

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 152–164, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Range Query Estimation
for Dirty Data Management System*

Yan Zhang, Long Yang, and Hongzhi Wang**

Department of Computer Science and Technology
Harbin Institute of Technology

zhangy@hit.edu.cn, {yanglonghit,whongzhi}@gmail.com

Abstract. In recent years, data quality issues have attracted wide attention. Data
quality is mainly caused by dirty data. Currently, many methods for dirty data
management have been proposed, and one of them is entity-based relational
database in which one tuple represents an entity. The traditional query
optimizations having the ability to estimate the cost of execution of a query plan
have not been suitable for the new entity-based model. Then new query
optimizations need to be developed. In this paper, we propose new query
selectivity estimation based on histogram, and focus on solving the
overestimation which traditional methods lead to. We prove our approaches are
unbiased. The experimental results on both real and synthetic data sets show
that our approaches can give good estimates with low error.

Keywords: query estimation, histogram, dirty data, data quality.

1 Introduction

Data quality has been addressed in different areas, such as statistics, management
science, and computer science [1]. Dirty data is the main reason to cause data quality.
Many surveys reveal dirty data exists in most database systems. The consequences of
dirty data may be severe. Having uncertain, duplicate or inconsistent dirty data leads
to ineffective marketing, operational inefficiencies, and poor business decisions. For
example, it is reported [2] that dirty data in retail databases alone costs US consumers
$2.5 billion a year. Therefore, several techniques have been developed to process dirty
data to reduce the harm of dirty data.

Existing work on processing dirty data can be divided into two broad categories.
The first category is data cleaning [3], which is to detect and remove errors and
inconsistencies from data to improve data quality. However, data cleaning cannot
clean the dirty data exhaustively and excessive data cleaning may lead to the loss of
information. Besides this, existing data cleaning techniques are generally time-
consuming. Therefore, some researchers propose algorithms in the other category, to

* This paper was partially supported by NGFR 973 grant 2012CB316200 and NSFC grant

61003046, 6111113089. Doctoral Fund of Ministry of Education of China (No.
20102302120054).

** Corresponding author.

 Range Query Estimation for Dirty Data Management System 153

perform queries on dirty data directly and obtain query results with clean degree from
the dirty data [4-6].

Several models for dirty data management without data cleaning have been
proposed [7-9]. But most of these models only consider the uncertainty in values of
the attributes and the quality degree of the data without the consideration of the
entities in real world and their relationships. In this paper, we focus on entity-based
relational database model in which one tuple represents an entity. This model can
better reflect the real world entities and their relationships.

In applications, the different representations of the same real-word entities often
lead to inconsistent data, uncertain data or duplicate data, especially when multiple
data sources need to be integrated [10-11]. In the entity-based relational database, for
the duplicate data referring to the same real-world entity, we combine these data, and
for inconsistent data (or uncertain data), we endow each of them a value (we call it as
quality degree) which reflects its quality. Example 1 shows this process.

Table 1. A Dirty Data Fragment

ID Name City Zipcode Phn Reprsnt
1 Wal-Mart Beijing 90015 80103389 Sham
2 Carrefour Harbin 20016 80374832 Morgan
3 Wal-Mart BJ 90015 010-80103389 Sham
4 Walmart Harbin 20040 70937485 Sham
5 Carrefour Beijing 90015 83950321 Morgan
6 Mal-Mart Beijing 90015 80103389 Sham

Example 1: Consider a fragment of the dirty data shown in Table 1. We can easily
identify that tuples 1, 3 and 6 refer to the same entity in the real world even though
their representations are different. By preforming entity resolution and combining
these three tuples, we can get one entity tuple. In this process, we don’t remove any
data, which implies that the value of one attribute in a tuple may be uncertain, and it
may contain multiple values. We endow possible each attribute value with a quality
degree in accordance with their proportion, as shown in Table 2. In tuples 1, 3 and 6,
the value “Wal-Mart” appears twice, so the quality degree is 2/3 ≈ 0.67. Similarly,
other quality degrees can be given. Then we get an entity tuple as shown in Table 2.

Table 2. An Entity Tuple

ID Name City Zipcode Phn Reprsnt

1
(Wal-Mart, 0.67),
(Mal-Mart, 0.33)

(Beijing, 0.67),
(BJ, 0.33)

(90015, 1.0)
(80103389, 0.67),
(010-80103389, 0.33)

(Sham, 1.0)

As Example1 shows, the entity-based relational database ingeniously processes the
dirty data by entity resolution [12-13] and quality degree. In the implementation of
this model, query optimization techniques are in demand. As the base of the query
optimization, the estimation technique computing the size of the results of an operator
is crucial. Even though over the past few decades, there has been a lot of work on
query estimation for traditional relational database management systems. Most

154 Y. Zhang, L. Yang, and H. Wang

approaches for query estimation are based on histogram [14], which records data
distributions. However, the traditional histograms are not suitable for entity-based
relational database, and often lead to overestimation, especially for range queries. One
reason is that query processing on the entity-based relational database need to
consider the effect of the quality degrees of values, but the traditional histograms are
only concerned about the attribute value without the consideration of the quality
degree. The other reason is that traditional approaches based on histogram often lead
to overestimation, especially for range queries. Because one attribute of a tuple may
contain multiple values in the entity-based relational database, if all values are
partitioned into different buckets, this tuple is counted for multiple times. Thus, the
overestimation occurs.

