
A Prototype for Enforcing Usage Control

Policies Based on XACML�

Aliaksandr Lazouski, Fabio Martinelli, and Paolo Mori

Istituto di Informatica e Telematica
Consiglio Nazionale delle Ricerche

G. Moruzzi 1, Pisa, Italy
{aliaksandr.lazouski,fabio.martinelli,paolo.mori}@iit.cnr.it

Abstract. The OASIS XACML standard emerged as a pure declarative
language allowing to express access control. Later, it was enriched with
the concept of obligations which must be carried out when the access is
granted or denied. In our previous work, we presented U-XACML, an
extension of XACML that allows to express Usage Control (UCON). In
this paper we propose an architecture for the enforcement of U-XACML,
a model for retrieving mutable attributes, and a proof-of-concept imple-
mentation of the authorization framework based on web-services.

1 Introduction

The Usage Control (UCON) model [4,5] extends traditional Access Control mod-
els to address the issues of modern distributed computing systems. UCON in-
troduces new features in the decision process, such as the mutable attributes
of subjects, objects, and environment, and the continuity of policy enforcement
to guarantee that the right of a subject to use the resource holds while the
access is in progress. Hence, this model can be successfully adopted in case of
long-standing accesses to resources, because the access right is continuously re-
evaluated during the usage of the resource and the access is interrupted as soon
as this right does not hold any more. In recent years UCON has drawn a signifi-
cant interest from the research community on formalization and enforcement of
policies [10].

As an example, the UCON model can be successfully adopted to regulate
the usage of virtual resource in the Cloud scenario, such as Virtual Machines
running in Infrastructure as a Service (IaaS) Clouds. Usually, these resources
are long-standing instances exposed to end-users through a proper interface. For
example, a Software as a Service (SaaS) Cloud provider could implement his file
storage service on top of IaaS services. In this case, the access of the file storage
service provider to the IaaS service could last a very long period of time, even

� This work was supported by the EU FP7 projects Open Computing Infrastructures
for Elastic Services (CONTRAIL) FP7-ICT 257438 and Network of Excellence on
Engineering Secure Future Internet Software Services and Systems (NESSOS) FP7-
ICT 256980.

S. Fischer-Hübner, S. Katsikas, G. Quirchmayr (Eds.): TrustBus 2012, LNCS 7449, pp. 79–92, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



80 A. Lazouski, F. Martinelli, and P. Mori

when the access right is not valid any more. Hence, traditional Access Control
models, that aim to assure that only allowed principals are granted to access a
resource [1] by performing the policy evaluation at the request time only, are
not sufficient in this scenario.

In a previous work [2], we defined the U-XACML language, that is an exten-
sion of XACML [3] for expressing UCON policies. In this paper, we propose an
authorization framework for the enforcement of Usage Control policies written
in U-XACML and we present a proof-of-concept implementation of the proposed
framework based on the web-service technology, along with some performance
tests that show promising results. Also, we introduce the attribute retrieval policy
for collecting fresh values of mutable attributes. This policy is separated from the
Usage Control one because attribute retrieval is usually environment-dependent
whereas the Usage Control policy is application-independent and encodes high-
level security goals.

The paper is structured as follows. Section 2 gives basic notes on Usage Con-
trol, a running policy example, and describes the U-XACML language. Section 3
addresses the retrieval of mutable attributes. Section 4 describes the architecture
of the prototype, its implementation details and the performance tests. Section 5
summarizes related work. Section 6 concludes the paper.

2 Usage Control

Figure 1 shows on the time axis the main difference between the traditional Ac-
cess Control models and the UCON model [4,5]. The subject requests to execute
a long-standing action over a resource by sending the “tryaccess” request. Access
control models authorize the execution of the access at request time, i.e., before it
starts. Assuming that the authorization framework allows to execute the access,
it replies with the “permitaccess”. Traditional Access Control models do not per-
form any other check from this point on. The UCON model, instead, performs
security checks after the access is started. The continuous policy enforcement
starts when the system, which executes the access, notifies the authorization
framework by sending the “startaccess” message. This message identifies that a
new usage session has been created and the access is ongoing. Then, the autho-
rization framework continuously re-evaluates the access decision. If the policy
is not satisfied any more at some point of time, the authorization framework
issues the “revokeaccess” and forces the system to terminate the access. If the
policy always holds, the system notifies the authorization framework by send-
ing the “endaccess” message when the action finishes its execution. Either the
usage session is revoked or ended, Usage Control concludes by performing post
attribute updates and post obligations specified by the policy.

