

Lecture Notes in Computer Science 7222
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Liqun Chen Moti Yung
Liehuang Zhu (Eds.)

Trusted Systems
Third International Conference
INTRUST 2011
Beijing, China, November 27-29, 2011
Revised Selected Papers

13

Volume Editors

Liqun Chen
Hewlett-Packard Laboratories
Long Down Avenue, Stoke Gifford
Bristol, BS34 8QZ Bristol, UK
E-mail: liqun.chen@hp.com

Moti Yung
Columbia University
Computer Science Department
S.W. Mudd Building
New York, NY 10027, USA
E-mail: my123@columbia.edu

Liehuang Zhu
Beijing Institute of Technology
Beijing Key Lab of Intelligent
Information Technology
100081 Beijing, China
E-mail: liehuangz@bit.edu.cn

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-32297-6 e-ISBN 978-3-642-32298-3
DOI 10.1007/978-3-642-32298-3

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012943158

CR Subject Classification (1998): D.4.6, E.3, K.6.5, C.2, K.4.4, J.1, H.4

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These proceedings contains the 21 papers presented at the INTRUST 2011
conference, held in Beijing, China, in November 2011. INTRUST 2011 was the
third international conference on the theory, technologies, and applications of
trusted systems. It was devoted to all aspects of trusted computing systems,
including trusted modules, platforms, networks, services, and applications, from
their fundamental features and functionalities to design principles, architecture
and implementation technologies. The goal of the conference was to bring aca-
demic and industrial researchers, designers, and implementers together with
end-users of trusted systems, in order to foster the exchange of ideas in this
challenging and fruitful area.

INTRUST 2011 built on the successful INTRUST 2009 and INTRUST 2010
conferences, held in Beijing in December 2009 and December 2010, respectively.
The proceedings of INTRUST 2009, containing 16 papers, were published in
volume 6163 of the Lecture Notes in Computer Science. The proceedings of
INTRUST 2010, containing 23 papers, were published in volume 6802 of the
Lecture Notes in Computer Science.

Apart from the 21 contributed papers, the program of INTRUST 2011 also
consisted of a workshop, titled “Asian Lounge on Trust, Security and Privacy.”
The workshop included six keynote speeches from Yanan Hu (Broadband Wire-
less IP Standard Group and China IWNCOMM Co., Ltd.), Wenbo Mao (Daoli
Limited), Graeme Proudler (Hewlett-Packard Laboratories and TCG), Kouichi
Sakurai (Kyushu University), Moti Yung (Columbia University and Google), and
Huanguo Zhang (Wuhan University). Special thanks are due to these speakers.

The contributed papers were selected from 34 submissions from 18 countries.
All submissions were blind-reviewed, i.e., the Program Committee members pro-
vided reviews on anonymous submissions. The refereeing process was rigorous,
involving on average three (and mostly more) independent reports being pre-
pared for each submission. The individual reviewing phase was followed by pro-
found discussions about the papers, which contributed greatly to the quality
of the final selection. A number of accepted papers were shepherded by some
Program Committee members in order to make sure the review comments were
addressed properly. We are very grateful to our hard-working and distinguished
Program Committee for doing such an excellent job in a timely fashion.

For the proceedings the papers have been divided into seven main categories,
namely, trusted services, mobile trusted systems, trusted networks, security anal-
ysis, cryptographic aspects, implementation, and anonymous direct attestation.

We also want to thank the conference Steering Committee organized by
Yongfei Han, the conference General Chairs, Robert Deng, Heyan Huang and
Chris Mitchell, the Organizing Chair Liehuang Zhu, and Publicity Chairs, Xuhua
Ding, and Lejian Liao, for valuable guidance and assistance and for handling the

VI Preface

arrangements in Beijing. Thanks are also due to EasyChair for providing the
submission and review webserver and to Guoyong Cheng for maintaining the
conference webpage.

On behalf of the conference organization and participants, we would like to
express our appreciation to Beijing Institute of Technology, ONETS Wireless &
Internet Security Company, Singapore Management University, and the Admin-
istrative Committee of Zhongguangcun Haidian Science Park for their generous
sponsorship of this event.

We would also like to thank all the authors who submitted their papers
to the INTRUST 2011 conference, all external referees, and all the attendees
of the conference. Authors of accepted papers are thanked again for revising
their papers according to the feedback from the conference participants. The
revised versions were not checked by the Program Committee, so authors bear
full responsibility for their contents. We thank the staff at Springer for their help
with producing the proceedings.

February 2012 Liqun Chen
Moti Yung

Liehuang Zhu

INTRUST 2011

The Third International Conference on Trusted Systems
Beijing, P.R. China

November 27–29, 2011

Sponsored by
Beijing Institute of Technology

ONETS Wireless & Internet Security Company
Singapore Management University

The Administrative Committee of Zhongguangcun Haidian Science Park

General Chairs

Robert Deng Singapore Management University, Singapore
Heyan Huang Beijing Institute of Technology, China
Chris Mitchell Royal Holloway, University of London, UK

Program Chairs

Liqun Chen Hewlett-Packard Laboratories, UK
Moti Yung Columbia University and Google Inc., USA
Liehuang Zhu Beijing Institute of Technology, China

Program Committee

Endre Bangerter Bern University of Applied Sciences,
Switzerland

Boris Balacheff HP Laboratories, UK
Feng Bao I2R, Singapore
Kefei Chen Shanghai Jiaotong University, China
Haibo Chen Fudan University, China
Zhen Chen Tsinghua University, China
Zhong Chen Peking University, China
Xuhua Ding Singapore Management University, Singapore
Kurt Dietrich Graz University of Technology, Austria
Loïıc Duflot SGDN, France
Dengguo Feng Chinese Academy of Sciences, China
Dieter Gollmann Hamburg University of Technology, Germany
David Grawrock Intel, USA

VIII INTRUST 2011

Sigrid Guürgens Fraunhofer Institute for Secure Information
Technology, Germany

Weili Han Fudan University, China
Dirk Kuhlmann HP Laboratories, UK
Xuejia Lai Shanghai Jiaotong University, China
Jiangtao Li Intel, USA
Shujun Li University of Konstanz, Germany
Peter Lipp Graz University of Technology, Austria
Javier Lopez University of Malaga, Spain
Andrew Martin University of Oxford, UK
Shin’ichiro Matsuo NICT, Japan
Chris Mitchell RHUL, UK
Yi Mu University of Wollongong, Australia
David Naccache ENS, France
Raphael Phan Loughborough University, UK
Bart Preneel KU Leuven, Belgium
Graeme Proudler HP Laboratories, UK
Sihan Qing Chinese Academy of Sciences, China
Emily Ratliff IBM, USA
Scott Rotondo Oracle, USA
Ahmad-Reza Sadeghi Technical University Darmstadt and

Fraunhofer SIT Darmstadt, Germany
Kouichi Sakurai Kyushu University, Japan
Wenchang Shi Renmin University, China
Willy Susilo University of Wollongong, Australia
Qiang Tang University of Twente, The Netherlands
Claire Vishik Intel, USA
Guilin Wang University of Wollongong, Australia
Jian Weng Jinan University, China
Shouhuai Xu UTSA, USA
Rui Xue Chinese Academy of Sciences, China
Huanguo Zhang Wuhan University, China
Xing Zhang BJUT, China
Xinwen Zhang Huawei Research Center, USA
Yongbin Zhou Chinese Academy of Sciences, China
Yan Zhou Peking University, China

Steering Committee

Liqun Chen HP Laboratories, UK
Robert Deng SMU, Singapore
Yongfei Han BJUT and ONETS, China
Chris Mitchell RHUL, UK
Moti Yung Google and Columbia University, USA

INTRUST 2011 IX

Organizing Chair

Liehuang Zhu Beijing Institute of Technology, China

Publication Chairs

Xuhua Ding Singapore Management University, Singapore
Lejian Liao Beijing Institute of Technology, China

External Reviewers

Yuichi Asahiro
Man Ho Au
Andreas Fuchs
Wei Gao
Yun Huang
Tingting Lin
Yu Long
Yiyuan Luo
Bart Mennink
Mridul Nandi

Yizhi Ren
Thomas Schneider
Jae Hong Seo
Isamu Teranishi
Yasuyuki Tsukada
Ronald Tögl
Christian Wachsmann
Liangliang Wang
Laiping Zhao

Table of Contents

Trusted Services

A Flexible Software Development and Emulation Framework for ARM
TrustZone . 1

Johannes Winter, Paul Wiegele, Martin Pirker, and Ronald Tögl

Building General Purpose Security Services on Trusted Computing 16
Chunhua Chen, Chris J. Mitchell, and Shaohua Tang

Enforcing Sticky Policies with TPM and Virtualization 32
Gina Kounga and Liqun Chen

Mobile Trusted Systems

Mass Transit Ticketing with NFC Mobile Phones . 48
Jan-Erik Ekberg and Sandeep Tamrakar

Anonymous Ticketing for NFC-Enabled Mobile Phones 66
David Derler, Klaus Potzmader, Johannes Winter, and Kurt Dietrich

Security Analysis

Some Improvements to the Cost-Based Framework for Analyzing
Denial of Service Attacks . 84

Qinggang Yue, Feng Liu, and Rui Xue

Fault Detection of the MacGuffin Cipher against Differential Fault
Attack . 102

Wei Li, Dawu Gu, Zhiqiang Liu, Ya Liu, and Xiaohu Huang

Computationally Sound Symbolic Analysis of EAP-TNC Protocol 113
Zijian Zhang, Liehuang Zhu, Feng Wang, Lejian Liao,
Cong Guo, and Hongyuan Wang

A Technique for Remote Detection of Certain Virtual Machine
Monitors . 129

Christopher Jämthagen, Martin Hell, and Ben Smeets

Cryptographic Aspects

Indifferentiability of Domain Extension Modes for Hash Functions 138
Yiyuan Luo, Xuejia Lai, and Zheng Gong

XII Table of Contents

Multicollisions and Graph-Based Hash Functions . 156
Kimmo Halunen

A General, Flexible and Efficient Proof of Inclusion and Exclusion 168
Kun Peng

MQQ-SIG: An Ultra-Fast and Provably CMA Resistant Digital
Signature Scheme . 184

Danilo Gligoroski, Rune Steinsmo Ødeg̊ard, Rune Erlend Jensen,
Ludovic Perret, Jean-Charles Faugère, Svein Johan Knapskog, and
Smile Markovski

Multifactor Authenticated Key Renewal . 204
Shin’ichiro Matsuo, Daisuke Moriyama, and Moti Yung

Restricted Identification Scheme and Diffie-Hellman Linking Problem . . . 221
Miros�law Kuty�lowski, �Lukasz Krzywiecki, Przemys�law Kubiak, and
Micha�l Koza

Trusted Networks

Mixed-Strategy Game Based Trust Management for Clustered Wireless
Sensor Networks . 239

Dong Hao, Avishek Adhikari, and Kouichi Sakurai

Hash Chains at the Basis of a Secure Reactive Routing Protocol 258
Thouraya Bouabana-Tebibel

Implementation

Evaluation of a PUF Device Authentication Scheme on a Discrete
0.13um SRAM . 271

Patrick Koeberl, Jiangtao Li, Roel Maes, Anand Rajan,
Claire Vishik, and Marcin Wójcik

A Performance Analysis of Identity-Based Encryption Schemes 289
Pengqi Cheng, Yan Gu, Zihong Lv, Jianfei Wang, Wenlei Zhu,
Zhen Chen, and Jiwei Huang

Direct Anonymous Attestation

A (Corrected) DAA Scheme Using Batch Proof and Verification 304
Ernie Brickell, Liqun Chen, and Jiangtao Li

DAA Protocol Analysis and Verification . 338
Yu Qin, Xiaobo Chu, Dengguo Feng, and Wei Feng

Author Index . 351

A Flexible Software Development

and Emulation Framework for ARM TrustZone

Johannes Winter, Paul Wiegele, Martin Pirker, and Ronald Tögl

Institute for Applied Information Processing and Communications
Graz University of Technology

Inffeldgasse 16a, 8010 Graz, Austria
{johannes.winter,martin.pirker,ronald.toegl}@iaik.tugraz.at,

wiegele@student.tugraz.at

Abstract. ARM TrustZone is a hardware isolation mechanism to im-
prove software security. Despite its widespread availability in mobile and
embedded devices, development of software for it has been hampered by
a lack of openly available emulation and development frameworks. In this
paper we provide a comprehensive open-source software environment for
experiments with ARM TrustZone, based on the foundations of the well
known open-source QEMU platform emulator. Our software framework
is complemented by a prototype kernel running within a trusted environ-
ment. We validate our software environment with an application example
featuring a software based Trusted Platform Module hosted in a Trust-
Zone protected runtime environment and an Android operating system
accessing it through an high-level, industry-standard Trusted Computing
API.

1 Introduction

One of dominant processor architectures used in current and future mobile and
embedded devices is the ARM architecture. Current ARM-based processor de-
sign span a wide range of application fields ranging from tiny embedded devices
(e.g. ARM Cortex-M3) to powerful multi-core systems (e.g. ARM Cortex-A9
MPCore).

Threats, attacks and implementation challenges, which were previously known
only in the x86 desktop and server domain, are already moving on to mobile and
embedded devices. Especially the emerging scenario of highly-connected mobile
clients, interacting with countless remote software-as-a-service entities hosted
in the Cloud pose new challenges and threats. In the desktop and server area
Trusted Computing has been proposed as one possible way to improve security
with the help of additional hardware components.

However, on the mobile and embedded market resources are strictly limited
and any solutions requiring additional dedicated security hardware components
are eschewed. Integrated into the CPU core, ARM TrustZone is an emerging
technology to increase security without the need of extra hardware chips. On
the hardware-side TrustZone provides processor and platform extensions to par-
tition the system in two isolated protection domains. This hardware isolation

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 1–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 J. Winter et al.

mechanism is accompanied by software components creating so called “secure-
world“ runtime environments bundled with but isolated from “normal world”
software stacks (cf. [2]).

Although the introduction of TrustZone has stimulated mobile and embed-
ded system security research and development activities, in academia as well
as industry, there have been only few attempts of open-source development for
ARM’s TrustZone technology.

We assume that this apparent lack of interest by the community has two
primary causes, which we try to address with this paper: First, there are no
easily available general purpose open-source hardware and software platforms
with adequate support for ARM TrustZone. In our experience it is quite difficult
and costly to acquire suitable development platforms, which allow the developers
to access and control all aspects of the platform.

Further, publication of technical implementation details, including complete
and fully functional source code, often turns out to be rather difficult due to
non-disclosure agreements on parts of the hardware platform documentation.

Within the remainder of this paper, especially in section 2, we assume that
the reader is somewhat familiar with basic concepts of ARM TrustZone and of
the ARM processor architecture in general. We refer to secondary literature,
especially to [1], [2] and [3] for in-depth information on these topics.

Contribution. In this paper we address the lack of – up until now – an open-
source TrustZone development environment which is suitable for use in academic
research and education settings. We contribute a set of open-source software
tools which enables experiments with ARM TrustZone, including system-level
development of secure-world software, for a wide developer audience.

The core of our tool-chain is a modified version of the QEMU[8] emulator,
which has been extended to support simulation of ARM TrustZone enabled
processors and platforms. We demonstrate how TrustZone can be employed on
this virtual TrustZone platform to partition software into secure and non-secure
worlds. Part of our contribution is a small proof-of-concept secure-world kernel –
or secure monitor – providing a runtime environment for secure-world software.
With the platform simulator and secure monitor in place, we show how inter-
action between the two TrustZone worlds can be implemented. We then extend
our development framework to provide a trusted software security module to
a managed, platform-independent and Trusted Computing standards-compliant
application environment and its developers.

Outline. The remainder of this paper is structured into six major sections. Sec-
tion 1 starts with a brief introduction of the main topics discussed in this paper,
along with an overview of related work. Section 2 starts with the discussion of an
open-source emulator framework for simulating ARM TrustZone enabled proces-
sors. We then continue to present a simple secure-world kernel in section 3. Based
upon these foundations we discuss a prototype realization of a virtual Android sys-
tem featuring anARMTrustZone protected software-implementation of a Trusted
Platform Module (TPM) in section 4. Finally, section 5 concludes the paper.

A Flexible Software Development and Emulation Framework 3

1.1 Related Work

Several scientific publications deal with proposals for secure mobile and em-
bedded system designs based on the ARM TrustZone security extensions. Use
of ARM TrustZone hardware to securely manage and execute small programs
(“credentials”) were described in [19] and [11]. A similar runtime infrastructure
was used by the authors of [12] to implement a mobile trusted platform module.
Similarly [22] proposes a trusted runtime environment utilizing Microsoft’s .NET
Framework inside the TrustZone secure world. With the use of a managed run-
time environment the authors try to benefit from the advantages of a high-level
language combined with hardware security and isolation mechanisms provided
by the underlaying platform.

A large number of publications deal with possible applications of ARM Trust-
Zone to implement, for example, digital rights management [16], cryptographic
protocols [25], mobile ticketing [15] or wireless sensor networks [29].

Possible applications of ARM TrustZone in mobile virtualization scenarios
have been discussed in [13], [20] and [27]. The authors of [13] and [20] based the
system design on the Fiasco L4 micro-kernel. Their system allows secure world
L4 tasks to create and interact with normal world operating systems. Another
approach based on a modified Linux kernel acting as secure world operating sys-
tem has been discussed in [27]. Apart from the obvious difference in the operating
system architecture both of these prototypes offer comparable functionality with
regard to mobile virtualization.

Within this paper we concentrate on a system-level view and on system-level
details of ARM TrustZone, which includes aspects that are typically of (too)
little interest to high-level application developers. Therefore, we intend to show
all levels of software involved to give the full picture of our architecture.

2 Simulating ARM TrustZone Systems with QEMU

QEMU[8] is a machine emulator capable of simulating a number of processor
architectures such as ARM, x86, SPARC, MIPS, PowerPC, and many more.
Dynamic translation between instruction sets provides for good performance. A
range of devices and peripherals can be emulated to offer full software emula-
tion of complex platforms such as servers or smart phones. QEMU is a robust
technology and popular choice in industrial-grade deployments. Furthermore, it
is free of cost and available to modifications and research as it is provided as
open source software.

Support of the ARM instruction set covers large parts of the recent ARMv7
architecture. Yet, the main objective behind the ARM architecture support in-
cluded in QEMU appears to have been the simulation of application-level code
with system-level emulation mostly restricted to the needs of popular ARM
Linux kernels. As a consequence, several advanced system-level features, includ-
ing the ARM security extensions marketed as “TrustZone“, are not available in
common QEMU distributions.

4 J. Winter et al.

At the time of this writing, the QEMU branch maintained by the Linaro
project1 contains only several minimal TrustZone support patches contributed
by NOKIA employees, which add a very crude emulation of the Secure Monitor
Call instruction. Their patch just adds minimal functionality for some specific
cache-maintenance operations found on some OMAP3 system-on-chip platforms.
We have independently developed a series of patches on top of that QEMU source
tree which aim to add more complete support for ARM TrustZone. Our patch
series, which is accompanying this paper, can be downloaded at [28] .

In the remainder of this section, after a brief introduction to the basics of
the ARM architecture and QEMU’s internals, we discuss the implementation
challenges, details and current limitations of our TrustZone implementation for
QEMU.

2.1 The ARM Programmer’s Model, a Short Overview

ARM CPUs are a family of 32-bit/64-bit RISC processors developed by ARM
Holdings. The ARM instruction set has a width of 32 bits to ease decoding and
pipelining, while a second set, called Thumb, provides increased code density.
ARM processors support different modes of execution, which can be divided into
two classes, privileged and unprivileged. The ARMv7 core supports 8 modes of
operation: Secure Monitor, Supervisor, Fast Interrupt, Interrupt Request,
Abort, Undefined, System and User. The idea behind the variety of modes is to
reflect the processor’s current task. Transition between states are triggered by
special instructions or internal or external events. Most of the time the processor
will be executing code in user mode. Operational modes like Fast Interrupt

and Interrupt Request are often used to handle real-time events. Abort or
Undefined are used to recover from memory access violations or instructions
fetching errors. Of special interest is Secure Monitor mode, which serves as a
gatekeeper between the secure and non-secure world (see Section 2.3).

The ARMv7 processor has a total of 37 32-bit wide registers. Regardless of
the current processor mode, 15 general purpose registers (r0, r1, ... r14) and the
program counter (r15) are always visible. Depending on the mode of execution,
registers are shared among different modes or restricted to particular modes
(banked registers).

The Current Program Status Register (CPSR) holds information on the cur-
rent mode of execution and condition code flags. The condition code flags are
influenced by arithmetic and logical operations. These flags are heavily exploited
by the ARM architecture to achieve conditional execution of instructions in order
to decrease code size and increase speed. TrustZone adds a Secure Configuration
Register (SCR) for system security state control.

2.2 Exploring QEMU’s Internals

Bellard discussed the internal details of a previous version of QEMU in [8]. Since
this publication a significant evolution of the QEMU source code has taken place.

1 http://www.linaro.org/

http://www.linaro.org/

A Flexible Software Development and Emulation Framework 5

Nevertheless the overall program structure discussed in Bellard’s paper remains
largely valid. We restrict our summary of QEMU to the details relevant to this
paper and outline the differences to the older ([8]) version where appropriate.

Dynamic Translation. The design of QEMU’s processor emulation is cen-
tered around a dynamic translation of binary code targeted at a specific pro-
cessor model. This translator is responsible for decoding the emulated CPU’s
instruction stream and for rewriting the decoded instructions into translation
blocks (TBs) containing functionally equivalent instruction sequences for the
host CPU. In case of simple instructions, like register moves or arithmetics,
the dynamic translator is often able to directly generate equivalent host CPU
instructions that do not rely on any external functions. Complex instructions,
including memory access or most co-processor operations, are translated into
(slower) calls to processor architecture specific helper functions.

Current versions of QEMU include the Tiny Code Generator (TCG) library,
which decouples the target processor specific binary translators from
most details of the host processor architecture. The code generator library’s set of
micro-operation primitives for intermediate representation is interpreted by tar-
get specific translator front-ends. When building translation blocks the tiny code
generator library performs a series of optimizations, like dead variable elimination,
which are intended to boost emulation performance.

Caching of Translation Blocks. QEMU maintains a cache of the most re-
cently translated blocks to curb the relatively high costs of binary translation.
This translation block cache is indexed by the physical address of the target
memory space. Self-modifying code requires special handling in order to main-
tain correctness of the translation blocks (see [8] for details).

Specifically to the ARM architecture, the binary translator needs to pay spe-
cial attention to certain load and store instructions. Currently the ARM binary
translator encodes the processor mode (kernel- vs. user-mode) directly as con-
stant value into the generated translation blocks. If no precautions were taken,
this could lead to unintended cache aliasing effects, causing invalid simulation
results, if the same physical memory location were executed from both user- and
kernel-mode code.

Memory Management Unit. All system emulation targets supported by
QEMU share a common software MMU framework to implement virtual mem-
ory and to provide a generic MMU translation caching mechanism. Simulated
memory load and store operations consider the MMU translation cache first and
only fall-back to a target specific page table walk if no cached translation can
be found2.

This software MMU cache is organized as a two-level structure with index-
ing by i) MMU mode and ii) the virtual memory address. Conceptually, these

2 In this sense QEMU’s caching mechanism behaves like the Translation Look-aside
Buffers (TLBs) found on ARM processors.

6 J. Winter et al.

MMU modes are cached views of virtual memory translations, with the active
view depending on the current processor state. Due to this mechanism it is not
necessary to flush all cached MMU translations when changing the processor
state – instead, it is sufficient to have all simulated load and store instructions
use the proper MMU mode.

The default ARM target utilizes two MMU modes to represent the different
virtual memory views for unprivileged modes (MMU USER IDX) and by privileged
modes (MMU KERNEL IDX). All simulated standard load and store instructions use
the currently active processor mode as indicated by the simulated CPSR register
to select the correct MMU mode and translation cache. Special unprivileged
load and store instructions3 directly select the unprivileged MMU mode. This
solution is sufficient to simulate ARM systems which do not support TrustZone
or which only use one of the two worlds supported by the TrustZone architecture.

2.3 Secure and Normal World Memory

With ARM’s TrustZone security extensions, the physical ARM processor can be
thought of as a virtual dual-processor system containing a ”secure“ and a ”non-
secure” virtual processor core (cf. [26]). Both virtual processor cores support the
full set of privileged and non-privileged processor modes defined for the ARM
architecture. On the secure world side, Secure monitor mode has been introduced
to allow proper interfacing between the two TrustZone worlds.

We recall from section 2.2 that the ARM MMU emulation found in the stan-
dard QEMU versions uses two MMU modes to maintain separate translation
caches for privileged processor modes and unprivileged processor modes. If we
want to provide support for ARM TrustZone systems we need to investigate how
QEMU’s current approach to virtual memory system emulation can be extended
in a consistent and minimally intrusive manner. We initially considered not to
change QEMU’s virtual memory system emulation as well as the ARM binary
translator at all. In order to make this approach viable it would be necessary to
perform a full flush of all cached MMU translations whenever a switch between
normal and secure world takes place. While this operation can be quite costly,
there would be the advantage that only a small number of mutually isolated
section in the emulator would have to be patched. In particular virtually no
changes would be necessary to the relatively complex binary translator code.

We discarded this naive approach, when realizing that QEMU’s way of han-
dling MMUmodes perfectly matches the TrustZone concept of a “four-quadrant”
world partitioned into secure kernel-, secure user-, normal kernel- and normal-user
space. We started by adding two new MMU modes representing non-secure privi-
leged (MMU NS KERNEL IDX) and unprivileged modes (MMU NS USER IDX) to the ex-
isting ARM MMU emulation. We then extended the ARM architecture specific
code for handling translation tables to reflect the current processor security state
during translation table walks. It also proved to be necessary to slightly adapt the
ARM binary translator to consider the processor security state and MMUmodes.

3 e.g. LDRT and STRT

A Flexible Software Development and Emulation Framework 7

Fig. 1. Processor modes, security states and corresponding QEMU MMU modes

Figure 1 depicts the relationships between ARM processor modes, processor
security states and the four MMU modes present in our implementation. Solid
black lines indicate the interaction between secure-world and the secure-world
MMU modes. These relations are identical to the standard QEMU version with-
out TrustZone support. Dotted gray lines show the newly added relations be-
tween normal-world and the two new normal world MMU modes. Secure monitor
mode is shown as a special case (dotted black lines) introduced on TrustZone-
aware systems.

Simulating Memory Access Restrictions. The MMU emulation described
above is sufficient to run simple well-behaved software that does not attempt to
break the hardware-enforcedmemory isolation barriers introduced by TrustZone.
In order to simulate properly enforced HW-based access restrictions to platform
memory and peripherals it is necessary to augment the MMU with access checks.
This is done in two fundamental building blocks of the TrustZone architecture,
the Address Space Controller [6] and the TrustZone Protection Controller [5],
which we add both as simplified models to our simulator.

Both of these peripherals allow partitioning of the platform memories and pe-
ripherals into a secure and a non-secure world domain. The TrustZone Protection
Controller is conceptually the simpler device and allows a single memory region
as well as peripherals to be marked as either exclusive secure world resources or
as shared resources. The TrustZone Address Space controller provides a superset
of this functionality by means of fine-grained and region-oriented access control
to parts of the platform’s physical address space.

We prototyped a common simulation framework for both of these devices
based on the capabilities of the more powerful address space controller. Our
implementation hooks into the QEMU’s MMU helper routines and triggers an
additional check against the TrustZone memory access restrictions after perform-
ing a normal MMU address translation. Using this mechanism we are able to
model memory access restrictions accurately at the expense of slightly decreased
simulation performance.

8 J. Winter et al.

3 A Simple Secure-World Kernel Prototype

This section describes a small secure-world kernel – named “umonitor” – we
developed to validate the platform emulator and to provide a test environment
for further experiments with ARM TrustZone platforms. Key design criteria were
simplicity and ease-of-adaptability for a variety of experiments. We intentionally
keep the design compact and simple as we intend to provide a starting point for
further activities in the open source community and to foster the use in research
and education.

At the time of this writing our secure kernel implements hardware support for
a functional subset of RealView Versatile Express [7] platform family simulated
by the TrustZone enabled QEMU emulator discussed in section 2.

secure world normal world

umonitor linux

su
p
er
vi
so
r-
m
od
e

us
er
-m

od
e

m
on
it
or

SVC

SMC

user
application

Fig. 2. Components of a typical “umonitor” based system

Figure 2 outlines the overall structure and the components of a prototype
system based on the umonitor kernel. The two left quadrants represent kernel
and user-space of the secure-world.

3.1 Handling Normal and Secure-World Interaction

A main task of a secure kernel in an ARM TrustZone system is to provide
an efficient and effective interface for communication between secure-world and
normal-world.

To switch between normal and secure-world in TrustZone architecture, it is
possible to directly manipulate the non-secure bit of the secure configuration
register within the secure privileged processor mode, or to trap external data
abort exceptions to certain system memory areas. Finally, there is a “canonical”
method to gracefully enter secure monitor mode from either secure-world or non-
secure-world by means of the secure monitor call (SMC) processor instruction.

Our prototype uses this canonical approach to provide a system-call style
interface for use by the secure as well as the non-secure-world. This convention

A Flexible Software Development and Emulation Framework 9

enables us to perform all manipulations of the non-secure bit in only a small
number of isolated places with well-defined call chains inside the secure kernel
source code.

Still, handling secure monitor mode exceptions requires a number of special
considerations. Secure monitor mode exception handlers, like that for the SMC,
can be entered from either non-secure or secure world. When dispatching to a
secure monitor mode exception handler, the ARM processor switches to secure
monitor mode which in turn causes the system to enter a secure state4.

Note that the non-secure bit (SCR.NS) of the secure configuration register is
not automatically cleared upon entry to the exception handler as this bit serves
a twofold purpose in secure monitor mode: First it allows exception handlers
to distinguish invocations from secure and from non-secure-world. Second the
SCR.NS controls the active system register bank which is manipulated by the
MCR and MRC instructions used for co-processor and MMU access.

...
__msr_smc:

SRSDB sp!, #MON_MODE
STMFD sp!, {r0-r12} // Save register context

MRC p15, 0, r0, c1, c1, 0 // Read SCR
STMFD sp!, {r0} // Save old SCR value
TST r0, #SCR_NS
BICNE r0, r0, #SCR_NS // Clear SCR.NS bit
MCRNE p15, 0, r0, c1, c1, 0 // Write SCR

MOV r0, sp
BL monitor_smc_entry // Call upper-level C handler

LDMFD sp!, {r0} // Read save value of SCR
TST r0, #SCR_NS
MCRNE p15, 0, r0, c1, c1, 0 // Restore old SCR value

LDMFD sp!, {r0-r12} // Load register context
RFEIA sp! // Return from exception

...

Fig. 3. Secure monitor call low-level exception handler

This behavior of the non-secure bit requires additional steps when a secure
monitor mode exception handler decides to leave secure monitor mode. Clear-
ing the non-secure bit ensures that we do not end up in a non-secure system
state when switching away from secure monitor mode. Furthermore it might be
necessary to preserve the values of the banked ARM core registers (like stack
pointers and link register) for the “entry” world and to restore the corresponding
registers of the “exit” world when the exception handler finishes execution.

Within our prototype secure kernel we attempted to keep handling of secure
monitor mode events as simple as possible. The low-level assembly implementa-
tion of the secure monitor call exception handler is outlined in figure 3. Saving
the ARM core registers r0-r12 and the current value of the secure configuration

4 As a consequence the processor uses the secure banked system registers independent
of the SCR.NS bit value.

10 J. Winter et al.

register upon entry are the only steps performed by this low-level handler. Af-
terwards the low-level handler ensures that the secure-bit is cleared and invokes
an upper-level handler routine called monitor smc entry which is implemented
in C. At this point the CPU is still in secure monitor mode.

Within the upper-level handler we can now identify the calling world and the
reason of the secure monitor call. Entering the low-level handler from normal
world always triggers a switch to secure-world and invokes the required con-
text save and context restore code needed to complete the world switch. When
entering the low-level handler from secure-world we use register r12 to mimic
a system call number; we only switch to normal world if the appropriate call
number and arguments are given.

3.2 Runtime Environment for Secure User-Space Applications

User-space applications need a facility to delegate operations to an authorized
domain. These operations require elevated privileges not available within user-
mode. In normal-world this facility would be a standard system call to the op-
erating system kernel. Low-level details of system call interfaces, like parameter
passing rules or the supported syscall numbers, are highly dependent on the
operating system and are in general incompatible between different operating
systems.

When designing the environment for secure-world user-space applications we
faced the challenge to select a simple system call interface which ideally should
be supported across different compiler tool-chains and C run-time libraries. We
decided to settle with the interface used by ARM semihosting for reasons ex-
plained below.

ARM Semihosting. ARM semihosting [4] is a mechanism that is used during
development of software for a bare-metal ARM target. At this early stage there
is usually no operating system available to offer even basic console input/output
capabilities or a filesystem.

Semihosting allows such bare-metal ARM targets to utilize basic operating
system services without an actual operating system. The manual of the ARM
compiler tool-chain [4] defines a basic system call interface to be exposed by a
semihosting capable environment.

A typical ARM semihosting call is triggered by a supervisor call instruction
with special immediate value (e.g. SVC #0x123456). A debug monitor residing
on the platform or a JTAG-emulator hooked up to the platform intercepts these
supervisor call instructions and inspects their immediate value. The debug mon-
itor handles the call as a semihosting request, if the immediate value matches
a magic value. Otherwise the supervisor call will be forwarded to the target
application.

Compilers targeting bare-metal environments provide special run-time libraries
which do not rely on any kind of operating system. Functions which require op-
erating system support are typically either emulated using semihosting facilities
or are provided as stub versions which always fail.

A Flexible Software Development and Emulation Framework 11

Bouncing Semihosting Calls to the Platform Simulator. QEMU imple-
ments basic support for ARM semihosting5, which turned out to be very helpful
during development of the umonitor kernel. In particular, QEMU only recog-
nizes supervisor calls as semihosting calls if they are performed from within a
privileged processor mode6. Semicalls triggered by user-mode are handled like
any other normal SVC instruction.

We observe that this behavior can be used to trivially (and insecurely) provide
a complete semihosting interface to secure-world user-space by simply reissuing
– or bouncing – the supervisor calls within the kernel’s supervisor call handler.

Therefore, within our framework, we are able to build non-trivial secure-world
application software.

4 Experiment: A Trusted Mobile Application
Development Framework

The security and privacy of mobile applications can be greatly improved by
building upon hardware based roots-of-trust which help create resilience against
software-based attacks. Yet, developers face a number of practical challenges
when attempting to create a co-design of hardware and software. Hardware re-
sources in terms of memory, CPU performance, power and even physical size
and weight allowance are limited while the market dictates designs with min-
imal costs. Adding additional hardware security components is therefore hard
to justify. Implementation and test of accessible, user-oriented Apps and ser-
vices using security hardware tends to become a complex endeavor, as testing
and debugging becomes more time consuming with security devices designed to
hide their internal states and key materials. In our experience it is difficult and
expensive to acquire ARM TrustZone development kits in the first place and
academic discourse on implementation details and experimental results tends to
be hampered by legal obstacles such as non-disclosure agreements on parts of
the documentation.

A practically usable software development environment for ARM TrustZone
should allow to implement and test security-enabled, yet platform independent
applications in software; this frees developers of the need to design for a specific
piece of hardware only, that is difficult to get hold of and equally difficult to talk
about.

We now demonstrate how the TrustZone emulation introduced in sections 2
and 3 can act as the technological basis for a software development framework
for trusted mobile applications.

We base our normal world environment on the popular Android [14] mobile
platform, commonly used in modern smart-phones. Based on a Linux kernel, it
offers a broad application library framework and the Dalvik virtual machine with

5 See arm-semi.c in the QEMU source tree for details.
6 The intrigued reader is referred to the source comments in QEMU’s
target-arm/helper.c for more details.

12 J. Winter et al.

just-in-time compilation for code written in the Java language. The managed en-
vironments helps application developers to program in a platform-independent
manner. It currently lacks integration and support for strong roots-of-trust,
which are not available on most platforms anyway.

To overcome similar restrictions on desktop and server PCs, the Trusted Plat-
form Module (TPM) [24] was introduced as an add-on device offering roots-of-
trust for storage, reporting and identity with privacy protection [10,21] mech-
anisms. TrustZone enables us to offer similar services even without additional
hardware elements. To this end, we run IBM’s TPM [18] open source emula-
tor in the secure world of our emulation framework. Cryptographic mechanisms
are software implementations using the OpenSSL library, yet the code is is well
isolated from the normal world. This architecture suggests a level of security
comparable with dedicated security co-processors.

Communication between both worlds is provided by a simple Linux kernel
driver that exposes a /dev/tpm style interface to the normal world user-space
TCG core services. In the Android environment we need to assemble and parse
TPM command structures, perform the necessary, but not security critical man-
agement of resources, and follow the authentication and integrity protecting
protocols of the TPM. To this end, we have adapted IAIK’s jTSS [17], which
is a full Java implementation of the TCG Software Stack specification for the
TPM. This setup already provides full TPM functionality, still, like any TSS-
based technology, it comes with a complex API that requires substantial efforts
of familiarization from implementors before it can be used in projects with agile
and user-oriented development processes.

A novel high-level API and official Java industry standard aiming to overcome
these limitations is Java Specification Request 321 (JSR321) [23]. It provides
a simple interface for access to commonly used TPM functionality in a fully
object-oriented manner that hides low-level details and provides the level of ab-
straction Java and Android developers expect. We therefore integrate IAIK’s
implementation7 of JSR321 with our framework to provide a fully platform-
independent abstraction of security services to software developers. In related
work, experimental TPM-integration into normal world Android was previously
demonstrated by [9] to simulate attestation services; our framework adds ac-
tual hardware security mechanism simulation and provides the more advanced
JSR321 programming interface.

5 Conclusion

Our aim was to demonstrate that software development for ARM TrustZone
platforms is feasible with open-source tools. To prove this statement we first
introduced an open-source platform emulation tool, based on the well-known
QEMU platform emulator, which is capable of simulating system-level details of
ARM TrustZone platforms.

7 http://jsr321.java.net/

http://jsr321.java.net/

A Flexible Software Development and Emulation Framework 13

Based on the open-source platform emulator we discussed a small experimen-
tal secure-world kernel which provides a basic C run-time environment as well as
normal world interaction facilities for application running in secure-world user-
space. This allows to construct and simulate complex software configurations,
which include typical secure and normal world components found on a Trust-
Zone platform. On the higher layers, our framework allows the development of
modern, user-friendly Android applications which make use of well-established
security mechanisms. Developing trusted applications is aided through the re-
liance on publicly available open source components and software debugging
features. In addition, we offer a high-level, platform independent and standard-
complying programming interface to provide an object-oriented API that hides
low-level details and provides the level of abstraction Java and Android devel-
opers expect.

We hope that our open source framework will foster research and development
of trusted mobile applications.

Acknowledgements. The authors thank the anonymous reviewers for their
very helpful comments. This work has been supported in part by the European
Commission through the FP7 programme under contract 257433 SEPIA.

References

1. Alves, T., Felton, D.: TrustZone: Integrated Hardware and Software Security -
Enabling Trusted Computing in Embedded Systems (July 2004),
http://www.arm.com/pdfs/TZ_Whitepaper.pdf

2. ARM Limited: ARM TrustZone API Specification, Version 3.0 (2009), ARM
PRD29-USGC-000089 3.1

3. ARM Limited: ARM Architecture Reference Manual, ARMv7-A and ARMv7-R
edition, Errata Markup (2010), ARM DDI 0406B errata 2010 Q3

4. ARM Ltd.: ARM compiler toolchain,
http://infocenter.arm.com/help/

topic/com.arm.doc.dui0471c/DUI0471C developing for arm processors.pdf

5. ARM Ltd.: PrimeCell Infrastructure AMBA 3 TrustZone Protection Controller
(BP147), Introduction online at:
http://infocenter.arm.com/help/topic/com.arm.doc.dto0015a/

DTO0015 primecell infrastructure amba3 tzpc bp147 to.pdf

6. ARM Ltd.: TrustZone Address Space Controller (TZC-380), Introduction online
at: http://infocenter.arm.com/help/topic/com.arm.doc.ddi0431b/
DDI0431B tzasc tzc380 r0p0 trm.pdf

7. ARM Ltd.: Versatile Express Product Family (2011), Information online at:
http://www.arm.com/products/tools/development-boards/

versatile-express/index.php

8. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ATEC 2005, p. 41.
USENIX Association, Berkeley (2005),
http://dl.acm.org/citation.cfm?id=1247360.1247401

http://www.arm.com/pdfs/TZ_Whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0471c/DUI0471C_developing_for_arm_processors.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0471c/DUI0471C_developing_for_arm_processors.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dto0015a/DTO0015_primecell_infrastructure_amba3_tzpc_bp147_to.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dto0015a/DTO0015_primecell_infrastructure_amba3_tzpc_bp147_to.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0431b/DDI0431B_tzasc_tzc380_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0431b/DDI0431B_tzasc_tzc380_r0p0_trm.pdf
http://www.arm.com/products/tools/development-boards/versatile-express/index.php
http://www.arm.com/products/tools/development-boards/versatile-express/index.php
http://dl.acm.org/citation.cfm?id=1247360.1247401

14 J. Winter et al.

9. Bente, I., Dreo, G., Hellmann, B., Heuser, S., Vieweg, J., von Helden, J., Westhuis,
J.: Towards Permission-Based Attestation for the Android Platform - (Short Pa-
per). In: McCune, J.M., Balacheff, B., Perrig, A., Sadeghi, A.-R., Sasse, A., Beres,
Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 108–115. Springer, Heidelberg (2011),
http://dx.doi.org/10.1007/978-3-642-21599-5_8

10. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceed-
ings of the 11th ACM Conference on Computer and Communications Security, pp.
132–145. ACM, Washington DC (2004)

11. Ekberg, J.E., Asokan, N., Kostiainen, K., Rantala, A.: Scheduling execution of
credentials in constrained secure environments. In: Proceedings of the 3rd ACM
Workshop on Scalable Trusted Computing, STC 2008, pp. 61–70. ACM, New York
(2008), http://doi.acm.org/10.1145/1456455.1456465

12. Ekberg, J.E., Bugiel, S.: Trust in a small package: minimized MRTM software
implementation for mobile secure environments. In: Proceedings of the 2009 ACM
Workshop on Scalable Trusted Computing, STC 2009, pp. 9–18. ACM, New York
(2009), http://doi.acm.org/10.1145/1655108.1655111

13. Frenzel, T., Lackorzynski, A., Warg, A., Härtig, H.: ARM TrustZone as a Virtual-
ization Technique in Embedded Systems. In: Twelfth Real-Time Linux Workshop
(October 2010)

14. Google Inc.: Android OS (2011), http://www.android.com/

15. Hussin, W.H.W., Coulton, P., Edwards, R.: Mobile Ticketing System Employ-
ing TrustZone Technology. In: Proceedings of the International Conference on
Mobile Business, pp. 651–654. IEEE Computer Society, Washington, DC (2005),
http://dl.acm.org/citation.cfm?id=1084013.1084282

16. Hussin, W.H.W., Edwards, R., Coulton, P.: E-Pass Using DRM in Symbian v8 OS
and TrustZone: Securing Vital Data on Mobile Devices. In: International Confer-
ence on Mobile Business, p. 14 (2006)

17. IAIK: Trusted Computing for the Java(tm) Platform (2011),
http://trustedjava.sourceforge.net/

18. IBM: IBM’s Software Trusted Platform Module,
http://sourceforge.net/projects/ibmswtpm/

19. Kostiainen, K., Ekberg, J.E., Asokan, N., Rantala, A.: On-board credentials with
open provisioning. In: Proceedings of the 4th International Symposium on Infor-
mation, Computer, and Communications Security, ASIACCS 2009, pp. 104–115.
ACM, New York (2009), http://doi.acm.org/10.1145/1533057.1533074

20. Lackorzynski, A., Frenzel, T., Roitzsch, M.: D2.6 First Initial Proof of Concept
for Trust-Enhanced Virtualisation System (June 23, 2009), http://www.tecom-

project.eu/downloads/deliverables2009/TECOM-D02.6-First-initial-proof-

of-concept-for-trust-enhanced-virtualization-system.pdf

21. Pirker, M., Toegl, R., Hein, D., Danner, P.: A PrivacyCA for Anonymity and Trust.
In: Chen, L., Mitchell, C.J., Martin, A. (eds.) Trust 2009. LNCS, vol. 5471, pp.
101–119. Springer, Heidelberg (2009)

22. Santos, N., Raj, H., Saroiu, S., Wolman, A.: Trusted Language Runtime (TLR):
Enabling Trusted Applications on Smartphones (2011)

23. Toegl, R., Winkler, T., Nauman, M., Hong, T.W.: Specification and Standardiza-
tion of a Java Trusted Computing API. Softw. Pract. Exper. (2011),
http://dx.doi.org/10.1002/spe.1095

24. Trusted Computing Group: TCG TPM Specification Version 1.2 (2011),
https://www.trustedcomputinggroup.org/developers/

http://dx.doi.org/10.1007/978-3-642-21599-5_8
http://doi.acm.org/10.1145/1456455.1456465
http://doi.acm.org/10.1145/1655108.1655111
http://www.android.com/
http://dl.acm.org/citation.cfm?id=1084013.1084282
http://trustedjava.sourceforge.net/
http://sourceforge.net/projects/ibmswtpm/
http://doi.acm.org/10.1145/1533057.1533074
http://www.tecom-project.eu/downloads/deliverables2009/TECOM-D02.6-First-initial-proof-of-concept-for-trust-enhanced-virtualization-system.pdf
http://www.tecom-project.eu/downloads/deliverables2009/TECOM-D02.6-First-initial-proof-of-concept-for-trust-enhanced-virtualization-system.pdf
http://www.tecom-project.eu/downloads/deliverables2009/TECOM-D02.6-First-initial-proof-of-concept-for-trust-enhanced-virtualization-system.pdf
http://dx.doi.org/10.1002/spe.1095
https://www.trustedcomputinggroup.org/developers/

A Flexible Software Development and Emulation Framework 15

25. Wachsmann, C., Chen, L., Dietrich, K., Löhr, H., Sadeghi, A.-R., Winter, J.:
Lightweight Anonymous Authentication with TLS and DAA for Embedded Mo-
bile Devices. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 84–98. Springer, Heidelberg (2011),
http://dx.doi.org/10.1007/978-3-642-18178-8_8

26. Wilson, P., Frey, A., Mihm, T., Kershaw, D., Alves, T.: Implementing Embedded
Security on Dual-Virtual-CPU Systems. IEEE Design and Test of Computers 24(6),
582–591 (2007)

27. Winter, J.: Trusted computing building blocks for embedded linux-based ARM
trustzone platforms. In: Proceedings of the 3rd ACMWorkshop on Scalable Trusted
Computing, STC 2008, pp. 21–30. ACM, New York (2008),
http://doi.acm.org/10.1145/1456455.1456460

28. Winter, J., Wiegele, P., Lipp, M., Niederl, A., et al.: Experimental version of QEMU
with basic support for ARM TrustZone (source code repository) (July 28, 2011),
Public GIT repository at:
https://github.com/jowinter/qemu-trustzone

29. Yussoff, Y.M., Hashim, H.: Trusted Wireless Sensor Node Platform. In: Ao, S.I.,
Gelman, L., Hukins, D.W., Hunter, A., Korsunsky, A.M. (eds.) Proceedings of the
World Congress on Engineering, WCE 2010, London, U.K., June 30-July 2. Lecture
Notes in Engineering and Computer Science, vol. I, pp. 774–779. International
Association of Engineers, Newswood Limited (2010)

http://dx.doi.org/10.1007/978-3-642-18178-8_8
http://doi.acm.org/10.1145/1456455.1456460
https://github.com/jowinter/qemu-trustzone

Building General Purpose Security Services

on Trusted Computing�

Chunhua Chen1,��, Chris J. Mitchell2, and Shaohua Tang1,� � �

1 School of Computer Science and Engineering
South China University of Technology

Guangzhou 510640, China
chen.chunhua@mail.scut.edu.cn, csshtang@scut.edu.cn

2 Information Security Group
Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK
c.mitchell@rhul.ac.uk

Abstract. The Generic Authentication Architecture (GAA) is a
standardised extension to the mobile telephony security infrastructures
(including the Universal Mobile Telecommunications System (UMTS)
authentication infrastructure) that supports the provision of generic se-
curity services to network applications. In this paper we propose one
possible means for extending the widespread Trusted Computing secu-
rity infrastructure using a GAA-like framework. This enables an existing
security infrastructure to be used as the basis of a general-purpose au-
thenticated key establishment service in a simple and uniform way, and
also provides an opportunity for trusted computing aware third parties to
provide novel security services. We also discuss trust issues and possible
applications of GAA services.

Keywords: Generic Authentication Architecture, Trusted Computing,
security service.

1 Introduction

Almost any large scale network security system requires the establishment of
some kind of a security infrastructure. For example, if network authentication
or authenticated key establishment is required, then the communicating parties
typically need access to a shared secret key or certificates for each other’s public
keys.

� This work was partially sponsored by the Natural Science Foundation of Guang-
dong Province, China (No. 9351064101000003) and the Science and Technology
Project of Guangzhou, China (No. 2011J4300028).

�� The author is a PhD student at the South China University of Technology. This
work was performed during a visit to the Information Security Group at Royal
Holloway, University of London, sponsored by the Chinese Scholarship Council.

� � � The author is the corresponding author, and sponsored by the Guangdong
Province Universities and Colleges Pearl River Scholar Funded Scheme (2011).

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 16–31, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

TC GAA 17

Setting up a new security infrastructure for a significant number of clients is
by no means a trivial task. For example, establishing a public key infrastruc-
ture (PKI) for a large number of users involves setting up a secure certification
authority (CA), getting every user to securely generate a key pair, securely reg-
istering every user and corresponding public key, and securely generating and
distributing public key certificates. In addition, the ongoing management over-
head is non-trivial, covering issues such as revocation and key update.

At the same time, there are a number of existing security infrastructures, in
some cases with almost ubiquitous coverage. When deploying a new network
security protocol it is therefore tempting to try to exploit one of these existing
security infrastructures to avoid the need for the potentially costly roll-out of a
new infrastructure.

This is by no means a new idea (see, for example, [9]). However, previous
proposals have been application-specific. We instead propose the use of a general
framework which enables almost any pre-existing infrastructure to be used as
the basis for the provision of generic security services.

Of particular (and motivating) importance to our work is the Generic Authen-
tication Architecture (GAA) [1]. This architecture has been designed to enable
the Universal Mobile Telecommunications System (UMTS) authentication infras-
tructure to be exploited for the provision of security services. Building on previous
work [4], we propose the adoption of the architecture used by UMTS GAA to en-
able a wide range of other pre-existing infrastructures to be similarly exploited.
One security infrastructure of particular interest is the emerging Trusted Comput-
ing (TC) infrastructure, including the Trusted PlatformModules (TPMs) present
in a significant proportion of all new Personal Computers (PCs).

We first generalise the concepts and procedures of GAA. We then consider
how this generalised notion can be supported by the trusted computing security
infrastructure. We refer to this combination as TC GAA. We also discuss related
trust issues and consider possible applications of GAA services.

The remainder of this paper is organised as follows. In section 2 we introduce
our generalised version of GAA, and also briefly describe the standardised version
building on the UMTS authentication infrastructure. In section 3 we give details
of TC GAA, building on a general Trusted Computing security infrastructure.
This is followed by a description of an instantiation of TC GAA using TPMs
in section 4. In section 5 we provide an informal security analysis. We discuss
related trust issues and possible applications of GAA services in section 6. In
section 7 we draw conclusions.

2 Generic Authentication Architecture

We start by describing our generalised version of the GAA architecture, intro-
ducing the main roles in the framework, the goals and rationales, and the two
main procedures. This generalised GAA architecture was first described in [4].
We follow this by briefly describing the standardised implementations of GAA
as supported by the UMTS authentication infrastructure.

18 C. Chen, C.J. Mitchell, and S. Tang

2.1 Overview of GAA

As shown in Figure 1, the following entities play a role in the GAA architecture.

– The Bootstrapping Server Function (BSF) server B acts as a Trusted Third
Party (TTP), and is assumed to have the means to access credentials belong-
ing to a pre-existing security infrastructure. B uses the pre-established cre-
dentials to provide authenticated key establishment services to GAA-enabled
user platforms and GAA-aware application servers.

– A GAA-aware application server S is assumed to have the means to establish
a mutually authenticated and confidential secure channel with B, and an
arrangement to access the security services provided by B . The means by
which the secure channel between B and S is established is outside the
scope of the GAA framework. In the GAA context, the functionality of a
GAA-aware application server is also referred to as the Network Application
Function (NAF) server. We use the terms application server and NAF server
interchangeably throughout.

– A GAA-enabled user platform P is assumed to be equipped with creden-
tials belonging to the pre-existing security infrastructure. P possesses a BSF
client CB, which uses the platform credentials to interact with B to provide
authenticated key establishment services. P also possesses a NAF client CS

that accesses services provided by S. CS interacts with CB to obtain the
cryptographic keys necessary to provide client-server security services.

The user platform and the BSF server need to interact with the pre-existing
security infrastructure, whereas the application server does not (it only needs to
interact with the BSF server and the user platform). Also, the user platform and
the application server do not need to have a pre-existing security relationship.

GAA provides a general purpose key establishment service for user platforms
and application servers. As described below, GAA uses a two-level key hier-
archy, consisting of a master session key and server- and application-specific
session keys. The master session key is established using the pre-existing secu-
rity infrastructure, and is not used directly to secure GAA-based applications.
Instead it is used to generate the server/application-specific session keys using
a key diversification function. By choosing a function with appropriate proper-
ties, it can be arranged that knowledge of a server/application specific session
key will not reveal any information about the master session key or any other
server/application-specific keys.

2.2 GAA Procedures

As we now describe, GAA incorporates two main procedures: GAA bootstrapping
and Use of bootstrapped keys.

GAA bootstrapping uses the pre-existing security infrastructure to set up a
shared master key MK between P and B . Also established is a Bootstrapping
Transaction Identifier B-TID for MK and the lifetime of this key. B-TID must

TC GAA 19

Fig. 1. GAA framework

consist of a (statistically) unique value which can identify an instance of GAA
bootstrapping as well as B ’s network domain name.

The Use of bootstrapped keys procedure establishes a server/application
-specific session key SK between P and S, using the master key MK shared
by P and B . The procedure operates in the following way. P first derives a
session key SK as:

SK = KDF(MK ,NAF -Id , other values)

where KDF is a one-way key diversification function, and NAF-Id is an
application-specific value consisting of the Fully Qualified Domain Name (FQDN)
of S and the identifier of the underlying application protocol. Other values may
be included in the key derivation computation depending on the nature of the
underlying security infrastructure. P (strictly, CS) then starts the application
protocol by sending a request containing B-TID to S . S submits the received
B-TID and its own identifier NAF-Id to B to request the session key SK . Note
that B-TID contains B ’s network domain name, so S knows where to send the
request. As stated above, we require that S and B have the means to estab-
lish a mutually authenticated and confidential secure channel, and hence B can
verify S against its FQDN. If S is authorised, B derives SK from the MK iden-
tified by B-TID, and sends SK, its lifetime, and other relevant information to
S via the secure channel. P and S now share SK, which they can use to secure
application-specific messages.

20 C. Chen, C.J. Mitchell, and S. Tang

Note that key separation is enforced by including NAF-Id as an input to the
key diversification function. Other values used in the computation of SK could
include identifiers for the GAA bootstrapping instance and the user platform.

2.3 UMTS GAA

The standardised versions of GAA [1] build on the mobile authentication in-
frastructures (including those for UMTS and GSM). In the UMTS version of
GAA, a UMTS network operator provides the BSF with the key MK, and the
user platform is a UMTS mobile. The UMTS authentication and key agreement
protocol is used to establish the key MK, which is independently generated by
the user platform and the network operator as part of GAA bootstrapping. The
identifier B-TID is a combination of the RAND used in UMTS authentication
and the BSF’s identifier.

3 TC GAA

In this section we propose a possible means of using the Trusted Computing
security infrastructure to support a GAA-like framework, which we refer to as
TC GAA. We start by giving a high-level description of the Trusted Comput-
ing security infrastructure, without referring to any specific trusted computing
technology. We then specify the operation of TC GAA as built on this gen-
eral infrastructure. A specific instantiation of TC GAA using the features of a
TCG-compliant TPM is described in the next section.

Note that a very brief sketch of a possible TC GAA implementation has previ-
ously been described [4]. By contrast, in this paper we give detailed descriptions
of instantiations of TC GAA, and provide an analysis of its security properties.

3.1 Trusted Computing Security Infrastructure

A fundamental notion in Trusted Computing (TC) is the Trusted Platform (TP).
According to Balacheff et al. [2]: “A trusted platform (TP) is defined as a com-
puting platform that has a trusted component, which is used to create a founda-
tion of trust for software processes”. We refer to such a trusted component as a
Trusted Module (TM). A TM encompasses all the platform functionalities and
data areas within a TP that must be trusted, if the platform is to be trusted.
Gallery [5] identifies a minimum set of trusted TM features. In practice, a trusted
computing technology might make use of a range of mechanisms to meet these
requirements.

Listed below (following Gallery [5]) are the features that a TM must possess
in order to support our general instantiation of TC GAA.

– The TM is a self-contained processing module containing specialist capa-
bilities, including random number generation, asymmetric key generation,
digital signing, encryption/decryption and hashing.

TC GAA 21

– The TM contains shielded locations, data stored in which (e.g. TM-generated
keys) is protected against interference or snooping and is only accessible to
the specified capabilities.

– The TM is equipped with a unique asymmetric encryption key pair at the
time of (or soon after) manufacture. The private decryption key is stored
securely in the TM-shielded location and is never exported from the TM. A
certificate for the associated public key, containing a general description of
the TM and its security properties, is generated by a CA.

– The TM is capable of generating asymmetric signature key pairs. The TM
can, by some means, obtain certificates for the public keys of such key pairs
from a CA. The private signature keys are securely held by the TM.

– The TM is capable of generating asymmetric encryption key pairs. The TM
can generate certificates for the public keys of these key pairs using the
signature keys described above. The private decryption keys are securely
held by the TM.

Note that information said to be held securely by the TM may actually be stored
externally to the TM, encrypted using a key known only to the TM.

A TM will typically possess a range of other security-related features, not
directly used by TC GAA. Some of these features could be used to enhance
the trustworthiness of the TC GAA application software running on the TP. In
particular, platform integrity measurement, storage and reporting services could
be used to provide assurance regarding the software state of the platform.

Trusted Computing makes use of public key cryptography, and realising its
full potential requires a supporting PKI. We use the term Trusted Computing
security infrastructure to refer to the set of deployed TMs, the associated keys,
and the supporting PKIs. Trusted computing technology can be implemented
in a variety of computing platforms, including PCs (e.g. laptops) and mobile
devices (e.g. mobile phones). In this paper we focus on PC-based TPs.

3.2 The TC GAA Architecture

As shown in Figure 2, the following Trusted Computing specific entities play a
role in TC GAA.

– The supporting PKIs. We assume that all relevant certificates are obtainable
by the entities involved.

– TheGAA-enabled user platform P is a Trusted Platform containing a Trusted
Module M, as defined in section 3.1. We assume that M has already gener-
ated a signature key pair, and has obtained a certificate CertM for the public
key of this key pair from a CA, where CertM binds an identity of M (IdM)
to the public key (where M may have many such identities). The private
signing key is available only to M (we assume it is stored externally to M,
encrypted using a key known only to M). The BSF client, CB, implements
the authentication and key establishment protocol which forms part of the
TC GAA bootstrapping procedure specified below.

22 C. Chen, C.J. Mitchell, and S. Tang

– The BSF server B has a signature key pair and a certificate CertB for the
public key of this key pair. This key pair is used for entity authentication.

Fig. 2. TC GAA framework

In practice, M might be equipped with multiple certified signature key pairs. We
assume that the certified signature key pair specified above is used for TC GAA
bootstrapping, and is used for multiple instances of the protocol. Typically this
involves M, in conjunction with CB , obtaining such a key pair via a separate
configuration procedure prior to the TC GAA bootstrapping procedure. Thus
CB knows which signature key pair is to be used in TC GAA bootstrapping.

3.3 The TC GAA Procedures

In this section we specify the TC GAA bootstrapping and the TC GAA Use of
bootstrapped keys procedures, which use the general Trusted Computing security
infrastructure defined in section 3.1. The authentication and key establishment
protocol which forms part of TC GAA bootstrapping is motivated by the protocol
defined in Gallery and Tomlinson [6]. Table 1 summarises the notation used in
the remainder of this paper.

TC GAA 23

Table 1. Notation

P a GAA-enabled trusted platform
M a trusted module embedded in P
I integrity metrics that reflect a certain state of P
B a BSF server
CB a BSF client residing in P
S a GAA-aware application server
CA a Certification Authority trusted by all entities
CertX a certificate for entity X ’s signature public key
IdX an identity of entity X
RX a random number issued by entity X
Mpub a TM-generated temporary public encryption key
Mpri a TM-generated temporary private decryption key

corresponding to Mpub

EMpub
(Z) the result of the asymmetric encryption of data Z

using the public key Mpub

H a one-way hash function
SX(Z) the digital signature of data Z computed using

entity X ’s private signature transformation
X ||Y the concatenation of data items X and Y in that order

The TC GAA bootstrapping protocol involves the following sequence of steps,
where X → Y : Z is used to indicate that message Z is sent by entity X to
entity Y .

1. CB → B : request to bootstrap a master session key MK .

2. B : generates and caches a random value RB.

3. B → CB : RB.

4. CB → M : request to generate a random number.

5. M → CB : RM .

6. CB → M : request to load M ’s private signature key.
(Note thatM ’s private signing key must be loaded intoM before use because
it is stored externally to M .)

7. M : loads M ’s private signing key.

8. M → CB : the handle of the loaded private signing key.

9. CB → M : request generation of an asymmetric encryption key pair (Mpub,
Mpri), and association of Mpri with a specified protected environment state
of P .

10. M : generates (Mpub, Mpri), where Mpri is bound to the specified protected
environment state.

11. M → CB: (Mpub, Mpri), where Mpri is encrypted using a key available only
to M .

24 C. Chen, C.J. Mitchell, and S. Tang

12. CB → M : request to generate a certificate for Mpub in association with RM ,
RB, IdB and I .
(IdB is B ’s network domain name. The integrity metrics I reflect both the
state of the protected environment when the key pair (Mpub, Mpri) was
generated and the state required for use of the newly generated Mpri.)

13. M : signs a data string including Mpub, RM , RB, IdB and I using its private
signing key to obtain: SM (RM ||RB||IdB||Mpub||I).

14. M → CB : Mpub||I||SM (RM ||RB||IdB ||Mpub||I).
15. CB → B : CertM ||IdM ||RM ||RB||IdB||Mpub||I||SM (RM ||RB||IdB||Mpub||I).
16. B : retrieves CertM and verifies it.

B : verifies SM (RM ||RB||IdB||Mpub||I).
B : verifies RB to ensure that the message is fresh.
B : verifies IdB to ensure that the message is intended for it.
B : verifies that I indicates that CB is executing as expected, i.e. that it has
not been tampered with.

17. Assuming that the signature from M verifies correctly, the value of RB is
fresh, the value of IdB is as expected, and the integrity metrics I are accept-
able, then
B : generates a master session key MK, sets the lifetime of MK according to
B ’s local policies, and generates an identifier B-TID for MK consisting of
RM , RB and B ’s network domain name.

18. B : caches B-TID, MK, lifetime of MK, RM , RB, and IdM .
19. B → CB : CertB||B-TID||lifetime of MK ||RB||RM ||IdM ||EMpub

(MK)||
SB(RB ||RM ||IdM ||EMpub

(MK)).
20. CB: retrieves CertB and verifies it.

CB: verifies SB(RB||RM ||IdM ||EMpub
(MK))

CB: verifies RM to ensure that the message is fresh.
CB: verifies IdM to ensure that the message is intended for it.

21. Assuming that the signature from B verifies correctly, the value of RM is
fresh, and the value of IdM is as expected, then:
CB → M : request to load the encrypted key Mpri.

22. M : loads the encrypted key Mpri.
23. M → CB : the handle of the loaded Mpri.
24. CB → M : request to decrypt EMpub

(MK) using Mpri.
25. M : decrypts EMpub

(MK) and deletes Mpri.
26. M → CB : MK .
27. CB: caches B-TID, MK, lifetime of MK, RM , RB, and IdM .
28. CB: deletes the part-encrypted key pair (Mpub, Mpri).

After successful execution of the above protocol, B and CB share a new set of
bootstrapped credentials, including random challenges RM and RB, M ’s iden-
tity IdM , and a master session key MK together with its identifier B-TID and
lifetime. We assume that these bootstrapped credentials are held securely by CB

by some means (e.g. encrypted and integrity protected by M).
Verifying the trustworthiness of P ’s software environment is not necessary in

order to complete authenticated key establishment, which is, of course, the main

TC GAA 25

goal of the TC GAA bootstrapping protocol. If B does not need to verify the
trustworthiness of P ’s software environment at the time of protocol execution, a
fresh encryption key pair (Mpub, Mpri) does not need to be generated for every
instance of the bootstrap procedure. Instead M could generate a encryption
key pair (without associating it with a specified protected environment state)
in advance of the protocol, and use it multiple times. When bootstrapping, M
would load the public key of this encryption key pair and use its private signing
key to generate a certificate for this public key that includes the nonces for the
current session (i.e. RM and RB).

In the TC GAA use of bootstrapped keys procedure, CS and S follow the
procedure defined in section 2.2 to establish a server/application-specific session
key SK . The session key SK is derived as follows:

SK = KDF(MK ,RM ,RB , IdM ,NAF -Id).

4 Building TC GAA Using the TCG Specifications

The generic version of TC GAA described above could be implemented using
a range of technologies, including a platform constructed in accordance with
the specifications of the Trusted Computing Group (TCG). In this section we
specify an instantiation using TPMs as defined in the version 2.1 of the Trusted
Computing Group (TCG) specifications [11–13].

4.1 The TCG Specifications

A TCG-compliant TPM meets the requirements for the TM identified in sec-
tion 3.1. Gallery [5] describes the TPM features. In this section we map the
necessary features for a TM identified section 3.1 onto a TPM.

– The TPM is a secure module which contains protected capabilities and
shielded locations. The protected capabilities include all the functionalities
required for TC GAA, as well as other capabilities such as a SHA-1 engine, a
HMAC engine, and a monotonic counter. When implemented as a hardware
chip, the TPM must be inextricably bound to its host platform.

– The TPM is equipped with a unique Endorsement Key (EK) pair, an RSA
encryption key pair, at the time of (or soon after) manufacture. The private
decryption key is stored in a TPM-shielded location and is never exported
from the TPM. An endorsement credential (a certificate for the public key
of this EK key pair) is signed by a CA (as provided by a Trusted Platform
Module Entity (TPME)). The endorsement credential, in conjunction with
its associated conformance credential and platform credential, describes the
security properties of the TPM and its host platform.

– TheTPM is capable of generatingAttestation IdentityKeys (AIKs), which are
RSA signature key pairs. A certificate CertTPM for the public key of an AIK
key pair can be obtained in two ways: using a privacy CA, and using Direct
Anonymous Attestation [3]. The associated private key is securely held by the
TPM. The TPM can use an AIK to certify other TPM-generated keys.

26 C. Chen, C.J. Mitchell, and S. Tang

– The TPM is capable of generating asymmetric encryption key pairs on de-
mand, which can be migratable or non-migratable. For the purposes of TC
GAA, we assume that non-migratable keys are used. The private key of a
TPM-generated encryption key pair is securely held by the TPM. A certifi-
cate for the encryption public key can be generated by the TPM using an
AIK.

– Integrity measurement, storage and reporting are supported. Measuring
events on a platform is a two-stage process that begins with appending a
hash of the event (e.g. the launch of an application) being measured to the
content of one of a number of internal registers (known as Platform Config-
uration Registers (PCRs)). The hash of the resulting string is written back
to the PCR concerned. The other part of the process involves recording de-
tails of the event in the Stored Measurement Log (SML) file. The values of
the PCRs identify the current platform state. When a challenger wishes to
verify a trusted platform’s integrity, it requests (a portion) of the platform’s
SML, together with a TPM-generated signature (generated using an AIK)
on a subset of PCR values that describe the desired portion of the platform’s
operating state.

4.2 TC GAA Procedures Using a TPM

A trusted platform which contains a TCG-compliant TPM M can play the role
of the GAA-enabled user platform P . M must possess an AIK pair, which plays
the role of the signature key pair used in the TC GAA bootstrapping protocol.
A certificate CertM is required to bind an identity of M (IdM) to the public key
of the AIK. We suppose that the private signing key is stored externally to M,
encrypted using a key available only to M .

We now describe a means of using the version 1.2 TCG TPM data struc-
tures [12] and command set [13] to implement the TC GAA bootstrapping pro-
tocol defined in section 3.3. The data structures involved include TPM NONCE,
TPM KEY HANDLE, TPM KEY and TPM CERTIFY INFO. The TPM
commands involved include TPM-CreateWrapKey, TPM GetRandom,
TPM LoadKey, TPM-CertifyKey and TPM-UnBind.

During protocol execution, CB calls the TPM GetRandom command
to request M to generate a random value RM (step 4). M returns RM in a
TPM NONCE data structure (step 5). CB then calls the TPM LoadKey com-
mand, requesting M to load a private signing key (step 6). M returns the han-
dle of the loaded key in a TPM KEY HANDLE data structure (step 8). CB

next invokes the TPM-CreateWrapKey command, requesting M to generate
an encryption key pair (Mpub, Mpri) (step 9). The TPM-CreateWrapKey com-
mand arguments include an unwrapped TPM KEY data structure and a par-
ent wrapping key. The unwrapped TPM KEY specifies information about the
key pair to be created, such as the key size (e.g. 1024 bits), the key usage
(i.e. TPM KEY BIND), and the key flag (i.e. non-migratable); it also spec-
ifies the platform state at the time the key pair is created (referred to as

TC GAA 27

digestAtCreation) and the platform state required for use of the generated pri-
vate key (referred to as digestAtRelease).

M returns a wrapped TPM KEY data structure (step 11). The wrapped
TPM KEY contains Mpub, the encrypted Mpri (encrypted using the parent
wrapping key), a value indicating that the key pair is non-migratable, and a
value indicating that the key pair can only be used for TPM-Bind and TPM-
UnBind operations. The wrapped TPM KEY also identifies the PCRs whose
values are bound to Mpri, the PCR digests at the time of key pair creation, and
the PCR digests required for Mpri use. The PCR data included in the wrapped
TPM KEY maps to the integrity metrics I in the generic protocol.

M is then requested to signMpub and I in conjunction with external data RM ,
RB and IdB (step 12). This involves a call to the TPM-CertifyKey command,
which takes arguments that include the public key of the TPM-generated key
pair to be certified (i.e. a wrapped TPM KEY) and a private signature key (i.e.
M ’s private signing key). A hash of RM , RB and IdB is also input as 160 bits
of externally supplied data. In response, M returns a TPM CERTIFY INFO
data structure and a signature on TPM CERTIFY INFO (step 14). The string
TPM CERTIFY INFO contains (a description of) the public key that has been
certified, the 160 bits of externally supplied data, a hash of the certified public
key, and the PCR data in use.

B needs to encrypt MK so that it can be decrypted by M (step 19). B calls
the Tspi Data Bind command ([10], p. 363), which takes a data block to be
encrypted (i.e. MK) and a public encryption key (i.e. Mpub) as arguments and
returns an encrypted MK (i.e. EMpub

(MK)).
Assuming that the response from B is correct, CB requests M to load the

encrypted key Mpri (step 21), and then calls the TPM-UnBind command to
decrypt EMpub

(MK) (step 24). M outputs the master key MK to CB (step 26).
We now summarise the TC GAA bootstrapping protocol using the version 1.2

TCG TPM commands and data structures.

1. CB → B : request to bootstrap a master session key MK .
2. B : generates and caches a random value RB.
3. B → CB : RB.
4. CB → M : TPM GetRandom.
5. M → CB : TPM NONCE (containing RM).
6. CB → M : TPM LoadKey (M ’s private signing key).
7. M : loads M ’s private signing key.
8. M → CB: TPM HANDLE (containing the handle of M ’s private signing

key).
9. CB → M : TPM-CreateWrapKey (an unwrapped TPM KEY, the handle of

the loaded parent wrapping key).
10. M : generates (Mpub, Mpri), where Mpri is bound to a specified protected

environment state.
11. M → CB : a wrapped TPM KEY.
12. CB → M : TPM-CertifyKey (the wrapped TPM KEY, H(RM ||RB||IdB)).

(Note that the PCR data included in TPM KEY maps to the integrity met-
rics I).

28 C. Chen, C.J. Mitchell, and S. Tang

13. M : generates TPM CERTIFY INFO data structure, and signs it.
14. M → CB : TPM CERTIFY INFO||SM (H(RM ||RB||IdB)||H(Mpub)||I).

(We represent the signature on TPM CERTIFY INFO generated by M in
simplified form as SM (H(RM ||RB||IdB)||H(Mpub)||I).)

15. CB → B : CertM ||IdM ||RM ||RB||IdB||TPM Key||SMLData
TPM Certify Info|| SM (H(RM ||RB||IdB)||H(Mpub)||I).

16. B : verifies CertM , the received signature, RB, IdB and I, as described in
section 3.3.
(B uses the SML data received in step 15 to recompute I for verification. If
B does not want to verify the trustworthiness of P ’s software environment,
the SML data does not need to be sent.)

17. Assuming that the signature from M verifies correctly, the values of RB and
IdB are as expected, and the integrity metrics I are acceptable, then:
B : Generates a symmetric session key MK, sets the lifetime of MK according
to B ’s local policies, and generates an identifier B-TID for MK consisting
of RTPM, RBSF and B ’s network domain name.

18. B : caches B-TID, MK, lifetime of MK, RM , RB and IdM .
19. B → CB : CertB||B-TID||lifetime of MK ||RB||RM ||IdM ||EMpub

(MK)||
SB(RB ||RM ||IdM ||EMpub

(MK)).
20. CB: verifies CertB, the received signature, RM and IdM , as described in

section 3.3.
21. Assuming that the signature from B verifies correctly, the value of RM is

fresh, and the value of IdM is as expected, then:
CB → M : TPM LoadKey (the encrypted key Mpri).

22. M : loads the encrypted key Mpri.
23. M → CB : KEY HANDLE (containing the handle of Mpri).
24. CB → M : TPM-UnBind (EMpub

(MK), the handle of the loaded key Mpri).
25. M : decrypts EMpub

(MK) and deletes Mpri.
26. M → CB : MK .
27. CB: caches B-TID, MK, lifetime of MK, RM , RB and Idm.
28. CB: deletes the part-encrypted key pair (Mpub, Mpri).

5 Informal Security Analysis

We now provide an informal security analysis of the authentication and key es-
tablishment protocol used by the TC GAA bootstrapping protocol in section 3.3
(including steps 3, 15 and 19). We consider a threat model in which an attacker
A is able to observe and make arbitrary modifications to messages exchanged
between B and P, including replaying and blocking messages as well as insert-
ing completely spurious messages. This allows a trivial denial of service attack
which cannot be prevented. Note that A is not allowed to compromise the im-
plementations of B and P ; such attacks on system integrity cannot be prevent
by the key establishment process, and are thus not addressed by the schemes we
propose.

TC GAA 29

1. Entity authentication. The protocol provides mutual authentication between
B and M using digital signature techniques. B can verify the identity of the
M (IdM); that is, the signature ofM on RB and IdB allows B to authenticate
M (step 15). Similarly, M can authenticate B by verifying the signature of
B on RM and IdM (step 19). Step 3, 15 and 19 of the protocol conform
to the three pass unilateral authentication protocol mechanism described in
clause 5.2.2 of ISO/IEC 9798-3:1998 [8], in which the values RB and RM ,
generated by B and M respectively, serve as the nonces.

2. Confidentiality of the master session key MK . The signature of M on Mpub

allows B to verify that M generated the key pair (Mpub, Mpri) (step 15).
MK is generated by B, and is encrypted using the TM-generated temporary
public key Mpub before being sent to M (step 19). The corresponding private
key Mpri is securely held by M, and is only useable when the protected
platform is in a particular trusted state. Hence, A cannot access to MK
under the assumed threat model.

3. Origin authentication. RB, RM , IdB, IdM , Mpub and EMpub
(MK) are signed

by B and M (steps 15 and 19), and thus both parties can verify the origin
of the received message. The signatures also provide integrity protection.

4. Freshness. RB, generated by B, is included in the signed bundle sent to B
in step 15; similarly RM , generated by M, is included in the signed bundle
sent to CB in step 19. Hence, A cannot later replay the messages to either
entity.

5. Key confirmation. Upon receipt of the message in step 19, CB can be sure
that B has generated the MK within the current session by verifying the
signature of B on RM , IdM and EMpub

(MK). However, CB does not confirm
the receipt of MK to B . Note that A can block all the messages exchanged,
and network errors might occur, and hence only CB can be sure that it shares
a fresh MK with B (until successful use of the key by P).

6. Key control. The protocol is an authentication and key transport protocol.
B generates the master session key MK, and hence B has key control.

6 Using the GAA Framework

We now discuss trust issues and possible applications of the GAA services.

6.1 Trust Issues

The nature of the GAA architecture means that the end users implicitly trust
the provider of the BSF service. This means that the entity providing this service
needs to be selected with care, and it may also mean that the service may not
be appropriate for every application. Nevertheless, in the non-electronic world,
trusted third parties are relied on for a huge range of services, some very sensitive,
and hence this does not appear to be a fundamental obstacle. In addition, if
security sensitivity justifies the additional cost, multiple BSF services could be
accessed simultaneously, thereby distributing the necessary trust.

30 C. Chen, C.J. Mitchell, and S. Tang

6.2 Applications

A wide range of applications for UMTS GAA have been explored — see, for
example, Holtmanns et al. [7]. Any other scheme providing a GAA service such
as the system described here can support very similar applications.

In ongoing work we are examining ways in which a range of variants of the
GAA service can be used to support one time passwords [4]. The schemes enable
an GAA enabled user platform (e.g. a mobile phone or a trusted commodity
computer) to act as a one-time password generator. If a user registers with an
application server (establishing a username and password, a human-memorable
weak secret), one-time passwords can be generated as a function of on-demand
GAA bootstrapped application-specific keys and the shared password. A proto-
type of one of the schemes (Ubipass1, which makes use of UMTS GAA services)
has been developed in collaboration with the Nokia Research Center in Helsinki.
We are currently studying its usability and performance. The same OTP genera-
tion protocol (the OTP agreement protocol in Ubipass) could also be built using
the TC GAA service. Ubipass provides an Internet one-time password solution
which could be deployed to enable the provision of ubiquitous one-time password
services for a large class of users.

7 Conclusions

GAA is a framework that enables pre-existing security infrastructures to be used
to provide general purpose security services, such as key establishment. We have
shown how GAA services can be built on the Trusted Computing security infras-
tructure, complementing the previously standardised GAA schemes built on the
mobile phone infrastructures. The solution described in section 3.3 has been de-
signed to apply to a range of trusted computing technologies. We have also pro-
vided an instantiation of this solution as supported by the TCG specifications.

TC GAA provides a way of exploiting the now very widespread trusted com-
puting infrastructure (as supported by PC-based trusted platforms) for the pro-
vision of fundamentally important generic security services. Of course,
application-specific security protocols building on the infrastructure can be de-
vised independently of any generic service and, indeed, there is a large and grow-
ing literature on such schemes. However, the definition of a standard GAA-based
security service enables the trusted computing infrastructure to be exploited in
a simple and uniform way, and it also provides an opportunity for trusted com-
puting aware third parties to provide novel security services. This may help with
providing the business case necessary for the emergence of the wide range of third
party security services necessary to fully realise the goals of trusted computing.

References

1. 3rdGeneration Partnership Project (3GPP): Technical Specification Group Services
and Systems Aspects, Generic Authentication Architecture (GAA), Generic Boot-
strapping Architecture, Technical Specification TS 33.220, Version 9.2.0 (2009)

1 http://ubipass.research.isg.rhul.ac.uk/

TC GAA 31

2. Balacheff, B., Chen, L., Pearson, S., Plaquin, D., Proundler, G.: Trusted Comput-
ing Platforms: TCPA Technology in Context. Prentice Hall (2003)

3. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Atluri,
V., Pfitzmann, B., McDaniel, P.D. (eds.) Proceedings of the 11th ACM Conference
on Computer and Communications Security, CCS 2004, Washingtion, DC, USA,
October 25-29, pp. 132–145. ACM (2004)

4. Chunhua, C., Mitchell, C., Shaohua, T.: Ubiquitous One-Time Password Service
Using the Generic Authentication Architecture. Mobile Networks and Applications,
http://rd.springer.com/article/10.1007/s11036-011-0329-z

5. Gallery, E.: An overview of trusted computing technology. In: Mitchell, C.J. (ed.)
Trusted Computing, pp. 29–114. IEE (2005)

6. Gallery, E., Tomlinson, A.: Secure Delivery of Conditional Access Applications to
Mobile Receivers. In: Mitchell, C.J. (ed.) Trusted Computing, pp. 195–237. IEE
(2005)

7. Holtmanns, S., Niemi, V., Ginzboorg, P., Laitinen, P., Asokan, N.: Cellular Au-
thentication for Mobile and Internet Services. John Wiley and Sons (2008)

8. International Organization for Standardization, Genève, Switzerland:
ISO/IEC 9798-3:1998, Information technology—Security techniques—Entity
authentication—Part 3: Mechanisms using Digital Signature Techniques (1998)

9. Pashalidis, A., Mitchell, C.J.: Single Sign-On Using Trusted Platforms. In: Boyd,
C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 54–68. Springer, Heidelberg
(2003)

10. Trusted Computing Group: TCG Software Stack (TSS) Specification Part 1: Com-
mands and Structures, Version 1.2 (2007)

11. Trusted Computing Group: TPM Main, Part 1 Design Principles, TCG Specifica-
tion, Version 1.2, Revision 103 (2007)

12. Trusted Computing Group: TPM Main, Part 2 TPM Data Structures, TCG Spec-
ification, Version 1.2, Revision 103 (2007)

13. Trusted Computing Group: TPM Main, Part 3 Commands, TCG Specification,
Version 1.2, Revision 103 (2007)

 http://springerd.bibliotecabuap.elogim.com/article/10.1007/s11036-011-0329-z

Enforcing Sticky Policies

with TPM and Virtualization

Gina Kounga1 and Liqun Chen2

1 EADS UK
Homeland Security and CNI Protection

Quadrant House, Celtic Springs, Coedkernew
Newport, NP10 8FZ, UK
gina.kounga@eads.com

2 Hewlett-Packard Laboratories
Long Down Avenue, Stoke Gifford

Bristol, BS34 8QZ, UK
liqun.chen@hp.com

Abstract. For the proper provision of online services, service providers
need to collect some personal data from their customers; for instance, an
address is collected in order to deliver goods to the right customer. Here
the service provider and customer are called data collector (DC) and data
subject (DS) respectively. After receiving the personal data, the DC is
free to use them as he likes: he may process them for purposes which are
not consented by the DS, and even share them with third parties (TPs).
Researchers have paid attention to this problem, but previously proposed
solutions do not guarantee that, after they have been disclosed to DCs,
personal data can only be used as specified by DSs. These solutions
require good behaving DCs and assume that DCs’ behavior is verifiable,
but do not actually show what happens after DCs get the data. In this
paper, we propose a solution that guarantees this by enforcing sticky
policies along communication chains composed of a DS, a DC and one
(or more) TPs. Our solution uses trusted platform modules (TPMs) and
virtual machines (VMs).

Keywords: Sticky policies, TPM, Virtual machine, Privacy.

1 Introduction

In order to be properly provided specific online services, data subjects (DSs for
short) – i.e., individuals to whom personal data relate [1] – are often required to
provide their personal data items, such as names, addresses and dates of birth,
to some service providers, such as banks. Some of these personal data can be
necessary to the proper provision of these services (e.g. delivery of goods bought
online). Therefore, the DSs do not have any other choice than disclosing their
personal data to service providers, called data collectors (DCs for short). These
DCs are then free to use the collected personal data as they wish. Besides this,
for the purpose of their own businesses, the DCs can share the collected personal

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 32–47, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Enforcing Sticky Policies with TPM and Virtualization 33

data items with their business partners (called the third parties (TPs)), such as
financial advisers or service evaluators, which are then also free to use these
personal data as they wish. Considering that a communication chain may be
composed of one DS, one DC and many TPs as represented in Figure 1, it can
be anticipated that a unique disclosure of personal data to a DC can lead to
serious loss of privacy.

Fig. 1. A communication Chain

1.1 Related Work

A number of researchers have worked on this area in order to guarantee that
policies governing the access and management of personal data could always
be enforced wherever the personal data flow. For example, Karjoth et al. intro-
duced the sticky policy paradigm [2]. This paradigm specifies the requirement
to guarantee that data subjects’ preferences always flow with the personal data
that they have disclosed. However, in order to guarantee that these preferences
are always enforced, it must further be guaranteed that data are only accessed
under the conditions specified by the preferences. When data have been sent
to another entities’ computing platform, the previous means that the platform
should be continuously monitored to allow the specific conditions in which the
data are accessed to be evaluated against the preferences. It is further required
to guarantee that, on that platform, only the applications that do allow the
preferences to be fulfilled can access the data. Other applications should not be
authorized to access them.

Many implementations of the sticky policy paradigm have been proposed in
the literature [2][3] [4][5]. However, Karjoth et al.’s solution does not avoid per-
sonal data and preferences to be separated. It therefore does not constrain access
requesters to verify the conditions expressed by the preferences in oder to ac-
cess personal data. To avoid the previous, Tang [4] and Casassa Mont et al. [3][6]
study and propose the use of cryptographic means to bind data subjects’ personal
data to their preferences. However, these solutions only secure the transmission
of personal data between the data subjects and the DCs. When the data reach a
DC, their solution does not make it possible to control that data are only used in
the conditions specified in the preferences. Cassasa Mont et al. further propose to
use a trusted platform module (TPM) located at a trusted authority (TA). The
TA uses its TPM to evaluate whether a data requester fulfills the data subjects’
preferences. If it is the case, the TA discloses the data to the data requester. This
approach guarantees that, when the data are sent to the data requester, the data

34 G. Kounga and L. Chen

subject’s preferences are fulfilled. However, after the data have been disclosed by
the TA, the solution does not allow a continuous monitoring of the conditions
in which data are accessed and do not isolate applications to guarantee that
only those that fulfill the preferences can access to the data. It therefore does
not allow to enforce the data subject’s preferences after the data have been re-
ceived by the data requester. Pearson et al. [5] use a similar approach relying on
TAs, except that they do not use TPMs. Therefore, their solution has the same
limitations. Another solution proposed by Zuo and O’Keefe allows data sub-
jects to control the use of their personal data even on data controllers’ computer
platforms [7]. This solution relies on what Zuo and O’Keefe call a next genera-
tion privacy-enhanced operating system that must be installed in all systems on
which the data transit. The next generation privacy-enhanced operating system
is an operating system with a significantly enhanced kernel which is specified to
provide a trustworthy platform for the operations performed by the entities ex-
changing personal data. The solution also requires existing computer hardware
such as Network Interface Cards (NICs) to be modified and NICs driver files to
be reprogrammed to provide some specific capabilities introduced by Zuo and
O’Keefe. However this is a strong assumption that may require a very expensive
modification on the current computer infrastructure.

1.2 Our Contribution

In this paper, we define a solution that allows DSs to control their personal data
along communication chains as represented in Figure 1. This work can be seen
as an extension to the solution proposed in [3][6]. The differentiation is that the
previous work focuses on the communication between a DS and DC that allows
data to be given to a good behaved DC and assumes the DC’s behavior can be
verified by the DS, but it does not show how to achieve such a good behaved
DC. Here, we include their result but also show how to protect the data after
giving them to the DC.

Our solution does not assume that principals’ [8] – here, the DS(s), the DC(s)
and the TP(s) – computing systems are equipped with specific operating systems
or with hardware that must be modified. Instead, our solution is independent of
the operating system and relies on TPMs [9], which are already part of more than
100 million computing systems that have been shipped to date [10], together with
virtual machine technology, e.g. [11,12,13]. Virtual machine technology makes it
possible to isolate applications running on a same computing platform. It there-
fore makes it possible to allow, on a same computing platform, the applications
which fulfil DS’s preferences to access personal data while others cannot access
them. This is necessary to enforce sticky policies and it is not provided by pre-
viously proposed solutions. After the submission of this paper, we have been
informed that Sandhu and Zhang [14] proposed a solution for access control,
which like ours, relies on TPMs and virtual machine technologies. However, in
Sandhu and Zhang’s approach only the trusted reference monitor operates in
isolation. Therefore, their approach cannot guarantee that only the specific ap-
plications which fulfil the DS’s preferences can access the DS’s personal data.

Enforcing Sticky Policies with TPM and Virtualization 35

Besides this, their approach does not make it possible for the trusted reference
monitor to verify the applications’ capabilities as their solution does not rely
on conformance certificates. As a consequence, it is not possible for the trusted
reference monitor to know whether or not an application is able to fulfil the DS’s
preferences before sending that application the DS’s personal data. The solution
proposed by Han et al. [15], which extends Sandhu and Zhang’s approach to a
client/server context, has the same limitations. It additionally does not apply to
communication chains has considered in this paper.

Here, we use TPMs’ capabilities to cryptographically bind the access and use
of a personal data item to the fulfillment of conditions specified by the DS this
data item relates to. As TPMs are designed to be tamper-resistant, the previous
cryptographic binding cannot be unbound. Hence, the data item cannot be used
in other conditions than those defined by the DS. Contrary to most previously
proposed solutions, we do not only use TPMs at one unique entity but at all
the entities that need to receive some personal data. This makes it possible to
continuously control the state of the platform on which DS’s data seat and to
guarantee that the data can only be accessed if DS’s preferences are fulfilled.
The concept of the personal data certificate (PDC) is introduced. A PDC is
similar to a X.509 certificate [16] except that it binds some encrypted personal
data items, disclosed by a DS bound to the TPM in the DS’s platform, to:

– Some preferences that another(other) principal(s), bound to the TPM(s) in
this(these) principal(s)’s platform(s), must fulfil;

– The secret key SK used to encrypt the personal data items to be disclosed.

Remark 1. Our solution might be compared to digital right management (DRM)
solutions since, like a DRM, our solution makes it possible to control the access to
some digital resources. However, while a DRM is designed to control the access to
a specific type of resource by a specific application, our solution applies to any type
of resource accessed by any type of application. It is also designed to both make
it possible for individuals to protect their privacy by controlling the use of their
personal data and make it easier for organizations to use and manage personal
data in a user-centric privacy preserving way for their business interests.

1.3 Organisation of the Paper

This paper is organised as follows. In the next section, we present some technical
background. Then, in Section 3 we present our approach at a high level before
detailing our solution in Section 4. We illustrate how the solution can be inte-
grated into an organisation’s infrastructure in Section 5 and conclude the paper
in Section 6.

2 Technical Background

Our solution is based on two existing technologies: virtual machine technology
and trusted computing technology.

36 G. Kounga and L. Chen

A virtual machine (VM) is an isolated operating system installation within
a normal operating system, as discussed in [17]. Generally speaking, there are
two major types of virtual machines: a system VM provides a complete system
platform and supports the execution of a complete operating system (OS); a
process VM, also called an application virtual machine, runs as a normal appli-
cation inside a host OS and supports a single process. For our purpose, either
of these two VMs can be used. For simplicity, we choose process VMs in our
explanation. We assume that all the principals (DSs, DCs and TPs) involved in
the above scenario are equipped with platforms on which applications have a
degree of isolation that allow them to run in their own virtualised environment
but also to establish some communication with each other. Solutions such as
those proposed by Karger [11] and Cabuk et al. [12] can be used to achieve our
goal. We propose to install a personal data manager (PDM), which is an isolated
application, on each platform. The technical details of such PDMs will be given
in Section 3.

Platforms are also equipped with TPMs which can be fully used by the iso-
lated applications. Solutions such as those proposed by England and Loeser [13]
or Garfinkel et al. [18] indeed permit to achieve the foregoing. England and
Loeser particularly propose a solution that allows each operating system on
which an isolated application runs to have an associated Platform Configuration
Register (PCR) value [13]. Here, we use TPMs to securely perform some critical
cryptographic operations and to avoid unauthorised entities to access personal
data items.

In the trusted computing environment, a TPM is authenticated by any entity
who either locally or remotely communicates with the TPM. TPM authentica-
tion is based on the TPM long-term endorsement key, which is an asymmetric
key pair, created in the TPM manufacture line and usually certified by the man-
ufacturer. However, for privacy reasons, the endorsement key is not used directly
by end users; otherwise any authentic communication with the TPM will reveal
the TPM identity and multiple authentic communications with the same TPM
will be connected. This might bring some privacy concerns for the DS, who is
also the owner of the TPM.

In order to achieve authentication while preserving user privacy, there are
two cryptographic mechanisms recommended by the trusted computing group
(TCG). The first is a privacy-CA solution, where a trusted third party named
privacy-CA validates the TPM’s long-term endorsement key and then certifies its
short-term attestation identity key (AIK); the second one is a direct anonymous
attestation (DAA) solution [19], where the TPM, after demonstrating its posses-
sion of the endorsement key, receives a DAA credential from a semi-trusted DAA
issuer and then self-certifies its AIK using a DAA signature. The DAA signature
is anonymous for both the signature verifier and DAA issuer. In this paper, we
do not restrict our solution to use either of them. The choice is dependent on
the applications and availability of the privacy-CA and DAA issuer.

Enforcing Sticky Policies with TPM and Virtualization 37

3 An Overview of the Approach

The main technique in our solution is a personal data manager PDM, which
is a special application and isolated from other applications, and is designed
specifically to achieve personal data management on each computer platform.
The PDM has a public/private key pair issued by a TPM embedded in the
platform. In order to prove that this key pair is associated with a genuine PDM,
a conformance authority able to check the authenticity of the PDM must sign
the key pair. To allow this, the process detailed in Section 4.2 is run.

Any disclosure, collection and transfer of personal data is mediated by the
PDM owned by the principal which sends or collects personal data items. The
Figure 2 represents the communication between two instances of PDM running
on two different platforms.

Personal Data
Manager

Operating
System

Application

Operating
System

Application

Operating
System

Application

Operating
System

Application

Operating
System

Personal Data
Manager

Operating
System System

Hypervisor

System System

TPM

System

Hypervisor

System System

TPM

Fig. 2. Interactions between two PDMs located on two computing platforms

PDMs are responsible for enforcing DSs’ privacy preferences. In other terms,
they guarantee that locally stored personal data items can only be accessed
by entities that fulfil the conditions specified by the DSs who disclosed these
data items. For that, PDMs rely on TPMs’ capabilities. Personal data items
to be disclosed by a DS to a given principal are indeed encrypted in such a
way that they can only be accessed by this principal’s PDM after this PDM
has requested the principal’s TPM to perform a decryption operation. Such a
request is only done by the principal’s PDM after it has successfully verified
that a requesting entity fulfills the condition defined by the DS. Therefore, our
approach can guarantee that personal data are only accessed as specified by the
DS, if the following requirements are fulfilled on each platform:

– Disclosure or transfer of personal data should only happen between genuine
and healthy – i.e., untampered – PDM applications;

– Platforms on which these PDMs run should be genuine, that means the
integrity of their configuration can be verified;

– No other entity than the genuine PDM running on a platform should be
able to request the TPM to decrypt some data allowing the access to some
personal data items;

– No entity that does not fulfil the conditions defined by the DSs with their
preferences should access to personal data items;

38 G. Kounga and L. Chen

– Entities that are not able to manage personal data as specified by the DSs
should not access to any of these DSs’ personal data.

4 Description of the Proposed Solution

In this section we describe the mechanisms that allow the data subject (DS) to
control his personal data even after he has disclosed them.

4.1 Notation

In the remainder of this paper, we use the notation detailed in Table 1.

Table 1. Notation

Notation Meaning

DS Data subject.

DC Data collector.

TP Third party.

TPMP The principal P ’s TPM. P = {DS, DC, TP}.

PrivAIKP The principal P ’s attestation identity private key generated by

TPMP .

PubAIKP The principal P ’s attestation identity public key generated by TPMP .

CertAIKP The principal P ’s attestation identity public key certificate issued by

the Privacy-CA or self-certified by the TPM using DAA. It contains

PubAIKP .

PDMP The principal P ’s PDM application.

PDM − ConfCertP The conformance certificate of PDMP issued by PDM −ProducerP

the trusted third party which produced PDMP or which is able to

verify the integrity of PDMP . It contains PDM − PubKeyP .

PDM − PrivKeyP The private key of PDMP . It is securely stored by TPMP .

PDM − PubKeyP PDMP ’s public key.

PDM − CertP PDMP ’s certificate. It is signed with PrivAIKP and contains

PDM − PubKeyP .

PDM − PCRP The current PCR value issued by TPMP for PDMP .

PDM − SMLP The current Stored Measurement Log for PDMP .

App − ConfCertP The conformance certificate of P ’s application App.

App − PrivKeyP The private key of P ’s application App. It is securely stored by the

TPM.

App − PubKeyP The public key of P ’s application App.

App − CertP The certificate of P ’s application App. It contains App − PubKeyP

and is signed with PrivAIKP .

App − PCRP The current Platform Configuration Registers (PCR) value issued by

the TPM for P ’s application App.

Enforcing Sticky Policies with TPM and Virtualization 39

Table 1. (Continued)

App − SMLP The current Stored Measurement Log for P ’s application App.

SIG(prikey,msg) Signature generated with the private key prikey on the message msg.

VER(pubkey, sig, msg) Verification of the signature sig generated on the message msg with

the public key pubkey.

ENC(key,msg) Encryption of the message msg with the key key.

DEC(key, cipher) Decryption of the encrypted message cipher with the key key.

4.2 Issue of the Conformance Certificate

The conformance certificate is the credential that proves that an application
fulfills specific requirements. It is issued by a conformance authority. The con-
formance authority only issues a conformance certificate to an application after
it has successfully verified that the application is designed and implemented to
fulfill the specific requirements. These requirements are specified on the certifi-
cate to be issued. The certificate further contains the application’s public key.
Finally, the application is signed by the conformance certificate to allow its in-
tegrity to be checked. In our solution, applications have public keys issued by
TPMs which means that conformance certificates cannot be issued when the
application is being produced. In this section, we explain how this is achieved.
Here, the conformance authority which issues PDMs’ conformance certificates is
PDM − Producer, the entity which produced the PDM. The conformance au-
thority can be any trusted entity. Here, we only consider that it is the producer
of the PDM as an example.

The first time that PDMDS has to be launched, a validation process is run.
This validation process requires DS to enter PDMDS’s license key which was
provided to him. After that, the protocol represented in Figure 3 is run between
PDMDS, PDM − ProducerDS and TPMDS. It allows PDM − ProducerDS

to know whether PDMDS is a genuine PDM and whether the TPM, which is-
sued PDM − PubKeyDS to PDMDS, is genuine. If all the verifications are
successful, PDM − ProducerDS issues PDMDS the conformance certificate
PDM−ConfCertDS that contains PDM−PubKeyDS. Who is able to play the
role of the PDM −ProducerDS is dependent on usage models and applications.

4.3 Disclosure of Personal Data to the Data Collector

When DS wants to disclose some personal data items to DC, he runs PDMDS

and specifies: the personal data items he would like to disclose, the DC which
the items should be disclosed to and his privacy preferences. After it has been
done, PDMDS verifies that the DC has the capabilities to properly manage
the personal data items to be sent. For that, PDMDS first generates an unpre-
dictable nonce NonceDS. Then, PDMDS and PDMDC exchange the messages
(1) to (3) represented in Figure 4 in order to mutually verify that they both:
(a) run on platforms equipped with a genuine TPM whose security components

40 G. Kounga and L. Chen

DSPDMDSTPM
DSProducerPDM −

Hello
)1(

Nonce
)2(

creationpairkeyRequest
)3(

DSDS CertAIKCertPDM ,−
)4(

LicenseKeyIDPDMNonce ,, −
)5(

DS

DS

DS,DS

SMLPDM

Key))),ID,LicenseM,(Nonce,PDPrivKeySIG(PDM

PCR,(PDMKSIG(PrivAI

−
−−

−

)6(

DSDSDS

DS

DS,DS

Cert,PDM,CertAIKSMLPDM

Key))),ID,LicenseM,(Nonce,PDPrivKeySIG(PDM

PCR,(PDMKSIG(PrivAI

−−
−−

−

)7(

DSComfCertPDM −
)8(

Fig. 3. Issue of the conformance certificate to the personal data manager

and properties are genuine, (b) are genuine and currently healthy PDMs able to
manage personal data as specified by their DSs and (c) hold valid public keys
certified by their respective TPMs.

After receiving the message (2), PDMDS verifies the validity of CertAIKDC .
If it is valid, PDMDS knows that PubAIKDC , contained in CertAIKDC , was
generated by a genuine TPM whose security components and properties are
genuine. PDMDS can therefore use PubAIKDC to verify the validity of the
signature contained in message (2). If the signature is valid, then PDMDS has
the insurance that the signature contained in message (2) has been generated
by TPMDC after the message (1) was sent. PDMDS then verifies the validity
of PDM − CertDC . If it is valid, it further verifies that PDM − ConfCertDC

contained in message (2) is valid. If the verification is successful, PDMDS knows
that PDM−PubKeyDC contained in PDM−CertDC belongs to a genuine PDM
whose corresponding private key is protected by a genuine TPM.

After it has been done, PDMDS processes PDM − SMLDC and recomputes
the received PCR before comparing it to the received PDM − PCRDC [20]. If
theymatch then PDMDS knows thatPDMDC is currently in a healthy state. The
same verifications are performed by PDMDC . If all the previous verifications are
successful, the exchange can continue. PDMDS then generates a secret key SK
and individually encrypts with it each of the personal data items to be sent to
DC. PDMDS further generates PDCDS represented in Figure 5, which contains,
among others:DS−ID andDC−ID, i.e.DS’s andDC’s respective identifiers1.

1 Such identifiers should uniquely identify DS and DC. These may be distinguished
name [21] as specified in [16] or email addresses. Using email addresses allows noti-
fication information to be sent back to DS. If required, email addresses that do not
contain any identifiable information can be used.

Enforcing Sticky Policies with TPM and Virtualization 41

DCPDMDSPDM

DSNonce
)1(

DCDCDCDC

DCDSDCDC

SMLPDMCertPDMCertAIKConfCertPDM

PCRPDMNonceivAIKSIGNonce

−−−
−

,,,

)),,(,(Pr,

)2(

)3(

, (Pr ,(,)),

, , , ,
DS DS DC DS

DS DS DS DS

DS

Nonce SIG ivAIK Nonce PDM PCR

PDM ConfCert CertAIK PDM Cert PDM SML

PDC

−
− − −

Fig. 4. Message exchanged between PDMDS and PDMDC when DS discloses some
data to DC

The PDC further contains, for each personal data item to be disclosed:

– The type of the data item e.g., Name in Figure 5.
– An index e.g., d1 in Figure 5. It permits to differentiate data items of the

same type contained in a PDC.
– The encrypted personal data items to be sent e.g., ENC(SK, John) in

Figure 5.

It also contains:

– The privacy preferences that apply to each personal data item or group of
personal data items.

– The secret key SK used to encrypt the personal data items to be sent. SK
is encrypted with PDM − PubKeyDC the public key of PDMDC included
in PDM − CertDC (see message (2) in Figure 4).

– The issue date of PDCDS .
– The digital signature generated by DS on PDCDS with PrivAIKDS .

After generating PDCDS , PDMDS discloses DS’s personal data by sending
PDMDC the message (3) of Figure 42. As the personal data items within
PDCDS are encrypted with a secret itself encrypted with PDM − PubKeyDC,
only TPMDC can decrypt the personal data items. This, only after PDMDC

has requested it.

2 After receiving messages (2) and (3) PDMDS and PDMDC can store the received
certificates in their repositories for future interactions.

42 G. Kounga and L. Chen

DS − ID

DC − ID

Name, d1, ENC(SK, John)

Surname, d2, ENC(SK, Doe)

Date of birth, d3, ENC(SK, 25 November 1956)

Preferences1

– Target : d1, d2

– Authorised principal : DC, TP1, TP2, Applications certified
by conformance authority ConfAuth1

– Access and use until : certificateissuedate + 3months

Preferences2

– Target:d3

– Authorised principal:DC, TP1, Applications certified by confor-
mance authority ConfAuth2

– Access and use until:unlimited

ENC(PDM − PubKeyDC , SK)

Issue date

SIG(PrivAIKDS , PDCDS
′s fields)

Fig. 5. Fields composing PDCDS

4.4 Management of Personal Data at the DC

Access Request from an Application

After receiving PDCDS , PDMDC verifies its authenticity with PubAIKDS –
contained in CertAIKDS received in message (2) of Figure 4. If it is authentic,
PDMDC extracts the encrypted personal data items identified by d1, d2 and d3
and stores them on DC’s platform in a location that can be accessed by other
applications. PDMDC then stores the remaining fields of the PDCDS in its local
repository – only accessible by PDMDC . It also maintains a link between these
remaining fields and the location where are stored d1, d2 and d3.

When an application App1 tries to access to d1 and d2, the access is inter-
cepted by PDMDC . PDMDC then verifies that the conditions specified by the
preferences associated to these data items are fulfilled. In the considered case
(see Figure 5), PDMDC verifies that, as specified in PDCDS :

– App1 has a valid conformance certificate issued by ConfAuth1 which certi-
fies that App1 does manage personal data as specified by their DSs.

– The access is made less than three months after PDCDS was issued.

