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Abstract. Establishing secure channels is one of the most important
and fundamental trust issues in information security. It is of high impor-
tant not only for servers and users computers but also for global con-
nectivity among any kind of network devices. Most existing technologies
for establishing secure channels are based on asymmetric cryptography
which requires heavy computations, large memory and complicated sup-
porting mechanism such as PKI. In this paper, we consider the setting of
authentication with small devices possibly held by humans and possibly
embedded in a semi secure environment. We propose a authenticated key
renewal protocol which uses only symmetric cryptography. The protocol
takes into account other factors important for embedded and human held
network devices: It covers multi-factor authentication to take advantage
of secrets possessed by the secure device as well as the memorable pass-
word of the device owner. The protocol can, further, allow partial leakage
of stored secret from a secure device. The protocol’s considerations are a
good demonstration of designing “trusted procedure” in the highly con-
strained environment of mobile and embedded small devices which is
expected to be prevalent in the coming years.

Keywords: Key exchange, Multi-factor authentication, and Leakage
resilience.

1 Introduction

1.1 Background

Staring with Diffie-Hellman key exchange [4], establishing secure channels is
one of the most fundamental issues in information security. Establishing such a
channel among communicating entities, has two important trust requirements:
authentication and session key secrecy. That is, when the session key is shared the
counterpart of sharing must be correctly authenticated and the shared session
encryption/decryption key must be kept secret against unauthorized entities.

Many types of authenticated key sharing protocol exist, for example
SSL/TLS [5], IPSec [10] and SSH [18], are proposed and used in today’s Inter-
net. Most of these protocols are based on asymmetric key cryptography, because
their basic mechanism of key sharing is based on the DH key exchange protocol.
We consider here the setting of small low-power devices such as smartphones,
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sensors, and RFID-tags. When considering this setting, computing modular ex-
ponentiation is costly. Moreover, when we use asymmetric key cryptography for
authentication, we need PKI, which is costly as well, and may not be accessible
at a device level (i.e., CA identity not accessible for establishing root of trust).
It is much easier to initiate a device (at manufacturing) with symmetric key
capability.

Currently, the typical computing environment is a network with many mo-
bile devices (such as iPad and Android devices). Whereas trusted module like
TPM chips ensure many security functionalities required in computing devices
in regular computers [17], in our setting it is hard to assume the devices will
have modular exponentiation capability (even if some have, we want interop-
erability), and it is interesting to consider what is doable based on symmetric
cryptography alone. Furthermore, in embedding devices the authentication is
based on possession of a secure token. This means the authentication (and the
key exchange) is based on ownership of the device. Then the authentication is
slightly different from “entity” authentication (the entity may be embedded in
another entity, and may be possessed by a human operator/ owner). In this
direction, PAKE protocol realizes authentication function by using password,
which is based on human memory and tightly related to the entity itself [3,8].
However in PAKE, the security parameter is limited by human capability. Long
password is not suitable for PAKE, therefore it is not strong in cryptographic
sense. To increase the accuracy of the authentication, it is good desirable to in-
clude multifactor into the authentication protocol. Examples of the factors are
memory, ownership, biometric, device keys, etc. Also, small devices may operate
in an environment which is leaky and this has to be taken into account as well.

1.2 Contribution of This Paper

In this paper, we propose a system model and a protocol for multifactor au-
thenticated key establishment, named “Multifactor Authenticated Key Renewal
(MAKeR) protocol”. It aims to establish a random session key using multi-factor
information.

MAKeR protocol uses symmetric cryptography only to realize authenticated
key sharing, that is, uses only hash/pseudorandom function and pseudorandom
generator. Though this protocol is not secure against online dictionary attack due
to the limitation of symmetric cryptography techniques, it still present the best
properties achievable under symmetric cryptography only conditions. Thus, this
research goal is implementing better security mechanisms to low-power devices
such as the smartphones, smart-cards, sensors, and RFID-tags.