Therefore, the traditional query estimation approaches based on histogram cannot
be applied to our problem. Unfortunately, there is no work for the query estimation of
the entity-based relational database. New query estimation approaches are in demand.

Our Contributions: In this paper, we propose new range query estimation methods
suitable for entity-based relational database. As we know, this is the first paper
considering such problem. These algorithms are demonstrated in details and the
complexity of these algorithms is analyzed. We theoretically prove our algorithms are
unbiased. Last, we experimentally validate the effectiveness of our algorithms and
show that our methods are accurate.

The rest of this paper is organized as follows. Section 2 introduces entity-based
relational database model and some related conceptions. Section 3 presents our range
query estimation methods. We show our experimental results in Section 4. We
conclude our paper and discuss the future work in Section 5.

2 Preliminaries

2.1 Entity-Based Relational Database Model

We firstly define the Uncertain Attribute Value in Definition 1. An uncertain attribute
value not only contains possible values, but also contains the corresponding quality
degrees. Then we give the definition of Entity in Definition 2. Entity is the basic unit
of storage in the entity-based relational database system, containing a set of uncertain
attribute values.

 Definition 1 (Uncertain Attribute Value): An uncertain attribute value is a set of
pair ܣ = {ሺݒ, ሻ|v is possible value of the attribute and p is the quality degree of the݌
value v}.

 Definition 2 (Entity): An entity is a pair ܧ ൌ ሺܭ, is a set of uncertain ܣ ሻ, whereܣ
attribute values and ܭ is a set of keys that is to identify the entity uniformly (e.g.,
entity-ID).

Table 2 can help to understand these two definitions. Since we introduce the quality
degree dimension, we need to define a new conception to reflect whether a tuple
satisfies a query, and we call this conception Similarity.

 Range Query Estimation for Dirty Data Management System 155

 Definition 3 (Similarity): For an uncertain values ܸ in attribute ܽ and an atom
constraint ܥ in form of ܽ @ ݒ where @ is a predicate symbol (e.g. >, < …) and ݒ
is a constraint, the similarity between them is defined as follows: ܵ݅݉ሺܸ@ܥሻ ൌ ∑ ௏א௜ሺ௩೔,௣೔ሻ݌ሻݒ@௜ݒሺ݉݅ݏ ሻݒ @௜ݒሺ݉݅ݏ (1) , ൌ ቄ1 ݒ ݁ݎ݄݁ݓ௜@(2) . ݁ݏ݅ݓݎ݄݁ݐ݋ 0ݒ

For a selection query with a constraint ܽ ൏ for the convenience, we use this) ݒ
form ܽ ൏ to represent a selection query in this paper), we consider that one tuple ݒ
satisfies query with a similarity ܵ, which can be calculated by Equation (1) and (2).
We use an example to illustrate it.

With the support of the conceptions, some query operators are defined.

2.2 Operators

In this paper, we focus on the estimation of selection operation. Each query result
satisfies the query with a similarity, since results with a low similarity are generally
less interesting than higher similarity answers, we consider those results with a
similarity less than a threshold ߬ (this parameter can be provided by user or the
system sets a default value) as unsatisfied for a query. Therefore, the results of queries
should be those answers that have a similarity exceeding a threshold ߬. So a query
given by ܽ ൏ఛ can be defined as an operator as follows: ܵ݅݉ሺܽ ݔ ൏ ሻݔ ൐ ߬ ֞ ∑ ௜ݒሺ݉݅ݏ ൏ ௜݌ሻݔ ൐ ߬ሺ௩೔,௣೔ሻא௏ . (3)

The goal of this paper is to propose new query estimation techniques for the entity-
based relational database. In next section, we will give our approaches in details.

3 Range Query Estimation

 In this section, we describe our estimation methods in details. First，we give a
preliminary query estimation method in Section 3.1, and this method can well
estimate unbounded range query (e.g., ܽ ൐ఛ ܽ or ݔ ൏ఛ result size, but for general (ݔ
range queries (e.g., ݔଵ ൏ ܽ ൏ ଶ), it often leads to underestimation. Then, a moreݔ
accurate range query estimation method is proposed in Section 3.2, and it can well
solve the underestimation problem which the former method encounters.