Besides this, PDMDC further verifies that App1 is in an healthy state by check-
ing App1− PCRDC (see Section 4.3) . If all the verifications are successful, then
PDMDC knows that App1 is able to manage the accessed personal data items as
specified by the preferences. Therefore, PDMDC generates a secret key SKApp1

and requests TPMDC to decrypt a copy of ENC(PDM − PubKeyDC , SK)

Enforcing Sticky Policies with TPM and Virtualization 43

DCTPMDCPDM

),(SKPubKeyPDMENC

ofdecryptionRequest

DC−
)1(

SKofCopy

)2(

)3(
s1Preference

,Doe),(SK,John),ENCENC(SK

),,SKPubKeyENC(App1

App1App1

App1DC−

App1

Fig. 6. Actions performed after App1 has tried to access d1 and d2 and PDMDC has
successfully verified that App1 can be authorised to access the data

as represented in Figure 6. For that, PDMDC uses its authentication data
authDataManagerDC to prove to TPMDC that it is authorised to request data
to be decrypted with PDM − PrivKeyDC . After receiving the copy of SK from
the TPM, PDMDC re-encrypts d1 an d2 with SKApp1 and encrypts SKApp1 with
App1’s public key App1 − PubKeyDC. PDMDC then transmits ENC(App1 −
PubKeyDC, SKApp1),ENC(SKApp1, John) andENC(SKApp1, Doe) toApp1 as
well as the preferences associated to d1 and d2 (see message (3) in Figure 6) before
destroying the copy of SK.

It is important to note that the access to the personal data items is fully
controlled by PDMDC . Therefore, no entity can access personal data items if
PDMDC has not authorised it. If the TPMDC is configured in such a way that
PDMDC can only obtain the copy of SK in clear if PDMDC is in an healthy
state, then, the solution further guarantees that only applications that fulfil DS’s
preferences can access to DS’s personal data.

Access to a Document Containing Some Personal Data

In order to control the access to personal data used in documents, PDMDC re-
quests DC to specify the preferences of each document that DC creates. After it
has been done, PDMDC stores, in its repository, a correspondence between each
document and the associated document’s preferences. PDMDC further gener-
ates a secret key SKdocument that it securely stores encrypted with its public
key. Another link is maintained between the document and the encrypted secret
key ENC(PDM − PubKeyDC, SKDocument). Then, similar mechanisms are
those described in the previous section are used to guarantee that personal data
can only be used in the document if the document’s preferences do not contra-
dict these data ’s preferences. Because of space limitation, we do not describe
these mechanisms here. If personal data have been added to the document,

44 G. Kounga and L. Chen

PDMDC encrypts the document with SKdocument and encrypts SKdocument

with PDM − PubKeyDC. This prevents any entity from using the document
and allows PDMDC to control its access and use.

4.5 Transmission of Personal Data to a Third Party

In the specific case where an application, at DC, wants to access the personal
data identified by d1 and d2 in order to send them to a TP TP1, PDMDC

intercepts the access and verifies that TP1 fulfills the preferences associated to
d1 and d2 and is able to properly manage personal data. If all the verifications are
successful, PDMDC generates the secret key SKTP1 and extends PDCDS with
the following fields: DisclosureDate, CurrentDC − ID, DestinationTP − ID,
ENC(SKTP1, John), ENC(SKTP1, Doe) and ENC(PDM − PubKeyTP1,
SKTP1). PDMDC then generates a hash of the extended PDCDS and requests
TPMDC to sign it with PrivAIKDC . PDMDC then adds the signed hash in
the extended PDCDS as an additional extension. The resulting PDCextended

DS

is then sent to PDMTP1. PDMDC also stores locally PDCextended
DS and adds

TP1 into the list of the principals to which it sent PDCDS . PDMDC further
sends PDCextended

DS to PDMDS. PDMDS verifies the authenticity of the received
PDCextended

DS and if it is authentic, it stores it as a proof that DC sent his
personal data items to TP1. After receiving PDCextended

DS , PDMTP1 verifies its
authenticity. If it is authentic, TP1 uses it as described in Sections 4.

In the case where an application wants to send to TP1 the document con-
taining d1 and d2, similar mechanisms as those previously described apply.

4.6 Enforcing Update of Preferences

DS may wish new preferences to be applied to the data items he disclosed in the
past. In order to guarantee that this update is enforced by all the entities which
received DS’s data, DS uses PDMDS to send PDMDC an update request. The
request specifies, among others: the preferences to be updated as well as the
new preferences to be applied. After having received it, PDMDC sends a copy
of this statement to all the PDMs to which it previously sent the data. This is
repeated by each PDM receiving the statement until the statement reaches the
last PDM in the communication chain. This last PDM then enforces the updated
preferences, as previously described, before sending to its predecessor within
the chain a digitally signed message confirming that the update statement was
received and enforced. Such a confirmation is cascaded until it reaches PDMDS .
A PDM only sends a confirmation message to its predecessor within the chain
after that PDM has received a confirmation from all the PDMs to which it sent
the data.

5 An Application of Our Solution

Let us consider the following situation. Alice, who is living in the United King-
dom, has a meeting with Bob, an investment advisor of her local bank, say

Enforcing Sticky Policies with TPM and Virtualization 45

Fig. 7. Example of integration of the proposed solution into an organisation’s infras-
tructure

Bank for short, in order to decide where to invest her savings. Bob advises Alice
to invest in a project proposed by InvestmentBank in France, which is a busi-
ness partner of Bank. Alice then contacts InvestmentBank via Bank, transmits
to InvestmentBank the required data and also indicates that she was advised
by someone of Bank. To do this, Alice discloses her data to Bank ((1)and (2)
in Figure 7); this process is handled by her PDM, which sends Bank a state-
ment specifying that the data required for the investment must only be sent to
InvestmentBank and that her advisor is Bob. Later, Bank ’s process managing
investments verifies that the components composing the access control architec-
ture are not tampered and, if it is the case, sends a request for the required data
to be sent to InvestmentBank (3).

Similar verifications are made by all the components that need to interact in
order to: evaluate the request, request the data to the storage components (4),
send these data in an extended PDC to the external interaction application (4
and 5), i.e., the interface communicating with TPs without disclosing information
about Bank ’s internal architecture. If InvestmentBank has a PDM fulfilling the
suitable requirements, the later application sends the PDC to that PDM (6).
Later, Alice can use her PDM to send an update statement to Bank specifying
that the data sent to InvestmentBank should not be used anymore. The update
statement is then transmitted to InvestmentBank ’s PDM which will enforce the
new preferences.

46 G. Kounga and L. Chen

In the architecture considered in our example, all components having to man-
age personal data are equipped with PDMs and all components are equipped
with TPMs3. This guarantees that personal data are only used by entities behav-
ing properly and able to manage them as specified by Alice. It also allows Alice
to verify whether Bank is technically equipped to guarantee the enforcement of
her preferences and to comply with data protection regulations and principles.

6 Conclusion

In this paper, we have defined a solution that provides an end-to-end enforcement
of sticky policies. Contrary to previously proposed solutions, it guarantees that
when data seat on another entity’s computer platform, the conditions on which
the data are accessed on the platform are continuously monitored to guarantee
that the data are only accessed as specified by data subjects’ preferences. This
has been achieved by using trusted platform module (TPM) and virtual machine
technologies. Virtualization makes it possible to isolate applications running on
a same computer platform. It therefore makes it possible to allow, on a same
platform, the applications which fulfil a data subject’s preferences to access that
data subject’s personal data while other applications’ cannot. TPMs are already
present in millions of devices. We use their capabilities to cryptographically
bind the access and use of a personal data item to the fulfillment of conditions
specified by the data subject to which the data relate. As TPMs are designed
to be tamper-resistant, the previous cryptographic binding cannot be unbound.
Hence, the data item cannot be used in other conditions than those defined by the
data subject. As TPMs are already embedded into many equipments composing
organisations’ information infrastructures, our solution can be used in realistic
organisational settings to allow individuals to evaluate whether organisations are
technically equipped to (1) manage their personal data as required and to (2)
comply with data protection regulations and principles.

References

1. UK Parliament: Data Protection Act 1998 (1998)
2. Karjoth, G., Schunter, M., Waidner, M.: Platform for Enterprise Privacy Practices:

Privacy-Enabled Management of Customer Data. In: Dingledine, R., Syverson, P.F.
(eds.) PET 2002. LNCS, vol. 2482, pp. 69–84. Springer, Heidelberg (2003)

3. Casassa Mont, M., Pearson, S., Bramhall, P.: Towards accountable management
of identity and privacy: Sticky policies and enforceable tracing services. In: DEXA
Workshops, pp. 377–382 (2003)

4. Tang, Q.: On using encryption techniques to enhance sticky policies enforcement.
Technical report, Enschede (2008)

5. Pearson, S., Casassa Mont, M., Kounga, G.: Enhancing accountability in the cloud
via sticky policies. In: STAVE (2011)

3 It is important to note that TPMs are already incorporated into many equipments
(such as servers[9]).

Enforcing Sticky Policies with TPM and Virtualization 47

6. Casassa Mont, M., Pearson, S., Bramhalll, P.: Towards Accountable Management
of Identity and Privacy: Sticky Policies and Enforceable Tracing Services. Technical
Report Marco Casassa Mont, Siani Pearson, Pete Bramhall (2003)

7. Zuo, Y., O’Keefe, T.: Post-release information privacy protection: A framework and
next-generation privacy-enhanced operating system. Information Systems Fron-
tiers 9(5), 451–467 (2007)

8. Bishop, M.: Computer Security: Art and Science. Addison–Wesley (2003)
9. Trusted Computing Group: Trusted Platform Module Specification Main page,

http://www.trustedcomputinggroup.org/resources/tpm_main_specification

10. Trusted Computing Group: Enterprise Security: Putting the TPM to Work,
http://www.trustedcomputinggroup.org/files/temp/4B52C159-1D09-3519-

AD2F881556C29076/TPM/Applications/Whitepaper.pdf

11. Karger, P.A.: Multi-level security requirements for hypervisors. In: ACSAC 2005:
Proceedings of the 21st Annual Computer Security Applications Conference, pp.
267–275. IEEE Computer Society, Washington, DC (2005)

12. Cabuk, S., Chen, L., Plaquin, D., Ryan, M.: Trusted Integrity Measurement and
Reporting for Virtualized Platforms. In: Chen, L., Yung, M. (eds.) INTRUST 2009.
LNCS, vol. 6163, pp. 180–196. Springer, Heidelberg (2010)

13. England, P., Loeser, J.: Para-Virtualized TPM Sharing. In: Lipp, P., Sadeghi, A.-
R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 119–132. Springer, Hei-
delberg (2008)

14. Sandhu, R.S., Zhang, X.: Peer-to-peer access control architecture using trusted
computing technology. In: SACMAT, pp. 147–158 (2005)

15. Han, W., Xu, M., Zhao, W., Li, G.: A trusted decentralized access control
framework for the client/server architecture. J. Network and Computer Applica-
tions 33(2), 76–83 (2010)

16. Housley, R., Polk, W., Ford, W., Solo, D.: Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. RFC 3280 (Proposed
Standard) (April 2002); Obsoleted by RFC 5280, updated by RFCs 4325, 4630

17. Smith, J., Nair, R.: The architecture of virtual machines. Computer 38(5), 32–38
(2005)

18. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: a virtual
machine-based platform for trusted computing. In: SOSP, pp. 193–206 (2003)

19. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS 2004:
Proceedings of the 11th ACM Conference on Computer and Communications Se-
curity, pp. 132–145. ACM, New York (2004)

20. Stumpf, F., Fuchs, A., Katzenbeisser, S., Eckert, C.: Improving the scalability of
platform attestation. In: STC 2008: Proceedings of the 3rd ACM Workshop on
Scalable Trusted Computing, pp. 1–10. ACM, New York (2008)

21. Zeilenga, K.: Lightweight Directory Access Protocol version 3 (LDAPv3): All Op-
erational Attributes. RFC 3673 (Proposed Standard) (December 2003)

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/files/temp/4B52C159-1D09-3519-AD2F881556C29076/TPM/Applications/Whitepaper.pdf
http://www.trustedcomputinggroup.org/files/temp/4B52C159-1D09-3519-AD2F881556C29076/TPM/Applications/Whitepaper.pdf

Mass Transit Ticketing with NFC Mobile Phones

Jan-Erik Ekberg and Sandeep Tamrakar

Nokia Research Center, Helsinki
{Jan-Erik.Ekberg,Sandeep.Tamrakar}@nokia.com

Abstract. Mass transport ticketing with mobile phones is already de-
ployed in many metropolitan areas, but current solutions and protocols
are not secure, and they are limited to one-time or fixed-time ticketing
in non-gated transport systems. The emergence of NFC-enabled phones
with trusted execution environments makes it possible to not only inte-
grate mobile phone ticketing with existing and future transport authority
ticket readers, but also to construct secure protocols for non-gated travel
eliminating many associated possibilities for ticketing fraud. This paper
presents an architecture and implementation for such a system.

1 Introduction

In mobile handsets, the Near-Field Communication (NFC) radio standards [13]
is by many seen as the user-friendly enabler for the implementation of payment,
ticketing, access control tokens and other services typically existing in the user’s
wallet and key ring. Information gathered from a survey [26] predicts that 400
million mobile subscribers will use mobile ticketing on their devices by 2013.
Such an uptake is not surprising considering the benefits of having a local “tick-
eting user interface” on the device. The interface can not only provide handy
information like ticket expiry time, account balance and real-time traffic infor-
mation but can also be used to purchase new tickets. Also, many people use
their mobile device while waiting for and during transport for communication,
browsing or reading. Thus the mobile phone is anyway present and ready to be
used when a ticketing activity is required.

All over the world, transport ticketing has for years been implemented with
wireless technologies, increasingly using the ISO / IEC 14443 [12] contact-less
card standard. Common references to such technologies include the Felica R©1 sys-
tem in Asia, the Oyster card2 e.g. in London, and protocols like MiFare3 devel-
oped by NXP semiconductors.

This paper presents a trial implementation of a ticketing architecture for mo-
bile phones that implements a new take on how to bind the ticketed identity
to the place and time when the journey begins and ends. With this feature we
enable deployment of complex fare and discount calculations, e.g. distance-based

1 Felicity Card - www.sony.net/Products/felica
2 https://oyster.tfl.gov.uk/oyster/entry.do
3 http://mifare.net

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 48–65, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.sony.net/Products/felica
https://oyster.tfl.gov.uk/oyster/entry.do
http://mifare.net

Mass Transit Ticketing with NFC Mobile Phones 49

ticket pricing. Earlier, this has been practical only in gated transport systems,
but not in systems with non-gated parts. Central to our approach is the use of
the trusted execution environment in the phone not only for securing digital sig-
nature generation but also for local protocol state enforcement. To meet the very
tight timing constraints for contact-less ticketing especially in gated transport,
we streamline all NFC interaction and revisit the ticketing credential, where we
leverage the message recovery property of RSA signatures not only to achieve
size-efficiency but also as a privacy-implementing primitive.

We begin in Section 2 by listing related work. Section 3 outlines processes
in ticketing systems and Section 4 lists functional and security requirements.
Our system architecture is introduced in Section 5. Section 6 outlines our tick-
eting credentials. Sections 7 and 8 present the ticketing protocols in gated and
non-gated systems. We discuss implementation in Section 9, and requirements
analysis in Section 10.

2 Related Work and Background Technologies

NFC ticketing [11]— a project by RFID Lab of the University of Rome “Sapienza”
provides a public transport NFC ticketing prototype for usability research. Their
system is implemented as a Java application, and provisions data over SMS.

A thesis work by Kooman [17] presents a cryptographic model for using NFC
enabled mobile phones for public transport payment. Strong privacy is achieved
by selective blinded attribute verification between the phone and a validating de-
vice. These protocols are not size-efficient, and no implementation was presented
in the thesis.

Since 2001, public transport ticketing using Short Message Service (SMS) has
been deployed in various cities around the world e.g. Helsinki, Prague and Rome.
Current systems are open to ticket copying attacks [20].

2.1 Trusted Hardware

For electronic ticketing, the default hardware element is the smart card, typi-
cally adhering to the ISO / IEC 7816 [16] interface primitives and to ISO / IEC
14443 [12] for the wireless interface. Smart card security confirms to the Glob-
alPlatform Card Specification standard [24], which defines key management and
provisioning. Applications for smart cards are developed with the the JavaCard
programming environment.

During the last decade, trusted execution environments (TEE)s have emerged
based on the general-purpose secure hardware. These have been incorporated
into mobile phones, and are widely deployed. Designs like Mobile Trusted Mod-
ules (MTM) [7], M-Shield [25] and ARM TrustZone [3] are available.

The user device TEE chosen for this work is the On-board Credentials (ObC)
architecture [18], deployed in all Nokia Symbian ∧3 phones to date. ObC uses
ARM TrustZone on a processor manufactured by Texas Instruments. ObC relies
on the underlying hardware to isolate credentials from the operating system.

50 J.-E. Ekberg and S. Tamrakar

Additionally, it provides a provisioning system and a byte-code interpreter with
an extensive cryptographic Application Programming Interface (API) for the
implementation of credential algorithms (ObC programs).

2.2 NFC

NFC is a wireless Radio Frequency Identification (RFID) technology standard-
ized in ISO / IEC 18092 [13] and ISO / IEC 21481 [14]. An industry consortium,
the NFC forum 4, provides compliance-testing and additional standards for NFC
use. NFC encompasses three different types (A, B and Felica) of radio communi-
cation, with theoretical speeds ranging from 106 to 424 kbps. Many NFC readers
readily available in Europe are limited to 106 kbps.

The lower layers of NFC include no communication security primitives. It is
also well known that NFC technology is susceptible to e.g. both eavesdropping
and man-in-the middle attacks [6], despite the fact that NFC is a short-range
radio technology. To date, some 20 phone models from different manufacturers
support NFC5. Only a handful of models embed a secure element or TEE that
can be used for securing a ticketing transaction.

3 On Transport Ticketing

In recent years, new approaches [22,4] to electronic transport ticketing has
emerged, stimulated by the ongoing mass deployment of EMV (EuroPay, Mas-
terCard and Visa) contact-less credit cards [9] in many countries. From the
perspective of the public transport authority, it has been identified that the cost
of fare collection, i.e. operating the ticketing system and collecting the money
from users is significant [19]. Thus, one option is to outsource this function to
e.g. credit card companies, telecom operators, or any other stake-holder that
is prepared to take on such a responsibility. The outsourcing option does not
however apply to fare calculation, i.e. determining the price of a given trip, since
it is intimately tied to the transport function itself.

In currently deployed non-gated ticketing systems, it is often hard to accu-
rately determine journey length or duration, since it is impractical to collect data
about the journey endpoint. When the end event cannot be collected, a typical
solution is to define so called transport zones and to assume that the user buys
an appropriate ticket for his travel under the threat of randomly applied ticket
inspection. These mechanisms are coarse-grained, and often difficult to resolve
for users traveling along unfamiliar routes. Another common shortcoming is that
the incompatibilities between the ticketing principles (zones, validity time, gated
vs. non-gated) and the deployed ticketing technologies of local transport within
a single metropolitan area (e.g. between underground, buses and local trains)
often makes combination ticketing difficult.

4 www.nfc-forum.org
5 http://en.wikipedia.org/wiki/Near_field_communication

www.nfc-forum.org
 http://en.wikipedia.org/wiki/Near_field_communication

Mass Transit Ticketing with NFC Mobile Phones 51

Our work further develops the approach taken with e.g. credit-card ticketing.
In this context, a transport user fundamentally is represented by a ticketing iden-
tity, or in credit card terminology by his Primary Account Number (PAN) [15].
The identity is presented to the transport authority at system entry (and exit),
where the PAN is bound to the time and location of those respective events. A
proper ticketing system also allows the ticket to be inspected during the journey
of the user.

We construct a system where the PAN can be securely bound to the place
and time of the ticketing “tap”, where the mobile device touches a gate or bus
stop touch point. If the resulting transaction evidence can be moved reliably to
a back-end computing system, then the fare calculation for a specific journey,
undertaken by a user / PAN is trivially achievable. We will need security-enabled
protocols, since the transport user has a clear incentive to cheat. We also need to
arrange for the transfer of transaction evidence to back-end systems in a manner
that is cost-effective not only in metro stations with tens of thousands of users
passing each day, but also at bus stops with, say only 10 people boarding a bus
every workday morning.

4 Requirements

Many important requirements for a transport system are functional. In gated
mass transport, rapid people throughput is a paramount consideration, and the
Smart Card Alliance sets the unofficial maximum transaction time to 300 ms per
gate entry [1]. This time constraint in practice eliminates the possibility of on-
line verification supported by a back-end. Since a tap-and-hold transaction, say
700ms, is significantly more difficult for the user, speedy tap transaction times are
also advantageous in a non-gated system. Additionally, in contemporary NFC
ticket readers, hardware acceleration support is often available only for RSA,
ruling out the use of more size-efficient cryptographic primitives like elliptic-
curve cryptography.

In non-gated systems, the tapped “terminals” are located e.g at bus stops,
train stations and the like. A user is required to tap a terminal prior to ve-
hicle entry and after he or she finishes the journey. For cost saving reasons,
such terminals shall not require electricity or back-end connectivity. Deploying
tamper-resistant processor chips with NFC antennas (contact-less smartcards)
for this purpose is one cost-efficient solution. Protocols and processes shall also
be designed to minimize operating and maintenance cost of such terminals.

The security requirements for public transport ticketing stem from counter-
ing fraud and maintaining user privacy. Mayes et. al. [21] provide a good topical
introduction to ticketing and fraud control. In terms of revenue loss, the main
system fraud are individuals that enter and exit the system without paying.
Thus, it is not surprising that the biggest reduction in public transport fraud
to date happened with the introduction of reliable gates and machine-readable
tickets or physical tokens, since this eliminates traveling without a ticket or with
a cheaper minimal distance ticket in the gated systems. A similar paradigm

52 J.-E. Ekberg and S. Tamrakar

shift has not yet occurred in the non-gated systems. We set our target to imple-
ment a ticketing system that enables distance-based fare calculation also for the
non-gated travel, and the main security requirements for such a system can be
formulated as:

R1. The identity of the traveler must be determined off-line and cryptographic
evidence must be produced during the transaction to provide non-repudiation.

R2. Eavesdropping and replay attacks shall not provide an attacker the possibil-
ity to impersonate another user.

R3. It shall not be possible to produce starting point (or ending point) evidence
without being present at that location at the given time. Users shall not be
able to tap in only when they see a ticket inspector.

R4. It shall not be possible to withhold evidence and hinder it from eventually
reaching the back-end fare calculation engine

R5. It shall not be feasible to confuse the ticketing system by replacing / adding
fake bus and train stop passive tapping terminals. These are placed in loca-
tions that cannot be assumed to be well guarded.

R6. Ticketing credentials shall be protected against modification. Since the iden-
tity is traveler-specific, credential migration needs to be controlled.

Additionally user privacy shall be maintained. In a ticketing system using a
radio channel (NFC), the main privacy threat is eavesdroppers performing device
tracking, to determine the movements of particular users. We assume that the
back-end systems adhere to standard privacy norms and legislation in terms of
handling user data, and back-end data privacy issues are not considered further
in this paper.

5 Architecture

In this section, we briefly present a generalized architecture for a PAN-based
ticket scheme as outlined in Figure 1. The transport authority operates the ve-
hicles and also provides an integrated network for its gated ticket readers. The
gated NFC readers are assumed to be connected to a back-end system. There-
fore, these readers can receive information like certificate revocation lists (CRL)s
which they refer to during user verification. All the information exchanged dur-
ing such verification is collected as transaction evidence and forwarded to a
back-end processing unit, e.g. a fare calculation engine. This database can e.g.
be maintained by the transport authority.

The transport authority is also responsible for distributing and maintaining
the terminals (i.e. smart cards) for non-gated travel. We assume that these smart
cards are physically and firmly attached to their location, and also that these
smart cards are tamper-resistant.

The accounting authority is responsible for fare collection from the users.
A transport authority can simultaneously be connected to several accounting
authorities. All users have a relationship with one accounting authority, in the
form of a prepaid or credit-based user account. Exactly how user invoices are

Mass Transit Ticketing with NFC Mobile Phones 53

Fig. 1. Overall architecture

cleared by the accounting system is not relevant here, although it will affect e.g.
the logic for black-listing users.

The accounting authority is also responsible for generating ticketing creden-
tials and provisioning secrets to the TEE in user devices. In our system, we use
the proprietary ObC provisioning system [18] for this activity, but e.g. Glob-
alPlatform compliant data and program provisioning [24] can also be used. The
cryptographic validation of transport evidence and user backlisting are also likely
to be the reponsibility of the accounting function.

Although the distinction between accounting authority and transport author-
ity includes security-relevant interactions, e.g. related to user device blacklisting
and auditing, these are not further explored in this paper. We use the term
“back-end” as a collective term for all back-end operations.

6 Ticketing Credentials

It is typical not to use X.509 certificates in ticketing and payment systems, e.g.
EMV [8] specifies its own size-optimized identity certificate. We go one step
further in the minimization effort, and exploit the message recovery property in
RSA signatures. In this way, the user identity and the public key of the user
device can be extracted from the signature itself, thereby avoiding the need to
transfer the device public key separately. Additionally we add a flavor of privacy
protection to the construction.

The certificate outline is shown in Figure 2. A standard RSA signature consists
of a private key exponentiation of an algorithm identifier and a 20 byte hash
(SHA1) as payload, padded according to PKCS#1.5. In our ticketing credetials,
we concatenate as much certificate payload to the hash as we can (inside the
RSA exponentiation) to minimize the the overall certificate length. The shortest
possible PKCS#1.5 padding is 11 bytes, so e.g. for a 1024 bit key we can save
around 90 bytes with this approach. Like in the EMV standard, the certificate
carries only a bare minimum of attributes. We include only the expiry time,
the public key modulus of the client RSA key, and the user’s identity, i.e. his
primary account number (PAN) [15]. A truncated SHA-256 hash is put first so

54 J.-E. Ekberg and S. Tamrakar

that it always fits inside the RSA exponentiation. The public key exponent is
not included and is fixed at 0x10001, which is compatible with both TCG and
EMV standards.

To achieve address privacy, we add an additional twist. In case all certified
data does not fit into the private key exponentiation of the certificate authority
(CA) signature, we use the hash of the certificate data as a symmetric encryption
key, and encrypt any overflowing bytes with AES in counter mode. With this
packaging, the back-end can produce, for the user, a set of (short lived) certifi-
cates for a single RSA key such that their expiry times are e.g. set one second
apart. Without knowledge of the CA public key, the certificates will reveal no
plaintext data, and two certificates from the same set cannot be linked.

Fig. 2. Certificate with message recovery

This approach requires that the ticketing system treats the CA “public” key
for user credentails as a secret. This is possible, since it will only be distributed
to gated ticket terminals and ticket inspector devices. In both of these device
categories, the CA key can with a high likelihood be remotely provisioned in a
secure manner and locally be treated as a secret.

In our system, we use a CA key of 1408 bits, which is the current estimate for
the minimum RSA key length accepted by EMV standards from 2013 onwards.
The short-lived ticketing signature keys are 1024 bits to keep the certificate size
small. With these parameters and assuming a PAN number length of 16 digits
(typical credit card number), we end up with a certificate size of 176 bytes.

7 Gated Ticketing Protocol

The use of the ticketing credential is visible in the ticketing protocol at a gated
system entry or exit. Figure 3 shows this very standard procedure for identity
verification. As preconditions we assume that

1. The phone generates an RSA key pair, a transport key, inside its TEE. The
phone sends the public component to the back-end, which generates a set,
say 50, short-term transport “ticketing credentials” (with e.g. a one-week
expiry time) for that public key component and the user’s PAN.

2. The user’s debit / credit rating is in order, and the device / user has not
been blacklisted by the back-end since the credential was issued. The gated
readers are updated with the latest CRLs.

Mass Transit Ticketing with NFC Mobile Phones 55

3. For the transaction, the user’s device always selects a ticketing credential
that has not been presented to any ticket reader before.

4. The gated reader, being connected to the back-end, will eventually send any
transaction evidence with timestamps and other context information to the
backend for further processing and fare calculation.

Fig. 3. Gated tap protocol

The operation proceeds as follows. The user touches the gate. Within the NFC
transaction, the readerA sends a challenge to the deviceX . The challenge contains
at least a nonce and a reader / station Id. The client immediately responds with
the selected ticketing credential, and in parallel or subsequently signs the challenge
with the current transport key. Once computed the signature is then returned to
the reader. Since the ticket reader knows the CA public key, it can validate the
credential.With the recovereddevice public key, in can further verify the signature
on the challenge. On successful verification the gate is opened.

With an optional handshake between the user device and the back-end servers
the user device can receive a ticket inspection token signed by the back-end, in
return for the uploaded transaction evidence.

8 Non-gated Ticketing

The non-gated PAN-based ticketing variant uses the same basic building blocks
as gated ticketing, i.e. signatures and certificates. Minimizing NFC transaction
time is still of importance, thus we will not add the cost of mutual authenti-
cation over NFC. The off-line communication overhead for such authentication
is at least two times the public key modulus size (i.e. optimized certificate +
signature) which adds an extra 300 ms, see Section 9.

Compared to the gated protocol variant, the main new property that we
add for non-gated operation is a device-specific counter that can be attested
by a signature. Such a primitive is trivially implementable with ObC or an
embedded secure element with JavaCardTM. Even with TPMv1.2, which is not
programmable, such a primitive can be constructed by attesting to a repeatedly
extended PCR [23]. We believe this section will show the usefulness of this simple
TEE construction.

56 J.-E. Ekberg and S. Tamrakar

8.1 TEE Operation

Figure 4 summarizes the TEE operation. The sign challenge is the basic signature
primitive, used in gated ticketing. This operation signs an incoming challenge
with the transport key x. All signatures generated with x contain a four-byte
prefix that identifies the signature context, i.e. the invoked TEE command.

Fig. 4. TEE operations

The sign and increment is the augmented signature primitive, that signs a
challenge, but also includes a counter value in the signature. The command
primitive updates the monotonically increasing counter at every use. The TEE
program state includes a counter window, i.e. the amount of sign and incre-
ment signatures are limited by the current size of that window. Only an external
release, implemented by the release commitment command and secured by signa-
ture key k2, can open up that window and allow more counter-bound signatures
to be made. This will be one incentive for user devices to report ticket evidence
in non-gated operation. We use a symmetric, AES-based MAC for the signature
with k2, since ObC-enabled devices on the market do not support public-key
RSA operations inside the TEE.

The read card state and counter commitment is used for ticket inspection and
for retrieving a counter value commitment, Sigk(id, ctr). This attribute uses a
symmetric signature primitive with a key k that is shared between the device
and the back-end and possibly ticket inspectors. Key k can e.g. be derived from
a master secret with a key diversification algorithm: k = KDIV (master, id).
Using the d input parameter, a commitment for the current, or any past counter
value can be requested. The difference between the current counter value and the
counter indicated by the commitment value is visible in an additional asymmetric
signature used with ticket inspection. That signature also binds the number of
counter values used, but not yet released by a back-end server. For the device’s

Mass Transit Ticketing with NFC Mobile Phones 57

benefit the command also returns the current counter value and the last value
acknowledged by the back-end server.

8.2 Non-gated Protocol

The non-gated ticketing operation is presented in Figure 5. The user device X
taps a terminal R (labeled “Bus Stop Card” for clarity), and then performs
an internal operation eventually followed by a reporting activity towards the
accounting authority. We will look at these different stages in order:

In phase 0, which can be done inside the device at any time preparing for the
next ticketing event, the device X invokes the read card state and counter com-
mitment command with d = 0, i.e. it retrieves the commitment Sigk(idX , ctrX)
for its latest counter value. The rest of the data returned by the TEE command
is not used at this point.

Fig. 5. Non-gated tap protocol

The tap on the terminal R, i.e. phase 1, is more or less exactly the gated
protocol, run by device X as the challenger. As a result, the terminal R will
return its device certificate T ickCertR to X as well as a signature with counter
binding for the terminal’s counter ctrR over the user device challenge which was
its counter commitment Sigk(idX , ctrX). Note that the terminal R also adds to
the signed response some auxiliary data A∗, which we will discuss later. For now
it suffices to note that A∗ will have to be transported along with the terminal
signature SigR towards the back-end in order for that signature to be verifiable.

The TEE logic in terminals R can be equivalent to the one in user devices X .
However, for this protocol, the counter limit in terminals is not really used, and
neither is the read operation, so in essence only the sign and increment operation
is necessary on terminals B.

58 J.-E. Ekberg and S. Tamrakar

As Sigk(idX , ctrX) cannot be resolved by entities without knowledge of k, and
since ctrX is always a fresh value, we can deduce that the user deviceX maintains
unlinkability when transmitting Sigk(idX , ctrX). On the contrary, terminal R
has no privacy requirement, thus T ickCertR, which is of the format described
in Section 6, can be signed by a CA key whose public component is truly public,
e.g. known by device X . Based on R’s ticketing certificate and signature, X can
determine the identity and validity of R - an important protection against a
specific denial-of-service attack (requirement R5). As we can adjust the lengths
of A, A∗ and ctrR to be roughly of the same size as the challenge in the gated
operation, we will see that the tap time is composed of the transmission cost
(250ms) and the speed of the RSA exponentiation in a legacy smart card which
unfortunately can be 400ms or higher [2,22].

In phase 2, deviceX re-invokes its own TEE, and issues the sign and increment
command, with the phase 1 protocol response received from R as the challenge.
This operation binds the current identity and counter state of X to the identity
and counter state of R in a non-repudiable way.

We assume that the mobile phonesX have back-end connectivity, and soon af-
ter phase 2 is completed, device X in phase 3 takes all data available from phases
0-2 and sends these to a back-end over a server-authenticated TLS channel. In
addition, the device will send its estimate of the time that did pass between phase
1, and the first message of phase 3. We do not assume a secure clock inside the
TEE, thus this value is a best-effort service augmented by the absolute and ver-
ifiable time when the back-end server receives the phase 3 message. The server
can identify the parties X and R present in the transaction, and validates all
data related to the transaction, including the fact that the counter values ctrX
in commitment Sigk(idX , ctrX) and Sigx(. . ., ctrX) match. Of special interest
for further auditing by the back-end will be the respective identities, counters
and estimated transaction time.

As a response, the back-end server will return the data for a release com-
mitment in X , typically for the used counter value ctrX . The back-end will also
return some information to X for ticket inspection. With respect to the evidence
collected, a back-end auditing function will execute a process for dealing with
“lost” counter values, i.e. counter values of X that are never reported back to
the system.

We see that if X consistently suppresses the phase 3, transaction will even-
tually cause the TEE to “lock up” due to window-size exhaustion. This is the
main enforcement for reporting evidence. Nevertheless, we did not want to put
the immediate availability of the back-end communication channel from X in
the critical path for ticket inspection and neither did we want to only rely on
local window enforcement to suppress last-minute tap reporting. We return to
these issues in the next two subsections.

8.3 Non-gated Ticket Inspection

In a PAN-based system, ticket inspection takes a different role than it typically
has today. What the inspector will determine is that the device has tapped

Mass Transit Ticketing with NFC Mobile Phones 59

on a terminal R that is consistent (in time and place) with the ongoing user
journey. By default, not much can be determined about the final destination of
the transport user, if that information is not provided as an add-on commitment
by the user’s device X . Such information should not be necessary, though.

The default inspection protocol is outlined in Figure 6, and relies on the
inspection data tickB. In essence, tickB is a statement, signed by the back-end,
that includes the counter commitment for X , i.e. Sigk(idX , ctrX), as well as
auxiliary information containing e.g. the estimated time of the transaction and
the tap location (identity of terminal R). The ticket validation device V will
challenge the device X . The difference between the current counter value and
the counter value at the time of the tap is represented as d. Typically this value is
1, if we validate the last tap. The device invokes the read card state and counter
commitment TEE command for that d, and returns the signed response Sigx to
the validator along with T ickCertX and the values d and ctr − ack, since they
are required for signature validation. From this information the validator device
can determine that Sigk(idX , ctrX) has been emitted from this specific device
X , and it can hence trust the time and location information present in tickB
and use those values to determine whether the user being present in this vehicle
is consistent with the provided evidence.

Fig. 6. Ticket inspection

Ticket inspection in the default scenario is mostly resistant against device
tracking. The commitment will be visible, thus an eavesdropped message ex-
change during the tap can be matched with the exchange during inspection.
Also the difference between the current counter value and the ticketed counter
value (d), as well as the available counter window in X are visible, however the
resolution of these values are too low to be useful for tracking. Ticket inspection
can also be conducted before X has contacted the back-end. This is described
in Appendix A.

8.4 Transaction Evidence Feedback

To identify devices X whose TEE has been broken (especially the counter win-
dow feature), and to provide a way to generally audit non-reporting devices,
the stand-alone smart cards terminals R collect a log of past transactions, con-
taining terminal R’s counter value at the time of the transaction (4 bytes), the

60 J.-E. Ekberg and S. Tamrakar

challenge from a device X (20 bytes) and the number of times this record has
been reported (1B). E.g. 100 KB of card storage can accommodate a ring buffer
of 4000 such records. These logs are assumed to be available for an evidence
collector, e.g. ticket validation devices, but the protocol for that information re-
trieval is not considered here. However, for each ticketing tap, the card will at
random select several (at least 2) of these past transactions into a tuple set A∗
and bind that data to the return message signature, forcing the tapping device
to convey A∗, along with its own evidence A, back to the back-end. If the length
of A∗ is two records, then in normal (non-attacked) operation, the back-end will
typically receive each tap challenge three times even without explicit evidence
collection from terminals R.

The challenge commitments Sigk(idX , ctrX) of all participating devices can
be calculated a-priori by the back-end server, since it knows the key k and the
last used counter value. If such future commitment values are put in a database,
the back-end can resolve identities from the A∗ commitments even if the device
X that generated a tap does not immediately report it. The main benefit of this
system is to catch devices that repeatedly use the same non-reported commit-
ment as well as devices where the counter window is broken, thereby allowing
them to forward the counter and related commitments without being forced to
report any evidence to the back-end.

As there is no authentication of the user device X that touches R, and since
terminal R has no notion of time, the event log of the card is erasable by re-
peatedly performing dummy tap operations. Still, for e.g. 4000 records and a
transaction time of 300-600ms, a card history erasure takes a full 20-40 minutes
to complete. So even though the card event log theoretically is erasable, we claim
that the feedback system motivates its existence in terms of being a practical
deterrent mechanism against the active fraudster.

9 Implementation and Measurements

This paper reports on ongoing work for building a ticketing system for trialing
the presented concepts in a real environment. At the time of writing, the gated
protocol implementation is fully functional. Our terminal (smart card) imple-
mentation is also ready, but for non-gated operation our phone client is still
under development. Thus, non-gated measurements are done between a PC and
the smart card, whereas all other values are measured between a Symbian phone
and its respective counterparts.

We have implemented the ticketing application on a Nokia C7 phone, which
includes necessary hardware and software support for both the TEE and NFC
capabilities. The terminal is a NXP SmartMX card, produced in 2009. The
TEE application for the terminal is written in JavaCard 2.2.1, and the one for
the phone in ObC bytecode. The NFC channel is operating at 106 kbps. Our
reference terminal/reader is a Linux PC, running Ubuntu Maverick with an NFC
reader (ACR 122U) connected to it. The open-source project libnfc provides
the Linux NFC stack, whereas a “gate application” controls the protocol flow.

Mass Transit Ticketing with NFC Mobile Phones 61

In gated operation the NFC communication runs in peer-to-peer mode [10],
whereas in non-gated the phone operates as a card reader. Back-end reference
servers, e.g. for transaction evidence collection and certificate provisioning, are
traditional LAMP setups, but those interfaces are not time-critical and therefore
not measured.

Table 1. Time taken for each ticketing protocol execution

Protocol Target Message 1 NFC Message 2 Process 1 Message 3 Process 2 Total
discovery Hand Over

Gated 36 ms 24 ms 18 ms 94 ms [∼60 ms] 74 ms 10 ms 256 ms
Non-gated 36 ms 14 ms [18 ms] ∼ 50 ms ≥ 297 ms ∼ 102 ms — ∼ 499 ms
Ticket Inspec-
tion

36 ms 14 ms 18 ms 290 ms 20 ms — — 378 ms

Table 1 presents the time taken by different events in each NFC transaction to
complete. Messages 1, 2 and 3 represent PDUs that are exchanged in each pro-
tocol. For instance, in the gated protocol these represent CHALL, T ickCertx
and Sigx, respectively. Similarly Process 1 and 2 represent the TEE crypto-
graphic operations. For some protocols, the TEE can be consulted in parallel
with transmission which eliminates those timings from the critical path in the
protocol.

The main insight from the measurements is that for now, the TEE invocation
cost (60-70 ms in ObC) in legacy devices is insignificant compared to the cost
caused by very poor NFC throughput (only around 1 byte/ms).

10 Requirements Analysis

We are likely to fulfill the main functional arguments. For gated transactions we
already know that the implementation meets the 300ms transaction time goal.
The non-gated protocol shows that we can implement passive terminals with
contact-less smart card technology, and we believe that the transaction time for
tapping the terminals can be kept acceptable.

For security, the isolation of credential secrets and all operations on them,
i.e. the RSA private key, its use as well as counter management is for user
devices X guaranteed by the TEE and the ObC, as is outlined in [18], and for
terminals by the smart cards which are integrated components with tamper-
protection. The same reasoning holds for the confidentiality and integrity of
credential data provisioning, say for the secret k. In ObC this is guaranteed by
its own provisioning protocol [18], and for smart cards the use GlobalPlatform
protocols [24] ascertain the same properties.

The security requirements are met as follows: The identity of the traveler can
at any time be proven based on a signature-based challenge-response protocol
and a ticketing credential for the used key. This can be done off-line (R1). Imper-
sonation is not possible due to the interactiveness of all protocols involving the

62 J.-E. Ekberg and S. Tamrakar

user device (R2). In the current implementation the ticketing identity is bound
to the TEE and non-migratable. The ticketing credentials are signed by the CA,
thus their integrity is assured (R6).

We acknowledge the potential cryptographic danger of using PKCS#1.5
padded RSA signatures with recovery for our certificates[5]. We still chose the
approach, since we need to target both privacy and size requirements. With more
bytes to spare in our protocols, our preferred solution is to use that additional
transmission budget for mutual authentication, which can solve the privacy is-
sue more reliably than by applying a safer (and bigger) signature primitive with
message recovery.

The tap location evidence is bound in time by the counter of terminal R. For
very remote locations with little traffic, an interactive relay attack to the termi-
nal may be successful. Not reporting an executed tap is very likely to be caught
by auditing based on the terminal feedback channel A∗ through other devices.
(R3). The TEE will only cooperate within a limited window if evidence is with-
held, thereby suppressing the release commitments from the backend (R4). The
terminals are authenticated by the user devices tapping them, so impersonation
attacks on terminals is not feasible (R5).

For privacy, our user-device to back-end connections are run over server-
authenticated TLS. For the NFC transactions, the client is given many “anonymi-
zed” certificates that are valid simultaneously. We also assume that the system
is set up with two CAs, one for certifying users’ devices, which is kept secret as
outlined in Section 6, and a public CA key used for certifying terminal cards.
With these preconditions, if the client devices vary the certificates they use, an
eavesdropper cannot bind the NFC ticketing transactions to any given PAN or
user — there is no plaintext data visible in the certificate nor in the challenge -
response protocols. The Nokia C7 phone that we use also randomizes the NFC
radio identity, eliminating the address tracking threat also on lower protocols
levels. Also ticket inspection, in the presence of tickB, will reveal no user data
on the NFC radio.

11 Future Work and Conclusions

This paper provides a protocol framework for combining gated and non-gated
ticketing into one coherent system. Some parts of the architecture are already
implemented, and we are working on the rest of the system to get it ready for
trialing. Especially the non-gated protocols leverage the TEE present in mobile
phones to securely bind the ticket system state of the phone to the one present in
the terminal. In combination with the TEE-enforced transaction window limit we
can reliably use the phone as a reporting channel. To our knowledge, we are also
the first to report on a RSA-based system that deploys full identity verification
(with certificate and signature) for NFC ticketing within 300ms using keys of
acceptable length. Our system additionally provides protection against device
tracking, also a first in this context.

Mass Transit Ticketing with NFC Mobile Phones 63

References

1. Smart Card Alliance. Transit and contactless financial payments: New oppor-
tunities for collaboration and convergence. A Smart Card Alliance Transporta-
tion Council White Paper (October 2006), http://www.smartcardalliance.

org/resources/lib/Transit Retail Pmt Report.pdf (accessed: August 2011)
2. Anderson, R., Bond, M., Choudary, O., Murdoch, S.J., Stajano, F.: Might Financial

Cryptography Kill Financial Innovation? – The Curious Case of EMV. In: Danezis,
G. (ed.) FC 2011. LNCS, vol. 7035, pp. 220–234. Springer, Heidelberg (2012)

3. ARM. Technical reference manual: Arm 1176jzf-s (trustzone-enabled processor),
http://www.arm.com/pdfs/DDI0301D_arm1176jzfs_r0p2_trm.pdf

4. Brakewood, C.E.: Contactless prepaid and bankcards in transit fare collec-
tion systems. Master’s thesis, Massachusetts Institute of Technology (2010),
http://hdl.handle.net/1721.1/60796

5. Coron, J.-S., Naccache, D., Stern, J.: On the Security of RSA Padding. In: Wiener,
M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 1–18. Springer, Heidelberg (1999)

6. de Koning Gans, G., Hoepman, J.-H., Garcia, F.: A Practical Attack on the MI-
FARE Classic. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 267–282. Springer, Heidelberg (2008), 10.1007/978-3-540-85893-5 20

7. Ekberg, J.-E., Kylanpaa, M.: Mobile trusted module. Technical Report NRC-TR-
2007-015, Nokia Research Center (November 2007),
http://research.nokia.com/files/NRCTR2007015.pdf

8. EMV. Integrated Circuit Card Specifications for Payment System. Version 4.2,
EMVCo (2008)

9. EMV. Contactless Specifications for Payment System. Version 2.1, EMVCo (2011)
10. NFC Forum. Logical Link Control Protocol. NFCForum-TS-LLCP 1.0, Technical

Specification (2009)
11. Ghiron, S.L., Sposato, S., Medaglia, C.M., Moroni, A.: Nfc ticketing: A prototype

and usability test of an nfc-based virtual ticketing application. In: First Interna-
tional Workshop on Near Field Communication, NFC 2009, pp. 45–50 (February
2009)

12. ISO/IEC 14443. Identification cards – Contactless integrated circuit cards – Prox-
imity cards. ISO, Geneva, Switzerland (2008)

13. ISO/IEC 18092:2004. Information technology – Telecommunications and informa-
tion exchange between systems – Near Field Communication – Interface and Pro-
tocol (NFCIP-1), 1st edn., ISO, Geneva, Switzerland (2004)

14. ISO/IEC 21481:2005. Information technology – Telecommunications and informa-
tion exchange between systems – Near Field Communication Interface and Protocol
-2 (NFCIP-2), 1st edn., Geneva (2005)

15. ISO/IEC 7812-1:2006. Identification Cards - Idnetification of issuers - Part 1: Num-
bering system, 3rd edn., ISO, Geneva (2006)

16. ISO/IEC 7816-4:2005. Identification cards - Integrated circuit cards - Part 4: Orga-
nization, security and commands for interchange, 2nd edn., ISO, Geneva, Switzer-
land (2005)

17. KooMan, F.: Using mobile phones for public transport payment. Master’s thesis,
Radboud University Nijmegen (2009)

18. Kostiainen, K., Ekberg, J.-E., Asokan, N., Rantala, A.: On-board credentials with
open provisioning. In: ASIACCS 2009: Proceedings of the 4th International Sym-
posium on Information, Computer, and Communications Security, pp. 104–115.
ACM, New York (2009)

http://www.smartcardalliance.org/resources/lib/Transit_Retail_Pmt_Report.pdf
http://www.smartcardalliance.org/resources/lib/Transit_Retail_Pmt_Report.pdf
http://www.arm.com/pdfs/DDI0301D_arm1176jzfs_r0p2_trm.pdf
http://hdl.handle.net/1721.1/60796
http://research.nokia.com/files/NRCTR2007015.pdf

64 J.-E. Ekberg and S. Tamrakar

19. Lau, P.S.C.: Developing a contactless bankcard fare engine for transport
for london. Master’s thesis, Massachusetts Institute of Technology (2009),
http://hdl.handle.net/1721.1/55337

20. Luptak, P.: Public transport sms ticket hacking. Presented in Hacking at Random
(2009), https://har2009.org/program/events/89.en.html

21. Mayes, K.E., Markantonakis, K., Hancke, G.: Transport ticketing security and
fraud controls. Information Security Technical Report 14(2), 87–95 (2009); Smart
Card Applications and Security

22. Mehta, S.: Analysis of future ticketing scenarios for transport for lon-
don. Master’s thesis, Massachusetts Institute of Technology (June 2006),
http://hdl.handle.net/1721.1/34592

23. Parno, P., Lorch, J., Douceur, J., Mickens, J., McCune, J.: Memoir: Practical state
continuity for protected modules. In: IEEE Symposium on Research in Security
and Privacy (2011)

24. Global platform. Globalplatform card specification v2.2.1 (2011),
http://www.globalplatform.org/specificationscard.asp

25. Srage, J., Azema, J.: M-Shield mobile security technology. TI White paper (2005),
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf

26. Wilcox, H.: Mobile ticketing: Transport, sport, entertainment event 2008-2013.
Technical report, Juniper Research (October 2008),
http://www.juniperresearch.com/reports.php?id=155 (accessed: July 2011)

Appendix A: Ticket Inspection w.o. Back-End
Confirmation

If the phase 3 of the ticketing protocol has not yet been conducted by device X ,
ticket inspection can be done based on the complete tap transaction evidence
and an additional device identification signature as shown in Figure 7. For non-
gated transactions this amounts to 600-700 bytes, and will take around 1s to
transfer over NFC. The validation device will not be able to reliably determine
the tap time, so in this sense the protocol is weaker than the default validation.
However, if the user consistently uses old tap evidence, the inspection transaction
is enough to catch him. Even as the validation device may not have an exact
time for the tap, it can have a list of terminal counters from e.g. a day back,
since the back-end will get this information and can periodically distribute it
to validation devices. Since the terminal R counter values will be visible in
this validation protocol option, also the counters of legitimately tapping users
traveling on a given route (e.g. in the same bus) will provide current counter
ranges for the bus stop cards relevant for this vehicle. Furthermore, the ticket
inspection devices can also be assumed to eventually report their validation
evidence back to the back-end, which has more accurate terminal R counter vs
time information. In combination, all of these mechanisms makes it very hard
for an active fraudster to not be caught by ticket inspection, espcially as his
TEE identity will be unconditionally mapped to the inspection.

A privacy drawback of the ticket inspection without back-end confirmation is
that it exposes the exact counter values of device X to an eavesdropper. Those
values may be enough to track a single user.

http://hdl.handle.net/1721.1/55337
https://har2009.org/program/events/89.en.html
http://hdl.handle.net/1721.1/34592
http://www.globalplatform.org/specificationscard.asp
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://www.juniperresearch.com/reports.php?id=155

Mass Transit Ticketing with NFC Mobile Phones 65

Fig. 7. Ticket inspection before phase 3

Appendix B: Back-End Data Auditing

In our ticketing system, the taps that are received either for gated or non-gated
travel can be collected and indexed for a given user PAN. The taps form a series
of waypoints in place and time for the fare calculation system to determine the
applicable user charges. The system allowes charging based on fixed monthly,
regionalized fees, hourly fees or any other schemes in use today. The main ad-
vantage of the approach is however that it does open up the possibility for much
more flexible charging options where the user is charged with much finer granu-
larity than today, e.g. based on travelled distance, time-of-day, volume discounts
etc.

It is also relevant to perform some data mining on the received data, to identify
fraud attempts and anomalies of various kinds. The input data is structurally
simple - terminals R and gates represent locations, for gates the transaction time
for each entry or exit of devices X is trivially logged, in non-gated operation, the
monotonic counter value of the terminals R is a representation of time. The back-
end receives time estimates for those values from devices X , and a hard bound
for the time, based on the time of reporting. Thus, for each counter increment in
R a statistically accurate mapping can be made for most terminals R, even in the
absence of some reported evidence. Combined with the identification provided by
the commitments returned in the A∗ data elements, the back-end server should
be able to patch together a fairly accurate picture of who tapped what and when,
and evidence for all of these events should eventually flow back to the back-end.
Based on the data, information about fraud attempts as well as malfunctioning
or non-reporting devices can be mined from the data. With this information
the appropriate user can be notified, and if necessary, extra invoicing, device
black-listing or even legal penalties can be applied.

We believe that both the fare calculation and security auditing processes are
good research problems in their own right, and constitute excellent further work
when the system is deployed in a live test or field trial.

Anonymous Ticketing

for NFC-Enabled Mobile Phones

David Derler, Klaus Potzmader, Johannes Winter, and Kurt Dietrich

Institute for Applied Information Processing and Communications
Graz University of Technology

Inffeldgasse 16a, 8010 Graz, Austria
{dderler,klaus.potzmader}@student.tugraz.at,

{johannes.winter,kurt.dietrich}@iaik.tugraz.at

Abstract. Modern smart-phones are equipped with various interfaces
such as NFC, allowing a versatile use of the device for many different
applications. However, every transaction of the phone especially via its
NFC interface can be recorded and stored for further analysis, bearing
a threat to the privacy of the device and its user. In this paper, we
propose and analyze the efficiency of a mobile ticketing system that is
designed for privacy protection. In our investigation, we lay focus on
the specific algorithms which are based on selective disclosure protocols
and Brands’ one-time show credential system. Our proof-of-concept pro-
totype includes client- and terminal side implementations for detailed
analysis. Moreover, we propose algorithm improvements to increase the
performance and efficiency of the NFC transactions on the client side in
our system.

1 Introduction

The broad availability of NFC (Near-Field-Communication)-capable mobile de-
vices is an essential enabler for contact-less applications. Different applications
have been developed and deployed taking advantage of this new technology, e.g.
mobile payment, mobile ticketing. Although all these applications allow the user
to ease his life, they pose a threat to its privacy. For instance, having your tickets
for public transport ready on your mobile enables you to easily use the tickets
without fiddling with ticket vending machines or old-fashioned paper tickets.
However, the actual use of the electronic ticket may enable operators to track
the owner of the ticket while passing checkpoints, entering a train or verifying
the ticket by a conductor. Combing all these checkpoints in combination with
information about the time allows to reproduce the daily route of an individual.
The use of mobile-phones and Near Field Communication further pushes this
threat of mobile ticketing as modern devices have permanent Internet access al-
lowing operators of readily available services much insight into their customers
and their behavior. Consequently, privacy-preserving methods are required in
order to use the advantages of easing one’s life without being a threat to one’s
privacy.

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 66–83, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Anonymous Ticketing for NFC-Enabled Mobile Phones 67

Modern smart-phones do not only own a rich set of interfaces such as NFC, but
are are also equipped with security enhancing features like Secure elements or the
ARMs TrustZone CPU Extension [1]. Such security features are a requirement
for protecting sensitive data from the mobile’s owner as well as from any other
adversary trying to get access to the sensitive information.

Hence, the question arises how these security features can be used in electronic
ticketing scenarios and further, how can they be used in a way that service op-
erators may not link a customer to a certain ticket, whilst still being able to
ensure that the ticket is valid. In addition, the identity of the ticket owner has
to remain anonymous. Unfortunately, most of the existing NFC enabled appli-
cations completely neglect privacy protection. For this reason, we investigated
the requirements for a privacy protecting mobile ticketing application. In this
article, a DSA-based protocol is illustrated, and pros and cons regarding its im-
plementation on devices with limited computational power are discussed. As a
result, detailed timing measurements are presented.

1.1 Related Work

The first approach for anonymity protection based on zero-knowledge proofs
was introduced by Chaum [8], which has been extended and adapted multiple
times since. Brands [4] and Camenisch and Lysyanskaya [7] proposed schemes
for private credential protocols, of which we use a version of Brands’ DSA-based
private credential protocol as summarized in [11].

Bichsel [2] implemented a prototype using the K-show credential protocol by
Camenisch et al. [6], resulting in computation times of about 9 minutes for issuing
and 7 minutes for showing credentials. Tews and Jacobs [22] analyzed the perfor-
mance of the RSA-based Brands protocols on Java Cards and concluded that they
perform rather badly and that elliptic curve cryptographywould not improve per-
formance due to the crypto coprocessor lacking support for point additions. The
runtime mentioned for a verification session with four attributes was about 9 sec-
onds. Bichsel et al.[3] implemented a prototype using the Camenisch and Lysyan-
skaya scheme on a standard JavaCard with regard to fully exploiting the crypto
coprocessor and transientmemory. They stated that those protocols seemunsuited
for a JavaCard implementation due to the long execution time. Nevertheless, par-
tial solutions to the performance problematics and thus delivering vital insight on
how to speed up modular arithmetic on JavaCards were offered. Dietrich intro-
duced a Direct Anonymous Attestation [5] based scheme using a similar approach
with regard to utilizing the secure element for computing and storing sensitive
parts of the operation [9]. Madlmayr et al. [18] implemented a mobile ticketing
system using public key cryptography and utilizing near field communication to
issue and verify tickets, although not in an anonymous manner.

1.2 Our Contribution

In this paper, we analyze the efficiency of selective disclosure protocols on modern
mobile phones with respect to available security components i.e. secure elements

68 D. Derler et al.

and ARM TrustZone. As the efficiency of such protocols is crucial for their accep-
tance by users, we focus on optimized implementations of the issue- and showing-
protocol. High efficiency is important as the single user will hardly accept a long
waiting time when showing his electronic ticket. Moreover, the efficiency of the
used algorithms and the overall system must allow a certain number of clients to
pass a checkpoint in order to provide sufficient handling of larger groups of ticket
holders.

In detail, we analyze the efficiency of a mobile ticketing application based on
Brands’ private credential protocol as defined in [11]. For our investigations. we
used a NFC-enabled Nokia 6131 mobile phone that provides a secure computing
environment and a NFC interface in order to gain measurement results. In our
e-ticketing application, the tickets are stored on the device’s security component
rather than on the back-end service. Moreover, we propose optimizations of
the protocol for implementation on Secure elements and the ARM TrustZone
security extension. We selected a one-time show protocol for our ticketing system
because these kinds of systems are much more simpler than k - or multi-show
credential systems and it is sufficient for the requirements of our system.

2 Background

2.1 Near Field Communication

Near Field Communication is a wireless communication technology allowing
NFC-enabled devices to exchange data if their antennas are within range (usually
5-10 centimeters). In contrast to bluetooth, no pairing is required which makes
it a very interesting technology for many applications. In other words, there is
no need for initial configuration in order to establish a connection. ISO14443 [13]
defines standards for NFC communication with smart cards while ISO18092 [14]
mainly defines standards for device to device communication. Since many NFC
readers are only capable of communicating according to ISO14443, we opt for a
direct connection between the reader and the secure element. NFC operates at
a carrier frequency of 13.56 MHz with data rates of up to 424kBit/s.

2.2 Selective Disclosure Protocols

Selective disclosure protocols provide methods for blinding parts of a certain set
of credentials. Signatures over credentials are jointly computed during the issuing
phase involving a trusted certification authority that ensures the authenticity of
a signed credential. The person in possession of the credential is able to hide
certain attributes of such a credential while still being able to prove validity. Due
to this setup, operators of ticketing systems based on such kinds of protocols are
not able to track their customers because they lack knowledge of who used a
certain ticket.

In this paper, we used the DSA-based protocol proposed by Glenn et al. [11].

Anonymous Ticketing for NFC-Enabled Mobile Phones 69

3 Protocol

3.1 Preliminaries

The whole protocol proposed by Glenn et al. is based on the discrete logarithm
problem which is considered to be a hard mathematical problem [11]. In this
section, we want to discuss the mathematical background of the protocol men-
tioned before. For our explanations, we assume to have four private credentials
denoted as x1, x2, x3, x4.

In order to prove the possession of the credentials without disclosing all at-
tributes, some kind of selective disclosure mechanism is needed. Therefore, a
discrete logarithm representation as stated in equation 1 is introduced.

h = gx1
1 · gx2

2 · gx3
3 · gx4

4 (1)

From now on, let

– Zq be the set {0, 1, ... q-1} for a prime q
– Zp be the set {0, 1, ... p-1} for a prime p

If one now wants to prove knowledge of the discrete logarithm representation he
randomly chooses w1, ..., w4 in Zq and computes

a = SHA1(gw1
1 · gw2

2 · gw3
3 · gw4

4) (2)

c = SHA1(a||M) (3)

with M being a message known to both parties containing a nonce to ensure the
freshness of c. Furthermore, he computes r1, ..., r4 according to equation 4:

ri = c · xi + wi (4)

Afterwards, the prover transmits (a, r1, r2, r3, r4) to the verifier who can now
compute c as in equation 3 and verify that:

a
!
= SHA1((gr11 · gr22 · gr33 · gr44) · h−c) (5)

As mentioned before, the protocol we used is a slightly modified version of Glenn
et al. [11], which in turn is based on the work of Brands [4]. Since the single
steps of the protocol have been rearranged, the protocol is listed in detail in
the following subsections, although the computations remain the same as in the
referred paper. The protocol requires an agreement upon the DSA parameters.
In our prototype. we used ps ranging from 768 to 1984 bits and a q with 160 bit
length. The generator g is the same length as p. As the whole protocol relies on
the ability to prove knowledge of a discrete logarithm representation, there is
need for a CA to publish the generators g1, ..., g4 and h0 required for the discrete
logarithm function stated in equation 8. The generators are numbers in Zp and

70 D. Derler et al.

are calculated by taking the DSA Generator g to the powers of n randomly
generated values y0, ..., yn−1 in Zq:

h0 = gy0 mod p (6)

gi = gyi mod p with 1 ≤ i ≤ n− 1 (7)

f(x1, x2, x3, ...xn, α) := (gx1
1 · gx2

2 · gx3
3 · ... · gxn

n · h0)
αmod p (8)

In the equation above x1, ..., xn represent the credentials to be blinded. They
are assumed to be in Zq.

3.2 Issuing

In the issuing phase, the client obtains a ticket from a terminal that is connected
to the certification authority. Figure 1 shows the basic process of issuing a ticket
and the algorithms below describe the individual steps required on terminal- and
client-side in order to gain a jointly computed ticket.

Client

time

Issuer

1.precompute

Request ticket

2.precomputeSend attributes, s

3. compute u
Send u

4.compute v
Send v

5. Verify
and store
ticket

Success/Failure

Local Computation User Interaction NFC

Fig. 1. Issuing Protocol

Algorithm 1 shows the precomputation phase, where the secret alphas are
randomly generated for future use, and the modulo inverse of alpha is computed
beforehand. As soon as the client chooses a ticket using the user interface on
terminal side and moves the mobile phone towards the NFC reader, the issuing
process starts. Issuing uses the precomputed alphas in case there are values
present, otherwise the precomputation phase is started initially.

On the terminal side, a random nonce k is generated and the blinded k, called
s, is computed as shown in algorithm 2 and sent over to the secure element. In
contrast to the original protocol the attributes encoded within the chosen ticket

Anonymous Ticketing for NFC-Enabled Mobile Phones 71

Algorithm 1. Step 1 - Precomputation Client side

1: Pick random values in Zq for α, α2, α3

2: Compute α−1 mod q
3: Pick a random value wl of length q for verification purposes

Algorithm 2. Step 2 - Precomputation Terminal side

1: Pick a random value k in Zq

2: Compute blinded k: s ← gk mod p

(expiration date, ...) are sent over. The terminal is expected to have enough
computational power to carry out the operations within acceptable time limits.

Step 3 computes the first part of the signature over the credentials (u’) as in
algorithm 3 and sends u, which represents the blinded u’, back to the terminal.

Algorithm 3. Step 3 - Computation of u

1: h ← gx1
1 · ... · gxn

n

2: h′ ← (h0 · h)α mod p
3: β ← gα2 · (h0 · h)α3 mod p
4: γ ← β · s mod p
5: u′ ← SHA1(h′||γ) mod q
6: u ← u′ − α2 mod q

As shown in algorithm 4, the terminal then computes t and v and sends v
over to the client.

As a last step, the client computes the remaining part of the signature over
the attributes and verifies whether the u’ calculated using the signature is the
same as computed above (see algorithm 5). If this is the case, a valid ticket
consisting of

h′, u′, v′, x1, ..., xn, α
−1 mod q

has been issued and is kept within the secure element.

3.3 Verification

The verification procedure is the same as the one proposed by Glenn et al.
[11]. In this phase, the client shows that he is in possession of a valid ticket by
proving knowledge of the discrete logarithm representation of the credentials.
This is done by splitting the discrete logarithm representation up in a show- and
a hide-product where the hide-product is computed with blinded values of the
credentials as shown in algorithms 6 and 7.

72 D. Derler et al.

Algorithm 4. Step 4 - Computation of t and v

1: t ← (y0 + x1y1 + ...+ xnyn)
−1 mod q

2: v ← (k − u)t mod q

Algorithm 5. Step 5 - Validation of ticket

1: v′ ← (v + α3)α
−1 mod q

2: if u′ = SHA1(h′||(gu′
h′ v′

) mod p) mod q then
3: Keep Ticket
4: return Success
5: else
6: return Failure
7: end if

After the verification phase, the operator knows whether the shown ticket
is valid or not. Figure 2 provides an overview of how the showing process is
executed, detailed information about what is computed in each step during ver-
ification is given in the following algorithms.

Client

time

Verifier

Exchange message

Request attributes
1. compute
verification
parameters

Send verification parameters

2.verify

Local Computation NFC

Fig. 2. Verification Protocol

As shown in algorithm 1 ,the random generation of wl is already invoked in
the precomputation phase in order to be prepared for the first showing process.
If wl was used once, a new random value has to be assigned to it. This approach
decreases the showing time in case of outsourcing the random generation after
each showing procedure to a service running in the background.

Algorithm 6 shows the computations performed on the client side. In step
2 a, a proof for knowing the credentials is computed. The rs in steps 4 to 7
are blinding values for the attributes whose values should remain secret. As we
already assign a random value to wl in the precomputation phase, we have to
make sure that a new value is generated after step 7.

Anonymous Ticketing for NFC-Enabled Mobile Phones 73

Algorithm 6. Step 1 - Compute verification parameters

1: Pick random values in Zq for wi where i ∈ hide
2: a ← SHA1

(((∏
i∈hide g

wi
i

) · h′ wl
)
mod p

)
3: c ← SHA1(a||M) mod q
4: for all i ∈ hide do
5: ri = (c · xi + wi) mod q
6: end for
7: rl ←

(−c · α−1 + wl

)
mod q

8: regenerate wl

Once the client has finished his computations he sends

a, h′, u′, v′, {xi}i∈show , {ri}i∈hide , rl

over to the operator. The operator then verifies the signature over the discrete
logarithm representation and checks if the proof for possession of the credentials
is correct. The exact steps are described in algorithm 7.

Algorithm 7. Step 2 - Verify

1: if u �= SHA1(h′||((gu′ · h′ v′
) mod p)) mod q then

2: return Failure (Signature incorrect)
3: end if
4: c ← SHA1(a||M) mod q
5: e ← ((∏

i∈show gxi
i

) · h0

)c
mod p

6: if a = SHA1
(((∏

i∈hide g
ri
i

) · h′ rl · e) mod p
)
then

7: return Success (Verification succeeded)
8: else
9: return Failure (Verification failed)
10: end if

4 Implementation Aspects

This section outlines the key decisions in implementing a mobile ticketing system
based on the private credential protocol [11] and using Near Field Communica-
tion as transportation technology. As we figured that the used hardware is of
importance, the following subsection lists what we work with.

4.1 Test Environment

The hardware setup for this prototype consists of the following parts:

– NFC-supporting off-the-shelf mobile device Nokia 6131 NFC with an em-
bedded G&D Sm@rtCafe Expert 3.1 Javacard

– SDM SDI010 NFC Reader on the host side

74 D. Derler et al.

The whole prototype is implemented in Java without any custom third party
libraries, utilizing JavaME on the mobile device, Javacard on the secure element
and JavaSE on the host side. Up to now, no mobile device that supports NFC and
additionally has an ECC-capable secure element embedded exists. Due to that
circumstance, an ECC-based protocol was not an option, despite the promising
aspect of smaller key lengths and, therefore, expectedly faster computation times.

4.2 Long Integer Operations on Javacard

Implementing DSA-based selective disclosure protocols requires modular arith-
metic operations on large integer numbers. The Javacard API does not provide
this functionality out of the box, as is the case for Java SE which ships
java.math.BigInteger (further referenced to as BigInteger). Therefore, we im-
plemented a class BigInt that supports the operations we need. This particularly
adheres to addition/subtraction, modulo, modular multiplication, modular expo-
nentiation, modular inversion, left shift and right shift. Whereas addition,
subtraction, modulo and shift operations are implemented in software, the crypto
coprocessor is utilized for exponentiation and multiplication as described in
[3][9][20]. Due to the fact that we only use prime moduli, we are also able to com-
pute the modular inverse of a number with crypto coprocessor support. This is
done by one subtraction and one exponentiation using the Euler Fermat theorem
as shown in [19]. One might also think that the modulo operation could be com-
puted by modular exponentiation but this is not possible as the RSA cipher does
not accept an exponent of one.

An important design decision regarding our BigInt implementation was that
its representation is compatible to Java SE’s BigInteger byte[] representation as
retrieved using BigInteger. toByteArray(). Java’s BigInteger internally uses
an int[]-representation, which is not available on a standard Javacard due to
its 16-bit nature. Therefore, we decided to use a byte[] as our internal data
container. Nevertheless, with the byte array representation being compatible, a
BigInteger can be reconstructed from a BigInt value using its byte array con-
structor. Furthermore, it eases comprehension and ensures the re-usability of
this implementation.

Our BigInt uses temporary, transient byte arrays to store intermediate results
whose lengths are defined by the key length used. Details about memory man-
agement are given in section 4.4. The BigInt class itself is stateless and provides
all operations as static methods, thus saving memory resources.

4.3 Architecture

Our architectural model consists of five fundamental components as shown in
figure 3. The idea is a distributed environment with a single certification au-
thority ran by the operator, which publishes the DSA parameters as well as the
generators used by the issuing and verification terminals. The number of termi-
nals and clients is not limited to one. Although possible, a terminal who verifies
certain tickets is assumed to be not the same as the one who issued the ticket.

Anonymous Ticketing for NFC-Enabled Mobile Phones 75

Client (Mobile Device)

Ticketing Cardlet
(Secure Element)

Precomputation

Midlet

Operator

Verification
Terminal

Issuing

Terminal

Certification
Authority

Fig. 3. Architectural model

Figure 4 digs a little deeper into the placement of the individual components
within the terminal and mobile hardware. The left stack displays the terminal
side, with the PCP1 library built upon the standard JVM. It is up to the hard-
ware’s purpose whether a verification or issuing applet is being run. The stack
to the right displays the inner components of the mobile device, combining the
secure element running the cardlet implementation with the Java ME runtime
where the MIDlet is built atop.

A
P
D
U
s

A
P
D
U
s

APDUs

PCP MIDlet

JSR 257
Contactless

Communication API

CLDC

Mobile Device OS

M
o
b
il
e
D
e
v
ic
e
H
a
rd

w
a
re

Secure Element

PCP Cardlet

JCAPI

JVM

Card OS

Verifier
Applet

Issuer
Applet

PCP Library

JSR 268
Java Smart Card

I/O API

Java SE VM

Terminal OS

NFC
Reader

Terminal
Hardware

Fig. 4. Componentized view of terminal and mobile device

Prototype applets have been written in order to provide means for specifying
the attributes, both for issuing and showing purposes. The reason why we decided
to use applets is that for larger scenarios, these applets may be signed in order to
gain local access to the NFC reader and can then be centrally deployed. Talking
back to the CA in order to retrieve the published generators is not a problem
with this approach either.

1 Private Credential Prototype.

76 D. Derler et al.

The following paragraphs provide a detailed overview of the roles and respon-
sibilites of the individual components.

Precomputation MIDlet. The MIDlet allows invocation of the precomputation
phase in order to have a set of parameters ready at issuing time. On the long run,
this is intended to be replaced by a service running silently in the background.

Ticketing Cardlet. The cardlet’s responsibility is to securely compute and store
the ticket’s information. The joint computations are directly carried out between
the issuer/verifier and the secure element over NFC.

Issuing Terminal. Acts as the opposite party for the (slightly modified) issuing
process defined above. This component can be seen as an arbitrary terminal with
an embedded NFC reader to communicate with the mobile device.

Verification Device. Responsible for verifying tickets using the show protocol as
defined beforehand.

Certification Authority. Central component to manage the DSA parameters and
publish the DLREP function.

4.4 Client Implementation

This chapter focuses mainly on the Javacard implementation residing within the
secure element of the mobile device. All communication to the outside world is
done using APDUs2 conforming to [15]. APDUs mainly contain the instructions
and parameters as well as additionally attached data. The instructions enable
distinguishing between the different actions and the ability to attach data to
any incoming and outgoing APDU enables the exchange of arbitrary byte arrays.
APDUs have a maximum length of 256 bytes overall and thus would, for instance,
require chaining in order to exchange 2048 bit values.

Since a common smartcard is very limited in its resources, minimizing mem-
ory consumption and avoiding expensive operations plays a central role in cardlet
development. Additionally, the amount of required memory has to be known and
allocated beforehand to avoid crashes in case of depleted memory. Due to the 16-
bit nature of the operating system one is limited to use shorts for storing integer
values.

The sample prototype supports up to four showable attributes and is capa-
ble of storing one ticket at a time. However, we do not expect problems when
increasing these amounts within reasonable constraints.

Structure. As figure 5 shall clarify, our implementation consists of the three ma-
jor parts PCP, BigInt and MemManager as well as additional classes to encapsulate
stored parameters. PCP extends javacard.framework.Applet and is, therefore,
the main entry point that gets instantiated at installation time. The overridden

2 Application Protocol Data Unit.

Anonymous Ticketing for NFC-Enabled Mobile Phones 77

method process() allows handling of incoming APDUs and delegates the requested
tasks to private submethods. The requested actions as identified by predefined
instructions and parameters are carried out within the PCP class using both the
memory manager and the BigInt class. Within BigInt, the individual calcula-
tions are carried out, whereas in PCP the protocol steps are executed.

BigInt

+ add()
+ subtract()
+ shiftLeft()
+ shiftRight()
+ multiplyMod()
+ modPow()
+ modInverse()
+ gteq()
+ gt()
+ isZero()
+ bitLength()

Agreement

+ p: byte[]
+ q: byte[]
+ g: byte[]

PCP

+ KEYSIZE
+ QSIZE
+ ARRAYSIZE

+ install()
+ process()
− PCP()
− ...

Ticket

+ h′ : byte[]
+ v′ : byte[]
+ u′ : byte[]
+ α−1 : byte[]
+ x1 : byte[]
+ x2 : byte[]
+ x3 : byte[]
+ x4 : byte[]

MemManager

+ alloc()
+ free()
+ bzero()

Alphas

+ α: byte[]
+ α2: byte[]
+ α3: byte[]

+ α−1: byte[]

CAPub

+ g1 : byte[]
+ g2 : byte[]
+ g3 : byte[]
+ g4 : byte[]
+ h0 : byte[]

Fig. 5. A structural view of the cardlet implementation

Memory organization. The memory manager provides methods for allocating
and deallocating memory while ensuring that a block of memory is zeroed out
before reuse. A total of seven transient byte arrays to store intermediate re-
sults is sufficient for computing all steps of the protocol. Those general purpose
byte arrays are allocated at installation time with their length being defined
by the desired key length (the parameter p of the DSA setup). PCP stores any
intermediate results needed across multiple protocol steps, Alphas encapsulates
precomputable αs and the modular inverse, and Ticket saves the resulting val-
ues that form a ticket, namely h′, u′, v′, α−1 mod q, xi. In the prototype, the
agreed-upon DSA parameters p, q, g are stored in Agreement and the public
CA-values in CAPub. The modular inverse of alpha is stored in Alphas if pre-
computed and moved to Ticket if finished, which allows another precomputation
without invalidating an existing ticket.

78 D. Derler et al.

MIDlet. A MIDlet was written in order to trigger the precomputation phase.
Since the MIDlet is kept very simple and basically has just the ability to send
a precompute instruction to the secure element by means of JSR 257 [16], fur-
ther details are omitted. Although, in the long run the MIDlet can also be
implemented as a task running silently in the background and executing the
computations without manual interaction.

4.5 Operator Implementation

On the operator (terminal) side, our prototype requires a Java SE-capable host,
and, of course, a NFC-capable device. JSR 268 [17] defines means to commu-
nicate with the secure element using a wireless NFC-connection. The provided
javax.smartcardio package contains all tools required to establish and use such
a connection. Outgoing APDUs are byte arrays wrapped within a CommandAPDU

instance, while responses from the card are embedded within ResponseAPDUs.
The protocol itself as well as a wrapper for connecting to the device have been
implemented as a library. The two central classes on operator-side, namely Issue
and Show, handle the terminal part of the joint computations. A real-world ap-
plication might split the library into separate issue and show parts.

Listing 1.1 shows the usage of Issue. At first, a PCPConnection is instatiated
which establishes the NFC connection and secondly, issuing is started with four
credentials xi.

1 PCPConnection conn = new PCPConnection(index) ;
2 try{
3 I s su e i s s u e = new I s su e (conn , x1 , x2 , x3 , x4) ;
4 i f (! i s s u e . i s s u e ()) // process i s su ing
5 // error , u ’ did not match hash on card
6 } catch (I ssueExcept ion e) { /∗ probab ly card l e t not i n s t a l l e d ∗/ }
7 conn . c l o s e () ;

Listing 1.1. Issuing using PCPLib

Verification (showing) is illustrated in listing 1.2, where attributes one and
two shall be shown in order to verify the ticket itself. Such an attribute may
encode, for instance, an expiration date of the ticket which can then be easily
verified by the host in a second step.

1 PCPConnection conn = new PCPConnection(index) ;
2 try{
3 // we request a t t r i b u t e s 1 and 2
4 byte [] toShow = new byte [0 x1 , 0x1 , 0x0 , 0x0] ;
5

6 Show show = new Show(conn , toShow) ;
7 ShowResultSet r s = show . show () ;
8

9 byte [] x1 = r s . getShowedCredentials () [0] ;
10 byte [] x2 = r s . getShowedCredentials () [1] ;
11

12 i f (r s . g e tV e r i f i c a t i o nSu c c e s s ()) // v e r i f i c a t i o n su c c e s s f u l
13

14 /∗ check here whether a t t r i b u t e s match required c r i t e r i a ∗/
15 } catch (ShowException e) { /∗ probab ly no t i c k e t issued , . . . ∗/ }
16 conn . c l o s e () ;

Listing 1.2. Showing using PCPLib

Anonymous Ticketing for NFC-Enabled Mobile Phones 79

4.6 Moving to Next Generation Smart-Phone Platforms

Many next generation smart-phone platforms, which are based on the ARM mi-
croprocessor, include powerful built-in security features which can be leveraged
to eliminate the need for a dedicated smart card chip. ARM’s TrustZone se-
curity extensions[1],[23] provide a powerful dual-virtual CPU mechanism which
allows a separation between secure software components and normal less-trusted
software.

To study the feasibility of realizing the smartcard component of our mo-
bile ticketing system as virtual software smartcard we reimplemented a minimal
subset of the JavaCard 2.2.1 framework on top of the K Virtual Machine [21].
Additionally, we adapted the K Virtual Machine to function as secure world
operating system on an simulated ARM TrustZone system [24]. Cryptography
support within this prototype implementation is based on a well-known java-only
J2ME cryptography library. The overall binary size, including all Java classes,
of our prototype virtual JavaCard environment lies in the range of 540-590 kilo-
bytes when compiled with a GNU Newlib based compiler toolchain3. We esti-
mate that this size figures can be easily reduced by at least 100 kilobytes just
by removing unused features like ASN1 encoding and X509 certificates from the
abovementioned J2ME cryptography library.

5 Performance Evaluation

This chapter gives an overview of our implementation’s computation times. We
try to give a clear insight into the timing issues of Javacard-based selective disclo-
sure protocols by providing a detailed table containing our actual computation
times, see table 1. These timings have been averaged over a hundred iterations.
The tested key sizes range from 768 to 1984 bits for p, while q is fixed at 160 bit
as FIP186-3 [10] does not define key sizes between 1024 and 2048 bit and we do
not expect much impact on the computation time when interpolating the size
of q between 160 and 224 bit. Larger key sizes have been omitted for various
reasons: First of all, issuing one attribute with precomputed alphas using a key
length of 1984 bit is already taking about 20 seconds, which is considered too
long to be usable. Another reason is that sending larger numbers from terminal
to card or vice versa exceeds the maximum APDU size of 256 bytes and thus
requires chaining. Finally, we require up to seven general-purpose arrays in or-
der to store various intermediate values; using larger key sizes leads to maxing
out the available transient memory and requires using EEPROM as intermediate
storage. Since EEPROM is much slower and chaining APDUs leads to additional
overhead, the results are not comparable anymore. In fact, the results for a key
length of 1984 bit displayed below were already determined with the least used
one of seven general purpose arrays located in EEPROM. Figure 6 shows the
impact very clearly. There is a trick introduced by [3], who used the incoming
APDU buffer as additional transient memory. This approach would help to avoid

3 http://www.codesourcery.com/sgpp/lite/arm

http://www.codesourcery.com/sgpp/lite/arm

80 D. Derler et al.

placing a general-purpose array in EEPROM for 1984 bit but with increasing
key length the transient memory will not suffice. Our results regarding basic
multiplication and exponentiation correspond to those presented in [22].

Table 1. Protocol computation Times

Mode\ p = 768 p = 1024 p = 1280 p = 1536 p = 1792 p = 1984
Key Length [bit] q = 160 q = 160 q = 160 q = 160 q = 160 q = 160

Issuing

w/o precomputation
one attribute 6642ms 7341ms 9638ms 11583ms 12937ms 22052ms
two attributes 6937ms 7649ms 9823ms 11559ms 14070ms 26066ms
three attributes 7111ms 7740ms 9770ms 11682ms 14233ms 26268ms
four attributes 7014ms 7954ms 9968ms 11928ms 14501ms 26510ms

w precomputation
one attribute 5484ms 6716ms 8571ms 9932ms 11609ms 20763ms
two attributes 5636ms 7005ms 8507ms 9782ms 12346ms 24784ms
three attributes 5914ms 7047ms 8435ms 10022ms 12556ms 25120ms
four attributes 5852ms 7242ms 8752ms 10062ms 13023ms 25288ms

Showing

one attribute 7717ms 9518ms 11541ms 13293ms 15923ms 16747ms
two attributes 5935ms 7239ms 8833ms 10267ms 12092ms 12675ms
three attributes 3974ms 4970ms 6048ms 7047ms 8300ms 8562ms
four attributes 2015ms 2804ms 3158ms 3747ms 4437ms 4539ms

Precomputation 1235ms 725ms 1100ms 1639ms 1308ms 1345ms

Depending on the key length, issuing lasts about 5-13 seconds with precom-
puted alphas. Issuing tasks without precomputation, but with crypto co-processor
supported inversion take from 6 to 14 seconds. Note that issuing without precom-
putation using a modular inversion as introduced by [12] carried out in software
takes about one to two minutes (depending on the key length), so the speedup
gained by using hardware support is immense. The show-processing time depends
on the key length and the number of plain text attributes as this influences the
number of random numbers and modular multi-powers to compute. Showing is
done within 2-15 seconds.

As stated before, the last column showing the times for p being 1984 Bits
long is not quite comparable to the other entries since we have used EEPROM
instead of transient memory at some point. Nevertheless, we mention it here in
order to give a preview for larger key lengths where this seems unavoidable.

Note the diverging timings for the precomputation step, for instance between
768 and 1024 bit key length. The precomputation timings depend on whether
the generated random values are within Zq or need extra modulation. Therefore,
those timings may vary strongly, depending on q.

Anonymous Ticketing for NFC-Enabled Mobile Phones 81

Figure 6 shows the evolution of computation times with growing key sizes. In
general, computation times seem to roughly increase in a linear manner. While
computation times are within acceptable limits for key lengths up to 1024 bit,
larger key lengths tend to render the system unusable.

768 1024 1280 1536 1792 1984
5

10

15

20

25

Key length (bits)

C
o
m
p
u
ta
ti
o
n
ti
m
e
(s
ec
o
n
d
s)

Issuing without precomputation

1 Attribute

2 Attributes

3 Attributes

4 Attributes

768 1024 1280 1536 1792 1984

5

10

15

20

25

Key length (bits)

C
o
m
p
u
ta
ti
o
n
ti
m
e
(s
ec
o
n
d
s)

Issuing with precomputation

1 Attribute

2 Attributes

3 Attributes

4 Attributes

768 1024 1280 1536 1792 1984

5

10

15

Key length (bits)

C
o
m
p
u
ta
ti
o
n
ti
m
e
(s
ec
o
n
d
s)

Showing

1 Attribute

2 Attributes

3 Attributes

4 Attributes

Fig. 6. Computation times in relation to key lengths

To summarize our measurements, we conclude that the processing time is
acceptable up to a key length of 1024 bit, with both issuing and showing times
of about seven seconds. Using the precomputation mechanism, a speedup of
about one second can be achieved.

6 Conclusion and Future Work

In this paper, we discuss an efficient implementation of the selective disclosure
protocol defined by [11] on a standard Javacard. The problems that arise when
trying to implement such a protocol on a smart card alongside partial solutions
to these are shown. In order to compute the complex operations required by this
protocol within acceptable time constraints, a Javacard-compatible long integer
class that utilizes the inherent crypto coprocessor is presented. Additionally, de-
tailed performance measurements are shown. To summarize our timing results,
key lengths of up to 1024 bit seem to be within acceptable limits while larger
key sizes lead to inconveniently large computation times. A possible solution to
the performance limitations may be ARM’s TrustZone approach, where the full
computational power can be exploited within a secure execution environment [1].
The feasibility of an ARM TrustZone based realization of our framework, based
on a virtual JavaCard, has been demonstrated in section 4.6. For JavaCard ap-
proaches utilizing a dedicated smartcard, ECC-based systems seem to be better
suited, although current off-the-shelf smart cards lack the required functionality.
With JavaCard 3.0 Connected, a seemingly useful class, BigNumber, was intro-
duced. It contains the whole java.math.BigInteger functionality. Evaluating
the speed of those operations on a Javacard 3.0 smart card would be of interest to
determine whether there is any speedup regarding additions and/or multiplica-
tions. Additionally, further support for elliptic curve cryptography on Javacard

82 D. Derler et al.

platforms is needed in order to be able to realize an ECC-based prototype on a
smart card.

An analysis regarding power consumption when computing an issue- or show-
operation to derive a tamper-proof version of the protocols is desirable.

References

1. ARM, Ltd. TrustZone Security Foundation by ARM (2011), http://www.arm.com/
products/processors/technologies/trustzone.php

2. Bichsel, P.: Theft and misuse protection for anonymous credentials. Master’s thesis,
ETH Zurich (June 2007)

3. Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a stan-
dard java card. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, CCS 2009, pp. 600–610. ACM, New York (2009)

4. Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge (2000)

5. Brickell, E., Camenisch, J., Chen, L.: Direct Anonymous Attestation. In: Proceed-
ings of the 11th ACM Conference on Computer and Communications Security,
CCS 2004, pp. 132–145. ACM, New York (2004)

6. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.:
How to win the clonewars: efficient periodic n-times anonymous authentication.
In: Proceedings of the 13th ACM Conference on Computer and Communications
Security, CCS 2006, pp. 201–210. ACM, New York (2006)

7. Camenisch, J., Lysyanskaya, A.: An Efficient System for Non-transferable Anony-
mous Credentials with Optional Anonymity Revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

8. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28, 1030–1044 (1985)

9. Dietrich, K.: Anonymous RFID Authentication Using Trusted Computing Tech-
nologies. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS, vol. 6370, pp. 91–102.
Springer, Heidelberg (2010)

10. Federal Information Processing Standards. FIPS: 186-3 Digital Signature Standard,
DSS (2009)

11. Glenn, A., Goldberg, I., Légaré, F., Stiglic, A.: A description of protocols for private
credentials (2001), http://crypto.cs.mcgill.ca/~stiglic/Papers/brands.pdf

12. Hars, L.: Modular inverse algorithms without multiplications for cryptographic
applications. EURASIP J. Embedded Syst., 2 (January 2006)

13. International Organization for Standardization. ISO/IEC 14443 Identification
cards - Contactless integrated circuit(s) cards - Proximity cards (2000)

14. International Organization for Standardization. ISO/IEC 18092 - Information tech-
nology – Telecommunications and information exchange between systems – Near
Field Communication – Interface and Protocol, NFCIP-1 (2004)

15. International Organization for Standardization. ISO/IEC 7816-4 Identification
cards - Integrated circuit cards - Cryptographic information application (2005)

16. Java Community Process. Contactless Communication API (JSR 257) (October
17, 2006), http://jcp.org/aboutJava/communityprocess/final/jsr257/index.
html

17. Java Community Process. Java Smart Card I/O API (JSR 268) (December
11, 2006), http://jcp.org/aboutJava/communityprocess/final/jsr268/index.
html

http://www.arm.com/products/processors/technologies/trustzone.php
http://www.arm.com/products/processors/technologies/trustzone.php
http://crypto.cs.mcgill.ca/~stiglic/Papers/brands.pdf
http://jcp.org/aboutJava/communityprocess/final/jsr257/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr257/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr268/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr268/index.html

Anonymous Ticketing for NFC-Enabled Mobile Phones 83

18. Madlmayr, G., Kleebauer, P., Langer, J., Scharinger, J.: Secure Communication
between Web Browsers and NFC Targets by the Example of an e-Ticketing System.
In: Psaila, G., Wagner, R. (eds.) EC-Web 2008. LNCS, vol. 5183, pp. 1–10. Springer,
Heidelberg (2008)

19. Paar, C., Pelzl, J.: Understanding Cryptography: A Textbook for Students and
Practitioners. Springer (2010)

20. Sterckx, M., Gierlichs, B., Preneel, B., Verbauwhede, I.: Efficient implementation
of anonymous credentials on java card smart cards. In: 1st IEEE International
Workshop on Information Forensics and Security (WIFS 2009), pp. 106–110. IEEE,
London (2009)

21. Sun Microsystems Inc. J2ME Building Blocks for Mobile Devices (May 19, 2000),
http://java.sun.com/products/kvm/wp/KVMwp.pdf

22. Tews, H., Jacobs, B.: Performance Issues of Selective Disclosure and Blinded Issuing
Protocols on Java Card. In: Markowitch, O., Bilas, A., Hoepman, J.-H., Mitchell,
C.J., Quisquater, J.-J. (eds.) WISTP 2009. LNCS, vol. 5746, pp. 95–111. Springer,
Heidelberg (2009)

23. Wilson, P., Frey, A., Mihm, T., Kershaw, D., Alves, T.: Implementing Embedded
Security on Dual-Virtual-CPU Systems. IEEE Design and Test of Computers 24(6),
582–591 (2007)

24. Winter, J., Wiegele, P., Lipp, M., Niederl, A., et al.: Experimental version of QEMU
with basic support for ARM TrustZone (source code repository) (July 28, 2011),
Public GIT repository at: https://github.com/jowinter/qemu-trustzone

http://java.sun.com/products/kvm/wp/KVMwp.pdf
https://github.com/jowinter/qemu-trustzone

Some Improvements to the Cost-Based

Framework for Analyzing
Denial of Service Attacks

Qinggang Yue1,2, Feng Liu1, and Rui Xue1

1 The State Key Laboratory of Information Security,
Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

2 Graduate University of the Chinese Academy of Sciences, Beijing 100190, China
{yueqinggang,liufeng,rxue}@is.iscas.ac.cn

Abstract. Recently, people are paying more attention to formalizing
and analyzing Denial of Service (DoS) attacks, but the known analysis
models are either not precise enough or not readily used in an automatic
way. In this paper, we make some improvements to the cost-based frame-
work proposed by Meadows that aims to formalize DoS attacks. After
improvement, the framework models intruders and protocols faithfully
in CoreASM, and in a more accurate way in specification. Besides, the
analysis can be performed automatically. In the improvements, a more
flexible tolerance relation is defined so that the analysis result is in a
broad form rather than merely binary as in previous works. Also, con-
crete values are used for representing the operational costs so as to make
cost functions more precise and flexible in analysis.

In this paper, the JFKi protocol is automatically analyzed as an in-
dication of the advantages of the improvements. It explores the vulner-
ability that was previously found manually. The discussion on the JFKi
protocol shows some difficulties in designing and analyzing DoS-resistent
protocols.

Keywords: Denial of Service, Formal modeling, Cost-based framework,
JFKi protocol.

1 Introduction

In Denial of Service (DoS) attacks, the intruder uses any possible way to prevent
legitimate participants from completing protocols or getting the corresponding
service. The attack may target to the server side, the network infrastructure
(routers, domain name servers, etc.) or specific client systems [15]. Colin Boyd
et al. [2] divides DoS attacks into connection depletion attacks and resource de-
pletion attacks, which try to exhaust the allowed number of connections and
the computation or memory resources of the server respectively. In fact, it is
impossible to prevent DoS attacks completely, since, with a certain connection
request, the server should either allocate a connection or expend some resources
to establish it as illegitimate. The SYN attack on TCP/IP [7] is a classic exam-
ple, in which the intruder initiates excessive instances of the protocol without

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 84–101, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Improvements to the Framework for Analyzing DoS Attacks 85

completing them, and exhausts the server’s resources. So what we can do is just
to reduce its impact. In this paper, we mainly focus on resource depletion attacks
on the server side which is supposed to interact with many clients.

Resource depletion attacks are classified into flooding attacks and logical at-
tacks (non-flooding) [19]. In the flooding attacks, the intruder initiates excessive
requests for the service of a server in order to exhaust its resources, thereby pre-
venting legitimate access to the service. To launch flooding attacks, the intruder
needs to expend some resources, so the success of the attack depends on the
unbalanced resource expenditure (the cost of the server is beyond its limitation
while the cost of the intruder is acceptable, otherwise the intruder will exhaust
its own resources before the server collapses). In logical attacks, the intruder
should have a deep understanding of the protocol so as to utilize its weakness
and this can reduce the cost to successfully launch a DoS attack. In this pa-
per, we only consider the case where the intruder launches flooding attacks by
generating bogus instances of a protocol repetitively.

In recent years, more and more papers appeared in the evaluation of protocols’
DoS-resistance property. Both provable security methods and formal methods
are proposed. D. Stebila et al. [20] put forward a security model based on the ex-
tend Canetti-Krawczyk (eCK) model proposed in [12] and gave a DoS-resistent
protocol under their model. However, the model is very rough and has not been
proved to be useful in analyzing other protocols. In contrast, formal methods
can model the protocol and the environment more faithfully to reality, and are
also proved to be effective in analyzing protocols. For example, the JFKi proto-
col [1] was once considered being DoS-resistent. But J.Smith et al. [18] analyzed
the protocol using the formal method given by [13] and found two possible at-
tacks. That shows the advantage of formal methods. Another advantage of formal
methods comparing with provable security methods is that they can be easily
adapted to perform analysis with the assistance of computers and automatically
analyze.

The first work in this direction was that by Meadows in 1999 [14], where a
cost-based framework was proposed by modifying the fail-stop model in [9]. A
protocol is fail-stop if whenever an intruder interferes with a message and this is
detected by the receiver, it will stop executing the protocol immediately. In the
cost-based framework, the protocol analyzer assigns costs to all possible actions
that intruders and participants may take during the execution, and also gives
some tolerance relations which describe how much effort the server can take in
face of an intruder of a given ability. At any accessible point of the protocol
execution, the cost of the intruder and the cost of the server should fall into the
defined tolerance relations, otherwise the protocol is vulnerable to DoS attacks.

Later on, Ramachandran [17] applied the cost-based framework to the JFKi
protocol [1] and some other protocol fragments, and showed that JFKi is DoS-
resistant if bogus messages are handled in an appropriate way. However, in 2006,
J.Smith et al. [18] analyzed the JFKi protocol carefully within Meadows’s frame-
work, found some attacks. All of them were done totally by hand.

86 Q. Yue, F. Liu, and R. Xue

Recently, B.Groza et al.[10] formalized the tolerance relation into rules which
describe protocols as state transition systems, and implemented automatic anal-
ysis. They analyzed the modified JFKi protocol in [18] and found an attack to
the initiator due to the puzzle’s property [3].

There exist some common weaknesses in the above works [10, 17, 18]. First,
the cost of the actions taken by the principals is coarsely represented by ‘cheap’,
‘medium’ or ‘expensive’. But in practice, it may be difficult to decide the cost of
some actions. For example, the cost of hashing is believed to be ‘cheap’, but it
is difficult to decide whether the cost of solving one hash-based puzzle of some
difficulty level should be ‘medium’ or ‘expensive’. Also, in different scenarios,
the same operation should be given different values. For example, it may be easy
to do an encryption operation on a PC, but it is an expensive operation for a
mobile phone.

What is more, the sum of costs is roughly modeled as the maximum one.
However, the accurate total cost of the participants is sometimes very important
for analyzing protocols in detail. S.Tritilanunt[21] assigned each action a con-
crete value to represent the cost, analyzed the HIP protocol and showed some
limitations of Meadows’s framework. But the tool there supports only integers,
and thus some rounding of the costs into integers are necessary to adapt to the
tool. Furthermore, S.Tritilanunt’s work is based on simulation which can be seen
as an occurrence sequence consisting of markings that are reached and steps [21],
and it does not model the specific execution of protocols.

In the automatic analysis [10] aspects, the model of intruders and protocols
is not faithful enough to reality: the participants are only allowed to dispose
messages that are specified by the protocol. However, in the reality, semi-bogus
messages, which do not fully satisfy the condition and take participants some
computational resources to detect this, are also necessarily dealt with. J.Smith
et al.[18] modeled this, but it was done only manually. To judge whether the
protocol is vulnerable to DoS attacks, S.Tritilanunt [21] and B.Groza et al.[10]
give the following tolerance relations separately: at a particular state during the
execution, the cost of the server should be smaller than that of the intruder, or
the difference between them should be smaller than some given threshold.

However, they just consider some particular scenarios or just some particular
aspects of the problem, and in many other scenarios the tolerance relations are
too strong or too weak. For example, some scenarios allow the server to expend
more resources than intruder in a session to some extent. And, in some other
scenarios, they should consider not only the difference, but also the specific cost
of each side. Up to now, the known analysis result is only binary: DoS-resistent or
not. However, the result may be quite different depending on various scenarios.

Motivated by the vulnerabilities as above, we make some improvements to the
cost-based framework to formalize DoS attacks. Specifically, the main contribu-
tions are:

– To use more precise values (supporting rational numbers) to evaluate the
action costs during the executions. That allows a more precise model of
costs and cost functions so that the analysis could be more flexible;

Improvements to the Framework for Analyzing DoS Attacks 87

– To model intruders to be able to, among others, forge semi-bogus messages,
and meanwhile the server to be able to dispose them so that the execution
of the protocol is more faithfully described;

– A tolerance relation defined to be that r (defined as the ratio of the cost of
servers to that of intruders) should be smaller than a prescribed threshold
t, which allows flexible adjusting by the analyzer according to different sce-
narios. In this way, it enables the evaluation of vulnerabilities of a protocol
in different scenarios rather than only to give a binary result of yes or no;

– As an application, we realize an automatic analysis of the JFKi protocol
within the improved framework. The experiment explores the attack indi-
cated in [18]. We stress that this attack, however, is explored there totally
by hand.

We also make a discussion on the JFKi protocol, and point out the difficulties
of designing and analyzing DoS-resistent protocols. The improvements will be
illustrated and compared with some well-known works in detail in Section 3.

In this paper, we employ CoreASM to model the protocol, and ASM-SPV to
analyze it automatically (see more details in Section 2.3). The tolerance relations
defined in [10, 21] are also tested in our experiment, and ASM-SPV outputs
another attack. Details indicate that to successfully launch such an attack, the
intruder needs to expend nearly the same amount of resources as the server
does. Thus, the intruder collapses before the server is exhausted, and the attack
should not be viewed as effective in practice. That shows the advantage of the
improvements.

The rest of the paper is organized as follows: In Section 2, we give some
background knowledge for this work. In Section 3, we show the improvements to
Meadows’s cost-based framework. In Section 4, we model and analyze the JFKi
protocol within the improved framework, and give some discussions. The paper
is concluded in Section 5.

2 Preliminary

In this section, we introduce Meadows’s cost-based framework, the JFKi pro-
tocol, and the Abstract State Machines-Security Protocol Verifier (ASM-SPV)
employed in this paper.

2.1 Meadows’s Cost-Based Framework

Meadows’s work [14] is the first to formalize DoS attacks and a lot of subsequent
work, including ours, is based on it. Here we show the basic definitions of the
framework from [13].

Protocol Specification. Protocols in the framework are specified by the an-
notated Alice-and-Bob language, the following definition gives the specification:

88 Q. Yue, F. Liu, and R. Xue

Definition 1. An annotated Alice-and-Bob specification P is a sequence of state-
ments of the form Li : A → B : T1, ..., Tm ‖ M ‖ O1, ..., On where:

1. Li denotes the ith line in the specification
2. M represents the message sent from A to B
3. Tj is the operation performed by A, T1, ..., Tm refer to the ordered steps taken

by A to produce M
4. Ok is the operation performed by B, O1, ..., On refer to the ordered steps

taken by B to process and verify M

The operations in the protocol specification are classified into three types of
events:

Definition 2. Let L = A → B : T1, ..., Tm ‖ M ‖ O1, ..., On be a line in an
annotated Alice-and-Bob specification, we say that X is an event occurring in L
if:

1. X is one of Ti or Oj, or;
2. X is ‘A sends M to B’ or ‘B receives M from A’.

We say that the events T1, ..., Tm and ‘A sends M to B’ occur at A and the events
O1, ..., On and ‘B receives M from A’ occur at B. There are three types of events:

1. Normal events, include the send and receive events and computation events
such as exponentiation, and they always succeed

2. Verification events, may succeed or fail and only occur at the receiver side
of a message

3. Accept event, is always the last operation on the line, On, and means that
after the processing of M, B accepts it.

Cost Sets and Cost Functions. The following definitions show the require-
ments that costs and cost functions should satisfy.

Definition 3. A cost set C is a monoid with monoid operation + and partial
order ≥ such that x+ y ≥ x and x+ y ≥ y, ∀x, y ∈ C

Definition 4. The event cost function δ maps events defined in an annotated
Alice-and-Bob P to a cost set C and is 0 on accept events.

Definition 5. Let P be an annotated Alice-and-Bob protocol, C be a cost set,
and δ be the event cost function defined on P and C. We define the message
processing cost function associated with δ to be the function δ′ on verifying events
following the receipt of a message as follows: δ′(Vj) = δ(V1) + ...+ δ(Vj)

Definition 6. We define the protocol engagement cost function associated with
δ to be the function Δ defined on the accept events as follows:

If the line A → B : T1, ..., Tm ‖ M ‖ V1, ..., Vn appears in the protocol, where
Vn is the accept event, then:

Improvements to the Framework for Analyzing DoS Attacks 89

1. If there is no line B → X : O′
1, ...O

′
k ‖ M ′ ‖ V ′

1 , ..., V
′
n, then Δ(Vn) is all the

costs of all operations occur to B up to the accept event Vn

2. If there is a line B → X : O′
1, ...O

′
k ‖ M ′ ‖ V ′

1 , ..., V
′
n, then Δ(Vn) is all the

costs of all operations occur to B up to the accept event Vn, plus the sum of
the costs of the O′

i

Intruder and Intruder Cost Functions. In the framework, the Intruder
controls the network. The following cost function is used to compute the cost of
the intruder for interfering with a protocol:

Definition 7. We define an intruder action to be an event engaged in by an
intruder that affects messages received by legitimate participants in a protocol.
Let C be a cost set. We define φ to be a function from the intruder actions to
C. We extend φ to a function Φ from an intruder capability to C by defining
Φ(x1, ..., xn) = φ(x1) + ...+ φ(xn). We call Φ an intruder cost function.

Fail-Stop Protocols and Assessing DoS-Resistance. A fail-stop protocol
stops whenever participants of the protocol detect the execution deviating from
protocol specification. The following definitions give details of fail-stop protocols
and how to assess protocols’ DoS-resistance property:

Definition 8. Let Θ be a function from the set of events defined by an annotated
Alice-and-Bob specification P to a cost set C. We refer to Θ as the attack cost
function. We say that P is fail-stop with respect to Θ if, for each event E in the
system, if the intruder interferes with any message that should arrive before or at
E, then no events that should occur after E will occur, unless the cost expended
by the intruder to interfere with the message is at least Θ(E).

A question is which Θ the analyst should use, the next definition gives a criteria
to evaluate whether this Θ is reasonable:

Definition 9. Let C be a server cost set, and G be an intruder cost set. We
define a tolerance relation to be the set of C × G consisting all pairs (c, g) such
that the protocol designer is willing to tolerate a situation in which an intruder
cannot force a server to expend resources of cost c or greater without revealing
its identity or expending resources of cost g or greater. We say (c′, g′) is within
the tolerance relation if there is a (c, g) such that c′ ≤ c and g′ ≥ g

Next, we show how to evaluate the protocol’s DoS-resistance property under the
framework:

step 1. Determine the intruder ability and the cost functions
step 2. Determine the tolerance relation τ
step 3. Determine the minimal attack cost functions with respect to which the

protocol is fail-stop
step 4. For each attack cost function Θ defined in step 3, verify that:

(a) for every event E1 immediately preceding a verification event E2,
(δ′(E2), Θ(E1)) ⊂ τ

(b) if event E is an accept event, then (Δ(E), Θ(E)) ⊂ τ

90 Q. Yue, F. Liu, and R. Xue

2.2 The Just Fast Keying Protocol (JFKi)

The JFK protocol, a key agreement protocol, an alternative to IKE [11], was
developed by Aiello et al. [1]. It provides identity protection, and uses several
techniques to withstand DoS attacks. The message components are given in
Table 1, and the version of the protocol that implements identity protection for
the initiator (JFKi) is presented in Table 2 (specified by annotated Alice-and-
Bob language). The session key they establish is Kir.