Our proposal includes shared secret stored in trusted device (the device key),
and password or other information as authentication factors. The former helps
realization of both authentication factor of “what one possesses” and “secrecy” of
session key. The latter is used for authentication by “human-related information”
(“what one knows”).
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1.3 Related Works

As mentioned above, key sharing (exchange) protocols are extensively researched
and many secure protocols have been proposed. Basic type of authenticated key
exchange protocol is combination of entity authentication and Diffie-Hellman
like key exchange protocol. Entity authentication protocols consist of asymmet-
ric key based protocol and symmetric cryptography based protocol. However,
Diffie-Hellman key exchange protocol needs asymmetric cryptographic calcula-
tion. As a user-friendly authenticated key exchange protocol, “Password-based
Authenticated Key Exchange (PAKE)” protocols are widely studied. This pro-
tocol uses pre-shard (short) password as a factor of authentication. Most PAKE
protocols include data from password into Diffie-Hellmann key exchange proto-
col, they still need asymmetric cryptographic calculation.

For low-power devices, many entity authentication protocol for RFID tags
are proposed [1,11,2,12,16]. Most of these protocols are based on symmetric
cryptography such as block cipher, stream cipher, hash function and so on. Our
proposal is based on the existing authentication protocol for RFID-tags.

The other works related to this paper are about multi-factor authentication.
Klesnikov and Rackoff proposed a multi-factor authenticated key exchange pro-
tocol [9]. In this paper, they use three factors: password, secret keys for sym-
metric key cryptography and asymmetric key cryptography. Pointcheval et al.
proposed security model and authenticated key exchange protocol which uses
biometrics as well as secret information as authentication factors [15]. However,
the protocol is based on asymmetric cryptography.

This paper also deals with leakage of secret information from a device, which
is realized by side-channel attacks or cold-boot attacks. This is a very current
area of research. In ordinary cryptographic research, the security model does not
consider leakage of secret information. In the symmetric world, Petit et al. [14]
proposed a leakage-resilient pseudo-random generator from ideal ciphers. Dziem-
bowski et al. [6] proposed a leakage-resilient stream cipher based on pseudo-
random generator in the standard model. Then Pietrzak [13] proposed simpli-
fied leakage-resilient stream cipher from wPRF. We will use the same model of
leakage as [6,13] in this paper.

2 System Model

The MAKeR protocol consists of two entity, Alice and Bob. Alice can be treated
as client of some service. Alice has one device DEVA connected to the Internet. An
application program PROGA runs on the device and accepts multiple inputs from
Alice such as password and other authentication factors. The device also havs
some trusted module/ token TPMA attached to it. TPMA stores secret information
secA, and conducts some (symmetric) cryptographic operations. TPMA may be
implemented into DEVA (by the manufacturer, say) or is attached using a card
slot and so on. TPMA communicates with PROGA.

Bob can be treated as a server. It is realized as a device DEVB and also con-
nected to the Internet. An application program PROGB executes authenticated
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Fig. 1. System model of multi-factor authenticated key renewal

key renewal protocol. Some secret information secB and other multiple authen-
tication factors shared with each client are stored in DEVB, and PROGB accesses
them in the execution of the protocol. We assume that DEVB and PROGB is trusted.
That is, the malicious adversary A against this protocol cannot corrupt DEVB and
PROGB. Thus, A cannot obtain secB and any internal state of DEVB and PROGB.

DEVA and DEVB communicates over the Internet, which can be treated as inse-
cure channel. That is A can eavesdrop, alter, intercept all communication data
and send arbitrary message to Alice and Bob.

When Alice would like to establish a secure channel with Bob, she inputs
required authentication information (which is shared) to PROGA through user
interface of DEVA. In the protocol execution, PROGA calculates protocol messages
with help of TPMA. PROGA and PROGB execute session key renewal protocol, then
share the session key key at the end of the protocol.

This system model is shown in Fig.1.

3 Security Model

The goal of the protocol is establishing a session key from multi-factor secrets.
The basic security for multi-factor key renewal protocol is that even if a malicious
adversary A interacts with clients and the server, the communication messages
leak no information about the session key computed by the server. Additionally,
the protocol must guarantee secrecy of the future session key, and privacy for
the past session key even if an attack is attempted (namely, it must be based on
fresh randomness and be forward secure).

The device DEVA stores secret value secA. We firstly consider the basic case
that the device DEVA as tamper-free, next we consider the several types of secret
information leakage.

The formal security definition in the basic case (without any key leakage from
DEVA) is as follows.

