

Lecture Notes in Computer Science 7412
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Adam Smith (Ed.)

Information Theoretic
Security

6th International Conference, ICITS 2012
Montreal, QC, Canada, August 15-17, 2012
Proceedings

13

Volume Editor

Adam Smith
Pennsylvania State University
Department of Computer Science and Engineering
University Park, PA 16802, USA
E-mail: asmith@psu.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-32283-9 e-ISBN 978-3-642-32284-6
DOI 10.1007/978-3-642-32284-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012943067

CR Subject Classification (1998): K.6.5, E.3, E.4, K.4.4, F.2.1

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

ICITS 2012 was the 6th International Conference of Information-theoretic
Security, held at the Université de Montréal in Montreal, Quebec, Canada,
during August 15–17, 2012. ICITS 2012 was held in cooperation with the Inter-
national Association for Cryptologic Research (IACR). The General Chair of the
conference was Jürg Wullschleger. He was helped by two local Co-chairs, Claude
Crépeau and Alain Tapp.

The Program Committee, consisting of 14 members, received 46 submissions
to two tracks. Twenty-two papers were ultimately accepted, 11 from each track.
The quality of the submissions to both tracks was high, making the selection
process challenging.

The two-track format was new to ICITS this year, and represented an exper-
iment in bringing together researchers from three communities — information
theory, cryptography, quantum computing — with very different publication cul-
tures. Submissions to both tracks were reviewed by the committee, and in some
cases external reviewers, to assess their quality and suitability. The two tracks
differed in how accepted submissions were handled. The first, “conference”, track
was set up as a traditional computer science conference: submissions had to
be original, and revised versions of the 11 accepted papers appear in this vol-
ume. (Revisions were not checked as to their contents, and the authors bear full
responsibility for the contents of their papers.)

In contrast, papers accepted to the second, “workshop”, track do not ap-
pear in these proceedings except, at the discretion of the authors, as one-page
abstracts (authors of seven of the 11 papers decided to contribute abstracts).
Workshop-track papers represent recently published or as-yet unpublished
research. A full list of the workshop-track papers presented at the conference
appears before the table of contents.

The goal of the two-track format was to encourage participation from
researchers from communities where a conference publication may preclude pub-
lication in a top journal, and to draw participants who normally publish in other
conferences (CRYPTO and ISIT, for example). I believe that in this respect the
format was very successful.

Finally, I note that it was up to authors to decide which track they would
submit to—each paper was only considered for one track—and the same review
process applied to papers from both tracks.

In addition to the 22 contributed presentations, there were seven invited
talks:

– “Reconstruction of a Shared Secret in the Presence of Faults,” by Serge Fehr
of CWI Amsterdam

– “Timing Side Channels: Quantifying and Mitigating the Threat,” by Negar
Kiyavash of the University of Illinois at Urbana-Champaign

VI Preface

– “Non-malleable Extractors, Non-malleable Condensers and Their Applica-
tions,” by Xin Li of the University of Washington

– “How to Fake Auxiliary Input,” by Krzysztof Pietrzak of IST Austria
– “The Many Entropies of One-Way Functions,” by Salil Vadhan of Harvard
– “Information Locking from Asymptotic Geometry,” by Patrick Hayden of

McGill University
– “Semantic Security in the Physical Layer,” by Alexander Vardy of the

University of California, San Diego

I am grateful to the many people who contributed to the success of ICITS
2012. Above all, I thank the authors who submitted papers. ICITS exists to
disseminate their research. I also thank the extremely hard-working committee
members, who devoted many hours of their time and enthusiastically engaged
with the new format, and the external reviewers who assisted the committee.
Jürg Wullshleger deserves special thanks since he served both as a committee
member and as the General Chair. His advice and help with the format and
program were invaluable.

The two-track format came about after discussions with a wide range of peo-
ple, including the members of the Program Committee and the ICITS Steering
Committee, chaired by Yvo Desmedt. Their suggestions deserve the credit for the
success of the two-track format (though I deserve the blame for any deficiencies
in its implementation). I would particularly like to thank Christian Schaffner
and Stephanie Wehner for a conversation at QIP during which the two-track
idea was conceived (exactly nine months before ICITS!). The Steering Commit-
tee also provided useful general advice on my role as Program Committee chair.
I am especially grateful to Rei Safavi-Naini, the ICITS 2008 Program Chair, for
several helpful conversations.

Finally, I would like to thank Alfred Hofmann, Christine Reiss and Anna
Kramer and the rest of the LNCS staff at Springer for their help preparing the
proceedings.

June 2012 Adam Smith
Program Chair

ICITS 2012

ICITS 2012

The 6th International Conference on
Information-theoretic Security

Montréal, Québec, Canada, August 15–17, 2012

Organized in cooperation with the
International Association for Cryptologic Research

General Chair Jürg Wullschleger (Université de Montréal)

Local Co-chairs Alain Tapp (Université de Montréal)
Claude Crépeau (McGill University)

Program Chair Adam Smith (Pennsylvania State University)

Program Committee

Anne Broadbent University of Waterloo, Canada
Thomas Holenstein ETH Zürich, Switzerland
Yuval Ishai Technion – Israel Institute of Technology, Israel
Sidarth Jaggi Chinese University of Hong Kong, SAR China
Bhavana Kanukurthi University of California, Los Angeles, USA
Ashish Khisti University of Toronto, Canada
Yingbin Liang Syracuse University, USA
Prakash Narayan University of Maryland, USA
Louis Salvail Université de Montréal, Canada
Anand Sarwate Toyota Technological Institute at Chicago, USA
Christian Schaffner University of Amsterdam, The Netherlands
Stephanie Wehner National University of Singapore, Singapore
Daniel Wichs IBM Research, USA
Jürg Wullschleger Université de Montréal, Canada

ICITS Steering Committee

Carlo Blundo University of Salerno, Italy
Ronald Cramer CWI & Leiden University, The Netherlands
Yvo Desmedt (Chair) University College London, UK
Hideki Imai University of Tokyo, Japan
Kaoru Kurosawa Ibaraki University, Japan
Ueli Maurer ETH Zürich, Switzerland
C. Pandu Rangan Indian Institute of Technology, Madras, India
Rei Safavi-Naini University of Calgary, Canada
Moti Yung Google & Columbia University, USA
Yulian Zheng University of North Carolina, USA

VIII ICITS 2012

External Reviewers

Prabhanjan Ananth
Mattias Andersson
Gilad Asharov
Raef Bassily
Amos Beimel
Mario Berta
Andrej Bogdanov
Niek Bouman
David Cash
Rafael Dowsley
Serge Fehr

Eiichiro Fujisaki
Benjamin Fuller
Esther Hänggi
Ariel Gabizon
Adriana Lopez-Alt
Samuel Ranellucci
Florian Speelman
Marco Tomamichel
Dominique Unruh
Mark Wilde
Stefan Wolf

Sponsors

Centre de recherches mathématiques, Université de Montréal
Institute for Quantum Computing, University of Waterloo
INstitute for Transdisciplinary Research In Quantum computing (INTRIQ), a
strategic cluster of the Fonds de recherche du Québec – Nature et technologies

Workshop Track Papers

The following papers, accepted to the “workshop track,” were presented at ICITS
2012 but do not appear as long papers in these proceedings. Authors could opt
to include a one-page abstract. Abstracts of the papers marked with an asterisk
appear at the end of the proceedings.

(In contrast, submissions accepted to the conference track appear as long
papers. They are listed in the table of contents.)

1. Security Proof of Two-Way Quantum Key Distribution Protocols with
Partial Device Independence
Normand Beaudry, Marco Lucamarini, Stefano Mancini, Renato Renner.

2. Share Conversion and Private Information Retrieval*
Amos Beimel, Yuval Ishai, Eyal Kushilevitz, Ilan Orlov

3. Quantum to Classical Randomness Extractors
Mario Berta, Omar Fawzi and Stephanie Wehner

4. Almost-Everywhere Secure Computation with Edge Corruptions*
Nishanth Chandran, Juan Garay, Rafail Ostrovsky

5. Improving the Quality of Santha-Vazirani Sources*
Roger Colbeck and Renato Renner

6. David and Goliath Oblivious Affine Function Evaluation*
Nico Döttling, Daniel Kraschewski, Jörn Müller-Quade.

7. A Unified Approach to Deterministic Encryption: New Constructions and a
Connection to Computational Entropy*
Benjamin Fuller, Adam O’Neill, Leonid Reyzin

8. Feasibility and Completeness of Cryptographic Tasks in the Quantum World
Jonathan Katz, Fang Song, Hong-Sheng Zhou, Vassilis Zikas

9. Bounds for Secure Two-Party Sampling from a Generalization of Common
Information*
Vinod M. Prabhakaran, Manoj M. Prabhakaran

10. An Information-Theoretic Approach to Privacy*
Lalitha Sankar, S. Raj Rajagopalan, H. Vincent Poor

11. Polar Codes for Private Classical Communication
Mark Wilde, Joseph M. Renes

Table of Contents

Guessing Secrecy . 1
Mohsen Alimomeni and Reihaneh Safavi-Naini

Trading Robustness for Correctness and Privacy in Certain Multiparty
Computations, beyond an Honest Majority . 14

Anne Broadbent, Stacey Jeffery, Samuel Ranellucci, and Alain Tapp

Two Protocols for Delegation of Computation . 37
Ran Canetti, Ben Riva, and Guy N. Rothblum

On the Amortized Complexity of Zero Knowledge Protocols
for Multiplicative Relations . 62

Ronald Cramer, Ivan Damg̊ard, and Valerio Pastro

Universally Composable Oblivious Transfer from Lossy Encryption and
the McEliece Assumptions . 80

Bernardo Machado David, Anderson C.A. Nascimento, and
Jörn Müller-Quade

Shannon Impossibility, Revisited . 100
Yevgeniy Dodis

Statistically Secure Linear-Rate Dimension Extension for Oblivious
Affine Function Evaluation . 111

Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade

Passive Corruption in Statistical Multi-Party Computation
(Extended Abstract) . 129

Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub

Efficient Threshold Zero-Knowledge with Applications to User-Centric
Protocols . 147

Marcel Keller, Gert Læssøe Mikkelsen, and Andy Rupp

Information-Theoretic Timed-Release Security: Key-Agreement,
Encryption, and Authentication Codes . 167

Yohei Watanabe, Takenobu Seito, and Junji Shikata

Optimum General Threshold Secret Sharing . 187
Maki Yoshida, Toru Fujiwara, and Marc Fossorier

Workshop Track Abstracts . 205

Author Index . 219

Guessing Secrecy

Mohsen Alimomeni and Reihaneh Safavi-Naini

University of Calgary, Department of Computer Science

Abstract. Shannon’s definition of perfect secrecy captures the strongest
notion of security for an encryption system and requires that the cipher-
text leaks no information about the plaintext to an eavesdropper with
unbounded computational power. The only known system with perfect
secrecy in this model is one-time pad. Two important limitations of one-
time pad in practice are, (i) the size of key space must not be less than
the size of plaintext space, and (ii) the key must be chosen uniformly
at random for each message to be encrypted. A number of follow up
work attempt to relax these limitations by introducing relaxed or new
definitions of secrecy.
In this paper we propose a new relaxation of secrecy that we call

perfect guessing secrecy, or guessing secrecy for short. This is a natu-
ral definition that requires that the adversary’s success chance of the
plaintext using his best guessing strategy does not change after seeing
the ciphertext. Unlike perfect secrecy, guessing secrecy does allow some
leakage of information but requires that the best guess of the plaintext
remain the same after seeing the ciphertext. We define guessing secrecy
and prove a number of results. We show that similar to perfect secrecy,
in guessing secrecy the size of the key space can not be less than the
size of plaintext space. Moreover, when the two sets are of equal size,
one can find two families of distributions on the plaintext space and key
space, such that perfect guessing secrecy is guaranteed for any pair of
distributions, one from each family. In other words, perfect guessing se-
crecy can be guaranteed with non-uniform keys also. We also show the
relation between perfect secrecy and perfect guessing secrecy. We discuss
our results and propose direction of future research.

Keywords: Guessing secrecy, randomness, perfect secrecy, Information
theoretic security, imperfect randomness.

1 Introduction

Consider the classical scenario of symmetric cryptography: Alice, wants to send
a message X securely to Bob, over a reliable communication channel that is
eavesdropped by Eve who has unlimited computational power. The goal of se-
crecy systems is to prevent Eve from learning the message, given her view of the
communication channel. Without giving any advantage to Alice and Bob, pro-
viding secrecy against Eve in the above setting is impossible. In Shannon’s model
of secrecy system [1], Alice and Bob share a secret key K that is unknown to

A. Smith (Ed.): ICITS 2012, LNCS 7412, pp. 1–13, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 M. Alimomeni and R. Safavi-Naini

Eve. Alice and Bob use a symmetric key encryption system that consists of two
functions: an encryption function that takes the message X and the key K, and
generates a ciphertext Y, and a decryption function that takes the ciphertext Y
and the same key K, and recovers the message X back. Alice and Bob use the
encryption and decryption functions, respectively. Eve who sees the ciphertext
Y, without the knowledge of the key K cannot recover X. Other models assume
other types of advantage, such as noisy view of communication channel [2], or
bounded storage for Eve [3].

In this paper we follow Shannon’s model and consider the case that Alice
and Bob share a realization of a random variable (key). Shannon’s definition
of perfect secrecy, requires that no information about the plaintext be leaked
from the ciphertext. Perfect secrecy requires that the distribution of ciphertexts
and plaintexts be statistically independent and so the adversary’s information
about the plaintext will not be affected by having access to the ciphertext. The
only system with perfect secrecy is one-time pad. One-time pad requires a new
key to be selected for encryption of each message. Shannon proved that for any
encryption scheme with perfect secrecy, entropy of the key distribution must be
at least equal to the entropy of the plaintext. He also proved that for perfect
secrecy the size of the key space must be at least as large as the size of plaintext
space. For the case that the two sizes are equal to the size of ciphertexts, that
is the system has the best possible key efficiency, the distribution on the key
space must be uniform. These requirements are hard, if not impossible, to satisfy
since even if one could tolerate using a new key for every message, guaranteeing
uniformity of the key is a real challenge in practice. This is because there is no
known source of randomness with guaranteed uniform output, and in almost all
cases the output of a randomness source is likely to have biases.

1.1 Previous Work

A number of authors considered alternative models to achieve more practical
cryptosystems:

ε-Secrecy. One of the first attempts to relax the requirement on the indepen-
dence of plaintext and ciphertext distribution, led to the definition of ε-secrecy
that allows small amount of information leakage about the plaintext after view-
ing the ciphertext.

A number of papers [4,5,6] considered whether ε-secrecy is possible if the key
is not chosen uniformly at random. Bosely and Dodis [7] considered this problem
and proved that for practical key lengths (not exponential in plaintext length)
either encryption is impossible, or the key is deterministically extractable to a
uniform key with the same length as the plaintext. That is there is a determin-
istic function that takes the key as input and generates a random string of the
size at least equal to the message. The generated random string can then be
used in one-time pad to provide secrecy. In other words, they proved that any
encryption function that provides ε-secrecy is essentially one-time pad.

Guessing Secrecy 3

Entropic Security. Russel and Wang [8] built upon a notion of secrecy, called
semantic security, and assumed a bound on the prior knowledge of the adversary
about the plaintexts. With this restriction, they could reduce the length of the
key, depending on the amount of adversary’s prior knowledge about plaintexts.
Dodis and Smith [9] introduced entropic security based on Russel and Wang
definition and provided simpler constructions that achieved entropic security.
Although compared to perfect secrecy, their notion of secrecy needs smaller key
size, but their schemes require the key to be uniformly distributed.

Bounded Storage Model. Another direction proposed was to limit the mem-
ory of the computationally unbounded adversary.Maurer [3] introduced Bounded
Storage Model, and proved that a constant size key can be used to provide uncon-
ditional security in this model [10]. Aumann and Robin [11] defined the notion
of everlasting security using the Bounded Storage Model, and showed that a key
can be reused to send an exponential number of plaintexts [12].

In these models the key is either deterministically extractable, or is almost
uniformly distributed. Moreover the assumption of bounded storage is challenged
in many real life scenarios.

1.2 Our Contribution

We propose a new notion of secrecy that we call guessing secrecy that is similar
to Shannon’s formulation of perfect secrecy, but uses min-entropy and condi-
tional min-entropy instead of corresponding Shannon entropies. Pefect guessing
secrecy, referred to as guessing secrecy for simplicity, requires that the best
chance of the adversary in guessing the plaintext does not change after viewing
the ciphertext. In other words, it requires that the conditional min-entropy of
the plaintext distribution given ciphertext, be equal to the min-entropy of the
plaintext distribution.

We show that similar to perfect secrecy, perfect guessing secrecy requires the
size of the key space to be at least equal to the size of plaintext space. If the sizes
are the same however, unlike Shannon secrecy, it may be possible to obtain perfect
guessing secrecy using non-uniform keys. We show two concrete families of distri-
butions, on the message space and key space respectively, with the property that
perfect guessing secrecy is guaranteed for any distribution on messages from the
former family, together with any distribution on the keys, from the latter family.
Ideally one would like to have both families to be large: that is perfect guessing
secrecy be obtained for many plaintext distributions, using a large family of distri-
butions on the keys. We however show that for the any family of distributions on
the message space that contains uniform distribution, one must choose the key to
be uniformly random, and the only encryption system that provides guessing se-
crecy is one-time pad. That is the family of distributions on the key space reduces
to a single element. We leave the problem of finding larger families of distribu-
tion for message and key space that satisfy perfect guessing secrecy as an open
problem.

4 M. Alimomeni and R. Safavi-Naini

We also show the relationship between perfect secrecy and perfect guessing
secrecy.

1.3 Motivation

Guessing secrecy preserves the min-entropy of a random variable by using the
randomness from a shared key. This provides sufficient level of security in some
scenarios for example when the communicated random variable is used as the
input to an extractor to generate a uniformly distributed key. Reducing ran-
domness requirement of the shared key (not requiring the key to be uniformly
distributed and/or the key length be the same as the plaintext length) for guess-
ing secrecy might help us to improve such scenarios in practice.

2 Notations and Preliminaries

We denote random variables by capital letter, such as X . If not stated otherwise,
a random variable X induces a probability distribution PX over a set which is
denoted by the corresponding calligraphic letter X . The cardinality, or size of a
set X is denoted by |X |, and by length of an instance x ∈ X we mean the length
of the bit-string representation of it, i.e. log(|X |). Uniform distribution over a
set X is denoted by UX or Un if X = {0, 1}n. The logarithms will be in base 2
throughout the paper.

2.1 Information Measures

Shannon [13] defined the entropy (or average uncertainty) of a random variable
as the information that is gained after observing a realization of the random
variable.

Shannon Entropy. The Shannon entropy H(X) of a random variable X is
given by H(X) = E[− logPX]. The conditional Shannon entropy H(X |Y) of the
random variable X given Y is the average value of H(X |Y = y) over all possible
values of y, i.e. H(X |Y) = −

∑
y∈Y PY (y)H(X |Y = y). The mutual information

between two random variables measures the mutual dependence of them and is
given by I(X ;Y) = H(X)−H(X |Y).

Statistical Distance. The statistical distance Δ(X,Y) between two random
variables X and Y over the same range A with probability distributions PX and
PY respectively, is given byΔ(X,Y) = 1

2

∑
a∈A |PX(a)− PY (a)| . IfΔ(X,UX) ≤

ε for sufficiently small ε, then we say X is almost uniformly distributed.

Min-Entropy. The min-entropy H∞(X) of a random variable X is given by

H∞(X) = min
x

{
log 1

Pr[X=x]

}
= − logmaxx PX(x).

A comprehensive study of information measures can be found in [14,15].

Guessing Secrecy 5

2.2 Shannon Secrecy

In this section, we recall some of the classical results in secrecy.

Encryption System. Let X be the set of plaintexts that is encrypted using a
key from the set K. Let Y the set of all ciphertexts. An encryption system is a
pair of functions enc : X × K → Y and dec : Y × K → X such that for every
x ∈ X and k ∈ K it holds that dec(enc(x, k), k) = x, i.e. the decryption has no
errors.

A realistic assumption here is that the adversary may have some prior infor-
mation about the plaintext even before observing the ciphertext. For example
if the adversary knows that the plaintext is English text, then this information
may help her to better guess the plaintext after observing the ciphertext. The
adversaries prior knowledge about the plaintext can be modeled as an random
variable X over the set of plaintexts X with probability distribution PX . We also
assume that there is a random variable K over the set of keys K with probability
distribution PK . It is assumed that random variables X and K are independent.
We also consider the random variable Y over ciphertexts Y with probability
distribution PY that is determined by PX and PK and the encryption function
enc.

Remark 1. From now on, without loss of generality, we only consider probability
distributions that assign nonzero values to elements of their underlying space,
unless otherwise stated. This is because we often need to consider conditional
probabilities and this assumption simplifies the expression of theorems.

Remark 2. When we refer to an encryption system we assume there are proba-
bility distributions PX and PK on the plaintext and key space respectively.

Shannon’s definition of secrecy, which is the strongest definition of security
against an eavesdropping adversary for encryption systems, requires that the
ciphertext gives no information about the plaintexts. In the language of prob-
ability theory this means that the probability distribution over the plaintexts
PX does not change even given a ciphertext y, i.e. PX = PX|Y =y for all y ∈ Y.
In terms of entropy, this is equivalent to saying that H(X |Y) = H(X). If an
encryption system satisfies this property, then we say it is perfectly secure, or it
satisfies perfect secrecy:

Perfect Secrecy. An encryption system provides perfect secrecy if the cipher-
text reveals no information about the plaintext, i.e., I(X ;Y) = 0.

One-Time Pad. Shannon showed that one-time pad scheme achieves perfect
secrecy. One-time pad encrypts a plaintext x which is an element of a group G
by selecting a key k which is another group element that is selected uniformly
at random, and outputs x + k where + is the group operation. One-time pad

6 M. Alimomeni and R. Safavi-Naini

requires that for encryption of each message, the key to be chosen uniformly at
random from a set of keys, and the size of the key space be as large as the size of
plaintext space. This requirement make the system no applicable in real world
applications.

Shannon proved that perfect secrecy, in general, needs the key entropy to be
higher than the plaintext entropy; i.e. H(K) ≥ H(X). It is also proved that
perfect secrecy requires that the size of the key space be at least equal to the
size of the plaintext space. Shannon also proved that if the size of plaintexts,
keys and ciphertexts are the same, i.e. |X | = |Y| = |K|, then any encryption
scheme with perfect secrecy is essentially one-time pad, i.e. i) The distribution
over keys, PK , is uniform. ii) For every x ∈ X and every y ∈ Y, there exists a
unique key k ∈ K such that enc(x, k) = y.

Shannon’s result motivated a line of research to relax the notion of perfect
secrecy in order to achieve more realistic encryption schemes.

3 Secrecy Based on Guessing Probability

We propose a new relaxation of perfect secrecy, that we call perfect guessing
secrecy, or for simplicity guessing secrecy. We prove that an encryption scheme
with guessing secrecy still needs a key of length at least as large as the plaintext,
but we show that depending on the distribution of the plaintexts, it is possible
to provide guessing secrecy with non-uniform distributions on the key space.

Guessing secrecy allows some information leakage to the adversary but re-
quires that the leaked information not change the best chance of adversary’s
guess of the plaintext.

3.1 Basic Definitions

The guessing probability of a random variable X with probability distribution
PX , denoted by G(X), and is given by:

G(X) = max
x

PX(x).

This is, the success probability of correctly guessing the value of a realization
of variable when using the best guessing strategy (guessing the most probable
value of the range as the guess). Guessing probability is related to min-entropy
as H∞(X) = − logG(X). Min-entropy is a measure of success chance of guessing
X , or in other words, predictability of a random variable by an adversary. It can
also be viewed as the worst case entropy compared to Shannon entropy which is
an average entropy.

The conditional guessing probability of X given a random variable Y with a
joint probability distribution PXY is given by:

G(X |Y) =
∑
y

PY (y)G(X |Y = y),

Guessing Secrecy 7

and measures the average unpredictability of X , averaged over all realization of
the random variable Y . Note that H∞(X |Y) = − logG(X |Y).

The concept of guessing probability is also related (but not equivalent) to
guessing entropy introduced in [16]. Guessing entropy measures the expected
number of guesses required to determine a realization of a random variable,
assuming the guessing strategy is by asking the elements of the set in decreasing
order of probabilities, starting from the element with the highest probability.
Guessing entropy of random variable X is defined by

∑
ipi where pi values

are probability values in X sorted in decreasing order (i = 1 to |X |). Guessing
probability however is the probability of a single best guess at X which is equal
to p1 and so guessing probability is always less than the guessing entropy.

3.2 Guessing Secrecy

The definition of guessing secrecy is the following:

Definition 1. Let X be a random variable over plaintexts X with probability
distribution PX , and K a random variable over keys K with probability distri-
bution PK independent and assume the two variables are independent. An en-
cryption scheme enc : X × K → Y satisfies weak perfect guessing secrecy for
distributions PX and PK if G(X |Y) = G(X). The scheme satisfies strong per-
fect guessing secrecy for distributions PX and PK if for any y ∈ Y, we have
G(X |Y = y) = G(X).

Clearly a scheme with strong guessing security satisfies the weak guessing se-
crecy requirement. However the converse is not true in general. From now on,
we will use guessing secrecy to refer to weak perfect guessing secrecy, unless oth-
erwise mentioned. (We previously used guessing secrecy in lieu of perfect guessing
secrecy.)

Remark. Min-entropy has been commonly used to measure the randomness in
a random variable. In this paper we use min-entropy to measure secrecy. Using
guessing probability instead of min-entropy allows us to remove − log and pro-
vides a natural way of capturing security.

The next theorem states that if the size of key space must be at least the size of
plaintext space, and this is regardless of plaintext distribution.

Theorem 1. If an encryption function enc : X × K → Y satisfies guessing
secrecy for distributions PX and PK over plaintexts and keys respectively, then
we have |K| ≥ |X |.

Proof. Assume there is an encryption function that provides guessing secrecy
and |K| < |X |. Let Zx = {y ∈ Y|PY |X(y|x) = 0}. For each x ∈ X , Zx is
non-empty, i.e. |Zx| > 0. This is because the size of the key space is less than
the size of plaintext space, and so, the image of x under encryption function using

8 M. Alimomeni and R. Safavi-Naini

all keys will be not be equal to Y. Let x∗ be an element of X with the highest
probability. Now from the definition of conditional guessing secrecy we have:

G(X |Y) =
∑
y

max
x

PX(x)PY |X(y|x) (3.1)

=
∑

y/∈Zx∗

max
x

PX(x)PY |X(y|x)

︸ ︷︷ ︸
S1

+
∑

y∈Zx∗

max
x

PX(x)PY |X(y|x)︸ ︷︷ ︸
S2

(3.2)

For the first summand we have:

S1 ≥
∑

y/∈Zx∗

PX(x∗)PY |X(y|x∗) (3.3)

= PX(x∗)
∑
y

PY |X(y|x∗) = G(X) (3.4)

It is easy to verify that S2 > 0 since |Y| ≥ |X |. Therefore G(X |Y) = S1 + S2 >
G(X) which contradicts guessing secrecy. ��

The following theorem states that to have guessing secrecy, the min-entropy of
the key distribution must be at least the min-entropy of the plaintext distribu-
tion. This is very similar to the result of Shannon for perfect secrecy where the
Shannon entropy of the key distribution must be at least the Shannon entropy
of the plaintext distribution.

Theorem 2. If an encryption function enc : X × K → Y satisfies guessing
secrecy, then G(K) ≤ G(X) or H∞(K) ≥ H∞(X).

Proof. First see that from the definition of conditional guessing probability we
have:

G(X |Y) =
∑
y

PY (y)max
x

PX|Y (x|y)

=
∑
y

max
x

PX(x)PY |X(y|x) (3.5)

=
∑
y

max
x

{PX(x)
∑
k

PK(k) Pr(enc(x, k) = y)} (3.6)

=
∑
y

max
x

{PX(x)
∑

k∈Kx,y

PK(k)} (3.7)

where Kx,y = {k|enc(x, k) = y}. Note that Pr(enc(x, k) = y) is an indicator
function, i.e. its value is zero or 1, so we have the last equality. Considering the
encryption function as a table with columns representing plaintexts and rows
representing keys, then we take the last summation 3.7 only in one row of the

Guessing Secrecy 9

table, namely the row corresponding to the key with highest probability, i.e. k∗.
Then continuing from the last equality we have:

G(X |Y) ≥
∑
x

PX(x)PK(k∗) (3.8)

= max
k

PK(k) (3.9)

Finally from the definition of guessing secrecy we have: G(X) = G(X |Y) ≥
G(K). ��

We can define guessing secrecy for a family of distributions over keys as defined
for perfect secrecy in the following way:

Definition 2. An encryption system with a probability distribution on the mes-
sage space provides guessing secrecy for a family of distributions D over the key
space if for all distributions in the family D, it satisfies guessing secrecy.

For example, let Dt be the family of distributions that have min-entropy at least
t. This family of distributions is called a weak random source or t-source [17].
Then we say an encryption scheme satisfies guessing secrecy for the family of
distributions Dt, if it satisfies guessing secrecy for all distributions in the family,
i.e. all distributions that have min-entropy at least t.

We can also require secrecy for a family of distributions over plaintext space.
For example, the definition of secrecy in [8], requires security only if the plain-
text is sampled from a family of distributions that have sufficiently high min
entropy. Here to compare Perfect secrecy and guessing secrecy, we define the
notion of secrecy for a family of distributions over the plaintext space. We use
the following notations and abbreviations.

Notation. For a secrecy definition T, we say that a function enc satisfies F-
T.Secrecy if enc satisfies the definition of T secrecy for a family of distributions
F over the plaintext space. We will abbreviate F-Guessing.Secrecy by F-G.S.

We are interested in finding families of distributions over the key and the plain-
text spaces such any pair of distributions, one from each families, guarantee
guessing secrecy. Using Dt as the family of plaintext distributions, we can prove
a theorem similar to Shannon’s theorem for perfect secrecy as follows:

Corollary 1. If |X | = |Y| = |K|, an encryption function enc satisfies Dt-G.S
for some t, if and only if,

(1) ∀x, y, kx,y = 1;
(2) the distribution over K is uniform, that is PK(k) = 1

|K| .

Proof. enc has guessing secrecy if and only if
∑

y maxx{PX(x)
∑

k∈Kx,y
PK(k)} =

maxx PX(x). Now consider the uniform distribution over X . Then we have

10 M. Alimomeni and R. Safavi-Naini∑
y maxx{

∑
k∈Kx,y

PK(k)} = 1. On the other hand, from theorem 2, when X is
uniformly distributed, the key must be uniformly distributed also.

Now for uniform distribution over keys, if there exists x0, y0 such that
kx0,y0 > 1, then, ∑

y

max
x

{
∑

k∈Kx,y

PK(k)} > |Y|max
k

PK(k) = 1,

which is a contradiction. ��
The above corllary implies that any encryption system that provides guessing
secrecy for a family of distributions over plaintexts that contains the uniform
distribution, is essentially one-time pad and this implies guessing secrecy is equiv-
alent to perfect secrecy in these cases. However, the question of whether there
exists an encryption function providing guessing secrecy for a family of distri-
bution over keys remains open when a family of distributions is considered over
plaintexts that do no contain uniform distribution.

3.3 Guessing Secrecy with Imperfect Randomness

In this section, we investigate whether guessing secrecy is possible when keys that
are not uniformly distributed. This questions is particularly interesting when the
key distribution is from a weak random source. Although we cannot give a direct
answer to this question, we can show that guessing secrecy is possible with non-
uniform keys if plaintexts are coming from certain distributions.

We need the following definition to state the main theorem of this section:

Definition 3. For a random variable X with probability distribution PX , let P2

be the probability of the second highest probable value of X. Note that P2(X)
may be equal to G(X). Let

S(X) =
G(X)

P2(X)

and

U(X) = max
x0,x1

PX(x0)

PX(x1)
.

where x0, x1 ∈ X and x0 can be equal to x1. U(X) is actually the highest probabil-
ity of PX divided by the minimum probability of PX . This can be used to measure
the uniformity of a distribution and was used in other works in different context
(as an example see [18]).

For a set of distributions over plaintexts such that the first and second highest
probabilities are “far” from each other, we show that there exists encryption
schemes with guessing secrecy if the distribution over keys are such that the
maximum and minimum probabilities are “ close”.

Theorem 3. Let X be any random variable over X = {0, 1}n with S(X) ≥
m ≥ 1. For a family of distributions F over keys defined as F = {K | U(K) ≤ m},
there exists an encryption function enc : X ×K → Y satisfying guessing secrecy
for F such that |X | = |Y| = |K|.

Guessing Secrecy 11

Proof. Let x∗ be a value in X with the highest probability, i.e. PX(x∗) = G(X).
Then U(K) ≤ m ≤ S(X) implies that for all y ∈ Y we have:

PX(x∗)PK(k) ≥ PX(x′)PK(k′)

for all x′ ∈ X and k′ ∈ K, where k is the key that encrypts x∗ to y. Thus we
have

max
x

{PX(x)PK(k)} = G(X)PK(k)

Now for an encryption function f such that ∀x ∈ X , y ∈ Y : kx,y = 1, we have:

G(X |Y) =
∑
y

max
x

{PX(x)
∑

k∈Kx,y

PK(k)} (3.10)

=
∑
y

max
x

{PX(x)PK(k) | f(x, k) = y} (3.11)

= G(X)
∑
y

{PK(k) | f(x∗, k) = y} (3.12)

= G(X) (3.13)

The last equality is because by summing over values of y, PK(k) will take all
values of PK which sum to one. ��

In the above theorem, U(K) is a measure of closeness of K to uniform distribu-
tion. For example if m = 1, then the key must be chosen uniformly at random.
As m grows larger, the keys distribution further deviates from uniform distri-
bution in terms of statistical distance. This implies that the farther the second
highest probability in PX is from G(X), the farther G(K) can get from the low-
est probability of PK and the more non-uniform distributions can be used for
guessing secrecy, which is desirable for our purpose.

3.4 Relation with Perfect Secrecy

We first consider the following notions of secrecy: Guessing Secrecy (G.S), Dt-
G.S, Perfect-Secrecy (P.S) and all-Perfect-Secrecy (all-P.S). Definitions of these
notions follow from previous definitions and the notations. With all-P.S we mean
perfect secrecy for family of all distributions over plaintexts.

The following relations follow from the definitions of these notions:

all-P.S =⇒ Dt-G.S
⇓ ⇓
P.S =⇒ G.S

where a ⇒ b means if a function has property a, then it will also have property
b. Based on theorem 2.7 in [19] and theorem 1, for all these notions of security,
we must have |K| ≥ |X |.

12 M. Alimomeni and R. Safavi-Naini

all-P.S
(2)← Dt-G.S

↑(1) � (3)

P.S
(4)
� G.S

where a → b means a implies b under certain conditions.

(1) If |X | = |Y| = |K|, then P.S → all-P.S ([19] Theorem 2.8).
(2) If |X | = |Y| = |K|, then Dt-G.S → all-P.S (Theorem 1).
(3, 4) There exists an encryption scheme providing guessing secrecy for a fam-
ily of distributions over plaintexts and keys but it does not provide Dt-G.S
(Theorem 3).

Points 3 and 4, are the main advantages of guessing secrecy over perfect
secrecy (and ε-secrecy) in terms of randomness requirements.

4 Concluding Remarks

We proposed a new definition of secrecy that provides sufficient security guar-
antee in some realistic application scenario and matches the intuition that for a
good secrecy system it should be hard to “guess” the plaintext. Although our
current results might not provide a direct practical implication, but our initial
results highlights an important aspect of guessing secrecy that is not present
in other known relaxations of secrecy: it is possible to use non-uniform keys to
provide perfect guessing secrecy. In all other definitions of secrecy, keys must be
uniformly selected. We showed families of distributions on messages and keys
that provide perfect guessing secrecy. Finding encryption systems that provide
perfect guessing secrecy for larger families of distributions, is an interesting open
question. Investigating randomness requirements of ε-guessing secrecy defined as
H∞(X)−H∞(X |Y) ≤ ε, is also a natural generalization of our work.

Acknowledgement. We are grateful to Hadi Ahmadi for helpful discussions
we had about this work. We would also like to thank the anonymous referees for
useful comments. Financial support for this work is in part provided by Alberta
Innovates Technology Future.

References

1. Shannon, C.: Communication theory of secrecy systems. Bell System Technical
Journal 28, 656–715 (1949)

2. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1367 (1975)

3. Maurer, U.M.: Conditionally-perfect secrecy and a provably-secure randomized
cipher. J. Cryptol. 5(1), 53–66 (1992)

4. McInnes, J.L., Pinkas, B.: On the Impossibility of Private Key Cryptography with
Weakly Random Keys. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990.
LNCS, vol. 537, pp. 421–435. Springer, Heidelberg (1991)

Guessing Secrecy 13

5. Dodis, Y., Spencer, J.: On the (non)universality of the one-time pad. In: Proceed-
ings of the 43rd Symposium on Foundations of Computer Science, FOCS 2002, pp.
376–388. IEEE Computer Society, Washington, DC (2002)

6. Dodis, Y., Ong, S.J., Prabhakaran, M., Sahai, A.: On the (im)possibility of cryp-
tography with imperfect randomness. In: Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science, pp. 196–205. IEEE Computer
Society, Washington, DC (2004)

7. Bosley, C., Dodis, Y.: Does Privacy Require True Randomness? In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 1–20. Springer, Heidelberg (2007)

8. Russell, A., Wang, H.: How to Fool an Unbounded Adversary with a Short Key. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 133–148. Springer,
Heidelberg (2002)

9. Dodis, Y., Smith, A.: Entropic Security and the Encryption of High Entropy Mes-
sages. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 556–577. Springer,
Heidelberg (2005)

10. Cachin, C., Maurer, U.M.: Unconditional Security against Memory-Bounded Ad-
versaries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306.
Springer, Heidelberg (1997)

11. Aumann, Y., Rabin, M.O.: Information Theoretically Secure Communication in
the Limited Storage Space Model. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 65–79. Springer, Heidelberg (1999)

12. Ding, Y.Z., Rabin, M.O.: Hyper-Encryption and Everlasting Security. In: Alt, H.,
Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 1–26. Springer, Heidelberg
(2002)

13. Shannon, C.: A mathematical theory of communication. Bell System Technical
Journal 27, 379–423 (1948)

14. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley Series
in Telecommunications. John Wiley & Sons, Inc. (1991)

15. Cachin, C., Maurer, U.: Entropy measures and unconditional security in crypto-
graphy (1997)

16. Massey, J.L.: Guessing and entropy. In: Proceedings of the 1994 IEEE International
Symposium on Information Theory, p. 204 (1994)

17. Zuckerman, D.: General weak random sources. In: Proceedings of the 31st Annual
Symposium on Foundations of Computer Science, SFCS 1990, vol. 2, pp. 534–543.
IEEE Computer Society, Washington, DC (1990)

18. Csiszar, I., Korner, J.: Broadcast channels with confidential messages. IEEE Trans-
actions on Information Theory 24(3), 339–348 (1978)

19. Katz, J., Lindell, Y.: Introduction to Modern Cryptography (Chapman & Hall/Crc
Cryptography and Network Security Series). Chapman & Hall/CRC (2007)

Trading Robustness for Correctness and Privacy

in Certain Multiparty Computations,
beyond an Honest Majority

Anne Broadbent1,2, Stacey Jeffery1,2, Samuel Ranellucci3, and Alain Tapp3

1 Institute for Quantum Computing, University of Waterloo, Ontario, Canada
2 School of Computer Science, University of Waterloo, Ontario, Canada

3 DIRO, Université de Montréal, Quebec, Canada

Abstract. We improve on the classical results in information-theoreti-
cally secure multiparty computation among a set of n participants, by
considering the special case of the computation of the addition function
over binary inputs in the secure channels model with a simultaneous
broadcast channel. This simple function is a useful building block for
other applications. The classical results in multiparty computation show
that in this model, every function can be computed with information-
theoretic security if and only if less than n/2 participants are corrupt.
In this article we show that, under certain conditions, this bound can be
overcome.
More precisely, let t(p), t(r) and t(c) be the privacy, robustness and

correctness thresholds; that is, the minimum number of participants that
must be actively corrupted in order for privacy, robustness or correctness,
respectively, to be compromised. We show a series of novel tradeoffs
applicable to the multiparty computation of f(x1, . . . , xn) = x1+. . .+xn

for xi ∈ {0, 1}, culminating in the most general tradeoff: t(p)+t(r) = n+1
and t(c) + t(r) = n + 1. These tradeoffs are applicable as long as t(r) <
n/2, which implies that, at the cost of reducing robustness, privacy and
correctness are achievable despite a dishonest majority (as an example,
setting the robustness threshold to n/3 yields privacy and correctness
thresholds of 2n/3 + 1).
We give applications to information-theoretically secure voting and

anonymous message transmission, yielding protocols with the same
tradeoffs.

Keywords: multiparty computation, secret sharing, information-
theoretic security, simultaneous broadcast, addition, voting, anonymous
communication.

1 Introduction

Secure multiparty computation [1] enables a group of n participants to collabo-
rate in order to compute a global function on their private inputs. Assuming that
private random keys are shared between each pair of participants, every function
can be securely computed if and only if less than n

3 participants are corrupt. This

A. Smith (Ed.): ICITS 2012, LNCS 7412, pp. 14–36, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Trading Robustness for Correctness and Privacy 15

fundamental result is due to Chaum, Crépeau and Damg̊ard [2] and to Ben-Or,
Goldwasser and Wigderson [3]. When a broadcast channel is available, the results
of Rabin and Ben-Or [4] tell us that this proportion can be improved to n

2 .
In [5] and [6], Broadbent and Tapp presented multiparty protocols for voting

and anonymous message transmission that are information-theoretically secure
even in the presence of a dishonest majority. Along with the use of authenticated
private communication, the protocol uses a simultaneous broadcast channel. In
this paper we present a new approach in the same model that achieves better
functionality.

In this article we show how to achieve tradeoffs between the privacy, correct-
ness, and robustness thresholds for certain multiparty functions. In most multi-
party computation results to date, the approach has been to define a model in
which bounds on the numbers of corrupt players are known, and to define pro-
tocols that work in that model. In another approach, sometimes called hybrid
security or multiple threshold security, no assumptions are made on the number
or type of adversaries, but rather, various thresholds are given for different ad-
versarial situations. This model reflects reality — it is never known in practice
how many participants are honest. It is simply hoped that enough are honest
for the security properties of the protocol to hold, some of which may be more
important than others.

One way to accomplish this is to differentiate between various types of cor-
rupt participants as is done by Fitzi, Hirt, Holenstein and Wullschleger in [7]
and Fitzi, Hirt and Maurer in [8]. In the latter model, there are ta actively cor-
rupt players, whose behaviour is entirely controlled by the adversary, tp passively
corrupt players, whose entire information is known to the adversary, and tf fail-
corrupt players, who can be made to cease all participation in the protocol by
the adversary, but are otherwise honest. Their results state that multiparty com-
putation with zero failure probability can be done if and only if 3ta+2tp+tf < n
(whether or not a broadcast channel is available), and multiparty computation
with exponentially small failure probability is achievable given a broadcast if and
only if 2ta + 2tp + tf < n; if no broadcast is available, the additional condition
3ta + tf < n is necessary and sufficient.

In a recent result by Lucas, Raub and Maurer [9], tradeoffs were given between
information-theoretically secure robustness and computationally secure correct-
ness and privacy for general multiparty computation, achieving the bounds
established in [10]. We achieve a similar tradeoff, with information-theoretic
correctness and privacy, that can be applied to a limited number of multiparty
computation problems. The result of [9] is achieved using a technique called
virtual players, where a set of participants simulate a new participant. We use
another kind of virtual player called a ghost to achieve our tradeoffs.

1.1 Contributions

We define the function SUM : {0, 1}n → {0, . . . , n} by SUM(x1, . . . , xn) = x1 +
· · · + xn, the integer sum of n bits. If the input is regarded as an n-bit string,
this function is the Hamming weight. We present three protocols for multiparty

16 A. Broadbent et al.

computation of SUM. Our protocols have the property that the outcome is always
correct if all participants are honest.

The protocols can be trivially generalized to allow each participant an input
in {0, . . . , k} for arbitrary k by having each participant simulate k participants.
Each of our protocols for multiparty sum yields protocols for voting and anony-
mous message transmission with the same security properties.

The first protocol achieves privacy and correctness in the presence of a dishon-
est majority of up to n−1 actively corrupt participants, but has low robustness:
a single participant can make the protocol abort. The corresponding voting pro-
tocol improves over the one from [5] and [6] by having an exact tally.

The second protocol trades privacy for correctness and robustness. For any
t ∈ [0, n2), the protocol is private whenever there are less than n − t corrupt
participants, and also correct and robust whenever there are less than t + 1
corrupt participants. This tradeoff is also applicable to the computation of any
multiparty linear function. The third protocol achieves a similar but slightly im-
proved tradeoff: privacy and correctness for robustness. For any t ∈ [0, n

2), the
protocol is private and correct whenever there are less than n− t corrupt partic-
ipants, and also robust whenever there are less than t+ 1 corrupt participants.
The corresponding voting and anonymous message transmission protocols are
an improvement over [5] and [6] in that robustness can be improved at the cost
of a slight decrease in privacy and correctness. It may certainly be the case,
particularly in an application such as voting, that privacy and correctness are
much more important than robustness, however a robustness threshold greater
than 1 may be desirable.

We begin by describing our model in Section 2. We then give some preliminar-
ies, followed by our three protocols for multiparty sum in Sections 4, 5, and 6.
Finally we show in Section 7 how those protocols can be generalized to larger
inputs and how they can be turned into protocols for voting and anonymous
message transmission. Due to lack of space, proofs are given in the Appendix.

2 Model and Definitions

In this section, we describe our model and give basic security definitions. For all
our security definitions we assume an active adversary that completely controls a
certain number of participants. We assume that all pairs of participants are con-
nected by a private authenticated channel, which is equivalent to the assumption
that they share a polynomial-sized private random key. We also assume that the
participants have access to a simultaneous broadcast channel.

Definition 1. An n participant simultaneous broadcast channel is a collection of
n broadcast channels, one for each participant, such that each participant chooses
his input to the broadcast before receiving the value of any other participant’s
broadcast.

It is not uncommon in multiparty computation to allow additional resources,
even if those resources cannot be implemented with the threshold on the

Trading Robustness for Correctness and Privacy 17

honest participants (the results of [4], which combine a broadcast channel with n
2

honest participants being one example). Our work suggests that a simultaneous
broadcast channel is an interesting primitive to study in this context. Sealed bid
envelopes that are opened publicly are an example of a practical implementa-
tion of a simultaneous broadcast channel. Our protocols then provide everlasting
security: as long as the computational assumptions are not broken during the
execution of the protocol (more precisely, during the execution of the simultane-
ous broadcast), the security of the protocols is perfect. Note that breaking the
computational assumption is not sufficient on its own to compromise privacy of
the protocols.

Note that under the assumption that trapdoor one-way permutations exist,
[11] gives a protocol for secure multiparty computation in our model; the advan-
tage of our scheme is that we only require simultaneous broadcast.

Throughout this paper, we assume that n is even. We will use calligraphic
script letters to denote the players involved in various schemes, such asA,B, C,
Arrays will be denoted using standard vector notation x and array elements will
be denoted with superscripts: x = (x(1), . . . ,x(�)). The notation [y1, . . . , yn] =
SCHEME-Stage[P1(x1), . . . ,Pn(xn)] means that some stage, Stage, of some
scheme, SCHEME, is being carried out, with players P1, . . . ,Pn. Player i uses
input xi, and receives output yi.

We will now present the main security definitions.

Definition 2. A multiparty protocol for computing f is private if a group of
corrupt participants, C, can learn no more about x1, . . . , xn than they would
learn from f(x1, . . . , xn) for some choice of {xi : i ∈ C}.

The following two security properties, correctness and robustness, are generally
both included in correctness. However, we view them as separate properties in
light of the fact that obtaining an incorrect answer is often more problematic
than aborting.

Definition 3. A multiparty protocol for computing f is correct if (except with
exponentially small probability), whenever the protocol does not abort, the output
is consistent with the inputs of the honest participants and some fixed inputs for
the dishonest participants, known to them before they learn the outcome of the
protocol.

Definition 4. A multiparty protocol for computing f is robust if it is correct
and does not abort except with exponentially small probability.

In the case of a protocol aborting, we can view the output as NULL. If a subproto-
col aborts, then by default the calling protocol aborts unless otherwise specified.
Note that aborting conditional on some honest player’s input is considered to
be breaking privacy.

Definition 5. We denote by t(c) the correctness threshold, or the minimum
number of corrupt participants that can compromise correctness. Similarly, t(p)

denotes the privacy threshold, and t(r) the robustness threshold.

18 A. Broadbent et al.

Unlike in [8], we only consider an active adversary; one with complete control
over the actions of each player it corrupts. We do not consider an adversary who
actively corrupts some amount of players and then passively corrupts some ad-
ditional players. Additionally, though our notation is similar to [8], the meaning
is quite different. In [8], the meaning of tp is the number of participants that
are passively corrupted, whereas in our model, t(p) is the minimum number of
participants that must be actively corrupted for privacy to be lost.

We do not place any restrictions on the dishonest participants, though we
assume that all corrupt participants are part of a single collusion, called the
adversary.

3 Preliminaries

3.1 Sharing a Secret

All of our protocols are based on secret sharing [12], and derive their security
properties in part from the secret sharing scheme used. A secret sharing scheme
is a multiparty computational primitive, whereby a secret can be distributed
over a group of participants such that an authorized group of participants can
reconstruct the secret (correctness), and any unauthorized group of participants
can learn nothing about the secret (privacy).

Note that the notions of privacy and correctness for secret sharing are slightly
different than those for general multiparty computation, however we still use
t(p), t(c), and later t(r), to denote the thresholds for privacy, correctness and
robustness, respectively.

What defines an authorized group varies between secret sharing schemes. For
instance, in some secret sharing schemes, an authorized subset of participants is
defined to be any set of more than t participants, for some t ≤ n. Such a secret
sharing scheme is called a t-out-of-n threshold secret sharing scheme.

The first protocol, SSp,n (see Scheme 1), uses a very basic n-out-of-n thresh-
old secret sharing scheme. A secret sharing scheme has two phases, distribute
and reconstruct. The distribution phase is a protocol for constructing shares of
the secret and distributing them to the receivers. The reconstruction phase is a
protocol by which an authorized set of receivers can reconstruct the secret.

Privacy in SSp,n follows from the fact that, given any group of n− 1 partic-
ipants {P1, . . . ,Pn} \ Pj , there are p equiprobable possibilities for Pj’s share,
each corresponding to a distinct possibility for the secret m = mj +

∑
i�=j mi

(mod p). Therefore, given n− 1 shares, the secret is still completely unknown.

Definition 6. We say that a secret sharing scheme SCHEME is linear if, for a
publicly known integer a and any two secrets m and m′ shared among P1, . . . ,Pn,
with shares m1, . . . ,mn and m′

1, . . . ,m
′
n respectively, if {Pi1 , . . . ,Pit} is an au-

thorized subset of receivers, then SCHEME-Rec[Pi1(ami1 +m′
i1
), . . . ,Pit(amit +

m′
it)] outputs am+m′ to each Pij .

It is easy to see that SSp,n is a linear secret sharing scheme.

Trading Robustness for Correctness and Privacy 19

Scheme 1. SSp,n
Players: a sender S

n receivers R1, . . . ,Rn

Distribute: [∅, m1, . . . ,mn] = SSp,nDist[S(m),R1, . . . ,Rn]
Input: m, the secret, input by sender S
Output: mi, the ith share, output to Ri for each i, such that

∑n
i=1 mi = m

(mod p)
1. S chooses mi ∈R Zp for i = 1, . . . , n−1, and sets mn = m−∑n−1

i=1 mi (mod p)
2. S sends mi to Ri

Reconstruct: [m, . . . , m] = SSp,nRec[R1(m1), . . . ,Rn(mn)]
Input: mi input by Ri for i = 1, . . . , n
Output: m output to Ri for i = 1, . . . , n
1. Each Ri for i = 1, . . . , n, inputs mi into the simultaneous broadcast channel.
2. Each Ri constructs m =

∑n
j=1 mj (mod p)

Definition 7. A linear distributed secret, LDS[P1, . . . ,Pn](m) is a list of shares
(mi), each in possession of player Pi, such that [m1, . . . ,mn] = SCHEME-Dist[m]
for some linear secret sharing scheme SCHEME.

3.2 Sub-protocols Used

Given a set of two or more linear distributed secrets LDS[R1, . . . ,Rn](m
(j)),

relative to any linear secret sharing scheme, the participants can always create
a new linear distributed secret by the following: each Ri adds all his shares to
get a share of

∑
j m

(j). This simple procedure does not involve any interaction
between participants, but allows them to generate a new shared secret: the sum
of two or more previously shared secrets.

Procedure 1. shows how to generate randomness in a group of participants
{P1, . . . ,Pn} with a simultaneous broadcast. As long as one participant is honest,
the output is an unbiased integer between 0 and p− 1.

Procedure 1. [a, . . . , a] = RANDOMn,p[P1, . . . ,Pn]

Players: n participants, P1, . . . ,Pn

Output: An unbiased a ∈ Zp is output to all players

1. Each participant Pi inputs ai ∈R {0, ..., p − 1} into the simultaneous broadcast
channel.

2. Each participant Pi sets a =
∑n

i=1 ai (mod p).

In order to bias the outcome, a corrupt participant’s input would have to
depend on the inputs of all other players. The simultaneous broadcast channel
makes this impossible.

20 A. Broadbent et al.

The following procedure can be used to check the equality of a set of linear
distributed secrets, without revealing the values of the individual secrets. If there
are two distinct secrets in the set, then the procedure outputs unequal except
with exponentially small probability in the security parameter s. This procedure
is used in our second and third protocols.

Procedure 2. EQUALITYs

Players: n participants P1, . . . ,Pn

Input: {Xj}2sj=1 a set of 2s LDSs, Xj = LDS(vj)
Output: equal or unequal

Repeat the following s times in parallel:

1. The participants use RANDOM to choose a random partition {P,Q} of {Xj} with
|P | = |Q| = s.

2. The participants compute Y =
∑

j∈P Xj −∑
j∈Q Xj .

3. The participants reconstruct the secret Y . If Y �= 0 they output unequal.
If Y = 0 in every round, output equal.

4 Multiparty Sum with Bins

The first tool we will apply is the use of a concept we call bins. The intuitive
description that follows makes clear the reason for this name.

The following physical analogy applies to all three of our protocols. The pro-
tocols are modelled after the concrete setup of an array of 2n bins. A participant
may place a ball in any bin, but may not remove a ball from a bin or observe
the contents of a bin. If xi = 1, participant Pi chooses a random bin from
j = 1, . . . , n, called the count bins, and places his ball in the jth bin. Otherwise,
if xi = 0, Pi chooses a random bin from j = n + 1, . . . , 2n, called the no-count
bins, and places his ball in the jth bin. When all balls have been placed, the
totals for each bin are revealed and the sum over all balls in the count bins (the
first n bins) is the output y = SUM(x1, . . . , xn). So far the need for 2n bins
instead of 2 bins is not clear, but we will soon explain this necessity.

For our protocols, we model each bin as an integer (mod p), with an input xi

encoded as a string of 2n integers, one integer for each bin (p ≥ 2n+1). The ith
integer of an encoded input represents the contents of the ith bin. In this case,
a well-constructed input encoding has exactly one bin with value 1 and all other
bins with value 0. In our protocols, each participant splits his input into shares,
each share consisting of 2n integers (mod p), with the property that each bin
of the input array can be reconstructed from the bins of the shares using some
secret sharing scheme. For instance, if we use SS, the bin-wise sum (mod p) of
the shares is equal to the encoded input. Given a set of bin array inputs shared
among the n participants, it is easy to compute the tally without revealing any
information about the inputs, by simply adding the shares and reconstructing
the total. We require only that the secret sharing scheme used be linear.

Trading Robustness for Correctness and Privacy 21

Without looking at individual bin arrays, we must ensure that all bin arrays
are well-constructed. If a participant attempts to contribute more than 1 ball
to the total, or negate part of the total by a constant c by putting p − c balls
in the n count bins, then the sum over all 2n bins in the tally will not be
equal to n. Thus, a cheating strategy would be to include c + 1 balls in the
n count (respectively no-count) bins, and −c = p − c balls in the n no-count
(respectively count) bins. However, having 2n bins makes it likely that many
bins will be empty and a negative number of balls, p− c, in an empty bin would
be detected, since p − c > n. This justifies the need for 2n bins, as well as
p = 2n+1. A negative number of balls is detected with constant probability and
repetition yields exponential security.

4.1 Protocol

Here we present the first protocol for SUM, which makes use of the bins idea. It
may be useful to consider the simple secret sharing scheme, SS, but note that
any linear secret sharing scheme would work.

The following procedure encodes a bit as described above.

Procedure 3. BIN-ARRAYn

Input: x ∈ {0, 1}
Output: x = (x(i))2ni=1

1. if x = 1 choose j ∈R {1, . . . , n} otherwise if x = 0 chose j ∈R {n+ 1, . . . , 2n}
2. for i = 1, . . . , 2n: if i = j, x(i) = 1, else x(i) = 0

We call an array encoding an integer in this way a BIN-ARRAY. We say that
a BIN-ARRAY is well-formed if each bin is an integer in {0, 1} and the sum over
all bins is 1. A BIN-ARRAY that is not well-formed is called ill-formed.

We will need to distribute BIN-ARRAYs among the n participants. We can
easily distribute shares of an array by simply creating shares of each entry. We
define the following addition on shares of an array, which follows directly from

the addition on the individual shares. Let ai = (a
(j)
i)�j=1 and bi = (b

(j)
i)�j=1 be

two array-shares. Then ai + bi = (a
(j)
i + b

(j)
i)�j=1.

We now give our first protocol for SUM.
Since the only way to break privacy is to break the secret sharing scheme,

as long as we use a secret sharing scheme with t(p) = n, such as SS, we get
t(p)(BIN-SUM) = n (Theorem 1).

The only way for a adversary to make the output inconsistent with the honest
inputs is to put more than 1 ball in either the count or the no-count bins. If
they use more than 1 ball in total, it will be detected when the total number
of balls in y is more than n, and the protocol will abort. To avoid this, the
adversary must put −1 in some bin, and hope that it is non-empty. However,
any bin is empty with constant probability, and so repetition yields exponential

22 A. Broadbent et al.

Protocol 1. BIN-SUMn,s

Players: n participants P1, . . . ,Pn

Input: Pi inputs xi ∈ {0, 1}, for i = 1, . . . , n
Output: Each participant gets output y = x1 + · · ·+ xn

Repeat in parallel s times:

1. Each Pi creates xi = BIN-ARRAYn(xi) and distributes Xi = LDS[P1, . . . ,Pn](xi)
using some linear secret sharing scheme.

2. Participants create the sum, Y =
∑n

j=1 Xj .
3. Participants input their shares of Y into the simultaneous broadcast channel and
reconstructs the value of Y , y.

4. If the sum over all bins in y does not equal n, abort.
5. Each participant computes y =

∑n
j=1 y

(j), the total over all count bins of Y .

If the outcome y is not the same in every round, abort.

security. Therefore, no dishonest coalition of any size can make an output that
is inconsistent with honest inputs, that is, t(c) = n (Theorem 2).

The major downfall of this protocol is that any participant can make the
protocol abort. In other words, t(r) = 1 (Theorem 3). In many situations, such
as voting (see Section 7.1), it may be desirable to have t(p) and t(c) much higher
than t(r), however, it is often desirable to have t(r) > 1. In our next protocol, we
allow t(r) to be as high as n

2 at the expense of some privacy and correctness.

5 Multiparty Sum with Bins and Ghosts

The second tool we make use of is the concept of ghost players. Given a verifiable
secret sharing scheme with privacy, correctness and robustness thresholds t(p) =
t(c) = t(r) = n

2 , we modify the protocol as follows. During the distribution phase,
the sender creates n + g shares, distributes n of them, and discards g of them,
for some g ∈ [0, n). This lowers the proportion of actively corrupt participants
by adding participants who cannot be actively corrupted. Now n+g

2 corrupt
players are required to break privacy, and ghost players cannot contribute to
this corrupt coalition. Thus we get privacy threshold t(p) = n+g

2 . In order to

prevent the correct reconstruction of a secret, we need n+g
2 corrupt players.

We can’t assume the ghosts do not contribute to such a collusion, so among
the real players, we have correctness and robustness thresholds of t(c) = t(r) =
n+g
2 − g = n−g

2 . We thus obtain a tradeoff between correctness and robustness,

t = n−g
2 , and privacy, n − t, where t ∈ [0, n

2). Again, our protocol implements
the multiparty computation of SUM, but we can also use the linearity of the
underlying secret sharing scheme to show that this tradeoff can be applied to
any linear function as well. (Note that our function, SUM is not actually linear,
because of the restriction that the input be in {0, 1}). This is accomplished,
without the use of bins. Each participant simply distributes his input xi to some
linear function f , using the verifiable secret sharing scheme we now present,

Trading Robustness for Correctness and Privacy 23

GVSS. Each participant computes f on his shares of the inputs and outputs the
resulting share of f(x1, . . . , xn).

We can view the ghosts as a kind of virtual player. Since these ghost players
do nothing, they are all fail-corrupt. However, they are honest in every other
respect.

We do require that the secret sharing scheme to which we apply the ghost
modification be verifiable to gain the desired accuracy and robustness thresholds.
We now detail this concept.

5.1 Verifiable Secret Sharing

Verifiable secret sharing is an extension of secret sharing that allows reconstruc-
tion of a secret even in the presence of faulty or missing shares. More formally,
a verifiable secret sharing scheme is a secret sharing scheme with the following
properties:

P1. If the sender is honest, then before the reconstruction phase has been ini-
tiated, the adversary has no information about the secret.

C1. The probability that the distribution phase completes successfully and there
exist distinct m and m′ such that both m and m′ have non-negligible prob-
ability of being the outcome of the reconstruction phase is exponentially
small. If the sender is honest, the unique m that can be the outcome of
reconstruction with non-negligible probability is the message input by the
sender during the distribution phase.

R1. The probability that the distribution succeeds and the reconstruction phase
outputs NULL is exponentially small (even if the sender is corrupted). If the
sender is honest, the distribution phase succeeds except with exponentially
small probability.

In any verifiable secret sharing scheme, each property will be subject to some
threshold of corrupt participants. Property R1 and C1 are often combined, but
we will find it convenient to discuss them separately.

It is not difficult to see that these properties are necessary to obtain our
tradeoff, for otherwise we could not reconstruct a non-NULL secret from the
uncorrupted shares.

There exist linear verifiable secret sharing schemes with t(c) = t(r) = t(p) = n
2

[13]. We can use such a scheme, in conjunction with the usage of ghost players,
to get an improved protocol for SUM. The protocol, which we call GHOST-SUM,
is similar to BIN-SUM, but we require the secret sharing scheme used to be a
verifiable secret sharing scheme, and we modify the distribution phase slightly.
In addition, we add some verification steps to ensure that the inputs are well-
formed in order to increase robustness.

Let VSSn be a black box n
2 -out-of-n-threshold verifiable secret sharing scheme

(satisfying propertiesP1,C1, andR1) with distribution phase [∅,m1, . . . ,mn] =
VSSnDist[S(m),R1, . . . ,Rn]. We define the distribution phase of GVSSn,g as:

GVSSn,gDist[S(m),R1, . . . ,Rn] = VSSn+gDist[S(m),R1, . . . ,Rn,S, . . . ,S]

24 A. Broadbent et al.

In words, the distribution phase of GVSSn,g is just the distribution phase of
VSSn+g, where S does not distribute the last g shares to other players. These
shares are considered to be discarded.

In our second protocol, the use of a verifiable secret sharing scheme means
that the participants commit to their inputs in some way. In BIN-SUM with SS,
a participant can change his input any time he wants in an arbitrary way by
simply changing his own share of his input. In contrast, after the distribution
stage of a verifiable secret sharing scheme, the sender is committed to his secret.
Therefore, in this second protocol, we introduce some verification steps where
the participants check that the committed BIN-ARRAYs are well-formed without
learning their values. This allows us to raise the robustness threshold by detecting
and eliminating ill-formed BIN-ARRAYs.

One tool we will use in the verification is equality testing. This allows par-
ticipants to check that in every round the inputs from a particular participant
have the same value.

Procedure 4. BIN-ARRAY-EQUALITYs

Players: n participants P1, . . . ,Pn

Input: {Xj}s2j=1, a set of LDSs, with Xj = LDS(vj) where vj = (v
(�)
j)2n�=1 is a

BIN-ARRAY
Output: equal or unequal

For i = 1, . . . , s− 1:
1. For j = (i− 1)s+ 1, . . . , (i+ 1)s
(a) Y j =

∑n
�=1 LDS(v

(j)
�)

(b) N j =
∑2n

�=n+1 LDS(v
(j)
�)

2. Compute EQUALITY({Y j}(i+1)s
j=(i−1)s+1) and EQUALITY({N j}(i+1)s

j=(i−1)s+1). If either
outputs unequal, return unequal.

Return equal.

This procedure takes s sets of s shared BIN-ARRAYs and checks that they
encode the same value. It does this by equality testing with two sets at a time,
testing the equality of the sum over the count bins, Y j , as well as the sum over
the no-count bins, N j .

The other verification technique involves opening some BIN-ARRAYs to see
that they are well-formed. In order to avoid revealing the value of the opened
BIN-ARRAYs, each participant shares his BIN-ARRAYs with the bins permuted.
Some of the BIN-ARRAYs are selected for opening, and the sender reveals the
permutations on his unopened BIN-ARRAYs so that they can be unpermuted
before computation takes place.

What we have essentially done here is to throw away the correctness of the
first protocol, making it the same property as robustness. We then use the ghost
players to establish a tradeoff between privacy and correctness/robustness. The
result is a threshold tradeoff (t(p), t(c), t(r)) = (n−t, t+1, t+1) for any t ∈ [0, n2),

Trading Robustness for Correctness and Privacy 25

Protocol 2. GHOST-SUMn,s,g

Players: n participants P1, . . . ,Pn

Input: Pi inputs xi ∈ {0, 1}, for i = 1, . . . , n
Output: Each participant gets output y = x1 + · · ·+ xn

Preparation Each Pi creates s sets of 2s copies of identical BIN-ARRAYn(xi)s. The
BIN-ARRAYs should vary randomly over different sets, but be identical within a
set. Pi then applies a random permutation to each BIN-ARRAY.

Distribution Each BIN-ARRAY is distributed among all n participants using
GVSSn,gDist. If any call to GVSSn,gDist aborts, the sender is excluded from fu-
ture steps of the protocol.

Verification 1 For each set of 2s BIN-ARRAYs:
1. Half the BIN-ARRAYs are opened (chosen using RANDOM) and checked for
well-formedness.

2. For each unopened BIN-ARRAY in this iteration, Pi broadcasts the permu-
tations on the bins, which each participant applies to his shares of that
BIN-ARRAY.

Verification 2 For each participant Pi, all s
2 of Pi’s unopened BIN-ARRAYs are put

into BIN-ARRAY-EQUALITY. If it returns unequal then Pi’s shares are discarded
and he is excluded from future steps of the protocol.

Computation For each participant Pi, the participants choose the first unopened
BIN-ARRAY from each set and use these to compute s parallel totals, as in Pro-
tocol 1. If each repetition does not give the same answer the protocol aborts.

by setting g = n− 2t (Theorem 8 and 9). However, by using a verifiable secret
sharing scheme with certain desirable properties, we can keep correctness fairly
high, and then use the ghosts to establish a tradeoff between privacy/correctness
and robustness. In our third and final protocol, we do just that.

6 Multiparty Sum with Bins, Ghosts and Commitments

We now present our third and final protocol for SUM. It has the strongest security
properties, with (t(p), t(c), t(r)) = (n− t, n− t, t+ 1).

This new protocol uses the concept of ghosts, just as in the second, but we
obtain an improved tradeoff by making use of the particular properties of a
specific verifiable secret sharing scheme from [14].

6.1 Verifiable Secret Sharing with Signatures

We will outline the verifiable secret sharing scheme of [14], which we call ICVSS,
and show that it has the properties we require to achieve our improved tradeoff.

The scheme makes use of an information-theoretically secure pseudo-signature
that has the properties we require. The secret is encoded as f(0) for some degree

26 A. Broadbent et al.

≤ n
2 polynomial f , with shares f(i) for i ∈ {1, . . . , n}. Each player Pi commits

to his shares by distributing signed shares of his shares, which we call subshares.
The signature scheme involves a signer S, an intermediate receiver I, and

several final receivers R1, . . . ,Rn. The three stages are as follows:

Distribute. S sends a message m to I, and some auxiliary signature informa-
tion to I and each Ri.

Confirm. For each i, I and Ri carry out computations on their auxiliary infor-
mation to ensure that if Ri is honest, he will accept m in the reveal phase.

Reveal. I reveals m to all Ri and gives each Ri some auxiliary information.
Each Ri accepts or rejects m. If more than t(r) receivers accept, then m is
considered to be accepted.

The signature scheme has the following properties:

SC1. If S, I, and at least t(r) of R1, . . . ,Rn are honest, then each honest Ri

will accept in the reveal phase.
SC2. If I, Ri, and at least t(r) − 1 other receivers are honest, then after the

confirm phase, I knows a messagem such that Ri will accept m in the reveal
phase.

SC3. If S, Ri, and at least t(c)−1 other receivers are honest, then Ri will reject
every value m̃ �= m except with exponentially small probability.

SP1. If S and I are honest, then no Ri can learn any information about m
before the reveal phase.

SL1. If c is a publicly known scalar, and σ and σ′ represent signatures for
messages m and m′ respectively, then cσ + σ′ is a signature for cm+m′.