Table 1. Just Fast Keying (JFKi) Message Components

Hk(M) Keyed hash of M with key k

MKe
Ka

Encryption of M using symmetric key Ke, followed by MAC
authentication over the resultant cipher with symmetric key Ka

Sx[M] Digital signature of message M with the private key belonging to
principal x

H(M) Unkeyed hash of message M

IPI Initiator’s network address

g Generator of a multiplicative group of order q

r, i Integers between 1 and q chosen at random by R and I

gi, gr Initiator and responder’s respective current exponential, (mod p)

NI , NR Nonces chosen by the initiator and responder

IDI , IDR Initiator and responder’s certificates

IDR′ An indication by the initiator to the responder as to what
authentication information the later should use

HKR A transient hash key private to the responder

sa Cryptographic and service properties of the security association (SA) that
the initiator wants to establish

sa′ SA information the responder may need to give to the initiator

grpinfoR Groups supported by the responder, algorithms to protect Message (3)
and (4) of the protocol, and the hash function for key generation

2.3 ASM-SPV Protocol Verifier

In this paper, we employ ASM-SPV to automatically analyze the protocol. ASM-
SPV accepts protocol and intruder models specified by CoreASM, and attack
conditions described by Computation Tree Logic (CTL) formula.

CoreASM language [8] is an extension of ASM (Abstract State Machines)
which was developed as a generalized machine to model any algorithm faithfully.
It uses classic mathematical structures to describe states precisely and allows for
the use of functions which can describe the operations in security protocols easily.

CTL [4] was developed by E. Clark and E. A. Emerson in 1981. This logic
can be used to describe all possible ways from the beginning by modeling time
into a tree. CTL provides two branching operators (A and E), and five temporal
operators (X, F, G, W and U) to define properties of the computation tree.

ASM-SPV [16] is designed to analyze various properties of security protocols.
It uses the on-the-fly technique to verify whether the protocol satisfies the goals

Improvements to the Framework for Analyzing DoS Attacks 91

required, if not, attack routes will be provided. Also, details of the attack can
be got from an interface ASM-SPV supplies.

Table 2. Annotated Alice-and-Bob Specification of JFKi

L1. I → R : computenonce1(NI), N
′
I = hash1(NI), createexp1(g

i) ‖
N ′

I , g
i, IDR′ ‖

verifygroup(gi), accept1
L2. R → I : computenonce2(NR), token = generatemac1(HKR, {gr, NR, N

′
I , IPI}) ‖

N ′
I , NR, g

r, groupinfoR, IDR, SR{gr, groupinfoR}, token ‖
verifysig1, accept2

L3. I → R : generatedh1(g
ir),Ke = generatekeys(N ′

I, NR, ˝1˝, g
ir),

Ka = generatekeys(N ′
I, NR, ˝2˝, g

ir),
T = generatesig1(N

′
I , NR, g

i, gr, IDR, sa)
C = encrypt1(Ke, {IDI , sa, T}), C′ = generatemac2(Ka,C),
Kir = generatekeys(N ′

I, NR, ˝0˝, g
ir) ‖

NI , NR, g
i, gr, token,C,C′ ‖

verify(N ′
I = hash2(NI)),

verify2(token = generatemac3(HKR, {gr, NR, N
′
I , IPI})),

generatedh2(g
ir),Ka = generatekeys(N ′

I, NR, ˝2˝, g
ir),

verify3(C
′ = generatemac4(Ka,C)),

Ke = generatekeys(N ′
I, NR, ˝1˝, g

ir),
D = decrypt(Ke, C), verify4(D), verifysig2(T),
Kir = generatekeys(N ′

I, NR, ˝0˝, g
ir), accept3

L4. R → I : W = generatesig2(N
′
I , NR, g

i, gr, IDI , sa, sa
′),

E = encrypt2(Ke, {W, sa′}), E′ = generatemac5(Ka, E) ‖
E,E′ ‖
verify(E′ = generatemac6(Ka, E), decrypt2(Ke, E)),
verifysig3(W), accept4

ASM-SPV accepts models with concrete values, and calculation of them, thus
we can use concrete values to represent costs. This is one reason why we can
model DoS attacks more precisely and analyze protocols’ DoS-resistance prop-
erty more in detail. In contrast, former analysis [10] using OFMC and other
analysis tools whose models use symbolic variables to represent the cost can
only give binary results.

3 Improvements to Meadows’s Cost-Based Framework

In this section, we show the improvements to the framework in detail and com-
pare them with some well-known work.

3.1 Improved Cost Function

In the work done by Meadows [13] and others [10, 17, 18], because of the mod-
eling language or the analyzing tools they use, costs are roughly represented by

92 Q. Yue, F. Liu, and R. Xue

three symbols: ‘cheap’, ‘medium’, and ‘expensive’. As we have analyzed in Section
1, modeling costs in such a way prevents us from analyzing protocols accurately.
Therefore, as done in [21], we use concrete values which show the amount of re-
sources required by different algorithms to represent the cost of each action. Thus
costs are more precise and cost functions can be accurately computed. Although
the values vary a lot according to different computing environments, it is still rea-
sonable to use the data got from some typical environment to make comparisons.

To estimate the cost, we use the cryptographic protocol benchmarks of Wei
Dai 2009 [5], which include tested results of most commonly used cryptographic
algorithms from Crypto++ version 5.6. The algorithms are coded in C++ and
compiled with Microsoft Visual C++ 2005 SP1, and ran on an Intel Core 2 1.83
GHz processor under Windows Vista in 32-bit mode. Table 3 shows results for
some specific algorithms available for the JFKi protocol.

With the results and the parameter specification, we are able to estimate the
CPU usage of actions taken in the protocol. The costs of engaging in the protocol,
generating or disposing messages can be computed through summing all the
costs of actions taken to do that mathematically. Since ASM-SPV supports all
rational numbers, we do not need to round the values into integers, however,
this is required by [21]. In Section 4.1, we will show how to compute the cost
function with an example of the JFKi protocol.

Table 3. Computational Cost of CPU for Specific Algorithms

Algorithm cycle/Byte Operation cycle/Operation

SHA-512 17.7 RSA 1024 Signature 2.71× 106

HMAC(SHA-1) 11.9 RSA 1024 Verification 0.13× 106

AES/CBC (256-bit key) 21.7 DH 1024 Key-Pair Generation 0.82× 106

3.2 Improved Tolerance Relation

Defining the tolerance relations in Meadows’s framework can be a very difficult
work, and carelessly defined relations may omit flaws of protocols, as discussed
in [13]. The tolerance relation defined in [10] is

τ = {less(Server′s Cost, Intruder′s Cost)}

which means that, at the same state, the server’s cost should be smaller than the
intruder’s cost. Apparently, it is very rough, not considering resources of both
sides concretely. Since, in some scenarios, it may be allowed that, in one instance
of the protocol execution, the intruder expends fewer resources than the server
to some extent.

The tolerance relation defined in [21] is not very precise either. It aims to
examine whether the intruder can mount DoS attacks with cheap operations
to cause the server to engage in expensive operations such as digital signature
generation and verification, etc.. The tolerance relation defined is as follows:

Improvements to the Framework for Analyzing DoS Attacks 93

τ = {(Server′s Cost − Intruder′s Cost) < Thres}

where Thres is an acceptable threshold defined as the computational cost of
digital signature verification.

After careful analysis, we see that the relation only reflects the difference
between the cost of the intruder and that of the server, and it says nothing
about the cost of the intruder and the cause of the difference. It may be the
case that the cost of the intruder is also very large because of some expensive
operations. It can also be the case that the difference is the accumulation of
costs of some simple operations rather than an expensive one. In Section 4, we
will show limitations of these definitions through experimental results.

Our tolerance relation is defined as :

τ = {Server′s Cost/Intruder′s Cost < t}

where t is a threshold defined by the analyzer according to their estimation of the
situation where the protocol is used and the resources of the server. For example,
if the sever has quite a lot of resources, t can be assigned a big value, however
if the server is only a common PC, or even equipments with few resources such
as sensors, mobile phones, the value should be quite small.

For different values of t, we may get some or no attack routes on the protocol
from ASM-SPV. This means that, in such scenarios, the protocol is vulnerable
or less vulnerable to DoS attacks. If we define ratio of the cost of the server to
that of the intruder in a particular state to be r, then in the same scenario, for
a particular state, the bigger the value r is, the more vulnerable the protocol is
to DoS attacks. Because, to get the same effect (consuming certain amount of
resources of the server), the intruder needs to expend fewer resources or a smaller
portion of the resources expended by the server. Thus, the analysis result is no
longer binary as in [10, 18, 21], and it shows protocols’ vulnerability to DoS
attacks.

We have to point out that, in reality, DoS attack is related with many factors,
such as, the bandwidth, the resources of the server, the tactics the intruder
deploys, the mechanisms taken by the server to deal with abnormal situations
etc.. We just estimate the vulnerability of protocols in a particular perspective.

3.3 Improved Protocol Specification and Intruder Model

In the real environment, messages are transmitted in form of 0 or 1 bits. To
verify whether a message is of some form (such as an encryption of a particular
value), some computation should be done first and then analyze the results (first
decrypt the message and then verify the result). This means that no matter the
message satisfies the condition or not, some computation must be done. However,
in symbolic protocol verifiers, messages are modeled into symbols, their form
determines whether they will be accepted or not. If we only model the protocol as
specified, then only messages that fully satisfy the specification will be disposed.
But, in DoS attacks, the intruder often forges semi-bogus messages to waste

94 Q. Yue, F. Liu, and R. Xue

the server’s resources. Here, we use the word ˝semi-bogus˝to emphasize that
messages that do not fully satisfy the condition are disposed in reality until
their illegitimacy is detected. J.Smith et al. [18] modeled the intruder’s ability
of forging semi-bogus messages. However, it was done manually, and did not
specify them formally.

In our work, we propose a method to formalize this into a model that could
be checked automatically. The main idea is that we use ˝cipher˝to represent
messages completely not satisfying the condition (which can be seen as a random
value). For example, for a message of the form {sigI(M), N}k (which denotes an
encryption of a signature (M signed with the private key of agent I) and N with
the key k), we can use {cipher,N}k (which denotes an encryption of a random
value rather than the correct signature and N with the key k) to represent
one semi-bogus message of it (getting such a message, the receiver should first
decrypt the message, verify that the second part of the message is N , and then
verify the first part of the message, it discards the message on detecting that
its first part is not the signature of M). Like this, we can model all the possible
semi-bogus messages that would be generated and disposed.

Meadows’s framework did not give specific definition of the intruder. Usually,
when we analyze protocols, the intruder is modeled according to the Dolev-Yao
intruder model [6], who controls the whole network, and can eavesdrop, divert
and memorize messages, encrypt and decrypt messages as long as it has the
corresponding key. But, in this framework, we do not allow the intruder to be
able to do arbitrary work, it can only execute protocols as honest participants,
as well as forge semi-bogus messages mentioned above. What’s more, we require
that the intruder has limited resources.

In the protocol specification,we model the participants to act as the proto-
col specifies when receiving legitimate messages, and to stop executing when
receiving semi-bogus ones. And we model the intruder to be able to execute as
honest participants and forge semi-bogus messages as well. Thus, protocols and
intruders are modeled faithfully. To the best of our knowledge, former automatic
methods only model participants disposing messages specified by the protocol,
and this is the first time to model the protocol faithfully for automatic analysis.

4 Formal Modeling and Analyzing the JFKi Protocol

In this section, we show details of modeling and analyzing the JFKi protocol
within the improved framework. We also display and analyze the experimental
results, and give some comments on the protocol.

4.1 Cost Function and Tolerance Relations

In our work, we only analyze participants’ computation resource cost (memory
resource cost can be modeled in a similar way). The cost of each action is repre-
sented by the amount of resources used executing the action on a common type
of processor. According to the specification of the JFKi protocol and specific cost

Improvements to the Framework for Analyzing DoS Attacks 95

of each algorithm, we calculate and assign each action a cost value. According
to the annotated Alice-and-Bob specification for JFKi presented in Table 2 and
costs of actions we get, we can compute costs of engaging in the protocol, gen-
erating and disposing messages (including semi-bogus ones), through summing
up all the costs of actions taken to do that.

As we have analyzed, and according to the specification of the JFKi proto-
col and the specific algorithms we use, costs of actions taken in the protocol
execution are defined below (the unit is kcycles per operation):

– computenonce: generate a nonce, since the cost is small, δ(computenonce) =
0

– createxp: generate an exponential, since it is precomputed, δ(createxp) = 0
– hash: hash a nonce, δ(hash) = 1.13
– generatekeys: generate the encryption and authentication keys through a

keyed hash function, δ(generatekeys) = 3.05
– generatemac: generate a message authentication code, basing on a keyed

hash function, δ(generatemac) = 3.05
– generatesig/verifysig: generate/verify a signature, using “hash and sign”

paradigm, δ(generatesig) = 2720.2, δ(verifysig) = 140.2
– generatedh: generate a Diffe-Hellman ephemeral key, δ(generatedh) = 820
– encrypt/decrypt: encrypt/decrypt a message, δ(encrypt/decrypt) = 6.95

Note: In our experiment, according to the protocol specification [1], we use the
specific algorithms as shown in Table 3 to replace the corresponding function
symbols. The nonce is assumed to be 512 bits, the exponent to be 1024 bits,
and SA to be 1024 bits. Then according to Table 3, we can get the above cost
function. For example, since the nonce is 512 bits and the cost of hashing a value
of a byte is 17.7 cycles, thus, δ(hash) = 17.7× (512÷ 8)÷ 1000 = 1.13 kcycles.

Since the JFKi protocol is designed as an internet key agreement protocol,
we assume the server has many resources and it allows some kind of unbalanced
resource expenditure. In the experiment, we intend to set t in the tolerance
relation to be 100, in this scenario, the server tolerates expending as much as
100 times the cost of the initiator in a protocol execution. In fact, as we have
explained in Section 3.2, to define the value of t is an empirical work. Given
a smaller t, we may get more attacks, a larger one, we get fewer. Since, for a
particular state, if r is larger than t, it is sure to be larger than a value smaller
than t, but it may not be larger than a value bigger than t. If the situation is
more stringent, to get a more detailed analysis of the protocol, t can be assigned
a smaller value, such as 10 or even smaller.

4.2 Modeling JFKi with CoreASM

In the real environment, the participant processes the received message, if the
message is legitimate, it acts as the protocol specifies; otherwise it stops executing
the protocol. Since, we have given the annotated Alice-and-Bob specification of
JFKi, we have a good understanding of the protocol execution and know what
kind of messages are illegal or semi-bogus. In our model, we assume that the

96 Q. Yue, F. Liu, and R. Xue

intruder only attacks the server, and that the server is honest (it executes as
specified). Thus, the initiator only deals with legitimate messages, and the server
should dispose both legitimate and semi-bogus ones.

In the CoreASM model, participants are modeled into a subroutine, which
describes what messages they can receive and the corresponding actions they
should take. So we model participants to deal with messages, if the messages are
established to be legal, participants act as specified, otherwise stop executing the
protocol. The costs of engaging in the protocol will be updated as the execution
progresses. After every step of the server, we verify whether the cost of the
intruder and that of the server satisfy the defined tolerance relation. If not, we
set the variable ATTACK to be true (this will be explained in Section 4.3).

In the model of the JFKi protocol, to reduce the cost of the intruder, we
assume that it does not verify the signature of message 2 from the server. So, we
do not model the group information and the signature into message 2 as specified.
For convenience, we model the intruder sending the hash of the initially generated
nonce in the first message rather than the nonce itself (which is specified by the
protocol) as the first component of message 3, but, to ensure the correctness of
the cost, we will add the cost of hashing a nonce to the intruder’s cost.

4.3 Intruder Model and Attack Condition

As mentioned in Section 3.3, the intruder in our model can only execute as honest
participants as well as forge semi-bogus messages. In the CoreASM model, the
intruder is also modeled into a subroutine, which describes its ability to act as
honest participants and forgemessages from its knowledge. Intruder cost functions
are defined as those for the honest participants in Section 4.1. The cost of the
intruder’s engaging in the protocol will be updated after every taken step.

The attack condition for the JFKi protocol written in CTL is: AG!ATTACK.
In the formula, we use the boolean variable ATTACK (initialized as false) to de-
note whether the current state is an attack state, and it is set to be true whenever
the protocol reaches a state where the tolerance relation is violated. The formula
means that in the future the value of ATTACK will always be false. Whenever
the value of ATTACK is true at some state, the verifier regards it as an attack
state and will show the route from the initial state of the protocol execution to
that state. And this occurs when r � 100 (r is as defined in Section 3.2).

4.4 Experimental Results and Discussions

In this subsection, we first show and analyze the experimental results, and then
discuss the JFKi protocol.

Experimental Results. Getting the protocol and intruder model and the at-
tack condition, we use ASM-SPV to verify it. When we set t = 100, ASM-SPV
gives the attack in Table 4. The attack was also found by J.Smith et al. [18], but
it was totally by hand.

Improvements to the Framework for Analyzing DoS Attacks 97

Table 4. Attack route 1

Intruder → Bob : 1 [NONCE285, EXP310, Bob]

Bob → Intruder : 2 [NONCE285, NONCE698, EXP709, TOKEN721]

Intruder → Bob : 3 [NONCE285, NONCE698, EXP310, EXP709, TOKEN721,
cipher, cipher]

Note: In Table 4, NONCE285, EXP310 represent the nonce, and exponent the
Intruder generates, and Token721 is the cookie Bob creates for the session with
Intruder. “cipher” represents a random value with no meaning. Other symbols
are defined in the same way.

Details show that, when the intruder and Bob arrive at this state, the cost
of Bob is 833.33, while the cost of the intruder is 1.13, the ratio between them
is 737.46, which is much larger than 100. Thus, the intruder can consume great
amount of resources with little cost.

However, When we use the tolerance relations defined in [10, 21] (as discussed
in Section 3.2), besides the attack in Table 4, ASM-SPV shows another attack
described in Table 5. At this state, the cost of Bob is 3716.78, the cost of the
intruder is 3557.43, and the ratio is 1.04, very near to 1. To get this state, the
intruder expends nearly the same amount of resources as the server does. Since,
we assume that the intruder have fewer resources than the server does, thus, the
intruder collapses before it exhausts the server’s resources, so this should not be
regarded as an effective attack.

Table 5. Attack route 2

Intruder → Bob : 1 [NONCE396, EXP420, Bob]

Bob → Intruder : 2 [NONCE396, NONCE924, EXP935, TOKEN946]

Intruder → Bob : 3 [NONCE396, NONCE924, EXP420, EXP935, TOKEN946,
[Intruder, [NONCE396, NONCE924, EXP420, EXP935,
PRIVATEKEY115, signature], KEY1523, encrypt], [[Intruder,
[NONCE396, NONCE924, EXP420, EXP935, PRIVATEKEY115,
signature], KEY1523, encrypt], KEY1541, hash]]

Bob → Intruder : message 4

Note:

1. In Table 5, symbols with prefixes of NONCE, TOKEN, EXP are defined
as in Table 4, PRIVATEKEY115 represents the private key of the intruder,
KEY1523, KEY1541 represent the keys generated for hash and encryption
respectively. In CoreASM, {m1,m2}k (the encryption of m1,m2 with the
key k) is expressed as the list [m1,m2, k,encrypt]. If the last component is
changed into “signature” or “hash”, then it means the signature or hash of
m1,m2 with the key k.

98 Q. Yue, F. Liu, and R. Xue

2. In our model, to reduce the cost of the intruder, we do not model the in-
truder dealing with the last message from Bob, but after receiving the correct
message 3, Bob is supposed to send message 4. So we don’t formally model
message 4, just add the cost of producing message 4 to the cost of Bob and
use “message 4” to represent the message transmitted.

Table 6. Modified JFKi

1.I → R : N ′
I , g

i, IDR′

2.R → I : N ′
I , NR, g

r, grpinfoR, IDR, SR[g
r, grpinfoR], token,k

3.I → R : NI , NR, g
i, gr,HHKR(g

r, NR, N
′
I , IPI),

{IDI , sa, SI [N
′
I , NR, g

i, gr, IDR, sa]}Ke
Ka

, sol

4.R → I : {SR[N
′
I , NR, g

i, gr, IDI , sa, sa
′], sa′}Ke

Ka

where N ′
I = H(NI)

token = HHKR(g
r, NR, N

′
I , IPI)

Ke = Hgir (N
′
I , NR, ˝1˝)

Ka = Hgir (N
′
I , NR, ˝2˝)

Kir = Hgir (N
′
I , NR, ˝0˝)

challenge = token
sol such that H(challenge ‖ sol) produces an output with k leading zeros

Discussions about JFKi. The attack in Table 4 was also found in [18]. They
introduced a puzzle [3] to balance the cost as shown in Table 6.

Bogdan et al.[10] analyzed the modified protocol and found an attack on the
initiator. For legibility, we modify it to the form shown in Table 7. In the attack,
the intruder just intercepts the first message of the protocol from a to b, and
then forwards it to b with identity of i. When the intruder gets the puzzle from
b, it passes the puzzle on to a. The intruder intercepts the solution from a for
other use.

After analysis, we find that the main reason that causes the attack on the
initiator is the absence of authentication of the puzzle: the initiator cannot verify
that the puzzle is really from the server to it and that the puzzle has not been
tampered. However, authenticating such a puzzle may cause other DoS attacks.

Since, up to now, the main known authentication tools contain: signatures,
MACs, encryption systems. It is apparent that signatures and public encryption
systems shouldn’t be used in our scheme, since the computational cost is heavy
and the intruder can just repetitively initiate sessions inducing the server to
produce puzzles with authentication and exhaust its resources. To use MACs
or symmetric encryption systems, some private information between the two is
needed. Since, they do not share a key before the conversation, they need to
negotiate one. But, the cost of agreeing a key is very heavy and this gives the
intruder another chance to launch DoS attacks on the server because it should
compute the key first. This reflects difficulties of designing and analyzing DoS-
resistent protocols.

Improvements to the Framework for Analyzing DoS Attacks 99

Table 7. Attack to modified JFKi

a → i : N ′
a, g

xa , Idb1
i → b : N ′

a, g
xa , Idb1

b → i : N ′
a, Nb, g

xb , Idb, sigbg
xb , token, k

i → a : N ′
a, Nb, g

xb , Idb, sigbg
xb , token, k

a → i : Na, Nb, g
xa , gxb , token, {Ida, sa, siga[N ′

a, Nb, g
xa , gxb , idb, sa]}ke

ka
,sol(token)

where N ′
a = h(Na)

ke = hgxaxb (N
′
a, Nb, ˝1˝)

ka = hgxaxb (N
′
a, Nb, ˝2˝)

token = hhkb(g
xb , Nb, N

′
a)

5 Conclusions and Future Work

In this paper, we analyzed Meadows’s cost-based framework and some other well-
known work, and made some improvements to the framework. The improvements
include: A more precise cost function; A more flexible tolerance relation, thus a
more reasonable analysis result; Modeling intruders and protocols more precisely.
From modeling and analyzing the JFKi protocol, we showed advantages of the
improvements. During our study, we found the following possible directions for
future work:

1. From the analysis, we can see that before the automatic analysis, much work
need to be done manually, and this may be error-prone. Finding a way to
model the protocol automatically will greatly reduce the manual work and
the possibility of errors, and quicken the analysis work.

2. To reduce the vulnerability to DoS attacks, resource-consuming work is often
done in advance, and can be reused. However, it also induces the problem
that some information the intruder gets through computation can be reused
too. Also, the intruder may ignore some resource-consuming work. How to
evade this by preventing the intruder getting some essential information
without paying some cost should be considered.

3. Up to now, the known ways to balance costs between participants (such as
puzzles) mainly aim to protect the server from DoS attacks. And this may
give the intruder a chance to attack the initiator (the attack in Table 7 can
be seen as an example). How to protect the initiator form DoS attacks is
another problem that should be taken into consideration.

Acknowledgements. The authors are grateful for helpful suggestions from
anonymous referees. This work was supported by NSFC grants No. 60873260,
No. 60903210 and No.61170280, China national 863 program No.2009AA01Z414
and China national 973 program No.2007CB311202.

100 Q. Yue, F. Liu, and R. Xue

References

1. Aiello, W., Bellovin, S.M., Blaze, M., Canetti, R., Ioannidis, J., Keromytis, A.D.,
Reingold, O.: Just fast keying: key agreement in a hostile network. ACM Transac-
tions on Information and System Security 7(2), 242–273 (2004)

2. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Springer (2003)

3. Chen, L., Morrissey, P., Smart, N.P., Warinschi, B.: Security Notions and Generic
Constructions for Client Puzzles. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 505–523. Springer, Heidelberg (2009)

4. Clarke, E.M., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons
Using Branching-Time Temporal Logic. In: Engeler, E. (ed.) Logic of Programs
1979. LNCS, vol. 125, pp. 52–71. Springer, Heidelberg (1981)

5. Dai, W.: Crypto++ 5.2.1 benchmarks. Technical report (2009),
http://www.cryptopp.com/benchmarks.html

6. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
Information Theory 29(2), 198–208 (1983)

7. Eddy, W.: TCP SYN Flooding Attacks and Common Mitigations. Request for
Comments: 4987 (2007), http://tools.ietf.org/html/rfc4987

8. Farahbod, R.: CoreASM language user manual. Technical report (2006),
http://www.coreasm.org

9. Gong, L., Syverson, P.: Fail-stop protocols: an approach to designing secure pro-
tocols. In: Iyer, R.K., Morganti, M., Fuchs, W.K., Gligor, V. (eds.) Dependable
Computing for Critical Applications 5, pp. 79–99. IEEE Computer Society (1998)

10. Groza, B., Minea, M.: Formal modelling and automatic detection of resource ex-
haustion attacks. In: Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security (ASIACCS), pp. 326–333 (2011)

11. Harkins, D., Carrel, D.: The Internet Key Exchange (IKE). Request for comments
(proposed standard) 2409, Internet Engineering Task Force (1998)

12. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key
Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

13. Meadows, C.: A cost-based framework for analysis of denial of service in networks.
Journal of Computer Security 9(1/2), 143–164 (2001)

14. Meadows, C.: A formal framework and evaluation method for network denial of ser-
vice. In: Proceedings of the 12th IEEE Computer Security Foundations Workshop,
pp. 4–13. Computer Society Press (June 1999)

15. Needham, R.M.: Denial of Service. In: The 1st ACM Conference on Computer and
Communications Security, Fairfax, VA, pp. 151–153 (1993)

16. Peng, J., Liu, F., Zhao, Z., Huang, D., Xue, R.: ASM-SPV: a model checker for se-
curity protocols. In: 2010 Sixth International Conference on Intelligent Information
Hiding and Multimedia Signal Processing, pp. 458–461 (2010)

17. Ramachandran, V.: Analyzing DoS-resistance of protocols using a cost-based
framework. Technical Report DCS/TR-1239, Yale University (2002)

18. Smith, J., González Nieto, J.M., Boyd, C.: Modelling denial of service attacks
on JFK with Meadows’s cost-based framework. In: 4th Australasian Information
Security Workshop, pp. 125–134 (2006)

19. Smith, J., Tritilanunt, S., Boyd, C., Nieto, J.M.G., Foo, E.: Denial-of-Service resis-
tance in key establishment. In: Wireless and Mobile Computing, vol. 2, pp. 59–71
(2007)

http://www.cryptopp.com/benchmarks.html
http://tools.ietf.org/html/rfc4987
http://www.coreasm.org

Improvements to the Framework for Analyzing DoS Attacks 101

20. Stebila, D., Ustaoglu, B.: Towards Denial-of-Service-Resilient Key Agreement Pro-
tocols. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp.
389–406. Springer, Heidelberg (2009)

21. Tritilanunt, S.: Protocol engineering for protection against Denial-of-Service at-
tacks. PhD thesis, Information Security Institute Queensland University of Tech-
nology (2009)

Fault Detection of the MacGuffin Cipher

against Differential Fault Attack

Wei Li1,2,�, Dawu Gu3, Zhiqiang Liu3, Ya Liu3, and Xiaohu Huang1

1 School of Computer Science and Technology, Donghua University,
Shanghai 201620, China

2 Shanghai Key Laboratory of Integrate Administration Technologies for Information
Security, Shanghai 200240, China

3 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

Abstract. Since the early work of Biham and Shamir on differential
fault attack against block ciphers at CRYPTO 1997, much work has
been devoted to reducing the number of faults and to improving the
time complexity of this attack. This attack is very efficient when a single
fault is injected on the last several rounds, and it allows to recover the
whole secret key. Thus, it is an open question whether detecting the
faults injected into a block cipher against this attack with low overhead
of space and time tolerance. The MacGuffin cipher, a representative of
the Unbalanced Feistel Network(UFN) structure, is vulnerable to fault
attack at the last four rounds. In this paper, we give an answer to this
problem by presenting a fault detection of the MacGuffin block cipher.
Our result in this study could detect the faults with negligible cost when
faults are injected into the last four rounds.

1 Introduction

During the last years a new class of attacks against cryptographic devices has
become public. These attacks exploit easily accessible information like power con-
sumption, running time, input–output behavior under malfunctions, and can be
mounted by anyone only using low–cost equipment. These side–channel attacks
amplify and evaluate leaked information with the help of statistical methods,
and are often much more powerful than classical cryptanalysis. Examples show
that a very small amount of side–channel information is enough to completely
break a cryptosystem. While many previously–known cryptanalytic attacks can
be analyzed by studying algorithms, the vulnerabilities of side–channel attacks
result from electrical behavior of transistors and circuits of an implementation.
This ultimately compromises cryptography, and shifts the top priority in cryp-
tography from the further improvement of algorithms to the prevention of such
attacks by reducing variations in timing, power and radiation from the hardware,
reduction of observability of system behavior after fault injection. Therefore, it

� Corresponding author.

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 102–112, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Fault Detection of the MacGuffin Cipher against Differential Fault Attack 103

extends theoretically the current mathematical models of cryptography to the
physical setting which takes into consideration side–channel attacks.

As one type of side–channel attacks, differential fault analysis (DFA) was pro-
posed by Biham and Shamir as an attack on DES in 1997 [1]. The similar attacks
have been applied to other block ciphers [2–6]. The DFA attack is based on de-
riving information about the secret key by examining the differences between a
cipher resulting from a correct operation and a cipher of the same initial message
resulting from a faulty operation.

MacGuffin is a block cipher which was proposed by Blaze and Schneier [7].
Its fundamental structure is the contracting Unbalanced Feistel Network, and
supports 64–bit block size and 128–bit key size. Up to now, some literature is
available on the security of MacGuffin against the classical cryptanalysis, such as
differential attack, and linear attack [8]. MacGuffin is vulnerable to Differential
Fault Analysis(DFA)[9]. The secret key of MacGuffin could be obtained by in-
ducing faults into the computation of the last four rounds. This method requires
355 and 165 faulty ciphertexts in two byte–oriented fault models, respectively.

In this paper, we focus on the security application of MacGuffin against the
fault analysis. In the literature, countermeasures against fault attacks could help
a cryptographic algorithm to avoid, detect or correct faults. In practice, many
proposed schemes are based on fault detection, including code–based technique
and redundancy–based technique [10–18].

Code based detections are divided into coding method and error detection
code (EDC). Coding method means encoding message before encryption and
checking errors after decryption. Its overhead depends on encoding and decoding
progress to translate plaintexts and ciphertexts into codes. Its time redundancy
also depends on the code processes. As for block ciphers, the EDC approach
is often used in each rounds’ inner parts with the implementation of parity–
based EDC. The parity of linear layers is easy to implement since permutations
do not change the parity. More consideration should be given to the nonlinear
layers. Whether the parity of input joins in encryption determines how the parity
constructs. Approximately, 10%∼20% overhead is required, and so does time
tolerance.

The redundancy–based solution for implementing fault detection in the en-
cryption module is to perform a test decryption immediately after the encryp-
tion, and then check whether the original data block is obtained. If a decryption
module is already present in the implementation, the hardware overhead reduces
to the cost of a comparator for two data blocks of 128 bits. Otherwise, the over-
head is close to 100 percent since the decryption module is very similar to the
encryption one. The overall time penalty in either of these two cases is the time
required to decrypt a data block, plus the time required for the comparison. This
technique is independent of the adopted fault model.

The above techniques of fault detection seem to ensure a high level of secu-
rity. However, only checking the correctness of the computed encryption result
may not be enough to prevent fault analysis since an attacker may destroy the
detector.

104 W. Li et al.

In order to resist the differential fault analysis with low cost, we propose a
fault detection technique to protect MacGuffin against the previous attacks. Our
work not only helps to detect the errors with low overhead of space and time
tolerance, but also can be applied in all kinds of software implementation. The
idea of this attack and the related countermeasure are naturally suitable for
other block ciphers.

The rest of this paper is organized as follows. Section 2 briefly introduces the
MacGuffin cryptosystem. The next section shows the previous differential fault
analysis on MacGuffin. Then section 4 presents our fault detection on MacGuffin.
Finally section 5 concludes the paper.

2 Description of MacGuffin

MacGuffin is a 64–bit block cipher, which supports 128–bit key lengths [7]. It has
32–round unbalanced Feistel structure. The input of MacGuffin is partitioned
into four registers from left to right (See Figure 1). Every register is composed of
double bytes. In every round, the three rightmost registers comprise the control
block and are bitwise exclusive–ORed with 48 bits derived from the subkey.
These 48 bits are split eight branches to provide input to eight functions of six
bits (the S–boxes), and then output two bits for every S–box. The 16–bit S–
boxes output are then XORed with the bits in the leftmost register. Finally, the
leftmost register is rotated into the rightmost register. Figure 1 shows the block
diagram of the MacGuffin cipher.

Fig. 1. The MacGuffin cipher

Fault Detection of the MacGuffin Cipher against Differential Fault Attack 105

2.1 Encryption Process

Let X = (X0, X1, X2, X3) ∈ ({0, 1}16)4 be the plaintext and Y = (Y0, Y1, Y2, Y3)
∈ ({0, 1}16)4 be the ciphertext. Let rki ∈ ({0, 1}16)3 denote the i-th subkey,
(Xi, Xi+1, Xi+2, Xi+3) denote the i+ 1-th round inputs, and Ri denote the i+1-
th round (i = 0, 1, · · · , 31). Then the MacGuffin scheme can be written as

Xi+4 = F (Xi, Xi+1, Xi+2, Xi+3, rki),

(Y0, Y1, Y2, Y3) = (X32, X33, X34, X35),

where i ∈ {0, 1, · · · , 31}, F is the i–th round function defined below:

F (Xi, Xi+1, Xi+2, Xi+3, rki) = Xi ⊕ τ(Xi+1 ⊕ Xi+2 ⊕ Xi+3 ⊕ rki).

Here τ are defined as follows.
τ–function is a nonlinear transformation layer with 8 parallel 6 × 2 S-boxes,

which are specified in [7]. That is,

τ : ({0, 1}6)8 → ({0, 1}2)8.

2.2 Decryption Process

The decryption procedure of MacGuffin can be done in the same way as the
encryption procedure by reversing the order of the subkeys.

2.3 Key Schedule

In the MacGuffin cryptosystem, the key schedule generates a total of 32 subkeys
(rk0, rk1, · · · , rk31). Each round of the cipher uses the secret key parameter to
perturb the S–boxes by bitwise XOR against the S–box inputs. Each round
thus requires 48 key bits. To covert the 128–bit secret key to a sequence of
48–bit values for each round, MacGuffin uses an iterated version of its own
block encryption function. In our fault detection, all errors are injected in the
encryption procedure. Thus, we could omit the structure of the key schedule.

3 The Previous Differential Fault Analysis on MacGuffin

The previous differential fault analysis on the security of MacGuffin adopts two
basic assumptions as follows:

(1) The attacker can induce a single byte error to a 16–bit register. However,
the location of this byte in this register and the value of the error are both
unknown.

(2) The attacker has the capability to obtain the right and the corresponding
faulty ciphertexts when encrypting one plaintext with the same secret key.

106 W. Li et al.

On the above basic assumptions, they induce a random error in the last four
rounds at the beginning of the attack, and thus obtain a faulty ciphertext. By
differential fault analysis, part or all bytes of the subkeys in the last round can
be recovered. The location of fault injection may be not the location of subkeys
which will be recovered. For example, to recover the subkeys in the last round,
they induce errors in the penultimate round. This kind of fault injection could
derive multiple bytes of one subkey and avoids decreasing the efficiency of fault
injection. Repeat this procedure until the subkey is obtained. Then they decrypt
the right ciphertext to obtain the input of the last round, which is the output
of the penultimate round. Repeat the above procedure until the secret key is
obtained by the key schedule.

4 Our Proposed Fault Detection of MacGuffin

Our objective is to develop fault detection techniques which will be independent
of the particular hardware implementation. To this end, we make the following
assumptions:

(1) The MacGuffin algorithm is partitioned into three basic modules: encryption,
decryption, and key schedule.

(2) All the modules have in common the same basic operations; hence, only the
encryption module is examined in detail since most conclusions will hold for
the remaining modules as well.

Thus, a fault injected into the first round is comparable to encoding a different
input. The injection of a fault in one of the inner rounds is more complicated
and it is necessary to follow the errors as they propagate along the execution
path.

Every round of MacGuffin consists of the round function, which is composed
of two transformations: subkey addition(SA), S–boxes. Different from the other
block ciphers, MacGuffin has no linear transformation. The propagation of a
single fault is influenced by the execution of the round components. The result
can be classified into only one cases: the fault affects only one byte in the output.
The situation includes the S–boxes and SA transformations, where the error is
only moved within a byte, respectively. When using a specific input and injecting
lots of a single–byte fault into every different round, the average number of
erroneous bytes in the ciphertext has the following characteristic (See Fig. 2):

(1) If there are less than 8 nonzero erroneous bytes, the fault must occur in the
last four rounds. The average number of erroneous bytes is 7.75, 6, 4.25 and
3.25, respectively.

(2) If all bytes are erroneous, most faults may occur before the last four rounds.

To date, little research has been done on the related attacking method when
the faults are induced before the four rounds. Thus, MacGuffin is secure even if
the errors have been induced before the four rounds. We put emphasis on the

Fault Detection of the MacGuffin Cipher against Differential Fault Attack 107

Fig. 2. Erroneous bytes in the ciphertext of MacGuffin

research of the errors induced into the last four rounds. In the DFA analysis, the
attacker must capture at least two ciphertexts, including one right ciphertext and
one faulty ciphertext. On the basis of this assumption, we propose a pattern–
based technique to infer whether the attacker induce faults into the encryption
module.

For MacGuffin, let Y , Y ∗, �Y be the correct ciphertext, the faulty cipher-
text, and ciphertext difference. Let |�Y |, |�Y0|, |�Y1|, |�Y2| and |�Y3| be the
number of erroneous bytes in �Y , �Y0, �Y1, �Y2 and �Y3. The pattern is de-
fined within the bounds of remote possibility as the result of the XOR operation
between two right ciphertexts (See Table 1). If the distribution of a ciphertext
difference satisfies these patterns, then we could derive that the attacker has in-
duced faults into the encryption module and at least one ciphertext is faulty. In
other words, if the ciphertext difference satisfies the distribution of some patterns
in Table 1, it shows that the error has been induced into the encryption module.
Otherwise, it is not feasible for DFA to derive the secret key of MacGuffin. In
Table 1, the pattern 0001 denotes �Y has one nonzero byte, which locates in the
register Y3. The ciphertext pair with this pattern could be one correct cipher-
text and one faulty ciphertext, or two faulty ciphertext, since the two correct
ciphertexts with the pattern has the remote probability of 1.31E–34%.

Depending on the pattern of the ciphertext difference between one correct
ciphertext and one faulty ciphertext, we could detect the fault location as Table
2 shows. For example, if the pattern is 0001, the fault must be injected in the
register X31 of the 32nd round.

When some patterns are within the bounds of average possibility as the result
of the XOR operation of one correct ciphertext and one faulty ciphertext. For
example, when an error is injected into the last four round, the ratio of 1, 2, 3, 4,
5, 6, 7, and 8 erroneous bytes occur at 6.25%, 0%, 25&, 6.25%, 18.75%, 12.5%,
12.5%, and 18.75%, respectively(See Figure 3).

108 W. Li et al.

Table 1. The relationship between some patterns and ciphertext pairs

Pattern
Percentage(%) A ciphertext pair|�Y | |�Y0|, |�Y1|, |�Y2|, |�Y3|

1 0001 1.31E–34 (Y, Y ∗), (Y ∗, Y ∗)
2 0002 1.23E–36 (Y ∗, Y ∗)
3 1002, 0102, 0012 1.91E–25 (Y, Y ∗), (Y ∗, Y ∗)
4 0022, 0202, 2002, 1102, 1012, 0112 1.78E–23 (Y, Y ∗), (Y ∗, Y ∗)
5 1022, 0122 3.78E–24 (Y, Y ∗), (Y ∗, Y ∗)
6 0222, 1122, 2022 4.15E–22 (Y, Y ∗), (Y ∗, Y ∗)
7 1222 5.17E–22 (Y, Y ∗), (Y ∗, Y ∗)
8 2222 99%

Table 2. The relationship between the pattern and fault locations

Pattern Location of one-byte fault injection
|�Y | |�Y0|, |�Y1|, |�Y2|, |�Y3| R32 R31 R30 R29

1 0001 X31 / / /

3
1002 X32 / / /
0102 X33 / / /
0012 X34 X30 / /

4 0022 / X31 / /

5
1022 / X32 / /
0122 / X33 X29 /

6 0222 / / X30, X31 /

7 1222 / / X32 X28

8 2222 / / / X29, X30, X31

In real application, one correct ciphertext and one faulty ciphertext as a ci-
phertext pair is ideal. However, there exist two faulty ciphertexts as Table 1
shows. On the basis of Table 2, we build up the pattern of ciphertext difference
between two faulty ciphertexts(See Table 3). Thus, we derive the relationship
between the pattern of two faulty ciphertext and the fault locations in Table 4.

When two error are injected independently into the last four round, the ratio
of 1, 2, 3, 4, 5, 6, 7, and 8 erroneous bytes occurs at 0.20%, 0.20%, 5.08%, 6.84%,
16.21%, 19.53%, and 26.95%, respectively(See Figure 4).

If the distribution of a ciphertext difference satisfies these above patterns,
then the attacker has induced faults into the encryption module and at least one
ciphertext is faulty. It is helpful for the MacGuffin cipher to be secure against
the differential fault analysis. In other words, if the ciphertext difference satisfies
the distribution of some patterns in Table 1, it shows that the error has been
induced into the encryption module. Otherwise, it is not feasible for DFA to
derive the secret key of MacGuffin.

For example, if the ciphertext difference has 2 nonzero bytes, there are only
one pattern which is 0002. It shows that the attacker injects two faults, whose

Fault Detection of the MacGuffin Cipher against Differential Fault Attack 109

Fig. 3. Ratio of Erroneous bytes in one correct ciphertext and one faulty ciphertext in
the last four rounds

Table 3. Patterns of two faulty ciphertexts

0001 1002 0102 0012 0022 1022 0122 0222 1222 2222

0001 0001,0002 1002 0102 0012 0022 1022 0122 0222 1222 2222

1002 1002 2002 1102 1012 1022 1022,2022 1122 1222 1222,2222 2222

0102 0102 1102 0102,0202 0112 0122 1122 1122 0222 1222 2222

0012 0012 1012 0112 0012,0022 0022 1022 0122 0222 1222 2222

0022 0022 1022 0122 0022 0022 1022 0122 0222 1222 2222

1022 1022 1022,2022 1122 1022 1022 1022,2022 1122 1222 1222,2222 2222

0122 0122 1122 1122 0122 0122 1122 0122,0222 0122 1222 2222

0222 0222 1222 0222 0222 0222 1222 0122 0222 1222 2222

1222 1222 1222,2222 1222 1222 1222 1222,2222 1222 1222 1222,2222 2222

2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222

Fig. 4. Ratio of Erroneous bytes of two faulty ciphertexts in the last four rounds

110 W. Li et al.

Table 4. The relationship between pattern of two faulty ciphertexts and fault injection

Pattern
Location of fault injections|�Y | |�Y0|, |�Y1|, |�Y2|, |�Y3|

1 0001 (R32X31, R32X31)

2 0002 (R32X31, R32X31)

3

1002 (R32X31, R32X32)
0102 (R32X31, R32X33), (R32X33, R32X33)

0012
(R32X31, R32X34), (R32X31, R32X30), (R32X34, R32X30)
(R32X34, R32X34),(R32X30, R32X30)

4

0202 (R32X33, R32X33)

0022
(R32X31, R31X31), (R31X31, R31X31),(R32X34, R32X34),
(R32X34, R31X31), (R32X30, R31X31),(R32X30, R32X30),
(R32X34, R32X30)

2002 (R32X32, R32X32)
1102 (R32X32, R32X33)
1012 (R32X32, R32X34), (R32X32, R32X30)
0112 (R32X33, R32X34), (R32X33, R32X30)

5

1022
(R32X31, R31X32), (R32X32, R31X31), (R31X31, R32X32),
(R32X34, R31X31), (R32X30, R31X31),(R31X32, R31X32),
(R32X32, R31X32)

0122
(R32X31, R31X33), (R32X31, R30X29), R30X29, R31X31),
(R32X33, R31X31), (R31X33, R31X31), (R32X34, R31X32),
(R32X30, R31X32), (R32X34, R30X29), (R32X31, R32X31)

6

0222

(R32X31, R30X30),(R32X31, R30X31), (R30X29, R30X29)
(R32X33, R30X30), (R32X33, R30X31), (R30X31, R32X34),
(R30X30, R32X34), (R30X30, R32X30), (R30X31, R32X30)
(R30X30, R31X31), (R30X31, R31X31), (R30X30, R30X31),
(R30X30, R30X30), (R30X31, R30X31), (R31X33, R30X29)
(R31X33, R31X33)

1122
(R32X33, R31X32), (R32X32, R31X33), (R32X32, R30X29),
(R32X32, R30X29), (R31X32, R31X33), (R32X33, R31X33)
(R30X29, R31X32)

2022 (R32X32, R31X32), (R31X32, R31X32)

7 1222

(R32X31, R30X32), (R32X31, R29X28), (R32X32, R30X32),
(R32X32, R30X30), (R32X32, R30X31),(R32X32, R29X28

(R32X33, R30X32), (R32X33, R29X28), (R32X34, R30X32),
(R32X31, R30X32), (R32X31, R29X28),(R32X30, R29X28)
(R32X30, R30X32), (R32X34, R29X28), (R31X31, R30X32)
(R30X30, R31X32), (R30X31, R31X32), (R31X31, R29X28)
(R31X32, R30X32), (R31X32, R29X28), (R30X29, R30X32),
(R31X33, R30X32), (R30X29, R29X28),(R31X33, R29X28)
(R30X30, R30X32), (R30X31, R29X28), (R30X32, R30X32)
(R30X31, R30X32), (R30X30, R29X28), (R29X28, R29X28)
(R29X28, R30X32)

8 2222

Fault Detection of the MacGuffin Cipher against Differential Fault Attack 111

locations are both in the register X31 of the 31st round. If the ciphertext differ-
ence has 3 nonzero bytes and its pattern is 1002, the attacker might inject one
or two faults. The locations might be in the register X31 of the 32nd round and
the register X32 of the 32nd round.

We implemented the experiment on a PC using Visual C++ on a 1.60 GHz
centrino with 2GB memory. The fault induction was simulated by computer
software. In this situation, we ran the attacking algorithm to 1000 encryption
unit with different random generated keys. And then we could detect about
77.15% errors into the last four rounds of MacGuffin. Unless the errors’ pattern
is 2222, we could detect 100% errors.

Compared with the previous techniques, the overhead and time tolerance of
required for the comparison in our method is negligible (see Table 5). As one
countermeasure of MacGuffin against DFA, the pattern–based technique could
not only help to detect the errors with low overhead of space and time tolerance,
but also be applied in hardware or software implementation.

Table 5. Comparison of overhead and tolerance

Approaches Overhead Time tolerance

Duplication 100% 100%

Coding method Encoding dependent Encoding dependent

EDC method 10-20% Parity dependent

Proposed method Negligible Negligible

5 Conclusion

In this study, we present a fault injection of MacGuffin in software implementa-
tion. This method adopts the special pattern of ciphertext pairs in the attacking
assumption and procedure of differential fault analysis. It is simple to detect
errors in real applications and provides a practical approach for fault detection
on block ciphers.

Future analysis should be able to detect differential fault analysis when the
faults are injected into deeper rounds and the ciphertext difference has no special
patterns. For the hardware situation, we will leave it for the future research.

Acknowledgment. This work is supported by the National Natural Science
Foundation of China under Grant No. 61003278, the Opening Project of Shang-
hai Key Laboratory of Integrate Administration Technologies for Information
Security, and the Fundamental Research Funds for the Central Universities. The
authors wish to acknowledge the anonymous referees for helpful suggestions.

References

[1] Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

112 W. Li et al.

[2] Moradi, A., Manzuri Shalmani, M.T., Salmasizadeh, M.: A Generalized Method
of Differential Fault Attack Against AES Cryptosystem. In: Goubin, L., Matsui,
M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 91–100. Springer, Heidelberg (2006)

[3] Hemme, L.: A Differential Fault Attack Against Early Rounds of (Triple-)DES.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 254–267.
Springer, Heidelberg (2004)

[4] Clavier, C., Gierlichs, B., Verbauwhede, I.: Fault Analysis Study of IDEA. In:
Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 274–287. Springer, Heidel-
berg (2008)

[5] Li, W., Gu, D., Li, J.: Differential fault analysis on the ARIA algorithm. Infor-
mation Sciences 178(19), 3727–3737 (2008)

[6] Li, W., Gu, D., Li, J., Liu, Z., Liu, Y.: Differential fault analysis on Camellia.
Journal of Systems and Software 83, 844–851 (2010)

[7] Blaze, M., Schneier, B.: The MacGuffin Block Cipher Algorithm. In: Preneel, B.
(ed.) FSE 1994. LNCS, vol. 1008, pp. 97–100. Springer, Heidelberg (1995)

[8] Rijmen, V., Preneel, B.: Cryptanalysis of MacGuffin. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 353–358. Springer, Heidelberg (1995)

[9] Li, W., Gu, D., Wang, Y.: Differential Fault Analysis on the Contracting UFN
Structure, with Application to SMS4 and MacGuffin. Journal of Systems and
Software 82(2), 346–354 (2009)

[10] Karpovsky, M., Kulikowski, K.J., Taubin, A.: Differential fault analysis attack
resistant architectures for the Advanced Encryption Standard. In: International
Conference on Smart Card Research and Advanced Applications – CARDIS 2004,
pp. 177–192. IEEE Computer Society (2004)

[11] Karri, R., Wu, K., Mishra, P., Kim, Y.: Concurrent error detection schemes for
fault–based side–channel cryptanalysis of symmetric block ciphers. IEEE Trans-
actions on Computer–Aided Design 21(12), 1509–1517 (2002)

[12] Karpovsky, M., Kulikowski, K.J., Taubin, A.: Robust protection against fault in-
jection attacks on smart cards implementing the Advanced Encryption Standard.
In: International Conference on Dependable Systems and Networks–DSN 2004,
pp. 93–101. IEEE Computer Society (2004)

[13] Malkin, T.G., Standaert, F.-X., Yung, M.: A Comparative Cost/Security Analy-
sis of Fault Attack Countermeasures. In: Breveglieri, L., Koren, I., Naccache, D.,
Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 159–172. Springer, Heidel-
berg (2006)

[14] Wu, K., Karri, R., Kuznetsov, G., Goessel, M.: Low cost error detection for the
Advanced Encryption Standard. In: International Test Conference–ITC 2004, pp.
1242–1248. IEEE Computer Society (2004)

[15] Knudsen, L.: Truncated and Higher Order Differentials. In: Nyberg, K., Heys,
H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 196–211. Springer, Heidelberg (2003)

[16] Karri, R., Gössel, M.: Parity–based concurrent error detection in symmetric block
ciphers. In: International Test Conference–ITC 2003, pp. 919–926. IEEE Com-
puter Society (2003)

[17] Joshi, N., Wu, K., Karri, R.: Concurrent Error Detection Schemes for Involution
Ciphers. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp.
400–412. Springer, Heidelberg (2004)

[18] Karri, R., Kuznetsov, G., Gössel, M.: Parity-Based Concurrent Error Detection
of Substitution-Permutation Network Block Ciphers. In: Walter, C.D., Koç, Ç.K.,
Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 113–124. Springer, Heidelberg
(2003)

Computationally Sound Symbolic Analysis

of EAP-TNC Protocol

Zijian Zhang1, Liehuang Zhu1,�, Feng Wang2,
Lejian Liao1, Cong Guo1, and Hongyuan Wang1

1 Beijing Key Lab of Intelligent Information Technology,
Beijing Institute of Technology, Beijing, China

{zhangzijian,liehuangz,liaolj,guocong,wanghongyuan}@bit.edu.cn
2 Naval Academy of Armament, Beijing, 100161

lionkingwf@hotmail.com

Abstract. The Trusted Computing Group has proposed Trusted Net-
work Connection (TNC) Architecture and a series of interface specifi-
cations, such as IF-T and IF-TNCCS, to solve the interoperability of
network access control. In particular, IF-T describes the mapping of IF-
TNCCS messages to a standard TNC Extensible Authentication Proto-
col (EAP) method. It includes specification of the standard EAP method
called EAP-TNC. Since EAP-TNC is important to encapsulate TNCCS
messages so that they can be carried over tunneled EAP methods, this
paper proposes a computationally sound symbolic analysis of EAP-TNC
protocol to prove composable security property.

Keywords: Computationally Sound; EAP-TNC; Trusted Network Con-
nection; Trusted Computing.

1 Introduction

Computational analysis and symbolic analysis are two different approaches to
analyze the security of cryptographic protocols. Computational approach is com-
putational sound, because the security of cryptographic protocols is reduced to
some cryptographic hardness assumptions [1]. However, it is hard to realize au-
tomation. That is, it needs human intervention. In comparison, symbolic ap-
proach is amenable to automation. There are a lot of automated tools, such as
ProVerif [2], SMV, and Isabelle to analyze cryptographic protocols effectively.
However, it is criticized since its computational soundness is not clear.

Since symbolic analysis is more effective than computational analysis, re-
searchers have focused on its computational soundness for many years. Abadi
and Rogaway [3] first bridged the gap between computational analysis and sym-
bolic analysis of formal encryption scheme. Recently, Canetti [4] has proposed
universally composable symbolic analysis (UCSA) of mutual authentication and
key exchange protocols to prove composable security property. Such properties

� Corresponding author.

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 113–128, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

114 Z. Zhang et al.

are defined for individual protocol sessions but remain valid even when the ana-
lyzed session is composed with an unbounded number of other sessions [4]. As a
result, we can only analyze a single session and still deduce security properties
of the overall system [4]. Furthermore, they have proved that symbolic analysis
is computationally sound in UC model. Canetti and Gajek [5] extended UCSA
to analyze key exchange protocol based on Diffie-Hellman. Zhang and Zhu [6,7]
extended UCSA to analyze Burmester-Desmedt protocol with three parties, and
group key exchange protocols based on bilinear pairings. However, UCSA does
not consider cryptographic protocols in the area of trusted computing.

Since any tiny system vulnerability may bring critical social problems, such
as the leakage of personal privacy or the use of illegal copyright software, trusted
computing has been proposed to enhance the security of computing environment
in disparate computer platforms. Consequently, the Trusted Computing Group
(TCG) has provided the specifications of Trusted Network Connection (TNC)
Architecture [8] and a series of interface specifications, such as IF-T [9] and
IF-TNCCS [10] to solve the interoperability of network access control. In par-
ticular, IF-T describes the mapping of IF-TNCCS messages to a standard TNC
Extensible Authentication Protocol (EAP) method. It includes specification of
the standard EAP method called EAP-TNC. Since EAP-TNC is important to
encapsulate TNCCS messages so that they can be carried over tunneled EAP
methods, it is necessary to analyze its security.

We extend UCSA approach to analyze EAP-TNC protocol that use Diffie-
Hellman Pre-Negotiation (D-H PN), hash function and digital signature. It is
tricky to analyze cryptographic protocols that use Diffie-Hellman pre-negotiation,
hash function and digital signature simultaneously in symbolic model, because
how to establish the appropriate rules for adversary to derive messages is not
explicit for the complex protocols. Furthermore, The mapping from computa-
tional model to symbolic model is complicated. We solve these problems by
symbolic adversary strategy, mapping theorem and computational soundness
theorem, based on that D-H PN satisfies computational Diffie-Hellman (CDH)
assumption, hash function is collision resistant, and digital signature scheme is
existentially unforgeable. The specific steps are as follow:

1. Model symbolic analysis. More specially, we define symbolic algebra, sym-
bolic protocol, symbolic adversary, symbolic trace occurred in the execution
of symbolic protocol;

2. Model computational analysis. More specially, we define computational trace
occurred in the execution of computational protocol, and ideal functionality
of EAP-TNC protocol;

3. Define the syntax, symbolic semantics, and computational semantics of EAP-
TNC protocol that has clear symbolic forms;

4. Define a mapping algorithm from computational traces to symbolic traces,
based on the syntax and semantics of EAP-TNC protocol. Furthermore, prove
that themapping algorithm is always valid exceptwith a negligible probability;

5. Prove that the symbolic analysis of EAP-TNC protocol is computationally
sound in computational model, based on the valid mapping algorithm;

Computationally Sound Symbolic Analysis of EAP-TNC Protocol 115

6. Define symbolic security criterion, and analyze security of EAP-TNC proto-
col via ProVerif in symbolic model.

2 EAP-TNC Protocol with Diffie-Hellman
Pre-Negotiation

In this section, we first recall the location and description of EAP-TNC protocol
with D-H DN in IF-T. First, the location of EAP-TNC protocol in TNC Archi-
tecture [8] is as in Fig 1, and the specific description of EAP-TNC protocol with
D-H PN in IF-T [9] is as in Fig 2.

IMC

TNCC

EAP-TNC Method

Access Client

EAP Peer

Tunnel EAP Method

IMV

TNCS

EAP-TNC Method

AAA Server

EAP Authenticator

Tunnel EAP Method

Protocol
Translator

PEP
NAR NAA

IF-M

IF-TNCCS

IF-T
EAP-TNC

Tunnel EAP

EAP

Access
Protocol

AAA
Protocol

IF-PEPData

To Network

Fig. 1. The Location of EAP-TNC Protocol

NAR NAA

H=Hash
(Nonces,Key)

Extend H into
PCR

EAP Request

EAP Response

Outer EAP tunnel establishment (creates key K to protect the tunnel)

EAP-TNC Request (D flag set)

EAP-TNC Response (D flag set)

EAP-TNC Diffie-Hellman Pre-Negotiation

EAP-TNC Request (Query)

EAP-TNC Response (Signed Measurements and PCRs)

EAP Response (Success/Failure) + Binding objects
(protected using key generated from mix of K and K)O i

Protected
EAP Tunnel
Contents

Inner key
K
i

i

O

Fig. 2. The Specific Description of EAP-TNC Protocol

116 Z. Zhang et al.

Next we recall the description of EAP-TNC protocol with D-H PN [9] as follow:

1. The authenticator first sends an EAP-TNC Request message at the start.
2. When the access requestor receives the EAP-TNC Request message, send

an EAP-TNC Response message.
3. When the authenticator receives the EAP-TNC Response message, send a

D-H PN Hello Request message to carry out D-H PN protocol, and output
(Start, Authenticator, Requestor). In particular, Start indicates that the
authenticator has been initialized, Authenticator represents the identity of
authenticator, while Requestor represents the identity of access requestor.

4. When the access requestor receives the D-H PN Hello Request message,
send a D-H PN Hello Response message, and output (Start, Requestor,
Authenticator) to indicate that the access requestor has already been ini-
tialized.

5. When the authenticator receives the D-H PN Hello Response message, first
choose a random number x and a nonce N1. Then send a D-H PN Parameters
Request message which contains gx and N1.

6. When the access requestor receives the D-H PN Parameters Request mes-
sage, it first chooses a random number y and a nonce N2. Then compute gxy,
Hash(1|N1|N2|gxy) as Unique-Value-1, and Hash(2|N1|N2|gxy) as Unique-
Value-2. Finally, erase y, and send a D-H PN Parameters Response message
which contains gy and N2.

7. When the authenticator receives the D-H PN Parameters Response message,
compute gxy,Hash(1|N1|N2|gxy) as Unique-Value-1, andHash(2|N1|N2|gxy)
as Unique-Value-2, erase x, and send an EAP-TNC Request message.

8. When the access requestor receives the EAP-TNC Request message, send
an EAP-TNC Response message:
(PCRs, UniqueV alue1, Sigsk(PCRs|UniqueV alue1)), and update
Hash(UniqueV alue2|Hash(Response)) to Unique-Value-2.
In particular, PCRs represents the value of platform configuration registers.

9. When the authenticator receives the EAP-TNC Response message, verify
whether the signature is valid or not.
If valid, update Hash(UniqueV alue2|Hash(Response)) to Unique-Value-2
send an EAP-TNC Success message, and output (Success, Authenticator).
In particular, Success stands for the authenticator succeed to authenticate
the identity of access requestor.

10. When the access requestor receives the EAP-TNC Success message, out-
put (Success,Requestor) to indicate that access requestor has already been
authenticated successfully.

3 Symbolic Analysis of EAP-TNC Protocol with D-H PN

In this section, we define the symbolic algebra, the symbolic protocol, the sym-
bolic adversary, the symbolic trace, and the symbolic security criterion of EAP-
TNC protocol with D-H PN.1

1 The definitions from section 3 to section 6 are extended from [4,5].

Computationally Sound Symbolic Analysis of EAP-TNC Protocol 117

3.1 Symbolic Algebra and Symbolic Protocol

Definition 1 (Symbolic Algebra A). First, eight necessary types of atomic
messages for EAP-TNC protocol with D-H PN are defined as follow:

1. Group. We denote G as a group with a prime order q, and g is a generator
of G.

2. Participant Identity. Each participant identity is denoted by pid, and the set
of the whole participant identities is denoted by PID.

3. Private Key. The private key of each participant is denoted by sk. The set
of the private keys is denoted by SK.

4. Public Key. The public key of each participant is denoted by pk. The set of
the public keys is denoted by PK. In addition, assume that the public key
can be computed by the private key.

5. Random Number. The random number is denoted by r, (r ∈R Z∗
q). It is used

to keep the freshness of a message, and represent the internal state of an
honest participant.

6. Message Digest. They are denoted by MD and used to represent the message
digest of the messages.

7. Output. Each output is denoted by o, and the set of the outputs is denoted
by O. There are two kinds of output: (Start, pid, pid′) is at the start of the
protocol; (Success, pid) is at the end of the protocol.

8. Evaluation. The evaluation is denoted by E. If the result of an evaluation
is valid, it is denoted by �, Otherwise, it is denoted by ⊥. The execution
of the protocol will continue, if the result is �. Otherwise, it will terminate
immediately.

Next nine operations for EAP-TNC protocol with D-H PN are defined as follow:

1. Get Public Key Operation. This operation is denoted by GPK(sk) : SK →
PK, and used to get the public key of a honest participant via sk.

2. Modular Exponentiation Operation. This operation is denoted by ME(r) :
R → G, and used to modular multiply g by r times, where g is the generator
of G and r is a random element of Z∗

q .
3. Modular Multiplication Operation. This operation is denoted by MM(r, s) :

R × G → G, and used to modular multiply s by r times. This operation
contains two parameters: r is used to count the times, and it is a random
element of Z∗

q ; s is the result of the modular exponentiation operation.
For example, MM(r1,ME(r2)) means that modular multiply ME(r2) by r1
times. Moreover, this operation satisfies the commutative law, and the result
of this operation is still an element of G.

4. Hash Operation. This operation is denoted by Hash(x) : A → MD, and used
to compute the message digest of a message x, (x ∈ A).

5. Signature Operation. This operation is denoted by Sig(z, x) : sk × A → A,
and used to sign a message x via the private key z, where z ∈ SK, x ∈ A.

6. Verification of Signature Operation. This operation is denoted by
V erSig(z, x, y) : pk × A × A → E, and used to verify the signature y of
message x via public key z, where z ∈ PK, x ∈ A, y ∈ A.

118 Z. Zhang et al.

7. Pair Operation. This operation is denoted as Pair(m0,m1) : A × A → A,
and used to represent the concatenation of two messages in A. In particular,
we write m0|m1 for short.

8. Extract Left Operation. This operation is denoted by Ex l(m) : A → A, and
used to extract the left half of m. In addition, if m is not the form of m0|m1,
the result is ⊥.

9. Extract Right Operation. This operation is denoted by Ex r(m) : A → A,
and used to extract the right half of m. In addition, if m is not the form of
m0|m1, the result is ⊥.

Definition 2 (Symbolic Protocol). The symbolic expression of EAP-TNC
protocol with D-H PN π is a mapping from (1) the set PID of participant iden-
tities, (2) the set S = (A)∗ of states, and (3) the set of the algebra A which
represents the possible incoming messages of the participants, to (1) the set E
of evaluation, or (2) the set of (“message” × A) which represents the possible
outgoing messages of the participants, or (3) the set of (“output”×O) which de-
scribes the possible outputs of the participants, (4) the set of (“erase”, R) which
indicates that the honest participants erase the internal states. (5) and the set
S = (A)∗ of the new states. Formally, π : PID × S × A → E ∪ (“message” ×
A) ∪ (“output”× O) × ∪(“erase”, R)× S.

3.2 Symbolic Adversary and Symbolic Trace

Definition 3 (Initial Knowledge of Symbolic Adversary). The initial
knowledge of symbolic adversary in EAP-TNC protocol with D-H PN is defined
as a set, including (1) the prime order q of G and the generator g, (2) all the par-
ticipant identities PID,(3) all the public key PK, and (4) the random elements
of Z∗

q generated by the adversary itself.

Definition 4 (Analysis Closure of Symbolic Adversary). Let Radv(Radv

⊂ Z∗
q) denotes the subset of Z∗

q generated by the adversary. Let Aadv denotes
the set of messages which can be received from honest participants, when EAP-
TNC protocol with D-H PN is executed. Then the analysis closure C[Aadv] of
the adversary is defined recursively as the smallest subset of A, such that:

Aadv ⊆ C[Aadv];
Radv ⊆ C[Aadv];
if sk ∈ C[Aadv], then GPK(sk) ∈ C[Aadv];
if r ∈ C[Aadv], then ME(r) ∈ C[Aadv];
if r, s ∈ C[Aadv], then MM(r, s) ∈ C[Aadv];
if x ∈ C[Aadv], then Hash(x) ∈ C[Aadv];
if z, x ∈ C[Aadv], then Sig(z, x) ∈ C[Aadv];
if z, x, y ∈ C[Aadv], then V erSig(z, x, y) ∈ C[Aadv];
if m0,m1 ∈ C[Aadv], then m0|m1 ∈ C[Aadv];
if m0|m1 ∈ C[Aadv], then m0,m1 ∈ C[Aadv].

Definition 5 (Symbolic Trace). The symbolic trace t is a sequence of events
H0, H1, . . . , Hn, each Hi is one of the triple:

Computationally Sound Symbolic Analysis of EAP-TNC Protocol 119

1. Initialization Event
[“init”, pid, pid′, Si,init] represents the input for participant pid with initial
state Sinit, and partner pid′.

2. Honest Participant Event

– [“message”,m] represents that a participant sends a message m.
– [”output”, o] represents that a participant generates an output o.
– [“erase, r] represents that a participant erase its internal state r.

3. Adversary Event

– [“name”, pid] represents that symbolic adversary generates a participant
identity pid, where pid ∈ C[Aadv].

– [“sk”, sk] represents that symbolic adversary generates a private key sk,
where sk ∈ C[Aadv].

– [“random”, r] represents that symbolic adversary generates a random
number r, where r ∈ Radv.

– [“GPK”, sk] represents that symbolic adversary computes GKE(sk),
where sk ∈ C[Aadv] .

– [“ME”, r] represents that symbolic adversary computes ME(r), where
r ∈ Radv .

– [“MM”, r, s] represents that symbolic adversary computes MM(r, s),
where r, s ∈ C[Aadv].

– [“MD”, x] represents that symbolic adversary computes Hash(x), where
x ∈ C[Aadv].

– [“SIG”, z, x] represents that symbolic adversary computes Sig(z, x),
where z, x, y ∈ C[Aadv].

– [“V ERSIG”, z, x, y] represents that symbolic adversary computes
V erSig(z, x, y), where z, x, y ∈ C[Aadv].

– [“PAIR”,m0,m1] represents that symbolic adversary computes
Pair(m0,m1), where m0,m1 ∈ C[Aadv].

– [“SEP”,m] represents that symbolic adversary computes Ex l(m) and
Ex r(m), where m ∈ C[Aadv].

– [“deliver”,m, pid] represents that symbolic adversary delivers a message
m to the participant pid.

Furthermore, if there exists a message in t which does not belong to any kind of
the triple above, we regard t as an invalid symbolic trace.

Definition 6 (Adversary Strategy). With the execution of EAP-TNC proto-
col with D-H PN π, adversary strategy Ψ is a sequence of adversary instructions
I0, I1, . . . , In, each Ii is either:

[“receive”,m], [“name”, pid], [“sk”, sk], [“random”, r],
[“GPK”, sk], [“ME”, r], [“MM”, r, s], [“MD”, x],
[“SIG”, z, x], [“V ERSIG”, z, x, y], [“PAIR”,m0,m1], [“SEP”,m],
[“deliver”,m, pid].

The adversary strategy Ψ produces the following symbolic trace Ψ(π):

120 Z. Zhang et al.

For each form of [“receive”,m] instruction, if the participant pid is just ac-
tivated by D-H PN Hello Request message or EAP-TNC Response message,
[“output”, (Start, pid, pid′)] is added to the symbolic trace.

If the participant pid is just activated and sent a message m, [“message”,m]
is added to the symbolic trace.

If the authenticator is activated and sent the EAP-TNC Success message or
the access requestor pid is activated by the EAP-TNC Success message,
[“output”, (Success, pid)] is added to the symbolic trace.

If the internal state r is erased, [“erase”, r] is added to the symbolic trace.
Otherwise, output ⊥ for failure.
For any other instructions, add the corresponding adversary events to the

symbolic trace. If anyone of the event results in an invalid symbolic trace, output
⊥.

4 Computational Analysis of EAP-TNC Protocol with
D-H PN

In this section, we define the computational trace and functionality of EAP-TNC
protocol with D-H PN.

Definition 7 (Computational Trace). Let TRACEπ,S,Z(k, z) denote the trace
of EAP-TNC protocol with D-H PN, where the protocol is denoted by π, the com-
putational adversary is denoted by S, the environment is denoted by Z, security
parameter is denoted by k, and the input is denoted by z. The computational
trace is the sequence of events H1, H2, . . . , Hn, each of which is one of the triple:

1. Initialization Event
The initialization event of [“init”, pid, pid′] represents that the participant
pid starts to execute π with its partner pid′.

2. Adversary Event
The adversary event of [“adversary”,m, pid] represents that the adversary
sends a message m to the participant pid.

3. Honest Participant Event
The honest participant event of [“message”,m], [“output”, o], [“erase”, r].
The first indicates that a participant sends a message m on adversarial in-
coming communication tape. The second represents that a participant gener-
ates outputs o on its local output tape. The third expresses that a participant
erases its internal state r.

The ensemble {TRACEπ,S,Z(k, z)}k∈N,z∈{0,1}∗ is denoted by EXECπ,S,Z.

Definition 8 (Authentication Functionality FAF). FAF proceeds as
follows, when parameterized with security parameter k, an ideal adversary S:

1. Initially, set a variable Finished to false.
2. Upon receiving an input (pid, pid′) from some participant pid, do:

Computationally Sound Symbolic Analysis of EAP-TNC Protocol 121

– If there is no record for (pid, pid′), then record (pid, pid′), and send
(pid, pid′) to the adversary.

– If (pid′, pid) has already been recorded, then set Finished to true.
3. Upon receiving from the adversary a request (Success,pid”), if pid” is either

pid or pid′, and Finished is true, send (Success,pid”) to pid”.

5 Syntax and Semantics of EAP-TNC Protocol with D-H
PN

In this section, we first define the syntax of EAP-TNC protocol with D-H PN.

Definition 9 (The Syntax of Simple Protocol). EAP-TNC protocol with D-
H PN π is a pair of programs π = (π0, π1), each of which is given by the grammar
as follow:

PROGRAM ::= init(pid, pid′);COMMAND
COMMAND ::= COMMAND;COMMAND|done
|receive(v); |send(vc); |output(vc); |GPK(vc, v); |ME(vc, v); |MM(vc0, vc1, v);
|Hash(vc, v); |Sig(vc0, vc1, v); |V erSig(vc0, vc1, vc2, v); |newrandom(v);
|Pair(vc0, vc1, v); |Sep(vc, v0, v1); |erase(vc);

Here vc, vc0, vc1, vc2 stand for constants and v, v0, v1 stand for variables.

Next we define the symbolic and computational semantics of EAP-TNC protocol
with D-H PN.

Definition 10 (Symbolic Semantics). Let π = (π1, π2) be a simple protocol.
Let π be the symbolic protocol of π where the set of states S consist of a program
counter Γ that indicates the next command to execute, and a store command
Δ that maps variables in π to the corresponding symbols in the algebra A. For
all (Γ,Δ) ∈ S,m ∈ A, p ∈ PID, the mapping π is defined on the commands in
π = (π1, π2) as follow:

1. If Γ points to send(vc), then π(s, p, (Γ,Δ),m) → (“message”, Δ(vc), (Γ ′, Δ)),
Γ ′ points to the next command.

2. If Γ points to erase(vc), then π(s, p, (Γ,Δ),m) → (“erase”, Δ(vc), (Γ ′, Δ)),
Γ ′ points to the next command.

3. If Γ points to output(vc), then π(s, p, (Γ,Δ),m) → (“output”, Δ(vc), (Γ ′, Δ)),
Γ ′ points to the next command.

4. If Γ points to one of the following commands, then
π(p, (Γ,Δ),m) → (p, (Γ ′, Δ′),m), where Γ ′ points to the next command and
Δ′ is equal to Δ, except that:
– receive(v) : Δ′(v) = m.
– GKE(vc, v) : Δ′(v) = GPK(vc).
– ME(vc, v) : Δ′(v) = ME(vc).
– MM(vc0, vc1, v) : Δ

′(v) = MM(vc0, vc1).

122 Z. Zhang et al.

– Hash(vc, v) : Δ′(v) = Hash(vc).
– Sig(vc0, vc1, v) : Δ

′(v) = Sig(vc0, vc1).
– V erSig(vc0, vc1, vc2, v) : Δ

′(v) = V erSig(vc0, vc1, vc2).
– newrandom(v) : Δ′(v) is the first element of R that is not in the range

of Δ.
– Pair(vc1, vc2, v) : Δ

′(v) = Pair(Δ(vc1), Δ(vc1)).
– Sep(vc, v1, v2) : If Δ(vc) = Pair(Δ(vc1), Δ(vc2)),Δ

′(v1) = Ex l(Δ(vc)),
Δ′(v2) = Ex r(Δ(vc)). Otherwise, Δ′(v) = ⊥.

Definition 11 (Computational Semantics). Let a PPT ITM π = (π1, π2) be
a simple protocol. The state set SM consists of {“init”}∪ S1 ∪ S2, where “init”
represents the initial state of Mπ, and each state Si = (pidi, Δi, Γi),(i ∈ {1, 2})
represents the protocol program with a participant pidi, a store command Δi

which maps from variable names in pidi to locations on the work tape, and a
program counter Γi which indicates the current command of pidi. To encode the
execution of each pidi, the transition function is defined over SM as follow:

1. If Mπ is in the initial state “init”, it will first read the security parameter
k, two participant identities pid1, pid2. Then Mπ initializes the storage and
writes [“init”, Start, pid1, pid2]. Finally, it sets the program counter Γi to
the next command and executes it.

2. After initialization, the transition function will continue to execute the com-
mand of πi by program counter Γi:
– receive(v): If the command has already been executed in this activation,

Mπ waits to be reactivated. Otherwise, it reads the message from its
incoming communication tape and stores it in v, instructs Γi to next
command and executes it.

– send(vc): Mπ writes vc to adversarial incoming communication tape,
instructs Γi to next command and executes it.

– output(vc): Mπ writes vc to its local output tape, instructs Γi to next
command and executes it.

– GPK(vc, v): Mπ stores [“gpk”, vc] in v, instructs Γi to next command
and executes it.

– ME(vc, v): Mπ stores [“me”, vc] in v, instructs Γi to next command and
executes it.

– MM(vc0, vc1, v): Mπ stores [“mm”, vc0, vc1] in v, instructs Γi to next
command and executes it.

– Hash(vc, v): Mπ stores [“hash”, vc] in v, instructs Γi to next command
and executes it.

– Sig(vc0, vc1, v): Mπ stores [“sig”, vc0, vc1] in v, instructs Γi to next com-
mand and executes it.

– V erSig(vc0, vc1, vc2, v): Mπ stores [“versig”, vc0, vc1, vc2] in v, instructs
Γi to next command and executes it.

– newrandom(v): Mπ generates a random number r ← {0, 1}k, stores
[“random”, r] in v, instructs Γi to next command and executes it.

– pair(vc1, vc2, v): Mπ stores [“pair”, vc0, vc1] in v, instructs Γi to next
command and executes it.

Computationally Sound Symbolic Analysis of EAP-TNC Protocol 123

– erase(vc): Mπ deletes the value of vc from its work tape, instructs Γi to
next command and executes it.

– sep(vc, v1, v2): Mπ compute Ex l(vc) and Ex r(vc), stores Ex l(vc) in
v1, Ex r(vc) in v2, instructs Γi to next command and executes it.

6 Mapping Algorithm and Mapping Theorem of
EAP-TNC Protocol with D-H PN

In this section, we first define the mapping algorithm for EAP-TNC protocol
with D-H PN.

Definition 12 (Mapping Algorithm). Assume that the computational trace
of π is denoted by TRACEπ,S,Z(k, z), the computational adversary is denoted
by S, the environment is denoted by Z, the security parameter is denoted by k,
and the input is denoted by z. In addition, assume that π is the correspondent
symbolic protocol for π, t is the symbolic trace of π, and the symbolic adversary
is S. The mapping algorithm δ from TRACEπ,S,Z(k, z) to t be defined as follow:

First, read all the trace TRACEπ,S,Z(k, z) character by character to build
the mapping from bit-strings to the elements of the symbolic algebra A. That is
δ : {0, 1}∗ → A, according to the cases below:

1. When parsing a pattern [“name”, pid], set δ(“name”, pid) = pid.
2. When parsing a pattern [“sk”, sk], set δ(“sk”, sk) = sk.
3. When parsing a pattern [“random”, r], set δ(“random”, r) = r.
4. When parsing a pattern [“gpk”, sk], set δ(“gpk”, sk) = GPK(δ(sk)).
5. When parsing a pattern [“me”, r], set δ(“me”, r) = ME(δ(r)).
6. When parsing a pattern [“mm”, r, s], set δ(“mm”, r, s) = MM(δ(r), δ(s)).
7. When parsing a pattern [“hash”, x], set δ(“hash”, x) = Hash(δ(x)).
8. When parsing a pattern [“sig”, z, x, y], set δ(“sig”, z, x) = Sig(δ(z), δ(x)).
9. When parsing a pattern [“versig”, z, x, y], set δ(“versig”, z, x, y)

= V erSig(δ(z), δ(x), δ(y)).
10. When parsing a pattern [“pair”, a, b], set δ(“pair”, a, b) = δ(a)|δ(b).

In addition, all the other bit-strings, such as � and ⊥, are the same on both
sides.

After that, construct the symbolic trace. Assume that H1, H2, . . . , Hn is the
events of a computational trace, the corresponding symbolic trace is produced as
follow:

1. If H = [“init”, pid, pid′], then generate the event
[“init”, δ(“name”, pid), δ(“name”, pid′), Sinit].

2. If H = [“adversary”,m], map it to [“deliver”, δ(m), δ(pid)], which indicates
to send message m to participant pid. In particular, pid is obtained from the
message m.

3. If H = [“message”,m], then the event maps to [“message”, δ(m)].
4. If H = [“output”, o], then the event maps to [“output”, δ(o)].
5. If H = [“erase”, r], then the event maps to [“erase”, δ(r)].

124 Z. Zhang et al.

Next we prove the validity of Definition 12 as follow:

Theorem 1 (Mapping Theorem). Let δ be the mapping algorithm from the
computational trace TRACEπ,S,Z(k, z) to the symbolic trace t. If D-H PN sat-
isfies CDH assumption, Sig is a secure digital signature scheme, and Hash is
collision resistant, then we have:

Pr[t ← EXECπ,S,Z] : t is not valid] ≤ negl(k).

Proof. The initialization event and the honest participant event are always valid
by Definition 5. Therefore, we just need to prove that it is negligible that the
adversary event is invalid. In other words, it is negligible that there is a message
M∗ which can be generated by the computational adversary but not be generated
by the symbolic adversary. Therefore, some of the parameters used to compute
M∗ need not be known by the symbolic adversary.

Assume that m∗
t represents all the messages previous to m∗. There are four

kinds of possibilities:
First, M∗ is a random number. Since the honest participants choose it ran-

domly from Z∗
q , the probability that M∗ equals the nonce generated by some

honest participants is negligible in probabilistic polynomial time (PPT).
Second, M∗ is a value of MM(r1,ME(r2)). Based on computational Diffie-

Hellman assumption, if r1 �∈ C[m∗
t] or r2 �∈ C[m∗

t], the probability that M∗ is
equal to the value of MM(r1,ME(r2)) generated by some honest participants
is also negligible in PPT.

Third, M∗ is a value of Hash((1, r1, r2,MM(y,ME(x)))) or
Hash((2, r1, r2,MM(y,ME(x)))). Since Hash function is collision resistant, the
probability is negligible in PPT that M∗ generates r′1, r

′
2, y

′, x′, such that
Hash(1, r′1, r

′
2, y

′,ME(x′)) = Hash((1, r1, r2,MM(y,ME(x)))) or
Hash(2, r′1, r

′
2, y

′,ME(x′)) = Hash((2, r1, r2,MM(y,ME(x)))).
Fourth, M∗ is a value of Sig(GPK(sk), (PCRs, hash value 1)). Since Sig is a

secure digital signature scheme, the probability that M∗ forges a valid signature
is also negligible in PPT.

Above all, the probability that t is not valid is negligible.
We complete the proof.

7 Security Analysis of EAP-TNC Protocol with D-H PN

In this section, we first prove computational soundness of DYSA.

Theorem 2 (Computational Soundness). For any adversary strategy Ψ , if
EAP-TNC protocol with D-H PN π has a mapping from computational traces to
symbolic traces, then π securely realizes FAF , if π satisfies DYSA.

Proof. We prove if we can distinguish the real protocol π and real adversary
from the ideal functionality FAF and ideal adversary, π does not satisfy DYSA.

Computationally Sound Symbolic Analysis of EAP-TNC Protocol 125

We first construct a simulator (i.e., an ideal adversary) to show how to simu-
late π and the real adversary via FAF and the simulator. The simulator proceeds
as follow:

The simulator simulates the participants ′pid,′ pid′, but neither of these sim-
ulated participants are running.

When the simulator receives a message (pid, pid′) from FAF , the simulator
activates the simulated participant ′pid by the input (“init”, Start,′ pid,′ pid′).

When the simulator receives a message sent by the environment to the par-
ticipant pid, forward it to the simulated participant ′pid.

When the simulated participant ′pid sends a message on its communication
tape, send it to the environment.

When the simulated participant ′pid produces an output (Success, pid), send
it to FAF .

Then, if the environment can distinguish the real protocol π and real ad-
versary from the ideal functionality FAF and the simulator, there must ex-
ist a symbolic adversary strategy, such that (Success, pid) or (Success, pid′)
has been occurred, before (pid, pid′) or (pid′, pid) for FAF . This implies that
(“output”, (Success, pid)) or (“output”, (Success, pid′)) has been occurred, be-
fore (“output”, (Start, pid, pid′)) or (“output”, (Start, pid′, pid)) in a computa-
tional trace t. If t can be mapped to a valid symbolic trace t, π does not satisfy
DYSA.

We complete the proof.

Next we provide the criterion of symbolic secure authentication, and discuss the
security of EAP-TNC protocol with D-H PN in symbolic model. In particular,
we only need to analyze a single session but remain valid when the analyzed
session is composed with an unbounded number of other sessions, based on the
work of [4].

Definition 13 (Criterion of Dolev-Yao Secure Authentication). The
symbolic protocol fulfills Dolev-Yao secure authentication (DYSA), if participant
pid generates an output (Success, pid) imply that participant pid generates an
output (Start, pid, pid′), and its partner pid′ generates an output (Start, pid′, pid).

Theorem 3 (DYSA of EAP-TNC Protocol). EAP-TNC protocol with D-H
PN is DYSA.

We analyze EAP-TNC protocol via an automated tool ProVerif. The specific
implementation is enumerated in Fig 3, and the analysis result is enumerated in
Fig 4.

126 Z. Zhang et al.

free c. data EAP TNC Request/0. data EAP TNC Response/0.
data DH PN Hello Request/0. data DH PN Hello Response/0.
data EAP TNC Success/0. fun GPK/1. fun ME/1. fun MM/2.
fun Hash/1. fun Sig/2. fun erase/1. data one/0. data two/0. data true/0.
equation MM(y,ME(x)) = MM(x,ME(y)).
reduc VerSig(GPK(z), x, Sig(z,x)) = true.
query ev:endARParam(x1,x2) ==> ev:beginARParam(x1,x2).
query ev:endARFull(x1,x2,x3) ==> ev:beginARFull(x1,x2,x3).
let AR = in (c, m1);
let (=EAP TNC Request) = m1 in
out (c, EAP TNC Response); in (c, m2);
let (=DH PN Hello Request) = m2 in
out (c, DH PN Hello Response); in (c, m3);
let (gx,n1) = m3 in new y; new N2; out(c, (ME(y),N2));
event beginARParam(ME(y),N2); in (c, m4);
let (=EAP TNC Request) = m4 in
let hash value 1 = Hash((one,n1,N2,MM(y,gx))) in
let hash value 2 = Hash((two,n1,N2,MM(y,gx))) in out(c,erase(y));
out(c,(PCRs, hash value 1, Sig(sk AR,(PCRs,hash value 1))));
event beginARFull(PCRs, hash value 1, Sig(sk AR,(PCRs,hash value 1)));
let hash value 2 = Hash((hash value 2,(PCRs, hash value 1, Sig(sk AR,(PCRs,
hash value 1))))) in in (c, m5);
let (=EAP TNC Success) = m5 in 0.
let AA = out(c,EAP TNC Request); in (c, m1);
let (=EAP TNC Response) = m1 in
out (c, DH PN Hello Request); in (c, m2);
let (=EAP TNC Hello Response) = m2 in
new x; new N1; out (c, (ME(x),N1)); in (c, m3);
let (gy,n2) = m3 in
let hash value 1 = Hash((one,N1,n2,MM(x,gy))) in
let hash value 2 = Hash((two,N1,n2,MM(x,gy))) in out(c,erase(x));
out(c, EAP TNC Request); in (c, m4);
let (m4 1,m4 2,m4 3) = m4 in
let (=hash value 1) = m4 3 in
if VerSig(pk AR, (m4 1,m4 2), m4 3) = true then
let hash value 2 = Hash((hash value 2, (PCRs, hash value 1, Sig(sk AR,(PCRs,
hash value 1))))) in
out(c, EAP TNC Success);
event endARParam(gy,n2);
event endARFull(m4 1,m4 2,m4 3).
process new sk AR;
let pk AR = GPK(sk AR) in (AA | AR)

Fig. 3. The symbolic analysis of EAP-TNC protocol with D-H PN

Computationally Sound Symbolic Analysis of EAP-TNC Protocol 127

– Query ev:endARFull(x1 48,x2 49,x3 50)
==> ev:beginARFull(x1 48,x2 49,x3 50)
Completing...
Starting query ev:endARFull(x1 48,x2 49,x3 50)
==> ev:beginARFull(x1 48,x2 49,x3 50)
RESULT ev:endARFull(x1 48,x2 49,x3 50)
==> ev:beginARFull(x1 48,x2 49,x3 50) is true.
– Query ev:endARParam(x1 463,x2 464)
==> ev:beginARParam(x1 463,x2 464)
Completing...
Starting query ev:endARParam(x1 463,x2 464)
==> ev:beginARParam(x1 463,x2 464)
RESULT ev:endARParam(x1 463,x2 464)
==> ev:beginARParam(x1 463,x2 464) is true.

Fig. 4. The result of the specific implementation

Fig 4 shows that the endARFull event of authenticator imply that the
beginARFull event of access requestor. In other words, the output EAP-TNC-
Success of authenticator indicates that the access requestor has sent the EAP-
TNC-Response message. Therefore, according to the order of protocol execu-
tion, (Start, Requestor, Authenticator) and (Start, Authenticator, Requestor)
must occur, before (Success,Requestor) and (Success, Authenticator), respec-
tively. Otherwise, symbolic adversary must fake EAP-TNC-Response message:
(PCRs, UniqueV alue1, Sigsk(PCRs|UniqueV alue1)) by itself successfully. It is
negligible because the digital signature scheme is existentially unforgeable.

Above all, based on Theorem 1, 2, 3, EAP-TNC protocol with D-H PN se-
curely realizes FAF , since EAP-TNC protocol with D-H PN satisfies DYSA.

8 Conclusion

We try to analyze the security of EAP-TNC protocol with D-H PN in the ex-
tension of UCSA. Our approach could prove composable security property of
protocols in the area of trusted computing by computationally sound and fully
automated symbolic analysis. Our work laid the root for analyzing the other
protocols in TNC Architecture automatically, without sacrificing computational
soundness of cryptography.

In this paper, the ideal functionality is basic. Researchers can modify it for
more complex target and more powerful adversary. In that case, researchers can
also modify EAP-TNC protocol to improve its security property.

Acknowledgment. Corresponding Author: Liehuang Zhu. This paper is sup-
ported by National Natural Science Foundation of China No.61003262, and Na-
tional Natural Science Foundation of China No.60873237.

128 Z. Zhang et al.

References

1. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science, pp.
136–145. IEEE Computer Society (2001)

2. Blanchet, B.: Automatic verification of correspondences for security protocols.
Journal of Computer Security 17(4), 363–434 (2009)

3. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology 15(2), 103–127 (2002)

4. Canetti, R., Herzog, J.: Universally Composable Symbolic Analysis of Mutual Au-
thentication and Key-Exchange Protocols. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg (2006)

5. Canetti, R., Gajek, S.: Universally composable symbolic analysis of Diffie-Hellman
based key exchange, http://eprint.iacr.org/2010/303.pdf

6. Zhang, Z.J., Zhu, L.H., Liao, L.J.: Universally composable symbolic analysis of
group key exchange protocol. China Communications 8(2), 59–65 (2011)

7. Zhang, Z.J., Zhu, L.H., Liao, L.J., Wang, M.Z.: Computationally Sound Symbolic
Security Reduction Analysis of the Group Key Exchange Protocol using Bilinear
Pairings. Information Sciences (2012), doi:
http://dx.doi.org/10.1016/j.ins.2012.04.029

8. Trusted Computing Group, TNC Architecture for Interoperability, Specification
Version 1.4, Revision 4 (2009),
https://www.trustedcomputinggroup.org/specs/TNC

9. Trusted Computing Group, TNC IF-T: Protocol Bindings for Tunneled EAPMeth-
ods Specification Version 1.1, Revision 10 (2007),
https://www.trustedcomputinggroup.org/specs/TNC

10. Trusted Computing Group, TCG Trusted network connect TNC IF-TNCCS Spec-
ification Version 1.1, Revision 10 (2007),
https://www.trustedcomputinggroup.org/specs/TNC

http://eprint.iacr.org/2010/303.pdf
http://dx.doi.org/10.1016/j.ins.2012.04.029
https://www.trustedcomputinggroup.org/specs/TNC
https://www.trustedcomputinggroup.org/specs/TNC
https://www.trustedcomputinggroup.org/specs/TNC

A Technique for Remote Detection

of Certain Virtual Machine Monitors

Christopher Jämthagen, Martin Hell, and Ben Smeets

Department of Electrical and Information Technology,
Lund University, P.O. Box 118, 221 00 Lund, Sweden

{christopher,martin,ben}@eit.lth.se

Abstract. The ability to detect a virtualized environment has both ma-
licious and non-malicious uses. This paper reveals a new exploit and
technique that can be used to remotely detect VMware Workstation,
VMware Player and VirtualBox. The detection based on this technique
can be done completely passively in that there is no need to have access
to the remote machine and no network connections are initiated by the
verifier. Using only information in the IP packet together with informa-
tion sent in the user-agent string in an HTTP request, it is shown how to
detect that the traffic originates from a guest in VMware Workstation,
VMware Player or VirtualBox client. The limitation is that NAT has to
be turned on and that the host and guest need to run different operating
system families, e.g., Windows/Linux.

1 Introduction

Virtualization can be applied as a solution to various kinds of problems. One
common motivation for deploying virtualization is to improve utilization of server
farm hardware resources and thus cutting down on investment and energy costs.
Virtualization is also useful from a security point of view. One particular usecase
in this aspect is malware analysis. Here virtualization makes it easy for the
analyst to restore the operating system, in which the analysis took place, to an
earlier non-infected state. With virtualization the analyst can avoid reinstalling
the operating system between each sample analysis and become more efficient.

In some circumstances, detecting the presence of a virtual environment is im-
portant. Some examples include detecting virtual machine based rootkits (VM-
BRs), honeypots and preventing trial software that is time-limited to be reused.
Detection is possible when a discrepancy in execution in, or communication
from, a virtual machine can be detected. Because of the hypervisor’s involve-
ment, discrepancies are a natural consequence of virtualization and it can often
be difficult, or even impossible, to avoid them. Several VMM detection tech-
niques have been proposed, one notable being the red pill [16] which, even if it is
not practically useful anymore, is a good example of how discrepancies facilitate
VMM detection.

In this paper we exploit a peculiar behaviour of the NAT implementation
in the popular client virtualization tools VMware Workstation/Player and Vir-
tualBox. We explain how the described behaviour can be used for malicious

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 129–137, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

130 C. Jämthagen, M. Hell, and B. Smeets

purposes. Our proposed technique is remote and optionally passive. As opposed
to active techniques, our technique does not require the external verifier to run
benchmarking code on the target host or probe the target for open ports. In our
proposed technique, neither of this is necessary as it is solely based on network
traffic initiated by and sent from the target itself. In our proof-of-concept im-
plementation we only require that the target connects to a web server that we
control. This will (under some reasonable circumstances) allow us to determine
if the client is run as a guest in VMware Workstation/Player or VirtualBox. In
the sequel, for simplicity, we only refer to VMware/VirtualBox, when we mean
all three products.

If the target is being used as a server, with ports open for probing, the tech-
nique can be easily modified to perform active detection. It would then be pos-
sible to check any computer if a service is running in a virtual machine using
VMware/VirtualBox. However, server virtualization typically do not use the
mentioned virtual machine monitors, as they are primarily client virtualization
products.

The paper is outlined as follows: In Section 2 we motivate why VMM detection
is an interesting research area. In Section 3 we present related work. Section 4
provides the prerequisites needed and gives a detailed description of the different
parts used in our new detection technique. Section 5 gives an overview of the
proof-of-concept implementation and the paper is concluded in Section 6.

2 Motivation

As mentioned above, there are several reasons, both malicious and non-malicious,
for why detecting the presence of a virtualized environment is interesting. One
malicious motivation for VMM detection is similar to OS and service detection;
namely to find vulnerable systems. If an attacker is aware of a vulnerability
in the target virtualization product and has an accompanying exploit, detection
will allow him to exploit vulnerable systems only. As opposed to trying to exploit
non-vulnerable systems which may cause the vulnerability to be detected and
patched by the vendor sooner than necessary, effectively decreasing the value of
the exploit. There have been several vulnerabilities in VMware’s virtualization
products over the last couple of years, including vulnerabilities allowing an at-
tacker to execute code on the host from a guest [4,11,13,18]. In this case, the
malware will execute malicious code if a virtual machine is detected.

It is well-known that many anti-virus vendors use virtualization in their anal-
ysis of potential malware [12]. Virtualization allows the analyst to revert the
system to a previously non-infected state, and thus avoiding the hassle of rein-
stalling the entire system to be sure of removing any possible infection. VMM
detection techniques can be used by malware to delay, and perhaps even avoid
detection all together. If the malware is obfuscated or encrypted before execu-
tion, and it detects that it is in a virtual machine at the moment of execution,
it could do several things:

A Technique for Remote Detection of Certain Virtual Machine Monitors 131

– By refusing to decrypt itself, the analyst is forced to spend more time ana-
lyzing the sample.

– The malware can decrypt itself into a piece of harmless code. This could
allow the malware to go undetected all together because the analyst may
not realize that there is any malicious code in the sample.

If the malware does not detect any virtualization, it can execute the malicious
code, causing the target machine to become infected. There is known malware
that utilizes VMM detection, e.g., the conficker worm [1]. In this case, the mal-
ware will not execute malicious code if a virtual machine is detected.

Passive remote detection of a virtual machine can be considered more powerful
than the active or local attacks. In the passive case, no code has to be executed on
the local machine. One motivating scenario is a remote variant of the malware
described above, where malicious code is not executed if a virtual machine is
detected. Instead of locally detecting if it is running in a virtual machine, consider
the case with a server hosting malicious code. The code exploits a vulnerability in
e.g., the web browser. At the same time, an analyst checks the content of the web
server by sending HTTP requests from a virtual machine. If malicious code is
returned, the webpage is considered harmful and users are warned from visiting
that URL. If the returned content is non-malicious, the webpage is considered
benign. In order to avoid being detected by the analyst, the webpage can return
benign code if the requests are sent from a virtual machine, and return malicious
code otherwise.

VMM detection can however be used against attackers as well. There has
been research over the years on hypervisor based malware. The main idea here
is that hypervisor technology is used to put the user in a guest OS, while the
attacker has control of the host OS and can monitor the user in a very stealthy
way. Examples of proof-of-concept hypervisor rootkits are the blue pill [15] and
SubVirt [17].

The use of VMM detection can also be used for and against attackers when
considering honeypot technologies. On one hand it can help gather statistics
about the attackers and their use of virtualization technology, and on the other
hand it can aid attackers to stay away from honeypots, as it is not unusual that
honeypots are based on virtualization technology.

3 Related Work

Several methods to detect virtual machines have been proposed. Redpill [16]
is a detection technique for VMware Workstation and Microsoft’s Virtual PC,
that reads the location of the Interrupt Descriptor Table (IDT). If the location
is one of those known to be used by the virtualization product, virtualization
is detected. Since this address is returned by the hypervisor itself, it is easy
to protect against this technique. Red pill is also interesting due to the fact
that unprivileged users could retrieve the IDT location. Blue pill [15] and Sub-
Virt [17] are examples of VMBRs. These VMMs show why detection techniques

132 C. Jämthagen, M. Hell, and B. Smeets

are important in order to detect malicious use of virtualization. Remote detec-
tion of VMMs were proposed in [8]. However, root access to at least one VM
was required in order to execute the benchmarking code with highest privilege
level and interrupts turned off. Our technique does not require any access to
the remote machine at all. Only a TCP connection is required. Our technique is
similar to OS detection, where differences in the implementation of the IP stack
can be used to detect which operating system is used. One example of an im-
plementation is NMAP [2] which sends TCP and UDP packets to remote hosts
and analyses the TCP/IP header fields of the responses. Using a database with
known characteristics of operating systems, an informed guess can be made as
to which OS is used on the remote machine. Our technique is based on similar
characteristics, but is completely passive and is thus very difficult to detect.

One characteristic that we use in the detection is the algorithm used to gen-
erate the IP identification (IP ID) value in the IP header. The IP ID has been
used in [5] to gain information about the number of hosts behind a NAT. The
IP ID field of packets leaving the NAT was used to count the number of hosts. A
fictional story based on incrementing IP ID values is given in [9]. In this story the
character abuses the fact that the IP ID is incremented by one for each outgoing
packet. Over time he can see patterns in the traffic to different organizations and
correlate the increment in the IP ID and how much the stock of that company
has gone up or down. Based on these observations, it was possible to get a better
idea of whether or not to invest in the future. Even though this is only a fictional
story, it is an interesting idea, similar to the idea in [10], where tracking spam
could give leverage on the stock market. Finally, steganography software exists
which hides data within the IP ID field [19].

4 VMware/VirtualBox NAT Device

The proposed technique is based on the fact that the NAT device used in
VMware/VirtualBox heavily interferes with the network traffic. A NAT device
is used to allow a user with a limited amount of global IP addresses (usually
just one) to connect several internal machines to the Internet by having the
NAT supply a number of local IP addresses for the internal network. Typically,
a NAT only changes the source IP address and source TCP/UDP port in out-
going packets and destination IP address and destination TCP/UDP port in
incoming packets. Additional changes are made by the VMware/VirtualBox vir-
tual NAT device as these NAT engines receive the network traffic and resend
it using their own TCP/IP stack, basically recreating all packet headers. This
behaviour is documented in VirtualBox user manual [6, Ch. 6], but we have not
found it in any VMware documentation.

We have identified three additional changes, which give rise to anomalies, al-
lowing us to distinguish these NAT implementations from other NATs. Each
anomaly is presented in detail in this section. Other NATs that have been con-
sidered, and which do not have any of these anomalies, include the NATs in
the competing virtualization products Xen and Virtual PC, IP tables and the

A Technique for Remote Detection of Certain Virtual Machine Monitors 133

dd-wrt firmware used in many home routers. Note that we consider default
installations as e.g., in IP tables it is possible to configure the TTL value in
outgoing packets. While our list of tested NATs is not exhaustive, and it cannot
be due to the large number of proprietary implementatons, the fact that only the
VMware/VirtualBox NATs show this behaviour indicates that the probability
for false positives are low.

4.1 Prerequisites

The proposed technique for detecting VMware/VirtualBox is based on anomalies
in the NAT implementations. The detection is partly facilitated by differences
between how Windows and Linux sets the TTL and IP ID fields in the IP header
and thus, we need the following prerequisites:

– The target must enable the VMware/Virtualbox NAT device.
– The target’s guest and host operating system must provide different initial

TTL values and/or different IP ID generation methods. Examples of oper-
ating systems that differ in these aspects are Windows and Linux, which are
both supported by VMware and VirtualBox.

Using bridged networking and/or the same operating system family for both
guest and host would result in a false negative.

4.2 TTL

The purpose of the 8-bit time to live (TTL) value in the IP header is to avoid
having a packet circulating infinitely on the Internet in e.g., a routing loop.
It is decremented by one for each router hop. The initial value of the TTL in
outgoing packets is implementation specific. In Windows, the initial value is 128,
while a typical Linux system sets it to 64. While a NAT can modify the TTL
before sending a packet out on the network, to the best of our knowledge it has
no particular reason to do so. However, the value of the TTL is changed when
using the VMware/VirtualBox virtual NAT device. Due to the fact that the host
operating systems TCP/IP stack is used to rebuild outgoing packets, the TTL is
always changed to the default value used by the host. A Windows guest running
on a Linux host will create IP packets with a TTL of 128, but it is changed to 64
before sending the packet out on the network. A corresponding behaviour can be
seen for a Linux guest on a Windows host, i.e., the TTL is changed from 64 to
128 when passing the NAT. This modification of the TTL value has an effect on
tools that rely on the TTL. As an example, traceroute relies on incrementing
the TTL for each new packet in order to determine the route taken for a packet to
a given destination. Using traceroute in a guest running on VMware/VirtualBox
does not give the expected behaviour as the TTL is rewritten in the NAT to the
initial value set by the host OS.

134 C. Jämthagen, M. Hell, and B. Smeets

4.3 IP ID

The main purpose of the IP ID value is to reassemble fragmented packets. The
exact value of the IP ID value is irrelevant, instead it is important that all
packets from one host that is currently on the network have different IP ID val-
ues. Otherwise, the reassembling of fragmented packets would be ambigous. The
generation algorithm of IP ID values is implementation specific. RFC 4413 [14]
specifies three distinct ways for generating the IP ID value:

– Sequential Jump: One global counter is used. All outgoing packets receives
an IP ID value from this counter and the counter is incremented by one for
each outgoing packet. This generation method is used by e.g., the Windows
operating systems.

– Sequential: Each outgoing packet stream has its own counter which is in-
cremented by one for each outgoing packet in the stream. This generation
method is e.g., used by Linux operating systems.

– Random: Each outgoing packet is assigned a random value generated from
a Pseudo Random Number Generator (PRNG). This method is e.g., used in
the OpenBSD operating system.

Similar to the initial TTL value, the Windows and Linux operating systems
differ in the way that the IP ID in the IP header is treated. Again, similar to the
initial TTL value, the VMware/VirtualBox virtual NAT device changes the IP
ID value, by using the algorithm which is default for the host operating system.
While we have not found any other NAT implementation that changes the IP
ID for outgoing packets using a different algorithm than that of the originating
OS, there are apparent benefits of having the NAT control the IP ID. With
several guests running on one host, or alternatively, several computers behind
one NAT, one guest (or computer) has no information about the IP ID values
generated by other guests (or computers). Thus, the probability of collisions in
IP ID values leaving the NAT increases. If the NAT is allowed to control this
value, collisions can be avoided. The fact that this control is implemented by
the VMware/VirtualBox NAT is clear when examining packets originating from
a Linux guest on a Windows host. The IP ID of these packets are generated by
the same sequential jump algorithm as packets originating from the host itself.

It should be noted that packets from two different connections are needed in
order to reliably distinguish the generation algorithms used by Windows and
Linux operating systems. It is possible to use only one connection, but that
assumes that the guest is also using other connections and that packets are
examined and compared before and after packets are sent on other connections.

4.4 TCP Control Flags

While the TTL and IP ID fields are located in the IP header, the third anomaly
we have found is in the TCP header. More specifically, in the TCP control
flags. A connection can be terminated either by sending a FIN packet or a RST
packet, i.e., a packet with either the FIN or the RST control flag set. When a

A Technique for Remote Detection of Certain Virtual Machine Monitors 135

guest terminates a connection by sending an RST packet, VMware/VirtualBox
translates this, in some cases, to a FIN packet. This can be seen as creating a
graceful shutdown of the connection instead of tearing it down with a connection
reset. An interesting fact is that this behaviour is more prominent when the guest
and host use different operating system families, i.e., Linux host and Windows
guest or Windows host and Linux guest. It does however happen in some cases
when the host and guest are using the same OS.

5 Implementation

A small detection deamon has been implemented as a proof of concept. It uses
the anomalies in the TTL and IP ID fields in the IP header to detect if HTTP
packets originates from a VMware/VirtualBox guest. The implementation uses
a web server, in our case an Apache server [3] on a Linux system. On the server,
a small custom packet sniffing daemon is run, collecting IP ID and TTL values
from connecting clients. The daemon utilizes the libpcap packet capture library.
The daemon also analyze and writes the IP address of a detected virtual machine
to a file detected.txt.