Continuity of control is a specific feature of the Usage Control model intended
to deal with mutable attributes of the requesting subject, of the accessed resource
and of the execution environment. Attributes change values as a result of the
access execution or caused by other uncontrollable factors. Continuous control
implies that policies are re-evaluated each time the attributes change their values.



A Prototype for Enforcing Usage Control Policies Based on XACML 81

Fig. 1. Access and Usage Control

Access decisions in Usage Control are based on authorizations (predicates
over subject and object attributes), conditions (predicates over environmental
attributes), and obligations (actions that must be performed along with an on-
going access). Authorizations and conditions constrain behaviour of mutable
attributes qualified in terms of time, e.g. “a subject reputation must be always
above a given threshold during the access”. The access evaluation is based only
on the current values of attributes. This allows to define a mutable attribute
as a bag in the XACML terms and model authorizations and conditions as the
XACML’s <Condition>. Obligations in Usage Control do not correspond exactly
to the obligations in the XACML language. Also, attribute updates are not spec-
ified in XACML. These concepts should be added to the XACML language in
order to support the full expressiveness of UCON.

2.1 Running Policy Example

Let us consider the following security policies explained in the natural language
which govern operations on Virtual Machines (VM) in Cloud IaaS scenario and
include both traditional Access Control and Usage Control:

– Access Control authorizations (Usage Control pre authorizations):
A user is allowed to access to an endorsed VM, i.e., the VM certified by the
producing authority;

– Usage Control ongoing authorizations: Users are allowed to run VMs
as long as they have a high reputation and the balance of their e-wallet is
positive;

– Usage control ongoing obligations:During the VM execution, the system
sends notifications when the balance of user’s e-wallet is below a threshold.
These notifications repeat every 30 minutes unless the balance is recharged;

– Usage control post updates: If the VM execution was ended by the user,
the reputation should be increased, while if the access was revoked by the
authorization framework, the reputation should be decreased.

2.2 U-XACML Approach

Figure 2 shows the U-XACML policy schema that is obtained by enhancing
the standard XACML language with the constructs to express when the con-
ditions and obligations must be evaluated. To represent continuous control, U-
XACML specifies when the access decision must be taken through the clause



82 A. Lazouski, F. Martinelli, and P. Mori

Fig. 2. U-XACML Policy Model

DecisionTime in the <Condition> elements (the admitted values are pre and
on denoting, respectively, pre and ongoing decisions), and the TriggerOn clause
in the <Obligation> elements. To represent attribute updates, we defined a
new element, <AttrUpdates>, that contains a collection of single <AttrUpdate>
elements to specify update actions. The time when the update is performed is
stated by the element UpdateTime that has values of pre, on and post updates.
For further details on the policy language, we refer the reader to [2].

3 Mutable Attributes Retrieval

Here and in the following, the meaning of the term “attribute” is the same as
defined in UCON [4], i.e., properties paired to subjects, objects, or environment.
The role or the reputation are examples of subject’s attribute. The enforcement of
Usage Control implies a policy re-evaluation each time when mutable attributes
change their values. Catching all attribute changes is a challenging issue, usually
impossible. We introduce a concept of attribute retrieval policy which specifies
when to collect fresh attribute values and trigger the access re-evaluation.