3.1 Preliminary Range Query Estimation Method

As discussed in Section 1, existing query estimation methods are not suitable for range
queries on entity-based relational database management system for two reasons that with
the quality degree, the existing methods often lead to the overestimation. To solve these
problems, we consider an unbounded range query Q by ܽ ൏ఛ firstly, where ܽ is an ݔ
uncertain attribute value and ߬ is the similarity threshold. This query returns all tuples
satisfying ܵ݅݉ሺܽ ൏ ሻݔ ൐ ߬, which means that ܽ satisfies the following relationship: ∑ ௜ݒሺ݉݅ݏ ൏ ௜݌ሻݔ ൐ ߬ሺ௩೔,௣೔ሻא௏ . (4)

156 Y. Zhang, L. Yang, and H. Wang

If all possible values of an uncertain value are sorted in database system, the
relationship (3) is equivalent to calculate the cumulative distribution function ܨ௔ሺݔሻ,
where ܨ௔ሺݔሻ ൌ ∑ ௜௩೔ழ௫݌ , and return the values satisfying ܨ௔ሺݔሻ ൐ ߬.

Fig. 1 shows an example of the cumulative distribution functions (CDF) of several
tuples on attribute A, whose corresponding values are shown in Table 3. In the figure,
each stacked line represents one tuple. The meaning of every stacked line is like the
cumulative distribution function of every uncertain value. For example, the point P on
the stacked line represents that the value of attribute A of tuple 3 is smaller than 35
with similarity 0.6. Therefore, with such a figure containing all tuples, for a given
query Q (ܽ ൏ఛ ଴), the total number of tuples which satisfy query Q can be estimatedݔ
directly. It is the number of stacked lines crossing the line segment ݈ given by ݔ ൌ ,଴ݔ ߬ ൏ ݕ ൑ 1.

Table 3. A Data Fragment

ID A B
……

1 ((10, 0.1), (35, 0.3), (65, 0.5), (80, 0.1)) …… ……
2 ((20, 0.3), (50, 0.5), (80, 0.2)) …… ……
3 ((15, 0.6), (60, 0.2), (70, 0.2)) …… ……

Fig. 1. Example for showing the histogram structure

Histogram Structure

 Based on the above discussion, we define a basic two-dimensional histogram. The range
of input values is partitioned into ݊ כ ݉ buckets where ݊ and ݉ are the lengths of
each dimension. A histogram bucket ܪሺ݅, ݆ሻ covers the area given by ሺ݅ כ ,௫ߜ ݆ כ ௦,ሺ݅ߜ ൅ 1ሻ כ ,௫ߜ ሺ݆ ൅ 1ሻ כ ௦ are the widths of histogram bucket alongߜ ௫andߜ ௦ሻ, whereߜ
x and y axis. Each bucket has a value, which stores the height of this bucket that records
the number of tuples whose stacked lines intersect this bucket.

Obviously, the errors of the estimations using this histogram are associated to the
number of the stacked line inflection points in buckets and do not exceed them. If there
is no inflection points in bucket ܪ௜ , the estimation for queries which are located in ܪ௜
must be accurate. Hence in order to make the estimation more accurate, we need to
ensure that the number of the inflection points in each bucket ܪ௜ is small enough.

In our approach, the histogram is firstly partitioned into ݌ equal-width buckets, and
we set the number of the inflection points in each bucket should not exceed ߝ

0
0.2
0.4
0.6
0.8

1

0 25 50 75 100

sim
ila

rit
y tuple1

tuple2
tuple3

P

 Range Query Estimation for Dirty Data Management System 157

ߝ) ൌ is the total number of inflection points, which equals the number ܯ where ,݌/ܯ
of all possible attribute values). When a bucket contains more than ߝ inflection points,
this bucket is partitioned into ݍ equal-width buckets (generally, ݍ ا can be ݍ and ,݌
considered as a constant) and we set each new bucket containing ݍ/ߝ inflection points.
In the next process, for the buckets which do not meet the requisition, they are
partitioned until that all buckets contain less than ߝ inflection points.