The TTL gives information about the client operating system or, in the case
of VMware/VirtualBox, the host operating system. In order to also use the
information provided by the IP ID generation algorithm, two connections are
needed. When a user connects to the default HTTP port (80) on the web server,
it is immediately redirected to another port, 8080 in our case. Comparing the IP
ID values in packets to different ports will allow us to make an informed guess
about the generation algorithm. We compare the IP ID value of the last packet
from the connection to port 80 and the IP ID value of the first packet from the
second connection. If the difference between those two values are below a certain
threshold value, we conclude that the sequential jump generation method, i.e.,
Windows is used. The server queries the file detected.txt and can determine the
contents of the returned web page based on the result.

However, the information given by the TTL and IP ID is not enough. It can
tell us that the client uses e.g., Linux, but it can not distinguish between a plain
Linux computer, Xen or Virtual PC with Linux guest or VMware/VirtualBox
with Linux host and Windows guest. However, looking at the user-agent string
found in the HTTP request header, we can get information about the operating
system used for the original IP packet. The user-agent string will often contain
a substring of the base operating system, and this will not be changed by the
NAT. As the VMware/VirtualBox NAT is the only NAT that translate TTL
and IP ID, as far as we are concerned, we can distinguish this from other NAT
implementations and also packets not passing through a NAT.

In Fig. 1 a flow diagram is given, showing the communication between server
and client when the server attempts to gain information about the clients usage
of virtualization.

136 C. Jämthagen, M. Hell, and B. Smeets

Fig. 1. Flow diagram of communication between client and server

6 Conclusions

We have proposed a new passive remote detection technique for VMware Work-
station, VMware Player and VirtualBox. It is based on the fact that the NAT
used in these VMMs rewrites information before it is sent out on the network.
The fact that this behaviour has not been found in other common NAT im-
plementations, together with the assumption that different TTL default values
and IP ID generation algorithms are used in the guest and host machines, will
allow us to determine that one of these VMMs is used and that the traffic orig-
inates from a guest in this VMM. If the TTL and IP ID generation algorithm
is changed on the network and the TCP RST control flag is replaced by a FIN,
then our detection will receive false positives. It is an open problem to determine
under which other circumstances, if any, that false positives occur. Possible ap-
plications could be e.g., anonymity solutions such as Tor [7], web proxies and
VPNs.

Users who consider this possibility for remote detection to be a threat should
use bridged networking for their guests. If VMware inc. or Oracle consider this
a security problem, they could consider a redesign of their NAT implementation
so that this information leakage is prevented.

References

1. Conficker’s virtual machine detection,
http://nakedsecurity.sophos.com/2009/03/27/confickers-virtual-machine-

detection/

http://nakedsecurity.sophos.com/2009/03/27/confickers-virtual-machine-detection/
http://nakedsecurity.sophos.com/2009/03/27/confickers-virtual-machine-detection/

A Technique for Remote Detection of Certain Virtual Machine Monitors 137

2. Nmap, http://nmap.org/ (last accessed on June 22, 2011)
3. Official website of the apache http server, http://httpd.apache.org/
4. Path traversal vulnerability in vmware’s shared folders implementation,

http://www.immunityinc.com/documentation/cloudburst-vista.html

5. Bellovin, S.: A technique for counting natted hosts, pp. 267–272. ACM, New York
(2002)

6. Oracle Corporation. Oracle vm virtualbox, user manual,
http://www.virtualbox.org/manual/

7. Dingledine, R., Mathewson, N., Syverson, P.: The second-generation onion router.
In: Proceedings of the 13th USENIX Security Symposium (2004)

8. Franklin, J., Luk, M., McCune, J.M., Seshadri, A., Perrig, A., van Doorn, L.:
Remote detection of virtual machine monitors with fuzzy benchmarking. SIGOPS
Oper. Syst. Rev. 42, 83–92 (2008)

9. Fyodor. Return on investment, http://insecure.org/stc/
10. Jordan, G.: Stealing profits from stock market spammers (2009),

http://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-

grant jordan-stock market spam.pdft

11. Kortchinsky, K.: Cloudburst vista - vmware vulnerability,
http://www.immunityinc.com/documentation/cloudburst-vista.html

12. Lau, B., Svajcer, V.: Measuring virtual machine detection in malware using dsd
tracer. Journal in Computer Virology 6, 181–195 (2008)

13. MacManus, G.: Vmware workstation shared folders directory traversal vulnerabil-
ity, http://www.immunityinc.com/documentation/cloudburst-vista.html

14. West, M., McCann, S.: Tcp/ip field behavior (2006),
http://www.ietf.org/rfc/rfc4413.txt

15. Rutkowska, J.: Introducing blue pill,
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.

htmll

16. Rutkowska, J.: Red pill... or how to detect vmm using (almost) one cpu instruction,
http://invisiblethings.org/papers/redpill.html

17. Wang, Y.-M., Verbowski, C., Wang, H.J., King, S.T., Chen, P.M., Lorch, J.R.:
SubVirt: implementing malware with virtual machines. In: Proceedings of the IEEE
Symposium on Security and Privacy (May 2006)

18. Wojtczvk, R.: Cve-2007-4496 - vmware vulnerability,
http://www.immunityinc.com/documentation/cloudburst-vista.html

19. Xu, B., Wang, J., Peng, D.: Practical protocol steganography: Hiding data in ip
header. In: Asia International Conference on Modelling & Simulation, pp. 584–588
(2007)

http://nmap.org/
http://httpd.apache.org/
http://www.immunityinc.com/documentation/cloudburst-vista.html
http://www.virtualbox.org/manual/
http://insecure.org/stc/
http://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-grant_jordan-stock_market_spam.pdft
http://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-grant_jordan-stock_market_spam.pdft
http://www.immunityinc.com/documentation/cloudburst-vista.html
http://www.immunityinc.com/documentation/cloudburst-vista.html
http://www.ietf.org/rfc/rfc4413.txt
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.htmll
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.htmll
http://invisiblethings.org/papers/redpill.html
http://www.immunityinc.com/documentation/cloudburst-vista.html

Indifferentiability of Domain Extension Modes

for Hash Functions

Yiyuan Luo1,�, Xuejia Lai1,�, and Zheng Gong2,��

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, China

luoyiyuan@sjtu.edu.cn
2 School of Computer Science,

South China Normal University, China

Abstract. In this paper, we show that four domain extension modes
for hash functions: pfMD, chopMD, NMAC and HMAC have different indiffer-
entiable security levels. Our synthetic analysis shows the chopMD, NMAC
and HMAC modes can sustain more weaknesses of the compression func-
tion than the pfMD mode. For the pfMD mode, there exist 12 out of 20
collision resistant PGV hash functions which are indifferentiable from a
random oracle. This is an improvement on the result of Chang et al. For
the chopMD, NMAC and HMAC modes, all the 20 PGV compression functions
are indifferentiable from a random oracle. The chopMD mode has better
indifferentiable security bound but lower output size than the pfMD, NMAC
and HMACmode; and the HMACmode can be implemented easier than NMAC.
We also show that there exist flaws in the indifferentiability proofs by
Coron et al., Chang et al. and Gong et al.

1 Introduction

Cryptographic hash function, which is defined as an admissible algorithm that
uniformly maps arbitrary length inputs to fixed length outputs, is widely used
as a pivotal primitive for ensuring the integrity of information. A hash func-
tion usually consists of iteration of a compression function with fixed input and
output length. One first designs a fixed domain compression function and then
extend the domain to an arbitrary domain by iterating the compression function
several times. This type of hash function is called an iterated hash function.

The most popular method for iterating a hash function is known as Merkle-
Damg̊ard (MD) construction [13,25]. In recent years, the hash community starts
to argue that the traditional MD construction is not a good design viewed as
a random oracle [10]. Since the well-known length extension attack allows one
to take a value H(x) for x, and then computes the value H(x, |x|, y), where |x|
� The first two authors are supported by NSFC 60773092,61073149 and RFDP
20090073110027.

�� This author is supported by NSFC 61100201 and Foundation for Distinguished
Young Talents in Higher Education of Guangdong (LYM11053), China.

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 138–155, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Indifferentiability of Domain Extension Modes for Hash Functions 139

is the length of x and y is an arbitrary suffix. However, this extension property
is not allowed for any truly random oracle. Even if the underlying compression
function f is assumed to be a fixed-length random oracle, any hash function Hf

under MD construction will unlikely to be indifferentiable with a random oracle.
For this reason, a rich literature analyzed the security of hash functions obtaining
variable-input-length (VIL) from an ideal fixed-input-length (FIL) compression
function[1,2,3,10,18,5,19].

In TCC’04, Maurer et al. introduced a strong security notion called as in-
differentiability [23] which is an extension of the classical indistinguishability
security notion. Later, in Crypto’05, Coron et al. first implemented the indif-
ferentiability in analysis of hash functions and provide four domain extension
modes[10], which are the pfMD, chopMD, NMAC and HMAC to meet the indiffer-
entiable security notion. The compression function is viewed as a fixed-length
random oracle or built from an ideal block cipher with Davies-Meyer scheme.
Following that, several works have investigated the indifferentiability of a hash
construction [2,3,4,8,14,15].

At Asiacrypt’06, Chang et al. present a unified way to prove the indiffer-
entiability for pfMD [8]. They found that, in the pfMD mode, there are 16 out
of 20 collision resistant PGV functions will be indifferentiable from a random
oracle and other 4 are differentiable from a random oracle in the ideal cipher
model. Then in [16], Gong et al. provided a synthetic indifferentiability analysis
of some block-cipher-based hash functions and claimed that all 20 PGV compres-
sion functions are indifferentiable from a random oracle in the four modes, which
contradicts Chang et al.’s results. In FSE’08, Chang and Nandi presented an im-
proved indifferentiable security bound for the chopMD mode [9]. The improved
bound is beyond the birthday complexity.

Since it seems that there are many choices of modes for iterating a hash func-
tion, an interesting question raised, i.e, do these four modes pfMD, chopMD, NMAC
and HMAC have the same indifferentiable security levels? It is worth to know that
which one is the strongest even there exist some weaknesses in the compression
function and which one is the best choice for designing a hash function in prac-
tice.

Our Contributions. We show that four domain extension modes for hash
functions: pfMD, chopMD, NMAC and HMAC have different indifferentiable security
levels. We give an indifferentiability classification of these four modes based on
PGV compression functions. The results are listed in Table 4.1. The chopMD,
NMAC and HMAC modes can sustain more weaknesses of the compression function
than the pfMD mode. In the pfMD mode, there are 12 out of 20 PGV compression
functions are indifferentiable from a random oracle. In the chopMD, NMAC and
HMAC mode, all the 20 PGV compression functions are indifferentiable from a
random oracle.

We also give a simpler proof of the indifferentiability bound for chopMD than
that of Chang et al. The bound is also beyond the birthday complexity. The
chopMD has better indifferentiable security bound than pfMD and NMAC/HMAC;

140 Y. Luo, X. Lai, and Z. Gong

the security bound is beyond the birthday complexity. Since the chopMD mode
has lower output size and the HMAC mode is simpler than NMAC, we recommend
HMAC instead of pfMD, chopMD, NMAC for practical use.

We find a new attack on 4 out of 16 PGV compression functions in the pfMD
mode, which is an improvement on the result of Chang et al. We also show that
there exist flaws in the indifferentiability proofs of Coron et al., Chang et al. and
Gong et al.

Organization. The organization of this paper is as follows. In Section 2, we
give some definitions and results which will be used. In Section 3, we present
our new attacks and point out some flaws in previous works. Then, based on the
result in Section 3, we show the main results and give a classification of the four
modes in Section 4. Section 5 concludes this paper.

2 Preliminaries

Ideal Cipher Model and Random Oracle Model. Ideal cipher model, which
is called black box model as well, is a formal model for the security analysis of
block-cipher-based hash functions. An ideal cipher is an ideal primitive that
models a random block-cipher E : {0, 1}κ × {0, 1}n �→ {0, 1}n. Each key k ∈
{0, 1}κ defines a random permutation Ek = E(k, ·) on {0, 1}n. An adversary is
given forward or inverse queries to oracles E, when he makes a forward query
to E with (+, k, p), it returns the point c such that Ek(p) = c, when he makes
an inverse query to E with (−, k, c), it returns the point p such that Ek(p) = c.

As the ideal cipher model, the random oracle model(ROM) is also a method of
developing provably secure cryptosystems. Simply says, A random oracle (RO) is
an ideal primitive which provides a random output for each new query. Identical
input queries are given the same answer.

PGV Hash Functions. Preneel, Govaerts and Vandewalle (PGV) [26] pro-
posed a synthetic approach to design single block length hash function based
on block ciphers. They considered the method of turning a block cipher E :
{0, 1}n × {0, 1}n → {0, 1}n into a hash function H : {0, 1}∗ → {0, 1}n using a
compression function f : {0, 1}n ×{0, 1}n → {0, 1}n derived from E. For a fixed
n-bit constant v, PGV considered all 64 compression functions f of the form
f(hi−1,mi) = Ek(p)⊕ a where k, p, a ∈ {hi−1,mi, wi, v}, where wi = hi−1 ⊕mi.
The hash function H(m1, . . . ,ml) can subsequently be described as follows:

hi = f(hi−1,mi), i = 1, 2, . . . , l

Here f is the underlying compression function, h0 is equal to a fixed initial
value IV, |mi| = n for each i ∈ [1 · · · l] and hl is the hashcode. Of the 64 such
schemes, PGV regard 12 schemes as secure in the sense of both the preimage
resistance and the collision resistance. Black et al. [6] revisited all the 64 PGV
compression functions in the ideal cipher model. They proved that the 12 com-
pression functions that PGV had singled out can build a collision resistant hash

Indifferentiability of Domain Extension Modes for Hash Functions 141

Table 1. 20 PGV compression functions which can be built collision resistant PGV
hash functions in [6]. wi = hi−1 ⊕mi.

Group-1 schemes

Case PGV Case PGV Case PGV

1 Ehi−1(mi)⊕mi 5 Emi(hi−1)⊕ hi−1 9 Ewi(mi)⊕mi

2 Ehi−1(wi)⊕wi 6 Emi(wi)⊕ wi 10 Ewi(hi−1)⊕ hi−1

3 Ehi−1(mi)⊕ wi 7 Emi(hi−1)⊕ wi 11 Ewi(mi)⊕ hi−1

4 Ehi−1(wi)⊕mi 8 Emi(wi)⊕ hi−1 12 Ewi(hi−1)⊕mi

Group-2 schemes

Case PGV Case PGV Case PGV

13 Ewi(mi)⊕ v 16 Ewi(hi−1)⊕ v 19 Emi(wi)⊕ v

14 Ewi(mi)⊕ wi 17 Emi(hi−1)⊕mi 20 Emi(wi)⊕mi

15 Emi(hi−1)⊕ v 18 Ewi(hi−1)⊕ wi

function in the black-box analysis. They denoted these 12 compression functions
as the Group-1 schemes. Additionally, there are 8 compression functions can
also build a collision resistant but not preimage resistant hash function. They
denoted these 8 compression functions as the Group-2 schemes. The 20 PGV
compression functions are listed in Table 1.

Four Domaim Extension Modes for Hash Functions. In [10], Coron et
al. proposed four domain extension modes such that the arbitrary length hash
function H must behave as a random oracle when the fixed-length building
block is viewed as a random oracle or an ideal block cipher, namely, the pfMD,
the chopMD and the NMAC/HMAC. In this paper only PGV compression functions
are considered. The four modes are described in Table 2.

In the pfMDmode, message (m1, . . . ,ml) are guaranteed to be prefix-free. This
is because prefix-free encoding enables to eliminate the length extension attack
on hash functions. In fact, the chopMD and NMAC/HMACmode are the same as pfMD
in order to avoid the length extension attack. There are different prefix-free en-
coding functions. In this paper, we adopt Coron et al.’s prefix-free encoding
function g(M) : {0, 1}∗ → {0, 1}n: first write M as (m1, . . . ,ml) where for all
0 < i ≤ l, |mi| = n− 1, then returns (0|m1, . . . , 0|ml−1, 1|ml).

Indifferentiability. In the following part, we recall the definition for indiffer-
entiability [10,23]. This definition is a slightly modified version[9] of the original
definition[23,11], where the condition that the maximum number of message
blocks queried by a distinguisher is σ is not described.

Definition 1. A Turing machine H with oracle access to an ideal primitive E
is said to be (tD, tS , q, σ, ε)-indifferentiable from an ideal primitive F if there
exists a simulator S with oracle access to F and running in time at most tS,
such that for any distinguisher D it holds that:

142 Y. Luo, X. Lai, and Z. Gong

Adv(D) = |Pr[DH,E = 1]− Pr[DF ,S = 1]| < ε

The distinguisher runs in time at most tD and makes at most q queries. The
total message blocks queried by the distinguisher is at most σ.

Table 2. Definitions of the four domain extension modes[10]. g is the prefix-free encod-
ing function. f, f ′ : {0, 1}2n → {0, 1}n are independent PGV compression functions, s
is the number of chopped bits. IV is the initial value. IV1, IV2 are two different initial
values.

f f fIV

1m 2m lm

h
1h 2h

f f fIV

1m 2m lm

schop h
1h lh2h

pfMDf chopMDfs

f f f1IV

1m 2m lm

h
1h

lh

2h
2IV 'f

f f fIV

0n
1m lm

h
0h

lh

1h
f

NMACf,f
′

HMACf

pfMDf (IV,M) : chopMDfs (IV,M) :

h0 = IV, g(M) = m1|| · · · ||ml. h0 = IV,M = m1|| · · · ||mi

For i = 1 to l do hi = f(hi−1,mi) or i = 1 to l do hi = f(hi−1,mi)
Return h = hl Return the first n− s bit of hl

NMACf,f
′
(IV1, IV2,M) : HMACf (IV,M) :

h0 = IV1, ,M = m1|| · · · ||ml h0 = f(IV, 0n),M = m1|| · · · ||ml

For i = 1 to l do hi = f(hi−1,mi) For i = 1 to l do hi = f(hi−1, mi)
Return h = f ′(IV2, hl) Return h = f(IV, hl)

In this paper, E is an ideal cipher, H will represent the construction of an
iterative hash function based on E. F is a random oracle with the same domain
and range as H . The task of the simulator S is to simulate E. The distinguisher
is interacting with the cryptosystem (O1,O2), where either (O1,O2) = (H,E)
or (O1,O2) = (F , S). The distinguisher’s goal is to distinguish which scenario it
is after queries to (O1,O2).

In [11], Coron et al. stated the indifferentiability of the four modes when the
compression function is built on Davies-Meyer scheme, the theorem is as follows.

Theorem 1. The four domain extension modes pfMDf , chopMDfs , NMAC
f,f ′

and
HMACf are (tD, tS , q, σ, ε)-indifferentiable from a random oracle in the ideal cipher
model when the compression function is built on Davies-Meyer scheme. For any
tD ,with tS = O(σ2), with ε = 2−n ·O(σ2) for pfMD, ε = 2−s ·O(σ2) for chopMD,
ε = 2−n · O(σ2) for NMAC and HMAC.

Indifferentiability of Domain Extension Modes for Hash Functions 143

It was observed that Coron et al.’s bound of chopMD is not tight. In [9], Chang
and Nandi presented an improved indifferentiable security bound for chopMD and
stated the following theorem:

Theorem 2. The chopMDfs construction is (tD, tS , q, σ, ε)-indifferentiable from
a random oracle, in the random oracle model for the compression function, for

any tD, with tS = O(σ2) and ε = O((3(n−s)+1)q
2s + q

2n−s−1 +
σ2

2n+1), where q is the
total number of queries , σ is the total number of queried message blocks and s
is the number of chopped bits.

3 Improved Indifferentiability Analysis of pfMD Based on
PGV Schemes

In this section, we analyze the indifferentiability of pfMD based on PGV com-
pression functions. Our result is an improvement on that of Chang et al. and
Gong et al.. In the pfMD mode, there are only 12 PGV compression functions are
indifferentiable from a random oracle. We present a new distinguishing attack
on 4 PGV compression functions in the pfMD mode. We also describe flaws in
Coron et al.’s, Chang et al.’s and Gong et al.’s work.

3.1 Distinguishing Attack on 4 PGV Compression Functions in the
pfMD Mode

At Asiacrypt’06, Chang et al. presented an indifferentiable security analysis of
20 PGV compression functions in the pfMD mode. They proved there are 16 out
of 20 are indifferentiable from a random oracle. The other 4 PGV compression
functions (PGV 1, 2, 3, 4) are differentiable from a random oracle in the pfMD

mode.
Here we find that in the remaining 16 PGV compression functions, there are 4

can be differentiable from a random oracle in the pfMDmode.1 The 4 compression
functions are PGV 15, 17, 19, 20. First we give a distinguish attack on PGV-
15: f(hi−1,mi) = Emi(hi−1) ⊕ v in the pfMD mode. We have the following
distinguisher.

IV

1m 2mv

1h
h

IV

1m 2 'm

1h

2O 2O

2O 2O

v

vv
'h

1 :O

1 :O

Fig 3.1 Distinguishing attack on PGV-15 in the pfMD mode

1 We found the attack in February, 2009, wrote a paper on March, 4th and submitted
it to Asiacrypt’09 on May 24th and eprint on June 5th[22]. Recently, Kuwakado et
al. present a similar attack on these 4 PGV compression functions [21]. Note that
their paper was submitted on May 27th, so these works are independent.

144 Y. Luo, X. Lai, and Z. Gong

Distinguisher D can access to oracles (O1,O2) where (O1,O2) is (H,E) or
(F , S).

1. D selects two messages M,M ′ such that g(M) = (m1 ‖ m2) and g(M ′) =
(m1 ‖ m′

2) where m2 �= m′
2 and |m1| = |m2| = |m′

2| = n, then makes the
query M to O1 and receives h and the query M ′ to O1 and receives h′.

2. D makes an inverse query (−,m2, h⊕ v) to O2 and receives h1, then makes
an inverse query (−,m′

2, h
′ ⊕ v) to O2 and receives h′

1.
3. If h1 = h′

1, D outputs 1, otherwise outputs 0.

If h1 = h′
1, then (O1,O2) is (H,E), otherwise (O1,O2) is (F , S). Since the simu-

lator doesn’t know whether two inverse queries (−,m2, h⊕v) and (−,m′
2, h

′⊕v)
will lead to a same intermediate value. The simulator S can output the right
response with a negligible probability 2−n,

Adv(D) = |Pr[DH,E = 1]− Pr[DF ,S = 1]| = 1 − 2−n ≈ 1

So PGV 15 is differentiable from a random oracle in the pfMD mode. Similarly,
we can give distinguishing attacks on PGV 17, 19, 20.

These 4 compression functions have the same weakness, that is, hi−1 can be de-
duced from (hi,mi). Take PGV 15 as example, we can write hi−1 = E−1

mi
(hi⊕v).

If a PGV compression function has such a weakness, then it must be differen-
tiable from a random oracle in the pfMD mode.

3.2 Flaws in Previous Indifferentiability Proofs

In [11], Coron et al. presented the detailed proof of the indifferentiability of the
Davies-Meyer compression function in the pfMD, chopMD and NMAC/HMAC modes.
Chang et al. also proposed a proof of the Davies-Meyer compression function in
the pfMD mode. Here we point out some flaws in Coron et al.’s proofs of pfMD
and NMAC, and Chang et al.’s proof of pfMD when the compression function is
built on Davies-Meyer scheme.

In [11], page 22, Coron et al. gave a proof of the indifferentiability of Davies-
Meyer compression function in the pfMD mode. In their proof, the simulator
S accepts either forward ideal cipher queries, (+, k, p), or inverse ideal cipher
queries, (−, k, c), such that k, p, c ∈ {0, 1}n. In either case, the simulator S
responds with a n-bit string that is interpreted as Ek(p) in case of a forward
query (+, k, p) and as E−1

k (c) in case of an inverse query. The simulator maintains
a table T of triples (k, p, c), such that it either responded with c to a forward
query (+, k, p) or with p to an inverse query (−, k, c).

It is easy to verify that on getting a forward query (+, k, p), Coron et al.’s
simulator works fine. The problem is how to respond an inverse query. In their
proof, On receiving an inverse query (−, k, c), the simulator S searches its table
T for a triple (k, p, c) for any p. If it finds such a triple, then it outputs p as its
response. If it does not find such a triple, it choose a random n-bit string p and
responds with p. It then stores the triple (k, p, c) into its table T .

Indifferentiability of Domain Extension Modes for Hash Functions 145

In case of Coron et al.’s simulator, we can easily build a distinguisher D. D
first makes a query M to O1 where g(M) = m and |m| = n, and gets respond
h. Then D makes an inverse query (−,m, h⊕ IV) to O2 and gets respond IV ∗.
If IV = IV ∗, then D knows (O1,O2) is (H,E), otherwise (O1,O2) is (F , S).
In such a case, the simulator S fails. This is because S responds a new inverse
query randomly. Here a new query means it is not a repetition query.

Fortunately, Coron et al.’s simulator can be corrected easily. On receiving an
new inverse query (−, k, c), S cannot respond randomly. S first searches table T
for a sequence of triples (k1, p1, c1) . . . (ki, pi, ci) such that:

– The bit string k1 ‖ . . . ‖ ki ‖ k is an valid encoding of message M under the
prefix-free encoding g.

– pj = cj−1 ⊕ pj−1 for j = 2 . . . i and p1 = IV .
– S queries M to O1 and receives h.
– If pi ⊕ ci = h ⊕ c, then S returns p = pi ⊕ ci, else returns a random n-bit

string p. It then stores the triple (k, p, c) into its table T .

IV

1k ik

1c2O 2O

k

h
2O

ic c1 :O
1p ip p

Fig. 4.1 Correction of Coron et al.’s simulator in the pfMD mode

Note that for an empty sequence of triples, i.e. when just considering the block
k from the current query, we additionally require that p1 = IV in this case.

Chang et al. may observe Coron et al.’s flaw since their simulator was different
from Coron et al.’s. But they neglected the case of an empty sequence. Their
simulator had avoid attacks which involve queries which the length are at least
two blocks. But they didn’t consider the scenario that an attack which applied
in only one block length and the distinguisher’s goal is to receive the initial value
IV .

Moreover, one can verify there is a problem in the inequation in section 3 of
Chang et al.’s paper[8], which denotes the maximum advantage of the distin-
guisher. The inequation (1) can not be deduced from previous equation. So the
results in that paper should be revised.

As pfMD, Coron et al.’s indifferentiability proof of Davies-Meyer compression
function in the NMAC mode has the same flaw. One can correct their proof easily.

In [16], Gong et al. also provided an indifferentiability analysis of 20 PGV
compression functions in the pfMD mode and claimed that all 20 are indifferen-
tiable from a random oracle. There is an obvious error in their simulators that
the simulators needed to record the distinguisher’s queries to the random oracle
F . In fact, the simulator never have the record of the distinguisher’s queries to
F , which can be derived from the definition of indifferentiability.

146 Y. Luo, X. Lai, and Z. Gong

3.3 Indifferentiability of 12 PGV Compression Functions in the
pfMD Mode

By combining our and Chang et al.’s results, it is known in the pfMD mode,
PGV 1, 2, 3, 4 and PGV 15, 17, 19, 20 are differentiable from a random ora-
cle in the ideal cipher mode. The Davies-Meyer scheme has been shown to be
indifferentiable from random oracle in the pfMD mode[10,8]. For the other 11
cases, we can give a similar analysis. We prove that, all the 12 PGV schemes are
indifferentiable from a random oracle in the pfMD mode.

Theorem 3. The 12 PGV compression functions, which are PGV 5-14, 16, 18
are (tD, tS , q, σ, ε) indifferentiable from a random oracle in the pfMD mode. For
any tD, with tS = O(σ2), with ε = 2−n · O(σ2), where σ is the total number of
maximum message blocks queried by the distinguisher D.

Proof. We can define a general simulator for these 12 PGV compression func-
tions. Since a repetition query doesn’t help anything in the view of the distin-
guisher, we assume that there is no repetition query.

The simulator S accepts either forward ideal cipher queries, (+, k, p), or in-
verse ideal cipher queries, (−, k, c), such that k, p, c ∈ {0, 1}n. In either case, the
simulator S responds with a n-bit string that is interpreted as Ek(p) in case of a
forward query (+, k, p) and as E−1

k (c) in case of an inverse query. The simulator
maintains a table T of triples (k, p, c) and (hi−1,mi, hi), where (hi−1,mi, hi)
is the input-output value of the corresponding PGV compression function de-
duced from (k, p, c). Take PGV 5 (f(hi−1,mi) = Emi(hi−1)⊕ hi−1) as example,
(hi−1,mi, hi) = (p, k, p⊕ c).

1. On getting a new forward query (+, k, p), S deduces hi−1 and mi from (k, p),
where hi−1 and mi is the input value of the corresponding PGV compression
function, and then searches its table T for a sequence of triples {(h0 =
IV,m1, h1), (h1,m2, h2) . . . (hj−1,mj, hj)} ∪ {(∅, ∅, IV)} where (∅, ∅, IV) is
the empty sequence (i.e, hj−1,mj are empty strings and hj = IV) :
– The bit string m1 ‖ . . . ‖ mj ‖ mi is an valid encoding of message M

under the prefix-free encoding g.
– hi−1 = hj .

If S finds such a sequence of triples, then it needs to give a response that
is consistent with the random oracle output on M . Thus, S runs F(M) and
receives hi. If S does not find such a sequence of triples, it outputs a random
response c, otherwise it deduces c from (hi−1,mi, hi) and stores the triple
(k, p, c) and (hi−1,mi, hi) into its table T .

2. On receiving a new inverse query (−, k, c), the simulator S searches its table
T for all the sequence of triples {(IV,m1, h1), (h1,m2, h2),
. . . , (hi−2,mi−1, hi−1)}∪ {(∅, ∅, IV)} where (∅, ∅, IV) is the empty sequence
(i.e, hj−1,mj are empty strings and hj = IV) :
– For every such sequence, S deduces mi from (hi−1, ki). If the bit string

m1 ‖ . . . ‖ mi−1 ‖ mi is an valid encoding of messageM under the prefix-
free encoding g, S runs F(M) and receives h′

i. Then S deduces (p, hi)
from (hi−1,mi, ci) for the corresponding PGV compression function.

Indifferentiability of Domain Extension Modes for Hash Functions 147

– If there exists any sequence such that hi = h′
i, S returns p, else S returns

a random p. In either case, S updates its table T .

It follows the running time of the simulator is tS = l ·O(σ2). The simulator will
fail if there are two sequences (IV,m1, h1), (h1,m2, h2) . . . (hi−2,mi−1, h) and
(IV,m′

1, h
′
1), (h1,m

′
2, h

′
2) . . . (hj−2,m

′
j−1, h) which begin with IV and end in the

same value h. This event can be divided into the following situations:

– For the ith response to a forward query, the simulator calculates (hi−1,mi, hi).
B1. It is the case hi = IV .
B2. There is a triple (hj−1,mj, hj) such that hi = hj .
B3. There is a triple (hj−1,mj, hj) such that hi = hj−1.

– For the ith response to a inverse query, the simulator calculates (hi−1,mi, hi).
C1. It is the case hi−1 = IV or hi = IV .
C2. There is a triple (hj−1,mj, hj) such that hi = hj .
C3. There is a triple (hj−1,mj, hj) such that hi = hj−1.

We call the above events ”bad”, since if these events happens, the simulator may
not work.

Now we will estimate the occurrence probability for each of the above bad
events. Since the number of maximum message blocks queried is σ, the number of
maximum queries to ideal cipher and random oracle is at most σ. The occurrence
probability of event B1 is:

Pr[B1] = 1 − (1 − 1

2n
)σ ≤ σ

2n
.

We can bound the occurrence probability of condition B2 by the birthday bound.
Let Collisioni be the event that the collision occurs in the ith query but there
are no collisions in the previous i − 1 th queries. The occurrence probability of
event B2 is:

Pr[B2] =

σ∑
i=1

Pr[Collisioni] ≤
n∑

i=2

i

2n
≤ σ(σ + 1)

2n+1

Similarly, the occurrence probability of event B3 is Pr[B3] ≤ σ(σ+1)
2n+1 . The prob-

ability bound for the event C1, C2, C3 can be estimated in the same way.
Next we estimate the advantage of the distinguisher via a hybrid games. We

need to prove that the distinguisher cannot tell apart the two scenarios (H,E)
and (F , S).

Game 1. The distinguisher is interacting with (F , SF). Let G1 denote the event
that D outputs 1 after interacting with F and S. Thus,

Pr[G1] = Pr[DF ,S = 1].

Game 2. The distinguisher is interacting with (HS , SF). In this game, we replace
F with H , which computes pfMD using SF as its compression function. Let G2

denote the event that D outputs 1 after interacting with (HS , SF). Thus,

Pr[G2] = Pr[D(HS ,SF) = 1].

148 Y. Luo, X. Lai, and Z. Gong

If no bad events occur, then Game 1 and Game 2 are perfectly indistinguishable.
The view of the distinguisher of the distinguisher remains unchanged from Game
1 to Game 2 if the simulator S does not fail in either of the two games in the
pfMD mode.

|Pr[G1] − Pr[G2]| ≤ Pr[S fails in Game 1]

+ Pr[S fails in Game 2]

≤ O(
σ2

2n
)

Game 3. The distinguisher is interacting with (HE , E). Game 3 and Game 2
are indistinguishable whenever no bad events above occurs or S fails to simulate
the ideal cipher in Game 2. S fails to simulate an ideal cipher if it outputs an
input/output collision for the same ideal cipher key. The probability of this event
is easily seen to be at most the birthday bound. Let G3 denote the event that D
outputs 1 after interacting with (H,E). Thus, Pr[G3] = Pr[D(H,E) = 1]. Then
we can deduce that

|Pr[G3] − Pr[G2]| ≤ Pr[S fails in Game 2]

= O(
σ2

2n
)

Now we can complete our proof of pfMD by combining Game 1 to 3, and observing
that Game 1 is same as the random oracle model while Game 3 is same as the
ideal cipher model. Hence we can deduce that

ε = |Pr[G3]− Pr[G1]|
≤ |Pr[G3]− Pr[G2]| + |Pr[G2] − Pr[G1]|

= O(
σ2

2n
)

Thus the theorem follows. ��

4 Indifferentiability of chopMD and NMAC/HMAC Based on
PGV Schemes

We have analyzed the indifferentiability of pfMD based on PGV schemes. It is
worth to know whether the other modes chopMD, NMAC and HMAC have the same
indifferentiable security as pfMD. And which is strongest among the four domain
extension modes even there exist some weaknesses in the compression function?
In this part we analyze the indifferentiability of chopMD and NMAC/HMAC based on
20 PGV compression functions. Since HMAC is a special case of NMAC, the security
bound of NMAC can be extended to HMAC. We give a classification of the four
domain extension modes based on 64 PGV compression functions.

Indifferentiability of Domain Extension Modes for Hash Functions 149

In the above analysis, there are only 12 of the 20 PGV compression functions
are indifferentiable from a random oracle in the pfMDmode. In this following part
we will show the chopMD and NMAC/HMAC are stronger such that they can sustain
more weaknesses of the compression function. That is, all 20 PGV compression
functions are indifferentiable from a random oracle in the chopMD and NMAC/HMAC
mode.

Table 3. A classification of four domain extension modes based on 64 PGV schemes
with the corresponding security bounds (the maximum advantage of a distinguisher).
CRH and PRH denote the collision-resistance bound and preimage-resistance bound
of the PGV compression function iterated with MD Strengthening respectively.

PGV Case CRH PRH pfMDf chopMDfs NMACf,f
′

1− 4 O(σ2

2n
) O(σ

2n
) 1

{
O(σ2

2n
+ σ

2s
− σ

2n−s), s < n
2

O(σ2

2n
), s ≥ n

2

O(σ2

2n
)

5− 12 O(σ2

2n
) O(σ

2n
) O(σ2

2n
)

{
O(σ2

2n
+ σ

2s
− σ

2n−s), s < n
2

O(σ2

2n
), s ≥ n

2

O(σ2

2n
)

13, 14, 16, 18 O(σ2

2n
) O(σ2

2n
) O(σ2

2n
)

{
O(σ2

2n
+ σ

2s
− σ

2n−s), s < n
2

O(σ2

2n
), s ≥ n

2

O(σ2

2n
)

15, 17, 19, 20 O(σ2

2n
) O(σ2

2n
) 1

{
O(σ2

2n
+ σ

2s
− σ

2n−s), s < n
2

O(σ2

2n
), s ≥ n

2

O(σ2

2n
)

21− 64 1 1 1 1 1

It is easy to see the distinguishing attack on PGV 1-4 and PGV 15, 17, 19,
20 in the pfMD cannot be applied in the chopMDmode directly. The Davies-Meyer
scheme has been shown to be indifferentiable from random oracle in the chopMD
mode. However, Coron et al.’s bound of chopMD is not tight. In [9], Chang and
Nandi present an improved indifferentiable security bound for chopMD. Their im-
proved indifferentiable security bound is proved when one looks the compression
function as a random oracle and the proof is complicated. Here we give a more
clear proof in the ideal cipher model. Our result shows that the indifferentiable
security bound of chopMD is O((σ

2s)
2) when n = 2s, which is also beyond the

birthday complexity.

Theorem 4. The 20 PGV compression functions are (tD, tS , q, σ, ε) indifferen-
tiable from a random oracle in the chopMDfs mode, in the ideal cipher model for

any tD, with tS = O(σ2), ε = O(σ
2

2n + σ
2s − σ

2n−s) when s < n/2 and ε = O(σ
2

2n)
when s ≥ n/2, where σ is the total number of message blocks queried.

Proof. We can define a general simulator for these 20 PGV compression func-
tions in the chopMD mode. Since a repetition query doesn’t help anything in the
view of the distinguisher, we assume that there is no repetition query.

The simulator S accepts either forward ideal cipher queries, (+, k, p), or inverse
ideal cipher queries, (−, k, c), such that k, p, c ∈ {0, 1}n. In either case, the

150 Y. Luo, X. Lai, and Z. Gong

simulator S responds with a n-bit string that is interpreted as Ek(p) in case of a
forward query (+, k, p) and as E−1

k (c) in case of an inverse query. The simulator
maintains a table T of triples (k, p, c) and (hi−1,mi, hi), where (hi−1,mi, hi) is
the input-output value of the corresponding PGV compression function deduced
from (k, p, c).

1. On getting a new forward query (+, k, p), S deduces hi−1 and mi from (k, p),
where hi−1 and mi is the input value of the corresponding PGV compression
function, and then searches its table T for a sequence of triples {(∅, ∅, IV)}∪
{(IV,m1, h1), (h1,m2, h2) . . . (hj−1,mj , hj)} such that hi−1 = hj .

If S finds such a sequence of triples, then it needs to give a response
that is consistent with the random oracle output on M = (m1, . . . ,mj ,mi).
Thus, S runs F(M) and receives hi. If S does not find such a sequence of
triples, it chooses a random response hi. Here the bit length of hi is n − s.
In either case, it samples a uniformly random s-bit string h′ and responses
hi ‖ h′ deduces c from (hi−1,mi, hi ‖ h′) and stores the triple (k, p, c) and
(hi−1,mi, hi ‖ h′) into its table T .

2. On receiving a new inverse query (−, k, c), the simulator S returns a random
p ∈ {0, 1}n. It then deduces (hi−1,mi, hi) from (k, p, c) and updates its table
T .

It follows the running time of the simulator is tS = O(σ2). The simulator will
fail if there are two sequences (IV,m1, h1), (h1,m2, h2) . . . (hi−2,mi−1, h) and
(IV,m′

1, h
′
1), (h1,m

′
2, h

′
2) . . . (hj−2,m

′
j−1, h) which begin with IV and end in the

same value h. This event can be divided into the following situations:

– For the ith response to a forward query, the simulator calculates (hi−1,mi, hi).

B1. It is the case hi = IV .
B2. There is a triple (hj−1,mj, hj) such that hi = hj .
B3. There is a triple (hj−1,mj, hj) such that hi = hj−1.

– For the ith response to a inverse query, the simulator calculates (hi−1,mi, hi).

C1. It is the case hi−1 = IV or hi = IV .
C2. There is a triple (hj−1,mj, hj) such that hi = hj .
C3. There is a triple (hj−1,mj, hj) such that hi = hj−1.

We call the above events ”bad”, since if these events happens, the simulator may
not work.

Now we will estimate the occurrence probability for each of the above bad
events. Since the number of maximum message blocks queried is σ, the number of
maximum queries to ideal cipher and random oracle is at most σ. The occurrence
probability of event B1 is:

Pr[B1] = 1 − (1 − 1

2n
)σ ≤ σ

2n
.

We can bound the occurrence probability of condition B2 by the birthday bound.
Let Collisioni be the event that the collision occurs in the ith query but there

Indifferentiability of Domain Extension Modes for Hash Functions 151

are no collisions in the previous i − 1 th queries. The occurrence probability of
event B2 is:

Pr[B2] =

σ∑
i=1

Pr[Collisioni] ≤
n∑

i=2

i

2n
≤ σ(σ + 1)

2n+1

In order to bound the occurrence probability of bad event B3, we note that
the simulator first choose s random and independent bits in its response, then
the other n − s bits are either random chosen later by the simulator or it is
forced to make the remaining n − s bits consistent with the random oracle.
Since the outputs of the random oracle for two different queries are random and
independent, the simulator always returns uniformly random responses. The

occurrence probability of event B3 is Pr[B3] ≤ σ(σ+1)
2n+1 .

The probability bound for the event C1,C2,C3 can be estimated in the same
way.

Next we estimate the advantage of the distinguisher via a hybrid games. We
need to prove that the distinguisher cannot tell apart the two scenarios (H,E)
and (F , S).

Game 1. The distinguisher is interacting with (F , SF). Let G1 denote the event
that D outputs 1 after interacting with F and S. Thus,

Pr[G1] = Pr[DF ,S = 1].

Game 2. The distinguisher is interacting with (HS , SF). In this game, we replace
F with H , which computes pfMD using SF as its compression function. Let G2

denote the event that D outputs 1 after interacting with (HS , SF). Thus,

Pr[G2] = Pr[D(HS ,SF) = 1].

For PGV 5-14, 16, 18, if no bad events occur, the view of the distinguisher D
remains unchanged from Game 1 to Game 2 except for the following situation:

1. D is interacting (O1,O2), where either (O1,O2) is (HS , SF) or (O1,O2) is
(F , S).

2. D selects a message M = (m1,m2) and queries M to O1 and receives h. D
queries m1 to O1 and receives h1. Here h and h1 are s bits.

3. For a random n − s bits h′
1, D deduces (k, p) from (h1 ‖ h′

1,m2) according
to the corresponding PGV compression function, makes a forward query
(+, k, p) to S and gets c, then deduce h′ from (k, p, c).

4. If the first n− s bit of h′ is equal to h, then D stops; otherwise repeats step
3 at most σ times.

5. If D succeed in finding an h′ such that the first n − s bit equals to h, then
D outputs 1; otherwise D outputs 0.

If D is interacting with (HS , SF), the probability of D outputs 1 is

Pr[DHS ,SF
= 1] ≈

{
σ
2s , s < n

2
σ

2n−s , s ≥ n
2

152 Y. Luo, X. Lai, and Z. Gong

And if D is interacting with (F , S), the probability of D outputs 1 is Pr[DF ,S =
1] ≈ σ

2n−s . So the probability of D distinguish these two scenarios through the
above method is:

Adv′(D) = |Pr[DHS ,SF
= 1]− Pr[DF ,S = 1]|

≈
{

σ
2s − σ

2n−s , s <
n
2

0, s ≥ n
2

For PGV 1-4, 15, 17, 19, 20, the distinguisher can exploit the weakness of the
compression function to distinguish Game 1 from Game 2. However, one can eas-
ily verify the advantage of that type of distinguishing is no more than Adv′(D).

So the advantage of the distinguisher from Game 1 to Game 2 is

|Pr[G1] − Pr[G2]| ≤ Pr[S fails in Game 1]

+ Pr[S fails in Game 2] +Adv′

≤
{

O(σ
2

2n + σ
2s − σ

2n−s), s <
n
2

O(σ
2

2n), s ≥ n
2

Game 3. The distinguisher is interacting with (HE , E). Game 3 and Game 2 are
indistinguishable whenever no bad events occur or S fails to simulate the ideal
cipher in Game 2. S fails to simulate an ideal cipher if it outputs an input/output
collision for the same ideal cipher key. The probability of this event is easily seen
to be at most the birthday bound. Let G3 denote the event that D outputs 1
after interacting with (H,E). Thus, Pr[G3] = Pr[D(H,E) = 1]. Then we can
deduce that

|Pr[G3] − Pr[G2]| ≤ Pr[S fails in Game 2]

= O(
σ2

2n
)

Now we can complete our proof of chopMD by combining Game 1 to 3, and
observing that Game 1 is same as the random oracle model while Game 3 is
same as the ideal cipher model. Hence we can deduce that

ε = |Pr[G3]− Pr[G1]|
≤ |Pr[G3]− Pr[G2]| + |Pr[G2] − Pr[G1]|

=

{
O(σ

2

2n + σ
2s − σ

2n−s), s <
n
2

O(σ
2

2n), s ≥ n
2

��
This theorem says that to have an indifferentiability attack the distinguisher
needs at least 2s query complexity when n = 2s. This result implies the chopMD
hash function is almost optimally secure with respect to second preimage and
multicollision attack[8]. Note that it doesn’t improve the security bound for the
collision attack to chopMD, but does improve the security bound for distinguishing
the chopMD hash function from a random oracle in the ideal model.

Indifferentiability of Domain Extension Modes for Hash Functions 153

The proof of the following theorem is similar as the proof in the pfMD mode,
thus we omit the proof here.

Theorem 5. The 20 PGV compression functions are (tD, tS , q, ε) indifferen-
tiable from a random oracle in the NMACf,f

′
and HMACf mode. For any tD, with

tS = O(σ2) and ε = 2−n · O(σ2), where σ is the total number of maximum
message blocks queried by the distinguisher D.

Thus we give a classification of the four domain extension modes. We show that
chopMD and NMAC/HMAC can sustain more weaknesses of the compression func-
tions. The indifferentiability bound of chopMD is beyond the birthday complexity,
but the output size of chopMD is lower than NMAC/HMAC. HMAC is simpler than
NMAC: it needs one initial value and one compression function. In [2], Bellare and
Ristenpart discuss the notion of a multi-property preserving construction. In
particular, such a construction is an indifferentiable random oracle construction
as well as a domain extender for pseudorandom functions and collision-resistant
hash functions. We note that if the length of message is appended to the in-
put before applying the HMAC construction, then the modified construction is
an indifferentiable random oracle as well as collision-resistant hash functions.
Thus, we suggest HMAC (with a length padding) instead of pfMD, chopMD, NMAC
in practical use.

5 Conclusion

In this paper, we have examined the indifferentiability of the pfMD, chopMD, NMAC
and HMACmodes based on PGV compression functions. Our results show that the
four domain extension modes have different indifferentiable security levels. The
later three modes are better than pfMD since they can sustain more weaknesses
of a compression function. The chopMD mode has lower output range and the
NMAC mode needs two initial values and two independent compression functions.
The HMAC would be a better choice for practical use. Our results also show that
one should take care of the proof of the indifferentiability of a construction, since
many flaws have been found in previous proofs.

References

1. Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-Property-Preserving It-
erated Hashing: ROX. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 130–146. Springer, Heidelberg (2007)

2. Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension
and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

3. Bellare, M., Ristenpart, T.: Hash Functions in the Dedicated-Key Setting: Design
Choices and MPP Transforms. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 399–410. Springer, Heidelberg (2007)

154 Y. Luo, X. Lai, and Z. Gong

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability
of the Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008)

5. Bhattacharyya, R., Mandal, A., Nandi, M.: Indifferentiability Characterization of
Hash Functions and Optimal Bounds of Popular Domain Extensions. In: Roy, B.,
Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 199–218. Springer,
Heidelberg (2009)

6. Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

7. Brachtl, B.O., Coppersmith, D., Hyden, M.M., Matyas, S.M., Meyer, C.H., Oseas,
J., Pilpel, S., Schilling, M.: Data Authentication Using Modification Detection
Codes Based on a Public One Way Encryption Function. U.S. Patent Number
4,908,861, March 13 (1990)

8. Chang, D.H., Lee, S.J., Nandi, M., Yung, M.: Indifferentiable Security Analysis
of Popular Hash Functions with Prefix-Free Padding. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 283–298. Springer, Heidelberg (2006)

9. Chang, D., Nandi, M.: Improved Indifferentiability Security Analysis of chopMD
Hash Function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 429–443.
Springer, Heidelberg (2008)

10. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard Revisited: How
to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

11. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgard
Revisited: How to Construct a Hash Function (Full Version) (2007),
http://people.csail.mit.edu/dodis/ps/merkle.ps; A preliminary version
was accepted by CRYPTO 2005. LNCS, vol. 3621, pp. 430–448 (2005)

12. Coron, J.-S., Patarin, J., Seurin, Y.: The Random Oracle Model and the Ideal Ci-
pher Model Are Equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 1–20. Springer, Heidelberg (2008)

13. Damg̊ard, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

14. Dodis, Y., Reyzin, L., Rivest, R.L., Shen, E.: Indifferentiability of Permutation-
Based Compression Functions and Tree-Based Modes of Operation, with Applica-
tions to MD6. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 104–121.
Springer, Heidelberg (2009)

15. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damg̊ard for Practical
Applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388.
Springer, Heidelberg (2009)

16. Gong, Z., Lai, X., Chen, K.: A Synthetic Indifferentiability Analysis of Some Block-
Cipher-Based Hash Functions. Designs, Codes and Cryptography 48(3) (September
2008)

17. Hirose, S.: Some Plausible Constructions of Double-Block-Length Hash Functions.
In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidel-
berg (2006)

18. Hirose, S., Park, J.H., Yun, A.: A Simple Variant of the Merkle-Damg̊ard Scheme
with a Permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 113–129. Springer, Heidelberg (2007)

19. Hirose, S., Park, J., Yun, A.: A Simple Variant of the Merkle-Damgard Scheme with
a Permutation. Journal of Cryptology (online first), doi:10.1007/s00145-010-9095-5

http://people.csail.mit.edu/dodis/ps/merkle.ps

Indifferentiability of Domain Extension Modes for Hash Functions 155

20. Kuwakado, H., Morii, M.: Indifferentiability of single-block-length and rate-1 com-
pression functions. IEICE Trans. Fundamentals e90-A, 2301–2308 (2007)

21. Kuwakado, H., Hirose, S.: Differentiability of four prefix-free PGV hash functions.
IEICE Electronics Express 6(13), 955–958 (2009)

22. Luo, Y., Gong, Z., Duan, M., Zhu, B., Lai, X.: Revisiting the Indifferentiability of
PGV Hash Functions. Cryptology ePrint Archive: Report 2009/265

23. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on
Reductions, and Applications to the Random Oracle Methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

24. Maurer, U., Tessaro, S.: Domain Extension of Public Random Functions: Beyond
the Birthday Barrier. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
187–204. Springer, Heidelberg (2007)

25. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

26. Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers:
A Synthetic Approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

27. Winternitz, R.: A secure one-way hash function built from DES. In: Proceedings
of the IEEE Symposium on Information Security and Privacy, pp. 88–90 (1984)

Multicollisions and Graph-Based Hash Functions

Kimmo Halunen

Oulu University Secure Programming Group
Department of Computer Science and Engineering

P.O. Box 4500
90014 University of Oulu

ouspg@ee.oulu.fi

Abstract. In this paper, we present some generalisations of previous
multicollision finding methods and apply these against a new type of
tree-based hash functions. We also show that the very general class of
hash functions first presented by Nandi and Stinson can be understood
as graph-based hash functions and a graph theoretical approach can be
utilised in studying their properties. Previously, an efficient multicol-
lision attack has been found against the basic iterated hash function
construction. This method has been applied to the generalised iterated
hash functions and binary tree-based hash functions. We show that sim-
ilar methods can be utilised also against t-ary tree-based hash functions,
simplify some definitions and conjecture a similar result for multicolli-
sions against graph-based hash functions.

Keywords: hash functions, multicollisions, graphs.

1 Introduction

Hash functions are a basic building block in many cryptographic protocols. A
hash function computes a fixed length value, known as the hash value, for any
message of arbitrary length. If the hash function satisfies some security proper-
ties, the hash function can be utilised in cryptographic protocols. This in turn
then enables more efficient cryptographic protocols.

Three main properties for cryptographic hash functions are preimage resis-
tance, second preimage resistance and collision resistance. Assume that h is a
hash function. Preimage resistance means that given a hash value x it should be
hard to find a message y for which h(y) = x. For second preimage resistance it is
required that given a message y and the hash value h(y) = x it should be hard
to find y′ �= y such that h(y) = h(y′). Collision resistance means that it should
be hard to find any two distinct messages y and y′ such that h(y) = h(y′).

The basic construction method for hash functions has been the iterated method
proposed by Merkle [16] and Damg̊ard [4]. The idea is to use a compression func-
tion that takes messages of a fixed length to values of shorter length and apply
this function to the message of an arbitrary length by inputting the message
in blocks to the compression function and defining the final output as the hash
value of the message. This construction preserves the collision resistance of the

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 156–167, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Multicollisions and Graph-Based Hash Functions 157

compression function, when the messages are padded to full block length and the
length of the message is included as a separate message block (or if a prefix-free
encoding is used for the messages) [4].

However, the iterated construction has some flaws. In [9] Joux shows a method
for constructing multicollisions against iterated hash functions more easily than
for an ideal hash function. A multicollision is a set of messages such that all the
messages have the same hash value. The method of Joux is very simple and it has
been used to disprove some “folklore” on hash functions [9]. It has also become
a useful tool in generating some second preimage attacks against iterated hash
functions [10,1]. There is also a slight improvement of Joux’s method in [13].

There have been several methods proposed to tackle the attack of Joux e.g.
[14,6]. One idea is to use the message blocks several times and in permuted order.
This idea was first presented by Nandi & Stinson [17]. They also give a result
that shows the weakness of these generalised iterated hash functions against
multicollisions in a limited case. Hoch & Shamir [8] improve this result and their
method has been sharpened by Kortelainen et al. [7,11]. The results of [17] and
[8] also show that similar approach works for an even more generalised class of
hash functions, tree-based hash functions. However, they restrict their analysis
to the case of binary tree-based hash functions.

More general treatment of tree-based hash functions can be found in [3]. There
a very general class of tree-based hash functions is proved indistinguishable from
a random oracle (an ideal hash function). The ideas of tree-based hash functions
have been used in some of the SHA-3 competition candidates, e.g., MD6 [18]
and ESSENCE [15].

In this paper, we show that the earlier methods proposed in [17] and [8] can
also be applied to t-ary trees instead of just binary trees. Furthermore, we show
that the extremely general class of hash functions defined by Nandi & Stinson
in [17] can be expressed as a more general form of graph-based hash functions
and argue that the previous multicollision finding methods also generalise to
these hash functions. We also discuss the feasibility of both the graph-based
hash functions and the multicollision attacks against them.

This paper is organised in the following way. The next section contains basic
definitions and results used in our paper. The third section presents previous
work on the subject of multicollisions and generalised iterated hash functions.
The fourth section presents our findings on the multicollision attacks against
t-ary tree-based and graph-based hash functions. The final sections contain dis-
cussion and conclusions from our research.

2 Definitions and Basics

The definitions of our work adapt the definitions from [17,8] and [11]. First we
define a hash function to be any function h : {0, 1}∗ → {0, 1}n, with n ∈ N+.
A compression function is defined as f : {0, 1}n × {0, 1}m → {0, 1}n such that
m,n ∈ N+. Here n is the length of the hash or compression function and m is
the block length of the compression function.

158 K. Halunen

A graph G = (V,E) consists of a finite set of vertices V and the set E ⊆ V ×V
of edges between vertices. A path between two vertices u and v is a sequence of
vertices with an edge from each of the vertices to the next vertex in the sequence
starting from u and ending with v. A path from v to v is called a cycle. A graph
is connected if for each pair of vertices u, v there exists a path between them. A
graph G is a tree if it is connected and has no cycles.

In the following, we consider only directed graphs (digraphs for short). In a
digraph the indegree of a vertex v is the number of edges that have v as an
endpoint and the outdegree of v is the number of edges that have v as a starting
point. A source of a digraph is any vertex that has indegree equal to zero and a
sink is a vertex with outdegree equal to zero. In a tree, sources are called leaves
and sinks are called roots of the tree.

A t-ary tree G is a tree for which all vertices have indegree t or 0, outdegree
equal to one and there is a unique sink r called the root of G. All non-leaf,
non-root vertices are known as intermediate vertices. A 2-ary tree is also called
a binary tree. For a more thorough presentation on graphs and their properties
see for example [5].

Let G = (V,E) be a digraph. For any vertex v in G we define u → v iff (u, v) ∈
E. Furthermore, we denote by u ⇒ v if there exists a directed path from u to v
or if u = v. If u ⇒ v, we say that v is reachable from u. Let v ∈ V . We denote by
G[v] = (V [v], E[v]) the subgraph of G such that V [v] = {u ∈ V : u ⇒ v} and
E[v] = {(u, v) ∈ E : u, v ∈ V [v]}. Finally, we denote by L(G) the set of sources
of G and L(v) := L(G[v]) for any v ∈ V .

Let f be a compression function of length n and block length m. We define
M = m1m2 · · ·ml to be a binary message with l blocks. Let Ω = {ω1, ω2, . . . , ωd}
be a set of d ∈ N initial values (i.e. binary strings of length n) and Bl =
{m1,m2, . . . ,ml} be the set of message blocks of length m corresponding to
the message M. As in [17] and [8] we define ρ to be the initial assignment func-
tion of G. We adopt the definition from [17]: ρ : L(G) → Ω ∪ Bl and require
that the image of ρ contains Bl as a subset. We define G to be an indexed family
of pairs (Gl, ρl) with the property that for all l ∈ N we have that ρl is an initial
assignment function from L(Gl) to Bl ∪ Ω and that Gl = (Vl, El) is a directed
graph for all l ∈ N.

Let v ∈ Vl \ L(Gl). We define the intermediate values of the graph-based hash
function h at vertex v ash(v) = f(z1z2 · · · zt) where zi is the intermediate value as-
signed to the vertex ui with the property ui → v for all 1 ≤ i ≤ t. For all v ∈ L(Gl)
the intermediate value is the value ρl(v). The value h(M) is defined as the value
assigned to the unique sink of Gl. Furthermore, we define Γ (X) as the multiset
of all the images of the elements of X under ρl. Let x ∈ Bl. Now freq(x,Gl) is
the multiplicity of x in Γ (L(Gl)). We set freq(Gl) = max{freq(x,Gl) : x ∈ Bl}.
Finally, we define S(v) = |{x ∈ Bl : freq(x,G[v]) ≥ 1}|.

Remark 1. Notice that for graph-based hash functions the set of initial values
can be empty. Because the computation of the hash is defined by the graph
structure, there is no need to specify any initial values. We will return to this
property in the discussion section of this paper.

Multicollisions and Graph-Based Hash Functions 159

We also adopt the definition of independent message blocks from [17]. For a
digraph to be useful in the computation of a hash function, we require that it
has a unique sink (a root) even if it is not a tree.

Definition 1. Let l ∈ N and (Gl, ρl) ∈ G. A sequence (x1, x2, . . . , xk), k ∈ N+

of message blocks is independent if there exist vertices v1, v2, . . . , vk of Gl such
that

1. All occurrences of xi are in ρl(L[vi]) for all 1 ≤ i ≤ k
2. xi /∈ ρl(L[vj]) for all i > j
3. vk is the root of Gl.

In the above definition, the value k is the length of the independent sequence. We
denote by I(G) the maximum value for k such that there exists an independent
sequence of length k in the digraph G. Notice that the order of the message
blocks is relevant in the definition. Furthermore, we observe that if G is a tree
and (x1, x2, . . . , xk) is an independent sequence in G (with vertices vi numbered
accordingly), then (x2, x3, . . . , xk) is an independent sequence in G − G[v1] i.e.
the subtree of G not containing G[v1] (see [17, Lemma 6]).

If G is a tree and there exist vertices v1, v2, . . . , vd such that S(G[vi]) =
S(G), i ∈ {1, 2, . . . , d} and I(G[vi] − (

⋃
j<i G[vj])) = S(G), the tree G is said

to have d independent subtrees. This definition corresponds to the “successive
permutations” case in [8].

Let X ⊆ Bl and ρ an initial assignment function for the digraph G. We define
G|X = (V ′, E′) as the subgraph of G such that V ′ = {v ∈ V : u ∈ L(G), x ∈
X, ρ(u) = x, u ⇒ v} and E′ = {(u, v) ∈ E : u, v ∈ V ′}. We call G|X the X-
reachable subgraph of G. The definition of G|X is equivalent with Definition 13
of [8]. Notice that if G is a tree, then the X-reachable subgraph of G is also a
tree.

3 Previous Work

Multicollisions for iterated hash functions were shown to be fairly easy to con-
struct by Joux [9]. The method is very simple, yet quite ingenious. Assume that
h is an iterated hash function, with f as the underlying compression function.
Let h0 be the initial value of the hash function. Now, by basic birthday attack or
any other, faster collision finding method, one may find two message blocks x1

and y1 with f(h0, x1) = f(h0, y1) := h1. Now applying a second birthday attack,
we may find x2 and y2 such that f(h1, x2) = f(h1, y2) := h2. We can continue
in this way and in the end obtain a 2k-collision with only k collision attacks.
This multicollision is also a multicollision for h as all the messages have the same
length and yield the same value after the final iteration. Thus the complexity

for this multicollision attack is in O(k2
n
2) instead of being in O(2k!2

(2k−1)n

2k) as
would be the case for an ideal hash function (see [19] for details).

Nandi & Stinson proposed a very general class of hash functions in [17], which
we will describe as graph-based hash functions. This class has two subclasses,

160 K. Halunen

namely generalised iterated hash functions and binary tree-based hash functions
(which contains the former as a special case). For both of these classes Nandi
& Stinson were able to prove that an efficient method for finding multicollisions
exists, when the number of appearances of each message block is restricted to
q = 2 [17].

Hoch & Shamir generalise the above results to the case where q ∈ N+ [8].
Their method was further examined and sharpened by Kortelainen et al. [7,11].
These results show that when q is treated as a constant, an efficient method for
multicollisions can be found. However, in [11] it is stated that if q is treated as
a variable, the complexity with respect to q is hugely exponential. Thus the effi-
ciency of these methods is very much depended on how one views the parameter
q. There are some results that lower this complexity in q is presented in [12].

The ideas of tree-based hash functions have been generalised by Bertoni et
al. [3], where the authors present a very general class of tree-based hash functions
that allows even for different compression functions to be applied at different
vertices of the graph. They show that these type of hash functions are secure
up to the birthday bound when the compression functions and graphs satisfy
certain conditions.

Tree-based constructions have been used in MD6 [18] and ESSENCE [15]
both of which were candidates for the SHA-3 standard. Thus the research on
the theoretical limits of tree- and graph-based hash functions could have some
practical impact on the design of hash functions.

4 Multicollisions and Graph-Based Hash Functions

In this section, we show how the previous multicollision finding methods gener-
alise to the graph-based hash functions. We start by showing a very straightfor-
ward generalisation of the multicollision attack against binary tree-based hash
functions to arbitrary t-ary tree-based hash functions, t ∈ N+. In all of the fol-
lowing we assume that the number of times a message block can appear in the
computation of the hash function is bounded by a constant q ∈ N+.

4.1 t-Ary Tree-Based Hash Functions

Assume that t ∈ N+, t > 1 and (G, ρ) ∈ G such that G is a t-ary tree. The
following lemmas are direct generalisations of lemmas from [17] and [8].

Lemma 1 (Lemma 6 from [17]). Let (G, ρ) ∈ G, G a directed t-ary tree and
r be the root of G with S(r) ≥ tN . Then there exists a vertex v ∈ V such that
N ≤ S(v) ≤ tN .

Proof. Let v be a vertex with ui → v, 1 ≤ i ≤ t. Now we observe that S(v) ≥
S(ui) for all i. Furthermore, S(v) ≤ S(u1) + S(u2) + · · · + S(ut). Now, assume
v = r. Thus, tN ≤ S(r) ≤ S(u1) + S(u2) + · · · + S(ut) and by the pigeonhole
principle there exists at least one uj with S(uj) ≥ N . If S(uj) ≤ tN , then we
are ready. If not, we apply the same reasoning to uj as to r. Because in the end

Multicollisions and Graph-Based Hash Functions 161

we will reach the leaves of G, the process must end at some point with a vertex
v which has the desired property. ��
Lemma 2 (Lemma 6 from [8]). Let (G, ρ) ∈ G such that G is a directed t-ary
tree with S(G) ≥ tMN and M,N ∈ N+ and freq(G) ≤ q. Then at least one of
the following conditions holds:

1. I(G) ≥ M or;
2. there exists a vertex v and X ⊆ ρ(L(G)) such that freq(G[v]|X) ≤ q − 1 and

S(G[v]|X) ≥ N .

Proof. The proof is exactly as in [8] with the constant 2 replaced by t. We present
the proof for the completeness of our presentation. The proof is an induction on
l = S(G). Notice that when M = 1, we always have I(G) ≥ 1. Now assume that
the claim holds for all values less than l.

Now S(G) ≥ tMN ≥ tN and by Lemma 1 we have that there exists a vertex
v in G with N ≤ S(v) ≤ tN . If we now have freq(G[v]) ≤ q − 1, we may choose
X = ρ(L(G)) and have S(G[v]|X) ≥ N and freq(G[v]|X) ≤ q − 1 and the proof
is complete.

If the above is not the case, then we have a message block x1 such that
freq(G[v], x1) = q. We set G′ = G−G[v] and X to be the set of message blocks
appearing in ρ(L(G′)). Now S(G′) ≥ tMN − tN = t(M − 1)N and thus we may
apply the induction hypothesis. Now either I(G′) ≥ M −1 or there exists v′ and
X ′ such that S(G′[v′]|X′) ≥ N and freq(G′[v′]|X′) ≤ q − 1. In the latter case we
are done and in the former case we note that we have an independent sequence
of message blocks x2, . . . , xM and because x1 does not appear in ρ(L(G′)) we
may add x1 as to the independent sequence and obtain I(G) ≥ M . ��
Finally we extend one more lemma to our case.

Lemma 3 (Lemma 7 from [8]). Let (G, ρ) ∈ G such that G is a directed t-ary
tree with S(G) ≥ (tk − 1)x and freq(G) = 1. Then there exist k distinct vertices
v1, . . . , vk such that L(G[vi]) �⊆ L(G[vj]) when i > j and S(G[vi]−

⋃
j<i G[vj]) ≥

x.

Proof. Again the proof is a straightforward adaptation from the original. We
start the induction on k by observing that if k = 1 then for any G with S(G) ≥
(t−1)x ≥ x we may set v1 as the root ofG and the claim holds. Thus assume, that
the claim holds for all positive integers strictly less than k. Let G be a directed
t-ary tree with S(G) ≥ (tk − 1)x ≥ tx. By Lemma 1 there is a vertex v in G
such that x ≤ S(G[v]) ≤ tx. Let G′ = G − G[v]. Now S(G′) ≥ t(k − 1)x − tx =
(t(k − 1) − 1)x and by applying the induction hypothesis we get k − 1 vertices
v2, . . . , vk that satisfy the claim of the lemma. Now adding v = v1 we have the
required k vertices as v does not appear in G′ and S(G[v]) ≥ x. ��
After these results it is fairly straightforward to use the theorems from [8] and
[11] to get a multicollision method for t-ary tree based hash functions. However,
it is shown in [11] that the complexity results in [8] are incorrect. Thus the
resulting complexity is greater also in our case. First we present the t-ary version
of Theorem 3 in [8] with the correct bound for S(Gl) from [11].

162 K. Halunen

Theorem 1. Let h be tree-based hash function based on G, with each Gl being
a directed, t-ary tree and let Gl be in the form of q independent subtrees. Then

finding a 2k-collision for h requires S(Gl) ≥ t
q(q−1)

2 k2q−3n(q−1)2 .

As stated in [8, Lemma 9], we can always find this independent subtrees repre-
sentation for a suitable set X ⊆ ρ(L(Gl)), when l is chosen to be large enough.
This structure induces a sequential structure to the message blocks that label the
leaves of the tree. Thus the methods from the generalised iterated hash functions
can be directly applied to the tree-based hash functions as well.

The value of l is dependent on the value q, which is the upper bound for
the number of occurrences of any message block. These values are even more
drastically exponential in q than the first value in the previous theorem [11].
However, by treating q as a constant, this value disappears in the O-notation.
Of course, in real applications this huge constant is a very significant factor.

4.2 Graph-Based Hash Functions

In [17] Nandi & Stinson propose a general class of hash functions D that con-
tains the generalised iterated and tree-based hash functions as special cases.
Recall that if M = m1m2 · · ·ml is a binary message with l blocks we have
Bl = {m1,m2, . . . ,ml} and Ω = {ω1, ω2, . . . , ωd} is a set of d ∈ N initial values.
Let s ∈ N+. We define the set of precursors of an intermediate hash value yi as
Pi = {y1, y2, . . . , yi−1} and the set of all intermediate values P = {y1, y2, . . . , ys}.
The hash functions in the classD have the following properties. The computation
of such a hash function is characterised by a list of triples

L = {(hi, xi, yi) : 1 ≤ s, s ∈ N+}

which satisfy for all i ∈ {1, 2, . . . , s}:

f(hi, xi) = yi

hi = h(i,1)h(i,2) · · ·h(i,c)

h(i,j) ∈ Ω ∪ Pi

xi = x(i,1)x(i,2) · · ·x(i,b)

x(i,j) ∈ Bl,

where f : {0, 1}N → {0, 1}n is a compression function. If the length of the
message blocks ism and the length of the initial values n, we have that cn+bm =
N for all i. In the above, all yi are called intermediate hash values and the value
ys is the hash value of M [17].

We give an alternate and more concise definition of D in the following.

Definition 2. Let n,N and s ∈ N+, n < N and M be a binary message of l
blocks. Let f : {0, 1}N → {0, 1}n be a compression function. A hash function
hs,f from the family D is defined as follows. Let ui ∈ {0, 1}N , ui = v1v2 · · · vdi

with vj ∈ Ω ∪ Bl ∪ Pi for all 1 ≤ j ≤ di and i ∈ {1, 2, . . . , s}. Now yi = f(ui)
for all 1 ≤ i ≤ s and hs,f (M) = ys.

Multicollisions and Graph-Based Hash Functions 163

It should be noticed from the above definition that the word ui should be iden-
tified by its factors and not just as a binary string over {0, 1}N . It is also worth
mentioning that although no restriction on the number of steps s is given in
the definition, it should be efficient to compute the hash value from any given
message and thus the number of steps should be polynomial in the length of the
message.

The representatives of the class D can also be described as graphs. These
graphs turn out to be graphs that have somewhat more general structure than
the t-ary trees described previously. However, some of the results also apply to
these graphs.

There are two ways to approach these hash functions. First we describe the
members of the class D as the generalisations of the tree-based hash functions.
This method relies on the idea that the graph which the computation is based
on is given and the labeling function sets the message blocks and initial values
on the sources of the graph. The other way to approach these hash functions is
to look at the definition of D and to build the graphs from there.

Let (Gl, ρl) ∈ G with l ∈ N. The computation graph Gl of hs,f ∈ D is an acyclic
digraph, with the following properties. The maximum outdegree of sources that
have labels from B is q and the minimum is 1. There is a unique sink r and
hs,f (M) = h(r). For all vertices of Gl which are not sources, the indegree is
p = c+b, where c, b ∈ N, cn+bm = N and p ≥ 2 and there are s of these vertices.
Each of these vertices corresponds to a step in the computation of the hash value
of the message M and these are ordered by the number i ∈ {1, 2, . . . , s} with r
having the number s. There may not be an edge from an intermediate vertex to
another intermediate vertex of a higher order.

Let γ be the maximum indegree of the vertices in Gl. Then the maximum
number of edges in the graph Gl is γs. The maximum number of vertices in the
graph Gl is s + ql + wd where w is the maximum number that a given inital
value can appear in the computation of the hash value.

Lemma 1 can be generalised to the computation graphs of graph-based hash
functions.

Lemma 4. Let (Gl, ρl) ∈ G with l ∈ N+ and r be the root vertex of Gl. Fur-
thermore, let Gl be a computation graph of a hash function hs,f ∈ D. Let γ be
the maximum indegree of the vertices in Gl and S(r) ≥ γN . Then there exists a
vertex v ∈ Gl such that N ≤ S(v) ≤ γN .

The proof of Lemma 4 is exactly the same as the proof of Lemma 1 with t
replaced by γ. The arguments about the indegrees of the vertices are still valid
although the graph is not exactly a tree and thus the claim holds.

Unfortunately, Lemmas 2 and 3 do not directly generalise to the computation
graphs of hash functions from D. However, because of the fact that the indegree
of all intermediate vertices is bound by γ and the total number of edges is bound
by γs we make the following conjecture.

164 K. Halunen

Conjecture 1. Let h ∈ D and (Gl, ρl) ∈ G. Let q ∈ N+ with freq(G) ≤ q. By
choosing l to be large enough, l ∈ O(poly(n, k)2

n
2), we may find a 2k-collision

for h.

The basis of the conjecture is in the fact that we may grow l to be arbitrarily large
and thus we may group the leaf vertices suitably, even in the most pathological
cases where γ = N . Because this case means that either message blocks are the
length of one bit or the length of the hash function is one bit, it could be possible
to impose some reasonable practical limits for γ and then prove the necessary
limits. However, proving the exact limits for both the restricted and unrestricted
case has been difficult without having the suitable lemmas as in the t-ary trees
case.

Another way to study these hash functions and their properties is to build
a graph from the different dependencies that the computation induces between
different message blocks, initial values and intermediate values.

Definition 3. Let hs,f be a hash function from the family D as in Definition 2.
The dependency graph of hs,f is a graph G = (V,E) with V = Ω ∪ Bl ∪ P and
(a, b) ∈ E iff a, b ∈ V , b = f(ui) and a ∈ {v1, v2, . . . , vdi}.

The dependency graph shows how the different message blocks, initial values
and intermediate values interact when the hash value of a message of a given
block length is computed. There are some restrictions on the graph that arise
from the definition of the hash function. The constant q is an upper bound for
the outdegree of all the vertices from Bl. Let β be the maximum indegree of all
the vertices of the dependency graph G. The maximum amount of edges in G is
then βs. The maximum amount of vertices in the dependency graph is d+ l+ s.

5 Discussion

The results and conjecture presented in this paper show that even generalising
the mode of combining the message blocks to use a graph representation does not
bring suitable protection against the multicollision attacks presented before. The
graph-based hash functions suffer also from a similar drawback as the generalised
iterated hash functions as for each message length there needs to be a graph
representing the computation of the hash value for the messages of this length.
Thus the representations of these graphs have to be effectively encoded and this
might lead to more predictable behaviour of the hash function, which would
further weaken the construction. In the design of MD6 [18] the requirement
of effective encoding led to the decision of having an option where the graph
structure is replaced by sequential structure. This could then be used in some
resource constrained devices. Of course this property could be used by attackers
if this sequential structure is seen as less secure.

As stated in Remark 1, graph-based hash functions do not necessarily require
any initial values for computation. This distinguishes them from sequential hash
functions, where an initial value must be given in order to compute the hash

Multicollisions and Graph-Based Hash Functions 165

function. In graph-based hash functions there is also a possibility to use more
than one initial value, but there is very little use in that as it increases the amount
on computation without introducing uncertainty. Of course these initial values
may be necessary to complete the graph, if the graph needs some predefined
structure that cannot be provided with just the message blocks and intermediate
values. In any case, the most effective way to utilise the graph-based hashes would
be to not use any initial values.

In one respect the graph-based hash functions are more effective than sequen-
tial ones. With the sequential structure, one can not compute the hash value
until the next message block is available. In graph-based hash functions some
amount of parallelisation can be utilised and the hash values for each vertex v
can be computed as soon as the values for all vertices u → v have been deter-
mined. This could make them more attractive from a practical point of view
as this property might allow some form of streaming computation of the hash
value, which is possible for traditional iterated hash functions. In the MD6 de-
sign the graphical structure together with parallelisation led to the fairly efficient
computation of the hash function.

One possibility to further generalise the hash functions from the class D would
be to allow even more general graphs as the form of computation. For example
removing the requirement for a single root vertex, would be a remarkable gen-
eralisation. However, this would also mean that the hash value would no longer
be uniquely determined by the graph and this would undermine the usefulness
of the construction. Then one would need to somehow specify the value of the
hash function for the graph outside the definition of the graph. Thus it is fairly
safe to say that the class D of hash functions grasps the main essence of hash
functions based on the repeated use of a single compression function.

However, the generalisations presented in [3] also show a possibility of con-
structing secure hash functions with several different compression functions used
during the computation and the class D does not contain this possibility. In a
more general setting, these several compression functions could be taken into ac-
count. It is our opinion that the graphical structure and the restrictions imposed
by that still enable efficient multicollision attacks. This is due to the fact that
the results of [17,8] and this paper do no rely on any specific weakness of the
underlying compression function. Thus using many different compression func-
tions does not necessarily provide much added protection against these methods.
There are also some other methods such as the sponge-like constructions [2] that
might lie outside the scope of D.

6 Conclusion

In this paper, we have demonstrated that multicollisions can be formed for a more
general class of tree-based hash functions, the t-ary tree-based hash functions.
The methods follow from previous methods that have been proposed to the
subclasses of these hash functions. Furthermore, we conjecture that the more
general class of graph-based hash functions is susceptible to similar attack due

166 K. Halunen

to the limitations imposed by the hash function computation on the structure of
the graph. Thus by studying the graph theoretic properties of the hash functions
we might gain some insight on the overall security of hash functions.

It is noteworthy that the class of hash functions D defined by Nandi & Stinson
is very general and the simplified description given in this paper shows that the
main idea behind this very general class of hash functions is fairly simple. Thus
there might be a possibility to devise more complicated hashing methods that
are more secure against multicollisions. However, the efficiency and applicability
of such constructions should also be studied carefully.

Although the methods show some promise, it is worthwhile to notice that
realising the hash functions from D is a very difficult task. Furthermore, there
are only a few concrete proposals where the message blocks would be used many
times. This comes from the fact that using such methods is fairly costly and
as shown by our research and previous results, it provides little added security.
Also the hash functions MD6 and ESSENCE that have employed the graphical
structure have not been selected as finalists in the SHA-3 competition

References

1. Andreeva, E., Bouillaguet, C., Fouque, P.-A., Hoch, J.J., Kelsey, J., Shamir, A.,
Zimmer, S.: Second Preimage Attacks on Dithered Hash Functions. In: Smart,
N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 270–288. Springer, Heidelberg
(2008)

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. Sponge
Functions website (2007), http://sponge.noekeon.org/SpongeFunctions.pdf

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sufficient conditions for
sound tree and sequential hashing modes. Cryptology ePrint Archive, Report
2009/210 (2009), http://eprint.iacr.org/

4. Damg̊ard, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

5. Diestel, R.: Graph Theory. Graduate Texts in Mathematics. Springer (2006)
6. Gauravaram, P., Millan, W., Dawson, E., Viswanathan, K.: Constructing Secure

Hash Functions by Enhancing Merkle-Damg̊ard Construction. In: Batten, L.M.,
Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 407–420. Springer, Hei-
delberg (2006)

7. Halunen, K., Kortelainen, J., Kortelainen, T.: Combinatorial multicollision attacks
on generalized iterated hash functions. In: Boyd, C., Susilo, W. (eds.) Eighth Aus-
tralasian Information Security Conference (AISC 2010). CRPIT, vol. 105, pp. 86–
93. ACS, Brisbane (2010)

8. Hoch, J.J., Shamir, A.: Breaking the ICE - Finding Multicollisions in Iterated
Concatenated and Expanded (ICE) Hash Functions. In: Robshaw, M.J.B. (ed.)
FSE 2006. LNCS, vol. 4047, pp. 179–194. Springer, Heidelberg (2006)

9. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

10. Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

http://sponge.noekeon.org/SpongeFunctions.pdf
http://eprint.iacr.org/

Multicollisions and Graph-Based Hash Functions 167

11. Kortelainen, J., Halunen, K., Kortelainen, T.: Multicollision attacks and general-
ized iterated hash functions. Journal of Mathematical Cryptology 4 (2010)

12. Kortelainen, J., Kortelainen, T., Vesanen, A.: Unavoidable Regularities in Long
Words with Bounded Number of Symbol Occurrences. In: Fu, B., Du, D.-Z. (eds.)
COCOON 2011. LNCS, vol. 6842, pp. 519–530. Springer, Heidelberg (2011)

13. Kortelainen, T., Kortelainen, J., Halunen, K.: Variants of Multicollision Attacks
on Iterated Hash Functions. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010.
LNCS, vol. 6584, pp. 139–154. Springer, Heidelberg (2011)

14. Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

15. Martin, J.W.: ESSENCE: A candidate hashing algorithm for the NIST
competition. Submission to NIST (2008), http://www.math.jmu.edu/∼martin

/essence/Supporting Documentation/essence NIST.pdf

16. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

17. Nandi, M., Stinson, D.R.: Multicollision attacks on generalized hash functions.
Cryptology ePrint Archive, Report 2004/330 (2004), http://eprint.iacr.org/

18. Rivest, R.L.: The MD6 hash function – a proposal to NIST for SHA-3. Submission
to NIST (2008),
http://groups.csail.mit.edu/cis/md6/submitted-2008-10-27/Supporting

Documentation/md6 report.pdf

19. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday paradox for multi-
collisions. IEICE Transactions 91-A(1), 39–45 (2008)

http://www.math.jmu.edu/~martin/essence/Supporting_Documentation/essence_NIST.pdf
http://www.math.jmu.edu/~martin/essence/Supporting_Documentation/essence_NIST.pdf
http://eprint.iacr.org/
http://groups.csail.mit.edu/cis/md6/submitted-2008-10-27/Supporting_Documentation/md6_report.pdf
http://groups.csail.mit.edu/cis/md6/submitted-2008-10-27/Supporting_Documentation/md6_report.pdf

A General, Flexible and Efficient Proof

of Inclusion and Exclusion

Kun Peng

Institute for Infocomm Research, Singapore
dr.kun.peng@gmail.com

Abstract. Inclusion proof shows that a secret committed message is
in a finite group of messages, while exclusion proof shows that a secret
committed message is not in a finite group of messages. A general, flexible
and efficient solution to inclusion proof and exclusion proof is proposed
in this paper. It overcomes the drawbacks of the existing solutions to
inclusion proof and exclusion proof. It achieves all the desired security
properties in inclusion proof and exclusion proof. It is the most efficient
general solution to inclusion proof and exclusion proof and only costs
O(

√
n) for any inclusion proof and exclusion proof regarding any finite

group of n messages.

1 Introduction

In cryptographic secure protocols, sometimes a party chooses a message from
a finite set S = {s1, s2, . . . , sn} and then commits to it. He keeps the message
secret and publishes the commitment. He needs to prove that the message in the
commitment is indeed in S, but cannot reveal the secret message. Such a proof
is called inclusion proof in this paper. For example, in e-auction [18,20,21,25]
and e-voting [19,22,23,24,26], very often a bidder or voter has to prove that his
secret bid or vote is chosen from a list of candidates. As explained in [5], inclusion
proof is also useful in applications like e-cash systems and anonymous credential
systems. In some cryptographic applications, it is needed for a party to prove
that a committed secret message m is not in a finite set S = {s1, s2, . . . , sn}
without revealing it. For example, as explained in [14], a financial institute may
ask a loan applier to prove that he is not in a black list, while the applier does
not want to reveal his identity before the application goes to next step. This
proof is called nonmembership proof in [14] and called exclusion proof in this
paper.

According to [10], any secret knowledge can be proved without revealing it
if there is no critical requirement on efficiency. There are some general zero
knowldge proof techniques [10,9,13,12], which handles various proofs including
inclusion proof and exclusion proof by reducing them to a standard form and
then giving an all-purpose proof. We are not very interested in those techniques
as we focus on high efficiency. Obviously, proof techniques specially designed for
inclusion proof and exclusion proof have an advantage in efficiency improvement

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 168–183, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A General, Flexible and Efficient Proof of Inclusion and Exclusion 169

of the two proofs over the general all-purposed proof techniques as the former
does not need to consider any other proof. So we focus on proof techniques to
handle only inclusion proof and exclusion proof in this paper.

Apart from the straightforward solution to inclusion proof through ZK (zero
knowledge) proof of partial knowledge [7] and the brute-force solution to exclu-
sion proof by proving that the committed integer is unequal to every integer in
the set, there are several more efficient inclusion and exclusion proof schemes
[3,14,5]. However, they have their drawbacks as will be detailed in Section 2.
Inclusion proof in [3] is strictly limited by a few conditions and so lacks gener-
ality and flexibility. Exclusion proof in [14] is a variant of [3], so has the same
drawback. Inclusion proof in [5] lacks public verifiability, must be interactive and
is inefficient when there are many verifiers.

In this paper, new inclusion proof and new exclusion proof are proposed.
They employ the same strategy: reducing a proof regarding a large set to mul-
tiple proofs regarding smaller sets and then reducing each proof regarding a
smaller set to a proof regarding a single integer. In this way, a complex task is
divided into multiple simpler tasks and high efficiency is achieved. After that
a calculation-optimising method is designed to further improve efficiency. The
new proof technique overcomes the drawbacks in [3,14,5] and are very efficient.
It is more efficient than the existing general solutions to inclusion proof and ex-
clusion proof including the straightforward simple solutions and [5], while [3,14]
are special solutions strictly limited to special applications. When the size of S
is n, it only costs O(

√
n) exponentiations in computation and transfers O(

√
n)

integers in communication, no matter what messages are in S and committed.

2 Security Requirements and the Existing Solutions

The following security properties are usually desired in inclusion proof and ex-
clusion proof.

– Completeness: in an inclusion proof protocol, if the committed integer is
in the set and the prover strictly follows the inclusion proof protocol, he
can pass the verification in the protocol; in an exclusion proof protocol, if
the committed integer is not in the set and the prover strictly follows the
exclusion proof protocol, he can pass the verification in the protocol.

– Soundness: in an inclusion proof protocol, if the committed integer is not in
the set, the probability that the prover passes the verification in the protocol
is negligible; in an exclusion proof protocol, if the committed integer is in
the set, the probability that the prover passes the verification in the protocol
is negligible.

– Zero knowledge: in an inclusion proof protocol, no information about the
committed message is revealed except that it is in the set; in an exclusion
proof protocol, no information about the committed message is revealed
except that it is not in the set. More precisely, in both inclusion proof and
exclusion proof, the proof transcript can be simulated without any difference
by a party without any knowledge of any secret.

170 K. Peng

– Public verifiability: validity of all the operations can be publicly verified by
any verifier and independent observer, in both inclusion proof and exclusion
proof.

– Generality and flexibility: format of the committed integer and the set is not
limited in any way. More precisely, in any application of inclusion proof or
exclusion proof, just choose a large enough message space for the commit-
ment algorithm to cover any possible committed integer and the set, then
inclusion proof and exclusion proof can always work.

– Non-interaction: when necessary, inclusion proof and exclusion proof can be
non-interactive.

The simplest solution to inclusion proof is ZK proof of partial knowledge [7],
which proves that the committed message may be every message in the set one by
one and then link the multiple proofs with OR logic. This solution is called simple
inclusion proof in this paper. Similarly, exclusion proof can be implemented by
proving that the committed message is unequal to each message in the set one
by one and then linking the multiple proofs with AND logic. Inequality of two
secret integers can be proved using techniques like ZK proof of inequality of
discrete logarithm in [4]. This solution is called simple exclusion proof in this
paper. The advantage of these two simple solutions is generality and versatility.
They can prove inclusion and exclusion regarding any committed integer and
any set. They can achieve all the desired security properties including public
verifiability and flexibility. Their drawback is low efficiency. In communication,
they have to to transfer O(n) integers. In computation, they cost both the prover
and the verifier O(n) exponentiations.

A more efficient inclusion proof is proposed by Camenisch et al. [5]. In [5],
a verifier signs every message in S using his own private key and sends all the
signatures to the prover, who then proves that he knows the signature on the
message in the commitment. In this method, the computational cost of a prover
becomes constant and thus much more efficient although efficiency improvement
in communication and on the verifier’s side is not evident. This inclusion proof
has several drawbacks. Its main drawback is lack of public verifiability. The
signatures sent to the prover are not public. Except for the prover and the verifier
generating them, the other parties including other verifiers do not know whether
any signature of other messages is sent to the prover. So it is a two-party private
proof between a prover and a certain verifier and it has to be separately and
repeatedly run between the prover and every verifier. Therefore, when there are
many verifiers, the overhead for the prover is very high. Moreover, Fiat-Shamir
heuristic cannot be employed to achieve non-interaction and every verifier must
interactively run the inclusion proof protocol with the prover. In addition, this
proof technique cannot handle exclusion proof.

The most efficient inclusion proof is proposed by Camenisch et al. [3]. In [3] to
show that a secret message committed in c is in S, knowledge of integers m and ε
is proved such that m is committed in c and εm = g

∏n
i=1 si where g is a generator

of a cyclic multiplication group with a composite multiplication modulus difficult

to factorize. Obviously, if m = sj , the prover can use ε = g
∏j−1

i=1 si
∏n

i=j+1 si to give

A General, Flexible and Efficient Proof of Inclusion and Exclusion 171

the proof and pass the verification. The main drawback of this solution is lack
of generality and flexibility. It is strictly limited by a few conditions. Firstly, the
messages in the set must be positive prime integers in a certain interval range.
Secondly, the committed message must be proved to be in the interval range to
guarantee that the prover does not commit to the product of some integers in
the set. This limitation implies that additional range proof is needed. Thirdly, a
co-called strong RSA assumption is necessary for security of the inclusion proof
in [3]. Apart from depending on an unusual computational hard problem, the
assumption implies that the set must be chosen independent of the prover so that
it appears random to him. Application of [3] to inclusion is so strictly limited
that its own author Camenisch only suggests to use it in special applications
like anonymous credential. For general purpose inclusion proof, Camenisch et al.
later propose the inclusion proof technique in [5], which we have discussed.

The inclusion proof technique in [3] is extended to exclusion proof by Li et
al. [14]. The key technique in [14] is an accumulator-based proof system, which
can provide a witness for each integer in a special set but not in S to show its
exclusion from S. It is more efficient than the simple exclusion proof, but like the
inclusion proof technique in [3] it is strictly limited in application. It is subject to
three conditions. Firstly, all the messages in S and the committed message must
be prime integers. Secondly, all the messages in S and the committed message
must be non-negative integers smaller than 2ι where ι is a security parameter
denoted as l in [14]. Thirdly, a necessary condition satisfied in [3] is ignored in
[14]: no integer in the set can be larger than the product of any other integers in
the set. Moreover, dependence on the strong RSA assumption implies another
condition in [14]: the set must be chosen independent of the prover so that it
appears random to him.

Although mapping all the the messages in the set and all the messages possible
to commit to into the special supported set may improve applicability of [3]
and [14], this method does not always work simply and effectively. Instead, its
applicability and complexity depend on the application environment as explained
in the following.

– Any two different messages in the set and out of the set respectively cannot
share the same image in the mapping so that the mapping always distin-
guishes the messages in the set and the messages out of the set. Moreover,
sometimes the committed message will be recovered and used later. So the
mapping function needs to be invertible and some simple functions (like
mapping an integer to the prime nearest to it) cannot work.

– Some invertible mapping functions need a large memory to store, especially
when the message space is large.

– In some applications the committed message must be processed in the form
of commitment (e.g. in multi-party secure computation or e-voting where
the commitment function is in the form of an encryption algorithm). Such
applications usually exploit homomorphism of the commitment algorithm to
implement computation of commitments, so the original messages in them
cannot be changed in any way.

172 K. Peng

There are some even more special proof schemes [1,15,11], which prove that a
secret committed integer lies in a finite interval range. They are the so called
“range proof” schemes and are incomparable to our work. Moroever, as stated
in Section 1, unpublished and rejected proposals with problems and limitations
are incomparable to our work.

3 New Inclusion Proof and Exclusion Proof

The main idea of the new design is to divide the set S into multiple subsets,
so that inclusion of a message in S is reduced to its inclusion in one of the
subsets and exclusion of a message from S is reduced to its exclusion from all
of the subsets. In this way, an inclusion proof or exclusion proof is reduced to
multiple inclusion proofs or multiple exclusion proofs in a smaller scale. Then
each smaller-scale inclusion proof is reduced to proof of commitment and each
smaller-scale exclusion proof is reduced to proof of uncommitment where the
former proves that a message is committed in a commitment and the latter
proves that a message is not committed in a commitment. To be consistent
with the existing inclusion proof and exclusion proof schemes and make a fair
comparison, the following commitment function is employed.

– p and q are large primes such that q|p − 1 and q > si for i = 1, 2, . . . , n. G
is the cyclic subgroup with order q of Z∗

p . Integers g and h are generators of
G such that logg h is unknown.

– From now on in this paper, all the computations involving the integers in
any matrix and vector is carried out modulo q.

– A prover randomly chooses r from Zq and commits to a secret integer m in
c = gmhr mod p.

3.1 Reducing Inclusion Proof and Exclusion Proof to Simpler
Proofs

The simplifying reduction from inclusion proof and exclusion proof to commit-
ment proof and uncommitment proof is as follows.

1. For simplicity of description, suppose S can be divided into t subsets
S1, S2, . . . , St and each Sl contains k integers sl,1, sl,2, . . . , sl,k.

2. The prover randomly chooses an integer s in Zq and calculates for each Sl

integers bl,i for i = 1, 2, . . . , k in Zq to satisfy∑k
i=1 bl,is

i
l,ρ = s mod q for ρ = 1, 2, . . . , k. (1)

More precisely, integers bl,i for l = 1, 2, . . . , t and i = 1, 2, . . . , k must satisfy⎛
⎜⎜⎜⎜⎝

sl,1 s2l,1 . . . skl,1
sl,2 s2l,2 . . . skl,2
.
.
sl,k s2l,k . . . skl,k

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

bl,1
bl,2
. . .
. . .
bl,k

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

s
s
. . .
. . .
s

⎞
⎟⎟⎟⎟⎠

A General, Flexible and Efficient Proof of Inclusion and Exclusion 173

for l = 1, 2, . . . , t. As sl,i < q for l = 1, 2, . . . , t and i = 1, 2, . . . , k and they
are different integers,

Ml =

⎛
⎜⎜⎜⎜⎝

sl,1 s2l,1 . . . skl,1
sl,2 s2l,2 . . . skl,2
.
.
sl,k s2l,k . . . skl,k

⎞
⎟⎟⎟⎟⎠

is a non-singular matrix for l = 1, 2, . . . , t and there is a unique solution for
bl,1, bl,2, . . . , bl,k: ⎛

⎜⎜⎜⎜⎝
bl,1
bl,2
. . .
. . .
bl,k

⎞
⎟⎟⎟⎟⎠ = M−1

l

⎛
⎜⎜⎜⎜⎝

s
s
. . .
. . .
s

⎞
⎟⎟⎟⎟⎠

for l = 1, 2, . . . , t. Therefore, functions Fl(x) =
∑k

i=1 bl,ix
i mod q for l =

1, 2, . . . , t are obtained, each to satisfy

Fl(sl,i) = s for i = 1, 2, . . . , k. (2)

The prover publishes s. Note that Fl() is actually the unique polynomial
with degree at most k to satisfy (2) and Fl(0) = 0. Readers with basic
knowledge in linear algebra should know a few efficient methods, which do
not cost any exponentiation, to calculate Fl() from sl,i for i = 1, 2, . . . , k. Our
presentation of Fl() through matrix calculations is only one of them, which
seems formal and straightforward. Also note that if necessary calculation of
Fl() can be performed beforehand once S is published such that it is already
available when the inclusion proof or exclusion proof starts.

3. The prover calculates ei = emi−1h
γi mod p for i = 1, 2, . . . , k − 1 where

e0 = c and γi is randomly chosen from Zq. The prover proves validity of
e1, e2, . . . , ek−1 using a zero knowledge proof that he knows m, r and γi for
i = 1, 2, . . . , k − 1 such that c = gmhr mod p and ei = emi−1h

γi mod p for
i = 1, 2, . . . , k− 1, which can be implemented through a simple combination
of ZK proof of knowledge of discrete logarithm [27] and ZK proof of equality
of discrete logarithms [6].

4. A verifier

(a) calculates bl,i for l = 1, 2, . . . , t and i = 1, 2, . . . , k to satisfy (1) like the
prover does where s is provided by the prover;

(b) verifies the prover’s proof of validity of e1, e2, . . . , ek−1.

He accepts the reduction iff the prover’s proof is passed and e1, e2, . . . , ek−1

are valid.

The operations above have reduced inclusion proof and exclusion proof to com-
mitment proof and uncommitment proof respectively. More precisely,

174 K. Peng

– Inclusion of m in S is reduced to inclusion of m in S1 or S2 or or St.
As s = Fl(m) if m ∈ Sl, inclusion of m in Sl is reduced to commitment of s
in ωl where

ωl = C(Fl(m)) = C(
∑k

i=1 bl,ix
i) =

∏k−1
i=0 e

bl,i+1

i mod p.

and C() denotes the commitment function to commit a message m′ in
C(m′) = gm

′
hη mod p using a random integer η in Zq.

– Exclusion of m from S is reduced to exclusion of m from S1 and S2 and
. and St, while exclusion of m from Sl is reduced to uncommitment of
s from ωl.

3.2 Specification of the Two Simpler Proofs

The reduction work above is the same for inclusion proof and exclusion proof.
After that, the left work is different for inclusion proof and exclusion proof. In
an inclusion proof, the prover has to prove that s is committed to by him in ω1

or ω2 or or ωt. More precisely, he has to prove that he knows logh ω1/g
s

or logh ω2/g
s or or logh ωt/g

s as follows.

1. ωl can be publicly calculated by any verifier in the form

ωl =
∏k−1

i=0 e
bl,i+1

i mod p.

2. If needed the prover himself can secretly calculate ωl/g
s more efficiently:

ωl/g
s =

{
h
∑k−1

i=0 bl,i+1Γi+1 mod p if m ∈ Sl

g(
∑k−1

i=0 bl,i+1m
i+1)−sh

∑k−1
i=0 bl,i+1Γi+1 mod p if m /∈ Sl

where Γi = mΓi−1 + γi−1 mod q for i = 2, 3, . . . , k, Γ1 = r and
m2,m3, . . . ,mk can be calculated using k − 1 multiplications and reused
in calculation of ω1, ω2, . . . , ωt.

3. The prover runs ZK proof of partial knowledge [7] to implement the proof
that he knows one of t discrete logarithms logh ω1/g

s, logh ω2/g
s, . . .,

logh ωt/g
s.

4. Any verifier can publicly verify the prover’s proof of knowledge of one of t
discrete logarithms. He accepts the inclusion proof iff the prover’s proof is
successfully verified.

In an exclusion proof, the prover has to prove s is not committed in any of ω1,
ω2, . . . , ωt. Proof that s is not committed in ωl is as follows where the prover
and the verifier can calculate ωl respectively like in the inclusion proof and the
prover knows Ml = Fl(m) =

∑k
i=1 bl,im

i mod q, which is committed in ωl.

1. The prover randomly chooses a positive integer T in Zq and publishes y =
gT (s−Ml) mod p.

A General, Flexible and Efficient Proof of Inclusion and Exclusion 175

2. He proves knowledge of secret integer x = T (s−Ml) such that y = gx mod p
using zero knowledge proof of knowledge of discrete logarithm [27].

3. He proves knowledge of secret integers T and r′ such that (gs)Thr′ =

ωT
l y mod p where r′ = T

∑k
i=1(bl,iΓi) mod q, Γi = mΓi−1 + γi−1 mod

q for i = 2, 3, . . . , k and Γ1 = r using zero knowledge proof of knowledge
of discrete logarithm [27] and knowledge proof of equality of discrete loga-
rithms [6].

4. Any verifier can verify y > 1 and the two zero knowledge proofs. He accepts
the uncommitment claim if and only if all the three conditions are satisfied
in his check.

This proof is called uncommitment proof. The prover repeats it for each l in
{1, 2, . . . , t} and any verifier can verify the prover’s proof. The verifier accepts
the exclusion proof iff the all the t instances of proof are successfully verified.
Note that m2,m3, . . . ,mk can be calculated using k − 1 multiplications and
reused in calculation of M1,M2, . . . ,Mt by the prover.

4 Security Analysis

Completeness of the new inclusion proof and exclusion proof is obvious. Any
reader can follow the running of the two proof protocols step by step to verify
that an honest prover can strictly follow them to pass their verifications. If the
challenges in the employed zero knowledge proof primitives are generated by a
pseudo-random function, no interactive verifier is needed and the new inclusion
proof and exclusion proof can be non-interactive in the random oracle model.
Moreover, public verifiability is achieved in the two proofs as every detail of
them can be publicly verified by any one. Other security properties of them are
proved in Theorems 1, 2 and 3.

Theorem 1. Both the new inclusion proof protocol and the new exclusion proof
protocol achieve honest-verifier zero knowledge.

Proof: Both the new inclusion proof protocol and the new exclusion proof proto-
col only employ three zero knowledge proof primitives: zero knowledge proof of
knowledge of discrete logarithm [27], zero knowledge proof of equality of discrete
logarithms [6] and zero knowledge proof of partial knowledge [7]. Honest-verifier
zero knowledge of these three proof primitives is formally proved when they are
proposed. More precisely, the proof transcripts of the three primitives with an
honest verifier can be simulated without any difference by a party without any
secret knowledge.

Besides the three zero knowledge proof primitives, the two proofs only reveal
s, e1, e2, . . . , ek−1. As s is randomly chosen from Zq, the distribution of s is
uniform in Zq. As ei = emi−1h

γi mod p for i = 1, 2, . . . , k − 1 and γi is randomly
chosen from Zq, each ei is uniformly distributed in G. So anybody can simulate
s, e1, e2, . . . , ek−1 without any difference by randomly choosing s in Zq and
every ei in G.

176 K. Peng

Other integers used in the proof like bl,i and ωl are deterministic public func-
tions of s1, s2, . . . , sn, s, c, e1, e2, . . . , ek−1. So they are not independent vari-
ables affecting zero knowledge of the two proof primitives.

Since the whole proof transcripts of the two proof protocols with an honest
verifier can be simulated without any difference by a party without any secret
knowledge, they achieve honest-verifier zero knowledge. �

Theorem 2. The new inclusion proof is sound. More precisely, if a polyno-
mial prover can extract an opening (m, r) of c such that m �= si mod q for
i = 1, 2, . . . , n, then the probability that the prover can pass the verification in
the new inclusion proof is negligible.

Proof: If the prover extracts m, r and passes the verification in the new inclusion
proof with a non-negligible probability while c = gmhr mod p and m �= si mod q
for i = 1, 2, . . . , n, a contradiction can be found as follows. As he passes the
verification in the new inclusion proof with a non-negligible probability, he must
have successfully proved validity of e1, e2, . . . , ek−1 with a non-negligible prob-
ability. As proof of validity of e1, e2, . . . , ek−1 is based on proof of knowledge
of discrete logarithm in [27] and proof of equality of discrete logarithms in [6],
whose soundness is formally proved when they are proposed, it is guaranteed
with a non-negligible probability that the prover can calculate integers m, r and
γi for i = 1, 2, . . . , k − 1 in polynomial time such that

c = gmhr mod p (3)

ei = emi−1h
γi mod p for i = 1, 2, . . . , k − 1 (4)

where e0 = c.
As he passes the verification in the new inclusion proof with a non-negligible

probability, the prover also must have successfully passed the zero knowledge
proof of knowledge of one out of t discrete logarithms [7] with a non-negligible
probability. As soundness of zero knowledge proof of partial knowledge [7] is for-
mally proved when it is proposed, it is guaranteed that for some l in {1, 2, . . . , t}
the prover can calculate integers s and R in polynomial time such that

gshR =
∏k−1

i=0 e
bl,i+1

i mod p (5)

with a non-negligible probability where e0 = c.
(3), (4) and (5) imply that the prover can calculate integers s, R,∑k−1
i=0 bl,i+1m

i+1 and
∑k−1

i=0 bl,i+1Γi+1 in polynomial time with a non-negligible
probability such that

gshR =
∏k−1

i=0 gbl,i+1m
i+1

hbl,i+1Γi+1 = g
∑k−1

i=0 bl,i+1m
i+1

h
∑k−1

i=0 bl,i+1Γi+1 mod p

where
Γi = mΓi−1 + γi−1 mod q for i = 2, 3, . . . , k

and Γ1 = r. So

s =
∑k−1

i=0 bl,i+1m
i+1 =

∑k
i=1 bl,im

i mod q

A General, Flexible and Efficient Proof of Inclusion and Exclusion 177

with a non-negligible probability. Otherwise, with a non-negligible probability
the prover can calculate non-zero (modulo q) integers α = s−

∑k−1
i=0 bl,i+1m

i+1

and β = R −
∑k−1

i=0 bl,i+1Γi+1 in polynomial time to satisfy gαhβ = 1 and thus
can calculate logg h in polynomial time, which is a contradiction.

Note that bl,1, bl,2, . . . , bl,k are generated through∑k
i=1 bl,is

i
l,ρ = s mod q for ρ = 1, 2, . . . , k.

So with a non-negligible probability⎛
⎜⎜⎜⎜⎜⎜⎝

sl,1 s2l,1 . . . skl,1
sl,2 s2l,2 . . . skl,2
.
.
sl,k s2l,k . . . skl,k
m m2 . . . , mk

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

bl,1
bl,2
. . .
. . .
bl,k

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

s
s
. . .
. . .
s
s

⎞
⎟⎟⎟⎟⎟⎟⎠

(6)

However, as m �= si mod q for i = 1, 2, . . . , n and all the calculations in the

matrix is performed modulo q,

⎛
⎜⎜⎜⎜⎜⎜⎝

sl,1 s2l,1 . . . skl,1 s

sl,2 s2l,2 . . . skl,2 s

.

.
sl,k s2l,k . . . skl,k s

m m2 . . . , mk s

⎞
⎟⎟⎟⎟⎟⎟⎠

is a non-singular matrix

and thus (6) absolutely and always fails. Therefore, a contradiction is found
and the probability that a prover can pass the new inclusion proof is negligible
if the integer he commits to in c is not in S. �

Theorem 3. The new exclusion proof is sound and the probability that a prover
can pass its verification is negligible if he can extract an opening (m, r) of c such
that m ∈ S.

