
Fault Detection of the MacGuffin Cipher

against Differential Fault Attack

Wei Li1,2,�, Dawu Gu3, Zhiqiang Liu3, Ya Liu3, and Xiaohu Huang1

1 School of Computer Science and Technology, Donghua University,
Shanghai 201620, China

2 Shanghai Key Laboratory of Integrate Administration Technologies for Information
Security, Shanghai 200240, China

3 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

Abstract. Since the early work of Biham and Shamir on differential
fault attack against block ciphers at CRYPTO 1997, much work has
been devoted to reducing the number of faults and to improving the
time complexity of this attack. This attack is very efficient when a single
fault is injected on the last several rounds, and it allows to recover the
whole secret key. Thus, it is an open question whether detecting the
faults injected into a block cipher against this attack with low overhead
of space and time tolerance. The MacGuffin cipher, a representative of
the Unbalanced Feistel Network(UFN) structure, is vulnerable to fault
attack at the last four rounds. In this paper, we give an answer to this
problem by presenting a fault detection of the MacGuffin block cipher.
Our result in this study could detect the faults with negligible cost when
faults are injected into the last four rounds.

1 Introduction

During the last years a new class of attacks against cryptographic devices has
become public. These attacks exploit easily accessible information like power con-
sumption, running time, input–output behavior under malfunctions, and can be
mounted by anyone only using low–cost equipment. These side–channel attacks
amplify and evaluate leaked information with the help of statistical methods,
and are often much more powerful than classical cryptanalysis. Examples show
that a very small amount of side–channel information is enough to completely
break a cryptosystem. While many previously–known cryptanalytic attacks can
be analyzed by studying algorithms, the vulnerabilities of side–channel attacks
result from electrical behavior of transistors and circuits of an implementation.
This ultimately compromises cryptography, and shifts the top priority in cryp-
tography from the further improvement of algorithms to the prevention of such
attacks by reducing variations in timing, power and radiation from the hardware,
reduction of observability of system behavior after fault injection. Therefore, it

� Corresponding author.

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 102–112, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Fault Detection of the MacGuffin Cipher against Differential Fault Attack 103

extends theoretically the current mathematical models of cryptography to the
physical setting which takes into consideration side–channel attacks.

As one type of side–channel attacks, differential fault analysis (DFA) was pro-
posed by Biham and Shamir as an attack on DES in 1997 [1]. The similar attacks
have been applied to other block ciphers [2–6]. The DFA attack is based on de-
riving information about the secret key by examining the differences between a
cipher resulting from a correct operation and a cipher of the same initial message
resulting from a faulty operation.

MacGuffin is a block cipher which was proposed by Blaze and Schneier [7].
Its fundamental structure is the contracting Unbalanced Feistel Network, and
supports 64–bit block size and 128–bit key size. Up to now, some literature is
available on the security of MacGuffin against the classical cryptanalysis, such as
differential attack, and linear attack [8]. MacGuffin is vulnerable to Differential
Fault Analysis(DFA)[9]. The secret key of MacGuffin could be obtained by in-
ducing faults into the computation of the last four rounds. This method requires
355 and 165 faulty ciphertexts in two byte–oriented fault models, respectively.

In this paper, we focus on the security application of MacGuffin against the
fault analysis. In the literature, countermeasures against fault attacks could help
a cryptographic algorithm to avoid, detect or correct faults. In practice, many
proposed schemes are based on fault detection, including code–based technique
and redundancy–based technique [10–18].

Code based detections are divided into coding method and error detection
code (EDC). Coding method means encoding message before encryption and
checking errors after decryption. Its overhead depends on encoding and decoding
progress to translate plaintexts and ciphertexts into codes. Its time redundancy
also depends on the code processes. As for block ciphers, the EDC approach
is often used in each rounds’ inner parts with the implementation of parity–
based EDC. The parity of linear layers is easy to implement since permutations
do not change the parity. More consideration should be given to the nonlinear
layers. Whether the parity of input joins in encryption determines how the parity
constructs. Approximately, 10%∼20% overhead is required, and so does time
tolerance.

The redundancy–based solution for implementing fault detection in the en-
cryption module is to perform a test decryption immediately after the encryp-
tion, and then check whether the original data block is obtained. If a decryption
module is already present in the implementation, the hardware overhead reduces
to the cost of a comparator for two data blocks of 128 bits. Otherwise, the over-
head is close to 100 percent since the decryption module is very similar to the
encryption one. The overall time penalty in either of these two cases is the time
required to decrypt a data block, plus the time required for the comparison. This
technique is independent of the adopted fault model.