Following the XACML approach, we propose an XML-based language to ex-
press retrieval policies. The AttributeRetrieval is a top-level element in the
policy schema which aggregates Target and Prerequisites elements:

<xs:element name="AttributeRetrieval"/>
<xs:complexType name="AttributeRetrivalType"/>

<xs:sequences><xs:element ref="Target"><xs:element ref="Prerequisites"></xs:sequences>
<xs:complexType>

The Target element specifies identifiers of mutable attributes which the re-
trieval policy is intended to collect. The AttributeValue element taken from
the XACML policy schema, contains a literal value of an attribute identifier:

<xs:element name="Target"/>
<xs:complexType name="TargetType"/>

<xs:sequences><xs:element ref="xacml:AttributeValue"></xs:sequences><xs:complexType>

The Prerequisites element includes a conjunctive sequence of conditions which
must be satisfied before executing an attribute retrieval and the subsequent



A Prototype for Enforcing Usage Control Policies Based on XACML 83

<AttributeRetrieval>
<Target><AttributeValue> u-xacml:subject:reputation </AttributeValue></Target>
<Prerequisites>
<Condition>
<Apply FunctionId="dataTime-greater-then">
<AttributeDesignator Category="environment" AttributeId="env:current-time"/>
<Apply FunctionId="addTimeDuration">
<AttributeDesignator Category="local" AttributeId="um:last-retrieval-time"/>
<AttributeDesignator Category="configuration" AttributeId="time-between-queries"/>

</Apply></Apply>
</Condition>

</Prerequisites>
</AttributeRetrieval>

Fig. 3. Attribute Retrieval Policy

re-evaluation of a usage policy. The prerequisites are done when all conditions
are evaluated to true:

<xs:element name="Prerequisites"/>
<xs:complexType name="PrerequisitesType"/>

<xs:sequences><xs:element ref="xacml:Condition"></xs:sequences><xs:complexType>

The Condition element is taken from the XACML policy schema and it ex-
presses a boolean function evaluating the environmental factors, configuration
settings and local variables.

Figure 3 shows an example of the retrieval policywhich states that subject’s rep-
utation must be refreshed when xminutes passed since the last attribute retrieval,
where x is represented by the configuration setting time-between-queries. The
new attribute retrieval is performed when the current time is greater than the sum
of the time-between-querieswith the time of the last retrieval, that is stored in
the local variable um:last-retrieval-time. This variable is updated every time
when a new value of the attribute is collected.

The attribute retrieval policy is enforced when the access is in progress. When
the conditions in the policy hold, the PIP is invoked to collect fresh attributes,
that are then pushed to the PDP for the access re-evaluation.

4 Prototype

This section presents the architecture and the implementation details of our
prototype of authorization framework supporting the enforcement of U-XACML
policies.

4.1 Architecture and Work-Flow Model

The authorization framework works by intercepting every access request (e.g.,
Virtual Machines creation, suspension, reactivation and disposal in the IaaS
Cloud scenario) determining whether the request is allowed in accordance with
security policies, and enforcing the access decision by executing or aborting the
request. While the access is in progress (e.g., a Virtual Machine is running) the



84 A. Lazouski, F. Martinelli, and P. Mori

Fig. 4. U-XACML Policy Enforcement Architecture

authorization framework should be able to terminate the access and release the
resource when the security policy is violated. Figure 4 shows the main com-
ponents of the authorization framework’s architecture. As most authorization
systems [11,3], the main components are:

– Policy Decision Point (PDP) evaluates security policies based on the at-
tribute values that have been included in the request;

– Policy Enforcement Points (PEPs) are embedded in the components of the
framework that implement accesses to resources. They intercept access re-
quests and grants or denies the access based on the decisions provided by
the PDP. Moreover, PEPs are also in charge of interrupting access that are
in progress to enforce a revocation decision provided by the PDP;

– Policy Information Point (PIP) manages real attribute values, and provides
facilities for its storing, updating, retrieving, and delivery to the PDP;

– Policy Administrative Point (PAP) provides and manages security policies;
– Context Handler (CH) converts messages sent among components in the
proper format. It is also the front-end of the authorization system, since it
mediates the message exchanges with the PEPs;

– Usage Monitor (UM) is the main novelty with respect to the XACML ar-
chitecture. This component implements the ongoing decision process by col-
lecting fresh attribute values, and triggering the policy re-evaluation. The
strategy that specifies when the new attribute values have to be collected
is described by the attribute retrieval policy. The Usage Control policy re-
evaluation is triggered only if the values of the attributes that have been
collected are different from the ones stored in the UM cache.