Before Theorem 3 is proved, a lemma is proved first.

Lemma 1. The uncommitment proof is sound. More precisely, if the prover
passes its verification, then with an overwhelmingly large probability s �= Ml.

Proof: Note that the uncommitment proof is a simple combination of two in-
stances of proof of knowledge of discrete logarithm [27] and one instance of
proof of equality of discrete logarithms [6], whose soundness is formally proved
when they are proposed. So it is guaranteed with an overwhelmingly large prob-
ability that the prover can calculate secret integers x, T and r′ in polynomial
time to satisfy y = gx mod p

(gs)Thr′ = ωT
l y mod p.

So with an overwhelmingly large probability

(gs)Thr′ = ωT
l g

x mod p. (7)

178 K. Peng

As Ml is the message the prover commits to in ωl, the prover can calculate
integers Ml and R in polynomial time such that

ωl = gMlhR mod p

and thus (7) implies that with an overwhelmingly large probability the prover
can calculate x, T , r′, Ml and R in polynomial time such that

(gs)Thr′ = (gMlhR)T gx mod p.

So with an overwhelmingly large probability the prover can calculate T (s−Ml)−
x and r′ − TR in polynomial time such that

gT (s−Ml)−xhr′−TR = 1 mod p.

So with an overwhelmingly large probability

T (s− Ml) − x = 0 mod q

Otherwise, with an overwhelmingly large probability the prover can calculate
logg h = (TR − r′)/(T (s − Ml) − x) mod q in polynomial time, which is a
contradiction. As y > 1, x �= 0 mod q and so with an overwhelmingly large
probability s − Ml �= 0 mod q. Therefore, with an overwhelmingly large
probability s �= Ml mod q. �

Proof of Theorem 3: If the prover passes the verification in the new exclusion
proof with a non-negligible probability while m ∈ S and c = gmhr mod p, a
contradiction can be found as follows. As the prover passes the verification in the
new exclusion proof with a non-negligible probability, he must have successfully
proved validity of e1, e2, . . . , ek−1 with a non-negligible probability. As proof of
validity of e1, e2, . . . , ek−1 is based on proof of knowledge of discrete logarithm
in [27] and proof of equality of discrete logarithms in [6], whose soundness is
formally proved when they are proposed, it is guaranteed with a non-negligible
probability that the prover can calculate integersm, r and γi for i = 1, 2, . . . , k−1
in polynomial time such that

c = gmhr mod p (8)

ei = emi−1h
γi mod p for i = 1, 2, . . . , k − 1 (9)

where e0 = c.
(8) and (9) imply that with a non-negligible probability∏k−1

i=0 e
bl,i+1

i =
∏k−1

i=0 gbl,i+1m
i+1

hbl,i+1Γi+1

= g
∑k−1

i=0 bl,i+1m
i+1

h
∑k−1

i=0 bl,i+1Γi+1 mod p (10)

As m ∈ S, there must exist l ∈ {1, 2, . . . , t} such that m ∈ Sl. As⎛
⎜⎜⎜⎜⎝

sl,1 s2l,1 . . . skl,1
sl,2 s2l,2 . . . skl,2
.
.
sl,k s2l,k . . . skl,k

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

bl,1
bl,2
. . .
. . .
bl,k

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

s
s
. . .
. . .
s

⎞
⎟⎟⎟⎟⎠

A General, Flexible and Efficient Proof of Inclusion and Exclusion 179

and Sl = {sl,1, sl,2, . . . , sl,k}, m satisfies∑k
i=1 bl,im

i = s mod q. (11)

As ωl =
∏k−1

i=0 e
bl,i+1

i , (10) and (11) imply that with a non-negligible probability

ωl = gsh
∑k−1

i=0 bl,i+1Γi+1 mod p

and thus s is committed to by the prover in ωl with a non-negligible probability.
As the prover passes the verification in the new exclusion proof with a

non-negligible probability, he must have successfully passed the t instances of
proof of uncommitment with a non-negligible probability, say P1. So according
to Lemma 1, it is guaranteed with a probability P1P2 that s is not committed
to by the prover in ωl for any l in {1, 2, . . . , t} where P2 is an overwhelmingly
large probability. As P1P2 is non-negligible, it is guaranteed with an non-
negligible probability that s is not committed to by the prover in ωl for any l
in {1, 2, . . . , t}. So a contradiction is found. Therefore, the probability that a
prover can pass the exclusion proof is negligible if m ∈ S. �

5 Efficiency Optimisation

The cost of the new inclusion proof and exclusion proof includes communica-
tional cost and computational cost. In communication, 3k + 3t+ 2 integers are
transfered in the new inclusion proof and 3k + 6t+ 2 integers are transfered in
the new exclusion proof. Their computational cost is measured in terms of the
number of exponentiations. When estimating their computational cost, we have
an observation: exponentiations with small (in comparison with q) exponents
like siρ with 1 ≤ i ≤ k is much less costly than an exponentiation with an ex-

ponent chosen from Zq. Actually, the k − 1 exponentiations s2ρ, s
3
ρ, . . . , s

k
ρ can

be calculated in a batch using k − 1 multiplications. So, in efficiency analysis of
cryptographic protocols (e.g. threshold secret sharing [17,28]), an exponentiation
used in Lagrange Interpolation is usually not counted like an exponentiation with
a full-length exponent as its exponent is usually much smaller. So the number of
exponentiations needed in the new inclusion proof is 3k + 4t − 3 for the prover
and 4k+n+2t for a verifier, while the number of exponentiations needed in the
new exclusion proof is 3k + 6t− 3 for the prover and 3k + n+ 6t for a verifier.

Efficiency of general inclusion proof and exclusion proof has been greatly
improved in our work as O(k) + O(t) is actually O(

√
n). For the first time,

communicational cost of general inclusion proof and general exclusion proof in a
set with cardinality n is reduced to O(

√
n). Computational cost of the prover is

O(
√
n) exponentiations as well, the most efficient in publicly verifiable general

solutions to inclusion proof and exclusion proof. However, computational cost
of a verifier still includes n exponentiations, which are needed to calculate ωl =∏k−1

i=0 e
bl,i+1

i for l = 1, 2, . . . , t. Those n exponentiations is the bottleneck in
efficiency of the new inclusion proof and exclusion proof technique.

180 K. Peng

To overcome this bottleneck, we exploit a special phenomenon in the new
inclusion proof and the new exclusion proof, which does not happen in the exist-
ing solutions to inclusion proof or exclusion proof. That is in the t instances of
calculation of ωl the same k bases e0, e1, . . . , ek−1 are used. Although directly cal-
culating ω1, ω2, . . . , ωt is costly for a verifier, verification of validity of them can
be efficient if someone else knows (e.g. using some other more efficient method)
and publishes them. In the the new inclusion proof and the new exclusion proof
the prover can calculate each ωl using no more than 2 exponentiations. So if he
publishes ω1, ω2, . . . , ωt a verifier only needs to verify validity of them. Therefore,
calculation of ω1, ω2, . . . , ωt by a verifier in the new inclusion proof and the new
exclusion proof can be optimised as follows.

1. The prover calculates and publishes for l = 1, 2, . . . , t

ωl =

{
gsh

∑k
i=1 bl,iΓi mod p if m ∈ Sl

g
∑k

i=1 bl,im
i

h
∑k

i=1 bl,iΓi mod p if m /∈ Sl

2. A verifier randomly chooses integers θ1, θ2, . . . , θt from Zτ where τ is a se-
curity parameter smaller than q.

3. The verifier checks∏t
l=1 ω

θl
l =

∏k−1
i=0 e

∑t
l=1 θlbl,i+1

i mod p. (12)

He accepts validity of ω1, ω2, . . . , ωt iff (12) holds.

This method only transfers t integers and costs t+ k exponentiations, while as

illustrated in Theorem 4, ωl is guaranteed to be
∏k−1

i=0 e
bl,i+1

i for l = 1, 2, . . . , t if
(12) is satisfied with a non-negligible probability.

Theorem 4. If (12) is satisfied with a probability larger than 1/τ , then it is

guaranteed that ωl =
∏k−1

i=0 e
bl,i+1

i for l = 1, 2, . . . , t.

Proof: For any integer L in {1, 2, . . . , t} there must exist integers

θ1, θ2, . . . , θL−1, θL+1, . . . , θt in zτ and two different integers θL and θ̂L in Zτ

such that ∏t
l=1 ω

θl
l =

∏k−1
i=0 e

∑t
l=1 θlbl,i+1

i mod p (13)

(
∏L−1

l=1 ωθl
l)ωθ̂L

L

∏t
l=L+1 ω

θl
l (14)

=
∏k−1

i=0 e
(
∑L−1

l=1 θlbl,i+1)+θ̂LbL,i+1+
∑t

l=L+1 θlbl,i+1

i mod p

Otherwise, with this L for any combination of θ1, θ2, . . . , θL−1, θL+1, . . . , θt there
is at most one θL to satisfy (12) among the τ possible choices of θL, which leads
to a contradiction: the probability that (12) is satisfied is no larger than 1/τ .
(13)/(14) yields

ωθL−θ̂L
L =

∏k−1
i=0 e

(θL−θ̂L)bL,i+1

i mod p

A General, Flexible and Efficient Proof of Inclusion and Exclusion 181

As θL, θ̂L < τ < q and q is prime, (θL − θ̂L)
−1 mod q exists. So

ωL =
∏k−1

i=0 e
bL,i+1

i mod p

Note that L can be any integer in {1, 2, . . . , t}. Therefore,

ωl =
∏k−1

i=0 e
bl,i+1

i for l = 1, 2, . . . , t.

�

6 Comparison and Conclusion

The new inclusion proof protocol and the new exclusion protocol are compared
with the existing solutions to inclusion proof and exclusion proof in Table 1,
which clearly demonstrates the advantages of the new scheme in both security
and efficiency. As stated in Section 1, we focus on proof techniques to especially
designed to handle inclusion proof and exclusion proof in this paper. Communi-
cational cost is estimated in terms of the number of transferred integers. Compu-
tational cost is estimated in terms of the number of exponentiations with bases
in G (or similar large cyclic groups) and exponents in Zq (or a similar large
range as wide as the order of a large cyclic group). The simple exclusion proof is
assumed to employ ZK proof of inequality of discrete logarithm in [4]. Our new
solution costs O(

√
n) and is more efficient than all the existing general solutions

including the simple inclusion proof, the simple exclusion proof and the inclu-
sion proof protocol in [5], while the inclusion proof protocol and exclusion proof
protocols in [3,14] are only special solutions working under strict conditions.
Moreover, our new technique overcomes the drawbacks of the existing solutions.

Table 1. Comparison of inclusion proof and exclusion proof schemes

scheme type public generality & non- communi- computation

verifiability flexibility -interaction -cation prover verifier

simple proof inclusion achieved achieved yes 3n 2n − 1 2n

simple proof exclusion achieved achieved yes 6n 6n 6n

[3] inclusion achieved no and strictly yes 54 46 56

limited

[14] exclusion achieved no and strictly yes 68 56 67

limited

[5] inclusion no achieved no n + 6 for 7 for n + 9

every verifier every verifier

new proof inclusion achieved achieved yes 3k + 4t + 2 3k + 4t − 3 4k + 3t

new proof exclusion achieved achieved yes 3k + 7t + 2 3k + 6t − 3 4k + 7t

182 K. Peng

References

1. Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer,
Heidelberg (2000)

2. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast Exponentiation
with Precomputation. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658,
pp. 200–207. Springer, Heidelberg (1993)

3. Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Effi-
cient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

4. Camenisch, J., Shoup, V.: Practical Verifiable Encryption and Decryption of Dis-
crete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–
144. Springer, Heidelberg (2003)

5. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient Protocols for Set Membership
and Range Proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008)

6. Chaum, D., Pedersen, T.P.: Wallet Databases with Observers (Extended Abstract).
In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Hei-
delberg (1993)

7. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proof of Partial Knowledge and Sim-
plified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

8. Fujisaki, E., Okamoto, T.: Statistical Zero Knowledge Protocols to Prove Modular
Polynomial Relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997)

9. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design. In: FOCS 1986, pp. 174–187
(1986)

10. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Computer 18, 186–208 (1985)

11. Groth, J.: Non-interactive Zero-Knowledge Arguments for Voting. In: Ioannidis,
J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482.
Springer, Heidelberg (2005)

12. Groth, J.: Linear Algebra with Sub-linear Zero-Knowledge Arguments. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009)

13. Kilian, J., Petrank, E., Tardos, G.: Probabilistically checkable proofs with zero
knowledge. In: STOC 1997, pp. 496–505 (1997)

14. Li, J., Li, N., Xue, R.: Universal Accumulators with Efficient Nonmembership
Proofs. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269.
Springer, Heidelberg (2007)

15. Lipmaa, H.: On Diophantine Complexity and Statistical Zero-Knowledge Argu-
ments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415.
Springer, Heidelberg (2003)

16. Micali, S., Rabin, M., Kilian, J.: Zero-knowledge sets. In: IEEE FOCS 2003, p. 80
(2003)

17. Pedersen, T.: Distributed Provers with Applications to Undeniable Signatures. In:
Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 221–242. Springer,
Heidelberg (1991)

A General, Flexible and Efficient Proof of Inclusion and Exclusion 183

18. Peng, K., Boyd, C., Dawson, E., Viswanathan, K.: Robust, Privacy Protecting and
Publicly Verifiable Sealed-Bid Auction. In: Deng, R.H., Qing, S., Bao, F., Zhou, J.
(eds.) ICICS 2002. LNCS, vol. 2513, pp. 147–159. Springer, Heidelberg (2002)

19. Peng, K., Aditya, R., Boyd, C., Dawson, E., Lee, B.: Multiplicative Homomorphic
E-Voting. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS,
vol. 3348, pp. 61–72. Springer, Heidelberg (2004)

20. Peng, K., Boyd, C., Dawson, E.: Batch Verification of Validity of Bids in Homo-
morphic E-auction. Computer Communications 29, 2798–2805 (2006)

21. Peng, K., Dawson, E.: Efficient Bid Validity Check in ElGamal-Based Sealed-Bid
E-Auction. In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS, vol. 4464, pp.
209–224. Springer, Heidelberg (2007)

22. Peng, K., Bao, F.: Efficient Vote Validity Check in Homomorphic Electronic Vot-
ing. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 202–217.
Springer, Heidelberg (2009)

23. Peng, K.: A Hybrid E-Voting Scheme. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC
2009. LNCS, vol. 5451, pp. 195–206. Springer, Heidelberg (2009)

24. Peng, K., Bao, F.: A Design of Secure Preferential E-Voting. In: Ryan, P.Y.A.,
Schoenmakers, B. (eds.) VOTE-ID 2009. LNCS, vol. 5767, pp. 141–156. Springer,
Heidelberg (2009)

25. Peng, K., Bao, F.: Efficiency Improvement of Homomorphic E-Auction. In: Kat-
sikas, S., Lopez, J., Soriano, M. (eds.) TrustBus 2010. LNCS, vol. 6264, pp. 238–249.
Springer, Heidelberg (2010)

26. Peng, K., Bao, F.: Efficient Proof of Validity of Votes in Homomorphic E-Voting.
In: NSS 2010, pp. 17–23 (2010)

27. Schnorr, C.: Efficient signature generation by smart cards. Journal of Cryptology 4,
161–174 (1991)

28. Schoenmakers, B.: A Simple Publicly Verifiable Secret Sharing Scheme and Its
Application to Electronic Voting. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 148–164. Springer, Heidelberg (1999)

MQQ-SIG

An Ultra-Fast and Provably CMA Resistant Digital
Signature Scheme

Danilo Gligoroski1, Rune Steinsmo Ødeg̊ard2, Rune Erlend Jensen2,
Ludovic Perret3, Jean-Charles Faugère3,

Svein Johan Knapskog2, and Smile Markovski4

1 Department of Telematics,
The Norwegian University of Science and Technology (NTNU),

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway
danilog@item.ntnu.no

2 Centre for Quantifiable Quality of Service in Communication Systems, NTNU,
O.S. Bragstads plass 2E, N-7491 Trondheim, Norway

knapskog@Q2S.ntnu.no, rune.odegard@q2s.ntnu.no, runeerle@stud.ntnu.no
3 INRIA, Paris-Rocquencourt Center, SALSA Project

UPMC Univ. Paris 06, UMR 7606, LIP6, F-75005, Paris, France
CNRS, UMR 7606, LIP6, F-75005, Paris, France

jean-charles.faugere@inria.fr, ludovic.perret@lip6.fr
4 “Ss Cyril and Methodius” University,

Faculty of Natural Sciences and Mathematics, Institute of Informatics,
P.O. Box 162, 1000 Skopje, Macedonia

smile@ii.edu.mk

Abstract. We present MQQ-SIG, a signature scheme based on “Mul-
tivariate Quadratic Quasigroups”. The MQQ-SIG signature scheme has
a public key consisting of n

2
quadratic polynomials in n variables where

n = 160, 192, 224 or 256. Under the assumption that solving systems of
n
2
MQQ’s equations in n variables is as hard as solving systems of ran-

dom quadratic equations, we prove that in the random oracle model our
signature scheme is CMA (Chosen-Message Attack) resistant.

From efficiency point of view, the signing and verification processes
of MQQ-SIG are three orders of magnitude faster than RSA or ECDSA.
Compared with other MQ signing schemes, MQQ-SIG has both advan-
tages and disadvantages. Advantages are that it has more than three times
smaller private keys (from 401 to 593 bytes), and the signing process is an
order of magnitude faster than other MQ schemes. That makes it very
suitable for implementation in smart cards and other embedded systems.
However, MQQ-SIG has a big public key (from 125 to 512 Kb) and it is
not suitable for systems where the size of the public key has to be small.

Keywords: Public Key Cryptography, Ultra-Fast Public Key Cryptog-
raphy, Multivariate Quadratic Polynomials, Quasigroup String Transfor-
mations, Multivariate Quadratic Quasigroup.

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 184–203, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

MQQ-SIG 185

1 Introduction

Multivariate quadratic schemes (MQ schemes) are an active research area since
their introduction more than 26 years ago in the papers of Matsumoto and Imai
[25,31].Theyhave a lot of performance advantages over classical public key schemes
based on integer factorization (RSA) and on the discrete logarithm problem in the
additive group of points defined by elliptic curves over finite fields (ECC), but they
have also one additional advantage: there are no known quantum algorithms that
would break MQ schemes faster than generic brute force attacks.

We can say that MQ schemes can be generally divided in five types of schemes
that conceptually differ in the construction of the nonlinear quadratic part of
the scheme. There is a nice (but a little bit older survey from 2005) [49] that
covers the first four classes of multivariate quadratic public key cryptosystems:
MIA [25], STS [44,33,23], HFE [36] and UOV [28].

The fifth scheme MQQ was introduced in [21,22] in 2008. MQQ is based on
the theory of quasigroups and quasigroup string transformations. Since it had
interesting performance characteristics, it immediately attracted the attention
of cryptographers trying to attack it. It was first successfully cryptanalysed in-
dependently by Perret [39] using Gröbner basis approach, and Mohamed et al.
using MutantXL [35]. Later, improved cryptanalysis by Faugère et al. in [17]
explained exactly why the MQQ systems are so easy to solve in practice.

In this paper we describe a digital signature variant of MQQ (called MQQ-
SIG). To thwart previous successful attacks, we propose to use the minus modi-
fier, i.e. to remove some equations of the public key. More specifically, we remove
1
2 of the public equations of the original MQQ public key algorithm. We also
present numerical (experimental) evidence that gives us arguments to believe
that Gröbner bases approach (and having in mind that MutantXL approach is
equivalent) is ineffective in solving the remaining known equations.

Thus, based on the assumption that solving n
2 quadraticMQQ’s equations with

n variables is as hard as solving systems of random quadratic equations, we show
that in the random oracle model our signature scheme is provably CMA resistant.

The properties of MQQ-SIG digital signature scheme can be briefly summa-
rized as:

• In the random oracle model it is provably CMA resistant under the assump-
tion that solving n

2 MQQ’s quadratic equations with n variables is as hard
as solving systems of random equations;

• Its conjectured security level is at least 2
n
2 ;

• The length of the signature is 2n bits where (n = 160, 192, 224 or 256);
• The size of the private key is between 401 and 593 bytes.
• The size of the public key is between 125 and 512 Kb.
• In software, its signing speed is in the range of 300–3,500 times faster than
the most popular public key schemes, and 5 to 20 times faster than other
multivariate quadratic schemes with equivalent security parameters;

• Its verification speed is comparable to the speed of other multivariate
quadratic PKCs;

186 D. Gligoroski et al.

• In hardware, its signing or verification speed can be more than 10,000 times
faster than the most popular public key schemes;

• In 8-bit MCUs, smart cards and RFIDs, it is hundreds or thousands times
faster than the most popular public key signature schemes;

2 Preliminaries - Quasigroups and Multivariate
Quadratic Quasigroups

Here we give a brief overview of quasigroups and quasigroup string transforma-
tions. A more detailed explanation can be found in [5,12,47].

Definition 1. A quasigroup (Q, ∗) is a groupoid satisfying the law

(∀u, v ∈ Q)(∃!x, y ∈ Q) u ∗ x = v & y ∗ u = v. (1)

This implies the cancelation laws x∗y = x∗z =⇒ y = z, y∗x = z∗x =⇒ y = z.
Note also that the equations a ∗ x = b, y ∗ a = b have unique solutions x, y
for each a, b ∈ Q. Given a quasigroup (Q, ∗) five so called “parastrophes” (or
“conjugate operations”) can be adjoint to ∗. Here, we use only two of them –
denoted by \ and /, – defined by

x ∗ y = z ⇐⇒ y = x \ z ⇐⇒ x = z/y (2)

Then (Q, \) and (Q, /) are quasigroups too and the algebra (Q, ∗, \, /) satisfies
the identities

x \ (x ∗ y) = y, (x ∗ y)/y = x, x ∗ (x \ y) = y, (x/y) ∗ y = x (3)

Conversely, if an algebra (Q, ∗, \, /) with three binary operations satisfies the
identities (3), then (Q, ∗), (Q, \), (Q, /) are quasigroups and (2) holds.

In what follows we will work with finite quasigroups of order 2d i.e. where
|Q| = 2d. To define a multivariate quadratic PKC for our purpose, we will use
the following result.

Lemma 1 ([21,22]). For every quasigroup (Q, ∗) of order 2d and for each bijec-
tion Q → {0, 1 . . . , 2d−1} there are a uniquely determined vector valued Boolean
functions ∗vv and d uniquely determined 2d-ary Boolean functions f1, f2, . . . , fd
such that for each a, b, c ∈ Q the operation a ∗ b = c is represented by

∗vv(x1, . . . , xd, y1, . . . , yd) =
(
f1(x1, . . . , xd, y1, . . . , yd), . . . , fd(x1, . . . , xd, y1, . . . , yd)

)
. (4)

Recall that each k-ary Boolean function f(x1, . . . , xk) can be represented in
a unique way by its algebraic normal form (ANF), i.e., as a sum of products

ANF(f) = α0+
∑k

i=1 αixi+
∑

1≤i<j≤k αi,jxixj+
∑

1≤i<j<s≤k αi,j,sxixjxs+ . . . ,
where the coefficients α0, αi, αi,j , . . . are in the set {0, 1} and the addition and
multiplication are in the field GF (2).

The ANFs of the functions fi defined in Lemma 1 give us information about
the complexity of the quasigroup (Q, ∗) via the degrees of the Boolean functions
fi. In general, for a randomly generated quasigroup of order 2d, d ≥ 4, the
degrees are higher than 2. Such quasigroups are not quadratic and thus are not
suitable for our construction of multivariate quadratic PKC.

MQQ-SIG 187

Definition 2. A quasigroup (Q, ∗) of order 2d is called Multivariate Quadratic
Quasigroup (MQQ) of type Quadd−kLink if exactly d − k of the polynomials
fi are of degree 2 (i.e., are quadratic) and k of them are of degree 1 (i.e., are
linear), where 0 ≤ k < d.

In [21,22] the authors give sufficient conditions a quasigroup to be a MQQ as
well as an algorithm for finding MQQs up to the order of 25. That work was
later extended in [10] for constructing MQQs of order 2d for any d. The com-
mon characteristic of the MQQs produced by those two methods is that the
quasigroups are bilinear. Namely, the equations (4) describing a multivariate
quadratic quasigroup (Q, ∗) can be expressed in the following form:

A1 · (y1, . . . , yd)T + b1 ≡ A2 · (x1, . . . , xd)
T + b2 (5)

where A1 = [fij]d×d is a d×d matrix and b1 = [ui]d×1 is a d× 1 vector of linear
Boolean expressions of the variables x1, . . . , xd, while A2 = [gij]d×d is a d × d
matrix and b2 = [vi]d×1 is a d × 1 vector of linear Boolean expressions of the
variables y1, . . . , yd.

A Multivariate Quadratic Quasigroup (MQQ) ∗ of order 2d used in MQQ-SIG
can be described shortly by the following expression:

x ∗ y ≡ B · U(x) · A2 · y +B · A1 · x+ c (6)

where x = (x1, . . . , xd), y = (y1, . . . , yd), the matrices A1, A2 and B are nonsin-
gular of size d× d in GF (2), the vector c is a random d-dimensional vector with
elements in GF (2) and all of them are generated by a uniformly random process.
The matrix U(x) is an upper triangular matrix with all diagonal elements equal
to 1, and the elements above the main diagonal are linear expressions of the
variables of x = (x1, . . . , xd). It is computed by the following expression:

U(x) = I +

d−1∑
i=1

Ui ·A1 · x, (7)

where the matrices Ui have all elements 0 except the elements in the rows from
{1, . . . , i} that are strictly above the main diagonal. Those elements can be either
0 or 1 generated by a uniformly random process.

Additionally, we require the quasigroups to satisfy the following two condi-
tions:

∀i ∈ {1, . . . , d}, Rank(Bfi) ≥ 2d− 4, (8a)

∃j ∈ {1, . . . , d}, Rank(Bfj) = 2d− 2 (8b)

where the matricesBfi are 2d×2d Boolean matrices defined from the expressions
fi as

Bfi = [bj,k], bj,d+k = bd+k,j = 1, iff xjyk is a term in fi. (9)

The reasons why we need the additional conditions (8a) and (8b) will be ex-
plained in the beginning of the Section 5.

Proposition 1. For d = 8, a multivariate quadratic quasigroup that satisfies
the conditions (6), . . . , (9) can be encoded in a unique way with 81 bytes. ��

188 D. Gligoroski et al.

3 Description of the MQQ-SIG Digital Signature Scheme

Our scheme can be expressed as a (12) truncation of a typical multivariate
quadratic system:

S ◦ P ′ ◦ S′ : {0, 1}n → {0, 1}n,
where S′ = S ·x+v (i.e. S′ is a bijective affine transformation), S is a nonsingular
linear transformation, and P ′ : {0, 1}n → {0, 1}n is a central bijective multivari-
ate quadratic mapping defined in Table 1. It is graphically presented in Fig. 1.

x=(x1, x2, …, xn)Input

)(xxxP

’ ’ 1

Private: S’ S’ -1

Hidden part

D),,,(

),,,(

21

211

n

n

xxxP

xxxP

n

Private: S S-1

Private: P’ P’ -1

Public Key

D

E

),,,(

),,,(

211

21

2

2

n

n

xxxP

xxx

n

n

Private: S S

Output y

Public Key E

),,,(21 nn xxxP

Fig. 1. A graphical presentation of our MQ “minus” scheme

The graphical presentation of the construction of the central mapping P ′ using
the quasigroup operation ∗ is shown in Fig. 2, and its inverse P ′−1 constructed
with the parastrophe operations \ and / is shown in Fig. 3.

X1 X2 X3 … Xn/8 - 1 Xn/8
* * * * *

Y1 Y2 Y3 … Yn/8 - 1 Yn/8

Fig. 2. A graphical presentation of the
construction of the central bijective mul-
tivariate quadratic mapping P ′

…Y1 Y2 Y3 Yn/8 - 1 Yn/8
\ / \ / \

X1 X2 X3 Xn/8 - 1 Xn/8…

\ / \ / \

Fig. 3. A graphical presentation of the
construction of the inverse central map-
ping P ′−1 with parastrophe operations

The generation of the public and private key is defined in Table 2.
Let us denote by D(y) the composition of inverse operations S−1, P ′−1 and

S′−1
on vector y i.e.D(y) ≡ S−1(P ′−1(S′−1

(y))). Also, let us denote by E(x) the
mapping of a vector x with the public polynomials Pi(x1, . . . , xn) i = 1+n

2 , . . . , n.
Both signing and verification for MQQ-SIG are graphically presented on Fig. 4
while the algorithmic steps for the signing procedure are presented in details in
Table 3, and the verification steps in Table 4.

4 Design Rationale

4.1 Nonsingular Boolean Matrices in MQQ-SIG

The nonsingular Boolean matrices that are used in MQQ-SIG are generated
in a specific way. In general, we need n2 bits to store a randomly generated

MQQ-SIG 189

Table 1. Definition of the central bijec-
tive multivariate quadratic mapping P ′ :
{0, 1}n → {0, 1}n

The central Bijective multivariate quadratic map-
ping P ′(x)

Input. A vector x = (f1, . . . , fn) of n linear
Boolean functions of n variables. We implicitly
suppose that a multivariate quadratic quasigroup
∗ is previously defined, and that n = 32×k, with
k ∈ {5, 6, 7, 8} already fixed.

Output. 8 linear expressions P ′
i (x1, . . . , xn), i =

1, . . . , 8 and n− 8 multivariate quadratic polyno-
mials P ′

i (x1, . . . , xn), i = 9, . . . , n

1. Represent a vector x = (f1, . . . , fn) of n linear
Boolean functions of n variables x1, . . . , xn, as a
string x = X1 . . . Xn

8
where Xi are vectors of

dimension 8;

2. Compute y = Y1 . . . Yn
8

where: Y1 = X1,

Yj+1 = Xj ∗ Xj+1, for even j = 2, 4, . . ., and
Yj+1 = Xj+1 ∗ Xj , for odd j = 3, 5, . . .

3. Output: y.

Table 2. Generation of the public and the
private key

Generation of the public and the private key for
MQQ-SIG scheme.

Input. Integer n, where n = 32 × k and k ∈
{5, 6, 7, 8}.
Output. A public key P given by n

2 multivari-
ate quadratic polynomials Pi(x1, . . . , xn), i =
1+ n

2 , . . . , n, and a private key given by two per-

mutations σ0
0 and σ1

0 on {1, . . . , n}, and 81 bytes
for encoding a quasigroup ∗ .

1. Generate an MQQ ∗ according to equations (6)
. . . (9).

2. Generate a nonsingular n × n Boolean matrix
S and affine transformation S′ according to equa-
tions (10), . . . , (13).

3. Compute y = S(P ′(S′(x))), where x =
(x1, . . . , xn).

4. Output: The public key is y as n
2 multivari-

ate quadratic polynomials Pi(x1, . . . , xn) i =
1 + n

2 , . . . , n, and the private key is the tuple

(σ0
0 , σ

1
0 , ∗).

MM
Q
Q
|
S MQQ-SIG VerificationHash(M)

h= h0 || h1

I
G E(x0) || E(x1)

M

Signature
0 || 1s

i
g

h0 || h1y1= r1 || h1y0= r0 || h0
n
i
n

Compare
x1=D(y1)x0=D(y0)

h= h || h

Hash(M)

Signature=(x0, x1)

g h= h0 || h1

Fig. 4. A graphical presentation of the signing and verification process with MQQ-SIG

nonsingular Boolean matrix of size n × n. In our case we need to store S−1

because we need it in the process of signing. With our proposed sizes for n =
160, 192, 224, 256, storing S−1 would require between 3.125 and 8.0 Kbytes.

The idea of reducing the size of the keys in MQ schemes by using circulant
matrices has been applied previously in several works [51,46,40]. Instead of using
one circulant matrix, we use two. The rationale why and how we construct the
private linear (affine) transformations from them is given in what follows.

In order to compress the private information for the linear and affine trans-
formations we define nonsingular matrices S by the following expression:

S−1 =

n
16⊕
i=0

Iσ0
i
⊕

n
16+3⊕
i=0

Iσ1
i
, (10)

190 D. Gligoroski et al.

Table 3. Digital signing

Signing with a private key (σ0
0 , σ

1
0 , ∗)

Input. A document M to be signed.

Output. A signature sig = (x0,x1).

1. Compute the pair h = h0||h1 ← Hash(M),
where Hash() is the standardized hash function.
Here we assume that the output of the hash func-
tion is n bits, and that h0 and h1 are n

2 bits long.

2. Set y0 = r0||h0 and y1 = r1||h1, where the val-
ues r0 and r1 are n

2 -bit values chosen uniformly
at random.

3. Compute x0 = D(y0) and x1 = D(y1).

4. The MQQ-SIG digital signature of the docu-
ment M is the pair sig = (x0,x1).

Table 4. Digital verification

Signature verification with a public key
P = {Pi(x1, . . . , xn) | i = 1 + n

2 , . . . , n}
Input. A document M and its signature sig =
(x0,x1).

Output. TRUE or FALSE.

1. Compute h = h0||h1 = Hash(M), where M is
the signed message, and Hash() is the standard-
ized hash function.
2. Compute z0 = E(x0) and z1 = E(x1).

3. If z0 = h0 and z1 = h1 then return TRUE,
else return FALSE.

where Iσ0
i
, i = {0, 1, 2, . . . , n

16} and Iσ1
i
, i = {0, 1, 2, . . . , n

16 + 1} are permutation
matrices of size n, the operation ⊕ is a “bitwise exclusive or” of the elements in
the permutation matrices and permutations σ0

i and σ1
i are permutations on n

elements. They are defined by the following expressions:⎧⎪⎪⎨
⎪⎪⎩

σ0
0 − random permutation on {1, 2, . . . n},

σ0
i = RotateLeft(σ0

i−1, 8), for i = 1, . . . , n
16 ,

σ1
0 − random permutation on {1, 2, . . . n},

σ1
i = RotateLeft(σ1

i−1, 8), for i = 1, . . . , n
16 + 1,

(11)

We chose the permutations σ0
0 and σ1

0 such that the expression (10) gives a
non-singular matrix S−1 (and S = (S−1)−1). From S we will obtain the affine
transformation

S′(x) = S · x+ v, (12)

where the vector v = (v1, v2, . . . , vn) is an n–dimensional Boolean vector de-
fined from the values of the permutation σ1

0 = (s1, s2, . . . , sn) by the following
expression:

vi =

⎛
⎝

⎛
⎝

((
s1+
 i−1

8 �
)
mod 16

)
× 16

2(8−i) mod 8

⎞
⎠ +

(s65+
 i−1
8 �

2(8−i) mod 8

)⎞
⎠ mod 2. (13)

In words: we construct the bits of the vector v by constructing two arrays. The
first array is constructed by taking the four least significant bits of the values
s1, . . . , sn

8
and each of them is shifted by four positions to the left. The second

array is just simple extraction of the values s65, . . . , s65+n
8
. Finally we XOR

respectively those two arrays of values in order to produce the vector v of n bits.
Although the expression (13) looks complex, it is chosen specifically to be very
fast in software and hardware.

MQQ-SIG 191

Proposition 2. The linear transformation S−1 can be encoded in a unique way
with 2n bytes. ��

The reasons why we decided to use two permutations σ0
0 and σ1

0 in order to
define the matrix S−1 as in (10) are due to the fact that the inverse matrix of any
circulant matrix is again circulant [11]. Thus, if we would use a circulant matrix
S−1, its inverse S that is used in the production of the public key would be also
circulant. From a cryptographic point of view, we wanted to avoid the circular
property of S since its strong regularity. This strong regularity might affect the
randomness of the multivariate quadratic expressions in the public key. We have
made a tradeoff between the totaly non-circulant matrix S generated completely
by a uniformly distributed random process which will cost a lot in terms of
space, and the regular circulant matrices, by using two circulant matrices that
are combined as it is described in the expression (10). The obtained S from S−1

is without the circulant regularity, and still we can store it in just 2n bytes.
To illustrate our technique for producing non-circulant matrices S−1 and S

we give the following baby example with n = 16 and where rotations to the left
are performed by 2 positions.
Let σ0

0 =
(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 6 2 5 15 8 11 12 1 9 14 3 10 7 4 13

)
and σ1

0 =
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

12 5 14 2 6 7 9 0 10 11 8 4 1 15 13 3

)
.

Since this is a baby example, we have to adopt the expression (10) for this smaller

value of n. The adopted expression is: S−1 =
⊕2

i=0 Iσ0
i
⊕

⊕3
i=0 Iσ1

i
and we get

S−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 1
1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 1 1 1 0 0 1 1
1 0 1 0 0 1 0 1 1 0 0 1 1 0 0 0
0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 1
1 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0
1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0
0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 1
0 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0
0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1
1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 0
0 0 1 1 0 1 1 1 0 0 0 0 0 1 0 1
1 0 1 0 1 0 1 0 0 0 0 0 1 1 1 0
0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0
1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1
1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0
0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 0
1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0
0 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1
0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0
1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0
1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0
0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1
0 1 1 0 0 0 0 1 0 0 1 0 1 0 1 1
0 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1
0 1 1 0 0 1 1 1 1 0 0 1 0 1 1 0
0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 1
1 0 1 1 1 0 1 1 1 1 0 1 1 0 0 1
0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that S is not a circulant matrix.

4.2 Choosing the Order and Characteristics of Quasigroups

In the original MQQ proposal [21,22], the authors used several different multi-
variate quasigroups of order 25. That design decision was mainly done because
the authors did not know how to construct MQ quasigroups of bigger order.

In the meantime, Chen et al., in [10] and Samardjiska et al., in [42] have found
ways how to construct MQQs of arbitrary order 2d. Thus, we have decided to
use quasigroups of order 28. That decision was made in order to match the byte
size of 8 bits. This enables efficient implementations of MQQ-SIG even on tiny
industrial 8-bit MCUs, as well as on high end systems (PCs or workstations). The
left and right parastrophes can be pre-computed each taking 64KBytes. These
pre-computed parastrophes can speedup the signing phase at least 10 times, but
using pre-computed parastrophes of size 2d where d > 8 simply becomes too
costly.

192 D. Gligoroski et al.

Without going into details of the different characteristics of MQQs produced
by methods described in [10] and [42] we can say that for encoding MQQs as
described in [42] we need 256 bytes, while for MQQs from [10] we need just 81
bytes (see Proposition 1). This is due to the fact that MQQs in [10] have bi-linear
nature, while MQQs constructed in [42] are based on T-functions and generally
are not bi-linear.

We have performed experiments with both types of MQQs and after removing
n
2 MQQ’s expressions from the public key, we have not observed any security
consequences of using the bi-linear MQQs from [10]. That fact combined with
the fact that the knowledge of MQQ is a part of the private key, and that the
encoding of MQQs from [10] needs just 81 bytes (versus 256 bytes for MQQs
from [42]), was the decisive argument in favor of MQQs defined in [10].

In our design we use affine transformation S′ instead of the linear one S, and
we also use a non-zero vector c in the quasigroup construction. The reasons for
this is that without S′ our scheme would have the zeroth vector as a fixed point
and the same is true for a quasigroup that has c = 0. We consider that these
properties are unnecessary and easily avoidable weaknesses.

5 Security Analysis of the Algorithm

In this section we will describe all the security analysis we have performed during
the design of MQQ-SIG. First we want to emphasize that MQQ-SIG similarly
as the original MQQ is still resistant against the well know attacks such as:
Patarin’s chosen plaintext attack on MIA scheme [37], the attacks with differ-
ential cryptanalysis that were proposed by Fouque, Granboulan and Stern in
[19], solving the isomorphism of polynomials with one secret done by Perret and
others in [38,18,9] and MinRank attacks. For the resistance against MinRank
attacks we want to note that the minimal rank r of the matrices Bfi for the
nonlinear part of our scheme have to fulfil the conditions (8a, 8b), thus at least
one of the ranks is 14 and all of the ranks are at least 12. Additionally, it is not
known how to extend the MinRank attack to our scheme, since some equations
of the public-key have been removed. In [8], it has been proved that the attack
can be extended when 1 equation is removed in HFE. However, the attack can
not be applied in our context when n

2 equations are removed.
We suggest the reader to see [21,22] for the arguments why MQQ-SIG is

resistant against these attacks.

5.1 Experiments with Gröbner Bases

The public key encryption algorithm MQQ introduced in [21,22] was quickly
shown to be weak against algebraic cryptanalysis. It was broken both by Perret
[39] using Gröbner basis approach, and by Emam Mohamed et al [35] using
MutantXL. Later Faugère et al [17] explained why the MQQ systems are so
easy to solve in practice. To understand their results we must first introduce to
concept of degree of regularity.

MQQ-SIG 193

As explained in [17], the complexity of computing a Gröbner basis of an
ideal depends on the maximum degree of the polynomials appearing during the
computation. This degree, called degree of regularity, is the key parameter for
understanding the complexity of a Gröbner basis computation [3]. Indeed, the
complexity of the computation is polynomial in the degree of regularity Dreg,
more precisely the complexity is:

O(nωDreg), (14)

which basically correspond to the complexity of reducing a matrix of size ≈ nDreg .
Here 2 < ω ≤ 3 is the “linear algebra constant”, and n the number of variables
of the system. Note that Dreg is a function of n and also of the number of
equations m. The relation between Dreg, n and m depends on the specific system
of equations. This relation is well understood for regular (and semi-regular)
systems of equations [1,2,3,4]. However, as soon as the system has some kind of
structure, this degree is much more difficult to predict.

In [17], the authors showed that the degree of regularity of the original public
key algorithm MQQ was bounded from above by a small constant. Having in
mind the successful and very efficient way how Gröbner bases and XL methods
are solving the full systems of MQQ equations, we want to ensure that MQQ-SIG
does not have a similar small bound on the degree of regularity. A classical way
to avoid this is to remove some equations of the system. Indeed, an under-defined
system of equations (n > m) will have an exponential number of solutions. This
is an issue since the complexity of Gröbner bases is also related to the number
of solutions [15]. To circumvent this problem, a solution is to fix n−m variables
(or more [7]). However, as soon as sufficiently many variables were fixed, we
observed that the new system behaved as a “random” system of equations of
the same size. This has been also observed and used in the hybrid approach [7].

To confirm this behavior in our context, we have performed experiments on
MQQ-SIG equations systems of reduced sizes. The observed degree of regularity
is compared to the expected degree of regularity for a random multivariate sys-
tem of the same size. The strategy for choosing S has changed during the course
of our experiments. The experiments where performed with random Boolean
matrices. However, from a security against Gröbner bases attack point of view,
the most important feature is that we ensure that the 8 linear expressions are re-
moved from the equations set. Below is our experimental strategy for small-scale
version of MQQ-SIG equation systems in n variables:

1. Repeat:
2. Generate a bijective multivariate quadratic mapping P ′

i (x1, . . . , xn), i = 1,
. . . , n

3. Remove the 8 linear expressions P ′
i (x1, . . . , xn), i = 1, . . . , 8

4. Multiply with random nonsingular Boolean matrices SR and TR, P = SR ◦ P ′ ◦ TR.
5. For j = 8 to j = n

2 do:
(a) Remove the last 8 − j equations from P.

(b) Set a random Boolean vector (xn−j+1, . . . , xn) ∈ {0, 1}j

(c) Obtain a system P1 = {Pi(x1, . . . , xn−j) | i = 1, . . . , n− j} of n− j equations with n− j
variables (x1, . . . , xn−j)

(d) Call F4(P1) algorithm from Magma, to find a Gröbner basis for the system P1, and
measure the degree of regularity.

6. Compute the average degree of regularity.

194 D. Gligoroski et al.

Table 5. The average degree of regularity for a MQQ signature system in V variables
with R equations removed. In parentheses, the expected degree of regularity for a
random system of size V −R.

R/V 16 24 32 40 48 56 64

8 3,00(3) 3,33 (5) 3,75 (6) 4,15 (6) 4,30 (7) 5 (8) 6 (9)
9 3,09 (4) 3,97 (5) 4,05 (6) 4,10 (7) 4 (8) 4 (9)
10 3,74 (4) 4,00 (5) 4,04 (6) 4,30 (7) 4 (8) 5 (9)
11 3,87 (4) 4,01 (5) 4,56 (6) 4,90 (7) 5 (8) 5 (9)
12 3, 93(4) 4,06 (5) 5,00 (6) 5,00 (7) 5 (8) 5 (9)
13 4,33 (5) 5,00 (6) 5,00 (7) 5 (8) · (9)
14 4,48 (5) 5,00 (6) 5,50 (7) 6 (8) · (9)
15 4,46 (5) 5,00 (6) 5,60 (7) 6 (8) · (8)
16 4, 21(5) 5,00 (6) 5,60 (6) 6 (7) · (8)
17 5,00 (5) 5,90 (6) · (7) · (8)
18 5,00 (5) 5,90 (6) · (7) · (8)
19 5,00 (5) 6,00 (6) · (7) · (8)
20 5,00(5) 6,00 (6) · (7) · (8)
21 6,00 (6) · (7) · (8)
22 6,00 (6) · (7) · (8)
23 6,00 (6) · (7) · (8)
24 6, 00(6) 6 (6) · (7)
25 6 (6) · (7)
26 6 (6) · (7)
27 6 (6) · (7)
28 6(6) · (7)
29 · (7)
30 · (7)
31 · (7)
32 6(6)

We have performed 100 experiments for 16, 24,32 and 40 variables. Due to the
complexity, the experiments have only been repeated 10 times for 48 variables
and just once for 56 and 64 variables. For 56 and 64 variables many of the
instances either required more than the 1TB RAM our system has, or did not
finish after about 1 month of computation. These instances are marked with a ·
in the table. We also experienced that 72 variables with 36 equations removed did
not finish after about a month of computation. The experiments were done with
Magma 2.17-3’s implementation [30] of the F4[16] algorithm on a workstation
with 32 cores based on Intel Xeon 2.27GHz, with 1TB of RAM memory. The
results of these experiments are listed in Table 5. In the table the expected degree
of regularity for a random system of equations over GF (2) in V −R variables are
also listed in parentheses. These numbers have been calculated using the formula
provided in [2]. From the table we see that the bigger percentage of equations
we remove from the system, the closer the measured degree of regularity is to
a random system of equations. The reason for this is that we are removing
crucial relations among terms, thus rendering the remaining sets of equations
as random sets of multivariate equations. It is then natural to formulate the
following conjecture:

Conjecture 1. For every full set of public key equations produced by MQQ as
defined in steps 1–3 in Table 2, removing n

2 of the equations, makes the remaining
set of n

2 multivariate quadratic equations to act as a set of n
2 random multivariate

quadratic equations with n
2 variables in GF (2).

MQQ-SIG 195

5.2 The Size of the Pool of MQQs of Order 28

It is very important to address the question of the size of the set of MQQs of
order 28 that we use in our MQQ-SIG scheme. In [10], Chen et al., gave a lower
bound on the number of MQQs of order 28. That number is projected to 2273.
However, we are using additional conditions (8). By a heuristical measuring we
have obtained that approximately one in 27 randomly generated MQQs of order
28 complies with the conditions (8). That means that the lower bound of the
size of the pool of MQQs of order 28 is 2266.

5.3 Secret Key Leakage Scenarios

Originally this attack was presented to us by an anonymous reviewer of an
earlier variant of our scheme submitted to WCC 2011. We would like to express
big acknowledgement to that anonymous reviewer.

In a previous version of our scheme instead of y = r0||h0, the value y = h
obtained as the output of the hashing procedure is n bits long, and the signature
part is x = D(y). The following Chosen Message Attack could then be launched.
An attacker asks for signatures of 1+n+

(
n
2

)
+O(1) messages i.e. he will have the

triplets (Mi,xi,yi ≡ Hash(Mi)). He will then attempt to recover the missing
n
2 equations in the public key. Given the missing equations he can successfully
launch an efficient Gröbner bases attack.

Consider the extraction of the first missing equation y1 = P1(x1, . . . , xn),
which can be expressed in a general form as:

y1 = d0+d1x1+d2x2+ . . .+dnxn+dn+1x1x2+ . . .+d2n+1x2x3+ . . .+d1+n+(n2)
xn−1xn.

(15)

Since the attacker knows the values of 1 + n +
(
n
2

)
+ O(1) triplets (Mi,xi,yi),

from the equation (15), with high probability, he can obtain a full rank linear
system of equations with 1 + n +

(
n
2

)
unknown variables dj . Additionally and

most importantly he knows the corresponding values y
(i)
1 for every of the values

yi = (y
(i)
1 , . . . , y

(i)
n). Thus, by solving the obtained linear system of equations he

can recover the values of the coefficients dj i.e. he can recover the first missing
equation. The extraction of other hidden equations is similar.

This attack is easily mitigated by our strategy to construct the values y0 =
r0||h0 and y1 = r1||h1 where r0 and r1 are strings of n

2 randomly generated bits
with every signing invocation, and h = h0||h1 is the hash output that is digesting
the message M .

We formulate the previous discussion about the leakage of the private key in
the non-randomized MQQ-SIG and its prevention by the following two lemmas:

Lemma 2. For any MQQ signature scheme with K expressions removed, if the
signatures for the messages M are obtained as x = D(y), where y = Hash(M),
the extraction of the removed part has complexity of O(Kn2). ��

196 D. Gligoroski et al.

Lemma 3. For the MQQ-SIG signature scheme as defined in steps 1–3 in Table
2, by removing n

2 of the expressions, an attack for extraction of the removed part

as in Lemma 2 has complexity of O(2n
3

).

Proof. Since the signature for a message M has two parts x0 and x1 that are
computed as x0 = D(r0||h0) and x1 = D(r1||h1) where h = h0||h1 = Hash(M),
and the values r0 and r1 are n

2 -bit values chosen uniformly at random for every
particular procedure of signing, the extraction technique from Lemma 2 can give
the correct extraction of the hidden part if and only if for all O(n2) queries, the
random values r0 and r1 are known to the attacker. Having in mind that for
every produced signature the values r0 and r1 are unknown, fresh, uniformly
distributed random values, the probability of guessing their values is 2−

n
2 ×

2−
n
2 = 2−n. For all O(n2) queries this gives us a total probability of (2−n)n

2

=

2−n3

, i.e. the complexity for extracting the hidden part is O(2n
3

). ��

5.4 MQQ-SIG Is Provably CMA Resistant

We will use the following definition of security against chosen message attack
[27]:

Definition 3. Signature scheme (Gen, Sign, Vrfy) is existentially unforge-
able under a chosen-message attack if for all probabilistic, polynomial-time
adversaries A, the success probability of A in the following experiment is negli-
gible (as a function of k):

1. The key-generation algorithm Gen(1k) is run to obtain a pair of keys (pk, sk)
2. A is given pk and allowed to interact with a signing oracle Signsk(·), re-

questing signatures on as many messages as it likes. Let M denote the set
of messages queried to the signing oracle by A.

3. Eventually, A outputs (m,σ)
4. A succeeds if Vrfypk(m,σ) = 1 and m /∈ M

It is well known that solving multivariate quadratic polynomials is an NP-
complete problem (see for instance [20]). This theorem is repeated below.

Theorem 1 ([20]). Let Pi(x1, . . . , xn), 1 ≤ i ≤ m be a collection of polynomials
over GF [2]. The problem of finding u1, . . . , un such that Pi(u1, . . . , un) = 0 for
1 ≤ i ≤ m remains NP-complete even if none of the polynomials has a term
involving more than two variables or if there is just one polynomial.

Theorem 2. MQQ-SIG is CMA resistant in the random oracle model under
the assumptions that solving n

2 MQQ equations with n variables is as hard as
solving systems of n

2 random multivariate quadratic equations.

In what follows we give a sketch of the proof and the ideas how to use the
fact that the verification of the MQQ-SIG signatures depends on the values
h0 and h1 that are each n

2 bits long. This fact implies that a chosen message
attack on MQQ-SIG would need either at least 2

n
2 pairs of messages in order

MQQ-SIG 197

to find a collision of the used hash function or to solve the system of n
2 random

multivariate quadratic equations with n variables. A formal proof showing the
strict reduction from the CMA-resistance of the scheme to the assumption that
solving n

2 MQQ equations with n variables is as hard as solving systems of n
2

random multivariate quadratic equations with n variables will be given in the
extended version of this paper.

Proof. (sketch) The security parameter input to the generating algorithm is
k = n

2 , which controls the number of equations over GF (2) and is directly
connected with the value n: the output size of the hash function.

Given the assumption that solving n
2 MQQ equations with n variables is as

hard as solving systems of n
2 random multivariate quadratic equations, there are

no structural weaknesses of the MQQ equations that can be exploited to solve
the system faster then solving n

2 random multivariate quadratic equations. This
means the adversary has basically three strategies of breaking MQQ-SIG:

1. To find a collision in the hash digest (h0||h1) of length n = 2k.
2. To solve two systems of n

2 MQ equations with n Boolean variables.
3. Some combination of the two above.

Strategy 1: Breaking with the strategy 1 means finding a collision for a
random oracle with a n = 2k bit output. Interacting with the signing oracle
will not help the adversary for this instance, since he is only interested in the
output of the random oracle. By the generic birthday attack the adversary needs
O(2k) queries to the random oracle to find a collision for the whole digest. The
probability for a polynomial time adversary to break the signature scheme by
finding a collision in the digest is therefore negligible in k.

Strategy 2:Under the assumption that solving the n
2 MQQ equations in

n variables is as hard as solving k MQ equations in k variables, we know by
Theorem 1 that the probability the adversary solves either of the equations with
the strategy 2 is negligible in k. However, to prove that the signature scheme is
CMA, we must also show that querying the signing oracle gives the adversary no
significant advantage in solving the equations. There are two ways the signing
oracle might leak information.

(a) Signing leaks information about the hidden equations:
In Lemma 3 we proved that extracting information about the removed part
has complexity O(2n

3

). With our security parameter of k = n
2 this is out of

reach for a polynomially bound adversary.
(b) Signing leaks some other information that can help solve the equation sys-

tem:
Consider the following game where the adversary does not have access to
the random oracle. The adversary asks for a signature for a chosen message
M . The signing oracle then flips a coin.

I If the coin land on heads the signing oracle outputs the digest H(M) =
(h0||h1), and the corresponding signature (x0,x1).

198 D. Gligoroski et al.

II If the coin lands on tails the signing oracle outputs the evaluation of
the encryption function in some random numbers (E(r0), E(r1)), and
the corresponding random numbers (r0, r1).

The adversary is then asked if the coin is heads or tails.
Since by the definition of random oracles the output of H(M) is indepen-

dent of M , it should be clear that the adversary has no way of winning the
game above. This illustrates that from the adversary point of view, there is
no difference between querying the signing oracle and evaluating the known
equations on random inputs. The fact that the adversary actually has access
to the random oracle does not change this conclusion because the adversary
has no control over the output of the random oracle.

To summarize this means that signing reveals no information about the hidden
equations, and leaks no other information that can be used to solve the equations.
The signature scheme is therefore CMA with respect to the strategy number 2.

Strategy 3: First note that finding a k − l, 1 ≤ l ≤ k, bit collision in, for
instance h0, will not help computing the corresponding x0. The reason for this
is the nature of the random MQ equations, where the solution to the system
will drastically change by just flipping one output bit. Namely, each output bit

depends on average on k(k−1)
2 combination of all pairs of variables. This means

that the best for the adversary in strategy attack number 3 is to find a collision
in either h0 or h1, and to solve the equation system for the part that a solution
is not known. This requires “just” O(2

k
2−1) calls to the random oracle. However,

the adversary still needs to solve a system of k equations in 2k variables, proven
to be CMA resistant by the arguments under the attack strategy number 2. ��

5.5 Non-applicability of Successful Attacks against STS on
MQQ-SIG

An anonymous reviewer for IMACC 2011 (to whom we express big acknowledge-
ment) has pointed out an interesting comment that MQQ-SIG scheme looks
similar as STS schemes and thus the successful attacks that have broken STS
schemes may also break MQQ-SIG. Here we explain the crucial and essential
differences between STS and MQQ-SIG schemes and the non-applicability of
successful attacks against STS on MQQ-SIG.

The Stepwise Triangular Scheme was introduced by Wolf et al., [48] as a gen-
eralization of earlier multivariate quadratic schemes, such as [45,34,24,26]. The
main purpose of the generalization in [48] was to show how all these schemes,
and the whole STS family in general, is either insecure or impractical. The gen-
eral attacks presented exploit the chain of kernels introduced by the triangular
structure of the hidden polynomials.

There are at least two important reasons why this attack is not applicable on
MQQ-SIG. First, even tough the kernel of two adjacent sub-blocks share half of
each others variables, the triangular structure of the hidden polynomials does
not result in a chain of kernels. The production of the public key in MQQ-SIG
is essentially parallel and chained for the whole n-dimentional space, while the

MQQ-SIG 199

production of the public key in STS is essentially sequential with increasingly
larger embedded subspaces. It is this structure that the attacks on STS exploit.

The second reason is that the attacks linearly combine the public key expres-
sions in order to get ranks within certain values. Non-applicability of these attacks
against MQQ-SIG is due to the fact that half of the public key expressions are re-
moved, and linearly combining the remaining half in order to obtain low ranks
does not necessarily produce vectors from the kernel of the transformation T−1.

6 Operating Characteristics

In this section we discuss the sizes of the private and public key as well as the
number of operations for verification and signing.

Table 6. Comparison between RSA, ECDSA, and several MQ schemes: MQQ-SIG,
Rainbow, TTS and 3ICP. Operations have been performed in 64-bit mode of operation
on Intel Core i7 920X machine running at 2 GHz.

Security
level

(power
of 2)

Algorithm KeyGen

Sign 59
bytes
(CPU
cycles)

Verify
(CPU
cycles)

Private
key size
(bytes)

Public
key size
(bytes)

Signature
size

(bytes)

RSA1024 102,869,553 2,213,112 60,084 1024 128 128
80 ECDSA160 1,201,188 944,364 1,083,060 60 40 40

MQQSIG160 799,501,482 6,534 92,232 401 137,408 40
RainbowBinary256181212 30,311,648 38,784 43,800 23,408 30,240 42

RSA1536 322,324,721 5,452,076 87,516 1536 192 192
96 ECDSA192 1,799,284 1,390,560 1,662,664 72 48 48

MQQSIG192 800,724,096 7,938 138,972 465 222,360 48

RSA2048 786,466,598 11,020,696 125,776 2048 256 256
112 ECDSA224 2,022,896 1,555,740 1,821,348 84 56 56

MQQSIG224 1,107,486,126 9,492 184,392 529 352,828 56

RSA3072 2,719,353,538 31,941,760 230,536 3072 384 384
128 ECDSA256 2,296,976 1,780,524 2,085,588 96 64 64

MQQSIG256 1,501,955,022 9,138 218,700 593 526,368 64
TTS6440 60,827,704 84,892 76,224 16,608 57,600 43
3ICP 15,520,100 1,641,032 60,856 12,768 35,712 36

6.1 The Size of the Public and the Private Key

Since the public key consists of n
2 randomly generated multivariate quadratic

equations, the size of the public key follows the rules given in [49]. So, for n bit

blocks the size of the public key is 0.5×n× (1+ n(n+1)
2) bits. The private key of

our scheme is the tuple (σ0
0 , σ

1
0 , ∗). The corresponding memory size needed for

storage of the private key is 2n+ 81 bytes.
In Table 6, there are two columns for the size of the private and public key and

as we can see for MQQ-SIG the size of the public key for n ∈ {160, 192, 224, 256}
is in the range from 125 up to 521 KBytes.

200 D. Gligoroski et al.

We want to emphasize that recently Samardjiska and Chen in [43] have pro-
posed extension of their algorithms for construction of MQQs over arbitrary
finite fields and that by their construction it is possible to reduce the huge pub-
lic key size of MQQ-SIG to be in the range 2.3 – 8.8 Kbytes.

6.2 Performance of the Software Implementation of the MQQ-SIG
Algorithm

We have implemented MQQ-SIG in C for the SUPERCOP benchmarking system
[6] and tested it together with the corresponding RSA [41] and ECC [32,29] (actu-
ally ECDSA) and several other multivariate quadratic systems such as: Rainbow
[14], enhanced TTS [50] and 3ICP [13]. In Table 6 we give the comparison of the
mentioned signatures schemes where the measurements were performed in 64-bit
mode of operation on Intel Core i7 920X machine running at 2 GHz. Although,
our C code is not yet optimized for the key generation part, we expect that the
performance of key generation part to be the most time consuming part of our
algorithm.

From the Table 6 it is clear that in signing of 59 bytes MQQ-SIG is faster than
RSA in the range from 300 up to 3500 times, and is faster than ECDSA in the
range from 140 up to 200 times. If we exclude the time for hashing the messages,
signing operations in MQQ-SIG in Table 6 take from 2,500 up to 5,000 cycles.
MQQ-SIG is also significantly faster than other multivariate methods such as
Rainbow, TTS or 3ICP and that performance advantage in the signing procedure
is in the range from 5 to 20 times.

The verification speed in our code is not optimized so far. We expect the
optimized verification speed of MQQ-SIG to be in the range of Rainbow, TTS
and 3ICP.

7 Conclusions

We have constructed a multivariate quadratic digital signature scheme MQQ-
SIG based on multivariate quadratic quasigroups.

By learning about the weaknesses of the previous attempt to design a multi-
variate quadratic scheme based on quasigroups - MQQ, by analyzing the success-
ful attacks on all existing MQ schemas, and by our experimentally supported
assumption that solving n

2 quadratic polynomials with n variables is as hard
as solving random systems of equations, we have designed a digital signature
scheme that in the random oracle model is provably CMA resistant and that we
believe is strong enough to attract the attention of the cryptographic community.

The efficiency of producing digital signatures of our scheme outperforms all
the existing signature schemes (RSA, ECDSA and other MQ schemes) in the
range from 5 up to 3,500 times. The speed of verification of our scheme is similar
to the other MQ schemes. However the MQQ-SIG scheme that was described in
this paper has an unpractically big public key. The ongoing research efforts are
in this direction and soon we can expect MQQ-SIG variants with significantly
smaller public keys.

MQQ-SIG 201

We believe that its superior performance will allow an employment of strong
and fast authentication protocols based on the paradigm of the public key cryp-
tography in many new areas of our modern society.

Acknowledgements. We would like to thank anonymous reviewers of the IN-
TRUST 2011 conference for their useful comments that improved the text of the
paper. The work described in this paper has been supported by the Commission
of the European Communities through the ICT program under contract ICT-
2007-216676 (ECRYPT-II). J.-C. Faugère and L. Perret are also supported by
the French ANR under the Computer Algebra and Cryptography (CAC) project
(ANR-09-JCJCJ-0064-01).

References

1. Bardet, M.: Étude des systèmes algébriques surdéterminés. Applications aux codes
correcteurs et à la cryptographie. PhD thesis, Université de Paris VI (2004)

2. Bardet, M., Faugère, J.-C., Salvy, B.: Complexity study of Gröbner basis computa-
tion. Technical report, INRIA (2002), http://www.inria.fr/rrrt/rr-5049.html

3. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis compu-
tation of semi-regular overdetermined algebraic equations. In: Proc. International
Conference on Polynomial System Solving (ICPSS), pp. 71–75 (2004)

4. Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic behaviour of the
degree of regularity of semi-regular polynomial systems. In: Proc. of MEGA 2005,
Eighth International Symposium on Effective Methods in Algebraic Geometry
(2005)

5. Belousov, V.D.: Osnovi teorii kvazigrup i lup, Nauka, Moscow (1967) (in russian)
6. Bernstein, D.J., Lange, T. (eds.): eBACS: ECRYPT benchmarking of crypto-

graphic systems (accessed January 12, 2011)
7. Bettale, L., Faugère, J.-C., Perret, L.: Hybrid approach for solving multivariate

systems over finite fields. Journal of Mathematical Cryptology 3(3), 177–197 (2009)

8. Bettale, L., Faugère, J.-C., Perret, L.: Cryptanalysis of Multivariate and Odd-
Characteristic HFE Variants. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 441–458. Springer, Heidelberg (2011)

9. Bouillaguet, C., Faugère, J.-C., Fouque, P.-A., Perret, L.: Practical Cryptanalysis
of the Identification Scheme Based on the Isomorphism of Polynomial with One
Secret Problem. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 473–493. Springer, Heidelberg (2011)

10. Chen, Y., Knapskog, S.J., Gligoroski, D.: Multivariate quadratic quasigroups
(MQQs): Construction, bounds and complexity. In: Inscrypt, 6th International
Conference on Information Security and Cryptology. Science Press of China (Oc-
tober 2010)

11. Davis, P.J.: CirculantMatrices. AMS Chelsea Publishing (1994)
12. Denes, J., Keedwell, A.D.: Latin squares and their applications. Academic Press,

New York (1974)
13. Ding, J., Wolf, C., Yang, B.-Y.: -Invertible Cycles for Ultivariate Uadratic (q)

Public Key Cryptography. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 266–281. Springer, Heidelberg (2007)

http://www.inria.fr/rrrt/rr-5049.html

202 D. Gligoroski et al.

14. Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New Differential-
Algebraic Attacks and Reparametrization of Rainbow. In: Bellovin, S.M., Gennaro,
R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257.
Springer, Heidelberg (2008)

15. Faugère, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16, 329–344
(1993)

16. Faugere, J.-C.: A new efficient algorithm for computing Gröbner basis, F4 (2000),
http://citeseer.ist.psu.edu/faugere00new.html

17. Faugère, J.-C., Ødeg̊ard, R.S., Perret, L., Gligoroski, D.: Analysis of the MQQ
Public Key Cryptosystem. In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.) CANS
2010. LNCS, vol. 6467, pp. 169–183. Springer, Heidelberg (2010)

18. Faugère, J.-C., Perret, L.: Polynomial Equivalence Problems: Algorithmic and The-
oretical Aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
30–47. Springer, Heidelberg (2006)

19. Fouque, P.-A., Granboulan, L., Stern, J.: Differential Cryptanalysis for Multivariate
Schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–353.
Springer, Heidelberg (2005)

20. Garey, M.R., Johnson, D.S.: Computers and Intractability. A guide to the theory
of NP-Completeness. Bell Telephone Laberatories, Incoperated (1979)

21. Gligoroski, D., Markovski, S., Knapskog, S.J.: Public key block cipher based on
multivariate quadratic quasigroups. Cryptology ePrint Archive, Report 2008/320

22. Gligoroski, D., Markovski, S., Knapskog, S.J.: Multivariate quadratic trapdoor
functions based on multivariate quadratic quasigroups. In: MATH 2008: Proceed-
ings of the American Conference on Applied Mathematics, pp. 44–49. World Sci-
entific and Engineering Academy and Society (WSEAS), Stevens Point (2008)

23. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM Cryptosystem. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg
(2000)

24. Goubin, L., Courtois, N.T., Schlumbergersema, C.: Cryptanalysis of the TTM
Cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp.
44–57. Springer, Heidelberg (2000)

25. Imai, H., Matsumoto, T.: Algebraic Methods for Constructing Asymmetric Cryp-
tosystems. In: Calmet, J. (ed.) AAECC-3. LNCS, vol. 229, pp. 108–119. Springer,
Heidelberg (1986)

26. Kasahara, M., Sakai, R.: A construction of public key cryptosystem for realizing
ciphertext of size 100 bit and digital signature scheme. IEICE Transactions 87-
A(1), 102–109 (2004)

27. Katz, J.: Digital Signatures. Springer (2010)
28. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by

Relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999)

29. Koblitz, N.: Elliptic Curve Cryptosystems. Mathematics of Computation 48(177),
203–209 (1987)

30. MAGMA. High performance software for algebra, number theory, and geometry
— a large commercial software package, http://magma.maths.usyd.edu.au

31. Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for Efficient
Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.) EURO-
CRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

32. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

http://citeseer.ist.psu.edu/faugere00new.html
http://magma.maths.usyd.edu.au

MQQ-SIG 203

33. Moh, T.: A public key system with signature and master key functions. Commu-
nications in Algebra (1999)

34. Moh, T.: A public key system with signature and master key functions (1999)
35. Mohamed, M.S.E., Ding, J., Buchmann, J., Werner, F.: Algebraic Attack on the

MQQ Public Key Cryptosystem. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.)
CANS 2009. LNCS, vol. 5888, pp. 392–401. Springer, Heidelberg (2009)

36. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EU-
ROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

37. Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of Euro-
crypt 98. Des. Codes Cryptography 20, 175–209 (2000)

38. Perret, L.: A Fast Cryptanalysis of the Isomorphism of Polynomials with One
Secret Problem. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
354–370. Springer, Heidelberg (2005)

39. Perret, L.: Personal e-mail communication with Danilo Gligoroski (2008)
40. Petzoldt, A., Bulygin, S., Buchmann, J.: Cyclicrainbow - a multivariate signature

scheme with a partially cyclic public key based on rainbow. Cryptology ePrint
Archive, Report 2010/424 (2010), http://eprint.iacr.org/

41. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

42. Samardjiska, S., Markovski, S., Gligoroski, D.: Multivariate quasigroups defined by
t-functions. In: Proceedings of SCC 2010 - The 2nd International Conference on
Symbolic Computation and Cryptography (2010)

43. Samardjiska, S., Chen, Y., Gligoroski, D.: Construction of multivariate quadratic
quasigroups (mqqs) in arbitrary galois fields. In: Proceedings of the International
Conference on Information Assurance and Security (IAS) 2011, Malacca, Malaysia
(2011)

44. Shamir, A.: Efficient Signature Schemes Based on Birational Permutations. In:
Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 1–12. Springer, Heidelberg
(1994)

45. Shamir, A.: Efficient Signature Schemes Based on Birational Permutations. In:
Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 1–12. Springer, Heidelberg
(1994)

46. Singh, R.P., Sarma, B.K., Saikia, A.: Public key cryptography using permutation p-
polynomials over finite fields. Cryptology ePrint Archive, Report 2009/208 (2009),
http://eprint.iacr.org/

47. Smith, J.D.H.: An introduction to quasigroups and their representations. Chapman
& Hall/CRC (2007)

48. Wolf, C., Braeken, A., Preneel, B.: On the security of stepwise triangular systems.
Des. Codes Cryptography 40, 285–302 (2006)

49. Wolf, C., Preneel, B.: Taxonomy of public key schemes based on the problem
of multivariate quadratic equations. Cryptology ePrint Archive, Report 2005/077
(2005)

50. Yang, B.-Y., Chen, J.-M.: Building Secure Tame-like Multivariate Public-Key
Cryptosystems: The New TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP
2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005)

51. Yang, B.-Y., Cheng, C.-M., Chen, B.-R., Chen, J.-M.: Implementing Minimized
Multivariate PKC on Low-Resource Embedded Systems. In: Clark, J.A., Paige,
R.F., Polack, F.A.C., Brooke, P.J. (eds.) SPC 2006. LNCS, vol. 3934, pp. 73–88.
Springer, Heidelberg (2006)

http://eprint.iacr.org/
http://eprint.iacr.org/

Multifactor Authenticated Key Renewal

Shin’ichiro Matsuo1, Daisuke Moriyama1, and Moti Yung2,3

1 National Institute of Information and Communications Technology (NICT), Japan
2 Columbia University

3 Google Inc.

Abstract. Establishing secure channels is one of the most important
and fundamental trust issues in information security. It is of high impor-
tant not only for servers and users computers but also for global con-
nectivity among any kind of network devices. Most existing technologies
for establishing secure channels are based on asymmetric cryptography
which requires heavy computations, large memory and complicated sup-
porting mechanism such as PKI. In this paper, we consider the setting of
authentication with small devices possibly held by humans and possibly
embedded in a semi secure environment. We propose a authenticated key
renewal protocol which uses only symmetric cryptography. The protocol
takes into account other factors important for embedded and human held
network devices: It covers multi-factor authentication to take advantage
of secrets possessed by the secure device as well as the memorable pass-
word of the device owner. The protocol can, further, allow partial leakage
of stored secret from a secure device. The protocol’s considerations are a
good demonstration of designing “trusted procedure” in the highly con-
strained environment of mobile and embedded small devices which is
expected to be prevalent in the coming years.

Keywords: Key exchange, Multi-factor authentication, and Leakage
resilience.

1 Introduction

1.1 Background

Staring with Diffie-Hellman key exchange [4], establishing secure channels is
one of the most fundamental issues in information security. Establishing such a
channel among communicating entities, has two important trust requirements:
authentication and session key secrecy. That is, when the session key is shared the
counterpart of sharing must be correctly authenticated and the shared session
encryption/decryption key must be kept secret against unauthorized entities.

Many types of authenticated key sharing protocol exist, for example
SSL/TLS [5], IPSec [10] and SSH [18], are proposed and used in today’s Inter-
net. Most of these protocols are based on asymmetric key cryptography, because
their basic mechanism of key sharing is based on the DH key exchange protocol.
We consider here the setting of small low-power devices such as smartphones,

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 204–220, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Multifactor Authenticated Key Renewal 205

sensors, and RFID-tags. When considering this setting, computing modular ex-
ponentiation is costly. Moreover, when we use asymmetric key cryptography for
authentication, we need PKI, which is costly as well, and may not be accessible
at a device level (i.e., CA identity not accessible for establishing root of trust).
It is much easier to initiate a device (at manufacturing) with symmetric key
capability.

Currently, the typical computing environment is a network with many mo-
bile devices (such as iPad and Android devices). Whereas trusted module like
TPM chips ensure many security functionalities required in computing devices
in regular computers [17], in our setting it is hard to assume the devices will
have modular exponentiation capability (even if some have, we want interop-
erability), and it is interesting to consider what is doable based on symmetric
cryptography alone. Furthermore, in embedding devices the authentication is
based on possession of a secure token. This means the authentication (and the
key exchange) is based on ownership of the device. Then the authentication is
slightly different from “entity” authentication (the entity may be embedded in
another entity, and may be possessed by a human operator/ owner). In this
direction, PAKE protocol realizes authentication function by using password,
which is based on human memory and tightly related to the entity itself [3,8].
However in PAKE, the security parameter is limited by human capability. Long
password is not suitable for PAKE, therefore it is not strong in cryptographic
sense. To increase the accuracy of the authentication, it is good desirable to in-
clude multifactor into the authentication protocol. Examples of the factors are
memory, ownership, biometric, device keys, etc. Also, small devices may operate
in an environment which is leaky and this has to be taken into account as well.

1.2 Contribution of This Paper

In this paper, we propose a system model and a protocol for multifactor au-
thenticated key establishment, named “Multifactor Authenticated Key Renewal
(MAKeR) protocol”. It aims to establish a random session key using multi-factor
information.

MAKeR protocol uses symmetric cryptography only to realize authenticated
key sharing, that is, uses only hash/pseudorandom function and pseudorandom
generator. Though this protocol is not secure against online dictionary attack due
to the limitation of symmetric cryptography techniques, it still present the best
properties achievable under symmetric cryptography only conditions. Thus, this
research goal is implementing better security mechanisms to low-power devices
such as the smartphones, smart-cards, sensors, and RFID-tags.

Our proposal includes shared secret stored in trusted device (the device key),
and password or other information as authentication factors. The former helps
realization of both authentication factor of “what one possesses” and “secrecy” of
session key. The latter is used for authentication by “human-related information”
(“what one knows”).

206 S. Matsuo, D. Moriyama, and M. Yung

1.3 Related Works

As mentioned above, key sharing (exchange) protocols are extensively researched
and many secure protocols have been proposed. Basic type of authenticated key
exchange protocol is combination of entity authentication and Diffie-Hellman
like key exchange protocol. Entity authentication protocols consist of asymmet-
ric key based protocol and symmetric cryptography based protocol. However,
Diffie-Hellman key exchange protocol needs asymmetric cryptographic calcula-
tion. As a user-friendly authenticated key exchange protocol, “Password-based
Authenticated Key Exchange (PAKE)” protocols are widely studied. This pro-
tocol uses pre-shard (short) password as a factor of authentication. Most PAKE
protocols include data from password into Diffie-Hellmann key exchange proto-
col, they still need asymmetric cryptographic calculation.

For low-power devices, many entity authentication protocol for RFID tags
are proposed [1,11,2,12,16]. Most of these protocols are based on symmetric
cryptography such as block cipher, stream cipher, hash function and so on. Our
proposal is based on the existing authentication protocol for RFID-tags.

The other works related to this paper are about multi-factor authentication.
Klesnikov and Rackoff proposed a multi-factor authenticated key exchange pro-
tocol [9]. In this paper, they use three factors: password, secret keys for sym-
metric key cryptography and asymmetric key cryptography. Pointcheval et al.
proposed security model and authenticated key exchange protocol which uses
biometrics as well as secret information as authentication factors [15]. However,
the protocol is based on asymmetric cryptography.

This paper also deals with leakage of secret information from a device, which
is realized by side-channel attacks or cold-boot attacks. This is a very current
area of research. In ordinary cryptographic research, the security model does not
consider leakage of secret information. In the symmetric world, Petit et al. [14]
proposed a leakage-resilient pseudo-random generator from ideal ciphers. Dziem-
bowski et al. [6] proposed a leakage-resilient stream cipher based on pseudo-
random generator in the standard model. Then Pietrzak [13] proposed simpli-
fied leakage-resilient stream cipher from wPRF. We will use the same model of
leakage as [6,13] in this paper.

2 System Model

The MAKeR protocol consists of two entity, Alice and Bob. Alice can be treated
as client of some service. Alice has one device DEVA connected to the Internet. An
application program PROGA runs on the device and accepts multiple inputs from
Alice such as password and other authentication factors. The device also havs
some trusted module/ token TPMA attached to it. TPMA stores secret information
secA, and conducts some (symmetric) cryptographic operations. TPMA may be
implemented into DEVA (by the manufacturer, say) or is attached using a card
slot and so on. TPMA communicates with PROGA.

Bob can be treated as a server. It is realized as a device DEVB and also con-
nected to the Internet. An application program PROGB executes authenticated

Multifactor Authenticated Key Renewal 207

TPMA PROGA

DEVA Insecure
Channel

Authentication factor

DEVB

PROGB
secA secB

Trusted

Authentication factor

Fig. 1. System model of multi-factor authenticated key renewal

key renewal protocol. Some secret information secB and other multiple authen-
tication factors shared with each client are stored in DEVB, and PROGB accesses
them in the execution of the protocol. We assume that DEVB and PROGB is trusted.
That is, the malicious adversary A against this protocol cannot corrupt DEVB and
PROGB. Thus, A cannot obtain secB and any internal state of DEVB and PROGB.

DEVA and DEVB communicates over the Internet, which can be treated as inse-
cure channel. That is A can eavesdrop, alter, intercept all communication data
and send arbitrary message to Alice and Bob.

When Alice would like to establish a secure channel with Bob, she inputs
required authentication information (which is shared) to PROGA through user
interface of DEVA. In the protocol execution, PROGA calculates protocol messages
with help of TPMA. PROGA and PROGB execute session key renewal protocol, then
share the session key key at the end of the protocol.

This system model is shown in Fig.1.

3 Security Model

The goal of the protocol is establishing a session key from multi-factor secrets.
The basic security for multi-factor key renewal protocol is that even if a malicious
adversary A interacts with clients and the server, the communication messages
leak no information about the session key computed by the server. Additionally,
the protocol must guarantee secrecy of the future session key, and privacy for
the past session key even if an attack is attempted (namely, it must be based on
fresh randomness and be forward secure).

The device DEVA stores secret value secA. We firstly consider the basic case
that the device DEVA as tamper-free, next we consider the several types of secret
information leakage.

The formal security definition in the basic case (without any key leakage from
DEVA) is as follows.

3.1 Security Definition without Corruption

The basic security model is similar to that of multi-factor authentication pro-
posed by Pointcheval et al. [15].

208 S. Matsuo, D. Moriyama, and M. Yung

Participants, sessions and partnering. Let DEVA be a client device of entity Alice
to be authenticated and DEVB be a (trusted) server organized entity B. We con-
sider that the server and every client can initiate several instances at a time,
in order to run several sessions concurrently. The i-th instance of the entity U ,
where U is a client or the server, is denoted as Πi

U . This instance includes three
variables:

– pidi
U : the partner identifier which is the instance with whom Πi

U believes it
is interacting,

– sidi
U : the unique session identifier, in practice it can be the transcript seen

by Πi
U (concatenation of the received/sent flows, excepted the last one).

– acci
U : a boolean variable which is determined at the end of the session and

denotes whether the instance Πi
U goes in an accepted (ai

U = 1) state or not
(acci

U = 0).

The two instances Πi
U and Πj

U ′ are said to be partners if the following conditions
are fulfilled:

1. pidi
U = Πj

U ′ and pidj
U ′ = Πi

U ;
2. sidi

U = sidj
U ′ �= null;

3. acci
U = accj

U ′ = 1.

Adversarial capabilities and goals. The semantic security of the key is modeled
using the Real-or-Random paradigm. At the beginning of the game, the chal-
lenger chooses a random bit b which determines its behavior when answering
Test-query during the game (it provides either real session key or random to
the adversary). The adversary may interact with protocol instances through sev-
eral oracles, and at the end of the game, she outputs a bit b. If b = b′, she wins,
otherwise, she looses. The available queries are as follows:

– Send(m, Πi
U): this query allows the adversary to play with the instances, by

intercepting, forwarding, modifying or creating messages. The output of this
query is the answer generated by instance Πi

U to the message m.
– Reveal(Πi

U): this query models the leakage of information about the session
key agreed on by the parties. For example, if it is misused afterward. There-
fore, if no session key is defined for this instance, or if the instance (or its
partner) has been tested (see below), then the output is ⊥. Otherwise, the
oracle outputs the session key computed by the instance Πi

U .

To model the semantic security with respect to client authentication formally,
the adversary can ask Test-query, but to the server S only: we are interested
in the privacy of the key established with the real server only. We only consider
the adversary whose goal is to impersonate a client to the server. Of course,
to achieve this goal, the adversary may try to impersonate the server to the
client in order to learn some information about the internal state secA of TPMA
or other multiple authentication factors. But only a client impersonation will be
considered as a successful attack:

Multifactor Authenticated Key Renewal 209

Mobile Device
Insecure
Channel

Corrupt1

(full)
Corrupt2

(partial)

Corrupt3

(full)

AuthC

DEVB

PROGB
secB

TPMA
secA

PROGA

CCC

Fig. 2. Corruption model of multi-factor authenticated key renewal

– Test(Πi
S): The oracle responds

• the session key of instance (Πi
S) (that is Reveal(Πi

S)), if b = 1 - the real
case;

• a random key from the same domain, if b = 0 - the random case.

Semantic Security. Let denote by Succ the event that the adversary A correctly
guesses the bit b used by the challenger during the above attack game. We require
that the test session where adversary issues the test query must be fresh (see
below). The maker-advantage advmaker

P (A) and the advantage function of the
protocol P are respectively:

advmaker
P (A) = |2 · Pr[Succ] − 1| , advmaker

P (t, Q) = max
A

{advmaker
P (A)}

where the maximum is over all the attackers with time-complexity at most t and
number of queries at most Q.

Client authentication. We also usually model an attack against the unilateral
authentication of the client to the server by considering sessions where the server
accepts, but without any client-partner. Let denote by Succ the event that a
server instance accepts with no partner instance of the client (with the same
partial transcript).

The auth-success Succauth
P (A) and the success function of the protocol P are

respectively:

Succauth
P (A) = Pr[Succ], Succauth

P (t, Q) = max
A

{Succauth
P (A)}

where the maximum is over all the attackers with time-complexity at most t and
number of queries at most Q.

3.2 Considering Corruption of Client Device

Here, we think about corruption of client device DEVA. We consider the following
three types of attacks; (1) communication channel between TPMA and PROGA and

210 S. Matsuo, D. Moriyama, and M. Yung

(2) TPMA itself. These attack on TPMA can be categorized in two types; (2-1) partial
leakage of secA and (2-2) full leakage of secA. These attacks are shown in fig. 2.

For corruption, we must consider two new security notions, freshness and
forward secrecy.

Freshness. The freshness notion basically defines session keys that are not triv-
ially known to the adversary. Since we will focus on the freshness of the server
only, we say that the session key of instance Πi

S is fresh if:

– upon acceptance, DEVA (corresponding to the partner of Πi
S) was not fully

corrupted.
– no Reveal-query is sent to either Πi

S or its partner.

Backward and forward-Secrecy. Backward-secrecy mean that after the time of
corruption, the session keys in any following session remains secret against the
adversary. In order to capture this security, the model must allow the adversary
to perform Test-queries, which we will define after, on sessions occurred after
the corruption. Forward-secrecy means that as soon as a session key is securely
generated (semantically secure), it will remain secure even after corruption. In
order to capture this security, the model must allow the adversary to perform
Test-queries, on sessions completed before the corruption.

From here, we consider the cases which the adversary obtains leaked informa-
tion. Note that in the following, we will restrict to non-adaptive corruptions: no
corruption can be performed during a session, but before a new session starts.

Full Leakage in Communication Channel between TPMA and PROGA. This
leakage models interception of full information between TMPA and PROGA. This
type of attack is most easiest among three types of corruption, because this
channel is not tamper-resistant in general. Moreover the TPMA is a device which
may be attached to DEVA, the interception is quite easy. The adversary can
acquire all communication data between TPMA and PROGA by this attack.

To model this attack, we introduce CORRUPT1 oracle.

CORRUPT1(DEVA): Upon asking this query, the adversary can acquire all commu-
nication between TPMA and PROGA.

Partial Leakage of Internal Key. This attack is difficult because it need
much expertise to do it. However, recent extensive researches on side-channel
attacks, such attacks help the adversary to obtain internal secret information
against tamper resistant mechanisms of TPMA itself.

To model this attack, we introduce following CORRUPT2 oracle.

CORRUPT2(DEVA, λ): Upon asking this query, the adversary can acquire partial in-
formation of secret secA stored in TPMA. The output of this oracle is λ(secA),
where λ(·) is a leakage function which models this partial leakage.

Multifactor Authenticated Key Renewal 211

Full Leakage of Internal Key. Here we consider full corruption of internal
secret secA of TPMA. To conduct this attack, it takes much time. However, it is
considered in the existing researches on key sharing protocols.

To model this attack, we introduce following CORRUPT3 oracle.

CORRUPT3(DEVA): Upon asking this query, the adversary can acquire secA stored
in TPMA.

Why Consider Both Partial and Full Leakage from TPM? As described
above, in forward secrecy, we allow the adversary to obtain the full internal state
of the device, denoted as “full leakage of internal key”. Surely, we must consider
this type of attack as the worst case. It is worth noting that, in the real usage
of mobile devices, it apparently takes quite much time and effort to conduct
attacks leading to full leakage of internal key (For example, the adversary steals
the tag and brings it to his laboratory to obtain the internal state.) However,
the adversary certainly has no chance to give the device to the original owner
again.

In this paper, we additionally consider an attack scenario which we call “multi-
time partial leakage”. Namely, in the life time of a device, its internal state may
be partially leaked in a gradual way. It is obvious that partial leakage is more
likely to occur than full leakage, because the adversary can conduct such attacks
in a shorter time, with cheap and small-size devices. Furthermore, the adversary
has enough time to bring back the TPM/device to the original owner. Therefore,
it is practical to consider the multi-time partial-leakage scenarios.

The partial leakage allows the adversary to conduct further key renewal. How-
ever, when full leakage occurred, the original user notice the attack and he could
revoke the mobile device for key renewal. Thus, we consider only partial leakage
for key indistinguishability against random and consider full leakage for forward
secrecy.

4 Protocol Description

4.1 Basic Protocol

At first, we show the basic protocol which is secure against an adversary without
corruption. Next, we will show the protocol which is secure against all types of
corruptions.

The proposed protocol is combination of lightweight authentication scheme
studied for RFID-tag and PRF (Pseudo Random Function).

Both the client (the person) DEVA and the server DEVB have fixed secret infor-
mation for authentication. They consist of password, and so on. We represent it
as AuthC = (pwA, . . .). TPMA also has a pseudo-random generator implemented
in TPMA. It outputs a tuple of pseudorandom value (ki, k

′
i, k

′′
i , k

′′′
i) for i-th au-

thenticated key renewal.

212 S. Matsuo, D. Moriyama, and M. Yung

GG

HHH

ai ai+1

si si+1

��

���G G G

HH

Fig. 3. Hash chain of OSK protocol

In the basic protocol, the pseudo-random generator is constructed from a
kind of hash chain. OSK protocol [12], which is one of the most popular RFID
authentication protocol, uses the hash chain. This hash chain is shown in Fig. 3.

In the basic protocol, ai = (ki, k
′
i, k

′′
i , k

′′′
i) are computed as three consecutive

outputs of OSK hash chain. That is,

ki = S4i−3, k
′
i = S4i−2, k

′′
i = S4i−1, k

′′′
i = S4i

The server DEVB also has the same pseudo-random generator, which outputs same
tuple of pseudorandom value for each authenticated key renewal.

The authenticated key renewal consists of authentication part and key estab-
lishment part.

Authentication Part

Step1. Client DEVA generates a random value rA. Then DEVA sends rA and iden-
tity A to the server DEVB.

Step2. The server DEVB calculates message authentication code as follows:

AuthB = MACk′
i
(Fki (rA||rB) ⊕ AuthC),

where MACk(m) is a message authentication code of message m using key k,
FK(·) is pseudo random function with key K (for example, a block cipher like
AES), FK(·) is a message authentication code with key K and || represents
concatenation of two data. Then, DEVB generates a random number rB and
sends AuthB, rB , rA and identity B to DEVA.

Step3. The client DEVA verifies the message authentication code as follows:

AuthB
?= MAC.V erifyk

′
i
((Fki(rA||rB) ⊕ AuthC))

where MAC.V erifyk(m) is verification algorithm of message authentication
code of message m using key k. Then, DEVA calculates message authentication
code as follows:

AuthA = MACk
′′
i
(Fki(rB) ⊕ AuthC),

and send AuthA to the server.
Step4. The server DEVB verifies the message authentication code as follows:

AuthA
?= MAC.V erifyk

′′
i
((Fki (rB) ⊕ AuthC)

Multifactor Authenticated Key Renewal 213

K0 F F

X0 K1 F F

eval eval eval eval

A A A A A

X1 X2 X3 X4

K2

K3

K4

X0

X1

X2

X3

f1 f1(K0) f2 f2(K1) f3 f3(K2) f4 f4(K3)

Fig. 4. Leakage resilient pseudorandom generator by Pietrzak et al.

Key Establishment Part: Both the server S and the client C calculates the session
key as follows.

keyi = Fk
′′′
i

(rA) ⊕ Fk
′′′
i

(rB) ⊕ AuthC

4.2 Protocol with Leakage Resilience

Next we move to the protocol with leakage resilience. To make the protocol with
leakage resilience, we use Pietrzak’s pseudorandom generator [13] for the physical
pseudorandom generator. This pseudorandom generator has two sequences of
random internal states and outputs one random value ai for each authenticated
key exchange. The Pietrzak’s pseudorandom generator is shown in Fig.4.

As same as basic protocol we use three consecutive outputs of this pseudo-
random generator. That is

ai = (ki = X5i−4, k
′
i = X5i−3, k

′′
i = X5i−2, k

′′′
i = X5i−1),

which are derived from (K5i−5, K5i−4, X5i−5). ai is transmitted to the PROGA,
then the same protocol as the basic protocol is executed.

5 Security Evaluation

5.1 Completeness

Theorem 1 (Completeness). The DEVA and DEVB who have same internal
secret and AuthC can authenticate each other and compute the same session
key.

Proof. DEVA can confirm the correctness of DEVB in the step 3, because she knows
ki, k

′
i, rA, AuthC . Similarly, DEVB can confirm the correctness of DEVA in the step

4, because she knows ki, k
′′
i , rB, AuthC . Both DEVA and DEVA can calculate same

session key keyi, because they knows k
′′′
i , rA, rB and AuthC . ��

214 S. Matsuo, D. Moriyama, and M. Yung

5.2 Security

At first we describe that our usage of OSK-protocol and Pietezak’s pseudoran-
dom generator is still pseudo-random. In the following theorems, we consider
the pseudorandom generator implemented in TPMA as G(i, ·). When we input
the latest secret key si−1, this generator outputs (si, ai) = G(i, si−1) where
ai = (ki, k

′
i, k

′′
i , k′′′

i).

Theorem 2 (Security of underlying pseudorandom generator). Output
of our usage of OSK protocol is still pseudo-random without leakage of inter-
nal state. And output of our usage of Pietrzak’s pseudo-random generator is
still pseudo-random against the adversary who try to partial leakage allowed in
Pietrzak’s mode-of-operation.

Proof. This security of this theorem is distinguishing (ki, k
′
i, k

′′
i , k′′′

i) from ran-
dom using (ki−1, k

′
i−1, k

′′
i−1, k

′′′
i−1). Let the success probability of distinguish-

ing ki from random using k
′′′
i−1 be Pr[Succ(APRG)] and success probability

of distinguishing (ki, k
′
i, k

′′
i , k′′′

i) from random using (ki−1, k
′
i−1, k

′′
i−1, k

′′′
i−1) be

Pr[Succ(A4PRG)].
Then

|1 − 2 · Pr[Succ(A4PRG)] ≤ |1 − 2 · ((Pr[Succ(APRG)])4

+4/2|k| × (Pr[Succ(APRG)])3

+6/22|k| × (Pr[Succ(APRG)])2

+4/23|k| × (Pr[Succ(APRG)])
+1/24|k|)|

Theorem in [12] shows that Pr[Succ(APRG)] is negligible without corruption.
Similarly, theorem in [13] shows that Pr[Succ(APRG)] is negligible with partial
leakage. Thus, Pr[Succ(A4PRG)] is negligible. ��
Theorem 3 (Key security without any corruption). The proposed proto-
cols (both basic and leakage-resilient versions) have semantic security of renewal
session key against any adversary who observe protocol messages. This means
the adversary cannot obtain no information about further session keys.

Proof. We proceed in games, starting with Game 0 which is the original security
game between a challenger and adversary in the proposed protocol. The chal-
lenger simulates all party’s registration and the response to the oracle queries
that A issues. Let Succf(B) be the event that an probabilistic algorithm B breaks
the security property of the function f .

In each Game i, we define advi as the advantage that the adversary wins the
game. We consider the following games:

Game 0. This is the original security game with adversary A so that adv0 =
advmaker

P (t, Q).

Multifactor Authenticated Key Renewal 215

Game 1. We proceed as Game 0 but add the following abort rule. The chal-
lenger proceeds as Game 0 but aborts the game if it does not correctly guess the
test session.

Game 2. We transform Game 1 to Game 2 by changing the secret key (ki, k
′
i, k

′′
i ,

k′′′
i) used in the test session to random strings.

Game 3. We modify Game 2 by changing pseudorandom function Fki(·) to
truly random function RF used at the test session.

Game 4. We proceed as Game 3 but add the following rule. If the adver-
sary changes the communication message at the test session and the verification
of the MAC function is accepted, the challenger aborts the security game in
Game 4.

Game 5. We modify Game 4 by changing pseudorandom function Fk′′′
i

(·) to
truly random function RF used at the test session.

Game 6. We modify Game 5 to Game 6 by changing the session key at the test
session to the truly random string.

We evaluate the relations between the game transformation with the follow-
ing claims.

Claim 1. We have adv0 ≤ Q/2 · adv1.
Proof. From the definition of the security model, the upper bound of the oracle
queries issued by the adversary A is at most Q. To establish a server’s accepted
session, A must issue two send queries from the specification of the proposed
protocol and the server executes at most Q/2 sessions in the security game. When
the challenger uniformly selects i from 1, . . . , q such that server’s i-th session will
be chosen as the test session. Then the probability that the challenger correctly
guesses the test session is at least 2/Q. Therefore, adv0 ≤ Q/2 · adv1.
Claim 2. We have |adv1 − adv2| ≤ Pr[SuccG(B′

4PRG)].

Proof. If the adversary A can distinguish Game 2 from Game 1 with non-
negligible probability, there exists an probabilistic algorithm B′

4PRG that can
break the security of pseudorandom generator G(i, ·).

For a given instance (ki, k
′
i, k

′′
i , k′′′

i), B′
PRG proceeds as Game 1 except that

(ki, k
′
i, k

′′
i , k′′′

i) is assigned as the secret key for the i-th server’s session. When the
adversary output a guess bit b′ for the test session, B′

4PRG outputs the same bit
b′. If the tuple is computed by pseudorandom generator, this game is equivalent
to Game 1. Otherwise, B′

4PRG simulates Game 2 from the view point of the
adversary. Therefore, it is clear that if the adversary can distinguishes Game 2
from Game 1 with probability ε1, B′

4PRG can distinguishes (ki, k
′
i, k

′′
i , k′′′

i) with
the same probability. However, Theorem 2 showed that this probability is already
negligible.

216 S. Matsuo, D. Moriyama, and M. Yung

Claim 3. We have |adv2 − adv3| ≤ Pr[SuccF (BPRF)].

Proof. If the adversary A can distinguish Game 3 from Game 2 with non-
negligible probability, there exists an probabilistic algorithm BPRF that can
break the security of pseudorandom function.

Consider that BPRF interacts with pseudo-random function Fki(·) or truly
random function RF . BPRF proceeds as Game 2 and simulates all the oracle
queries except the test session. We assume that the adversary sends (r′A, ·) to
the server and (r′B , ·) to the client at the test session. BPRF issues rA‖r′B and
r′A‖rB to the oracle query where (rA, rB) is chosen by BPRF and BPRF computes
(AuthB, AuthA) using the response from the challenger. When the adversary
output a guess bit b′ for the test session, BPRF outputs the same bit b′. From the
security proof of the previous claim, each secret key input to the pseudorandom
function is chosen by uniformly random. So if the adversary can distinguish these
games, BPRF can break the security of PRF with the same probability.

Claim 4. We have |adv3 − adv4| ≤ Pr[SuccMAC(BMAC)]+ 2/2lF where lF is the
output length of the pseudorandom function Fki(·).
Proof. It is clear that these games are equivalent if the adversary does not out-
put the modification message such that the party accepts it. We show that if
the adversary succeeds in outputting such a valid message with non-negligible
probability, there exists an probabilistic algorithm BMAC that can break the
existential unforgeability of the MAC function.

Consider that the adversary sends (r′A, ·) to the server, (r′B , Auth′
B) to the

client and Auth′
A to the server at each round of the test session. If r′A �= rA or

r′B �= rB , the client and the server input different variables to the pseudorandom
function Fki(·) and its outputs are completely independent from the previous
claim. Thus, mB = Fk′

i
(r′A‖rB) ⊕ AuthC computed by the server and mA =

Fk′
i
(rA‖r′B) ⊕ AuthC computed by the client are different messages except the

negligible probability 1/2F . If Auth′
B is accepted by the client, we can construct

BMAC who simulates the game as Game 3 and outputs (mA, Auth′
B) as a forgery.

BMAC issues mB to the MAC oracle but mA = mB happens with probability
1/2lF . The same argument holds for the MAC value Auth′

A if we assume that
r′B �= rB . So the probability that server accepts with modified message is also
negligible. Therefore, we have ‖adv3 − adv4‖ ≤ Pr[SuccMAC(BMAC)] + 2/2lF .

Claim 5. We have |adv4 − adv5| ≤ Pr[SuccF (BPRF)].

Proof. We can show the proof of this claim as previous claim for the difference
between Game 2 and 3. In this case, BPRF interacts with pseudo-random func-
tion Fk′′′

i
or truly random function RF and issues (rA, rB) to the oracle query.

So if the adversary can distinguishes these games, BPRF can break the security
of PRF with the same probability.

Claim 6. We have |adv5 − adv6| = 0.

Proof. The session key at the test session is already randomized since Fk′′′
i

(rB)
is replaced by uniformly random string and it is effectively a one-time pad.
Therefore, this change is purely conceptual and we obtain |adv5 − adv6| = 0.

Multifactor Authenticated Key Renewal 217

It is obvious that adv6 = 0, and we obtain

advmaker
P (t, Q) ≤ Q/2 · (Pr[SuccG(B′

4PRG)] + 2 · Pr[SuccF (BPRF)]

+ Pr[SuccMAC(BMAC)] + 2/2lF)

and conclude the proof of Theorem 3. ��
We remark that Sucvauth

P (t, Q) is also negligible from Claim 4.

Theorem 4 (Key security with CORRUPT1). The proposed protocols (both ba-
sic and leakage-resilient versions) have semantic security of renewal session key
against any adversary who observe protocol messages and obtain output from
TPMA. This means the adversary cannot obtain no information about further ses-
sion keys.

Proof. The security proof of this theorem is derived from Theorem 2 and 3.
The difference between Theorem 3 and 4 is that the adversary can obtain
{(kj , k

′
j , k

′′
j , k′′′

j)} for j = 1, . . . , i − 1 whose variables are used as the secret
key before the test session. Nonetheless, Theorem 2 shows that pseudorandom
generator G(i, ·) still holds the security and (ki, k

′
i, k

′′
i , k′′′

i) is independent from
these keys. Then we can easily construct the security proof based on Theorem
3. Therefore,

advmaker
P (t, Q) ≤ Q/2 · (Pr[SuccG(B4PRG)] + 2 · Pr[SuccF (BPRF)]

+ Pr[SuccMAC(BMAC)] + 2/2lF)

and B4PRG is negligible from Theorem 2.

Theorem 5 (Key security with CORRUPT1 and CORRUPT2). The proposed
protocols (only leakage-resilient versions) have for key security of renewal session
key against any adversary who observe protocol messages and obtain output and
partial internal information from TPMA. This means the adversary cannot obtain
no information about further session keys.

Proof. In addition to Theorem 4, this type of adversary can issue leakage oracle
and obtain λ(ai), where λ(·) is leakage function chosen by the adversary. When
we consider the hash chain likes OSK protocol or traditional pseudorandom
generator, the security is no more ensured. However, if we use the leakage resilient
pseudorandom generator proposed by Pietrzak et al., our protocol also satisfies
the leakage resilience and we can describe the security proof as in the Theorem
4. Therefore, we have

advmaker
P (t, Q) ≤ Q/2 · (Pr[SuccG(B′′

4PRG)] + 2 · Pr[SuccF (BPRF)]

+ Pr[SuccMAC(BMAC)] + 2/2lF)

and we can show that Pr[SuccG(B′′
4PRG)] is negligible from the theorem in

Pietrzak et al. ��

218 S. Matsuo, D. Moriyama, and M. Yung

Theorem 6 (Forward secrecy with CORRUPT1 and CORRUPT3). The proposed
protocols (both basic and leakage-resilient versions) have forward secrecy of re-
newal session key against any adversary who observe protocol messages and ob-
tain output and full internal information from TPMA. This means the adversary
cannot obtain no information about previous session keys.

Proof. This type of adversary can obtain all the internal secret used after the
test session, in addition to the adversary described in Theorem 3.

When we consider the OSK-type hash chain pseudorandom generator G, the
adversary can receive (i + 1)-th session’s internal secret si+1 = G(H−1(k′′′

i))
with CORRUPT3 query. Note that the other secret keys are derived from this
value. In this case, we can easily show the independence of the secret key of
the test session. When we set as t = H−1(k′′′

i), we have si+1 = G(t) and k′′′
i =

H(t). Since the each pseudorandom generator G and H implemented in the
TPMA is independently chosen in our protocol, si+1 does not affect the pseudo-
randomness of k′′′

i . Of course, we can say that the pseudo-randomness of k′′
i , k′

i

and ki also holds recursively.
In the case of leakage resilient pseudorandom generator G, the output from the

TPMA at the test session is ai = (ki, k
′
i, k

′′
i , k′′′

i) = (X5i−4, X5i−3, X5i−2, X5i−1).
When the adversary issues CORRUPT3 query to the (i + 1)-th session, he can
receive si+1 = (K5i, K5i+1, X5i). Note that (K5i, X5i−1) = F(k5i−2, X5i−2) and
(K5i+1, X5i) = F(k5i−1, X5i−1) where F is iterated pseudorandom generator used
in G. Thus si+1 does not affect the pseudo-randomness of ai.

Therefore, the corruptions after the test session does not affect the security
proof and

advmaker
P (t, Q) ≤ Q/2 · (Pr[SuccG(B′

4PRG)] + 2 · Pr[SuccF (BPRF)]

+ Pr[SuccMAC(BMAC)] + 2/2lF).

We can evaluate the security reduction as Theorem 3. ��

5.3 Discussion

From the above security evaluation, we can see that security of one side of multi-
factor AuthC cannot be guaranteed after any corruption (by only CORRUPT1).
This is because the adversary can obtain rA, rB , AuthA, AuthB and its encryp-
tion key, then the security of AuthC is not guaranteed by definition of pseudo-
random functions. This is the so, as is the fact that this protocol is not secure
against online dictionary attack. However this is due to inherent limitations of
using symmetric key cryptography, which is pointed out by Halevi et al [7].
The only countermeasure for this is slow-downing of calculation of inverses of
pseudo-random function by using multiple PRFs.

However, generally AuthC contains a password, which can be changeable at
any time (and is changed according to systems rules every so often). Even if
CORRUPT1 or CORRUPT3 are made, the security of AuthC part revives after chang-
ing password. This is a different characteristics than that of internal secret (keys).

Multifactor Authenticated Key Renewal 219

Internal secrets cannot be changed after corruption, thus it should be protected
by hash chain or Pietrzak’s mode. However, password can be easily changed,
thus, the current setting is still effective in practice.

6 Conclusion

This paper proposed multifactor authenticated key renewal protocol, which real-
izes authenticated key establishment from symmetric (shared) key cryptography
only. The authentication part of this protocol deals with both authentication
from device’s secret and human related authenticator like memorable password.
The system model of this protocol is suitable for the situation of current mobile
computing and other devices. In practice, all functions in this protocol are re-
alized by the standard AES function or other secure light-weight block cipher.
Thus, this is efficient enough for smartphone, mobile devices and smartcards.
The proposed protocol deals with many types of attacks, such as data intercep-
tion between TPM and application program, and side channel attacks on the
TPM. This protocol assures session key secrecy and forward secrecy against the
above attacks.

Acknowledgement. This work was supported by KAKENHI, Grant-in-Aid for
Young Scientists (B) (22760287).