The above techniques of fault detection seem to ensure a high level of secu-
rity. However, only checking the correctness of the computed encryption result
may not be enough to prevent fault analysis since an attacker may destroy the
detector.

104 W. Li et al.

In order to resist the differential fault analysis with low cost, we propose a
fault detection technique to protect MacGuffin against the previous attacks. Our
work not only helps to detect the errors with low overhead of space and time
tolerance, but also can be applied in all kinds of software implementation. The
idea of this attack and the related countermeasure are naturally suitable for
other block ciphers.

The rest of this paper is organized as follows. Section 2 briefly introduces the
MacGuffin cryptosystem. The next section shows the previous differential fault
analysis on MacGuffin. Then section 4 presents our fault detection on MacGuffin.
Finally section 5 concludes the paper.

2 Description of MacGuffin

MacGuffin is a 64–bit block cipher, which supports 128–bit key lengths [7]. It has
32–round unbalanced Feistel structure. The input of MacGuffin is partitioned
into four registers from left to right (See Figure 1). Every register is composed of
double bytes. In every round, the three rightmost registers comprise the control
block and are bitwise exclusive–ORed with 48 bits derived from the subkey.
These 48 bits are split eight branches to provide input to eight functions of six
bits (the S–boxes), and then output two bits for every S–box. The 16–bit S–
boxes output are then XORed with the bits in the leftmost register. Finally, the
leftmost register is rotated into the rightmost register. Figure 1 shows the block
diagram of the MacGuffin cipher.

Fig. 1. The MacGuffin cipher

Fault Detection of the MacGuffin Cipher against Differential Fault Attack 105

2.1 Encryption Process

Let X = (X0, X1, X2, X3) ∈ ({0, 1}16)4 be the plaintext and Y = (Y0, Y1, Y2, Y3)
∈ ({0, 1}16)4 be the ciphertext. Let rki ∈ ({0, 1}16)3 denote the i-th subkey,
(Xi, Xi+1, Xi+2, Xi+3) denote the i+ 1-th round inputs, and Ri denote the i+1-
th round (i = 0, 1, · · · , 31). Then the MacGuffin scheme can be written as

Xi+4 = F (Xi, Xi+1, Xi+2, Xi+3, rki),

(Y0, Y1, Y2, Y3) = (X32, X33, X34, X35),

where i ∈ {0, 1, · · · , 31}, F is the i–th round function defined below:

F (Xi, Xi+1, Xi+2, Xi+3, rki) = Xi ⊕ τ(Xi+1 ⊕Xi+2 ⊕Xi+3 ⊕ rki).

Here τ are defined as follows.
τ–function is a nonlinear transformation layer with 8 parallel 6 × 2 S-boxes,

which are specified in [7]. That is,

τ : ({0, 1}6)8 → ({0, 1}2)8.

2.2 Decryption Process

The decryption procedure of MacGuffin can be done in the same way as the
encryption procedure by reversing the order of the subkeys.

2.3 Key Schedule

In the MacGuffin cryptosystem, the key schedule generates a total of 32 subkeys
(rk0, rk1, · · · , rk31). Each round of the cipher uses the secret key parameter to
perturb the S–boxes by bitwise XOR against the S–box inputs. Each round
thus requires 48 key bits. To covert the 128–bit secret key to a sequence of
48–bit values for each round, MacGuffin uses an iterated version of its own
block encryption function. In our fault detection, all errors are injected in the
encryption procedure. Thus, we could omit the structure of the key schedule.

3 The Previous Differential Fault Analysis on MacGuffin

The previous differential fault analysis on the security of MacGuffin adopts two
basic assumptions as follows:

(1) The attacker can induce a single byte error to a 16–bit register. However,
the location of this byte in this register and the value of the error are both
unknown.

(2) The attacker has the capability to obtain the right and the corresponding
faulty ciphertexts when encrypting one plaintext with the same secret key.