A pseudo-signature scheme is a kind of commitment scheme. We say that S
commits to m through I. Of course, the value of m is only committed to from the
perspective of R1, . . . ,Rn, who must have received some auxiliary information
during the distribute and confirm phases. However, for simplicity, we will gloss
over this fact by saying S commits to m through I and assume that every
participant in the calling protocol is implicitly a receiver. When we say that
some I opens a commitment we mean that he carries out the reveal phase.

A pseudo-signature scheme with the above properties, as well as a verifiable
secret sharing scheme based on these signatures can be found in [14]. Both have
thresholds t(r) = t(c) = t(p) = n

2 . We now present their secret sharing scheme,
which will form the basis for our third protocol.

Definition 8. A vector of shares (m1, . . . ,mn) is t-consistent if there exists a
polynomial f of degree at most t containing every point (i,mi) for i = 1, . . . , n.

We can characterize the exact property of ICVSS that allows us to achieve our
improved tradeoff for SUM. In order to achieve correctness in SUM, we require
that the secret sharing scheme have a weaker version of the correctness prop-
erty, since some of the correctness of SUM comes from the bin technique and
verification steps. The property is as follows:

Trading Robustness for Correctness and Privacy 27

Scheme 2. ICVSSn
Players: a sender S

n receivers R1, . . . ,Rn

Distribute: [∅, m1, . . . ,mn] = ICVSSnDist[S(m),R1, . . . ,Rn]
Input: m, the secret, input by sender S
Output: mi, the ith share, output to receiver i, Ri

1. S randomly chooses f ∈ Zp[x][y] of degree at most
n
2
in each variable such

that f(0, 0) = m. Let mij = f(i, j). For each i ∈ {1, . . . , n}, S sends Ri the
vectors ci = (m1i, . . . , mni) and ri = (mi1, . . . ,min) S commits to ci and ri

through Ri. Set mi = (ci, ri).
2. Each receiver Ri checks that the two vectors he received are

n
2
-consistent. If

not, Ri opens the inconsistent vector that S committed to. If the commitment
is accepted, then the protocol aborts.

3. For i = 1, . . . , n and j = 1, . . . , n with j �= i, Ri sends Rj the share mji. Ri

commits to mji through Rj . Ri ensures that the value he receives from Rj ,
m̃ij matches hismij . If mij �= m̃ij then Ri opens the commitment to mij from
S and the commitment to m̃ij from Rj . Seeing this,Rj opens the commitment
to m̃ij from S (or is disqualified). If all commitments are accepted, then the
protocol aborts.

Reconstruct: [m, . . . , m] = ICVSSnRec[R1(m1), . . . ,Rn(mn)]
Input: mi input by Ri for i = 1, . . . , n
Output: m output to Ri for i = 1, . . . , n
1. Each Ri inputs his row ri = (mi1, . . . ,min) into the simultaneous broadcast
channel, and for each j, opens the commitment from Rj to mij . If any of these
commitments are rejected, then Ri is disqualified. All other players check that
this row is n

2
-consistent.

2. The secret m can be interpolated from the shares of non-disqualified players.

C′ Suppose the behaviour of corrupt parties results in the reconstruct phase out-
putting m̃. Before the reconstruction phase has completed they have exactly
as much information about m̃ as they have about the secret.

What this property essentially means is that the corrupt participants, though
they may be able to change the output of the reconstruction phase, cannot control
the outcome if they don’t know m. That is, if the number of corrupt participants
is less than the privacy threshold, then the corrupt participants cannot control
the outcome of the reconstruction phase.

Since ghosts are fail-corrupt participants, we require that fail-corrupt partic-
ipants can’t help break privacy or this weaker correctness of the scheme. For
privacy, this is true of any verifiable secret sharing scheme (See Theorem 4).

Any scheme that satisfies these properties can give us the improved tradeoff.
By Theorems 4 and 14, ICVSS has the required properties.

28 A. Broadbent et al.

6.2 Protocol

We use a secret sharing scheme similar to GVSS called IC-GVSS. It is identical
to GVSS except that the underlying verifiable secret sharing scheme is ICVSS.

Protocol 3. IC-GHOST-SUMn,s,g

Players: n participants P1, . . . ,Pn

Input: Pi inputs xi ∈ {0, 1}, for i = 1, . . . , n
Output: Each participant gets output y = x1 + · · ·+ xn

Preparation Each Pi creates s sets of 2s copies of identical BIN-ARRAYn(xi)s. The
BIN-ARRAYs should vary randomly over different sets, but be identical within a
set. Pi then applies a random permutation to each BIN-ARRAY.

Distribution Each BIN-ARRAY is distributed among all n participants using
IC-GVSS-Distn,g. If any call to IC-GVSS-Distn,g aborts, the sender is excluded from
future steps of the protocol.

Verification1 For each set of 2s BIN-ARRAYs:
1. Half the BIN-ARRAYs are opened (chosen using RANDOM), including the com-
mitments by the sender of that set. The opened BIN-ARRAYs are checked for
well-formedness. If one of a participant’s BIN-ARRAYs is found to be ill-formed,
his shares are discarded and he is excluded from future steps.

2. For each unopened BIN-ARRAY in this iteration, Pi broadcasts the permu-
tations on the bins, which each participant applies to his shares of that
BIN-ARRAY.

Verification2 For each participant Pi, all s
2 of Pi’s unopened BIN-ARRAYs are put

into BIN-ARRAY-EQUALITY. If it returns unequal then Pi’s shares are discarded
and he is excluded from future steps.

Computation For each participant Pi, the participants choose the first unopened
BIN-ARRAY from each set and use these to compute s parallel totals, as in Pro-
tocol 1. If each repetition does not give the same answer the protocol aborts.

In IC-GHOST-SUM we achieve the desired threshold tradeoff (t(p), t(c), t(r)) =
(n− t, n− t, t+1) for any t ∈ [0, n2), by setting g = n− 2t (Theorems 15, 17, 18
and 19). Table 1 summarizes the characteristics of the three protocols.

Table 1. Thresholds on privacy t(p), correctness t(c) and robustness t(r), for our three
main protocols that compute addition of binary inputs. The parameter t ∈ [0, n

2
)

yields various tradeoffs for protocols GHOST-SUM and IC-GHOST-SUM. The tradeoff
for protocol GHOST-SUM is also applicable to the computation of any linear function.

t(p) t(c) t(r)

BIN-SUM n n 1

GHOST-SUM n− t t+ 1 t+ 1

IC-GHOST-SUM n− t n− t t+ 1

Trading Robustness for Correctness and Privacy 29

7 Applications

The sum of bits is a very basic function that can be useful in several contexts.
In this section we present two very distinct applications. The first one, voting,
is very natural. The second application is less obvious and regards anonymous
transmission of information. We would first like to point out the fact that it is
very easy to modify the three SUM protocols to have a more general set of inputs
than bits. More precisely, by having each participant simulate k participants, it
is possible to perform the sum of integers between 0 and k.

7.1 Voting

The multiparty problem of voting is as follows. Players Pi for i = 1, . . . , n input
xi ∈ {0, . . . , c − 1}. The output is f(x1, . . . , xn) = (t1, . . . , tc) where tj = |{i :
xi = j}|. Each player inputs a choice in {0, . . . , c−1} and the output is the tally
of how many players voted for each of the c choices.

To see how the same ideas applied to multiparty sum can be applied to voting,
we can think of SUM as a vote for one of two choices, where submitting your
vote to the tally (i.e., putting your ball in one of the first n bins) corresponds to
voting for one choice, and withholding your vote from the tally (i.e., putting your
ball in one of the last n bins) corresponds to voting for the other choice. In fact,
we may regard the first n bins as one tally, and the last set of n bins as a separate
tally. We can generalise by considering cn bins, with bins (i − 1)n + 1, . . . , in
corresponding to the ith candidate, or choice. Similar to the protocols for SUM,
the total over all bins in the final tally must be equal to n or the protocol aborts.

We can easily extend the voting protocol to allow each voter k votes. This
could allow a voter to weigh various candidates as he chooses, for instance, giving
several votes to his favourite candidate, who he may feel is unlikely to win, and
several votes to his second favourite candidate, who is more likely to win the
majority. A further application of multiple votes is a multi-issue ballot, where a
voter can divide his votes among issues as he chooses.

Another less straightforward extension of the voting protocol could transform
it into a more practical protocol. A set of distinguished players, called voting
authorities, can be introduced. Channels would only be required between each
participant and each authority, as well as between all authorities. The initial
sharing stage would be similar, but all subsequent stages of the protocol would be
carried out by the voting authorities. All thresholds now apply to the authorities,
including robustness. Note that even if we were to use the simple secret sharing
scheme SS, no dishonest coalition of non-authority voters can make the protocol
abort. This is true because of the verification stages, which find ill-formed votes
except with exponentially small probability.

7.2 Anonymous Message Transmission

The multiparty problem of anonymous message transmission is as follows. One
or more players Pi from i = 1, . . . , n inputs a message xi ∈ {0, 1,⊥}� and a des-
ignated receiver R receives the multiset of all transmitted messages M = {xi}.

30 A. Broadbent et al.

We require two privacy properties to hold: if Pi sends message xi, then for each
j �= i, Pj learns nothing about xi; and for each xi ∈ M , R has no information
about i (the receiver learns nothing about the identity of any sender).

The protocols in [5] and [6] achieve unconditional privacy, but a single partic-
ipant can cause the protocol to fail. In addition, the protocols abort whenever
two players try to send messages simultaneously. In this section, we describe a
protocol which trades privacy for robustness and allows any set of messages to
be sent. We do this by slightly modifying the voting protocol from Section 7.1 to
achieve anonymous message transmission. We get the same security properties
in this modified protocol.

Anonymous bit transmission, the case where � = 1, can be achieved by a
three candidate vote. The first candidate represents 0, the second candidate
represents 1, and the third candidate represents no message, ⊥. We call this
a BIT-BIN-ARRAY. At the end of the computation, the shares of the total are
sent to the receiver, rather than broadcast to all participants. The receiver then
knows how many participants sent him the message 0, and how many sent 1.

We can efficiently generalise the above idea to larger �, by defining aMESSAGE
as a vector of � BIT-BIN-ARRAYs. (In the case of a message of arbitrary length,
we don’t need ⊥, since we can encode the sending of no message as some string,
say the all zeros string, but we leave it in for simplicity). We have two additional
requirements.

A bin can be defined by a pair of numbers, (c, b), where c ∈ {0, 1,⊥} represents
the candidate, or choice, that the bin falls under, and b denotes the bin number
within that candidate. The first requirement is that every BIT-BIN-ARRAY in a
MESSAGE must have a single non-empty bin, as in a standard vote, but the bin
number (b) of the non-empty bin must be the same in each message. That is, to
show that two bits are part of the same message, they must use the same bin
(in different BIT-BIN-ARRAYs).

Secondly, in order to distinguish between different messages, we require that
two senders don’t choose the same bin number b.

The second requirement can be solved by increasing the number of bins in
a BIT-BIN-ARRAY from 3n to 3n2. We then have b ∈ [n2], so in each round,
the probability that two messages collide is bounded by a constant. Repetition

Procedure 5. BIN-NUMBER-EQUALITYs

Players: P1, . . . ,Pn

Input: (Xj)�j=1 a set of s LDSs, Xj = LDS(v
(i)
j)

6s
i=1

Output: equal or unequal

For k = 1, . . . , n2:

1. For j = 1, . . . , �, Y j = v
(k)
j + v

(n2+k)
j + v

(2n2+k)
j

2. Compute EQUALITY({Y j}�j=1). If it outputs unequal, return unequal.

Return equal.

Trading Robustness for Correctness and Privacy 31

yields exponential probability that there will be some round in which no two
messages collide.

For the first requirement, we simply need to add an extra step to the second
verification phase, where we call the following procedure on each MESSAGE for
each sender.

The above protocol simply ensures that, for any MESSAGE and any bin num-
ber b ∈ [n2], the sum of the values in bins (0, b), (1, b), and (⊥, b) are same in
each BIT-BIN-ARRAY throughout the MESSAGE. If that MESSAGE uses bin b,
the sums will all be 1 (since exactly one of 0, 1, and ⊥ was chosen for each bit
of the message) and otherwise the sums will all be 0.

References

1. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual
Symposium on the Foundations of Computer Science (FOCS 1982), pp. 160–164.
IEEE (1982)

2. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: Simon, J. (ed.) Proceedings of the 20th annual ACM Symposium on Theory of
Computing (STOC 1988), pp. 11–19. ACM (1988)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Simon, J. (ed.) Proceed-
ings of the 20th Annual ACM Symposium on Theory of Computing (STOC 1988),
pp. 1–10. ACM (1988)

4. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: Johnson, D.S. (ed.) Proceedings of the 21st Annual ACM
Symposium on Theory of Computing (STOC 1989), pp. 73–85. ACM (1989)

5. Broadbent, A., Tapp, A.: Information-Theoretic Security Without an Honest Ma-
jority. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 410–426.
Springer, Heidelberg (2007)

6. Broadbent, A., Tapp, A.: Information-theoretically secure voting without an hon-
est majority. In: Proceedings of the IAVoSS Workshop On Trustworthy Elections,
WOTE 2008 (2008), Cryptology ePrint Archive: Report 2008/266

7. Fitzi, M., Hirt, M., Holenstein, T., Wullschleger, J.: Two-Threshold Broadcast and
Detectable Multi-party Computation. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 51–67. Springer, Heidelberg (2003)

8. Fitzi, M., Hirt, M., Maurer, U.: Trading Correctness for Privacy in Unconditional
Multi-party Computation. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462,
pp. 121–136. Springer, Heidelberg (1998)

9. Lucas, C., Raub, D., Maurer, U.: Hybrid-secure MPC: Trading information-
theoretic robustness for computational privacy. In: Proceedings of the 29th An-
nual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC 2010), pp. 219–228. ACM (2010)

10. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On Combining Privacy with
Guaranteed Output Delivery in Secure Multiparty Computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 483–500. Springer, Heidelberg (2006)

11. Fitzi, M., Gottesman, D., Hirt, M., Holenstein, T., Smith, A.: Detectable Byzantine
agreement secure against faulty majorities. In: Proceedings of the 21st Annual
Symposium on Principles of Distributed Computing (PODC 2002), pp. 118–126.
ACM (2002)

32 A. Broadbent et al.

12. Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)
13. Cramer, R., Damg̊ard, I., Maurer, U.: General Secure Multi-party Computation

from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

14. Cramer, R., Damg̊ard, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient Mul-
tiparty Computations Secure against an Adaptive Adversary. In: Stern, J. (ed.)
EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)

A Proofs

A.1 Properties of BIN-SUM

Theorem 1. t(p)(BIN-SUM) = n.

Proof. The privacy threshold of BIN-SUM follows directly from that of the em-
ployed secret sharing scheme. If we use a threshold scheme with threshold n,
such as SS, then we get t(p) = n in BIN-SUM.

Theorem 2. t(c)(BIN-SUM) = n.

Proof. Suppose a coalition of c < n dishonest voters wishes to cause the sum to
be incorrect. If they deposit more than c balls between them, the final tally over
all bins will be greater than n and the protocol will abort. Thus, the only way
for them to cause the final sum to be inconsistent with the honest inputs is for
at least one dishonest participant to put a negative number of balls in at least
one bin, say bin b. If no other participant deposits a ball in bin b, then the bin
total will be p− 1 > n, so the protocol will abort. For a participant to succeed
in depositing a negative ball in a count bin (respectively no-count bin), he must
put his negative ball in a no-count bin (respectively count bin) with at least
one ball in it. Even in the worst case where all n − 1 other balls are deposited
in the no-count bins, the probability that bin b is empty is (n−1

n)n−1, which is
greater than 1

3 for all n. By repeating the protocol s times, the probability that
a participant successfully deposits a negative ball without the protocol aborting
is less than (23)

s.

Theorem 3. t(r)(BIN-SUM) = 1.

Proof. A single participant need only encode a number that is strictly greater
than 1 to cause the total number of balls in all bins to be strictly greater than
n, making the protocol abort.

A.2 Properties of GVSS

Theorem 4. Suppose an honest sender has distributed a secret m using any
verifiable secret sharing scheme with privacy threshold t(p). Then a coalition of
t(p)− 1 actively corrupt parties and any number of fail-corrupt participants can’t
gain any information about m.

Trading Robustness for Correctness and Privacy 33

Proof. Suppose the actively corrupt participants could learn some information
about m. This information must be a function of the private communication
transcript for each corrupt player, as well as the transcript of all public broad-
casts. A fail-corrupt participant adds no information to these, since he does not
communicate at all. Therefore, if the actively corrupt participants could gain
information about m in the presence of fail-corrupt players, they could do so
without the fail-corrupt players, contradicting the threshold t(p).

Theorem 5. Suppose an honest sender has distributed a secretm using GVSSn,g.
Then a coalition of less than n+g

2 dishonest participants can’t learn any infor-
mation about m except with exponentially small probability.

Proof. There are at most n+g
2 − 1 actively corrupt participants, out of n + g

participants total. The rest are either fail-corrupt (ghosts) or honest. therefore,
by Theorem 4, the actively corrupt participants can learn no information about
m.

Theorem 6. Suppose less than n−g
2 participants are corrupt. The probability

that the distribution phase of GVSSn,g outputs shares m1, . . . ,mn to receivers
R1, . . . ,Rn and there is no fixed m such that the reconstruction phase will output
m is exponentially small.

Proof. Suppose there are n−g
2 −1 corrupt participants. There are n−(n−g

2 −1) =
n+g
2 + 1 honest participants, so with probability exponentially close to 1, the

distribution phase aborts, or it succeeds and there exists a fixed value m such
that VSSn+gRec will output m except with exponentially small probability, by
properties C1 and R1 of VSS (with threshold n

2 for n participants).

A.3 Properties of GHOST-SUM

Theorem 7. EQUALITY detects inequality (mod p) in {X i}, except with ex-
ponentially small probability.

Proof. Suppose the input {Xj} is unequal. Let P and Q be any partition of
{Xj} such that |P | = |Q| and

∑
i∈P X i =

∑
i∈Q X i. Note that by swapping any

two non-equal elements in Q and P respectively, we make the two sums unequal.
This observation is not entirely obvious, since we’re working (mod p). Suppose
we swap a ∈ P and b ∈ Q where a > b. This will result in

∑
i∈P X i decreasing

by a−b and
∑

i∈Q X i increasing by a−b. Since these two sums were equal before
the swap, we now have a difference of 2(a− b). If 2(a− b) ≡ 0 (mod p), since p
is odd, then we must have (a − b) ≡ 0 (mod p), which is a contradiction since
a and b are assumed non-equal. So as long as we swap non-equal elements from
the partitions, their sums will no longer be equal. From this observation, we will
show that there are at least as many partitions with

∑
i∈P X i �=

∑
i∈Q X i as

there are with
∑

i∈P X i =
∑

i∈Q X i.
Consider the operation of swapping the first two unequal elements in the

sorted sets P and Q. Clearly this operation maps equal sum partitions to unequal

34 A. Broadbent et al.

sum partitions. In addition, let us specify that the partition where P and Q are
identical be mapped to the partition obtained by sorting the set {X i} and setting
P equal to the first half; the result will be unequal since {X i} is unequal. We
now have a one-to-one mapping from equal sum partitions to unequal partitions,
so no more than half of the possible partitions can have the property

∑
i∈P X i =∑

i∈Q X i.
Thus the probability of choosing a partition with this property when two or

more elements are unequal is less than 1
2 . With s repetitions, the probability of

an unequal set passing EQUALITY is less than 1
2s .

Theorem 8. t(p)(GHOST-SUMn,g) =
n+g
2 .

Proof. Again, the privacy threshold follows directly from that of the employed
secret sharing scheme.

Theorem 9. t(c)(GHOST-SUMn,g) = t(r)(GHOST-SUMn,g) =
n−g
2 .

Proof. The protocol aborts if and only if:

1. the honest participants fail to reconstruct the total (secret sharing scheme
aborts), or

2. the reconstructed total’s bins sum to a value other than n.

The first case is not possible, by Theorem 6.
Note that the value of the secret cannot be changed after the distribution

phase because the total number of non-honest parties is less than n−g
2 +g = n+g

2 ,

which is t(c)(ICVSSn+g).
We therefore need only show that if an input is ill-formed it will be found in

the verification steps and discarded and if an input differs across the s parallel
computation rounds it will be found in the second verification step.

If a participant wants to share an ill-formed BIN-ARRAY in a set, he must
create no more than s invalid BIN-ARRAYs in that set, or he is guaranteed to
have at least one invalid BIN-ARRAY opened in the first verification phase. If
he has 1 ≤ x ≤ s invalid BIN-ARRAYs, then the probability that no invalid
BIN-ARRAY is opened is: (

2s−x
s

)(
2s
s

) ≤ 1

2

If the participant has at least one invalid BIN-ARRAY per set, the probability
that an invalid BIN-ARRAY is not opened is ≤ 1

2s . If a participant has invalid
BIN-ARRAYs in some sets and not others, then his inputs are not equal across
all rounds.

If the inputs are not equal across all rounds, then except with exponentially
small probability, the input is discarded and the player disqualified in the second
verification step.

Trading Robustness for Correctness and Privacy 35

A.4 Properties of IC-GVSS

Theorem 10. t(p)(IC-GVSSn,g) =
n+g
2 .

Proof. This follows from Theorem 5.

Theorem 11. t(r)(IC-GVSSn,g) =
n−g
2 .

Proof. This follows from 6.

Theorem 12. A set of less than n+g
2 dishonest receivers cannot forge a signa-

ture.That is, they cannot create a share and a signature that convinces an honest
participant that the share came from an honest sender.

Proof. If the sender and a receiver are honest, then the receiver will reject any
value different from the intended share except with exponentially small prob-
ability by property SC3. Therefore, n+g

2 − 1 corrupt players cannot convince

a single honest player to accept the fake share, therefore they cannot get n+g
2

participants to accept the fake share, which is required for it to pass.

Theorem 13. In IC-GVSSn,g, an honest sender cannot be eliminated in the
share phase unless at least n+g

2 participants are corrupt.

Proof. A sender can be eliminated in the distribution phase if and only if a
participant shows signed shares that are ill-formed and n+g

2 participants accept
the signature. If a sender is honest, he will give well-formed shares and so any
player accepting a signature on an ill-formed share is accepting a forged share,
which can’t be done by Theorem 12.

Theorem 14. IC-GVSSn,g has property C′ when simultaneous broadcast is used
in the reconstruction phase.

Proof. Letm1, . . . ,mn be shares distributed using IC-GVSS. Suppose the actively
corrupt participants, P1, . . . ,Pc change their shares to m′

1, . . . ,m
′
c. Let g be a

polynomial interpolating the actual shares and g′ be a polynomial interpolat-
ing the changed shares, m′

1, . . . ,m
′
c,mc+1, . . . ,mn. If a simultaneous broadcast

channel is used, the new shares cannot be a function of any honest shares.
Consider (g′ − g)(0) = a. The secret reconstructed from the new shares will

be m′ = g′(0) = m+ a. The dishonest coalition knows a, since they know g′ − g
(the shares of honest parties are all 0). Therefore, they have information about
m′ if and only if they have information about m.

A.5 Properties of IC-GHOST-SUM

Theorem 15. In t(p)(IC-GHOST-SUMn,g) =
n+g
2 .

Proof. Follows from Theorem 8.

36 A. Broadbent et al.

Theorem 16. BIN-ARRAY-EQUALITY will not output unequal for an equal set
when there are less than n+g

2 corrupt participants, except with exponentially small
probability.

Proof. It is not difficult to see that this would require dishonest players to forge
shares. This is not possible, except with exponentially small probability, by
Theorem 12.

Theorem 17. If less than n+g
2 participants are corrupt, then no honest partic-

ipant will be disqualified except with exponentially small probability.

Proof. In the distribution phase, an honest participant will not be disqualified
except with exponentially small probability, by Theorem 13.

In the first verification phase, a participant can only be disqualified if one of his
BIN-ARRAYs is opened to an invalid secret. In order to accomplish this, at least
one corrupt participant must open an incorrect share with the first participant’s
signature forged. This cannot be done with less than n+g

2 corrupt participants
by Theorem 12.

In the second verification phase, a participant can only be disqualified if one
round of equality outputs unequal. This can’t happen to an honest participant
except with exponentially small probability, by Theorem 16.

Theorem 18. t(c)(IC-GHOST-SUMn,g) =
n+g
2 .

Proof. Suppose a dishonest collusion of n+g
2 − 1 participants want to cause the

total Y to be inconsistent with the inputs of honest participants. They must
change the value of some shared BIN-ARRAY, X .

By Theorem 10, nothing is known about X before the computation (and out-
put) phase. By Theorem 14, the dishonest collusion will therefore know nothing
about the value of the shared BIN-ARRAY X ′ that would result from their be-
haviour. It could be any array of 2n integers (mod p). There are p2n of these,
and only 2n well-formed BIN-ARRAYs. The probability of creating a well-formed
BIN-ARRAY is thus less than 2n

p2n , which is bounded by a constant. Repetition
yields exponential security.

Theorem 19. In t(r)(IC-GHOST-SUMn,g) =
n−g
2 .

Proof. This proof is identical to that of Theorem 9.

Two Protocols for Delegation of Computation

Ran Canetti1,2,�, Ben Riva2,∗, and Guy N. Rothblum3

1 Boston University, Boston, MA, USA
2 Tel Aviv University, Tel Aviv, Israel

3 Microsoft Research Silicon Valley, Mountain View, CA, USA

Abstract. Consider a weak client that wishes to delegate computation
to an untrusted server and be able to succinctly verify the correctness of
the result. We present protocols in two relaxed variants of this problem.
We first consider a model where the client delegates the computation

to two or more servers, and is guaranteed to output the correct answer
as long as even a single server is honest. In this model, we show a 1-
round statistically sound protocol for any log-space uniform NC circuit.
In contrast, in the single server setting all known one-round succinct
delegation protocols are computationally sound. The protocol extends
the arithemetization techniques of [Goldwasser-Kalai-Rothblum, STOC
08] and [Feige-Kilian, STOC 97].
Nextwe consider a simplified view of the protocol of [Goldwasser-Kalai-

Rothblum, STOC 08] in the single-server model with a non-succinct, but
public, offline stage. Using this simplification we construct two computa-
tionally sound protocols for delegation of computation of any circuit C
with depth d and input length n, even a non-uniform one, such that the
client runs in time n · poly(log(|C|), d). The first protocol is potentially
practical and easier to implement for general computations than the full
protocol of [Goldwasser-Kalai-Rothblum, STOC 08], and the second is a
1-round protocol with similar complexity, but less efficient server.

1 Introduction

An emerging paradigm in modern computing is pay-per-use Cloud Computing,
where individuals and companies outsource computations to companies that
perform the computations on dedicated servers. This motivates exploring meth-
ods for delegating computations reliably, while maintaining the efficiency gains:
A weak client delegates his computation to a powerful server; once the server
returns the result of the computation, the client should be able to verify the cor-
rectness of that result so that (a) the client uses considerably less resources than
those required to actually perform the computation from scratch, and (b) the
server does not use significantly more resources than those needed for performing
the computation.

A classic solution to this problem is to have the server prove correctness of
the computation using a universal argument [K92, BG02]. Here the server incurs

� Research supported by the Check Point Institute for Information Security, an ISF
grant and an EU Marie Curie grant.

A. Smith (Ed.): ICITS 2012, LNCS 7412, pp. 37–61, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

38 R. Canetti, B. Riva, and G.N. Rothblum

polynomial overhead and the client’s complexity is linear in the input length and
security parameter, and only polylogarithmic in the complexity of the original
computation. This solution is general and applies to any problem in P . It also
has the nice property that it is publicly verifiable: The client needs to keep no
secret state. However, it has two main drawbacks: First, it is interactive, taking
four messages. Second, it is only computationally sound.

Micali [M00] “squashes” Kilian’s protocol to one message in the Random
Oracle model, while maintaining public verifiability. Further extensions of this
construction give a two-message protocol in the plain model, with similar com-
plexity advantages [CL08, BCCR12, GLR11, DFH12]. However, their soundness
relies on non-standard hardness assumptions. Furthermore, all of these proto-
cols have only computational soundness. No statistically-sound protocol with a
constant number of rounds is known.

An alternative delegation protocol, proposed by Goldwasser, Kalai and Roth-
blum [GKR08], guarantees statistical soundness. However, the protocol works
only for languages that have L-uniformNC circuits. Furthermore, the number
of rounds is quasilinear in the depth of the circuit. Using the technique of
Kalai and Raz [KR09] this protocol can be transformed into a one-round pro-
tocol, assuming the existence of a computational Private Information Retrieval
scheme with polylogarithmic communication. Here, however, soundness is only
computational.

Two relaxations of the model have been recently proposed. One relaxation,
proposed in [CRR11], lets the client interact with two or more servers, and
requires that the client outputs the right value as long as there exists one server
that follows the protocol. That is, the client asks for the value of f(x) from several
servers. In case the servers make contradictory claims about f(x), they “play”
against each other in a protocol where the weak client can efficiently determine
the true claim as long as there is at least one honest server. As before, the servers
should incur only polynomial overhead, whereas the client’s resources should
be much smaller than required to compute the function. This model, called
the Refereed Delegation of Computation (RDoC) model, directly extends the
refereed games model of Feige and Kilian [FK97]. It is also somewhat reminiscent
of the MIP model of [BGKW88]. However, the MIP model provides different
guarantees (e.g., soundness is guaranteed only as long as no two servers collude,
and malicious servers can potentially prevent honest ones from convincing the
client.) In that model, and assuming collisions resistant hash functions, [CRR11]
shows a computationally sound delegation protocol whose number of rounds is
logarithmic in the time needed to compute f(x). The protocol is inspired by a
protocol of Feige and Kilian [FK97].

Another relaxation, proposed by [GGP10], considers two stages of the proto-
col, offline and online. In the offline stage we fix a function (or a circuit) f and
allow the client to work harder (e.g., proportional to the size of f). In the online
stage, the client can delegate the computation of f(x) for any input x, and can
verify the result in time that independent of the size of f . The assumption that
the client can work “hard” during the offline stage is often justified by proposing

Two Protocols for Delegation of Computation 39

that the client rely on the assistance of a trusted party to perform the offline
stage on the client’s behalf. We call this model the Offline/Online Verifiable Del-
egation of Computation (OVDoC) model. Several protocols have been proposed
in this model [GGP10, CKV10, AIK10, CKLR11, BGV11].

However, in all the recent protocols in this model the offline stage generates
information that must be kept secret and used at the online stage (or else sound-
ness will no longer be guaranteed). Having such secret information is a serious
impediment. First, it requires the client to put complete trust in the entity that
participates in the offline stage. Furthermore, in some of the protocols soundness
is only guaranteed as long as the server does not know which past interactions
convinced the client.

1.1 Our Contributions

A statistically sound, 1-roundtrip protocol in the RDoC model. Our
main contribution is a 1-roundtrip statistically sound RDoC protocol for any
circuit computable in L-uniformNC . The protocol adapts techniques from a
protocol of Feige and Kilian [FK97], where the servers are inefficient even for
log-space computations, together with techniques from the work of Goldwasser,
Kalai and Rothblum [GKR08], and some new techniques.

We provide a brief overview of the protocol. For the description here we restrict
attention to the case when there are exactly two servers, one honest and one
malicious (but the referee/client does not know which is honest). We later show
how to extend our protocols to more than two servers.

At a high level, our protocol follows the structure of the [GKR08] interactive
proof. That is, initially the servers make claims about the output layer of the
circuits. Then, a (very efficient) sum-check protocol [LFKN92] is used to reduce a
claim about a high layer in the circuit, which we call an input claim, into a claim
about a lower layer (closer to the circuit’s input layer), we call this an output
claim. The guarantee is that if the input claim is false, then w.h.p. over the
referee’s coins the output claim will also be false. They use this sub-protocol to
reduce the claim about the circuit’s output layer into a claim about the circuit’s
input layer, and complete the protocol by noting that claims about the input
layer can be verified by the referee in quasi-linear time.

However, as in [GKR08], the above protocol is highly interactive: First, each
sum-check sub-protocol requires a logarithmic number of rounds. Second, the
claim for each layer in the circuit depends on the coins chosen by the referee in
the sum-check for the layer above it, so all of these sum check protocols must be
run sequentially from the top circuit output layer to the bottom circuit input
layer. To eliminate the first source of interaction, we use a variant of the one-
round refereed game for the sum check test from [FK97]. This still leaves us with
a significant technical obstacle: How can we collapse all of sum-check protocols
from the different layers into just one round of interaction? The difficulty comes
from the fact that, in order to run the [FK97] protocol, both servers need to
know the claim being debated. This claim, however, depends on the referee’s

40 R. Canetti, B. Riva, and G.N. Rothblum

(non-public) coins in the sum check for the layer above. Revealing all of those
coins to both servers ahead of time would compromise soundness.

We overcome this obstacle (and additional lower-level ones) using techniques
tailored to our setting. In a nutshell, the claim for each layer is the value of a
low-degree multi-variate polynomial (say p) on a certain secret point (say z) that
is known only to the referee. The referee sends to each server a different low-
degree parametric curve passing through the point z (but also through many
others), and asks for the (low-degree) polynomial q describing p restricted to
that server’s curve. Essentially, soundness follows because each server (on its
own) cannot tell which of the points on its curve is the one that the referee will
be checking. If the server cheats and sends q′ �= q, then (since q and q′ are low
degree polynomials over a larger field) with high probability the server must be
cheating on the point z that the referee is checking on.

Kol and Raz present an alternative exposition of this protocol [KR11]. They
also provide an extension of this protocol that somewhat reduces the workload
of the client at the price of a comparable increase in the number of rounds. As
far as we know, these results have been obtained independently of ours.

A simplification of the [GKR08] protocol in the OVDoC model with a
public offline stage. For our second result, we start by describing the model
of OVDoC with a public offline stage. Recall that the offline/online delegation of
computation model assumes that the client can work “hard” during the offline
stage and that the information generated in the offline stage is kept secret. In
our model the entire randomness used in the offline stage is made public. This
means that: (1) The correctness of the offline computation can be verified by
anyone, and, (2) The output of the offline stage can be used by anyone in the
online stage to verify the computation of any input.

For instance, imagine that some well-known company (e.g., Microsoft, Google)
publishes short public keys for a set of different circuits. (Or, Microsoft ships
these keys as part of its products, as currently done with Certificate Authorities.)
Any interested party can also check these values and verify that they are correct.
Later on, a (weak) client can take these values and delegate its computation to
any server, without running the offline stage by itself.

As already mentioned, the [GKR08] protocol works only for L-uniformNC
circuits. This is because the client cannot verify claims about the circuit structure
for larger circuits since the explicit circuit is too large (larger than the client
running time) and (for general non-uniform circuits) there is no shorter implicit
representation.1 Moreover, the full [GKR08] protocol has a large overhead over
the plain execution of the computation.

In the relaxed model of OVDoC with a public offline stage we show that we can
combine a lighter version of the [GKR08] protocol (namely, only the bare-bones
protocol. See Sect. 2) with another efficient computationally-sound protocol in a

1 We note that Cormode, Mitzenmacher and Thaler [CMT12] argue that many useful
problems have succinct circuit representation. In those cases a weak client can verify
claims about the circuit structure by herself.

Two Protocols for Delegation of Computation 41

way that bypasses the above difficulties. As a result, our protocol can work with
any circuit C, requiring the client to run in time n · poly(log(|C|), depth(C)),
where n is the input length. We do not require the circuit to be uniform, re-
sulting in a potentially easier to implement protocol. Furthermore, the simplifi-
cation reduces the number of executions of the bare-bones protocol by a factor
of O(depth(C)), which in practice can be very meaningful. (See [CMT12] for
experimental results of a single execution of the bare-bones protocol. Note that
they also significantly improve the server’s running time using a technique that
can be applied to our protocols as well.)

As a more theoretical result, we additionally show that by carefully applying
the technique of [KR09] we can construct a 1-round protocol with less efficient
server. Previously, assuming standard computational assumptions, it was known
how to construct a 1-round protocol only for L-uniformNC circuits.

1.2 Organization

Section 2 describes the protocol of [GKR08] which we use extensively in our
constructions. Section 3 defines the model of refereed delegation of computa-
tion, shows a “parallel repetition” theorem of RDoC protocols and describes
how to extend RDoC with two servers to any number of servers. It also presents
the construction of a one-round RDoC for any L-uniformNC computation. Sec-
tion 4 describes the simplified construction of the [GKR08] protocol and the
construction of a one-round computationally sound protocol for any circuit.

2 The Protocols of [GKR08, KR09]

Given that our protocols rely heavily on the structure of the [GKR08, KR09]
protocols, we start with a brief exposition of these protocols. Also, in Appendix A
we describe the protocol of [FK97] that we use in our RDoC construction.

2.1 Preliminaries: Low Degree Extension (LDE)

Given a field F , a subset H ⊆ F and a function f : Hm → F , we let the
low degree extension of f , denoted f̃ , be the unique multi-variate polynomial
f̃ : Fm → F that satisfies: (1) (low-degree) deg(f̃) < |H | for each variable; and

(2) (extension) f(x) = f̃(x) for all x ∈ Hm. Such polynomials can be constructed
using Lagrange Interpolation.

Similarly we define the low degree extension of a vector. Let α : Hm →
{0, . . . |H |m − 1} be the lexicographic order of Hm. Given a vector w = (w0, . . .
wk−1) ∈ F k, where k ≤ |H |m, we can view this vector as a function fw : Hm →
F such that fw(z) = wα(z) when α(z) ≤ k − 1 and fw(z) = 0 otherwise. We
define the low degree extension of the vector w to be the low degree extension
of fw.

42 R. Canetti, B. Riva, and G.N. Rothblum

2.2 The Bare-Bones [GKR08] Protocol, Given a Circuit
Specification Oracle

Notations and Parameters. The protocol is between a server and a client,
where both know the input x of length n.

Given an arithmetic circuit C : {0, 1}n → {0, 1} of fan-in 2 gates, size S
and depth d, the players choose the following parameters: 1) An extension field
H of GF[2] such that max(d, log(S)) ≤ |H | ≤ poly(d, log(S)), 2) An integer
m such that S ≤ |H |m ≤ poly(S), 3) An extension field F of H such that
|F | ≤ poly(|H |). (The size of F influences the soundness of the protocol.).

Using standard techniques, we can transform the arithmetic circuit C to a new
arithmetic circuit C ′ : Fn → FS over the field F with the following properties:
1) C′ is of size poly(S) and depth d, with fan-in 2 gates, 2) Each layer, except
for the input layer, is of size S (simply by adding dummy gates), 3) For every
(x1, . . . , xn) ∈ {0, 1}n, C′(x1, . . . , xn) = (C(x1, . . . , xn), 0, . . . , 0).

Let specc() be the predicate describing a circuit C. That is, specc(i, b, w1, w2,
w3) returns 1 if in the i-th layer of C there is a gate that connects wires w2

and w3 to wire w1, and this gate is a b-gate where b ∈ {0 = add, 1 = mult}.2
Let s̃pecc(i) be the low degree extension of specc(i, ·, ·, ·, ·) with respect to H,F
and m, of degree δ (that depends on specc()) in each variable. In this section we
assume the client has an oracle access to s̃pecc′(i).

We denote the output layer as the 0 layer and the other layers according
to their distance from the output layer. The input layer is the d-th layer. For
0 ≤ i ≤ d we associate a vector vi = (vi,0, . . . , vi,S−1) ∈ FS with the values
of all gates of the i-th layer in the computation of C′(x1, . . . , xn). v0 is the
circuit result (C(x1, . . . , xn), 0, . . . , 0) and vd is the circuit input (x1, . . . , xn).

Let Ṽi : F
m → F be the low degree extension of the vector vi with respect to

H,F and m. This polynomial is of degree ≤ |H | − 1 in each of its variables, and
given vi can be computed in time ≤ poly(|F |m) = poly(S). Since vd is of length

n, Ṽd can be computed in time ≤ n · poly(|H |,m).

The Protocol. The server claims that C′(x1, . . . , xn) = (0, . . . , 0). An inter-
active protocol is executed between the server and the client. In each step the
server reduces the correctness of the computation of layer i to the correctness
of the computation of layer i + 1. Concretely, for layer i, the server claims that
Ṽi(ui) = ri for some randomly chosen ui that the client picked and sent to the
server. Then, the server reduces the correctness of this claim to the correctness
of Ṽi+1(ui+1) = ri+1 for some randomly chosen ui+1 that the client picked. This
process continues until they reach the input layer and then the client verifies the
correctness of this layer by himself (as Ṽd is small and known to the client).

We now describe in detail the reduction between the layers. [GKR08, R09]

show that there exists a 3m-variate polynomial f
(i)
u : (Fm)3 → F of size ≤

poly(S) and degree ≤ 2δ defined by

2 In general, it is possible to use any gate that can be expressed as a polynomial of its
inputs.

Two Protocols for Delegation of Computation 43

f (i)
u (p, w,w′) = β̃(u, p) · [s̃pecc′(i+1)(0, p, w, w

′)(Ṽi+1(w) + Ṽi+1(w
′)) +

s̃pecc′(i+1)(1, p, w, w
′)(Ṽi+1(w) · Ṽi+1(w

′))]

where β̃(u, p) is a |H | − 1 degree polynomial that depends only on F,H and m,
and, can be computed in time poly(|H |,m). Note that given an oracle access to

s̃pecc′(i) and the values of Ṽi+1(w) and Ṽi+1(w
′), the polynomial f

(i)
u (p, w,w′)

can be evaluated in time poly(|H |,m).

[GKR08, R09] proves that Ṽi(ui) =
∑

p,w,w′∈Hm f
(i)
ui (p, w,w

′). Now, given a

claim for layer i that Ṽi(ui) = ri for some randomly chosen ui that the client

picked and sent to the server, proving that Ṽi(ui) = ri is equivalent to proving

that ri =
∑

p,w,w′∈Hm f
(i)
ui (p, w,w

′).
This part is done by a standard sum-check interactive protocol between the

two players. For each layer of the circuit, the client and the server execute a sum-
check interactive protocol that consists of 3m rounds. The last step of the sum-

check requires a computation of f
(i)
ui (p, w,w

′) by the client. In order to do that,

the server sends a low degree polynomial Ṽi+1(γ(t)) where γ(t) is the 1-degree
curve that passes through w and w′. Using this polynomial, the client computes

Ṽi+1(w) and Ṽi+1(w
′) and uses that to compute and verify f

(i)
ui (p, w,w

′). Then,
the client picks a random point t′ on the curve γ(t) and continues to the correct-

ness proof of the claimed value of Ṽi+1(γ(t
′)) (where ui+1 = γ(t′) in the next

round).

Complexity. It is shown in [R09] that by taking F such that |F | ≥ 700mdδ =
poly(|H |) we get soundness of 1

100 . In addition, the overall running time of the
server is poly(|F |m) = poly(S), the running time of the client is poly(|F |,m) +
n · poly(|H |,m) = n · poly(d, log(S)) and the communication complexity is
poly(|F |,m) = poly(d, log(S)).

Cormode, Mitzenmacher and Thaler [CMT12] show that by using a multilin-
ear extension, the running time of the server can be reduced to O(S · log(S)).
Their technique can be applied to our constructions as well. They also suggest
that by using large fields, e.g. of size 32 bit, performance of many applications
can be significantly improved. However, in both of our constructions the players
work in time ≥ |F |m, thus making this option inefficient.

2.3 Realizing the Oracle for L-UniformNCCircuits

The above protocol is presented for any circuit given an oracle access to s̃pecc′(i).
[GKR08] shows how to realize the protocol without an oracle access but for a
more restricted class of languages, L-uniformNC , which is the class of languages
that can be computed by circuits of poly-size and poly-logarithmic depth where
there is a log-space Turing Machine that generates those circuits.

44 R. Canetti, B. Riva, and G.N. Rothblum

Specifically, [GKR08] shows the following:

1. For a language L in NL (i.e., L has a non-deterministic log-space Turing
Machine), it is possible to compute the s̃pecc(i) (where C is the circuit that
computes L) in time polylog(n). Thus, the client can compute it by himself
and, as a result, realize the bare-bones protocol.

2. For a language L in L-uniformNC , the client delegates also the computation
of the oracle answers to the server. More specifically, let C be the circuit
that computes L and let TMspec(c) be the Turing Machine that computes
s̃pecc(i). Since L is L-uniform , TMspec(c) is also non-deterministic log-space
Turing Machine, and therefore the computation of TMspec(c) can be delegated
to the server. As a result, the bare-bones protocol is executed once for the
delegation of C, and 2d times for the delegations of TMspec(c).

2.4 The Transformation of [KR09]

Assuming the existence of a poly-logarithmic computational Private Information
Retrieval (cPIR) scheme, [KR09] presents a transformation from any public-coin
unconditionally-sound proof system into a one-round computationally-sound
proof system. In high-level the transformation is as follows. The verifier sends
all the random coins together in the same round, hidden inside different cPIR
queries. The (honest) prover prepares a database with all the possible answers,
and returns the answers to the verifier queries all together. Then, the verifier
peels the cPIR answers and feeds the original verifier with the results.

The exact transformation is more subtle, and we refer the reader to [KR09]
for more details. We note that the transformation does not change the expres-
siveness of the underlying protocol, and in particular, transforming the protocol
of [GKR08] results in a protocol for L-uniformNC circuits.

We denote the verifier’s message in this protocol by GKR-KRv(S, d, λ) given
the circuit size S, depth d and security parameter λ. Similarly, we denote the
prover’s response by GKR-KRp(C, x, q) for a given circuit C, input x and queries
q = GKR-KRv(S, d, λ).

3 Refereed Delegation of Computation

3.1 The Model

A refereed delegation of computation for a function f is a protocol between a
referee/client R and N servers P1, P2, . . . , PN . All parties may use local random-
ness. The referee and the servers receive an input x. The servers claim different
results for the computation of f(x) and the referee should be able to determine
the correct answer with high probability. We assume that at least one of the
servers is honest.

Definition 1 (Refereed Delegation of Computation). Let (P1, P2, . . . ,
PN , R) be an ε-RDoC with N servers for a function f if the following holds:

Two Protocols for Delegation of Computation 45

– For any input x and any i, if server Pi is honest then for any P ∗
1 , . . . , P

∗
i−1,

P ∗
i+1, . . . , P

∗
N the output of R is f(x) w.p. at least 1− ε.

– The complexity of the referee is at most quasi-linear in |x| and the complexity
of the (honest) servers is polynomial in the complexity of evaluating f .

For completeness of the description, we briefly review the model of Refereed
Games [FK97]. A refereed game (RG) for a language L is a protocol between a
referee R and two competing unbounded servers P1 and P2. All three parties may
use local randomness. The referee and the servers receive x ∈ {0, 1}∗. Without
loss of generality we can assume P1 claims that x ∈ L and P2 claims that x /∈ L,
and the referee should be able to determine the correct answer with probability
at least 2/3.

Parallel Repetition for RDoC. We have the following “parallel repetition”
theorem for RDoC for boolean functions.

Theorem 1 (Parallel Repetition for RDoC). Let (P1, P2, . . . , PN , R) be a
ε-RDoC for a boolean function f , and let (P k

1 , P
k
2 , . . . , P

k
N , Rk) be a RDoC ob-

tained by running (P1, P2, . . . , PN , R) k times in parallel and in which Rk accepts
if and only if R accepted in the majority of the executions. Then, (P k

1 , P
k
2 , . . . ,

P k
N , Rk) is a RDoC with error probability εpoly(k).

Proof (sketch). We use the fact that parallel repetition reduces the error proba-
bility of any interactive proof system, and we build an interactive proof system
(P, V) for the language L = { x | f(x) = 1 } from our RDoC (P1, P2, . . . , PN , R).
Without loss of generality, we assume x ∈ L and P1 is an honest server. We view
the referee R and the honest server P1 as the verifier V , and the other servers as
the prover P . Similarly, we view P k

1 and Rk as the verifier V k in the parallel rep-
etition version of (P, V). Since (P1, P2, . . . , PN , R) is a RDoC, the soundness of
(P, V) is bounded by ε. Now, if we assume there are malicious servers P k

2 , . . . , P
k
N

that convince the referee in (P k
1 , P

k
2 , . . . , P

k
N , Rk) with probability p, it means

there is a prover P k that can convince V k with probability p. However, since the
parallel repetition of interactive proofs reduced the error probability to εpoly(k),
p is negligible. ��

From Two Servers to N Servers. Here we show how, given a RDoC with
two servers and negligible error probability, one can construct a RDoC with N
servers and negligible error probability, where we only need to assume that at
least one of them is honest. The idea is to execute the RDoC with two servers
between each pair of servers. By the soundness of the RDoC with two servers,
with high probability there exists an honest server Pi that convinces the referee
in all of his “games”. The referee outputs the claimed result of Pi.

This solution can be executed in parallel for all pairs, and therefore keeps the

number of rounds the same. However, it requires N ·(N−1)
2 different executions of

the protocol.

46 R. Canetti, B. Riva, and G.N. Rothblum

3.2 One-Round RDoC for Any L-UniformNCComputation

Feige and Kilian [FK97] construct a one-round refereed game for the sum-check
task. In Appendix A we describe their protocol in detail (though our description
below is self-contained).

The Protocol, Given a Circuit Specification Oracle. The intuition behind
our protocol is as follows. We assume the referee has an oracle access to s̃pecc′(i).
We use the idea of [GKR08] to check the entire computation by checking the
sum-checks between each two consecutive layers. We use the protocol of [FK97]
to run each sum-check in a single round of communication. Ideally, we would
like to execute all the sum-checks in parallel, in a single round. But, we cannot
do that directly since the protocol of [FK97] assumes the referee can compute

f
(i)
ui by himself for any point, but here, f

(i)
ui itself is too complex for the referee

to compute. Thus, we change the “linking” between the layers.
For simplicity, we now describe the protocol as a sequential protocol with

several rounds. However, since we are interested in a one-round protocol, all
servers actually execute all rounds of the this protocol together, in a single round.
The referee chooses his messages for all rounds together and sends them to the
servers in one message. Then, the servers answer all rounds together. Last, the
referee reads all answers, starting from the input layer towards the output layer,
and checks the servers’ answers until he finds who is the honest server. (In our
protocol the direction of the “linking” reductions is different than in [GKR08].)
We denote this protocol by (P1, P2, R).

Given an input x, for each layer i the referee chooses a random paramet-
ric curve ϕi(t) and a random point zi. (γi(zi) corresponds to the point ui of
[GKR08].) The referee sends ϕi(zi), ϕi(t) to P1 and P2, respectively, and asks

the servers for the values of Ṽi(ϕi(zi)) and Ṽi(ϕi(t)). Next, he checks whether
those answers agree on zi. If they agree, then he assumes both answers are cor-
rect and continues to checking the next layer, i − 1. Otherwise, he executes a
one-round sum-check protocol a la. [FK97] to determine the correct value of

Ṽi(ϕi(zi)). As we said, a subtle issue here is how the referee checks the cor-

rectness of the sum-checks without being able to compute f
(i)
ϕi(zi)

by himself.

Specifically, in the protocol of [FK97] the referee needs to compute f
(i)
ϕi(zi)

on a

point that is not known to P1. In order to solve this problem we use the polyno-
mial Ṽi(ϕi(t)) to get this value “implicitly” from the servers themselves. When

the referee believes that the answer on Ṽi+1(ϕi+1(t)) for layer i+1 is correct, he

takes few random points on Ṽi+1(ϕi+1(t)) and uses that to compute the value of

f
(i)
ϕi(zi)

on the required point. The solution requires increasing by one the degrees

of the polynomials of the protocol of [FK97] in order to keep the added point
secret (see Appendix A). Note that P2 can easily win if it knows the intersection
point zi, thus, we ask P2 to answer the sum-check challenges for all the points
on ϕi(t), including the value at zi. Then, our referee calls the referee of the
one-round sum-check protocol of [FK97] to determine who is the honest server.

Two Protocols for Delegation of Computation 47

The detailed protocol (P1, P2, R) is presented in Fig. 1 and Fig. 2. Since some
of the polynomials conceal secret intersection points, when the referee sends some
polynomial to the servers, we require that he sends the canonical representation
of that polynomial.

The referee’s running time is poly(|F |,m, d, |H |) + n · poly(|H |,m) = n ·
poly(d, log(S)), the servers running time is poly(S, |F |,m, d) = poly(S) and the
communication complexity is poly(|F |,m, d) = poly(d, log(S)).

Theorem 2. Let L be a language in NC and let CL be the circuit that decides
on L. For any input x and for any constant error probability ε, given a circuit
specification oracle for CL, the protocol (P1(x), P2(x), R(x)) is ε-RDoC with two
servers for the circuit CL.

The crucial point of the proof is that a server can cheat with high probability
only if he knows the curves’ intersection points. Let’s see what information each
server has about the other server’s curves.

Lemma 1. Let V1 be the view of P1 and let i be a round in the protocol. For all
α, α′, β, β′ ∈ F and j ∈ [1 . . . 3m]

Pr[aj = α|V1] = Pr[aj = α′|V1] (1)

Pr[r = β|V1] = Pr[r = β′|V1]. (2)

Let V2 be the view of P2 and let i be a round in the protocol. For all α, α′, β, β′, γ,
γ′ ∈ F and j ∈ [1 . . . 3m]

Pr[zi = α|V2] = Pr[zi = α′|V2] (3)

Pr[aj = β|V2] = Pr[aj = β′|V2] (4)

Pr[bj = γ|V2] = Pr[bj = γ′|V2] (5)

Proof. The lemma follows from inspecting the protocol.

1. Dj(t) is of degree at least 1. Even if we give P1 the value of bj , he does not
have enough information to recover Dj(t), so any (aj , Cj(aj)) is a possible
intersection point.

2. Since P1 has no information on w,w′ besides from the curve C3m, and, ϕi(t)
is of degree 2, r is simply a random point on that curve from his point of
view.

3. Cj(t) is of degree at least |H |. Even if we give P2 the value of bj, he does not
have enough information to recover Cj(t), so any (aj , Dj(aj)) is a possible
intersection point. Similar argument is true for bj . ��

Proof (Theorem 2). Using Lemma 1, let’s see how much a malicious server can
cheat without knowing the intersection points zi, aj and bj . For a fixed input
x and a fixed circuit C, let S2 be the event that although P2 is the malicious
server the referee outputs a wrong result (i.e., Q0(0) that is not equal to C(x)).

48 R. Canetti, B. Riva, and G.N. Rothblum

Publicly known parameters
H,F,m, d, S, n, δ as in Sect. 2.

Initialization
For i = 1, . . . d, R randomly picks zi ∈ F and a random degree-2 parametric curve
ϕi(t) ∈ F [t]m.

He also sets ϕ0 ≡ 0 and z0 = 0, and computes Qd(t) = Ṽd(ϕd(t)) and Md =

Ṽd(ϕd(zd)).

For i = d, . . . , 1

R’s computations :
R sets w = ϕi(0), w

′ = ϕi(1) and randomly chooses p, r ∈ F .
For 1 ≤ j ≤ 3m, R chooses random vectors Aj , Bj ∈ F j and random elements
aj , bj ∈ F .
For 1 ≤ j ≤ 3m − 1 let Cj(t) ∈ F [t]j be the unique degree-|H | parametric
curve going through

(0, Aj−1 ◦ 0), . . . , (|H | − 1, Aj−1 ◦ (|H | − 1)), (|H |, Bj)

and let C3m(t) ∈ F [t]3m be the unique degree-(|H |+1) parametric curve going
through

(0, A3m−1 ◦ 0), . . . , (|H | − 1, A3m−1 ◦ (|H | − 1)), (|H |, B3m), (r, p ◦ w ◦ w′).

For 1 ≤ j ≤ 3m, let Dj(t) ∈ F [t]j be the unique degree-1 parametric curve
going through

(aj , Cj(aj)), (bj , Aj).

We define

Φj,q(x1, . . . , xj) =
∑

xj+1,...,x3m∈H

f (i−1)
q (x1, . . . , xj , xj+1, . . . , x3m).

R sends to P1 :
Cj(t), for 1 ≤ j ≤ 3m, and the point mi−1 where mi−1 = ϕi−1(zi−1).

P1 sends to R :
Define Fj(t) = Φj,mi−1 (Cj(t)).

P1 sends Fj(t) for 1 ≤ j ≤ 3m, and, Mi−1 where Mi−1 = Ṽi−1(mi−1).
R sends to P2 :

Dj(t) for 1 ≤ j ≤ 3m, and the curve ϕi−1(t).
P2 sends to R :

For all q ∈ F define Gj,q(t) = Φj,ϕi−1(q)(Dj(t)).
P2 sends Gj,q(t) for 1 ≤ j ≤ 3m and all q ∈ F , and, Qi−1(t) where Qi−1(t) =

Ṽi−1(ϕi−1(t)).

Fig. 1. One-round RDoC protocol: initialization and interactive phase

Let Ei be the event that Qi(t) is indeed Ṽi(ϕi(t)), and let Ti be the event that

Qi(zi) is indeed Ṽi(ϕi(zi)). Then,

Pr[S2] ≤ Pr[∃i ∈ [d− 1] s.t. ¬Ti ∧ Ti+1] ≤
d−1∑
i=0

Pr[¬Ti ∧ Ti+1].

Two Protocols for Delegation of Computation 49

Checking layer i for i = d, . . . , 1
P1 is declared as the cheater if for some j, Fj(t) has degree greater than deg(Cj) ·
j · 2δ. P2 is declared as the cheater if Qi−1(t) has degree bigger than 2m · (|H |− 1)
or if for some j, Gj,zi−1(t) has degree greater than deg(Dj) · j · 2δ.
If Mi−1 = Qi−1(zi−1) the referee continues to the proof of layer i− 1. Otherwise,
he continues as follows.

R computes f
(i−1)
zi−1 (p ◦ w ◦ w′) using Qi(0), Qi(1) (and the oracle).

Now, R verifies the sum-check of Mi−1 =
∑

p̂,ŵ,ŵ′∈Hm

f (i−1)
mi−1

(p̂, ŵ, ŵ′) using the ref-

eree from [FK97]. Concretely:

– In case for all j, Gj,zi−1(aj) = Fj(aj), if

|H|−1∑
h=0

F1(h) = Mi−1 then P1 wins.

Otherwise, P2 wins.
– Denote by j the largest number such that Gj,zi−1(aj) �= Fj(aj):

• In case 1 ≤ j < 3m, if

|H|−1∑
h=0

Fj+1(h) �= Gj,zi−1(bj) then P1 wins. Other-

wise, P2 wins.
• In case j = 3m, if F3m(r) = f

(i−1)
zi−1 (p ◦ w ◦ w′) then P1 wins. Otherwise,

P2 wins.

Outputting the result
If P1 was declared as the honest server or P2 was declared as the cheater, R outputs
M0, otherwise he outputs Q0(0). (Recall that M0 is the claimed result of P1 and
Q0(0) is the claimed result of P2.)

Fig. 2. One-round RDoC protocol: verification of answers

For every i ∈ [d− 1],

Pr[¬Ti ∧ Ti+1] = Pr[¬Ti ∧ Ti+1 ∧ Ei+1] + Pr[¬Ti ∧ Ti+1 ∧ ¬Ei+1].

By the soundness property of the protocol from [FK97] (see Appendix A), we
have that

Pr[¬Ti∧Ti+1∧Ei+1] ≤ Pr[¬Ti∧Ei+1] ≤ (|H |+ 1) · 2(3m)2 · 2δ
|F | =

(|H |+ 1) · 36m2 · δ
|F | .

By the fact that two distinct univariate degree-t polynomials agree on at most t
points we get that

Pr[¬Ti ∧ Ti+1 ∧ ¬Ei+1] ≤ Pr[Ti+1 ∧ ¬Ei+1] ≤
2m · (|H | − 1)

|F | .

Therefore, we get that (assuming 2 ≤ m)

Pr[¬Ti ∧ Ti+1] ≤
(|H |+ 1) · 36m2 · δ

|F | +
2m · (|H | − 1)

|F | ≤ (|H |+ 1) · 37m2 · δ
|F | .

50 R. Canetti, B. Riva, and G.N. Rothblum

Thus, summing the error probabilities for all layers, we get

Pr[S2] ≤ d · (|H |+ 1) · 37m2 · δ
|F | .

Let S1 be the event that although P1 is the malicious server, the referee outputs
a wrong result (i.e., M0 that is not equal to C(x)). The only step P1 can cheat
is in some of the executions of the [FK97] protocol. Thus, by union bound we
get that Pr[S1] is also bounded by the same probability.

Thus, for any constant soundness ε we can take F to be of size≥ d·(|H|+1)·37m2·δ
ε

which is poly(|H |). ��

Realizing the Oracle for L-UniformNCCircuits. For any language L ∈
L-uniformNC there exists a circuit CL of poly-size and polylogarithmic-depth
that computes L. Furthermore, the polynomials s̃pecc(i) of CL can be computed
by a log-space TM, which means that s̃pecc(i) can be computed by an NL circuit,
Cspec(L). As shown in [GKR08], the circuit specification function s̃pecc(i) of cir-
cuits in NL can be computed in poly-logarithmic time. This means that the
referee can compute s̃pecc(i) of Cspec(L) by himself, and execute the protocol
from Sect. 3.2 without an oracle assistance.

Recall the idea of [GKR08] for extending the bare-bones protocol to L-uniform
NC circuits. In order to verify the computation of the circuit CL, the referee runs
the bare-bones protocol for verifying CL, and asks the server for the required
values of the circuit specification function s̃pecc(i) (i.e. the server acts as the
oracle). Then, the referee checks each of those claimed values by executing the
bare-bones protocol for the circuit Cspec(L) (for which he can compute the oracle
answers by himself).

Now, if we try to follow this idea for extending the protocol from Sect. 3.2 to
work with L-uniformNC circuits, and try to run in parallel the protocol also for
verification of Cspec(L), we get contradicting requirements. On the one hand, for
verification of Cspec(L), both servers have to know p, w,w′ as those are the inputs
for the specification circuit (and the protocol assumes those inputs are known
to both servers). But on the other hand, for verification of CL, the soundness of
the protocol requires that those values will not be known to P1.

In order to tackle this problem, we use a similar idea to the one used in
the previous protocol. The referee asks P1 to answer on many points, without
revealing the actual p, w,w′. Note that p, w,w′ is implicitly known to P1 from
C3m(t). P2 already knows w,w′ and we can send him also the value p without
ruining the soundness of the previous protocol.

Using those two observations, we construct a protocol (P ′
1, P

′
2, R

′) for any
language in L-uniformNC . For verification of the output of CL, the referee ex-
ecutes the protocol from Sect. 3.2, where P ′

1 runs P1 and P ′
2 runs P2, with two

modifications: 1) The referee sends to P ′
2 also the values of p for all layers, and,

2) P ′
2 sends the (claimed) values of s̃pecc(i)(b, p, w, w

′) for all layers.
For each of the answers s̃pecc(i)(b, p, w, w

′), the referee executes the protocol
from Sect. 3.2 for verification of those claimed values using the circuit Cspec(L)

Two Protocols for Delegation of Computation 51

(for which he can compute the circuit specification by himself). As we mentioned
before, p, w,w′ is not explicitly known to P ′

1. So instead we ask it to answer
on many points instead of the specific p, w,w′. Specifically, for verification of
s̃pecc(i)(b, p, w, w

′) of layer i of CL, we execute the protocol from Sect. 3.2, where
P ′
2 plays the role of P2 and knows p, w,w′, and P ′

1 plays the role of P1 for all
the points on the curve C3m(t) as the possible inputs for Cspec(L). (There are at
most |F | points on this curve). This means that P ′

1 does not know the specific
p, w,w′. However, since C3m(t) passes through p, w,w′, one of those answers will
be the needed P ′

1’s answer for the input p, w,w′.
When the referee receives the messages from both servers (for verification of

Cspec(L) and of CL), he checks if they agree on all the values of s̃pecc(i)(b, p, w, w
′).

If they disagree on some of the values, then the referee checks one of those
disagreements using the referee R from Sect. 3.2 and outputs according to his
answer. If the servers agree on all the values of s̃pecc(i), then by the assumption
that one of them is honest, those values are correct. Then, the referee verifies
the computation of the circuit CL given the values of s̃pecc(i) he got before. He
runs the checking phase of the referee from Sect. 3.2 and outputs according to
his answer.

The overhead of this solution is only polynomial in all parameters since for
each layer we have two invocations of the protocol form Sect. 3.2 where P ′

1

executes the protocol for |F | points. Summing over all layers, the running time
is increased by a factor of 2d · |F | which is still poly-logarithmic in the size of
the input.

Theorem 3. Let L be a language in L-uniformNC . For any input x and for
any constant error probability ε, the protocol (P ′

1(x), P
′
2(x), R

′(x)) is ε-RDoC
with two servers for the circuit CL.

Proof. Note that the information that the referee sends for the verification of
Cspec(L) is independent of the messages for the verification of CL. Those proofs
share only one piece of information, the values of p, w,w′ as the inputs for the
circuit Cspec(L).

Let’s assume P ′
1 is the cheater. He can cheat either on some value of s̃pecc(i)

or on the computation of CL. In the first case, he will be caught with high
probability by the soundness of the protocol from Sect. 3.2. For the second case,
if P ′

1 cheats on the computation of CL (while the values of s̃pecc(i) are correct),
then it means he can cheat in the protocol from Sect. 3.2 in the case where he
has an oracle access to s̃pecc(i).

By a union bound of the cheating probabilities of the 2d+1 invocations of the

protocol, we can bound the probability of cheating by (2d+1) ·d · (|H|+1)·37m2·δ
|F | .

Thus, for any constant soundness ε we can take F to be of size ≥ (2d + 1) · d ·
(|H|+1)·37m2·δ

ε which is poly(|H |). ��

By Theorem 1 the error probability can be reduced exponentially using parallel
repetition.

52 R. Canetti, B. Riva, and G.N. Rothblum

4 Offline/Online Verifiable Delegation of Computation
with a Public Offline Stage

Previous constructions and definitions (e.g., [GGP10, CKV10, AIK10, CKLR11],
[BGV11]) allow the client to work longer in the offline stage, and compute some
secret key which he could later use in the online stage. This assumes that at some
point in time, the client can work harder or has access to a trusted third-party.
Furthermore, the server must not learn any information about this key, so if the
client uses the assistance of a trusted third-party he has to get a unique secret
key, for his use only.

A natural extension of this model is where instead of generating a secret key
in the offline stage, the computing party outputs a public key that can be used
by anyone. In addition, any (powerful enough) player can verify that key. An
example for a real-world scenario is the following:

– Google publishes a (singed) set of public keys that corresponds to a set of
functions.

– Google’s competitors (or anyone powerful enough in that matter) can verify
these keys and in particular publish an accusation proof in case some of the
keys are invalid.

– A weak client can delegate his computation to any server, using the published
public keys. He does not have to run the offline stage by himself.

– In case the proof of the server is invalid, the client can publish the transcript
and its own coins, and prove that the server is a cheater. We stress that by
publishing his coins, the client does not loss privacy of any other key (as
happens with some of the previous constructions).

4.1 Splitting the [GKR08] Protocol

Given a circuit specification oracle, the bare-bones protocol from Sect. 2.2 re-
quires the client to run in time proportional to n · poly(d, log(S)). However, it
remains to see how to realize the oracle. As discussed above, [GKR08] shows a
way to realize the oracle for L-uniformNC languages.

If we are interested in a larger class of languages, we can use an efficient
computationally-sound protocol for realizing the oracle, and use the bare-bones
protocol only for the verification of the computation itself. Specifically, given a
circuit C, the client (or some other third party) computes in the offline stage
the polynomials s̃pecc(i) and the evaluation of these polynomials on all their
domains. Then, the client computes the root of the Merkle Hash Tree on these
values (i.e., the tree leaves are the values of the polynomials). The total running
time for computing this root is poly(S). Later on, in the (possibly many) online
stages, the client and the server run the bare-bones protocol. When the client
needs a value of the circuit specification predicate, he asks this value from the
server, which returns it along with a proof of consistency with the root of the
Merkle Hash Tree.

Two Protocols for Delegation of Computation 53

A useful property of this protocol is that the information computed in the
offline stage can be used by any interested client, and, as such, the protocol
is secure also against adaptive adversaries. Also, since the computation of the
offline stage is deterministic, this computation can be done by the server and be
verified by any interested third party (following the above example).

The combined protocol is similar to the one presented next, thus we omit
further details.

4.2 One-Round OVDoC with Public Offline Stage

Using a similar split and by utilizing the transformation of [KR09] we can con-
struct a 1-round computationally-sound protocol with public offline stage for
more than L-uniformNC circuits. (Note that the [KR09] transformation of the
[GKR08] protocol requires only a single round, without an offline stage. However,
it works only with L-uniformNC circuits.) The idea follows the transformation
of [KR09]: Execute the bare-bones protocol under cPIR queries for verifying the
computation of C(x), and, query the values of the circuit specification predicate
also under cPIR queries.

The Model. A One-Round Offline/Online Verifiable Delegation of Computa-
tion with Public Offline Stage scheme (denoted by 1RPDoC) consists of offline
and online stages. The offline stage is executed only once before the online stage
whereas the online stage can be executed many times. The algorithms are as
following:

– KeyGen(F, λ) → PK: Based on the security parameter λ, the deterministic
key generation algorithm generates a public key that encodes the function
F , which is used by a client to verify delegations of F .

Let T (F) be the time bound required to compute F on any input. We require
that the running time of the algorithm will be ≤ poly(T (F), λ).

– ProbGen(x, PK, λ) → (kx, cx): The problem generation algorithm uses the
public key and the input x to generate a challenge cx that is given to the
server, and a secret key kx that is kept private by the client.

– Compute(x, PK, cx) → (y, πy): Using the public key and the input, the server
computes the function’s output y = F (x) along with a proof of correctness
πy given the challenge cx.

We require that the running time of the algorithm will be ≤ poly(T (F), λ).
– VerifyResult(PK, kx, y, πy) → y∪⊥: Using the secret key kx, the verification

algorithm verifies the server’s proof πy and if succussed outputs y. Otherwise
it outputs ⊥.
We require that the sum of the running times of this algorithm and ProbGen()
for the same input, will be o(T (F), λ).