3.1 Security Definition without Corruption

The basic security model is similar to that of multi-factor authentication pro-
posed by Pointcheval et al. [15].
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Participants, sessions and partnering. Let DEVA be a client device of entity Alice
to be authenticated and DEVB be a (trusted) server organized entity B. We con-
sider that the server and every client can initiate several instances at a time,
in order to run several sessions concurrently. The i-th instance of the entity U ,
where U is a client or the server, is denoted as Πi

U . This instance includes three
variables:

– pidi
U : the partner identifier which is the instance with whom Πi

U believes it
is interacting,

– sidi
U : the unique session identifier, in practice it can be the transcript seen

by Πi
U (concatenation of the received/sent flows, excepted the last one).

– acci
U : a boolean variable which is determined at the end of the session and

denotes whether the instance Πi
U goes in an accepted (ai

U = 1) state or not
(acci

U = 0).

The two instances Πi
U and Πj

U ′ are said to be partners if the following conditions
are fulfilled:

1. pidi
U = Πj

U ′ and pidj
U ′ = Πi

U ;
2. sidi

U = sidj
U ′ �= null;

3. acci
U = accj

U ′ = 1.

Adversarial capabilities and goals. The semantic security of the key is modeled
using the Real-or-Random paradigm. At the beginning of the game, the chal-
lenger chooses a random bit b which determines its behavior when answering
Test-query during the game (it provides either real session key or random to
the adversary). The adversary may interact with protocol instances through sev-
eral oracles, and at the end of the game, she outputs a bit b. If b = b′, she wins,
otherwise, she looses. The available queries are as follows:

– Send(m, Πi
U ): this query allows the adversary to play with the instances, by

intercepting, forwarding, modifying or creating messages. The output of this
query is the answer generated by instance Πi

U to the message m.
– Reveal(Πi

U ): this query models the leakage of information about the session
key agreed on by the parties. For example, if it is misused afterward. There-
fore, if no session key is defined for this instance, or if the instance (or its
partner) has been tested (see below), then the output is ⊥. Otherwise, the
oracle outputs the session key computed by the instance Πi

U .

To model the semantic security with respect to client authentication formally,
the adversary can ask Test-query, but to the server S only: we are interested
in the privacy of the key established with the real server only. We only consider
the adversary whose goal is to impersonate a client to the server. Of course,
to achieve this goal, the adversary may try to impersonate the server to the
client in order to learn some information about the internal state secA of TPMA
or other multiple authentication factors. But only a client impersonation will be
considered as a successful attack:
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Fig. 2. Corruption model of multi-factor authenticated key renewal

– Test(Πi
S): The oracle responds

• the session key of instance (Πi
S) (that is Reveal(Πi

S)), if b = 1 - the real
case;

• a random key from the same domain, if b = 0 - the random case.

Semantic Security. Let denote by Succ the event that the adversary A correctly
guesses the bit b used by the challenger during the above attack game. We require
that the test session where adversary issues the test query must be fresh (see
below). The maker-advantage advmaker

P (A) and the advantage function of the
protocol P are respectively:

advmaker
P (A) = |2 · Pr[Succ] − 1| , advmaker

P (t, Q) = max
A

{advmaker
P (A)}

where the maximum is over all the attackers with time-complexity at most t and
number of queries at most Q.

Client authentication. We also usually model an attack against the unilateral
authentication of the client to the server by considering sessions where the server
accepts, but without any client-partner. Let denote by Succ the event that a
server instance accepts with no partner instance of the client (with the same
partial transcript).

The auth-success Succauth
P (A) and the success function of the protocol P are

respectively:

Succauth
P (A) = Pr[Succ], Succauth

P (t, Q) = max
A

{Succauth
P (A)}

where the maximum is over all the attackers with time-complexity at most t and
number of queries at most Q.

3.2 Considering Corruption of Client Device

Here, we think about corruption of client device DEVA. We consider the following
three types of attacks; (1) communication channel between TPMA and PROGA and
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(2) TPMA itself. These attack on TPMA can be categorized in two types; (2-1) partial
leakage of secA and (2-2) full leakage of secA. These attacks are shown in fig. 2.

For corruption, we must consider two new security notions, freshness and
forward secrecy.

Freshness. The freshness notion basically defines session keys that are not triv-
ially known to the adversary. Since we will focus on the freshness of the server
only, we say that the session key of instance Πi

S is fresh if:

– upon acceptance, DEVA (corresponding to the partner of Πi
S) was not fully

corrupted.
– no Reveal-query is sent to either Πi

S or its partner.