106 W. Li et al.

On the above basic assumptions, they induce a random error in the last four
rounds at the beginning of the attack, and thus obtain a faulty ciphertext. By
differential fault analysis, part or all bytes of the subkeys in the last round can
be recovered. The location of fault injection may be not the location of subkeys
which will be recovered. For example, to recover the subkeys in the last round,
they induce errors in the penultimate round. This kind of fault injection could
derive multiple bytes of one subkey and avoids decreasing the efficiency of fault
injection. Repeat this procedure until the subkey is obtained. Then they decrypt
the right ciphertext to obtain the input of the last round, which is the output
of the penultimate round. Repeat the above procedure until the secret key is
obtained by the key schedule.

4 Our Proposed Fault Detection of MacGuffin

Our objective is to develop fault detection techniques which will be independent
of the particular hardware implementation. To this end, we make the following
assumptions:

(1) The MacGuffin algorithm is partitioned into three basic modules: encryption,
decryption, and key schedule.

(2) All the modules have in common the same basic operations; hence, only the
encryption module is examined in detail since most conclusions will hold for
the remaining modules as well.

Thus, a fault injected into the first round is comparable to encoding a different
input. The injection of a fault in one of the inner rounds is more complicated
and it is necessary to follow the errors as they propagate along the execution
path.

Every round of MacGuffin consists of the round function, which is composed
of two transformations: subkey addition(SA), S–boxes. Different from the other
block ciphers, MacGuffin has no linear transformation. The propagation of a
single fault is influenced by the execution of the round components. The result
can be classified into only one cases: the fault affects only one byte in the output.
The situation includes the S–boxes and SA transformations, where the error is
only moved within a byte, respectively. When using a specific input and injecting
lots of a single–byte fault into every different round, the average number of
erroneous bytes in the ciphertext has the following characteristic (See Fig. 2):

(1) If there are less than 8 nonzero erroneous bytes, the fault must occur in the
last four rounds. The average number of erroneous bytes is 7.75, 6, 4.25 and
3.25, respectively.

(2) If all bytes are erroneous, most faults may occur before the last four rounds.

To date, little research has been done on the related attacking method when
the faults are induced before the four rounds. Thus, MacGuffin is secure even if
the errors have been induced before the four rounds. We put emphasis on the

Fault Detection of the MacGuffin Cipher against Differential Fault Attack 107

Fig. 2. Erroneous bytes in the ciphertext of MacGuffin

research of the errors induced into the last four rounds. In the DFA analysis, the
attacker must capture at least two ciphertexts, including one right ciphertext and
one faulty ciphertext. On the basis of this assumption, we propose a pattern–
based technique to infer whether the attacker induce faults into the encryption
module.

For MacGuffin, let Y , Y ∗, �Y be the correct ciphertext, the faulty cipher-
text, and ciphertext difference. Let |�Y |, |�Y0|, |�Y1|, |�Y2| and |�Y3| be the
number of erroneous bytes in �Y , �Y0, �Y1, �Y2 and �Y3. The pattern is de-
fined within the bounds of remote possibility as the result of the XOR operation
between two right ciphertexts (See Table 1). If the distribution of a ciphertext
difference satisfies these patterns, then we could derive that the attacker has in-
duced faults into the encryption module and at least one ciphertext is faulty. In
other words, if the ciphertext difference satisfies the distribution of some patterns
in Table 1, it shows that the error has been induced into the encryption module.
Otherwise, it is not feasible for DFA to derive the secret key of MacGuffin. In
Table 1, the pattern 0001 denotes �Y has one nonzero byte, which locates in the
register Y3. The ciphertext pair with this pattern could be one correct cipher-
text and one faulty ciphertext, or two faulty ciphertext, since the two correct
ciphertexts with the pattern has the remote probability of 1.31E–34%.

Depending on the pattern of the ciphertext difference between one correct
ciphertext and one faulty ciphertext, we could detect the fault location as Table
2 shows. For example, if the pattern is 0001, the fault must be injected in the
register X31 of the 32nd round.

When some patterns are within the bounds of average possibility as the result
of the XOR operation of one correct ciphertext and one faulty ciphertext. For
example, when an error is injected into the last four round, the ratio of 1, 2, 3, 4,
5, 6, 7, and 8 erroneous bytes occur at 6.25%, 0%, 25&, 6.25%, 18.75%, 12.5%,
12.5%, and 18.75%, respectively(See Figure 3).