Note that since KeyGen() is deterministic, anyone can verify (in poly(T (F), λ)
time) whether PK is a valid encoding of the target function F .

54 R. Canetti, B. Riva, and G.N. Rothblum

As for completeness and soundness, we require the following:

Definition 2 (ε-secure 1RPDoC). We say that a scheme is a ε-secure 1RP-
DoC for a circuit C if after the offline stage (and given a valid PK) the following
holds for any input x and (kx, cx) = ProbGen(x, PK, λ):

– (Completeness) If (y, πy) = Compute(x, PK, cx) then VerifyResult(PK, kx,
y, πy) = y.

– (Soundness) For any y∗ �= C(x) and πy∗ , Pr[VerifyResult(PK, kx, y
∗, πy∗) =

⊥] ≥ 1− ε.

In concurrent work, Parno, Raykova and Vaikuntanathan [PRV12] propose two
notions, public delegatability and public verifiability, and show a construction
based on attribute-based encryption. The first notion is similar to ours except
that in their definition the player that generates the public key (in the offline
stage) is trusted. Their second notion allows any player to verify the computa-
tion, instead of just the player that delegated it. We note that in our definition
the client uses fresh coins for each delegation, and therefore, in case he want
to prove the server is cheating, he can publish his coins along with the server’s
answer. Thus, we can get the stronger notion by adding another message to our
protocol. We remark that in the definition (and the construction) of [PRV12], a
malicious client can frame the server by simply generating an invalid verification
key, whereas in the above extension of our protocol, which can be applied also
to the [PRV12] protocol, a malicious client cannot do that.

The Protocol. The protocol is presented in Fig. 3.

Theorem 4. For any circuit C and for any constant error probability ε, the
protocol from Fig. 3 is ε-secure 1RPDoC for the circuit C. In the online stage,
the client runs in n · poly(depth(C), log(|C|)) time and the server in poly(|C|)
time.

Proof. Completeness follows from inspecting the protocol.
As for soundness, we look on the protocol as a composition of two different

protocols. The first is the protocol of GKR-KR where the verification of C(x) is
reduced to the correctness of a random point on the low degree extension of the
input x, given a circuit specification oracle. We denote by s1 the soundness of
GKR-KR (can be arbitrarily small, see [GKR08, KR09]). The second protocol
is the cPIR queries on a database which includes the circuit specification truth
table augmented with proofs of consistency. The soundness of this protocol s2 is
negligible from the collision resistancy of the hash function

Since we hide the queries using cPIR queries, the requested bi, wi
1, w

i
2, w

i
3 in

the second protocol are computationally indistinguishable, and therefore, the
server in the first protocol does not get useful information about it (otherwise,
we can break the security of the cPIR).

We claim that the soundness of the composition is bounded by s1+s2+neg(λ).
Suppose there is an adversary A that breaks the protocol with probability p ≥

Two Protocols for Delegation of Computation 55

KeyGen(F, λ):
This algorithm is called in the offline stage. Let C be the circuit that computes the
function F , and let H be a collision resistant hash function given the security param-
eter λ. Also, define the GKR-KR protocol parameters as in Sect. 2.2.

– Compute the polynomials s̃pecc(i) and the values of s̃pecc(i)(b, w1, w2, w3) for
all b ∈ {0, 1} and w1, w2, w3 ∈ Fm.

– Construct a Merkle Hash Tree where the leaves of the tree are the values
H(s̃pecc(i)(b, w1, w2, w3)).

– Return PK = [IDF , size(C),depth(C), λ, h, root)] where IDF is a short string
that identifies the function F , and root is the root of the merkle hash tree.

Note that any player can compute all the above values. In particular, once PK is
published, other players can verify it. However, this computation requires polyno-
mial time (in the size of C).

ProbGen(x, PK):
When the client wants to delegate a computation (in the online stage), he computes
the following:

– Let m1 = GKR-KRv(size(C),depth(C), λ) be the first message sent by the
client in the GKR-KR protocol for the bare-bones protocol only (i.e., for

verification of the computation of C only), and let (b(i), w
(i)
1 , w

(i)
2 , w

(i)
3) (for

i = 0 . . .depth(C)) be the quadruplets that the protocol queries for their
s̃pecc(i) values.

– Compute cPIR queries for each quadruplet (b(i), w
(i)
1 , w

(i)
2 , w

(i)
3). Denote the

resulting set of queries by m2.
– Let kx be the random coins used for the computation of GKR-KRv and the
cPIR queries. Return cx = [m1,m2] and kx.

Note that the above steps do not depend on the input x.

Compute(x,PK, cx):
The server receives the input x, the public key and the challenge, and does the
following:

– Evaluate y = C(x).
– Prepare two databases. The first is a database with the answers to the
GKR-KR protocol, and the second is a database that includes the values of
s̃pecc(i)(b, w1, w2, w3) augmented with the Merkle Hash Tree proofs of con-

sistency. I.e., the database consists of 2|F |3m = poly(size(C)) entries, where
in the (a, b, c, d) entry there is the value of s̃pecc(i)(a, b, c, d) and the path in
Merkle Hash Tree from H(s̃pecc(i)(a, b, c, d)) to the root.

– Let (m1,m2) = cx. Compute m′
1 = GKR-KRp(C, x,m1) (i.e. the answers ac-

cording to the GKR-KR protocol and the first database).
– Compute the cPIR answers for the queriesm2 and the second database. Denote
the results by m′

2.
– Return y, [m′

1,m
′
2].

Fig. 3. 1RPDoC protocol

56 R. Canetti, B. Riva, and G.N. Rothblum

VerifyResult(PK,kx, y, πy):

Given the claimed output y, the proof (m′
1, m

′
2) = πy and his secret key kx, the

client does the following:

– Verify that the answers in m′
2 are consistent with the root from PK.

– Run the verifier of the GKR-KR protocol on m′
1 where each time a value of

s̃pecc(i) is needed, use the answers from m′
2.

If both checks succussed, output y. Otherwise, output ⊥.

Fig. 3. (Continued)

s1 + s2 + neg(λ) + c where c > 0 is a constant. In order to cheat, the adversary
has to cheat (at least) in either the first or the second protocol. Let A1 be
an adversary for the GKR-KR protocol that simulates the second protocol and
executes A on both the GKR-KR messages and the simulated ones and let p1
be the probability it cheats. Similarly, let A2 be an adversary for the second
protocol where it simulates the GKR-KR messages, and let p2 be its cheating
probability. Since Pr[A cheats] ≤ Pr[A1 cheats] + Pr[A2 cheats] we get that
p1 + p2 ≥ p ≥ s1 + s2+neg(λ)+ c. Hence, one of pi is at least si + c/2+neg(λ),
which contradicts the assumption about the soundness of the original protocols.

By carefully picking the parameters of the GKR-KR protocol and the hash
function we use, it is possible to get any constant soundness. ��

By parallel repetition the error probability can be reduced exponentially (using
the results of Bellare et al. [BIN97] and Canetti et al. [CHS05]).

To the best of our knowledge, the resulting protocol is the only delegation
protocol with a public offline stage and a single round in the online stage for
more than L-uniformNC circuits (based on standard assumptions). We note that
the same technique can be applied to the protocols of [CKLR11] for memory and
streaming delegation that are based on the protocol of [GKR08].

References

[AIK10] Applebaum, B., Ishai, Y., Kushilevitz, E.: From Secrecy to Soundness: Effi-
cient Verification via Secure Computation. In: Abramsky, S., Gavoille, C., Kirch-
ner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6198, pp. 152–163. Springer, Heidelberg (2010)

[BCCR12] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In:
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
pp. 326–349. ACM (2012)

[BG02] Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM
J. Comput. 38, 1661–1694 (2008)

Two Protocols for Delegation of Computation 57

[BGKW88] Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover inter-
active proofs: how to remove intractability assumptions. In: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, pp. 113–131. ACM
(1988)

[BGV11] Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable Delegation of Computation
over Large Datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
111–131. Springer, Heidelberg (2011)

[BIN97] Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the
error in computationally sound protocols? In: Proceedings of the 38th Annual
Symposium on Foundations of Computer Science, pp. 374–383. IEEE Computer
Society (1997)

[CHS05] Canetti, R., Halevi, S., Steiner, M.: Hardness Amplification of Weakly Verifi-
able Puzzles. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 17–33. Springer,
Heidelberg (2005)

[CKLR11] Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory Delegation. In:
Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Hei-
delberg (2011)

[CKV10] Chung, K.-M., Kalai, Y., Vadhan, S.: Improved Delegation of Computation
Using Fully Homomorphic Encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 483–501. Springer, Heidelberg (2010)

[CL08] Di Crescenzo, G., Lipmaa, H.: Succinct NP Proofs from an Extractability As-
sumption. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008.
LNCS, vol. 5028, pp. 175–185. Springer, Heidelberg (2008)

[CMT12] Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation
with streaming interactive proofs. In: Proceedings of the 3rd Innovations in The-
oretical Computer Science Conference, pp. 90–112. ACM (2012)

[CRR11] Canetti, R., Riva, B., Rothblum, G.N.: Practical delegation of computation
using multiple servers. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security, pp. 445–454. ACM (2011)

[DFH12] Damg̊ard, I., Faust, S., Hazay, C.: Secure Two-Party Computation with Low
Communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74.
Springer, Heidelberg (2012)

[FK97] Feige, U., Kilian, J.: Making games short (extended abstract). In: Proceedings
of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pp.
506–516. ACM (1997)

[GGP10] Gennaro, R., Gentry, C., Parno, B.: Non-Interactive Verifiable Computing:
Outsourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: inter-
active proofs for muggles. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, pp. 113–122. ACM (2008)

[GLR11] Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation without
rejection problem from designated verifier cs-proofs. Cryptology ePrint Archive,
Report 2011/456 (2011), http://eprint.iacr.org/

[K92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: Proceedings of the Twenty-Fourth Annual ACM Symposium on
Theory of Computing, pp. 723–732. ACM (1992)

[KR09] Kalai, Y.T., Raz, R.: Probabilistically Checkable Arguments. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 143–159. Springer, Heidelberg (2009)

http://eprint.iacr.org/

58 R. Canetti, B. Riva, and G.N. Rothblum

[KR11] Kol, G., Raz, R.: Competing provers protocols for circuit evaluation. Technical
Report TR11-122, Electronic Colloquium on Computational Complexity (Septem-
ber 14, 2011), http://eccc.hpi-web.de/

[LFKN92] Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for inter-
active proof systems. J. ACM 39, 859–868 (1992)

[M00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30, 1253–1298
(2000)

[PRV12] Parno, B., Raykova, M., Vaikuntanathan, V.: How to Delegate and Verify in
Public: Verifiable Computation from Attribute-Based Encryption. In: Cramer, R.
(ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

[R09] Rothblum, G.N.: Delegating computation reliably: paradigms and constructions.
Ph.D. Thesis. Massachusetts Institute of Technology (2009)

A The Protocol of [FK97]

Intuition. We present a variant of the one-round refereed game from [FK97] for
the sum-check task. In this task we have a finite field F , a subset of F denoted
by H , a fixed number k and a multivariate polynomial f : F k → F of degree
≤ d in each variable.3 The referee can evaluate f by himself in polynomial time
in the size of f . Server 1 claims that∑

x1,x2,...,xk∈H

f(x1, x2, . . . , xk) = N0

for some value N0 and Server 2 claims otherwise (denote this value by N ′
0).

Lund et al. [LFKN92] show an interactive proof with one server for the sum-
check task. Their protocol requires k rounds. In the first round, the server

sends to the client the univariate polynomial g1(x) =
∑

x2,...,xk∈H

f(x, x2, . . . , xk)

and the client checks if
∑
x∈H

g1(x) = N0. Then, the client chooses a random

element c1 ∈ F and sends it to the server. The protocol continues to the
next rounds, where in round i (for i ∈ [2..k]) the server sends to the client

gi(x) =
∑

xi,...,xk∈H

f(c1, . . . , ci−1, x, xi+1 . . . , xk) and client checks if
∑
x∈H

gi(x) =

gi−1(ci−1). Then, the client chooses another random element ci ∈ F and sends
it to the server. In the last round, the client does not send ck to the server.
Instead, he computes f(c1, . . . , ck) by himself, and checks whether it equals to
gk(ck). Note that the correctness of the protocol requires that the server cannot
guess the ci-s in advance as they are randomly chosen by the client. Actually,
this is why the protocol requires k rounds. If the client would have send all the
ci-s in one round, the server could easily cheat.

3 The [FK97] protocol considers f : {0, 1}k → F . We extend it to f : F k → F .
Furthermore, the last stage of the protocol was simplified following a suggestion
from an anonymous reviewer.

http://eccc.hpi-web.de/

Two Protocols for Delegation of Computation 59

In order to reduce the number of rounds, the protocol of [FK97] uses informa-
tion from both servers. Intuitively, instead of asking the server for a fixed prefix
along the rounds (i.e., c1, c2, . . . ci−1 is the prefix for round i), for each i ∈ [1..k]
the referee asks on many random prefixes of length i. This allows the referee
to send all those prefixes in a single round. However now, since the prefixes are
not fixed, the referee cannot efficiently do the consistency check between gi(x)

and gi−1(x) (i.e., checking that
∑
x∈H

gi(x) = gi−1(ci−1)). So, the referee uses the

second server for that. The consistency check is done by asking both servers for
the polynomials gi-s for random prefixes, such that for each length i there is one
prefix that both servers receive from the referee. If both servers answer the same
for that specific prefix, then by the assumption that one of the servers is honest,
this answer is correct.

The Protocol. Following the intuition behind the protocol, we now describe the
protocol in detail. For simplicity, we use the shorthand a ◦ b for a vector that
is a concatenation of a and b (where a, b are vectors or single elements). We
assume the elements of H are 0, 1, . . . , |H | − 1. Instead of working with prefixes,
all computations are done using low degree parametric curves, which is a more
compact representation. (A parametric curve of degree d in F [t]j is a tuple of j
one-parameter polynomials over the field F , each one of degree ≤ d.)

The protocol is as presented in Fig. 4.

Theorem 5. Let F be a finite field and H subset of F . Let f : F k → F be a
multivariate polynomial of degree ≤ d in each variable and let

N =
∑

x1,x2,...,xk∈H

f(x1, x2, . . . , xk).

The above protocol is a refereed game with the following properties:

– If P1 claims that N0 = N , then he will be declared as the winner with prob-

ability ≥ 1− |H|·2k2·d
|F | .

– If P1 claims that N0 �= N , then he will be declared as the winner with prob-

ability ≤ |H|·2k2·d
|F |

The referee is polynomial in |H | and k, the (honest) servers are polynomial in
|F |k and the communication complexity is polynomial in |F | and k.

Proof (sketch). Let S1 be the event that∑
x1,x2,...,xk∈H

f(x1, x2, . . . , xk) �= N0

but P1 is declared as the winner (i.e., P2 is the honest server). Let Ui be the
event that Fi(t) is indeed Φi(Ci(t)), let Ei be the event that Fi(ai) is indeed
Φi(Ci(ai)) and let E′ be the event that Fk(r) is indeed f(Ck(r))

60 R. Canetti, B. Riva, and G.N. Rothblum

R’s computations: For 1 ≤ j ≤ k, R chooses random vectors Aj , Bj ∈ F j

and random elements aj , bj ∈ F . Let Cj(t) ∈ F [t]j be the unique degree-|H |
parametric curve going through

(0, Aj−1 ◦ 0), . . . , (|H | − 1, Aj−1 ◦ (|H | − 1)), (|H |, Bj)

and let Dj(t) ∈ F [t]j be the canonical representation of the unique degree-1
parametric curve going though

(aj , Cj(aj)), (bj , Aj).

For j = 1 . . . k we define the functions

Φj(x1, . . . , xj) =
∑

xj+1,...,xk∈H

f(x1, . . . , xj , xj+1 . . . , xk).

Note that
Φj(x1, . . . , xj) =

∑
xj+1∈H

Φj+1(x1, . . . , xj+1).

R sends to P1: C1(t), . . . , Ck(t).
P1 sends to R: N0, F1(t), . . . , Fk(t), where Fj(t) = Φj(Cj(t)).
R sends to P2: D1(t), . . . , Dk(t).
P2 sends to R: N ′

0, G1(t), . . . , Gk(t), where Gj(t) = Φj(Dj(t)).
R declares the winner: P1 loses immediately if for some j, Fj(t) has degree

greater than |H | · j · d. P2 loses immediately if for some j, Gj(t) has degree
greater than j · d.

In case for all j, Gj(aj) = Fj(aj), if

|H|−1∑
i=0

F1(i) = N0 then P1 wins. Otherwise,

P2 wins.
Denote by j the largest number such that Gj(aj) �= Fj(aj):

– In case 1 ≤ j < k, if

|H|−1∑
i=0

Fj+1(i) �= Gj(bj) then P1 wins. Otherwise, P2

wins.
– In case j = k, if Fk(r) = f(Ck(r)) for a randomly chosen r ∈ F , then P1

wins. Otherwise, P2 wins.

Fig. 4. One-round refereed game for the sum-check task

Pr[S1] ≤ Pr[E′∧¬Uk]+Pr[∃i ∈ [1..k] s.t. Ei∧¬Ui] ≤ Pr[E′∧¬Uk]+

k∑
i=1

Pr[Ei∧¬Ui].

By the fact that two distinct univariate degree-t polynomials agree on at most t
points we get that

Pr[E′ ∧ ¬Uk] ≤
|H | · k · d

|F | ,

Two Protocols for Delegation of Computation 61

and that

Pr[Ei ∧ ¬Ui] ≤
|H | · i · d

|F | ≤ |H | · k · d
|F | .

Thus,

Pr[S1] ≤
|H | · k · d

|F | + k · |H | · k · d
|F | ≤ (k + 1) · |H | · k · d

|F | .

Let S2 be the event that P1 is the honest server but P2 is declared to be the
winner. Using a similar calculation, we have that

Pr[S2] ≤ k · k · d
|F | .

The only differences are that in this case the degrees ofGj(t) are smaller than the
degrees of Fj(t) by a factor of |H |, and, that we do not check Gk(t) on a random

point r. Therefore, the soundness of the protocol is bounded by |H|·2k2·d
|F | . ��

We remark that our protocol from Sect. 3.2 has another difference compared
to the above protocol. We increase by one the degree of the curve Ck. Using
a similar argument to the above it can be shown that the soundness of that

protocol is bounded by (|H|+1)·2k2·d
|F | .

On the Amortized Complexity of Zero

Knowledge Protocols for Multiplicative
Relations

Ronald Cramer, Ivan Damg̊ard, and Valerio Pastro

CWI Amsterdam and Dept. of Computer Science, Aarhus University

Abstract. We present a protocol that allows to prove in zero-knowledge
that committed values xi, yi, zi, i = 1, . . . , l satisfy xiyi = zi, where the
values are taken from a finite field. For error probability 2−u the size
of the proof is linear in u and only logarithmic in l. Therefore, for any
fixed error probability, the amortized complexity vanishes as we increase
l. In particular, when the committed values are from a field of small
constant size, we improve complexity of previous solutions by a factor
of l. Assuming preprocessing, we can make the commitments (and hence
the protocol itself) be information theoretically secure. Using this type
of commitments we obtain, in the preprocessing model, a perfect zero-
knowledge interactive proof for circuit satisfiability of circuit C where
the proof has size O(|C|). We then generalize our basic scheme to a pro-
tocol that verifies l instances of an algebraic circuit D over K with v
inputs, in the following sense: given committed values xi,j and zi, with
i = 1, . . . , l and j = 1, . . . , v, the prover shows that D(xi,1, . . . , xi,v) = zi
for i = 1, . . . , l. The interesting property is that the amortized com-
plexity of verifying one circuit only depends on the multiplicative depth
of the circuit and not the size. So for circuits with small multiplicative
depth, the amortized cost can be asymptotically smaller than the num-
ber of multiplications in D. Finally we look at commitments to integers,
and we show how to implement information theoretically secure homo-
morphic commitments to integer values, based on preprocessing. After
preprocessing, they require only a constant number of multiplications
per commitment. We also show a variant of our basic protocol, which
can verify l integer multiplications with low amortized complexity. This
protocol also works for standard computationally secure commitments
and in this case we improve on security: whereas previous solutions with
similar efficiency require the strong RSA assumption, we only need the
assumption required by the commitment scheme itself, namely factoring.

1 Introduction

The notions of commitment schemes and zero-knowledge proofs are among the
most fundamental in the theory and practice of cryptographic protocols. Intu-
itively, a commitment scheme provides a way for a prover to put a value x in a
locked box and commit to x by giving this box [x] to a verifier. Later the prover
can choose to open the box by giving away the key to the box.

A. Smith (Ed.): ICITS 2012, LNCS 7412, pp. 62–79, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On the Amortized Complexity of Zero Knowledge Protocols 63

In a zero-knowledge protocol, a prover wants to convince a verifier that some
statement is true, such that the verifier learns nothing except the validity of the
assertion. Typically, the prover claims that an input string u is in a language L,
and after the interaction, the verifier accepts or rejects. We assume the reader
is familiar with the basic theory of zero-knowledge protocols and just recall the
most important notions informally: the protocol is an interactive zero-knowledge
proof system for L if it is complete, i.e., if u ∈ L, then the verifier accepts – and
sound, i.e., if u �∈ L then no matter what the prover does, the verifier accepts
with at most probability ε, where ε is called the soundness error of the protocol.
Finally, zero-knowledge means that given only that u ∈ L, conversations between
the honest prover and an arbitrary poly-time verifier can be efficiently simulated
and are indistinguishable from real conversations.

In this paper we concentrate on commitments to elements in a finite fieldK, or
to integers and we assume that commitments are also homomorphic, i.e., both
commitments and randomness are chosen from (finite) groups, and [x] · [y] =
[x + y] (we will describe this property more in detail in section 2.1 and 7). For
K = Fq for a prime q, such commitments can, for instance, be constructed from
any q-invertible group homomorphism [CD98] that exists, if factoring or discrete
log are hard problems. It is also easy based on known techniques – but perhaps
less well known – that homomorphic commitments with unconditional hiding
and binding can be built if we assume preprocessing, e.g., the committer gets
random field elements and information theoretic MACs and the receiver gets
corresponding keys. We give more details on this later (see Section 2.1). Finally,
Homomorphic commitments to integers based on factoring were proposed in
[FO97, DF02].

In typical applications of these commitment schemes, the prover needs to
convince the verifier that the values he commits to satisfy a certain algebraic
relation. A general way to state this is that the prover commits to x1, . . . , xv,
and the verifier wants to know that D(x1, . . . , xv) = 0 for an algebraic circuit D
defined over K or over the integers. If D uses only linear operations, the verifier
can himself compute a commitment to D(x1, . . . , xv) (using the homomorphic
properties of the commitment scheme) and the prover opens this to reveal 0.
However, if D uses multiplication, we need a zero-knowledge protocol where the
prover convinces the verifier that three committed values x, y, z satisfy xy = z.

In [CDD+99], such a multiplication protocol was proposed for homomorphic
commitments over any finite field K. The soundness error for that protocol is
1/|K|, which is too large if K is a field with small size (constant or logarithmic in
the security parameter). The only known way to have a smaller error is to repeat
the protocol. This solution leads to a protocol with communication complexity
Θ(κl) for soundness error 2−l and where commitments have size κ bits.

Likewise, a multiplication protocol for integer commitments was proposed in
[FO97, DF02]. This protocol has essentially optimal communication complexity
Θ(κ+l+k), where k is size in bits of the prover’s secret integers, but it requires an
extra assumption, namely the strong RSA assumption. If we only want to assume

64 R. Cramer, I. Damg̊ard, and V. Pastro

what the commitment scheme requires (factoring), the best known complexity
is Θ((κ + k)l).

An approach to improving this state of affairs was proposed in [CD09], where
it was suggested to take advantage of the fact that many applications require
the prover to make many ZK proofs of similar statements. The idea is to make
the amortized complexity per proof be small by combining all the proofs into
one protocol. In our case, this would mean that the prover commits to xi, yi, zi
for i = 1, . . . , l and wants to convince the verifier that xiyi = zi for all i. The
technique from [CD09] yields a protocol with amortized complexity Θ(κ+ l) but,
unfortunately, requires that all xi’s are equal (or all yi’s are equal), and in most
applications, this condition is not satisfied.

1.1 Our Contribution

In this paper, we construct a new zero-knowledge protocol that works for ar-
bitrary xi, yi, zi, and uses black-box access to any homomorphic commitment
scheme. If we instantiate the commitments by a standard unconditionally bind-
ing and computationally hiding scheme, the amortized complexity is O(ul (κ +
log(l + u))) bits for error probability 2−u. In particular, for l = u, we get
O(κ + log l). Therefore, when the committed values are from a field of small
constant size, we improve the complexity of previous solutions by a factor of l.
We also propose (based on standard techniques) a way to implement uncondi-
tionally secure homomorphic commitments assuming preprocessing. Using this
implementation, the amortized complexity is O(ul (u+log(l+u))). In particular,
for for both types of commitments and any fixed error probability, the amortized
overhead vanishes as we increase l.

We generalize our approach to obtain a protocol that verifies l instances of
an algebraic circuit D over K with v inputs, in the following sense: given com-
mitted values xi,j and zi, with i = 1, . . . , l and j = 1, . . . , v, the prover shows
that D(xi,1, . . . , xi,v) = zi for i = 1, . . . , l (the protocol easily generalizes to cir-
cuits with more than one output). The amortized cost to verify one circuit with
multiplicative depth δ is O(2δκ+ vκ+ δ log l) bits for an error probability of 2−l

and so does not depend on the circuit size. For circuits with small multiplicative
depth (sometimes known as the classes K-SAC0 or K-SAC1), this approach is
better than using our first protocol, in fact the amortized communication cost
can be asymptotically smaller than the number of multiplications in D.

Another interesting feature of this protocol is that prover and verifier can
execute it given only black-box access to an algorithm computing the function
implemented by D. This is in contrast to standard protocols where the parties
work their way through the circuit and must therefore agree on the layout. Our
protocol would, for instance, allow the verifier to outsource computation of the
function to a third party. As long as the verifier chooses the random challenge in
the protocol, this would be secure if the prover is malicious and the third party
is semi-honest.

Our final result is a zero-knowledge protocol using black-box access to homo-
morphic commitments to k-bit integers. For checking l integer multiplications

On the Amortized Complexity of Zero Knowledge Protocols 65

and error probability 2−l, the amortized complexity is O(κ+ k+ l log(l)). When
instantiating the commitments using a standard computationally secure scheme,
this improves security of previous solutions that needed the strong RSA assump-
tion, while we need no assumption, other than what the underlying commitment
scheme requires (typically factoring). We also show a new technique for imple-
menting unconditionally secure homomorphic commitments to integers based
on preprocessing. This makes the protocol be much more efficient, as only a
constant number of multiplications per commitment is required.

When using information theoretically secure commitments based on prepro-
cessing, our protocols are perfect zero-knowledge against general verifiers. When
using standard computationally secure commitments, they are only honest veri-
fier zero-knowledge, but can be made zero-knowledge in general using standard
techniques.

Our technique is somewhat related to the “MPC-in-the-head” technique from
[IKOS09], but with an important difference: both strategies make use of “vir-
tual players”, that is, the prover in his head imagines n players that receive
shares of his secret values and he must later reveal information to the verifier
relating to these shares. The protocol from [IKOS09] has complexity linear in
n, because the prover must commit to the view of each virtual player. We use
a different approach, exploiting the homomorphic property of the commitment
scheme to get a protocol with complexity logarithmic in n. This is the reason our
amortized overhead vanishes instead of being constant, as one would get using
MPC-in-the-head. On the other hand, we show that a combination of “multi-
party computation in the head” and our protocol for verifying algebraic circuits
can actually improve the communication complexity for some parameter values.
In concurrent and independent work, Ben-Sasson et al. [BSFO11] show a multi-
party protocol for honest majority that checks several multiplicative relations on
secret-shared values with low amortized complexity. The technique is somewhat
related in that it is based on secret sharing, but the checking works in a different
way since in that setting there is no single prover who knows all values.

1.2 Applications

One obvious application of our protocol is to give ZK proofs for satisfiability of
a Boolean circuit C: the prover commits to the bits on each wire in the circuit,
opens the output as a 1 and shows that, for each AND-gate, the correspond-
ing multiplicative relation holds for the committed bits. To explain how this
compares to previous work, we define the (computational or communication)
overhead of a protocol to be its (computational or communication) complex-
ity divided by |C|. One can think of this as the overhead factor one has to
pay to get security, compared to an insecure implementation. Now, in the ideal
commitment model (i.e., assuming access to a ideal commitment functionality)
[IKOS09] obtained constant communication overhead and polynomial computa-
tion overhead, as a function of the security parameter u, for error probability 2−u.
Later, [DIK10] showed how to make both overheads poly-logarithmic. For both

66 R. Cramer, I. Damg̊ard, and V. Pastro

protocols, the ideal commitments can be implemented by doing preprocessing,
and the resulting “on-line” protocol will still have the same complexity.

As mentioned, our protocol can be thought of as working in the ideal homo-
morphic commitment model where the commitment functionality can do linear
operations on committed bits (but where we of course charge for the cost of
these operations). In this model our protocol achieves constant computational
and communication overhead.

We may then instantiate the commitments using the information theoretically
secure homomorphic scheme. This incurs an extra cost for local computing, so
as a result we obtain a ZK-protocol with constant communication overhead and
polynomial computation overhead (essentially O(u log u)). Asymptotically, the
overheads match those of [IKOS09], but the involved constants are smaller in
our case because we do not need the “detour” via a multiparty protocol. Finally,
we pay no communication for linear operations, while this seems hard to achieve
in the protocol from [IKOS09].

Another application area where our result can improve state of the art is
the following: as shown in [CDN01], general multiparty computation can be
based on additively homomorphic encryption schemes. Many such schemes are
known, and in several cases, the plaintext space is a small field. One example
is the Goldwasser-Micali (GM)-scheme [GM84], where the plaintext space is F2.
Supplying inputs to such a protocol amounts to sending them in encrypted form
to all players and proving knowledge of the corresponding plaintexts. However, in
many applications one would want to check that inputs satisfy certain conditions,
e.g., an auction may require that bids are numbers in a certain interval. Since
ciphertexts in such an additively homomorphic scheme can be thought of as
homomorphic commitments over the field, our protocol can be used by a player
to prove that his input satisfy a given condition much more efficiently that by
previous techniques.

A final type of application is in the area of anonymous credentials and group
signatures. Such constructions are often based on zero-knowledge proofs that
are made non-interactive using the Fiat-Shamir heuristic. If the proof requires
showing that a committed number is in a given interval, the standard solution
is to “transfer” the values to an integer commitment scheme and use the proof
technique of Boudot [Bou00]. This in turn requires multiplication proofs, so if
sufficiently many proofs are to be given in parallel, one can use our technique for
integer commitments. Assuming preprocessing and our information theoretically
secure commitments this can be very efficient, requiring only a constant number
of multiplications per commitment.

2 Preliminaries

2.1 Information Theoretic Commitments

In this section we assume a setup that allows commitments to be unconditionally
secure. We use [v] as shorthand for a commitment to v in the following. Opera-
tions on committments are supposed to be multiplicative, while values that are

On the Amortized Complexity of Zero Knowledge Protocols 67

committed lie in an additive group. Therefore a commitment scheme is homo-
morphic if [v] · [v′] = [v + v′] for all v, v′ in the proper domain (either a finite
field K or the integers). Also, if v = (v1, . . . , vm) is a vector with entries in K
(or in the integers), [v] denotes a vector of commitments, one to each coordinate
in v. If u = (u1, . . . , um) is a vector of the same length as v, then [v]u means
[v]u =

∏
i[vi]

ui , which is a commitment containing the inner product of u and
v. Moreover [u]∗[v] refers to the component-wise product.

Field Scenario. Let K be a finite field and L be an extension of K. Although
the set-up is general, we will think of K as a small constant size field in the
following. Let a ∈ L be a private value held by the verifier. We suppose that the
prover has a list A of uniform values u1, . . . , ui, . . . ∈ K and for each ui he also
has a value mui = a ·ui+bui, where bui is uniform in L and privately held by the
verifier. One can think ofmui as an information theoretic message authentication
code on ui, and of (a, bui) as the key to open such a MAC on ui. It is possible
to achieve this situation assuming a functionality for the preprocessing phase of
a multiparty computation protocol, such as in the ones in [BDOZ11, DPSZ12].

With this setup, commitments can be done as follows: In order for the prover
to commit to v ∈ K, the prover sends u− v to the verifier and sets mv = mu =
a ·u+bu, where u is the first unused value in the list A; the verifier then updates
the corresponding key bu into bv = bu + a · (u − v). A commitment to v can
therefore expressed as the following data (where P denotes the prover, and V
denotes the verifier);

[v] =

{
P : v, u, mv = a · u+ bu
V : u− v, a, bv = bu + a · (u− v)

In order to open commitment [v], the prover sends v,mv to the verifier, who
checks if a · v + bv equals mv.

Commitments of this form are unconditionally binding: A prover committing
to v can send an opening ṽ, m̃ with ṽ �= v if and only if a · ṽ + bv = m̃. This
is equivalent for the prover to be able to sample two distinct points (Px, Py) =
(v,mv), (Qx, Qy) = (ṽ, m̃) from the line Y = a ·u+bv; which is equivalent for the
prover to know the key (a, bv) privately held by the verifier. This shows that the
probability of a prover succeeding in opening to a different value is bounded by
the probability of guessing a random element in a line over L; such a probability
equals 1/|L|. Since we want to have a negligible probability of breaking the
binding property of the commitment scheme, we require |L| = 2Θ(κ), where κ is
the security parameter. In particular, this means that in (the unfortunate) case
where K is a field with constant size, then L is an extension of K of degree linear
in κ.

These commitments are also unconditionally hiding: A verifier receiving a
commitment u− v only knows a and bu1 , . . . , bui , . . ., which are all independent
from v.

68 R. Cramer, I. Damg̊ard, and V. Pastro

Moreover, the above commitments are homomorphic (meaning: [v] · [v′] =
[v + v′]), where [v] · [v′] is defined as follows:

[v] · [v′] :=
{
P : v + v′, u+ u′, mv+v′ = mu +mu′

V : (u − v) + (u′ − v′), a, bv+v′ = bu + bu′ + a · (u − v + u′ − v′)

Integers Scenario. We here give a construction of unconditionally secure com-
mitments on k-bits integers. Contrary to the previous construction, this one is
new, to the best of our knowledge. Let a be a prime in the interval [−2κ, . . . , 2κ]
privately held by the verifier. We assume the prover has a list A of integer val-
ues u1, . . . , ui, . . . uniform in [−2k+κ, . . . , 2k+κ] and for each ui he also has an
integer mui = a · ui + bui , where bui is a uniform integer in [−2k+3κ, . . . , 2k+3κ]
and privately held by the verifier.

With this setup, commitments can be done as follows: In order for the prover
to commit to the integer v ∈ [−2k, . . . , 2k], the prover sends u− v to the verifier
and sets mv = mu = a · u + bu, where u is the first unused value in the list A;
the verifier then updates the corresponding key bu into bv = bu + a · (u − v). A
commitment to v can therefore expressed as the following data (where P denotes
the prover, and V denotes the verifier);

[v] =

{
P : v, u, mv = a · u+ bu
V : u− v, a, bv = bu + a · (u− v)

In order to open commitment [v], the prover sends v,mv to the verifier, who
checks if a · v + bv equals mv.

Commitments of this form are homomorphic, unconditionally hiding (same
arguments as above) and unconditionally binding: A prover committing to v can
send an opening ṽ, m̃ with ṽ �= v if and only if a · ṽ + bv = m̃. Subtracting the
latter equation to the relation mv = a · v + bv, we obtain m̃−mv = a · (ṽ − v),
so the prover must know a multiple of a of length k + κ bits. Any (k + κ)-bits
integer can be thought of its factorization, and the prover can break the binding
property if he knows a (k + κ)-bits integer where a appears in its factorization.
Since a (k + κ)-bits integer contains at most (k + κ)/κ prime factors of length
κ and the number of κ-bits primes is Θ(2κ/κ), then the error probability of the
scheme is equal to Θ(((k + κ)/κ) · (κ/2κ)) = Θ((k + κ)/2κ). If k = O(κ), the
error probability is O(κ/2κ).

2.2 Linear Secret Sharing Schemes

The model of linear secret sharing schemes we consider here is essentially equiv-
alent to both the monotone span program formalism [KW93, CDM00] and the
linear code based formalism [CCG+07]. However, we generalize to schemes where
several values from the underlying field can be shared simultaneously. The model
is designed to allow us to describe our protocol to follow as easily as possible.

Let K be a finite field and let m be a positive integer. Consider the m-
dimensional K-vector space Km. Consider the index set I = {1, 2, . . . ,m}, and

On the Amortized Complexity of Zero Knowledge Protocols 69

write x = (xi)i∈I for the coordinates of x ∈ Km. In the following, linear functions
between finite spaces are considered. It is useful to recall that because such
functions are (additive) group homomorphisms, they are always regular; that
is, each element in the image has the same number of pre-images, namely the
cardinality of the kernel.

For a non-empty set A ⊆ I, the restriction to A is the K-linear function

πA : Km −→ K |A|

x �−→ (xi)i∈A.

Let C ⊆ Km be aK-linear subspace which we keep fixed throughout this section.
Let A,S ∈ I be non-empty sets. We say that S offers uniformity if πS(C) =
K |S|. Note that by regularity of πS , if c is uniform in C, then πS(c) is uniform
in K |S|.

Jumping ahead, we will use the subspace C for secret sharing by choosing a
random vector c ∈ C such that πS(c) = s where S is a set offering uniformity and
s is the vector of secret values to be shared. The shares are then the coordinates
of c that are not in S.

We say that A determines S if there is a function f : K |A| → K |S| such
that, for all c ∈ C, (f ◦ πA) (c) = πS(c). Note that such f is K-linear if it exists.
Note that if c is uniformly chosen from C and if A determines S, then πA(c)
determines πS(c) with probability 1.

We say that A and S are mutually independent if the K-linear function

φA,S : C −→ πA(C)× πS(C)

c �−→ (πA(c), πS(c))

is surjective. Note that πS(C) = {0} is the only condition under which it occurs
that both A and S are independent and A determines S. In particular, if c is
uniformly chosen from C, then πS(C) �= {0} and if A and S are independent,
then πA(c) and πS(c) are distributed independently.

Suppose S offers uniformity. Let e be a positive integer and let

g : K |S|+e −→ C

be a surjective K-linear function. Define πg : K |S|+e → K |S| as the projection to
the first |S| coordinates. We say that g is an S-generator for C if πg = πS ◦ g,
that is, if the first |S| coordinates of ρ ∈ K |S|+e are the same as the coordinates
of g(ρ) designated by S. Such an S-generator always exists, by elementary linear
algebra, with |B|+ ρ = dimK(C).

For any S-generator g we have that if s ∈ K |S| is fixed and if ρs is uniformly
chosen in K |S|+e subject to πg(ρs) = s, then g(ρs) has the uniform distribution
on the subset of C consisting of those c ∈ C with πS(c) = s.

We are now ready to define linear secret sharing schemes in our model: Let
S ⊂ I be non-empty and proper. Write S∗ = I \ S. The tuple (C, S) is a linear
secret sharing scheme if S offers uniformity and if S∗ determines S.

70 R. Cramer, I. Damg̊ard, and V. Pastro

If that is the case, S∗ is called the player set, πS(C) is the secret-space, and
πS∗(C) is the share-space. If j ∈ S∗, then πj(C) is called the share-space for
the j-th player. If l = |S|, the scheme is said to be l-multi-secret. For A ⊆ S∗,
we say that the scheme has A-privacy (or A is an unqualified set) if A = ∅ or if
A and S are independent. There is A-reconstruction (or A is qualified) if A is
non-empty and if A determines S. The scheme offers t-privacy if, for all A in the
player set with |A| = t, there is A-privacy. The scheme offers r-reconstruction
if, for all A in the player set with |A| = r, there is A-reconstruction.

Note that 0 ≤ t < r ≤ |S∗| if there is t-privacy and r-reconstruction. A
generator for (C, S) is an S-generator for C.

Let (C, S) be a secret sharing scheme, and let g be a generator. If s ∈ K |S|

is the secret, shares for the players in S∗ are computed as follows. Select a
vector ρs according to the uniform probability distribution on K |S|+e, subject
to πg(ρs) = s and compute c = g(ρs). The “full vector of shares” is the vector
πS∗(c).

In the following, where we write ρs, it will usually be understood that it holds
that πg(ρs) = s, and we say that such a vector is consistent with the secret s.

Multiplication Properties. For any x,y ∈ Km, the Schur-product (or
component-wise product) between them is the element (x ∗ y) ∈ Km defined
as (x ∗ y) = (xj · yj)j∈I . If C ⊂ Km is a K-linear subspace, then its Schur-

product transform is the subspace Ĉ ⊂ Km defined as the K-linear subspace
generated by all elements of the form c ∗ c′, where c, c′ ∈ C.

Note that if (C, S) is a linear secret sharing scheme, then S offers uniformity

in Ĉ as well. But in general it does not hold that S∗ determines S in Ĉ. However,
suppose that it does (so (Ĉ, S) is a linear secret sharing scheme). Then (C, S) is

said to offer r̂-product reconstruction if (Ĉ, S) offers r̂-reconstruction.

Sweeping Vectors. Let (C, S) be a linear secret sharing scheme, let g be a
generator for it and let A be an unqualified set. Since A and S are mutually
independent so that φA,S is surjective, it follows that for any index j ∈ S, there
exists cA,j ∈ C such that φA,S(cA,j) = (0, ej) where ej is the vector with a 1 in
position j and zeros elsewhere. Note that since the generator g is surjective on
C we can choose wA,j such that g(wA,j) = cA,j , and πg(wA,j) = ej . The vector
wA,j is called a jth sweeping vector.

To see the purpose of these vectors, suppose we have shared a vector of |S|
zeros, so we have c0 = g(ρ0). It is now easy to see that the vector

ρ0 +

|S|∑
j=1

xjwA,j

is consistent with the secret (x1, . . . , x|S|). Moreover, if we apply g to this vector,
the player set A gets the same shares as when 0’s were shared.

On the Amortized Complexity of Zero Knowledge Protocols 71

3 Our Protocol

We are now ready to solve the problem mention in the introduction, namely the
prover holds values x = (x1, . . . , xl),y = (y1, . . . , yl), z = (z1, . . . , zl), has sent
commitments [x], [y], [z] to the verifier and now wants to convince the verifier
that xiyi = zi for i = 1, . . . , l, i.e., that x ∗ y = z.

We suppose that both the prover and the verifier agreed on using an l-
multisecret linear secret sharing scheme (C, S), for d players, offering r̂-product
reconstruction, and with privacy threshold t. We fix a generator g : K l+e → C.
Moreover, we suppose that ĝ : K l+ê → Ĉ is a generator for (Ĉ, S) and that a
public basis for K l+e (respectively for K l+ê) has been chosen such that the
linear mapping g (resp. ĝ) can be computed as the action of a matrix M

(resp. M̂).
The idea of the protocol is as follows: the prover secret shares x and y using

(C, S) and z using (Ĉ, S), in such a way that the resulting vectors of shares
cx, cy, ĉz satisfy cx ∗ cy = ĉz, which is possible since (C, S) offers product re-
construction. The prover commits to the randomness used in all sharings, which,
by the homomorphic property, allows the verifier to compute commitments to
any desired share. The verifier now chooses t coordinate positions randomly and
asks the prover to open the commitments to the shares in those positions. The
verifier can then check that the shares in x,y multiply to the shares in z. This is
secure for the prover since any t shares reveal no information, but on the other
hand, if the prover’s claim is false, thus x ∗ y �= z, then cx ∗ cy and ĉz can
be equal in at most r̂ positions, so the verifier has a good chance of finding a
position that reveals the cheat. More formally, the protocol goes as follows:

Protocol Verify Multiplication

1. The prover chooses two vectors rx, ry ∈ Ke, and sets ρx = (x, rx), ρy =
(y, ry). Define cx = Mρx, cy = Mρy. Now, the prover computes ρ̂z ∈ K l+ê

such that ρ̂z is consistent with secret z and such that M̂ρ̂z = cx ∗ cy.
Note that this is possible by solving a system of linear equations, exactly
because x ∗ y = z. We then write ρ̂z = (z, r̂z) for some r̂z ∈ K ê. Set

ĉz = M̂ρ̂z.
2. The prover sends vectors of commitments [rx], [ry], [r̂z] to the verifier. To-

gether with the commitments to x,y and z, the verifier now holds vectors
of commitments [ρx], [ρy], [ρ̂z].

3. The verifier chooses t uniform indices O ⊂ S∗ and sends them to the prover.
4. Let mi be the i’th row of M and m̂i the i’th row of M̂ . For each i ∈ O, using

the homomorphic property of the commitments, both prover and verifier
compute commitments

[(cx)i] = [ρx]
mi , [(cy)i] = [ρy]

mi , [(ĉz)i] = [ρ̂x]
m̂i .

The prover opens these commitments to the verifier.
5. The verifier accepts if and only if the opened values satisfy (cx)i·(cy)i = (ĉz)i

for all i ∈ O.

72 R. Cramer, I. Damg̊ard, and V. Pastro

Theorem 1. Assume the commitment scheme used is the one described in sec-
tion 2.1. Then protocol Verify Multiplication is perfect zero-knowledge, and if for
some i, xiyi �= zi, the verifier accepts with probability at most ((r̂−1)/d)t+1/|L|.

In the appendix we give a proof for the above theorem 1. Theorem 4 given later
covers the case where we use standard computationally based commitments.

Demands to the Secret Sharing Schemes. Above, we have described the
protocol for a fixed secret sharing scheme, but what we really want is to look at
is the asymptotic behavior as a function of l, the number of secrets we handle
in one execution, and u, where we want error probability 2−u. For this, we need
a family of secret sharing schemes, parametrized by l, u, which will make t, d, e,
r̂ and ê be functions of l, u.

Say that committing requires sending κc bits while opening requires κo bits.
For standard computationally secure commitments, it is usually the case that
κc is Θ(κo), but this is not the case for the information theoretically secure
commitments, where κc can be much smaller than κo. Using this notation, the
communication complexity of the protocol is O(κc(e+ ê) + κot+ t log d) bits.

Now, suppose we can build a family of secret sharing schemes, where e, ê
are O(u) and r̂ is O(l + u), t is Θ(u) and (r̂ − 1)/d is O(1). This allows d
to be O(l + u) and so we can achieve the complexities we promised earlier:
For standard computationally hiding commitments, we get we get soundness
error 2−αu for some constant α > 0 for one instance of the protocol. For the
information theoretically secure commitments, we get the same if we set |L| =
2Θ(u). In any case, if necessary, we can achieve 2−u by repeating in parallel a
constant number of times. Inserting in the above expression, and dividing by l,
we get the complexity per multiplicative relation: O(ul (κc + κo + log(l + u))).
For standard commitments we will have κc = κo = κ, and for information
theoretically secure commitments we have κc is O(1) and κo is O(u). So this
gives us the complexities we promised in the Introduction.

We show in Section 4 how to construct a secret sharing scheme with the right
properties.

Application to Zero-Knowledge Proofs for Circuit Satisfiability. An
obvious application of our protocol is to give ZK proofs for Boolean circuit sat-
isfiability: the prover commits to the bits on each wire in the circuit C, opens
the output as a 1 and shows that, for each AND-gate, the corresponding multi-
plicative relation holds for the committed bits.

We can apply the Verify Multiplication protocol to do this. Then we have that
l is O(|C|). If we run the protocol with error probability 2−u, our expression for

1 We note already now that since we assume preprocessing for this type of commit-
ment, the simulator constructed for zero-knowledge emulates the verifier’s output
from the preprocessing as well as his view of the proof (as is standard for set-up
models).

On the Amortized Complexity of Zero Knowledge Protocols 73

the total communication complexity becomes O(|C|κc+u(κc+κo+log(|C|+u))),
note that we have to add the cost of committing to the bits in the circuit.

Now we note that if we use the information-theoretic commitments as de-
scribed above, then κc = 1 and κo is O(u). Therefore the complexity is actually
O(|C|+u(u+log(|C|+u))) bits, and when dividing by |C| we get communication
overhead O(1), as promised in the introduction.

4 A Concrete Example

In this section we explain how to design a secret-sharing scheme meeting the
demands we stated earlier. For simplicity we first show the details for the case
of u = l.

As a stepping stone, we consider the following scheme based on Shamir’s
scheme. Suppose 2(t + l − 1) < d and d + l ≤ |K|. Choose pairwise distinct
elements q1, . . . , ql, p1, . . . , pd ∈ K, and define

C = {(f(q1), . . . , f(ql), f(p1), . . . , f(pd)) | f ∈ K[X]≤t+l−1} ⊂ K l+d,

where K[X]≤t+l−1 denotes the K-vector space of polynomials with coefficients
in K and of degree at most t+ l− 1. Let S correspond to the first l coordinates.
Then, by Lagrange Interpolation, it is straightforward to verify that (C, S) is
an l-multi-secret K-linear secret sharing scheme of length d, with t-privacy and
(2t + 2l − 1)-product reconstruction. So if we set t = l (and hence the degrees
are at most 2l − 1), d = 8l, and |K| ≥ 9l, then 2(t + l − 1) = 4l − 2 < 8l = d,
d+ l = 9l ≤ |K|, and r̂ = 2t+2l− 1 = 4l− 1 < 4l = d/2. In particular, r̂−1

d < 1
2 .

Moreover, e = 2l, and ê = 4l − 1. So all requirements are satisfied, except for
the fact that in this approach |K| = Ω(log l).

Before we present a scheme which works over a constant size field, yet asymp-
totically it meets all requirements, we describe simple, useful lifting technique.
Suppose the finite field of interestK, i.e., the field over which our zero-knowledge
problem is defined, does not readily admit the required secret sharing scheme,
but that some degree-u extension L of K does. Then we may choose a K-basis
of L of the form 1, x, . . . , xu−1 for some x ∈ L. It is then easy to “lift” the
commitment scheme and to obtain one that is L-homomorphic instead: simply
consider the elements of L as coordinate-vectors over K, according to the basis
selected above, and commit to such a vector by committing separately to each
coordinate. This scheme is clearly homomorphic with respect to addition in L.
Multiplication by (publicly known) scalars from L is easily seen to correspond
to applying an appropriate (publicly known) K-linear form to the vector of K-
homomorphic commitments. Furthermore, K is embedded into L by mapping
a ∈ K to a+ 0 · x+ . . .+ 0 · xu−1. When committing to a ∈ K, simply commit
to a in the original commitment scheme, and append u − 1 “default commit-
ments to 0.” This way, the protocol problem can be solved over K, with a secret
sharing scheme over L. However, communication-wise, even though all further
parameters may be satisfied, there are now O(ul) commitments, instead of O(l)
as required.

74 R. Cramer, I. Damg̊ard, and V. Pastro

For example, if the above secret sharing scheme is implemented, then since
the field K of interest is of constant size, the field L over which the secret sharing
is defined must grow proportionally to log l. Hence, the total communication is a
logarithmic factor off of what we promised. This is resolved as follows, by using a
technique that allows passing to an extension whose degree u is constant instead
of logarithmic.

Let F be an algebraic function field over the finite field Fq with q elements.
Write g for its genus and n for its number of rational points. Suppose 2g +
2(t + l − 1) < d and d + l ≤ n. Choose pairwise distinct rational points
Q1, . . . , Ql, P1, . . . , Pd ∈ F , and define

C = {(f(Q1), . . . , f(Ql), f(P1), . . . , f(Pd)) | f ∈ L(G)} ⊂ Fl+d
q ,

where G is a divisor of degree 2g + t + l − 1 whose support does not contain
any of the Qj’s nor any of the Pi’s, and where L(G) is the Riemann-Roch space
of G. As before, let S correspond to the first l coordinates. Using a similar
result as in [CC06], one proves, using the Riemann-Roch Theorem that (C, S)
is an l-multi-secret Fq-linear secret sharing scheme of length d, with t-privacy
and (2g + 2t + 2l − 1)-product reconstruction. Moreover, e = g + t + l and
ê ≤ 3g + 2t + 2l − 1. Asymptotically, using this result in combination with
optimal towers over the fixed finite field Fq where q ≥ 49 is a square, we get
g/n = 1√

q−1 < 1/6. Hence, if we set, for example, t = l = n/20 and d = 19/20n,

then there is Ω(l)-privacy, r̂−1
d < c < 1 for some constant c, and e = Ω(l),

ê = Ω(l). Therefore, at most a degree 6 extension of the field of interest is
required, as the maximum is attained for K = F2 with the extension being F64.
Finally, these schemes can be implemented efficiently.

The more general case where u and l are independent parameters follows
easily from the above and we leave the details to the reader. The basic reason
why it works is that the number of required random field elements for a sharing
(e, ê) is linear in the required privacy threshold which we want to be Θ(u) and
furthermore the reconstruction threshold (r̂) is linear in the sum of the length
of the secret vector and the privacy threshold, which here is l +Θ(u).

5 A More General Approach

In this section we define linear secret sharing with a more general multiplicative
property, and we use the notation from Section 2.2. Let D be an arithmetic
circuit overK with v inputs and one output. Then for c1, . . . , cv ∈ Km, we define
D(c1, . . . , cv) ∈ Km as the vector whose j’th coordinate is D((c1)j , . . . , (cv)j),
i.e., we simply apply D to the j’th coordinate of all input vectors.

If C ⊂ Km is a linear subspace, then CD is defined as the K-linear subspace
generated by all vectors of form D(c1, . . . , cv) where c1, . . . , cv ∈ C. Just as
for the standard multiplication property, if (C, S) is a secret sharing scheme,
then S offers uniformity in CD, but in general it does not necessarily hold that
S∗ determines S in CD. If it does, however, so that (CD, S) is a linear secret

On the Amortized Complexity of Zero Knowledge Protocols 75

sharing scheme, then we say that (C, S) offers (r̃, D)-product reconstruction
if (CD, S) offers r̃-product reconstruction.

As a concrete example of this, one may think of Shamir secret sharing.
Here, each ci is a sequence of evaluations of a polynomial fi at a fixed set
of points. Then D(c1, . . . , cv) denotes the vector having coordinates of the form
D(f1(j), . . . , fv(j)) for j in the set of evaluation points. These coordinates can be
thought as the evaluations of the polynomial D(f1, . . . , fv) (defined in the nat-
ural way), and sufficiently many of those will determine D(f1, . . . , fv) uniquely.

Based on this more general notion, we can design a protocol where a prover
commits to vectors x1, . . . ,xv, z and wants to prove that D(x1, . . . ,xv) = z.

Similarly to what we assumed in the first protocol, we suppose that both
the prover and the verifier agreed on using an l-multisecret linear secret sharing
scheme (C, S), for d players, with (r̃, D)-product reconstruction, and t-privacy.
We fix a generator g : K l+e → C. Moreover, we suppose that g̃ : K l+ẽ → CD is
a generator for (CD, S) and that a public basis for K l+e (respectively for K l+ẽ)
has been chosen such that the linear mapping g (resp. g̃) can be computed as

the action of a matrix M (resp. M̃). The protocol goes as follows:

Protocol. Verify Circuit

1. The prover chooses v vectors r1, . . . , rv ∈ Ke, and sets ρj = (xj , rj) for
j = 1, . . . , v. Define cj = Mρj. Now, the prover computes ρ̃z ∈ K l+ẽ such

that ρ̃z is consistent with secret z and such that M̃ ρ̃z = D(x1, . . . ,xv).

Note that this is possible by solving a system of linear equations, because
D(x1, . . . ,xv) = z. We then write ρ̃z = (z, r̃z) for some r̃z ∈ K ẽ. Set c̃z =

M̃ ρ̃z.

2. The prover sends vectors of commitments [rj], j = 1, . . . , v and [r̃z] to the
verifier. Together with the commitments to xj and z, the verifier now holds
vectors of commitments [ρj], j = 1, . . . , v, and [ρ̃z].

3. The verifier chooses t uniform indices O ⊂ S∗ and sends them to the prover.

4. Let mi be the i’th row of M and let m̃i be the i’th row of M̃ . For each
i ∈ O, using the homomorphic property of the commitments, both prover
and verifier compute commitments

[(cj)i] = [ρj]
mi , for j = 1, . . . , v, [(c̃z)i] = [ρ̃z]

m̃i .

The prover opens these commitments to the verifier.

5. The verifier accepts if and only if the opened values satisfy
D((c1)i, . . . , (cv)i) = (c̃z)i for all i ∈ O.

Using a similar proof as for theorem 1, one easily shows

Theorem 2. Assume the commitment scheme used is the one described in sec-
tion 2.1. Then the protocol Verify Circuit is perfect honest-verifier zero-knowledge
and if D(x1, . . . ,xv) �= z, the verifier accepts with probability at most
((r̃ − 1)/d)t + 1/|L|.

76 R. Cramer, I. Damg̊ard, and V. Pastro

The interesting question is whether we can build secret sharing schemes with
this type of D-reconstruction and whether the resulting more general protocol
offers advantages over the first one.

The answer to the first question is positive, the construction was already
hinted at above: we can base a scheme on Shamir secret sharing extended à la
Franklin and Yung [FY92] to share blocks of l secrets. This requires polynomials
of degree e = l+ t− 1. Since each multiplication in D doubles the degree of the
polynomials, the degree after applying D will be 2δt where δ is the multiplicative
depth of D. This means that ẽ = r̃ = 2δt for this construction, and d should be
a constant factor larger than r̃ to get exponentially small error probability.

We assume for simplicity that the cardinality of K is larger than d+ l, in order
to have the required number of evaluation points. If this is not the case, we can
pass to an extension field at cost a logarithmic factor, as explained in the previous
section. Note that the algebraic geometric approach presented in Section 2.2 does
not give any non-constant improvement over the Shamir-based approach in the
setting of D-reconstruction. However, it appears that the algebraic geometric
approach can be extended to get a non-trivial improvement here as well, using
more advanced techniques. A detailed analysis is given in the full version.

We can now compare two natural approaches to verifying that committed
vectors x1, . . . ,xv, z satisfy D(x1, . . . ,xv) = z:

The first approach is to perform the Verify Circuit protocol using the secret
sharing scheme we sketched. If we go for error probability 2−l and therefore
choose t to be Θ(l), simple inspection of the protocol shows:

Lemma 1. Using the Verify Circuit Protocol, the amortized communication
complexity to verify one instance of a circuit with multiplicative depth δ and
v inputs is O(2δκ+ vκ+ δ log l) bits for an error probability of 2−l.

Note that, except for the cost of committing to the inputs the communication
complexity only depends on the depth of the circuit.

The second approach is to use the Verify Multiplication protocol. The prover
will, for every multiplication gate T in D, commit to a vector zT where (zT)i
is the output from T in the instance of D where the inputs are (x1)i, . . . , (xv)i.
Now, for every multiplication gate T the verifier can compute vectors of commit-
ments [xT], [yT] to the inputs to T (since any linear operations in D “between
multiplication gates” can be done by the verifier alone). We then use the Verify
Multiplication protocol to check that xT ∗yT = zT . Using this protocol verifying
a multiplication has communication cost O(κ + log l) bits, so the total cost to
verify one instance of the circuit corresponds to O(μ(κ+ log l)+ vκ) bits, where
μ is the number of multiplication gates in D.

Notice that large fan-out comes at no cost in our model, and that linear oper-
ations with large fan-in are also for free. Moreover, both approaches generalize
easily to circuits with several outputs. Therefore, there is no fixed relation be-
tween μ and δ, in particular, we could consider families of circuits where δ is
constant or logarithmic in the input size, but μ grows faster than 2δ. In such a
case, using the Verify Circuit protocol is better; it has the interesting property

On the Amortized Complexity of Zero Knowledge Protocols 77

that the amortized cost of verifying a single instance of D can be asymptotically
smaller than the number of multiplication gates in D.

In the appendix, we sketch a final variant of the Verify Circuit Protocol using
the “MPC in the head approach” [IKOS09] where we try to limit the dominating
cost of committing to the ẽ entries of r̃z. The idea is as follows: instead of
committing to the values in r̃z in the usual way, the prover will simply send the
required commitments to shares [(c̃z)i] and use the “MPC in the head” approach
to prove to the verifier that the commitments contain the correct shares.

The cost of this approach to generate the required commitments to shares is
O(l2κ+ ẽl2k).

This should be compared to the normal Verify Circuit protocol where the cost
of this same step is O((ẽ + l)κ). We see that if κ > l2k and ẽ > l2 - which may
well be the case in practice - then this solution has smaller cost.

6 Proving Integer Multiplication

In the full version, we show a protocol designed for the case where the prover’s
secret values are integers. We use a specific integer linear secret sharing scheme
based on polynomials and the commitment scheme described in section 2.1. The
idea of the protocol is otherwise similar to the one for finite fields. Due to space
limitation we only give an informal result here, details can be found in the full
version.

Theorem 3 (Informal). Assume the commitment scheme used is the one de-
scribed in section 2.1. There exists a perfect zero-knowledge proof for showing
that committed l-vectors x,y, z satisfy x · y = z, and if for some i, xiyi �= zi,
the verifier accepts with probability at most (2(t+ l)/d)t +O(κ/2κ).

7 Commitment Schemes Based on Computational
Assumptions

We consider two kinds of commitment schemes: The first one is over a finite
field K and can be seen as a function compk : K ×H → G where H,G are finite
groups and pk is a public key (this includes the examples suggested in [CD98]).
The second one is over the integers, and compk : Z× Z → G.

The public key pk is generated by a PPT algorithm G on input a security
parameter κ. To commit to value x ∈ K or an integer x, the prover chooses r
uniformly inH (or, in case of integer commitments, in some appropriate interval)
and sends C = compk(x, r) to the verifier. A commitment is opened by sending
x, r. We assume that the scheme is homomorphic, i.e. compk(x, r) ·compk(y, s) =
compk(x+ y, rs). For simplicity, we assume throughout that K is a prime field.
Then, by repeated addition, that we also have compk(x, r)

y = compk(xy, r
y) for

any y ∈ K. We also use [x] as shorthand for a commitment to x in the following,
and hence suppress the randomness from the notation.

78 R. Cramer, I. Damg̊ard, and V. Pastro

We consider computationally hiding schemes: for any two values x, x′ the
distributions of pk, compk(x, r) and pk, compk(x

′, s) must be computationally
indistinguishable, where pk is generated by G on input security parameter κ.
Such schemes are usually unconditionally binding, meaning that for any pk that
can be output from G, there does not exist x, r, x′, s with x �= x′ such that
compk(x, r) = compk(x

′, s). For such schemes, the prover usually runs G, sends
pk to the verifier and may have to convince him that pk was correctly generated
before the scheme is used.

One may also consider unconditionally hiding and computationally binding
schemes, where pk, compk(x, r) and pk, compk(x

′, s) must be statistically indis-
tinguishable, and where it must be infeasible to find x, r, x′, s with x �= x′ such
that compk(x, r) = compk(x

′, s).

8 Results with Standard Commitments

Theorem 4. Assume the commitment scheme used is unconditionally bind-
ing and computationally hiding. Then the Verify Multiplication protocol is a
computationally honest-verifier zero-knowledge interactive proof system for the
language {

([xi], [yi], [zi])
l
i=1 | xiyi = zi, for i = 1, . . . , l

}
with soundness error ((r̂ − 1)/d)t.

In the appendix, we give a proof for the above theorem and explain how to
modify the protocol to work for an unconditionally hiding commitment scheme.
Using a similar proof as for theorem 4, one easily shows

Theorem 5. Assume the commitment scheme used is unconditionally binding
and computationally hiding. Then the protocol Verify Circuit is a computation-
ally honest-verifier zero-knowledge interactive proof system for the language

{([x1], . . . , [xv], [z]) | D(x1, . . . ,xv) = z}

with soundness error ((r̃ − 1)/d)t.

Theorem 6 (Informal). Given an commitment scheme for integers in the in-
terval [−2k, . . . , 2k] that is computationally binding and unconditionally hiding.
There exists an statistical honest-verifier zero-knowledge argument of knowledge
for showing that committed l-vectors x,y, z satisfy x · y = z. The protocol has
amortized complexity O(κ + l log l + k) bits and knowledge error 2−l.

References

[BDOZ11] Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-Homomorphic
Encryption and Multiparty Computation. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)

On the Amortized Complexity of Zero Knowledge Protocols 79

[Bou00] Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444.
Springer, Heidelberg (2000)

[BSFO11] Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure
multiparty computation with a dishonest minority. Cryptology ePrint
Archive, Report 2011/629 (2011), http://eprint.iacr.org/

[CC06] Chen, H., Cramer, R.: Algebraic Geometric Secret Sharing Schemes and
Secure Multi-Party Computations over Small Fields. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 521–536. Springer, Heidelberg (2006)

[CCG+07] Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.:
Secure Computation from Random Error Correcting Codes. In: Naor, M.
(ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 291–310. Springer, Hei-
delberg (2007)

[CD98] Cramer, R., Damg̊ard, I.: Zero-Knowledge Proofs for Finite Field Arith-
metic or: Can Zero-Knowledge Be for Free? In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 424–441. Springer, Heidelberg (1998)

[CD09] Cramer, R., Damg̊ard, I.: On the Amortized Complexity of Zero-
Knowledge Protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 177–191. Springer, Heidelberg (2009)

[CDD+99] Cramer, R., Damg̊ard, I., Dziembowski, S., Hirt, M., Rabin, T.: Effi-
cient Multiparty Computations Secure Against an Adaptive Adversary.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326.
Springer, Heidelberg (1999)

[CDM00] Cramer, R., Damg̊ard, I., Maurer, U.M.: General Secure Multi-party Com-
putation from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EU-
ROCRYPT2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

[CDN01] Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty Computation from
Threshold Homomorphic Encryption. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)

[DF02] Damg̊ard, I., Fujisaki, E.: A Statistically-Hiding Integer Commitment
Scheme Based on Groups with Hidden Order. In: Zheng, Y. (ed.) ASI-
ACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)

[DIK10] Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly Secure Multiparty Com-
putation and the Computational Overhead of Cryptography. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Hei-
delberg (2010)

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty Computa-
tion from Somewhat Homomorphic Encryption. In: Safavi-Naini, R. (ed.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

[FO97] Fujisaki, E., Okamoto, T.: Statistical Zero Knowledge Protocols to Prove
Modular Polynomial Relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)

[FY92] Franklin, M.K., Yung, M.: Communication complexity of secure computa-
tion (extended abstract). In: STOC, pp. 699–710. ACM (1992)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst.
Sci. 28(2), 270–299 (1984)

[IKOS09] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs
from secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152
(2009)

[KW93] Karchmer, M., Wigderson, A.: On Span Programs. In: Structure in Com-
plexity Theory Conference, pp. 102–111 (1993)

http://eprint.iacr.org/

Universally Composable Oblivious Transfer

from Lossy Encryption and the McEliece
Assumptions

Bernardo Machado David1,
Anderson C. A. Nascimento1, and Jörn Müller-Quade2

1 Department of Electrical Engineering, University of Brasilia, Brazil
bernardo.david@aluno.unb.br, andclay@ene.unb.br

2 Institute of Cryptography and Security, Faculty of Informatics,
Karlsruhe Institute of Technology, Germany

mueller-quade@kit.edu

Abstract. Oblivious transfer (OT) is a primitive of great importance in
two-party and multi-party computation. We introduce a general construc-
tion of universally composable (UC) oblivious transfer protocols based on
lossy cryptosystems in the common reference string (CRS) model, yield-
ing protocols under several assumptions. In order to achieve this, we show
that for most known lossy encryption constructions it is possible to dis-
tinguish between lossy and injective public keys given the corresponding
secret key, similarly to dual-mode encryption in messy mode.

Furthermore, we adapt the techniques of our general construction to
obtain the first UC secure OT protocol based on the McEliece assump-
tions, which are coding theory based assumptions that until now have
resisted quantum attacks, thus introducing the first UC secure OT pro-
tocol based on coding assumptions.

However, differently from previous results based on dual-mode encryp-
tion, our scheme does not require a trapdoor for opening lossy ciphertexts,
relying instead on CRS manipulation and cut-and-choose techniques to
construct the simulators. In both constructions we circumvent the need for
universally composable string commitment schemes, which are required
by previous black-box compilers.

1 Introduction

Oblivious Transfer [34,17] is an important cryptographic primitive which implies
secure two-party computation [27,20] as well as multi-party computation [12]
(in the presence of a broadcast channel). Although different types of oblivious
transfer exist, they were all proven to be equivalent. In the present work, we
focus on one-out-of-two oblivious transfer (OT 2

1). This is a two-party primitive
where a sender (Alice) inputs two messages b0, b1 and a receiver (Bob) inputs a
bit c, referred to as the choice bit. Bob learns bc but not b1−c and Alice learns
nothing about Bob’s choice (the value of c).

A. Smith (Ed.): ICITS 2012, LNCS 7412, pp. 80–99, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Universally Composable Oblivious Transfer from Lossy Encryption 81

In current literature there are several constructions of OT under different
assumptions, such as enhanced trapdoor permutations [17], hardness of factor-
ing [34], Diffie-Hellman [4], Decisional Diffie-Hellman (DDH) [30,2] (both round
optimal protocols), Quadratic or Higher-Order Residuosity and the Extended
Riemman Hypothesis [26]. The McEliece assumptions are coding theory based
and until now have resisted quantum attacks. Furthermore, a recent result in
CRYPTO 2011 [1] shows that quantum Fourier sampling attacks (which are
used to brak RSA and El Gamal encryption) are useless against these assump-
tions. Thus, the Mceliece assumptions are a good candidate for the post quantum
scenario. The first protocol for oblivious transfer based on the McEliece assump-
tions without random oracles was proposed in [16]. This protocol was proven to
be fully secure in a stand-alone setting, offering computational security for both
the sender and the receiver, whereas most constructions offer statistical security
for at least one of the parties.