We now present the histogram construction algorithm. To facilitate the description of
algorithm, we firstly summarize the main notations that will be used in our paper in Table
4. With these notations, Algorithm 1 illustrates the detailed steps of histogram
construction. Note that, we assume all possible values of an uncertain value are
increasing in the database system. For each uncertain value, it is supposed that all
possible values are ݒ଴, ଵݒ … ௠ିଵݒ and the corresponding quality degrees are ݌଴, ଵ݌ … ௠ିଵ݌ , the interval ሾݒ௠௜௡, ௠௔௫ሿݒ can be divided into ݉ ൅ 1 intervals: ሾݒ௠௜௡, ,଴ሻݒ ሾݒ଴, ଵሻݒ … ሾݒ௠ିଵ, ௠௔௫ሿ. In each interval, we need to record value ܽ inݒ
correct histogram buckets. For example, in ሾݒ௠௜௡, ଴ሻ, value ܽ should be recorded inݒ
buckets ܪሺሾݒ௠௜௡, ,଴ሻݒ 0ሻ, which represents ܵ݅݉ሺܽ ൏ ݔ ሻ is 0, whereݔ א ሾݒ௠௜௡, .଴ሻݒ
Similarly, value ܽ should also be recorded in buckets: ܪሺሾݒ଴, ,ଵሻݒ ,଴ሻ݌ ,ଵݒሺሾܪ ,ଶሻݒ ଴݌ ൅݌ଵሻ … ,௠ିଵݒሺሾܪ ,௠௔௫ሿݒ 1ሻ. Meanwhile, the number of inflection points is stored in each
bucket, and when the size of some bucket exceeds ߝ, it is partitioned into ݍ equal-width
buckets and the histogram is adjusted. Algorithm 1 is the pseudo-code of this process,
where symbol ௜ܲ represents the number of inflection points in bucket ܪ௜ .

Table 4. Main Notations

Notation Meaning ߬ Similarity threshold ݌, ݍ Initial granularity of partition and granularity of repartition ߝ Threshold of the number of inflection points in one bucket ݈௜, ௜ݎ Left boundary and right boundary of bucket ܪ௜ along x axis ߜ௦, ݏ Width of buckets along y axis, where ݏ ൌ 1ڿ ⁄௦ߜ ௜ Uncertain values of attribute A (0ܽ ۀ ൑ ݅ ൏ ,௜ݒ (ܰ ,௠௜௡ݒ ௜ Possible values and quality degrees of an uncertain attribute value a݌ ,ଵݔሺ݉݅ݏ ௠௔௫ Minimum and maximum among all possible values of an attribute Aݒ ଵݔ ଶሻ Similarity ofݔ ൏ ܽ ൏ ܳ The number of tuples satisfying query ܥ ଶ where a is an uncertain valueݔ

Algorithm 1
1 Initialize ܪ ՚ ׎
2 for each uncertain value ܽ do
3 for each possible value ݒ௞ of an uncertain value do
4 for all buckets meeting ݒ௞ିଵ ൏ ݈௜ ൏ ௞ݒ do
,ሺ݅ܪ 5 ௔ሺ݈௜ሻܨہ ⁄௦ߜ ++ሻۂ
6 ௜ܲ++
7 if ௜ܲ ൐ then ߝ
8 partition and adjust this bucket
9 for all buckets meeting ݎ௜ ൐ ݔܽ݉ ሺݒ௞ሻ do
,ሺ݅ܪ 10 1ڿ ⁄௦ߜ ++ሻۀ

158 Y. Zhang, L. Yang, and H. Wang

Theorem 1: The time complexity of Algorithm 1 is ܱሺ݌ሺܰ ൅ ሻሻ and the spaceݏ
complexity is ܱሺݏ݌ሻ.

Proof: This algorithm scans each tuple once and records each tuple in m appropriate
histogram buckets, where m is the length of the histogram in x dimension. In the worst
case, partition occurs per ߝሺݍ െ 1ሻ/ݍ tuples, and partition times does not exceed ݍ݌/ሺݍ െ 1ሻ (i.e., ܯ/ሺߝሺݍ െ 1ሻ/ݍሻ). Each partition adds ݍ െ 1 buckets and adjusts ݏ buckets along y axis, so ݉ ൏ ሺݍ െ 1ሻݍ݌/ሺݍ െ 1ሻ ൅ ݌ ൌ ݍሺ݌ ൅ 1ሻ. Thus the time
complexity is ܱሺ݌ሺݍ ൅ 1ሻܰሻ ൅ ܱሺݍ݌ݏݍ/ሺݍ െ 1ሻሻ and the space complexity is ܱሺ݌ሺݍ ൅ 1ሻݏሻ. Thus the time complexity is ܱሺ݌ሺܰ ൅ ሻሻ and the space complexityݏ
is ܱሺݏ݌ሻ, because ݍ can be considered as a constant.

Query Estimation Method

With the histogram structure, we can easily estimate query result size. Given a query ܽ ൏ఛ ଴ is located in and meet the similarity threshold. Algorithm 2 shows this algorithmݔ ଴, query result size is estimated as the sum of the heights of the buckets whereݔ
in details.