108 W. Li et al.

Table 1. The relationship between some patterns and ciphertext pairs

Pattern
Percentage(%) A ciphertext pair|�Y | |�Y0|, |�Y1|, |�Y2|, |�Y3|

1 0001 1.31E–34 (Y, Y ∗), (Y ∗, Y ∗)
2 0002 1.23E–36 (Y ∗, Y ∗)
3 1002, 0102, 0012 1.91E–25 (Y, Y ∗), (Y ∗, Y ∗)
4 0022, 0202, 2002, 1102, 1012, 0112 1.78E–23 (Y, Y ∗), (Y ∗, Y ∗)
5 1022, 0122 3.78E–24 (Y, Y ∗), (Y ∗, Y ∗)
6 0222, 1122, 2022 4.15E–22 (Y, Y ∗), (Y ∗, Y ∗)
7 1222 5.17E–22 (Y, Y ∗), (Y ∗, Y ∗)
8 2222 99%

Table 2. The relationship between the pattern and fault locations

Pattern Location of one-byte fault injection
|�Y | |�Y0|, |�Y1|, |�Y2|, |�Y3| R32 R31 R30 R29

1 0001 X31 / / /

3
1002 X32 / / /
0102 X33 / / /
0012 X34 X30 / /

4 0022 / X31 / /

5
1022 / X32 / /
0122 / X33 X29 /

6 0222 / / X30, X31 /

7 1222 / / X32 X28

8 2222 / / / X29, X30, X31

In real application, one correct ciphertext and one faulty ciphertext as a ci-
phertext pair is ideal. However, there exist two faulty ciphertexts as Table 1
shows. On the basis of Table 2, we build up the pattern of ciphertext difference
between two faulty ciphertexts(See Table 3). Thus, we derive the relationship
between the pattern of two faulty ciphertext and the fault locations in Table 4.

When two error are injected independently into the last four round, the ratio
of 1, 2, 3, 4, 5, 6, 7, and 8 erroneous bytes occurs at 0.20%, 0.20%, 5.08%, 6.84%,
16.21%, 19.53%, and 26.95%, respectively(See Figure 4).

If the distribution of a ciphertext difference satisfies these above patterns,
then the attacker has induced faults into the encryption module and at least one
ciphertext is faulty. It is helpful for the MacGuffin cipher to be secure against
the differential fault analysis. In other words, if the ciphertext difference satisfies
the distribution of some patterns in Table 1, it shows that the error has been
induced into the encryption module. Otherwise, it is not feasible for DFA to
derive the secret key of MacGuffin.

For example, if the ciphertext difference has 2 nonzero bytes, there are only
one pattern which is 0002. It shows that the attacker injects two faults, whose

Fault Detection of the MacGuffin Cipher against Differential Fault Attack 109

Fig. 3. Ratio of Erroneous bytes in one correct ciphertext and one faulty ciphertext in
the last four rounds

Table 3. Patterns of two faulty ciphertexts

0001 1002 0102 0012 0022 1022 0122 0222 1222 2222

0001 0001,0002 1002 0102 0012 0022 1022 0122 0222 1222 2222

1002 1002 2002 1102 1012 1022 1022,2022 1122 1222 1222,2222 2222

0102 0102 1102 0102,0202 0112 0122 1122 1122 0222 1222 2222

0012 0012 1012 0112 0012,0022 0022 1022 0122 0222 1222 2222

0022 0022 1022 0122 0022 0022 1022 0122 0222 1222 2222

1022 1022 1022,2022 1122 1022 1022 1022,2022 1122 1222 1222,2222 2222

0122 0122 1122 1122 0122 0122 1122 0122,0222 0122 1222 2222

0222 0222 1222 0222 0222 0222 1222 0122 0222 1222 2222

1222 1222 1222,2222 1222 1222 1222 1222,2222 1222 1222 1222,2222 2222

2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222

Fig. 4. Ratio of Erroneous bytes of two faulty ciphertexts in the last four rounds

110 W. Li et al.

Table 4. The relationship between pattern of two faulty ciphertexts and fault injection

Pattern
Location of fault injections|�Y | |�Y0|, |�Y1|, |�Y2|, |�Y3|

1 0001 (R32X31, R32X31)

2 0002 (R32X31, R32X31)

3

1002 (R32X31, R32X32)
0102 (R32X31, R32X33), (R32X33, R32X33)

0012
(R32X31, R32X34), (R32X31, R32X30), (R32X34, R32X30)
(R32X34, R32X34),(R32X30, R32X30)