Even though many classical OT protocols have been proved secure in a stand-
alone setting, it is important to analyse the security of cryptographic protocols
under different kinds of composition. Among the techniques employed for this
analysis, the real/ideal simulation paradigm and universal composability (UC)
[6] provide widely accepted security notions for analysing protocols under sequen-
tial and arbitrarty composition, respectively. Universal composability stands as
one of the most meaningful frameworks for proving the security of cryptographic
protocols, since it yields security guarantees for real world deployment of pro-
tocols under arbitrary composition. Furthermore, UC secure protocols and con-
structions can be used as building blocks for more complex applications and other
cryptographic protocols, e.g. universally composable two-party and multi-party
secure computation [8].

Related Works: Obtaining UC secure OT without trusted setup assumptions
is known to be impossible [7], thus several protocols have been proposed based on
different computational and setup assumptions. A general framework for efficient
(round optimal) and composable 1-out-of-2 oblivious transfer in the common ref-
erence string (CRS) model was introduced in [32], yielding constructions based
on DDH, QR and LWE. Another efficient construction based on the Decisional
Linear (DLIN) assumption over bilinear groups and assuming the existence of a
key registration authority was proposed in [14]. Protocols for universally com-
posable committed oblivious transfer were introduced in [25,19], both in the
common reference string model. While the construction in [25] is based on DCR,
the result on [19] relies on multiple assumptions, including DCR, strong RSA
and DDH. Adaptive OT is considered in [21], where a universally composable
construction is given under the q-hidden LRSW assumption in the CRS model.

The current construction that most resembles our constructions is the frame-
work proposed by Peikert et al. in CRYPTO 2008 [32]. This framework is based
on dual-mode encryption and is also constructed in the common reference string
model. Besides being round-optimal, this framework has the interesting prop-
erty of yielding OT protocols statistically secure for the sender or the receiver

82 B.M. David, A.C.A. Nascimento, and J. Müller-Quade

depending on the setup procedure used to generate the CRS. Dual-mode cryp-
tosystems operate in either messy mode or decryption mode, having public keys
divided into a messy branch and a decryptable branch. Both modes and public
key branches are computationally indistinguishable. The messy mode behaves
similarly to a lossy cryptosystem [23] in that any information encrypted with
the public key’s messy branch is statistically lost, but it is possible to distinguish
the messy branch from the decryptable branch using a trapdoor. In decryption
mode, ciphertexts generated by the messy branch cannot be decrypted using
the corresponding secret key, but are decryptable under a trapdoor. Moreover,
the definition states that each public key has exactly one messy branch and one
decryptable branch.

Building on those characteristics, it is straightforward to derive an oblivious
transfer protocol. First, the receiver generates a public key where the branch cor-
responding to his chosen message is decryptable while the branch corresponding
to the other message is messy. The sender then uses this key to encrypt both mes-
sages and sends the ciphertexts to the reciever, who can only obtain the message
he had previously chosen. Notice that the sender cannot obtain any information
about the receiver’s choice bit (since the key branches are indistinguishable),
and that the receiver can only obtain one of the messages (since one of the
branches is always messy). In order to prove UC security, the simulator sets up
the dual-mode cryptosystem instance in the appropriate mode and simply uses
the appropriate trapdoor to find the messy branch (i.e. the choice bit inverse) or
decrypt ciphertexts generated under both branches (i.e. retrieve both of sender’s
messages). Indistinguishability between ideal and real executions then follows
from the fact that modes are computationally indistinguishable. However, even
though there exist known constructions of dual-mode encryption under LWE,
DDH and Quadratic Residuosity (QR) assumptions [32], until now there is no
such construction based on coding assumptions. Hence, this framework cannot
be employed to obtain universally composable oblivious transfer based on the
McEliece assumptions.

Lossy encryption was defined in [23,3] as a flavor of public key encryption with
”lossy” public keys that generate ciphertexts independently from the inputted
plaintext, statistically losing information as in dual-mode encryption in messy
mode. In contrast to dual-mode encryption, lossy cryptosystems do not enjoy
explicitly defined trapdoors that allow a simulator to distinguish between lossy
and injective keys (corresponding to messy and decryptable public key branches,
respectively) or to recover messages encrypted under a lossy key. Besides being
unfit for obtaining a McEliece based protocol, the framework in [32] also leaves
open the question of whether it is possible to obtain a general construction for
universally composable OT based on black-box or non-black-box access to lossy
encryption as defined in [23,3]. However, it may be possible to obtain similar
properties building on internal details of specific lossy encryption constructions.
This poses new interesting challenges for constructing universally composable
oblivious transfer protocols. Since it is already proved in [23] that round optimal

Universally Composable Oblivious Transfer from Lossy Encryption 83

oblivious transfer is equivalent to lossy encryption, such a construction would
provide interesting insight into the relation between both primitives.

Yet another powerful approach for achieving UC secure OT protocols from
various assumptions is the use of compilers that obtain such protocols given
black-box access to an instance of stand-alone static semi-honest OT, such as
Haitner’s [22], or defensible OT, such as Ishai’s et al. [24]. Choi et al. [10] build on
these previous constructions to obtain a compiler that yields universally compos-
able OT protocol secure against adaptive adversaries. The protocols constructed
via these compilers have a general structure similar to our construction, relying
on multiple copies of a semi-honest OT protocol running in parallel and cut-and-
choose techniques to achieve UC security. However, in order to achieve universal
composability, these reductions require access to universally composable string
commitment schemes, which have not been constructed from lossy encryption
or the McEliece assumptions yet. Nevertheless, the general protocol presented
in [10,22] provides a solid starting point for obtaining our results.

Our Contributions: In this work we introduce a general construction of uni-
versally composable oblivious transfer based on lossy encryption, a primitive that
can be obtained from a number of assumptions [32](i.e. LWE, DDH and QR)
and from other primitives [23] (i.e. re-randomizable cryptosystems and smooth
projective hashing [11]). Furthermore, we use similar techniques to obtain a UC
secure protocol based on the McEliece assumptions [29]. The following contri-
butions are presented:

– Theorem 1, Section 3.4 : A general efficient construction for universally com-
posable oblivious transfer based on lossy encryption schemes for which it is
possible to distinguish lossy public keys from injective public keys given the
corresponding secret key.

– Theorem 2, Section 4.1: The first efficient universally composable oblivious
transfer protocol solely based on coding assumptions, i.e. the McEliece as-
sumptions.

– Appendix B: We observe that, given the corresponding secret key, it is pos-
sible to distinguish lossy public keys from injective public keys of many
current lossy encryption construction. This property yields a trapdoor lossy
key distinguishing algorithm.

In order to obtain these results we build on a fully simulatable protocol first
introduced by Lindell [28] and on key scrambling techniques employed in the
stand alone McEliece based OT protocol proposed by Dowsley et al. [16] to
obtain protocols similar to the black-box transformation of [10] but without
requiring universally composable string commitment schemes. Similarly to [10],
our protocols consist of several copies of a semi-honest stand alone OT protocol
running in parallel with an intermediate cut-and-choose phase to bound the
probability of the receiver cheating. In contrast to [10], our constructions do not
start with bit OT protocol and then apply a combiner to achieve string OT, using
instead string OT constructions that arise naturally from lossy encryption [33]

84 B.M. David, A.C.A. Nascimento, and J. Müller-Quade

and the McEliece assumptions [15]. Furthermore, we use non-black-box access
to lossy encryption and McEliece based encryption to obtain an algorithm for
distinguishing between lossy and injective keys given the corresponding secret
key and constructing extractable string commitment schemes, which are crucial
tools for constructing the simulators.

Since lossy encryption was constructed in [23] from re-randomizable cryp-
tosystems, smooth projective hashing, round optimal oblivious transfer (and
thus dual-mode encryption [32]), our general construction yields protocols based
on broader range of number theoretical and lattice based assumptions than the
framework of [32]. Our lossy encryption based protocol provides statistical secu-
rity for the sender. On the other hand, differently from all the other constructions
of universally composable OT in current literature, the protocol based on the
McEliece assumptions provides computational security for both parties, simi-
larly to the stand alone construction in [16]. This curious fact may shed light on
the nature of the McEliece assumptions, which until now have only yielded OT
protocols with computational security for both parties.

Our approach cannot be trivially obtained from the protocols in [28] or from
the dual-mode encryption approach of [32], since we base it solely on lossy en-
cryption without requiring all the properties of a dual-mode cryptosystem. Our
protocols are at least as efficient as the protocol of [28]. As in the framework
of [32], the common reference string (CRS) can be reused for an unbounded
number of protocol executions and, depending on the underlying assumption,
be obtained from general uniform randomness sources. Our protocols largely
differ from [32] in that we trade round optimality and statistical security for the
receiver for a broader range of instantiations that spans many computational
assumptions, including coding based assumptions that until now did not yield
any universally composable oblivious transfer protocols. Our non-black-box ap-
proach also circumvents the need for universally composable string commitment
schemes of the black-box compiler in [10] and obtains similar results specifically
for lossy encryption and the McEliece assumptions.

Organization: In Section 2, we establish notation and introduce the security
definitions and assumptions used throughout the paper. In Section 3, we describe
our lossy encryption based OT protocol and prove its security. In Section 4, we
construct the McEliece based protocol and prove its security. In Section 5, we
conclude with a summary of our results and directions for future research.

2 Preliminaries

Hereupon, we will denote by x ∈R D an uniformly random choice of element
x over its domain D; by ⊕ a bit-wise exclusive OR of strings; and by a | b the
concatenation of string a with string b. All logarithms are to the base 2. For
a probabilistic polynomial-time (PPT) machine A, we use coins(A) to denote
the distribution of the internal randomness of A and a ← A to denote running

Universally Composable Oblivious Transfer from Lossy Encryption 85

the machine A and obtaining an output, where a is distributed according to the
internal randomness of A.

If X and Y are families of distributions indexed by a security parameter λ, we

use X
s≈ Y to mean the distributions X and Y are statistically close, i.e., for all

polynomials p and sufficiently large λ, we have
∑

x |Pr[X = x]− Pr[Y = x]| < 1.
Two sequences Xn, n ∈ N and Yn, n ∈ N of random variables are said to be

computationally indistinguishable, denoted by X
c≈ Y , if for every non-uniform

PPT distinguisher D there exists a negligible function ε(·) such that for every
n ∈ N, | Pr[D(Xn) = 1]− Pr[D(Yn) = 1] |< ε(n).

2.1 Universal Composability

The Universal Composability framework was introduced by Canetti in [6] to
analyse the security of cryptographic protocols and primitives under arbitrary
composition. In this framework, protocol security is analysed by comparing an
ideal world execution and a real world execution under the supervision of an en-
vironment Z, which is represented by a PPT machine and has direct access to all
inputs and outputs of the individual parties and an adversary. In the ideal world
execution, dummy parties (possibly controlled by a PPT simulator) interact di-
rectly with the ideal functionality F , which works as a fully secure third party
that computes the desired function or primitive. In the real world execution,
several PPT parties (possibly corrupted by a real world adversary A) interact
with each other by means of a protocol π that realizes the ideal functionality.
The real world execution is represented by the ensemble EXECπ,A,Z , while
the ideal execution is represented by the IDEALF ,S,Z . The rationale behind
this framework lies in showing that the environment Z is not able to efficiently
distinguish between EXECπ,A,Z and IDEALF ,S,Z , thus implying that the real
world protocol is as secure as the ideal functionality. See Appendix A.1 for formal
definitions of UC security and the OT and CRS ideal functionalities.

2.2 Lossy Encryption

A lossy cryptosystem [23,3] is informally defined as a type of cryptosystem with
two types of public keys, injective and lossy keys, which specify different results
of encryption. If injective keys are used, the cryptosystem behaves regularly
(correctly decrypting ciphertexts with the right secret key) while if the lossy
public keys are used, the ciphertexts generated by the encryption algorithm are
independent from the plaintext messages,causing information to be statistically
lost. It is also required that lossy keys be computationally indistinguishable from
injective keys.

It has been shown that it is possible to obtain lossy cryptosystems from round
optimal oblivious transfer, re-randomization and smooth projective hashing [23].
It is also possible to obtain lossy encryption from dual-mode encryption in messy
mode, which yields lossy cryptosystems based on DDH, QR and LWE [32].

86 B.M. David, A.C.A. Nascimento, and J. Müller-Quade

2.3 McEliece Assumptions and Public-Key Cryptosystem

The McEliece cryptosystem [29] consists of a triplet of probabilistic algorithms
ME = (GenME , EncME , DecME) over a message space M = {0, 1}k. A seman-
tically secure variant of the McEliece cryptosystem in the standard model was
proposed by Nojime et al. in [31] and its full description is given in Appendix A.2.
This cryptosystem is secure under the McEliece assumptions, which are formally
stated as follows:

Assumption 1. There is no PPT algorithm that can distinguish the public-key
matrix G of the McEliece cryptosystem from a random matrix of the same size
with non-negligible probability.

Assumption 2. The Syndrome Decoding Problem is hard for every PPT
algorithm.

The syndrome decoding problem was proved to be equivalent to the Learning
Parity with Noise (LPN) problem [35] and also NP-complete [5]. Notice that a
recent attack introduced in [18] breaks the McEliece assumptions for the case
where a high rate Goppa code is used. Therefore, a low rate Goppa code should
be used in the McEliece cryptosystem instantiation in order to guarantee that
the assumptions above hold.

3 Oblivious Transfer from Lossy Encryption

In this section, we describe our protocol for universally composable oblivious
transfer based on lossy encryption. This protocol is based on a combination of
the DDH based fully simulatable OT protocol of [28], which yields a construction
conceptually similar to [32] and [10]. Intuitively, we construct a stand-alone
semi-honest OT protocol where the receiver generates a lossy and an injective
public keys and sends them to the sender in such an order that the injective key
corresponds to the choice bit. The sender then encrypts its first message with
the first key received and its second message with the second key, sending the
ciphertexts back to the receiver. We then run several copies of this basic protocol
in parallel, using the cut-and-choose methods presented in [28] to construct the
overall protocol and bound the probability that the receiver successfully cheats.

3.1 Distinguishing Lossy and Injective Keys

In this construction we will use the fact that it is possible to efficiently distinguish
between the lossy and injective keys of several lossy encryption constructions
given a trapdoor t, which is simply the corresponding secret key for most cases.
The algorithm that determines whether a public key pk is lossy given a trapdoor
t is formally denoted as:

– KD(t, pk) is a PPT algorithm that receives as input a public key pk and a
trapdoor t, and outputs 0 if pk is lossy. Otherwise, it outputs 1.

Universally Composable Oblivious Transfer from Lossy Encryption 87

This property is similar to trapdoor identification of a messy branch in dual
mode encryption [32] and is intrinsic to many flavors of lossy encryption such
as the general constructions based on re-randomization and smooth projective
hashing [23], for which such an algorithm can be built by simply using the secret
key corresponding to pk as a trapdoor. We construct a KD algorithm for several
flavors of lossy encryption in Appendix B.

3.2 Extractable String Commitment Schemes

A string commitment scheme is said to be extractable if there exists a polyno-
mial time simulator that is able to obtain the the committed value m before the
Open phase. In the CRS model, such a scheme can be trivially constructed from
any IND-CPA secure public key cryptosystem (Gen,Enc,Dec) with a determin-
istic decryption algorithm. Consider the following generic construction, which is
computationally hiding and statistically binding:

Extractable String Commitment. A common reference string crs = pk,
(pk, sk) ← Gen(1n) containing a random public key is given to the sender and
the receiver. The sender inputs a bit-string m.

– Comcrs(m) The sender encrypts m under the key crs with randomness r and
sends the corresponding ciphertext y = Enc(crs,m, r) to the receiver.

– Opencrs(m) The receiver sends the bit-string m and the randomness r to
the receiver. The receiver encrypts m under the key in crs with randomness
r and accepts the commitment if the result EncME(crs,m, r) is equal to
y (received in the Commit stage). Otherwise, the receiver detects that the
sender is cheating.

Notice that the computational hiding and statistical binding properties of this
commitment are implied by the semantic security and correctness property of
the cryptosystem, respectively. In order to extract the bit-stringm, the simulator
begins by generating a key pair (pk, sk), setting crs = pk and storing sk. It then
runs the commitment protocol as an honest receiver, but it can obtain m from
y by computing DecME(sk, c), since it has the secret key sk corresponding to
the public key pk contained in crs (and used by the sender to encrypt m). Thus,
this string commitment scheme is considered extractable.

3.3 The Protocol

We consider a lossy cryptosystem for which it is possible to distinguish between
lossy and injective public keys given a trapdoor (in this case the correspond-
ing secret key) denoted by LO = (Gen,Enc,Dec,KD)1 and the commitment
scheme described in Section 3.2. Both parties are also assumed to share a secu-
rity parameter s, which is implicitly embedded into the CRS.

1 Here KD is the lossy key distinguishing algorithm, constructed for several flavors of
lossy encryption in Appendix B.

88 B.M. David, A.C.A. Nascimento, and J. Müller-Quade

Protocol OTLO

Inputs: The receiver (R) has a choice bit (sid, ssid, c) and the sender (S) has
a pair of messages (sid, ssid, b0, b1) that belong to LO’s message space.
Common reference string: Three random LO public keys pk0, pk1, pk2 ←
Gen(1n).

1. After being activated with their inputs, the parties query FCRS with
(sid,S,R) and receive (sid, crs) as response.

2. For i = 1, . . . , s, R chooses a random bit ci ∈R {0, 1}, generates an injective
key pair (skinj,i, pkinj,i) and generates a lossy key pair (sklossy,i, pklossy,i).
It stores
(sid, ssid, skinj,0, . . . , skinj,s), sets Pi,ci = pki,inj , Pi,0 = pki,lossy and sends
the public key pairs (sid, ssid, (P1,0, P1,1) , . . . , (Ps,0, Ps,1)) to S . Addition-
ally, R commits to the secret key pairs (ski,0, ski,1) using pk0 in the crs send-
ing (sid, ssid,Comcrs(sk1,0, sk1,1), . . . ,Comcrs(sks,0, sks,1)) to S , where ski,0
and ski,1 correspond to Pi,0 and Pi,1, respectively.

3. S stores the pairs (sid, ssid, (P1,0, P1,1) , . . . , (Ps,0, Ps,1)).

4. S and R now run a coin tossing protocol to obtain a common random string
r:

(a) S chooses a random bit string v ∈R {0, 1}s and sends (sid, ssid,Comcrs(v))
to R using pk1 in the crs for the commitment.

(b) R chooses a random bit string v′ ∈R {0, 1}s and sends
(sid, ssid,Comcrs(v

′)) to S using pk2 in the crs for the commitment.

(c) S sends (sid, ssid,Opencrs(v)) to R and R sends (sid, ssid,Opencrs(v
′))

to S , opening their commitments to v and v′ respectively. S and R
store (sid, ssid, r), which they obtain by computing r = v ⊕ v′. Denote
r = r1, . . . , rs.

5. Let i1, . . . , iŝ be the indices i where ri = 1. For every i1, . . . , iŝ, R opens
its commitment to (ski,0, ski,1), sending (sid, ssid,Opencrs(ski1,0, ski1,1), . . . ,
Opencrs(skîs,0, skîs,1)) to S .

6. Let j1, . . . , js′ be the indices j where rj = 0. For j1, . . . , js′ , R sends a ”re-
ordering” of Pj,0 and Pj,1 such that, in the resulting pairs (Pj,0, Pj,1), Pj,c

is an injective public key and Pj,1−c is a lossy public key. This reordering is
a bit mj such that if it equals 0 then the pairs are left as is, and if it equals
1 then Pj,0 and Pj,1 are interchanged. R sends (sid, ssid,mj1 , . . . ,mjs′)
to S .

7. For every i where ri = 1, S uses the secret keys obtained from the opened
commitment to verify that Pi,ci is an injective public key while Pi,1−ci is a
lossy public key, otherwise it halts and outputs (sid, ssid,⊥).

8. Employing a reduction given in [13], S chooses s′ random bits b0,1, . . . , b0,s′

and s′ random bits b1,1, . . . , b1,s′ such that b0 = b0,1 ⊕ . . . ⊕ b0,s′ and b1 =
b1,1 ⊕ . . . ⊕ b1,s′ . For t = 1, . . . , s′, S encrypts each bit b0,t and b1,t with

the corresponding public key, computing b̂0,t = Enc(Pjt,0, b0,t) and b̂1,t =

Enc(Pjt,1, b1,t). S sends the pairs (sid, ssid, (b̂0,1, b̂1,1), . . . , (b̂0,s′ , b̂1,s′)) to R
.

Universally Composable Oblivious Transfer from Lossy Encryption 89

9. For each pair of ciphertexts (b̂0,t, b̂1,t) received, R computes bc,t =

Dec(skinj,jt , b̂c,s′). Finally, R computes bc = bc,1 ⊕ . . . ⊕ bc,t, obtaining

bc. R outputs (sid, ssid, bc). If Dec yields an error for any b̂c,t, it outputs
(sid, ssid, 0).

Correctness: Before constructing the simulators and presenting the security
proof, we show that Protocol OTLO is correct, in the sense that, given that both
parties are honest, the correct output is obtained. First of all, it is clear that the
protocol runs in polynomial time.

Notice that, after the reordering, all the pairs (sid, ssid, (Pj,0, Pj,1)) are such
that Pj,c is an injective public key and Pj,1−c is a lossy public key. Thus, R is

able to decrypt all of the ciphertexts b̂c,t for t = 1, . . . , s′, obtaining all of the
bc,t bits necessary to compute the bit bc = bc,1 ⊕ . . .⊕ bc,s′ .

3.4 Security

Theorem 1. For every lossy cryptosystem LO for which it is possible to distin-
guish lossy and injective public keys given the corresponding secret key, Protocol
OTLO securely realizes the functionality F̂OT in the FCRS-hybrid model with
statistical security for the sender.

Intuitivelly, in the case that both parties are honest, security for S follows from
the fact thatR is not able to decrypt the ciphertexts b̂1−c,t, since they are created
under a lossy public key. If R cheats by constructing injective keys Pjt,1−c, he
will be detected by S with high probability. On the other hand, security for
R follows from the fact that, if the commitment scheme is secure, S is unable
to learn R ’s choice bit c, since it can’t distinguish between Pjt,c and Pjt,1−c,
which follows from indistinguishability of lossy keys. Also, if S sends a invalid
ciphertext in order to force R to complain and reveal c, R simply outputs 0 as
if S had input bc = 0.

Now we analyse security under corruption. Let A be a static adversary that
interacts with parties S and R running protocol OTLO. We now construct a sim-
ulator S that interacts with F̂OT such that no environment Z can distinguish
between interactions with A in the real world and interactions with S in the
ideal world. S invokes an internal copy of A and simulates the interactions of A
with Z and with the parties S and R . We partly base the simulators for the
cases when S and R are individually corrupted on the techniques of [28], which
mainly consist in manipulating the coin tossing result to obtain arbitrary results
in the cut-and-choose phase. For each corruption scenario, S works as follows:

Simulating Communication with Z : S writes every message received from
Z in A ’s input tape, simulating A ’s environment. Also, S forwards every mes-
sage written on A ’s output tape to Z by copying to its own output tape.

Simulating Trivial Cases: If both S and R are corrupted, S simply runs
A internally. Notice that A will generate the messages from both corrupted
S and R .

90 B.M. David, A.C.A. Nascimento, and J. Müller-Quade

If both S and R are honest, S runs the protocol between honest S and R
internally on inputs (sid, ssid, c = 0) and (sid, ssid, b0 = 0, b1 = 1), respectively.
All messages are delivered to A .

Simulating When only S Is Corrupted: S runs Gen three times, obtaining
three key pairs (pk0, sk0), (pk1, sk1), (pk2, sk2). It sets crs = pk0, pk1, pk2 and
stores (sid, sk0, sk1, sk2) in order to extract subsequent commitments. When the
parties query FCRS , S hands them (sid, crs). When the dummy S is activated,
S proceeds as follows:

1. S generates a random string r ∈R {0, 1}s, denoted by r = r1, . . . , rs. For
i = 1, . . . , s, S chooses a random bit ci ∈R {0, 1}, generates an injective
key pair (skinj,i, pkinj,i) and sets Pi,ci = pkinj,i. For i = 1, . . . , s, if ri = 0,
S generates a lossy key pair (sklossy,i, pklossy,i) and sets Pi,1−ci = pklossy,i,

if ri = 0, S generates another injective key pair (ŝkinj,i, p̂kinj,i) and sets

Pi,1−ci = p̂kinj,i. S stores

(sid, ssid, skinj,0, ŝkinj,0 . . . , skinj,ŝ, ŝkinj,ŝ), and sends commitments
(sid, ssid,Comcrs(sk0,0, sk0,1), . . . ,Comcrs(sks,0, sks,1)) using pk0 in the crs and
the public key pairs
(sid, ssid, (P0,0, P0,1) , . . . , (Ps,0, Ps,1)) to S , where sk0,0 and sk0,1 corre-
spond to P0,0 and P0,1, respectively.

2. Coin tossing phase: S simulates the coin tossing in order to obtain r as
output:

(a) S receives the commitment (sid, ssid,Comcrs(v)) from A and extracts
the bit string v using (sid, sk1).

(b) S computes v′ = r ⊕ v and commits to this value using pk2, sending
(sid, ssid,Comcrs(v

′)) to A .
(c) If A does not correctly open its commitment (sid, ssid,Comcrs(v)), then

S sends ⊥ to F̂OT , simulating R aborting and halts. However, if A
correctly opens its commitment, S proceeds to the next step. Hence, the
result of the coin tossing is the arbitrary (sid, ssid, r) chosen by S .

3. For every i where ri = 1, S opens its commitment to (ski,0, ski,1), sending
(sid, ssid,Opencrs(ski1,0, ski1,1), . . . ,Opencrs(skîs,0, skîs,1)) to S . Then it hands
a random reordering of Pj,0 and Pj,1 for every j for which rj = 0 by
computing
mj1 , . . . ,mjs′ ∈ {0, 1} and sending (sid, ssid,mj1 , . . . ,mjs′) to A .

4. If A does not reply with a valid message, then S sends ⊥ to F̂OT and halts.
Otherwise, it receives the pairs of ciphertexts 〈(b̂0,1, b̂1,1), . . . , (b̂0,s′ , b̂1,s′)〉. S
then obtains both b0 and b1 using the same method as a honest R . However,
it is able to decrypt both b̂0,t and b̂1,t with the injective secret keys skinj,jt
and ŝkinj,jt , obtaining a series of pairs (b0,t, b1,t), for t = 1, . . . , s′. It then
computes b0 = b0,1 ⊕ . . . ⊕ b0,s′ and b1 = b1,1 ⊕ . . .⊕ b1,s′ . S sends the pair

(sid, ssid, b0, b1) to F̂OT as S ’s input and halts.

Universally Composable Oblivious Transfer from Lossy Encryption 91

Simulating When only R Is Corrupted: S runs Gen three times, obtaining
three key pairs (pk0, sk0), (pk1, sk1), (pk2, sk2). It sets crs = pk0, pk1, pk2 and
stores (sid, sk0, sk1, sk2) in order to extract subsequent commitments. When the
parties query FCRS , S hands them (sid, crs). When the dummy R is activated,
S proceeds as follows:

1. S receives the commitments (sid, ssid,Comcrs(sk0,0, sk0,1), . . . ,
Comcrs(sks,0, sks,1)) from A and then extracts the secret keys using
(sid, sk0), storing (sid, ssid, sk0,0, sk0,1, . . . , sks,0, sks,1).

2. Coin tossing phase: S commits to a random v ∈R {0, 1}s using pk1,
sending (sid, ssid,Comcrs(v)) to A . After receiving A ’s commitment
(sid, ssid,Comcrs(v

′)), S sends (sid, ssid,Opencrs(v)) to A and receives
(sid, ssid,Opencrs(v

′)) from A . The final result is r = v ⊕ v′.
3. S receives the decommitments (sid, ssid,Opencrs(Pi1), . . . ,Opencrs(Pîs)) and

the pair reorderings (sid, ssid,mj1 , . . . ,mjs′) from A . S then verifies that
the pair (Pi,0, Pi,1) is valid by checking that Pi,ci is an injective key and Pi,ci

is a lossy key, for i where ri = 1. If these pairs are not valid or A did not
send valid openings, S halts and outputs (sid, ssid,⊥). If the pairs are valid,
S continues to the next step.

4. S searches the pairs (Pj,0, Pj,1) for at least one valid pair (Pt,0, Pt,1) (i.e.
a pair containing an injective and a lossy key), for j where rj = 0. It uses
the secret keys (sid, ssid, sk0,0, sk0,1, . . . , sks,0, sks,1), obtained by extracting
A ’s commitment in step 1, to test whether the pairs are valid. If no such
pair is found, S halts, outputting fail. Otherwise, it sets c = 0 if, after the
reordering, Pt,ct = Pt,0. Conversely, it sets c = 1 if, after the reordering,
Pt,ct = Pt,1.

5. In order to complete the protocol, S sends (sid, ssid, c) to F̂OT , re-
ceiving (sid, ssid, b) in response. S then computes the last message from
S to R honestly, setting bc = b, b1−c ∈R {0, 1} and running the
instructions of an honest S to compute this last message. S sends
(sid, ssid, (b̂0,1, b̂1,1), . . . , (b̂0,s′ , b̂1,s′)) to A and halts.

In order to prove Theorem 1 we will use the following lemmas:

Lemma 1. (Computational security for R) When A corrupts only S , for any
lossy cryptosystems LO for which it is possible to distinguish lossy and injective
public keys given the corresponding secret key, the following holds:

EXECOTLO,A,Z
c≈ IDEALF̂OT ,S,Z

Lemma 2 (Statistical security for S) When A corrupts only R , for any lossy
cryptosystems LO for which it is possible to distinguish lossy and injective public
keys given the corresponding secret key, the following holds:

EXECOTLO,A,Z
s≈ IDEALF̂OT ,S,Z

The proofs for both lemmas are left for the full version of this paper.Notice that
security for S depends on the lossiness of keys while security for R depends on
the indistinguishability of lossy and injective keys.

92 B.M. David, A.C.A. Nascimento, and J. Müller-Quade

4 Oblivious Transfer from the McEliece Assumptions

Although we are not able to obtain lossy encryption from the McEliece assump-
tions, it is possible to use the same approach of ProtocolOTLO to construct a new
UC secure OT protocol that is secure under these assumptions. Intuitively, we use
a ”interactive key generation” procedure to obtain a pair of matrices of size k×n
such that one is a valid McEliece public key and the other is a random matrix,
along with trapdoor information that allows S or the simulators to test whether
a given matrix is a valid public key or not later on during protocol execution. The
valid McEliece public key works as an injective key and the random matrix works
as a ”lossy” key, since the receiver cannot decrypt messages generated under it.
This method was introduced in [16] and substitutes the properties of lossy encryp-
tion that were used in the previous protocol. The rest of the protocol has the same
structure as before, being based on several copies of a semi-honest string OT pro-
tocol running in parallel with an intermediate cut-and-choose phase to bound the
probability that the receiver successfully cheats.

In the following protocol we consider the semantically secure McEliece public
key cryptosystem ME = (GenME , EncME , DecME) defined in Appendix A.2
and an instance of the extractable commitment scheme defined in Section 3.2
constructed from ME. Both parties also have access to a security parameter s,
which is implicitly embedded in the CRS.

Protocol OTME

Inputs: The receiver (R) has a choice bit (sid, ssid, c) and the sender (S) has
a pair of messages (sid, ssid, b0, b1) that belong to ME’s message space.
Common reference string: Three random k × n matrices pk0, pk1, pk2 ←
GenME(1

n) used as a public keys in the extractable commitment scheme.

1. After being activated with their inputs, the parties query FCRS with
(sid,S,R) and receive (sid, crs) as response.

2. Public Key Pair Generation:

(a) For i = 1, . . . , s, R chooses a random bit ci ∈R {0, 1} and generates
a McEliece secret key ski = (Si, Gi, Pi). For each bit ci, Bob com-
putes a public key Pi,ci = SiGiPi. It stores (sid, ssid, sk0, . . . , sks) and
(sid, ssid, P0,c0 , . . . , Ps,cs), and sends
(sid, ssid,Comcrs(sk1), . . . ,Comcrs(sks)) to S , using pk0 for the commit-
ment.

(b) S generates s random matrices (Q1, . . . , Qs) and sends
(sid, ssid,Q1, . . . , Qs) to R .

(c) R generates computationally lossy keys by computing Pi,1−ci = Pi,ci⊕Qi

for i = 1, . . . , s. R sends (sid, ssid, P1,0, . . . , Ps,0) to S and stores
(sid, ssid, P1,1−c1 , . . . , Ps,1−cs).

(d) For i = 1, . . . , s, S computes Pi,1 = Pi,0 ⊕Qi and stores
(sid, ssid, P1,1, . . . , Ps,1).

3. S and R now run a coin tossing protocol to obtain a common random
string r:

Universally Composable Oblivious Transfer from Lossy Encryption 93

(a) S chooses a random bit string v ∈R {0, 1}s and sends
(sid, ssid,Comcrs(v)) to R , using pk1 for the commitment.

(b) R chooses a random bit string v′ ∈R {0, 1}s and sends
(sid, ssid,Comcrs(v

′)) to S , using pk2 for the commitment.
(c) S sends (sid, ssid,Opencrs(v)) to R and R sends (sid, ssid,Opencrs(v

′))
to S , opening their commitments to v and v′ respectively. S and R
store (sid, ssid, r), which they obtain by computing r = v ⊕ v′. Denote
r = r1, . . . , rs.

4. Let i1, . . . , iŝ be the indices i where ri = 1. For every i1, . . . , iŝ, R opens its
commitment to ski, sending (sid, ssid,Opencrs(ski1), . . . ,Opencrs(skîs)) to S .

5. Let j1, . . . , js′ be the indices j where rj = 0. For j1, . . . , js′ , R sends a ”re-
ordering” of Pj,0 and Pj,1 such that, in the resulting pairs (Pj,0, Pj,1), Pj,c is
a valid McEliece public key and Pj,1−c is a random matrix. This reordering
is a bit mj such that if it equals 0 then the pairs are left as is, and if it equals
1 then Pj,0 and Pj,1 are interchanged. R sends (sid, ssid,mj1 , . . . ,mjs′)
to S .

6. For every i where ri = 1, S verifies that Pi,ci obtained from the opened com-
mitment is equal to Pi,0 or Pi,1, otherwise it halts and outputs (sid, ssid,⊥).

7. Employing a reduction given in [13], S chooses s′ random bits b0,1, . . . , b0,s′

and s′ random bits b1,1, . . . , b1,s′ such that b0 = b0,1 ⊕ . . . ⊕ b0,s′ and
b1 = b1,1 ⊕ . . .⊕ b1,s′ . For t = 1, . . . , s′, S encrypts each bit b0,t and b1,t with

the corresponding public key, computing b̂0,t = Enc(Pjt,0, b0,t) and b̂1,t =

Enc(Pjt,1, b1,t). S sends the pairs (sid, ssid, (b̂0,1, b̂1,1), . . . , (b̂0,s′ , b̂1,s′))
to R .

8. For each pair of ciphertexts (b̂0,t, b̂1,t) received, R computes bc,t =

DecME(skjt , b̂c,s′). Finally, R computes bc = bc,1 ⊕ . . . ⊕ bc,t, and outputs

bc. If DecME yields a decoding error for any b̂c,t, it outputs 0.

The same correctness analysis of protocol OTLO applies here.

4.1 Security

Theorem 2. Protocol OTME securely realizes the functionality F̂OT in the
FCRS-hybrid model under the McEliece assumptions with computational secu-
rity for both parties.

The proof of Theorem 2 is very similar to that of Theorem 1. The main difference
lies in that this protocol provides computational security for both parties. De-
spite this difference, similar simulators are constructed with added trivial steps
for handling interactive key generation. The simulators and security proofs are
left for the full version of this paper.

5 Conclusion

We introduce a general non-black-box construction of universally composable
oblivious transfer from lossy encryption and another construction based on the

94 B.M. David, A.C.A. Nascimento, and J. Müller-Quade

McEliece assumptions. The lossy encryption based protocol sheds light on previ-
ous results by Peikert et al. [32], showing that it is possible to construct univer-
sally composable oblivious transfer with statistical security for the sender with
a primitive that is weaker than dual-mode encryption. Our construction based
on the McEliece assumptions yields the first universally composable oblivious
transfer protocol based on coding assumptions, which are also resistant to cur-
rent quantum attacks. Although both assumptions are apparently unrelated,
the protocol structure and the proofs in both cases are similar. Therefore, it
raises the question of whether lossy encryption definitions may be generalized
to include constructions based on the McEliece assumptions.

References

1. Dinh, H., Moore, C., Russell, A.: McEliece and Niederreiter Cryptosystems that
Resist Quantum Fourier Sampling Attacks. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 761–779. Springer, Heidelberg (2011)

2. Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital
Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

3. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and Impossibility Results for En-
cryption and Commitment Secure under Selective Opening. In: Joux, A. (ed.) EU-
ROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

4. Bellare, M., Micali, S.: Non-interactive Oblivious Transfer and Applications. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, Heidel-
berg (1990)

5. Berlekamp, E.R., McEliece, R., van Tilborg, H.C.A.: On the inherent intractability
of certain coding problems (corresp). IEEE Transactions on Information Theory
(24) (1978)

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proceedings of the 42nd IEEE symposium on Foundations of Com-
puter Science, FOCS 2001, pp. 136–145. IEEE Computer Society, Washington, DC
(2001)

7. Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

8. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: Proceedings of the Thiry-Fourth Annual
ACM Symposium on Theory of Computing, STOC 2002, pp. 494–503. ACM, New
York (2002)

9. Canetti, R., Rabin, T.: Universal Composition with Joint State. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

10. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, Black-Box Construc-
tions of Adaptively Secure Protocols. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 387–402. Springer, Heidelberg (2009)

11. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

12. Crépeau, C., van de Graaf, J., Tapp, A.: Committed Oblivious Transfer and Pri-
vate Multi-Party Computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 110–123. Springer, Heidelberg (1995)

Universally Composable Oblivious Transfer from Lossy Encryption 95

13. Damg̊ard, I., Kilian, J., Salvail, L.: On the (im)possibility of Basing Oblivious
Transfer and Bit Commitment on Weakened Security Assumptions. In: Stern, J.
(ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999)

14. Damg̊ard, I., Nielsen, J.B., Orlandi, C.: Essentially Optimal Universally Com-
posable Oblivious Transfer. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS,
vol. 5461, pp. 318–335. Springer, Heidelberg (2009)

15. David, B.M., Nascimento, A.C.A.: Efficient fully simulatable oblivious transfer
from the mceliece assumptions. In: Information Theory Workshop (ITW), pp. 638–
642. IEEE (October 2011)

16. Dowsley, R., van de Graaf, J., Müller-Quade, J., Nascimento, A.C.A.: Oblivious
Transfer Based on the Mceliece Assumptions. In: Safavi-Naini, R. (ed.) ICITS 2008.
LNCS, vol. 5155, pp. 107–117. Springer, Heidelberg (2008)

17. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
In: CRYPTO 1982, pp. 205–210 (1982)

18. Faugère, J.C., Gauthier, V., Otmani, A., Perret, L., Tillich, J.P.: A distinguisher
for high rate mceliece cryptosystems. Cryptology ePrint Archive. Report 2010/331
(2010)

19. Garay, J.A., Mackenzie, P., Yang, K.: Efficient and Universally Composable Com-
mitted Oblivious Transfer and Applications. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 297–316. Springer, Heidelberg (2004)

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
1987: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Com-
puting, pp. 218–229. ACM, New York (1987)

21. Green, M., Hohenberger, S.: Universally Composable Adaptive Oblivious Transfer.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer,
Heidelberg (2008)

22. Haitner, I.: Semi-Honest to Malicious Oblivious Transfer—the Black-Box Way. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg
(2008)

23. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy Encryption: Con-
structions from General Assumptions and Efficient Selective Opening Chosen Ci-
phertext Security. In: Lee, D.H. (ed.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
70–88. Springer, Heidelberg (2011)

24. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for
secure computation. In: Proceedings of the Thirty-Eighth Annual ACM Sympo-
sium on Theory of Computing, STOC 2006, pp. 99–108. ACM, New York (2006),
http://doi.acm.org/10.1145/1132516.1132531

25. Jarecki, S., Shmatikov, V.: Efficient Two-Party Secure Computation on Commit-
ted Inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114.
Springer, Heidelberg (2007)

26. Kalai, Y.T.: Smooth Projective Hashing and Two-Message Oblivious Transfer. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer, Hei-
delberg (2005)

27. Kilian, J.: Founding crytpography on oblivious transfer. In: STOC 1988: Proceed-
ings of the Twentieth Annual ACM Symposium on Theory of Computing, pp.
20–31. ACM, New York (1988)

28. Lindell, A.Y.: Efficient Fully-Simulatable Oblivious Transfer. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 52–70. Springer, Heidelberg (2008)

29. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. dsn
progress report. In: Jet Propulsion Laboratories, CALTECH, pp. 42–44 (1978)

http://doi.acm.org/10.1145/1132516.1132531

96 B.M. David, A.C.A. Nascimento, and J. Müller-Quade

30. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the
Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2001, So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp. 448–457
(2001)

31. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the mceliece
cryptosystem without random oracles. Des. Codes Cryptography 49(1-3), 289–305
(2008)

32. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Com-
posable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

33. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Pro-
ceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC
2008, pp. 187–196. ACM, New York (2008)

34. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Memo TR-
81. Aiken Computation Laboratory, Harvard University (1981)

35. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: STOC 2005: Proceedings of the Thirty-Seventh Annual ACM Symposium on
Theory of Computing, pp. 84–93. ACM, New York (2005)

A Definitions and Basic Constructions

In this section we present further formal definitions of functionalities and a
rerandomization lossy encryption construction with a corresponding trapdoor
lossy key distinguishing algorithm.

A.1 Universal Composability

Security in the UC framework is formally defined as:2

Definition 1. A protocol π is said to UC-realize an ideal functionality F if, for
every adversary A, there exists a simulator S such that, for every environment
Z, the following holds:

EXECπ,A,Z
c≈ IDEALF ,S,Z

In this work we consider security against static adversaries, i.e. once a party is
corrupted it remains so during the whole execution. The security of our protocol
is proved in the Common Reference String (CRS) model (referred to as the
FCRS − hybrid model in [6]), where all parties are assumed to have access to a
common string generated in a setup phase before protocol execution. FCRS is
formally presented in Appendix A.1.

2 For the sake of brevity, we refer the reader to Canetti’s work [6] for further details
and definitions regarding the UC framework.

Universally Composable Oblivious Transfer from Lossy Encryption 97

Oblivious Transfer Ideal Functionality. The basic 1-out-of-2 oblivious
transfer functionality FOT as defined in [8] is presented bellow.

Functionality FOT

FOT interacts with a sender S and a receiver R.

• Upon receiving a message (sid, sender, b0, b1) from S, where each bi ∈ {0, 1}�,
store (b0, b1) (The length of the strings is fixed and known to all parties).

• Upon receiving a message (sid, receiver, c) from R, check if a
(sid, sender, · · ·) message was previously sent. If yes, send (sid, bc) to R and
(sid) to the adversary S and halt. If not, send nothing to R (but continue
running).

Similarly to the framework of [32], our protocols reuse the same CRS for
multiple oblivious transfer invocations. In order to achieve this, we employ the
same techniques of [32]. Namely, we ”wrap” each single execution of FOT with a
multi session extension F̂OT of the OT functionality, which handles the multiple
independent execution of the OT protocol and coordinates the interaction with
parties. The security of the resulting protocol is implied by the UC theorem
with joint state (JUC) [9], which states that any protocol π operating in the
FOT −hybrid model can be securely emulated in the real world by appropriately
composing π with a single execution of a protocol ρ that implements F̂OT .

Common Reference String Ideal Functionality. The following formal def-
inition of the ideal functionality FD

CRS is taken from [9].

Functionality FD
CRS

FD
CRS runs with parties (P1, ..., Pn) and is parametrized by an algorithm D.

• When receiving a message (sid, Pi, Pj) from Pi , let crs ← D(1n), send
(sid, crs) to Pi and send (crs, Pi, Pj) to the adversary. Next, when receiving
(sid, Pi, Pj) from Pj (and only Pj), send (sid, crs) to Pj and to the adversary,
and halt.

A.2 Semantically Secure McEliece Cryptosystem

The semantically secure McEliece cryptosystem [31] consists of a triplet of prob-
abilistic algorithms ME = (GenME , EncME , DecME) over a message space
M = {0, 1}k. The following definition has been taken from [31]:

– Key generation algorithm: The PPT key generation algorithm GenME(1
n)

works as follows:

98 B.M. David, A.C.A. Nascimento, and J. Müller-Quade

1. Generate a k × n generator matrix G′ of a binary Goppa code, where
we assume that there is an efficient error-correction algorithm Correct

which can always correct up to w errors.
2. Generate a k × k random non-singular matrix S.
3. Generate a n× n random permutation matrix P.
4. Set G = SG′P, and outputs pk = (G, w) and sk = (S,G′,P).

– The encryption algorithm: The PPT encryption algorithm EncME(pk,m, r)
takes a public-key pk, a plaintext m ∈ {0, 1}� and randomness r ∈ {0, 1}k−�

as input and outputs ciphertext c = [r|m]G ⊕ e, where e ∈ {0, 1}n is a
random vector of hamming weight w.

– The decryption algorithm: The polynomial-time algorithm DecME(sk, c)
works as follows:
1. Compute cP−1 = (([r|m]S)G′ ⊕ eP−1), where P−1 denotes the inverse

matrix of P.
2. Compute [r|m]S = Correct(cP−1).
3. Compute [r|m] = ([r|m]S)S−1.
4. Output m.

A.3 Lossy Encryption Constructions

First we present a formal definition of Lossy Encryption similar to the definition
given in [23]:

Definition 2. A lossy public-key encryption scheme is a tuple (Gen,Enc,Dec)
of efficient algorithms such that

– Gen(1λ, inj) outputs keys (pkinj , skinj), keys generated by Gen(1λ, inj) are
called injective keys.

– Gen(1λ, lossy) outputs keys (pklossy , sklossy), keys generated by
Gen(1λ, lossy) are called lossy keys.

– Enc(pk,m, r) is an encryption algorithm that takes as input a public key, a
plain-text message and randomness, outputting a ciphertext.

– Dec(sk, c) is a decryption algorithm that takes as input a secret key and
ciphertext, outputting a plain-text message.

Additionally, the algorithms must satisfy the following properties:

– Correctness on injective keys. For all plaintexts x ∈ X,

Pr
[
(pkinj , skinj)

$← Gen(1λ, inj); r
$← coins(Enc) : Dec(skinj , Enc(pkinj, x, r)) = x

]
= 1

– Indistinguishability of keys. In lossy mode, public keys are computa-
tionally indistinguishable from those in the injective mode given no previous
information. Specifically, if proj : (pk, sk) → pk is the projection map, then{

proj(Gen(1λ, inj))
} c≈

{
proj(Gen(1λ, lossy))

}

Universally Composable Oblivious Transfer from Lossy Encryption 99

– Lossiness of lossy keys. If (pklossy , sklossy)
$← Gen(1λ, lossy) , then

for all x0, x1 ∈ X, the statistical distance between the distributions
Enc(pklossy, x0, R) and Enc(pklossy, x1, R) is negligible in λ.

This definition differs from the one given in [23] in that we do not require open-
ability property. Moreover, note that this definition implies semantic security as
shown in [23].

B Distinguishing Lossy and Injective Keys: Constructions

In this section we construct efficient algorithms that distinguish lossy and injec-
tive public keys given the corresponding secret key.

Lossy Encryption from Re-Randomization. Here we consider the reran-
domization based lossy cryptosystem presented in [23].

– KD(sk, pk): First compute test ciphertext c = Enc(pk, 1). Then output
whatever Dec(sk, c) outputs.

It is clear that, if the public key pk is injective, this algorithm will output 1,
which is the information encrypted into the ciphertext. Otherwise, if the public
key is lossy, this algorithm will output 0, since the ciphertext generated by Enc
is always an encryption of 0 if the public key pk is lossy.

Lossy Encryption from DDH, QR and LWE. In this case we build
on the general construction from dual-mode encryption to simply utilize the
algorithm FindMessy to distinguish a lossy public key from an injective public
key. Algorithm KD is constructed as follows:

– KD(sk, pk): First, parse pk as (crs, pkdm, ρ) and sk as (t, skdm). Run
FindMessy(t, pkdm) obtaining b, output 0 if b = ρ and output 1 if b �= ρ.

Since ρ indicates the branch of pkdm that is used in encryption, if
FindMessy(t, pkdm) outputs ρ, then the public key pk = (crs, pkdm, ρ) is lossy.

Shannon Impossibility, Revisited

Yevgeniy Dodis

New York University
dodis@cs.nyu.edu

In this note we revisit the famous result of Shannon [Sha49] stating that any
encryption scheme with perfect security against computationally unbounded at-
tackers must have a secret key as long as the message. This result motivated
the introduction of modern encryption schemes, which are secure only against a
computationally bounded attacker, and allow some small (negligible) advantage
to such an attacker. It is a well known folklore that both such relaxations —
limiting the power of the attacker and allowing for some small advantage —
are necessary to overcome Shannon’s result. To our surprise, we could not find
a clean and well documented proof of this folklore belief. (In fact, two proofs
are required, each showing that only one of the two relaxations above is not
sufficient.) Most proofs we saw either made some limiting assumptions (e.g., en-
cryption is deterministic), or proved a much more complicated statement (e.g.,
beating Shannon’s bound implies the existence of one-way functions [IL89].)

In this note we rectify this situation, by presenting two clean, elementary ex-
tensions of Shannon’s impossibility result, showing that, in order to beat the
famous Shannon lower bound [Sha49] on key length for one-time-secure encryp-
tion, one must simultaneously restrict the attacker to be efficient, and also allow
the attacker to break the system with some non-zero (i.e., negligible) probability.
Unlike most prior proofs we have seen, our proof seamlessly handles probabilis-
tic encryption, small decryption error, and can be taught without any extra
background (e.g., notions of entropy, etc.) in a first lecture of an introductory
cryptography class.

For intellectual curiosity, we also discuss some “entropy extensions” of our
proof, and the relation between our “indistinguishability-based” proof and Shan-
non’s original “mutual-information-based” proof.

Organization. The main results are presented in Sections 1 and 2, giving the
main definitions and impossibility results. These are presented in a completely
elementary way (e.g., no notion of entropy is used). In Section 3 we give some
simple “entropy-based” extensions of our “indistinguishability-based” definition,
and in Section 4 we also present the “mutual-information-based” definitions, and
discuss their relation to “indistinguishability-based” notions.

1 Definitions

Some Notation. In general, we use capital letters for random variables, and
lower case letters for specific values; e.g., M,C, S denote appropriately defined
random messages, ciphertexts and keys, while m, c, s denote some specific value

A. Smith (Ed.): ICITS 2012, LNCS 7412, pp. 100–110, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Shannon Impossibility, Revisited 101

of those. When A is a probabilistic algorithm taking input x, we write Y ← A(x)
to denote the random variable A(x;R) for uniformly random R. When X itself
it a random variable, we write Y ← A(X). Finally, we use calligraphic letters
for message spaces; e.g., key space S and message space M.

Encryption. Let (Gen,Enc,Dec) be any encryption scheme with key space S
and message space M. The key generation algorithm Gen outputs a secret key
s chosen according to some key distribution S over S. In most common schemes
S is simply uniform over S, but our results hold for any key distribution S, so
we will not assume that S must be uniform.

The encryption algorithm Enc takes a key s ∈ S, a message m ∈ M, and
outputs ciphertext C ← Encs(m). We stress that we allow the encryption al-
gorithm Enc to be probabilistic, so C is really Encs(m;R) for random coins R.
Luckily, we structure our proofs in a way which will easily handle this case, with-
out explicitly talking about the random coins R. In particular, to simplify the
notation, when some encryption is computed inside some probability, we do not
explicitly put the choice or R under Pr; for example, PrS [EncS(m) = c] really
means PrS,R[EncS(m;R) = c]. We will assume that the message m is chosen
from some distribution M over M which is independent of the key distribution
S ← Gen().

The (possibly probabilistic) decryption algorithm Dec takes a ciphertext c and
a key s and outputs the decryption M̃ ← Decs(c). Ordinarily, we require perfect
correctness stating that for any m ∈ M and s ∈ S we have Decs(Encs(m)) = m.
However, since we are proving a lower bound, we relax the correctness guarantee
to allow for some small decryption error γ.

Definition 1. An encryption scheme (Gen,Enc,Dec) is called (1−γ)-correct on
M if

Pr
S,M

[DecS(EncS(M)) = M] ≥ 1− γ (1)

We say that (Gen,Enc,Dec) is (1 − γ)-correct (in general) if it is (1 − γ)-
correct on every message distribution M ; equivalently, for any m ∈ M,
PrS [DecS(EncS(m)) = m] ≥ 1− γ.

Security. There are many equivalent formulations of “perfect” Shannon’s secu-
rity, when the attacker Eve is allowed to be computationally unbounded, and the
“advantage” of any such Eve must be 0. Roughly, these definitions can be par-
titioned into two types. Some, including Shannon’s original notion [Sha49], use
the notions of Shannon’s entropy and mutual information (see Section 4). While
elegant and easy to state, it is not obvious how to relax such notions to com-
putationally bounded attackers.1 Other definitions, inspired by the Goldwasser-
Micali [GM84] notions of semantic security and indistinguishability, are based
on statistical distance. Such definitions have a clean and natural extensions to
both computationally bounded attackers and non-zero advantage. Therefore, our

1 However, in Section 4 we will propose a natural relaxation to small non-zero
advantage.

102 Y. Dodis

definition below will be of this type. Since we are proving a lower bound, we will
state what we feel is the weakest such definition. Of course, since our lower
bound will be so strong even for such “weak-looking” definition, it will imply
lower bounds for other, stronger definitions.

Definition 2. An encryption scheme (Gen,Enc,Dec) is called (t, ε)-secure on
message distribution M if for there exists a random variable Y (independent of
M) such that for any (possibly probabilistic) adversary Eve running in time at
most t, it holds

| Pr
S,M

[Eve(M,EncS(M)) = 1]− Pr
S,Y

[Eve(M,Y) = 1] | ≤ ε (2)

An encryption scheme (Gen,Enc,Dec) is called (t, ε)-secure if it is (t, ε)-secure
on all message distributions M . When Eve is allowed to be computationally
unbounded (e.g., t = ∞), we say that (Gen,Enc,Dec) is ε-secure.

1.1 Few Remarks on the Definition

We make a few remarks on our definition. These remarks can be skipped by
readers who already find the definition to be natural (and such readers can
directly move to Section 2).

Intuitively, our definition states that whatever bit of information about M
Eve could derive from the actual ciphertext C, she could have also derived from
some random variable Y which is independent of M . Thus, Eve did not learn
any new information from the ciphertext which she could not have learned from
simply knowing the a-priori message distribution M (and some side information
Y independent of M). However, while restricting Eve to run in time at most t,
we do not make any restrictions on the complexity of sampling this independent
distribution Y , and do not “charge” Eve for sampling Y . In particular, we do
not insist on setting Y ← EncS(M

′), where M ′ is a fresh independent sample of
M . Similarly, for general (t, ε)-security, we allow different Y ’s for different M ’s.
Once again, such relaxations are done to make our lower bound stronger.

Also notice that the above definition is trivially true for any “singleton” dis-
tribution M ← m, for any m ∈ M, and seems getting harder and harder as
M becomes more and more “well-spread” (see Theorem 2 how this intuition
translates to our lower bound). Still, even for the most “well-spread” uniform
distribution M over M, although we will see that our definition implies a strong
bound on the size of the key space (Theorem 1), the definition is still noticeably
weaker than general (t, ε)-security for all message distributions. For example,
modifying a secure encryption (such as one-time pad) to be identity on some
fixed m ∈ M, still leaves the encryption very secure on the uniform distribu-
tion, while making the encryption of m easily distinguishable from encryptions
of all other messages m′. In contrast, the general definition of security against
all distributions is easily seen to be equivalent (ignoring factor of 2 in ε) to se-
curity against all distributions Mm,m′ , for all m,m′ ∈ M, where each Mm,m′ is
uniform over a pair of messages {m,m′}. In turn, the latter definition is simply

Shannon Impossibility, Revisited 103

the classical definition of (t, ε)-indistinguishability of Goldwasser-Micali [GM84],
which states that for any messages m,m′ ∈ M, and any adversary Eve running
in time at most t, it holds

|Pr
S
[Eve(EncS(m)) = 1]− Pr

S
[Eve(EncS(m

′)) = 1]| ≤ ε (3)

We refer to [IO11] for discussions of several other nearly equivalent forms of
“indistinguishability-based” security (such as semantic security) for one-time
symmetric-key encryption, and stress that our lower bound easily holds for all
such notions. We also discuss a natural “mutual-information-based” definition
in Section 4.

2 Main Result

Recall the classical Shannon lower bound [Sha49] states that (∞, 0)-security
implies |S| ≥ |M|. In fact, this conclusion holds even if M is restricted to be
the uniform distribution over M. Here we show an elegant extension of this
result confirming that, in order to beat the Shannon bound in a non-trivial way,
one must simultaneously restrict Eve to be efficient, as well as allow for some
non-zero (but possibly negligible) probability ε of security failure. Just like the
Shannon’s original bound, our bounds will already follow by restricting M to be
the uniform distribution. Our proof also handles decryption error γ.

Theorem 1. Let M be the uniform distribution over M, and assume
(Gen,Enc,Dec) is (1 − γ)-correct on M . Then:

– Small error needed. Let v denote maximum bit length of a plaintext plus
ciphertext.
If (Gen,Enc,Dec) is (v, 0)-secure on M , then |S| ≥ |M|(1− γ).

– Small time needed. Let d denote maximum decryption time.
If (Gen,Enc,Dec) is (|S|d, ε)-secure on M , then |S| ≥ |M|(1− ε− γ).

Proof of First Part. Let Y be the distribution on ciphertexts guaranteed by
Definition 2, so that Equation (2) holds with ε = 0 for any Eve running in time
at most v. We claim that this implies that the joint distribution (M,EncS(M))
is identical to (M,Y), where Y is independent from M :

(M,EncS(M)) ≡ (M,Y) (4)

To show this formally, for any fixed message m ∈ M and ciphertext c, consider
the following Evem,c(m

′, c′) running in time t = v:

Evem,c(m
′, c′): output 1 if and only if m′ = m and c′ = c.

Applying Equation (2) with ε = 0 to Evem,c, we get

Pr
S,M

[M = m and EncS(M)) = c] = Pr
M,Y

[M = m and Y = c]

104 Y. Dodis

Using the fact thatM is uniform and independent from Y , the above is equivalent
to

Pr
S
[EncS(m)) = c] = Pr

Y
[Y = c]

Since the above holds for all m and c, the distribution EncS(m) ≡ Y for all m ∈
M, which means that the ciphertext distribution is the same for all messages. In
particular, going back to the uniform distribution M , we have (M,EncS(M)) ≡
(M,Y), as claimed in Equation (4).2

Now, pick a fresh uniformly random key S′ and look at3

Δ
def
= Pr

M,S′,Y
[DecS′(Y) = M] (5)

On the one hand, it is clear that

Δ ≤ 1

|M| (6)

since M is uniform and DecS′(Y) is independent of M . On the other hand, we
know that the distribution (M,Y) is identical to (M,EncS(M)). Hence, we can
rewrite Equation (5) as

Δ = Pr
S,M,S′

[DecS′(EncS(M)) = M]

≥ Pr[S = S′] · Pr
M,S

[DecS(EncS(M)) = M] (7)

≥ 1

|S| · (1− γ) (8)

Here Equation (7) followed from the fact that the distribution of S conditioned
on the event S = S′ is the same as the original distribution S, since S′ is uniform.
On the other hand, Equation (8) followed from Equation (1) and, again, the fact
that S′ is uniform, so Pr[S = S′] = 1/|S|.

Comparing the resulting inequality above with Equation (6), we get 1
|S| · (1−

γ) ≤ Δ ≤ 1
|M| , which implies |S| ≥ (1− γ)|M|.

Proof of Second Part. We show that (|S|d, ε)-security implies |S| ≥ |M|(1− ε−
γ). As before, let Y be the ciphertext distribution guaranteed by Definition 2.
Consider the following attacker Eve of complexity t = |S|d:

Eve(m, c): Run Decs(c) for all s ∈ S. Output 1 if and only if at least one
answer was m.

2 In essence, we showed a more general fact: to conclude that two distributions A and
B are identical, it is sufficient to show that they are (t, 0)-indistinguishable, for t
equal to the maximum description length of any element in the support of A and B.

3 Note, if S ← Gen() is not uniform, S′ has a different distribution than S.

Shannon Impossibility, Revisited 105

Now, let us compute both probabilities when we apply Equation (2) to this Eve.
First,

Pr
S,M

[Eve(M,EncS(M)) = 1] = Pr
S,M

[∃s s.t. Decs(EncS(M)) = M]

≥ Pr
S,M

[DecS(EncS(M)) = M]

≥ 1− γ

where the last inequality used Equation (1). By Equation (2), we get

Pr
M,Y

[Eve(M,Y) = 1] ≥ Pr
S,M

[Eve(M,EncS(M)) = 1]− ε ≥ 1− ε− γ (9)

On the other hand,

Pr
M,Y

[Eve(M,Y) = 1] = Pr
M,Y

[∃s s.t. Decs(Y) = M]

≤
∑
s

Pr
M,Y

[Decs(Y) = M]

However, M is uniform over M and, for any s ∈ S, Decs(Y) is independent of
M . Thus, Pr[M = Decs(Y)] ≤ 1

|M| , which means that

Pr
M,Y

[Eve(M,Y)) = 1] ≤
∑
s

1

|M| =
|S|
|M| (10)

Combining Equation (9) and Equation (10), we get 1 − ε − γ ≤ |S|
|M| or |S| ≥

|M|(1− ε− γ).

Tightness. Both bounds are nearly tight, which can be shown by tweaking the
generalization of the one-time pad (OTP) encryption for general cardinality N
message spaces (not just the power of 2, which can be accomplished by addition
modulo N). For simplicity, we only do it for two special cases ε = 0 and γ = 0,
leaving the common generalization as a (tedious) exercise. For both cases we will
actually satisfy the stronger (t, ε)-indistinguishability given by Equation (3).

First, assume ε = 0. Take any |M| of cardinality N , and any subset M0 ⊆ M
of cardinality N(1 − γ). Start with the OTP scheme over M0 (so that |S| =
N(1 − γ) as well), and enlarge it to all of M by taking any fixed m0 ∈ M0

and defining Encs(m1) = Encs(m0), for m1 ∈ M\M0. The addition of these γN
messages (which decrypt incorrectly) to our OTP does not affect the security of
the scheme (since Enc(m0) is perfectly secure), but creates a decryption error
with probability γ, and with |S| = |M|(1− γ).

Second, assume γ = 0. Now, for any M of cardinality N , take the OTP for
M (so that |S| = N), and simply remove εN/2 keys from S, defining the actual
set S0 of N(1− ε/2) keys, and sampling a random key s from S0. To argue the
Ω(ε)-security of this scheme, one can imagine sampling a key s ← S0 by first
sampling the key s ← S and claiming that Eve unconditionally won the game if

106 Y. Dodis

s ∈ S\S0. Equivalently, we can always actually run Eve on a fully uniform key
s from S, but then declare Eve victorious anyway if s ∈ S\S0. Clearly, when s
is fully uniform, Eve has probability exactly 1/2 telling apart encryptions of m0

from m1, so now her probability is at most 1/2 + ε/2, creating distinguishing
advantage at most ε with |S0| = |M|(1− ε/2).

3 Some Extensions

The result of the previous section was completely elementary, did not explicitly
use any technical notions such as entropy, statistical distance, etc., and could
be easily taught in the first lecture of an undergraduate class (especially for the
case of perfect correctness γ = 0). In this section we make several elementary
“entropy-extensions” of our main result.

3.1 Extension to General M

We observe that Theorem 1 easily generalizes to arbitrary message distributions
M (as opposed to the uniform distribution), as follows. We define the min-

entropy of M to be H∞(M)
def
= − log(maxm Pr[M = m]). In particular, for any

random variable M ′ independent of M , we have Pr[M ′ = M] ≤ 2−H∞(M). Ex-
amining now the proofs of both parts of Theorem 1, we see that the only places
where the uniformity of M was used were Equation (6) and Equation (10). In
both cases, we needed to upped bound Pr[M ′ = M] for some probability distri-
bution M ′ which was independent of M (e.g., M ′ = DecS′(Y) for Equation (6)
and M ′ = Decs(Y) for Equation (10)). Hence, we get the following analog of
Theorem 1 where |M| is replaced by 2H∞(M).

Theorem 2. Let M be the any distribution over M, and assume (Gen,Enc,Dec)
is (1− γ)-correct on M . Then:

– Small error needed. Let v denote maximum bit length of a plaintext plus
ciphertext.
If (Gen,Enc,Dec) is (v, 0)-secure on M , then |S| ≥ 2H∞(M) · (1− γ).

– Small time needed. Let d denote maximum decryption time.
If (Gen,Enc,Dec) is (|S|d, ε)-secure on M , then |S| ≥ 2H∞(M) · (1− ε− γ).

Notice, this bound is tight, in general, by takingM to be uniform over some subset
M′ of M of cardinality 2H∞(M), and then doing the OTP scheme overM′.

3.2 Slightly Stronger Bound for Perfect Completeness and Perfect
Security

Recall, the bounds of Theorem 1 (and more general Theorem 2) held for any key
distribution S ← Gen(), but only gave lower bounds of the cardinality of S (or,
more generally, on cardinality of the support set of S). In contrast, as we recap
in Section 4 below, Shannon’s original bound [Sha49] gave the lower bound on

Shannon Impossibility, Revisited 107

the Shannon entropy H1(S) of S, which could be stronger for sufficiently non-
uniform S. Here we observe that our proof for the first part of Theorem 1 can be
strengthened to give the lower bound on the min-entropy H∞(S) for the case of
perfect correctness γ = 0. For elegance, we right away state the improved bound
for general message distribution M as well.

Theorem 3. Let M be the any distribution over M, and assume (Gen,Enc,Dec)
is 1-correct on M . Let v denote maximum bit length of a plaintext plus ciphertext.
Then, if (Gen,Enc,Dec) is (v, 0)-secure on M , then H∞(S) ≥ H∞(M). In partic-
ular, if (Gen,Enc,Dec) is (v, 0)-secure on uniform M , we have H∞(S) ≥ log |M|.

Proof: We follow the same proof as in Theorem 1 (and its extension to general
M in Theorem 2), except we define the value S′ to be the most likely value
s of the key S, instead of being uniform. Namely, we set S′ = s satisfying
Pr[S = s] = 2−H∞(S). Then, the value Δ becomes

Δ
def
= Pr

M,Y
[Decs(Y) = M]

We can argue, as before, that Δ ≤ 2−H∞(M), sinceM is independent of Decs(Y).
On the other hand, since the distribution (M,Y) is identical to (M,EncS(M))
and we have perfect completeness, we get

Δ = Pr
S,M

[Decs(EncS(M)) = M]

≥ Pr[S = s] · Pr
M
[Decs(Encs(M)) = M]

≥ 2−H∞(S) · 1 (11)

where Equation (11) used the definition of s and the perfect correctness of the
encryption. Combining the two bounds on Δ, we get 2−H∞(S) ≤ Δ ≤ 2−H∞(M),
which implies H∞(S) ≥ H∞(M).

As we recap in Section 4 below, when ε = 0 our definition is equivalent to the
original definition of Shannon [Sha49], who showed the bound H1(S) ≥ log |M|,
where H1 is Shannon’s entropy. Since log |S| ≥ H1(S) ≥ H∞(S), we can view
the last bound of Theorem 3 as a nice strengthening of Shannon’s original bound
for perfect security (and perfect correctness):4 not only H1(S) ≥ log |M|, but
also H∞(S) ≥ log |M|.

4 Bounds for Mutual Information Based Definition

The Shannon entropy of X is defined as H1(X)
def
= Ex←X [− logPr[X = x]]. We

also define conditional Shannon entropy of a random variable X conditioned on
another random variable Z by

4 Actually, our proof above extends to imperfect correctness, as long as we require
that PrM [Decs(Encs(M)) = M] ≥ 1 − γ, for all s ∈ S , instead of only on average
over s ← S.

108 Y. Dodis

H1(X |Z)
def
= E(x,z)←(X,Z) [− log Pr[X = x|Z = z]]

where Ez←Z denotes the expected value over z ← Z. It is well known that

H1(X) ≥ H1(X |Z) ≥ 0. Themutual information betweenX and Y is I(X ;Y)
def
=

H1(X)−H1(X |Y). It is well known that I(X ;Y) = I(Y ;X) ≥ 0. The conditional
mutual information of X and Y given Z is defined analogously. We assume the
reader is familiar with other elementary facts about Shannon entropy and mutual
information (such as the chain rule used below); see [CT06].

Let (Gen,Enc,Dec) be encryption scheme, S be it key distribution Gen(), M
be some message distribution and C ← EncS(M). We now give the following
natural definitions generalizing the original definitions of [Sha49] to imperfect
correctness and security.

Definition 3. An encryption scheme (Gen,Enc,Dec) is called (1− γ′)-Shannon
correct on M if

H1(M |DecS(C)) ≤ γ′

(Gen,Enc,Dec) is (1− γ′)-Shannon correct (in general) if it is (1− γ′)-Shannon
correct on all message distributions M .

An encryption scheme (Gen,Enc,Dec) is called ε′-Shannon secure on M if

I(M ;C) ≤ ε′

(Gen,Enc,Dec) is ε′-Shannon secure (in general) if it is ε′-Shannon secure on
all message distributions M .

We start with the following Lemma, translating the elegant “proof-by-picture”
exposition of Shannon’s bound by Wolf [Wol98] (for ε′ = 0) into a concrete
inequality. (We suspect the Lemma is well-known, but we could not locate an
explicit reference.)