References

1. Avoine, G., Oechslin, P.: A scalable and provably secure hash-based RFID protocol.
In: Proc. of the PerCom 2005 Workshops (2005)

2. Juels, A., Pappu, R.: Squealing Euros: Privacy Protection in RFID-Enabled Ban-
knotes. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 103–121. Springer,
Heidelberg (2003)

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure
against Dictionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

4. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22(6), 644–654 (1976)

5. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
Internet Draft, RFC 5246 (2008)

6. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: Proc. FOCS,
October 25-28, pp. 293–302 (2008)

7. Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols. ACM
Transactions on Information and System Security (TISSEC) 2(3), 230–268 (1999)

8. Katz, J., Ostrovsky, R., Yung, M.: Forward Secrecy in Password-Only Key Ex-
change Protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 29–44. Springer, Heidelberg (2003)

9. Kolesnikov, V., Rackoff, C.: Key Exchange Using Passwords and Long Keys. In:
Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 100–119. Springer,
Heidelberg (2006)

220 S. Matsuo, D. Moriyama, and M. Yung

10. Kent, S., Seo, K.: Security Architecture for the Internet Protocol. Internet Draft,
RFC 4301 (2005)

11. Matsuo, S., Phong, L.T., Ohkubo, M., Yung, M.: Leakage-Resilient RFID Authen-
tication with Forward-Privacy. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS,
vol. 6370, pp. 176–188. Springer, Heidelberg (2010)

12. Ohkubo, M., Suzuki, K., Kinoshita, S.: Cryptographic Approach to “Privacy-
Friendly” Tags. In: RFID Privacy Workshop. MIT, USA (2003)

13. Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

14. Petit, C., Standaert, F.-X., Pereira, O., Malkin, T., Yung, M.: A Block Cipher based
Pseudo Random Number Generator Secure against Side-channel Key Recovery. In:
Proc. of ASIACCS 2008, pp. 56–65 (2008)

15. Pointcheval, D., Zimmer, S.: Multi-factor Authenticated Key Exchange. In:
Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS,
vol. 5037, pp. 277–295. Springer, Heidelberg (2008)

16. Sarma, S.E., Weis, S.A., Engels, D.W.: RFID Systems and Security and Privacy
Implications. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS,
vol. 2523, pp. 454–469. Springer, Heidelberg (2003)

17. Trusted Computing Group, http://www.trustedcomputinggroup.org/
18. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Protocol Architecture. Internet

Draft, RFC 4541 (2006)

http://www.trustedcomputinggroup.org/

Restricted Identification Scheme and Diffie-Hellman
Linking Problem�

Mirosław Kutyłowski, Łukasz Krzywiecki, Przemysław Kubiak, and Michał Koza

Faculty of Fundamental Problems of Technology,
Wrocław University of Technology

{miroslaw.kutylowski,lukasz.krzywiecki,
przemyslaw.kubiak,michal.koza}@pwr.wroc.pl

Abstract. We concern schemes designed for user authentication in different sys-
tems (called sectors) with a single private key so that activities of the same person
in different sectors are not linkable. In particular, we consider Restricted Identifi-
cation scheme implemented on personal identity cards (neuer Personalausweis)
issued by German authorities. The schemes we concern are devoted for practi-
cal application on personal identity cards where limitations of memory size is a
critical issue.

Unlinkability for German Restricted Identification is silently based on random
oracle model. We prove that the construction can be simplified by eliminating
hiding certain values with hash functions: we show that unlinkability can be based
on a problem that we call Linking Diffie-Hellman Problem (LDHP). We prove
that LDHP is as hard as Decisional DHP. Thereby we justify unlinkability in the
standard model.

We also introduce and analyze a variant of German Restricted Identification
providing active authentication. This protocol is intended for application areas
where the right to access a sector is not by default (as for German Restricted
Identification) and can be both granted and blocked. It is intended to serve as
anonymous identity for sectors such as access to medical data and law enforce-
ment, where prevention of Sybil attacks is a fundamental requirement.

Keywords: anonymous identifier, unlinkability, ephemeral-static Diffie-Hellman
authentication.

1 Introduction

In many countries (including European Community), decisions have been made to re-
place traditional personal identity cards with cards with a chip (e-ID). Primarily, this
enables cryptographic protection against forgery of ID documents issued by the state.
The second goal is to provide a trusted cryptographic platform for e-government ap-
plications. In some countries (e.g., Germany and Estonia) this platform has been really
used. In some other cases no applications have been developed so far despite technical
feasibility.

� The paper was partially supported by Polish Ministry of Science and Higher Education,
grant N N206 1842 33. Later it was supported by Fundation for Polish Science, Programme
“MISTRZ”.

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 221–238, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

222 M. Kutyłowski et al.

User Authentication with eID Card. One of primary goals of eID cards is to perform
strong authentication of card holder for granting access to data and/or services. It is
silently assumed that only the owner of an ID card can use it and therefore an eID card
may serve as a secure token for authenticating a user in remote systems.

Using personal ID cards as a platform for electronic identity functions has many
practical advantages:

– The citizens are well trained to protect the cards from the use by third parties:
the citizens have learnt not to borrow or leave them unattended, they protect the ID
cards against physical damage, lost or stolen cards are usually immediately reported
to the authorities, . . .

– The citizens carry personal ID cards for other reasons: e.g., as travel documents in
Schengen countries, as identity documents when driving a car, for authentication
when renting a city bike, Therefore authentication with an eID card is user
friendly – the citizen need not to carry any additional card or authentication token.

– Since issuing personal identity cards is usually under strict control of a state, it
applies also to authentication and supports accountability of user’s behavior.

– Certain basic mechanisms have to be implemented on eID cards anyway; authenti-
cation protocols can reuse them at no additional implementation cost.

Data Protection Issues. Quite a frequent tendency is to design an authentication pro-
cedure consisting of identification of the user and presenting an access request digitally
signed by the user or his personal device. However, such a signed request may be pre-
sented to a third party as a strong proof that a given person wanted to get access to
the system. Consequently, the data created during execution of the authentication pro-
tocol must be strictly protected in order to fulfil the personal data protection law in
most countries. This creates substantial risks and costs for system development and ad-
ministration. So if there is no legal reason for storing an evidence that a request has
occurred, it would be advantageous to build an authentication protocol based on a Zero
Knowledge Proof. In such a case, by definition, a transcript of a protocol has no real
value for a third party, as it could be created by a simulator from the definition of Zero
Knowledge Proofs.

In many cases full identity of a user is not really necessary – a pseudonym is enough.
Using an anonymous identity facilitates data protection issues – indeed, protection of
personal data is limited to data that concerns a person that can be identified.

Idea of Sectors. One of the ideas to facilitate personal data protection is to divide the
activity areas into disjoint sectors and to provide authentication/identity mechanisms
for the sectors so that activities of the same person in different sectors cannot be linked
(except for well defined situations). Sectors encompass different areas of activities of
a citizen, which should be in any interaction. Some of these sectors are sensitive: let
us mention health care services (e.g., psychiatry), employment related chores, and law
enforcement (e.g., anonymous witness). Lack of a strict separation between the sectors
may lead to severe problems like merging databases from different sectors and selling
them. Of course, there are less sensitive sectors like auction services. However, even
then a service provider might be forced to fulfill very high standards of personal data

Restricted Identification Scheme and Diffie-Hellman Linking Problem 223

protection: according to European legislation every data (also non-sensitive) concerning
an identifiable person must be protected against unauthorized access.

The idea of sectors is that:

– each user is given a different identity (and authorization possibilities) for each sec-
tor,

– the identities cannot be linked between the sectors,
– a person may be granted only one identity in a sector, a Sybil attack (returning to

the sector under a different identity) must be impossible.

Protection against Sybil attacks should be based on technical limitations rather than
organizational countermeasures.

Application Examples. In order to make the motivation for sectors more intuitive, we
provide a couple of simple examples. Let us discuss a few sectors:

Law Enforcement. Cooperation between police and citizens is often complicated by
lack of trust: a citizen informing the police about crimes, which they are witnessing,
may fear revealing his identity to criminals and consequently a personal revenge. The
situation would be much different, if the citizen could contact police using a pseudonym
(and authentication mechanism linked to this pseudonym) so that the identity of the
informant remains hidden even for the police unless there are extraordinary circum-
stances.

Such a channel for contacts with police must fulfill the following properties:

– A single person should have no real possibility to appear under different
pseudonyms within the scope of the contacts with the police – otherwise a sin-
gle person could generate hundreds of complaints under different pseudonyms thus
preventing proper recognition of the scale of the reported problem. (This is why
anonymous credential protocols are not well suited for this kind of applications.)

– Each pseudonym should correspond to a single person. Therefore all actions under a
given pseudonym can be considered as coming from the same but unknown person.
This is crucial for evaluating the information and credibility of its source based on
the past experience.

– The identity used for contacts with police should not be used for different pur-
poses. Indeed, otherwise a combination of activities under the same pseudonym
may lead to a quick elimination of potential candidates and leave only the holder of
the pseudonym as matching these activities.

Work Conditions Safety. Safety conditions rules on workplace may be violated by com-
panies in order to increase the profits. Unfortunately, situations of this kind have been
revealed for example after accidents in coal mines. Even if there are authorities respon-
sible for monitoring safety, they often lack necessary information. On the other hand,
an employee having knowledge of the violations may be reluctant to report anything in
order to preserve his job. An anonymous channel between the whistle-blower and the
inspection authority would solve the problem.

Again, it is not only necessary to provide pseudonyms, but also make sure that there
is 1-to-1 correspondence between the employees and the pseudonyms: a report that

224 M. Kutyłowski et al.

comes from many sources is more reliable than the one coming from a single whistle-
blower. There should be unlinkability guarantees, especially because different sectors
may exist within the same organization. For instance, another pseudonyms may be used
for voting during elections of representatives of employees (in some countries it is com-
pulsory to make such elections). If in these sectors the employee uses the same crypto-
graphic material, there is a danger of linking pseudonyms. For instance, if the employer
can conclude that given whistle-blower has not participated in past elections of the
board mentioned above, it could mean that he or she was hired after the last elections.
This would substantially reduce the anonymity set of the whistle-blower. Note that the
dishonest employer need not to identify exactly the whistle-blower: if the anonymity set
is sufficiently small, all employees from this anonymity set might be fired (in order to
avoid accusations some extra people not belonging to this anonymity set could be fired
as well).

Access to Anonymized Medical Data. Online access to medical records is regarded as
necessity for keeping patients aware of their own records. Personal data protection re-
quires that the patient has access only to own health records – so a strong authentication
is required. On the other hand, a patient may be forced to show his medical record, e.g.
by his potential employer. Alone for this reason the data records should be anonymized
(another reason is that the system might be penetrated and the data can be leaked out-
side). However, sheer anonymization does not suffice: it should be impossible to create
a transcript of a session showing both the patients identity during authentication and the
medical records. Note that it should be guaranteed that a single person has exactly one
anonymous identity in the system and this identity is maintained for a long time.

Intersection Attack. As mentioned above linking different pseudonyms may lead to
disclosure of identity of users. First observe that for a given sector the attacker might
be able to provide an anonymity set of a pseudonym together with full identities of the
members of the anonymity set. For instance, if a pseudonym is used in local elections,
then this set is the set of the voters in a given district. Even if this list is not public, it
is accessible to many people. Similarly, pseudonyms used in special social group (e.g.
students in Austria and elections of student representatives) correspond to the members
of that group. By their nature, the anonymity sets in different sectors are in some sense
independent. Therefore intersecting them reduces significantly their size. As reduction
of size is roughly exponential in the number of intersections, this technique may lead
to a full disclosure of identity or at least leave a very small anonymity set for a given
pseudonym. Of course, the attack does not work if we cannot link the pseudonyms from
different sectors.

Electronic ID and Sectors. Introducing electronic identity card equipped with strong
cryptography brings an opportunity to implement idea of unlinkable authentication in
sectors.

A naïve way to implement this idea is to assign a separate and independently gen-
erated key pair for each (sector,user) pair. This approach is clean in a theoretical sense
(obvious unlinkability between sector IDs), but in practice it leads to substantial prob-
lems. First, in certain situations it might be necessary to reveal that a holder of two

Restricted Identification Scheme and Diffie-Hellman Linking Problem 225

public keys is the same person. For instance, this might happen in case of misuse of
services such as eBay: identity of a misbehaving user should be revealed in case of
criminal or civil procedures. If the public keys are really independent, the link between
the keys is not guaranteed on a cryptographic level.

The second reason why the naïve solution does not work is purely technical. The
number of sectors is potentially unlimited, while the memory size is probably the most
important limitation of smart cards. First, a substantial part of memory must be reserved
for personal data (such as face image), operating system and other applications. Second,
the unit cost of a smart card is crucial: due to budget limitations the states are forced to
optimize memory usage as the price grows substantially with the memory size.

In the situation described it would be desirable to re-use the same cryptographic
secret material on an eID card for authentication in different sectors. This is not un-
problematic, since for verification different (and unlinkable) public keys must be used.

Other Anonymization Techniques. Many anonymization techniques have been pro-
posed in the literature. Usually they are addressing quite different requirements, so let
us explain differences between them and our application scenario.

Group signatures protect anonymity of a signer while at the same time they provide
a strong proof that the signer belongs to a given group. This is not anonymization that
we focus on – in our scenario activities of an anonymous user within a sector must
be assignable to a single anonymous person. Group signatures do exactly the opposite
(which makes sense in the target application of group signatures – signatures created in
name of an organization, where the identity of a organization representative is hidden).

Ring signatures provide unconditional anonymity, where anonymity set can be cre-
ated arbitrarily without consent of ring members as long as their public keys are avail-
able. But again, we cannot link the documents signed by the same anonymous person
– which is our basic requirement. While ring signatures are perfect tools for whistle-
blowers, they cannot be used in scenarios described above.

Anonymous credentials is another major invention for privacy protection (see e.g.
[1], [2]), also supported by some major vendors. Anonymous credentials enable a user
to authenticate himself (and his rights) without revealing his identity. More specifically,
a user obtains credentials stating his rights to access systems satisfying criteria stated
in the credentials. Afterwards the user can use credentials to authenticate himself in
systems matching the credentials at any later point. In fact, the credential systems even
guarantee that the interactions involving the same user remain unlinkable. Thereby,
anonymous credentials fulfil the first two conditions of sector authentication, but are
not designed to fulfill the third one. Only if the user starts misbehaving, her/his identity
is revealed. So anonymous credentials are designed for applications such as making
online transactions where we do not wish to build a profile of a client.

1.1 Deployed Systems

Austrian Bürgerkarte and a Aymmetric Solution. The idea of sectors appeared in
Austria many years ago. The Austrian solution was based on symmetric cryptography
and unique numbers for each person (either a physical or a legal one) stored in a central
registry. The system is very closely related to the PIN mechanism: for each sector the

226 M. Kutyłowski et al.

Bürgerkarte of a user is generating a unique password which is checked centrally like it
happens for PIN numbers for ATM machines. The main disadvantage is that the pass-
word for a sector is static, so if a document is authenticated with the password, then its
recipient may later perform a replay attack and impersonate the author of the document
by providing the same password (of course, this works only for the same sector). Nev-
ertheless, the Austrian solution addresses the problem of a growing number of logins
and passwords that we have to keep in memory for different e-government systems.
However, the main motivation is to separate different public administration sectors in
order to simplify personal data protection.

German Restricted Identification. Technical Guideline [3] defines a mechanism,
called Restricted Identification, for generating passwords in different sectors from a
single private key. The protocol has been designed for the new e-ID (neuer Person-
alausweis) issued in Germany since November 2010. During authentication a termi-
nal checks that it talks with an e-ID, a secure channel is built between the e-ID and
the terminal, and finally the password is generated. Password generation is based on
ephemeral-static Diffie-Hellman protocol.

German Restricted Identification is based on the black list approach: a holder of an e-
ID can use a password to authenticate himself, as long as it is not on a blacklist obtained
by the sector concerned.

Due to the black list approach and strong focus on privacy, the protocol is intended
for specific applications, such as login at e-Bay. It does not work for applications such
as anonymous witness in criminal court procedures or identity cards for health care, as
after breaking into an e-ID one can create new identities that cannot be blacklisted.

1.2 Our Contribution

We consider rigorously unlinkability issues that arise when the lists of public keys from
different sectors are compared (this concerns black lists of not-hashed values as well as
white lists). The problem is that the adversary might have some advantage due to the fact
that he might know the users for each sector. This problem was alluded in [3] by hashing
the entries, however this leads to security guarantees based on pseudo-randomness of
hash functions in the random oracle model.

For restricted identification systems based on Discrete Logarithm Problem we de-
velop a framework based on difficulty of so called Linking Diffie-Hellman Problem
(LDHP). In simple words, LDHP is the simplest task that the adversary might be faced:
it concerns two users and a list of two public keys. The adversary has to link which key
belongs to whom. This is quite a different question than Decisional DHP, where with
probability 1

2 the input is a random triple. In Sect. 2 we will show that despite subtle but
intuitively substantial advantage for the adversary, LDHP is not weaker than Decisional
DH Problem.

In Sect. 3 we show the consequences of hardness of LDHP for German Restricted
Identification. A good message is that the protocol can be slightly simplified and there
are unlinkability guarantees in the standard model. It does not necessarily mean that the
German protocol should be simplified – now there are two anonymity guarantees: one

Restricted Identification Scheme and Diffie-Hellman Linking Problem 227

based on LDHP and the other based on properties of hash function. Since the second
mechanism is cheap, there is not clear reason why not to use it.

In Sect. 4 we propose a simple restricted identification scheme based on white lists.
It reuses many components of German Restricted Identification, however it is intended
for different class of applications: namely the ones where the users are not admitted to
all sectors by default. For this scheme we provide a security proof.

2 Linking Diffie-Hellman Problem

There are many variations of the original Diffie-Hellman problem, see for example
[4], [5] [6], [7], [8], [9], [10]. with subtle differences in their definitions. For the pur-
pose of the security proof of Restricted Identification we introduce here Linking Diffie-
Hellman Problem (LDHP) and prove that its difficulty is equivalent with Decisional
Diffie-Hellman Problem (DDHP). Let x ←$ X mean that x is sampled uniformly at
random from finite set X . First we recall the basic DDHP and then formulate LDHP:

Definition 1 (DDHP Assumption). Let 〈g̃〉 be a cyclic group generated by element g̃
of order ordg̃ = q′. There is no probabilistic polynomial-time algorithm ADDHP that
distinguishes with non-negligible probability between distributions D0 = (g̃, g̃a, g̃b, g̃c)
and D1 = (g̃, g̃a, g̃b, g̃ab), where a, b, c are chosen at random from Zordg̃ . That is, for
any probabilistic polynomial-time algorithm ADDHP the advantage of ADDHP

Adv(ADDHP) = Pr[ADDHP(D1) = 1]− Pr[ADDHP(D0) = 1]

is negligible, i.e., Adv(ADDHP) ≤ εDDHP for negligibly small εDDHP.

Definition 2 (LDHP). Let 〈g〉 be a cyclic group generated by element g of a prime
order ordg = q. Let ALDHP be a probabilistic polynomial-time algorithm that takes an
input that comes from distribution D0 = (g, ga, gb, gr, gra, grb) with probability 1

2 and
otherwise from distribution D1 = (g, ga, gb, gr, grb,gra), where a, b, r ∈ Zordg, and
outputs 1 or 0. We define

Adv(ALDHP) = |Pr[d ←$ {0, 1} : ALDHP(Dd) = d] − 1
2 |

as the advantage of ALDHP in distinguishing between distributions D0 and D1 in 〈g〉.
The LDHP is broken if Adv(ALDHP) is non negligible.

Note that the input of LDHP consists of two DH pairs and we are only asked to deter-
mine the ordering of the last two arguments (gra, grb) which are given in a random
order. Note that there is some similarity in formulation of LDHP and Group DHP [5],
and especially between LDHP and Twin DHP [10].

Clearly, if we can solve Decisional DHP, then we immediately can solve LDHP.
However, it is not immediately clear if the converse is true. The input data for LDHP
are in a very specific form and one may hope to find a clever algebraic procedure that
is based on this properties. However we show that LDHP is not easier than DDHP:

Theorem 1. If DDHP Assumption holds in 〈g〉, then the advantage of any algorithm
ALDHP breaking the LDHP in 〈g〉 is negligible:Adv(ALDHP) ≤ εDDHP+1/q, where
εDDHP is advantage of the adversary breaking DHP and q is the order of g.

228 M. Kutyłowski et al.

Proof. According to the framework of security games [11], we construct a sequence
of games for adversary algorithm A := ALDHP, where Game 0 represents the original
attack.

Game 0. We define Game 0 as the attack game against A as follows:

x0, x1 ←$ Zq

b ←$ Zq

d ←$ {0, 1}
d̂ ← A(g, gx0 , gx1 , gb, gbxd , gbx1−d)

Let S0 be the event that d = d̂ in Game 0. Thus the advantage of A is |Pr[S0] − 1
2 |.

Game 1. This game is basically the same as Game 0. In this transitions we restate x0, x1

as computed in an equivalent way α0a+β0, α1a+β1 respectively, for randomly chosen
a, α0, α1, β0, β1 ∈ Zq:

a, α0, α1, β0, β1 ←$ Zq

x0 ← α0a+ β0

x1 ← α1a+ β1

b ←$ Zq

d ←$ {0, 1}
d̂ ← A(g, gx0 , gx1 , gb, gαdab+βdb, gα1−dab+β1−db)

Notice that since q is a prime and α0, α1, β0, β1 are pairwise stochastically indepen-
dent, x0 and x1 are stochastically independent, too. As the ensamble (g, gx0 , gx1 ,gb,
gαdab+βdb, gα1−dab+β1−db) has the same probability distribution as the ensamble
(g, gx0 , gx1 , gb, gbxd , gbx1−d), A has the inputs with the same probability distributions
in Games 0 and 1. Let S1 be the event that d = d̂ in Game 1. We conclude that
Pr[S0] = Pr[S1].

Game 2. Now in computations of exponents we replace all occurrences of ab by a
random number c:

a, α0, α1, β0, β1 ←$ Zq

x0 ← α0a+ β0

x1 ← α1a+ β1

b ←$ Zq

c ←$ Zq

d ←$ {0, 1}
d̂ ← A(g, gx0 , gx1, gb, gαdc+βdb, gα1−dc+β1−db)

Let S2 be the event that d = d̂ in Game 2.

Claim 1. |Pr[S1]− Pr[S2]| ≤ εDDHP, where εDDHP is the advantage of some efficient
algorithm solving DDH Problem (so εDDHP negligible under DDH Assumption).

Restricted Identification Scheme and Diffie-Hellman Linking Problem 229

The proof of Claim 1 is essentially the observation that in Game 1 the arguments gxd ,
gb, gbxd for A are in the form (ga)

αdgβd , gb, (gab)
αdgβdb (= ((ga)

αdgβd)b) (which is
a DH triple) while in Game 2 they are of the form (ga)

αdgβd , gb, (gc)αdgβdb (which is
a random triple). So we build a distinguisher D for DDH Problem for group 〈g〉:
Algorithm D(ga, gb, gc)

α0, α1, β0, β1 ←$ Zq

d ←$ {0, 1}
d̂ ← A(g, (ga)α0gβ0 , (ga)α1gβ1, gb, (gc)αdgβdb, (gc)α1−dgβ1−db)

if (d = d̂)
then return 1
else return 0

If the input to D is of the form (ga, gb, gab), for random a, b, then A receives the inputs
with the same probability distribution as in Game 1, and therefore

Pr[a, b ←$ Zq : D(ga, gb, gab) = 1] = Pr[S1].

If the input to D is of the form (ga, gb, gc), then computation proceeds just as in Game 2,
and therefore

Pr[a, b, c ←$ Zq : D(ga, gb, gc) = 1] = Pr[S2].

It follows that the DDH-advantage of D is equal to |Pr[S1]− Pr[S2]|. � Claim 1

Claim 2. |Pr[S2]− 1
2 | ≤ 1/q.

The idea is that in Game 2, gc serves as a one-time pad, and thus the adversary’s
output d̂ is independent of the hidden bit d. To set up attention, let us assume that
parameters a, b, c are fixed. Now let y1 = gα0a+β0 , y2 = gα1a+β1 , y3 = gα0c+β0b,
y4 = gα1c+β1b, where as arguments of A in Game 2 values y1, y2, y3, y4 occur in the or-
der (y1, y2, y3, y4) or (y1, y2, y4, y3). Let e1, e2, e3, e4 denote the discrete logarithms of
y1, y2, y3, y4. Observe that for any fixed a, b, c we obtain the following linear equations:{

e1 = α0a+ β0

e3 = α0c+ β0b
,

{
e2 = α1a+ β1

e4 = α1c+ β1b
. (1)

Thereby, y1, y3 depend on α0, β0, and y2, y4 depend on α1, β1. Observe that if c �=
ab mod q, then the linear equations in each of the systems mentioned above are lin-
early independent. In such a case for each pair of values (y1, y3) there is exactly one
setting for values (α0, β0). So y1, y3 are uniformly and independently distributed. Sim-
ilarly, if c �= ab mod q variables y2, y4 are uniformly and independently distributed.
Since y2, y4 depend on α1, β1 and they are independent from α0, β0, variables y2, y4
are independent from y1, y3. Let the event F that c = ab mod q be treated as a fault
event according to the framework of [11]. Then of course Pr[F] = 1

q . From now on
assume that fault event F does not occur.

Let us fix a, b, c parameters and y1, y2, y3, y4 for further discussion. Each input se-
quence (y1, y2, y3, y4) to algorithm A can be obtained from two alternatives:

– When the bit d equals to 0, the input comes from a sequence (y1, y2, y3, y4) for
exponents e1, e2, e3, e4 and unique parameters α0, β0, α1, β1.

230 M. Kutyłowski et al.

– When the bit d equals to 1, the input comes from a sequence (y′1, y
′
2, y

′
3, y

′
4) =

(y1, y2, y4, y3) for different exponents e′1, e
′
2, e

′
3, e

′
4 and different (but again unique)

parameters α′
0, β

′
0, α

′
1, β

′
1.

Consequently, for each sequence of values (a, b, c, ỹ1, ỹ2, ỹ3, ỹ4) such that c �= ab mod
q we have for each d exactly one system of α’s and β’s solving equations (1) defined
by sequence of exponents (ẽ1, ẽ2, ẽ3, ẽ4). That is,

Pr[(d = 0, α0, β0, α1, β1) defines (ỹ1, ỹ2, ỹ3, ỹ4))] =

= Pr[(d = 1, α′
0, β

′
0, α

′
1, β

′
1) defines (ỹ1, ỹ2, ỹ3, ỹ4)].

Note that this means that for any fixed a, b, c such that c �= ab mod q we have the same
probabilities of occurrences of the tuples (d = 0, ỹ1, ỹ2, ỹ3, ỹ4), (d = 1, ỹ1, ỹ2, ỹ3, ỹ4).
Now, let

Pr[A(g, ỹ1, ỹ2, g
b, ỹ3, ỹ4) = 0] = p, Pr[A(g, ỹ1, ỹ2, g

b, ỹ3, ỹ4) = 1] = 1 − p,

for certain p. Obviously those outputs are independent of whatever the parameters (d =
0, α0, β0, α1, β1) or (d = 1, α′

0, β
′
0, α

′
1, β

′
1) defined the input ỹ1, ỹ2, ỹ3, ỹ4. Thus, for

each sequence of values (a, b, c, ỹ1, ỹ2, ỹ3, ỹ4) such that c �= ab mod q:

Pr[A(g, ỹ1, ỹ2, g
b, ỹ3, ỹ4) = d] =

= Pr[((d = 0, α0, β0, α1, β1) defines (ỹ1, ỹ2, ỹ3, ỹ4)) ∧ A(g, ỹ1, ỹ2, g
b, ỹ3, ỹ4) = 0]

+Pr[((d = 1, α′
0, β

′
0, α

′
1, β

′
1) defines (ỹ1, ỹ2, ỹ3, ỹ4)) ∧ A(g, ỹ1, ỹ2, g

b, ỹ3, ỹ4) = 1]

= Pr[(d = 0, α0, β0, α1, β1) defines (ỹ1, ỹ2, ỹ3, ỹ4)] · Pr[A(g, ỹ1, ỹ2, g
b, ỹ3, ỹ4) = 0]

+Pr[(d = 1, α′
0, β

′
0, α

′
1, β

′
1) defines (ỹ1, ỹ2, ỹ3, ỹ4)] · Pr[A(g, ỹ1, ỹ2, g

b, ỹ3, ỹ4) = 1]

= 1
2 · p+ 1

2 · (1 − p) = 1
2 .

Thus taking into account fault event F , we have |Pr[S2]− 1/2| ≤ 1/q Claim 2 �
Combining Claims 1 and 2, we see that |Pr[S0] − 1

2 | ≤ εDDHP + 1/q. This concludes
the proof of Theorem 1. ��

3 German Restricted Identification

In this section we recall German Restricted Identification scheme and apply to it the
results from the previous section. As the system is already deployed in practice on a
large scale, this is not an academic discussion, but an analysis of a real system.

There are the following actors in the scheme (cf. 4.5 in [3]): CA holding its private
and public revocation key α, gα, respectively, sector authorities Sj holding secret keys
Rj , and the users Ui holding private and public keys respectively xi and gxi . Key gxi is
a global public key (global in contrary to local public keys of that user used in sectors).

The following protocol is run for authenticating user Ui in sector Sj :

1. In order to initiate the core procedure, terminal authentication and chip authentica-
tion procedures are executed at first; the latter procedure implies that the chip must
possess some secret key, the key must be shared by many identity cards in order to
guarantee anonymity within a large group of people.

Restricted Identification Scheme and Diffie-Hellman Linking Problem 231

2. Public key gαRj of the sector Sj is transferred to the e-ID of user Ui.
3. The e-ID calculates IDi,j = H((gαRj)xi), the user’s Ui identifier in sector Sj , and

sends it to the sector terminal (H is a hash function).
4. If IDi,j is not on the black-list of Sj , the access to Sj is granted for the user Ui.

The black-lists hold the results of the revocation protocol. The revocation procedure is
very efficient: in order to revoke user Ui from sector Sj his public key gxi is sent to
CA. CA calculates gxiα. Then the value gxiα is sent to the sector Sj , which computes
g(xiα)Rj . Finally, the value H(gxiαRj) is placed on the black-list of the sector Sj .

Since Restricted Identification procedure from [3] might only be executed after ter-
minal authentication and chip authentication procedures (cf. Section 2.1.5 and 4.5.1 in
[3]), the terminal learns the identity of the group key of the chip. Moreover, the chip
transmits the sector-ID through the terminal, so the terminal learns the sector- identi-
fier of the chip (this is the reason why terminal authentication must be executed first).
An interesting feature of the above authentication protocol is that the terminal does not
check validity of the received sector ID (cf. Table 4.1 in [3] and the protocol in Sec-
tion 4.5 of [3]), it only checks if that ID has not been revoked. Hence, if a terminal is
malicious and leaks the restricted ID of one chip, then the leaked ID might be used by
another chip in communication with another terminal of the same sector.

If chip authentication is performed with a key shared by many identity cards, then
so called anonymity set is large and privacy leakage is negligible. On the other hand,
it requires very high security level for the chip cards: deriving such a key from a sin-
gle chip would make it possible to go through Restricted Identification with a fake ID
(which would not appear on the black lists). This is not very dangerous, if Restricted
Identification is used for applications like age authentication on vending machines sell-
ing cigarettes. On the other hand, the situation becomes problematic since an adversary
becomes a fully anonymous “account” in a really important sector (like e-health ser-
vices, law enforcement, . . .) and in case of criminal behavior we cannot use the fake
ID(s) of the adversary to trace back the trouble maker. So the German solution must not
be used in sensitive application areas unless the smart cards are ideally tamper resistant.
However, German Restricted Identification is intended to be used for private systems
with more focus on personal data protection than on preventing fake identities.

Note that if IDi,j would be calculated as gxiαRj instead as H(gxiαRj), then the
user Ui could prove that he is in possession of the private key xi. The implicit proof of
possession, quite similar to chip authentication procedure from [3], is utilized in Sect. 4.
In fact in the sectors of restricted identification the protocol from Sect. 4 is intended to
be used instead of the chip authentication procedure.

The main unlinkability question concerning the German solution is how to prove
that different sectors cannot link the identifiers of the same user in different black lists.
Recall that the identifiers of a user holding private key xi in sectors Sj and Sj′ have the
form H(gxiαRj) and H(gxiαRj′). Function H has to blind the identifiers and make it
hard to link them with the public key gxi of the owner, and make it hard to show that
the same private key has been used. We are not aware of any formal argument published
before for unlinkability of H(gxiαRj) and H(gxi′αRj′) whenever i = i′. Usage of H
shows reliance on pseudorandomness of hash functions (and “wiping out” all algebraic
relationships) that can be modeled in the random oracle model.

232 M. Kutyłowski et al.

With the result on LDHP we see that there is strong unlinkability for the black lists
even for the case when H is not used. Obviously, usage of H does not weaken the
system, since an adversary holding the “plain” black list could apply H on them and
perform attack on the “hashed” version. (So in particular, there is no necessity to modify
the protocol at this point.)

4 Restricted Identification with White Lists

In this section we first present a modified version of German Restricted Identification
from [3]. Our target are applications like the ones mentioned in Sect. 1:

– explicit registration is necessary in order to become a user in a given sector,
– real identity of a misbehaving user in a sector may be revealed if an ID authority

and the sector authority cooperate.

The restricted identification protocol described below includes (as a part) a kind of
terminal authentication procedure. The protocol establishes some session key dependent
on user’s unique secret key stored on his smart card. The session key is used to protect
communication between the card and the terminal. Consequently, for this protocol no
chip authentication procedure (even with group key) is executed.

4.1 Algorithm Description

There are the following actors of the protocol: ID Authority – a central authority that
maintains a database of all users together with their public keys, sector authorities - in
each sector there is a single authority granting access to sector resources, users – each
user holds a private key and authenticates himself against arbitrary sector authorities.

The protocol uses a group 〈g〉 of a prime order, where DDH Problem is hard.

Setup of Keys. The following keys are held by the protocol participants:

ID Authority holds a secret key rj for each sector Sj , chosen at random by ID Au-
thority. Additionally, it holds some keys to protect communication with sector au-
thorities as well some key for signing certificates.

the authority of a sector Sj is assigned the following keys:
– a pair of keys for encrypting messages to be sent to Sj , where the public key

is called Kj . We assume that these are known to everybody or there is a re-
liable system confirming them, e.g. a system of digital certificates issued by
trustworthy authorities, The encryption scheme E to be used has to be CPA
secure.

– a secret key (exponent) Rj chosen at random by Sj ,
– a public key Yj = gRj·rj . The key Yj is publicly known, an appropriate cer-

tificate issued by ID Authority confirms that it is the public key of Sj . (Note
that Sj does not know the discrete logarithm of its public key.)

a user Ui holds a secret key xi chosen by his card at random. His master public key is
yi = gxi .

Restricted Identification Scheme and Diffie-Hellman Linking Problem 233

There are the following lists of public keys maintained by the system:

main list of users maintained by ID Authority: it contains entries of the form (Ui, yi),
public list of sectors maintained by ID Authority: It contains entries of the form

(Sj , Yj ,Kj). The list is signed by ID Authority in a standard way.
sector user lists: there is a separate white list Wj for each sector Sj . It contains public

keys of users entitled to log in Sj . The list Wj contains only public keys of the users
(without their ID’s). The public key for user Ui in sector Sj equals yi,j = Y xi

j .

Creating the List of Sectors. The key Yj is generated by ID Authority and Sj as follows:
ID Authority chooses rj at random, computes zj := grj , and sends it to Sj . Sector
authority of Sj computes Rj at random, computes Yj := zj

Rj and shows Yj to ID
Authority. Finally, ID Authority includes (Sj , Yj ,Kj) in the list of sectors and issues
appropriate certificate linking Sj with Yj . Note that ID Authority operates on some
server and may utilize some secure environment like a Hardware Security Module. Thus
it is realistic to assume that ID Authority is capable to securely store even thousands of
sector exponents rj .

Creating User’s Public Keys for a Sector. We assume that there is some standard pro-
cedure for implementing the key pairs (xi, yi) of the users. Now we show how the keys
yi,j are generated. First, ID Authority checks the right of Ui to use sector Sj and com-
putes y′i = y

rj
i . Then the authority of sector Sj obtains y′i and computes (y′i)

Rj (which
equals (yrji)Rj = gxi·rj ·Rj = (grj·Rj)xi = Y xi

j = yi,j).
Computed public keys can be placed on a white list or on the black list, depending

on the intended action. They can be transmitted in bulks, or just as single entries. One
can use a direct secure link between ID Authority and sector authority to transmit y′i,
or, alternatively, a user can carry it. In the last case, the user gets a signed ciphertext
of y′i so that it cannot be manipulated by the user. We leave further details of possible
architectures for technical documents.

Authentication Against a Sector. When a user Ui wishes to access sector Sj , then the
ephemeral-static Diffie-Hellman protocol is executed between Ui and Sj :

1. Ui receives sector’s Sj certificate containing key Yj .
2. Ui computes his public key for sector Sj by computing yi,j = (Yj)

xi . (Of course,
Ui can compute yi,j just once and store it for a later use.)

3. Ui chooses a random challenge v, and encrypts v with the key Kj obtaining e =
EKj (v). Then Ui sends e to Sj together with an access request and together with
ciphertext EKj (y

v
i,j).

4. Sj decrypts the ciphertexts and checks, if yi,j = (yvi,j)
v−1 mod ord g appears on the

white list Wi. If not, then the request is refused.
5. Sj generates exponents u1, u2 at random, computes h1 = Y u1

j , h2 = Y u2

j and
sends them to Ui together with a non-interactive Proof of Knowledge of discrete
logarithm of h2 with respect to Yj . Simultaneously, Sj computes the session key
K = (yu1

i,j)
v and a one-time token S = (yu2

i,j)
v .

6. Ui computes the session key K as (hxi
1)v , and the token S = (hxi

2)v .

234 M. Kutyłowski et al.

7. All further communication between Ui and Sj during this session is encrypted with
the key K , authentication is implicit by correct encryption. Additionally, in the first
message Ui transmits the token S. Sj checks the token against its value computed
locally. Finally Sj replies with u2 and Ui checks that h2 = Y u2

j .

Since hxi
1 = (Y u1

j)xi = (Y xi

j)u1 = yu1

i,j , the keyK is computed correctly on both sides.
The same concerns the token S. The last step revealing u2 prevents using the protocol
as a oracle for computing axi for arbitrary a. Indeed, notice that if h2 is of the given
form, then the answer of Ui does not bring a new knowledge to Sj , as Sj can compute
it itself.

Simplified Version. In the above protocol the number of exponentiations is higher than
in German Restricted Identification. This is not a major problem as the calculations can
be performed within the practical time limit (for a user the computation time does not
matter as long as it does not exceeds, say, a single second). Nevertheless, it is possible
to simplify the protocol and remove creation of the token S. In this case the protocol
should be appended by a proof of knowledge of the key K by both Sj and Ui. This so-
lution might be more efficient, but may depend on other assumptions than DH Problem.

Prosecution. If a user with the sector public key y′i,j behaves so that his identity has
to be revealed (e.g., in case of a fraud), then Sj raises y′i,j to power R−1

j mod ordg
and sends the result to ID Authority. After examining the legal situation, ID authority
computes the public key of this user, by raising the element obtained to power r−1

j mod
ordg. The result is the public key of the user concerned. A lookup in the list of users
reveals identity of the owner of y′i.

4.2 Security Analysis

In this section we consider verious attacks, each time giving the adversary all infor-
mation apart from the secrets sought by the user or the secrets of the party that the
adversary tries to impersonate.

Definition 3 (Attack Model 1). The adversary A1 controls all parties except for Ui.
The information available for A1 is a transcript of any number of messages exchanged
according to the scheme (including the plaintexts corresponding to the ciphertexts ex-
changed between the users and sector authorities) the private keys of all parties but Ui,
and all public keys. The goal of A1 is to obtain the private key xi of Ui.

Proposition 1. If A1 can succeed with probability p1 when Ui chooses xi at random,
then Discrete Logarithm Problem for a random element from 〈g〉 can be solved in base
g with probability p1 with a comparable computational effort.

Proof. We construct an algorithm B that for a given y ∈ 〈g〉 looks for x such that
y = gx. Assume that C is an algorithm used by A1 that succeeds with probability
p1. From an input of B we can easily construct an input for C. Namely, we choose
at random the private and public keys for all protocol participants except for Ui, who
gets the public key y. Note that the public key of Ui for sector Sj can be obtained as

Restricted Identification Scheme and Diffie-Hellman Linking Problem 235

yrj·Rj . Then we generate a transcript of communication exchanged in the system. This
is possible, since during key establishment between Ui and, say Sj , the session key and
the one-time token can be computed by Sj . For so prepared data we run C in order to
derive the private key of Ui, that is, the discrete logarithm of y. ��

We may consider a similar attack against Sj aiming to gain Rj . We skip the considera-
tions concerning interaction between ID authority and Sj as we assume that ID Author-
ity is honest.

Definition 4 (Attack Model 1’). The adversary A′
1 controls all parties except for Sj .

The information available for A′
1 is a transcript of any number of messages exchanged

according to the scheme (including the plaintexts corresponding to the ciphertexts ex-
changed between the users and sector authorities), the private keys of all parties but
Sj , and all public keys. The goal of A′

1 is to obtain the key Rj of Sj .

Proposition 2. If A′
1 can succeed with probability p1 when Sj chooses Rj at random,

then Discrete Logarithm Problem for a random element from 〈g〉 can be solved in base
g with probability p1 with a comparable computational effort.

Proof. One can easily see that the whole transcript of communication between Sj and
Ui may be created by a simulator, so an attack can be played offline without interaction
with Sj . Then it can be directly used for computing discrete logarithm of a given β
with respect to grj , where we seek for Rj such that β = (grj)Rj . The sought discrete
logarithm can be finally computed as rj · Rj . ��

Note that in Attack Model 1 it does not make sense to impersonate Ui, since all sectors
Sj are controlled by the adversary. This problem is considered by the next model:

Definition 5 (Attack Model 2). The adversary A2 controls all parties except for Ui

and Sj . A2 has access to a transcript of any number of messages exchanged according
to the scheme (including the plaintexts of the ciphertexts exchanged by the users Ui and
Sj), all public keys, the private keys of all parties except for xi and the decryption key
of Sj . The goal of A2 is to impersonate Ui against Sj in a single authentication session.

Proposition 3. If A2 can succeed with probability p2 when Ui and Sj choose their
private keys at random, then Computational DH Problem for a random input can be
solved with probability p2 with a comparable computational effort.

Proof. For clarity we follow the framework of security games according to [11]. Since
most details are straightforward, we omit detailed listing of the games.

The game G0 describes the attack performed by A2. Game G1 differs from G0 in
that there are no users other than Ui. The adversary from game G1 can emulate any
number of users by choosing their private keys, computing public keys for all sectors
according to the protocol, and generating communication transcripts with these users.
So if there is an attack with advantage ε0 for G0, then the adversary of G1 can prepare
the input for G0 from the input of G1. So the advantage ε1 of G1 satisfies ε1 ≥ ε0.

Game G2 differs from G1 in that it eliminates all previous communication sessions
of Ui. The advantage ε2 of game G2 satisfies ε2 ≥ ε1, since the adversary of G2 may

236 M. Kutyłowski et al.

emulate any previous sessions of Ui and use this as input for the adversary of G1.
Indeed, the adversary of G2 can create session keys from previous sessions without
knowing the key xi and therefore create transcript of all previous sessions.

Note that game G2 essentially works with the keys yi = gxi , Yj = grj·Rj , and
yi,j = Y xi

j . In game G3 we reveal rj , Rj to the adversary. Then the parameter yi
can be eliminated, since it can be computed by the adversary from yi,j . Obviously, the
advantage ε3 of G3 satisfies ε3 ≥ ε2. However, in an attack of game G3 the adversary
has to create ciphertexts encrypted with the key K = Y xi·u1·v

j and present the token
S = Y xi·u2·v

j given Yj , Y xi

j , Y u1

j , Y u2

j and v.
Game G3 can be used to solve Computational DHP in 〈g〉 with advantage at least ε3

as the adversary can apply the following strategy: Given input A,B,C for Computa-
tional DHP in 〈g〉 prepare an input for G3 by setting (Yj , Y

xi

j , Y u2

j) = (A,B,C) and
Y u1

j = Cr (so assuming u1 = r · u2 mod ordg for some r). Then run the adversary

from the game G3. The adversary presents S, so in particular can derive Sv−1

which
equals Y xi·u2

j thereby solving the CDHP for B,C and base A. ��

Now we consider a dual situation when an adversary is trying to impersonate Sj :

Definition 6 (Attack Model 3). Adversary A3 controls all parties except for Ui and
Sj . A3 has access to a transcript of any number of messages exchanged according to
the scheme (including the plaintexts of the ciphertexts exchanged by the users Ui and
Sj), the private keys of all parties but Ui and Sj and all public keys. The goal of A3 is
to impersonate Sj against Ui in a single authentication session.

Proposition 4. If A3 can succeed with probability p3, then the encryption scheme E is
not semantically secure, i.e. there is an adversary that succeeds with probability p3.

Proof. We construct an attack for a security game GE describing semantic security of
E. Recall that the scheme E is asymmetric with public key Kj . During GE, two mes-
sages v0, v1 are chosen at random. Then a bit b is chosen at random and vb is encrypted
with key Kj , yielding a ciphertext C = EKj (vb). In the next step the adversary has to
guess b based on C, v0, v1 and Kj (of course E should be a probabilistic scheme).

An adversary from game GE can adopt the following strategy: generate all private
keys of all participants except for Sj . Then generate a transcript of some number of ses-
sions. Finally, generate a session in which Ui transmits C as the ciphertext of parameter
v during Step 3 of the protocol. In this session the adversary A3 tries to impersonate
Sj , so he must answer with a message encrypted with K = (yu1

i,j)
v. Then the adversary

of GE may easily check which of the keys is used: K = (yu1

i,j)
v0 or K = (yu1

i,j)
v1 . If

the equality holds for vt, then the adversary from GE outputs b = t. ��

Finally, we consider the core property, i.e., unlinkability between different sectors.

Definition 7 (Attack Model 4). The adversary A4 controls all sectors Sj . A4 has ac-
cess to whole communication between the sectors and the users and all white lists of the
sectors. The goal of A4 is to decide if for two public keys yi,j and yi′,j′ , from sectors
Sj and Sj′ , j �= j′, it holds that i = i′.

Restricted Identification Scheme and Diffie-Hellman Linking Problem 237

We may improve the chances of the adversary by indicating which users belong to
which sectors, and given Ui and Ui′ both belonging to sectors Sj , Sj′ to indicate the
public keys on the white lists of Sj , Sj′ that do not belong to Ui and Ui′ . In this case
we can model an advantaged adversary in the following way:

Definition 8 (Attack Model 4+). Adversary A+
4 controls all sectors Sj . The only users

are U1 and U2, both belonging to all sectors. A+
4 has access to whole communication

between the sectors and the users, all white lists of the sectors, and the public keys
y1, y2 of, respectively, U1 and U2. However, A+

4 has no control over the users, and
their access pattern is random and cannot be influenced by A+

4 . The goal of A+
4 is to

link y1 with the public key of U1 on the white list of S1.

Proposition 5. If adversary A+
4 has advantage p4, then LDH Problem can be attacked

with advantage p4.

Proof. An adversary attacking LDH Problem can easily transform its input to the input
of A+

4 . Indeed, given an input g,A,B,R,X, Y for LDH Problem, he assigns these
values as follows: Y1 = R, y1 = A, y2 = B, and {y1,1, y2,1} = {X,Y } (so, the white
list for S1 is X,Y and it is not known which of the public keys is y1,1 and which is
y2,1). The public key Yj of sector Sj for j ≥ 2 is chosen as gwj , where wj is chosen at
random. The public keys of, respectively, U1 and U2 in Sj are computed as y

wj

1 , y
wj

2 .
Then the adversary generates access patterns for a holder of each public key in each
sector and generates appropriate transcripts of the corresponding sessions. So generated
input is fed into the algorithm run by adversary A+

4 . The output of A+
4 links A,B with

X,Y , as required. ��

If the adversary can link a user with a public key in some sector, then probability of
breaking LDHP in the above proof has to be divided by the number of sectors.

5 Conclusions

The scheme presented in this paper is different from German restricted identification,
however the reader may notice that both are built from the same basic primitives. This
is advantageous from implementation point of view, since one can design a common
platform for variety of application scenarios – reducing costs, enhancing flexibility and
making standardization much easier. In particular, it would be useful to design anony-
mous credentials protocols based on exactly the same primitives.

In our opinion restricted identification might become one of the crucial tools for
privacy protection and personal data protection in a near future. It moves the security
mechanisms from organizational countermeasures to cryptographic mechanisms. Like
elsewhere in the field of authentication techniques, there is not just a single application
scenario, so many different mechanisms of this kind might be necessary.

Acknowledgment. We would like to thank Dennis Kügler and Jens Bender from BSI
for many discussions and for proposing improvements concerning early drafts of this
paper. In particular, we are thankful for discovering some flaws in the early versions of
the protocol.

238 M. Kutyłowski et al.

References

1. Camenisch, J., Groß, T., Heydt-Benjamin, T.S.: Rethinking accountable privacy supporting
services: extended abstract. In: Bertino, E., Takahashi, K. (eds.) Digital Identity Manage-
ment, pp. 1–8. ACM (2008)

2. Backes, M., Camenisch, J., Sommer, D.: Anonymous yet accountable access control. In:
Atluri, V., di Vimercati, S.D.C., Dingledine, R. (eds.) WPES, pp. 40–46. ACM (2005)

3. Bundesamt für Sicherheit in der Informationstechnik: Advanced Security Mechanisms for
Machine Readable Travel Documents 2.05. TR-03110 (2010)

4. Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman Assumptions and an
Analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158.
Springer, Heidelberg (2001)

5. Bresson, E., Chevassut, O., Pointcheval, D.: Group Diffie-Hellman Key Exchange Secure
against Dictionary Attacks. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
497–514. Springer, Heidelberg (2002)

6. Bao, F., Deng, R.H., Zhu, H.: Variations of Diffie-Hellman Problem. In: Qing, S., Gollmann,
D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer, Heidelberg (2003)

7. Abdalla, M., Pointcheval, D.: Interactive Diffie-Hellman Assumptions with Applications
to Password-Based Authentication. In: Patrick, A.S., Yung, M. (eds.) FC 2005. LNCS,
vol. 3570, pp. 341–356. Springer, Heidelberg (2005)

8. Szydlo, M.: A Note on Chosen-Basis Decisional Diffie-Hellman Assumptions. In: Di
Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 166–170. Springer, Hei-
delberg (2006)

9. Cheon, J.H.: Security Analysis of the Strong Diffie-Hellman Problem. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006)

10. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications. J. Cryp-
tology 22(4), 470–504 (2009)

11. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs (2006),
http://www.shoup.net/papers/games.pdf

http://www.shoup.net/papers/games.pdf

Mixed-Strategy Game Based Trust Management

for Clustered Wireless Sensor Networks

Dong Hao1, Avishek Adhikari2, and Kouichi Sakurai1

1 Graduate School of Informatics, Kyushu University, Japan
haodongpost@gmail.com, sakurai@csce.kyushu-u.ac.jp

2 Department of Pure Mathematics, University of Calcutta, India
aamath@caluniv.ac.in

Abstract. Wireless sensor networks are vulnerable to a large number
of security threats and malicious attacks. The traditional security ap-
proaches from encryption and authentication are insufficient to defend
the insider attacks which are launched inside of the WSNs and bypass
the crypto-based defence. Trust management has been recently suggested
as one of the effective security mechanisms for distributed systems, and
is a promising new approach to solve the security challenges in wire-
less sensor networks. However, to the best of our knowledge, it is still a
challenge to establish an integrated trust management mechanism with
comprehensive security analysis. In this paper, we consider the clustered
wireless sensor network in which the cluster head is in charge of the trust
management of other sensor nodes. We propose a novel, integrated trust
management mechanism for the cluster wireless sensor networks, and
analyze the optimal decision making policy by using game theory. First,
the upstream/downstream joint monitoring scheme is implemented to
securely and efficiently observe the behavior of the insider nodes. Then
based on the monitoring results, the local trustworthiness and global
trust worthiness are derived based on the trust exchange and the trust
computation. Finally, by game theoretic analysis of the security interac-
tion between the attacker and the network, the optimal trust policy can
be made based on min-max rule, and the optimal utility of the WSNs
can be guaranteed.

Keywords: Clustered Wireless Sensor Networks, Trust Management,
Insider Threats, Mixed-Strategy Game, Quantal Response Equilibrium.

1 Introduction

1.1 Background and Related Works

Wireless sensors are small and inexpensive devices powered with low-energy bat-
teries, equipped with radio transceivers, and capable of responding to physical
radio signals. Wireless sensor networks (WSNs) are collections of wireless sen-
sors that are autonomously distributed to gather data from their surrounding
environments, to report the changes to data processing center[1]. Though the

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 239–257, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

240 D. Hao, A. Adhikari, and K. Sakurai

development of wireless sensor networks was motivated by military applications
such as battlefield surveillance, today such networks are used in many industrial
and civilian applications[1, 20].

Although wireless sensor network is promising for various important applica-
tions, the security issues in wireless sensor networks have been a roadblock for
their development[2, 20]. The critical goal of networks is to protect the network
against various attacks which is especially putting more threat to wireless sensor
networks due to their characteristics such as open medium, multi-hop, and dy-
namic topology[1, 20, 21]. The attacks against wireless sensor networks mainly
fall into two categories: (1) Outsider attack: The adversary adopts the meth-
ods including eavesdropping on information, injecting fractional data to jam the
networks traffics, and fabricating fake records to disturb the normal function of
the network[20, 21]. For these kinds of outsider attacks, it is of no necessary for
the adversary to compromise any insider sensor nodes thoroughly. (2) Insider
attack: The adversary breaks through the safeguard (e.g. the cryptographic and
authentication mechanisms), and consequently, the insider nodes are compro-
mised by the adversary and are changed into malicious attackers[18–20, 30, 35].
Traditional security systems are mainly used to protect the WSNs from outsider
attacks. However, since the insider attackers have access to the public and private
keys and bypass the cryptography system, it is preferred to use cryptographic
solutions as a first line of defence, and utilize non-cryptographic solutions as a
second line to protect the network against the insider attackers[14].

In contrast to the conventional approaches, trust management is becoming
a new methodology to solve the challenging issues for communication and net-
works security [2–13, 17, 22, 24, 28]. The notion trust management is first coined
by M. Blaze et.al in 1996[3]. The original trust management is about making
the policy for the authorization to strangers, by means of recommendations from
third parties. Trust management is then embodied as a distributed authentica-
tion system. Several later access control systems such as SPKI (simple public
key infrastructure)[15] and dRBAC(distributed role-based access control)[16] are
also inspired by the idea of trust management. With the advancement of the re-
search, the subsequential studies of trust management have approached to the
extensive fields as evaluation, analysis, and quantification of the trust and trust-
worthiness of network entities over time. The key problem towards the studies
of trust management is to obtain the precise, practicable trust values and cor-
respondingly, how to make the optimal trust policies[6].

Similar to the implementation of trust management in wired networks[5], on-
line service, and e-commerce systems[4], it is also of significance to introduce the
trust management into the fields such as ad hoc networks, peer-to-peer networks,
and also wireless sensor networks. Since the insiders are capable to launch at-
tacks and break the crypto-based security systems, trust management is consid-
ered as one effective second line of defence for the wireless network security[7–
12, 14, 17, 18, 32]. As a natural consequence of introducing trust management
into wireless sensor network environments, trust has been put forward with quite
differentmeanings and corresponding features. In wireless sensor networks, taking

Mixed-Strategy Game Based Trust Management for WSNs 241

into consideration of trust management, each sensor node is assigned a trust value
to reflect its trustworthiness according to its historical behavior and performance.
And trustworthiness in WSNs is generally interpreted as belief, subjective prob-
ability and reputation which represent the quantified values of availability, real-
isability, or security property of the insider nodes. Obtaining the behavior record
of the insider nodes of WSNs, the trust management scheme then calculate the
trust value and carry out reward or punishment according to the specific trust
policies[6].

In the literature, many authors address the issues of trust definition in dif-
ferent scenarios for wireless sensor networks[7–12]. Momani et al. propose the
Data/Communication trust[9]. Lin et al. introduce Hybrid Trust base on Soft
Trust and Hard Trust. These two works take into consideration of the veracity of
data, connectivity of path, processing capability of node, and service level of net-
work services. G. Saurabh et al. present a reputation based framework for data
integrity for wireless sensor networks. Their scheme considers information which
is collected by each insider node running the Watchdog mechanism to moni-
tor the neighbors[7]. R.A. Shaikh et al. introduce peer evalutaion scheme based
on direct observation of the monitor and recommendations from a third node.
Therefore their work is based on group trust[8]. E. Aivaloglou et al. propose
a hybrid trust and reputation management protocol by integrating certificate
based trustworthiness and behavior based trustworthiness[11].

1.2 Challenging Issues

As discussed above, being an alternative solution to traditional security
mechanisms, trust is gradually utilized in wireless sensor networks security[9], to
maintain and manage the historical behavior of the insiders (generally known as
reputation), and make policies for authorization or feedback (reward or punish-
ment) to these insiders. In a word, trust for wireless sensor networks, is a mecha-
nism that deals with the insider threats, based on historical behavior observations
and decision policies[6]. A typical trust mechanism forWSNs should contain these
important components.

– Monitoring scheme, which is preferred to be light weighted.
– Trust information exchange, which is required to be low cost.
– Trust Policies for authorization or reward/punishement decision.

Based on the special attributes of trust management for wireless sensor networks,
and the previous works on this field, the unique challenging issues for establishing
the trust management for wireless sensor networks mainly fall into the following
categories:

(1) Low Cost Trust Observation and Exchange. Existing trust management
mechanisms are mostly used in wired distributed systems, which differ from
the WSNs trust management application, especially in the aspects of power-
consumption and performance observation model. Therefore, it is of great signif-
icance to reconstruct these existing schemes to make them acclimate to the new

242 D. Hao, A. Adhikari, and K. Sakurai

WSNs environments. Concretely, in WSNs, if the monitoring scheme is always
running, the stringent power will be rapidly consumed[30]. Besides, if the trust
information exchange scheme requires too much communication, it will become
a burden to QoS[1, 20, 24]. Therefore, light weighted insider behavior monitor-
ing scheme, and efficient insider information exchange scheme are essential for a
more effective and low cost trust management mechanism.

(2) Trust Management against Insider Threats. The outsider attacks may be
prevented by crypto-based solutions[20, 21]. However, as the insider attackers
are inside the network, and have access to the pubilic/private key systems, they
can bypass such secure systems[14]. Therefore, to design an effective detecting
mechanism, we should implement methods other than cryptographic solutions
as the alternative solution to cryptography. At the same time, we should also
take into consideration the stringent power resource of each monitoring node.

(3) Policy and Decision Making for Trust Management. The final step of trust
management is to make a decision about what kind of priority will be authorized
to the insider nodes, according to certain decision-making policies. This kind of
policy should guarantee that the network will maximize its potential utility, in
other words, reduce the attacker’s damage to minimum[6]. Thus, how to make
these policies have always been a key problem for trust management, and it
deserves a comprehensive theoretical and mathematical analysis.

1.3 Our Contribution

In view of the above related works and the challenging issues, in this paper,
we propose an integrated trust management mechanism for the wireless sensor
networks. We consider the clustered wireless sensor networks in which at least
one cluster head exists among the insider nodes. The main objective of our trust
management mechanism is to observe the historical behavior of insider nodes,
exchange the observations from different routes, and make security decisions for
classifying different insider nodes into different trustworthiness level, according
to the trust policies.The main contributions of our work are summarized as:

(1) To observe the behavior of insider nodes, and to collect the evidence
for trust management, we implement a light weight upstream/downstream joint
monitoring scheme. By using this scheme, each insider will be observed by its
upstream and downstream neighbors. By utilizing Watchdog and signed Check
Packets, this joint monitoring scheme can be made cheat-proof. As well, the joint
monitoring can reduce power consumption comparing to previous monitoring
schemes which require either complex computation or need to be run in the
promiscuous mode[20] consistently.

(2) An integrated trust computation and exchange mechanism is implemented.
By using the check packet, each insider node will send its opinion on both its
upstream and downstream neighbors to the destination node. Then destination
node for each route will calculate the local trust of the insiders based on the
information from the check packet, and then submit the local trust values to the

Mixed-Strategy Game Based Trust Management for WSNs 243

cluster head. The cluster head, which is capable of calculating the global trust,
will finally make an authorization decision, and inform the decision to all the
inside nodes in this network. Comparing with previous local reputation based
schemes, our integrated trust computation will increase the accuracy and effec-
tiveness of trust computing and exchanging. Moreover, since only the destination
nodes need to submit the local trust to the cluster head, this protocol does not
require hight communication cost.

(3) We analyze the interaction between the insider attacker and the cluster
head as a repeated trust game with mixed-strategy. The final security policy is to
classify the insiders into different trust levels. And this policy is defined according
to the game equilibrium. This trust policy will bring the network system with
optimized utility, by choosing the defence strategies that minimize the attack
damages which the attacker wants to maximize. Without loss of generality, we
consider two kinds of attackers: smart attacker and naive attacker, and we reveal
the security decision making should be different for these two kinds of attackers.

2 Upstream and Downstream Joint Observation

One important issue to detect the misbehaving insiders in WSNs is how to iden-
tify the misbehavior, including packet dropping and packet tampering. In this
section, we utilize the upstream/downstream monitor scheme[14] to maintain
the history of packet loss and tamper at an arbitrary insider node.

2.1 Insider Threat Scenario

In WSNs, the insiders are the sensor nodes which have legitimately registered
into the network and have legal identities and access to the public/private key
system. The insider attacks in WSNs focus on the users which had internal access
to information and network systems[18, 19, 34].

Following the reactive routing protocols[20], when a source node S wishes to
send its data packets to the destination node D, it will first broadcast its Route
Request message[1, 3, 20]. On receiving this message, the insiders which have
the existing route to D will reply a Route Response message, and sender
will include the insiders which have good behavior history into its route to the
destination D. After that, sender S will begin to transfer its data packets to
destination D. On receiving the data packets from S, each insider can decide
either to forward these packets or to drop them, or to tamper the packets. If
the packets are dropped by the insiders, the packet receive ratio at D will de-
crease and the network performance will drop dramatically which reflects that
the integrity is damaged. If the packets are tampered by the insiders, the con-
fidentiality and availability will be damaged. Since packet tampering is more
difficult to be detected, we consider that it causes more damage to the network
than packet dropping.

244 D. Hao, A. Adhikari, and K. Sakurai

2.2 Joint Monitoring in One Route

The whole network communication is divided into multiple time windows. In each
segment of these time windows TW (t)[20], there are many routes responsible for
data packet forwarding. To perceive the misbehavior of the WSN insiders, the
most directway is trafficmonitoring [1, 20, 21]. Utilizing the upstream/downstream
joint monitoring scheme[14], each node can be observed by its upstream and down-
stream neighbors in the route.

Consider in route x, the sender sends its data packets through the insider
nodes v1, v2, ..., vm, ..., vn. Each time an insider vm receives a data packet, it will
update its local counter about how many packet it has received from its upstream
neighbor vm−1. We record this number as nr(vm−1, vm). Then the insider vm will
forward the data packet to its downstream neighbor vm+1. Working under the
Promiscuous Mode[20], sensor nodes are capable of observing the downstream
nodes within its broadcast domain, about whether it tamper, drop or forward
the packets, respectively. The node vm will record the number of packets vm+1

dropped as nf (vm+1), the number of packets vm+1 tampered as nt(vm+1), and
the number of packets vm+1 dropped as nd(vm+1).

Let MS→D be an integral number. To obtain the trust of all the insider nodes
along the route x, after every MS→D data packets, the sender S will generate a
check packet, and send it thought the route x to destination node D. When this
check packet passes through route x, each insider in x will attach its opinions
about its upstream and downstream neighbors to the variable field in the check
packet. Noting that within one time window TW (t), along one route x, there
may be multiple check packets.

Consider a simple but representative case, when the insider m is included in
a 5-hop route, described as S � v1 � v2 � v3 � D, where S and D denote the
sender and destination node, respectively. When the check packet passes each
node, the node will attach their messages to the the empty fields in the check
packet. The information in the check packets along the 5-hop route is:

S
M0→ v1 : M0 = S ‖MS→D ‖Cup

F (S, v1), C
up
T (v1) ‖Sign(S);

v1
M1→ v2 : M1 = M0 ‖v1

∥∥nr(S, v1)
∥∥Cdown

F (v1, S) ‖Cup
F (v1, v2), C

up
T (v2) ‖Sign(v1);

v2
M2→ v3 : M2 = M1 ‖v2 ‖nr(v1, v2)

∥∥Cdown
F (v2, v1) ‖Cup

F (v2, v3), C
up
T (v3) ‖Sign(v2);

v3
M3→ D : M3 = M2 ‖v3 ‖nr(v2, v3)

∥∥Cdown
F (v3, v2) ‖Cup

F (v3, D) ‖Sign(v3).

The message attached to the check packet at each node are denoted as M0, M1,
M2 and M3, respectively. The first field in M0 and second field in M1, M2 and
M3 are the identities of each node. MS→D is the total number of data packets
S has sent to D during between every two check packet. Cup

F is the upstream
neighbor’s opinion on how the insider node behaves on packet dropping, based on
the Promiscuous mode monitoring such as Watchdog. It describes the percentage
of packets that an insider node drops, and observed by its upstream neighbor. For
instance, Cup

F (S, v1) is S’s opinion on insider v1 about how v1 behaves as packet
dropping. On the other hand, Cdown

F is downstream neighbor’s opinion on how
the insider node behaves as packet dropping, which also indicates the percentage

Mixed-Strategy Game Based Trust Management for WSNs 245

of packets that an insider node m drops. Cup
T is the upstream neighbor’s opinion

on how one insider behaves as packet tampering. Finally, at each node, the
message is attached with an Elliptic Curve Digital Signature Sign(vm)[20]. The
signature is generated based on the node’s identity vm, and can protect this
message from being tampered.

On receiving the check packet, the destination node will retrieve the ID of
each insider node, and verify the signatures. After that, the destination node
will calculate the local trust of each insider node m in this route, based on
the m’ upstream/downstream neighbors’ opinions. In the next section, we will
introduce the local trust and global trust computation and exchange.

3 Trustworthiness Exchange Protocol

In the last section, the upstream/downstream joint monitoring scheme is imple-
mented, and the insiders’ historical behavior can be obtained by such monitoring
scheme. Based on the observation records, in this section, we propose the local
trust computation and global trust exchange protocol. The local trust means
the trust values that are generated based on the monitoring information from a
single route, while the global trust is the integrated trust value which collects
the opinions on one insider node from all the routes.

3.1 Local Trust Computation

In the check packet, for each insider node vm, there are two categories of opin-
ions: the opinion about packet dropping, and about packet tampering. We first
consider the packet dropping. As we illustrated in the last section, the up-
stream node vm−1’s opinion on node vm about its packet dropping is recorded as
Cup

F (vm−1, vm), which is located between interval [0, 1]. By using Watchdog[20]
mechanism, the upstream node vm−1 can overhear whether node vm forwards,
drops, or tamper packets. Then Cup

F (vm−1, vm) can be calculated as:

Cup
F (vm−1, vm) =

nd(vm)

nf(vm) + nt(vm) + nd(vm)
(1)

where nf (vm) denotes the number of packets that node vm forwards to vm+1, and
monitored by vm−1 by using Watchdog; nt(vm) denotes the number of packets
being tampered by vm and successfully observed by vm−1. And nd(vm) denotes
the number of packets being dropped by vm and observed by vm−1.

We then investigate downstream node vm+1’s opinion on vm about packet
dropping, which is denoted as Cdown

F (vm+1, vm). This opinion is generated ac-
cording to the number of packets each node received, which is attached in the
check packet, and it is also a real number located between interval [0, 1]. Recall
that, in the check packet, the attached number of packets that vm receives from
vm−1 is nr(vm−1, vm), and the number of packets that vm+1 received from vm
is nr(vm−1, vm). Then node Cdown

F (vm+1, vm) can be recorded as:

246 D. Hao, A. Adhikari, and K. Sakurai

Cdown
F (vm+1, vm) = 1 − nr(vm, vm+1)

nr(vm−1, vm)
(2)

On receiving the Check Packet which contains the opinions Cup
F (vm−1, vm) and

Cdown
F (vm+1, vm), the destination node D will calculate the route x’s opinion on

each insider node about how they behaves as packet dropping:

CF (m) = κ× Cup
F (vm−1, vm) + (1 − κ)× Cdown

F (vm+1, vm) (3)

Since the accuracy of upstream monitoring and accuracy of downstream moni-
toring are different, we define κ and 1−κ as the weights of upstream and down-
stream nodes’ opinion about insider m, respectively. Larger CF (m) indicates vm
drops more data packets between every two check packets.

Besides the opinion about packet forwarding, another item observed is the
ratio of packets that have been tampered by the insider vm, which is denoted as
Cup

T (vm). The upstream node vm−1 can observe the packet tempering behavior
of node vm by using Watchdog. Cup

T (vm) is defined as:

Cup
T (vm) =

nt(vm)

nf (vm) + nt(vm) + nd(vm)
(4)

where nf (vm), nt(vm) and nd(vm) have the same meanings as in equation (1).
After the destination node D receives the check packet, it will generate CT (m)
to denote the route x’s opinion on insider vm about packet tampering. And
CT (m) = Cup

T (vm).
After the destination node D generates CF (m) and CT (m) for all the insiders

in its route x, it will calculate the local trust value of the insiders in route x.
The local trust value from route x for an insider node m is denoted as T local

xm ,
which consists of two parts, one is trust for packet tampering and the other one
is trust for packet dropping:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
T local
xm (Packet Tamper) =

Nx
cp∑
i

RTxm(i)× μ1cp/N
x
cp

T local
xm (Packet Drop) =

Nx
cp∑
i

RDxm(i)× μ2cp/N
x
cp

(5)

where RDxm(i) (or RTxm(i)) is the value of CF (m) (or CT (m)) corresponding to
the i-th check packet. μ1cp and μ2cp are the discount factors of trustworthiness
which mean the decaying of trust over time. Nx

cp denotes the total number of
check packets generated along route x during time window TW (t).

The metrics T local
xm (Packet Tamper) and T local

xm (Packet Drop) are called local
trust for the reason that it indicates only the route x’s opinion on insider node
m. However, local trusts are insufficient to evaluate the insiders’ trustworthiness.
First, if only local trust is conducted, it will take a long time for a node to obtain
enough observation records of all the other nodes in the network. Second, one
insider may behave maliciously in one route, but legitimately in another route.

Mixed-Strategy Game Based Trust Management for WSNs 247

This may mislead those routes that have not been attacked before. Therefore, a
comprehensive global trust value which is integrated from all the local routes is
required.

3.2 Global Trust Computation

Assume within time window TW (t), there are N routes along which the insider
node m participates in. In other words, those N routes intersect at node m. At
the end of TW (t), the destination nodes of each route will submit the local trust
value on the insiders to the cluster head. It is assumed that the cluster head is
the trusted third party (TTP). Because if the cluster head is compromised by
adversary, the entire network will also be besieged soon.

Let Ω denote the set of all the N routes which utilized insider m in the
window TW (t), and x ∈ Ω be one route. Let H(x,m, t) be the number of
times that route x has utilized the insider m during TW (t). Therefore, the
total number of times that insider m has been used in the past time win-
dow TW (t) is recorded as H(m, t) =

∑
x∈Ω H(x,m, t). Let T local

xm (i) ∈ [0, 1]
denote the local trustworthiness of insider m in the view of route x, where
i ∈ {Packet Tamper, Packet Drop}. And let Kr(x, t) be the balance factor of
trust value from route x, during time window TW (t). Kr(x, t) is introduced
to offset the risk of non-credible feedbacks from route x, such as bad-mouthing
attack or whitewashing attack[20]. After these, the global trust value can be
defined as a function of T local

xm (i), H(x,m, t), and Kr(x, t):

Tm(i) =
∑

x∈Ω

[
H(x,m, t)∑

x∈Ω H(x,m, t)
× T local

xm (i)×Kr(x, TW (t))

]
(6)

where i ∈ {Packet Tamper, Packet Drop}. The value of global trust measures
a generalized trustworthiness that an insider m is held by all the routes, which
utilized m as an insider node during the last time window TW (t). Based on this
global trust values during the past TW (t), the cluster head will classify the in-
sider nodes into different categories (e.g. Legitimate, Suspicious and Malicious).
The legitimate insiders will be permitted to access more services of the network
system. The malicious insiders will be isolated from the system immediately.
And for the suspicious insiders, the cluster head will inform all the member
nodes that such suspicious insider should be given more frequent observations.
For example, each route xmay reduce the value of MS→D which will increase the
frequency of generating the check packet to check the suspicious insider nodes.

It’s worth noting that, the final format of the global trust value Tm(i) where
i ∈ {Packet Tamper, Packet Drop}, is a pair of real numbers locating in the
interval [0, 1], they can also be considered as probabilities. The global trust
value thus can be indicated by the accumulative packet drop ratio and packet
tamper ratio of the insider node m. The significance of calculating the global
trust comparing to the local trust is that: in the global trust, the sample space
which covers all the routes that utilized the insider node m, is much richer than
the sample space for single route’s local trust evaluation. According to the Law

248 D. Hao, A. Adhikari, and K. Sakurai

of Large Numbers [36], the average of the results obtained from a large number
of trials should be close to the expected value, and will tend to become closer as
more trials are performed. Therefore, the integrated global trust is more close
to the real probability that each insider node drops (tampers) data packets.

4 Game-Based Analysis for Trust Policies

In this section, the proposed trust management mechanism is analyzed by game
theory. The trust policy is made to distinguish the malicious, suspicious, and
legitimate insider nodes based on the game equilibrium. The reason for utilizing
game theory for the trust decision making is owing to the tradeoff existing in
the communication phase. For instance, by dropping or tampering packets, the
attacker may receive illegal utility, but may also take risk of being punished.
For the cluster head, it can severely punish an insider node for its losing a little
packet, but the usability of the network will decrease. Therefore, the interaction
between the cluster head and the insider node is a multi-dimensional decision
making problem which is often modeled and analyzed as a game[35].

4.1 Trust Game Model

In clustered WSNs, the game is between any one of the insider attackers who
takes attack strategies, and cluster head who makes decision on how to classify
the insiders based on the global trust values. The attacker wants to bring damage
to the network, and the cluster head wants to prosecute the attacker out. The
loss of the network system is the same as the gain of the attacker. Therefore, we
model the game as zero-sum non-cooperative game[34]. The first step of game
theory based analysis is to identify the players and their available actions (or
strategy). The insider node is perfectly informed of the historical strategies of
the cluster head, for the reason that the strategy of the cluster head, which is
the global trust value, has been broadcasted to all the members in the network
including the insider attacker. On the contrary, the insider’s past strategies are
not perfectly observed by the cluster head, because the observation mechanism
is not perfectly accurate. Moreover, because the cluster head takes its strategy
after the insider, we construct the game in an extensive form.

Fig.1 portrayed the one-shot trust game between the insider and the cluster
head. This game is illustrated as a tree in which the attacker takes its attack
strategy first and the cluster head takes the defence strategy in succession af-
ter the attacker. The red node at the root denotes the insider, and 1:1 means
the first move of the first insider node. The insider node may take any one of
the 3 strategies: Behave Normally(N), Drop Packet(D), and Tamper Packet(T),
which are presented by red lines starting from the root. Similarly, the cluster
head’s moves start from a blue node, and 2:1 means the first move of the cluster
head. The cluster head can make 3 kinds of decisions: Trust the insider, clas-
sify it as Legitimate(L), Semi-Trust the insider, consider it as Suspicious(S), and

Mixed-Strategy Game Based Trust Management for WSNs 249

Insider

1:1

Normal Cluster Head

2:1

Legitimate (N,L)

Suspicious (N,S)

Malicious (N,M)

Drop Packet

2:1

Legitimate (D,L)

Suspicious (D,S)

Malicious (D,M)

Tamper Packet

2:1

Legitimate (T,L)

Suspicious (T,S)

Malicious (T,M)

Fig. 1. Extensive Form of Trust Game

completely distrust the insider, classify it as Malicious(M). Since there is no
observation mechanism with 100% detection rate[21], the cluster head is not
totally certain that the insider chooses one of the strategies from its strategy
space. Therefore, the cluster head’s 3 sub-trees belong to the same information
set, which is illustrated by a dash line linking the 3 blue nodes. After both the
attacker and the cluster head choose their own strategies to fight against each
other, the interaction between these two players will come to an outcome, which
are denoted by different leave nodes in the end of the game tree. We can see that
there are totally 9 leaf nodes at the end of the extensive game tree which identify
all the possible outcomes (3×3) of the one-shot trust game. The following items
describe the meanings of all the possible outcomes of this trust game.

– (N,L): Insider node behaves normally, and cluster head trusts the insider,
classify it into legitimate member.

– (N,S): Insider node behaves normally, but cluster head mistakenly semi-
trusts it, and classifies it as suspicious insider.

– (N,M): Insider node behaves normally, while cluster head makes an error,
distrusts it, and classifies it as malicious attacker.

– (D,L): Insider node drops packets, but cluster head considers the drop as
due to channel problems, classifies the insider as Legitimate Member.

– (D,S): Insider node drops packets, and cluster head correctly semi-trusts it,
classifies it as suspicious and requires further observation.

– (D,M): Insider node drops packets, and cluster head distrusts it, severely
classifies it as malicious and isolates it from service.

– (T, L): Insider node tampers some packets, but cluster head makes an error,
wrongly trusts it, and regards it as legitimate.

250 D. Hao, A. Adhikari, and K. Sakurai

– (T, S): Insider node tampers some packets, while cluster head classifies it as
suspicious and requires further observation.

– (T,M): Insider node tampers some packets, and cluster head regards it as
malicious and isolates it from service.

The corresponding payoff for the insider at each of the above outcomes is denoted
as Um(u, v), where u ∈ {Normal(N), Drop(D), T amper(T)} is the strategy from
insider, and v ∈ {Legitimate(L), Suspicious(S),Malicious(M)} is the strategy
of the cluster head. Since in the clustered wireless sensor network, the attacker’s
gain is the same as the network’s loss, therefore the utility of the network is
Un(u, v) = −Um(u, v), which indicates a zero-sum game[35]. We illustrate the
utilities for the cluster head (the network) at different outcomes as the matrix
in the following table, in which the Un(u, v) may vary in different application
scenarios[20]. For example, the damage from a tampered data packet in the
battle field sensor network will be much more severe than the damage in the
civilian applications.

Table 1. Different Payoffs for Network at Different Outcomes

Strategy Trust(Legitimate) Semi-Trust(Suspicious) Distrust(Malicious)

Behave Normally Un(N,L) Un(N, S) Un(N,M)

Drop Packets Un(D,L) Un(D, S) Un(D,M)

Tamper Packets Un(T,L) Un(T, S) Un(T,M)

In Table 1, the first elements in each utility function are actions of the insid-
ers, while the second elements are the actions of the cluster head. For example,
Un(T,M) is the utility for the cluster head under the situation that the insider
node tampers a packet, and the cluster head classify it as malicious and distrust
it. It is worth noting that, Un(u, v) is the utility under pure strategy. In game
theory, the notion of pure strategy means the players choose the strategies de-
terministically. That is to say, the players choose each strategy with probability
0 or 1. However, in the real case, the rational attacker will change its strategy
over time, and sometimes just pretends to be legitimate and takes the malicious
strategy with certain probability. This kind of rational attacker will choose each
possible strategy with a certain probability. Thus, the trust game is a mixed-
strategy game, in which the player’s strategy is probability distribution over the
action set.

Table 2 illustrates the mixed strategy for both the attacker and the cluster
head. In this mixed strategy game, the attacker’s strategy is a probability dis-
tribution {p, q, 1− p− 1} over all its possible action set {N,D, T }. Variables p,
q, 1 − p − q are the probabilities for the attacker to adopt each of the actions
Behave Normally(u = N), Drop Packet(u = D), and Tamper Packet(u = T),
respectively. On the contrary, for the cluster head, its strategy is a probability
distribution {x, y, 1− x− y}, over the cluster head action set {L, S,M}. Here x,

Mixed-Strategy Game Based Trust Management for WSNs 251

Table 2. Joint Distribution for Attacker and Cluster Head’s Mixed Strategy

Strategy Trust(Legitimate) Semi-Trust(Suspicious) Distrust(Malicious)

Behave Normally px py p(1− x− y)

Drop Packets qx qy q(1− x− y)

Tamper Packets (1− p− q)x (1− p− q)y (1− p− q)(1− x− y)

y, 1−x−y are the probabilities for the cluster head to classify the insider node as
Legitimate(v = L), Suspicious(v = S) and Malicious(v = M), respectively. The
mixed strategy of the insider attacker is denoted as sm(p, q) which is a probabil-
ity distribution over action set {Normal,Drop, Tamper}, while m denotes this
potential attacker. And the mixed strategy for the cluster head is sn(x, y) which
is a probability distribution over {Legitimate, Suspicious,Malicious}, while n
indicates the cluster head. The combination in each grid in the Table.2 is the
joint probability for both the attacker and the defender to choose certain actions.
For example, the grid for (1− p− q)(1− x− y) means the joint probability that
the attacker tamper the packet while the cluster head classify it as malicious at
the same time. The matrix in Table.2 is thus the joint probability distribution
for each possible outcome.

4.2 Trust Game Equilibrium

In the last subsection, we have construct the trust game model based on the
Attack-Defence interaction between the insider node and the cluster head. To
find the optimal defense strategy for the cluster head, we need to analyze this
trust game. The key point in the game analysis is to find the Nash equilibrium[31].
For this trust game, the Nash equilibrium points indicates the outcome in which
neither the insider nor the cluster head wants to unilaterally change its strategy.
Otherwise, the unilateral change of the strategy will only lead to its own utility
degradation[34, 35]. In the field of network security and trust management, a
security analysis deserving its name is a min-max method that the defender first
looks at the maximal damage that an attacker can cause for a specific defence,
and then searches for the defence that minimizes the maximal damages[6, 35].
This min-max decision rule, in zero-sum game theory, is well known as the nec-
essary and sufficient condition for the Nash equilibrium[34].

We utilize the min-max rule to approach the Nash equilibrium. Taking into
consideration the payoff matrix in Table 1 and the Joint distribution of mixed-
strategy matrix in Table 2, the trust game’s Nash equilibrium (s∗m(p, q), s∗n(x, y))
is restricted to the following function set:⎧⎨

⎩
s∗m(p, q) = arg min

sm(p,q)
max

sn(x,y)
Em (sn(x, y), sm(p, q));

s∗n(x, y) = arg max
sn(x,y)

min
sm(p,q)

Em (sn(x, y), sm(p, q)).
(7)

252 D. Hao, A. Adhikari, and K. Sakurai

where sm(p, q) and sn(x, y) are the mixed strategy of attacker and cluster head,
respectively. Furthermore, s∗n(x, y) denotes the dominant mixed strategy in which
the value of x and y will bring the network with the optimal utility. s∗m(p, q) de-
notes the dominant mixed strategy of the attacker. Em (sn(x, y), sm(p, q)) is the
overall utility expectation in the status that attacker chooses the mixed strategy
sm(p, q) while cluster head chooses the mixed strategy sn(x, y). This utility ex-
pectation is calculated by the mathematical expectation over the utility matrix
from Table 1, taking into consideration of the mixed strategies in Table 2.

According to [34], every finite strategy game has at least one mixed strategy
Nash equilibrium. Given the real numbers of the elements in Table 1, the above
min-max function can be easily solved by nonlinear optimization method. Then
the values of p, q, x and y can be derived. The values of p, q, and 1−p−q are the
thresholds for the global trust values Tm(i) according to equation (6). Comparing
with the thresholds p, q and 1 − p − q, if Tm(Packet Tamper) is higher than
(1−p−q), the insider m should be considered as malicious; if Tm(Packet Drop)
is higher than q, the insider m should be at least viewed as suspicious. As the
time window TW (t) changes, the strategies of both the attacker and the cluster
head will also change, this is about the evolution of the trust game, which will
be discuss in the next subsection.

4.3 Trust Game Evolution

In last section, we analyzed the trust game within single time window TW (t).
Since the communication of the network goes on, there are multiple time win-
dows, the trust game is extended to multi-stage repeated game. We utilize
the Quantal Response Equilibrium (QRE)[33] which is a generalization form
of multi-round game Nash equilibrium to analyze the evolution of this trust
game. The QRE is calculated by the following equation:

P k
i =

exp(λ × EUk
i (P−i))∑

m exp(λ × EUm
i (P−i))

(8)

where P k
i is the probability for player choosing strategy k, which is the same

as the p, q and 1 − p − q (or x, y and 1 − x − y) in the one-shot trust game.
EUk

i (P−i) is the expected utility to player i of choosing strategy k given other
players are playing according to the probability distribution P−i. In the trust
game, EUk

i (P−i) is equal to Un(i, j). Larger λ indicates that the players become
more rational, and are more eager to take Nash equilibrium strategies. Table 3
in Appendix shows the relationship between the strategies and the value of λ.

We consider the trust mechanism confronting two kinds of attackers: 1)Smart
insider attackers who are rational, prefer to protect itself, hide in the network and
launch long-term attack; 2)Naive insider attackers, who are irrational, and want
to launch severe attacks even taking the risk of being detected. Following the
utility preference ordering methord[37], the smart attacker’s preference sequence
of all the potential 9 outcomes is: (T, L) > (D,L) > (T, S) > (D,S) " (N,L) "
(T,M) > (N,S) > (D,M) > (N,M). On the contrary, the naive attacker

Mixed-Strategy Game Based Trust Management for WSNs 253

will attach more importance on bring damage to the wireless network systems,
than protect themselves. Therefore, its preference sequence for the potential
outcomes is: (T, L) > (T, S) > (D,L) > (D,S) " (N,L) " (T,M) > (D,M) >
(N,S) > (N,M). Also following the method in[37], the example utilities Un(i, j)
are defined. Then by using the tool GameBit[38], the QRE of the repeated trust
game is derived.

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Trust Game Repetition

P
ro

ba
bl

ity
 fo

r
"B

eh
av

e
N

or
m

al
ly

"

a). Evolution of Strategy "Behave Normally"

Naive Attacker
Smart Attacker

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Trust Game Repetition

P
ro

ba
bl

ity
 fo

r
"D

ro
p

P
ac

ke
t"

b). Evolution of Strategy "Drop Packet"

Naive Attacker
Smart Attacker

0 10 20 30 40 50 60

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Trust Game Repetition

P
ro

ba
bl

ity
 fo

r
"T

am
pe

r
P

ac
ke

t"

c). Evolution of Strategy "Tamper Packet"

Naive Attacker
Smart Attacker

Fig. 2. Comparison of Strategy Evolution of the Smart and Naive Attackers

Fig.2 illustrates the strategies’ evolution of the smart and naive attackers. The
red lines indicate the evolution of the strategies of naive attacker. The repeated
trust game starts with equal probabilities (0.33) for each strategy. With the
number of time window TW (t) increases, the trust game repeats. In Fig.2(a),
the naive attacker’s probability for normal behavior(N) decreases faster than the
smart attacker. In Fig.2(c), the smart attacker slowly increases its probability
for tampering packet, to avoid being detected, while the naive attacker have less
fear of taking risks, and is more eager to tamper packets. From this, we are aware
of that the smart attacker are more tricky to avoid being detected. Based on this
analysis, any insider whose strategy trajectories locate on the left of the red lines,
should be classified as malicious immediately; Any nodes whose trajectories is
on the right of the blue lines, can be considered as legitimate temporarily; And
those nodes whose strategy evolution trajectory between the red and blue lines,
should be at least viewed as suspicious.

Fig.3 illustrates the co-evolution of the strategies of smart attacker and cluster
head while they play the trust game. From Fig.3(a) we can see: with the game
repeats, the attacker prefers more to tamper packet, but gradually decreases the
probability for dropping packets. This is because while time goes on, the risk
of being detected also increases. Therefore the attacker does not want to take
the risk of being considered as malicious for dropping packets. In Fig.3(b) we
can see that, more repetitions of the trust game will give the cluster head more
information to increase the detection accuracy. Therefore, the probability for
wrongly classify the attacker as legitimate (green line) consecutively decreases.
Noting that the blue line first increases to a peak value, but then decreases,
finally even reaches to value 0. This interesting phenomena indicates significantly
that: during the first period (before step 15), due to lack of observation, the
cluster head can not make decision that the insider node is a smart attacker.

254 D. Hao, A. Adhikari, and K. Sakurai

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Trust Game Repetition

P
ro

ba
bl

ity
 fo

r
E

ac
h

S
tr

at
eg

y
a). Strategies Evlotion of Smart Attacker

Behave Normally
Drop Packet
Tamper Packet

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Trust Game Repetition

P
ro

ba
bl

ity
 fo

r
E

ac
h

S
tr

at
eg

y

b). Strategy Evolution of Cluster Head

Legitimate
Suspicious
Malicious

Fig. 3. Attacker and Cluster Head’s Strategy Evolution

However, it becomes more suspicious of this insider attacker. With the trust
game repeats, it obtains more and more information of the smart attacker’s
misbehavior. Therefore, it decidedly decreases the probability for the strategy
for classifying the insider node as Suspicious and Legitimate, but increases the
probability to identify it as a malicious attacker. More data about the trust
game’s co-evolution is illustrated in Table 3 in the appendix.

5 Conclusion

We proposed an integrated trust management mechanism for clustered wireless
sensor network. The behavior of insider nodes are observed by a light weight
upstream/downstream joint monitoring scheme. The opinions from the moni-
tors are then calculated to get the local trust value. Local trust values are then
submitted to the cluster head, and the global trust is generated according to
our trust calculation and exchange algorithm. After that, the threshold for the
global trust, is analyzed by a mixed-strategy repeated trust game. The analysis
not only considers static case in which the trust game only runs one-shot, but
also extends the attacker-defender trust game to a repeated scenario. The opti-
mal trust policy is made based on the mixed strategy game analysis. By using
this trust management mechanism, it is possible for the WSNs to reduce the po-
tential damage from the malicious and suspicious insider attacker to minimum.
The future work is to implement this trust management mechanism, design an
effective intrusion detection system for WSNs by taking into consideration of
false positive rate and false negative rate.

Acknowledgements. This work is partly supported by Grants-in-Aid for Sci-
entific Research (B) (23300027), Japan Society for the Promotion of Science
(JSPS). The first author Dong HAO is supported by the governmental scholar-
ship from the China Scholarship Council (CSC). The second author Dr. Avishek

Mixed-Strategy Game Based Trust Management for WSNs 255

Adhikari’s visit to Kyushu University is sponsored by the Strategic Japanese-
Indian Cooperative Programme on Multidisciplinary Research Field, which com-
bines Information and Communications Technology with Other Fields Supported
by Japan Science and Technology Agency and Department of Science and Tech-
nology of the Government of India.

References

1. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Computer
Networks 52(12), 2292–2330 (2008)

2. Perrig, A., Stankovich, J., Wagner, D.: Security in wireless sensor networks. Com-
mun. ACM 47(6), 53–57 (2004)

3. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management. In: Pro-
ceedings of the 17th IEEE Symp. on Security and Privacy, pp. 164–173. IEEE
Computer Society (1996)

4. Josang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decis. Support Syst., 618–644 (March 2005)

5. Josang, A., Hayward, R., Pope, S.: Trust network analysis with subjective logic. In:
Proceedings of the 29th Australasian Computer Science Conference (ACSC 2006),
Darlinghurst, Australia, vol. 48, pp. 85–94 (2006)

6. Gollmann, D.: From Access Control to Trust Management, and Back – A Petition.
In: Wakeman, I., Gudes, E., Jensen, C.D., Crampton, J. (eds.) IFIPTM 2011. IFIP
AICT, vol. 358, pp. 1–8. Springer, Heidelberg (2011)

7. Ganeriwal, S., Srivastava, M.B.: Reputation-based framework for high integrity
sensor networks. In: Proceedings of ACM Security for Ad-hoc and Sensor Networks,
SASN (2004)

8. Shaikh, R.A., Jameel, H., Brian, J., Lee, H., Lee, S., Song, Y.J.: Group-Based Trust
Management Scheme for Clustered Wireless Sensor Networks. IEEE Transactions
on Parallel and Distributed Systems, 1698–1712 (November 2009)

9. Momani, M., Challa, S., Alhmouz, R.: Can we trust trusted nodes in wireless
sensor networks? In: International Conference on Computer and Communication
Engineering (ICCCE 2008) (May 2008)

10. Lin, C., Vijay, V.: A Hybrid Trust Model for Enhancing Security in Distributed
Systems. In: The Second International Conference on Availability, Reliability and
Security, pp. 35–42 (2007)

11. Aivaloglou, E., Gritzalis, S.: Hybrid trust and reputation management for sensor
networks. Wirel. Netw. 16(5) (July 2010)

12. Spyropoulos, T., Psounis, K., Raghavendra, C.S.: Efficient Routing in Intermit-
tently Connected Mobile Networks: The Single-Copy Case. IEEE/ACM Transac-
tions on Networking 16(1), 63–76 (2008)

13. Gómez, F., Girao, J., Pérez, G.M.: TRIMS, a privacy-aware trust and reputation
model for identity management systems. Comput. Netw. 54(16) (November 2010)

14. Shila, D.M., Cheng, Y.: Mitigating selective forwarding attacks with a Channel
Aware Approach in WMNs. IEEE Transaction on Wireless Communications (May
2010)

15. Ellison, C.M., Franz, B., Rivest, R., Thomas, B.M., Ylonen, T.: Simple public key
infrastructure certificate theory. IETF RFC 2693 (1999)

16. Freudenthal, E., Pesin, T., Port, L., Keenan, E., Karamcheti, V.: dRBAC: Dis-
tributed role-based access control for dynamic coalition environments. Technical
Report, TR 2001-819, New York University (2001)

256 D. Hao, A. Adhikari, and K. Sakurai

17. Velloso, B., Laufer, P., Duarte, O., Pujolle, G.: A Trust Model Robust to Slander
Attacks in Ad Hoc Networks. In: Proceedings of 17th International Conference on
Computer Communications and Networks (ICCCN 2008), pp. 1–6 (2008)

18. Lynch, D.M.: Securing against insider attacks. Information Security Systems 15(5),
39–47 (2006)

19. Kantzavelou, I., Katsikas, S.: A game-based intrusion detection mechanism to con-
front internal attackers. Computers Security 29(8), 859–874 (2010)

20. Anjum, F., Mouchtaris, P.: Security for Wireless Ad Hoc Networks. Wiley-
Interscience (2007) ISBN:0471756881

21. Bace, R.G.: Intrusion detection. Macmillan Publishing Co., Inc., Indianapolis
(2001)

22. Xue, X.Y., Leneutre, J., BenOthman, J.: A Trust-based Routing Prtocol for Ad
Hoc Networks. In: Proceeding of Mobile and Wireless Communications Networks,
pp. 251–262 (October 2004)

23. Royer, E.M., Toh, C.K.: A review of current routing protocols for ad hoc mobile
wireless networks. IEEE Personal Communications, 46–55 (April 1999)

24. Bao, F., Chen, I.-R., Chang, M., Cho, J.: Hierarchical trust management for wire-
less sensor networks and its application to trust-based routing. In: Proceedings
of the 2011 ACM Symposium on Applied Computing, pp. 1732–1738. New York
(2011)

25. Scott, K., Bambos, N.: Routing and channel assignment for low power transmission
in PCS. In: Proc. IEEE ICUPC 1996, vol. 2, pp. 498–502 (1996)

26. Singh, S., Woo, M., Raghavendra, C.S.: Power-aware routing in mobile ad hoc
networks. In: Proc. ACM MobiCom 1998, pp. 181–190 (1998)

27. Toh, C.-K.: Maximum battery life routing to support ubiquitous mobile computing
in wireless ad hoc networks. IEEE Communications Magazine, 138–147 (June 2001)

28. Li, H., Singhal, M.: Trust Management in Distributed Systems. Computer, 45–53
(February 2007)

29. Xiong, L., Liu, L.: Building Trust in Decentralized Peerto- Peer Electronic Commu-
nities. In: Proc. 5th Intl. Conf. Electronic Commerce Research (ICECR-5) (2002)

30. Hao, D., Ren, Y., Sakurai, K.: A Game Theory-Based Surveillance Mechanism
against Suspicious Insiders in MANETs. In: Chen, L., Yung, M. (eds.) INTRUST
2010. LNCS, vol. 6802, pp. 237–252. Springer, Heidelberg (2011)

31. Liu, D., Wang, X.F., Camp, J.L.: ‘Game Theoretic Modeling and Analysis of In-
sider Threats. International Journal of Critical Infrastructure Protection, 75–80
(2008)

32. Pirzada, A.A., Mcdonald, C., Datta, A.: Performance comparison of trust-based
reactive routing protocols. IEEE Transactions on Mobile Computing 5(6), 695–710
(2006)

33. Richard, M.K., Thomas, P.: Quantal Response Equilibria for Extensive Form
Games. Experimental Economics 1, 9–41 (1998)

34. Gibbons, R.: Game Theory for Applied Economics. Princeton University Press,
Princeton (1992)

35. Alpcan, T., Basar, T.: Network Security: A Decision and Game Theoretic Ap-
proach, November 30. Cambridge University Press (2010)

36. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York (2005)

37. Binmore, K.G.: Playing for real: a text on game theory. Oxford University Press
(2007) ISBN 0195300572, 9780195300574

38. McKelvey, R.D., McLennan, A.M., Turocy, T.L.: Gambit: Software Tools for Game
Theory, Version 0, September 01 (2010), http://www.gambit-project.org

http://www.gambit-project.org

Mixed-Strategy Game Based Trust Management for WSNs 257

Appendix: Quantal Response Equilibria of Trust Game

Table 3. Quantal Response Equilibria (QRE) Calculations

Insider Attacker Cluster Head

Step λ Normal Drop Tamper Legitimate Suspicious Malicious

1 0.000 0.333 0.333 0.333 0.333 0.333 0.333
2 0.008 0.330 0.333 0.337 0.327 0.337 0.337
3 0.016 0.326 0.333 0.340 0.319 0.340 0.341
4 0.025 0.322 0.333 0.344 0.311 0.344 0.345
5 0.035 0.318 0.333 0.349 0.302 0.348 0.350
...
12 0.126 0.281 0.328 0.391 0.218 0.374 0.408
13 0.143 0.274 0.326 0.399 0.203 0.376 0.421
14 0.161 0.268 0.324 0.408 0.188 0.377 0.436
15 0.180 0.261 0.322 0.418 0.172 0.377 0.452
16 0.200 0.253 0.319 0.428 0.156 0.375 0.470
17 0.221 0.246 0.316 0.439 0.140 0.371 0.490
18 0.242 0.238 0.312 0.450 0.124 0.364 0.512
19 0.265 0.229 0.308 0.463 0.109 0.355 0.536
20 0.289 0.221 0.303 0.476 0.094 0.343 0.563
...
36 0.802 0.070 0.157 0.772 0.000 0.014 0.985
37 0.852 0.062 0.145 0.793 0.000 0.009 0.991
38 0.907 0.054 0.133 0.813 0.000 0.005 0.995
39 0.967 0.046 0.121 0.833 0.000 0.003 0.997
40 1.033 0.039 0.108 0.853 0.000 0.002 0.998
41 1.105 0.032 0.096 0.872 0.000 0.001 0.999
42 1.184 0.026 0.083 0.891 0.000 0.000 1.000
...
47 1.732 0.005 0.030 0.964 0.000 0.000 1.000
...
54 3.216 0.000 0.002 0.998 0.000 0.000 1.000
55 3.529 0.000 0.001 0.999 0.000 0.000 1.000
56 3.874 0.000 0.000 1.000 0.000 0.000 1.000

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 258–270, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Hash Chains at the Basis
of a Secure Reactive Routing Protocol

Thouraya Bouabana-Tebibel

National School of Computer Science
Laboratory of Communication in Informatics Systems

Algiers, Algeria
t_tebibel@esi.dz

Abstract. Presently, the main concern of ad hoc routing protocols is no longer
to find an optimal route to a given destination but to find the safe route free
from malicious attackers. Several secure ad hoc routing protocols proposed, in
the literature, are based on public key cryptography which drawback is to con-
sume much more resources and decrease consequently network performances.
In this paper, we propose a secure routing scheme for the DSR protocol. The
proposed scheme combines the hash chains and digital signatures to provide
a high level of security while reducing the costs of hop-by-hop signature
generation and verification. The proposed protocol is analyzed using the NS-2
simulator.

Keywords: DSR, routing protocols, mobile ad hoc networks, hash chains, digi-
tal signature.

1 Introduction

MANET or Mobile Ad hoc Network is a set of wireless mobile nodes, forming a tem-
porary network without the use of any fixed infrastructure. Each node acts as a router
(relay) and data packets are forwarded from node-to-node towards their destination in
a multi-hop fashion. Ad hoc routing protocols have been designed to be more and
more efficient without keeping security in mind. This makes them vulnerable to a
variety of attacks which affect the reliability of data transmission. So, the present
question is no longer to find an optimal route to a given destination but to provide a
safe route free from malicious attackers.

In fact, most of ad hoc routing schemes provide no security system. All entities can
participate in routing and there are no barriers for a malicious node to cause traffic
disruptions. The attacker wants essentially to affect the routing process, in order to
control the network and destroy routing operations [19,21]. He achieves his objectives
by: message alteration, message fabrication, message replay and impersonation.
In [22] a classification of insider attacks against mobile ad-hoc routing protocols is
presented. It includes route disruption, route invasion, node isolation, and resource
consumption.

 Hash Chains at the Basis of a Secure Reactive Routing Protocol 259

Some solutions are proposed to secure the most important routing protocols against
those attacks [4,6,7,11,13,17,18,28]. But they remain incomplete, blocking only a
subset of attacks among all those well-known for the damage they cause to the net-
works. On the other hand, each secure scheme defines an appropriate environment of
execution and presupposes a number of satisfied hypotheses to ensure its successful
running. Indeed, protocols based on cryptography require a mechanism of key distri-
bution and management [19]. Furthermore, when efficient, the used techniques are
often too expensive in time calculation and memory space.

As a compromise, protocols based on reputation [9] integrate a new metric, the
level of reliability of the route, to select the path towards destination. This reduces
considerably the solution cost by diminishing calculation intensity.

As for intrusion detection systems, they can reduce the risks of intrusion but cannot
completely eliminate them [23]. They also, sometimes fail with application of solu-
tions as punishment of selfish nodes or location of malicious nodes which continuous-
ly change identity [29].

In terms of reliability, most of solutions rely on asymmetric cryptography and cer-
tificates delivered on line by authorities of certification. Message authentication and
integrity are realized using digital signature [32]. When applied at each hop, they
degrade the system performance.

DSR is a simple and efficient routing protocol designed specifically for use in mul-
ti-hop wireless ad hoc networks of mobile nodes. DSR allows the network to be com-
pletely self-organizing and self-configuring, without the need for any existing net-
work infrastructure or administration. The protocol allows multiple routes to any des-
tination and allows each sender to select and control the routes used in routing its
packets. Another advantage of the DSR protocol is the very rapid recovery when
routes change in the network. The DSR protocol is designed mainly for mobile ad hoc
networks of up to about two hundred nodes and is designed to work well even with
very high rates of mobility.

The aim of our work is to protect the DSR protocol routing messages by using
strong cryptographic functions and keeping in mind as main objective, minimization
of complex calculation burden. This will be achieved by means of two essential me-
chanisms. The first one relies on hash chains which consume a little time for their
generation and require a minimal storage space. The second one is digital signature
that reinforces authentication and ensures integrity, and non-repudiation of messages.
The latter is only applied on the source and destination nodes to reduce the latency.

The remainder of the paper starts with a brief description of the reactive routing
protocol DSR. Section 3 deals with the core of our secure routing scheme SRS_DSR.
We simulate in section 4 the performance of the proposed protocol using NS-2 simu-
lator. In Section 5, we discuss works related to ours. We conclude by motivating our
work and showing its novelty and relevance versus related works.

2 DSR Protocol

DSR (Dynamic Source Routing) is a routing protocol based on Distance-Vector
routing algorithm [14,15]. It is reactive involving route construction only when data
are available for transmission. The protocol is composed of the two main mechanisms

260 T. Bouabana-Tebibel

of "Route Discovery" and "Route Maintenance", which work together to allow nodes
to discover and maintain routes to arbitrary destinations in the ad hoc network.

When a source node needs to determine a route to a destination node, it broadcasts
a request message RREQ (Route REQuest). Intermediate nodes add their address to
the packet and then broadcast it. When the request reaches the destination, or an in-
termediate node with an active route towards the destination, it generates a reply mes-
sage RREP (Route REPly).The answer is sent unicast to the source following the
reverse path, already built by the intermediate nodes.

RREQ packet format is shown in fig. 1. Option Type specifies that the packet is a
RREQ. Opt Data len gives the packet length. Identification is a sequence number
generated for each Route Request. It allows a receiving node to discard the RREQ in
the case it has recently seen a copy of this Request. Target Address is the destination
node address. Address[i] is the address of the i-th node recorded in the Route Request
option. Each node propagating the Route Request adds its own address to this list,
increasing the Opt Data Len value by 4 octets.

Option Type Opt Data Len Identification

Target Address

Address [1]
…

Address [n]

Fig. 1. RREQ packet format

RREP packet format is shown in fig. 2. It is composed of the same fields as RREQ
excluding the Target Address and including a Reserved field and the Last hop exter-
nal field which indicates that the last hop given by the Route Reply (the link from
Address[n-1] to Address[n]) is actually an arbitrary path in a network external to the
DSR network.

Option Type Opt Data Len Last hop ext Reserved

Address [1]
…

Address [n]

Fig. 2. RREP packet format

Link breaks are detected according to two ways. The first one occurs during the
unicast reverse routing when a node reveals to be unreachable. The second way is
based on information directly received from the MAC sub-layer. If a link breaks with-
in an active route, the node involved before the link break may choose to repair local-
ly the link or deliver an error message RERR (Route ERRor) listing the unreachable
destinations. Thus, a new route discovery phase should be established by the source
node [25].

 Hash Chains at the Basis of a Secure Reactive Routing Protocol 261

As basic DSR scheme provides no security mechanism, malicious nodes can dis-
turb the routing process. Table 1 summarizes the consequences of attacks affecting
DSR control packets.

Table 1. Attacks against dsr

Target field Attack

Target Address The attacker creates routes to unavailable des-
tinations in order to consume the network ener-
gy.