Backward and forward-Secrecy. Backward-secrecy mean that after the time of
corruption, the session keys in any following session remains secret against the
adversary. In order to capture this security, the model must allow the adversary
to perform Test-queries, which we will define after, on sessions occurred after
the corruption. Forward-secrecy means that as soon as a session key is securely
generated (semantically secure), it will remain secure even after corruption. In
order to capture this security, the model must allow the adversary to perform
Test-queries, on sessions completed before the corruption.

From here, we consider the cases which the adversary obtains leaked informa-
tion. Note that in the following, we will restrict to non-adaptive corruptions: no
corruption can be performed during a session, but before a new session starts.

Full Leakage in Communication Channel between TPMA and PROGA. This
leakage models interception of full information between TMPA and PROGA. This
type of attack is most easiest among three types of corruption, because this
channel is not tamper-resistant in general. Moreover the TPMA is a device which
may be attached to DEVA, the interception is quite easy. The adversary can
acquire all communication data between TPMA and PROGA by this attack.

To model this attack, we introduce CORRUPT1 oracle.

CORRUPT1(DEVA): Upon asking this query, the adversary can acquire all commu-
nication between TPMA and PROGA.

Partial Leakage of Internal Key. This attack is difficult because it need
much expertise to do it. However, recent extensive researches on side-channel
attacks, such attacks help the adversary to obtain internal secret information
against tamper resistant mechanisms of TPMA itself.

To model this attack, we introduce following CORRUPT2 oracle.

CORRUPT2(DEVA, λ): Upon asking this query, the adversary can acquire partial in-
formation of secret secA stored in TPMA. The output of this oracle is λ(secA),
where λ(·) is a leakage function which models this partial leakage.
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Full Leakage of Internal Key. Here we consider full corruption of internal
secret secA of TPMA. To conduct this attack, it takes much time. However, it is
considered in the existing researches on key sharing protocols.

To model this attack, we introduce following CORRUPT3 oracle.

CORRUPT3(DEVA): Upon asking this query, the adversary can acquire secA stored
in TPMA.

Why Consider Both Partial and Full Leakage from TPM? As described
above, in forward secrecy, we allow the adversary to obtain the full internal state
of the device, denoted as “full leakage of internal key”. Surely, we must consider
this type of attack as the worst case. It is worth noting that, in the real usage
of mobile devices, it apparently takes quite much time and effort to conduct
attacks leading to full leakage of internal key (For example, the adversary steals
the tag and brings it to his laboratory to obtain the internal state.) However,
the adversary certainly has no chance to give the device to the original owner
again.

In this paper, we additionally consider an attack scenario which we call “multi-
time partial leakage”. Namely, in the life time of a device, its internal state may
be partially leaked in a gradual way. It is obvious that partial leakage is more
likely to occur than full leakage, because the adversary can conduct such attacks
in a shorter time, with cheap and small-size devices. Furthermore, the adversary
has enough time to bring back the TPM/device to the original owner. Therefore,
it is practical to consider the multi-time partial-leakage scenarios.

The partial leakage allows the adversary to conduct further key renewal. How-
ever, when full leakage occurred, the original user notice the attack and he could
revoke the mobile device for key renewal. Thus, we consider only partial leakage
for key indistinguishability against random and consider full leakage for forward
secrecy.

4 Protocol Description

4.1 Basic Protocol

At first, we show the basic protocol which is secure against an adversary without
corruption. Next, we will show the protocol which is secure against all types of
corruptions.

The proposed protocol is combination of lightweight authentication scheme
studied for RFID-tag and PRF (Pseudo Random Function).

Both the client (the person) DEVA and the server DEVB have fixed secret infor-
mation for authentication. They consist of password, and so on. We represent it
as AuthC = (pwA, . . .). TPMA also has a pseudo-random generator implemented
in TPMA. It outputs a tuple of pseudorandom value (ki, k

′
i, k

′′
i , k

′′′
i ) for i-th au-

thenticated key renewal.
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Fig. 3. Hash chain of OSK protocol

In the basic protocol, the pseudo-random generator is constructed from a
kind of hash chain. OSK protocol [12], which is one of the most popular RFID
authentication protocol, uses the hash chain. This hash chain is shown in Fig. 3.

In the basic protocol, ai = (ki, k
′
i, k

′′
i , k

′′′
i ) are computed as three consecutive

outputs of OSK hash chain. That is,

ki = S4i−3, k
′
i = S4i−2, k

′′
i = S4i−1, k

′′′
i = S4i

The server DEVB also has the same pseudo-random generator, which outputs same
tuple of pseudorandom value for each authenticated key renewal.