A Prototype for Enforcing Usage Control Policies Based on XACML 85

The enforcement of access control is the same as described by XACML and
without loss of generality we present here the simplest way to enforce it. Our
authorization framework operates enforcing Usage Control policies as follows:

1. The PAP is exploited to create policies for Usage Control and attributes
retrieval and makes them available for the PDP and the UM respectively;

2. The PEP intercepts the access requestRA and sends the “tryaccess” message
to the CH;

3. The CH pulls from the PIP the attributes concerning the subject SA and
the resource OA involved in RA;

4. The CH constructs the XACML request exploiting RA and the attributes
retrieved in the previous step, and sends it to the PDP;

5. The PDP evaluates the security policy rules concerning traditional access
control rules, and returns the XACML response to the CH;

6. The CH translates the PDP response and replies to the PEP. Let us assume
that the response is “permitaccess”. Hence, the PEP starts the access A;

7. The PEP notifies the CH that a new usage session was created and the access
has started;

8. The CH activates a new instance of UM for A, and it forwards the request
to this UM instance that, in turn, starts the continuous policy enforcement
by monitoring the attributes related to SA and OA;

9. The UM enforces the retrieval policies related to the attributes of SA and
OA to decide when fresh values must be pulled from the PIP;

10. If the observed values are different form the cached ones, the UM triggers
the policy re-evaluation sending the request to the CH (go to the next step).
Instead, if no changes in the attribute values are detected, the UM repeats the
previous step by enforcing the attribute retrieval policy again and deciding
when fresh attributes values must be pulled from the PIP;

11. The CH constructs the XACML request to re-evaluate the right of executing
A and sends it to the PDP;

12. The PDP evaluates the security policy rules concerning ongoing control rules,
and returns the XACML response to the CH;

13. If the response is “deny”, see the step 14. Otherwise, “grant” is received
and the access can be continued, thus the CH translates it and replies to
the UM. Steps 9-13 are repeated until either the PDP returns “deny” or the
PEP sends the “endaccess” message: in this case go to the step 15;

14. If the PDP returns “deny”, the CH sends the access revocation message to
the PEP. Then, the PEP terminates A;

15. The PEP also may stop the session due to the normal ending of access. The
PEP notifies the CH by sending the “endaccess” message;

16. The CH constructs the XACML request to the PDP;
17. The PDP evaluates the security policy rules concerning end of access, and

returns the XACML response to the CH. The response could specify some
post obligations or post updates that must be executed;

18. The CH destroys the running UM instance which monitors A;
19. Finally, the CH responses to the PEP. This message includes the request for

executing post obligations, if any.



86 A. Lazouski, F. Martinelli, and P. Mori

<PolicySet PolicyCombiningAlgId="deny-override" ... >
<!-- - Access control Policy --!><Policy ... ><Rule Effect="Permit" ... >

<Target><AttributeValue> TRYACCESS </AttributeValue> ... AttributeId="action-id" ... </Policy>

<!-- Usage control: authorizations and revocation --!>
<PolicySet PolicyCombiningAlgId="permit-override" ... >
<Target><AttributeValue> STARTACCESS </AttributeValue> ... AttributeId="action-id" ...
<!-- permit part --!><Policy RuleCombiningAlgId="permit-override"... >

<Rule Effect="Permit" ... <Condition> ... </Condition></Rule>
<ObligationExpressions ... ObligationId="call-me-back" FulfillOn="permit" ... </Policy>

<!-- deny part --!><Policy RuleCombiningAlgId="deny-override"... >
<Rule Effect="Deny" ... > ... </Rule>
<ObligationExpressions ... ObligationId="post-update" FulfillOn="deny" ... </Policy>