Lemma 1. For any (possibly correlated) distributions M,S,C, we have

H1(S) ≥ H1(M)−H1(M |(S,C))− I(M ;C) (12)

Proof:

H1(M) = H1(M |(S,C)) + I(M ; (S,C))

= H1(M |(S,C)) + I(M ;C) + I(M ;S|C)

= H1(M |(S,C)) + I(M ;C) +H1(S|C)−H1(S|(M,C))

≤ H1(M |(S,C)) + I(M ;C) +H1(S)

where the equalities used the definitions and the chain rule, and the last inequal-
ity used the facts that H1(S|C) ≤ H1(S) and H1(S|(M,C)) ≥ 0.

Shannon Impossibility, Revisited 109

As a corollary, we get the following straightforward extension of Shannon’s result:

Theorem 4. If (Gen,Enc,Dec) is ε′-Shannon secure and (1− γ′)-Shannon cor-
rect on M , then

H1(S) ≥ H1(M)− γ′ − ε′ (13)

In particular, if M is the uniform distribution over M, then H1(S) ≥ log |M|−
γ′ − ε′.

Proof: Follows from Equation (12) and H1(M |(S,C)) ≤ H1(M |DecS(C)) ≤ γ′.

Relation to Indistinguishability Notions. Here we relate the (1 − γ′)-
Shannon correctness and ε′-Shannon security to the “indistinguishability-based”
notions of (1 − γ)-correctness and ε-security5 from Section 1. Using Fano’s in-
equality (see [CT06]), we can relate γ′ to γ as follows:

γ′ ≤ h(γ) + γ · (log |M| − 1) (14)

where h is binary entropy function h(x) = −x log2 x− (1−x) log2(1−x). Unfor-
tunately, no meaningful converse relation can be made, since changing DecS(C)
to return M + 1 instead of M has 0-correctness and 1-Shannon correctness.6

More interestingly, to relate Shannon security on M with indistinguishability
security on M , we use the following result (implicitly) proven by Bellare et
al. [BTV12] using Pinsker’s inequality (see [CT06]).

Lemma 2 ([BTV12]). For any (possibly correlated) distributions M,C over
some spaces M and C, let7

ε = SD((M,C);M × C)

where M×C is the product distribution of the independent marginal distributions
M and C. Then,

2ε2 ≤ I(M ;C) ≤ 2ε · log(|M|/ε) (15)

In particular, notice that our notion of ε-security on M from Definition 2 is
essentially equivalent to SD((M,C);M × C) ≤ ε.8 Thus, ε′-Shannon security

5 Here we set t =∞, as it is not clear what is the analog of time for Shannon’s security.
6 Because of this, in contrast to standard correctness, the notion of “Shannon-
correctness” is not a very useful notion, and we defined it only because the quantity
H1(M |DecS(C)) naturally came up in the proof. Luckily, Equation (14) shows that
(1− γ)-correctness implies a decent bound on γ′ as well.

7 The statistical distance SD(X; Y) between two random variables X,Y is defined by:

SD(X, Y)
def
=

1

2

∑
x

|Pr[X = x]− Pr[Y = x]| = max
Eve
|Pr[Eve(X) = 1]− Pr[Eve(Y) = 1]|

8 Up to a factor of 2 in ε since Y might not be equal to C. I.e., ε-security implies
2ε bound on the statistical distance above, and is implied by the ε bound on that
distance.

110 Y. Dodis

on M implies
√
2ε′-security on M . Conversely, ε-security on M implies (2ε ·

log(|M|/ε))-Shannon security on M . Hence, ignoring efficiency issues for Eve
and the square root degradation on ε′, Shannon starts with stronger security
assumption than we do, but also gets slightly stronger conclusion: bound on
H1(S), not just |S|. However, for perfect security ε = 0 we are still slightly
stronger by Theorem 3, getting a bound on H∞(S), and not just H1(S).

Acknowledgments. The author would like to thank Dario Fiore, Stefano Tes-
saro and Daniel Wichs for useful discussions.

References

[BTV12] Bellare, M., Tessaro, S., Vardy, A.: Semantic Security for the Wiretap
Channel. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp.
294–311. Springer, Heidelberg (2012); Earlier version available at Cryptology
ePrint Archive: Report 2012/015

[CT06] Cover, T.M., Thomas, J.A.: Elements of information theory, 2nd edn. Wiley
(2006)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. In: JCSS, vol. 28(2), pp.
270–299 (1984)

[IL89] Impagliazzo, R., Luby, M.: One-way Functions are Essential for Complexity
Based Cryptography. In: FOCS 1989, pp. 230–235 (1989)

[IO11] Iwamoto, M., Ohta, K.: Security Notions for Information Theoretically Secure
Encryptions. In: ISIT 2011 (2011), http://arxiv.org/abs/1106.1731

[Sha49] Shannon, C.: Communication Theory of Secrecy systems. Bell Systems Tech-
nical J. 28, 656–715 (1949); Note: The material in this paper appeared originally
in a confidential report ‘A Mathematical Theory of Cryptography’, which has now
been declassified (September 1, 1945)

[Wol98] Wolf, S.: Unconditional Security in Cryptography. In: Damg̊ard, I. (ed.) EEF
School 1998. LNCS, vol. 1561, pp. 217–250. Springer, Heidelberg (1999)

http://arxiv.org/abs/1106.1731

Statistically Secure Linear-Rate Dimension

Extension for Oblivious Affine Function
Evaluation

Nico Döttling�, Daniel Kraschewski, and Jörn Müller-Quade

Institute of Cryptography and Security, Department of Informatics,
Karlsruhe Institute of Technology, Germany

{doettling,kraschewski,mueller-quade}@kit.edu

Abstract. Consider the following natural generalization of the well-
known Oblivious Transfer (OT) primitive, which we call Oblivious Affine
Function Evaluation (OAFE): Given some finite vector space IFk

q , a desig-
nated sender party can specify an arbitrary affine function f : IFq → IFk

q ,
such that a designated receiver party learns f(x) for a single argument
x ∈ IFq of its choice. This primitive is of particular interest, since analo-
gously to the construction of garbled boolean circuits based on OT one
can construct garbled arithmetic circuits based on OAFE.
In this work we treat the quite natural question, if general IFk

q -OAFE
can be efficiently reduced to IFq-OAFE (i.e. the sender only inputs an
affine function f : IFq → IFq). The analogous question for OT has previ-
ously been answered positively, but the respective construction turns out
to be not applicable to OAFE due to an unobvious, yet non-artificial se-
curity problem. Nonetheless, we are able to provide an efficient,
information-theoretically secure reduction along with a formal security
proof based on some specific algebraic properties of random IFq-matrices.

Keywords: secure function evaluation, information-theoretic reductions,
oblivious transfer, universal composability, garbled arithmetic circuits.

1 Introduction

Secure Multi-Party Computation is a cryptographic research area, whose ori-
gins go back to Yao’s Millionaire’s Problem [Yao82]. Since then, an increas-
ing research community has found numerous constructions for cryptographically
secure computations, e.g. [Yao86, GMW87, Kil88, GL91, CvdGT95, CLOS02,
IPS08, GIS+10] to name only a few. The Oblivious Transfer (OT) primitive in-
troduced by [Rab81] has gained special interest in this context, since it turned
out to be complete, i.e. taking OT for granted one can securely implement any
multi-party computation [Yao86, Kil88, CvdGT95, IPS08]. OT in its currently
most used variant allows a designated sender party to provide an input tuple
(s0, s1), such that a designated receiver party can arbitrarily choose to learn one

� Supported by IBM Research & Development Germany within the HomER project.

A. Smith (Ed.): ICITS 2012, LNCS 7412, pp. 111–128, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

112 N. Döttling, D. Kraschewski, and J. Müller-Quade

of them, say sc. The crucial security features are that the sender does not learn
c and the receiver stays oblivious of s1−c. To make the bit length of s0 and s1
explicit, we write k-bit-OT.

In this paper we deal with a natural generalization of OT, which we call Obliv-
ious Affine Function Evaluation (OAFE). This primitive allows the sender party
to specify an affine function f , such that the receiver party can evaluate f oblivi-
ously on a single argument x. More specifically, OAFE is parametrized by a finite
vector space IFk

q , so that the sender chooses a, b ∈ IFk
q and the receiver learns

ax + b for a single x ∈ IFq of his choice. To make the input domains explicit,

we write IFk
q -OAFE. The IFq-OAFE primitive, i.e. k = 1, can also be consid-

ered a special case of Oblivious Polynomial Evaluation [NP99]. In this context,
IFq-OAFE is occasionally referred to as Oblivious Linear Function Evaluation
(OLFE) in the literature.

Though way less present in the literature than OT, the OAFE primitive can
be considered similarly important. Not only can IFk

2-OAFE and k-bit-OT be
transformed into each other without any overhead (cf. Section 3.1), but IFk

q -
OAFE also allows for a very interesting alternative to the standard construction
of Yao’s Garbled Circuits. The latter transforms any given boolean circuit into
a set of tables (one for each gate) with bit values replaced by random labels, so
that OT can be used to transfer the keys needed for a single evaluation on a
circuit input selected by the receiver [Yao86]. The OAFE based alternative are
so-called garbled arithmetic circuits [CFIK03, AIK11], that amongst other issues
exhibit the following differences to the construction of [Yao86]:

– The circuit to be garbled is not consisting of boolean gates (AND, OR,
XOR, . . .), but arithmetic operations (specifically, additions and multiplica-
tions) over some finite field IFq.

– The concept of tables with random labels standing for bit values is replaced
by affine functions that map circuit inputs to randomly looking matrices.
(Here, OAFE comes into play.)

1.1 Our Contribution

Yao’s Garbled Circuits are based on k-bit-OT with k increasing polynomially in
the security parameter. Analogously, the general construction of garbled arith-
metic circuits builds on IFk

q -OAFE, where k and/or log q may increase polynomi-
ally in the security parameter. This raises the natural question, whether one can
efficiently reduce k-bit-OT and IFk

q -OAFE to the respective weaker variants 1-bit-
OT and IFq-OAFE. For OT this question was answered positively by [BCS96].

Our contribution is a similar result for OAFE. The interesting part of our
contribution is not so much the protocol construction itself, but the security
proof. The high level protocol idea resembles well-known standard techniques,
but for the security proof we need some completely new technical tools. We also
show that known standard tools do not work. In particular, we show that directly
applying the construction of [BCS96] to IFq-OAFE with large filed size q is
inherently insecure in an unobvious way and we argue that the only other known

Statistically Secure Linear-Rate Dimension Extension 113

information-theoretic standard approach, namely 2-universal hashing [ILL89],
does not help either.

Thus our contribution is twofold. Firstly, we investigate what goes wrong when
one tries to reduce IFk

q -OAFE to IFq-OAFE by known techniques. Interestingly,
the occurring problems are neither obvious nor artificial. Secondly, we develop
some novel algebraic/combinatorial tools (in particular, we verify several handy
properties of random IFq-matrices) by that one can easily prove that a slight
modification of the construction of [BCS96] yields a secure reduction approach
for IFk

q -OAFE to O(k) instances of IFq-OAFE. Though the protocol itself is
rather self-suggesting, we have to employ for the security proof some tricky use
of linear algebra.

Certainly, it was already known before, that using general completeness results
[Kil91, Kil00, KMQ11] one can reduce IFk

q -OAFE to IFq-OAFE. However, such an
approach would first implement OT on top of IFq-OAFE and then exploit com-
pleteness of OT, resulting in some polynomial reduction rate. In contrast, our ap-
proach is direct and to the best of our knowledge we provide the first construction
with reduction rate linear in the dimension k regardless of the field size q.

1.2 Related Work

We see our work closely related to the literature on information-theoretic tools
and reduction results. Most notably, our work is inspired by [BCS96], where k-
bit-OT is securely reduced to O(k) instances of 1-bit-OT using a non-interactive
protocol based on intersecting codes. The most appealing feature of this construc-
tion is its non-interactiveness, due to that it is also applicable to non-interactive
OT variants, e.g. implemented by hardware tokens [GKR08, GIS+10]. We also
make use of the results of [WW06], where techniques for storing and/or reversing
OT and IFq-OAFE (there called OLFE) are provided as well as reductions to
randomized variants of these primitives.

Similar in mind but not concretely related to our work are other information-
theoretic reduction results, like [CMW05, IKO+11] or [DKMQ11], and the clas-
sic literature on privacy amplification and randomness extraction, e.g. [BBR88,
ILL89, BBCM95].

2 Framework

2.1 Notion of Security

We state and prove our results in the Universal-Composability (UC) framework
[Can01]. In this framework security is defined by comparison of an ideal model
and a real model. The protocol of interest is running in the latter, where an
adversaryA coordinates the behavior of all corrupted parties. In the ideal model,
which is secure by definition, an ideal functionality F implements the desired
protocol task and a simulator S tries to mimic the actions of A. An environment
Z is plugged either to the ideal or the real model and has to guess, which model
it is actually plugged to. When Z cannot distinguish between ideal and real

114 N. Döttling, D. Kraschewski, and J. Müller-Quade

Functionality F(q,k)
OAFE

Parametrized by a finite field size q and a dimension k, which may each depend on
the security parameter.

– Upon receiving input (a, b) ∈ IFk
q × IFk

q from Alice, verify that there is no stored
input tuple from Alice, yet; else ignore that input. Next, record (a, b) and send
(processing, Alice) to the adversary.

– Upon receiving input x ∈ IFq from Bob, verify that there is no stored input from
Bob, yet; else ignore that input. Next, record x and send (processing, Bob) to
the adversary.

– Upon receiving a message (delivery, Alice) from the adversary, verify that Alice
and Bob have both already provided some input; else ignore that message. Next,
send an empty message to Alice. Henceforth, never again send any message to
Alice.

– Upon receiving a message (delivery, Bob) from the adversary, verify that Alice
and Bob have both already provided some input; else ignore that message. Next,
compute y ← ax+b and send y to Bob. Henceforth, never again send any message
to Bob.

When a party is corrupted, the adversary is granted unrestricted access to the channel
between F(q,k)

OAFE and the corrupted party, including the ability of deleting and/or
forging arbitrary messages.

Fig. 1. The ideal IFk
q -OAFE functionality

model, the protocol is considered UC-secure. Since our results are of information-
theoretic nature, the adversarial entities A and S and the environment Z are
computationally unbounded. For further details we refer to [Can01].

2.2 The IFk
q-OAFE Primitive in the UC Framework

Security in the UC framework is only defined relatively to some ideal functional-

ity F . Thus, we need to define some ideal functionality F (q,k)
OAFE that represents the

IFk
q -OAFE primitive. We present the formal definition in Figure 1, but through-

out the rest of this paper we will prefer the more graphic description given by
Figure 2. Moreover, for better readability we will henceforth mostly omit the
grayed parts of Figure 2.

IFk
q -OAFE

IFk
q � a

IFk
q � b

empty

x ∈ IFq

ax+ b y ∈ IFk
q

Fig. 2. Graphical representation of the IFk
q -OAFE primitive

Statistically Secure Linear-Rate Dimension Extension 115

3 Satistically UC-secure IFk
q-OAFE from O(k) Instances

of IFq-OAFE

3.1 The Basic Protocol Idea and Why It Does Not Work

In [BCS96] a very handy construction for 2-bit-OT from three instances of 1-
bit-OT was proposed, which we briefly recap for the sake of self-containedness.
Given its 2-bit-OT inputs s0, s1 ∈ IF2

2, the sender party picks six random bits
σ1, σ̄1, σ2, σ̄2, σ3, σ̄3 ∈ IF2 subject to the following condition:

(
1 1 0
0 1 1

)
·

⎛⎝σ1 σ̄1

σ2 σ̄2

σ3 σ̄3

⎞⎠ =
(
s0 s1

)
Then he sends the tuples (σi, σ̄i) to the receiver party via 1-bit-OT. The receiver
party always inputs its choice bit c into the underlying 1-bit-OT instances, thus
learning some τ1, τ2, τ3, and computes and outputs:

sc =

(
1 1 0
0 1 1

)
·

⎛⎝ τ1
τ2
τ3

⎞⎠
It is pretty obvious that this protocol is perfectly secure: A corrupted sender in
fact cannot deviate from the protocol other than just changing his input tuple
(s0, s1), and even a corrupted receiver has to query at least two of the three
underlying 1-bit-OT instances with the same choice bit c, whereby he learns
information-theoretically nothing about s1−c. Furthermore, this protocol can be
directly adapted for construction of k-bit-OT from three instances of k

2 -bit-OT,
and last not least in [BCS96] analogous constructions are presented for k-bit-OT
from O(k) instances of 1-bit-OT.

Noting that k-bit-OT and IFk
2-OAFE can be reduced to each other just by local

computation (q.v. Figure 3), it might seem a good idea to adapt the techniques
of [BCS96] for constructing IFk

q -OAFE from some given IFq-OAFE instances.
The resulting protocol scheme is depicted in Figure 4. Indeed, this approach
works correctly, if only the matrix H has full rank. Further, it is perfectly secure
against any corrupted sender. Moreover, if q = 2, the results of [BCS96] do
directly carry over and we can chooseH appropriately, so that we get also perfect
security against corrupted receivers. Surprisingly, if q grows super-polynomially

k-bit-OT

OAFE from OT

s0b
s1a+ b

c x

sc ax+ b

IFk
2 -OAFE

OT from OAFE

as0 ⊕ s1

bs0

x c

ax+ b sc

Fig. 3. Reductions between k-bit-OT and IFk
2-OAFE; protocols taken from [WW06]

116 N. Döttling, D. Kraschewski, and J. Müller-Quade

public H ∈ IFk×n
q⎛

⎜⎝
α1 β1

...
...

αn βn

⎞
⎟⎠ ∈ H−1

(
a b

)
uniformly at random

IFq-OAFE
αi

βi

x

αix+ βi γi

for i ∈ {1, . . . , n}

IFk
q -OAFE

xa

b

H ·

⎛
⎜⎝

γ1
...
γn

⎞
⎟⎠ y

Fig. 4. Straightforward adaption of the protocol scheme from [BCS96] for reduction
of IFk

q -OAFE to n instances of IFq-OAFE; protocol parametrized by a public matrix
H ∈ IFk×n

q that may depend on the security parameter. If q ≥ n + 2, this protocol
cannot be secure (q.v. Lemma 1).

in the security parameter (what is the interesting case), a rather unobvious
problem occurs, which renders the protocol scheme inherently insecure against
a corrupted receiver. We address this by the following lemma.

Lemma 1. The protocol in Figure 4 is insecure against a corrupted receiver, if
k ≥ 2 and q ≥ n+ 2.

Proof. First note that the ideal IFk
q -OAFE functionality upon uniformly random

sender input a, b ∈ IFk
q lets the receiver not learn any value of the following form

with linearly independent d, e ∈ IF1×k
q :

(
d e

)
·
(
a
b

)
We show now that in the protocol of Figure 4, with parameters k ≥ 2 and q ≥
n+2, a corrupted receiver can always choose his IFq-OAFE inputs appropriately,
so that he can compute such a value (and the corresponding vectors d and e)
from his IFq-OAFE outputs γi and the public matrix H .

Let X ∈ IFn×n
q be the diagonal matrix whose diagonal elements are the cor-

rupted receiver’s inputs for the underlying IFq-OAFE instances, and let I ∈ IFn×n
q

be the identity matrix. By construction it always holds:

Statistically Secure Linear-Rate Dimension Extension 117

⎛⎝X I
H

H

⎞⎠
︸ ︷︷ ︸

=:M

·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1

...
αn

β1

...
βn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝
γ1
...
γn
a
b

⎞⎟⎟⎟⎟⎟⎠
Thus, we have to find some (c, d, e) ∈ IF1×n

q ×IF1×k
q ×IF1×k

q and a diagonal matrix

X ∈ IFn×n
q , such that d and e are linearly independent and (c, d, e) · M = 0. In

other words, we are looking for (c, d, e) ∈ IF1×n
q × IF1×k

q × IF1×k
q with linearly

independent {d, e} and a diagonal matrix X ∈ IFn×n
q , such that cX + dH =

c+ eH = 0. Obviously, it suffices to find some linearly independent d, e ∈ IF1×k
q

and a diagonal matrix X ∈ IFn×n
q , such that eHX = dH , because then we can

just set c := −eH . However, we can always choose X appropriately, if only every
index of a zero-coefficient of eH is also an index of a zero-coefficient of dH , i.e.
for every i ∈ {1, . . . , n} the following implication must hold true:

(eH)[i] = 0 ⇒ (dH)[i] = 0

Now, let h1 and h2 denote the first and second row of H respectively. Further,
let r ∈ IFq \ {0}, such that h1[i] �= r · h2[i] for every index i with h2[i] �= 0. Such
an r does exist, since q ≥ n+ 2 by assumption. Finally, we set d := (1, 0, . . . , 0)
and e := (1,−r, 0, . . . , 0)—here we need that k ≥ 2. Thereby we get that d and
e are linearly independent and every index of a zero-coefficient of the vector eH
is also an index of a zero-coefficient of the vector dH . ��

3.2 Why Universal Hashing Does Not Help

Another standard approach for implementing k-bit-OT from 1-bit-OT is 2-uni-
versal hashing. The high level idea is that the sender party transfers (2+2ε)k ran-
dom tuples (σi, σ̄i) ∈ IF2×IF2 via 1-bit-OT, then announces a random 2-universal

hash function h : IF
(2+2ε)k
2 → IFk

2 and computes and outputs s0 := h(σ1, σ2, . . .)
and s1 := h(σ̄1, σ̄2, . . .). The receiver always inputs his choice bit c into the un-
derlying 1-bit-OT instances, thus learning some τi, and computes and outputs
sc = h(τ1, τ2, . . .). Obviously, this only implements k-bit-OT with randomized
sender input, but derandomization is possible by standard techniques (e.g., see
[WW06]).

It is straightforward to see that this protocol is perfectly secure against a
corrupted sender. Security against a corrupted receiver can be shown by the
well-known Leftover Hash Lemma [BBR88, ILL89]. The main argument is that
from the view of a corrupted receiver either the string (σ1, σ2, . . .) or the string
(σ̄1, σ̄2, . . .) has min-entropy lower bounded by (1+ε)k and hence either s0 or s1
is

√
2−εk-close to uniform randomness. However, this technique is not applicable

in our case, what we will argue for next.

118 N. Döttling, D. Kraschewski, and J. Müller-Quade

semi-rnd IFk
q -OAFE

random α

random β

x

αx+ β γ

α′ := a− α and β′ := b− β

IFk
q -OAFE

xa

b

α′x+ β′ + γ y

Fig. 5. Straightforward reduction of IFk
q -OAFE to semi-random IFk

q -OAFE. Note that
the protocol is perfectly secure even against a corrupted sender that can arbitrarily
change α and β.

In our case, it just does not suffice that from a (possibly corrupted) receiver’s
view the vector ax+ b is negligibly close to uniform randomness for all but one
x ∈ IFq. We also must rule out that a corrupted receiver may learn some non-
trivial relation between ax+ b and ax′+ b with distinct x, x′ ∈ IFq. Moreover for
any subset {x1, . . . , xm} ⊆ IFq, relations on (ax1 + b, . . . , axm + b) that neither
can be derived from ax̃ + b with some specific x̃ ∈ IFq nor hold regardless of
a and b, must be hidden from the receiver. At least if the field size q increases
exponentially in the security parameter, it is completely unclear how this could
be achieved using 2-universal hashing. Direct application of the classic tool set of
privacy amplification and randomness extraction helps generating full-entropy
bit-strings, but it does not necessarily disguise relations on exponentially large
vectors.

3.3 Our Solution

In this section we present our information-theoretically UC-secure construction
of IFk

q -OAFE from O(k) instances of IFq-OAFE. Our construction consists of

two steps. First, we implement a randomized variant of the ideal IFk
q -OAFE

functionality that differs from the original definition (q.v. Figure 1 in Section 2.2)
in the following way:

– An honest sender does not provide arbitrarily selectable input (a, b), but the
primitive chooses for him uniformly at random.

– A corrupted sender can still select (a, b) arbitrarily.

Then, by the protocol given in Figure 5 we transform this randomized IFk
q -OAFE

primitive into an ideal IFk
q -OAFE instance as defined in Section 2.2.

Since it is straightforward to see that the second step of our construction
(the reduction in Figure 5) is perfectly UC-secure, we just have to show how one

Statistically Secure Linear-Rate Dimension Extension 119

IFq-OAFE
random αi

random βi

empty

x

αix+ βi γi

for i ∈ {1, . . . , n}

random H ∈ IFk×n
q

semi-rnd IFk
q -OAFE

x

H ·

⎛
⎜⎝

α1

...
αn

⎞
⎟⎠a

H ·

⎛
⎜⎝

β1

...
βn

⎞
⎟⎠b H ·

⎛
⎜⎝

γ1
...
γn

⎞
⎟⎠ y

Fig. 6. Implementation of IFk
q -OAFE with randomized sender input from n instances

of IFq-OAFE; protocol idea adapted from [BCS96]. Note that a corrupted sender can
arbitrarily fix his otherwise random output (a, b). Further, we stress that H must not
be announced before the receiver did provide some input to all n underlying IFq-OAFE
instances in the dashed box, i.e. the sender has to await all n empty messages. The
protocol is UC-secure, if k log q increases polynomially in the security parameter and
n ≥ (2 + ε)k for some constant ε > 0 (cf. Theorem 1).

can reduce the randomized IFk
q -OAFE variant to O(k) instances of IFq-OAFE.

The respective protocol is given in Figure 6. The high level idea is identical to
the techniques discussed in Section 3.1, but compared to the insecure protocol
of Figure 4 there is a crucial difference in the details: The matrix H is now
chosen uniformly at random and only announced after all the receiver’s choices
are fixed1. This obviously renders the general attack strategy discussed in Sec-
tion 3.1 impossible. However, giving a formal security proof still turns out pretty
challenging, since standard techniques do not apply.

Our overall proof strategy is as follows. Since correctness of the protocol and
perfect UC-security against a corrupted sender party can be shown straightfor-
wardly, it suffices to focus on the case of a corrupted receiver. We first show
that with overwhelming probability the random matrix H and the corrupted
receiver’s inputs for the underlying IFq-OAFE instances have some specific al-
gebraic properties. This is the difficult part and can be considered a major
technical contribution. Then, based on that properties we are able to show that

1 In fact, this is a way of 2-universal hashing. However, for the security proof we
need some more sophisticated properties of random IFq-matrices than just being
2-universal hash functions.

120 N. Döttling, D. Kraschewski, and J. Müller-Quade

Simulator Srec(A)

– Set up a simulated version of the given adversary A (which especially imperson-
ates the corrupted receiver party) and wire it to the environment right the way
they would be wired in the real model.

– Pick H ∈ IFk×n
q and γ1, . . . , γn ∈ IFq uniformly at random.

– Answer on A’s j-th IFq-OAFE query xj as follows:
• If j ≤ n

2
or no �n

2
� previous IFq-OAFE queries are equal to xj , then just

return γj .
• If exactly �n

2
� previous IFq-OAFE queries are equal to xj , then

1. send xj to the ideal functionality, thus receiving some y ∈ IFk
q ,

2. pick randomly γ̃1, . . . , γ̃n ∈ IFq subject to the condition that
H · (γ̃1, . . . , γ̃n)T = y and γ̃i = γi for every i < j with xi = xj , and

3. return γ̃j to A.
If it is impossible to find any such γ̃1, . . . , γ̃n, just give up and terminate.

• If more than �n
2
� previous IFq-OAFE queries are equal to xj , then return γ̃j .

– If A has queried all n underlying IFq-OAFE instances, announce H to him.

Fig. 7. Sketch of the simulator program Srec(A), given an adversary A that corrupts
the receiver.

a straightforward simulation approach does work well. More specifically, our line
of argument is as follows:

1. We show that any fixed n
2 -subset of columns of H with overwhelming prob-

ability contains a basis of the linear space IFk
q .

2. We show that, given a receiver that queries more than half of the n un-
derlying IFq-OAFE instances on the same input x and given that the corre-

sponding columns of H contain a basis of IFk
q , all other IFq-OAFE outputs γi

(that correspond to inputs distinct from x) are just completely independent
randomness.

3. We show that, given a receiver that queries at most half of the underlying
IFq-OAFE instances on the same input x, the set union of the rows of H
and HX is linearly independent with overwhelming probability, where X
denotes the diagonal matrix consisting of the receiver’s IFq-OAFE inputs.

4. We show that, conditioned to the abovementioned property of H and the
corrupted receiver’s IFq-OAFE inputs, the honest sender’s random output
(a, b) is statistically independent from the receiver’s complete view.

Once these facts are proven, it is pretty straightforward to see that the simulator
for a corrupted receiver party can just work as described in Figure 7. We conclude
our work with our main theorem.

Theorem 1. Our IFk
q -OAFE construction, given by the combination of Figure 5

and Figure 6, is perfectly UC-secure against a corrupted sender and statistically
UC-secure against a corrupted receiver, if k log q increases polynomially in the
security parameter and n ≥ (2 + ε)k with constant ε > 0. More particularly,
for every real model adversary A that corrupts the receiver party, there exists a

Statistically Secure Linear-Rate Dimension Extension 121

simulator S, such that for every environment Z the statistical distance between
Z’s view in the real model (with protocol given by Figure 5 and Figure 6 and
adversary A) and Z’s view in the ideal model (with ideal functionality given by
Figure 2 and simulator S) is upper bounded by:

m := max

(
2qk−

n
2 ,

q2k−n + 2qk−
n
2

1− q−k
+ qk−n

)
i.e., m = O

(
qk−

n
2

)
Proof (Sketch). We just have to show that the protocol in Figure 6, given an
adversaryA that corrupts the receiver party, is successfully simulated by Srec(A)
at least with probability 1−m; everything else then follows straightforwardly.

Our proof is based on four technical lemmata, whose proofs can be found
in the appendix. We start with the case that more than n

2 of the underlying
IFq-OAFE instances in Figure 6 are queried on the same input. In this case, we
first of all need that only with negligible probability the simulator Srec(A) may
give up (i.e. terminate unsuccessfully) in his search for γ̃1, . . . , γ̃n. Thereto, we
employ the following lemma.

Lemma 2. Given G ∈ IFm×l
q uniformly at random, it holds that Pr

[
rank(G) =

min(m, l)
]
> 1−q−|m−l|. In other words, there exist more than qml

(
1−q−|m−l|)

matrices M ∈ IFm×l
q with full rank min(m, l).

For the very moment when Srec(A) tries to generate γ̃1, . . . , γ̃n we fix the �n
2

indices corresponding to IFq-OAFE instances that were previously queried on
the same value xj which is now sent to the ideal functionality. By Lemma 2, the

remaining n−�n
2 columns of H do contain a basis of IFk

q with some probability

greater than 1 − qk−
n
2 . However, under this condition one can always find the

desired γ̃1, . . . , γ̃n. Thus, Srec(A) will give up with some probability less than
qk−

n
2 .

Next, still considering the case that more than n
2 of the IFq-OAFE inputs are

equal, we need to show that all other values γi returned to A are distributed as
in the real model. Note that by Lemma 2 with probability greater than 1−qk−

n
2

the columns of H corresponding to the most frequent IFq-OAFE input x contain

a basis of IFk
q . Now, by the following lemma we get exactly what we need, namely

that under this condition in the real model all remaining IFq-OAFE outputs are
just completely independent randomness.

Lemma 3. In the protocol of Figure 6, given a receiver that queries at least k
of the n underlying IFq-OAFE instances on the same input x and given that the

corresponding columns of H contain a basis of IFk
q , all other IFq-OAFE outputs

γi (that correspond to inputs distinct from x) are statistically independent from
(a, b,H, x1, . . . , xn), where xi denotes the receiver’s i-th IFq-OAFE input.

Further, note that by construction the IFq-OAFE outputs γ̃i corresponding to
the most frequent IFq-OAFE input x always are identically distributed as in the
real model. Thus, we have already shown: Conditioned to the event that more
than n

2 of the corrupted receiver’s IFq-OAFE inputs are equal, the statistical

122 N. Döttling, D. Kraschewski, and J. Müller-Quade

distance between the environment’s views in the ideal and the real model is
upper bounded by 2qk−

n
2 .

So, finally we have to consider the case that no more than n
2 of the underlying

IFq-OAFE instances are queried on the same input. In this case, Srec(A) just
solely returns random IFq-OAFE outputs γi to A that are completely unrelated
to the ideal sender’s output (a, b). By the following two lemmata we find a
random event E , such that conditioned to E the same does happen in the real
model, and E has overwhelming probabilty.

Lemma 4. In the protocol of Figure 6 let X denote the diagonal matrix whose
diagonal elements are the (corrupted) receiver’s inputs for the n underlying
IFq-OAFE instances. Then, conditioned to the event that the set union consisting
of the rows of H and HX is linearly independent, the honest sender’s random
output tuple (a, b) is statistically independent from (X, γ1, . . . , γn, H).

Lemma 5. Let any diagonal matrix X ∈ IFn×n
q be given, such that at most half

of the diagonal elements are equal, and let H be uniformly random over IFk×n
q .

Further, let p denote the probability that the set union consisting of the rows of
H and HX is linearly independent. Then we have:

p > 1− q2k−n + 2qk−
n
2

1− q−k
− qk−n

In particular, Lemma 4 and Lemma 5 yield: Conditioned to the event that no
more than n

2 of the corrupted receiver’s IFq-OAFE inputs are equal, the statisti-
cal distance between the environment’s views in the ideal and the real model is
upper bounded by

(
q2k−n +2qk−

n
2

)/(
1− q−k

)
+ qk−n. This concludes our proof

of Theorem 1. ��

References

[AIK11] Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic cir-
cuits. In: Ostrovsky, R. (ed.) Proceedings of FOCS 2011, pp. 120–129.
IEEE (2011)

[BBCM95] Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.M.: Generalized pri-
vacy amplification. IEEE Transactions on Information Theory 41(6), 1915–
1923 (1995)

[BBR88] Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by public
discussion. SIAM J. Comput. 17(2), 210–229 (1988)

[BCS96] Brassard, G., Crépeau, C., Santha, M.: Oblivious transfers and intersecting
codes. IEEE Transactions on Information Theory 42(6), 1769–1780 (1996)

[Can01] Canetti, R.: Universally composable security: A new paradigm for cryp-
tographic protocols. In: Proceedings of FOCS 2001, pp. 136–145 (2001),
http://eprint.iacr.org/2000/067

[CFIK03] Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient Multi-party Com-
putation Over Rings. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 596–613. Springer, Heidelberg (2003)

http://eprint.iacr.org/2000/067

Statistically Secure Linear-Rate Dimension Extension 123

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In: Reif, J.H. (ed.) Pro-
ceedings of STOC 2002, pp. 494–503. ACM (2002)

[CMW05] Crépeau, C., Morozov, K., Wolf, S.: Efficient Unconditional Oblivious
Transfer from Almost any Noisy Channel. In: Blundo, C., Cimato, S. (eds.)
SCN 2004. LNCS, vol. 3352, pp. 47–59. Springer, Heidelberg (2005)

[CvdGT95] Crépeau, C., van de Graaf, J., Tapp, A.: Committed Oblivious Trans-
fer and Private Multi-party Computation. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 110–123. Springer, Heidelberg (1995)

[DKMQ11] Döttling, N., Kraschewski, D., Müller-Quade, J.: Efficient Reductions for
Non-Signaling Cryptographic Primitives. In: Fehr, S. (ed.) ICITS 2011.
LNCS, vol. 6673, pp. 120–137. Springer, Heidelberg (2011)

[GIS+10] Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding Cryp-
tography on Tamper-Proof Hardware Tokens. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010)

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-Time Programs. In:
Micciancio, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer,
Heidelberg (2008)

[GL91] Goldwasser, S., Levin, L.A.: Fair Computation of General Functions in
Presence of Immoral Majority. In: Menezes, A., Vanstone, S.A. (eds.)
CRYPTO 1990. LNCS, vol. 537, pp. 77–93. Springer, Heidelberg (1991)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority. In: Aho, A.V.
(ed.) Proceedings of STOC 1987, pp. 218–229. ACM (1987)

[IKO+11] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.,
Wullschleger, J.: Constant-Rate Oblivious Transfer from Noisy Channels.
In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 667–684.
Springer, Heidelberg (2011)

[ILL89] Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from
one-way functions (extended abstracts). In: Proceedings of STOC 1989,
pp. 12–24. ACM (1989)

[IPS08] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Obliv-
ious Transfer – Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 572–591. Springer, Heidelberg (2008)

[Kil88] Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings
of STOC 1988, pp. 20–31. ACM (1988)

[Kil91] Kilian, J.: A general completeness theorem for two-party games. In: Kout-
sougeras, C., Vitter, J.S. (eds.) Proceedings of STOC 1991, pp. 553–560.
ACM (1991)

[Kil00] Kilian, J.: More general completeness theorems for secure two-party com-
putation. In: Frances, F.Y., Luks, E.M. (eds.) Proceedings of STOC 2000,
pp. 316–324. ACM (2000)

[KMQ11] Kraschewski, D., Müller-Quade, J.: Completeness Theorems with Con-
structive Proofs for Finite Deterministic 2-Party Functions. In: Ishai, Y.
(ed.) TCC 2011. LNCS, vol. 6597, pp. 364–381. Springer, Heidelberg (2011)

[NP99] Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In:
Vitter, J.S., Larmore, L.L., Leighton, F.T. (eds.) Proceedings of STOC
1999, pp. 245–254. ACM (1999)

[Rab81] Michael, O., Rabin, M.O.: How to exchange secrets by oblivious trans-
fer. Technical report, Aiken Computation Laboratory. Harvard University
(1981)

124 N. Döttling, D. Kraschewski, and J. Müller-Quade

[WW06] Wolf, S., Wullschleger, J.: Oblivious Transfer is Symmetric. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer,
Heidelberg (2006)

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
Proceedings of FOCS 1982, pp. 160–164. IEEE Computer Society Press
(1982)

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: Proceedings of FOCS 1986, pp. 162–167. IEEE Computer Society Press
(1986)

A Proof of Lemma 2

Claim. Let G ∈ IFm×l
q be uniformly random. Then, Pr

[
rank(G) = min(m, l)

]
>

1 − q−|m−l|. In other words, there exist more than qml
(
1 − q−|m−l|) matrices

M ∈ IFm×l
q with full rank min(m, l).

Proof. W.l.o.g. let m ≤ l. Note that, given any full-rank matrix M ∈ IFi×l
q with

i < l, there exist exactly ql−qi rows (only the linear combinations of the rows of
M are excluded) by that one can extend M to a full-rank matrix of dimension
(i+ 1)× l. Thus it holds:

#
{
M ∈ IFm×l

q

∣∣ rank(M) = m
}

=

m−1∏
i=0

ql − qi

Hence we can estimate:

Pr
[
rank(G) = m

]
=

m−1∏
i=0

1−qi−l ≥ 1−
m−1∑
i=0

qi−l = 1− qm − 1

ql(q − 1)
> 1−qm−l

This is what we had to show. ��

B Proof of Lemma 3

Claim. In the protocol of Figure 6, given a receiver that queries at least k of
the n underlying IFq-OAFE instances on the same input x and given that the

corresponding columns of H contain a basis of IFk
q , all other IFq-OAFE outputs

γi (that correspond to inputs distinct from x) are statistically independent from
(a, b,H, x1, . . . , xn), where xi denotes the receiver’s i-th IFq-OAFE input.

Proof. Fix a, b,H, x and x1, . . . , xn, such that at least k of the xi are equal to
x and the corresponding columns of H contain a basis of IFk

q ; also fix the cor-
responding γi. We have to show that, when one uniformly resamples α1, . . . , αn

and β1, . . . , βn conditioned to the fixed values a, b,H, x1, . . . , xn and the fixed
γi, then the remaining γi are uniformly random.

W.l.o.g. we may rearrange the index set {1, . . . , n}, such that x1 = . . . =
xl = x for some l ≥ k and all other xi are different from x. Note that such a

Statistically Secure Linear-Rate Dimension Extension 125

rearrangement in particular includes a corresponding permutation of the columns
of H . Now, we define the following vectors:

α :=

⎛⎜⎝α1

...
αl

⎞⎟⎠ β :=

⎛⎜⎝β1

...
βl

⎞⎟⎠ γ :=

⎛⎜⎝γ1
...
γl

⎞⎟⎠
α′ :=

⎛⎜⎝αl+1

...
αn

⎞⎟⎠ β′ :=

⎛⎜⎝βl+1

...
βn

⎞⎟⎠ γ′ :=

⎛⎜⎝γl+1

...
γn

⎞⎟⎠
Further,

– let X̃ ′ denote the diagonal matrix with diagonal elements xl+1, . . . , xn,
– let H̃ denote the matrix consisting of the first l columns of H , and
– let H̃ ′ denote the matrix consisting of the remaining n− l columns of H .

Note that H̃ has full rank k by assumption. Now, resampling α1, . . . , αn and
β1, . . . , βn corresponds to uniformly sampling (α,α′,β,β′) subject to the fol-
lowing conditions:

a = H̃α+ H̃ ′α′ b = H̃β + H̃ ′β′ α · x+ β = γ

Equivalently, we can uniformly sample (α,α′,β,β′,γ′) subject to the following
conditions:

a = H̃α+ H̃ ′α′ α · x+ β = γ

b = H̃β + H̃ ′β′ X̃ ′α′ + β′ = γ′

Note that the set of all valid samples (α,α′,β,β′,γ′), since being the solution
space of a linear equation system, is an affine subspace of IFl

q × IFn−l
q × IFl

q ×
IFn−l

q × IFn−l
q and each valid γ′ corresponds to a solution subspace of the same

dimension. Thus, each valid γ ′ is equally likely and we have just to show that
γ′ may take every value in IFn−l

q .
However, for our upcoming argumentation we first need to show that a · x+

b− H̃γ is an image of H̃ ′. Thereto, we reformulate the resampling conditions as
follows:

H̃α = a− H̃ ′α′ β = γ −α · x
b = H̃β + H̃ ′β′ β′ = γ′ − X̃ ′α′

Plugging the identities for β and β′ into the identity for b yields:

H̃α = a− H̃ ′α′ b = H̃γ − H̃α · x+ H̃ ′γ′ − H̃ ′X̃ ′α′

Plugging the identity for H̃α into the identity for b and some rearrangement
yield:

a · x+ b− H̃γ = H̃ ′(γ ′ +α′ · x− X̃ ′α′)

126 N. Döttling, D. Kraschewski, and J. Müller-Quade

Thus, a ·x+ b− H̃γ must be an image of H̃ ′, as otherwise there would not exist
any valid sample (α,α′,β,β′,γ′).

Now, let some arbitrary γ′ ∈ IFn−l
q be given. By the following construction

we find some α,α′,β,β′, such that (α,α′,β,β′,γ ′) is a valid sample, what will

conclude our proof. Let I denote the identity matrix in IF(n−l)×(n−l)
q and let ζ

be some H̃ ′-preimage of a ·x+b−H̃γ. Firstly, since X̃ ′ is a diagonal matrix with
diagonal elements distinct from x, the matrix (X̃ ′−x·I) is invertible and we find
some α′, such that γ′ − (X̃ ′ − x · I)α′ = ζ and hence H̃ ′(γ′ − (X̃ ′ − x · I)α′) =

a · x + b − H̃γ. Secondly, since H̃ has full rank, we find some α, such that
H̃α = a− H̃ ′α′. Thirdly, we set β′ := γ′ − X̃ ′α′ and β := γ − α · x. Thus, by
construction we have:

b = H̃ ′(γ ′ − (X̃ ′ − x · I)α′) − a · x+ H̃γ γ ′ = β′ + X̃ ′α′

a = H̃α+ H̃ ′α′ γ = β +α · x

Plugging the other three identities into the identity for b yields that b = H̃β +
H̃ ′β′ and thus the tuple (α,α′,β,β′,γ′) meets all four conditions for a valid
sample. ��

C Proof of Lemma 4

Claim. In the protocol of Figure 6 let X denote the diagonal matrix whose
diagonal elements are the (corrupted) receiver’s inputs for the n underlying
IFq-OAFE instances. Then, conditioned to the event that the set union consisting
of the rows of H and HX is linearly independent, the honest sender’s random
output tuple (a, b) is statistically independent from (X, γ1, . . . , γn, H).

Proof. Fix (X, γ1, . . . , γn, H), such that the set union consisting of the rows
of H and HX is linearly independent. We show that under this condition the
honest sender’s output (a, b) is still uniformly random over IFk

q × IFk
q . Note that

conditioned to these parameters, we still have that (α1, . . . , αn) is uniformly
random and (β1, . . . , βn) can be computed from (α1, . . . , αn) by the following
equality:

X ·

⎛⎜⎝α1

...
αn

⎞⎟⎠ +

⎛⎜⎝ β1

...
βn

⎞⎟⎠ =

⎛⎜⎝ γ1
...
γn

⎞⎟⎠ i.e.,

⎛⎜⎝ β1

...
βn

⎞⎟⎠ =

⎛⎜⎝ γ1
...
γn

⎞⎟⎠ −X ·

⎛⎜⎝α1

...
αn

⎞⎟⎠
Hence, noting that a and b are generated from the αi-vector and βi-vector re-
spectively by multiplication with the matrix H , it follows:(

H
−HX

)
·

⎛⎜⎝α1

...
αn

⎞⎟⎠ +

(
0
H

)
·

⎛⎜⎝ γ1
...
γn

⎞⎟⎠ =

(
a
b

)
Note that on the left side of this equation everything but the αi-vector is fixed,
and the leftmost matrix has full rank by assumption. Thus, since the αi-vector
is uniformly random, we must have that (a, b) is uniformly random, too. ��

Statistically Secure Linear-Rate Dimension Extension 127

D Proof of Lemma 5

Claim. Let any diagonal matrix X ∈ IFn×n
q be given, such that at most half

of the diagonal elements are equal, and let H be uniformly random over IFk×n
q .

Further, let p denote the probability that the set union consisting of the rows of
H and HX is linearly independent. Then we have:

p > 1− q2k−n + 2qk−
n
2

1− q−k
− qk−n

Proof. We have to show:

Pr
[
∃ v, w ∈ IF1×k

q : (v, w) �= (0, 0) ∧ vH+wHX = 0
]
<

q2k−n + 2qk−
n
2

1− q−k
+qk−n

Equivalently, we will upper bound the following probability:

Pr
[
∃u ∈ IF1×n

q , v, w ∈ IF1×k
q : (v, w) �= (0, 0) ∧ vH+uX = 0 ∧ wH−u = 0

]
(1)

Thus, we have to upper bound the probability that some u and uX can be
linearly combined from the rows of H and at least one of the linear combinations
is non-trivial. Note that by Lemma 2 it holds:

Pr
[
rank(H) = k

]
> 1− qk−n

So, we can henceforth condition the event that rank(H) = k and will thereby

make an error of at most qk−n. Now, we define the random matrix G ∈ IFn×(n−k)
q

whose columns are a random basis of the kernel of H . By construction, the
following implication always holds true:

vH + uX = 0 ∧ wH − u = 0 ⇒ uXG = 0 ∧ uG = 0

Thus, instead of (1) we can now upper bound the following probability—note
that u �= 0, because we conditioned to the event that H has full rank:

Pr
[
∃u ∈ IF1×n

q \ {0} : uXG = 0 ∧ uG = 0
]

(2)

Note that G is a uniformly random full-rank matrix, since due to the condition
that rank(H) = k the kernel of H is a uniformly random (n − k)-dimensional
subspace of IFn

q .
We estimate (2) by differentiating between the cases that {u, uX} is linearly

independent or not. For every u ∈ IF1×n
q with uX /∈ span(u) we can estimate:

Pr
[
uXG = uG = 0

]
≤

#
{
M ∈ IFn×(n−k)

q

∣∣ uXM = uM = 0
}

#
{
M ∈ IFn×(n−k)

q

∣∣ rank(M) = n− k
}

By Lemma 2 follows:

Pr
[
uXG = uG = 0

]
<

q(n−2)(n−k)

qn(n−k)(1− q−k)
=

q−2(n−k)

1− q−k

128 N. Döttling, D. Kraschewski, and J. Müller-Quade

Applying the Union Bound yields:

Pr
[
∃u ∈ IF1×n

q \ {0} : uX /∈ span(u) ∧ uXG = uG = 0
]

<
q2k−n

1− q−k

Yet, there is only the case left that uX = λu for some λ ∈ IFq. However, for
each i ∈ {1, . . . , n} this means that the i-th coefficient of u is zero or the i-th
diagonal element of X is λ. In other words, with dλ denoting the dimension of
the eigenspace for the eigenvalue λ of X , it holds:

#
{
u ∈ IF1×n

q \ {0}
∣∣ uX ∈ span(u)

}
=

∑
λ

(
qdλ − 1

)
Since by assumption at most half of the diagonal elements of X may be equal,
this leaves at most 2(q

n
2 − 1) possible vectors u with uX ∈ span(u). For every

such u we can estimate:

Pr
[
uXG = uG = 0

]
= Pr

[
uG = 0

]
≤

#
{
M ∈ IFn×(n−k)

q

∣∣ uM = 0
}

#
{
M ∈ IFn×(n−k)

q

∣∣ rank(M) = n− k
}

By Lemma 2 follows:

Pr
[
uXG = uG = 0

]
<

q(n−1)(n−k)

qn(n−k)(1 − q−k)
=

q−(n−k)

1− q−k

Applying the Union Bound yields:

Pr
[
∃u ∈ IF1×n

q \ {0} : uX ∈ span(u) ∧ uXG = uG = 0
]

<
2q

n
2 −(n−k)

1− q−k

Putting things together, we have shown:

Pr
[
∃u ∈ IF1×n

q \ {0} : uXG = 0 ∧ uG = 0
]

<
q2k−n + 2qk−

n
2

1− q−k

Thus, if we take into account the error introduced by the condition that the
random matrix H has full rank k, we finally get:

Pr
[
∃ v, w ∈ IF1×k

q : (v, w) �= (0, 0) ∧ vH+wHX = 0
]
<

q2k−n + 2qk−
n
2

1− q−k
+qk−n

This is what we had to show. ��

Passive Corruption

in Statistical Multi-Party Computation

(Extended Abstract)�

Martin Hirt1, Christoph Lucas1, Ueli Maurer1, and Dominik Raub2

1 Department of Computer Science, ETH Zurich, Switzerland
{hirt,clucas,maurer}@inf.ethz.ch

2 Department of Computer Science, University of Århus, Denmark
raub@cs.au.dk

Abstract. The goal of Multi-Party Computation (MPC) is to perform
an arbitrary computation in a distributed, private, and fault-tolerant
way. For this purpose, a fixed set of n parties runs a protocol that toler-
ates an adversary corrupting a subset of the parties, preserving certain
security guarantees like correctness, secrecy, robustness, and fairness.
Corruptions can be either passive or active: A passively corrupted party
follows the protocol correctly, but the adversary learns the entire internal
state of this party. An actively corrupted party is completely controlled
by the adversary, and may deviate arbitrarily from the protocol. A mixed
adversary may at the same time corrupt some parties actively and some
additional parties passively.

In this work, we consider the statistical setting with mixed adversaries
and study the exact consequences of active and passive corruptions on
secrecy, correctness, robustness, and fairness separately (i.e., hybrid se-
curity). Clearly, the number of passive corruptions affects the thresholds
for secrecy, while the number of active corruptions affects all thresholds.
It turns out that in the statistical setting, the number of passive corrup-
tions in particular also affects the threshold for correctness, i.e., in all
protocols there are (tolerated) adversaries for which a single additional
passive corruption is sufficient to break correctness. This is in contrast
to both the perfect and the computational setting, where such an in-
fluence cannot be observed. Apparently, this effect arises from the use
of information-theoretic signatures, which are part of most (if not all)
statistical protocols.

Keywords: Multi-party computation, passive corruption, statistical se-
curity, hybrid security, mixed adversaries.

� The full version of this paper is available at the Cryptology ePrint Archive:
http://eprint.iacr.org/2012/272. This work was partially supported by the Zurich
Information Security Center.

A. Smith (Ed.): ICITS 2012, LNCS 7412, pp. 129–146, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

130 M. Hirt et al.

1 Introduction

1.1 Secure Multi-Party Computation

Multi-Party Computation (MPC) allows a set of n parties to securely perform
an arbitrary computation in a distributed manner, where security means that
secrecy of the inputs and correctness of the output are maintained even when
some of the parties are dishonest. The dishonesty of parties is modeled with a
central adversary who corrupts parties. The adversary can be passive, i.e. can
read the internal state of the corrupted parties, or active, i.e., can make the
corrupted parties deviate arbitrarily from the protocol.

MPC was originally proposed by Yao [Yao82]. The first general solution was
provided in [GMW87], where, based on computational intractability assump-
tions, security against a passive adversary was achieved for t < n corruptions,
and security against an active adversary was achieved for t < n

2 . Information-
theoretic security was achieved in [BGW88, CCD88] at the price of lower cor-
ruption thresholds, namely t < n

2 for passive and t < n
3 for active adversaries.

The latter bound can be improved to t < n
2 if both broadcast channels are as-

sumed and a small error probability is tolerated [RB89, Bea89]. These results
were generalized to the non-threshold setting, where the corruption capability
of the adversary is not specified by a threshold t, but rather by a so called ad-
versary structure Z, a monotone collection of subsets of the player set, where
the adversary can corrupt the players in one of these subsets [HM97].

All mentioned protocols achieve full security, i.e. secrecy, correctness, and
robustness. Secrecy means that the adversary learns nothing about the honest
parties’ inputs and outputs (except, of course, for what can be derived from the
corrupted parties’ inputs and outputs). Correctness means that all parties either
output the right value or no value at all. Robustness means that the adversary
cannot prevent the honest parties from learning their respective outputs. This
last requirement turns out to be very demanding. Therefore, relaxations of full
security have been proposed, where robustness is replaced by weaker output
guarantees: Fairness means that the adversary can possibly prevent the honest
parties from learning their outputs, but then also the corrupted parties do not
learn their outputs. Agreement on abort means that the adversary can possibly
prevent honest parties from learning their output, even while corrupted parties
learn their outputs, but then the honest parties at least reach agreement on this
fact (and typically make no output). In our constructions, all abort decisions are
based on publicly known values. Hence, we have agreement on abort for free.1

The traditional setting of MPC has been generalized in two directions. On the
one hand, the notion of hybrid security was introduced to allow for protocols with
different security guarantees depending on the number of corruptions [Cha89,
FHHW03, FHW04, IKLP06, Kat07, LRM10, HLMR11]. Intuitively, the more
corrupted parties, the less security is guaranteed. This model also allows to
analyze each security guarantee separately and independent of other guarantees.
On the other hand, protocols were presented that do not restrict the adversary to

1 The impossibility proof holds even when agreement on abort is not required.

Passive Corruption in Statistical Multi-Party Computation 131

a single corruption type [Cha89, DDWY93, FHM98, FHM99, BFH+08, HMZ08,
HLMR11]. The mixed adversaries considered there can perform each corruption
with one out of several corruption types. This allows to consider e.g. active and
passive corruption in the same protocol execution.

1.2 Contributions

In this work, we consider a setting with mixed adversaries and hybrid security.
This allows, for the first time, to separately analyze the relation between passive
corruption and the various security guarantees. It turns out that, in the sta-
tistical model, passive corruption does not only affect secrecy, but in particular
also correctness. In most statistically secure protocols, some kind of information-
theoretic signature is used. When combining active and passive corruptions, one
inherent problem of any kind of information-theoretic signature is that passively
corrupted parties cannot reliably verify signed values. Existing protocols for the
statistical setting assume an honest majority. Therefore, a simple majority vote
on the signature guarantees reliable verification even for passively corrupted
parties. In this work, we show that this assumption is too strong, and that
signatures can be used even without an honest majority. As the main techni-
cal contribution, we provide optimal protocols for both general and threshold
adversaries that cope with this issue. As a new technique for the setting with
general adversaries, we introduce group commitments, a non-trivial extension of
IC-Signatures, which might be of independent interest.

Furthermore, we introduce the notion of multi-thresholds. To the best of our
knowledge, all known protocols for threshold mixed adversaries (e.g. [FHM98])
characterize the tolerable adversaries with a single pair of thresholds (one thresh-
old for the number of actively, and one for the number of passively corrupted
parties). This pair represents the single maximal adversary that can be toler-
ated. We generalize this basic characterization to allow for several incomparable
maximal adversaries. It turns out that, in our setting, multi-thresholds allow to
construct protocols that tolerate strictly more adversaries than a single pair of
thresholds, without losing efficiency.

1.3 Model

We consider n parties p1, . . . , pn, connected by pairwise synchronous secure
channels and authenticated broadcast channels2, who want to compute some
probabilistic function over a finite field F, represented as circuit with input, ad-
dition, multiplication, random, and output gates. This function can be reactive,
where parties can provide further inputs after having received some intermediate
outputs.

There is a central adversary with unlimited computing power who corrupts
some parties passively (and reads their internal state) or even actively (and

2 In [PW92] it is shown how broadcast can be implemented given a setup.

132 M. Hirt et al.

makes them misbehave arbitrarily). We denote the actual sets of actively (pas-
sively) corrupted parties by D∗ (E∗), where D∗ ⊆ E∗. Uncorrupted parties are
called honest, non-actively corrupted parties are called correct. The security of
our protocols is statistical, i.e. information-theoretic with a small error probabil-
ity. We say a security guarantee holds statistically if it holds with overwhelming
probability. The guaranteed security properties (secrecy, correctness, fairness,
robustness, agreement on abort) depend on (D∗, E∗).

For ease of notation, we assume that if a party does not receive an expected
message (or receives an invalid message), a default message is used instead.
Furthermore, we use subprotocols that might abort. Such an abort is always
global, i.e., if any subprotocol aborts, the whole protocol execution halts.

In the analysis of our protocols, we assume “instant randomness”, i.e. parties
generate their randomness on the fly when needed in the protocol run. This al-
lows even passively corrupted parties to e.g. choose challenges in zero-knowledge
proofs that are unpredictable to the adversary. Note that in a setting without
secrecy, we have no input independence3. Hence, standard techniques (e.g. Blum
coin-toss) to jointly generate these challenges are insecure.

1.4 Outline of the Paper

The paper is organized as follows: In Sec. 2, we present information checking,
which is used as a basic primitive in our protocols. As a main technical con-
tribution, in Sections 3 and 4, we present protocols for the model with mixed
adversaries and hybrid security for both general and threshold adversaries, to-
gether with optimal bounds. In Sec. 5, we provide conclusions of our results.

2 Information Checking

Information checking (IC) [RB89, CDD+99] is a primitive that allows a sender
to send a value to an intermediary, such that when the receiver obtains this
value from the intermediary, he can check that this is indeed the value from the
sender. When all parties act as receivers, this primitive is called IC signature,
and the sender is called signer. IC signatures are realized using a pair of protocols
IC-Sign and IC-Reveal. IC-Sign allows a signer to sign a value for a particular
intermediary (while providing secrecy with respect to the remaining parties), and
IC-Reveal allows this intermediary to verifiably forward this value to all other
parties.

More precisely, let 〈v〉i,j denote the state of all players where a value v is
IC-signed (or simply signed) by signer pi for intermediary pj . In analogy to tra-
ditional signatures, we equivalently say that the intermediary pj holds the sig-
nature 〈v〉i,j . We require that a default signature 〈v〉i,j can always be generated
given that all parties know the value v, and that signatures are linear, i.e., the

3 That means, the adversary can choose the inputs of actively corrupted parties after
learning the inputs of correct parties.

Passive Corruption in Statistical Multi-Party Computation 133

sum of two signatures 〈v〉i,j and 〈v′〉i,j from signer pi to intermediary pj for val-
ues v and v′, respectively, is a signature from pi to pj for the sum v+v′. IC-Sign

is a protocol that, given a signer pi and an intermediary pj that both know the
same value v, provides the following guarantees: If pi and pj are correct, IC-Sign

correctly computes a valid signature 〈v〉i,j on v without leaking any information
about v to the remaining parties. Otherwise, IC-Sign either correctly computes
a valid signature 〈v〉i,j on v, or all (correct) parties output ⊥, with overwhelming
probability. Given a signature 〈v〉i,j , IC-Reveal robustly computes the output
xk ∈ {(“accept”, v′), “reject”} for each pk. We make the following correctness
requirements: If pj is correct, all correct parties pk output xk = (“accept”, v).
Else, if both pi and pk are honest, then xk ∈ {(“accept”, v), “reject”} (with
overwhelming probability, even when pj is active). Note that we do not require
agreement on the output of correct parties in IC-Reveal. Furthermore, if pj is
active and pi or pk is not honest, then pk might output xk = (“accept”, v′) for
v′ �= v.

In the full version of this paper, we provide an instantiation of IC signatures.

3 MPC with General Adversaries

Traditionally, protocols for general adversaries are characterized by an adversary
structure Z that specifies the tolerated subsets of the player set [HM97]. For our
setting, we have to extend this basic representation: On the one hand, we consider
mixed adversaries, which are characterized by adversary structures consisting of
tuples (D, E) of subsets of P , where the adversary may corrupt the parties in
E passively, and the parties in D ⊆ E even actively. On the other hand, each
security guarantee depends on the sets of actually corrupted parties (D∗, E∗).
We consider four security guarantees, namely correctness, secrecy, robustness,
and fairness. This is modeled with four adversary structures Zc, Zs, Zr, and Zf ,
one for each security requirement4: Correctness is guaranteed for (D∗, E∗) ∈ Zc,
secrecy is guaranteed for (D∗, E∗) ∈ Zs, robustness is guaranteed for (D∗, E∗) ∈
Zr, and fairness is guaranteed for (D∗, E∗) ∈ Zf . We have the assumption that
Zr ⊆ Zc and Zf ⊆ Zs ⊆ Zc, as secrecy and robustness are not well defined
without correctness, and as fairness cannot be achieved without secrecy.

Our protocol for general adversaries is based on [HMZ08], which is an adap-
tation of the perfectly secure protocol of [Mau02] to the statistical case. For
a generic protocol construction, it is sufficient to consider two parameters
[HLMR11]: First, the state that is held in the protocol is defined in terms of
a parameter that influences the secrecy. This parameter is the sharing parame-
ter S, a collection of subsets of P that defines which party obtains which values.
Second, the reconstruct protocol is expressed in terms of an additional parame-
ter determining the amount of error correction taking place. This parameter is
the reconstruction parameter R. In contrast to the perfect case, here we need to

4 Since all our protocols achieve agreement on abort for free, we do not introduce a
separate structure for this security property.

134 M. Hirt et al.

consider both active and passive corruption. Therefore, the reconstruction pa-
rameter is a monotone collection of pairs (D, E) of subsets of P where D ⊆ E : If
all errors can be explained with an adversary (D, E) ∈ R, the errors are corrected
and the protocol continues; otherwise it aborts. This implies that the protocol
aborts only if the actual adversary is not in R. Such aborts are global, i.e., if
some subprotocol aborts, the entire protocol execution halts.

3.1 A Parametrized Protocol for General Adversaries

In the following, we present the parametrized subprotocols for general adversaries
and analyze them with respect to correctness, secrecy, and robustness. The main
result (including fairness) is discussed in Sec. 3.2. As a first step, we introduce
group commitments which are a generalization of IC signatures that allow even
passively-corrupted parties to reliably verify signatures even without an honest
majority. We then use these group commitments to construct a verifiable secret-
sharing scheme, and describe how to perform computations on shared values.

Group Commitments. As a first step, we introduce the notion of group com-
mitments, which is a pair of protocols GroupCommit and GroupReveal.
GroupCommit allows a group G to commit to a value v on which they agree
(while providing secrecy with respect to the remaining parties P \ G), and
GroupReveal allows them to reveal this value to the remaining parties. Our
definitions and protocols for group commitments are based on the IC signatures
introduced in Sec. 2.

Definition 1 (IC Group Commitment). A group G is IC group committed
(or simply committed) to a value v, denoted by 〈〈v〉〉G , if for all pairs (pi, pj) ∈
G × G, v is IC-signed with 〈v〉i,j .

Note that a default group commitment 〈〈v〉〉G can be generated given that all par-
ties in P know the value v. Furthermore, if all parties in G are actively corrupted,
then any values held by correct parties constitute a valid group commitment. Ad-
ditionally, group commitments inherit linearity from the underlying IC signature
scheme.

Protocol ����������	: Given a set G of parties that agree on a value v, compute
a valid group commitment 〈〈v〉〉G on v.

1. For each pair (pi, pj) ∈ G×G invoke IC-Sign on v with signer pi and intermediary
pj .

2. If any invocation of IC-Sign outputs ⊥, all parties output ⊥. Otherwise, each
party outputs the concatenation of the outputs of the invocations of IC-Sign.

Fig. 1. The group commit protocol for a group G

Passive Corruption in Statistical Multi-Party Computation 135

Lemma 1. Given a set G of parties that agree on a value v. If all parties in G
are correct (i.e. G ∩ D∗ = ∅), GroupCommit correctly computes a valid group
commitment 〈〈v〉〉G on v. Otherwise, GroupCommit either correctly computes a
valid group commitment 〈〈v〉〉G on v, or all parties in P output ⊥. GroupCommit

is always secret and robust.

Proof. Secrecy and robustness follow immediately by inspection. For cor-

rectness, we first have to show that if the protocol outputs a group commit-
ment, then all signatures held by correct parties pj are for the value v. This
follows from the fact that IC-Sign always results either in a correct signature
〈v〉i,j or in ⊥, even when the signer (or intermediary) is actively corrupted. Sec-
ond, if all parties in G are correct, then it follows from the properties of IC-Sign

that it never outputs ⊥. ��

If a group G is committed to a value v (e.g. if theGroupCommit protocol resulted
in a valid group commitment and did not output ⊥), the GroupReveal proto-
col reveals the value v to all parties in P . During the protocol run, the adversary
might be able to provoke conflicts that depend on the sets D∗ and E∗ of corrupted
parties. Therefore, we introduce a parameter R, which is a monotone collection
of pairs (D, E) of subsets of the player set, where D ⊆ E : Whenever all conflicts
in a given situation can be explained with an adversary (D, E) ∈ R, the corre-
sponding values are ignored (corrected), and the protocol proceeds; otherwise it
aborts. Note that GroupReveal is the only subprotocol that might abort. All
other protocols abort only if they useGroupReveal as a subprotocol. Therefore,
it is sufficient to discuss agreement on abort only for this protocol.

We emphasize that the conflicts in GroupReveal do not only depend on the
set D∗ of actively corrupted parties, but also on the set E∗ of passively corrupted
parties, due to their inability to reliably verify IC-signatures. That means, in
this protocol, even passive corruptions have a strong impact on correctness (and
robustness).

Lemma 2. Given the reconstruction parameter R, the commitment group G,
and a group commitment 〈〈v〉〉G for a value v, GroupReveal reveals v to all
parties. The protocol is statistically correct if G �⊆ D∗ and

∀(D, E) ∈ R :

G \ D �⊆ D∗ ∨ (G �⊆ E ∧ P \ E �⊆ D∗) ∨ (G �⊆ E∗ ∧ P \ E∗ �⊆ D).

The protocol is statistically robust if additionally (D∗, E∗) ∈ R, and always guar-
antees agreement on abort.

Proof. Correctness: Consider an actual protocol execution with correct value
v and an adversary corrupting (D∗, E∗). Denote with {Vu} the resulting collection
of subsets of P in Step 3.

We first show that given the precondition G �⊆ D∗, we have(
P \ (V⊥ ∪ Vv) ⊆ D∗) ∧

(
G ⊆ E∗ ∨ P \ Vv ⊆ E∗).

The precondition G �⊆ D∗ implies that there is at least one correct party pi ∈ G.
In Step 1, this pi broadcasts its value ui(= v) and invokes IC-Reveal on the

136 M. Hirt et al.

Protocol �����
����: Given the set G and a group commitment 〈〈v〉〉G , reveal v
to all parties.

1. For each party pi ∈ G:
(a) pi broadcasts v. Denote the broadcasted value with ui.
(b) For each party pj ∈ G: Invoke IC-Reveal on 〈v〉j,i.
(c) A party pk ∈ P \ G accepts ui if all invocations of IC-Reveal output

(“accept”, ui).
2. For each party pk ∈ P \ G:
(a) If pk accepted at least one value in Step 1(c), and all accepted values are the

same, then set uk to this value. Else set uk := ⊥.
(b) pk broadcasts uk.

3. Let Vu denote the set of parties that broadcasted u in Step 1(a) of 2(b), respec-
tively. If ∃(D, E) ∈ R and a value v′, such that

P \ (V⊥ ∪ Vv′) ⊆ D ∧ (G ⊆ E ∨ P \ Vv′ ⊆ E)
then output v′. Else abort.

Fig. 2. The group reveal protocol for a group G

signatures 〈v〉j,i for pj ∈ G. It follows from the properties of IC-Reveal that
all correct parties accept all these signatures. Hence, all correct parties in P \ G
accept the value ui(= v), and broadcast either v or ⊥ in Step 2, but not a wrong
value, i.e. P \ (V⊥ ∪Vv) ⊆ D∗. Furthermore, either G ⊆ E∗, or there is an honest
party pj ∈ G. In the latter case, an actively corrupted pi ∈ G can only forge
the signatures 〈v〉j,i towards passively corrupted parties. Hence, it is guaranteed
that all honest parties pk broadcast the correct value uk = v in Step 2, and we
have P \ Vv ⊆ E∗.

Second, we show that given the precondition in the lemma, the protocol ex-
ecution under consideration does not output an (incorrect) value v′ �= v, i.e.,
for all v′ �= v and (D, E) ∈ R the condition in Step 3 is violated. To arrive
at a contradiction, assume that for some v′ �= v and (D, E) ∈ R it holds that(
P \ (V⊥ ∪ Vv′) ⊆ D

)
∧

(
G ⊆ E ∨ P \ Vv′ ⊆ E

)
. From above, we have that(

P\(V⊥∪Vv) ⊆ D∗) ∧
(
G ⊆ E∗ ∨ P\Vv ⊆ E∗). Furthermore, by assumption we

have that the precondition in the lemma is fulfilled. We split the proof according
to which or-term of the second part of this precondition is fulfilled for the given
(D, E):

Case G \ D �⊆ D∗: Since P \ (V⊥ ∪ Vv′) ⊆ D and G ⊆ P , we have
G \ (V⊥ ∪ Vv′) ⊆ D. It follows by inspection of the protocol that G and
V⊥ are disjoint. Hence we have G \ Vv′ ⊆ D. Analogously, it follows from
P \ (V⊥ ∪ Vv) ⊆ D∗ that G \ Vv ⊆ D∗. Therefore we have that G ⊆ D ∪ D∗,
which is a contradiction to G \ D �⊆ D∗.