However, this algorithm is only applicable for the unbounded range queries in form
of ܽ ൏ఛ ܽ ଴. For anther unbounded range queries in the form ofݔ ൐ఛ ଴, we need toݔ
perform an equivalent transformation to make Algorithm 2 suitable for such form. ܽ ൐ఛ ଴ݔ ֞ ܵ݅݉ ሺܽ ൐ ଴ሻݔ ൐ ߬ ֞ ܵ݅݉ ሺܽ ൏ ଴ሻݔ ൏ 1 െ ߬ . (4)

Such that Algorithm 2 can also be used to estimate queries in the form as ܽ ൐ఛ ,଴ݔ
with a modification of the loop range in line 4, and the loop range should be modified
to ሾ0, ሺ1ہ െ ߬ሻ ⁄௦ߜ ݌ ሿ. Theorem 2 proves this estimation method is unbiased whenۂ
tends to infinity.

Algorithm 2
1 if ݔ଴ ൏ ௠௜௡ then return 0ݒ
2 if ݔ଴ ൐ ܰ ௠௔௫ then returnݒ
3 let ܥ ൌ 0 and find ܪ௜ meeting ݈௜ ൏ ଴ݔ ൑ ௜ݎ
4 for ݆ from ߬ہ ⁄௦ߜ 1ڿ to ۂ ⁄௦ߜ ۀ do
ܥ 5 ൌ ܥ ൅ ,ሺ݅ܪ ݆ሻ
6 return ܥ

Theorem 2: The estimation method in Algorithm 2 is unbiased when ݌ tends to
infinity.

Proof: To facilitate the proof, we assume ݍ ൌ 2, for other cases, the proof process is
similar. As proved in Theorem 1, partition times does not exceed 2݌ (i.e., ݍ݌/ሺݍ െ1ሻ), and each partition adds 1 (i.e., ݍ െ 1) buckets. Given a query ܽ ൏ఛ ଴, we makeݔ
the following assumptions. First, ݔ଴ falls each bucket with equal probability. Second, ݊ times partitions occur. Last, ݉ buckets contain more than ߝ inflection points
where ݉ ൑ ݊. With these assumptions, the total number of buckets along x axis is ݌ ൅ ݊. We have known the estimation error does not exceed the number of inflection
points in bucket which ݔ଴ is located in. Hence the expectation of estimation error is:

 Range Query Estimation for Dirty Data Management System 159

ሺ݁ሻܧ ൏ ݌ ൅ ݊ െ ݌݉ ൅ ݊ ߝ ൅ ݌݉ ൅ ݊ ᇱሺ݁ሻܧ ൌ ݌ ൅ ݊ െ ݌݉ ൅ ݊ ߝ ൅ ݌݉ ൅ ݊ ൬ߝ ൅ ܯ െ ݉ߝ݉ ൰ ൌ ߝ ൅ ܯ െ ݌ߝ݉ ൅ ݊ ൏ ߝ ൅ ݌ܯ ൌ 2 ݌ܯ .
Therefore, when ݌ tends to infinity, the expectation of estimation error tends to 0,
and this approach is unbiased.

We have discussed the unbounded range queries. Consider the general range query
Q (ݔଵ ൏ ܽ ൏ ଵݔଶ), and that is ܵ݅݉ሺݔ ൏ ܽ ൏ ଶሻݔ ൐ ߬. The unbounded range queries
can be considered as a special case of the general range query. To estimate the general
range query result size, with the application of the techniques in this section, a naïve
method is proposed. Firstly, the numbers of tuples that satisfy query Q1 (ܽ ൏ఛ ଵ) andݔ
query Q2 (ܽ ൏ఛ 2ܥ respectively. We can use 2ܥ and 1ܥ ଶ) are estimated by Algorithm 2, and they are denoted byݔ െ ଵݔ) as the estimation of query Q 1ܥ ൏ ܽ ൏ .(ଶݔ
Clearly, if we do not consider the threshold, this method is correct. However, it often
leads to underestimation with the consideration of the effect of the similarity
threshold on query result sizes, and it is related to the width of query range and the
threshold. We show the effect by experiments in Section 4. With the shortcoming of
this naïve method, we propose more accurate query range estimation method in next
section.

3.2 Accurate Range Query Estimation

 In this section, we present an accurate range query estimation algorithm, and it can
solve the underestimation problem discussed in Section 3.1. In order to adapt to
general range queries, we add another dimension to the histogram proposed in Section
3.1. The meanings of two original dimensions do not change (the x axis and y axis
respectively represent the end point of the query and the similarity), and the new
additional dimension (z axis) represents the beginning of the query. Therefore, given a
general range query ܳ(ݔଵ ൏ ܽ ൏ ଶ), we can estimate the size of query result set byݔ
counting the number of stacked lines crossing the line segment l given by ݔ ൌ ߬,ଶݔ ൏ ݕ ൑ 1 and ݖ ൌ ଵ, similar to Fig. 1. That is equivalent to executing a query ܳԢݔ
(ܽ ൏ఛ ݖ ଶ) on the plane, whereݔ ൌ .ଵݔ

