net level (C ) and a cell net
component at object level (Coy,). The topology of Cy is an exact reproduction of
the topology of the net structure of the underlying simple geo-objects net (i.e. of the
simplicial complex). This level is mainly used for navigation purposes. It eases the
algorithmic navigation on the net structure. Coz, on the other hand is the boundary
representation of the component object (i.e. representing the whole geo-object itself).
The topology defined by the cell-tuple structure cannot be edited by the useron Cy,
only on Cop.

3.2 Implementation of the Geometry Concept
Jor Time-Dependent Objects

For an efficient and user-friendly behavior of our 4D model we developed a simple
API to work with 4D objects in DB4GeO. The main concepts mentioned in Sect. 2.4
are implemented in the class object4D. All three concepts work automatically. The
implementation is based on two main functions:

addTimestep: the function is called with two parameters, the vertices which extend
or create the PointTubes of an 4D object and a java.util. Date object to specify the
time stamp. If there are any vertices already existing in the last time step, the internal
PointTubes will be extended with references to these. Otherwise new Point3D objects
for the extension of our PointTubes are created.

addTopology: the function is called with one parameter, representing the net topology
of the just added time step. This object is called SpatialObject4D and consists of
0-n Point4DNet, Segment4DNet, Triangle4DNet or Tetrahedron4DNet objects. This
information will be added to the 4D object. The number of SpatialObject4D objects
will only increase if the last time step was a post-object, i.e. the addTimestep function
was called twice with the same Date object.

To access single states of 4D objects at arbitrary dates we developed a class called
ServicesFor4DObjects. This class contains one main function:

getInstanceAt(Object4D, Date): this functions creates a 3D object, i.e. a snapshot
of the 4D object at the specified date via interpolation. The date must be part of the
time interval. Due to the use of the implemented spatio-temporal model introduced
in Polthier and Rumpf (1995), the computation of such a snapshot always refers to
an interpolation between two sets of vertices in a /:/ relation.
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4 A Geoscientific Application Example

One of the use cases for DB4GeO has been the so-called Piesberg application.
Piesberg is a hill near the city of Osnabriick in Northern Germany that has been
exposed to open-pit mining for several decades. In the 1970s, its older part began to
be used as a landfill causing changes to the volume and surface of the hill. A dataset
representing the surface changes of Piesberg in 12 time steps between 1976 and 1993
is available (Lautenbach and Berlekamp 2002).

The present application example demonstrates how the topology module of
DB4GeO can be used for a land use classification. Different classes of land use on
Piesberg can be identified dividing the surface of the hill into five regions: “mining”
(has a hole), “wind energy”, “old landfill”, “active landfill”’, “compost”. Managing
non-simplex regions necessary for this kind of applications would not have been
possible using the geometry model of DB4GeO alone.

The G-Maps module of DB4GeO offers four operations for editing the composi-
tion of aface net: insert node, remove node, insert edge,and remove
edge.The insert edge operation enables inserting both simple edges (with only
two endpoints) and multi-edges (with more than two vertices). Before each of the
operations is carried out, constraints are checked to avoid an invalid result. Examples
of insertion and removal operations are shown in Fig. 6.

To simulate the Piesberg landfill, at first a face net with a net level and an object
level is created. The net level represents the geometry of the object, in this case via a
triangle net. The object level initially has one face; its boundary coincides with the
boundary of the whole object. Then, we used the insertion and removal operations
implemented in DB4GeO to divide the surface of the hill into the five land use
classes. Notice that one of the five resulting regions of the object level has a hole.
Finally, we used the OrbitIterator (cf. Sect.3.1) to find faces of the net level
that correspond to each face of the object level. Since the faces of the net level are
simplices, we easily exported them from our geo-database into the gOcad® format
(.ts) and visualized them in ParaViewGeo® (cf. Fig.6).

Our next research goal is to extend the G-Maps module of DB4GeO to handle
temporal changes and test it with all of the 12 available datasets of Piesberg.

5 Conclusion and Outlook

In this contribution we have presented concepts and implementations for geospa-
tial and time-dependent data handling of complex geometric and topological objects
realized in DB4GeO, our service-based geo-database architecture. Advanced topo-
logical and time-dependent geometric data models have been introduced. In our
future work we will also focus on the straight-forward visualization of database
results via WebGL from standard Internet browsers. Furthermore, the management
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Fig. 6 Insertion and removal operations on Piesberg dataset (visualized with ParaviewGeo®)

a Befor editing. b Edge inserted. ¢ Edge inserted. d Edge inserted. e Edge inserted. f Two nodes
and an edge inserted. g Two edges removed. Land use classes : 1- mining, 2- wind energy, 3- old
landfill, 4- active landfill, 5- compost

of city models in DB4GeO will be examined using GML data. Another open ques-
tion is how DB4GeO can be adapted to OGC Web services. Finally, we intend to
examine the handling of 3D geo-objects used for the cooperative planning of metro
tracks. Therefore, spatial representations other than simplicial complexes such as
boundary representation or parameterized geometries should be directly supported
by the geo-database.
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