</PolicySet>

<!-- Usage control: ongoing obligations and updates --!>
<Policy RuleCombiningAlgId="permit-override"... >
<Target><AttributeValue> STARTACCESS </AttributeValue> ... AttributeId="action-id" ...
<Rule Effect="Permit" ... > ... </Rule>
<ObligationExpressions ... ObligationId="ongoing-update" FulfillOn="permit" ... </Policy>

<!-- Usage control: end of access --!><Policy RuleCombiningAlgId="permit-override"... >
<Target><AttributeValue> ENDACCESS </AttributeValue> ... AttributeId="action-id" ...
<Rule Effect="Permit" ... ></Rule>
<ObligationExpressions ... ObligationId="post-update" FulfillOn="permit" ... </Policy>

</PolicSet>

Fig. 5. Access and Usage Control Policy in XACML Syntax

4.2 Implementing U-XACML Policies Exploiting XACML

The implementation of the framework for the enforcement of the U-XACML
policies exploits existing engines for the evaluation of XACML policies. Since U-
XACML is based on XACML, we implemented the continuous control combining
original XACML constructs. The basic idea is to insert a looping construct of
the access re-evaluation inside XACML’s obligations. An obligation is an action
which must be executed by the PEP along with the enforcement of an access
decision. The semantics of obligations is not fixed by XACML, thus it can be
exploited to encode any kind of duties. Hence, we exploit obligations for im-
plementing Usage Control. In particular, the PDP evaluates the policy and, in
case of an ongoing condition, it sends the access decision along with a so-called
“call-me-back” obligation which forces the PEP to call the PDP again to trigger
the access right re-evaluation. This routine is repeated while the policy is satis-
fied and the access does not terminate. When the policy is violated, instead, no
“call-me-back” obligation is returned.

We represent a U-XACML policy exploiting a tuple of 5 XACML policies.
One of these policies encodes the traditional access control (i.e., pre decisions),
while the other policies express Usage Control features and represent: (U-OAC)
ongoing authorization and conditions, which must be satisfied during the usage;
(U-OBU) ongoing obligations and attribute updates; (U-PBUR) post-obligations
and updates in a case of access revocation; (U-PBUE) post-obligation and up-
dates in a case of a normal termination. Figure 5 contains an overall UCON
policy structure in XACML syntax. Notice, that non-critical elements are



A Prototype for Enforcing Usage Control Policies Based on XACML 87

omitted due to space limitation. This structure should be preserved and a policy
should abide the following requirements:

– Access control policy should include all predicates over static attributes since
there is no need to re-evaluate these predicates when the access is ongoing;

– Usage policy for ongoing authorizations and conditions should be modeled as
a policy set with two sub-policies: permitting and denying. The permitting
policy, i.e., the U-OAC policy, should contain a “call-me-back” obligation,
whereas the denying policy, i.e., the U-PBUR policy, includes post-updates
and post-obligations that must be executed in a case of a policy revocation.
Ongoing authorizations may be placed in any sub-policy. If a policy designer
is more comfortable to specify conditions which must always hold during the
access then these conditions are included in the permitting policy, and if it
is more intuitive to express negative rules - to the denying policy;

– Usage Control policy for end of access, i.e., the U-PBUE policy, should con-
tain no conditions in a policy rule and the rule’s effect should be “permit”.
The policy applicability is defined by the action attribute “action-id” with
the value equals to “endaccess”;

– Obligations returned to the PEP should be a composition of obligations
whose “FulfillOn” attribute and the effect of a policy evaluation matches
with the effect returned after the evaluation of the overall policy.

We transformed policies written in U-XACML to XACML using the XSLT tech-
nology1. In fact, this transformation adheres to the requirements listed here and
the final policy ported for the evaluation looks like one given in Figure 5. Since
we implemented U-XACML policies exploiting standard XACML constructs,
one might question whether U-XACML is really needed. The main reason is
that the U-XACML policy allows to naturally express Usage Control features
with specific constructs, hence it is more user-friendly. System administrators
can transform their access control policies written in XACML in Usage Control
policies with a minimal effort. They should identify which of the conditions and
obligations in their access control policies must hold during the usage of the re-
source, and insert the clause DecisionTime="on" in the XACML element that
declares these conditions and obligations.