We call such new histogram as improved histogram. In this histogram, every plane
on z axis is a basic histogram proposed in Section 3.1, corresponding to the constraint ݖ ൑ ݔ ൏ ௠௔௫ݒ (clearly, it is not necessary to store the whole range). The width of a
bucket on z axis is controlled by an input parameter ߜ௭(in general, ߜ௭ can be equal
to ሺݒ௠௔௫ െ ݌/௠௜௡ሻݒ). The detailed algorithms for constructing this improved
histogram and estimating the result size of a general range query are respectively
presented in Algorithm 3 and Algorithm 4. Compared with Algorithm 1, Algorithm 3
only adds another layer of loops on z axis, but this improved histogram structure can
give more accurate estimation than the basic histogram of Section 3.1. Theorem 3
gives the time and space complexity of the construction algorithm, and Theorem 4
proves this estimation algorithm using this improved histogram is also unbiased when ݌ tends to infinity.

160 Y. Zhang, L. Yang, and H. Wang

Algorithm 3
1 Initialize ܪ ՚ ׎
2 for each uncertain value ܽ do
3 for each possible value ݒ௡ of an uncertain value do
4 for ݇ from 0 to ہሺݒ௞ െ ୫୧୬ݒ ሻ/ߜ௭ۂ do
5 for all buckets meeting ݒ௡ିଵ ൏ ݈௜ ൏ ௡ݒ do
,ሺ݇ܪ 6 ݅, ሺ݇݉݅ݏ כ ,௭ߜ ݈௜ሻ/ߜ௦ሻ++
7 ௞ܲ,௜++
8 if ௞ܲ,௜ ൐ then ߝ
9 partition and adjust this bucket
10 for ݇ from 0 to ہሺݒ௞ െ ୫୧୬ݒ ሻ/ߜ௭ۂdo
11 for all buckets meeting ݎ௜ ൐ ݔܽ݉ ሺݒ௞ሻ do
,ሺ݇ܪ 12 ݅, ሺ݇݉݅ݏ כ ,௭ߜ ݈௜ሻ/ߜ௦ሻ++

Theorem 3: The time complexity of Algorithm 3 is ܱሺ݌ଶሺܰ ൅ ሻሻ and the spaceݏ
complexity is ܱሺ݌ଶݏሻ with the assumption: ߜ௭ ൌ ሺݒ௠௔௫ െ .(݌/௠௜௡ሻݒ

Proof: Compared with Algorithm 1, this algorithm only adds another dimension, and
the length of this dimension is ݌. Therefore, similarly the analysis of the complexity
of Algorithm 1, the time complexity of Algorithm 3 is ܱሺ݌ଶሺܰ ൅ ሻሻ and the spaceݏ
complexity is ܱሺ݌ଶݏሻ.

Theorem 4: The estimation method in Algorithm 4 is unbiased when ݌ tends to
infinity.

Proof: Compared with the basic histogram of Section 3.1, this improved histogram
with more detailed information can get a more accurate estimation for general queries.
Therefore, with the conclusion of Theorem 2, the estimation method using this
improved histogram is also unbiased when ݌ tends to infinity.

Algorithm 4
1 if ݔଵ ൏ ଵݔ ௠௜௡ then letݒ ൌ ௠௜௡ݒ
2 if ݔଶ ൐ ଶݔ ௠௔௫ then letݒ ൌ ௠௔௫ݒ
3 let ܥ ൌ 0; ݇ ൌ ଵݔሺہ െ ୫୧୬ݒ ሻ/ߜ௭ۂ and find ܪ௞,௜ meeting ݈௜ ൏ ଶݔ ൑ ௜ݎ
4 for ݆ from ߬ہ ⁄௦ߜ 1ڿ to ۂ ⁄௦ߜ do ۀ
ܥ 5 ൌ ܥ ൅ ,ሺ݇ܪ ݅, ݆ሻ
6 return ܥ

4 Experimental Evaluation

In this section, we study the performance of our proposed algorithms experimentally.
Our experiments are conducted on a 2.93 GHz Inter(R) Core(TM)2 Duo CPU with 2
GB main memory.

4.1 Data Sets

The data sets used for estimate query result size can be categorized into two main
parts of synthetic data sets and real-world data sets. Table 5 summarizes some
information about these data sets.

 Range Query Estimation for Dirty Data Management System 161

Synthetic Data Sets: We generate the synthetic data sets and each tuple has a Tuple
ID, along with an uncertain value. The number of the possible values of an uncertain
value is uniformly distributed between 1 and 5. The quality degree of each possible
value is randomly generated from 0.01 to 1 and these quality degrees sum up to 1 for
an uncertain value. To evaluate the robust of our approaches, we consider three
synthetic data sets with different distributions: uniform distribution, normal
distributions and zipfian distribution.