Case G �⊆ E ∧ P \ E �⊆ D∗: Since G �⊆ E , we have P \ Vv′ ⊆ E . Furthermore,
we have that P \ (V⊥ ∪Vv) ⊆ D∗. It follows by inspection from the protocol
that V⊥, Vv′ , and Vv are pairwise disjoint. Hence, we have that P ⊆ D∗ ∪E ,
which is a contradiction to P \ E �⊆ D∗.

Passive Corruption in Statistical Multi-Party Computation 137

Case G �⊆ E∗ ∧ P \ E∗ �⊆ D: This proof is identical to the previous case, with
the only difference that (D∗, E∗) is swapped with (D, E) and v with v′.

Robustness: In the proof of correctness, we have shown that(
P \ (V⊥ ∪ Vv) ⊆ D∗) ∧

(
G ⊆ E∗ ∨ P \ Vv ⊆ E∗).

Hence, given the correctness condition and (D∗, E∗) ∈ R, it follows immediately
that the condition in Step 3 is fulfilled for the correct value v and (D∗, E∗), i.e.,
that the protocol terminates without abort.
Agreement on abort: Since the abort decision is based only on broadcasted
values, we always have agreement on abort. ��

Given group commitments, protocols for sharing, reconstruction, addition, and
multiplication can be constructed in a rather straightforward manner. Due to
lack of space, the description of these protocols, as well as the proof of security
of the parametrized protocol πS,R (as stated in the following lemma) was moved
to the full version of this paper.

Lemma 3. Given the sharing specification S and the reconstruction parameter
R, the protocol πS,R guarantees statistical correctness if

∀(D, E) ∈ R, S, S′ ∈ S : S ∩ S′ �= ∅ ∧ S �⊆ D∗ ∧(
S \ D �⊆ D∗ ∨ (S �⊆ E ∧ P \ E �⊆ D∗) ∨ (S �⊆ E∗ ∧ P \ E∗ �⊆ D)

)
Furthermore, the protocol guarantees statistical secrecy if additionally ∃S ∈ S :
S ∩ E∗ = ∅, and/or statistical robustness if additionally (D∗, E∗) ∈ R.

3.2 Main Result

The following theorem states the optimal bound for statistically secure MPC for
general adversaries with both mixed adversaries and hybrid security. We show
that the bound is sufficient for MPC by providing parameters for the generalized
protocols described above. In the full version of this paper, we prove that the
bound is also necessary.

Theorem 1. In the secure channels model with broadcast and general adver-
saries, statistically secure (reactive) MPC among n ≥ 2 parties with respect to
(Zc,Zs,Zr,Zf), where Zr ⊆ Zc and Zf ⊆ Zs ⊆ Zc, is possible if Zs = {(∅, ∅)}
or

∀(·, Es), (·, Es′) ∈ Zs, (Dr, Er) ∈ Zr, (Dc, Ec) ∈ Zc :

Es ∪ Es′ �= P ∧ Es ∪ Dc �= P ∧(
Dc ∪ Dr ∪ Es �= P ∨ (Es ∪ Er �= P ∧ Dc ∪ Er �= P)

∨ (Es ∪ Ec �= P ∧ Dr ∪ Ec �= P)
)

This bound is tight: If violated, there are (reactive) functionalities that cannot be
securely computed.

138 M. Hirt et al.

Proof (Sufficiency). If Zs = {(∅, ∅)}, there is no secrecy requirement, and we
can directly use the trivial non-secret protocol described in the Appendix of
[HLMR11]. Otherwise, we employ the protocol πS,R described in Sec. 3.1. We
set S := {Es | (·, Es) ∈ Zs} and R = Zr ∪ Zf .

We apply Lemma 3 to derive correctness, secrecy and robustness: Given the
bound in the theorem, the choice of the structures S and R, and the fact that
(D∗, E∗) is an element of the corresponding adversary structure, it is easy to
verify that the condition for each property is fulfilled. In particular, note that
the correctness condition is also fulfilled for (D, E) ∈ Zf : Using that Zf ⊆ Zs, we
have that Es∪E ⊆ Es∪Es′ �= P (for some Es′) and Dc∪E ⊆ Dc∪Es �= P (where
the inequalities follow from the second line of the condition in the theorem).
This implies the condition for correctness.

Note that by our choice of R, we have Zf ⊆ R. Hence, for (D∗, E∗) ∈ Zf the
protocol is robust, and the adversary cannot abort. ��

4 MPC with Threshold Adversaries

Trivially, the protocol for general adversaries can also be applied to the special
case of threshold adversaries. Yet, protocols for general adversaries are super-
polynomial in the number of parties for most adversary structures. Therefore,
we present a protocol that exploits the symmetry of threshold adversaries, and
is efficient in the number of parties.

The characterization for general adversaries (Sec. 3) can be adjusted for
threshold adversaries: A mixed adversary is characterized by two thresholds
(ta, tp), where he may corrupt up to tp parties passively, and up to ta of these par-
ties even actively. The level of security (correctness, secrecy, robustness, and fair-
ness) depends only on the number (|D∗|, |E∗|) of actually corrupted parties. In the
perfect setting [HLMR11], this is modeled with four pairs of thresholds, one for
each security requirement, specifying the upper bound on the number of corrup-
tions that the adversary may perform, such that the corresponding security re-
quirement is still guaranteed. In the statistical setting, it follows from the bound
for general adversaries that we need to consider multiple pairs of thresholds for
each security guarantee. Consider the following example: Let n = 6 and tsp = 2. It
is possible to obtain correctness for (|D∗|, |E∗|) ≤ (2, 6) and (|D∗|, |E∗|) ≤ (3, 3),
and robustness for (|D∗|, |E∗|) ≤ (1, 6) and (|D∗|, |E∗|) ≤ (2, 3) in the same proto-
col. Yet, correctness and robustness cannot be guaranteed for (|D∗|, |E∗|) ≤ (3, 6)
and (|D∗|, |E∗|) ≤ (2, 6), respectively. Hence, this situation cannot be captured
using only a single pair of thresholds for each security guarantee. Therefore, we
introduce multi-thresholds T , i.e. collections of pairs of thresholds (ta, tp).

We consider the four multi-thresholds T c, T s, T r, and T f :5 Correctness is
guaranteed for (|D∗|, |E∗|) ≤ T c,6 secrecy is guaranteed for (|D∗|, |E∗|) ≤ T s,

5 As in the setting with general adversaries, we do not introduce a separate multi-
threshold for agreement on abort.

6 We write (ta, tp) ≤ T if ∃(t′a, t′p) ∈ T : (ta, tp) ≤ (t′a, t
′
p), where (ta, tp) ≤ (t′a, t

′
p) is a

shorthand for ta ≤ t′a and tp ≤ t′p.

Passive Corruption in Statistical Multi-Party Computation 139

robustness is guaranteed for (|D∗|, |E∗|) ≤ T r, and fairness is guaranteed for
(|D∗|, |E∗|) ≤ T f . Again, we have the assumption that T r ≤ T c and T f ≤ T s ≤
T r,7 as secrecy and robustness are not well defined without correctness, and as
fairness cannot be achieved without secrecy.

For threshold adversaries, we proceed along the lines of the general adver-
sary case: We generalize the protocol of [FHM98, CDD+99] and introduce the
sharing parameter d (corresponding to S), and the reconstruction parameter E
(corresponding to R). Since we consider multi-thresholds, the reconstruction
parameter E is a list of pairs (ea, ep) where ea ≤ ep. Since for secrecy the ac-
tively corrupted parties D∗ are not relevant, there cannot be two incomparable
maximal adversaries. Hence, a single threshold is sufficient.

In this section, we assume that each party pi is assigned a unique and publicly
known evaluation point αi ∈ F \ {0}. This implies that the field F must have
more than n elements.

4.1 A Parametrized Protocol for Threshold Adversaries

In the following, we present the parametrized subprotocols and analyze them
with respect to correctness, secrecy, and robustness. The main result (including
fairness) is discussed in Sec. 4.2. The protocol is based on IC signatures as
introduced in Sec. 2.

Verifiable Secret Sharing. The state of the protocol is maintained with a
Shamir sharing [Sha79] of each intermediate result.

Definition 2 (d-Sharing). A value s is d-shared when (1) there is a polynomial
ŝ(x) of degree d with ŝ(0) = s, and every party pi holds a share si = ŝ(αi), (2) for
each share si, pi holds a share polynomial ŝi(y) of degree d with ŝi(0) = si, and
every party pj holds a share share sij = ŝi(αj), and (3) for each share share sij,
party pi holds a signature 〈sij〉j,i, and pj holds a signature 〈sij〉i,j. We denote
a d-sharing of s with [s], and the share si with [s]i. A sharing parameter d is
t-permissive, if the shares of all but t parties uniquely define the secret, i.e.,
n− t > d.

Note that it follows from the linearity of Shamir sharings (i.e. a polynomial ŝ(x)
with ŝ(0) = s where each party pj ∈ P holds ŝ(αj)) and IC signatures, that
d-sharings are linear.

Lemma 4. Let d < n be the sharing parameter. A d-sharing is secret if |E∗| ≤ d,
and uniquely defines a value if d is |D∗|-permissive.

Proof. It follows directly from the properties of a polynomial of degree d that
secrecy is guaranteed if the number |E∗| of (actively or passively) corrupted
parties is at most d. Furthermore, n − |D∗| > d implies that there are at least
d+ 1 correct parties whose shares uniquely define a share polynomial. ��
The share protocol takes as input a secret s from a dealer, and outputs a d-
sharing [s] (see Fig. 3).

7 We write T1 ≤ T2 if ∀(ta, tp) ∈ T1,∃(t′a, t′p) ∈ T2 : (ta, tp) ≤ (t′a, t′p).

140 M. Hirt et al.

Protocol ����: Given input s from the dealer, compute a d-sharing [s] of s.

1. The dealer chooses a random (bivariate) polynomial g(x, y) with g(0, 0) = s,
of degree d in both variables, and sends to each party pi ∈ P the (univariate)
polynomials ki(y) = g(αi, y) and hi(x) = g(x,αi).

2. For each pair of parties (pi, pj): pi sends ki(αj) to party pj , and pj checks whether
ki(αj) = hj(αi). If this check fails, it broadcasts a complaint.

3. For all ki(αj), for which no inconsistency was reported, IC-Sign is invoked once
with signer pj and intermediary pi to compute the signature 〈ki(αj)〉j,i, and once
with signer pi and intermediary pj to compute the signature 〈ki(αj)〉i,j .

4. The dealer broadcasts each value for which either an inconsistency was reported
(Step 2), or the output of IC-Sign was ⊥ (Step 3), and a default signature is
used.

5. If some party pi observes an inconsistency between the polynomials received in
Step 1 and the broadcasted values in Step 4, it accuses the dealer. The dealer
answers the accusation by broadcasting both ki(y) and hi(x). Now, if some other
party pj observes an inconsistency between the polynomial received in Step 1 and
these broadcasted polynomials, it also accuses the dealer. This step is repeated
until no additional party accuses the dealer. For all broadcasted values, default
signatures are used.

6. If the dealer does not answer some complaint or accusation, or if the broadcasted
values contradict each other, the parties output a default d-sharing of a default
value (with default signatures). Otherwise, each party pi outputs the share si :=
ki(0), the share polynomial ŝi(y) := ki(y) with signatures 〈ŝi(αj)〉j,i (for j =
1, . . . , n), and the share shares sji := hi(αj) with signatures 〈sji〉j,i (for j =
1, . . . , n). The dealer outputs ŝ(x) := g(x, 0).

Fig. 3. The share protocol for threshold adversaries

Lemma 5. Let d < n be the sharing parameter. On input s from the dealer,
Share correctly, secretly, and robustly computes a d-sharing. If d is |D∗|-
permissive, and if the dealer is correct, the sharing uniquely defines the secret s.

Proof. Secrecy: It follows from the properties of a bivariate polynomial that
g(x, y) reveals no more information about s than the specified output. After
Step 1, the adversary does not obtain any additional information: In Step 4, a
value sij is broadcasted only if pi, pj or the dealer is actively corrupted, i.e., the
adversary knew the value already beforehand. Hence, the protocol does not leak
more information than the specified output, and thus always provides secrecy.
Correctness: First, we have to show that the protocol outputs a valid d-
sharing. Due to the bilateral consistency checks, any inconsistency in the values
held by correct parties is detected in Step 2 and resolved in Step 4. Therefore,
the values held by correct parties uniquely define a polynomial g′(x, y) of degree
d, which implies that g′(x, 0) is of degree d. Furthermore, it follows from the
properties of IC-Sign that in Step 3, either a correct IC-signature is computed,
or all parties output ⊥. In the latter case, a default (and hence correct) IC-
signature is used. Therefore, the output is a valid d-sharing. Second, we have to

Passive Corruption in Statistical Multi-Party Computation 141

show that if d is |D∗|-permissive and if the dealer is correct, then the shared value
equals the input of the dealer. A correct dealer can always consistently answer all
complains and accusations with the correct values. Hence, if d is |D∗|-permissive,
the unique value defined by the sharing is the secret s.
Robustness: By inspection, the protocol does not abort. ��

The public reconstruction protocol (Fig. 4) proceeds sharewise: For each share si,
first party pi broadcasts the share si together with the sharing polynomial ŝi(y),
and opens the signatures on all share shares ŝi(αj). Second, all parties broadcast
their share shares sij , and open the corresponding signatures. If active corrup-
tion took place, these two steps might produce conflicts between certain parties.
Note that these conflicts do not only depend on the actively, but also on the pas-
sively corrupted parties, due to their inability to reliably verify IC-signatures. If
these conflicts can be explained with an adversary corrupting (|D∗|, |E∗|) ≤ E,
then the share is accepted. Otherwise it is ignored. This technique allows also
passively-corrupted parties to reliably verify signatures and therefore reconstruct
the correct value. Finally, the secret is reconstructed using the accepted shares.
Note that Public Reconstruction is the only subprotocol that might abort.
All other protocols abort only if they use Public Reconstruction as a sub-
protocol and the invocation thereof aborts. Therefore, it is sufficient to discuss
agreement on abort only for this protocol.

Lemma 6. Given the sharing parameter d, the reconstruction parameter E, and
a d-sharing [s] of some value s, Public Reconstruction reconstructs s to all
parties. The protocol is statistically correct if |D∗| < n− d and

∀(ea, ep) ∈ E : |D∗| < n− d− ea ∨
(d+ ep < n ∧ |D∗| < n− ep) ∨ (|E∗| < n− d ∧ |E∗| < n− ea).

Furthermore, it is statistically robust if additionally (|D∗|, |E∗|) ≤ E, and always
guarantees agreement on abort.

Proof. Correctness: The protocol outputs a value only if at least d+1 shares
are accepted. Trivially, the output is correct if all accepted shares are correct,
i.e., when incorrect shares are not accepted. More precisely, we have to show
that for any incorrect share s′i �= si and for each (ea, ep) ∈ E, the condition
in Step 1(d) is violated. In this proof, we distinguish three cases, depending on
which or-term of the condition in the lemma is fulfilled:

i. Case |D∗| < n− d− ea:
In order to broadcast a wrong share s′i �= si, an actively corrupted party pi
has to change the value of at least n− d share shares. At least n− d− |D∗|
of these share shares belong to correct parties that subsequently vote “no”,
i.e. r ≥ n − d − |D∗|. Since |D∗| < n − d − ea, this implies r > ea, and the
share is not accepted.

142 M. Hirt et al.

Protocol ������
�����	���	���: Given a d-sharing [s] of some value s, recon-
struct s to all parties.

1. For each party pi:
(a) pi broadcasts ŝi(y) and invokes IC-Reveal on the signatures 〈ŝi(αj)〉j,i

(j = 1, . . . , n) of all share shares.
(b) Each pj broadcasts its share share sij and invokes IC-Reveal on the corre-

sponding signature 〈sij〉i,j .
(c) Voting: Each pk checks whether

i. the polynomial ŝi(y) broadcasted in Step 1(a) is consistent with its share
share, i.e. sik = ŝi(αk),

ii. the output of all invocations of IC-Reveal in Step 1(a) was “accept”,
iii. for all sij broadcasted in Step 1(b) either sij = ŝi(αj) or the output of

IC-Reveal on the corresponding signature 〈sij〉i,j was “reject”.
pk broadcasts “yes” if all checks succeed, “no” if check i. or ii. fails, and ⊥
otherwise. Let a and r denote the number of parties broadcasting “yes” and
“no”, respectively.

(d) Decision: Accept si if ∃(ea, ep) ∈ E : r ≤ ea ∧ (ep + d ≥ n ∨ a ≥ n− ep).
Otherwise ignore si.

2. Output: If at least d + 1 shares are accepted, interpolate these shares with a
polynomial ŝ′(x) and output ŝ′(0). Otherwise abort.

Fig. 4. The public reconstruction protocol for threshold adversaries

ii. Case d+ ep < n ∧ |D∗| < n− ep:
Since |D∗| < n− d, there are at least d+ 1 correct parties. Hence, in order
to broadcast a wrong share s′i �= si, an actively corrupted party pi has to
change the value of at least one share share belonging to a correct party. In
Step 1(b), this correct party broadcasts the correct share share with a valid
signature, and no correct party accepts the wrong share s′i, i.e. a ≤ |D∗|.
Since |D∗| < n− ep, we have a < n− ep. Since we also have d+ ep < n, the
share is not accepted.

iii. Case |E∗| < n− d ∧ |E∗| < n− ea:
Since |E∗| < n − d, there are at least d + 1 honest parties. Hence, in order
to broadcast a wrong share s′i �= si, an actively corrupted party has to
change the value of at least one share share belonging to an honest party,
and to create the signature on this (incorrect) share share. All honest parties
notice that this signature is not valid and reject, i.e., r ≥ n − |E∗|. Since
|E∗| < n− ea, we have r > ea, and the share is not accepted.

Robustness: Given that the correctness condition holds, the protocol guar-
antees robustness if enough (i.e. d + 1) shares are accepted. Let (ea, ep) ∈ E
such that (|D∗|, |E∗|) ≤ (ea, ep). First, observe that if party pi is correct, then
r ≤ ea: All share shares and signatures broadcasted in Step 1(a) are correct and
valid. Therefore, no correct party votes “no”. Furthermore, if party pi is honest,
then a ≥ n − ep: If some pj broadcasts a contradicting (wrong) share share in
Step 1(b), then the signature on this share share is invalid for all honest parties.

Passive Corruption in Statistical Multi-Party Computation 143

It follows from the two observations above that shares from honest parties
are always accepted. If ep + d < n, then there are at least d + 1 honest parties
and the protocol does not abort. Otherwise, if ep + d ≥ n, then also shares from
correct parties are accepted. Since |D∗| < n− d there are always at least d + 1
correct parties and the protocol does not abort.

Agreement on abort: Since the abort decision is based only on broadcasted
values, we always have agreement on abort. ��

Addition, Multiplication, and Random Values. Linear functions (and in
particular additions) can be computed locally, since d-sharings are linear: Given
sharings [a] and [b], and a constant c, one can easily compute the sharings [a]+[b],
c[a], and [a] + c. Computing a shared random value can be achieved by letting
each party pi share a random value ri, and computing [r] = [r1] + . . .+ [rn].

For the multiplication of two shared values, we first provide a non-robust
multiplication protocol, which we then make robust using dispute control [BH06]
and circuit randomization [Bea91]. Due to lack of space, the full description of
the multiplication protocol was moved to the full version of this paper.

The Security of the Parametrized Protocol. Considering the security of
the subprotocols described above, we can derive the security of the parametrized
protocol, denoted by πd,E :

Lemma 7. Let d be the sharing parameter, and E be the reconstruction param-
eter, the protocol πd,E guarantees statistical correctness if d < n− |D∗|, 2d < n,
and

∀(ea, ep) ∈ E : |D∗| < n− d− ea ∨
(d+ ep < n ∧ |D∗| < n− ep) ∨ (|E∗| < n− d ∧ |E∗| < n− ea).

Furthermore, the protocol guarantees statistical secrecy if additionally |E∗| ≤ d,
and/or statistical robustness if additionally (|D∗|, |E∗|) ≤ E.

Proof. πd,E provides a certain security guarantee against (|D∗|, |E∗|) if all sub-
protocols and the sharing provide this guarantee against (|D∗|, |E∗|). For each
guarantee, it can easily be verified that the condition in the lemma implies the
conditions in the corresponding lemmas. ��

4.2 Main Result

The following theorem states the optimal bound for statistically secure MPC for
threshold adversaries with both mixed adversaries and hybrid security. We show
that the bound is sufficient for MPC by providing parameters for the generalized
protocols described above. The necessity of the bound follows directly from the
corresponding proof for general adversaries that can be found in the full version
of this paper.

144 M. Hirt et al.

Theorem 2. In the secure channels model with broadcast and threshold ad-
versaries, statistically secure (reactive) MPC among n ≥ 2 parties with multi-
thresholds T c, T s, T r, and T f , where T f ≤ T s ≤ T c and T r ≤ T c, is possible if
T s = {(0, 0)} or

∀(tca, tcp) ∈ T c, (tra, t
r
p) ∈ T r, (·, tsp), (·, tsp′) ∈ T s :

tsp + tsp
′ < n ∧ tsp + tca < n ∧(

tca + tra + tsp < n ∨ (tsp + trp < n ∧ tca + trp < n)

∨ (tsp + tcp < n ∧ tra + tcp < n)
)

This bound is tight: If violated, there are (reactive) functionalities that cannot be
securely computed.

Proof (Sufficiency). If T s = {(0, 0)}, there is no secrecy requirement, and we
can directly use the trivial non-secret protocol described in the Appendix of
[HLMR11]. Otherwise, we employ the parametrized version πd,E of the proto-
col of [BGW88] described in Sec. 4.1 with d := t̃sp and E := T r ∪ T f , where

t̃sp = max{tsp | (·, tsp) ∈ T s}.
We apply Lemma 7 to derive correctness, secrecy and robustness: Given the

bound in the theorem, the choice of the parameters d and E, and the fact that
(|D∗|, |E∗|) is below the corresponding threshold, it is easy to verify that the
condition for each property is fulfilled. In particular, note that the correctness
condition is also fulfilled for (ea, ep) ∈ T f : Using that T f ≤ T s, we have d+ep ≤
2t̃sp < n and ea + ep ≤ tca + d < n (where the inequalities follow from the second

line of the condition in the theorem with tsp = tsp
′ = t̃sp).

For fairness, note that T f ≤ E. Hence, for (|D∗|, |E∗|) ≤ (tfa , t
f
p) the protocol

is robust, and the adversary cannot abort. ��

5 Conclusion

Our results provide insights into the relations between passive corruption and
different security requirements. The bounds presented in this work quantify the
impact of passively corrupted parties on all security guarantees. We have shown
that, in the statistical setting, passively corrupted parties play a significant role
for all security guarantees, and not only for secrecy. Consider the following ex-
ample: Let n = 4, tca = 2, tcp = 2, tra = 1, trp = 2, and tsp = 1. For this choice of
thresholds, the construction in this paper provides a protocol that is correct and
robust (given that the adversary remains below the corresponding thresholds).
Yet, we show that it is impossible to construct a protocol that tolerates a single
additional passive corruption.

Furthermore, in addition to the known tradeoff between different security
guarantees like robustness and correctness [HLMR11], we obtain a novel trade-
off between active and passive corruptions even when only considering a single
security guarantee.

Passive Corruption in Statistical Multi-Party Computation 145

Solutions for the setting with general adversaries encompass all possible adver-
sary structures. Yet, these protocols are usually superpolynomial in the number
of parties. Therefore, protocols for the setting with threshold adversaries are of
more practical relevance. In this work, we provide the first protocol allowing for
multi-thresholds, a setting that is strictly more flexible than single-thresholds.
This constitutes a substantial step towards general adversaries without losing
efficiency.

References

[Bea89] Beaver, D.: Multiparty Protocols Tolerating Half Faulty Processors. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 560–572. Springer,
Heidelberg (1990)

[Bea91] Beaver, D.: Efficient Multiparty Protocols Using Circuit Randomization.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432.
Springer, Heidelberg (1992)

[BFH+08] Beerliová-Trub́ıniová, Z., Fitzi, M., Hirt, M., Maurer, U., Zikas, V.: MPC
vs. SFE: Perfect Security in a Unified Corruption Model. In: Canetti, R.
(ed.) TCC 2008. LNCS, vol. 4948, pp. 231–250. Springer, Heidelberg (2008)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In: STOC 1988,
pp. 1–10. ACM (1988)

[BH06] Beerliová-Trub́ıniová, Z., Hirt, M.: Efficient Multi-party Computation
with Dispute Control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 305–328. Springer, Heidelberg (2006)

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols. In: STOC 1988, pp. 11–19. ACM (1988)

[CDD+99] Cramer, R., Damg̊ard, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient
Multiparty Computations Secure against an Adaptive Adversary. In: Stern,
J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Hei-
delberg (1999)

[Cha89] Chaum, D.: The Spymasters Double-Agent Problem: Multiparty Compu-
tations Secure Unconditionally from Minorities and Cryptograhically from
Majorities. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
591–602. Springer, Heidelberg (1990)

[DDWY93] Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message
transmission. Journal of the ACM 40(1), 17–47 (1993)

[FHHW03] Fitzi, M., Hirt, M., Holenstein, T., Wullschleger, J.: Two-Threshold Broad-
cast and Detectable Multi-party Computation. In: Biham, E. (ed.) EURO-
CRYPT 2003. LNCS, vol. 2656, pp. 51–67. Springer, Heidelberg (2003)

[FHM98] Fitzi, M., Hirt, M., Maurer, U.: Trading Correctness for Privacy in Uncon-
ditional Multi-party Computation (Extended Abstract). In: Krawczyk, H.
(ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 121–136. Springer, Heidelberg
(1998)

[FHM99] Fitzi, M., Hirt, M., Maurer, U.M.: General Adversaries in Unconditional
Multi-party Computation. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.)
ASIACRYPT 1999. LNCS, vol. 1716, pp. 232–246. Springer, Heidelberg
(1999)

146 M. Hirt et al.

[FHW04] Fitzi, M., Holenstein, T., Wullschleger, J.: Multi-party Computation with
Hybrid Security. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 419–438. Springer, Heidelberg (2004)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: STOC
1987, pp. 218–229. ACM (1987)

[HLMR11] Hirt, M., Lucas, C., Maurer, U., Raub, D.: Graceful Degradation in Multi-
Party Computation (Extended Abstract). In: Fehr, S. (ed.) ICITS 2011.
LNCS, vol. 6673, pp. 163–180. Springer, Heidelberg (2011)

[HM97] Hirt, M., Maurer, U.: Complete characterization of adversaries tolerable in
secure multi-party computation. In: PODC 1997, pp. 25–34. ACM (1997)

[HMZ08] Hirt, M., Maurer, U.M., Zikas, V.: MPC vs. SFE: Unconditional and
Computational Security. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS,
vol. 5350, pp. 1–18. Springer, Heidelberg (2008)

[IKLP06] Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On Combining Privacy
with Guaranteed Output Delivery in Secure Multiparty Computation. In:
Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 483–500. Springer,
Heidelberg (2006)

[Kat07] Katz, J.: On achieving the ”best of both worlds” in secure multiparty
computation. In: STOC 2007, pp. 11–20. ACM (2007)

[LRM10] Lucas, C., Raub, D., Maurer, U.: Hybrid-secure MPC: Trading
information-theoretic robustness for computational privacy. In: PODC
2010, pp. 219–228. ACM (2010)

[Mau02] Maurer, U.M.: Secure Multi-party Computation Made Simple. In: Cimato,
S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 14–28.
Springer, Heidelberg (2003)

[PW92] Pfitzmann, B., Waidner, M.: Unconditional Byzantine Agreement for any
Number of Faulty Processors. In: Finkel, A., Jantzen, M. (eds.) STACS
1992. LNCS, vol. 577, pp. 339–350. Springer, Heidelberg (1992)

[RB89] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols
with honest majority. In: STOC 1989, pp. 73–85. ACM (1989)

[Sha79] Shamir, A.: How to share a secret. Communications of the ACM 22(11),
612–613 (1979)

[Yao82] Yao, A.C.: Protocols for secure computations (extended abstract). In:
FOCS 1982, pp. 160–164. IEEE (1982)

Efficient Threshold Zero-Knowledge
with Applications to User-Centric Protocols

Marcel Keller1, Gert Læssøe Mikkelsen2, and Andy Rupp3

1 University of Bristol, UK
m.keller@bristol.ac.uk

2 The Alexandra Institute, Denmark
gert.l.mikkelsen@alexandra.dk

3 AGT Group (R&D) GmbH, Germany
arupp@agtinternational.com

Abstract. In this paper, we investigate on threshold proofs, a framework for
distributing the prover’s side of interactive proofs of knowledge over multiple
parties. Interactive proofs of knowledge (PoK) are widely used primitives of cryp-
tographic protocols, including important user-centric protocols, such as identifi-
cation schemes, electronic cash (e-cash), and anonymous credentials.

We present a security model for threshold proofs of knowledge and develop
threshold versions of well-known primitives such as range proofs, zero-knowledge
proofs for preimages of homomorphisms (which generalizes PoKs of discrete log-
arithms, representations, p-th roots, etc.), as well as OR statements. These build-
ing blocks are proven secure in our model.

Furthermore, we apply the developed primitives and techniques in the con-
text of user-centric protocols. In particular, we construct distributed-user variants
of Brands’ e-cash system and the bilinear anonymous credential scheme by Ca-
menisch and Lysyanskaya. Distributing the user party in such protocols has sev-
eral practical advantages: First, the security of a user can be increased by sharing
secrets and computations over multiple devices owned by the user. In this way,
losing control of a single device does not result in a security breach. Second, this
approach also allows groups of users to jointly control an application (e.g., a joint
e-cash account), not giving a single user full control.

The distributed versions of the protocols we propose in this paper are relatively
efficient (when compared to a general MPC approach). In comparison to the orig-
inal protocols only the prover’s (or user’s) side is modified while the other side
stays untouched. In particular, it is oblivious to the other party whether it interacts
with a distributed prover (or user) or one as defined in the original protocol.

Keywords: Multiparty computation, threshold cryptography, distributed provers,
Σ -protocols, e-cash, anonymous credentials.

1 Introduction

The general idea of increasing the security of cryptographic primitives by distribut-
ing computations is not new. There is a large body of cryptographic literature dealing
with threshold digital signatures [1, 15, 16, 19, 26, 35], where the security of a signature
scheme is increased by splitting the signer player into several players. In this way one

A. Smith (Ed.): ICITS 2012, LNCS 7412, pp. 147–166, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

148 M. Keller, G.L. Mikkelsen, and A. Rupp

obtains schemes that stay secure even in case one or more (up to a certain threshold) of
these players get corrupted.

We believe that in a world where people are expected to participate in more and
more different and complex security protocols, there is a need for extending the idea
of threshold schemes for users beyond signatures. In particular, the acceptance and de-
ployment of user-centric cryptographic protocols including e-cash [8] and anonymous
credentials [9] could profit from strengthening the security for the human user.

An important work in this vein (which however, still restricts to signatures) is due
to Damgård and Mikkelsen [16]. They introduce a model where the human user in
the context of a signature scheme is represented not by a single player, as often done
in cryptographic literature, but by several players thereby decoupling the user and his
actual equipment (e.g., a smart card and a PC). This leads to a more realistic model of
the world, and, by using threshold signatures, it increases the security of the human user
against identity theft: If only one of the user’s devices gets corrupted, the adversary is
still not able to make signatures on behalf of the user.

A major goal of the work at hand is to extend this approach to the more complex case
of user-centric cryptographic protocols. Here, for instance, users need to be protected
against loss of credentials, electronic coins, etc. due to corruption, theft, or loss of their
devices. Another strongly related goal in this context is to protect a group of users who
jointly own an e-cash account or hold a credential from misuse by an individual.

To achieve the above goals we need to distribute the user’s part of these protocols
in an appropriate way. From an implementation point of view, it is a very important
objective for new protocols to work as seamlessly as possible together with existing
solutions. If the other players in the protocol, e.g., the shop accepting electronic cash,
are oblivious of the fact that the user is distributed, then a distributed-user variant of
the protocol can be utilized in already working environments alongside other imple-
mentations, without requiring new standardizations and/or implementations of big and
system-wide changes. In practice, we aim for distributing the user’s private information
between n players, and let these players communicate with some additional player C
combining messages and acting with respect to the other party (e.g, the shop) as if it
was a single user. For the purpose of implementing distributed-user protocols also on
computationally weak devices like smart cards or phones, efficiency of the protocols is
of great importance.

Related Work. Pedersen [33] considers distributed provers in the context of undeniable
signatures. However, while our goal is to improve the security against theft of the user’s
identity, Pedersen’s focus is on robustness. Desmedt et al. [18] propose a model similar
to ours. While their model is based on zero-knowledge proofs of knowledge, our model
extends the properties of Σ -protocols. This allows us to easily construct protocols that
have arbitrary challenge spaces, which is more difficult to achieve with the general def-
inition of zero-knowledge. In fact, they only present a protocol where the challenge is
one bit. Furthermore, our model avoids interaction among the provers, and it preserves
the communication pattern of the single-prover protocols. Desmedt [17] introduced the
protocol presented in Figure 1. However, he does not give a security proof for his pro-
tocol, and he considers neither applications nor more intricate proofs as we do with OR
proofs and range proofs.

Efficient Threshold Zero-Knowledge with Applications 149

Further examples of related work are [16] described earlier, and the work of Simoens
et al. [38]. The latter work also utilizes threshold cryptography to enhance the security
of users. The authors propose threshold signatures and threshold encryption schemes,
focusing on very constrained devices. In contrast to our approach they design distributed
schemes from scratch where the verifier is aware that it interacts with a distributed party.

Brands [5] considers a model called wallet with observers, where the user of an e-
cash scheme is distributed into two different entities. The objective is to protect the
bank against double spenders, and this is achieved by using tamper proof hardware.
Our objective is to improve the security of the user without relying on tamper proof
hardware.

Our Contribution. This work proposes a framework for threshold zero-knowledge
proofs consisting of a security model as well as techniques and building blocks for
constructing threshold user-centric protocols. In particular, we introduce threshold
variants of numerous important Σ -protocols for proofs of knowledge which are fre-
quently used as building blocks: This includes Schnorr’s protocol [36] for discrete
logarithms, Okamoto’s [32] protocol for representations, Fiat-Shamir’s [23] and
Guillou-Quisquater’s [27] protocols for modular roots, protocols for proving equali-
ties, a protocol for proving correctness of DH keys, protocols for proving multiplicative
relations of commitments, and many further protocols which are, e.g., used in e-cash
and credential systems. To do so, we consider a generalization of the protocols above by
Maurer [31] (PoK of a preimage of a homomorphism) instead of treating each protocol
individually.

As a further contribution, we develop a threshold version of the OR construction
for the generalized PoK mentioned above. While coming up with a distributed PoK for
preimages is not too hard, this is not the case for the OR protocol. Here tricky modifi-
cations to the computation flow on the prover’s side are required. The OR construction
by Cramer et al. [11] is an important building block. For example, it is an efficient way
to increase the security of proofs of knowledge: It can be used to obtain a witness hid-
ing [21] Σ -protocol starting from one without this property. Moreover, by means of this
construction one can turn a witness hiding Σ -protocol into a protocol providing zero-
knowledge against dishonest verifiers. Furthermore, we develop threshold versions of
the range proofs by Lipmaa [29] and Boudot [4] also used in various user-centric proto-
cols. For all of our threshold variants of the above protocols we show zero-knowledge
under passive as well as active corruption of the verifier and a number of provers.

As a case study to demonstrate the usefulness of our approach we apply it to obtain
two distributed user-centric protocols. More precisely, we sketch distributed-user vari-
ants of Brands’ e-cash system [5] and the pairing-based anonymous credential scheme
by Camenisch and Lysyanskaya [7]. We note that our primary goal in the context of
these applications is to improve the user’s security rather than protecting its privacy
(untraceability of transactions) in case the adversary gains control over a device. Nev-
ertheless, in Section 4.3 we sketch how forward and backward untraceability of users
could be achieved if a device becomes temporarily corrupted.

One may ask how our threshold protocols differ from a solution using full-fledged
multi-party computation. The key difference is communication efficiency: Our proto-
cols are highly efficient, most of them preserve the three move structure with respect

150 M. Keller, G.L. Mikkelsen, and A. Rupp

to each prover, which is optimal for single-prover zero-knowledge proofs. We achieve
this by avoiding full-featured multiparty computation, instead, we exploit the proper-
ties of linear and multiplicative secret sharing schemes. In particular, we use so-called
pseudorandom secret sharing [10] to allow the provers to generate secret shared random
numbers without communication. Moreover, we combine multiplicative secret sharing
with pseudorandom zero-sharing to allow provers to carry out a multiplication of two
secret shared numbers without communication. This approach differs from common
multiparty computation [2] involving a resharing round after every local multiplication
of shares.

Since the focus of this paper is on efficiency, we refrain from considering complex
protocols such as the proof of knowledge of a Hamiltonian cycle [3]. Revealing the
Hamiltonian cycle in the last step of this protocol involves branching, which is known
to be relatively expensive in multiparty computation. For the same reason, we do not
consider universally composable zero-knowledge or related notions like non-malleable
zero-knowledge [25]. To the best of our knowledge, these imply the use of techniques
that do not allow an efficient implementation as multiparty computation, like hash func-
tions in [25] or converting secret values between different domains in [20].

Due to space constraints an extended version of this paper can be found in [28].

2 Security Model and Preliminaries

Contrary to the traditional model for user-centric protocols, where the user and his
computing equipment is modeled as one player, this equipment can be represented as
several players in the model we consider in this work. Computations done by a user are
split up among several devices (each representing a player), which the user may carry
with him. This could be for example a cell phone, smart cards, but a device might also
be a server connected to the Internet.

The protocols we are going to consider in this model are threshold proofs, a dis-
tributed version of protocols for proofs of knowledge (PoK). While the model covers
general zero-knowledge proofs of knowledge, this paper mainly considers Σ -protocols.
Σ -protocols are a special class of PoK protocols, where the prover P starts the protocol
by sending a message a to the verifier V . V replies with an l-bit string e, called the
challenge. From a, e and its private input P calculates a response z and sends z to V .
From a, e and z, V is able to verify the proof. Σ -protocols are an important primitive in
many cryptographic protocols. For further details we refer to [13].

We study how the prover P of Σ -protocols can be distributed such that the private
input is shared between n provers P1, . . . ,Pn, representing the user’s computing devices.
Each of these provers communicates with a player, denoted combiner C , combining the
messages in the proof and communicating with V as if C was P in the original protocol.
The protocol view of V has to be indistinguishable from the single-prover protocol. C
could represent one of the user’s devices handling the communication with the verifier,
or it could model a device not controlled by the user, e.g., a specially designed terminal
for receiving e-cash in a threshold e-cash scheme. Because of this, we specify C in our
protocols such that it does not store any user-specific data.

It should be noted that generally Σ -protocols do not achieve provable zero-
knowledge against a malicious verifier, they only achieve what is known as special

Efficient Threshold Zero-Knowledge with Applications 151

honest-verifier zero-knowledge. This translates in the threshold proofs to a lack of prov-
able zero-knowledge against an actively corrupted combiner. However, the standard
solutions against malicious verifiers also imply zero-knowledge against malicious com-
biners.

2.1 Security Model

We assume that up to t of the n provers can be corrupted either passively or actively by
an adversary, with some additional control over the verifier V and the combiner C . The
degree of control the adversary may have over V and C depends on the assumptions
made in the original protocols regarding the corruption of V . The security property
we focus on is zero-knowledge, even in case of some corruptions, and not correctness,
meaning the adversary is not allowed to gain information, but is allowed to prevent
proofs from being accepted. It is, however, possible to construct robust protocols, which
would lead to a lower threshold. We only consider static adversaries, although most of
the protocols are secure against adaptive adversaries. We extend the properties of Σ -
protocols as follows:

Definition 1 (Completeness). If all provers and the combiner follow the protocol, the
verifier accepts with overwhelming probability.

Definition 2 (Special soundness). From any two accepting conversations with the
same initial message, the witness can be computed in polynomial time.

Definition 2 is the same as in the single-prover case (e.g., see [13]). Informally speaking,
we are not concerned with the question who actually “knows” the witness, e.g., it might
be C interacting with V while ignoring the messages from the provers, or it might be
just one prover.

Definition 3 (Special honest-verifier-combiner zero-knowledge with threshold t).
There exists a zero-knowledge simulator that, for any given challenge e, can simulate
a protocol execution that is perfectly, statistically, or computationally indistinguishable
from a real protocol execution with passive corruption of the verifier, the combiner, and
up to t provers.

Note that (single-prover) Σ -protocols in general cannot be proven to be
zero-knowledge if the challenge is not independent of the initial message, and thus,
the verifier and the combiner cannot be actively corrupted in our distributed Σ -protocols.
However, in Definition 4 we allow the combiner to deviate partially, i.e., he is allowed to
send differing challenges to the provers. This extension of adversary capabilities gives
a model in between passive corruption and active corruption. This model is not so inter-
esting by itself, however, we define it because a protocol that is partial zero-knowledge
can by standard techniques be transformed into a protocol with full zero-knowledge.

Definition 4 (Partial zero-knowledge with threshold t). There exists a zero-
knowledge simulator that, for any set of challenges {e(i)}i∈[n], can simulate a transcript
that is perfectly, statistically, or computationally indistinguishable from a real execu-
tion with up to t actively corrupted provers and e(i) being sent to Pi for all i ∈ [n]. To do
so, the simulator can interact with the corrupted provers in a black-box way.

152 M. Keller, G.L. Mikkelsen, and A. Rupp

Definition 5 (Full zero-knowledge with threshold t). Let an active adversary stati-
cally corrupt up to t provers, the combiner, and the verifier. Then there exists a zero-
knowledge simulator that can simulate a transcript that is perfectly, statistically, or
computationally indistinguishable from a real execution by rewindable black-box inter-
action with the corrupted parties.

In [28], we show that any partial zero-knowledge protocol with threshold t can be ex-
tended to a protocol that implements a UC functionality corresponding to the notion
of full zero-knowledge with threshold t. The extension essentially lets the provers com-
mit the their first messages before they receive the challenge. An adversary computing
a challenge dependent on a first message would then break the hiding property of the
commitment scheme.

Definition 6 (Witness hiding with threshold t). Let a computationally bounded, ac-
tive adversary statically corrupt up to t provers, the combiner, and the verifier. Then
the probability that the adversary can output the witness after a polynomial number of
protocol runs is negligible.

It is clear that computational full zero-knowledge with threshold t implies witness hid-
ing with threshold t, however, the reverse is not known to hold.

2.2 Secret Sharing

To present our protocols in a general way, we briefly introduce here an abstract def-
inition of linear and multiplicative secret sharing schemes. For more details we refer
to [28].

Definition 7 (Linear secret sharing). A linear secret sharing scheme for a ring con-
sists of two algorithms:

Share Takes a secret value and some random values as input and outputs one or more
shares for every player, using a linear operation on the inputs.

Reconstr Takes all shares given by Share to a qualified set of players as input and
outputs the secret, using a linear operation on the inputs.

The shares given to any unqualified set are perfectly or statistically indistinguishable
from a sharing of zero.

Since Reconstr is linear, the sum of two share vectors output by Share is a sharing
of the sum of the secrets. Therefore, computing a secret sharing of the output of any
linear function from a secret sharing of the inputs can be done without communication.
Desmedt et al. [18] describe how a linear secret sharing scheme for Zm implies a secret
sharing scheme for a group G of order m.

The simplest example of a linear secret sharing scheme is additive secret sharing,
where the shares are simply random numbers adding up to the secret. It works for any
ring, and can also be defined over a group, where the shares are reconstructed by apply-
ing the group operation on the shares. The only qualified set is the set of all players.

Efficient Threshold Zero-Knowledge with Applications 153

Definition 8 (Multiplicative secret sharing). A multiplicative secret sharing scheme
is a linear secret sharing scheme that in addition provides the following algorithm:

Mult Takes all shares of two secrets, given to a certain player, and outputs a value,
using a bilinear operation on the two share vectors. The sum of the outputs of all
players is the product of the two secrets.

One of the first and most common linear secret sharing schemes is Shamir’s secret
sharing scheme [37] for finite fields. Shamir’s secret sharing with threshold t < n/2 is
multiplicative. Cramer et al. [12] show how to construct a multiplicative integer secret
sharing scheme with threshold t < n/2.

The notion of multiplicative secret sharing schemes can be extended to cyclic groups
G= 〈g〉, in the sense that the sum and the product of gs and gs′ are defined to be gs+s′ and
gss′ , respectively. Since exponentiation with base g is homomorphic as well as Share and
Reconstr are linear, those algorithms trivially can be applied in this setting. However,
gss′ is in general not computable from gs and gs′ without knowing s or s′. Nevertheless,
if the exponents of the second input vector are known, Mult′(gsi ,s′i) := gMult(si,s′i) can
be computed because Mult is bilinear. Multiplicative integer secret sharing can be used
with any cyclic group, whereas Shamir secret sharing over Z|G| can be used if |G| is
prime.

Pseudorandom Secret Sharing (PRSS) and Zero Sharing (PRZS). Pseudorandom se-
cret sharing was introduced by Cramer et al. [10]. It is a way for a number of players
to generate a secret shared value without communication. PRSS is practical as long as
the number of players is relatively small (as we can assume for our applications). We
will refer to the sharing of a random number as pseudorandom secret sharing (PRSS)
and to the additive sharing of 0 as pseudorandom zero sharing (PRZS). Furthermore,
we denote by PRZS′ an alternative version of the latter, which outputs a secret sharing
of the neutral element 1 of a group. The full paper [28] provides details on the construc-
tions used in this paper. For the sake of readability of the protocol descriptions, we omit
that all the mentioned schemes are given a set of keys when used. We also omit that
a variable changing from invocation to invocation (like a counter) is used internally so
that, by every invocation of PRSS(i) or PRZS(i), Pi obtains its share of a new random
number or its new share of 0, respectively.

3 Threshold Building Blocks

3.1 Proofs of Knowledge of Preimages of Homomorphisms

Let G and H be two finite Abelian groups both written multiplicatively and let ψ :
G → H be a homomorphism. Furthermore, let h ∈ H and q be a prime such that u ∈ G
with ψ(u) = hq is known. If H has prime order q (and thus is cyclic), this condition is
fulfilled for u= 1 because ψ(1) = 1= hq. A proof of knowledge of a preimage w ∈ G of
h under ψ works as follows: The prover starts by sending a := ψ(r) for a random r ∈ G,
the verifier sends a random challenge e ∈ Zq, the prover responds with z := rwe, and the
verifier checks whether ψ(z) = ahe. This protocol is due to Maurer [31] and generalizes

154 M. Keller, G.L. Mikkelsen, and A. Rupp

Pi C V
Input: w(i) ∈ G, PRSS keys Input: h = ψ(w) ∈ H

r(i) := PRSS(i)
a(i) := ψ(r(i)) ∈ H a(i)−−−−−−−−−−−→ a := Reconstr({a(i)}i∈A) = ψ(r)

a−−−−−−−−−−−→
e←−−−−−−−−−−− e←−−−−−−−−−−− e

$← Zq

z(i) := r(i)(w(i))e ∈ G
z(i)−−−−−−−−−−−→ z := Reconstr({z(i)}i∈A) = rwe z−−−−−−−−−−−→ ψ(z)

?
= ahe ∈ H

Fig. 1. Distributed proof of knowledge of a preimage w ∈ G of an element h ∈ H under a group
homomorphism ψ : G → H

proofs of knowledge of discrete logarithms, p-th roots, and many more. Using u of the
form mentioned above, Maurer proves special soundness.

Desmedt [17] formulated a distributed version of this protocol (see Figure 1) using
a linear secret sharing of the group elements r and w. Each prover executes the com-
putations as in the original protocol with the only difference that it uses its shares r(i)

and w(i) instead of r and w. The combiner C collects the messages a(i) and z(i) from
the provers and computes a and z by reconstructing as soon as there are enough shares
available. A denotes the qualified set of provers that are the first to send a share. If the
linear scheme allows it, the provers are not required to be completely present.

Lemma 1. The protocol in Figure 1 achieves completeness, special soundness, and
computational partial zero-knowledge with the same threshold as the utilized secret
sharing scheme.

Proof. Completeness follows from the protocol description, and special soundness is
proven in the same way as for the single-prover protocol. The partial zero-knowledge
simulator implicitly runs the simulator of the original protocol, adapting to deviating
provers and a partially deviating combiner. See [28] for details.

3.2 OR Construction for Proofs of Knowledge of Preimages

The OR construction is an important basic building block for Σ -protocols. It allows
a prover to show that it knows a witness for one out of two given inputs but without
revealing to which input the witness corresponds. The OR construction is itself a Σ -
protocol. We consider the OR construction for proofs of preimages as described in the
previous section. Figure 2 shows a protocol proving the knowledge of a ψ-preimage
of one out of two given elements while hiding for which of the elements a preimage is
known, i.e., the bit b is hidden.

To obtain a distributed version of this protocol where a prover Pi is not aware of
the secret preimage wb and the bit b, the first step is to make the computations on the
prover’s side uniform. That means the way one computes ab, eb, and zb should not
differ from the way to compute ab̄, eb̄, and zb̄, where b̄ = 1−b. Figure 3 shows such an
alternative version of the protocol but still for the case of a single prover. Secret sharing
of the secrets of the prover finally leads to a distributed version of the protocol.

Figure 4 shows our threshold protocol for groups of prime order q. We use Shamir’s
secret sharing over Zq with threshold t < n/2 and the abstract notion of multiplicative

Efficient Threshold Zero-Knowledge with Applications 155

P V
Input: b ∈ {0,1},wb ∈ G Input: h0 = ψ(w0),h1 = ψ(w1) ∈ H

rb,zb̄
$← G,eb̄

$← Zq
ab := ψ(rb) ∈ H

ab̄ := ψ(zb̄)h
−eb̄
b̄

∈ H a0,a1−−−−−−−−−−−−−−→
e←−−−−−−−−−−−−−− e

$← Zq
eb := e− eb̄ ∈ Zq

zb := rbw
eb
b ∈ G e0,e1,z0,z1−−−−−−−−−−−−−−→ e

?
= e0 + e1 ∈ Zq

ψ(z0)
?
= a0h

e0
0 ∈ H

ψ(z1)
?
= a1h

e1
1 ∈ H

Fig. 2. Proof of knowledge of a ψ-preimage of hb, given h0,h1 ∈ H

P V
Input: b ∈ {0,1},wb ∈ G Input: h0,h1 ∈ H
hb = ψ(wb),hb̄ ∈ H

r0,r1
$← G,d0 ,d1

$← Zq

a0 := ψ(r0)h
−bd0
0 ∈ H

a1 := ψ(r1)h
−b̄d1
1 ∈ H a0,a1−−−−−−−−−−−−−−→

e0 := bd0 + b̄(e−d1) ∈ Zq
e←−−−−−−−−−−−−−− e

$← Zq

e1 := b(e−d0)+ b̄d1 ∈ Zq
vb := wb ∈ G
vb̄ := 1 ∈ G
z0 := r0v

e0
0 ∈ G

z1 := r1v
e1
1 ∈ G e0,e1,z0,z1−−−−−−−−−−−−−−→ e

?
= e0 + e1 ∈ Zq

ψ(z0)
?
= a0h

e0
0 ∈ H

ψ(z1)
?
= a1h

e1
1 ∈ H

Fig. 3. Alternative version of the proof of knowledge of a ψ-preimage of hb, given h0,h1 ∈ H.
Computations on prover’s side have been unified, i.e., to compute a0,a1,e0,e1 and z0,z1 the
same computations are performed.

secret sharing introduced in Section 2.2. b(i), b̄(i), and 1(i) denote a secret sharing of b,
b̄, and 1 over Zq, where b ∈ {0,1} and b̄ := 1− b. 1(i) is only needed to convert shares
into an additive secret sharing using Mult and can be computed using fixed randomness.

Thus, 1(i) can be seen as defined by the secret sharing scheme. v(i)0 and v(i)1 denote a
secret sharing of v0 and v1 over G, where vb := wb and vb̄ := 1. We share these over G

because the discrete logarithm of wb might not be known in the setup phase. r(i)0 and r(i)1
can be understood as additive sharing of some random group elements r0 and r1.

PRSS refers to pseudorandom secret sharing for the multiplicative secret sharing
scheme used, and PRZS and PRZS′ refer to pseudorandom zero sharing for additive
secret sharing. The reason for using PRZS is that the outputs of Mult and Mult′ could
reveal information about the inputs, i.e., the outputs do not form a random sharing of the
product of the secrets. Therefore, we use PRZS to get a truly (pseudo)random additive
secret sharing before sending outputs of Mult or Mult′ to C .

156 M. Keller, G.L. Mikkelsen, and A. Rupp

Pi C V
Input: b(i), b̄(i),1(i) ∈ Zq, PRSS and PRZS keys, Input: h0,h1 ∈ H

v(i)0 ,v(i)1 ∈ G, h0,h1 ∈ H

r(i)0 ,r(i)1
$← G

d(i)
0 := PRSS(i)

d(i)
1 := PRSS(i)

a(i)0 := ψ(r(i)0) ·h−Mult(b(i) ,d
(i)
0)

0 ·PRZS′(i)

a(i)1 := ψ(r(i)1) ·h−Mult(b̄(i) ,d
(i)
1)

1 ·PRZS′(i) a(i)0 ,a(i)1−−−−−−−−−−−→ a0 := ∏i a(i)0

a1 := ∏i a(i)1
a0,a1−−−−−−−−−−−→

e(i)0 :=Mult(b(i),d(i)
0)+Mult(b̄(i),1(i))e

e←−−−−−−−−−−− e←−−−−−−−−−−− e
$← Zq

−Mult(b̄(i),d(i)
1)+PRZS(i) ∈ Zq

e(i)1 :=Mult(b(i),1(i))e−Mult(b(i),d(i)
0)

+Mult(b̄(i),d(i)
1)+PRZS(i) ∈ Zq

z(i)0 := r(i)0 ·Mult′(v(i)0 ,1(i))e/Mult′(v(i)0 ,d(i)
1) ·PRZS′(i)

z(i)1 := r(i)1 ·Mult′(v(i)1 ,1(i))e/Mult′(v(i)1 ,d(i)
0) ·PRZS′(i) e(i)0 ,e(i)1 ,z(i)0 ,z(i)1−−−−−−−−−−−→ e0 := ∑i e(i)0

e1 := ∑i e(i)1

z0 := ∏i z(i)0

z1 := ∏i z(i)1
e0,e1 ,z0,z1−−−−−−−−−−−→ e

?
= e0 + e1 ∈ Zq

ψ(z0)
?
= a0h

e0
0

ψ(z1)
?
= a1h

e1
1

Fig. 4. Distributed version of the proof of knowledge of a ψ-preimage of hb, given h0,h1 ∈ H.
Assumption: G is is of prime order q.

In the following, we show that the view of V is the same as in the protocol from
Figure 2. e0, e1 are random numbers that sum up to e, and z0 and z1 pass the check by
the verifier:

e0 + e1 = ∑
i

e(i)0 + e(i)1 = (bd0 + b̄e− b̄d1)+ (be− bd0+ b̄d1) =

{
e b = 0

e b = 1,

z0 = ∏
i

z(i)0 = ∏
i

r(i)0 ·Mult′(v(i)0 ,1(i))e/Mult′(v(i)0 ,d(i)
1) ·PRZS′(i) = r0ve−d1

0

=

{
r0vbd0+b̄(e−d1)

0 = r0ve0
0 b = 0

r0ve−d1
b̄

= r01e−d1 = r01e0 = r0ve0
0 b = 1

The same can be proven for z1.
Applying standard multiparty computation secure against a passive adversary [2]

would require one communication round among the provers per round of multiplication
operations. Multiparty computation secure against an active adversary usually requires
even more communication. This is what we save by directly publishing the output of
Mult and Mult′, re-randomized by PRZS and PRZS′, respectively.

Lemma 2. The protocol for prime order groups as described above achieves com-
pleteness, special soundness, and computational partial zero-knowledge with threshold
t < n/2.

Efficient Threshold Zero-Knowledge with Applications 157

P V
Input: x ∈ [0,B], r Input: gx2

hr

r1 ∈ [0,2sN]
r2 := r− r1x
C := gxhr1

ω ∈R [0,2k+l B]
ν1,ν2 ∈R [0,2k+l+sN]
a1 := gω hν1 , a2 :=Cω hν2 C,a1,a2−−−−−−−−−−−→

e←−−−−−−−−−−− e ∈R [0,2k]
z := ω + xe
v1 := ν1 + r1e, v2 := ν2 + r2e z,v1,v2−−−−−−−−−−−→ gzhv1

?
= a1Ce

Czhv2
?
= a2(gx2

hr)e

Fig. 5. Proof that a commitment hides a square

Proof. Completeness follows from the protocol description, and special soundness is
proven in the same way as for the single-prover protocol. The partial zero-knowledge
simulator implicitly runs the simulator of the original protocol, adapting to deviating
provers and a partially deviating combiner. The essence of the proof is a smart combi-
nation of multiparty and zero-knowledge simulation techniques. See [28] for details.

Lemma 3. The protocol described above is witness hiding with threshold t if the corre-
sponding single-prover OR proof is witness hiding.

Proof. The proof is done by reduction, i.e., we present a simulator that simulates the set
of honest provers by accessing the honest prover of the single-prover protocol internally.
See [28] for a complete proof.

3.3 Range Proofs

In this section, we will outline how to adapt the range proof by Lipmaa [29] to our
distributed setting. All protocols in this section use the Fujisaki-Okamoto commitment
scheme [14,24] com(x,r) := gxhr for g,h ∈ Z∗

N and r ∈R [0,2sN] (s is a security param-
eter). Clearly, com is a homomorphic function from Z×Z to Z∗

N . Therefore, one might
want to construct a proof of knowledge of a preimage as in Section 3.1. However, Z×Z

is not finite, and thus, the technique does not apply directly. Nevertheless, Damgård
and Fujisaki [14] showed that a similar protocol achieves soundness if the strong RSA
assumption holds for Z∗

N . The protocol can efficiently be distributed like the protocol in
Section 3.1 by using an additive secret sharing of x and r over the integers.

An essential building block of the range proof is the proof that a committed value
is a square. However, com(x2,r) is not a homomorphic function in x and r, and there-
fore, the approach of the protocol in Section 3.1 cannot be used. The following con-
struction solves the problem: P chooses a random r1, and computes r2 := r − r1x and
C := com(x,r1) = gxhr1 . Then, com(x2,r) = gx2

hr = gx2
hxr1+r2 = Cxhr2 . The function

(x,r1,r2) �→ (gxhr1 ,Cxhr2) is a homomorphism; thus, a zero-knowledge proof can be
constructed similarly to the proof of knowledge of a committed value if the strong RSA
assumption holds for Z∗

N (see Figure 5 for details). Damgård and Fujisaki [14] prove

158 M. Keller, G.L. Mikkelsen, and A. Rupp

Pi C V
Input: x(i),r(i) ,1(i) ∈ Z, PRSS and PRZS keys Input: gx2

hr

r(i)1 := PRSS(i, [0,2sN])

r(i)2 :=Mult(r(i),1(i))−Mult(r(i)1 ,x(i))

C(i) := gMult(x(i) ,1(i))+PRZS(i)hMult(r
(i)
1 ,1(i))+PRZS(i)

ω (i) := PRSS(i, [0,2k+l B])

ν(i)
1 ,ν(i)

2 ∈R [0,2k+l+s+mN]

a(i)1 := gMult(ω(i) ,1(i))+PRZS(i)hν(i)1

a(i)2 := gMult(x(i) ,ω(i))+PRZS(i)hMult(r
(i)
1 ,ω(i))+PRZS(i)hν(i)2 C(i),a(i)1 ,a(i)2−−−−−−−−−−−→ C := ∏C(i)

a1 := ∏a(i)1

a2 := ∏a(i)2
C,a1,a2−−−−−−−−−−−→

z(i) :=Mult(ω (i),1(i))+Mult(x(i),1(i))e+PRZS(i)
e←−−−−−−−−−−− e←−−−−−−−−−−− e ∈R [0,2k]

v(i)1 := ν(i)
1 +Mult(r(i)1 ,1(i))e+PRZS(i)

v(i)2 := ν(i)
2 + r(i)2 e z(i),v(i)1 ,v(i)2−−−−−−−−−−−→ z := ∑z(i)

v1 := ∑v(i)1

v2 := ∑v(i)2
z,v1,v2−−−−−−−−−−−→ gzhv1

?
= a1Ce

Czhv2
?
= a2(gx2

hr)e

Fig. 6. Distributed proof that a commitment hides a square

that a more general version of the protocol achieves computational soundness and sta-
tistical honest-verifier zero-knowledge.

Since the protocol involves products of secret values, linear secret sharing does not
suffice to get a distributed protocol. However, one can use the same techniques as for the
OR proof, namely multiplicative secret sharing, PRSS, and PRZS. Again, this allows
to minimize the communication. Figure 6 shows the details. x(i), r(i), and 1(i) denote a
multiplicative secret sharing of x ∈ [0,B], r, and 1, respectively. s, k, l, and m are security
parameters, e.g., m is the security parameter of the sharing scheme. As in the distributed
OR proof, we use Mult(·,1(i)) to convert a multiplicative secret sharing into an additive
one, and PRZS to randomize the output of Mult. Note that we use PRSS and PRZS with
varying intervals here. PRSS(i, [0,b]) denotes that Pi chooses pseudorandom inputs in
the interval [0,b]. For any maximal unqualified set, the resulting secret shared number
will then be computationally indistinguishable to a uniform number in some interval
[c,c+ b]. This reflects the indistinguishability property of the single-prover protocol.
For PRZS(i), the pseudorandom inputs are chosen in an interval exponentially bigger
than the maximal output of the adjacent Mult.

Now we describe how to prove that a committed number x lies in a certain range
[a,b]. Clearly, proving x ∈ [a,b] is equivalent to showing that x− a and b− x are non-
negative. Furthermore, Lagrange’s four-square theorem states that every non-negative
integer can be written as the sum of four squares of integers. Together with the proof
of a square, this directly allows to implement a range proof. First, the prover computes
α1, . . . ,α4,β1, . . . ,β4 such that ∑4

i=1 α2
i = x− a and ∑4

i=1 β 2
i = b − x, and the commit-

ments com(α2
i ,r1i), com(β 2

i ,r2i) for all i ∈ [1,4] such that ∑4
i=1 r1i = r and ∑4

i=1 r2i =
−r. Then he sends the commitments to the verifier and uses the proof of square de-
scribed above to prove that all these commitments hide a square. Finally, the verifier

Efficient Threshold Zero-Knowledge with Applications 159

checks that com(x,r)/ga =∑4
i=1 com(α2

i ,r1i) and that gb/com(x,r)=∑4
i=1 com(α2

i ,r2i).
Lipmaa [29] proposes an optimized proof based on the same ideas.

The proof can be adapted to our distributed setting if the provers hold a multiplicative
secret sharing of α1, . . . ,α4,β1, . . . ,β4. The distributed generation of these shares using
the algorithm in [29] requires very expensive MPC due to branching, but they can be
generated in a setup phase because they only depend on the committed value and the
range boundaries. Boudot’s range proof [4] only requires the computation of integer
square roots at that point, but has other drawbacks like not being exact.

4 Applications to User-Centric Protocols

4.1 E-Cash with Threshold Wallets

In this section we describe a threshold version of the e-cash scheme by Brands [5]. In
the standard version, a user U opens an account in a bank B . The user can then withdraw
electronic money and later use it in a shop S . S may then deposit the electronic money to
his own bank account. Moreover, even if B and S cooperate they cannot link electronic
coins to a specific user. In the threshold version the user U is split up into several entities
U1 to Un and a combiner C acting as the user with respect to B and S . The global setup
of the system and the protocol for S depositing the e-cash in B does not include the user
and are therefore not changed.

Opening an account. The public key of B are three generators g, g1, and g2 ∈ Gq, where
Gq is a cyclic group of prime order q. The private key of B is a random number x ∈ Z∗

q.

When U wants to open an e-cash account at B , he samples u1
$← Zq and uses u1 as

secret key. From u1, U calculates I := gu1
1 , sends I to B and proves knowledge of u1

such that I = gu1
1 . If the proof is accepted, B calculates z := (Ig2)

x and sends z to U.
The bank stores I as the account number of U, and U stores u1 and z. This protocol
can easily be extended to a threshold protocol, where u1 is generated distributedly as an
additive secret shared value. From the shares of u1, the players Ui and C can calculate
I distributedly. The proof of knowledge of u1 is distributed as in the protocol from
Figure 1.

Withdrawing coins from the bank. This protocol can be viewed as a Σ -protocol, where
B acts as prover, proving knowledge of its own secret key to U. As a result U ends
up with a blinded signature sig(A,B) from B on a coin (A,B). This coin along with the
signature can later be used for payment. Distributing a verifier might be straightforward,
however, in this case the signature contains a hash value H(·), and most hash functions
are far from linear. They can therefore not be distributed easily. Nevertheless, we can
still protect the user from theft of coins in case some Ui is corrupted, although this might
jeopardize the anonymity of U. The threshold protocol is sketched in Figure 7. Some
random values used for anonymizing the protocol are generated by a pseudorandom
function (PRF). Distributing the PRF key allows generating commonly known pseudo-
random values without reconstruction. The value B has, due to hashing, to be known by
each Ui, however, B is computed from x1 and x2, and not by the PRF. Therefore, it has
to be reconstructed by C . We blind B by ρB to maintain anonymity.

160 M. Keller, G.L. Mikkelsen, and A. Rupp

Ui C B
Input: u(i)1 , z, I, g, g1, g2, and PRF keys Input: x,z

w
$← Zq

a := (g)w

x(i)1 ,x(i)2
$← Zq

a,b←−−−−−−−−−−− a,b←−−−−−−−−−−− b := (Ig2)
w

s,u,v,ρB := PRF()

B(i) := g
x
(i)
1

1 g
x
(i)
2

2
if i = 1 : B̂(i) := ρB B(i)

i f i �= 1 : B̂(i) := B(i)
B̂(i)

−−−−−−−−−−−→

B := B̂ρ−1
B

B̂←−−−−−−−−−−− B̂ := ∏ B̂(i)

A := (Ig2)
s

z′ := zs

a′ := augv

b′ := bsuAv

c′ :=H(A,B,z′,a′,b′)
c := c′/u mod q c−−−−−−−−−−−→ c−−−−−−−−−−−→
gr ?

= hca
r←−−−−−−−−−−− r←−−−−−−−−−−− r := cx+w mod q

(Ig2)
r ?
= zcb

r′ := ru+ v mod q

Fig. 7. Distributed version of the withdrawal protocol

If the adversary does not control any of U1, . . . ,Un nor the combiner C , then the
protocol is equivalent to the original protocol, and therefore has the same level of se-
curity in that case. In case of corruption, we do not ensure anonymity, nevertheless, no
information regarding neither u1, x1 nor x2 is leaked, and therefore, even after with-
drawal with corrupted players, the adversary still has only negligible chance of paying
afterward.

Spending coins. In this part of the original protocol U sends the coin 〈A,B,sig(A,B)〉
to S . U proves that the coin is valid, obtained by the user with secret key u1, and that
U has knowledge of u1. This is basically a Σ -protocol proving representation of A with
respect to g1 and g2, using x1 and x2 for blinding. Therefore, we can distribute it by the
protocol from Section 3.1 (cf. Figure 1). Please note that B and not B(i) should be sent
from each Ui to C . Otherwise, ρB would be leaked to C , and anonymity is revoked.

Theorem 1 summarizes the properties of our threshold version of Brands’ scheme.

Theorem 1. The threshold scheme preserves the following properties from the original
scheme [5, Section 5]

– Anonymity of U: The anonymity of the original scheme [5, Corollary 12] is pre-
served against a passive adversary controlling C , B and S .

– Security against double spenders, and forgery: Security for B and S against dou-
ble spenders [5, Proposition 10] and against forged coins [5, Corollary 9, Proposi-
tion 7 and 13] is preserved.

– Security against theft: Security for U against theft of electronic coins [5, Proposi-
tion 14 and 15] is preserved against an adversary passively corrupting n−1 of the
user players, the combiner C , B and S .

Efficient Threshold Zero-Knowledge with Applications 161

Proof. Security for B and S follows since it is oblivious for them that they execute
the threshold version. Since u1 is secret shared, the adversary cannot steal coins, and
anonymity of U can be reduced to anonymity in the original scheme. See [28] for a
detailed proof.

Robustness. To allow payments even in case some of the user players Ui are not present
in the payment protocol, the following changes suffice. First the protocol for opening
an account has to generate the users secret key u1 as being shared with a linear secret
sharing scheme that has lower threshold than the additive one. This can be done by using
PRSS. The same has to be done with the blinding values x1 and x2 in the withdrawal
protocol. In addition, C has to reconstruct the value of B̂ taking into account that it is
computed from the shares of x1 and x2, which is possible because the reconstruction of
x1 and x2 is a linear operation. This enables a threshold version of the payment protocol
where only a subset of the players Ui equivalent to the threshold value of the secret
sharing scheme needs to be present.

4.2 Increasing the Security of Anonymous Credentials

Credentials are certificates of qualification (e.g., driver’s licenses) or authorization of
some kind (e.g., e-tickets) that are attached to a specific user. Credential systems allow
their users (U) to obtain credentials from organizations (O) and show possession of
these credentials to verifiers (V). In an anonymous credential system different transac-
tions involving the same user cannot be linked.