Moreover, the proposed use of the original XACML constructs for implement-
ing Usage Control has some drawbacks. Firstly, the PEP, besides being respon-
sible for the enforcement of the PDP decisions, is also in charge of iteratively
triggering the PDP for the policy re-evaluation. Secondly, a “call-me-back” obli-
gation may contain a policy-sensitive data and its disclosure is unwanted. There-
fore, we introduced the UM, a new component, which enforces the call-me-back
obligation by retrieving fresh attributes. The prototype given in this paper has a
simple implementation of Usage Control which is based on standard techniques
and shows a relatively good performance.

1 http://xml.apache.org/xalan-j

http://xml.apache.org/xalan-j


88 A. Lazouski, F. Martinelli, and P. Mori

Fig. 6. A Sequence Diagram of Access and Usage Control Enforcement

4.3 Prototype Implementation

The core of our framework is the authorization service which implements func-
tionality of the UM, the CH, the PDP, the PAP, and it was realized exploiting the
web service technology (see Figure 6). An instance of the authorization service
is created per an instance of the usage session. The service instance is destroyed
when the violation of the policy happens or the usage session ends normally.
This is a preliminary implementation of the framework, where all concurrent
usage sessions run in parallel and their monitors do not cooperate on attributes
retrieval.

We exploited the Sun’s XACML engine2 for implementing the PDP. This
engine evaluates access and usage policies. At this stage, we do not provide
an engine for the evaluation of the attribute retrieval policy. We leave it for the
future work. Instead, in the current implementation we provide the possibility to
retrieve all attributes repeatedly, waiting a time interval (e.g., every 10 seconds).

The PIP manages real attributes and provides interfaces to query their values.
The PIP was realized as a web service and its clients are the authorization service
and the PEP. The PIP communicates over HTTP/SOAP and accepts the SAML
attribute queries as requests and replies with the SAML assertions. We used the
OpenSAML2.0 Extension Library3 to support the SAML profile of XACML4.

The PEP is a process which runs along with the execution of the long-standing
action on the resource. The PEP enhanced with Usage Control features should be

2 http://sunxacml.sourceforge.net
3 http://www.bccs.uib.no/~hakont/SAMLXACMLExtension
4 http://saml.xml.org/saml-specifications

http://sunxacml.sourceforge.net
http://www.bccs.uib.no/~hakont/SAMLXACMLExtension
http://saml.xml.org/saml-specifications


A Prototype for Enforcing Usage Control Policies Based on XACML 89

powerful to destroy the running action if the authorization service claims about
a policy violation or to notify the authorization service if the execution of the ac-
tion ends normally. We provided a set of Java APIs which the designer of a system
should use for the Usage Control support. These APIs implement the communica-
tion between the PEP and the CH, the PEP and the PIP with the support of the
HTTP/SOAP/SAML-XACML protocol stack. The PEP is the Axis25 client of
the authorization and attribute provider services. Since the time of the usage ses-
sion in unbounded, the PEP communicates with the authorization service in asyn-
chronous mode which enables the processing of the “startaccess” and “revokeac-
cess” messages in two different threads. Also, two different transport channels are
used to send these messages. The PEP starts the usage session after sending the
“startaccess” and idles. Later, when the response from the authorization service
about the policy violation arrives, the PEP resumes its execution by destroying
the usage session.

Figure 6 presents a sequence diagram for the enforcement of the access and
usage policy given in Subsection 2.1. It starts with the access control and the
CH is responsible to collect attributes. When the usage sessions begins, the
UM becomes in charge for the retrieval of fresh attribute values. When new
attribute values violate a security policy, the authorization service informs the
PEP and both terminate. In case of normal end of access, the new instance of
the authorization service is created to process the “endaccess” request. Before
replying to the PEP, this instance stops the primary running instance of the
authorization service created on the “startaccess”.