Real-World Data Sets: One of the most important applications of the histograms is
for those cases in which the distribution of the data is unknown or cannot be simply
modeled. Therefore, in order to validate our approaches over such kind of data, we
consider the real-world data sets: eCommerce data. We respectively collect book
information about Computers & Technology from eBay (http://www.ebay.com) and
Amazon (http://www.amazon.com). After the processes for original data, we get the
real data set with 10053 entities. In this data set, each tuple represents a book which
contains four uncertain values: title, author, press and price. We perform our
experiments by building the histograms on attribute price.

Table 5. Data sets used for the experimental results

Name Distribution Size Parameter
Uniform Uniform 1m ݉݅݊0, 1݇ݔܽ݉
Normal Normal 1m 500ߤ, 100ߪ

Zipf Zipfian 1m 1.0ߙ
Real eCommerce 10K -

4.2 Query Set and Error Metric

Without loss of generality, we ran every experiment on a variety of queries. All
queries are in form of ሼݔଵ ൏ ܣ ൏ ,ଵݔ :ଶݔ ଵݔ א ܷሽ, where ܣ is an attribute and ܷ is
its domain. We measure the error of estimation made by histograms on the above

query set by using the average of the relative error: ଵே ∑ ห஼መ೜ି஼೜ห஼መ೜௤࣫א , where ܰ is the

cardinality of the query set, ܥመ௤ and ܥ௤ are the actual and the estimated size of the
query result set, respectively. หܥመ௤ െܥ௤ห መ௤ൗܥ represents the relative error of query ݍ. In
our experiments, we randomly generate 100 queries for each query set.

4.3 Experimental Results

Our experiments compare the two estimation algorithms proposed in Section 3. We
denote them by 1ܪ (in Section 3.1) and 2ܪ (in Section 3.2). Without explicit
explanation, the default value of the similarity threshold is 0.2 for all experiments; the
default size of the real and synthetic data sets are 10,000 and 200,000 tuples; the
default size of initial granularity ݌ of partition and granularity ݍ of repartition are 50
and 4; the default size of bucket width on similarity dimension ߜ௦ is 0.1.

162 Y. Zhang, L. Yang, and H. Wang

4.3.1 Effect of Data Distribution
For query estimation algorithms based on histogram, data distribution is an important
factor affecting the accuracy of estimation. Fig. 2 shows the effect of data distribution
to our estimation algorithms. It can be seen that for each data distribution, both two
estimation algorithms can get a good estimation (relative errors are less than 40%)
and algorithm 2ܪ is always more accurate than algorithm 1ܪ.

Fig. 2. Effect of data distribution

4.3.2 Effect of Data Set Size
 Fig. 3 shows the effect of data set size. In this experiment, we vary the data set size by
selecting the desired number of tuples from the synthetic data set T, and the data set
sizes are 100K, 200K, 400K, 600K, 800K and 1000K (for eCommerce data, data set
sizes are 1K, 2K, 4K, 6K, 8K and 10K). It is observed from Fig. 3 that the relative
error is not sensitive to the dataset size for both two algorithms.

Fig. 3. Effect of data size on 1ܪ and 2ܪ

4.3.3 Effect of Threshold
 For the entity-based relational database, the threshold plays an important role in query
processing. Fig. 4 shows the impact of the threshold with different thresholds from 0.1
to 0.9. For algorithm 2ܪ, no matter how the data is distributed, the change is not very
significant. Therefore, algorithm 2ܪ is relatively stable for different thresholds.
However, for algorithm 1ܪ, the relative error decreases at first and then increases
with the threshold. When the threshold is in ሾ0.4, 0.6ሿ, the relative errors is minimum.
Hence the accuracy of algorithm 1ܪ is related to threshold ߬ as mentioned in
Section 3.1, and it can give accurate estimations when ߬ א ሾ0.4, 0.6ሿ.

0%

20%

40%

60%

Uniform Normal Zipf Real

re
la

ti
ve

 e
rr

or

H1
H2

0%

25%

50%

75%

100%

0 20 40 60 80 100

re
la

ti
ve

 e
rr

or

data set size(10K)

Uniform Normal
Zipf Real

0%

25%

50%

75%

100%

0 20 40 60 80 100

re
la

ti
ve

er
ro

r

data set size(10K)

Uniform Normal
Zipf Real

 Range Query Estimation for Dirty Data Management System 163

Fig. 4. Effect of threshold on 1ܪ and 2ܪ

4.3.4 Effect of Granularity of Partition
Another important factor of our estimation algorithms is the granularity of partition.
We show the effect of the initial granularity of partition ݌ in Fig. 5, and set ݌ at 10,
20, 40, 60, 80 and 100 respectively. We observe that there is a similar trend of the
relative error both algorithm 1ܪ and 2ܪ . As initial granularity of partition ݌
increases, the relative error decreases. This phenomenon empirically verifies the
conclusion that our approaches are unbiased when ݌ tends to infinity.