Identification The attacker increments this field to invalidate
any future requests from a legitimate node. He
decrements it so as to the request will be consi-
dered as already processed.

Address [1..n] The attacker modifies the addresses or alters
their order.

3 SRS_DSR Solution

3.1 Basic Assumptions

The protocol is based on the following assumptions:

─ a packet sent from node A is received by the latter one hop neighbor B before a
third node C replays the packet to B.

─ a trusted Certification Authority performs the pre-distribution of both private key
and X509v3 certificate [8] to each member of the network through a physical con-
tact. The conventional certificate X509v3 contains the public key, the identity of
the certificate owner and other fields. All these fields are encrypted by means of a
digital signature integrated to the certificate.

3.2 Proposed Scheme

The solution which we propose integrates security mechanisms that take into account
the limited resources of nodes. These mechanisms are not based on unrealistic assump-
tions such as availability of an always-online security infrastructure (trusted third-party).

Our approach is inspired from Lamport authentication algorithm [16] used in
remotely accessed computer systems. Authentication described by Lamport was de-
signed for a client/server architecture where the management is centralized. In Lam-
port authentication, a server randomly chooses a password Hn. Afterwards, he applies
to Hn, n times, a one-way function h to get n passwords (Hn-1, Hn-2, …, H1, H0) called
One Time Password sequence or OTP, for short.

Hn h(Hn) = Hn-1 h(Hn-1) = Hn-2 h(Hn-2)= Hn-3 … h(H1) = H0

262 T. Bouabana-Tebibel

We were attracted by the effectiveness of hash functions because they reduce the high
costs caused by traditional cryptographic mechanisms. Thus, we combined the use of
hash chains authentication with digital signatures to achieve a satisfying security lev-
el. We adopt the notations of table 2.

Table 2. Notations

Symbol Signification

SKA, PKA Private key. Public key of node A

[d]SKA Signature of a message with the private key of A

CertA A certificate belonging to node A

IDA Node A identifier

Hj
A The jth element of the hash chain of node A

The security process we propose is divided into two phases: initialization phase

and authentication phase.

3.2.1 Initialization Phase
As set in the basic assumptions, a trusted certification authority performs the pre-
distribution of one certificate and one private key to each member of the network.
Each entity A, identified by an IDA, constructs its own OTP sequence and broadcasts
the last value H0

A to its one-hop neighbors. In order to ensure the provenance authen-
ticity of H0

A, we propose what follows. Node A first signs H0
A using its private key

and then transmits the clear H0
A and signature [H0

A]SKA as well as its identity IDA
and certificate CertA to all one-hop neighbors, refer to (1). Each neighbor decrypts the
encrypted H0

A using the public key of node A transmitted within CertA. To ensure that
the decrypted value is authentic and so, effectively transmitted by node A, the receiv-
er compares it with the unencrypted value H0

A. If the comparison matches, node A
identity and H0

A integrity are proved true. So, H0
A value is saved in a new entry of the

Neighbors table which keeps the H0
A value of each neighbor. The comparison fails if

either the sender authenticity or H0
A integrity is compromised. In both cases, the mes-

sage is ignored.
The one-hop neighbors also send the last values of their own hash chain and certif-

icates to node A, see (2). At the end of this step, each node knows the H0
 value of its

one-hop neighbors.

A Broadcast PWD : {IDA, H0
A, [H0

A]SKA, CertA} (1)

V A PWDREP: {IDv, H0
V, [H0

V]SKV, CertV} (2)

 Hash Chains at the Basis of a Secure Reactive Routing Protocol 263

3.2.2 Authentication Phase
Control packets RREQ, RREP and RERR are used to construct and maintain routes
from source to destination nodes. For each phase of the routing, we will explain how
the values of the hash chain and private keys are used.

Secure the route discovery. When a node S needs to know a route to some destina-
tion D, and such a route is not available, it broadcasts a route request RREQ, see (3).

S Broadcast RREQ: { RREQS, [RREQS]SKS, CertS, Hi
S} (3)

This request contains the same basic DSR protocol fields excluding the Opt Data Len,
see figure 1. We add the source node certificate Certs in case of large-scale networks
where nodes have not necessarily the public keys of all the network members.

The RREQ fields transmitted by S are non-mutable. They are signed with the pri-
vate key of S and accompanied by a hash value Hi (1< i <n). To not reuse a password
already revealed, an index i is incremented within the node at every use.

The generated packet is then broadcasted on the channel. When a node receives it,
it checks the Hi

S value to ensure that the packet comes from a legitimate node. To do
so, it applies i times the hash function on Hi

S to obtain H0
S, the password initially

transmitted by the neighbor and stored in the Neighbors table. If the receiver does not
reach H0

S after i iterations, it infers that the message is fabricated by a malicious node.
So, it rejects it without any process. Otherwise the message is accepted. The interme-
diate node adds its address to the packet. It signs this address and the previous one
using its private key. Such a signature, applied to two successive node addresses,
protects against any attempt to alter the addresses order. It is added with the node
certificate to the packet. The node also replaces the received Hi by a new password of
its own chain, and finally broadcasts the RREQ, see (4).

J Broadcast RREQ: {RREQS, [RREQS]SKS, CertS, …, AddressJ, [Addressj-1, Addressj]SKj,
Certj, Hi

J} (4)

Eventually, the message is received by the destination D which verifies the source
signature, as well the intermediate node signatures, and then responds using a RREP.
The source digital signature authenticates the source and destination nodes. This
control is made on IDs and IDd fields. The intermediate encryptions authenticate the
intermediate nodes. This authentication is reinforced by the check of the addresses
order. Once decrypted, the obtained value is compared with the two previous node
addresses.

In (5) J denotes the last intermediate node of the path, connecting S to D. The des-
tination node sends the response to J according to the following formula (5):

D J RREP:{RREP, [RREP]SKD, CertD, Hi
D} (5)

RREP fields are signed by the destination node and value Hi
D is associated to the

packet. Each node sending the response is authenticated along the path using Hi. The
reverse route construction is exposed to the risk of a diversion launched by an attacker
who responds instead of the destination node. This attack is detected thanks to the
destination certificate which includes the destination identity. If the latter doesn’t

264 T. Bouabana-Tebibel

match with the destination identity invoked by the source node, one can deduce an
intrusion attempt. As for the digital signature, it authenticates the source and destina-
tion nodes and controls the message replay. Finally, once the destination signature
checked, the source node updates its cache with the new path.

In [30] an approach comparable to ours, called a Zero Common Knowledge au-
thentication was proposed. It differs from ours in the use of h(Hi). In this approach,
the receiver checks the value Hi by calculating only h(Hi) and testing the relationship
h(Hi) = Hi+1. If checked then the node identity is proved true. This approach supposes
the storage of the latest password which may put in check the control process in case
of lost messages.

Secure Route Maintenance. When a link breaks within an active route, the precursor
of the unreachable node does the following:

─ Invalidates the routes including this node in its cache.
─ Lists all receivers that are no longer reachable (Unreach_Address).
─ Delivers an appropriate RERR to such receivers.

Let a node A discovering a link break, and a source node S using this path. A warns S
about the topology changes by sending the following message RERR to it:

A S RERR : {RERRA, CertA , [RERRA, CertA] SKA} (6)

This packet is signed by A and verified by the intermediates nodes. Each node receiv-
ing the RERR message carries out the same operations and spreads it to different
sources.

Update the Hash Chain. When the node depletes all its hash values, it should reset
the passwords sequence to allow its authentication. The node chooses a new random
value HN_new, and then generates a new sequence, using the hash function and sends
the final value H0

A_new to the one-hop neighbors. To authenticate the update mes-
sage, we use the last undisclosed hash value of the old sequence (instead of the certif-
icate in PWD). Here is a simplified format of the update message:

A Broadcast UPDATE : {IDA , H0
A_new , (H0

A_new) SKA, Hn} (7)

4 Simulation and Test

In order to evaluate the routing protocol performance, one often uses simulation. In
fact, it would be very costly, or even impossible, to establish a network for testing
purposes. An ad hoc network simulation does not take much time, and it keeps us clos-
er to the real use of the routing protocol. These two major advantages help us to better
see the behavior of the protocol in different scenarios and evaluate its performance.

We carry out simulations using the NS-2 simulator [20]. We choose NS-2 because
of its popularity among academic researchers [26]. In addition, it already supports a
verified version of DSR. Simulations are held considering a network of size 670 m x
670 m, composed of 20 nodes. We define simulations with parameters defined in
table 3

 Hash Chains at the Basis of a Secure Reactive Routing Protocol 265

Table 3. Simulation Parameters

Parameter Value

Antenna

OmniAntinna

MAC layer type IEEE 802.11

Radio propagation model Two Ray Ground

Bandwidth 1Mb

CBR traffic 4 packets/s

Packet size 512 bit

Pause time 30 ms

Transmission range 250 m

Simulation time 200s

The nodes move according to the RWP mobility model (Random Waypoint Mod-

el). This model has become a standard in wireless networks research. It provides sev-
eral scenarios where the mobile entities randomly move in the simulation area. For
each experiment, we created several scenarios for traffic and mobility using the para-
meters set out above. Each time, we vary the speed between [0, 20m/s] and evaluate
one of the following metrics:

1. EED Average end to end delay: it gives the average time required to transmit a da-
ta packet from the source to the destination node.

2. APL Average path length: is calculated using the hop count field. It is often used
as a metric for choosing the best path to route data.

3. RL Routing load (the routing overhead): it gives us information about the number
of control packets generated by the protocol for the path establishment and route
maintenance.

To evaluate the SRS_DSR performances, we carry out our experimentations on three
protocols: ARAN (Authenticated Routing for Ad-hoc Networks) [26] that has been
chosen for its robustness and its high level of security, DSR and SRS_DSR.

ARAN is a secure protocol, implementing asymmetric cryptography. It uses a
trusted Certification Authority called CA to generate certificates. Before entering the
Ad-hoc network, each node requests a certificate from the CA. In ARAN, each node
signs the discovery packets and route reply messages before retransmitting them.
Each node verifies the previous node digital signature and then replaces it with its
own. The cryptographic operations cause additional delays at each hop thus increas-
ing the route acquisition latency. Only the destination can answer the Request packet.
When the source receives the RREP, it verifies the destination signature. This allows
an end-to-end authentication between the source and destination. However, the laten-
cy increases especially for long paths.

Fig. 3 shows that the increase in the movement speed leads to a rather large in-
crease of the end-to-end delay. Indeed, the nodes movement involves frequent
link failure in the established paths. Nodes are forced to rebuild invalid routes. Thus,

266 T. Bouabana-Tebibel

delivery of data packets is delayed. We note that the required delay for ARAN is
much higher than that of DSR and SRS_DSR.

Indeed, SRS_DSR established routes faster than ARAN: the time spent to check
the hash values in SRS_DSR is insignificant, compared to the time needed in a certif-
icate checking or a digital signature. We can therefore say that the processing of digi-
tal signature using only the two path ends (source and destination) reduces the delay
of packets transfer.

Fig. 3. End to End Delay (EED)

Fig. 4 shows the ratio of control packets relative to received packets. We note that
the three protocols apply for the rule: the packets need increase with a higher speed.
The space overhead caused by SRS_DSR is higher than the one of DSR and ARAN,
because of the new control packets, namely PWD and UPDATE packets that we used
to secure DSR.

Fig. 4. Normalized routing Load

 Hash Chains at the Basis of a Secure Reactive Routing Protocol 267

5 Related Work

The first works that deal with DSR security are those of Papadimitratos and Haas.
They proposed SRP [24] in order to provide an end-to-end protection during the route
discovery phase. They conducted tests on many known attacks and concluded that the
proposed SRP proves to be secure in absence of grouped attacks. Their claim has
never been formally proved.

Indeed, Buttyán and Vajda showed in [5] the weakness of the analysis presented in
[24]. They presented an attack launched by a single hacker who succeeds to inject
forged information during an SRP route construction.

Ariadne has been proposed by Hu et al. in [10,11] in order to improve the security
mechanisms provided in SRP. It aims to secure all intermediate nodes by means of an
appropriate authentication applied at each hop. They test their solution using different
classes of attacks. But the solution was invalidated by Buttyán, Vajda and Ács in [5],
[1] who succeed in launching several attacks.

To improve the weakness revealed in Ariadne, Buttyán and Vajda proposed a new
version called enairA [5]. This solution remains insecure against an attack where two
hackers encapsulate the control messages into data packets.

Other protocols have emerged as improvements to SRP, Ariadne, SAODV (Secure
AODV) [33], FLSL (Adaptive Fuzzy Logic Based Security Level Routing Protocol)
[12] and SAR (Security Aware Ad-hoc Routing) [21], for instance. In FLSL, a new
attribute called security level is introduced in the format of the control messages to
denote the reliability and dependability of certain mobile hosts or routes. The security
level is used by source and destination nodes to determine the most secure and short-
est route. As for SAR, it can discover a path with desired security attributes. The path
found by the SAR protocol is not necessarily the shortest, but the safest of all the
paths.

DSR and most of the on demand ad hoc routing protocols use single route reply
along reverse path. Rapid change of topology causes that the route reply could not
arrive to the source node. To avoid this, a new technique which tries multiple route
replies is proposed in [27].

Latest researches in the area are conducted to secure ad hoc networks against
grouped attacks. In [2] Awerbuch et al. propose ODSBR, the first on-demand routing
protocol for ad hoc wireless networks that provides resilience to attacks caused by
internal individual or colluding nodes. The protocol uses an adaptive probing tech-
nique that detects a malicious link after log n faults have occurred, where n is the
length of the path. Problematic links are avoided by using a route discovery mechan-
ism that relies on a new metric that captures adversarial behavior. Later, Awerbuch
and Scheideler claim in [3] that the biggest threats appear to be join-leave attacks,
used to isolate honest peers in the system, and against which no provably robust me-
chanisms are known so far. In this paper he showed that, on a high level, a scalable
DHTcan be designed that is provably robust against adaptive adversarial join-leave
attacks.

268 T. Bouabana-Tebibel

6 Conclusion

The purpose of this paper is to present a new scheme to secure the DSR protocol. We
showed that the proposed scheme made of hash chains and end-to-end digital signa-
ture provides a high security level at a very low cost.

The initialization phase always raises the problem of secure distribution of keys
and passwords, particularly on large scale systems when the by hand distribution be-
comes unrealizable. We proposed a remote pre-distribution carried out in an efficient
and secure manner. We resorted afterwards to the use of one way hash chains to au-
thenticate the control message senders during the route discovery. This authentication
is principally useful while crossing the route from the source towards the destination.
It guarantees the route drawing with legitimate nodes. Furthermore, the use of key-
chain scheme is very well suited to pervasive computing devices since it requires
nearly no computational power, very low bandwidth and memory storage.

At destination, the request message integrity is checked using a digital signature.
This end-to-end checking ensures a fast source and destination authentication as well
as a non message replay control.

The proposed solution can be extended to treat attacks. It will be also, interesting to
validate this work by formalizing the specification and verification of the SRS_DSR
protocol.

References

1. Ács, G., Buttyán, L., Vajda, I.: Provably secure on-demand source routing in mobile ad
hoc networks. IEEE Transactions on Mobile Computing 5(11), 1533–1546 (2006)

2. Awerbuch, B., Curtmola, R., Holmer, D., Nita-Rotaru, C., Rubens, H.: ODSBR: An on-
demand secure Byzantine resilient routing protocol for wireless ad hoc networks. ACM
Trans. Inf. Syst. Secur. 10(3) (2007)

3. Awerbuch, B., Scheideler, C.: Robust random number generation for peer-to-peer systems.
Theoretical Computer Science 410(6-7), 453–466 (2009)

4. Burmester, M., De Medeiros, B.: On the Security of Route Discovery in MANETs. IEEE
Transactions on Mobile Computing 8(9), 1180–1188 (2009)

5. Buttyán, L., Vajda, I.: Towards provable security for ad hoc routing protocols. In: Setia, S.,
Swarup, V. (eds.) SASN, pp. 94–105. ACM (2004)

6. Cerri, D., Ghioni, A.: Securing AODV: The A-SAODV Secure Routing Prototype. IEEE
Communications Magazine (February 2008)

7. Curtmola, R., Nita-Rotaru, C.: BSMR: Byzantine-Resilient Secure Multicast Routing in
Multihop Wireless Networks. IEEE Transactions on Mobile Computing 8(4), 445–459
(2009)

8. Eichler, S., Roman, C.: Challenges of Secure Routing in MANETs: A Simulative Ap-
proach using AODV-SEC. Technical Report: LKN-TR-2. Technische Universität Mün-
chen, Germany (2006)

9. Galice, S., Minier, M., Ubéda, S.: A Trust Protocol for Community Collaboration. In:
Etalle, S., Marsh, S. (eds.) IFIPTM. IFIP, vol. 238, pp. 169–184. Springer, Boston (2007)

 Hash Chains at the Basis of a Secure Reactive Routing Protocol 269

10. Hu, Y.-C., Perrig, A., Johnson, D.B.: Ariadne: a secure on-demand routing protocol for ad
hoc networks. In: Akyildiz, I.F., Lin, J.Y.-B., Jain, R., Bharghavan, V., Campbell, A.T.
(eds.) MOBICOM, pp. 12–23. ACM (2002)

11. Hu, Y.-C., Perrig, A., Johnson, D.B.: A Secure On-Demand Routing Protocol for Ad Hoc
Networks. Wireless Networks 11(1-2), 21–38 (2005)

12. Jin, L., Zhang, Z., Zhou, H.: Performance comparison of AODV, SAODV and FLSL
routing protocols in mobile ad hoc network. In: 4th IEEE Consumer Communications and
Networking Conference, CCNC 2007, pp. 479–483 (January 2007)

13. Jung, S., Lee, B., Talipov, E., Ahn, M.W., Kim, C.: Effects of Valid Source-Destination
Edges for Node-Disjoint Multipaths on AD HOC Networks. In: MSV 2008, Las Vegas,
USA, pp. 308–313 (2008)

14. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks. Mobile
Computing, 153–181 (1996)

15. Johnson, D.B., Maltz, D.A., Hu, Y.C.: IETF RFC4728: The dynamic source routing proto-
col (DSR) for mobile ad hoc networks (February 2007)

16. Lamport, L.: Password Authentication with Insecure Communication. Communication of
the ACM 24, 770–772 (1981)

17. Luo, H., Kong, J., Zerfos, P., Lu, S., Zhang, L.: URSA: Ubiquitous and robust access con-
trol for mobile ad hoc networks. IEEE/ACM Transactions on Networking 12(6), 1049–
1063 (2004)

18. Mallouli, W., Wehbi, B., Cavalli, A.R.: Distributed Monitoring in Ad Hoc Networks: Con-
formance and Security Checking. In: The 7th International Conference on AD-HOC Net-
works & Wireless, Sophia Antipolis, France, September 10-12 (2008)

19. Mishra, A.: Security and quality of service in ad hoc wireless network, pp. 3–106. Cam-
bridge University Press, New York (2008)

20. NS Manual. VINT Project (2008),
http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf

21. Naldurg, S., Yi, P., Kravets, R.: Security aware ad hoc routing for wireless networks. In:
2nd ACM Int. Symp. on Mobile Ad Hoc Networking & Computing, Long Beach, pp. 299–
302. ACM Publisher, USA (2001)

22. Ning, P., Sun, K.: How to Misuse AODV: A Case Study of Insider Attacks against Mobile
Ad-Hoc Routing Protocols. Ad Hoc Networks 3(6), 795–819 (2005)

23. Orset, J.-M., Alcalde, B., Cavalli, A.: An EFSM-Based Intrusion Detection System for Ad
Hoc Networks. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp.
400–413. Springer, Heidelberg (2005)

24. Papadimitratos, P., Haas, Z.J.: Secure Routing for Mobile Ad hoc Networks. In: Proceed-
ings of the SCS Commnication Networks and Distributed Systems Modeling and Simula-
tion Conference (CNDS), San Antonio, TX, USA, pp. 193–204 (January 2002)

25. Pirzada, A., McDonald, C., Datta, A.: Performance Comparison of Trust-Based Reactive
Routing Protocols. IEEE Transactions on Mobile Computing 5(6) (June 2006)

26. Sanzgiri, K., Dahill, B., Levine, B.N., Shields, C., Belding-Royer, E.M.: Authenticated
routing for ad hoc networks. In: 10th IEEE International Conference on Network Proto-
cols, Paris, France (2002)

27. Talipov, E., Jin, D., Jung, J., Ha, I., Choi, Y., Kim, C.: Path Hopping Based on Reverse
AODV for Security. In: Kim, Y.-T., Takano, M. (eds.) APNOMS 2006. LNCS, vol. 4238,
pp. 574–577. Springer, Heidelberg (2006)

28. Tsaur, W.-J., Pai, H.-T.: A New Security Scheme for On-Demand Source Routing in Mo-
bile Ad Hoc Networks. In: IWCMC 2007, Honolulu, Hawaii, USA, August 12-16, pp.
577–582 (2007)

270 T. Bouabana-Tebibel

29. Tseng, C.-Y.H.: Distributed Intrusion Detection Models For Mobile Ad Hoc Networks.
PhD Thesis, University of California (2006)

30. Weimerskirch, A., Westhoff, D.: Zero Common-Knowledge Authentication for Pervasive
Networks. In: Matsui, M., Zuccherato, R. (eds.) SAC 2003. LNCS, vol. 3006, pp. 73–87.
Springer, Heidelberg (2004)

31. Zapata, M.G.: Secure Ad hoc on Demand Distance Vector (SAODV) Routing. Mobile Ad
Hoc Networking Working Group, Internet Draft (September 2005)

32. Zapata, M.G.: Key Management and Delayed Verification for Ad Hoc Networks. Journal
of High Speed Networks 15(1), 93–109 (2006)

Evaluation of a PUF Device Authentication

Scheme on a Discrete 0.13um SRAM

Patrick Koeberl1, Jiangtao Li1, Roel Maes2,
Anand Rajan1, Claire Vishik1, and Marcin Wójcik3

1 Intel Corporation
{patrickx.koeberl,jiangtao.li,anand.rajan,claire.vishik}@intel.com

2 Catholic University of Leuven
roel.maes@esat.kuleuven.be

3 University of Bristol
wojcik@cs.bris.ac.uk

Abstract. The contamination of electronic component supply chains
by counterfeit hardware devices is a serious and growing risk in today’s
globalized marketplace. Current best practice for detecting counterfeit
semiconductors includes visual checking, electrical testing, and reliability
testing, all of which require significant investments in expertise, equip-
ment, and time. In TRUST’11, Koeberl, Li, Rajan, Vishik, and Wu
proposed a new device authentication scheme using SRAM Physically
Unclonable Functions (PUFs) for semiconductor anti-counterfeiting.
Their authentication scheme is simple, low cost, and practical. However,
the method and corresponding parameters of their scheme are based on
a theoretical SRAM PUF model without support from real experimental
data. In this paper, we evaluate a real SRAM PUF on a discrete 0.13um
SRAM, and use the PUF result to evaluate this device authentication
scheme and show that this scheme indeed works well. We identify several
gaps between the theoretical model and the experimental SRAM PUF
result, and adjust the parameters of the scheme accordingly. In addition,
we provide a new post-processing function that results in a smaller false
rejection rate and false acceptance rate.

Keywords: physically unclonable functions, device authentication,
hardware security, anti-counterfeiting, implementation and evaluation.

1 Introduction

Semiconductor counterfeiting is a growing problem in today’s globalized market-
place. The majority of counterfeit semiconductors detected today are remarked
devices where a device’s markings are forged in order to misrepresent aspects of
the device’s performance, brand or some other key specification. Such devices,
if embedded in an electronic system may fail in the field when subjected to a
different operational environment than the part was designed for. The conse-
quences of such failures might range from minor inconvenience to the end user
to loss of life for devices which are embedded in safety-critical infrastructure.

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 271–288, 2012.
� Springer-Verlag Berlin Heidelberg 2012

272 P. Koeberl et al.

A number of high-profile instances of counterfeit product entering the semicon-
ductor supply chain have been reported, in one instance involving the US Air
Force, microprocessors for its F-15 flight control computer were procured from
a broker and found to have been remarked [12].

Current approaches to detecting semiconductor counterfeits range from non-
destructive optical and x-ray inspection of device samples to destructive testing.
Such practices require significant investments in time and expertise and in many
cases can only be applied to a sample of the device population. Device trace-
ability and authentication standards which can support an anti-counterfeiting
strategy are beginning to emerge. For example, SEMI T20-1109 [14] defines
standardized device traceability and authentication mechanisms based on en-
crypted serial numbers applied at a variety of package levels ranging from the
device package itself to higher levels such as product and shipping packaging.
An authentication service provides for validation of the serial numbers. It is con-
ceivable that such standards could be applied at the silicon level, for example
by programming the serial number into non-volatile memory (NVM) such as
EEPROM, flash, or fuses. However, secure serialization mechanisms have the
shortcoming that they are clonable by any competent counterfeiter.

An alternative approach is to utilize the intrinsic properties of the silicon
to enable a class of identification and authentication applications. Physically
Uncloneable Functions (PUFs) are a promising security primitive that exploit
the manufacturing variation inherent in any mass produced object to derive
biometric-like fingerprints which are difficult to clone, even for the manufacturer.
PUFs which exploit the process variation inherent in Integrated Circuit (IC)
manufacturing are of particular interest due to the high levels of integration
achievable in modern CMOS technologies.

Recently Koeberl, Li, Rajan, Vishik, and Wu proposed a new device authen-
tication scheme using SRAM PUFs for semiconductor anti-counterfeiting [8]. In
their scheme, each device is embedded with a small SRAM PUF which serves
as an intrinsic unclonable fingerprint of the device. At manufacturing time, the
manufacturer evaluates the PUF and extracts the m-bit PUF result into a short
k-bit device ID. The manufacturer then creates a device certificate based on the
device ID. Any verifier can authenticate the device by evaluating the SRAM
PUF, re-computing the device ID, and verifying the device certificate. This
scheme is simple and practical as it does not require any online databases or on-
chip cryptographic operations. For hardware devices which already have SRAM
and non-volatile storage embedded, this scheme takes almost no additional cost.

The security of the device authentication scheme [8] relies on the size ofm, the
size of the SRAMPUF.They assume that it is too expensive or uneconomical for an
adversary to embed an m-bit PUF simulator into the non-volatile memory or cir-
cuit of a counterfeit device. This assumption is reasonable for economically moti-
vated attackers and integrated circuits implemented in modern technology nodes.
It is important to keepm reasonably large, while keeping k small to reduce the size
of device certificate. The paper [8] provided a post-processing function to compress
them-bit PUF result into a k-bit device ID using a theoretical SRAMPUFmodel.

Evaluation of a PUF Device Authentication Scheme 273

1.1 Our Contribution

Our paper can be seen as an improvement to [8] with the following contributions.

– We implement the device authentication scheme using a discrete 0.13μm
SRAM chip as the SRAM PUF and show that the authentication scheme
works well. We also show that the post-processing function in [8] is reason-
ably effective, compressing a 256-kb PUF into a 512-bit device ID with both
False Reject Rate (FRR) and False Acceptance Rate (FAR) under 10−10.

– Although the evaluated SRAM PUF exhibits low levels of bias (< 1%) we
discover that the PUF response is highly correlated with an estimated en-
tropy of 63% or less. We consider this to be an important result since other
work in the literature on SRAM PUFs assumes that the SRAM cell power-
up states are independently distributed. This assumption may be incorrect
for particular SRAM instantiations.

– We provide a couple of improvements of the device authentication scheme.
One is that we modify the device certificate to address the device remarking
issues. Second, we provide a new post-processing function which is more ef-
fective when the SRAM PUF result is biased or correlated. We show that our
post-processing function can compress a 256-kb PUF into a 512-bit device
ID with both FRR and FAR under 10−13.

1.2 Related Work

Device authentication protocols typically rely on the secure storage of a crypto-
graphic secret in non-volatile on-chip memory such as EEPROM, flash or fuses.
Cloning of the device by extracting the secret and replicating it in another device
instance is a possibility, unless explicit steps are taken to protect the secret. For
example, the Trusted Platform Module (TPM) [16] uses a protected private key
in non-volatile memory to enable remote device authentication and attestation
applications. The approach taken in TPM may not be suitable for detecting
semiconductor counterfeits.

In 2007, Suh and Devadas proposed a low cost authentication scheme based
on silicon PUFs and using a challenge response protocol [15]. This authentication
scheme places a number of constraints on the silicon PUF, which must posses a
large number of challenge-response pairs, and the system since authentications
must be on-line. In this paper, we choose to implement and evaluate the offline
authentication scheme [8] instead, as we believe the offline authentication scheme
has few limitations and is more appealing to the real applications.

An SRAM fingerprinting method is proposed in [6], where the power-up state
of SRAM cells is used in a device identification scheme. Experiments show that a
64-bit SRAM fingerprint is sufficient to uniquely identify devices among a small
population of 5,120 instances. A key difference between this work and the ideas
in [8] is that the scheme’s resistance to cloning attacks is not a design criterion.

Another related work is the authentication scheme in [3], which provides
a strong binding between the paper medium and the data on it using a

274 P. Koeberl et al.

fingerprint extracted from the ultraviolet fibers. This scheme can be used to
detect counterfeited tickets, banknotes, and prescriptions. The device authenti-
cation scheme in [8] shares some similarities between this scheme, however, it is
different in that [8] is optimized for anti-counterfeiting of electronic devices and
uses a silicon PUF from the hardware device.

1.3 Paper Outline

The rest of the paper is organized in the following way. We first review the
concept and constructions of PUF in Section 2. We then review the device au-
thentication scheme of [8] in Section 3 and provide our improvements. We outline
our experimental setup and evaluation methodologies in Section 4. The results
of the evaluations are analyzed in Section 5. We conclude our paper and discuss
future work in Section 6.

2 Physically Unclonable Functions

Physically Unclonable Functions are physical challenge-response systems which
when challenged respond with unique and unpredictable responses. PUFs are
also physically unclonable, in other words it is extremely difficult to create a
physical copy of a PUF with the same challenge-response behaviour as the orig-
inal. Physical unclonability is achieved in all known PUFs by deriving the PUF
response from the manufacturing variation inherent in any mass produced ob-
ject. The PUF concept was introduced in [13] where the random arrangement
of scattering particles in a transparent medium is the basis of an optical PUF.
Silicon PUFs, introduced in [4], exploit the manufacturing variation inherent in
the CMOS fabrication process. Variations in physical parameters such as tran-
sistor dopant concentrations and line widths result in measurable differences in
circuit delays. Silicon PUFs are of considerable interest as they can leverage the
high levels of integration possible in modern CMOS technology nodes.

A silicon PUF embodiment based on SRAM was introduced in [5]. Here,
the power-up state of SRAM cells is used as the PUF response. A typical six-
transistor SRAM cell is shown in Figure 1. The storage element in an SRAM
cell consists of four cross-coupled transistors, denoted in the figure as M1, M2,
M3 and M4. The cross-coupled structure is bistable i.e. it can assume one of
two stable states. The power-up state for a particular cell is determined by the
relative characteristics of the transistors forming the cross-coupled structure.
Mismatches due to manufacturing variation of the transistors will cause the cell
to have a preference to power-up in a particular state, a phenomenon that can
be exploited as a PUF.

It is useful to consider SRAM PUFs as members of a larger grouping which we
term cross-coupled PUFs due to the cross-coupled structure forming the bistable
storage element. In fact, any digital storage element constructed from static logic
will use a cross-coupled structure as its basis and one can envisage cross-coupled

Evaluation of a PUF Device Authentication Scheme 275

Fig. 1. Construction of an SRAM cell

PUFs based on the many flip-flop and latch variants available to the digital
designer. An example of a cross-coupled PUF based on D-type flip-flops can be
found in [9].

3 Device Authentication with SRAM PUFs

In this section, we first review the off-line device authentication scheme presented
in [8] and then provide two improvements of this scheme.

3.1 Review of Off-Line Authentication Scheme

We now review the off-line device authentication scheme in [8] as follows. This
scheme has two main building blocks: a digital signature scheme [11] and a family
of SRAM PUFs. A digital signature scheme requires par of public key for device
manufacturer’s verification and private key for signing. For our applications we
can divide this off-line authentication scheme on two phases: an enrolment phase
Figure 2 and an evaluation phase Figure 3. In the former, the manufacturer
certifies each device and ships them into the market; in the latter, the verifier
accepts or rejects the hardware device after applying the verification procedure.

Fig. 2. Enrolment phase of the off-line device authentication scheme

276 P. Koeberl et al.

Fig. 3. Evaluation phase of the off-line device authentication scheme

Having those above-mentioned assumptions we can describe the off-line au-
thentication scheme as follows:

Enrolment Phase. In this phase the manufacturer instantiates an SRAM PUF
into the device D and runs the evaluation procedure to obtain the unique
identity s. In the next step the manufacturer computes the device ID idD

using a post-processing function and creates a signature σ of the ID using
private key. The last step of this procedure is to store previously generated
signature and unique device ID as the device’s certificate in the NVM of the
device.

Evaluation Phase. In this phase the verifier who wants to verify the device
runs the evaluation procedure of the SRAM PUF in the device and obtains
s′. Having s′, the verifier uses the post-processing function and obtains id ′

D.
The verifier then reads the certificate stored in the NVM of the device and
uses the public key to verify the signature σ on idD. If this step fails, the
device is rejected otherwise the verifier checks the Hamming distance between
idD and id ′

D. If it is greater than the previously set security parameter δ the
device is rejected, otherwise verifier accepts the device.

Both the enrolment and evaluation phases use the post-processing functions to
map an m-bit string to a k-bit string. The security of the device authentication
scheme [8] relies on the value of m. They assume that it is too expensive or
uneconomical for an adversary to embed an m-bit PUF simulator into the non-
volatile memory or circuit of a counterfeit device. Thus it is important to keep
m reasonably large, while keeping k small to reduce the size of device certificate.
Observe that standard hash functions are not noise preserving, i.e., one small
difference in the input leads to a large difference in the output, and thus we
can not use them in our application. An efficient post-processing function is
introduced in [8] and analyzed based on a theoretical SRAM PUF model where
each PUF cell is independently and randomly distributed with small noise. We
denote this post-processing function as f1 : {0, 1}m → {0, 1}k. This function can
be computed in the following three steps:

Evaluation of a PUF Device Authentication Scheme 277

1. Let � be the largest odd number such that k · � ≤ m.

2. Divide the first k · � bits of string s into k groups G1, . . . , Gk, where each
group has � bits. The mapping from bits in s to k groups is random but fixed
per function and is encoded in the algorithm.

3. For each group Gi, where 1 ≤ i ≤ k, compute ti = Voting(Gi), the majority
voting result of bits in Gi. More specifically, let G = {b1, . . . , b�} where
b1, . . . , b� ∈ {0, 1}. The majority voting function Voting(G) is defined as
follows: Voting(G) outputs 1 if b1 + · · · + b� > �/2 and outputs 0 otherwise.

4. The final output of f1 is t1, t2, . . . , tk.

As in [8], we use the following terms to analyze the effectiveness of the post-
processing functions.

Definition 1 (False Rejection Rate). If the manufacturer certifies a legit-
imate device in the enrollment phase, the False Rejection Rate (FRR) is the
probability that the device fails to be verified in the evaluation phase.

Definition 2 (False Acceptance Rate). The False Acceptance Rate (FAR)
is the probability that an uncertified device with a random SRAM PUF embedded
can be successfully verified in the evaluation phase, assuming the attacker can
inject a valid device certificate into the counterfeit device.

3.2 Our Improvements

We give two improvements to the device authentication scheme. The first is
a new post-processing function which is more effective when the SRAM PUF
result is biased. The second improvement is that we include additional data in
the device certificate to address issues related to device remarking attacks.

In [8], the post-processing function f1 is based on a theoretical model in which
each SRAM PUF bit is randomly and independently distributed. In practice, a
small bias in the SRAM PUF could exist. Some proposed SRAM architectures
may exhibit larger biases due to specific features such as asymmetric designs
intended to address leakage power and read stability in recent technology nodes
[7,2]. As shown in Table 1, even a small bias in the raw PUF response will be
significantly amplified in the device ID after the majority voting. As a result,
the inter-distance and entropy of the device IDs may be significantly reduced.
Small inter-distances will result in an increase in the FAR.

Table 1. Probability of ‘0’ in Device ID after majority voting

Probability of ‘0’ in PUF response 50% 50.5% 51% 52% 55%

Group size = 255 50% 56.35% 62.54% 73.88% 94.55%
Group size = 511 50% 58.95% 67.45% 81.73% 98.83%
Group size = 1023 50% 62.55% 73.89% 89.98% 99.93%

278 P. Koeberl et al.

The motivation for a new post-processing function is to minimize the effect
of a slight bias to ‘0’ or ‘1’ in the SRAM PUF response. Our method is straight-
forward, we first apply XOR to the PUF response to remove bias, and then
perform the majority voting. Note that, applying XOR to the PUF result will
also increase the noise rate in the device ID. As shown in Table 2, assuming each
bit in the PUF response is independently distributed, the bias in the device ID
reduces significantly after we perform bit-wise XOR on the PUF response.

Table 2. Probability of ‘0’ in Device ID after XOR and majority voting

Probability of ‘0’ in PUF response 50% 50.5% 51% 52% 55%
Probability of ‘0’ after bitwise XOR 50% 50% 50.02% 50.08% 50.5%

Group size = 255 after XOR 50% 50% 50.26% 51.02% 56.35%
Group size = 511 after XOR 50% 50% 50.36% 51.44% 58.95%
Group size = 1023 after XOR 50% 50% 50.51% 52.04% 62.55%

A new post-processing function. We now introduce a new post-processing func-
tion, denoted as f2, as a generalization of the one in [8] but designed especially
to remove any bias in the PUF data using an XOR operation. Function f2 can
be computed in the following five steps:

1. Let d be a small integer, a parameter to this function.
2. Let � be the largest odd number such that k · � · d ≤ m.
3. Divide the first k · � · d bits of string s into k groups G1, . . . , Gk, where each

group has � · d bits. The mapping from bits in s to k groups is random but
fixed per function and is encoded in the algorithm.

4. For each group Gi, where 1 ≤ i ≤ k, compress � · d bits into an �-bit group
G′

i using the XOR operation as follows. Let G = {b0, b1, · · · , b�·d−1}. G′ =
{c0, c1, · · · , c�−1} is computed by setting cj = bd·j ⊕ bd·j+1 ⊕ · · · ⊕ bd·j+d−1,
for j = 0, . . . , � − 1.

5. For each group G′
i, where 1 ≤ i ≤ k, ti = Voting(G′

i), the majority voting
result of bits in G′

i. The final output of f2 is t1, t2, . . . , tk.

Note that the function f2 is similar to the function f1, except that f2 reduces
any bias using the XOR operation [17]. The function f1 is a special case of
the function f2 with parameter d = 1 and those functions can be treated as a
family of post-processing functions. Nevertheless, we analyze them separately to
stress that the first one will not reduce any bias. The XOR operation will also
remove any correlations in the SRAM PUF response. In Section 4.2 we show that
although the bias of the SRAM PUF response is small, it is found to be highly
correlated. We shall show in Section 5 that the function f2 is indeed better than
f1 for correlated, rather than biased SRAM PUF responses.

Configuration data in device certificate. The above device authentication scheme
binds the device certificate with the device ID computed from the embedded
PUF. Observe that this scheme only proves a hardware device is a legitimate

Evaluation of a PUF Device Authentication Scheme 279

device certified by the manufacturer but it does not address the device remarking
attack, in which the attacker buys a legitimate low-end device from a device
manufacturer and remarks it as a high-end device from the same manufacturer.

We can easily address this attack by adding configuration data in the data cer-
tificate signed by the manufacturer private key. The configuration data contains
additional information about the device, such as model number, speed grade,
size of NVM, size of SRAM, and device features. In the evaluation phase, the
verifier validates not only the device ID and the signature, but also the config-
uration data in the certificate. This effectively addresses the remarking attack,
unless that attacker can break the signature scheme or clone a PUF.

4 Experimental Methodology

In this section, we present the methodology used to evaluate the SRAM PUF
performance and discuss the results in terms of PUF characteristics. The au-
thentication scheme performance based on these results are given in Section 5.

4.1 PUF Performance

The following methodology was used to evaluate SRAM PUF performance. The
experimental data is limited to a single 1MB Zero Bus Turnaround (ZBT) SRAM
chip manufactured by ISSI on a 0.13μm CMOS process. Measurements were ob-
tained at room temperature and nominal supply voltages. Note that SRAM PUF
noise rates are influenced by the voltage and temperature operating conditions.
In [5], temperature ranges of -20◦C to 80◦C are reported to result in maximum
fractional hamming distances of 12% when compared to a reference measure-
ment at 20◦C. In the PUF based device authentication scheme in Section 3,
the enrolment and evaluation processes both occur in production environments
where temperature is controlled. Device supply voltages are typically controlled
to within ± 5% or better either by the device tester or similar during enrolment
and by the device power supply subsystem during evaluation. We therefore con-
sider it reasonable to perform SRAM PUF measurements at room temperature
and at nominal supply voltages. For further details on the experimental setup
please consult the Appendix.

To emulate multiple PUFs on a single physical SRAM, the 1MB SRAM ad-
dress space was divided into 32 logical PUFs of 32kB each. Inter- and intra-
distance measures are used to evaluate the effectiveness of the 32 logical SRAM
PUFs. The inter-distance metric measures the Hamming distance between two
measurements (responses) collected from different (logical) PUF instances. Inter-
distance assesses the uniqueness of a PUF response and ideally should be close
to half the response length. The intra-distance metric measures the Hamming
distance between responses collected from a single logical PUF instance at differ-
ent moments. Intra-distance assesses the (un)reliability of a PUF response and
ideally should be close to zero. The usability of a particular PUF implementa-
tion can be quickly evaluated by looking at the separation between its inter- and

280 P. Koeberl et al.

Fig. 4. Inter- vs intra-distance histograms

intra-distances. An implementation is said to show a good PUF behavior if on
average its inter-distances are much larger than its intra-distances.

We evaluate the PUF behavior of the observed SRAM dumps. For every of the
32 logical PUFs, one of the 100 dumps is selected as a reference measurement.
Intra-distances are calculated by comparing the remaining 99 dumps of every
logical PUF to its respective reference measurement and counting the number of
differing bits. Inter-distances are calculated by comparing the reference measure-
ments of every possible pair of logical PUFs and counting the number of differing
bits. The occurrence of inter- and intra-distances in our data set is summarized
as a histogram in Figure 4, with inter- and intra-distances expressed as a fraction
of the full logical PUF size of 32kB on the X-axis. This histogram shows that in
our experiment the observed intra-distance is on average μintra = 2.2% of the
measured response length, which is in line with the results in [5] and is considered
reasonable for measurements obtained at room temperature. The average inter-
distance of our measured responses is around μinter = 23.6% of the response
length. This sub-optimal average inter-distance result is indicative of some level
of bias in and/or correlation between (logical) PUF instances and will be fur-
ther explored in Section 4.2. However, the observation that μinter >> μintra is a
strong indication that the uninitialized power-up values of the considered SRAM
memory show good PUF behavior.

4.2 Bias and Correlation

Ideally one would expect the average inter-distance to be 50% of the response
length when all the response bits are unbiased and independent. Any statisti-
cally significant deviation from 50% indicates either a bias in the bit values, a
dependence between different bit values, or both. Since we observe an average
inter-distance of 23.6% < 50% we investigate the cause.

Evaluation of a PUF Device Authentication Scheme 281

To evaluate a possible bias we consider the number of observed 1-values in the
reference measurements of all 32 logical PUFs. The smallest number of observed
1-values is 128458 (49.00% of a 32kB PUF) and the largest number is 129737
(49.49% of a 32kB PUF). Although these values are very close to 50%, there
is still a statistically significant deviation because the sample set is large. The
respective observed p-values for an hypothesis of unbiased bits are 1.8 · 1024 and
1.9 · 10−7 which are a strong indication to reject this hypothesis and assume
there is a bias. However, the observed bias is too small (< 1%) to be the only
cause for the small inter-distances.

Fig. 5. Single dump of 1 MB SRAM

In order to investigate dependencies between different bits, we plot a single
dump of the 1MB SRAM memory as a 2048x4096 bitmap, with a white pixel
indicating a power-up value equal to 1 and a black pixel a power-up value of 0 for
the considered bit. This bit map is shown in Figure 5 and an enlarged portion
of this figure is shown in Figure 6. It is immediately clear from the observed
patterns in these bitmaps that there exists a strong location-based correlation
in the SRAM dump. From the enlarged plot, it is clear that consecutive lines
have a strong tendency to power up with opposing values. From the full plot,
additional large-scale patterns can be observed as darker and lighter bands in
the bitmap. Similar patterns arise for any arrangement of the data where the
number of lines and columns are a power of two. Since we defined logical PUFs
as 32 (= 25) blocks of 262144 (= 218) consecutive bits from a single dump, strong
correlations between different logical PUFs can be expected. This is the main
cause for the observed small average inter-distance.

The underlying cause for these strong correlations is most likely to be found
in the physical layout of the SRAM memory cells as a huge 2D array on the
silicon die. In a typical SRAM architecture, cells in the same row and/or column

282 P. Koeberl et al.

Fig. 6. Enlarged portion of a single SRAM dump

share a couple of elements. Cells in the same row are on the same word line,
and cells in the same column share a couple of bitlines and a sense amplifier.
A physical bias in the operation of any of these shared elements can cause a
bias in all the cells connected to this element, which will show up as row- or
column-based correlations in the PUF data, very similar to what we observe in
our plots.

More generally, in addition to reducing the average inter-distance, these cor-
relations will also severely decrease the expected entropy in the SRAM PUF
response. Assessing entropy exactly is very hard, but an upper bound can be
provided based on the compressibility of the data, since entropy is a lower bound
for the smallest achievable compression. Using standard file compression tech-
niques (zip), our 1MB SRAM dump files can be compressed to about 630kB,
indicating an entropy level of 63% or less. We consider this an important result
since such strong correlations leading to severely reduced entropy levels were
never observed before for similar SRAM PUF constructions. In fact, many other
works on SRAM PUFs or SRAM fingerprinting present very high estimated en-
tropy levels of > 90% or assume an independent distribution of SRAM power-up
states [1,10,6]. It is important to emphasize that although we observe correlations
between different logical PUFs on the same device, the finding is of importance
for the typical case where each device instantiates a single physical PUF. From
our results it is clear that the actual entropy of an SRAM PUF will depend a
lot on the physical instantiation of the SRAM memory and cannot be assumed
to be very high without analysing its responses. Moreover, we show that merely
looking at the bias in the responses is not sufficient, since strong dependencies
between different bits can arise. For our data, the bias is very small (< 1%)
whilst we still observe severely reduced entropy levels (< 63%).

Evaluation of a PUF Device Authentication Scheme 283

5 Results and Analysis

The performance of our post-processing schemes is presented in this section. The
key metric for our application is the FAR/FRR which we wish to maximise while
keeping the storage cost of the device ID in bits as low as possible.

5.1 Result of the Function f1

Figure 7 and Figure 8 show the results of applying the function f1 for device
IDs of 256- and 512-bits respectively. When compared to the raw PUF data of
Figure 4, a degradation of the intra- and inter-distance results are observed, up
around to a maximum of approximately 10% for the 512-bit device ID inter-
distance result. The results show the first post-processing function to be largely
noise preserving while also preserving the poor inter-distance results exhibited
by the raw PUF data.

Fig. 7. Inter- vs intra-distance of 256-bit device IDs using f1 and corresponding
FAR/FRR rates

The FAR/FRR is estimated as follows. We model the inter-distance histogram
as the probability density function for the bit difference between two device IDs;
the FAR is the corresponding cumulative distribution function. Similarly, we
model the intra-distance histogram as the probability density function for the
number of error bits in the device ID; the FRR is the corresponding cumulative
distribution function. The FAR/FRR for a 256-bit device ID is on the order
of 10−5 which is unacceptable for most device authentication applications. Al-
though the FAR/FRR performance of the 512-bit device ID is reasonable, at
around 10−11, the poor inter-distance result of the raw PUF data is preserved
(there is a slight increase). In effect the low entropy of the raw PUF data is
reflected in the resultant device ID. The efficiency of the 512-bit configuration
is low as a result, although from the FAR/FRR perspective the performance is
acceptable if the 512-bit device ID does not pose a storage issue.

284 P. Koeberl et al.

Fig. 8. Inter- vs intra-distance of 512-bit device IDs using f1 and corresponding
FAR/FRR rates

5.2 Results of the Function f2

The results of the function f2 for a 256-bit device ID with the XOR parameter
d = 2 are shown in Figure 9. When compared to f1 in the 256-bit configuration,
an increase in the average noise rate as evidenced by the intra-distance result
is observed, from approximately 8% to 14%. The inter-distance result shows a
marked improvement to approximately 41% which approaches the 50% ideal. In
terms of FAR/FRR the result is on the order of 10−7, a result which is acceptable
for authenticating reasonably large device populations. Observe that the XOR
operation on the PUF output propagates PUF errors and increases the noise
rate in the device ID. For a given threshold δ, the FRR becomes larger in f2.
However, note that the inter-distance increases as well after the XOR operation,
the curve of FAR shifts to right. This allows us to choose a larger threshold δ
for f2 such that both FAR and FRR are smaller than using f1.

Fig. 9. Inter- vs intra-distance of 256-bit device IDs using f2 with d = 2 and corre-
sponding FAR/FRR rates

Evaluation of a PUF Device Authentication Scheme 285

Fig. 10. Inter- vs intra-distance of 256-bit device IDs using f2 with d = 4 and corre-
sponding FAR/FRR rates

Fig. 11. Inter- vs intra-distance of 512-bit device IDs using f2 with d = 2 and corre-
sponding FAR/FRR rates

Figure 10 shows the results for a 256-bit device ID with d = 4. The intra-
distance result indicates an average noise rate of more than double that of the
first post-processing function. The inter-distance result is close to ideal at 47%.
As for the d = 2 configuration above, the FAR/FRR of 10−7 may be acceptable
for some applications.

In terms of FAR/FRR we see the best performance when using a 512-bit
device ID with d = 2 as shown in Figure 11. In practice the rate of 10−13 can
be considered negligible. As for the 256-bit, d = 2 case a similar increase in the
average noise rate is observed as evidenced by the intra-distance result. Similarly,
the inter-distance result approaches the 50% ideal.

5.3 Analysis

The considered post-processing functions affect the bias of the bit values in
the output, and therefore also the average inter-distances. The effect of post-
processing on the bias is shown in Table 3. From the analysis of SRAM PUF

286 P. Koeberl et al.

measurements in Section 4.2, it was clear that there exists a small (< 1%) though
statistically significant bias on the raw observed bit values. The theoretical treat-
ment of the function f1 in [8] predicts that the majority voting operation will
deteriorate an existing bias in the raw data, and the measured results as shown
in Table 3 support this claim. To overcome this issue, we introduced a second
post-processing function f2 which attempts to remove any bias prior to major-
ity voting by XOR-ing a number of bits together. It is clear from Table 3 that
even XOR-ing over a very small number of bits (2 to 4) removes the bias almost
completely. In fact, the obtained results for f2 show no statistically significant
deviation from an unbiased source. As a direct consequence, the function f2
produces much better FAR/FRR characteristics for the same ID length than
function f1.

Table 3. Average bias in the output bits after the different post-processing functions

Raw PUF data f1 f2,d=2 f2,d=4

Full PUF dump (32kB) 49.21% - - -
256 bit ID - 30.35% 49.78% 49.73%
512 bit ID - 35.85% 49.46% 50.42%

6 Conclusions

In this paper we presented the experimental results of a PUF device authen-
tication scheme on a discrete 0.13μm SRAM. We evaluate the post-processing
function presented in [8] and show that a 256-kb PUF can be compressed into
a 512-bit device ID while maintaining an FAR and FRR of better than 10−10.
During the analysis it is observed that the SRAM PUF is strongly correlated
with a small bias of less than 1%. A upper bound on the entropy level of the
complete 1MB SRAM is estimated at 63%. We consider this to be an important
result, since it implies that SRAM PUF entropy levels can be severely reduced
even when the observed bias is small. Our results show that the entropy of an
SRAM PUF can depend strongly on the SRAM PUF architecture and physical
implementation.

We introduce a new post-processing function which shows good performance
when presented with strongly correlated PUF responses such as we encounter in
this paper. We show that this new function exhibits a negligible FAR and FRR
when compressing a 256-kb PUF into a 512-bit device ID.

Future work will include a more detailed analysis of the SRAM PUF correla-
tions observed in order to determine the root cause, and experimental evaluation
of the device authentication scheme presented here on multiple physical SRAM
instances. The robustness of the scheme to expected environmental swings will
also be evaluated.

Evaluation of a PUF Device Authentication Scheme 287

Acknowledgement. This work has been supported in part by the European
Commission through the FP7 programme UNIQUE. We thank the anonymous
reviewers for their helpful reviews and comments.

References

1. Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., Tuyls, P.: PUF-PRFs: A new
tamper-resilient cryptographic primitive. In: Advances in Cryptology – EURO-
CRYPT 2009 Poster Session, pp. 96–102 (2000)

2. Azizi, N., Moshovos, A., Najm, F.N.: Low-leakage asymmetric-cell sram. In: Pro-
ceedings of the 2002 International Symposium on Low Power Electronics and De-
sign, ISLPED 2002, pp. 48–51. ACM, New York (2002)

3. Bulens, P., Standaert, F.-X., Quisquater, J.-J.: How to strongly link data and its
medium: the paper case. IET Information Security 4(3), 125–136 (2010)

4. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: ACM Conference on Computer and Communications Security, pp. 148–
160. ACM Press, New York (2002)

5. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA Intrinsic PUFs and
Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

6. Holcomb, D.E., Burleson, W.P., Fu, K.: Initial SRAM state as a fingerprint and
source of true random numbers for RFID tags. In: Conference on RFID Security
2007, Malaga, Spain, July 11-13 (2007)

7. Kim, J.-J., Rao, R., Kim, K.: Technology-circuit co-design of asymmetric sram
cells for read stability improvement. In: 2010 IEEE Custom Integrated Circuits
Conference (CICC), pp. 1–4 (September 2010)

8. Koeberl, P., Li, J., Rajan, A., Vishik, C., Wu, W.: A Practical Device Authenti-
cation Scheme Using SRAM PUFs. In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 63–77.
Springer, Heidelberg (2011)

9. Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic pufs from flip-flops on reconfigurable
devices. In: 3rd Benelux Workshop on Information and System Security (WISSec
2008), Eindhoven, NL, p. 17 (2008)

10. Maes, R., Tuyls, P., Verbauwhede, I.: Soft decision helper data algorithm for sram
pufs. In: Proceedings of the 2009 IEEE International Conference on Symposium
on Information Theory, ISIT 2009, vol. 3, pp. 2101–2105. IEEE Press, Piscataway
(2009)

11. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press (1996)

12. U. S. G. A. Office. Defense supplier base: Dod should leverage ongoing initiatives
in developing its program to mitigate risk of counterfeit parts. GAO-10-389 (March
2010)

13. Pappu, R.S.: Physical one-way functions. PhD thesis, Massachusetts Institute of
Technology (March 2001)

14. SEMI T20-1109. Specification for authentication of semiconductors and related
products (2009), http://www.semi.org/

15. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and
secret key generation. In: Design Automation Conference, pp. 9–14. ACM Press,
New York (2007)

http://www.semi.org/

288 P. Koeberl et al.

16. Trusted Computing Group. TCG TPM specification 1.2 (2003),
http://www.trustedcomputinggroup.org

17. von Neumann, J.: Various techniques used in connection with random digits. In:
Householder, A.S., et al. (eds.) The Monte Carlo Method. National Bureau of
Standards, Applied Mathematics Series, vol. 12, pp. 36–38 (1951)

18. Xilinx Inc. ML501 Evaluation Platform - User Guide, UG226 (v1.4), August 24
(2009)

A Experimental Setup

The experimental setup is based on the ML501 development platform from
Xilinx [18] housing a Virtex-5 XC5VLX50-1FFG676 FPGA chip. Collecting
SRAM PUF data directly from the FPGA chip is very difficult due to the au-
tomated initialisation procedure of the internal FPGA SRAM blocks, which
is hard to circumvent. Instead, we selected the Zero Bus Turnaround (ZBT),
high-speed, synchronous SRAM available on the board to collect experimental
SRAM PUF data. This SRAM chip (IS61NLP25636A-200TQL) is manufactured
using 0.13μm CMOS process technology by ISSI. The memory is organized as
256k x (32+4) bits (four parity bits, which are discarded in our case) which gives
1MB of total memory available for the analysis.

The development board is connected to the workstation via a serial null mo-
dem cable and the SRAM data is transmitted using the RS-232 standard. Python
scripts and the library for serial connections are used to control the transmission
on the workstation side. On the board side, the SRAM read-out is handled by
an FPGA design containing a ZBT memory controller, a UART interface and a
small data flow controller. A single complete readout of the 1MB SRAM memory
takes about two minutes with the RS-232 baudrate set to 115200kbps. To read
out a 32kB SRAM PUF, we estimate that it would take less than 4 seconds.
After a complete memory measurement, the board is powered off and on again
to collect the next SRAM dump. To assure a complete discharge of all on-board
capacitors, a delay of at least 10 seconds is kept between two consecutive power
cycles.

Using this measurement setup, 100 consecutive dumps of the 1MB unini-
tialized SRAM memory were collected and analyzed. All measurements were
obtained at an ambient temperature around 293K (room temperature). Mea-
surements obtained when the chip was cold, i.e., after a prolonged (> 10s)
power-off time, were discarded. Further improvement of the measurement setup
might include automatic control of the power cycling as well as increasing the
data transmission speed.

http://www.trustedcomputinggroup.org

A Performance Analysis of Identity-Based

Encryption Schemes

Pengqi Cheng, Yan Gu, Zihong Lv, Jianfei Wang, Wenlei Zhu,
Zhen Chen, and Jiwei Huang

Tsinghua University, Beijing, 100084, China

Abstract. We implemented four of the most common IBE schemes:
Cocks IBE, Boneh-Franklin IBE, Authenticated IBE, Hierarchical IBE.
For each algorithm in an IBE scheme, we recorded the execution time
and space cost with different lengths of key. Then, we made a comparison
among these IBE schemes and analyzed their characteristics.

Keywords: Identity-Based Encryption (IBE), performance, time com-
plexity, execution time, space cost.

1 Introduction and Our Main Work

In 1984, Shamir[6] first gave the concept of Identity-Based Encryption (IBE). In
an IBE scheme, when Alice sends an email to Bob, Alice will use Bob’s email
address, bob@bob.com for example, to encrypt it, without needing to get Bob’s
public key certificate before sending it. When Bob receives an email, he first
authenticates himself to the Private Key Generator (PKG) and gets his private
key. Then he uses this private key to decrypt the email. This process is largely
different from existing secure email infrastructure in the following aspects:

– Senders can send an email without a public key, which can reduce a lot of
process for the certificate management.

– There is no need for an online lookup for a sender to obtain the recipient’s
certificate.

– Only the PKG holds the private key for recipients, and it is able to refresh
the recipients’ private keys in every short time period.

After the problem was posed, many implementations are presented by computer
scientists to fulfill the idea given by Shamir. In this paper, we chose four of the
most wide-used IBE schemes and compared their performance. These four IBE
schemes are: Cocks IBE[3], Boneh-Franklin IBE[2], Authenticated IBE[5], and
Hierarchical IBE[4]. Hierarchical IBE is a little special, because it is a cascade
of IBE schemes to form a tree-style hierarchical PKG. These IBE schemes have
different performance on server, clients and the need of bandwidth. So our work
is to implement all these algorithms and make a comparison and analysis.

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 289–303, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

290 P. Cheng et al.

2 Definitions

An identity-based encryption scheme is composed by the four following algo-
rithms: Setup, Extract, Encrypt and Decrypt [2]:

1. Setup: gets a security parameter k, and then returns system parameters
params and master-key. The system parameters are public, which include a
finite message space M and a finite ciphertext space C. The master-key is
accessible only by the PKG.

2. Extract: based on params and master-key given by Setup, and an arbitrary
ID ∈ {0, 1}∗, returns a private key d. Here ID will be used as a public key,
and d is the corresponding private key.

3. Encrypt: gets params, ID and messageM ∈ M, and then outputs ciphertext
C ∈ C.

4. Decrypt: gets params, d and ciphertext C ∈ C, and then outputs message
M ∈ M.

For correctness, these algorithms above must satisfy the standard consistency
constraint, that is to say, if d is the private key generated by Extract correspond-
ing to public key ID, then

∀M ∈ M : Decrypt(params,Encrypt(params, ID,M), d) = M

3 Typical IBE Schemes

We will discuss four typical IBE schemes in this paper. First, we will introduce
them in this section.

3.1 Cocks IBE[3]

– Setup
The PKG gets following inputs to generate a private key:

1. an RSA module n = pq, where p, q are two private prime numbers which
satisfy p ≡ q ≡ 3 (mod 4)

2. a message space M = {−1, 1} and a ciphertext space C = Zn

3. a secure common hash function f : {0, 1}∗ → Zn

– Extract

• Input: parameters generated by Setup and an arbitrary ID
• Output: the private key r

1. Generate a which satisfies (ap) = 1 with a deterministic procedure ID.

2. Let r = a
n+5−p−q

8 mod n which satisfies r2 = ±a mod n.

– Encrypt

• Input: parameters generated by Setup, ID of the sender and a message
M

• Output: corresponding ciphertext C

A Performance Analysis of Identity-Based Encryption Schemes 291

1. Select a random t which satisfies m = (t
n), where m is an arbitrary bit

of M .
2. Let c1 = t+ at−1 mod n and c2 = t − at−1 mod n.
3. Send s = 〈c1, c2〉 to the recipient.

– Decrypt

• Input: ciphertext C and the private key and parameters generated by
the PKG

• Output: original message M

1. Let α = c1 + 2r if r2 = a, otherwise α = c2 + 2r.
2. Return m = (αn).

3.2 Boneh-Franklin IBE[2]

– Setup

1. Get a security parameter k and two groups of order q (a generated prime
number): G1 and G2, and an admissible bilinear map ê : G1 ×G1 → G2,
and select a random generator P ∈ G1.

2. Generate a random number s ∈ Z∗
q . Let Ppub = sP .

3. Select a hash function H1 : {0, 1}∗ → G∗
1. For any specified n, specify a

hash function H2 : {0, 1}n → Gn
2 .

4. Return params = 〈q,G1, G2, ê, n, P, Ppub, H1, H2〉 and master-key = s.

– Extract

1. Get string ID ∈ {0, 1}∗.
2. Let QID = H1(ID) ∈ G∗

1.
3. Return the private key dID = sQID, where s is the master key.

– Encrypt

1. Let QID = H1(ID) ∈ G∗
1.

2. Select a random number r ∈ Z∗
q .

3. Based on the message M ∈ M, return the ciphertext C:

C = 〈rP,M ⊕ H2(g
r
ID)〉 , gID = ê(QID, Ppub) ∈ G∗

2

– Decrypt
Input the ciphertext C = 〈U, V 〉 ∈ C encrypted with ID. Return the message
with the private key dID ∈ G∗

1:

M = V ⊕ H2(ê(dID, U))

3.3 Authenticated IBE[5]

– Setup

1. Get a security parameter k and then generate a prime number q, two
groups of order q: G1 and G2, and an admissible bilinear map ê : G1 ×
G1 → G2. Select a random generator P ∈ G1.

2. Generate a random number s ∈ Z∗
q . Let Ppub = sP .

292 P. Cheng et al.

3. The PKG selects a random generator g ∈ G1 and hash function H1 :
Fq × G2 → {0, 1}n, H2 : {0, 1}∗ → G1, H3 : {0, 1}∗ × {0, 1}∗ → Fq, H4 :
{0, 1}n → {0, 1}n.

4. Return params = 〈q,G1, G2, g, g
s, ê, n, P, Ppub, H1, H2, H3, H4〉 and

master-key = s.

– Extract
The PKG calculates the private key of user IDA: dA = H2(IDA)

s.
– Authenticated Encrypt

User A(IDA) uses another user B(IDB)’s private key dA to encrypt the mes-
sage M ∈ {0, 1}∗:
1. Select a random number r ∈ R{0, 1}n.
2. Let c1 = H3(r,M) and c2 = e(dA, H2(IDB)).
3. Return the ciphertext C =

〈
r ⊕ H1(c1, c2), EH4(r)(M)

〉
.

– Authenticated Decrypt
User B uses A’s ID IDA, his private key dB and params to decipher the
ciphertext 〈U, V,W 〉.
1. Let c2 = e(H2(IDA), dB).
2. Let r = V ⊕ H1(U, c2).
3. Let M = DH4(r)(W).
4. Compare U and H3(r,M).
5. If U �= H3(r,M), discard the ciphertext, otherwise return the message

M .

3.4 Hierarchical IBE[4]

The Gentry-Silverberg hierarchical IBE scheme is composed by cascading Boneh-
Franklin IBE schemes. In this scheme, every user has an n-tuple ID in the hi-
erarchy tree. The n-tuple ID is composed by the IDs of the user itself and its
ancestors. All users in the i-th level are denoted by Leveli. Thus, the root of the
hierarchy tree, Level0, is the PKG.

HIBE is composed by the five following algorithms:

– Root Setup

1. Based on a security parameter k, generate a big prime q using IG (BDH
Parameter Generator).

2. Use q to generate two fields G1 and G2, which satisfy the bilinear map
ê : G1 × G1 → G2.

3. Pick an arbitrary element P0 in G1, and then pick a random number
S0 ∈ Z/qZ as the master-key. Calculate the system parameter Q0 =
S0P0.

4. Generate two hash functions H1 : {0, 1}∗ → G1, H2 : G2 → {0, 1}n.
– Lower-level Setup

For each user Et ∈ Levelt, specify a random number st ∈ Z/qZ.
– Extract

A Performance Analysis of Identity-Based Encryption Schemes 293

1. For each user Et with ID = 〈ID1, ID2, · · · , IDt〉, its father calculates Pt =
H1(ID1, ID2, · · · , IDt) ∈ G1, where s0 is the identity of G1.

2. Return the private key St = St−1 + st−1Pt =
∑t

i=1 si−1Pi of Et and
parameter Qi = siP0.

– Encrypt

1. For a message M and ID = 〈ID1, ID2, · · · , IDt〉, calculate:

Pi = H1(ID1, ID2, · · · , IDi) ∈ G1

2. For any r ∈ Z/qZ, return the ciphertext:

C = 〈rP0, rP2, · · · , rPt,M ⊕ H2(g
r)〉 , g = e(Q0, P1) ∈ G2

– Decrypt
For ciphertext C = 〈U0, U2, · · · , Ut, V 〉 and ID = 〈ID1, ID2, · · · , idt〉, return
the message:

M = V ⊕ H2

(
ê(U0, St)∏t

i=2 ê(Qi−1, Ui)

)

4 Performance Testing

4.1 Implementation

Based on the characters of these IBE schemes, we use the same framework for
these different cases, except for Cocks IBE scheme. Therefore, we used Stanford
IBE Secure Email[1] as the framework for those three schemes, and then mod-
ified some kernel functions. In this way, sources for different IBE schemes have
the most amount of similar codes, which will decrease error caused by imple-
mentation. For Cocks IBE scheme, due to the reason that it is largely different
from others, we directly finished its codes.

In summary, we have the final versions of four IBE schemes: Cocks IBE
(Cocks), Boneh-Franklin IBE (BF), Authenticated IBE (AIBE), and Hierarchical
IBE (HIBE).

4.2 Testing Method

Since an IBE scheme has four algorithms, we focus on the performance of each
algorithm in order to guarantee that algorithms for different IBE schemes are
running in the same condition. For the reason that the initializing process Setup
is run only once for a certain IBE system, it is less valuable to test its performance
so we just ignore it. Therefore, our goal is to test performance of the three
algorithms Extract, Encrypt and Decrypt. For each algorithm of a certain IBE
scheme, we record the execution time under different parameters. Obviously,
different IBE schemes have different performance, and we will analyze the reasons
that make such differences. In order to decrypt the ciphertext correctly, these
schemes will add some additional information about parameters. The additional
cost of space and bandwidth of such information will be discussed in Section 5.

294 P. Cheng et al.

4.3 Environment

Processor Pentium Dual T2330 @ 1.60GHz
Memory 2GB RAM

OS Arch Linux 2.6.38
Compiler GCC 4.4.4
Timing use command time, with accuracy of 1ms
File I/O work in memory, so execution time can be ignored

5 Results and Analysis

5.1 Cocks IBE

Pbits 256 512
Extraction Time (1000 Keys) 0.870s 2.903s

Encryption Time 5.710s 12.636s
Decryption Time 2.497s 5.830s
Plain Text Length 2KB 2KB
ciphertext Length 4126KB 8224KB

Compared to other schemes in this paper, Cocks IBE is much easier. However,
our test shows its performance is quite low. Even if the master key length is
only 256 bits, the encryption/decryption speed is below 1KB/s, which cannot
be acceptable in most cases. Moreover, the size of ciphertext is thousands times
that of plain text. This conclusion is obvious, since for each bit of the message,
the Encrypt algorithm returns two P -bit numbers. Therefore, considering both
the time and space cost, Cocks IBE is not applicable for real environments.

5.2 Boneh-Franklin IBE

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

256 512 768 1024 1280 1536 1792 2048
pbits

20

40

60

80

100

120

140

time�s
BF � Extract

� qbits�160

� qbits�80

� qbits�40

� qbits�20

Extract 1000 Keys

A Performance Analysis of Identity-Based Encryption Schemes 295

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

256 512 768 1024 1280 1536 1792 2048
pbits

50

100

150

time�s
BF � Encrypt

� qbits�160

� qbits�80

� qbits�40

� qbits�20

Encrypt 10MB

� �
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

256 512 768 1024 1280 1536 1792 2048
pbits

10

20

30

40

50

60

70

time�s
BF � Decrypt

� qbits�160

� qbits�80

� qbits�40

� qbits�20

Decrypt 10MB

� � � � � � � � � �

� �
� � � �

�
�

�
�

�

�

�

�

�

�

�

�
�

�

100 200 300 400 500
qbits

5

10

15

20

time�s
BF � Pbits � 512

� Decrypt

� Encrypt

� Extract

Qbits 1000 Keys / 10MB

296 P. Cheng et al.

�

�

�

�

�

�

�

�

256 512 768 1024 1280 1536 1792 2048
pbits

200

400

600

800

Overhead�B
BF � Cipher Text Overhead

ciphertext Overhead

From these figures above, we get:

1. The performance of BF IBE is enough for middle-sized applications.

Using typical values log p = 512, log q = 160, we have:

Extraction speed: 1000/5.863 ≈ 170.6Key/s

Encryption speed: 10/9.253 ≈ 1.08MB/s

Decryption speed: 10/7.959 ≈ 1.26MB/s

2. The extraction, encryption and decryption times are nearly cubic with log p,
that is mainly because the calculation of H1. Below are the results of cubic
polynomial fitting:

500 1000 1500 2000

20

40

60

80

100

120

140

500 1000 1500 2000

50

100

150

500 1000 1500 2000

10

20

30

40

3. If log p holds constant, Extract is almost unaffected, and Encrypt and Decrypt
are nearly linear with log q. However, log p affects the time of Encrypt and
Decrypt much more significantly. This result of performance is made by H2

in this scheme.

4. Extra space cost is linear with log p and has no relationship with log q, be-
cause in the ciphertext, BF IBE needs to store rP . Actually, added space
less than 1KB is ignorable for large messages. But for small messages, it
requires relatively more space and network bandwidth. Since the framework
we used outputs base64 ciphertext, we can easily decrease the space cost by
one fourth in practice.

A Performance Analysis of Identity-Based Encryption Schemes 297

5.3 Authenticated IBE

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

256 512 768 1024 1280 1536 1792 2048
pbits

20

40

60

80

100

120

140

time�s
AIBE � Extract

� qbits�160

� qbits�80

� qbits�40

� qbits�20

Extract 1000 Keys

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

� �
�

�

�

�

�

�

� �

�

�

�

�

�

�

256 512 768 1024 1280 1536 1792 2048
pbits

10.5

11.0

11.5

time�s
AIBE � Encrypt

� qbits�160

� qbits�80

� qbits�40

� qbits�20

Encrypt 10× 10MB

� �

�

�

�

�

�

�

�
�

�
�

�

�

�

�

� �

�

�

�

�

�

�

�
�

�

�

�

�

�

�

256 512 768 1024 1280 1536 1792 2048
pbits

11.0

11.5

12.0

12.5

time�s
AIBE � Decrypt

� qbits�160

� qbits�80

� qbits�40

� qbits�20

Decrypt 10 × 10MB

298 P. Cheng et al.

� �

� �

�

�

� �

�

�

�
�

�

�

�

�

�
�

�

�

100 200 300 400 500
qbits

99.0

99.5

100.0

100.5

time�s
AIBE � Pbits � 512

� Decrypt

� Encrypt

Qbits 1000 Keys / 100× 10MB

�
�

�
�

�
�

�

�
�

�

50 100 150 200 250 300 350 400 450 500
pbits

50

100

150

Overhead�B
AIBE � Cipher Text Overhead

ciphertext Overhead

Here are our conclusions:

1. AIBE is a little faster than BF, so it is also applicable.
As the same with BF, let log p = 512, log q = 160:
Since the two Extract algorithms are the same, their speeds are not quite
different: 1000/5.64 ≈ 177.3Key/s
Encryption speed: 100/10.009 ≈ 9.99MB/s
Decryption speed: 100/10.746 ≈ 9.30MB/s
Because AIBE does not need to calculate the exponential r as in BF, it has
a higher encryption/decryption speed, about 10 times that of BF.

2. Like BF, determined by hash functions, the running times of Extract, Encrypt
and Decrypt are cubic with log p. Here are the fitting results:

A Performance Analysis of Identity-Based Encryption Schemes 299

500 1000 1500 2000

20

40

60

80

100

120

140

500 1000 1500 2000

10.5

11.0

11.5

500 1000 1500 2000

11.5

12.0

12.5

3. If log p remains unchanged, the relationship between running times and log q
is just like that of BF.

4. Extra space cost is from EH4(r)(M) in the ciphertext, which is determined
by log q rather than log p. It is also less than 1KB, which may only affect
small files.

5.4 Hierarchical IBE

� � � �
�

�
�

�

� �
�

�

�

�

�

�

� �
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

256 512 768 1024 1280 1536 1792 2048
pbits

50

100

150

200

250

300

350

time�s
HIBE � Extract Qbits � 160

� l�25

� l�20

� l�15

� l�10

� l�5

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

256 512 768 1024 1280 1536 1792 2048
pbits

20

40

60

80

100

120

140

time�s
HIBE � Extract Level � 10

� qbits�160

� qbits�80

� qbits�40

� qbits�20

Extract 100 Keys

300 P. Cheng et al.

� � � �
�

�
�

�

� �
�

�

�

�

�

�

� �
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

256 512 768 1024 1280 1536 1792 2048
pbits

50

100

150

200

250

300

350

time�s
HIBE � Encrypt Qbits � 160

� l�25

� l�20

� l�15

� l�10

� l�5

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

256 512 768 1024 1280 1536 1792 2048
pbits

20

40

60

80

100

120

140

time�s
HIBE � Encrypt Level � 10

� qbits�160

� qbits�80

� qbits�40

� qbits�20

Encrypt 10MB

� � � �
�

�
�

�

� �
�

�

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

256 512 768 1024 1280 1536 1792 2048
pbits

50

100

150

time�s
HIBE � Decrypt Qbits � 160

� l�25

� l�20

� l�15

� l�10

� l�5

A Performance Analysis of Identity-Based Encryption Schemes 301

� �
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

256 512 768 1024 1280 1536 1792 2048
pbits

10

20

30

40

50

60

70

time�s
HIBE � Decrypt Level � 10

� qbits�160

� qbits�80

� qbits�40

� qbits�20

Decrypt 10MB

� �
� � �

� � �
� �

� �
� �

�
� � � � �

�

�

�

�

�

�

�
�

�

�

100 200 300 400 500
qbits

5

10

15

time�s
HIBE � Pbits � 512 Level � 10

� Decrypt

� Encrypt

� Extract

Qbits 100 Keys / 10MB

�
�

�
�

�
�

�
�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

256 512 768 1024 1280 1536 1792 2048
pbits

5000

10 000

15 000

Overhead�B
HIBE � Cipher Text Overhead

� l�25

� l�20

� l�15

� l�10

� l�5

ciphertext Overhead

Here are our conclusions:

1. HIBE is slower than BF.
Let log p = 512, log q = 160, l = 10, where l is the number of levels.
Extraction speed: 100/6.37 ≈ 15.7Key/s
Encryption speed: 10/7.21 ≈ 1.38MB/s
Decryption speed: 10/7.769 ≈ 1.28MB/s

302 P. Cheng et al.

Added length of the ciphertext: 2187B, larger than other schemes
The speed is about one tenth that of BF, approximately the same as 1/l.

2. The relationship between the time/space cost of HIBE and the two param-
eters log p and log q is like that of BF. Here are the fitting results:

500 1000 1500 2000

10

20

30

40

50

60

70

500 1000 1500 2000

20

40

60

80

500 1000 1500 2000

5

10

15

20

25

30

35

500 1000 1500 2000

20

40

60

80

100

120

140

500 1000 1500 2000

20

40

60

80

100

120

140

500 1000 1500 2000

10

20

30

40

3. The time/space cost of HIBE is nearly linear to the number of levels.

6 Summary

As a new encryption mechanism different from traditional PKI-based schemes,
IBE is free from key distribution and certificate management. Moreover, some
typical IBE schemes have enough performance for applications in practice. Here
we list the characteristics of all the schemes in this paper:

– Cocks
Cocks is the simplest and slowest scheme. As one bit in message is translated
into one big number, its time and space cost is unbearable.

– BF
BF is the most common implementation in practice. It has a good balance
between performance and security.

– AIBE
AIBE can verify the identity of the sender in the decryption step, since the
recipient can decrypt the message correctly only if the sender uses his private
key to encrypt it. As it does not contain the exponential calculation in BF,
it is a little faster, with the cost of security.

– HIBE
HIBE is a very complicated implementation. The running time is linear with
the number of levels. In practice, it is rare to use many levels.

In addition, all these schemes will store some extra information for decryption,
which may add much cost while transferring a large amount of small files.

Currently, most IBE schemes take much use of elliptic curve encryption, so
they cannot reach a very satisfying performance. Thus, it is critical to improve
the performance in the future. Since the O(log3 p) time cost of elliptic curve

A Performance Analysis of Identity-Based Encryption Schemes 303

hash functions is the bottleneck of all the scheme, to make a breakthrough in
the performance of IBE schemes, except optimizing such hash functions, the
only way is to use totally different encryption/decryption algorithms in other
transformation fields. We expect to see more creative improvement in this area.

References

1. http://crypto.stanford.edu/ibe/

2. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

3. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
IMA International Conference, pp. 360–363. Springer (2001)

4. Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

5. Lynn, B.: Authenticated identity-based encryption. Cryptology ePrint Archive
(2002)

6. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

http://crypto.stanford.edu/ibe/

A (Corrected) DAA Scheme Using Batch Proof

and Verification

Ernie Brickell1, Liqun Chen2, and Jiangtao Li1

1 Intel Corporation, Hillsboro, Oregon, USA
{ernie.brickell,jiangtao.li}@intel.com
2 Hewlett-Packard Laboratories, Bristol, UK

liqun.chen@hp.com

Abstract. Direct anonymous attestation (DAA) is a cryptographic
primitive for providing anonymous signatures, and is a part of trusted
computing technology from the Trusted Computing Group (TCG). DAA
offers a nice balance between user authentication and privacy. One ac-
tive research topic in trusted computing community is to develop DAA
schemes that require minimum TPM resources. In 2010, Chen introduced
a new DAA scheme using batch proof and verification. In this scheme,
the TPM only needs to perform one or two exponentiations to create
a DAA signature, depending on whether linkability is required. In this
paper, we demonstrate an attack to this DAA scheme. The attack allows
any malicious host to forge linkable DAA signatures without knowing
the private key. We also present a patch to this DAA scheme to mitigate
the attack. Our new DAA scheme has the same computational require-
ment for a TPM. We formally prove the new DAA scheme is secure in
the random oracle model under the blind-4 bilinear LRSW assumption,
the DDH assumption, and the gap-DL assumption.

Keywords: direct anonymous attestation, batch proof and verification,
trusted platform module.

1 Introduction

Direct anonymous attestation (DAA) is a special digital signature primitive,
providing a balance between user privacy and signer authentication in a reason-
able way. A DAA scheme involves issuers, signers and verifiers. An issuer verifies
legitimation of signers and issues a unique DAA credential to each legitimate
signer. A signer proves possession of her credential to a verifier by providing a
DAA signature without revealing her identity.

The concept and first concrete scheme of DAA were presented by Brickell,
Camenisch, and Chen [12] for the purposes of remote anonymous attestation of
a trusted computing platform. This DAA scheme was adopted by the Trusted
Computing Group (TCG) and specified in the Trusted Platform Module (TPM)
specification version 1.2 [46]. This specification has recently been adopted by
ISO/IEC as an international standard [36]. Since the first introduction of DAA, it

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 304–337, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A (Corrected) DAA Scheme Using Batch Proof and Verification 305

has attracted lots of attention from both industry and cryptographic researchers,
e.g. [4, 13, 16, 22, 38, 41, 43, 14, 26–29, 18].

One may view a DAA scheme as a modified group signature scheme. Unlike
group signatures such as defined in [6, 8], DAA does not have the “open” feature
where from a signature, the identity of its signer can be recovered by a trusted
group manager. Signatures created by a DAA signer are anonymous even if
a verifier and an issuer collude. Instead, DAA has user-controlled-traceability,
where a DAA signer and verifier can jointly decide whether the verifier is allowed
to link two signatures produced by this signer.

In DAA, the role of a signer is split between two parties, a principal signer
with limited resource such as a trusted platform module (TPM), and an assistant
signer with abundant computational power but less security tolerance such as
an ordinary computer platform. We call the assistant signer the Host in our
paper. The resource of TPM are very limited, thus, any technique to reduce
the requirement on the TPM resources is useful. Note that the Host is just a
helper to the TPM. It should not learn the DAA secret key or create a signature
without involvement from the TPM.

Recently, Chen proposed a DAA scheme [23] based on a modification of the
Chen, Page and Smart DAA scheme [30] and a modification of batch proof and
verification technique developed by Peng, Boyd and Dawson [42]. Throughout
the paper, we call this scheme Chen’10 DAA scheme. This DAA scheme claims
to have the best efficiency in the TPM implementation. For the DAA signing
operation, the TPM only performs one exponentiation, if linkability is not re-
quired; and two exponentiations, if linkability is required. The other existing
pairing-based DAA schemes such as [14, 29, 28, 30, 18] require at least three
exponentiations for the TPM.

In this paper, we present an attack to the Chen’10 DAA scheme [23] and then
provide a correction of the DAA scheme. More specifically, our contributions of
the paper are the following.

An attack to Chen’10 DAA scheme: We discover a flaw in this DAA
scheme [23] such that an adversarial host can forge any linkable DAA signa-
tures without knowing the private key and without any TPM involvement.

A corrected DAA scheme with the same TPM efficiency: We propose
a corrected DAA scheme based on [23]. Our scheme has the same computational
cost for TPM and slightly additional cost for the Host. We formally prove the
security of this new DAA scheme under the DAA security model in [14, 22].

The rest of this paper is organized as follows. In Section 2, we review the
batch proof and verification technique used in [23], describe the flaw in this
technique, and present a new bath proof and verification technique for proving
discrete log equality between two pairs of group elements. We then present an
attack to the Chen’10 DAA scheme [23] in Section 3. After that, we describe
our corrected DAA scheme in Section 4, and its security properties and rigorous
security proofs in Section 5. We briefly discuss some implementation options in
Section 6, and then provide a comparison between the proposed DAA scheme

306 E. Brickell, L. Chen, and J. Li

and seven other DAA schemes in Section 7. We conclude the paper in Section 8.
For completeness, we recall definitions of DAA security model in Appendix A,
and information of pairings and some relevant computational assumptions in
Appendix B.

2 Batch Proof and Verification

In the rest of the paper, we use the following standard notation. Let S be a set
of values, then x←S denote x is chosen uniformly at random from S. Let {0, 1}∗
denote the set of binary strings with arbitrary length and {0, 1}t denote the set
of binary strings with t-bit length. Let x‖y denote concatenation of two binary
strings x and y. In a cyclic group G, let gx denote the exponentiation of a group
element g ∈ G with an integer exponent x. In an elliptic curve base group G, let
[x]P denote the point multiplication of point P by an integer x.

We make use of a batch proof and verification scheme, which is a modification
of “strict verification of equality of logarithms with common exponent” by Peng,
Boyd and Dawson [42], and call their scheme the PBD scheme. The target of
the PBD scheme is given a security parameter L, a prime q, a cyclic group G

of order q such that |q| > L, and 2n + 2 group elements g, y, gi, yi ∈ G for
i = 1, 2, . . . , n, to prove logg y = loggi yi. For the purpose of our particular usage
in the proposed DAA scheme, we focus on the simple case of discrete logarithm
equality of two pairs of group elements. More specifically, given group elements
(g0, g1, y0, y1) ∈ G4, the goal is to prove efficiently the discrete logarithm equality
between two group elements y0 and y1 with regards to two bases g0 and g1
respectively, i.e., logg0 y0 = logg1 y1. Under the condition that the prover does
not know the discrete logarithm relationship between the two bases g0 and g1,
we reduce the double discrete-logarithm proof in the PBD scheme to a single
discrete-logarithm proof.

2.1 Batch Proof and Verification Technique Used in [23]

In this subsection, we first review the batch proof and verification technique
proposed in [23] and then show the flaw in this technique which leads to an
attack to the Chen’10 DAA scheme. Let (g0, g1, y0, y1) ∈ G4 such that logg0 y0 =
logg1 y1. Let x = logg0 y0 be the discrete log value known to the prover. The
prover proves the knowledge of x such that gx0 = y0 and gx1 = y1 with the
following steps:

1. The prover randomly chooses r←Z∗
q and sends the verifier z← (g0 · g1)r.

2. The verifier randomly chooses and sends to the prover an integer c←Z∗
q as

a challenge.
3. The prover calculates and sends the verifier an integer s←r − c · x mod q.
4. The verifier verifies that (g0 · g1)s · (y0 · y1)c = z. If this equation does not

hold, the verifier outputs reject; otherwise outputs accept.

A (Corrected) DAA Scheme Using Batch Proof and Verification 307

The above protocol is essentially a knowledge proof protocol which proves that
the prover knows the discrete log between g0 · g1 and y0 · y1 without revealing
the discrete log value. Obviously, if the prover knows the value of logg0 g1, he
can successfully run the above protocol to the verifier even if logg0 y0 �= logg1 y1.
It is required in [23], the prover does not know the value of logg0 g1.

Observe that, if the prover has the flexibility to choose y1 before the two party
agree on (g0, g1, y0, y1), he can cheat even if he does not know logg0 g1, logg0 y0
or logg1 y1. The attack is as follows. Let g0, g1, y0 be the values agreed by both
the prover and the verifier. The prover can successfully make the verifier believe
that he has the knowledge of x such that gx0 = y0 and gx1 = y1 with the above
protocol. The prover chooses a random value x and computes y1←(g0 ·g1)x ·y−1

0 .
The prover then sends g0, g1, y0, y1 to the verifier and proves the knowledge of x
such that (g0 · g1)x = y0 · y1.

2.2 Newly Proposed Batch Proof and Verification Technique

To address the above attack, we propose a new batch proof and verification
scheme that is a modification of the PBD scheme [42]. The scheme works as
follows:

1. Given (g0, g1, y0, y1) ∈ G
4, the verifier randomly chooses and sends to the

prover two integers t0, t1←{0, 1, . . ., 2L − 1}.
2. The prover randomly chooses an integer r←Z∗

q and sends the verifier z←
(gt00 · gt11)r.

3. The verifier randomly chooses and sends to the prover an integer c←Z∗
q as

a challenge.
4. The prover calculates and sends the verifier an integer s←r − c · x mod q,

where x = logg0 y0 = logg1 y1.

5. The verifier verifies that (gt00 · gt11)s · (yt00 · yt11)c = z. If this equation does not
hold, the verifier outputs reject; otherwise outputs accept.

In this scheme, the values (g0, g1, y0, y1) are chosen by the prover under the
condition that the verifier is able to verify that the prover does not know the
discrete logarithm relationship between the values g1 and g0. Security of this
proof and verification scheme is based on the discrete logarithm assumption.

Definition 1 (The discrete logarithm assumption). Given two elements
g0, g1 ∈ G, computing logg0 g1 is computationally infeasible.

We now address security of the scheme with the following theorem.

Theorem 1. Given a set of fixed values (g0, g1, y0, y1) ∈ G4 and two uniformly
distributed random values t0, t1 ∈ {0, 1, . . . , 2L−1}, a successful run of the above
scheme convinces the verifier that the prover possesses the value x ∈ Z∗

q , such
that

y0 = gx0 ∧ y1 = gx1 (1)

308 E. Brickell, L. Chen, and J. Li

is not satisfied with a probability no more than 2−L, under the discrete loga-
rithm assumption and the assumption that the prover does not know the discrete
logarithm relationship between g0 and g1.

Proof. To prove this theorem, we first see that a successful run of the scheme
convinces the verifier that the prover is in possession of the value x ∈ Z∗

q , such
that

(yt00 · yt11) = (gt00 · gt11)x (2)

under the discrete logarithm assumption. This straightforwardly follows security
of the Σ-protocol, i.e., a three-move random challenge-based knowledge proof
protocol (also known as an identification scheme). Observe that the steps 2-5 of
the scheme form such a Σ-protocol. By using a rewinding, the value x can be
extracted from a successful adversary. This is true, except t0 = 0 ∧ t1 = 0. We
omit the details of this well-known technique.

Our next step is to prove a lemma.

Lemma 1. Successfully running the above scheme shows that

y0 = ga0
0 ∧ y1 = gb11 (3)

is satisfied for some values a0, b1 ∈ Z∗
q , under the assumption that the discrete

logarithm problem, i.e. given g0, g1 ∈ G computing d = logg0 g1, is hard.

Proof. We use the following reduction to prove this lemma: if there is a polyno-
mial adversary A, who is able to persuade a verifier to output accept in a run
of the scheme, then either A can be used by another algorithm B to solve the
discrete logarithm problem (Case 1), or Equation 3 holds (Case 2). We prove
these two cases separately.

Case 1. Suppose the algorithm B has the target that given two elements g0, g1 ∈
G, computing d = logg0 g1. B first randomly chooses four integers a0, a1, b0, b1 ∈
Z
∗
q and computes y0 = ga0

0 · gb01 and y1 = ga1
0 · gb11 . B runs the above batch proof

and verification protocol with A, in which A, given the values g0, g1, a0, a1, b0, b1,
plays the role of the prover and B plays the role of the verifier. If A successfully
makes B accepting the proof, that means the two equations

(yt00 · yt11) = (ga0
0 gb01)t0 · (ga1

0 gb11)t1 = (gt00 · gt11)x (4)

and
a0 · t0 + d · b0 · t0 + a1 · t1 + d · b1 · t1 = (t0 + d · t1) · x (5)

hold for some values x, t0, t1 ∈ Z
∗
q , where x is chosen by A and t0 and t1 are

chosen by B. B first rewinds A to extract the knowledge of the value x by forking
on c, and then computes d by

d = (a0 · t0 + a1 · t1 − t0 · x)/(t1 · x − b0 · t0 − b1 · t1). (6)

B outputs the value d as the result of the target.

A (Corrected) DAA Scheme Using Batch Proof and Verification 309

Note that Case 1 is almost identical to the proof of Theorem 1 in [23] (assum-
ing t0 = t1 = 1), but the proof with this case alone is not sound, because Case 2 is
not covered; that causes vulnerability to the attack described in Subsection 2.1.

Case 2. This case shows that B may not be able to retrieve the discrete logarithm
d if A is allowed to use y0 = ga0

0 gb01 and y1 = ga1
0 gb11 with the values a0, a1, b0, b1

in his own choice. The fact Equation 3 does not hold means either b0 �= 0 or
a1 �= 0 is satisfied. In order to bypass the value d but still to make Equation 4
hold, the following two equations

a0 · t0 + a1 · t1 = x · t0, (7)

b0 · t0 + b1 · t1 = x · t1 (8)

must be satisfied simultaneously. Combining Equations 7 and 8, we have

a0 · t0 · t1 + a1 · t21 = b0 · t20 + b1 · t0 · t1. (9)

Assume the verifier selects t0 and t1 uniformly at random from {0, 1, . . . , 2L−1},
and these two values happen to satisfy either of the following two situations:

t1 �= 0 ∧ (t0 = 0 ∨ t0 = (b1 − a0) · t1/b0); (10)

t0 �= 0 ∧ (t1 = 0 ∨ t1 = (a0 − b1) · t0/a1). (11)

Note that we do not require the verifier knowing any value from (a0, a1, b0, b1).
Obviously, the first situation (Equation 10) will make Equation 9 cannot hold,
when a1 �= 0, and similarly the second situation (Equation 11) will make Equa-
tion 9 cannot hold, when b0 �= 0. Since the values t0 and t1 are randomly chosen
from {0, 1, . . . , 2L − 1}, these two situations are valid. Therefore, we have found
a contradiction to the assumption that either a1 �= 0 or b0 �= 0. Equation 3 must
hold if A cannot be used by B to solve the discrete logarithm problem.

The lemma follows by combining these two cases. �

By following Equations 2 and 3, we obtain

a0 = b1 = x. (12)

Lemma 1 implies that among the 22L possible combinations of t0 and t1, at most
2L of them can satisfy (yt00 · yt11) = (gt00 · gt11)x and logg0 y0 �= x (or logg1 y1 �= x).

If logg0 y0 �= x (or logg1 y1 �= x) and t0 and t1 are randomly chosen, (yt00 ·
yt11) = (gt00 · gt11)x is satisfied with a probability no more than 2−L. The theorem
follows. ��

We further replace generation of random integer challenge with secure hash
functions using the Fiat-Shamir transform [31], and therefore change the random

310 E. Brickell, L. Chen, and J. Li

challenge-based identification scheme to the Schnorr-type signature [44] of proof
of knowledge. We make use of three collision-resistent hash functions, Hα : G4 �→
{0, 1}L, Hβ : G4 �→ {0, 1}L, and H : {0, 1}∗ �→ Zq, to generate the random
integers t0, t1, and challenge c respectively. The modification, which will be used
in our DAA scheme in Section 4, works as follows (both the prover and verifier
take (g0, g1, y0, y1) ∈ G

4 as input):

1. The prover computes t0 = Hα(g0, g1, y0, y1) and t1 = Hβ(g0, g1, y0, y1), ran-
domly chooses r←Z∗

q and computes z←(gt00 · gt11)r, c←H(z), and s←r − c ·
x mod q, where x = logg0 y0 = logg1 y1, and sends the verifier the pair (c, s).

2. The verifier computes t0 = Hα(g0, g1, y0, y1) and t1 = Hβ(g0, g1, y0, y1),
z′←(gt00 · gt11)s · (yt00 · yt11)c and then verifies that c = H(z′). If this equation
does not hold, the verifier outputs reject; otherwise outputs accept.

It is well-known that the signature scheme transferred based on the Fiat-Shamir
transformation from an identification scheme is secure against chosen-message
attacks in the random oracle model [7] if and only if the underlying identification
scheme is secure [2]. Therefore, security of this scheme follows Theorem 1 under
the discrete logarithm assumption and the random oracle model.

3 An Attack to the Chen’10 DAA Scheme

In this section, we first briefly review the batch-proof based DAA scheme in [23]
with a focus on how the batch proof and verification protocol in Section 2.1 is
used. We then present our attack.

3.1 Review of the Chen’10 DAA Scheme

The Chen’10 DAA scheme [23] is based on a modification of the Chen, Page,
and Smart DAA scheme [30] and uses the batch proof and verification protocol
described in Section 2.1. Let t̂ : G1 × G2 → GT be a pairing function. Let P1

and P2 be the generators of G1 and G2 respectively, and both the groups are
with the order of q. In this DAA scheme, the issuer has private key (x, y) and
the corresponding public key (X,Y) such that X = [x]P2 and Y = [y]P2. Let
f be a DAA private key known to a TPM. The DAA credential (A,B,C) is a
Camenisch-Lysyanskaya signature [20] on f , such that A←G1, B = [y]A, and
C = [x+ f · x · y]A. The DAA credential can be verified with the following two
equations

t̂(A, Y) = t̂(B,P2)

t̂(A+ [f]B,X) = t̂(C,P2)

The DAA credential (A,B,C) can be randomly blinded. For any value l ∈ Z
∗
q ,

([l]A, [l]B, [l]C) is a valid DAA credential on f as well.

A (Corrected) DAA Scheme Using Batch Proof and Verification 311

Let D = [f]B be a value computed by the TPM. The Host can store D
along with the DAA credential (A,B,C) while the TPM keeps the secret key
f . Let (R,S, T,W) be a blinded version of (A,B,C,D), i.e., (R,S, T,W) =
([l]A, [l]B, [l]C, [l]D) for a random l. A DAA signature is essentially a proof of
knowledge of f such that

W = [f]S, t̂(R, Y) = t̂(S, P2), t̂(R+W,X) = t̂(T, P2). (13)

For the random base option, where DAA signatures are unlinkable, the above
zero-knowledge proof is enough to convince to a verifier that the TPM is indeed
certified by the issuer with a valid DAA credential. In the name base option,
where the DAA signatures are linkable with regards to a particular basename,
the following additional steps are needed in the signing process. Let J←H(bsn)
where H : {0, 1}∗ → G1 is a hash function that hashes strings into elements in
G1, and bsn is the basename. Let K←[f]J be a value computed by the TPM,
used for linking signatures computed under the basename. The TPM needs to
perform a proof of knowledge of f such that

W = [f]S, K = [f]J.

This is where the batch proof and verification in Section 2.1 is used. Let V ′←S+
J and W ′←W + K. The TPM proves the knowledge of f such that W ′ =
[f]V ′ instead of proving two equations W = [f]S and K = [f]J . Let σ be the
script of proof of knowledge of f such that W ′ = [f]V ′. The DAA signature
is (R,S, T,W,K, σ). A verifier can verify the signature by checking (R,S, T,W)
values against the equations in (13), computing J from bsn, computing V ′←S+J
and W ′←W +K, and checking the proof of knowledge script σ on the (V ′,W ′)
pair. The details of the DAA scheme are given in [23].

3.2 Details of Our Attack

We now describe an attack to the DAA scheme reviewed in the previous subsec-
tion. Our attack will allow any malicious host to forge any name base signatures
without involvement from the TPM. Observe that the DAA scheme [23] assumes
that both the signer (the TPM and Host) and the verifier agree on S,W, J,K
before the prover performs the batch proof. However, in the actual DAA scheme,
the signer does not need to commit S,W, J,K before the batch proof. In fact,
the signer can choose K carefully in order to succeed in the batch proof. This
leads to our attack.

Let the Host be the adversary. The Host already has (A,B,C,D) where
(A,B,C) is a DAA credential on f and D = [f]B. We assume that f is un-
known to the Host. We now show how the attacker creates a valid DAA signature
without any help from the TPM. The attacker performs the following steps:

1. Chooses a random l and computes (R,S, T,W)←([l]A, [l]B, [l]C, [l]D).
2. Computes J←H(bsn).
3. Chooses a random f ′ and computes K←[f ′](J + S)− W .
4. Computes V ′←S + J and W ′←W +K.

312 E. Brickell, L. Chen, and J. Li

5. Proves knowledge of f ′ such that W ′ = [f ′]V ′ and produces a script σ.
6. Sets (R,S, T,W,K, σ) as the signature.

Observe that the attacker knows the discrete logarithm f ′ between V ′ andW ′, he
can produce σ correctly with regards to (V ′,W ′). The signature can be success-
fully verified by the verifier. Note that the attacker can forge the above signature
without knowing the real secrete key f .

4 The Corrected DAA Scheme

In this section, we propose a corrected version of the Chen’10 DAA scheme using
the improved batch proof and verification scheme described in Subsection 2.2.
As mentioned early, a DAA scheme involves a set of issuers, signers, and veri-
fiers. An Issuer is in charge of verifying the legitimacy of signers, and of issuing
a DAA credential to each signer. A signer, which due to the split role is a pair
of Host and associated TPM, can prove to a Verifier that the signer holds a
valid DAA credential by providing a DAA signature. The Verifier can verify the
DAA credential from the signature, but it cannot learn the identity of the signer.
Linkability of signatures issued by a Host TPM pair is controlled by an input
parameter bsn (standing for “base name”) which is passed to the signing opera-
tion. There is assumed to be a list RogueList which contains a list of TPM secret
keys which have been compromised. The scheme relies on the use of asymmetric
pairings.

Throughout the constituent protocols and algorithms, the following notation
is used. We let I, M, H andV denote the set of all Issuer, Host, TPM and Verifier
entities. The value of bsn will be used by the signer/verifier to link signatures,
if bsn =⊥ then this implies that signatures should be unlinkable.

Before proceeding with the description of our scheme, we recall a general
issue that needs to be considered throughout. Specifically, every group element
received by any entity needs to be checked for validity, i.e., that it is within
the correct group; in particular, it is important that the element does not lie in
some larger group which contains the group in question. This strict stipulation
avoids numerous attacks such as those related to small subgroups. We implicitly
assume that all transmitted group elements are elements of the specified groups:
within our scheme, the use of Type-III pairings [32] allows efficient methods for
checking subgroup membership as described by [24] and expanded upon in [30].

4.1 The Setup Algorithm

To initialise the system, one needs to select parameters for each protocol as well
as the long term parameters for each Issuer and each TPM. On input of the
security parameter 1t, the Setup algorithm executes the following steps:

1. Generate the Commitment Parameters parC. In this step, three groupsG1,G2

and GT , of sufficiently large prime order q, are selected. Two random gen-
erators are then selected such that G1 = 〈P1〉 and G2 = 〈P2〉 along with a

A (Corrected) DAA Scheme Using Batch Proof and Verification 313

pairing t̂ : G1 × G2 �→ GT . Next, two hash functions H1 : {0, 1}∗ �→ Zq and
H2 : {0, 1}∗ �→ Zq are selected and parC is set to (G1,G2,GT , t̂, P1, P2, q,
H1, H2).

Note that in our scheme, as the same as in [30], the TPM operations are
strictly limited to G1. This allows a subset of parC, namely parT, to be set
to (G1, P1, q) and installed on the TPM in preference to parC.

2. Generate Signature and Verification Parameters parS. Five additional hash
functions are selected, namely H3 : {0, 1}∗ �→ G1, H4 : {0, 1}∗ �→ Zq, H5 :
{0, 1}∗ �→ Zq, Hα : G4

1 �→ {0, 1}L and Hβ : G4
1 �→ {0, 1}L. parS is set to

(H3, H4, H5, L,Hα, Hβ).
3. Generate the Issuer Parameters parI. For each i ∈ I, the following steps are

performed. Two integers x, y←Zq are selected, and the Issuer private key isk
is set to (x, y). Next, the values X = [x]P2 ∈ G2 and Y = [y]P2 ∈ G2 are
computed; the Issuer public key ipk is set to (X,Y). Then an Issuer value
KI is derived from the Issuer public values. Finally, parI is set to ({ipk,KI})
for each Issuer i ∈ I. In our scheme KI is a representation of parT

1.
4. Generate TPM Parameters. The TPM generates a public/private key pair

(PK, SK), which can be authenticated based on the associated endorsement
key. In addition, it generates the private secret value DAAseed. We assume
that the private key SK along with the secret DAAseed is embedded into the
TPM (e.g., in non-volatile memory) and that each Issuer has access to the
corresponding public endorsement key PK. We also assume either a public
key IND-CCA encryption/decryption scheme (ENC/DEC) along with a MAC
algorithm (MAC) or a digital signature/verification scheme (SIG/VER) has
been selected for use with the keys in order to achieve an authentic channel
between the TPM and Issuer.

5. Publish Public Parameters. Finally, the public system parameters par are set
to (parC, parS, parI, parT) and published.

Note that each TPM has a single DAAseed, but can create multiple DAA secret
keys, even associated with a single issuer. To allow this, a number cnt (standing
for ”counter value”) is used as an additional input to DAA secret key generation:
the TPM DAA secret key is generated by using DAAseed, KI and cnt as input,
as described in the Join protocol of the next section.

4.2 The Join Protocol

This is a protocol between a given TPM m ∈ M, the corresponding Host h ∈
H and an Issuer i ∈ I. The protocol proceeds as shown in Figure 1, and the
TPM authentication is using an encryption-based authentic channel as used
in [30]. The DAA credential is proved by Issuer without TPM’s involvement.
This approach was introduced in [9]. Here we give an overview of how a general
Join protocol proceeds. There are 4 main stages to a Join protocol.

1 If the same parT is used by multiple issuers, in order to limit KI to a single issuer,
the issuer value KI can be set by using both parT and a unique issuer name.

314 E. Brickell, L. Chen, and J. Li

TPM (m) Host (h) Issuer (I)

Issuer Request

kM←MK
cI←ENCPK(kM)

nI←{0, 1}t

TPM Response commreq� commreq� commreq←(cI , nI)

f←H1(DAAseed‖KI‖cnt)
kM←DECSK(cI)

If kM =⊥ then abort

F←[f]P1

u←Zq ;U←[u]P1

v←H2(P1‖F‖U‖nI)

w←u + v · f mod q

γ←MACkM
(P1‖F‖v‖w)

comm←(F, v, w, γ, nI) comm� comm� Issuer Response

If nI �∈ {commreq}
then abort

γ†←MACkM
(P1‖F‖v‖w)

If γ �= γ† then abort

U†←[w]P1 − [v]F

v†←H2(P1‖F‖U†‖nI)

If v �= v† then abort

∀f ′ ∈ RogueList

if F = [f ′]P1

then abort

r←Zq

A←[r]P1; B←[y]A

C←[x]A + [r · x · y]F
D←[r · y]F

r′←Zq

R0←[r′]P1; R1←[r′]F

c←H2(P1‖B‖F‖D‖R0‖R1)

s←r′ + c · r · y mod q

Host Verify cre, c, s� cre←(A,B,C,D)

R′
0←[s]P1 − [c]B

R′
1←[s]F − [c]D

c′←H2(P1‖B‖F‖D‖R′
0‖R′

1)

If c �= c′, or

t̂(A, Y) �= t̂(B,P2), or

or t̂(A + D,X) �= t̂(C,P2)

then abort

Fig. 1. The Join protocol

A (Corrected) DAA Scheme Using Batch Proof and Verification 315

1. The TPM m and Issuer i first establish an authentic channel, which allows
the Issuer to be sure that he only creates the DAA credential for a genuine
TPM. The authentic channel is built by using either the ENC/DEC algorithm
and MAC algorithm, or the SIG/VER algorithm under the key pair (SK,PK).