4.4 Performance Evaluation

As a Usage Control requires an extra process for each usage session, the perfor-
mance should be considered. Since this process is outsourced to the authorization
service, we measured its performance in the presence of a plenty of running usage
sessions. We deployed the authorization and attribute provider services inside
Axis2. The server was hosted on a machine with Ubuntu 10 and Java 1.6 support
and which has Intel Core 2 Duo 3.16 GHz CPU and 3.4 GB memory.

First, we measured how many instances of the authorization service per second
can be created. This gives a number of usage sessions which the PEP can start
and be aware that the authorization service will serve them all. The creation
of the authorization service instance starts when the PEP sends “startaccess”
and lasts until the UM receives the result of the first access reevaluation (i.e.,
steps 7-13 in Figure 4). We obtained that 47 new usage sessions in average can
be created by the authorization service, or approximately 21.5 ms goes for the
creation of a single service instance. Although, we experimented with a faster
CPU the obtained results shown that our system performs comparably to one
given in [12] where the average time per access evaluation only takes 45.3 ms.

Then, we measured the revocation response time for a single usage session
in dependence on the number of ongoing usage sessions serviced by the

5 http://axis.apache.org/axis2

http://axis.apache.org/axis2


90 A. Lazouski, F. Martinelli, and P. Mori

(a) Revocation of a Single Session (b) Massive Revocation of Sessions

Fig. 7. Performance of Access Revocation

authorization service. The revocation response time defines the period of time
passed from the point when the PIP replies to the UM with the attribute value
which violates the security policy until the PEP receives the “revokeaccess” (i.e.,
steps 9-14 in Figure 4). We varied the number of the authorization service in-
stances running concurrently with the test usage session from 100 to 1300. We
assume that an execution time of a single session is quite long, thus the authoriza-
tion service could maintain a large number of concurrent sessions started at dif-
ferent time points. Since the authorization service can create only 47 new sessions
per second, the starting time between 1st and 1300th sessions and the minimum
execution time of any session should be at least 26 seconds. Figure 7(a) shows the
results obtained. We see that the response time of the access revocation is moder-
ate and increases slowly with the growth of the number of concurrently running
sessions.

Finally, we measured the revocation time of all sessions whose policies use the
same security attribute which changes its value from good to bad and violates
the policies. The revocation time of all sessions defines the period of time passed
from the point when the first until the last sessions receive the “revokeaccess”.
We configured the retrieval policy in such a way that the UM refreshes attributes
and re-evaluates the usage policy every 10 seconds. Figure 7(b) shows the results
obtained. We see that the revocation time of all sessions grows linearly in the
number of running sessions.

5 Related Work

Several papers stated that XACML needs extension to capture the continuous
policy enforcement [12,8]. Some attempts were done to enforce UCON policies
exploiting XACML [9,12,6]. These approaches introduce events reporters that
trigger the policy re-evaluation when the access is in progress. Security checks
are invoked by the changes of subject, object, and/or environmental attributes.
Instead, we assume that the authorization framework is responsible to retrieve
fresh attributes. Moreover, they consider what parts of UCON can be mod-
elled in XACML. In contrast, our approach considers how XACML should be
extended to capture the continuous control and we introduced the prototype
which is capable to deal with the main UCON features. The approach given
in [7] proposed to integrate together the attribute retrieval and security policies



A Prototype for Enforcing Usage Control Policies Based on XACML 91

in a single XACML policy. We, instead, separate them because the attribute re-
trieval is usually environment-specific while security policies are not and usually
encode high-level security goals.

6 Conclusions and Future Work

This paper presented an authorization framework for the enforcement of Usage
Control policies expressedwith theU-XACML language, alongwith aweb-services
based proof-of-concept implementation that, although very simple, showedpromis-
ing results from the performance point of view. The main advantage of the pro-
posed framework is that it supports U-XACML, thus simplifying significantly the
enforcement of Usage Control. As a matter of fact, exploiting U-XACML, system
administrators can transform their access control policies written in XACML in
Usage Control policies in a straightforward way. In particular, they should iden-
tify which of the conditions and obligations in their access control policies must
hold during the usage of the resource, and insert the clause DecisionTime="on"
in the XACML element that declares these conditions and obligations.