Fig. 5. Effect of granularity of partition on 1ܪ and 2ܪ

4.3.5 Effect of Width of Query Range
In Section 3.1, we mentioned that the accuracy of the estimation using the basic
histogram 1ܪ is related to the width of query range and the threshold ߬. Fig. 4 has
showed us the effect of the threshold. In this experiment, we show the effect of the
width of query range. Fig. 6 gives the experimental results. We can observe that with
an increasing width of query range, the relative error has a decreasing trend for both 1ܪ and 2ܪ, especially for 1ܪ, and the estimations using histogram 2ܪ are more
accurate. As a result, the wider query range is, the more accurate estimation is.

Fig. 6. Effect of width of query range on 1ܪ and 2ܪ

0%

25%

50%

75%

100%

0 0.2 0.4 0.6 0.8 1

re
la

tiv
e

er
ro

r

threshold

Uniform Normal
Zipf Real

0%

25%

50%

75%

100%

0 0.2 0.4 0.6 0.8 1

re
la

tiv
e

er
ro

r

threshold

Uniform Normal
Zipf Real

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100

re
la

tiv
e

er
ro

r

granularity of partition

Uniform Normal
Zipf Real

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100

re
la

tiv
e

er
ro

r

granularity of partition

Uniform Normal
Zipf Real

0%

10%

20%

30%

40%

50%

0 200 400 600 800 1000

re
la

tiv
e

er
ro

r

width of query range

Uniform Normal
Zipf Real

0%

10%

20%

30%

40%

50%

0 200 400 600 800 1000

re
la

tiv
e

er
ro

r

width of query range

Uniform Normal
Zipf Real

164 Y. Zhang, L. Yang, and H. Wang

5 Conclusion and Future Work

Entity-based relational database is a practical method for dirty data management.
Intermediate result size estimation is crucial for the query optimization for entity-
based relational database. However, traditional estimation methods cannot be applied
to this problem directly. In this paper, we study this problem. To solve this problem,
we propose two histogram-based methods for different form of queries and
requirements. It is proven that they are unbiased. The experimental results validate the
effectiveness of our algorithms, and they can indeed give good estimations for range
queries. For future work, we plan to continue to study query optimization based on
the cost of estimation, especially the estimation of join result size.

References

1. Batini, C., Scannapieco, M.: Data quality: concepts, methodologies and techniques.
Springer (2006)

2. English, L.: Plain English on data quality: Information quality management: The next
frontier. DM Review Magazine (2000)

3. Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data Eng.
Bull. 23(4), 3–13 (2000)

4. Fuxman, A.D., Miller, R.J.: First-Order Query Rewriting for Inconsistent Databases. In:
Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 337–351. Springer,
Heidelberg (2005)

5. Fuxman, A., Fazli, E., Miller, R.J.: Conquer: Efficient management of inconsistent
databases. In: SIGMOD, pp. 155–166 (2005)

6. Andritsos, P., Fuxman, A., Miller, R.J.: Clean answers over dirty databases: A
probabilistic approach. In: ICDE, p. 30 (2006)

7. Boulos, J., Dalvi, N., Mandhani, B., Mathur, S., Re, C., Suciu, D.: MYSTIQ: a system for
finding more answers by using probabilities. In: SIGMOD, pp. 891–893 (2005)

8. Widom, J.: Trio: a system for integrated management of data, accuracy, and lineage. In:
CIDR, pp. 262–276 (2005)

9. Hassanzadeh, O., Miller, R.J.: Creating probabilistic databases from duplicated data. The
VLDB Journal, 1141–1166 (2009)

10. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS, pp. 233–246 (2002)
11. Dong, X.L., Halevy, A., Yu, C.: Data integration with uncertainty. The VLDB Journal,

469–500 (2009)
12. Benjelloun, O., Garcia-Molina, H., Menestrina, D., Whang, S.E., Su, Q., Widom, J.:

Swoosh: a generic approach to entity resolution. The VLDB Journal, 255–276 (2008)
13. Li, Y., Wang, H., Gao, H.: Efficient Entity Resolution Based on Sequence Rules. In: Shen,

G., Huang, X. (eds.) CSIE 2011. CCIS, vol. 152, pp. 381–388. Springer, Heidelberg
(2011)

14. Ioannidis, Y.E.: The history of histograms (abridged). In: VLDB, pp. 19–30 (2003)

	Range Query Estimation for Dirty Data Management System
	Introduction
	Preliminaries
	Entity-Based Relational Database Model
	Operators

	Range Query Estimation
	Preliminary Range Query Estimation Method
	Accurate Range Query Estimation

	Experimental Evaluation
	Data Sets
	Query Set and Error Metric
	Experimental Results

	Conclusion and Future Work
	References