2. The TPM m generates a DAA secret key, f←H1(DAAseed‖KI‖cnt) ∈ Zq,
using the value KI provided by the issuer, a counter value cnt provided by
the host and its internal secret seed DAAseed. The TPM then computes
a commitment on this value, i.e. F = [f]P1 ∈ G1, along with a proof of
possession of this value, i.e. (v, w). The commitment and proof are sent to
the Issuer via the authentic channel.

3. The issuer performs some checks on the commitment and proof it receives
and, if these correctly verify, computes a credential, cre = (A,B,C,D, c, s) ∈
G4

1 × Z2
q , which is a blindly signed CL signature [20] of f via F and a proof

of this signature, and then sends it to the host.
4. The Host verifies the correctness of the credential.

4.3 The Sign/Verify Protocol

This is a protocol between a given TPM m ∈ M, Host h ∈ H and Verifier v ∈ V
as described in Figure 2. We give an overview of the protocol with the following
three steps:

1. The Host h and Verifier v first agree the content of the signed message msg
and the base name bsn.

2. The TPM m and Host h then work together to produce a DAA signature
on msg and associated with bsn. The signature should prove knowledge of
a discrete logarithm f , knowledge of a valid credential cre and that this
credential was computed for the same value f by a given Issuer i ∈ I. In the
signing procedure between the two parts of the signer, the TPM uses the
value of f and the Host uses the value of cre. We note that the Host will
know a lot of the values needed in the computation and will be able to take
on a lot of the computational workload. However, if the TPM has not had
its secret f published (i.e. it is not a rogue module) then the Host h will not
know f and will be unable to compute the whole signature without the aid
of the TPM. Therefore, we say that the TPM is the real signer and the Host
is a helper. We also note that the four scalar multiplications in G1 by the
Host are independent to the signed message msg or the base name bsn, so
they can be precomputed.

3. Upon the receipt of the DAA signature, the Verifier v checks the RogueList
first, then checks whether the agreed bsn was used correctly. After these
two checks pass successfully, v verifies whether (R,S, T,W) is a valid CL
signature on an unopened data string f and this data string is used as a
private signing key to sign the agreed message msg and v’s fresh nonce nV .

There are two major differences between this version and the protocol in [30].
At first, the values of J and K are omitted when bsn =⊥, and the function

316 E. Brickell, L. Chen, and J. Li

TPM (m) Host (h) Verifier (v)

Host Sign

l←Zq

R←[l]A;S←[l]B

T←[l]C;W←[l]D

Agree bsn;msg Challenge
nV� nV ∈ {0, 1}t

Create bsnKey J� If bsn �=⊥, J←H3(bsn)

K = [f]J K � t0 = Hα(J,K, S,W)

t1 = Hβ(J,K, S,W)

V ←[t0]S + [t1]J

Else J← ⊥,K← ⊥
V ←S

c←H4(R‖S‖T‖W
‖J‖K‖bsn‖nV)

TPM Sign m� m←(c, V,msg)

r←Zq

U←[r]V

h←H5(U‖V ‖c‖msg)

s←r + h · f mod q h, s� σ←(R,S, T,W,K,

h, s) σ � Verify

∀f ′ ∈ RogueList

if W = [f ′]S

return false

If t̂(R, Y)

�= t̂(S, P2)

or t̂(R + W,X)

�= t̂(T, P2)

return false

If bsn �=⊥, J†←H3(bsn)

t0 = Hα(J,K, S,W)

t1 = Hβ(J,K, S,W)

V †←[t0]S + [t1]J
†

Z†←[t0]W + [t1]K

Else V †←S,Z†←W

U† = [s]V † − [h]Z†

c†←H4(R‖S‖T‖W
‖J‖K‖bsn‖nV)

h†←H5(U
†‖V †‖c†‖msg)

If h† �= h return false

Return true

Fig. 2. The Sign/Verify protocol

A (Corrected) DAA Scheme Using Batch Proof and Verification 317

of checking the RogueList is done with the pair of (S,W) rather than (J,K).
Secondly, it makes use of a new process of batch proof and verification to compute
the value U = [r]V , as opposed to the two values R1 = [r]J and R2 = [r]S. This
makes the total number of scalar multiplications in G1 by the TPM in the
signing algorithm from 3 to 1 if bsn =⊥ or to 2 if bsn �=⊥. This change comes
at some modification in the host signing process and verification side. However,
the total computational cost for the Host is not significantly increased and the
total computational cost for the Verifier is reduced, from that of [30].

5 Security Properties of the Proposed DAA Scheme

In this section, we will state the security results for the new DAA scheme under
the definitions of DAA security notions described in Section A.

As the same as the DAA scheme in [28], our DAA scheme requires the DDH
problem for G1 to be hard. The formal definition of this problem is defined as
follows:

Definition 2 (G1-DDH). We define the AdvDDH
A (t) of an G1-DDH adversary

A against the set of parameters (G1,G2,GT , P,Q, q, t̂) as∣∣Pr [
x, y, z←Zp;X←xP, Y ←yP, Z←zP ;A(G1,G2,GT , t̂, P,Q,X, Y, Z, q) = 1

]
−Pr

[
x, y←Zp;X←xP, Y ←yP ;Z←xyP ;A(G1,G2,GT , t̂, P,Q,X, Y, Z, q) = 1

]∣∣
We then say a tuple (G1,G2,GT , P,Q, q, t̂) satisfies the DDH assumption for G1

if for any p.p.t. adversary A its advantage AdvDDH
A (t) is negligible in t.

Our DAA scheme also requires a special representation of the LRSW problem,
namely the blind-4 bilinear LRSW problem, to be hard. The formal definition
of this problem, as introduced in [9], is defined as follows:

Definition 3 (Blind-4 Bilinear LRSW Advantage). We define the blind-4
bilinear LRSW advantage AdvB−4−bLRSW

A (t) of an adversary A against (G1,G2,
P1, P2, q, t̂) as

Pr

⎡
⎢⎢⎢⎢⎢⎣

x, y←Zq;X←[x]P2, Y ←[y]P2;

(f,A,B,C,D)←AOB
X,Y (·)(G1,G2, P1, P2, X, Y, q, t̂)

∧
(
F = [f]P1 �∈ Q, f ∈ Z×

q , A ∈ G1, B = [y]A,

C = [x+ f · x · y]A;D = [f]B
)

⎤
⎥⎥⎥⎥⎥⎦

where Q is the set of queries that A made to OB
X,Y (·), which on input F =

[f]P1 �∈ Q outputs a tuple (A, B, C, D), and q ≈ 2t.

We then say a tuple (G1,G2, P1, P2, q, t̂) satisfies the blind-4 bilinear LRSW
assumption if for any p.p.t. adversary A its advantage AdvB−4−bLRSW

A (t) is
negligible in t.

318 E. Brickell, L. Chen, and J. Li

As shown in [28], we shall require one other problem to be hard. Namely that
the discrete logarithm problem in G1 is hard, even in the presence of an oracle
which solves the static computational Diffie–Hellman problem for the underlying
secret in the discrete logarithm problem. We call this problem Gap-DLP, since it
is similar to the Gap-CDH problem, where one tries to solve the CDH problem
with the presence of an oracle to solve DDH. Formally we define:

Definition 4 (Gap-DLP). We define the Gap-DLP advantage AdvGap−DLP
A (t)

for G1 of an adversary A against (G1,G2, P1, P2, q, t̂) as

Pr
[
x←Zq;X←[x]P1;AOx(·)(G1,G2, P1, P2, X, q, t̂) = x

]
where Ox is the oracle which on input of Y ∈ G1 will return [x]Y and q ≈ 2t.

We then say a tuple (G1,G2, P1, P2, q, t̂) satisfies the Gap-DLP assumption in

G1 if for any p.p.t. adversary A its advantage AdvGap−DLP
A (t) is negligible in t.

Some relevant but well-known preliminary information, such as definitions of
pairings, and other computationally hard problems, is shown in Appendix B. The
security analysis of the notions of user-controlled-anonymity and user-controlled-
traceability is in the random oracle model [7], i.e., we will assume that the
hash functions H2 H3 and H5 in the DAA scheme are random oracles. Note
that the hash function H1 used to compute the value f , and H4, Hα and Hβ

used in the Sign protocol are not simulated as random oracles. However, it is
still required that outputs of these four hash functions are uniformly random
distribution. In general, we will argue that our new DAA scheme is secure, i.e.,
correct, user-controlled-anonymous and user-controlled-traceable, as addressed
in the following theorems.

Theorem 2. The DAA scheme specified in Section 4 is correct.

Proof. This theorem follows directly from the specification of the scheme. �

Theorem 3. Under the G1-DDH assumption in Definition 2, the above DAA
scheme is user-controlled-anonymous. More specifically, if there is an adver-
sary A that succeeds with a non-negligible probability to break user-controlled-
anonymity of the scheme, then there is a simulator S running in polynomial
time that solves the G1-DDH problem with a non-negligible probability.

Proof. We will show how an adversary A that succeeds with a non-negligible
probability to break user-controlled-anonymity of the DAA scheme may be used
to construct a simulator S that solves the G1-DDH problem. Let (P, [a]P, [b]P ,
[c]P) ∈ G4

1 and a, b, c ∈ Z∗
p be the instance of the G1-DDH problem that we

wish to answer whether [c]P is equal to [a · b]P or not. We now describe the
construction of the simulator S, which performs the following game with A, as
defined in Section A.

In the initial of the game, S runs Setup (or takesA’s input) to create an issuer,
which is named by an identifier KI and which is of two issuer public keys, say

A (Corrected) DAA Scheme Using Batch Proof and Verification 319

i0 and i1. Each public key is presented as (G1,G2,GT , p, t̂, P1, P2, H1, H2, H3,
H4, H5, Hα, Hβ, ipk = (X,Y) = ([x]P2, [y]P2) and its corresponding secret key
is presented as isk = (x, y). All the values of the public and secret keys are
known to A. For the purpose of simplicity, we do not ask these two keys to be
completely different to each other. We only assume that these two public keys
have different P1 values and their H3 functions are each relevant to their P1

values. Note that actually it does not matter if some other values between these
two keys are different from each other, although it is not required for the purpose
of our proof. Throughout the proof, except for some individual specification, we
do not use different notation to distinguish these two keys.

More specifically, in the first key for i0, P1 = P , and in the second one for i1,
P1 = [b]P . In both of the public keys, H3(w) = [rw]P1 ∈ G1, where rw is chosen
uniformly at random in Z∗

p. Note that since these two H3 functions make use of
different P1 as the base, so for the same input w value, their outputs of H3 are
different to each other. Throughout the proof specification, /ib, where b = {0, 1},
indicates which issuer’s public key is associated with.
S creates algorithms to respond to queries made by A during its attack, including
three random oracles denoted by H2, H3 and H5 in the DAA scheme.

To maintain consistency between queries made by A, S keeps the following
lists: Li for i = 2, 3, 5 stores data for query and response pairs to random oracle
Hi. Ljc stores data for query and response records for Join queries and Corrupted
queries. Each item of Ljc is {ID/ib, f , F, cre, c}, where c = 1 means that the
corresponding signer is corrupted and c = 0 otherwise. Ls stores data for query
and response records for Sign queries. Each item of Ls is {ID/ib,m, bsn, σ, s},
where s = 1 means that bsn = ⊥ and s = 0 means that bsn �= ⊥ under the
Sign query. At the beginning of the simulation, S sets all the above lists empty.
An empty item is denoted by the symbol *. During the game, A will asks the
Hi queries up to qi times, asks the Join query up to qj times, asks the Corrupt
query up to qc times, and asks the Sign query up to qs times. All of these time
values are polynomial.

Simulator: H2(m). If (m,h2) ∈ L2, return h2. Else choose h2 uniformly at
random from Z∗

p; add (m,h2) to L2 and return h2.

Simulator: H3(m)/ib. Ifm has already been an entry of the H3/ib query, i.e. the
item (m,w, h3/ib) for an arbitrary w and h3/ib exists in L3, return h3/ib. Else
choose v from Z∗

p uniformly at random; compute h3/ib←[v]P1; add (m, v, h3/ib)
to L3 and return h3/ib.

Simulator: H5(m). If (m,h5) ∈ L5, return h5. Else choose h5 uniformly at
random from Z∗

p; add (m,h5) to L5 and return h5.

Simulator: Join(ID). At the beginning of the simulation choose α, β uniformly
at random from {1, ..., qj}. We show how to respond to the i-th query made by
A below. Note that we assume A does not make repeat queries, but we also
assume that for each query, the Join protocol could be run twice, one with i0
and the other with i1. Although it seems redundant for the query of every ID

320 E. Brickell, L. Chen, and J. Li

to be run twice, it is necessary for i = α or β. We use IDX/ib, b ∈ {0, 1}, to
indicate the signer identity IDX associated with ib.

– If i = α and in the run associated with i0, set Fα ← [a]P (i.e. [a]P1); run
Joint with A to get creα, and add {IDα/i0, ∗, Fα, creα, 0} to Ljc. Note that
since S does not know the value fα = a (which is indicated as ∗ in Ljc),
it is not able to compute (v, w) by following the Schnorr signature scheme.
However S can forge the signature by controlling the random oracle of H2

as follows: randomly choose w and v and compute U = [w]P1 − [v]Fα. The
only thing S has to take care of is checking the consistency of the L2 entries.
S verifies the validation of creα before accepting it. This is done by verifying
(c, s) values in the Join protocol.

– If i = β and in the run associated with i1, set Fβ ← [c]P (i.e. [c/b]P1); do
the same thing as in the previous item to get creβ .

– Else, including i = α with i1 and i = β with i0, choose f uniformly at
random from Z∗

p; compute F = [f]P1, if F = [a]P1 or [b]P1, abort outputting
“abortion 0”; else run Joint with A to get cre; verify cre before accept it
and then add (ID/ib, f, F, cre, 0) in Ljc.

Simulator: Corrupt(ID). We assume that A makes the queries Join(ID) be-
fore it makes the Corrupt query using the identity. Otherwise, S answers the
Join query first. Find the entry (ID/ib, f, F, cre, 0) in Ljc, return f and update
the item to (ID/ib, f, F, cre, 1).

Simulator: Sign(ID,m, bsn). Let m′ be the input message A wants to sign,
and nV ∈ {0, 1}t be a nonce chosen by A, so m = (m′, nV). We assume that A
makes the queries Join(ID) before it makes the Sign query using the identity.
Otherwise, S answers the Join query first. We have the following multiple cases
to consider.

Case 1: ID/ib �= IDα/i0 and ID/ib �= IDβ/i1. Find the entry (ID/ib, f , F , cre,
0/1) in Ljc, compute σ ← Sign, add (ID/ib,m, bsn, σ, 0/1) to Ls and respond
with σ.

Case 2: ID/ib = IDα/i0. S is not able to create such a signature since S
does not know the corresponding secret key. But S is able to forge the sig-
nature by controlling the random oracles of H3 and H5. S finds the entry
(IDα/i0, ∗, Fα, creα = (Aα, Bα, Cα, Dα), 0) in Ljc, and forges σ by performing
the following steps:

1. When bsn = ⊥, set J = ⊥ and K = ⊥.
2. When bsn �= ⊥, take the given bsn, search whether bsn is an entry of L3; if

yes, retrieve the corresponding v and h3 = [v]P1. With a new input of L3,
query H3 to get v and h3, and set J←h3 = [v]P1 = [v]P and K←[v]([a]P).

3. Choose random l←Z∗
p and compute R←[l]A, S = [l]B, T = [l]C and W =

[l]D.
4. Compute str←R‖S‖T ‖W‖J‖K‖bsn‖nv.
5. Choose s ∈ Z

∗
p at random.

A (Corrected) DAA Scheme Using Batch Proof and Verification 321

6. Choose h at random; search whether h is an entry of L5; if yes, go back to
the beginning of this item.

7. Computer t0 = Hα(J,K, S,W) and t1 = Hβ(J,K, S,W).
8. Compute V = [t0]S + [t1]J if bsn �= ⊥ or V = S if bsn = ⊥.
9. Compute Z = [t0]W + [t1]K if bsn �= ⊥ or V = S if bsn = ⊥.
10. Compute U←[f]V − [c]Z.
11. Set w = U‖V ‖H4(str)‖m. Search whether w is an entry of L5; if yes, go back

to the beginning of the item of choosing s; otherwise, add (w, h) in L5.
12. Output σ = (R,S, T,W,K, h, s).
13. Add (IDα/i0,m, bsn, σ, 1/0) to Ls.

Case 3: ID/ib = IDβ/i1. Again, S cannot create this signature properly without
the knowledge of fβ. S forges the signature in the same way as in Case 2 above,
except when bsn �= ⊥, setting J = h3 = [v]P1 = [v]([b]P) and K = [v]([c]P).
At the end of Phase 1, A outputs a message m, a basename bsn, two identities

{ID0, ID1}. If {ID0, ID1} �= {IDα, IDβ}, S aborts outputting “abortion 1”.
If bsn = ⊥, S aborts outputting “abortion 2”. We assume that Join has already
been queried at IDα and IDβ by A associated with both i0 and i1. If this is
not the case we can define Join at these points as we wish i.e. as for IDα/i0,
Fα = [a]P and for IDβ/i1, Fβ = [c]P . Neither ID0 nor ID1 should have been
asked for the Corrupt query and the Sign query with the same bsn �= ⊥ by fol-
lowing the definition of the game defined in Section A.

S chooses a bit b at random, and generates the challenge in the same way as
Case 2 or 3 of the Sign query simulation, by querying Sign(IDα, m, bsn) with
i0 if b = 0 or Sign(IDβ , m, bsn) with i1 otherwise. S returns the result σ∗ to A.

In Phase 2, S and A carry on the query and response process as in Phase 1.
Again, A is not allowed to make any Corrupt query to either ID0 or ID1 and to
make any Sign query to either ID0 or ID1 with the same bsn �= ⊥. At the end
of Phase 2, A outputs b′. If b′ = b, S outputs 0, which means [c]P �= [a · b]P ;
otherwise S outputs 1, which means [c]P = [a · b]P .

Let ε be the probability that A succeeds in breaking the anonymity game.
Suppose S does not abort during the above simulation. If c �= a · b, S emulates
the anonymity game perfectly, i.e., Pr[b = b′] = 1/2 + ε. If c = a · b, then the
private keys for ID0/i0 and ID1/i1 are identical and thus the signature σ∗ is
independent of b. It follows that Pr[b = b′] = 1/2. Therefore, assuming S does
not abort, it has advantage at least ε/2 in solving the G1-DDH problem.

We can argue that creating two issuer public keys in the game does not make
the simulation distinguishable from the real DAA scheme. In the formal defini-
tion of DAA specified in Section A, a system can involves multiple issuers, signers
and verifiers; each signer can obtain multiple DAA credentials associated with
the same DAA secret. For the flexibility, the signer’s DAA secret f is relevant to
the issuer’s identifier KI , which could be the issuer’s root public key as specified
in [46] or the issuer’s partial public parameters which is used by the TPM. In
our proof, we only require that the two issuer public keys are associated with
the same KI value, and a single TPM DAA secret f could naturally be com-
puted and then associated with the two different issuer pubic keys. Therefore

322 E. Brickell, L. Chen, and J. Li

the adversary A should not be able to notice any difference between the real
DAA scheme and the simulation based on the double issuer public keys.

Let us now consider how our simulation could abort i.e. describe events that
could cause A’s view to differ when run by S from its view in a real attack.

It is clear that the simulations for H2, H3 and H5 are indistinguishable from
real random oracles.

If the event abortion 0 happens, S gets the value a or b, S can compute
[a · b]P and thus to solve the DDH problem (because the DDH problem is weaker
than the CDH problem). Since S chooses its value uniformly at random from
Z∗
p, the chance of this event happening is negligible.
The event abortion 1 happens only if {ID0, ID1} �= {IDα, IDβ}. Since

IDα and IDβ are chosen at random, the probability of this case is at least
1/(qj(qj − 1)).

The event abortion 2 happens only if bsn = ⊥. We can see this case does
not affect validation of the simulation. The reason is that a signature σ without
(J,K) does not provide A any useful information to win the game, because ev-
ery value in the signature is either a random distribution or being masked by a
random l. Actually, this argument is required even in the case of bsn �= ⊥.

Based on the above discussion, the probability that S does not abort the game
at some stage and produces the correct output is non-negligible, since it follows
the fact that A wins the game with a non-negligible probability. �

Theorem 4. Under the blind-4 bilinear LRSW assumption and the Gap-DLP
assumption in G1, the above DAA scheme is user-controlled-traceable. More
specifically, if there is an adversary A that succeeds with a non-negligible proba-
bility to break user-controlled-traceability of the scheme, then there is a simulator
S running in polynomial time that solves the blind-4 bilinear LRSW problem or
the Gap-DLP problem with a non-negligible probability.

Proof. We will show how an adversary A that succeeds with a non-negligible
probability to break user-controlled-traceability of the DAA scheme may be used
to construct a simulator S that solves the blind-4 bilinear LRSW problem or that
solves the Gap-DLP problem in G1. Let X,Y ∈ G2, X = [x]P2, Y = [y]P2 ∈ G2

and (A,B = [y]A,C = [x+ x · y · m]A), D = [m]B ∈ G4
1 ← OLRSW ([m]P1, x, y)

be the instance of the blind-4 bilinear LRSW problem that we wish to provide
(m̃, Ã, B̃, C̃, D̃) such that m̃ �= 0, B̃ = [y]Ã and C̃ = [x+ x · y · m̃]Ã, D̃ = [m̃]B̃
where [m̃]P1 has not be queried to the oracle O before. Let F ∗ = [f∗]P1 ∈ G1

and [f∗]J ← OGap−DLP (F
∗, J) be the instance of the Gap-DLP problem, that

we wish to provide f∗ ∈ Zq.
We now describe the construction of the simulator S. S performs the following

game with A, as defined in Section A. There are two cases for the initial process
in the user-controlled-traceability game, each referring to one performance as
follows.

The first performance covers the initial Case 1 of the game, where S sets
I’s public parameters, namely par, using the blind-4 bilinear LRSW challenge
as (G1,G2,GT , t̂, q, P1, P2, H1, H2, H3, H4, H5, Hα, Hβ , X, Y) and secret key,

A (Corrected) DAA Scheme Using Batch Proof and Verification 323

namely isk, as (x, y). S gives par to A. Note that S does not know isk. It also
creates algorithms to respond to queries made by A during its attack.

S sets three random oracles H2, H3 and H5 in the same way as in the proof
of Theorem 3. The other hash functions are not random oracle, but still hold
the properties of pre-image resistance, collision resistance and output uniform
random distribution. To maintain consistency between queries made by A, S
keeps the following lists: Li for i = 2, 3, 5 stores data for query and response
pairs to random oracle Hi. Ljc stores data for query and response records for
Join queries and Corrupted queries. Each item of Ljc is {ID, f, F, cre, c}, where
c = 1 means that the corresponding signer is corrupted (via either Case 2 of
the Join query or the Corrupt query) and c = 0 otherwise. Note that the set
of f values with c = 1 will be used as the RogueList list. Ls stores data for
query/response records for Sign queries. Each item of Ls is {ID,m, bsn, σ, s},
where s = 1 means that bsn = ⊥ under the Sign query and s = 0 means that
bsn �= ⊥ under the Sign query. At the beginning of the simulation, S sets all the
above lists empty. An empty item is denoted by the symbol *. During the game,
A will asks the Hi queries up to qi times, asks the Join query up to qj times,
asks the Corrupt query up to qc times, and asks the Sign query up to qs times.
All of the time values are polynomial.

Simulator: H2(m). The same as in the proof of Theorem 3.

Simulator: H3(m). If m has already been an entry of the H3 query, return
h3. Else choose j from Z∗

q uniformly at random, compute h3 = [j]P1 ∈ G1, add
(m, j, h3) to L3, and return h3.

Simulator: H5(m). The same as in the proof of Theorem 3.

Simulator: Join(ID). We assume A does not make repeat queries. Given a
new ID from A (Case 1). If ID �= IDm, S chooses f ∈ Z∗

q uniformly at random,
computes F = [f]P1, asks O with the entry F to obtain cre = (A,B,C,D),
adds {ID, f, F, cre, 0} to Ljc. Alternatively, S receives a new pair of ID and F
from A (Case 2), S asks O with the entry F to provide cre = (A,B,C,D), adds
{ID, ∗, F, cre, 1} to Ljc. Finally S responds with cre together with a proof c, s.
In case S does not know the value f , he can forge (c, s) based on the random
oracle H2.

Simulator: Corrupt(ID). We assume that A makes the queries Join(ID)
(Case 1) before it makes the Corrupt query using the identity. Otherwise, S
answers the Join (Case 1) query first. Find the entry (ID, f, F, cre, 0) in Ljc,
return f and update the item to (ID, f, F, cre, 1). We assume that A does not
ask a Corrupt query on ID, which has been made for the Join (Case 2) query.

Simulator: Create-bsnKey(ID, J). We assume that A makes both the query
Join(ID) and query J = H3(bsn) for some input bsn value to obtain J as the
answer before it makes the Create-bsnKey query using the identity and the value
J . If the query Join(ID) has not been asked, S answers the Join query (Case 1)
first. If the query J = H3(bsn) has not been made, S queries it first. Find the

324 E. Brickell, L. Chen, and J. Li

entry (., j, J) in L3 where equation J = [j]P1 holds and the entry (ID, ., F, ., 0/1)
in Ljc. Compute K = [j]F and return it.

Simulator: Static-DH(ID, J). We assume that A makes the query Join(ID)
(Case 1) before it makes this query; otherwise, S answers the Join (Case 1)
query first. Find the entry (ID, f, F, ., 0/1) in Ljc where equation F = [f]P1

holds computes K = [f]J , and returns it. We assume that A does not ask a
Static-DH query on ID, which has been made for the Join (Case 2) query.

Simulator: Sign(ID,m, bsn). Let m′ be the input message A wants to sign,
nV ∈ {0, 1}�H be a nonce chosen by A, so m = (m′, nV). We assume that A
makes the queries Join(ID) (Case 1) before it makes the Sign query using the
identity. If the query Join(ID) has not been asked before, S answers the Join
query (Case 1) first. Find the entry (ID, f, F, cre, 0/1) in Ljc, compute σ ← Sign.
In the end, S adds (ID,m, bsn, σ, 1/0) to Ls and respond with σ. We assume
that A does not ask a Sign query on ID, which has been made for the Join (Case
2) query.

Simulator: Semi-sign(ID,m, V, c).We assume that A makes the queries (Case
1) Join(ID) before it makes the Semi-sign query using the identity. Otherwise,
S answers the Join query (Case 1) first. Find the entry (ID, f, F, cre, 0/1) in
Ljc, compute (h, s) by following the TPM’s action in Sign, add (ID,m, ., σ =
(∗, ∗, ∗, ∗, ∗, h, s), .) to Ls and respond with (h, s). We assume that A does not
ask a Semi-sign query on ID, which has been made for the Join (Case 2) query.
Note that A can query Semi-sign with the same entry multiple times. S will
respond with different (h, s) values.

At the end of the phase of probing above, A outputs an identity ID∗, a message
m∗, a nonce n∗

V , a basename bsn∗ and a signature σ∗ = (R∗, S∗, T ∗,W ∗,K∗,
h∗, s∗). We consider the following two cases:

– Case 1. Suppose Verify(σ∗) = 1, ID∗ and (ID∗,m∗, bsn∗, σ∗, 1/0) (or (ID∗,
m∗, bsn∗, σ∗ = (∗, ∗, ∗, ∗, ∗, h∗, s∗), ∗) is not in Ls. S rewinds A to extract the
knowledge of f∗, satisfying Z∗ = [f∗]V . There are two situations, dependent
on whether bsn = ⊥ or not:

1. When bsn∗ = ⊥, Z∗ = W ∗ and V ∗ = S∗. The value f∗ �∈ RogueList
(implied in Verify(σ∗) = 1). The tuple (f∗, R∗, S∗, T ∗,W ∗) are a valid
blind-4 bilinear LRSW solution.

2. When bsn∗ �= ⊥, Z∗ = [t∗0]S∗ + [t∗1]K∗, t∗0 = Hα(J
∗,K∗, S∗,W ∗), t∗1 =

Hβ(J
∗,K∗, S∗,W ∗), J∗ = H3(bsn

∗), t̂(R∗, Y) = t̂(S∗, P2), and t̂(T ∗, P2)
= t̂(R∗ + W ∗, X). Whether the tuple (f∗, R∗, S∗, T ∗,W ∗) are a valid
blind-4 bilinear LRSW solution or not depends on whether the equation
f∗ = logV ∗ Z∗ = logS∗ W ∗ = logJ∗ K∗ holds or not. The signature σ∗ is
a signature version of the batch proof and verification scheme described
in Subsection 2.2. The security level is addressed using the length of two
hash functions Hα : G4

1 → {0, 1}L and Hβ : G4
1 → {0, 1}L. Theorem 1

shows that given t0 and t1 are random distribution (which is assumed
to be held with the outputs of Hα and Hβ), if logV ∗ Z∗ �= logS∗ W ∗ or

A (Corrected) DAA Scheme Using Batch Proof and Verification 325

logV ∗ Z∗ �= logJ∗ K∗, logV Z = log[t0]S+[t1]J [t0]W+[t1]K is satisfied with

a probability no more than 2−L. Therefore, if the value L is sufficiently
large, the tuple (f∗, R∗, S∗, T ∗,W ∗) are a valid blind-4 bilinear LRSW
solution.

– Case 2. Suppose bsn �= ⊥. If there is no any entry (ID,m′, bsn, σ′, 1/0)
for the arbitrary pair of m′ and σ′ is found in Ls, A has not managed to
break user-controlled-traceability. Otherwise, S runs Link(σ, σ′). If the out-
put of Link is 1 or ⊥, again, A has not managed to break user-controlled-
traceability. Otherwise, there exist the following pair of data sets σ∗ =
(R∗, S∗, T ∗,W ∗,K∗, h∗, s∗) and σ′ = (R′, S′, T ′,W ′,K ′, h′, s′). Both σ∗ and
σ′ are associated with the same bsn and S has maintained the consistency
of the random oracle H3 outputs, therefore, they have J∗ = J ′. The only
thing to make K∗ �= K ′ happen is that A has managed to create a different
f value for ID∗. Then S can use the same trick as in Case 1 to extract a
right solution of the blind-4 bilinear LRSW problem from A.

In either of the above two cases, S can solve the blind-4 bilinear LRSW prob-
lem with a non-negligible probability if A wins the game with a non-negligible
probability. The theorem follows.

In the second performance, S performs the following game with A, as de-
fined in Initial Case 2 and Join Case 3 in Section A. In the initial of the game,
S sets the system public parameters par as (G1,G2,GT , p, t̂, P1, P2, H1, H2,
H3, H4, H5, Hα, Hβ). S sends A the values of par and receives I’s public key
ipk = (X,Y) = ([x]P2, [y]P2) from A. Note that the values x, y, namely isk,
are not known to S, although S does verify that the value X,Y is in the right
group G2.

S also creates algorithms to respond to queries made by A during its attack. S
sets three random oraclesH2, H3 and H5, maintains consistency between queries
made by A, and keeps the lists of Li (for i = 2, 3, 5), Ljc and Ls in the same
way as in Performance 1. During the game, A will asks the Hi queries up to qi
times, asks the Join query up to qj times, asks the Corrupt query up to qc times,
and asks the Sign query up to qs times. All of the time values are polynomial.

Simulator: H2(m). The same as in the proof of Theorem 3.

Simulator: H3(m). If m has already been an entry of the H3 query, i.e. the
item (m,w, h3) for an arbitrary w and h3 exists in L3, return h3. Else choose
v from Z∗

p uniformly at random; computer h3←[v]P1; add (m, v, h3) to L3 and
return h3.

Simulator: H5(m). The same as in the proof of Theorem 3.

Simulator: Join(ID). At the beginning of the performance, choose α uniformly
at random from {1, ..., qj}. We show how to respond to the i-th query made by
A below. Note that we assume A does not make repeat queries.

– If i = α, set Fα = F ∗ as in the Gap-DLP problem instance; run Joint with A
to get creα, and add {IDα, ∗, Fα, creα, 0} to Ljc. Note that since S does not

326 E. Brickell, L. Chen, and J. Li

know the value fα (which is indicated as ∗ in Ljc), it is not able to compute
(v, w) by following the Schnorr signature scheme. However S can forge the
signature by controlling the random oracle of H2 as the same as it did in the
proof of Theorem 3. S verifies the validation of creα before accepting it.

– Else choose f uniformly at random from Z∗
p; compute F←[f]P1, if F = Fα,

abort outputting “abortion 0”; else run Joint with A to get cre; verify cre
before accept it and then add (ID, f, F, cre, 0) into Ljc.

Simulator: Corrupt(ID). The same as in Performance 1.

Simulator: Create-bsnKey(ID, J). The same as in Performance 1.

Simulator: Static-DH(ID, J). We assume that A makes the query Join(ID)
(Case 1) before it makes this query; otherwise, S answers the Join (Case 1) query
first. Find the entry (ID, f, F, ., 0/1) in Ljc where equation F = [f]P1 holds and
compute K = [f]J , If ID = IDα, S queries OGap−DLP (J) associated with Fα

to obtain K. S returns K. We assume that A does not ask a Static-DH query
on ID, which has been made for the Join (Case 2) query.

Simulator: Sign(ID,m, bsn). We assume that A makes the queries Join(ID)
before it makes the Sign query using the identity. Otherwise, S first answers the
Join query (as described before for this performance). Find the entry (ID, f, F ,
cre, 0/1) in Ljc. If ID �= IDα, compute σ ← Sign; otherwise, S does not know
the value f , and it forges a σ using the same techniques as in the proof of The-
orem 3. In the end, S adds (ID,m, bsn, σ, 1/0) to Ls and responds with σ.

Simulator: Semi-sign(ID,m, V, c).Again, we assume that A makes the queries
Join(ID) before it makes the Semi-sign query using the identity. Otherwise, S an-
swers the Join query first. Find the entry (ID, f, F, cre, 0/1) in Ljc. If ID �= IDα,
compute (h, s) by following TPM’s action in Sign, otherwise, S does not know
the value f , and it forges the triple (h, s) using the same techniques as it forges
the signature σ. Add (ID,m, bsn, σ = (∗, ∗, ∗, ∗, ∗, h, s), 1/0) to Ls and respond
with (h, s).

At the end of the phase of probing above, A outputs an identity ID∗, a
message m∗, a basename bsn∗ and a signature σ∗. If ID �= IDα, S aborts
outputting “abortion 1”. Otherwise, we consider the following situation:

If Verify(σ∗) = 1 and (ID∗,m∗, bsn∗, σ∗, 1/0) (or (ID∗,m∗, bsn∗, σ∗ = (∗, ∗, ∗,
∗, ∗, h, s), 1/0) is not in Ls, S rewinds A to extract the knowledge of f∗. S
outputs the value f∗ as the Gap-DJP problem solution. This value along with
the corresponding cre is a valid solution for the blind-4 bilinear LRSW problem.

By following the same discussion in the proof of Theorem 3, we can show how
our simulation could only abort with reasonably small probabilities. abortion
1 happens only if ID∗ �= IDα. Since IDα is chosen at random, the probability
of this case is at least 1/qj.

In either of the above two performances, S can solve the blind-4 bilinear
LRSW problem with a non-negligible probability if A wins the game with a

A (Corrected) DAA Scheme Using Batch Proof and Verification 327

non-negligible probability. In the second performance, S can also solve the Gap-
DLP problem with a non-negligible probability if A wins the game with a non-
negligible probability. The theorem follows.

�

6 Implementation Consideration

There are multiple choices on implementing the hash functions Hα and Hβ . Here
are a couple of examples:

1. Use a solo hash function H : G4 → {0, 1}2L, and take the first half of the H
output as Hα and the last half as Hβ .

2. Use a solo hash function H : G4 → {0, 1}L, and let Hα(J,K, S,W) =
H(J,K, S,W) and Hβ(J,K, S,W) = H(S,W, J,K).

3. Use a solo hash function H : G4×{0, 1} → {0, 1}L, and let Hα(J,K, S,W) =
H(0, J,K, S,W) and Hβ(J,K, S,W) = H(1, J,K, S,W).

As same as in the Chen’10 DAA scheme, the corrected DAA scheme follows the
approach of [30], i.e. splitting the proof of equality of discrete logarithms from
the credential verification step, we enable the use of batch pairing verification
techniques as proposed in [30]. As surveyed in [34], computing a “product of pair-
ings” is less expensive than computing the pairings independently; the methods
improves verification of a blinded Camenisch-Lysyanskaya signature by around
40%.

7 Performance Comparison

In this section, we compare computational efficiency of the proposed DAA scheme
with the seven existing DAA schemes, and show the result in Table 1. In the
comparison, we do not include the scheme of [26], since it has a number of secu-
rity problems as addressed in [25, 28]; we do not include the Chen’10 scheme [23]
either for the same reason. We also do not include the schemes of [17, 33], since
they do not split the signer role between the TPM and Host.

For the computational cost, we consider the Join protocol and the Sign/Verify
protocol, with respect to each player. We do not specify the computational cost
of the Setup algorithm and its verification, since this is only run once and the
resulting parameters are only verified once by each part. We do not specify
the cost for the linking algorithm either, as it is closely related to that of the
verification algorithm. We also do not specify the cost for the RogueList check
in the Join protocol, since it is an optional process. In the table, we let n denote
the number of keys in the verifier’s rogue secret key list.

For the RSA-DAA scheme, we let GN denote the cost of an exponentiation
modulo N , and Gm

N denote the cost of a multi-exponentiation ofm values modulo
N . Note, that a multi-exponentiation with m exponents can often be performed
significantly faster than m separate exponentiations, which is why we separate

328 E. Brickell, L. Chen, and J. Li

Table 1. Computational Cost of the Eight DAA Schemes

In Protocol TPM Host Issuer Verifier

BCC Join 3Gρ + 2G3
N 1Gρ + 1G2

N + Pv nGρ + 2GN

[12] +1G4
N+

1G2
ρ + Pc

Sig/Ver 3Gρ + 1G3
N 1Gρ + 1GN + 1G2

N

+2G3
N + 1G4

N 1G2
ρ + 2G4

N + 1G6
N + nGρ

BCL Join 3G1 6P 2G1 + 2G2
1

[14] Sig/Ver 3GT 3G1 + 1GT + 3P 1G2
T + 1G3

T + 5P + (n + 1)GT

CMS Join 3G1 4P 2G1 + 2G2
1

[28] Sig/Ver 2G1 + 1GT 3G1 + 1P 1G2
1 + 1G2

T + 5P + nG1

CF Join 3G2
1 + (2P) (2P) 1G2

1 + 1G3
1

[29] Sig/Ver 2G1 + 1G2
T 1G1 + 2G2

1 + 1G3
1 + 1G3

T 1G2
1 + 2G3

1 + 1G5
T + 3P + nGT

Chen Join 2G1 1G1 + 2P 1G1 + 1G2
1

[22] Sig/Ver 2G1 + 1GT 1G1 + 1G3
T 1G2

1 + 1G2
2 + 1G4

T + 1P + nG1

CPS Join 3G1 1P 4 2G1 + 2G2
1

[30] Sig/Ver 3G1 4G1 2G2
1 + 1P 4 + nG1

BL Join 2G1 1G1 + 2P 1G1 + 1G2
1

[18] Sig/Ver 3G1 1G1 + 1G2
1 + 1GT + 1P 1G2

1 + 1G2
2 + 1G4

T + 1P + nG1

this Join 2G1 1P 4 2G2
1 + G

3
1

paper Sig/Ver 1G1/2G1 4G1 + 1G2
1(L) 1G2

1 + 1P 4 + nG1

this out. We let Gρ denote the cost of an exponentiation modulo Γ (recall Gρ

is a subgroup of F∗
Γ), and Gm

ρ denote the cost of a multi-exponentiation of m
values modulo Γ . In addition we let Pc denote the cost of generating a prime
number of the required size and Pv the cost of verifying that a given number of
the required size is prime.

For the ECC-DAA schemes, we let Gi (i = {1, 2, T }) denote the cost of an ex-
ponentiation in the group Gi, and Gm

i denote the cost of a multi-exponentiation
of m values in the group Gi. We also let P denote the cost of a pairing compu-
tation, and let Pm denote the cost of a batch pairing verification of m pairings,
as described in Section 6. In additions, we let Gi(L) denote the cost of an expo-
nentiation in the group Gi with the size of the exponent being L instead of the
size of the group order q. In the signing process of our proposed DAA scheme,
if bsn =⊥, the TPM computes one scalar multiplication in G1; if bsn �=⊥, the
TPM computes two. We let 1G1/2G1 denote the cost of this computation.

We recall the following two observations made in [22]. In [29], the rogue rag-
ging operation is not defined in the Verify algorithm, but it can be easily added
in the same way as every existing DAA scheme does. So in Table 1, we add this
computation n · GT . Again in this scheme, the pairing computation in the Join
protocol can be done by the Host instead of the TPM, because it is expensive
to implement the pairing operation in TPMs. As the same as in [22], we mark
this change as (2P) in Table 1.

A (Corrected) DAA Scheme Using Batch Proof and Verification 329

When a DAA scheme is used in the trusted computing environment, as the
original design in [12], the most significant performance is a TPM’s computa-
tional cost, particularly the TPM’s computational cost in the signing algorithm,
since obviously the join algorithm is performed only for obtaining the DAA cre-
dential, so much less frequently than the signing algorithm is performed. As
shown in the table, our proposed DAA scheme has the most efficient computa-
tional cost for the TPM in the Sign/Verify protocol. For each signing process,
the TPM is only required to compute one exponentiation in G1 if linkability
is not required and two exponentiations in G1 if linkability is required. But in
the other DAA schemes in the table, this cost is at least three exponentiations.
Based on this figure, our proposed scheme has the significant advantage com-
pared with all the other DAA schemes in the table. Our scheme requires an
extra computational cost of 1G2

i(L) for the Host in the signing process. When L

is significantly smaller than |q|, which is true in most of applications, this extra
cost is reasonably small. On the other hand, the Host has much more resources
than the TPM anyway.

We do not discuss the communication and storage cost in details. The con-
tribution made in this paper does not change the communication and storage
cost from the original scheme in [30] significantly, except a minor improvement
that we remove the value J from the signature, since it can be computed by the
verifier from the agreed value of bsn.

8 Conclusions

In this paper, we have presented an attack to the Chen’10 DAA scheme which
uses an efficient batch proof and verification protocol to prove discrete log equal-
ity between two pairs of group elements. The batch proof protocol in [23] assume
that both the prover and verifier agree on the two pairs before the prover per-
forms the batch proof. In the DAA scheme [23], however, the DAA signer does
not need to commit the pairs. This leads to our attack. We provided a patch to
this broken DAA scheme by proposing a new batch proof and verification pro-
tocol. The new batch proof protocol requires two additional hash computations
by the prover. We integrated the new batch proof and verification protocol into
the DAA scheme and proved our corrected DAA scheme is secure in the random
oracle model under the blind-4 bilinear LRSW assumption, the DDH assump-
tion, and the gap-DL assumption. Our new DAA scheme does not increase any
computational cost of a TPM from the Chen’10 DAA scheme.

Acknowledgements. The second author would like to thank Colin Boyd and
Kun Peng for their invaluable discussion on this work. All the authors would
like to thank the anonymous reviewers of INTRUST 2011 for their thoughtful
comments.

330 E. Brickell, L. Chen, and J. Li

References

1. Au, M.H., Susilo, W., Mu, Y.: Constant-Size Dynamic k-TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006)

2. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From Identification to Sig-
natures via the Fiat-Shamir Transform: Minimizing Assumptions for Security and
Forward-Security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002)

3. Backes, M., Maffei, M., Unruh, D.: Zero knowledge in the applied Pi–calculus
and automated verification of the direct anonymous attestation protocol. In: IEEE
Symposium on Security and Privacy – SSP 2008, pp. 202–215 (2008)

4. Balfe, S., Lakhani, A.D., Paterson, K.G.: Securing peer-to-peer networks using
trusted computing. In: Mitchell (ed.) Chapter 10 of Trusted Computing, pp. 271–
298. IEEE, London (2005)

5. Bellare, M., Garay, J.A., Rabin, T.: Fast Batch Verification for Modular Exponen-
tiation and Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236–250. Springer, Heidelberg (1998)

6. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: For-
mal Definitions, Simplified Requirements, and a Construction Based on General
Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–
629. Springer, Heidelberg (2003)

7. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: The 1st ACM Conference on Computer and Communications
Security, pp. 62–73. ACM Press (1993)

8. Bellare, M., Shi, H., Zhang, C.: Foundations of Group Signatures: The Case of
Dynamic Groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005)

9. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous
attestation with user-controlled linkability (manuscript)

10. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

11. Boyd, C., Pavlovski, C.: Attacking and Repairing Batch Verification Schemes. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 58–71. Springer, Hei-
delberg (2000)

12. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: The 11th
ACM Conference on Computer and Communications Security, pp. 132–145. ACM
Press (2004)

13. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation in context.
In: Mitchell (ed.) Chapter 5 of Trusted Computing, pp. 143–174. IEEE, London
(2005)

14. Brickell, E., Chen, L., Li, J.: Simplified security notions for direct anonymous attes-
tation and a concrete scheme from pairings. Int. Journal of Information Security 8,
315–330 (2009)

15. Brickell, E., Chen, L., Li, J.: A New Direct Anonymous Attestation Scheme from
Bilinear Maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS,
vol. 4968, pp. 166–178. Springer, Heidelberg (2008)

16. Brickell, E., Li, J.: Enhanced privacy ID: A direct anonymous attestation scheme
with enhanced revocation capabilities. In: The 6th ACM Workshop on Privacy in
the Electronic Society – WPES 2007, pp. 21–30. ACM Press (2007)

A (Corrected) DAA Scheme Using Batch Proof and Verification 331

17. Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing. Cryptology ePrint
Archive. Report 2009/095 (2009), http://eprint.iacr.org/2009/095

18. Brickell, E., Li, J.: A pairing-based DAA scheme furhter reducing TPM resources.
In: This proceedings

19. Camenisch, J., Groth, J.: Group Signatures: Better Efficiency and New Theoretical
Aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133.
Springer, Heidelberg (2005)

20. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials
from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

21. Canard, S., Traore, J.: List signature schemes and application to electronic voting.
Presented in International Workshop on Coding and Cryptography (2003); see
also the journal version of this paper by Canard, S., Schoenmakers, B., Stam, M.,
Traore, J.: List signature schemes. Discrete Applied Mathematics 154(2), 189–201
(2006)

22. Chen, L.: A DAA Scheme Requiring Less TPM Resources. In: Bao, F., Yung,
M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 350–365. Springer,
Heidelberg (2010); the full paper is in Cryptology ePrint Archive. Report 2010/008,
http://eprint.iacr.org/2010/008

23. Chen, L.: A DAA Scheme Using Batch Proof and Verification. In: Acquisti, A.,
Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 166–180.
Springer, Heidelberg (2010)

24. Chen, L., Cheng, Z., Smart, N.P.: Identity-based key agreement protocols from
pairings. Int. Journal of Information Security 6, 213–242 (2007)

25. Chen, L., Li, J.: A note on the Chen-Morrissey-Smart DAA scheme (preprint)

26. Chen, L., Morrissey, P., Smart, N.P.: Pairings in Trusted Computing. In: Galbraith,
S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 1–17. Springer,
Heidelberg (2008)

27. Chen, L., Morrissey, P., Smart, N.P.: On Proofs of Security for DAA Schemes. In:
Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp.
156–175. Springer, Heidelberg (2008)

28. Chen, L., Morrissey, P., Smart, N.P.: DAA: Fixing the pairing based protocols.
Cryptology ePrint Archive. Report 2009/198 (2009),
http://eprint.iacr.org/2009/198

29. Chen, X., Feng, D.: Direct anonymous attestation for next generation TPM. Jour-
nal of Computers 3(12), 43–50 (2008)

30. Chen, L., Page, D., Smart, N.P.: On the Design and Implementation of an Efficient
DAA Scheme. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS
2010. LNCS, vol. 6035, pp. 223–237. Springer, Heidelberg (2010)

31. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

32. Galbraith, S., Paterson, K., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156, 3113–3121 (2008)

33. Ge, H., Tate, S.R.: A Direct Anonymous Attestation Scheme for Embedded De-
vices. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 16–30.
Springer, Heidelberg (2007)

34. Granger, R., Smart, N.P.: On computing products of pairings. Cryptology ePrint
Archive. Report 2006/172 (2006), http://eprint.iacr.org/2006/172

http://eprint.iacr.org/2009/095
http://eprint.iacr.org/2010/008
http://eprint.iacr.org/2009/198
http://eprint.iacr.org/2006/172

332 E. Brickell, L. Chen, and J. Li

35. Hoshino, F., Abe, M., Kobayashi, T.: Lenient/Strict Batch Verification in Several
Groups. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 81–94.
Springer, Heidelberg (2001)

36. ISO/IEC 11889:2009 Information technology – Security techniques – Trusted Plat-
form Module

37. ISO/IEC 14888-3 Information technology – Security techniques – Digital signatures
with appendix – Part 3: Discrete logarithm based mechanisms

38. Leung, A., Chen, L., Mitchell, C.J.: On a Possible Privacy Flaw in Direct Anony-
mous Attestation (DAA). In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust
2008. LNCS, vol. 4968, pp. 179–190. Springer, Heidelberg (2008)

39. Leung, A., Mitchell, C.J.: Ninja: Non Identity Based, Privacy Preserving Authenti-
cation for Ubiquitous Environments. In: Krumm, J., Abowd, G.D., Seneviratne, A.,
Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 73–90. Springer, Heidelberg
(2007)

40. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym Systems (Extended
Abstract). In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp.
184–199. Springer, Heidelberg (2000)

41. Pashalidis, A., Mitchell, C.J.: Single sign-on using TCG-conformant platforms. In:
Mitchell (ed.) Chapter 6 of Trusted Computing, pp. 175–193. IEEE, London (2005)

42. Peng, K., Boyd, C., Dawson, E.: Batch zero-knowledge proof and verification and
its applications. ACM Trans. Inf. Syst. Secur. 10(2), article 6 (2007)

43. Rudolph, C.: Covert Identity Information in Direct Anonymous Attestation
(DAA). In: Venter, H., Eloff, M., Labuschagne, L., Eloff, J., von Solms, R. (eds.)
SEC 2007. IFIP, vol. 232, pp. 443–448. Springer, Boston (2007)

44. Schnorr, C.P.: Efficient Identification and Signatures for Smart Cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

45. Smyth, B., Ryan, M., Chen, L.: Direct Anonymous Attestation (DAA): Ensuring
Privacy with Corrupt Administrators. In: Stajano, F., Meadows, C., Capkun, S.,
Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 218–231. Springer, Heidelberg
(2007)

46. Trusted Computing Group. TCG TPM specification 1.2. (2003),
http://www.trustedcomputinggroup.org

A Formal Definition and Security Model of DAA

We recall the formal definition of DAA [22], which is a modification of the DAA
security model described in [14] by adding the property of non-frameability (as
described in [8]) or called exculpability (as described in [1]), i.e., the dishonest
issuer and signers together are unable to create a judge-accepted proof that an
honest signer produced a certain valid signature σ0, e.g. it can be linked to some
given signature σ1 signed by the honest signer, unless this honest signer really
did produce this signature σ0.

A DAA scheme involves four types of players: a set of DAA issuers ik ∈ I, TPM
mi ∈ M, host hi ∈ H and verifier vj ∈ V. The index values, k, i, j, are polynomial.
mi and hi form a computer platform in the trusted computing environment and
share the role of a DAA signer. The following three cases are considered in the
security model: (1) neither mi nor hi is corrupted by an adversary, (2) both of

http://www.trustedcomputinggroup.org

A (Corrected) DAA Scheme Using Batch Proof and Verification 333

them are corrupted, and (3) hi is corrupted but notmi. Like in other DAA papers,
we do not consider the case that mi is corrupted but not hi, because mi plays a
principal role of the signer, i.e. holding the private signing key. Throughout the
paper, for the purpose of simplicity, we may omit some of the index values if it
does not occur any confusion; for example, we make use of i instead of ik.

A DAA schemeDAA = (Setup, Join, Sign,Verify, Link) consists of the following
five polynomial-time algorithms and protocols:

– Setup: On input of a security parameter 1t, i uses this randomized algorithm
to produce a pair (isk, par), where isk is the issuer’s secret key, and par is the
global public parameters for the system, including the issuer’s public key ipk,
a description of a DAA credential space C, a description of a finite message
space M and a description of a finite signature space Σ. We will assume that
par are publicly known so that we do not need to explicitly provide them as
input to other algorithms.

– Join: This protocol, run between a signer (mi, hi) and an issuer i, consists of
two randomized algorithms, namely Joint and Joini. mi uses Joint to produce
a pair (tski, commi), where tski is the TPM’s secret key and commi is a
commitment of tski. On input of commi and isk, i uses Joini to produce crei,
which is a DAA credential associated with tski. The value crei is given to
both mi and hi, but the value tski is known to mi only.

– Sign: On input of tski, crei, a basename bsnj (the name string of vj or a
special symbol ⊥), and a message m that includes the data to be signed and
the verifier’s nonce nV for freshness, mi and hi run this protocol to produce
a randomized signature σ on m under (tski, crei) associated with bsnj . The
basename bsnj is used for controlling the linkability.

– Verify: On input of m, bsnj , a candidate signature σ for m, and a set of rogue
signers’ secret keys RogueList, vj uses this deterministic algorithm to return
either 1 (accept) or 0 (reject). Note that how to build the set of RogueList is
out the scope of the DAA scheme.

– Link: On input of two signatures σ0 and σ1, vj uses this deterministic algo-
rithm to return 1 (linked), 0 (unlinked) or ⊥ (invalid signatures). Link will
output ⊥ if, by using an empty RogueList (which means to ignore the rogue
TPM check), either Verify(σ0) = 0 or Verify(σ1) = 0 holds. Otherwise, Link
will output 1 if signatures can be linked or 0 if the signatures cannot be
linked. Note that, unlike Verify, the result of Link is not relied on whether
the corresponding tsk ∈ RogueList or not.

In this security model, a DAA scheme must hold the notions of correctness,
user-controlled-anonymity and user-controlled-traceability. They are defined as
follows.

Correctness. If both the signer and verifier are honest, that implies tski �∈
RogueList, the signatures and their links generated by the signer will be ac-
cepted by the verifier with overwhelming probability. This means that the above
DAA algorithms must meet the following consistency requirement. If

334 E. Brickell, L. Chen, and J. Li

(isk, par) ← Setup(1t),
(tski, crei) ← Join(isk, par), and
(mb, σb) ← Sign(mb, bsnj , tski, crei, par)|b={0,1},
then we must have

1 ← Verify(mb, bsnj, σb, par,RogueList)|b={0,1} and
1 ← Link(σ0, σ1, par)|bsnj �=⊥.

User-Controlled-Anonymity. The notion of user-controlled-anonymity is de-
fined via a game played by a challenger C and an adversary A as follows:

– Initial: C runs Setup(1t) and gives the resulting isk and par to A. Alterna-
tively, C receives par from A with a request for initiating the game, and then
verifies the validation of the par by checking whether each element of the par
is in the right groups or not.

– Phase 1: C is probed by A who makes the following queries:

• Sign. A submits a signer’s identity ID, a basename bsn (either ⊥ or a
data string) and a message m of his choice to C, who runs Sign to get a
signature σ and responds with σ.

• Join. A submits a signer’s identity ID of his choice to C, who runs Joint
with A to create tsk and to obtain cre from A. C verifies the validation
of cre and keeps tsk secret.

• Corrupt. A submits a signer’s identity ID of his choice to C, who re-
sponds with the value tsk of the signer.

– Challenge: At the end of Phase 1, A chooses two signers’ identities ID0 and
ID1, a message m and a basename bsn of his choice to C. A must not have
made any Corrupt query on either ID0 or ID1, and not have made the Sign
query with the same bsn if bsn �= ⊥ with either ID0 or ID1. To make the
challenge, C chooses a bit b uniformly at random, signs m associated with
bsn under (tskb, creb) to get a signature σ and returns σ to A.

– Phase 2: A continues to probe C with the same type of queries that it made
in Phase 1. Again, it is not allowed to corrupt any signer with the identity
either ID0 or ID1, and not allowed to make any Sign query with bsn if
bsn �= ⊥ with either ID0 or ID1.

– Response: A returns a bit b′. We say that the adversary wins the game if
b = b′.

Definition 5. Let A denote an adversary that plays the game above. We denote
by Adv[Aanon

DAA] = |Pr[b′ = b] − 1/2| the advantage of A in breaking the user-
controlled-anonymity of DAA. We say that a DAA scheme is user-controlled-
anonymous if for any probabilistic polynomial-time adversary A, the quantity
Adv[Aanon

DAA] is negligible.

Note that a value is negligible means this value is a function ε(t), which is
said to be negligible in the parameter t if ∀ c ≥ Z>0 ∃ tc ∈ R>0 such that
∀ t > tc, ε(t) < t−c.

A (Corrected) DAA Scheme Using Batch Proof and Verification 335

User-Controlled-Traceability. The notion of User-Controlled-Traceability is
defined via a game played by a challenger C and an adversary A as follows:

– Initial: There are two initial cases. In Initial Case 1. C executes Setup(1t)
and gives the resulting par to A, and C keeps isk secret. In Initial Case 2. C
receives par from A and does not know the value of isk.

– Probing: C is probed by A who makes the following queries:

• Sign. The same as in the game of user-controlled-anonymity.
• Semi-sign. A submits a signer’s identity ID along with the data trans-
mitted from hi to mi in Sign of his choice to C, who acts as mi in Sign
and responds with the data transmitted from mi to hi in Sign.

• Join. There are three join cases of this query; the first two are used
associated with the Initial Case 1, and the last one is used associated
with the Initial Case 2. Suppose that A does not use a single ID for
more than one join case or more than one time.

∗ Join Case 1: A submits a signer’s identity ID of his choice to C, who
runs Join to create tsk and cre for the signer, and finally C sends cre
to A and keeps tsk secret.

∗ Join Case 2: A submits a signer’s identity ID with a tsk value of
his choice to C, who runs Joini to create cre for the signer and puts
the given tsk into the list of RogueList. C responds A with cre.

∗ Join Case 3: A submits a signer’s identity ID of his choice to C, who
runs Joint with A to create tsk and to obtain cre from A. C verifies
the validation of cre and keeps tsk secret.

• Corrupt. This is the same as in the game of user-controlled-anonymity,
except that at the end C puts the revealed tsk into the list of RogueList.

– Forge: A returns a signer’s identity ID, a signature σ, its signed message m
and the associated basename bsn. We say that the adversary wins the game
if either of the following two situations is true:

1. With the Initial Case 1 (A does not have access to isk),

(a) Verify(m, bsn, σ,RogueList) = 1 (accepted), but σ is neither a re-
sponse of the existing Sign queries nor a response of the existing
Semi-sign queries (partially); and/or

(b) In the case of bsn �= ⊥, there exists another signature σ′ associated
with the same identity and bsn, and the output of Link(σ, σ′) is 0
(unlinked).

2. With the Initial Case 2 (A knows isk), the same as the item (a), in the
condition that the secret key tsk used to create σ was generated in the
Join Case 3 (i.e., A does not have access to tsk).

Definition 6. Let A be an adversary that plays the game above. We denote
Adv[Atrace

DAA] = Pr[A wins] as the advantage that A breaks the user-controlled-
traceability of DAA. We say that a DAA scheme is user-controlled-traceable if
for any probabilistic polynomial-time adversary A, the quantity Adv[Atrace

DAA] is
negligible.

336 E. Brickell, L. Chen, and J. Li

Note that in the above game of the user-controlled-traceability, we allow the
adversary to corrupt the issuer. This is an important difference from the game
in [14], since it covers the requirement of non-frameability or called exculpability.

Note also that following this game, if a malicious host without interacting
with a valid TPM can make an honest verifier accept a forged DAA signature,
the adversary (playing a role of the host) can win the game. This is simulated
by using the Semi-sign query.

B Preliminaries - Pairings and Relevant Hard Problems

Our new DAA scheme is based on asymmetric pairings. As discussed in [26], it
will avoid the poor security level scaling problem in symmetric pairings and allow
one to implement the DAA scheme efficiently at hight security levels. Throughout
we let G1 = 〈P 〉,G2 = 〈Q〉 and GT be groups of large prime exponent p ≈ 2t for
security parameter t. All the three groups will be written multiplicatively. If G
is some group then we use the notation G

× to mean the non-identity elements
of G.

Definition 7 (Pairing). A pairing (or bilinear map) is a map t̂ : G1×G2→GT

such that:

1. The map t̂ is bilinear. This means that ∀P, P ′ ∈ G1 and ∀Q,Q′ ∈ G2 that

– t̂(P · P ′, Q) = t̂(P,Q) · t̂(P ′, Q) ∈ GT .
– t̂(P,Q · Q′) = t̂(P,Q) · t̂(P,Q′) ∈ GT .

2. The map t̂ is non-degenerate. This means that

– ∀P ∈ G
×
1 ∃Q ∈ G2 such that t̂(P,Q) �= 1GT ∈ GT .

– ∀Q ∈ G
×
2 ∃P ∈ G1 such that t̂(P,Q) �= 1GT ∈ GT .

3. The map t̂ is computable i.e. there exist some polynomial time algorithm to
compute t̂(P,Q) ∈ GT for all (P,Q) ∈ G1 × G2.

Our DAA scheme is based on the pairing based Camenisch-Lysyanskaya signa-
ture scheme [20]. This protocol is given by a triple of algorithms, as follows:

– Key Generation: The private key is a pair (x, y) ∈ Zq ×Zq, the public key
is given by the pair (X,Y) ∈ G2 × G2 where X = [x]P2 and Y = [y]P2.

– Signing: On input of a message m ∈ Zq the signer generates A ∈ G1 at
random and outputs the signature (A,B,C) ∈ G1×G1×G1, where B = [y]A
and C = [x+m · x · y]A.

– Verification: To verify a signature on a message the verifier checks whether
t̂(A, Y) = t̂(B,P2) and t̂(A,X) · t̂([m]B,X) = t̂(C,P2).

The security of the above signature scheme is related to the hardness of a problem
called the bilinear LRSW assumption [20, 40]. To describe this assumption we
first define an oracleOX,Y (·) which on input f ∈ Zq outputs a triple (A, [y]A, [x+
f · x · y]A) where A←G1, X = [x]P2 and Y = [y]P2. We then have the following
definition.

A (Corrected) DAA Scheme Using Batch Proof and Verification 337

Definition 8 (bilinear LRSW Advantage). We define the bilinear LRSW
advantage of an adversary A against (G1,G2, P1, P2, q, t̂) as

AdvbLRSW
A (t) :=

Pr

⎡
⎣x, y←Zq;X←[x]P2, Y←[y]P2; (f,A,B,C)←AOX,Y (·)(G1,G2, P1, P2, X, Y, q, t̂)

∧
(
f �∈ Q, f ∈ Z

×
q , A ∈ G1, B = [y]A, C = [x+ f · x · y]A

)
⎤
⎦

where Q is the set of queries that A made to OX,Y (·) and q ≈ 2t.

We then say that a tuple (G1,G2, P1, P2, q, t̂) satisfies the bilinear LRSW as-
sumption if for any p.p.t.adversary A its advantage AdvbLRSW

A (t) is negligible
in t.

Definition 9 (Blind Bilinear LRSW Advantage). We define the blind bi-
linear LRSW advantage A against (G1,G2, P1, P2, q, t̂) as

AdvB−bLRSW
A (t) :=

Pr

⎡
⎣x, y←Zq;X←[x]P2, Y←[y]P2; (f,A,B,C)←AOB

X,Y (·)(G1,G2, P1, P2, X, Y, q, t̂)

∧
(
F = [f]P1 �∈ Q, f ∈ Z

×
q , A ∈ G1, B = [y]A, C = [x+ f · x · y]A

)
⎤
⎦

where Q is the set of queries that A made to OB
X,Y (·) and q ≈ 2t.

We then say a tuple (G1,G2, P1, P2, q, t̂) satisfies the blind bilinear LRSW as-
sumption if for any p.p.t. adversaryA its advantageAdvB−bLRSW

A (t) is negligible
in t.

L. Chen, M. Yung, and L. Zhu (Eds.): INTRUST 2011, LNCS 7222, pp. 338–350, 2012.
© Springer-Verlag Berlin Heidelberg 2012

DAA Protocol Analysis and Verification*

Yu Qin**, Xiaobo Chu, Dengguo Feng, and Wei Feng

State Key Laboratory of Information Security,
Institute of Software,

Chinese Academy of Science,
Beijing 100080, China

qin_yu@is.iscas.ac.cn

Abstract. Direct Anonymous Attestation (DAA) is a popular trusted computing
protocol for the anonymous authentication designed for TPM or other
embedding devices. Many DAA schemes give out detailed cryptographic proof,
however, their security properties has not been yet automatically analyzed and
verified particularly against the intruder’s or the malicious participant’s attack.
It is proposed that a DAA analysis model focusing on the intruder’s attacks in
this paper. The analysis method is the good supplements to the DAA
cryptographic proof, though the intruder’s capability is not completely assumed.
According to DAA protocol status analysis, we find out some attacks like
rudolph attack, masquerading attack by using the Murphi tool. At last the paper
gives out the reasons for these attacks, and also presents the recommendation
solutions against these attacks. From our study, we propose that DAA protocol
must be carefully analyzed from the intruder attacking point of view in the
DAA system design and implementation.

Keywords: Trusted Computing, TPM, Direct Anonymous Attestation, Protocol
Analysis, Security Verification.

1 Introduction

Trusted Computing is widely application technology in the security PC, notebook,
mobile phone, embedded device and other peripherals. TCG composed of many IT
enterprises has published a series of TPM specifications to guide the trusted
computing industry by now. Trusted Computing aims to enhance system and network
security at the level of the computer architecture, which is accepted by the computer
industrial and academic institutions. With the rapid development of trusted
computing, it is very important that the testing, evaluation and security analysis on the
relevant functionality, interface, and protocol for trusted computing. If there is any

 * This paper is supported by the National Natural Science Foundation of China under Grant

No.91118006 and The Knowledge Innovation Project of Chinese Academy of Science
(ISCAS2009-DR14).

** Corresponding author.

 DAA Protocol Analysis and Verification 339

potential vulnerability unable to reveal, it may cause bad consequence for trusted
computing applications.

In the field of analysis and evaluation on trusted computing, some researchers have
yet done the studies on trusted computing analysis including TPM commands,
authorization protocol, application programming interface (API), and other
application protocols. Danilo et al.[1] in Italy have exploited the known attack on
OIAP (Object Independent Authorization Protocol) authorization protocol whereby an
attacker intercepts a message, replaying the TPM legitimate command, and resulting
in the message being processed twice by TPM. Chen et al. [2] in HP Laboratory, UK
have studied the offline dictionary attack on TPM OIAP and OSAP (Object Specific
Authorization Protocol) protocol, and further give some improvement method against
the attack. An attacks with the same authdata be shared among users has been also
studied by Chen [3], and they propose a new authorization protocol named SKAP
(Session Key Authorization Protocol) for the purpose of substituting the original
authorization protocol. The reference [4] has modeled and analyzed the Trusted
Platform Module API version 1.2 specification, and it has found out some
vulnerabilities that could arise from real TPM insecure implementations on TPM API.
Stephanie et al. [5] in France have modeled the TPM commands, formalized the
security properties, and have found out some attacks on TPM commands API using
the tool ProVerif.

All above studies are analysis on simple TPM protocols or TPM application
interfaces. There are only a few researches on Direct Anonymous Attestation (DAA)
protocol so far, which only address the DAA formal description using process algebra
without considering DAA attacks. Michael Backes et al. [6][7] in Saarland
University, Germany have formalized the DAA protocol within the applied pi-
calculus using a novel equational theory, and carried out the mechanized analysis for
the security properties on secrecy, authentication, privacy . They have also developed
a new type-checking tool to conduct the automated analysis for DAA protocol based
on zero-knowledge proofs. These works are perfect to formalize proof exactly on
DAA's properties. However it is not taken into consideration on some special
behaviors of the intruder in the DAA analysis model, for example replaying DAA
request, malicious Issuer and so on. In this paper we focus on the protocol status
transformation and the intruder’s model for analyzing the DAA protocol.

In this paper, we will model and analyze the security properties of the DAA
protocol. From the protocol finite-state analysis point of view, we involve using
verification tools to check the protocol execution sequences for desired properties.
The main research idea is showed in the Figure 1. The current DAA protocol
illustrated in the papers and TPM specification are all described in informal form, not
suitable for protocol verifying. Throughout the protocol simplification, the formal
DAA specification is derived from the informal description. Then we define the
protocol participants’ behaviors and the intruder’s attacking capability, setting up the
DAA verification model. At last we use Murphi[8] a common model checking tool to
verify the DAA protocol for the desired security properties.

340 Y. Qin et al.

Fig. 1. The analysis flow chart for DAA protocol

2 DAA Protocol Verification

We will make the abstract summary on DAA protocol specification first, set up the
finite state model, and then use the Murphi to verify the DAA protocol automatically
in this section. Additionally we carefully analyze the causes of the attacks from the
verification results; particularly logically reasoning about the masquerading attack.

2.1 Overview of DAA Protocol

Beginning with BCC DAA scheme [9] based on RSA cryptosystem in 2004, There
are so many improvements and extensions on the DAA protocol [10][11][12]. The
bilinear map on the elliptic curve is employed to build DAA protocol because of its
high efficiencies. The representive examples are the first pairing DAA[13], EPID[14].
Although they have different cryptographic primitives, different protocol building
method, the consistent protocol specification is derived from these DAA protocols.
We take the representive schemes [9][13] fro example to summarize the high level
abstract specification.

Table 1. The abstract specification for DAA protocol process

DAA Join DAA Sign
1. : { } ,

EK
I PK II P nc Enc n bsn→ =

2. : , ()I IP M nc Hm bsnς→ =

3. : { } , (), exp(,)
EKI SK I IM n Dec nc comm commit f N fς= = =

4. : , ,I tM P comm N n→

5. / : { , }(,)I I tP M I SPK comm N n n→

6. : _ { , , }I II P DAA Certificate N comm PK→

1. : ,V IV P n bsn→

2. : , ()V V VP M n Hm bsnς→ =

3. : exp(,),V V tM P N f nς→ =

4. / : { , _ }(, ,)V V tP M V SPK N DAA Certificate m n n→

 DAA Protocol Analysis and Verification 341

The participants in DAA protocol include Issuer (I), Platform (P), Verifier (V),
TPM (M). The main protocol processes are DAA Join and DAA Sign. The specific
process for DAA protocol is introduced as the above table in arrow-and-message
form.

The above DAA protocol abstraction is focused on communication messages and
core functionality processing. Whatever algorithms and building blocks are used in
the DAA protocol, the specification can describe the common DAA protocols as far
as we know. The DAA specification is a little concrete in computation abstract, such
that it can be simplified later for DAA verification model.

2.2 Modeling DAA Protocol

The cryptographic analysis and proof are beyond our scope, and the security for the
protocol process is focused on in this paper. We attempt to model the DAA protocol
in finite state machine, and verify the DAA security properties with the automatic
verification tools. In order to reduce the difficulty of the protocol verification, some
assumptions are considered in the DAA verification model.

(1) The TPM and Host are treated as one participant (the platform P) in DAA
protocol analysis. The simple model ignores all the communication and interaction
between TPM and Host. This assumption can significantly reduce the finite state size
on the platform, and decrease the numbers of interacting messages.

(2) The honest participants behave as the correct protocol runs. The intruder or the
malicious participant compromised by the intruder can make some specific attack
detection, for example, we suppose that the Issuer maliciously distributes the special
public key for conducting rudolph attack[15] in DAA Join.

(3) The algorithm and other cryptographic primitives are secure enough to resistant
cryptgraphic forgeablity. The adversary can not forge the DAA signature without the
DAA secret f. The adversary can intercept the messages from the network, replay the
messages blindly, tamper the message without signature and construct new message
with the known secret.

According to the above assumptions, we simplify standard process of the DAA
protocol in Table 1, There are three major participants: the Issuer, Platform (each
consists of the Host and TPM), and Verifier. The DAA protocol in our model is
reduced to 4 messages: DAAJoinReq, DAAJoinRsp, DAASignReq, DAASignRsp
(show in Figure 2). The DAA protocol usually has the two phases: Join and
Sign/Verify. The goal of the DAA Join is to create the anonymous identity for
the platform so it can prove its authenticity to verifiers. The DAA Join is started by
the platform. The platform chooses and commits to a secret value f, authenticates it to
the Issuer by its Endorsement Key EK (name as DAAJoinReq). The Issuer then
certifies a DAA Certificate on the platforms commitment to f and its short-term public
key (name as DAAJoinRsp). The platform stores its DAA Certificate internally after
DAA Join. The DAA Sign/Verify is started by a verifier challenging with its
basename and fresh nonce (name as DAASignReq). During the DAA Sign/Verify, the
platform generates a message m and signs it using the DAA Certificate saved in DAA
Join (name as DAASignRsp).

342 Y. Qin et al.

Fig. 2. The simplified message model for DAA protocol

The above simple DAA message model does not consider the interacting messages
inside trust computing platform, treating TPM and Host as only one participant. We
can formalize the DAA message in pi calculus, and it is oblivious to demonstrate the
process behaviors for every participant in details.

P_Join 1 . ().

 1 = pair(pair(commit(),exp(hash(fst()),)),pair(snd(), 1)) in

 pair(spk(, 1), 1) . ().

P_Sign 2 . (). ().

 let 2 pair

t

spk t

spk spk

t

spk

n cjoin x

let pk f x f x n

cjoin f pk pk cjoin z csave z

n csave z cjoin v

pk

ν

ν

=

=
=

(pair(hash(),exp(hash(fst()),),pair(snd(), 2)) in

 pair(spk(, 2), 2) . ()

Platform .(P_Sign | P_Join)

Issuer . pair(,) . ().

 if checkspk(snd(),f

t

spk spk

I I t

z v f v n

csign f pk pk csign result

f

n cjoin bsn n cjoin y

y

ν

ν

=

=

st()) true then cert(,commit())

Verifier . pair(,) . ().

 if checkspk(snd(), fst()) true then _ else _

DAA . . (!Issuer | !Pl

I

V V V

I I V

y cjoin sk f

n csign bsn n csign u

u u csign tag ok csign tag failure

sk bsn bsn

ν

ν ν ν

=

=

=

=

atform | !Verifier)

We set up the finite state machine model for DAA protocol based on the interacting
messages process. The platform has the most states among the DAA protocol
participants, and it is critical to check whether the platform state meets the DAA
protocol requirements. We define the four finite states for the platform: P_INIT,
P_WAIT, P_READY, P_DONE (illustrated in Figure 3). The platform is in P_INIT
state after DAA system initializes. When the platform requests the DAA anonymous
identity during the DAAJoinReq message, its state transforms to P_WAIT waiting to

 DAA Protocol Analysis and Verification 343

receive the response message. Then the platform transforms to P_READY after
DAAJoinRsp message is received. Because the platform has the nothing changed
between DAAJoinRsp and DAASignRsp even though it receives the DAASignReq
message, we merge the two time spans into one P_READY state. Finally the platform
finishes the DAA protocol arriving at P_DONE state.

Each participant besides the Intrude has its own states, and all states assemble
together to form the DAA finite state space (showed in Figure 4). Each item has the
four sub-states in the full state space, i.e. (P_WAIT, I_INIT, V_INIT, ADV_INIT).
When the events on DAA message or Intruder’s action occur, the state item shifts to
another. Each state item must meet the DAA protocol’s security property
φ(Correctness, Anonymity, Unlinkability); Otherwise there is certainly an attacking
path found from the transformation trace of the state item. The large state space is not
convenient for the automatic verification tool to check the protocol; it must reduce the

Fig. 3. The finite states of the platform

Fig. 4. The state space of the DAA protocol transition

344 Y. Qin et al.

state number by constraining the behaviors of Issuer and Intruder. We assume the
Issuer is always honest except the rudolph attack, so the Issuer’s states can be ignored
in the usual case. The constraint on the attacking capability can also ignore the
Intruder’s state, and it does not affect the verification on security properties. These
methods can reduce the state space size a little, and the verification tools can further
reduce it.

The final goal of the DAA protocol is to provide a method for the verifier to ensure
the authenticity of the platforms without disclosing their TPM identities. A platform is
considered authentic if it embeds an authentic TPM inside the physical platform and
has been correctly authenticated and authorized by the Issuer. We formalize three
necessary properties in DAA protocol as the protocol verification targets. If the
Intruder's actions lead to dissatisfy the security properties, we can find some attack
path in the DAA model.

 Correctness

The platform’s DAA proof successfully passes the verifier’s verification after the
protocol finishes, and that says the DAA protocol is correctness. The DAA is
correctness for the message m only if: (1) m is signed by a honest TPM using a DAA
Certificate and verifier’s basename; (2) The DAA Certificate was issued by a honest
Issuer for the TPM before signing message m; (3) The issuer which the verifier knows
is the same as the issuer which issues DAA Certificate on DAA secret f used in the
signature; (4) TPM is not on the rogue list.

 Anonymity

A DAA Sign session about some honest platform cannot be linked with its EK,
namely that the DAA Sign session cannot be linked to some DAA Join session before
because the TPM EK is only used in DAA Join for requesting DAA certificate.
Anonymity can be checked by comparing pseudonyms in the DAASignRsp and the
DAAJoinReq. If the pseudonyms are from the same DAA secret f, the anonymity
breaks.

 Unlinkability
DAA Sign sessions of a honest platform with different verifiers are not linkable. If the
pseudonyms are the same from the same TPM, or they are different with the different
TPM, The linkability can be found on DAA sign sessions by checking pseudonyms in
different DAASignRsp.

From the above model we can implement DAA protocol verification, but we needs
further considerations on how to define the verification rules to find the attack on
DAA protocol. Our model will check all the verifications on Correctness after
DAASignRsp message finishes. When the Intruder intercepts the DAASignRsp
message, our model first verifies whether PKI Certificate Authority the DAA
certificate referred to is the same one, then check whether this DAASignRsp message
is from the same TPM compared the former intercepted DAASignRsp, check whether
the DAASignRsp can be linked with former DAAJoinRsp compared by the
pseudonyms, and finally check whether the identity in the DAA signed message is
same with the identity of the DAASignRsp sender. These are the primitive
verification rules in our model based on the DAA security properties, and we can
further improve our model and extend the rules for the higher security in future work.

 DAA Protocol Analysis and Verification 345

2.3 Verification Results

We verify DAA protocol by using the Murphi, which is general-purpose model
checking tool to analyze the cryptographic and security-related protocols. Murphi is
able to find the rudolph attack described in reference [16] in 0.85 seconds, find link
attack using issuer basename in 0.11 seconds, find masquerading attack in 0.10
seconds. After fixing these protocol vulnerabilities, Murphi failed to find any
additional error in DAA protocol. The detailed number of reachable states and
runtime on Lenovo Computer1 is showed in Table 2 when varying the parameters of
DAA model.

Table 2. The verification result using Murphi tool

 Issuer
number

Platform
number

Verifier
number

Size of
network

States Times

Link attack 1 2 2 1 114 0.11s
Rudolph attack 2 2 2 1 19881 0.85s
Masquerading attack 1 2 2 1 404 0.10s
Fix above all 1 2 2 1 291850 9.14s

We find three attacks in DAA protocol by the finite status checking tool: Link

attack using issuer basename in DAASignReq, Rudolph attack with malicious issuer
using special short-term public key, Masquerading attack with the intruder forwarding
the DAA request to a honest platform. From the attacking path of our verification
results, we will discuss causes and precondition about these attacks in detail below.
1. Link attack using issuer basename
This attack is quit easy for the malicious verifier. The intruder (or malicious verifier)
can know all pseudonyms used by TPM requesting DAA certificate with issuer
basename. When requesting DAA sign, the intruder deliberately uses the issuer
basename for linking the TPM, and then observes whether the pseudonym in
DAASignRsp is equal to someone in DAAJoinReq at intruder’s knowledge database.
If equal, the attack is successful so that the intruder can link the TPM’s identity. The
formal attacking trace is summarized as follow:

 Platform→Issuer: DAAJoinReq[SPK{Commit(f), NI}(nI, nt)]
 Intruder Intercept: DAAJoinReq
 Issuer→Platform: DAAJoinRsp[DAA_Certificate{NI, comm, PKI}]
 Verfier(Intruder) Constructs Message: DAASignReq[nV, bsnI]
 Platform→Verfier(Intruder): DAASignRsp[SPK{NV, DAA_Certificate}(m, nV, nt)]
 Intruder Linked: NI = NV

2. Rudolph attack

It is usually assumed that the Issuer is honest in the attack on anonymity, but the
issuer is compromised by the intruder in Rudolph attack. The malicious issuer can

1 Intel 2.99GHz CPU, 4G Memory, Fedore Core 5 OS.

346 Y. Qin et al.

record the map relationship between Issuer short-term public key and TPM EK, and it
can issue the DAA certificate to some TPM by the special short-term public key.
When checking the DAASignRsp message, the verifier can collude with the issuer to
distinguish this TPM’s identity from what kind of short-term public key. The formal
attacking trace is summarized as follow:

 Platform P→Issuer: DAAJoinReq[SPK{Commit(f), NI}(nI, nt)]
 Issuer→P: DAAJoinRsp[DAA_Certificate{NI, comm, PKI}]
 Verfier→P: DAASignReq[nV, bsnV]
 P→Verfier: DAASignRsp[SPK{NV, DAA_Certificate}(m, nV, nt)]
 Intruder Intercept: DAASignRsp
 Platform Q→Issuer: DAAJoinReq*[SPK{Commit(f*), NI*}(nI*, nt*)]
 Issuer→Q: DAAJoinRsp*[DAA_Certificate{NI*, comm*, PKI*}]
 Verfier→Q: DAASignReq*[nV*, bsnV*]
 Q→Verfier: DAASignRsp*[SPK{NV*, DAA_Certificate}(m*, nV*, nt*)]
 Intruder Intercept: DAASignRsp*
 Intruder Linked with help of Issuer: PKI in DAASignRsp ?= PKI* in
DAASignRsp*

3. Masquerading attack

Although DAA anonymity prevents exposure of the TPM identity, this results in
cheating the verifier by another TPM anonymous identity. The verifier cannot tell that
whether the attestation from the platform is the one directly interacting with it. It
maybe forward the request to challenge another platform for DAA attestation (cf.
Figure 5). Because the Murphi verification program can identity the source platform
and message signing platform, the masquerading attack can been easily found out in
our model. We omit formal attacking trace here which can be derived from the figure
quickly.

Fig. 5. The diagram of masquerading attacking

2.4 Logic Analysis on Masquerading Attack

Owing to the anonymity of DAA, the malicious platform can easily masquerade a
honest platform’s identity for DAA. To analyze the masquerading attack more
formally, we model the DAA procedure using predicate logic. Firstly, the initial state
of DAA system particularly the participant’s trust condition is defined as the
following assumption. The assumptions 1,2,4,5 describe each participant’s security or
trust state in DAA system. The assumption 3 represents the DAA attestation action of
honest platform P, and the assumption 6 defines the masquerading attack capability of
malicious platform.

 DAA Protocol Analysis and Verification 347

Assumptions:
1.TrustedVerifier(V) V is default trust in DAA system.
2.PhysSecure(TPM) TPM is physically secure in DAA attestation.
3.DAAPrv(TPM, P) TPM attests the anonymous identity of the
platform P with DAA proof.
4.Honest(P) The platform P is honest.
5.•Honest(Q) The platform Q is not honest.
6.Masquerade(Q, P) The platform Q forwards the DAA request to
the platform P for masquerading identity of P.

Predicates:
TrustedVerifier(v) The verifier v is trust in DAA attestation
system
PhysSecure(t) TPM t is physically secure
SaysTrust(v, t) The verifier v asserts the TPM t is trust in
DAA attestation.
DAAPrv(t, p) TPM t attests the anonymous identity of the
platform p.
ProvOn(t, p) TPM t indicates it is installed on the
platform p with DAA attestation.
Honest(p) The platform p is honest in DAA system.
ProvTrust(v, t) The verifier v trusts TPM t after
attestation proof.
Masquerade(q, p) The platform q forwards the DAA request to
the platform p and masquerades p for anonymous attestation.

Secondly we configure our assumptions about the concrete setting in a set of

predicates (shown as above). The trust relationship and security condition are
summarized in these predicates about the platform, verifier and TPM.

Thirdly the following axiom table summarizes our analysis rules for proving
anonymous trust using TPM in DAA system. The first axiom illustrates the default
trust that the verifier believes the TPM and its attestation in DAA system. The second
axiom implies that TPM is physically resided on the platform from the DAA proof'.
The axiom 2 and 5 illustrate whether the DAA proof really shows the verifier’s trust
to TPM. The axiom 4 shows the logic description for masquerading attack.

Axiom:
1. ∀v, t TrustedVerifier(v) ∧ PhysSecure(t) → SaysTrust(v, t)
2. ∀p, t DAAPrv(t, p) → PrvOn(t, p)
3. ∀p, v, t PrvOn(t, p) ∧ Honest(p) → PrvTrust(v, t)
4. ∀p, q, t DAAPrv(t, p) ∧ Masquerade(q, p) → DAAPrv(t, q)
5. ∀p, v, t PrvOn(t, p) ∧ ┐Honest(p) → ┐PrvTrust(v, t)

Finally, we can reason about the trustworthiness of the DAA participants by

applying the set of axioms to the initial assumptions. Unfortunately, as shown in the
following logic calculus, the reasoning leads to a logical contradiction, namely that
the malicious platform Q proves the DAA identity to the verifier by pretending P’s
anonymous identity. This contradiction captures the essence of the masquerading
attack, because it shows that the verifier cannot decide whether it should trust the
platform Q.

348 Y. Qin et al.

Proof:
(1)TrustedVerifier(V) Assumption 1
(2)PhysSecure(TPM) Assumption 2
(3)SaysTrust(V, TPM) Axiom 1: (1), (2)
(4)DAAPrv(TPM, P) Assumption 3
(5)PrvOn(TPM, P) Axiom 2: (4)
(6)Honest(P) Assumption 4
(7)PrvTrust(V, TPM) Axiom 3: (5), (6)
(8)Masquerade(Q, P) Assumption 6
(9)DAAPrv(TPM, Q) Axiom 4: (5), (6)
(10)PrvOn(TPM, Q) Axiom 2: (9)
(11)┐Honest(Q) Assumption 5
(12)┐PrvTrust(V, TPM) Axiom 5: (10), (11)
(13) ⊥ (7), (12)

3 Solution

In this section, we will give the solutions respectively to ensure the anonymity,
unlinkability. Aiming at the masquerading attack detected by the verification tool, we
will analyze ways to prevent from cheating the verifier by forwarding request to
another honest platform.

1) Solution to prevent link attack using issuer basename

It is very easy to avoid link attack using issuer basename. It results in the attack on the
linkability that the platform’s negligence of the verifier’s basename checking. The
platform will find this attack from the malicious verifier by the simple comparison of
basename. If the verifier request with the issuer basename in DAA Sign request
message, the platform can reject that directly.

2) Solution to prevent Rudolph attack

The Rudolph attack by the malicious issuer not only links the large number of the
platforms, but also links small set of the platforms. It is a worse attack that there is no
way for a platform to tell if the covert identity information is embedded into the short-
term public key used to generate its DAA Certificate. The reference [16] gives out
some solutions to overcome the problem. One is modification on the TCG DAA
specification, and DAA issuer’s public key numbers of uses are directly certified by a
trust certificate authority (CA) ; Second is using n Trust Auditor to ensure that the
Issuer’s public key has being used more than a certain number of times; Third is that
two or more platform could collaborate to compare the public key value that they
have obtained from a particular Issuer, and prevent some platform is identified as the
one with the DAA certificate issued by the special public key. This is an autonomic
way with the self detection for the platform. Among all of the solutions, we
recommend the trust auditor solution, because the trust third party is introduced in the
DAA system to audit the Issuer’s malicious behavior. It is an efficient solution to
prevent the Rudolph attack without any modification on TCG DAA specification.

3) Solution to prevent masquerading attack

The platform's anonymity in DAA attestation leads to the masquerading attack by the
intruder. The obvious way is to establish a mutually authenticated channel using

 DAA Protocol Analysis and Verification 349

other’s authenticator such as username and password. But it is not perfect that the
username authenticator breaks some anonymity to certain extent. We recommend
Diffe-Hellman key exchange at the DAA Sign phase, and this prevents the intruder
from cheating the verifier using masquerading attack. The Verifier can use the session
key with key exchange to verify whether the interacting party is the DAA attestation
participant. To protect DAA protocol against masquerading attacks, we enhance it
with a key agreement. The enhanced DAA protocol is described as follow:

Platform P→Issuer: DAAJoinReq[SPK{Commit(f), NI}(nI, nt)]
Issuer→P: DAAJoinRsp[DAA_Certificate{NI, comm, PKI}]
Verifier: GenrateKey(KV, v), KV=gv is public key, v is private key
Verfier→P: DAASignReq[nV, bsnV, KV]
P: GenrateKey(KP, p), Compute K=KPV=gpv
P→Verfier: DAASignRsp[SPK{NV, DAA_Certificate}(m, nV, nt, KP),

c=EncK{nI}]
Verifier: Verify SPK{NV, DAA_Certificate}(m, nV, nt, KP)
Compute K=KPV=gpv, Verify DecK{c}

In the enhanced DAA protocol, the key agreement must be completed inside TPM
chip with DAA_Sign interface, particularly the GenrateKey(KP, p) must run inside
TPM. The TPM must bind the signature of knowledge proof and key agreement
together, or the malicious software can bypass DAA attestation using the middle-man
attack. The key agreement binds the TPM’s DAA attestation with interacting
participant’s platform, otherwise the interaction between verifier and platform
certainly fails in the verification on key agreement.

4 Conclusion

We set up the DAA finite state machine model to analyze its security properties in
this paper. Firstly the paper summarizes the DAA protocol profile for DAA analysis
and verification. Then we formalize the DAA analysis and verification model which
is focused on the attacker’s behaviors. In order to reduce verification complexity, our
model simplifies the messages which have nothing to do with security. According to
our model, we use Murphi tool to verify the DAA protocol, and find out some known
attacks automatically on DAA. And the recommendation solutions are given out
finally in this paper. From our study results, the DAA protocol has some potential
security problems except the security strength on the cryptographic algorithm and
cryptographic build blocks. These attacks must be carefully prevented in the DAA
system design and implementation. In the future work, we will consider the inside
messages between TPM and host, set up more complex model close to the real DAA
system, and analyze internal attack in the platform especially the attack by the
compromised host.

Acknowledgement. This paper is supported by the National Natural Science
Foundation of China under Grant No.91118006 and The Knowledge Innovation
Project of Chinese Academy of Science (ISCAS2009-DR14).

350 Y. Qin et al.

References

1. Bruschi, D., Cavallaro, L., Lanzi, A., Monga, M.: Replay attack in TCG specification and
solution. In: Proceeding of 21st Annual Computer Security Applications Conference
(ACSAC 2005), pp. 127–137. IEEE Computer Society (2005)

2. Chen, L., Ryan, M.D.: Offline dictionary attack on TCG TPM weak authorisation data, and
solution. In: Future of Trust in Computing. Vieweg & Teubner (2008)

3. Chen, L., Ryan, M.: Attack, Solution and Verification for Shared Authorisation Data in
TCG TPM. In: Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS, vol. 5983, pp. 201–
216. Springer, Heidelberg (2010)

4. Amerson, H.L.: Automated Analysis of Security APIs. Massachusetts Institute of
Technology, USA (2005)

5. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: A Formal Analysis of Authentication in
the TPM. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp.
111–125. Springer, Heidelberg (2011)

6. Backes, M., Maffei, M., Unruh, D.: Zero-Knowledge in the Applied Pi-calculus and
Automated Verification of the Direct Anonymous Attestation Protocol. In: Proceedings of
the 2008 IEEE Symposium on Security and Privacy (SP 2008), pp. 202–215. IEEE
Computer Society, Washington, DC (2008)

7. Backes, M., Hriţcu, C., Maffei, M.: Type-checking zero-knowledge. In: Proceedings of the
15th ACM Conference on Computer and Communications Security (CCS 2008), pp. 357–
370. ACM, New York (2008)

8. Murphi, http://verify.stanford.edu/dill/murphi.html
9. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceedings of the

11th ACM Conference on Computer and Communications Security, pp. 132–145 (2004)
10. Brickell, E., Li, J.: Enhanced privacy id: a direct anonymous attestation scheme with

enhanced revocation capabilities. In: Proceedings of the 2007 ACM Workshop on Privacy
in the Electronic Society (WPES 2007), pp. 21–30 (2007)

11. Ge, H., Tate, S.R.: A Direct Anonymous Attestation Scheme for Embedded Devices. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 16–30. Springer,
Heidelberg (2007)

12. Feng, D., Xu, J., Chen, X.: A Forward Secure Direct Anonymous Attestation Scheme. In:
WSEAS ACC 2009 (2009)

13. Brickell, E., Chen, L., Li, J.: A New Direct Anonymous Attestation Scheme from Bilinear
Maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp.
166–178. Springer, Heidelberg (2008)

14. Brickell E., Li, J.: Enhanced Privacy ID from Bilinear Pairing. Cryptology ePrint Archive,
Report 2009/095 (2009), http://eprint.iacr.org/2009/095.pdf

15. Rudolph, C.: Covert Identity Information in Direct Anonymous Attestation (DAA). In:
Venter, H., Eloff, M., Labuschagne, L., Eloff, J., von Solms, R. (eds.) SEC 2007. IFIP,
vol. 232, pp. 443–448. Springer, Boston (2007)

16. Leung, A., Chen, L., Mitchell, C.J.: On a Possible Privacy Flaw in Direct Anonymous
Attestation (DAA). In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS,
vol. 4968, pp. 179–190. Springer, Heidelberg (2008)

Author Index

Adhikari, Avishek 239

Bouabana-Tebibel, Thouraya 258
Brickell, Ernie 304

Chen, Chunhua 16
Chen, Liqun 32, 304
Chen, Zhen 289
Cheng, Pengqi 289
Chu, Xiaobo 338

Derler, David 66
Dietrich, Kurt 66

Ekberg, Jan-Erik 48

Faugère, Jean-Charles 184
Feng, Dengguo 338
Feng, Wei 338

Gligoroski, Danilo 184
Gong, Zheng 138
Gu, Dawu 102
Gu, Yan 289
Guo, Cong 113

Halunen, Kimmo 156
Hao, Dong 239
Hell, Martin 129
Huang, Jiwei 289
Huang, Xiaohu 102

Jämthagen, Christopher 129
Jensen, Rune Erlend 184

Knapskog, Svein Johan 184
Koeberl, Patrick 271
Kounga, Gina 32
Koza, Micha�l 221
Krzywiecki, �Lukasz 221
Kubiak, Przemys�law 221
Kuty�lowski, Miros�law 221

Lai, Xuejia 138
Li, Jiangtao 271, 304
Li, Wei 102
Liao, Lejian 113

Liu, Feng 84
Liu, Ya 102
Liu, Zhiqiang 102
Luo, Yiyuan 138
Lv, Zihong 289

Maes, Roel 271
Markovski, Smile 184
Matsuo, Shin’ichiro 204
Mitchell, Chris J. 16
Moriyama, Daisuke 204

Ødeg̊ard, Rune Steinsmo 184

Peng, Kun 168
Perret, Ludovic 184
Pirker, Martin 1
Potzmader, Klaus 66

Qin, Yu 338

Rajan, Anand 271

Sakurai, Kouichi 239
Smeets, Ben 129

Tamrakar, Sandeep 48
Tang, Shaohua 16
Tögl, Ronald 1

Vishik, Claire 271

Wang, Feng 113
Wang, Hongyuan 113
Wang, Jianfei 289
Wiegele, Paul 1
Winter, Johannes 1, 66
Wójcik, Marcin 271

Xue, Rui 84

Yue, Qinggang 84
Yung, Moti 204

Zhang, Zijian 113
Zhu, Liehuang 113
Zhu, Wenlei 289

	Title
	Preface
	Table of Contents
	Trusted Services
	A Flexible Software Developmentand Emulation Framework for ARM TrustZone
	Introduction
	Related Work

	Simulating ARM TrustZone Systems with QEMU
	The ARM Programmer's Model, a Short Overview
	Exploring QEMU's Internals
	Secure and Normal World Memory

	A Simple Secure-World Kernel Prototype
	Handling Normal and Secure-World Interaction
	Runtime Environment for Secure User-Space Applications

	Experiment: A Trusted Mobile Application Development Framework
	Conclusion
	References

	Building General Purpose Security Serviceson Trusted Computing
	Introduction
	Generic Authentication Architecture
	Overview of GAA
	GAA Procedures
	UMTS GAA

	TC GAA
	Trusted Computing Security Infrastructure
	The TC GAA Architecture
	The TC GAA Procedures

	Building TC GAA Using the TCG Specifications
	The TCG Specifications
	TC GAA Procedures Using a TPM

	Informal Security Analysis
	Using the GAA Framework
	Trust Issues
	Applications

	Conclusions
	References

	Enforcing Sticky Policieswith TPM and Virtualization
	Introduction
	Related Work
	Our Contribution
	Organisation of the Paper

	Technical Background
	An Overview of the Approach
	Description of the Proposed Solution
	Notation
	Issue of the Conformance Certificate
	Disclosure of Personal Data to the Data Collector
	Management of Personal Data at the DC
	Transmission of Personal Data to a Third Party
	Enforcing Update of Preferences

	An Application of Our Solution
	Conclusion
	References

	Mobile Trusted Systems
	Mass Transit Ticketing with NFC Mobile Phones
	Introduction
	Related Work and Background Technologies
	Trusted Hardware
	NFC

	On Transport Ticketing
	Requirements
	Architecture
	Ticketing Credentials
	Gated Ticketing Protocol
	Non-gated Ticketing
	TEE Operation
	Non-gated Protocol
	Non-gated Ticket Inspection
	Transaction Evidence Feedback

	Implementation and Measurements
	Requirements Analysis
	Future Work and Conclusions
	References

	Anonymous Ticketingfor NFC-Enabled Mobile Phones
	Introduction
	Related Work
	Our Contribution

	Background
	Near Field Communication
	Selective Disclosure Protocols

	Protocol
	Preliminaries
	Issuing
	Verification

	Implementation Aspects
	Test Environment
	Long Integer Operations on Javacard
	Architecture
	Client Implementation
	Operator Implementation
	Moving to Next Generation Smart-Phone Platforms

	Performance Evaluation
	Conclusion and Future Work
	References

	Security Analysis
	Some Improvements to the Cost-BasedFramework for Analyzing Denial of Service Attacks
	Introduction
	Preliminary
	Meadows's Cost-Based Framework
	Protocol Specification.
	Cost Sets and Cost Functions.
	Intruder and Intruder Cost Functions.
	Fail-Stop Protocols and Assessing DoS-Resistance.

	The Just Fast Keying Protocol (JFKi)
	ASM-SPV Protocol Verifier

	Improvements to Meadows's Cost-Based Framework
	Improved Cost Function
	Improved Tolerance Relation
	Improved Protocol Specification and Intruder Model

	Formal Modeling and Analyzing the JFKi Protocol
	Cost Function and Tolerance Relations
	Modeling JFKi with CoreASM
	Intruder Model and Attack Condition
	Experimental Results and Discussions
	Experimental Results.
	Discussions about JFKi.

	Conclusions and Future Work
	References

	Fault Detection of the MacGuffin Cipheragainst Differential Fault Attack
	Introduction
	Description of MacGuffin
	Encryption Process
	Decryption Process
	Key Schedule

	The Previous Differential Fault Analysis on MacGuffin
	Our Proposed Fault Detection of MacGuffin
	Conclusion
	References

	Computationally Sound Symbolic Analysisof EAP-TNC Protocol
	Introduction
	EAP-TNC Protocol with Diffie-Hellman Pre-Negotiation
	Symbolic Analysis of EAP-TNC Protocol with D-H PN
	Symbolic Algebra and Symbolic Protocol
	Symbolic Adversary and Symbolic Trace

	Computational Analysis of EAP-TNC Protocol with D-H PN
	Syntax and Semantics of EAP-TNC Protocol with D-H PN
	Mapping Algorithm and Mapping Theorem of EAP-TNC Protocol with D-H PN
	Security Analysis of EAP-TNC Protocol with D-H PN
	Conclusion
	References

	A Technique for Remote Detectionof Certain Virtual Machine Monitors
	Introduction
	Motivation
	Related Work
	VMware/VirtualBox NAT Device
	Prerequisites
	TTL
	IP ID
	TCP Control Flags

	Implementation
	Conclusions
	References

	Cryptographic Aspects
	Indifferentiability of Domain Extension Modesfor Hash Functions
	Introduction
	Preliminaries
	Improved Indifferentiability Analysis of pfMD Based on PGV Schemes
	Distinguishing Attack on 4 PGV Compression Functions in the pfMD Mode
	Flaws in Previous Indifferentiability Proofs
	Indifferentiability of 12 PGV Compression Functions in the pfMD Mode

	Indifferentiability of chopMD and NMAC/HMAC Based on PGV Schemes
	Conclusion
	References

	Multicollisions and Graph-Based Hash Functions
	Introduction
	Definitions and Basics
	Previous Work
	Multicollisions and Graph-Based Hash Functions
	t-Ary Tree-Based Hash Functions
	Graph-Based Hash Functions

	Discussion
	Conclusion
	References

	A General, Flexible and Efficient Proofof Inclusion and Exclusion
	Introduction
	Security Requirements and the Existing Solutions
	New Inclusion Proof and Exclusion Proof
	Reducing Inclusion Proof and Exclusion Proof to Simpler Proofs
	Specification of the Two Simpler Proofs

	Security Analysis
	Efficiency Optimisation
	Comparison and Conclusion
	References

	MQQ-SIG
	Introduction
	Preliminaries - Quasigroups and Multivariate Quadratic Quasigroups
	Description of the MQQ-SIG Digital Signature Scheme
	Design Rationale
	Nonsingular Boolean Matrices in MQQ-SIG
	Choosing the Order and Characteristics of Quasigroups

	Security Analysis of the Algorithm
	Experiments with Gröbner Bases
	The Size of the Pool of MQQs of Order 28
	Secret Key Leakage Scenarios
	MQQ-SIG Is Provably CMA Resistant
	Non-applicability of Successful Attacks against STS on MQQ-SIG

	Operating Characteristics
	The Size of the Public and the Private Key
	Performance of the Software Implementation of the MQQ-SIG Algorithm

	Conclusions
	References

	Multifactor Authenticated Key Renewal
	Introduction
	Background
	Contribution of This Paper
	Related Works

	System Model
	Security Model
	Security Definition without Corruption
	Considering Corruption of Client Device

	Protocol Description
	Basic Protocol
	Protocol with Leakage Resilience

	Security Evaluation
	Completeness
	Security
	Discussion

	Conclusion
	References

	Restricted Identification Scheme and Diffie-HellmanLinking Problem
	Introduction
	Deployed Systems
	Our Contribution

	Linking Diffie-Hellman Problem
	German Restricted Identification
	Restricted Identification with White Lists
	Algorithm Description
	Security Analysis

	Conclusions
	References

	Trusted Networks
	Mixed-Strategy Game Based Trust Managementfor Clustered Wireless Sensor Networks
	Introduction
	Background and Related Works
	Challenging Issues
	Our Contribution

	Upstream and Downstream Joint Observation
	Insider Threat Scenario
	Joint Monitoring in One Route

	Trustworthiness Exchange Protocol
	Local Trust Computation
	Global Trust Computation

	Game-Based Analysis for Trust Policies
	Trust Game Model
	Trust Game Equilibrium
	Trust Game Evolution

	Conclusion
	References

	Hash Chains at the Basisof a Secure Reactive Routing Protocol
	Introduction
	DSR Protocol
	SRS_DSR Solution
	Basic Assumptions
	Proposed Scheme

	Simulation and Test
	Related Work
	Conclusion
	References

	Implementation
	Evaluation of a PUF Device AuthenticationScheme on a Discrete 0.13um SRAM
	Introduction
	Our Contribution
	Related Work
	Paper Outline

	Physically Unclonable Functions
	Device Authentication with SRAM PUFs
	Review of Off-Line Authentication Scheme
	Our Improvements

	Experimental Methodology
	PUF Performance
	Bias and Correlation

	Results and Analysis
	Result of the Function f1
	Results of the Function f2
	Analysis

	Conclusions
	References

	A Performance Analysis of Identity-BasedEncryption Schemes
	Introduction and Our Main Work
	Definitions
	Typical IBE Schemes
	Cocks IBECocks
	Boneh-Franklin IBEBF
	Authenticated IBEAIBE
	Hierarchical IBEHIBE

	Performance Testing
	Implementation
	Testing Method
	Environment

	Results and Analysis
	Cocks IBE
	Boneh-Franklin IBE
	Authenticated IBE
	Hierarchical IBE

	Summary
	References

	Direct Anonymous Attestation
	A (Corrected) DAA Scheme Using Batch Proofand Verification
	Introduction
	Batch Proof and Verification
	Batch Proof and Verification Technique Used in [23]
	Newly Proposed Batch Proof and Verification Technique

	An Attack to the Chen'10 DAA Scheme
	Review of the Chen'10 DAA Scheme
	Details of Our Attack

	The Corrected DAA Scheme
	The Setup Algorithm
	The Join Protocol
	The Sign/Verify Protocol

	Security Properties of the Proposed DAA Scheme
	Implementation Consideration
	Performance Comparison
	Conclusions
	References

	DAA Protocol Analysis and Verification
	Introduction
	DAA Protocol Verification
	Overview of DAA Protocol
	Modeling DAA Protocol
	Verification Results
	Logic Analysis on Masquerading Attack

	Solution
	Conclusion
	References

	Author Index