The authenticated key renewal consists of authentication part and key estab-
lishment part.

Authentication Part

Step1. Client DEVA generates a random value rA. Then DEVA sends rA and iden-
tity A to the server DEVB.

Step2. The server DEVB calculates message authentication code as follows:

AuthB = MACk′
i
(Fki (rA||rB) ⊕ AuthC),

where MACk(m) is a message authentication code of message m using key k,
FK(·) is pseudo random function with key K (for example, a block cipher like
AES), FK(·) is a message authentication code with key K and || represents
concatenation of two data. Then, DEVB generates a random number rB and
sends AuthB, rB , rA and identity B to DEVA.

Step3. The client DEVA verifies the message authentication code as follows:

AuthB
?= MAC.V erifyk

′
i
((Fki(rA||rB) ⊕ AuthC))

where MAC.V erifyk(m) is verification algorithm of message authentication
code of message m using key k. Then, DEVA calculates message authentication
code as follows:

AuthA = MACk
′′
i
(Fki(rB) ⊕ AuthC),

and send AuthA to the server.
Step4. The server DEVB verifies the message authentication code as follows:

AuthA
?= MAC.V erifyk

′′
i
((Fki (rB) ⊕ AuthC)
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Fig. 4. Leakage resilient pseudorandom generator by Pietrzak et al.

Key Establishment Part: Both the server S and the client C calculates the session
key as follows.

keyi = Fk
′′′
i

(rA) ⊕ Fk
′′′
i

(rB) ⊕ AuthC

4.2 Protocol with Leakage Resilience

Next we move to the protocol with leakage resilience. To make the protocol with
leakage resilience, we use Pietrzak’s pseudorandom generator [13] for the physical
pseudorandom generator. This pseudorandom generator has two sequences of
random internal states and outputs one random value ai for each authenticated
key exchange. The Pietrzak’s pseudorandom generator is shown in Fig.4.

As same as basic protocol we use three consecutive outputs of this pseudo-
random generator. That is

ai = (ki = X5i−4, k
′
i = X5i−3, k

′′
i = X5i−2, k

′′′
i = X5i−1),

which are derived from (K5i−5, K5i−4, X5i−5). ai is transmitted to the PROGA,
then the same protocol as the basic protocol is executed.

5 Security Evaluation

5.1 Completeness

Theorem 1 (Completeness). The DEVA and DEVB who have same internal
secret and AuthC can authenticate each other and compute the same session
key.

Proof. DEVA can confirm the correctness of DEVB in the step 3, because she knows
ki, k

′
i, rA, AuthC . Similarly, DEVB can confirm the correctness of DEVA in the step

4, because she knows ki, k
′′
i , rB, AuthC . Both DEVA and DEVA can calculate same

session key keyi, because they knows k
′′′
i , rA, rB and AuthC . ��
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5.2 Security

At first we describe that our usage of OSK-protocol and Pietezak’s pseudoran-
dom generator is still pseudo-random. In the following theorems, we consider
the pseudorandom generator implemented in TPMA as G(i, ·). When we input
the latest secret key si−1, this generator outputs (si, ai) = G(i, si−1) where
ai = (ki, k

′
i, k

′′
i , k′′′

i ).

Theorem 2 (Security of underlying pseudorandom generator). Output
of our usage of OSK protocol is still pseudo-random without leakage of inter-
nal state. And output of our usage of Pietrzak’s pseudo-random generator is
still pseudo-random against the adversary who try to partial leakage allowed in
Pietrzak’s mode-of-operation.

Proof. This security of this theorem is distinguishing (ki, k
′
i, k

′′
i , k′′′

i ) from ran-
dom using (ki−1, k

′
i−1, k

′′
i−1, k

′′′
i−1). Let the success probability of distinguish-

ing ki from random using k
′′′
i−1 be Pr[Succ(APRG)] and success probability

of distinguishing (ki, k
′
i, k

′′
i , k′′′

i ) from random using (ki−1, k
′
i−1, k

′′
i−1, k

′′′
i−1) be

Pr[Succ(A4PRG)].
Then

|1 − 2 · Pr[Succ(A4PRG)] ≤ |1 − 2 · ((Pr[Succ(APRG)])4

+4/2|k| × (Pr[Succ(APRG)])3

+6/22|k| × (Pr[Succ(APRG)])2

+4/23|k| × (Pr[Succ(APRG)])
+1/24|k|)|

Theorem in [12] shows that Pr[Succ(APRG)] is negligible without corruption.
Similarly, theorem in [13] shows that Pr[Succ(APRG)] is negligible with partial
leakage. Thus, Pr[Succ(A4PRG)] is negligible. ��
Theorem 3 (Key security without any corruption). The proposed proto-
cols (both basic and leakage-resilient versions) have semantic security of renewal
session key against any adversary who observe protocol messages. This means
the adversary cannot obtain no information about further session keys.