Camenisch and Lysyanskaya [6, 30] show that an anonymous credential scheme can
be immediately composed from a commitment scheme, a signature scheme, and effi-
cient protocols for (1) proving the equality of two committed values, (2) obtaining a
signature on a committed value (without opening the commitment), and (3) proving
knowledge of a signature on a committed value. In [7] the same authors propose ef-
ficient pairing-based instantiations of the above building blocks. In the following we
shortly describe these components and sketch threshold versions of the zero-knowledge
protocols.

Let G and GT be two cyclic groups of prime order q (both written multiplicatively in
the following). A pairing e : G×G → GT is a function with the following properties:

– Bilinearity: ∀(a,b) ∈ G2 and (x,y) ∈ Z2
q, it holds that e(ax,by) = e(a,b)xy.

– Non-degeneracy: ∃a,b ∈ G such that e(a,b) �= 1.
– e is efficiently computable.

The credential system in [7] makes use of Pedersen commitments [34] over G, which
are information-theoretically hiding and computationally binding under the DL assump-
tion. Here, given two generators g,h ∈ G, a commitment M to m ∈ Zq is computed by

choosing r
$←Zq and setting M := gmhr. In the scope of the credential system, a commit-

ment to a secret m chosen by a user serves as a pseudonym for the user when interacting
with an organization. For different organizations, different pseudonyms are used. Usu-
ally, all pseudonyms of a user are required to be commitments to the same m, which is
some master secret key (used outside the credential system).

162 M. Keller, G.L. Mikkelsen, and A. Rupp

Credentials are signatures on pseudonyms. To this end, the following signature
scheme is proposed in [7], which is secure under the LRSW assumption.

– Gen samples a random generator g of G, x,y,z
$← Zq, and computes X = gx,Y =

gy,Z = gz,W = Y z. It returns the signer’s secret key sk = (x,y,z) and public key
pk = (g,X ,Y,Z,W).

– Sign(sk,(m,r)) chooses α $← Zq and computes a = gα , A = az,b = ay,B = Ay,c =
ax+xymAxyr, where (m,r) ∈ Z2

q is the given message. It returns the signature σ =
(a,A,b,B,c).

– Verify(pk,(m,r),σ) returns ’accept’, if the following equations are satisfied: e(a,Z)
= e(g,A), e(a,Y)= e(g,b), e(A,Y)= e(g,B), and e(X ,a)e(X ,b)me(X ,B)r = e(g,c).

Let us now consider the protocols described above forming a credential system. For
our threshold versions of these protocols we always distribute the user’s side of the
protocols over parties U1, . . . ,Un.

Proving the equality of two committed values. This is a zero-knowledge proof of knowl-
edge of values (a1,a2,a3) such that C = ga1ha2 and C′ = ga1ha3 , for given C and C′.
Since (a1,a2,a3) can be viewed as a preimage of (C,C′) under the homomorphism
ψ : Z3

q → G2 where ψ(α1,α2,α3) = (gα1hα2 ,gα1hα3), Figure 1 immediately yields a
threshold version of this protocol for parties U1, . . . ,Un acting as provers.

Obtaining a signature on a committed value (obtaining a credential). This is a protocol
between U and O. The party U holds (m,r) and is given O’s public signature key pk as
input. O holds its secret signature key sk and is given commitment M = gmZr as input.
The protocol consists of two steps. First, U proves in zero-knowledge its knowledge
of a representation of M with respect to g and Z. Again, a threshold version of this
subprotocol can be immediately obtained from the protocol in Figure 1. Second, if
O accepts the previous proof, it generates a signature σ on (m,r) using the signature
scheme described above. Since (m,r) is not given, the component c of the signature is
computed only using M as c = axMαxy. Then, U checks the validity of σ according to
Verify. Note that only for checking the last equation the knowledge of (m,r) is required.
So to distribute the user’s side of this subprotocol over U1, . . . ,Un, we only need to
compute the left-hand side of this equation in a distributed way: Ui computes w(i) :=

e(X ,a)e(X ,b)m(i)
e(X ,B)r(i)e(g,g)PRZS(i), where m(i), r(i) are additive shares of m and

r, respectively. Then it sends w(i) to the combiner C who computes the product of
these shares and checks the corresponding equation. It is easy to see that the threshold
protocol for obtaining a signature on a committed value is zero-knowledge with respect
to adversaries passively corrupting O, C , and a static set of n− 1 parties Ui.

Proving knowledge of a signature on a committed value (showing a credential). This
is a protocol executed between a user U and a verifier V . U is given (m,r), a signature
σ on these values, and the public key pk of the signer. V is only given pk. The player

U first re-randomizes the given signature. To this end, it chooses r1,r2
$← Zq, computes

ã = ar1 , Ã = Ar1 , b̃ = br1 , B̃ = Br1 , ĉ = cr1r2 , and sends σ̃ = (ã, Ã, b̃, B̃, ĉ) to V . V
is now able to verify all equations for σ̃ defined in Verify except for the last which

Efficient Threshold Zero-Knowledge with Applications 163

Ui C V
Input: m(i),r(i), pk,σ ,PRSS,PRZS keys Input: pk

r(i)1 ,r(i)2 ,s(i)1 := PRSS(i)

s(i)2 :=Mult(r(i)2 ,s(i)1)+PRZS(i)

ã(i) := aMult(r
(i)
1 ,1(i))+PRZS(i)

Ã(i) := AMult(r
(i)
1 ,1(i))+PRZS(i)

b̃(i) := bMult(r
(i)
1 ,1(i))+PRZS(i)

B̃(i) := BMult(r
(i)
1 ,1(i))+PRZS(i)

ĉ(i) := cMult(r
(i)
1 ,r

(i)
2)+PRZS(i) ã(i), Ã(i), b̃(i),

B̃(i), ĉ(i),s(i)2−−−−−−−−−−−→ s2 := ∑i s(i)2
ã := ∏i ã(i)

Ã := ∏i Ã(i)

b̃ := ∏i b̃(i)

B̃ := ∏i B̃(i)

b̃, B̃, ĉ,s2←−−−−−−−−−−−
ĉ := ∏i ĉ(i) ã, Ã, b̃, B̃, ĉ−−−−−−−−−−−→ e(ã,Z)

?
= e(g, Ã)

e(ã,Y)
?
= e(g, b̃)

t(i)1 , t(i)2 , t(i)3
$← Zq e(Ã,Y)

?
= e(g, B̃)

d(i) := e(g, ĉ)t
(i)
1 e(X , b̃)t

(i)
2 e(X , B̃)t

(i)
3 d(i)

−−−−−−−−−−−→ d := ∏i d′(i) d−−−−−−−−−−−→
z(i)1 := t(i)1 −Mult(s(i)1 ,1(i))s−1

2 c+PRZS(i)
c←−−−−−−−−−−− c←−−−−−−−−−−− c

$← Zq

z(i)2 := t(i)2 + cm(i)

z(i)3 := t(i)3 + cr(i) z(i)1 ,z(i)2 ,z(i)3−−−−−−−−−−−→ z1 := ∑i z(i)1

z2 := ∑i z(i)2

z3 := ∑i z(i)3
z1,z2,z3−−−−−−−−−−−→ e(g, ĉ)z1 e(X , b̃)z2 e(X , B̃)z3

?
= de(X , ã)−c

Fig. 8. Distributed version of the protocol proving knowledge of a signature on a committed value

involves (m,r). To assure V also of the validity of the last equation, U proves in zero-

knowledge the knowledge of (r−1
2 ,m,r) such that e(X , ã)e(X , b̃)me(X , B̃)r = e(g, ĉ)r−1

2 .
Note that this is equivalent to proving knowledge of a representation of e(X , ã)−1 with
respect to e(X , b̃), e(X , B̃), and e(g, ĉ). The threshold version of the whole protocol is
shown in Figure 8. Note that in order to compute ĉ a multiplicative secret sharing (e.g.,
Shamir’s secret sharing) of r1 and r2 is needed. Furthermore, in order to compute an
additive sharing of r−1

2 from a multiplicative sharing of r2 (without reconstructing r2),
another trick is used: We choose a random value s1 by means of PRSS and compute
s2 := r2s1 in a distributed manner. Note that s2 which is reconstructed by the combiner
does not leak information about r2. Then s2 is given to every Ui who uses this value to

compute its additive share Mult(s(i)1 ,1(i))s−1
2 of r−1

2 .
It is easy to see that the protocol in Figure 8 achieves completeness and special

soundness. It is also zero-knowledge in the case of adversaries passively corrupting V
and C . However, as soon as a single Ui is passively corrupted, the adversary knows σ
and thus it is not a zero-knowledge proof of the signature anymore. But this does only
affect the anonymity of a user, which we do not aim to increase here. More precisely,
even if σ is known, the protocol does not leak information about (m,r) as long as not
more than n−1 of the players Ui are passively corrupted. So an adversary is not able to

164 M. Keller, G.L. Mikkelsen, and A. Rupp

steal a user’s identity or a credential in this case. Theorem 2 (informally) summarizes
the properties which can be achieved using the proposed threshold protocols.

Theorem 2. The threshold versions of the protocols described above can be used to
build a credential system with the following main properties:

– Anonymity for users in presence of a passive adversary controlling C , O and V .
– Security of a user’s master secret key against a static adversary passively corrupt-

ing n− 1 of the user players Ui, the combiner C , O and V .
– Security for O and V against forgery of credentials.

4.3 Forward and Backward Untraceability

In user-centric protocols we often want to preserve the untraceability of a user (i.e.,
different protocol executions involving the same user should not be linkable) even if the
state of the device executing the user’s side of the protocol is revealed at some point
in time. This privacy notion is commonly called backward and forward untraceability.
One usually considers an adversary who passively corrupts a user device at a certain
time τ but otherwise may only eavesdrop communication at times τ ′ < τ and τ ′′ > τ .
Then by backward untraceability we mean that the adversary is not able to tell whether
a protocol execution at time τ ′ involves this user device. By forward untraceability
we mean that the adversary cannot decide whether the user device is involved in a
protocol execution at time τ ′′ assuming that the adversary missed eavesdropping the
communication of this device at least once between times τ and τ ′′. Unfortunately, a
commonly accepted formal definition of these properties is still missing.

Nevertheless, it would be nice if threshold user-centric protocols, as introduced here,
also satisfied the above properties, where we allow the passive corruption of up to n−1
devices of the same user and the combiner at time τ . However, the use of pseudorandom
secret and zero sharing with fixed keys constitutes a problem. More precisely, PRSS and
PRZS involves a PRF, whose past and future outputs can be computed once the key and
the input to the function are known. In this way, an adversary revealing the state of
some device at time τ can usually predict future and past messages and thus trace the
device. For instance, it is easy to see that in this case in the protocol shown in Figure 8
all messages from Ui would be computable.

In order to achieve backward and forward untraceability one needs to update the keys
of all PRFs involved in the protocol after every execution. For forward untraceability
the idea is to use some external randomness like a challenge sent by the other party.
To obtain backward untraceability the update function should be one-way. Hence, a
simple solution could be the following: Let PRF be a pseudorandom function used for
PRSS and PRZS and PRF′ be another one whose output and key lengths correspond
to the key length of PRF. A new key Ki for PRF (and PRF′) could then be computed
as Ki := PRF′

Ki−1
(c), where c is the challenge received. A more formal treatment of

backward and forward untraceability for threshold protocols is left as future work.

Acknowledgments. The authors would like to thank Ivan Damgård for fruitful discus-
sions and suggestions. The first two authors acknowledge the support by CFEM and
CTIC at Aarhus University where most of the work was done.

Efficient Threshold Zero-Knowledge with Applications 165

References

1. Almansa, J.F., Damgård, I., Nielsen, J.B.: Simplified Threshold RSA with Adaptive and
Proactive Security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 593–
611. Springer, Heidelberg (2006)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In: STOC, pp. 1–10. ACM (1988)

3. Blum, M.: How to prove a theorem so no one else can claim it. In: Gleason, A.M. (ed.)
Proceedings of the International Congress of Mathematicians, pp. 1444–1451 (1986)

4. Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In: Preneel, B.
(ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)

5. Brands, S.: Untraceable Off-Line Cash in Wallets with Observers (Extended Abstract). In:
Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg
(1994)

6. Camenisch, J.L., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In: Cimato,
S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Hei-
delberg (2003)

7. Camenisch, J.L., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials from
Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer,
Heidelberg (2004)

8. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO 1982, pp. 199–203
(1982)

9. Chaum, D.: Security without identification: Transaction systems to make big brother obsolete.
Commun. ACM 28(10), 1030–1044 (1985)

10. Cramer, R., Damgård, I., Ishai, Y.: Share Conversion, Pseudorandom Secret-Sharing and
Applications to Secure Computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp.
342–362. Springer, Heidelberg (2005)

11. Cramer, R., Damgård, I., Schoenmakers, B.: Proof of Partial Knowledge and Simplified De-
sign of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839,
pp. 174–187. Springer, Heidelberg (1994)

12. Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient Multi-party Computation Over Rings.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 596–613. Springer, Heidelberg
(2003)

13. Damgård, I.: On Σ -protocols, Course Notes. Aarhus University (2010)
14. Damgård, I., Fujisaki, E.: A Statistically-Hiding Integer Commitment Scheme Based on

Groups with Hidden Order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
125–142. Springer, Heidelberg (2002)

15. Damgård, I., Koprowski, M.: Practical Threshold RSA Signatures without a Trusted Dealer.
In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 152–165. Springer, Hei-
delberg (2001)

16. Damgård, I., Mikkelsen, G.L.: On the Theory and Practice of Personal Digital Signatures. In:
Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 277–296. Springer, Heidelberg
(2009)

17. Desmedt, Y.: Threshold Crypto Systems (Invited Talk). In: Zheng, Y., Seberry, J. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 3–14. Springer, Heidelberg (1993)

18. Desmedt, Y., Di Crescenzo, G., Burmester, M.: Multiplicative Non-Abelian Sharing Schemes
and Their Application to Threshold Cryptography. In: Safavi-Naini, R., Pieprzyk, J.P. (eds.)
ASIACRYPT 1994. LNCS, vol. 917, pp. 21–32. Springer, Heidelberg (1995)

19. Desmedt, Y.G., Frankel, Y.: Shared Generation of Authenticators and Signatures. In: Feigen-
baum, J. (ed.) [22], pp. 457–469

166 M. Keller, G.L. Mikkelsen, and A. Rupp

20. Dodis, Y., Shoup, V., Walfish, S.: Efficient Constructions of Composable Commitments and
Zero-Knowledge Proofs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 515–535.
Springer, Heidelberg (2008)

21. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: STOC, pp.
416–426. ACM (1990)

22. Feigenbaum, J. (ed.): CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Heidelberg
(1992)

23. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Sig-
nature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194.
Springer, Heidelberg (1987)

24. Fujisaki, E., Okamoto, T.: Statistical Zero Knowledge Protocols to Prove Modular Poly-
nomial Relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30.
Springer, Heidelberg (1997)

25. Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge protocols using sig-
natures. J. Cryptology 19(2), 169–209 (2006)

26. Gennaro, R., Rabin, T., Jarecki, S., Krawczyk, H.: Robust and efficient sharing of RSA func-
tions. J. Cryptology 13(2), 273–300 (2000)

27. Guillou, L.C., Quisquater, J.-J.: A Practical Zero-Knowledge Protocol Fitted to Security Mi-
croprocessor Minimizing Both Transmission and Memory. In: Günther, C.G. (ed.) EURO-
CRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)

28. Keller, M., Mikkelsen, G., Rupp, A.: Efficient threshold zero-knowledge with applications to
user-centric protocols (full paper) (2012), Manuscript published at
http://eprint.iacr.org/2012/306

29. Lipmaa, H.: On Diophantine Complexity and Statistical Zero-Knowledge Arguments. In:
Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg
(2003)

30. Lysyanskaya, A.: Signature Schemes and Applications to Cryptographic Protocol Design.
Ph.D. thesis. Massachusetts Institute of Technology (2002)

31. Maurer, U.: Unifying Zero-Knowledge Proofs of Knowledge. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 272–286. Springer, Heidelberg (2009)

32. Okamoto, T.: Provably Secure and Practical Identification Schemes and Corresponding Sig-
nature Schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer,
Heidelberg (1993)

33. Pedersen, T.P.: Distributed Provers with Applications to Undeniable Signatures. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 221–242. Springer, Heidelberg (1991)

34. Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret Sharing.
In: Feigenbaum, J. (ed.) [22], pp. 129–140

35. Rabin, T.: A Simplified Approach to Threshold and Proactive RSA. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 89–104. Springer, Heidelberg (1998)

36. Schnorr, C.-P.: Efficient Identification and Signatures for Smart Cards. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

37. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
38. Simoens, K., Peeters, R., Preneel, B.: Increased Resilience in Threshold Cryptography: Shar-

ing a Secret with Devices That Cannot Store Shares. In: Joye, M., Miyaji, A., Otsuka, A.
(eds.) Pairing 2010. LNCS, vol. 6487, pp. 116–135. Springer, Heidelberg (2010)

http://eprint.iacr.org/2012/306

Information-Theoretic Timed-Release Security:

Key-Agreement, Encryption,
and Authentication Codes

Yohei Watanabe, Takenobu Seito, and Junji Shikata

Graduate School of Environment and Information Sciences,
Yokohama National University, Japan

{watanabe-yohei-xs,takenobu.seito,shikata}@ynu.ac.jp

Abstract. In this paper, we study timed-release cryptography with
information-theoretic security. As fundamental cryptographic primitives
with information-theoretic security, we can consider key-agreement, en-
cryption, and authentication codes. Therefore, in this paper, we deal
with information-theoretic timed-release security for all those primi-
tives. Specifically, we propose models and formalizations of security for
information-theoretic timed-release key-agreement, encryption, and au-
thentication codes, and we present constructions of those ones. In partic-
ular, information-theoretic timed-release encryption and authentication
codes can be constructed from information-theoretic timed-release key-
agreement in a generic and simple way. Also, we derive tight lower bounds
of sizes of secret-keys and show an optimal construction for information-
theoretic timed-release key-agreement. Furthermore, we investigate a re-
lationship of mechanisms between information-theoretic timed-release
key-agreement and information-theoretic key-insulated key-agreement.
It turns out that there exists a simple algorithm which converts the for-
mer into the latter, and vice versa. In the sense, we conclude that these
two mechanisms are essentially close.

1 Introduction

The security of most of present cryptographic systems is based on the assump-
tion of difficulty of computationally hard problems such as the integer factoring
problem or the discrete logarithm problem in finite fields or elliptic curves. How-
ever, taking into account recent rapid development of algorithms and computer
technologies, such a system based on the assumption of difficulty of compu-
tationally hard problems might not maintain sufficient long-term security. In
fact, it is known that quantum computers can easily solve the factoring and
discrete logarithm problems. From these aspects, it is necessary and interesting
to consider cryptographic techniques whose security does not depend on any
computationally hard problems, especially for the long-term security.

Informally, the goal of timed-release cryptography is to securely send a certain
information into the future. For instance, in timed-release encryption, a sender
transmits a ciphertext so that a receiver can decrypt it when the time which the

A. Smith (Ed.): ICITS 2012, LNCS 7412, pp. 167–186, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

168 Y. Watanabe, T. Seito, and J. Shikata

sender specified has come, and the receiver cannot decrypt it before the time.
The timed-release cryptography was first proposed by May [10] in 1993, and after
that, Rivest et al. [12] developed it in a systematic and formal way. Since Rivest et
al. gave a formal definition of timed-release encryption in [12], various researches
on timed-release cryptography including timed-release signatures (e.g., [1,8,9])
and timed-release encryption have been done based on computational security.
In particular, timed-release public key encryption (TR-PKE for short) has been
recently researched intensively. Chan et al.[4] proposed the first TR-PKE scheme,
but did not present a formal security definition. Cathalo et al.[2] and Chalkias
et al.[3] proposed direct constructions of TR-PKE schemes based on number-
theoretic assumptions in the random oracle model. Independently, Cheon et al.
[6] proposed a generic construction of TR-PKE and it is efficient and provably
secure in the standard model. And also, Fujioka et al.[7] proposed a generic
construction of TR-PKE that guarantees strong security in the random oracle
model. It also should be noted that Choen et al.[5] recently shows relationships
between TR-PKE and key-insulated public-key encryption (KI-PKE for short)
with computational security setting.

To the best of our knowledge, there is no paper which reports on the study
of information-theoretic timed-release cryptography. If a sender wants to trans-
mit a message far into the future, information-theoretic security will be help-
ful in constructing timed-release mechanism, since its security can provide the
long-term security. In this paper, we study timed-release cryptography with
information-theoretic security. As fundamental cryptographic primitives with
information-theoretic security, we can consider information-theoretically secure
key-agreement, encryption, and authentication codes. Therefore, in this paper,
we deal with information-theoretic timed-release security for all those primitives.
Specifically, the contribution of this paper is as follows.

– We propose a model and formalization of security for timed-release key-
agreement (TR-KA for short) in information-theoretic security setting. We
also derive tight lower bounds of entities’ memory-sizes required for TR-KA.
In addition, we propose an optimal direct construction of TR-KA based on
multivariate polynomials over finite fields.

– We propose models and formalizations of security for timed-release encryp-
tion (TRE for short) and authentication codes (TRA-codes for short) in
information-theoretic security setting. We also present simple generic con-
structions of TRE and TRA-codes: TRE can be constructed from TR-KA
and the one-time pad; and TRA-codes can be constructed from TR-KA and
traditional A-codes.

– We investigate and show relationship between TR-KA and key-insulated key-
agreement (KI-KA for short) [13] in information-theoretic security setting.
It turns out that there exists a simple algorithm which converts TR-KA into
KI-KA, and vice versa. Therefore, we can conclude that the mechanisms
of TR-KA and KI-KA are essentially close. Note that this relationship in
information-theoretic security setting is analogous to that of TR-PKE and
KI-PKE in computational security setting shown in [5].

Information-Theoretic Timed-Release Security 169

2 TR-KA: Timed-Release Key-Agreement with
Information-Theoretic Security

2.1 Model and Security Definition

In this section we show a model and a security definition of timed-release key-
agreement (TR-KA for short) with information-theoretic security. This is done
based on those of timed-release schemes with computational security and those
of traditional key-agreement with information-theoretic security.

For simplicity, we assume that there is a trusted authority whose role is to gen-
erate and to distribute secret-keys of entities. We call this model the trusted ini-
tializer model as in [11]. In TR-KA, there are n+2 entities, n users U1, U2, . . . , Un,
a time-server T for broadcasting time-signals and a trusted initializer TI, where
n is a positive integer. In this paper, we assume that the identity of each user Ui

is also denoted by Ui. In addition, when any two users communicate each other
in a timed-release scheme (i.e., not only TR-KA but also TRE and TRA-codes
in the following sections) under consideration in this paper, we call a user who
specifies the time a sender and the other a receiver for convenience.

Informally, TR-KA is executed as follows. In the initial phase, TI generates
secret-keys on behalf of Ui (1 ≤ i ≤ n) and the time-server T. After distributing
these keys via secure channels, TI deletes them in his memory. Any user Ui1

can specify future time when Ui1 wants to share a common-key with a user Ui2 ,
and he computes a common-key in advance by using Ui1 ’s secret-key and the
identity Ui2 . And Ui1 tells Ui2 the future time which Ui1 specified. The time-
server T periodically broadcasts a time-signal at each time which is generated
by using T’s master-key. When the specified time has come, Ui2 can compute
a common-key shared with Ui1 by using Ui2 ’s secret-key, the identity Ui1 and a
time-signal of the specified time. Note that each user has two kinds of secret-
keys: one is used for generating a common-key when he is a sender; and the
other is used for deriving a common-key when he is a receiver. In TR-KA, we
consider a non-interactive model where any two users can share a common-key
without interactive communications.

Formally, we give the definition of TR-KA as follows.1

Definition 1 (TR-KA). A timed-release key-agreement (TR-KA for short) Π
involves n+2 entities, TI, U1, U2, . . . , Un and T, and consists of a four-tuple of al-
gorithms (Setup, Ext, KeyGen, KeyDer) with five spaces, T CK, T UK, T MK, T ,
and T I, where all of the above algorithms except Setup are deterministic and
all of the above spaces are finite. In addition, Π is executed with four phases as
follows.

1 Note that our models of information-theoretically secure timed-release schemes (Def-
initions 1, 4 and 6) are almost the same as those of computationally secure timed-
release schemes [2,4,5,6,7] except for considering the trusted initializer in our models.

170 Y. Watanabe, T. Seito, and J. Shikata

– Notation:

- Entities: TI is a trusted initializer, Ui (1 ≤ i ≤ n) is a user and T is a
time-server which broadcasts time-signals. Let U := {U1, U2, . . . , Un} be
the set of all users.

- Spaces: T CK is a set of possible common-keys, and T MK is a set of
possible master-keys. T := {1, 2, . . . , τ} is a set of time. T I(t) is a set

of time-signals at time t. Let T I :=
⋃τ

i=1 T I(i). Also, T UK(S)
i is a

set of possible Ui’s secret-keys for common-key generation. And also,

T UK(R)
i is a set of possible Ui’s secret-keys for common-key derivation.

Then, T UKi := T UK(S)
i × T UK(R)

i is the set of possible secret-keys for

Ui with an associated probability distribution PTUKi . Let T UK(S) :=⋃n
i=1 T UK(S)

i , T UK(R) :=
⋃n

i=1 T UK(R)
i , and T UK :=

⋃n
i=1 T UKi.

- Algorithms: Setup is a key generation algorithm which on input a security
parameter 1k, outputs users’ secret-keys and a time-server’s master-key,
Ext : T MK × T → T I is a time-signal generation algorithm for T ,
KeyGen: T UK(S)×T ×U → T CK is a common-key generation algorithm
and KeyDer : T UK(R) × T I × U → T CK is a common-key derivation
algorithm.

1. Key Generation and Distribution. In the initial phase, TI generates
the following keys by using Setup: a master-key tmk∗ ∈ T MK for T; and

a secret-key tuki = (tuk
(S)
i , tuk

(R)
i) ∈ T UKi for Ui (i = 1, 2, . . . , n). These

keys are distributed to corresponding entities via secure channels. After dis-
tributing these keys, TI deletes them from his memory. And, T and Ui keep
their keys secret, respectively.

2. Time-signal Generation. For broadcasting a time-signal at each time, T
generates a time-signal tmk(t) =Ext(tmk∗, t) ∈ T I(t) by using a master key
tmk∗ and time t ∈ T . Then, T broadcasts it to all users via a (authenticated)
broadcast channel.

3. Common-key Generation. If Ui1 wants to share a common-key with Ui2 at
future time t, Ui1 computes a common-key to be shared with Ui2 in advance,

tck
(t)
i1,i2

=KeyGen(tuk
(S)
i1

, t, Ui2) ∈ T CK, by using his secret-key tuk
(S)
i1

, time
t, and the receiver’s identity Ui2 . And, Ui1 tells Ui2 the specified time t via
an authenticated channel.

4. Common-key Derivation. On receiving the specified time t from Ui1 , and

if the time t has come, Ui2 computes a common-key tck
(t)
i1,i2

=KeyDer(tuk
(R)
i2

,

tmk(t), Ui1) by using his secret-key tuk
(R)
i2

, a time-signal tmk(t) at time t,
and the sender’s identity Ui1 .

In the model of TR-KA, we require the following equation holds: For all possible

t ∈ T , i1, i2 ∈ {1, 2, . . . , n}, tuk(S)
i1

∈ T UK(S)
i1

, tuk
(R)
i2

∈ T UK(R)
i2

, tmk(t) ∈
T I(t), we have KeyGen(tuk

(S)
i1

, t, Ui2) =KeyDer(tuk
(R)
i2

, tmk(t), Ui1)DThe above
requirement implies that any two users can share a common-key at the specified
time without any error if they correctly follow the specification of TR-KA. In

Information-Theoretic Timed-Release Security 171

addition, tck
(t)
i1,i2

means a shared key between Ui1 and Ui2 at time t when Ui1 is

the sender and Ui2 is the receiver, and we note that tck
(t)
i1,i2

�= tck
(t)
i2,i1

in general.
We now define several notation to formalize security of TR-KA as follows. For

any finite set Z and any non-negative integer z, let P(Z, z) := {Z ⊂ Z||Z| ≤ z}
be the family of all subsets of Z whose cardinality is less than or equal to z. Let
ω (< n) be the maximum number of possible colluders. For a set of colluders

W = {Ul1, Ul2 , . . . , Ulj} ∈ P(U , ω), T UK(S)
W := T UK(S)

l1
×T UK(S)

l2
×· · ·×T UK(S)

lj
denotes the set of possible W ’s secret-keys for common-key generation, and

T UK(R)
W := T UK(R)

l1
× T UK(R)

l2
× · · · × T UK(R)

lj
denotes the set of possible W ’s

secret-keys for common-key derivation. And, let T CK(t)
i1,i2

be the set of possible
common-keys shared between Ui1 and Ui2 at the time t ∈ T . Furthermore, let

TCK
(t)
i1,i2

, TMK, TUK
(S)
W , TUK

(R)
W , and TI(1), . . . , T I(τ) be random variables

which take values on T CK(t)
i1,i2

, T MK, T UK(S)
W , T UK(R)

W , and T I(1), . . . , T I(τ),
respectively.

Next, we formalize a security definition of TR-KA based on the idea of timed-
release security and traditional key-agreement with information-theoretic secu-
rity. In TR-KA, we consider the following security goal and attacking model.
First, the security goal which we consider is basically the same as that of the
traditional key-agreement: an adversary (or a dishonest entity) cannot obtain
any information on a common-key shared between two honest users. In addition
to this, we want to require that even a legitimate receiver cannot obtain any
information on a common-key to be shared before the specified time comes (i.e.,
before a time-signal at the specified time is received), since we consider timed-
release security in this paper. Secondly, as an attacking model we consider the
following three types of attacks: (1) an attack by a dishonest time-server; (2)
an attack by colluders (i.e., dishonest users) not including a receiver; and (3)
an attack by colluders including a receiver. By combining the security goal and
attacks mentioned above, we formally define security of TR-KA as follows.

Definition 2. Let Π be TR-KA. Π is said to be (n, ω, τ)-secure if the following
conditions are satisfied:

(1) For any Ui1 , Ui2 ∈ U and t ∈ T , it holds that

H(TCK
(t)
i1,i2

| TMK) = H(TCK
(t)
i1,i2

).

(2) For any W ∈ P(U , ω), Ui1 , Ui2 ∈ U such that Ui1 , Ui2 /∈ W , and for any
t ∈ T , it holds that

H(TCK
(t)
i1,i2

| TUK
(S)
W , TUK

(R)
W , T I(1), . . . , T I(τ)) = H(TCK

(t)
i1,i2

).

(3) For any W ∈ P(U , ω), Ui1 , Ui2 ∈ U such that Ui1 /∈ W and Ui2 ∈ W , for any
t ∈ T , it holds that

H(TCK
(t)
i1,i2

| TUK
(S)
W , TUK

(R)
W , T I(1), . . . , T I(t−1), T I(t+1), . . . , T I(τ))

= H(TCK
(t)
i1,i2

).

172 Y. Watanabe, T. Seito, and J. Shikata

Intuitively, the meaning of formalizations (1)-(3) in Definition 2 is explained as
follows: (1) a dishonest time-server cannot obtain any information on a common-
key shared between two honest users. However, we assume that the time-server
correctly broadcasts a time-signal at each time; (2) No information on a common-
key shared between two honest users is obtained by any colluding group W not
including a legitimate receiver, even if W obtains time-signals at all the time;
(3) No information on a common-key between two users at the specified time
is obtained by any colluding group W including a legitimate (but dishonest)
receiver, even if W obtains time-signals at all the time except the specified
time.2

2.2 Lower Bounds

In this section, we derive lower bounds of entities’ memory-sizes required for
secure TR-KA as follows. The proof is given in Appendix.

Theorem 1. Let Π be (n, ω, τ)-secure TR-KA, and we assume that all entropies

on common-keys are equal, namely H(TCK) = H(TCK
(t)
i1,i2

) for any i1, i2 ∈
{1, 2, . . . , n} and t ∈ T . Then, we have

(i) H(TUK
(R)
i) ≥ (ω + 1)H(TCK), (ii) H(TUK

(S)
i) ≥ (τ + ω)H(TCK),

(iii) H(TI(t)) ≥ (ω + 1)H(TCK), (iv) H(TMK) ≥ τ(ω + 1)H(TCK).

As we will see in the next section, the above lower bounds are tight since our
construction will meet all the above inequalities with equalities. Therefore, we
define optimality of constructions of TR-KA as follows.

Definition 3. A construction of (n, ω, τ)-secure TR-KA is said to be optimal if
it meets equality in every inequality of (i)-(iv) in Theorem 1.

2.3 Construction

We present a construction, which is provably secure TR-KA in our model, by
using multivariate polynomials over finite fields. In addition, it is shown that the
construction is optimal. The detail of our construction of TR-KAΠ=(Setup, Ext,
KeyGen, KeyDer) is given as follows.

1. Setup. For a security parameter 1k, Setup outputs matching secret-keys
tuki and tmk∗ for Ui (1 ≤ i ≤ n) and T, respectively, as follows. Setup
picks a k-bit prime power q, where q > max(n, τ), and constructs the fi-
nite field Fq with q elements. We assume that the identity of each user Ui

is encoded as Ui ∈ Fq\{0}. Also, we assume T = {1, 2, . . . , τ} ⊂ Fq\{0}
by using appropriate encoding. And, Setup chooses uniformly at random

2 In this sense, we have formalized the security notion stronger than the security that
a dishonest receiver cannot obtain any information on a common-key to be shared
before the specified time comes.

Information-Theoretic Timed-Release Security 173

f(x, y) :=
∑ω

i=0

∑ω
j=0aijx

iyj , tmk∗(x, z) :=
∑ω

i=0

∑τ−1
k=0 bikx

izk over Fq

with three variables x, y and z in which each degree of x and y is at most

ω, and the degree of z is at most τ − 1. Setup also computes tuk
(S)
i (y, z) :=

f(Ui, y) + tmk∗(Ui, z) and tuk
(R)
i (x) := f(x, Ui) (1 ≤ i ≤ n). Then, Setup

outputs secret-keys tuki := (tuk
(S)
i (y, z), tuk

(R)
i (x)) (1 ≤ i ≤ n) and tmk∗ :=

tmk∗(x, z) for Ui (1 ≤ i ≤ n) and T, respectively.
2. Ext. For tmk∗ = tmk∗(x, z) and time t ∈ T , Ext outputs a time-signal at

time t, tmk(t)(x) := tmk∗(x, t).

3. KeyGen. For a secret-key tuk
(S)
i1

, the specified time t and an identity Ui2 ,

KeyGen generates a common-key shared between Ui1 and Ui2 , tck
(t)
i1,i2

:=

tuk
(S)
i1

(Ui2 , t), and outputs it.

4. KeyDer. For a secret-key tuk
(R)
i2

, a time-signal tmk(t) at the specified time
t and an identity Ui1 , KeyDer outputs a common-key shared between Ui1

and Ui2 , tck
(t)
i1,i2

:= tuk
(R)
i2

(Ui1) + tmk(t)(Ui1).

The security and optimality of the above construction is stated as follows. (See
the full version of this paper [16] for the detailed proof.)

Theorem 2. The resulting TR-KA Π by the above construction is (n, ω, τ)-
secure and optimal.

Proof Sketch. First, we show the construction satisfies the condition (1) in Defi-

nition 2. T cannot guess the information on a common-key tck
(t)
i1,i2

with proba-
bility larger than 1/q, since he does not know at least one coefficient of f(x, y).

Thus, we have H(TCK
(t)
i1,i2

|TMK) = log2 q. On the other hand, it is clear that

H(TCK
(t)
i1,i2

) = log2 q. Therefore, for any Ui1 , Ui2 ∈ U and t ∈ T , H(TCK
(t)
i1,i2

|
TMK)= H(TCK

(t)
i1,i2

).
Next, we show the construction satisfies the conditions (2) in Definition 2.

Suppose a group of colluders W not including a targeted receiver gets all time-
signals. Then, W can obtain tmk∗(x, z). Also, W has f(Ul, y) and f(x, Ul) (Ul ∈
W). However, since each degree of f(x, y) with respect to x and y is at most ω,
W cannot guess at least one coefficient of f(x, y) with probability larger than

1/q. Thus, we have H(TCK
(t)
i1,i2

|TUK
(S)
W , TUK

(R)
W , TI(1), . . . , T I(τ)) = log2 q.

Therefore, for any Ui1 , Ui2 ∈ U such that Ui1 , Ui2 /∈ W , and for any t ∈ T ,

H(TCK
(t)
i1,i2

|TUK
(S)
W , TUK

(R)
W , TI(1), . . . , T I(τ)) = H(TCK

(t)
i1,i2

).
Moreover, we show the construction satisfies the condition (3) in Definition 2.

Without loss of generality, we suppose that Ui1 is a targeted sender, Ui2 is a
targeted receiver, and τ is a specified time. Suppose a group of colluders W with

Ui2 ∈ W will guess a common-key tck
(τ)
i1,i2

. Note that W can get f(Ui1 , Ui2) since
Ui2 ∈ W . Thus, W tries to obtain tmk∗(x, z) to know f(Ui1 , Ui2)+ tmk∗(Ui1 , τ).
Although W can know tmk∗(Ul, z) (Ul ∈ W) and tmk∗(x, t) (1 ≤ t ≤ τ − 1),
W cannot guess at least one coefficient of tmk∗(x, z) with probability larger
than 1/q since the degrees of tmk∗(x, z) with respect to x and z are at most

ω and τ − 1, respectively. Thus, we have H(TCK
(τ)
i1,i2

|TUK
(S)
W , TUK

(R)
W , TI(1),

174 Y. Watanabe, T. Seito, and J. Shikata

TI(2), . . . , T I(τ−1)) = log2 q. Therefore, in general, for any Ui1 , Ui2 ∈ U such

that Ui1 /∈ W and Ui2 ∈ W , and for any t ∈ T , H(TCK
(t)
i1,i2

|TUK
(S)
W , TUK

(R)
W ,

TI(1), . . . , T I(t−1), TI(t+1), . . . , T I(τ)) = H(TCK
(t)
i1,i2

).
Finally, it is straightforward to see that the construction satisfies all the equal-

ities of lower bounds in Theorem 1. �

3 TRE: Timed-Release Encryption with
Information-Theoretic Security

In this section, we show a model and a security formalization of timed-release
encryption (TRE for short) with information-theoretic security. We also show
that TRE can be constructed from TR-KA and the one-time pad in a generic
and simple way.

3.1 Model and Security Definition

We propose a model and a security definition of TRE, based on that of timed-
release encryption with computational security (e.g., [12]) and that of the tra-
ditional encryption with information-theoretic security (e.g., [14]). Formally, we
give a definition of TRE in the TI-model as in the case of TR-KA.

Definition 4 (TRE). A timed-release encryption (TRE for short) Σ involves
n+2 entities, TI, U1, U2, . . . , Un and T, and consists of a four-tuple of algorithms
(EGen, EExt, Enc, Dec) with six spaces, C,ME,USK, EMK, T , and ET I, where
all of the above algorithms except EGen are deterministic and all of the above
spaces are finite. In addition, Σ is executed with four phases as follows.

– Notation:
- Entities: TI, Ui (1 ≤ i ≤ n), T, and U are the same as those in
Definition 1.

- Spaces: T is the same as that in Definition 1. C is a set of possible
ciphertexts, ME is a set of possible plaintexts with a probability dis-
tribution PM , EMK is a set of possible master-keys. ET I(t) is a set of
time-signals at time t. Let ET I :=

⋃τ
i=1 ET I(i). Also, EKi is a set of

possible encryption-keys for Ui, DKi is a set of possible decryption-keys
for Ui, and USKi := EKi × DKi is a set of possible secret-keys for Ui.
Let EK :=

⋃n
i=1 EKi, DK :=

⋃n
i=1 DKi and USK :=

⋃n
i=1 USKi.

- Algorithms: EGen is a key generation algorithm which on input a secu-
rity parameter 1k, outputs each user’s secret-key and a server’s master-
key, EExt : EMK × T → ET I is a time-signal generation algorithm for
T, Enc: ME × EK × T × U → C is an encryption algorithm, and Dec:
C × DK × ET I × U → ME is a decryption algorithm.

1. Key Generation and Distribution. In the initial phase, TI generates the
following keys by using EGen: a master-key emk∗ ∈ EMK for T; a secret-key
uski = (eki, dki) ∈ USKi for Ui (i = 1, 2, . . . , n). These keys are distributed

Information-Theoretic Timed-Release Security 175

to corresponding entities via secure channels. After distributing these keys,
TI deletes them from his memory. And, T and Ui keep their keys secret,
respectively.

2. Time-signal Generation. For broadcasting a time-signal at each time, T
generates a time-signal emk(t) =EExt(emk∗, t) ∈ ET I(t) by using a master-
key emk∗ ∈ EMK and time t ∈ T . Then, T broadcasts it to all users via a
(authenticated) broadcast channel.

3. Encryption. Ui1 specifies time t when Ui2 can decrypt a ciphertext, and

then Ui1 computes a ciphertext, c
(t)
i1,i2

=Enc(m, eki1 , t, Ui2) ∈ C, by a plain-
text m ∈ ME, an encryption-key eki1 ∈ EK, the specified time t and the
identity Ui2 . And, Ui1 sends a pair of the ciphertext and the specified time,

(c
(t)
i1,i2

, t), to Ui2 via an authenticated channel.

4. Decryption. Suppose that Ui2 has received (c
(t)
i1,i2

, t) from Ui1 . After receiv-

ing a time-signal emk(t) at the specified time t, Ui2 recovers m =Dec(c
(t)
i1,i2

,

dki2 , emk(t), Ui1) by a ciphertext c
(t)
i1,i2

, a decryption-key dki2 , a time-signal

emk(t), and the identity Ui1 .

In the model of TRE, we require the following equation holds: For all possible
t ∈ T , i1, i2 ∈ {1, 2, . . . , n}, eki1 ∈ EKi1 , dki2 ∈ DKi2 , emk(t) ∈ ET I(t), we have
Dec(Enc(m, eki1 , t, Ui2), dki2 , emk(t), Ui1) = mDThe above requirement means
correctness of TRE.

Next, we provide a security definition of TRE based on the idea of timed-
release security and the traditional encryption with information-theoretic secu-
rity. The choice of possible colluders W ∈ P(U , ω) is the same as that in TR-KA.
For a set of colluders W = {Ul1, Ul2 , . . . , Ulj} ∈ P(U , ω), EKW := EKl1 ×EKl2 ×
· · ·×EKlj is a set ofW ’s encryption-keys, and DKW := DKl1 ×DKl2×· · ·×DKlj

is a set of W ’s decryption-keys. Also, let C(t)
i1,i2

be a finite set of possible ci-
phertexts sent from Ui1 to Ui2 such that it can be decrypted at the time t.

Furthermore, let M , C
(t)
i1,i2

, EMK, EKW , DKW , and ETI(1), . . . , ET I(τ) be

random variables which take values on ME , C(t)
i1,i2

, EMK, EKW , DKW , and

ET I(1), . . . , ET I(τ), respectively.
Similarly as in Definition 2 we consider the following three types of security

notions for TRE: (1) A dishonest time-server cannot obtain any information on
an underlying plaintext from a target ciphertext transmitted on the channel; (2)
No information on an underlying plaintext from a target ciphertext is obtained
by any colluding group W not including a legitimate receiver, even if W obtains
time-signals at all the time; (3) No information on an underlying plaintext from
a target ciphertext is obtained by any colluding group W including a legitimate
(but dishonest) receiver, even if W obtains time-signals at all the time except
the specified time.

The formalizations of the above security notions for TRE are given as follows.

Definition 5. Let Σ be TRE. Σ is said to be (n, ω, τ)-secure if the following
conditions are satisfied:

176 Y. Watanabe, T. Seito, and J. Shikata

(1) For any Ui1 , Ui2 ∈ U and any t ∈ T , it holds that

H(M | C(t)
i1,i2

, EMK) = H(M).

(2) For any W ∈ P(U , ω), Ui1 , Ui2 ∈ U such that Ui1 , Ui2 /∈ W , and for any
t ∈ T , it holds that

H(M | C(t)
i1,i2

, EKW , DKW , ET I(1), . . . , ET I(τ)) = H(M).

(3) For any W ∈ P(U , ω), Ui1 , Ui2 ∈ U such that Ui1 /∈ W and Ui2 ∈ W , for any
t ∈ T , it holds that

H(M | C(t)
i1,i2

, EKW , DKW , ET I(1), . . . , ET I(t−1), ET I(t+1), . . . , ET I(τ))

= H(M).

3.2 Construction of TRE from TR-KA and One-Time Pad

We present a generic construction of TRE Σ=(EGen, EExt, Enc, Dec) starting
from TR-KA Π=(Setup, Ext, KeyGen, KeyDer) and the one-time pad. In our
construction, Π and Σ satisfy the following conditions: EMK = T MK; ET I =
T I; EK = T UK(S); and DK = T UK(R).

1. EGen. For a security parameter 1k, EGen outputs matching secret-keys
uski = (eki, dki) and emk∗ for Ui (1 ≤ i ≤ n) and T, respectively, as

follows. EGen calls Setup with input 1k. Suppose (tuk
(S)
1 , tuk

(R)
1 , tuk

(S)
2 ,

tuk
(R)
2 , . . . , tuk

(S)
n , tuk

(R)
n , tmk∗) ←Setup(1k). Then, EGen outputs secret-

keys eki := tuk
(S)
i , dki := tuk

(R)
i , and emk∗ := tmk∗ for Ui (1 ≤ i ≤ n) and

T , respectively.
2. EExt. For a master-key emk∗ = tmk∗ and time t, EExt calls Ext, and

suppose tmk(t) =Ext(tmk∗, t). Then, EExt outputs a time-signal at the time
t, emk(t) := tmk(t).

3. Enc. For a plaintext m, an encryption-key eki1 = tuk
(S)
i1

, the specified time t

and an identity Ui2 , Enc callsKeyGen, and suppose tck
(t)
i1,i2

=KeyGen(tuk
(S)
i1

,

t, Ui2). Then, Enc outputs a ciphertext c
(t)
i1,i2

:= m⊕ tck
(t)
i1,i2

.

4. Dec. For a ciphertext c
(t)
i1,i2

, a decryption-key dki2 = tuk
(R)
i2

, a time-signal

emk(t) = tmk(t) at the specified time t and an identity Ui1 , Dec calls Key-

Der, and suppose tck
(t)
i1,i2

=KeyDer(tuk
(R)
i2

, tmk(t), Ui1). Then, Dec outputs

a plaintext m := c
(t)
i1,i2

⊕ tck
(t)
i1,i2

.

The security of the above construction is shown as follows. (See the full version
of this paper [16] for the detailed proof.)

Theorem 3. Given (n, ω, τ)-secure TR-KA Π in which common-keys are uni-

formly distributed over T CK (i.e., H(TCK
(t)
i,j) = log2 |T CK| for any i, j, and t),

then the TRE Σ formed by the above construction based on Π is (n, ω, τ)-secure.

Information-Theoretic Timed-Release Security 177

Proof Sketch. The proof can be directly shown by the security of TR-KA and per-
fect secrecy of the one-time pad. First, we describe the outline of the proof for the
condition (1) in Definition 5. From Definition 2, T cannot obtain any information
on a common-key shared between two honest users even if T knows a master

key. Therefore, by perfect secrecy of the one-time pad, H(M | C(t)
i1,i2

, EMK) =
H(M).

Next, we only describe the outline of the proof for the condition (2) in Defini-
tion 5, since the condition (3) can be shown by a similar idea. From Definition 2,
any colluding group W such that Ui1 , Ui2 /∈ W cannot know a uniform common-
key shared between Ui1 and Ui2 in TR-KA. Therefore, by perfect secrecy of the

one-time pad, H(M | C(t)
i1,i2

, EKW , DKW , ET I(1), . . . , ET I(τ)) = H(M). �

4 TRA-Codes: Timed-Release Authentication Codes

In this section, we show a model and a security definition of timed-release au-
thentication codes (TRA-codes for short). We also show that TRA-codes can be
constructed from TR-KA and the traditional authentication codes (A-codes for
short) in a generic and simple way.

4.1 Model and Security Definition

We newly propose a model and a security definition of TRA-codes, based on
that of timed-release signatures with computational security (e.g., [8]) and that
of the traditional authentication code with information-theoretic security (e.g.,
[15]).

Formally, we give a definition of TRA-codes in the TI-model as in the case of
TR-KA.

Definition 6 (TRA-codes). A timed-release authentication code (TRA-code
for short) Λ involves n + 2 entities, TI, U1, U2, . . . , Un and T, and consists of
a four-tuple of algorithms (TAGen, AExt, TAuth, TVer) with six spaces, MA,
A, E , AMK, T and AT I, where all of the above algorithms except TAGen are
deterministic and all of the above spaces are finite. In addition, Λ is executed
with four phases as follows.

– Notation:
- Entities: TI, Ui (1 ≤ i ≤ n), T, and U are the same as those in
Definition 1.

- Spaces: T is the same as that in Definition 1. A is a set of possible
authenticators (or tags), MA is a set of possible messages, AMK is a

set of possible master-keys. AT I(t) is a set of time-signals at time t. Let

AT I :=
⋃τ

t=1 AT I(t). Also, E(S)
i is a set of possible Ui’s authentication-

keys, E(R)
i is a set of possible Ui’s verification-keys, and Ei := E(S)

i ×E(R)
i

is a set of possible secret-keys for Ui. Let E(S) :=
⋃n

i=1 E
(S)
i , E(R) :=⋃n

i=1 E
(R)
i , and E :=

⋃n
i=1 Ei.

178 Y. Watanabe, T. Seito, and J. Shikata

- Algorithms: TAGen is a key generation algorithm which on input a se-
curity parameter 1k, outputs each user’s secret-key and a time-server’s
master-key, AExt : AMK × T → AT I is a time-signal generation al-
gorithm for T, TAuth: MA × E(S) × T × U → A is an authentication
algorithm, and TVer : MA ×A× T × E(R) ×AT I × U → {true, false}
is a verification algorithm.

1. Key Generation and Distribution. In the initial phase, TI generates the
following keys by using TAGen: a master-key amk∗ ∈ AMK for T; a secret-

key ei = (e
(S)
i , e

(R)
i) ∈ Ei for Ui (i = 1, 2, . . . , n). These keys are distributed

to corresponding entities via secure channels. After distributing these keys,
TI deletes them from his memory. And, T and Ui keep their keys secret,
respectively.

2. Time-signal Generation. For broadcasting a time-signal at each time, T
generates a time-signal amk(t) =AExt(amk∗, t) ∈ AT I(t) by using a master-
key amk∗ ∈ AMK and time t ∈ T . Then, T broadcasts it to all users via a
(authenticated) broadcast channel.

3. Authentication. Ui1 specifies time t when Ui2 can verify validity of a mes-

sage m, and then Ui1 computes an authenticator, α
(t)
i1,i2

=TAuth(m, e
(S)
i1

, t,

Ui2) ∈ A, by the message m ∈ MA, an authentication-key e
(S)
i1

, the speci-

fied time t and the identity Ui2 . And, Ui1 sends (m,α
(t)
i1,i2

, t) to Ui2 via an
insecure channel.

4. Verification. Suppose that Ui2 has received (m,α
(t)
i1,i2

, t) from Ui1 . After

receiving a time-signal amk(t) at the specified time t, Ui2 checks the validity

of α
(t)
i1,i2

by a verification-key e
(R)
i2

, a time-signal amk(t) and the identity Ui1 :

If TVer(m,α
(t)
i1,i2

, t, e
(R)
i2

, amk(t), Ui1) = true, then Ui2 accepts (m,α
(t)
i1,i2

, t)
as valid, and rejects it otherwise.

In the model of TRA-codes, we require the following equation holds: For all

possible t ∈ T , i1, i2 ∈ {1, 2, . . . , n}, e(S)
i1

∈ E(S)
i1

, e
(R)
i2

∈ E(R)
i2

, amk(t) ∈ AT I(t),

we have TVer(m,TAuth(m, e
(S)
i1

, t, Ui2), t, e
(R)
i2

, amk(t), Ui1) = trueDThe above
requirement means correctness of TRA-codes.

Next, we provide a security notion and its formalization for TRA-codes based
on the idea of timed-release security and the traditional authentication code with
information-theoretic security. The choice of possible colluders W ∈ P(U , ω) is
the same as that in TR-KA. For a set of colluders W := {Ul1 , Ul2 , . . . , Ulj} ∈
P(U , ω), E(S)

W := E(S)
l1

×E(S)
l2

× · · ·×E(S)
lj

is a set of W ’s authentication-keys, and

E(R)
W := E(R)

l1
×E(R)

l2
×· · ·×E(R)

lj
is a set ofW ’s verification-keys. In TRA-codes, we

consider impersonation attacks and substitution attacks as follows. (a) Imperson-
ation attacks: an adversary (or a dishonest entity) tries to generate a fraudulent

authenticated message at time t, (m,α
(t)
i1,i2

, t), that has not been legally generated
by a sender Ui1 but will be accepted by a receiver Ui2 . (b) Substitution attacks:
an adversary (or a dishonest entity) tries to generate a fraudulent authenticated

message at time t2, (m′, α
(t2)
i1,i2

, t2), that has not been legally generated by a

Information-Theoretic Timed-Release Security 179

sender Ui1 but will be accepted by a receiver Ui2 , after observing a valid authen-

ticated message at time t1, (m,α
(t1)
i1,i2

, t1) with (m,α
(t1)
i1,i2

, t1) �= (m′, α
(t2)
i1,i2

, t2).
Similarly as in Definition 2 we consider the following three types of security
notions for TRA-codes: (1) A dishonest time-server cannot succeed in each of
the impersonation attack and substitution attack ; (2) Any colluding group W
not including a legitimate receiver cannot succeed in each of the impersonation
attack and substitution attack, even if W obtains time-signals at all the time; (3)
Any colluding group W including a legitimate (but dishonest) receiver cannot
check the validity of a target authenticated message without a time-signal at the
specified time, even if W obtains time-signals at all the time except the specified
time. To formalize this security notion, we consider it to be a kind of security
against impersonation attacks at the future specified time: Any colluding group
W including a receiver cannot succeed in impersonation attacks at the future
specified time, even if W obtains time-signals at all the time except the specified
time.

The formalizations of the above three types of security notions for TRA-codes
are given as follows.

Definition 7. Let Λ be a TRA-code. Λ is said to be (n, ω, τ ; ε)-secure, if max(
PServer , P1, P2) ≤ ε, where PServer , P1 and P2 are defined as follows.

(1) Attacks by a dishonest time-server. Let PServer := max(PIS , PSS), where PIS

and PSS are given as follows.
1-1) Impersonation attacks. The success probability of this attack denoted by

PIS is defined as follows: For any Ui1 , Ui2 ∈ U and any t ∈ T , we define
PIS (Ui1 , Ui2 , t) by

PIS (Ui1 , Ui2 , t) := max
(m,α

(t)
i1,i2

,t)

max
amk∗

max
amk(t)

Pr(TV er(m,α
(t)
i1,i2

, t, e
(R)
i2

, amk(t), Ui1) = true | amk∗).

The probability PIS is defined as PIS := max
Ui1 ,Ui2 ,t

PIS (Ui1 , Ui2 , t).

1-2) Substitution attacks. The success probability of this attack denoted by
PSS is defined as follows: For any Ui1 , Ui2 ∈ U and any t1, t2 ∈ T , we
define PSS (Ui1 , Ui2 , t1, t2) by

PSS (Ui1 , Ui2 , t1, t2) := max
(m′,α(t2)

i1,i2
,t2)

max
(m,α

(t1)
i1,i2

,t1) �=(m′,α(t2)
i1,i2

,t2)

max
amk∗

max
amk(t2)

Pr(TV er(m′, α
(t2)
i1,i2

, t2, e
(R)
i2

, amk(t2), Ui1) = true | (m,α
(t1)
i1,i2

, t1), amk∗).

The probability PSS is defined as PSS := max
Ui1 ,Ui2 ,t1,t2

PSS (Ui1 , Ui2 , t1, t2).

(2) Attacks by colluders not including a legitimate receiver. Let P1 := max(PI1 ,
PS1), where PI1 and PS1 are given as follows.

2-1) Impersonation attacks. The success probability of this attack denoted
by PI1 is defined as follows: For any set of colluders W ∈ P(U , ω), any

180 Y. Watanabe, T. Seito, and J. Shikata

Ui1 , Ui2 ∈ U such that Ui1 , Ui2 /∈ W and for any t ∈ T , we define
PI1(Ui1 , Ui2 ,W, t) by

PI1 (Ui1 , Ui2 ,W, t) := max
(m,α

(t)
i1,i2

,t)

max
e
(S)
W

max
e
(R)
W

max
amk(1),...,amk(τ)

Pr(TV er(m,α
(t)
i1,i2

, t, e
(R)
i2

, amk(t), Ui1) = true

| e(S)
W , e

(R)
W , amk(1), . . . , amk(τ)).

The probability PI1 is defined as PI1 := max
Ui1 ,Ui2 ,W,t

PI1 (Ui1 , Ui2 ,W, t).

2-2) Substitution attacks. The success probability of this attack denoted by
PS1 is defined as follows: For any set of colluders W ∈ P(U , ω), any
Ui1 , Ui2 ∈ U such that Ui1 , Ui2 /∈ W and for any t1, t2 ∈ T , we define
PS1(Ui1 , Ui2 ,W, t1, t2) by

PS1(Ui1 , Ui2 ,W, t1, t2) := max
(m′,α(t2)

i1,i2
,t2)

max
(m,α

(t1)

i1,i2
,t1) �=(m′,α(t2)

i1,i2
,t2)

max
e
(S)
W

max
e
(R)
W

max
amk(1),...,amk(τ)

Pr(TV er(m′, α
(t2)
i1,i2

, t2, e
(R)
i2

, amk(t2), Ui1) = true

| (m,α
(t1)
i1,i2

, t1), e
(S)
W , e

(R)
W , amk(1), . . . , amk(τ)).

And, PS1 is defined as PS1 := max
Ui1 ,Ui2 ,W,t1,t2

PS1(Ui1 , Ui2 ,W, t1, t2).

(3) An attack by colluders including a legitimate (but dishonest) receiver. The
success probability of this attack denoted by P2 is defined as follows: For
any set of colluders W ∈ P(U , ω), any Ui1 , Ui2 ∈ U such that Ui1 /∈ W and
Ui2 ∈ W , and for any t ∈ T , we define P2(Ui1 , Ui2 ,W, t) by

P2(Ui1 , Ui2 ,W, t) := max
(m,α

(t)
i1,i2

,t)

max
e
(S)
W

max
e
(R)
W

max
amk(1),...,amk(t−1),amk(t+1),...,amk(τ)

Pr(TV er(m,α
(t)
i1,i2

, t, e
(R)
i2

, amk(t), Ui1) = true

| e(S)
W , e

(R)
W amk(1), . . . , amk(t−1), amk(t+1), . . . , amk(τ)).

The probability P2 is defined as P2 := max
Ui1 ,Ui2 ,W,t

P2(Ui1 , Ui2 ,W, t).

4.2 Construction of TRA-codes from TR-KA and A-Codes

We propose a generic construction of (n, ω, τ ; ε)-secure TRA-codes from TR-KA
and the traditional A-codes (e.g., [15]). First, we briefly explain the traditional
A-codes as follows.

A-codes. We consider a scenario where there are three entities, a sender S,
a receiver R, and an adversary A. The A-code Θ consists of a three-tuple of
algorithms (AGen, Auth, Ver) with three spaces, M̃, Ã and Ẽ , where they are
finite sets of possible messages, possible authenticators (or tags) and possible
secret-keys, respectively. AGen is a key generation algorithm, which takes a

Information-Theoretic Timed-Release Security 181

security parameter on input and outputs a secret-key e. Auth is an algorithm for
generating an authenticator.Auth takes a messagem ∈ M̃ and a secret-key e ∈ Ẽ
on input and outputs an authenticator α ∈ Ã, and we write α =Auth(m, e) for
it. On receiving (m,α), a receiver R can check the validity of it by using Ver. Ver
takes a message m, an authenticator α and a secret-key e on input, and outputs
true or false, and we write true=Ver(m,α, e) or false=Ver(m,α, e) for it. In
A-codes, there are two kinds of attacks: impersonation attacks and substitution
attacks. Here, Θ is said to be ε-secure if each of success probabilities of these
attacks is at most ε (e.g., see [15] for details).

The detail of our generic construction of TRA-codes Λ=(TAGen, AExt,
TAuth, TVer) by using TR-KA Π=(Setup, Ext, KeyGen, KeyDer) and A-codes
Θ=(AGen, Auth, Ver) is given as follows. In our construction, Π , Θ and Λ sat-
isfy the following conditions: MA×T ⊂ M̃; T CK ⊂ Ẽ ; A = Ã; AMK = T MK;
AT I = T I; E(S) = T UK(S); and E(R) = T UK(R).

1. TAGen. For a security parameter 1k, TAGen outputs matching secret-

keys ei = (e
(S)
i , e

(R)
i) and amk∗ for Ui (1 ≤ i ≤ n) and T, re-

spectively, as follows. TAGen calls Setup with input 1k, and suppose

(tuk
(S)
1 , tuk

(R)
1 , tuk

(S)
2 , tuk

(R)
2 ,

. . . , tuk
(S)
n , tuk

(R)
n , tmk∗) ←Setup(1k). Then, TAGen outputs secret-keys

e
(S)
i := tuk

(S)
i , e

(R)
i := tuk

(R)
i and amk∗ := tmk∗ for Ui (1 ≤ i ≤ n) and T,

respectively.
2. AExt. For a master-key amk∗ = tmk∗ and time t, AExt calls Ext, and

suppose tmk(t) =Ext(tmk∗, t). Then, AExt outputs a time-signal at time t,
amk(t) := tmk(t).

3. TAuth. For a message m, an authentication-key e
(S)
i1

= tuk
(S)
i1

, the speci-

fied time t and an identity Ui2 , TAuth calls KeyGen, and suppose tck
(t)
i1,i2

=

KeyGen(tuk
(S)
i1

, t, Ui2). Then, TAuth calls Auth, and it computes an authen-

ticator α =Auth((m, t), tck
(t)
i1,i2

). Finally, TAuth outputs an authenticator at

time t, α
(t)
i1,i2

:= α.

4. TVer. For a message m, the specified time t, an authenticator α
(t)
i1,i2

, a

verification-key e
(R)
i2

= tuk
(R)
i2

, a time-signal amk(t) = tmk(t) at the specified
time t and an identity Ui1 , TVer calls KeyDer with inputting them, and

suppose tck
(t)
i1,i2

=KeyDer(tuk
(R)
i2

, tmk(t), Ui1). Then, TVer outputs true if

Ver((m, t), α
(t)
i1,i2

, tck
(t)
i1,i2

) =true, and outputs false otherwise.

The security of the above construction is shown as follows. (See the full version
of this paper [16] for the detailed proof.)

Theorem 4. Given an ε-secure A-code Θ and (n, ω, τ)-secure TR-KA Π in
which common-keys are uniformly distributed over T CK, then the TRA-code Λ
formed by the above construction based on Θ and Π is (n, ω, τ ; ε)-secure.

Proof Sketch. The proof can be directly shown by the security of TR-KA and
that of the A-code. First, we describe the outline of the proof of PSS ≤ ε. From

182 Y. Watanabe, T. Seito, and J. Shikata

Definition 2, T cannot obtain any information on a common-key shared between
two honest users even if T knows a master key. Therefore, since the underlying
A-code is ε-secure, success probability of substitution attacks is at most ε. Thus,
we have PSS ≤ ε. In a manner similar to this, we can prove PIS ≤ ε. Therefore,
we have PServer = max(PIS , PSS) ≤ ε.

Next, we describe the outline of the proof of PS1 ≤ ε. From Definition 2, any
colluding group W such that Ui1 , Ui2 /∈ W cannot know a uniform common-key
shared between Ui1 and Ui2 in TR-KA. Therefore, since the underlying A-code is
ε-secure, success probability of substitution attacks is at most ε. Thus, we have
PS1 ≤ ε. In a manner similar to this, we can prove PI1 ≤ ε. Therefore, we have
P1 = max(PI1 , PS1) ≤ ε.

Finally, we describe the outline of the proof of P2 ≤ ε. From Definition 2,
even a colluding group W including a legitimate (but dishonest) receiver cannot
obtain any information on a common-key at the future specified time. Hence,
success probability of this attack can be reduced to that of impersonation attacks
for the underlying A-code. Thus, we have P2 ≤ ε. �

5 Relation to Information-Theoretic Key-Insulated
Security

In this section, we show relationship between TR-KA and key-insulated key-
agreement (KI-KA for short) in information-theoretic security setting. We now
start with describing the model of KI-KA as follows.

KI-KA. Recently, information-theoretically secure KI-KA is proposed by Seito
and Shikata [13]. In KI-KA, there are ñ users U1, U2, . . . , Uñ where ñ is a positive
integer. And each user has two kinds of devices: a trusted device (e.g., a smart
card, USB flash memory) which stores a master-key; and an insecure device in
which a user’s secret-key is stored. Here, the notion of a secure device implies
that it is usually isolated from a network (e.g. the Internet or LAN) and that
the attacker can neither wiretap nor substitute information stored in the device
via the network. Here, we assume that the user Ui’s secure device is expressed
as Hi (1 ≤ i ≤ ñ). We also assume that the lifetime of systems is divided into
discrete periods. And, at the beginning of each period j, Ui receives key-updating
information from Hi by connecting with Hi, then Ui computes a secret-key at
the period j by using the secret-key of the previous period and key-updating
information. And then, any user Ui1 can share a common-key with any user Ui2

at a period j.
In KI-KA, if the trusted device is not compromised, then user’s secret-keys of

some periods can be exposed without losing security of systems. Additionally,
even if the trusted device is exposed, the system will not be broken if no user’s
secret-key is exposed. The informal security requirement of KI-KA is as follows:
the adversary does not obtain any information on a common-key shared between
two honest users at a target period under each of the following adversarial mod-
els; (a) the adversary can obtain at most γ exposed target users’ secret-keys; (b)
the adversary can obtain target users’ master-keys. In both cases, the adversary

Information-Theoretic Timed-Release Security 183

can also obtain exposed secret-keys and master-keys from at most ω̃ corrupted
users. Then, KI-KA is called to be (ñ, ω̃;N, γ)-secure if the above requirement
is satisfied.

Basic Idea of Generic Constructions. In KI-KA, any user cannot update
a secret-key without using key-updating information which is generated by the
master-key. That is to say, the user’s key-updating process is controlled by the
device’s master-key and key-updating information. On the other hand, in TR-
KA, no user (a receiver) can derive a common-key without using a time-signal
corresponding to a designated period (time). Namely, the receiver’s common-key
derivation process is controlled by the time-server’s master-key and the time-
signal. As seen from the above observation, the mechanisms of KI-KA and TR-
KA are similar in the point that a common-key (or a secret-key required for
deriving a common-key) derivation process is controlled by a master-key.

The above statement is explicitly shown by proposing two generic construc-
tions (or converters) in a simple way: one is a construction of KI-KA from TR-
KA; and the other is a construction of TR-KA from KI-KA. More precisely, we
can show the following theorem which states that the mechanisms of TR-KA
and KI-KA are essentially close. The proof is shown in the full version of this
paper [16].

Theorem 5. There is a generic construction of KI-KA Π̃ from TR-KA Π
in a simple way such that, if Π is (n, ω, τ)-secure, then the resulting Π̃ is
(ñ, ω̃;N, γ)-secure, where ñ = n, ω̃ = ω, and γ = τ . Conversely, there is a
generic construction of TR-KA Π from KI-KA Π̃ in a simple way such that, if
Π̃ is (ñ, ω̃;N, γ)-secure, then the resulting Π is (n, ω, τ)-secure, where n = 1

2 ñ,
ω = 1

2 ω̃, and τ = γ.

Acknowledgements. We would like to thank anonymous reviewers for their
valuable comments.

References

1. Boneh, D., Naor, M.: Timed Commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)

2. Cathalo, J., Libert, B., Quisquater, J.-J.: Efficient and Non-Interactive Timed-
Release Encryption. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
LNCS, vol. 3783, pp. 291–303. Springer, Heidelberg (2005)

3. Chalkias, K., Hristu-Varsakelis, D., Stephanides, G.: Improved Anonymous Timed-
Release Encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 311–326. Springer, Heidelberg (2007)

4. Chan, A.C.-F., Blake, I.F.: Scalable, Server-Passive, User-Anonymous Timed-
Release Public Key Encryption from Bilinear Pairing. In: 25th International Con-
ference on Distributed Computing Systems, pp. 504–513. IEEE, Los Almitos
(2005), The full version is available at, http://eprint.iacr.org/2004/211

http://eprint.iacr.org/2004/211

184 Y. Watanabe, T. Seito, and J. Shikata

5. Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Timed-Release and Key-Insulated
Public key Encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS,
vol. 4107, pp. 191–205. Springer, Heidelberg (2006), The full version is available
at, http://eprint.iacr.org/2004/231

6. Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Provably Secure Timed-Release
Public Key Encryption. ACM Trans. Information and System Security 11(2), 1–44
(2008)

7. Fujioka, A., Okamoto, Y., Saito, T.: Generic Construction of Strongly Secure
Timed-Release Public-Key Encryption. In: Parampalli, U., Hawkes, P. (eds.)
ACISP 2011. LNCS, vol. 6812, pp. 319–336. Springer, Heidelberg (2011)

8. Garay, J.A., Jakobsson, C.: Timed Release of Standard Digital Signatures. In:
Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 168–182. Springer, Heidelberg (2003)

9. Garay, J.A., Pomerance, C.: Timed Fair Exchange of Standard Signatures. In:
Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 190–207. Springer, Heidelberg
(2003)

10. May, T.C.: Timed-release crypto. manuscript (1993)

11. Rivest, R.: Unconditionally Secure Commitment and Oblivious Transfer
Schemes Using Private Channels and a Trusted Initializer. manuscript (1999),
http://people.csail.mit.edu/rivest/Rivest-commitment.pdf

12. Rivest, R., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto.
MIT LCS Tech. Report. MIT LCS TR-684 (1996)

13. Seito, T., Shikata, J.: Information-Theoretically Secure Key-Insulated Key-
Agreement. In: 2011 IEEE Information Theory Workshop (ITW), pp. 287–291.
IEEE (2011)

14. Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical
Journal 28, 656–715 (1949)

15. Simmons, G.J.: Authentication Theory/Coding Theory. In: Blakely, G.R., Chaum,
D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 411–431. Springer, Heidelberg (1985)

16. Watanabe, Y., Seito, T., Shikata, J.: Information-Theoretic Timed-Release Secu-
rity: Key-Agreement, Encryption, and Authentication Codes. the full version of
this paper. To appear at Cryptology ePrint Archive, IACR (2012)

Appendix: Proof of Theorem 1

The proof follows from the following lemmas.