Another advantage of the proposed framework is that most of the interactions
between the framework components are implemented through standard proto-
cols, thus allowing the substitution of the existing component with enhanced
(e.g., more efficient) ones.

We are currently working for refining several aspects of the authorization
framework. Firstly, we are working on refining the support for attributes re-
trieval policies, e.g., we are implementing publish/subscribe retrieval policies.
Moreover, we would like move to a state-full version of the authorization service
implementing an architecture with a single Usage Monitor component that will
manage all the ongoing accesses. We believe that these changes will enhance the
framework performance and robustness especially in the case of a large number
of long lasting concurrent accesses.

References

1. Abadi, M.: Logic in access control. In: Proceedings of the 18th Annual IEEE Sym-
posium on Logic in Computer Science, Washington, DC, USA, p. 228 (2003)

2. Colombo, M., Lazouski, A., Martinelli, F., Mori, P.: A proposal on enhancing
XACML with continuous Usage Control features. In: Proceedings of CoreGRID
ERCIM Working Group Workshop on Grids, P2P and Services Computing, pp.
133–146. Springer (2010)

3. OASIS XACML TC. eXtensible Access Control Markup Language (XACML) Ver-
sion 3.0 (2010)

4. Park, J., Sandhu, R.: Towards usage control models: Beyond traditional access
control. In: SACMAT 2002: Proceedings of the Seventh ACM Symposium on Access
Control Models and Technologies, NY, USA, pp. 57–64 (2002)

5. Zhang, X., Parisi-Presicce, F., Sandhu, R., Park, J.: Formal model and policy spec-
ification of usage control. ACM Transactions on Information and System Security
(TISSEC) 8(4), 351–387 (2005)



92 A. Lazouski, F. Martinelli, and P. Mori

6. Feng, J., Wasson, G., Humphrey, M.: Resource usage policy expression and en-
forcement in grid computing. In: IEEE/ACM International Workshop on Grid
Computing, pp. 66–73 (2007)

7. Gheorghe, G., Crispo, B., Carbone, R., Desmet, L., Joosen, W.: Deploy, Adjust
and Readjust: Supporting Dynamic Reconfiguration of Policy Enforcement. In:
Kon, F., Kermarrec, A.-M. (eds.) Middleware 2011. LNCS, vol. 7049, pp. 350–369.
Springer, Heidelberg (2011)

8. Hafner, M., Memon, M., Alam, M.: Modeling and enforcing advanced access control
policies in healthcare systems with Sectet, pp. 132–144 (2008)

9. Katt, B., Zhang, X., Breu, R., Hafner, M., Seifert, J.-P.: A general obligation model
and continuity: enhanced policy enforcement engine for usage control. In: SACMAT
2008: Proceedings of the 13th ACM Symposium on Access Control Models and
Technologies, New York, USA, pp. 123–132 (2008)

10. Lazouski, A., Martinelli, F., Mori, P.: Usage control in computer security: A survey.
Computer Science Review 4(2), 81–99 (2010)

11. Vollbrecht, J., Calhoun, P., Farrell, S., Gommans, L., Gross, G., de Bruijn, B., de
Laat, C., Holdrege, M., Spence, D.: AAA authorization framework (2000)

12. Zhang, X., Nakae, M., Covington, M.J., Sandhu, R.: Toward a usage-based security
framework for collaborative computing systems. ACM Transactions on Information
and System Security (TISSEC) 11(1), 1–36 (2008)


	A Prototype for Enforcing Usage Control
Policies Based on XACML
	Introduction
	Usage Control
	Running Policy Example
	U-XACML Approach

	Mutable Attributes Retrieval
	Prototype
	Architecture and Work-Flow Model
	Implementing U-XACML Policies Exploiting XACML
	Prototype Implementation
	Performance Evaluation

	Related Work
	Conclusions and Future Work
	References