Proof. We proceed in games, starting with Game 0 which is the original security
game between a challenger and adversary in the proposed protocol. The chal-
lenger simulates all party’s registration and the response to the oracle queries
that A issues. Let Succf(B) be the event that an probabilistic algorithm B breaks
the security property of the function f .

In each Game i, we define advi as the advantage that the adversary wins the
game. We consider the following games:

Game 0. This is the original security game with adversary A so that adv0 =
advmaker

P (t, Q).
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Game 1. We proceed as Game 0 but add the following abort rule. The chal-
lenger proceeds as Game 0 but aborts the game if it does not correctly guess the
test session.

Game 2. We transform Game 1 to Game 2 by changing the secret key (ki, k
′
i, k

′′
i ,

k′′′
i ) used in the test session to random strings.

Game 3. We modify Game 2 by changing pseudorandom function Fki(·) to
truly random function RF used at the test session.

Game 4. We proceed as Game 3 but add the following rule. If the adver-
sary changes the communication message at the test session and the verification
of the MAC function is accepted, the challenger aborts the security game in
Game 4.

Game 5. We modify Game 4 by changing pseudorandom function Fk′′′
i

(·) to
truly random function RF used at the test session.

Game 6. We modify Game 5 to Game 6 by changing the session key at the test
session to the truly random string.

We evaluate the relations between the game transformation with the follow-
ing claims.

Claim 1. We have adv0 ≤ Q/2 · adv1.
Proof. From the definition of the security model, the upper bound of the oracle
queries issued by the adversary A is at most Q. To establish a server’s accepted
session, A must issue two send queries from the specification of the proposed
protocol and the server executes at most Q/2 sessions in the security game. When
the challenger uniformly selects i from 1, . . . , q such that server’s i-th session will
be chosen as the test session. Then the probability that the challenger correctly
guesses the test session is at least 2/Q. Therefore, adv0 ≤ Q/2 · adv1.
Claim 2. We have |adv1 − adv2| ≤ Pr[SuccG(B′

4PRG)].

Proof. If the adversary A can distinguish Game 2 from Game 1 with non-
negligible probability, there exists an probabilistic algorithm B′

4PRG that can
break the security of pseudorandom generator G(i, ·).

For a given instance (ki, k
′
i, k

′′
i , k′′′

i ), B′
PRG proceeds as Game 1 except that

(ki, k
′
i, k

′′
i , k′′′

i ) is assigned as the secret key for the i-th server’s session. When the
adversary output a guess bit b′ for the test session, B′

4PRG outputs the same bit
b′. If the tuple is computed by pseudorandom generator, this game is equivalent
to Game 1. Otherwise, B′

4PRG simulates Game 2 from the view point of the
adversary. Therefore, it is clear that if the adversary can distinguishes Game 2
from Game 1 with probability ε1, B′

4PRG can distinguishes (ki, k
′
i, k

′′
i , k′′′

i ) with
the same probability. However, Theorem 2 showed that this probability is already
negligible.
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Claim 3. We have |adv2 − adv3| ≤ Pr[SuccF (BPRF )].

Proof. If the adversary A can distinguish Game 3 from Game 2 with non-
negligible probability, there exists an probabilistic algorithm BPRF that can
break the security of pseudorandom function.

Consider that BPRF interacts with pseudo-random function Fki(·) or truly
random function RF . BPRF proceeds as Game 2 and simulates all the oracle
queries except the test session. We assume that the adversary sends (r′A, ·) to
the server and (r′B , ·) to the client at the test session. BPRF issues rA‖r′B and
r′A‖rB to the oracle query where (rA, rB) is chosen by BPRF and BPRF computes
(AuthB, AuthA) using the response from the challenger. When the adversary
output a guess bit b′ for the test session, BPRF outputs the same bit b′. From the
security proof of the previous claim, each secret key input to the pseudorandom
function is chosen by uniformly random. So if the adversary can distinguish these
games, BPRF can break the security of PRF with the same probability.