4

0202 (R32X33, R32X33)

0022
(R32X31, R31X31), (R31X31, R31X31),(R32X34, R32X34),
(R32X34, R31X31), (R32X30, R31X31),(R32X30, R32X30),
(R32X34, R32X30)

2002 (R32X32, R32X32)
1102 (R32X32, R32X33)
1012 (R32X32, R32X34), (R32X32, R32X30)
0112 (R32X33, R32X34), (R32X33, R32X30)

5

1022
(R32X31, R31X32), (R32X32, R31X31), (R31X31, R32X32),
(R32X34, R31X31), (R32X30, R31X31),(R31X32, R31X32),
(R32X32, R31X32)

0122
(R32X31, R31X33), (R32X31, R30X29), R30X29, R31X31),
(R32X33, R31X31), (R31X33, R31X31), (R32X34, R31X32),
(R32X30, R31X32), (R32X34, R30X29), (R32X31, R32X31)

6

0222

(R32X31, R30X30),(R32X31, R30X31), (R30X29, R30X29)
(R32X33, R30X30), (R32X33, R30X31), (R30X31, R32X34),
(R30X30, R32X34), (R30X30, R32X30), (R30X31, R32X30)
(R30X30, R31X31), (R30X31, R31X31), (R30X30, R30X31),
(R30X30, R30X30), (R30X31, R30X31), (R31X33, R30X29)
(R31X33, R31X33)

1122
(R32X33, R31X32), (R32X32, R31X33), (R32X32, R30X29),
(R32X32, R30X29), (R31X32, R31X33), (R32X33, R31X33)
(R30X29, R31X32)

2022 (R32X32, R31X32), (R31X32, R31X32)

7 1222

(R32X31, R30X32), (R32X31, R29X28), (R32X32, R30X32),
(R32X32, R30X30), (R32X32, R30X31),(R32X32, R29X28

(R32X33, R30X32), (R32X33, R29X28), (R32X34, R30X32),
(R32X31, R30X32), (R32X31, R29X28),(R32X30, R29X28)
(R32X30, R30X32), (R32X34, R29X28), (R31X31, R30X32)
(R30X30, R31X32), (R30X31, R31X32), (R31X31, R29X28)
(R31X32, R30X32), (R31X32, R29X28), (R30X29, R30X32),
(R31X33, R30X32), (R30X29, R29X28),(R31X33, R29X28)
(R30X30, R30X32), (R30X31, R29X28), (R30X32, R30X32)
(R30X31, R30X32), (R30X30, R29X28), (R29X28, R29X28)
(R29X28, R30X32)

8 2222

Fault Detection of the MacGuffin Cipher against Differential Fault Attack 111

locations are both in the register X31 of the 31st round. If the ciphertext differ-
ence has 3 nonzero bytes and its pattern is 1002, the attacker might inject one
or two faults. The locations might be in the register X31 of the 32nd round and
the register X32 of the 32nd round.

We implemented the experiment on a PC using Visual C++ on a 1.60 GHz
centrino with 2GB memory. The fault induction was simulated by computer
software. In this situation, we ran the attacking algorithm to 1000 encryption
unit with different random generated keys. And then we could detect about
77.15% errors into the last four rounds of MacGuffin. Unless the errors’ pattern
is 2222, we could detect 100% errors.

Compared with the previous techniques, the overhead and time tolerance of
required for the comparison in our method is negligible (see Table 5). As one
countermeasure of MacGuffin against DFA, the pattern–based technique could
not only help to detect the errors with low overhead of space and time tolerance,
but also be applied in hardware or software implementation.

Table 5. Comparison of overhead and tolerance

Approaches Overhead Time tolerance

Duplication 100% 100%

Coding method Encoding dependent Encoding dependent

EDC method 10-20% Parity dependent

Proposed method Negligible Negligible

5 Conclusion

In this study, we present a fault injection of MacGuffin in software implementa-
tion. This method adopts the special pattern of ciphertext pairs in the attacking
assumption and procedure of differential fault analysis. It is simple to detect
errors in real applications and provides a practical approach for fault detection
on block ciphers.

Future analysis should be able to detect differential fault analysis when the
faults are injected into deeper rounds and the ciphertext difference has no special
patterns. For the hardware situation, we will leave it for the future research.