Lemma 1. H(TUK
(R)
i) ≥ (ω + 1)H(TCK) for any i ∈ {1, 2, . . . , n}.

Proof. For arbitrary i ∈ {1, 2, . . . , n}, we take a subset B := {l1, l2, . . . , lω+1} ⊂
{1, 2, . . . , n} of indices of users such that i /∈ B. Let Dk := (lk, i) and Wk :=
{l1, l2, . . . , lk} for each k with 1 ≤ k ≤ ω + 1. Then, we have

http://eprint.iacr.org/2004/231
http://people.csail.mit.edu/rivest/Rivest-commitment.pdf

Information-Theoretic Timed-Release Security 185

H(TUK
(R)
i) ≥ H(TUK

(R)
i | TI(t))

≥ I(TCK
(t)
D1

, TCK
(t)
D2

, . . . , TCK
(t)
Dω+1

;TUK
(R)
i | TI(t))

= H(TCK
(t)
D1

, TCK
(t)
D2

, . . . , TCK
(t)
Dω+1

| TI(t))

−H(TCK
(t)
D1

, TCK
(t)
D2

, . . . , TCK
(t)
Dω+1

| TI(t), TUK
(R)
i)

= H(TCK
(t)
D1

, TCK
(t)
D2

, . . . , TCK
(t)
Dω+1

| TI(t))

=

ω+1∑
k=1

H(TCK
(t)
Dk

| TI(t), TCK
(t)
D1

, TCK
(t)
D2

, . . . , TCK
(t)
Dk−1

)

≥
ω+1∑
k=1

H(TCK
(t)
Dk

| TUK
(S)
Wk−1

, T I(t))

=

ω+1∑
k=1

H(TCK
(t)
Dk

) (1)

= (ω + 1)H(TCK),

where (1) follows from the condition (2) in Definition 2. �

Lemma 2. H(TUK
(S)
i) ≥ (τ + ω)H(TCK) for any i ∈ {1, 2, . . . , n}.

Proof. For arbitrary i ∈ {1, 2, . . . , n}, we take a subset B := {l1, l2, . . . , lω+1} ⊂
{1, 2, . . . , n} of indices of users such that i /∈ B. Let Dk := (i, lk) and Wk :=

{l1, l2, . . . , lk} for each k with 1 ≤ k ≤ ω+1. Also, let F
(t)
k := (TCK

(1)
Dk

, TCK
(2)
Dk

,

. . . , TCK
(t)
Dk

) and G
(t)
k := (TCK

(t)
D1

, TCK
(t)
D2

, . . . , TCK
(t)
Dk

) for 1 ≤ k ≤ ω+1 and
1 ≤ t ≤ τ . Then, we have

H(TUK
(S)
i)

≥ H(F
(τ)
1 , G

(t)
ω+1)

= H(F
(τ)
1) +H(G

(t)
ω+1 | F (τ)

1)

=

τ∑
t=1

H(TCK
(t)
D1

| F (t−1)
1) +

ω+1∑
k=2

H(TCK
(t)
Dk

| F (τ)
1 , TCK

(t)
D2

, . . . , TCK
(t)
Dk−1

)

≥
τ∑

t=1

H(TCK
(t)
D1

| TUK
(R)
D1

, T I(1), . . . , T I(t−1))

+

ω+1∑
k=2

H(TCK
(t)
Dk

| TUK
(R)
Wk−1

, T I(1), . . . , T I(τ))

=
τ∑

t=1

H(TCK
(t)
D1

) +
ω+1∑
k=2

H(TCK
(t)
Dk

) (2)

= (τ + ω)H(TCK),

where (2) follows from the conditions (2) and (3) in Definition 2. �

186 Y. Watanabe, T. Seito, and J. Shikata

Lemma 3. H(TI(t) | TI(1), . . . , T I(t−1)) ≥ (ω + 1)H(TCK) for any t ∈ T . In
particular, H(TI(t)) ≥ (ω + 1)H(TCK) for any t ∈ T .

Proof. For arbitrary i ∈ {1, 2, . . . , n}, we take a subset B := {l1, l2, . . . , lω+1} ⊂
{1, 2, . . . , n} of indices of users such that i = l1. Let Dk := (lk, i) and Wk :=
{l1, l2, . . . , lk} for each k with 1 ≤ k ≤ ω + 1. Then, we have

H(TI(t) | TI(1), . . . , T I(t−1))

≥ H(TI(t) | TUK
(R)
i , T I(1), . . . , T I(t−1))

≥ I(TCK
(t)
D1

, TCK
(t)
D2

, . . . , TCK
(t)
Dω+1

;TI(t) | TUK
(R)
i , T I(1), . . . , T I(t−1))

= H(TCK
(t)
D1

, TCK
(t)
D2

, . . . , TCK
(t)
Dω+1

| TUK
(R)
i , T I(1), . . . , T I(t−1))

−H(TCK
(t)
D1

, . . . , TCK
(t)
Dω+1

| TUK
(R)
i , T I(1), . . . , T I(t))

= H(TCK
(t)
D1

, TCK
(t)
D2

, . . . , TCK
(t)
Dω+1

| TUK
(R)
i , T I(1), . . . , T I(t−1))

=
ω+1∑
k=1

H(TCK
(t)
Dk

| TUK
(R)
i , T I(1), . . . , T I(t−1), TCK

(t)
D1

, . . . , TCK
(t)
Dk−1

)

≥
ω+1∑
k=1

H(TCK
(t)
Dk

| TUK
(S)
Wk−1

, TUK
(R)
i , T I(1), . . . , T I(t−1))

=

ω+1∑
k=1

H(TCK
(t)
Dk

) (3)

= (ω + 1)H(TCK),

where (3) follows from the condition (3) in Definition 2. �

Lemma 4. H(TMK) ≥ τ(ω + 1)H(TCK)D

Proof. We have

H(TMK) ≥ I(TI(1), . . . , T I(τ);TMK)

= H(TI(1), . . . , T I(τ))−H(TI(1), . . . , T I(τ) | TMK)

= H(TI(1), . . . , T I(τ))

=

τ∑
t=1

H(TI(t) | TI(1), . . . , T I(t−1))

= τ(ω + 1)H(TCK),

where the last equality follows from Lemma 3. �

Optimum General Threshold Secret Sharing

Maki Yoshida1, Toru Fujiwara1, and Marc Fossorier2

1 Osaka University, 1-5 Yamadaoka, Suita, Osaka, 560-0871, Japan
{maki-yos,fujiwara}@ist.osaka-u.ac.jp

2 ETIS, ENSEA/UCP/CNRS UMR-8051, Cergy-Pontoise, 95014, France
mfossorier@ieee.org

Abstract. An important issue of threshold secret sharing (TSS) schemes
is to minimize the size of shares. This issue is resolved for the sim-
pler classes called (k, n)-TSS and (k, L, n)-threshold ramp secret sharing
(TRSS). That is, for each of these two classes, an optimum construction
which minimizes the share size was presented. The goal of this paper is
to develop an optimum construction for a more general threshold class
where the mutual information between the secret and a set of shares is
defined by a discrete function which monotonically increases from zero
to one with the number of shares. A tight lower bound of the entropy
of shares is first derived and then an optimum construction is presented.
The derived lower bound is larger than the previous one except for special
functions such as convex and concave functions. The optimum construc-
tion encodes the secret by using one or more optimum TRSS schemes
independently. The optimality is shown by devising a combination of
TRSS schemes which achieves the new lower bound.

1 Introduction

A threshold secret sharing (TSS) scheme is a technique to encode a secret s into
shares v1, v2, . . . , vn so that the secret is recovered from the pre-defined number
of shares. The mutual information between the secret and a set of shares is
given by a monotonically increase function of the number of shares, which we
call a mutual-information (MI) function. In other words, an arbitrary number
of shares leaks out information about the secret according to the MI function.
The TSS schemes are classified into three classes in terms of a MI function. The
first class, called (k, n)-TSS scheme, was introduced in [4,12] for the simplest
threshold MI functions that take exactly zero or one value. The second, called
(k, L, n)-threshold ramp secret sharing (TRSS) scheme, was defined in [5,13] for
the linear MI functions that can have rational values between zero and one. The
final one, proposed in [14], further extends the MI functions to nonlinear ones.

In such TSS schemes, one of the most important issues is to minimize the
size of shares. This issue is resolved for the simpler two classes, the (k, n)-TSS
scheme and the (k, L, n)-TRSS scheme. That is, optimum constructions which
minimize the size of each share have been presented [12,13]. Let H(X) denote
the entropy of a random variable X . Let S and Vi denote the random variables
induced by s and vi, respectively. For the first class (step functions), an optimum

A. Smith (Ed.): ICITS 2012, LNCS 7412, pp. 187–204, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

188 M. Yoshida, T. Fujiwara, and M. Fossorier

construction in which the entropy of shares is equal to that of the secret, i.e.,
H(Vi) = H(S) was presented in [12]. For the second class (linear functions), an
optimum construction which makes the entropy of shares smaller than that of
the secret was introduced in [13]. The entropy of shares is given by the gradient
of the slope of the linear function. Specifically, a (k, L, n)-TRSS scheme satisfies
H(Vi) =

1
LH(S) ≤ H(S). The results in [12,13] indicate that relaxing the privacy

requirement improves the efficiency in terms of the share size.
For the third class (nonlinear functions), the previous constructions in [14,15]

are either insecure [14] or inefficient [15] (the optimality of the construction in [15]
is only shown for the class of convex and concave functions). In other words, for
some general MI functions, the construction in [15] can make the entropy H(Vi)
smaller than H(S), but cannot achieve the previously known lower bound of [11],
which is derived for more general access structures including non-threshold ones
and called a general lower bound. Some results in [11] suggest that the general
lower bound may not be tight. Specifically, two examples of non-threshold access
structures for which the entropy of some shares is larger than the general lower
bound are given. Thus, it is not clear whether the general lower bound is tight
for TSS, and whether the construction in [15] can remain optimum for general
MI functions. The nonlinear class seems to further relax the privacy requirement
in the sense that it allows any pattern of leakage. For applications whose main
purpose is the recoverability of data, such as large scale distributed storage with
data reliability, the efficiency is much more important.

Our contribution is the development of an optimum construction for the most
general threshold class. The definition of TSS in this paper uses the entropy
function as in [11,15] because the entropy-based definition originating from [9,6]
is suitable for proving lower bounds, though some limitations have been shown
for known techniques in [7,3]. We first derive a new lower bound of the entropy
of shares and then show that the construction in [15] can achieve the derived
lower bound for any MI function. The derived optimal bound is generally larger
than the general lower one (which becomes a special case). As a result, the linear
class is most efficient.

While the general lower bound is given by the maximum value of the gradient
of the corresponding MI function, the derived tight lower bound is given not
only by the maximum value of the gradient but also by the values called local
maximum/minimum values of the gradient. It depends on the number of these
local extrema and their respective values. As a result, the entropy of shares
becomes larger if we allow more complicated control of the mutual information
between the secret and the shares. Thus, except for special MI functions, the
new lower bound becomes larger than the general one. We identify the class of
MI functions for which the new lower bound is reduced to the general one. In
addition, we also show the class of MI functions for which we cannot reduce the
lower bound smaller than the entropy of the secret. That is, any scheme for this
class is inefficient in terms of the share size.

Next, we show how to achieve the new lower bound by using the construction
in [15]. The key idea of the construction in [15] is to divide a nonlinear MI

Optimum General Threshold Secret Sharing 189

Fig. 1. Function in F and its gradient

function into linear functions and encode the secret by using the optimum TRSS
(i.e., linear function) schemes. Generally, many divisions are possible and the
entropy of shares depends on the divisions. Thus, we show how to divide a
nonlinear MI function so that the division achieves the derived lower bound, i.e.,
minimizes the entropy of shares. The optimum division is given by dividing the
MI function iteratively from the lowest slope.

The rest of this paper is organized as follows. In Section 2, we define a general
TSS (GTSS) scheme which includes the previous threshold classes. The definition
is based on that in [11,15]. In Section 3, the general lower bound in [11] is
presented for a GTSS scheme. In Section 4, we derive a tighter lower bound
for a GTSS scheme. In Section 5, the construction of [15] is reviewed and an
optimum division for any MI function is devised. Concluding remarks are given
in Section 6.

2 Notations and Definitions

2.1 Functions for GTSS Scheme

Let Q[0,1] be the set of the rational numbers between 0 and 1. Let F be the family
of monotonically increasing rational-valued discrete functions g : {0, 1, . . . , n} →
Q[0,1] with g(0) = 0 and 0 < g(n) ≤ 1. For g ∈ F , define Δg,l � g(l + 1)− g(l)
with 0 ≤ l < n, where Δg,l is called the gradient of g on l. For any g ∈ F , the
gradients Δg,l with 0 ≤ l < n satisfy⎧⎨⎩

Δg,l = 0, for 0 ≤ l < k − L,
Δg,l ≥ 0, for k − L ≤ l < k,
Δg,l = 0, for k ≤ l < n,

(1)

for some k and L with k ≥ L because g monotonically increases as depicted in
Fig. 1. In the following, we call such k and L the end and the length of the slope
of g, respectively. More precisely, we define the end k and the length L so that
k = max{l|0 ≤ l < n,Δg,l �= 0}+ 1 and L = k −min{l|0 ≤ l < n,Δg,l �= 0}.

190 M. Yoshida, T. Fujiwara, and M. Fossorier

Let Δg,∗ denote the maximum gradient, i.e., Δg,∗ = max{Δg,l|0 ≤ l < n}.
We say that g is linear if the gradients Δg,l with k−L ≤ l < k are constant, i.e.,
Δg,l = Δg,∗ = g(n)/L with k − L ≤ l < k. Otherwise, g is said to be nonlinear.

2.2 GTSS Scheme

Let H(X |Y) and I(X ;Y) denote the conditional entropy and the mutual infor-
mation for two random variables X and Y , respectively. For a random variable
X , X̂ is defined as X̂ � {x|Pr(X = x) > 0}.

The notations and definitions common to an SS scheme follow those in [11].
An SS scheme involves a probabilistic Turing machine D, called a dealer, whose
input is a random variable S; Ŝ is called the set of secrets. On input s ∈ Ŝ,
the dealer produces (v1, v2, . . . , vn) where vi with 1 ≤ i ≤ n is called a share.
Let V1, . . . , Vn be the random variables induced by v1, . . . , vn, respectively. Let
P � {1, 2, . . . , n}. For A ⊆ P , define VA � {Vi|i ∈ A}. Let |A| be the cardinality
of a set A.

Definition 1. A secret sharing (SS) scheme is a triplet (S,D, P).

Intuitively saying, a GTSS scheme is an SS scheme defined for a function g ∈ F
so that an arbitrary set of shares leaks out information about the secret based
on g. The gradient of g indicates the leakage rate.

Definition 2. For g ∈ F , we say that (S,D, P) is a general threshold se-
cret sharing (GTSS) scheme with mutual-information (MI) function g (g-GTSS
scheme) if (S,D, P) is an SS scheme and for any A ⊆ P ,

I(S;VA) = g(|A|)H(S), (2)

or equivalently,

H(S|VA) = (1− g(|A|))H(S). (3)

Nonlinear function scheme in [15]

(k,L,n)-TRSS scheme in [5,13]

(k,n)-TSS scheme in [4,12]

Fig. 2. MI functions of the previous TSS schemes in [4,5,12,13,15]

Optimum General Threshold Secret Sharing 191

The previous TSS classes [4,5,12,13,15] are proper subclasses of the GTSS class.
The MI functions of the previous schemes are shown in Fig. 2. The nonlinear
function scheme in [15] restricts g to convex (Δg,l ≤ Δg,l+1 with k−L ≤ l < k)
and concave (Δg,l ≥ Δg,l+1 with k − L ≤ l < k). The (k, L, n)-TRSS scheme
in [5,13] is the special case of g being linear with Δg,l = Δg,∗ = 1/L for k−L ≤
l < k. The (k, n)-TSS scheme in [4,12] is the special case with L = 1.

3 Previous Lower Bound

In [11], for an SS scheme with a general access structure, a relation between
H(VA|VB) and H(VA|VBS) with A,B ⊆ P is derived in order to obtain a gen-
eral lower bound of H(Vi). In this section, for a GTSS scheme, we rederive the
corresponding relation and lower bound in the threshold framework. The rela-
tion is also used to obtain a new lower bound in the next section. To derive
the relation and these bounds, we use the following properties of the conditional
entropy H(·|·) for random variables X,Y, Z, and W .

0 ≤ H(X |Y) ≤ H(X) (4)

0 ≤ H(X |ZW) ≤ H(X |Z) ≤ H(XY |Z) (5)

H(XY |Z) = H(X |Z) +H(Y |XZ) = H(Y |Z) +H(X |Y Z) (6)

For a GTSS scheme, a useful relation betweenH(VA|VB) andH(VA|VBS) is given
in the following lemma, which is the threshold version of Lemma 21 in [11].

Lemma 1. For any g-GTSS scheme (S,D, P) with g ∈ F and any A,B ⊆ P ,

H(VA|VB) = H(VA|VBS) + (g(|A ∪B|)− g(|B|))H(S). (7)

A proof is given in Appendix A.
For a GTSS scheme, a lower bound of H(Vi) is given in the following corollary,

which is the threshold version of Theorem 22 in [11].

Corollary 1. For any g-GTSS scheme (S,D, P) with g ∈ F and any i ∈ P ,

H(Vi) ≥ Δg,∗H(S).

A proof is given in Appendix B.

4 New Lower Bound

In this section, we derive a tighter lower bound on H(Vi) than that of Corollary 1
for a g-GTSS scheme (S,D, P).

The gradient of MI function g (i.e., the leakage rate) iterates increase/decrease.
The last gradient of successive increases (resp. decreases) is referred to as a local

192 M. Yoshida, T. Fujiwara, and M. Fossorier

Dummy leftmost gradient

n +1

Dummy rightmost gradient

: Local maximum; : Local minimum

Fig. 3. Local minimum and maximum gradients of g

maximum (resp. local minimum). To define local maximum/minimum gradients
precisely, we define two dummy leftmost/rightmost gradients Δg,−1 and Δg,n by
Δg,−1 = Δg,n = 0. This implies that the gradient of g first increases from zero,
then iterates decrease/increase, and finally decreases to zero as shown in Fig. 3.
For g ∈ F , Δg,l with 0 ≤ l < n is said to be a local maximum if Δg,l′ < Δg,l′+1 =
· · · = Δg,l for some l′ with −1 ≤ l′ < l and Δg,l > Δg,l+1. In contrast, Δg,l with
0 ≤ l < n is said to be a local minimum if Δg,l′ > Δg,l′+1 = · · · = Δg,l for
some l′ with −1 ≤ l′ < l and Δg,l < Δg,l+1. From this definition, the gradient of
g first becomes a local maximum, then iterates local minimum/maximum, and
finally decreases from the final local maximum to zero, but does not end up as
a local minimum because Δg,n−1 ≥ Δg,n = 0 (i.e., the latter condition of a local
minimum is not satisfied). Thus, for the number of local maximum gradients of
g, denoted by M > 0, the number of local minimum gradients is M − 1. Note
that the maximum gradient Δg,∗ is also local maximum.

The new lower bound on H(Vi) of a g-GTSS scheme is given by the local
maxima/minima of the gradient of g.

Theorem 1. For g ∈ F , let M denote the number of local maximum gradients
of g and let lmax,j with 1 ≤ j ≤ M (resp. lmin,j with 1 ≤ j < M) denote the point
at which the gradient is the j-th local maximum (resp. the j-th local minimum).

For any g-GTSS scheme (S,D, P) and any i ∈ P ,

H(Vi) ≥

⎛⎝ M∑
j=1

Δg,lmax,j −
M−1∑
j=1

Δg,lmin,j

⎞⎠H(S) ≥ Δg,∗H(S). (8)

The equality in the second part of (8) holds if and only if M = 1.

Roughly speaking, a share needs information about the secret for every increase
of the leakage rate (but not for any decrease). Thus, the total amount of necessary

Optimum General Threshold Secret Sharing 193

information about the secret is at least the summation of the first increasing
amount Δg,lmax,1 and the j-th ones Δg,lmax,j+1 − Δg,lmin,j with 2 ≤ j < M . If
the leakage rate increases only once (i.e., M = 1), then the share only needs the
maximum leakage rate Δg,∗, which is the previous lower bound. Otherwise, to
achieve the maximum value, the share needs additional information about the
secret to increase a loss caused by decrease of the leakage rate. Thus, the new
lower bound is larger than the previous one except for the case M = 1.

Proof. If the number of local maxima is only one (i.e., M = 1), then (8) is readily
proved from Corollary 1 because the local maximum gradient is the maximum
one. That is,

H(Vi) ≥

⎛⎝ M∑
j=1

Δg,lmax,j −
M−1∑
j=1

Δg,lmin,j

⎞⎠H(S) = Δg,∗H(S). (9)

Next, we prove (8) for M > 1. For i ∈ P , we consider a sequence of 2M − 1

subsets of P \ {i} whose cardinalities are lmax,j and lmin,j . Let A
(i)
max,j ⊆ P \ {i}

with 1 ≤ j ≤ M and A
(i)
min,j ⊆ P \ {i} with 1 ≤ j < M be subsets such that

|A(i)
max,j| = lmax,j , |A(i)

min,j| = lmin,j , (10)

A
(i)
max,1 ⊂ A

(i)
min,1 ⊂ · · · ⊂ A

(i)
min,M−1 ⊂ A

(i)
max,M . (11)

We stress that

i �∈ A
(i)
max,j , A

(i)
min,j . (12)

There are such subsets because lmax,1 < lmin,1 < · · · < lmax,M < n. We claim
that

H(Vi|VAmax,M
) ≥ Δg,lmax,M

H(S), (13)

H(Vi|VAmax,j
) ≥ H(Vi|VAmax,j+1

) + (Δg,lmax,j
−Δg,lmin,j

)H(S), for 1 ≤ j < M , (14)

H(Vi) ≥ H(Vi|VAmax,1
). (15)

The first part of (8) is derived by summing (13), (14) for all j with 1 ≤ j < M ,
and (15).

The inequality (13) is proved from Lemma 1, (10), and (12) by

H(Vi|VAmax,M) ≥ (g(|Amax,M ∪ {i}|)− g(|Amax,M |))H(S)

= Δg,lmax,MH(S).

Next, the inequality (14) is proved by

H(Vi|VAmax,j+1)

≤ H(Vi|VAmin,j) (from (5) and (11))

= H(Vi|VAmin,jS) +Δg,lmin,jH(S) (from Lemma 1, (10), and (12))

≤ H(Vi|VAmax,jS) +Δg,lmin,jH(S) (from (5) and (11))

= H(Vi|VAmax,j)−Δg,lmax,jH(S) +Δg,lmin,jH(S).

(from Lemma 1, (10), and (12))

194 M. Yoshida, T. Fujiwara, and M. Fossorier

Then, it is readily seen that (15) follows from (4).
The second part of (8) is proved from the following relation between the

adjacent local maximum/minimum gradients of g: Every local minimum gradient
is smaller than its adjacent local maximum gradients, that is,

Δg,lmax,j −Δg,lmin,j > 0, for 1 ≤ j < M, (16)

Δg,lmax,j −Δg,lmin,j−1 > 0, for 1 < j ≤ M. (17)

The maximum gradient Δg,∗ is also a local maximum, and its point is one of
lmax,j with 1 ≤ j ≤ M , denoted by lmax,M ′ . Separating the sums of local maxi-
mum/minimum gradients in (8) by the point lmax,M ′ so that

M∑
j=1

Δg,lmax,j −
M−1∑
j=1

Δg,lmin,j

=

M ′−1∑
j=1

(Δg,lmax,j −Δg,lmin,j) +Δg,∗ +
M∑

j=M ′+1

(Δg,lmax,j −Δg,lmin,j−1),

it follows from (16) and (17) that⎛⎝ M∑
j=1

Δg,lmax,j −
M−1∑
j=1

Δg,lmin,j

⎞⎠H(S) > Δg,∗H(S). (18)

From (9) and (18), the equality in the second part of (8) holds if and only if
M = 1. �

This new lower bound is as small as the previous one of Corollary 1 for the class
of functions with M = 1. We call this class the simplest class. Roughly speaking,
the simplest class consists of functions which are either convex, concave, or a
combination of convex and concave functions as depicted in Fig. 4. For these MI
functions, a share only needs information about the secret for one increase of
the leakage rate, which is given by the maximum leakage rate Δg,∗.

Corollary 2. Let Fsim ⊂ F be the class of functions whose gradient has only
the one local maximum. For any g-GTSS scheme (S,D, P) and any i ∈ P ,

H(Vi) ≥

⎛⎝ M∑
j=1

Δg,lmax,j −
M−1∑
j=1

Δg,lmin,j

⎞⎠H(S) = Δg,∗H(S),

if and only if g ∈ Fsim.

We also determine the class of functions for which the entropy of shares cannot be
smaller than that of the secret, called the complicate class. Roughly speaking,
the complicate class consists of functions which increase to one in a staircase
pattern as depicted in Fig. 4.

Optimum General Threshold Secret Sharing 195

Staircase pattern function

Complicate class

Combination function

Concave function

Convex function

Simplest class

Fig. 4. Simplest and complicate classes

Corollary 3. Let Fcom be the class of functions whose slope consists of zero-
gradient slopes and linear slopes with length one and g(n) = 1. For any g-GTSS
scheme (S,D, P) and any i ∈ P ,

H(Vi) ≥ H(S),

if and only if g ∈ Fcom.

A proof is given in Appendix C.

5 Optimum Construction

5.1 Division Based Construction

We review the construction of a g-GTSS scheme (S,D, P) in [15]. The basic
idea is to divide the nonlinear MI function g into a set of linear functions
g1, g2, . . . , gN ∈ F for some integer N > 0 so that g(l) =

∑N
j=1 gj(l) with

0 ≤ l ≤ n. We call such a set a division of g. Based on this division, if g(n) = 1,
then the secret is divided into the same number of subsecrets s1, s2, . . . , sN so
that the ratio of the entropy of each subsecret H(Sj) and that of the original
secret H(S) is given by the total increasing amount of the linear function gj ,
that is, H(Sj) = gj(n)H(S). Otherwise (i.e., g(n) < 1), the secret is divided into
N + 1 subsecrets s1, s2, . . . , sN , sN+1 where sN+1 is a temporal subsecret pre-
pared to control the amount of information so that H(SN+1) = (1− g(n))H(S).
Then, for 1 ≤ j ≤ N , the subsecret sj is independently encoded by using the

196 M. Yoshida, T. Fujiwara, and M. Fossorier

optimum linear function scheme (i.e., TRSS scheme) based on gj while the sub-
secret sN+1 is not encoded. The i-th share vi of s is the set of the i-th shares of
the encoded subsecrets s1, s2, . . . , sN .

More precisely, the construction in [15] assumes that for given S and g,
there exist N linear functions g1, g2, . . . , gN ∈ F , N + 1 mutually indepen-
dent random variables S1, S2, . . . , SN+1, and a one-to-one mapping from Ŝ to
(Ŝ1, Ŝ2, . . . , ŜN+1) such that

– g(l) =
∑N

j=1 gj(l) with 0 ≤ l ≤ n,
– H(Sj) = gj(n)H(S) with 1 ≤ j ≤ N , and H(SN+1) = (1 − g(n))H(S).

Let kj and Lj with 1 ≤ j ≤ N denote the end and the length of the slope of
gj, respectively. Let (Sj , Dj , P) be an optimum (kj , Lj, n)-TRSS scheme. Let

(vj,1, vj,2, . . . , vj,n) be shares of sj ∈ Ŝj produced by Dj . Then, the construction
in [15] defines D such that on input (s1, s2, . . . , sN), D outputs (v1, v2, . . . , vn)
with vi = (v1,i, v2,i, . . . , vn,i) for i ∈ P .

We rederive the entropy of shares in the g-GTSS scheme in [15] within the
framework of this paper. The following theorem shows that the entropy of shares
based on some division of g is given by the summation of the gradients of the
slopes of gj . This implies that the entropy is minimized if the division minimizes
the summation of the gradients.

Theorem 2. For g ∈ F , the scheme (S,D, P) in [15] based on a division
{g1, g2, . . . ,
gN} of g is a g-GTSS scheme which satisfies

H(Vi) =
N∑
j=1

Δgj ,∗H(S). (19)

A proof is given in Appendix D.

5.2 Proposed Optimum Division

We now divide g ∈ F so that the division makes the entropy of shares given by
Theorem 2 equal to the lower bound of Theorem 1, expressing in the process the
tightness of this new bound. We call such division optimum.

The proposed optimum division is iteratively done by splitting the function
into two parts, namely a linear part and the remaining nonlinear part. The idea
of the optimum division is that, at each splitting step, we extend the divided
slope as long as possible. This extension allows us to have lower gradients at
subsequent steps, because the total increasing amount of the remaining part
becomes smaller. This contributes to make later gradients smaller. To maximize
the length of the divided slope, we divide the smallest slope of the function.

A linear function is characterized by the end, the length, and the gradient of
its slope. Thus, we represent a linear function gj by the triplet of the end kj , the
length Lj, and the gradient Δgj ,∗ of its slope.

Optimum General Threshold Secret Sharing 197

The proposed procedure which outputs the optimum division for g ∈ F ,
denoted by Fg, is given in the following.

Initialization. Let h be the counter for the loop which represents the number
of divided linear parts. Let gh with h ≥ 1 denote the h-th divided linear part
and g(h) with h ≥ 0 the remaining part after the h-th division. Set Fg := ∅,
h := 0, and g(0) := g.
Repeat the following Steps 1–3 until g(h) = 0. Then, output Fg.

Step 1. Increment h by one (h := h + 1). Find the smallest positive gradient
of the last remaining part g(h−1). If there are two or more points with the
smallest positive gradient, then choose one of them. Let lmin be the chosen
point. The smallest positive gradient is Δg(h−1),lmin

.
Step 2. Extend the divided slope (i.e., the h-th divided linear part gh) as long

as possible by defining its end kh and length Lh as follows.

kh � min{l|Δg(h−1),l = 0, lmin < l}, (20)

Lh � kh −max{l|Δg(h−1),l = 0, l < lmin} − 1. (21)

Thus, gh is the linear function with (kh, Lh, Δg(h−1),lmin
).

Step 3. Divide gh from g(h−1) by setting g(h) := g(h−1)−gh and Fg := Fg∪{gh}.
�

We can show that the remaining part g(h) is always in F (i.e., monotonically
increasing function) except for the case after the last division (g(h) = 0). Con-
sidering the gradients of g(h) and g(h−1),

Δg(h),l =

{
Δg(h−1),l −Δgh,∗, for kh − Lh ≤ l < kh,
Δg(h−1),l, otherwise.

(22)

While the gradient of g(h−1) on the just outside points of the divided linear part
gh is zero, i.e.,

Δg(h−1),kh−Lh−1 = Δg(h−1),kh
= 0, (23)

the gradient of g(h−1) in the divided range is no less than the gradient of gh,
that is,

Δg(h−1),l ≥ Δg(h−1),lmin
= Δgh,∗, for kh − Lh ≤ l < kh. (24)

Thus, the gradients of g(h) is non-negative (i.e., monotonically increases).
It is readily seen that the above procedure has to terminate because the

number of non-zero gradients decreases at least by one at each iteration. An
example of the proposed procedure is given in Fig. 5.

The next theorem guarantees that the proposed division makes the entropy
of shares equal to the derived lower bound.

Theorem 3. For any g ∈ F , the proposed division Fg satisfies

∑
gh∈Fg

Δgh,∗ =

M∑
j=1

Δg,lmax,j −
M−1∑
j=1

Δg,lmin,j , (25)

198 M. Yoshida, T. Fujiwara, and M. Fossorier

 Chosen point

End Length

Chosen point

End Length

 Gradient Gradient

 End Length

 Chosen point

 Gradient

Fig. 5. Example of the proposed optimum division

where M denotes the number of local maximum gradients of g and lmax,j with
1 ≤ j ≤ M (resp. lmin,j with 1 ≤ j < M) denotes the point at which the gradient
is the j-th local maximum (resp. the j-th local minimum) of g.

Proof. We prove (25) from relations on the maximum/minimum gradients of
the remaining part between before and after each division. Let N be the total
number of divisions, i.e., N = |Fg|. For the remaining part g(h) after the h-
th division with 0 ≤ h < N , let M (h) denote the number of local maximum

gradients of g(h). Let l
(h)
max,j and l

(h)
min,j with 0 ≤ h < N denote the point of the

j-th local maximum gradient and that of the j-th local minimum gradient of

g(h), respectively. Let Δ
(h)
max−min denote the difference between the sum of the

local maximum gradients and the sum of the local minimum gradients. That is,

Δ
(h)
max−min =

M(h)∑
j=1

Δ
g(h),l

(h)
max,j

−
M(h)−1∑

j=1

Δ
g(h),l

(h)
min,j

.

Since g(0) = g, the initial value of this difference is given by

Δ
(0)
max−min =

M∑
j=1

Δg,lmax,j −
M−1∑
j=1

Δg,lmin,j . (26)

We claim that after each division, this difference decreases by the gradient of
the divided linear part so that

Δ
(h)
max−min = Δ

(h−1)
max−min −Δgh,∗, for 1 ≤ h < N , (27)

and that the difference finally equals the gradient of the last divided linear part,
that is,

ΔgN ,∗ = Δ
(N−1)
max−min. (28)

Optimum General Threshold Secret Sharing 199

It is readily seen that (25) is derived by summing (26), (27) for all 1 ≤ h < N ,
and (28). In addition, (28) is easily proven from the fact that the final remaining
part g(N−1) is divided as the last linear part gN (i.e., gN = g(N−1), M (N−1) = 1,
and Δ

g(N−1),l
(N−1)
max,j

= ΔgN ,∗).

Therefore, in the following, we prove (27) for 1 ≤ h < N . From (22), (27) is
equivalent to

Δ
(h)
max−min =

⎛
⎝M(h−1)∑

j=1

Δ
g(h),l

(h−1)
max,j

−
M(h−1)−1∑

j=1

Δ
g(h),l

(h−1)
min,j

+Δgh,∗

⎞
⎠−Δgh,∗. (29)

From the definition of Δ
(h)
max−min, (29) follows from the following equivalences

of sums,

M(h)∑
j=1

Δ
g(h),l

(h)
max,j

=

M(h−1)∑
j=1

Δ
g(h) ,l

(h−1)
max,j

, (30)

M(h)−1∑
j=1

Δ
g(h),l

(h)
min,j

=

M(h−1)−1∑
j=1

Δ
g(h) ,l

(h−1)
min,j

. (31)

Eqs. (30) and (31) are a direct consequence of the following fact: For any point
l0 with 0 ≤ l0 < n at which the gradient Δg(h),l0 of the remaining part g(h) is
positive (Δg(h),l0 �= 0),

(a) l0 is a local minimum point of g(h−1) iff it is a local minimum point of g(h),
(b) l0 is a local maximum point of g(h−1) iff it is a local maximum point of g(h).

A proof of this fact is given in Appendix E. �

Theorem 4. For any g ∈ F , a g-GTSS scheme (S,D, P) of [15] based on the
proposed division Fg minimizes H(Vi) for any i ∈ P . Specifically,

H(Vi) =

⎛⎝ M∑
j=1

Δg,lmax,j −
M−1∑
j=1

Δg,lmin,j

⎞⎠H(S), (32)

where M denotes the number of local maximum gradients of g and lmax,j with
1 ≤ j ≤ M (resp. lmin,j with 1 ≤ j < M) denotes the point at which the gradient
is the j-th local maximum (resp. the j-th local minimum).

Proof. From Theorems 2 and 3, it follows that H(Vi) achieves the lower bound
of Theorem 1. �

6 Conclusion

In this paper, we have first derived a new lower bound on the entropy of shares in
a GTSS scheme. This bound is generally higher than the previous lower bound.

200 M. Yoshida, T. Fujiwara, and M. Fossorier

Next, we have identified the class of functions for which the new lower bound
is equal to the previous one. A function in this class is either convex/concave
functions or a combination of convex and concave functions with one local max-
imum gradient. Then, we have also identified the class of functions for which
the new lower bound is equal to that of the secret, in which case the control
of the amount of leaked information is complicate so that the MI function has
a staircase pattern. Finally, for the construction in [15], we have presented an
optimum division of any MI function which makes the entropy of shares equal
to the derived lower bound. The key idea is to divide the smallest slope at each
splitting step so that its length is maximized. A possible future work is to derive
a tighter lower bound than the previous one for an SS scheme with general access
structures.

References

1. Bai, L.: A strong ramp secret sharing scheme using matrix projection. In: The 2006
Int’l Symp. on a World of Wireless, Mobile and Multimedia Networks, pp. 652–656
(2006)

2. Beimel, A.: Secret-Sharing Schemes: A Survey. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
11–46. Springer, Heidelberg (2011)

3. Beimel, A., Orlov, I.: Secret sharing and non-Shannon information inequalities.
IEEE Trans. on Information Theory 57, 5634–5649 (2011)

4. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS 1979 Nat. Comput.
Conf. vol. 48, pp. 313–317 (1979)

5. Blakley, G.R., Meadows, C.: Security of Ramp Schemes. In: Blakely, G.R., Chaum,
D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985)

6. Capocelli, R.M., De Santis, A., Gargano, L., Vaccaro, U.: On the size of shares for
secret sharing schemes. J. of Cryptology 6, 157–168 (1993)

7. Csirmaz, L.: The size of a share must be large. J. of Cryptology 10, 223–231 (1997)
8. Iwamoto, M., Yamamoto, H.: Strongly secure ramp secret sharing schemes for
general access structures. Inform. Processing Letters 97, 52–57 (2006)

9. Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE
Trans. on Information Theory 29, 35–41 (1983)

10. Kurosawa, K., Okada, K., Sakano, K., Ogata, W., Tsujii, S.: Nonperfect Secret
Sharing Schemes and Matroids. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS,
vol. 765, pp. 126–141. Springer, Heidelberg (1994)

11. Okada, K., Kurosawa, K.: Lower Bound on the Size of Shares of Nonperfect Secret
Sharing Schemes. In: Safavi-Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994.
LNCS, vol. 917, pp. 34–41. Springer, Heidelberg (1995)

12. Shamir, A.: How to share a secret. Comm. of the ACM 22, 612–613 (1979)
13. Yamamoto, H.: On secret sharing systems using (k, L, n) threshold scheme. IECE

Trans. J68-A, 945–952 (1985) (in Japanese). English transl.: Electron. Comm.
Japan Part I. 69, 46–54 (1986)

14. Yoneyama, K., Kunihiro, N., Santoso, B., Ohta, K.: Non-linear function ramp
scheme. In: The 2004 Int’l Symp. on Inform. Theory and its Appli., pp. 788–793
(2004)

15. Yoshida, M., Fujiwara, T.: A secure construction for the nonlinear function thresh-
old ramp secret sharing scheme. In: The 2007 Int’l Symp. on Inform. Theory,
CD-ROM (2007)

Optimum General Threshold Secret Sharing 201

A Proof of Lemma 1

For any A,B ⊆ P ,

H(VA|VB) = H(S|VB)−H(S|VAVB) +H(VA|VBS) (from (6))
= (1− g(|B|))H(S)

−(1− g(|A ∪B|))H(S) +H(VA|VBS) (from (3))
= H(VA|VBS) + (g(|A ∪B|)− g(|B|))H(S).

B Proof of Corollary 1

For any i ∈ P and B ⊆ P with i �∈ B,

H(Vi) ≥ H(Vi|VB) (from (4))
= (g(|{i} ∪B|)− g(|B|))H(S) +H(Vi|VBS) (from Lemma 1)
≥ (g(|{i} ∪B|)− g(|B|))H(S) (from (5))
= (g(|B|+ 1)− g(|B|))H(S).

Since 0 ≤ |B| < n,

H(Vi) ≥ max{(g(l + 1)− g(l))H(S)|0 ≤ l < n}
= max{Δg,lH(S)|0 ≤ l < n}
= Δg,∗H(S).

C Proof of Corollary 3

If g ∈ Fcom, all the nonzero gradients Δg,l are local maxima because Δg,l−1 =
Δg,l+1 = 0 (i.e., Δg,l−1 < Δg,l and Δg,l > Δg,l+1). Thus, every local minimum
gradient has zero value. Therefore,⎛⎝ M∑

j=1

Δg,lmax,j −
M−1∑
j=1

Δg,lmin,j

⎞⎠ = g(n)− 0 = 1.

Thus, if g ∈ Fcom, then the new lower bound on H(Vi) equals H(S).
On the other hand, if g �∈ Fcom, then g(n) < 1 or there exist some successive

positive gradients. If g(n) < 1, then it holds⎛⎝ M∑
j=1

Δg,lmax,j −
M−1∑
j=1

Δg,lmin,j

⎞⎠ <

M∑
j=1

Δg,lmax,j <

n−1∑
l=0

Δg,l = g(n) < 1.

Otherwise (i.e., g(n) = 1), there exists successive positive gradient. For each
successive positive gradient, at least one of them (denoted by Δg,l) is a local
maximum and its adjacent positive gradient (i.e., Δg,l−1 or Δg,l+1) is not local
maximum. Thus, the summation of the local maximum gradients is smaller than
the total increasing amount of g, i.e, is smaller than g(n) = 1. Thus, if g �∈ Fcom,
then the new lower bound on H(Vi) is smaller than H(S).

202 M. Yoshida, T. Fujiwara, and M. Fossorier

D Proof of Theorem 2

First, we prove that (S,D, P) is a g-GTSS scheme. Since it is readily seen that
(S,D, P) is an SS scheme, we prove that (3) holds. For A ⊆ P , we have

H(S|VA) =

N∑
j=1

H(Sj |VA) +H(SN+1), (33)

since Sj ’s for 1 ≤ j ≤ N + 1 are mutually independent.
A (kj , Lj, n)-TRSS scheme (Sj , Dj , P) is a GTSS scheme for a linear MI

function with the end kj , the length Lj, and the gradient 1/Lj, denoted by g′j .
Thus,

H(Sj |VA) = (1− g′j(|A|))H(Sj). (34)

Note that g′j(l) =
1

gj(n)
gj(l) for any l with 0 ≤ l ≤ n because the gradient of g′j

is 1/Lj and the gradient of gj is gj(n)/Lj . From (33) and (34), it follows

H(S|VA) =
N∑
j=1

(1− g′j(|A|))H(Sj) +H(SN+1)

=

N∑
j=1

(
1− 1

gj(n)
gj(|A|)

)
gj(n)H(S) + (1− g(n))H(S)

=

⎛⎝ N∑
j=1

gj(n)−
N∑
j=1

gj(|A|)

⎞⎠H(S) + (1− g(n))H(S)

= (1− g(|A|))H(S).

Thus, (3) is satisfied.
Next, we prove (19). Since Sj ’s for 1 ≤ j ≤ N are mutually independent,

H(Vi) =

N∑
j=1

H(Vj,i), (35)

where Vj,i denote the random variable induced by the i-th share vi,j of sj ∈ Sj .
By using the optimum construction of (kj , Lj, n)-TRSS scheme proposed in [13],

H(Vj,i) = Δg′
j ,∗H(Sj). (36)

From (35) and (36), it follows

H(Vi) =
N∑
j=1

Δg′
j ,∗H(Sj) =

N∑
j=1

Δg′
j ,∗gj(n)H(S).

Since the gradients of g′j and gj are given by Δg′
j ,∗ = 1/Lj and Δgj ,∗ = gj(n)/Lj

as described in the above, the value Δg′
j ,∗gj(n) equals the gradient of gj. There-

fore, (19) holds.

Optimum General Threshold Secret Sharing 203

E Proof of Fact in Proof of Theorem 3

We prove the following fact: For any point l0 with 0 ≤ l0 < n at which the
gradient Δg(h),l0 of the remaining part g(h) is positive (i.e., Δg(h),l0 �= 0),

(a) l0 is a local minimum point of g(h−1) iff it is a local minimum point of g(h),
(b) l0 is a local maximum point of g(h−1) iff it is a local maximum point of g(h).

Proof for (a): For the ⇒-direction, assume l0 is a local minimum point of g(h−1).
That is,

Δg(h−1),l′ > Δg(h−1),l′+1 = · · · = Δg(h−1),l0 , for some l′ with l′ < l0,

Δg(h−1),l0 < Δg(h−1) ,l0+1.

We first consider the case that l0 is in the h-th divided range (i.e., kh−Lh ≤ l0 <
kh). In this case, both l′ and l0 + 1 are also in the h-th divided range, because
Δg(h−1),l′ and Δg(h−1),l0+1 are larger than Δg(h−1),l0(> Δg(h),l0 > 0), which is not
smaller than the gradient Δg(h−1),lmin . On the other hand, considering the case
that l0 is not in the h-th divided range, l0 is either at the left side (l0 < kh−Lh)
or at the right side (kh ≤ l0). For the left-side case, it holds that l0 < kh−Lh−1
because Δg(h−1),l0(= Δg(h),l0) should be positive but Δg(h−1),kh−Lh−1 = 0 from
(23). Thus, both l′ and l0 + 1 are also at the left side. For the right-side case,
it holds that kh < l′ because Δg(h−1),l′ should be positive but Δg(h−1),kh

= 0
from (23). Thus, both l′ and l0 +1 are also at the right side. Thus, for any case,
from (22), the same relation between the gradients holds after the h-th division,

Δg(h),l′ > Δg(h),l′+1 = · · · = Δg(h),l0 ,

Δg(h),l0 < Δg(h),l0+1.

This means that l0 is a local minimum point for g(h). The other direction (i.e.,
⇐-direction) can be shown in a similar way.

Proof for (b): For the ⇒-direction, assume l0 is a local maximum point of g(h−1).
That is,

Δg(h−1),l′ < Δg(h−1),l′+1 = · · · = Δg(h−1),l0 , for some l′ with l′ < l0,

Δg(h−1),l0 > Δg(h−1) ,l0+1.

We first consider the case that l0 is in the h-th divided range (i.e., kh−Lh ≤ l0 <
kh). In this case, it holds that kh − Lh − 1 ≤ l′ because Δg(h−1) ,kh−Lh−1 equals
zero from (23) and is smaller than Δg(h−1) ,l0(> Δg(h),l0 > 0). Thus, kh−Lh−1 ≤
l′ < l0 < l0+1 ≤ kh. After the h-th division, while the gradient between kh−Lh

and kh − 1 decreases by Δgh,∗, the gradient on l′ + 1 remains positive as the
gradient on l0 does. Thus, regardless whether l′ = kh − Lh − 1 (outside of the
divided range) or l′ ≤ kh − Lh (inside of the divided range), it holds that

204 M. Yoshida, T. Fujiwara, and M. Fossorier

Δg(h),l′ < Δg(h),l′+1 = · · · = Δg(h),l0 ,

Δg(h),l0 > Δg(h),l0+1.

This means that l0 is a local maximum point of g(h).
On the other hand, considering the case that l0 is not in the h-th divided range,

l0 is either at the left side (l0 < kh−Lh) or at the right side (kh ≤ l0). For the left-
side case, it holds that l0 < kh−Lh−1 because Δg(h−1) ,l0 > Δg(h−1),kh−Lh−1 = 0
from (23). Thus, l′ < l0+1 ≤ kh−Lh. For the right-side case, it holds that kh ≤ l′

because Δg(h−1),kh
equals zero from (23) and is smaller than Δg(h−1),l0(> 0).

Thus, kh ≤ l′ < l0+1. Thus, for any side, from (22) and the fact that the gradient
on the just outside points of the divided range equals zero (Δg(h−1),kh−Lh−1 =
Δg(h−1),kh

= 0), the same relation between the gradients holds after the h-th
division,

Δg(h),l′ < Δg(h),l′+1 = · · · = Δg(h),l0 ,

Δg(h),l0 > Δg(h),l0+1.

This means that l0 is a local maximum point for g(h).
The other direction (i.e., the ⇐-direction) can be shown in a similar way. �

Share Conversion and Private

Information Retrieval (Abstract)�

Amos Beimel1, Yuval Ishai2, Eyal Kushilevitz2, and Ilan Orlov1

1 Dept. of Computer Science, Ben Gurion University of the Negev, Beer Sheva, Israel
2 Dept. of Computer Science, Technion, Haifa, Israel

Abstract. An information-theoretic private information retrieval (PIR)
protocol allows a client to retrieve the i-th bit of a database, held by
two or more servers, without revealing information about i to any indi-
vidual server. Information-theoretic PIR protocols are closely related to
locally decodable codes (LDCs), which are error correcting codes that can
simultaneously offer a high level of robustness and sublinear-time decod-
ing of each bit of the encoded message. Recent breakthrough results of
Yekhanin (STOC 2007) and Efremenko (STOC 2009) have led to a dra-
matic improvement in the asymptotic complexity of PIR and LDC. We
suggest a new “cryptographic” perspective on these recent constructions,
which is based on a general notion of share conversion in secret-sharing
schemes that may be of independent interest.

Our new perspective gives rise to a clean framework which unifies
previous constructions and generalizes them in several directions. In a
nutshell, we use the following two-step approach: (1) apply share conver-
sion to get a low-communication secure multiparty computation protocol
P for a nontrivial class F of low-depth circuits; (2) use a lower bound
on the VC dimension of F to get a good PIR protocol from P . Our
framework reduces the task of designing good PIR protocols to that of
finding powerful forms of share conversion which support circuit classes
of a high VC dimension.

Motivated by this framework, we study the general power of share
conversion and obtain both positive and negative results. Our positive
results improve the concrete complexity of PIR even for very feasible
real-life parameters. They also lead to some improvements in the asymp-
totic complexity of the best previous PIR and LDC constructions. For 3-
server PIR, we improve the asymptotic communication complexity from

O(2146
√

log n log log n) to O(26
√

log n log log n) bits, where n is the database
size. Our negative results on share conversion establish some limitations
on the power of our approach.

� The paper was presented in the 27th IEEE Conference on Computational Complex-
ity, 2012 at Porto, Portugal. This research was supported by ERC Starting Grant
259426. The first and fourth authors are additionally supported by ISF grant 938/09
and by the Frankel Center for Computer Science. The second and third authors are
additionally supported by ISF grant 1361/10 and BSF grant 2008411.

Almost-Everywhere Secure Computation with

Edge Corruptions (Abstract)�

Nishanth Chandran1,��, Juan Garay2,� � �, and Rafail Ostrovsky3,†

1 Microsoft Research, Redmond
2 AT&T Labs – Research

3 Departments of Computer Science and Mathematics, UCLA

Abstract. We consider secure multi-party computation (MPC) in a set-
ting where the adversary can separately corrupt not only the parties
(nodes) but also the communication channels (edges) in the network.
We consider this question in the information-theoretic setting, and re-
quire security against a computationally unbounded adversary.

In a fully connected network the above question is simple (and we
also provide an answer that is optimal up to a constant factor). What
makes the problem more challenging is to consider the case of sparse
networks. Partially connected networks are far more realistic than fully
connected networks, which led Garay and Ostrovsky [Eurocrypt’08] to
formulate the notion of (unconditional) almost-everywhere (a.e.) secure
computation in the node-corruption model, i.e., a model in which not all
pairs of nodes are connected by secure channels and the adversary can
corrupt some of the nodes (but not the edges).

In this work we introduce the notion of almost-everywhere secure
computation with edge corruptions, which is exactly the same problem
as described above, except that we additionally allow the adversary to
completely control some of the communication channels between two
correct nodes—i.e., to “corrupt” edges in the network. While it is easy
to see that an a.e. secure computation protocol for the original node-
corruption model is also an a.e. secure computation protocol tolerating
edge corruptions (albeit for a reduced fraction of edge corruptions with
respect to the bound for node corruptions), no polynomial-time protocol
is known in the case where a constant fraction of the edges can be
corrupted (i.e., the maximum that can be tolerated) and the degree of
the network is sub-linear.

We make progress on this front, by constructing graphs of degree
O(nε) (for arbitrary constant 0 < ε < 1) on which we can run a.e. secure
computation protocols tolerating a constant fraction of adversarial edges.

� A version of this paper entitled “Edge Fault Tolerance on Sparse Networks” ap-

pears in the Proceedings of the 39th International Colloquium on Automata, Lan-
guages and Programming (ICALP 2012). The full version of this paper is available
at http://eprint.iacr.org/2012/221.

�� Email: nish@microsoft.com. Part of this work was done at UCLA.
� � � Email: garay@research.att.com.

† Email: rafail@cs.ucla.edu.

Improving the Quality of Santha-Vazirani

Sources (Abstract)

Roger Colbeck and Renato Renner

Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland

Abstract. Is it possible to generate perfectly random bits, using only a
source of weakly random bits? A well-known result by Santha and Vazi-
rani [1] shows that this is impossible if the only guarantee one has about
the initial randomness is that the bias of each bit (that is, the difference
between the probability of the most likely bit value and 1

2
), conditioned

on all previous ones, is upper bounded by a (known) constant ε. However,
this impossibility result only applies to classical methods. Here we show
that it is in fact possible to improve the quality of a Santha-Vazirani
source using a quantum protocol provided the randomness source has
a sufficiently low ε. Furthermore, the randomness of the resulting bits
can be certified without relying on the correctness or completeness of
quantum theory; the result holds in any non-signalling theory.

This has implications for cryptography, where honest users are of-
ten assumed to have trusted sources of perfect randomness. Our result
implies that this assumption can be weakened: using our protocol, any
task that can be securely performed using perfect randomness can in
principle be securely performed using imperfect randomness (provided it
is not too weak).

Although the present technique only works for a source with a suffi-
ciently small bound on ε, we conjecture that with an alternative method
this bound can be increased. More precisely, we conjecture that, given
a source with any non-trivial bound on ε (i.e. with ε strictly smaller
than 1

2
), there exists a protocol that uses only this source to generate

bits with an arbitrarily small bias.
The full version of this work can be found in [2].

References

1. Santha, M., Vazirani, U.V.: Generating quasi-random sequences from slightly
random sources. In: Proceedings of the 25th IEEE Symposium on Foundations of
Computer Science (FOCS 1984), pp. 434–440 (1984)

2. Colbeck, R., Renner, R.: Free randomness can be amplified. Nature Physics 8,
450–453 (2012); also available as arXiv:1105.3195

David & Goliath Oblivious

Affine Function Evaluation (Abstract)

Asymptotically Optimal Building Blocks for Universally
Composable Two-Party Computation from a Single
Untrusted Stateful Tamper-Proof Hardware Token

Nico Döttling�, Daniel Kraschewski, and Jörn Müller-Quade

Institute of Cryptography and Security, Department of Informatics,
Karlsruhe Institute of Technology, Germany

{doettling,kraschewski,mueller-quade}@kit.edu

Abstract. Cryptographic assumptions regarding tamper-proof hard-
ware tokens have gained increasing attention. Even if the tamper-proof
hardware is issued by a party that is not trusted by the other(s), many
tasks become possible: Tamper proof hardware is sufficient for universally
composable protocols, for information-theoretically secure protocols, and
even allows to create software that can only be used once (one-time
programs).

In a two-party setting, where only one single tamper-proof token
is issued, we present secure constructions for multiple one-time memo-
ries (OTMs), and reusable and bidirectional commitment and oblivious
transfer (OT) primitives. Our approach in its primary variant comes
along without any computational assumptions, but allows only for lim-
ited, yet arbitrary token reuse. However, unlimited token reusability can
be achieved straightforwardly by using a pseudorandom number gener-
ator. All our constructions have only linear communication complexity
(i.e. per implemented instance of k-bit OTM/commitment/OT only O(k)
bits are transferred) and are thus asymptotically optimal. Moreover, the
computation complexity of our protocols for k-bit OTMs/commitments/
OT is dominated by O(1) finite field multiplications with field size 2k,
what is considerably more efficient than any other known construction
based on untrusted tamper-proof hardware alone.

The central part of our contribution is a construction for oblivious
affine function evaluation (OAFE), which can be seen as a generalization
of the well known oblivious transfer primitive: Parametrized by a finite
vector space IFk

q , the OAFE primitive allows a designated sender party to
choose an arbitrary affine function f : IFq → IFk

q , such that hidden from
the sender party a designated receiver party may learn f(x) for exactly
one function argument x ∈ IFq of its choice. All our abovementioned
results build on this primitive and it may also be of particular interest
for the construction of garbled arithmetic circuits.

See http://eprint.iacr.org/2012/135 for a public version of the full
paper.

� Supported by IBM Research & Development Germany within the HomER project.

A Unified Approach to Deterministic

Encryption: New Constructions and a
Connection to Computational Entropy

(Abstract)

Benjamin Fuller1, Adam O’Neill2, and Leonid Reyzin2

1 Boston University and MIT Lincoln Laboratory
2 Boston University

Abstract. We propose a general construction of deterministic encryp-
tion schemes that unifies prior work and gives novel schemes. Specifically,
its instantiations provide:
– A construction from any trapdoor function that has sufficiently many

hardcore bits.
– A construction that provides “bounded” multi-message security from

lossy trapdoor functions.
The security proofs for these schemes are enabled by three tools that are
of broader interest:
– A weaker and more precise sufficient condition for semantic security

on a high-entropy message distribution. Namely, we show that to es-
tablish semantic security on a distribution M of messages, it suffices
to establish indistinguishability for all conditional distribution M |E,
where E is an event of probability at least 1/4. (Prior work required
indistinguishability on all distributions of a given entropy.)

– A result about computational entropy of conditional distributions.
Namely, we show that conditioning on an event E of probability p
reduces the quality of computational entropy by a factor of p and its
quantity by log2 1/p.

– A generalization of leftover hash lemma to correlated distributions.
We also extend our result about computational entropy to the average
case, which is useful in reasoning about leakage-resilient cryptography:
leaking λ bits of information reduces the quality of computational en-
tropy by a factor of 2λ and its quantity by λ.

A conference version of this work appeared in Theory of Cryptogra-
phy 2012 [2] and a full version is available online at [1].

References

1. Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption:
New constructions and a connection to computational entropy. Cryptology ePrint
Archive, Report 2012/005, http://eprint.iacr.org/2012/005

2. Fuller, B., O’Neill, A., Reyzin, L.: A Unified Approach to Deterministic Encryption:
New Constructions and a Connection to Computational Entropy. In: Cramer, R.
(ed.) TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012)

Bounds for Secure Two-Party Sampling from a

Generalization of Common Information
(Abstract)�

Vinod M. Prabhakaran1 and Manoj M. Prabhakaran2

1 Tata Institute of Fundamental Research, India
2 University of Illinois at Urbana-Champaign, USA

Abstract. Secure multi-party computation is a central problem in mod-
ern cryptography. An important sub-class of this are problems of the fol-
lowing form: Alice and Bob desire to produce sample(s) of a pair of jointly
distributed random variables. Each party must learn nothing more about
the other party’s output than what its own output reveals. To aid in this,
they have available a set up — correlated random variables whose distri-
bution is different from the desired distribution — as well as unlimited
noiseless communication. We upper-bound how efficiently a given set up
can be used to produce samples from a desired distribution.

The key tool we develop is called tension – or more precisely, the
region of tension – which measures how well the correlation between a
pair of random variables can be (or rather, cannot be) resolved as a piece
of common information and other independent pieces of information. We
show various properties of this region, including a crucial monotonicity
property: a protocol between two parties can only lower the tension be-
tween their views. Then we derive state-of-the-art bounds on the rate at
which samples from one distribution can be produced per sample of a
set up, by comparing the regions of tension of the two distributions.

Another important contribution of this work is to generalize the no-
tion of common information of two dependent variables introduced by
[Gács-Körner, 1973]. They defined common information of (X, Y) as the
largest entropy rate of a common random variable that two parties ob-
serving Xn and Y n respectively, can agree upon. It is well-known that
this captures only a limited form of dependence between X and Y , and is
zero in most cases of interest. Our generalization, which we call Assisted
Common Information, lets us take into account “almost common” in-
formation ignored by Gács-Körner common information. In the assisted
common information system, a genie assists the parties in agreeing on a
more substantial common random variable; we characterize the trade-off
between the amount of communication from the genie and the quality
of the common random variable produced. We show that the optimal
trade-off is essentially given by the region of tension. Connections to the
Gray-Wyner system and Wyner’s common information are also studied.

� Based partly on papers at IEEE International Symposia on Information Theory
(ISIT) 2010 and 2011. Full version available at http://arxiv.org/abs/1206.1282.
Supported in part by a Ramanujan Fellowship of the Department of Science and
Technology, Government of India, and NSF CAREER award 07-47027.

An Information-Theoretic Approach to Privacy

(Abstract)�

Lalitha Sankar1, S. Raj Rajagopalan2, and H. Vincent Poor1

1 Dept. of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
2 HP Labs, Princeton, NJ 08540, USA

Abstract. Ensuring the usefulness of electronic data sources while
providing necessary privacy guarantees is an important unsolved prob-
lem. This problem drives the need for an analytical framework that can
quantify the safety of personally identifiable information (privacy) while
still providing a quantifiable benefit (utility) to multiple legitimate in-
formation consumers. State of the art approaches have predominantly
focused on privacy. Utility of a data source is potentially (but not nec-
essarily) degraded when it is restricted or modified to uphold privacy
requirements. The central problem of this paper is a precise quantifi-
cation, using information theoretic tools, of the tradeoff between the
privacy needs of the respondents (individuals represented by the data)
and the utility of the sanitized (published) data for any data source.
The central contribution of this work is a precise quantification of the
tradeoff between the privacy needs of the individuals represented by the
data and the utility of the sanitized (published) data for any data source
using the theory of rate distortion with additional privacy constraints.
Utility is quantified (inversely) via distortion (accuracy), and privacy
via equivocation (entropy). We expose an essential dimension of infor-
mation disclosure for the first time via an additional constraint on the
disclosure rate which is a measure of the precision of the sanitized data.
We translate the rate-distortion-equivocation formalism of information
theory to the utility-privacy problem and develop a framework that al-
lows us to model data sources, including multi-dimensional databases
and data streams, develop application independent utility and privacy
metrics, quantify the fundamental bounds on the utility-privacy trade-
offs, and develop a side-information model for dealing with questions of
external knowledge. We demonstrate the application of this framework
for both numerical and categorical examples [1]. We have also applied
this framework to privacy applications with time-series sources and or-
ganizational data disclosure.

References

1. Sankar, L., Rajagopalan, S.R., Poor, H.V.: An information-theoretic approach to
privacy. In: Proc. 48th Allerton Conference on Communication, Control, and Com-
puting, Monticello, IL, pp. 1220–1227 (September 2010)

� This research is supported in part by the U. S. NSF under Grant CCF-1016671
and the Air Force Office of Scientific Research under Grant FA9550-09-1-0643.
This research described here first appeared as [1].

Author Index

Alimomeni, Mohsen 1

Broadbent, Anne 14

Canetti, Ran 37
Cramer, Ronald 62

Damg̊ard, Ivan 62
David, Bernardo Machado 80
Dodis, Yevgeniy 100
Döttling, Nico 111

Fossorier, Marc 187
Fujiwara, Toru 187

Hirt, Martin 129

Jeffery, Stacey 14

Keller, Marcel 147
Kraschewski, Daniel 111

Lucas, Christoph 129

Maurer, Ueli 129
Mikkelsen, Gert Læssøe 147
Müller-Quade, Jörn 80, 111

Nascimento, Anderson C.A. 80

Pastro, Valerio 62

Ranellucci, Samuel 14
Raub, Dominik 129
Riva, Ben 37
Rothblum, Guy N. 37
Rupp, Andy 147

Safavi-Naini, Reihaneh 1
Seito, Takenobu 167
Shikata, Junji 167

Tapp, Alain 14

Watanabe, Yohei 167

Yoshida, Maki 187

	Title Page
	Preface
	Organizations
	Table of Contents
	Guessing Secrecy
	Introduction
	Previous Work
	Our Contribution
	Motivation

	Notations and Preliminaries
	Information Measures
	Shannon Secrecy

	Secrecy Based on Guessing Probability
	Basic Definitions
	Guessing Secrecy
	Guessing Secrecy with Imperfect Randomness
	Relation with Perfect Secrecy

	Concluding Remarks
	References

	Trading Robustness for Correctness and Privacyin Certain Multiparty Computations, beyond an Honest Majority
	Introduction
	Contributions

	Model and Definitions
	Preliminaries
	Sharing a Secret
	Sub-protocols Used

	Multiparty Sum with Bins
	Protocol

	Multiparty Sum with Bins and Ghosts
	Verifiable Secret Sharing

	Multiparty Sum with Bins, Ghosts and Commitments
	Verifiable Secret Sharing with Signatures
	Protocol

	Applications
	Voting
	Anonymous Message Transmission

	References
	Proofs
	Properties of BIN-SUM
	Properties of GVSS
	Properties of GHOST-SUM
	Properties of IC-GVSS
	Properties of IC-GHOST-SUM

	Two Protocols for Delegation of Computation
	Introduction
	Our Contributions
	Organization

	The Protocols of GKR08,KR09
	Preliminaries: Low Degree Extension (LDE)
	The Bare-Bones GKR08 Protocol, Given a Circuit Specification Oracle
	Realizing the Oracle for L-UniformNCCircuits
	The Transformation of KR09

	Refereed Delegation of Computation
	The Model
	One-Round RDoC for Any L-UniformNCComputation

	Offline/Online Verifiable Delegation of Computation with a Public Offline Stage
	Splitting the GKR08 Protocol
	One-Round OVDoC with Public Offline Stage

	References
	The Protocol of FK97

	On the Amortized Complexity of ZeroKnowledge Protocols for Multiplicative Relations
	Introduction
	Our Contribution
	Applications

	Preliminaries
	Information Theoretic Commitments
	Linear Secret Sharing Schemes

	Our Protocol
	A Concrete Example
	A More General Approach
	Proving Integer Multiplication
	Commitment Schemes Based on Computational Assumptions
	Results with Standard Commitments
	References

	Universally Composable Oblivious Transfer from Lossy Encryption and the McEliece Assumptions
	Introduction
	Preliminaries
	Universal Composability
	Lossy Encryption
	McEliece Assumptions and Public-Key Cryptosystem

	Oblivious Transfer from Lossy Encryption
	Distinguishing Lossy and Injective Keys
	Extractable String Commitment Schemes
	The Protocol
	Security

	Oblivious Transfer from the McEliece Assumptions
	Security

	Conclusion
	References
	Definitions and Basic Constructions
	Universal Composability
	Semantically Secure McEliece Cryptosystem
	Lossy Encryption Constructions

	Distinguishing Lossy and Injective Keys: Constructions

	Shannon Impossibility, Revisited
	Definitions
	Few Remarks on the Definition

	Main Result
	Some Extensions
	Extension to General M
	Slightly Stronger Bound for Perfect Completeness and Perfect Security

	Bounds for Mutual Information Based Definition
	References

	Statistically Secure Linear-Rate Dimension Extension for Oblivious Affine Function Evaluation
	Introduction
	Our Contribution
	Related Work

	Framework
	Notion of Security
	The IFqk-OAFE Primitive in the UC Framework

	Satistically UC-secure IFqk-OAFE from O(k) Instances of IFq-OAFE
	The Basic Protocol Idea and Why It Does Not Work
	Why Universal Hashing Does Not Help
	Our Solution

	References
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5

	Passive Corruption in Statistical Multi-Party Computation
	Introduction
	Secure Multi-Party Computation
	Contributions
	Model
	Outline of the Paper

	Information Checking
	MPC with General Adversaries
	A Parametrized Protocol for General Adversaries
	Main Result

	MPC with Threshold Adversaries
	A Parametrized Protocol for Threshold Adversaries
	Main Result

	Conclusion
	References

	Efficient Threshold Zero-Knowledge with Applications to User-Centric Protocols
	Introduction
	Security Model and Preliminaries
	Security Model
	Secret Sharing

	Threshold Building Blocks
	Proofs of Knowledge of Preimages of Homomorphisms
	OR Construction for Proofs of Knowledge of Preimages
	Range Proofs

	Applications to User-Centric Protocols
	E-Cash with Threshold Wallets
	Increasing the Security of Anonymous Credentials
	Forward and Backward Untraceability

	References

	Information-Theoretic Timed-Release Security: Key-Agreement, Encryption, and Authentication Codes
	Introduction
	TR-KA: Timed-Release Key-Agreement with Information-Theoretic Security
	Model and Security Definition
	Lower Bounds
	Construction

	TRE: Timed-Release Encryption with Information-Theoretic Security
	Model and Security Definition
	Construction of TRE from TR-KA and One-Time Pad

	TRA-Codes: Timed-Release Authentication Codes
	Model and Security Definition
	Construction of TRA-codes from TR-KA and A-Codes

	Relation to Information-Theoretic Key-Insulated Security
	References

	Optimum General Threshold Secret Sharing
	Introduction
	Notations and Definitions
	Functions for GTSS Scheme
	GTSS Scheme

	Previous Lower Bound
	New Lower Bound
	Optimum Construction
	Division Based Construction
	Proposed Optimum Division

	Conclusion
	References
	Proof of Lemma 1
	Proof of Corollary 1
	Proof of Corollary 3
	Proof of Theorem 2
	Proof of Fact in Proof of Theorem 3

	Workshop Track Abstracts
	Author Index