Claim 4. We have |adv3 − adv4| ≤ Pr[SuccMAC(BMAC)]+ 2/2lF where lF is the
output length of the pseudorandom function Fki(·).
Proof. It is clear that these games are equivalent if the adversary does not out-
put the modification message such that the party accepts it. We show that if
the adversary succeeds in outputting such a valid message with non-negligible
probability, there exists an probabilistic algorithm BMAC that can break the
existential unforgeability of the MAC function.

Consider that the adversary sends (r′A, ·) to the server, (r′B , Auth′
B) to the

client and Auth′
A to the server at each round of the test session. If r′A �= rA or

r′B �= rB , the client and the server input different variables to the pseudorandom
function Fki(·) and its outputs are completely independent from the previous
claim. Thus, mB = Fk′

i
(r′A‖rB) ⊕ AuthC computed by the server and mA =

Fk′
i
(rA‖r′B) ⊕ AuthC computed by the client are different messages except the

negligible probability 1/2F . If Auth′
B is accepted by the client, we can construct

BMAC who simulates the game as Game 3 and outputs (mA, Auth′
B) as a forgery.

BMAC issues mB to the MAC oracle but mA = mB happens with probability
1/2lF . The same argument holds for the MAC value Auth′

A if we assume that
r′B �= rB . So the probability that server accepts with modified message is also
negligible. Therefore, we have ‖adv3 − adv4‖ ≤ Pr[SuccMAC(BMAC)] + 2/2lF .

Claim 5. We have |adv4 − adv5| ≤ Pr[SuccF (BPRF )].

Proof. We can show the proof of this claim as previous claim for the difference
between Game 2 and 3. In this case, BPRF interacts with pseudo-random func-
tion Fk′′′

i
or truly random function RF and issues (rA, rB) to the oracle query.

So if the adversary can distinguishes these games, BPRF can break the security
of PRF with the same probability.

Claim 6. We have |adv5 − adv6| = 0.

Proof. The session key at the test session is already randomized since Fk′′′
i

(rB)
is replaced by uniformly random string and it is effectively a one-time pad.
Therefore, this change is purely conceptual and we obtain |adv5 − adv6| = 0.
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It is obvious that adv6 = 0, and we obtain

advmaker
P (t, Q) ≤ Q/2 · ( Pr[SuccG(B′

4PRG)] + 2 · Pr[SuccF (BPRF )]

+ Pr[SuccMAC(BMAC)] + 2/2lF )

and conclude the proof of Theorem 3. ��
We remark that Sucvauth

P (t, Q) is also negligible from Claim 4.

Theorem 4 (Key security with CORRUPT1). The proposed protocols (both ba-
sic and leakage-resilient versions) have semantic security of renewal session key
against any adversary who observe protocol messages and obtain output from
TPMA. This means the adversary cannot obtain no information about further ses-
sion keys.

Proof. The security proof of this theorem is derived from Theorem 2 and 3.
The difference between Theorem 3 and 4 is that the adversary can obtain
{(kj , k

′
j , k

′′
j , k′′′

j )} for j = 1, . . . , i − 1 whose variables are used as the secret
key before the test session. Nonetheless, Theorem 2 shows that pseudorandom
generator G(i, ·) still holds the security and (ki, k

′
i, k

′′
i , k′′′

i ) is independent from
these keys. Then we can easily construct the security proof based on Theorem
3. Therefore,

advmaker
P (t, Q) ≤ Q/2 · ( Pr[SuccG(B4PRG)] + 2 · Pr[SuccF (BPRF )]

+ Pr[SuccMAC(BMAC)] + 2/2lF )

and B4PRG is negligible from Theorem 2.

Theorem 5 (Key security with CORRUPT1 and CORRUPT2). The proposed
protocols (only leakage-resilient versions) have for key security of renewal session
key against any adversary who observe protocol messages and obtain output and
partial internal information from TPMA. This means the adversary cannot obtain
no information about further session keys.