Acknowledgment. This work is supported by the National Natural Science
Foundation of China under Grant No. 61003278, the Opening Project of Shang-
hai Key Laboratory of Integrate Administration Technologies for Information
Security, and the Fundamental Research Funds for the Central Universities. The
authors wish to acknowledge the anonymous referees for helpful suggestions.

References

[1] Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

112 W. Li et al.

[2] Moradi, A., Manzuri Shalmani, M.T., Salmasizadeh, M.: A Generalized Method
of Differential Fault Attack Against AES Cryptosystem. In: Goubin, L., Matsui,
M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 91–100. Springer, Heidelberg (2006)

[3] Hemme, L.: A Differential Fault Attack Against Early Rounds of (Triple-)DES.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 254–267.
Springer, Heidelberg (2004)

[4] Clavier, C., Gierlichs, B., Verbauwhede, I.: Fault Analysis Study of IDEA. In:
Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 274–287. Springer, Heidel-
berg (2008)

[5] Li, W., Gu, D., Li, J.: Differential fault analysis on the ARIA algorithm. Infor-
mation Sciences 178(19), 3727–3737 (2008)

[6] Li, W., Gu, D., Li, J., Liu, Z., Liu, Y.: Differential fault analysis on Camellia.
Journal of Systems and Software 83, 844–851 (2010)

[7] Blaze, M., Schneier, B.: The MacGuffin Block Cipher Algorithm. In: Preneel, B.
(ed.) FSE 1994. LNCS, vol. 1008, pp. 97–100. Springer, Heidelberg (1995)

[8] Rijmen, V., Preneel, B.: Cryptanalysis of MacGuffin. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 353–358. Springer, Heidelberg (1995)

[9] Li, W., Gu, D., Wang, Y.: Differential Fault Analysis on the Contracting UFN
Structure, with Application to SMS4 and MacGuffin. Journal of Systems and
Software 82(2), 346–354 (2009)

[10] Karpovsky, M., Kulikowski, K.J., Taubin, A.: Differential fault analysis attack
resistant architectures for the Advanced Encryption Standard. In: International
Conference on Smart Card Research and Advanced Applications – CARDIS 2004,
pp. 177–192. IEEE Computer Society (2004)

[11] Karri, R., Wu, K., Mishra, P., Kim, Y.: Concurrent error detection schemes for
fault–based side–channel cryptanalysis of symmetric block ciphers. IEEE Trans-
actions on Computer–Aided Design 21(12), 1509–1517 (2002)

[12] Karpovsky, M., Kulikowski, K.J., Taubin, A.: Robust protection against fault in-
jection attacks on smart cards implementing the Advanced Encryption Standard.
In: International Conference on Dependable Systems and Networks–DSN 2004,
pp. 93–101. IEEE Computer Society (2004)

[13] Malkin, T.G., Standaert, F.-X., Yung, M.: A Comparative Cost/Security Analy-
sis of Fault Attack Countermeasures. In: Breveglieri, L., Koren, I., Naccache, D.,
Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 159–172. Springer, Heidel-
berg (2006)

[14] Wu, K., Karri, R., Kuznetsov, G., Goessel, M.: Low cost error detection for the
Advanced Encryption Standard. In: International Test Conference–ITC 2004, pp.
1242–1248. IEEE Computer Society (2004)

[15] Knudsen, L.: Truncated and Higher Order Differentials. In: Nyberg, K., Heys,
H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 196–211. Springer, Heidelberg (2003)

[16] Karri, R., Gössel, M.: Parity–based concurrent error detection in symmetric block
ciphers. In: International Test Conference–ITC 2003, pp. 919–926. IEEE Com-
puter Society (2003)

[17] Joshi, N., Wu, K., Karri, R.: Concurrent Error Detection Schemes for Involution
Ciphers. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp.
400–412. Springer, Heidelberg (2004)

[18] Karri, R., Kuznetsov, G., Gössel, M.: Parity-Based Concurrent Error Detection
of Substitution-Permutation Network Block Ciphers. In: Walter, C.D., Koç, Ç.K.,
Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 113–124. Springer, Heidelberg
(2003)

	Fault Detection of the MacGuffin Cipheragainst Differential Fault Attack
	Introduction
	Description of MacGuffin
	Encryption Process
	Decryption Process
	Key Schedule

	The Previous Differential Fault Analysis on MacGuffin
	Our Proposed Fault Detection of MacGuffin
	Conclusion
	References