Proof. In addition to Theorem 4, this type of adversary can issue leakage oracle
and obtain λ(ai), where λ(·) is leakage function chosen by the adversary. When
we consider the hash chain likes OSK protocol or traditional pseudorandom
generator, the security is no more ensured. However, if we use the leakage resilient
pseudorandom generator proposed by Pietrzak et al., our protocol also satisfies
the leakage resilience and we can describe the security proof as in the Theorem
4. Therefore, we have

advmaker
P (t, Q) ≤ Q/2 · ( Pr[SuccG(B′′

4PRG)] + 2 · Pr[SuccF (BPRF )]

+ Pr[SuccMAC(BMAC)] + 2/2lF )

and we can show that Pr[SuccG(B′′
4PRG)] is negligible from the theorem in

Pietrzak et al. ��
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Theorem 6 (Forward secrecy with CORRUPT1 and CORRUPT3). The proposed
protocols (both basic and leakage-resilient versions) have forward secrecy of re-
newal session key against any adversary who observe protocol messages and ob-
tain output and full internal information from TPMA. This means the adversary
cannot obtain no information about previous session keys.

Proof. This type of adversary can obtain all the internal secret used after the
test session, in addition to the adversary described in Theorem 3.

When we consider the OSK-type hash chain pseudorandom generator G, the
adversary can receive (i + 1)-th session’s internal secret si+1 = G(H−1(k′′′

i ))
with CORRUPT3 query. Note that the other secret keys are derived from this
value. In this case, we can easily show the independence of the secret key of
the test session. When we set as t = H−1(k′′′

i ), we have si+1 = G(t) and k′′′
i =

H(t). Since the each pseudorandom generator G and H implemented in the
TPMA is independently chosen in our protocol, si+1 does not affect the pseudo-
randomness of k′′′

i . Of course, we can say that the pseudo-randomness of k′′
i , k′

i

and ki also holds recursively.
In the case of leakage resilient pseudorandom generator G, the output from the

TPMA at the test session is ai = (ki, k
′
i, k

′′
i , k′′′

i ) = (X5i−4, X5i−3, X5i−2, X5i−1).
When the adversary issues CORRUPT3 query to the (i + 1)-th session, he can
receive si+1 = (K5i, K5i+1, X5i). Note that (K5i, X5i−1) = F(k5i−2, X5i−2) and
(K5i+1, X5i) = F(k5i−1, X5i−1) where F is iterated pseudorandom generator used
in G. Thus si+1 does not affect the pseudo-randomness of ai.

Therefore, the corruptions after the test session does not affect the security
proof and

advmaker
P (t, Q) ≤ Q/2 · ( Pr[SuccG(B′

4PRG)] + 2 · Pr[SuccF (BPRF )]

+ Pr[SuccMAC(BMAC)] + 2/2lF ).

We can evaluate the security reduction as Theorem 3. ��

5.3 Discussion

From the above security evaluation, we can see that security of one side of multi-
factor AuthC cannot be guaranteed after any corruption (by only CORRUPT1).
This is because the adversary can obtain rA, rB , AuthA, AuthB and its encryp-
tion key, then the security of AuthC is not guaranteed by definition of pseudo-
random functions. This is the so, as is the fact that this protocol is not secure
against online dictionary attack. However this is due to inherent limitations of
using symmetric key cryptography, which is pointed out by Halevi et al [7].
The only countermeasure for this is slow-downing of calculation of inverses of
pseudo-random function by using multiple PRFs.

However, generally AuthC contains a password, which can be changeable at
any time (and is changed according to systems rules every so often). Even if
CORRUPT1 or CORRUPT3 are made, the security of AuthC part revives after chang-
ing password. This is a different characteristics than that of internal secret (keys).
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Internal secrets cannot be changed after corruption, thus it should be protected
by hash chain or Pietrzak’s mode. However, password can be easily changed,
thus, the current setting is still effective in practice.

6 Conclusion

This paper proposed multifactor authenticated key renewal protocol, which real-
izes authenticated key establishment from symmetric (shared) key cryptography
only. The authentication part of this protocol deals with both authentication
from device’s secret and human related authenticator like memorable password.
The system model of this protocol is suitable for the situation of current mobile
computing and other devices. In practice, all functions in this protocol are re-
alized by the standard AES function or other secure light-weight block cipher.
Thus, this is efficient enough for smartphone, mobile devices and smartcards.
The proposed protocol deals with many types of attacks, such as data intercep-
tion between TPM and application program, and side channel attacks on the
TPM. This protocol assures session key secrecy and forward secrecy against the
above attacks.
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